1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the parser class for .ll files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "LLParser.h" 14 #include "LLToken.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/AsmParser/SlotMapping.h" 21 #include "llvm/BinaryFormat/Dwarf.h" 22 #include "llvm/IR/Argument.h" 23 #include "llvm/IR/AutoUpgrade.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallingConv.h" 26 #include "llvm/IR/Comdat.h" 27 #include "llvm/IR/ConstantRange.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DebugInfoMetadata.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/GlobalIFunc.h" 33 #include "llvm/IR/GlobalObject.h" 34 #include "llvm/IR/InlineAsm.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/IR/ValueSymbolTable.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/MathExtras.h" 44 #include "llvm/Support/SaveAndRestore.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include <algorithm> 47 #include <cassert> 48 #include <cstring> 49 #include <iterator> 50 #include <vector> 51 52 using namespace llvm; 53 54 static std::string getTypeString(Type *T) { 55 std::string Result; 56 raw_string_ostream Tmp(Result); 57 Tmp << *T; 58 return Tmp.str(); 59 } 60 61 /// Run: module ::= toplevelentity* 62 bool LLParser::Run(bool UpgradeDebugInfo, 63 DataLayoutCallbackTy DataLayoutCallback) { 64 // Prime the lexer. 65 Lex.Lex(); 66 67 if (Context.shouldDiscardValueNames()) 68 return error( 69 Lex.getLoc(), 70 "Can't read textual IR with a Context that discards named Values"); 71 72 if (M) { 73 if (parseTargetDefinitions()) 74 return true; 75 76 if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple())) 77 M->setDataLayout(*LayoutOverride); 78 } 79 80 return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) || 81 validateEndOfIndex(); 82 } 83 84 bool LLParser::parseStandaloneConstantValue(Constant *&C, 85 const SlotMapping *Slots) { 86 restoreParsingState(Slots); 87 Lex.Lex(); 88 89 Type *Ty = nullptr; 90 if (parseType(Ty) || parseConstantValue(Ty, C)) 91 return true; 92 if (Lex.getKind() != lltok::Eof) 93 return error(Lex.getLoc(), "expected end of string"); 94 return false; 95 } 96 97 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 98 const SlotMapping *Slots) { 99 restoreParsingState(Slots); 100 Lex.Lex(); 101 102 Read = 0; 103 SMLoc Start = Lex.getLoc(); 104 Ty = nullptr; 105 if (parseType(Ty)) 106 return true; 107 SMLoc End = Lex.getLoc(); 108 Read = End.getPointer() - Start.getPointer(); 109 110 return false; 111 } 112 113 void LLParser::restoreParsingState(const SlotMapping *Slots) { 114 if (!Slots) 115 return; 116 NumberedVals = Slots->GlobalValues; 117 NumberedMetadata = Slots->MetadataNodes; 118 for (const auto &I : Slots->NamedTypes) 119 NamedTypes.insert( 120 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 121 for (const auto &I : Slots->Types) 122 NumberedTypes.insert( 123 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 124 } 125 126 /// validateEndOfModule - Do final validity and sanity checks at the end of the 127 /// module. 128 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) { 129 if (!M) 130 return false; 131 // Handle any function attribute group forward references. 132 for (const auto &RAG : ForwardRefAttrGroups) { 133 Value *V = RAG.first; 134 const std::vector<unsigned> &Attrs = RAG.second; 135 AttrBuilder B; 136 137 for (const auto &Attr : Attrs) 138 B.merge(NumberedAttrBuilders[Attr]); 139 140 if (Function *Fn = dyn_cast<Function>(V)) { 141 AttributeList AS = Fn->getAttributes(); 142 AttrBuilder FnAttrs(AS.getFnAttributes()); 143 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 144 145 FnAttrs.merge(B); 146 147 // If the alignment was parsed as an attribute, move to the alignment 148 // field. 149 if (FnAttrs.hasAlignmentAttr()) { 150 Fn->setAlignment(FnAttrs.getAlignment()); 151 FnAttrs.removeAttribute(Attribute::Alignment); 152 } 153 154 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 155 AttributeSet::get(Context, FnAttrs)); 156 Fn->setAttributes(AS); 157 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 158 AttributeList AS = CI->getAttributes(); 159 AttrBuilder FnAttrs(AS.getFnAttributes()); 160 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 161 FnAttrs.merge(B); 162 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 163 AttributeSet::get(Context, FnAttrs)); 164 CI->setAttributes(AS); 165 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 166 AttributeList AS = II->getAttributes(); 167 AttrBuilder FnAttrs(AS.getFnAttributes()); 168 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 169 FnAttrs.merge(B); 170 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 171 AttributeSet::get(Context, FnAttrs)); 172 II->setAttributes(AS); 173 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) { 174 AttributeList AS = CBI->getAttributes(); 175 AttrBuilder FnAttrs(AS.getFnAttributes()); 176 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 177 FnAttrs.merge(B); 178 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 179 AttributeSet::get(Context, FnAttrs)); 180 CBI->setAttributes(AS); 181 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 182 AttrBuilder Attrs(GV->getAttributes()); 183 Attrs.merge(B); 184 GV->setAttributes(AttributeSet::get(Context,Attrs)); 185 } else { 186 llvm_unreachable("invalid object with forward attribute group reference"); 187 } 188 } 189 190 // If there are entries in ForwardRefBlockAddresses at this point, the 191 // function was never defined. 192 if (!ForwardRefBlockAddresses.empty()) 193 return error(ForwardRefBlockAddresses.begin()->first.Loc, 194 "expected function name in blockaddress"); 195 196 for (const auto &NT : NumberedTypes) 197 if (NT.second.second.isValid()) 198 return error(NT.second.second, 199 "use of undefined type '%" + Twine(NT.first) + "'"); 200 201 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 202 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 203 if (I->second.second.isValid()) 204 return error(I->second.second, 205 "use of undefined type named '" + I->getKey() + "'"); 206 207 if (!ForwardRefComdats.empty()) 208 return error(ForwardRefComdats.begin()->second, 209 "use of undefined comdat '$" + 210 ForwardRefComdats.begin()->first + "'"); 211 212 if (!ForwardRefVals.empty()) 213 return error(ForwardRefVals.begin()->second.second, 214 "use of undefined value '@" + ForwardRefVals.begin()->first + 215 "'"); 216 217 if (!ForwardRefValIDs.empty()) 218 return error(ForwardRefValIDs.begin()->second.second, 219 "use of undefined value '@" + 220 Twine(ForwardRefValIDs.begin()->first) + "'"); 221 222 if (!ForwardRefMDNodes.empty()) 223 return error(ForwardRefMDNodes.begin()->second.second, 224 "use of undefined metadata '!" + 225 Twine(ForwardRefMDNodes.begin()->first) + "'"); 226 227 // Resolve metadata cycles. 228 for (auto &N : NumberedMetadata) { 229 if (N.second && !N.second->isResolved()) 230 N.second->resolveCycles(); 231 } 232 233 for (auto *Inst : InstsWithTBAATag) { 234 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 235 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 236 auto *UpgradedMD = UpgradeTBAANode(*MD); 237 if (MD != UpgradedMD) 238 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 239 } 240 241 // Look for intrinsic functions and CallInst that need to be upgraded 242 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 243 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 244 245 // Some types could be renamed during loading if several modules are 246 // loaded in the same LLVMContext (LTO scenario). In this case we should 247 // remangle intrinsics names as well. 248 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) { 249 Function *F = &*FI++; 250 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 251 F->replaceAllUsesWith(Remangled.getValue()); 252 F->eraseFromParent(); 253 } 254 } 255 256 if (UpgradeDebugInfo) 257 llvm::UpgradeDebugInfo(*M); 258 259 UpgradeModuleFlags(*M); 260 UpgradeSectionAttributes(*M); 261 262 if (!Slots) 263 return false; 264 // Initialize the slot mapping. 265 // Because by this point we've parsed and validated everything, we can "steal" 266 // the mapping from LLParser as it doesn't need it anymore. 267 Slots->GlobalValues = std::move(NumberedVals); 268 Slots->MetadataNodes = std::move(NumberedMetadata); 269 for (const auto &I : NamedTypes) 270 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 271 for (const auto &I : NumberedTypes) 272 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 273 274 return false; 275 } 276 277 /// Do final validity and sanity checks at the end of the index. 278 bool LLParser::validateEndOfIndex() { 279 if (!Index) 280 return false; 281 282 if (!ForwardRefValueInfos.empty()) 283 return error(ForwardRefValueInfos.begin()->second.front().second, 284 "use of undefined summary '^" + 285 Twine(ForwardRefValueInfos.begin()->first) + "'"); 286 287 if (!ForwardRefAliasees.empty()) 288 return error(ForwardRefAliasees.begin()->second.front().second, 289 "use of undefined summary '^" + 290 Twine(ForwardRefAliasees.begin()->first) + "'"); 291 292 if (!ForwardRefTypeIds.empty()) 293 return error(ForwardRefTypeIds.begin()->second.front().second, 294 "use of undefined type id summary '^" + 295 Twine(ForwardRefTypeIds.begin()->first) + "'"); 296 297 return false; 298 } 299 300 //===----------------------------------------------------------------------===// 301 // Top-Level Entities 302 //===----------------------------------------------------------------------===// 303 304 bool LLParser::parseTargetDefinitions() { 305 while (true) { 306 switch (Lex.getKind()) { 307 case lltok::kw_target: 308 if (parseTargetDefinition()) 309 return true; 310 break; 311 case lltok::kw_source_filename: 312 if (parseSourceFileName()) 313 return true; 314 break; 315 default: 316 return false; 317 } 318 } 319 } 320 321 bool LLParser::parseTopLevelEntities() { 322 // If there is no Module, then parse just the summary index entries. 323 if (!M) { 324 while (true) { 325 switch (Lex.getKind()) { 326 case lltok::Eof: 327 return false; 328 case lltok::SummaryID: 329 if (parseSummaryEntry()) 330 return true; 331 break; 332 case lltok::kw_source_filename: 333 if (parseSourceFileName()) 334 return true; 335 break; 336 default: 337 // Skip everything else 338 Lex.Lex(); 339 } 340 } 341 } 342 while (true) { 343 switch (Lex.getKind()) { 344 default: 345 return tokError("expected top-level entity"); 346 case lltok::Eof: return false; 347 case lltok::kw_declare: 348 if (parseDeclare()) 349 return true; 350 break; 351 case lltok::kw_define: 352 if (parseDefine()) 353 return true; 354 break; 355 case lltok::kw_module: 356 if (parseModuleAsm()) 357 return true; 358 break; 359 case lltok::kw_deplibs: 360 if (parseDepLibs()) 361 return true; 362 break; 363 case lltok::LocalVarID: 364 if (parseUnnamedType()) 365 return true; 366 break; 367 case lltok::LocalVar: 368 if (parseNamedType()) 369 return true; 370 break; 371 case lltok::GlobalID: 372 if (parseUnnamedGlobal()) 373 return true; 374 break; 375 case lltok::GlobalVar: 376 if (parseNamedGlobal()) 377 return true; 378 break; 379 case lltok::ComdatVar: if (parseComdat()) return true; break; 380 case lltok::exclaim: 381 if (parseStandaloneMetadata()) 382 return true; 383 break; 384 case lltok::SummaryID: 385 if (parseSummaryEntry()) 386 return true; 387 break; 388 case lltok::MetadataVar: 389 if (parseNamedMetadata()) 390 return true; 391 break; 392 case lltok::kw_attributes: 393 if (parseUnnamedAttrGrp()) 394 return true; 395 break; 396 case lltok::kw_uselistorder: 397 if (parseUseListOrder()) 398 return true; 399 break; 400 case lltok::kw_uselistorder_bb: 401 if (parseUseListOrderBB()) 402 return true; 403 break; 404 } 405 } 406 } 407 408 /// toplevelentity 409 /// ::= 'module' 'asm' STRINGCONSTANT 410 bool LLParser::parseModuleAsm() { 411 assert(Lex.getKind() == lltok::kw_module); 412 Lex.Lex(); 413 414 std::string AsmStr; 415 if (parseToken(lltok::kw_asm, "expected 'module asm'") || 416 parseStringConstant(AsmStr)) 417 return true; 418 419 M->appendModuleInlineAsm(AsmStr); 420 return false; 421 } 422 423 /// toplevelentity 424 /// ::= 'target' 'triple' '=' STRINGCONSTANT 425 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 426 bool LLParser::parseTargetDefinition() { 427 assert(Lex.getKind() == lltok::kw_target); 428 std::string Str; 429 switch (Lex.Lex()) { 430 default: 431 return tokError("unknown target property"); 432 case lltok::kw_triple: 433 Lex.Lex(); 434 if (parseToken(lltok::equal, "expected '=' after target triple") || 435 parseStringConstant(Str)) 436 return true; 437 M->setTargetTriple(Str); 438 return false; 439 case lltok::kw_datalayout: 440 Lex.Lex(); 441 if (parseToken(lltok::equal, "expected '=' after target datalayout") || 442 parseStringConstant(Str)) 443 return true; 444 M->setDataLayout(Str); 445 return false; 446 } 447 } 448 449 /// toplevelentity 450 /// ::= 'source_filename' '=' STRINGCONSTANT 451 bool LLParser::parseSourceFileName() { 452 assert(Lex.getKind() == lltok::kw_source_filename); 453 Lex.Lex(); 454 if (parseToken(lltok::equal, "expected '=' after source_filename") || 455 parseStringConstant(SourceFileName)) 456 return true; 457 if (M) 458 M->setSourceFileName(SourceFileName); 459 return false; 460 } 461 462 /// toplevelentity 463 /// ::= 'deplibs' '=' '[' ']' 464 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 465 /// FIXME: Remove in 4.0. Currently parse, but ignore. 466 bool LLParser::parseDepLibs() { 467 assert(Lex.getKind() == lltok::kw_deplibs); 468 Lex.Lex(); 469 if (parseToken(lltok::equal, "expected '=' after deplibs") || 470 parseToken(lltok::lsquare, "expected '=' after deplibs")) 471 return true; 472 473 if (EatIfPresent(lltok::rsquare)) 474 return false; 475 476 do { 477 std::string Str; 478 if (parseStringConstant(Str)) 479 return true; 480 } while (EatIfPresent(lltok::comma)); 481 482 return parseToken(lltok::rsquare, "expected ']' at end of list"); 483 } 484 485 /// parseUnnamedType: 486 /// ::= LocalVarID '=' 'type' type 487 bool LLParser::parseUnnamedType() { 488 LocTy TypeLoc = Lex.getLoc(); 489 unsigned TypeID = Lex.getUIntVal(); 490 Lex.Lex(); // eat LocalVarID; 491 492 if (parseToken(lltok::equal, "expected '=' after name") || 493 parseToken(lltok::kw_type, "expected 'type' after '='")) 494 return true; 495 496 Type *Result = nullptr; 497 if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result)) 498 return true; 499 500 if (!isa<StructType>(Result)) { 501 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 502 if (Entry.first) 503 return error(TypeLoc, "non-struct types may not be recursive"); 504 Entry.first = Result; 505 Entry.second = SMLoc(); 506 } 507 508 return false; 509 } 510 511 /// toplevelentity 512 /// ::= LocalVar '=' 'type' type 513 bool LLParser::parseNamedType() { 514 std::string Name = Lex.getStrVal(); 515 LocTy NameLoc = Lex.getLoc(); 516 Lex.Lex(); // eat LocalVar. 517 518 if (parseToken(lltok::equal, "expected '=' after name") || 519 parseToken(lltok::kw_type, "expected 'type' after name")) 520 return true; 521 522 Type *Result = nullptr; 523 if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result)) 524 return true; 525 526 if (!isa<StructType>(Result)) { 527 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 528 if (Entry.first) 529 return error(NameLoc, "non-struct types may not be recursive"); 530 Entry.first = Result; 531 Entry.second = SMLoc(); 532 } 533 534 return false; 535 } 536 537 /// toplevelentity 538 /// ::= 'declare' FunctionHeader 539 bool LLParser::parseDeclare() { 540 assert(Lex.getKind() == lltok::kw_declare); 541 Lex.Lex(); 542 543 std::vector<std::pair<unsigned, MDNode *>> MDs; 544 while (Lex.getKind() == lltok::MetadataVar) { 545 unsigned MDK; 546 MDNode *N; 547 if (parseMetadataAttachment(MDK, N)) 548 return true; 549 MDs.push_back({MDK, N}); 550 } 551 552 Function *F; 553 if (parseFunctionHeader(F, false)) 554 return true; 555 for (auto &MD : MDs) 556 F->addMetadata(MD.first, *MD.second); 557 return false; 558 } 559 560 /// toplevelentity 561 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 562 bool LLParser::parseDefine() { 563 assert(Lex.getKind() == lltok::kw_define); 564 Lex.Lex(); 565 566 Function *F; 567 return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) || 568 parseFunctionBody(*F); 569 } 570 571 /// parseGlobalType 572 /// ::= 'constant' 573 /// ::= 'global' 574 bool LLParser::parseGlobalType(bool &IsConstant) { 575 if (Lex.getKind() == lltok::kw_constant) 576 IsConstant = true; 577 else if (Lex.getKind() == lltok::kw_global) 578 IsConstant = false; 579 else { 580 IsConstant = false; 581 return tokError("expected 'global' or 'constant'"); 582 } 583 Lex.Lex(); 584 return false; 585 } 586 587 bool LLParser::parseOptionalUnnamedAddr( 588 GlobalVariable::UnnamedAddr &UnnamedAddr) { 589 if (EatIfPresent(lltok::kw_unnamed_addr)) 590 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 591 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 592 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 593 else 594 UnnamedAddr = GlobalValue::UnnamedAddr::None; 595 return false; 596 } 597 598 /// parseUnnamedGlobal: 599 /// OptionalVisibility (ALIAS | IFUNC) ... 600 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 601 /// OptionalDLLStorageClass 602 /// ... -> global variable 603 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 604 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier 605 /// OptionalVisibility 606 /// OptionalDLLStorageClass 607 /// ... -> global variable 608 bool LLParser::parseUnnamedGlobal() { 609 unsigned VarID = NumberedVals.size(); 610 std::string Name; 611 LocTy NameLoc = Lex.getLoc(); 612 613 // Handle the GlobalID form. 614 if (Lex.getKind() == lltok::GlobalID) { 615 if (Lex.getUIntVal() != VarID) 616 return error(Lex.getLoc(), 617 "variable expected to be numbered '%" + Twine(VarID) + "'"); 618 Lex.Lex(); // eat GlobalID; 619 620 if (parseToken(lltok::equal, "expected '=' after name")) 621 return true; 622 } 623 624 bool HasLinkage; 625 unsigned Linkage, Visibility, DLLStorageClass; 626 bool DSOLocal; 627 GlobalVariable::ThreadLocalMode TLM; 628 GlobalVariable::UnnamedAddr UnnamedAddr; 629 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 630 DSOLocal) || 631 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 632 return true; 633 634 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 635 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 636 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 637 638 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 639 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 640 } 641 642 /// parseNamedGlobal: 643 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 644 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 645 /// OptionalVisibility OptionalDLLStorageClass 646 /// ... -> global variable 647 bool LLParser::parseNamedGlobal() { 648 assert(Lex.getKind() == lltok::GlobalVar); 649 LocTy NameLoc = Lex.getLoc(); 650 std::string Name = Lex.getStrVal(); 651 Lex.Lex(); 652 653 bool HasLinkage; 654 unsigned Linkage, Visibility, DLLStorageClass; 655 bool DSOLocal; 656 GlobalVariable::ThreadLocalMode TLM; 657 GlobalVariable::UnnamedAddr UnnamedAddr; 658 if (parseToken(lltok::equal, "expected '=' in global variable") || 659 parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 660 DSOLocal) || 661 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 662 return true; 663 664 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 665 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 666 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 667 668 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 669 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 670 } 671 672 bool LLParser::parseComdat() { 673 assert(Lex.getKind() == lltok::ComdatVar); 674 std::string Name = Lex.getStrVal(); 675 LocTy NameLoc = Lex.getLoc(); 676 Lex.Lex(); 677 678 if (parseToken(lltok::equal, "expected '=' here")) 679 return true; 680 681 if (parseToken(lltok::kw_comdat, "expected comdat keyword")) 682 return tokError("expected comdat type"); 683 684 Comdat::SelectionKind SK; 685 switch (Lex.getKind()) { 686 default: 687 return tokError("unknown selection kind"); 688 case lltok::kw_any: 689 SK = Comdat::Any; 690 break; 691 case lltok::kw_exactmatch: 692 SK = Comdat::ExactMatch; 693 break; 694 case lltok::kw_largest: 695 SK = Comdat::Largest; 696 break; 697 case lltok::kw_noduplicates: 698 SK = Comdat::NoDuplicates; 699 break; 700 case lltok::kw_samesize: 701 SK = Comdat::SameSize; 702 break; 703 } 704 Lex.Lex(); 705 706 // See if the comdat was forward referenced, if so, use the comdat. 707 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 708 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 709 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 710 return error(NameLoc, "redefinition of comdat '$" + Name + "'"); 711 712 Comdat *C; 713 if (I != ComdatSymTab.end()) 714 C = &I->second; 715 else 716 C = M->getOrInsertComdat(Name); 717 C->setSelectionKind(SK); 718 719 return false; 720 } 721 722 // MDString: 723 // ::= '!' STRINGCONSTANT 724 bool LLParser::parseMDString(MDString *&Result) { 725 std::string Str; 726 if (parseStringConstant(Str)) 727 return true; 728 Result = MDString::get(Context, Str); 729 return false; 730 } 731 732 // MDNode: 733 // ::= '!' MDNodeNumber 734 bool LLParser::parseMDNodeID(MDNode *&Result) { 735 // !{ ..., !42, ... } 736 LocTy IDLoc = Lex.getLoc(); 737 unsigned MID = 0; 738 if (parseUInt32(MID)) 739 return true; 740 741 // If not a forward reference, just return it now. 742 if (NumberedMetadata.count(MID)) { 743 Result = NumberedMetadata[MID]; 744 return false; 745 } 746 747 // Otherwise, create MDNode forward reference. 748 auto &FwdRef = ForwardRefMDNodes[MID]; 749 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 750 751 Result = FwdRef.first.get(); 752 NumberedMetadata[MID].reset(Result); 753 return false; 754 } 755 756 /// parseNamedMetadata: 757 /// !foo = !{ !1, !2 } 758 bool LLParser::parseNamedMetadata() { 759 assert(Lex.getKind() == lltok::MetadataVar); 760 std::string Name = Lex.getStrVal(); 761 Lex.Lex(); 762 763 if (parseToken(lltok::equal, "expected '=' here") || 764 parseToken(lltok::exclaim, "Expected '!' here") || 765 parseToken(lltok::lbrace, "Expected '{' here")) 766 return true; 767 768 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 769 if (Lex.getKind() != lltok::rbrace) 770 do { 771 MDNode *N = nullptr; 772 // parse DIExpressions inline as a special case. They are still MDNodes, 773 // so they can still appear in named metadata. Remove this logic if they 774 // become plain Metadata. 775 if (Lex.getKind() == lltok::MetadataVar && 776 Lex.getStrVal() == "DIExpression") { 777 if (parseDIExpression(N, /*IsDistinct=*/false)) 778 return true; 779 } else if (parseToken(lltok::exclaim, "Expected '!' here") || 780 parseMDNodeID(N)) { 781 return true; 782 } 783 NMD->addOperand(N); 784 } while (EatIfPresent(lltok::comma)); 785 786 return parseToken(lltok::rbrace, "expected end of metadata node"); 787 } 788 789 /// parseStandaloneMetadata: 790 /// !42 = !{...} 791 bool LLParser::parseStandaloneMetadata() { 792 assert(Lex.getKind() == lltok::exclaim); 793 Lex.Lex(); 794 unsigned MetadataID = 0; 795 796 MDNode *Init; 797 if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here")) 798 return true; 799 800 // Detect common error, from old metadata syntax. 801 if (Lex.getKind() == lltok::Type) 802 return tokError("unexpected type in metadata definition"); 803 804 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 805 if (Lex.getKind() == lltok::MetadataVar) { 806 if (parseSpecializedMDNode(Init, IsDistinct)) 807 return true; 808 } else if (parseToken(lltok::exclaim, "Expected '!' here") || 809 parseMDTuple(Init, IsDistinct)) 810 return true; 811 812 // See if this was forward referenced, if so, handle it. 813 auto FI = ForwardRefMDNodes.find(MetadataID); 814 if (FI != ForwardRefMDNodes.end()) { 815 FI->second.first->replaceAllUsesWith(Init); 816 ForwardRefMDNodes.erase(FI); 817 818 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 819 } else { 820 if (NumberedMetadata.count(MetadataID)) 821 return tokError("Metadata id is already used"); 822 NumberedMetadata[MetadataID].reset(Init); 823 } 824 825 return false; 826 } 827 828 // Skips a single module summary entry. 829 bool LLParser::skipModuleSummaryEntry() { 830 // Each module summary entry consists of a tag for the entry 831 // type, followed by a colon, then the fields which may be surrounded by 832 // nested sets of parentheses. The "tag:" looks like a Label. Once parsing 833 // support is in place we will look for the tokens corresponding to the 834 // expected tags. 835 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module && 836 Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags && 837 Lex.getKind() != lltok::kw_blockcount) 838 return tokError( 839 "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the " 840 "start of summary entry"); 841 if (Lex.getKind() == lltok::kw_flags) 842 return parseSummaryIndexFlags(); 843 if (Lex.getKind() == lltok::kw_blockcount) 844 return parseBlockCount(); 845 Lex.Lex(); 846 if (parseToken(lltok::colon, "expected ':' at start of summary entry") || 847 parseToken(lltok::lparen, "expected '(' at start of summary entry")) 848 return true; 849 // Now walk through the parenthesized entry, until the number of open 850 // parentheses goes back down to 0 (the first '(' was parsed above). 851 unsigned NumOpenParen = 1; 852 do { 853 switch (Lex.getKind()) { 854 case lltok::lparen: 855 NumOpenParen++; 856 break; 857 case lltok::rparen: 858 NumOpenParen--; 859 break; 860 case lltok::Eof: 861 return tokError("found end of file while parsing summary entry"); 862 default: 863 // Skip everything in between parentheses. 864 break; 865 } 866 Lex.Lex(); 867 } while (NumOpenParen > 0); 868 return false; 869 } 870 871 /// SummaryEntry 872 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry 873 bool LLParser::parseSummaryEntry() { 874 assert(Lex.getKind() == lltok::SummaryID); 875 unsigned SummaryID = Lex.getUIntVal(); 876 877 // For summary entries, colons should be treated as distinct tokens, 878 // not an indication of the end of a label token. 879 Lex.setIgnoreColonInIdentifiers(true); 880 881 Lex.Lex(); 882 if (parseToken(lltok::equal, "expected '=' here")) 883 return true; 884 885 // If we don't have an index object, skip the summary entry. 886 if (!Index) 887 return skipModuleSummaryEntry(); 888 889 bool result = false; 890 switch (Lex.getKind()) { 891 case lltok::kw_gv: 892 result = parseGVEntry(SummaryID); 893 break; 894 case lltok::kw_module: 895 result = parseModuleEntry(SummaryID); 896 break; 897 case lltok::kw_typeid: 898 result = parseTypeIdEntry(SummaryID); 899 break; 900 case lltok::kw_typeidCompatibleVTable: 901 result = parseTypeIdCompatibleVtableEntry(SummaryID); 902 break; 903 case lltok::kw_flags: 904 result = parseSummaryIndexFlags(); 905 break; 906 case lltok::kw_blockcount: 907 result = parseBlockCount(); 908 break; 909 default: 910 result = error(Lex.getLoc(), "unexpected summary kind"); 911 break; 912 } 913 Lex.setIgnoreColonInIdentifiers(false); 914 return result; 915 } 916 917 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 918 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 919 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 920 } 921 922 // If there was an explicit dso_local, update GV. In the absence of an explicit 923 // dso_local we keep the default value. 924 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { 925 if (DSOLocal) 926 GV.setDSOLocal(true); 927 } 928 929 /// parseIndirectSymbol: 930 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 931 /// OptionalVisibility OptionalDLLStorageClass 932 /// OptionalThreadLocal OptionalUnnamedAddr 933 /// 'alias|ifunc' IndirectSymbol IndirectSymbolAttr* 934 /// 935 /// IndirectSymbol 936 /// ::= TypeAndValue 937 /// 938 /// IndirectSymbolAttr 939 /// ::= ',' 'partition' StringConstant 940 /// 941 /// Everything through OptionalUnnamedAddr has already been parsed. 942 /// 943 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc, 944 unsigned L, unsigned Visibility, 945 unsigned DLLStorageClass, bool DSOLocal, 946 GlobalVariable::ThreadLocalMode TLM, 947 GlobalVariable::UnnamedAddr UnnamedAddr) { 948 bool IsAlias; 949 if (Lex.getKind() == lltok::kw_alias) 950 IsAlias = true; 951 else if (Lex.getKind() == lltok::kw_ifunc) 952 IsAlias = false; 953 else 954 llvm_unreachable("Not an alias or ifunc!"); 955 Lex.Lex(); 956 957 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 958 959 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 960 return error(NameLoc, "invalid linkage type for alias"); 961 962 if (!isValidVisibilityForLinkage(Visibility, L)) 963 return error(NameLoc, 964 "symbol with local linkage must have default visibility"); 965 966 Type *Ty; 967 LocTy ExplicitTypeLoc = Lex.getLoc(); 968 if (parseType(Ty) || 969 parseToken(lltok::comma, "expected comma after alias or ifunc's type")) 970 return true; 971 972 Constant *Aliasee; 973 LocTy AliaseeLoc = Lex.getLoc(); 974 if (Lex.getKind() != lltok::kw_bitcast && 975 Lex.getKind() != lltok::kw_getelementptr && 976 Lex.getKind() != lltok::kw_addrspacecast && 977 Lex.getKind() != lltok::kw_inttoptr) { 978 if (parseGlobalTypeAndValue(Aliasee)) 979 return true; 980 } else { 981 // The bitcast dest type is not present, it is implied by the dest type. 982 ValID ID; 983 if (parseValID(ID)) 984 return true; 985 if (ID.Kind != ValID::t_Constant) 986 return error(AliaseeLoc, "invalid aliasee"); 987 Aliasee = ID.ConstantVal; 988 } 989 990 Type *AliaseeType = Aliasee->getType(); 991 auto *PTy = dyn_cast<PointerType>(AliaseeType); 992 if (!PTy) 993 return error(AliaseeLoc, "An alias or ifunc must have pointer type"); 994 unsigned AddrSpace = PTy->getAddressSpace(); 995 996 if (IsAlias && Ty != PTy->getElementType()) 997 return error(ExplicitTypeLoc, 998 "explicit pointee type doesn't match operand's pointee type"); 999 1000 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) 1001 return error(ExplicitTypeLoc, 1002 "explicit pointee type should be a function type"); 1003 1004 GlobalValue *GVal = nullptr; 1005 1006 // See if the alias was forward referenced, if so, prepare to replace the 1007 // forward reference. 1008 if (!Name.empty()) { 1009 GVal = M->getNamedValue(Name); 1010 if (GVal) { 1011 if (!ForwardRefVals.erase(Name)) 1012 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1013 } 1014 } else { 1015 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1016 if (I != ForwardRefValIDs.end()) { 1017 GVal = I->second.first; 1018 ForwardRefValIDs.erase(I); 1019 } 1020 } 1021 1022 // Okay, create the alias but do not insert it into the module yet. 1023 std::unique_ptr<GlobalIndirectSymbol> GA; 1024 if (IsAlias) 1025 GA.reset(GlobalAlias::create(Ty, AddrSpace, 1026 (GlobalValue::LinkageTypes)Linkage, Name, 1027 Aliasee, /*Parent*/ nullptr)); 1028 else 1029 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 1030 (GlobalValue::LinkageTypes)Linkage, Name, 1031 Aliasee, /*Parent*/ nullptr)); 1032 GA->setThreadLocalMode(TLM); 1033 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1034 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1035 GA->setUnnamedAddr(UnnamedAddr); 1036 maybeSetDSOLocal(DSOLocal, *GA); 1037 1038 // At this point we've parsed everything except for the IndirectSymbolAttrs. 1039 // Now parse them if there are any. 1040 while (Lex.getKind() == lltok::comma) { 1041 Lex.Lex(); 1042 1043 if (Lex.getKind() == lltok::kw_partition) { 1044 Lex.Lex(); 1045 GA->setPartition(Lex.getStrVal()); 1046 if (parseToken(lltok::StringConstant, "expected partition string")) 1047 return true; 1048 } else { 1049 return tokError("unknown alias or ifunc property!"); 1050 } 1051 } 1052 1053 if (Name.empty()) 1054 NumberedVals.push_back(GA.get()); 1055 1056 if (GVal) { 1057 // Verify that types agree. 1058 if (GVal->getType() != GA->getType()) 1059 return error( 1060 ExplicitTypeLoc, 1061 "forward reference and definition of alias have different types"); 1062 1063 // If they agree, just RAUW the old value with the alias and remove the 1064 // forward ref info. 1065 GVal->replaceAllUsesWith(GA.get()); 1066 GVal->eraseFromParent(); 1067 } 1068 1069 // Insert into the module, we know its name won't collide now. 1070 if (IsAlias) 1071 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 1072 else 1073 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 1074 assert(GA->getName() == Name && "Should not be a name conflict!"); 1075 1076 // The module owns this now 1077 GA.release(); 1078 1079 return false; 1080 } 1081 1082 /// parseGlobal 1083 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 1084 /// OptionalVisibility OptionalDLLStorageClass 1085 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 1086 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 1087 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 1088 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 1089 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 1090 /// Const OptionalAttrs 1091 /// 1092 /// Everything up to and including OptionalUnnamedAddr has been parsed 1093 /// already. 1094 /// 1095 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc, 1096 unsigned Linkage, bool HasLinkage, 1097 unsigned Visibility, unsigned DLLStorageClass, 1098 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 1099 GlobalVariable::UnnamedAddr UnnamedAddr) { 1100 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 1101 return error(NameLoc, 1102 "symbol with local linkage must have default visibility"); 1103 1104 unsigned AddrSpace; 1105 bool IsConstant, IsExternallyInitialized; 1106 LocTy IsExternallyInitializedLoc; 1107 LocTy TyLoc; 1108 1109 Type *Ty = nullptr; 1110 if (parseOptionalAddrSpace(AddrSpace) || 1111 parseOptionalToken(lltok::kw_externally_initialized, 1112 IsExternallyInitialized, 1113 &IsExternallyInitializedLoc) || 1114 parseGlobalType(IsConstant) || parseType(Ty, TyLoc)) 1115 return true; 1116 1117 // If the linkage is specified and is external, then no initializer is 1118 // present. 1119 Constant *Init = nullptr; 1120 if (!HasLinkage || 1121 !GlobalValue::isValidDeclarationLinkage( 1122 (GlobalValue::LinkageTypes)Linkage)) { 1123 if (parseGlobalValue(Ty, Init)) 1124 return true; 1125 } 1126 1127 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 1128 return error(TyLoc, "invalid type for global variable"); 1129 1130 GlobalValue *GVal = nullptr; 1131 1132 // See if the global was forward referenced, if so, use the global. 1133 if (!Name.empty()) { 1134 GVal = M->getNamedValue(Name); 1135 if (GVal) { 1136 if (!ForwardRefVals.erase(Name)) 1137 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1138 } 1139 } else { 1140 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1141 if (I != ForwardRefValIDs.end()) { 1142 GVal = I->second.first; 1143 ForwardRefValIDs.erase(I); 1144 } 1145 } 1146 1147 GlobalVariable *GV; 1148 if (!GVal) { 1149 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 1150 Name, nullptr, GlobalVariable::NotThreadLocal, 1151 AddrSpace); 1152 } else { 1153 if (GVal->getValueType() != Ty) 1154 return error( 1155 TyLoc, 1156 "forward reference and definition of global have different types"); 1157 1158 GV = cast<GlobalVariable>(GVal); 1159 1160 // Move the forward-reference to the correct spot in the module. 1161 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 1162 } 1163 1164 if (Name.empty()) 1165 NumberedVals.push_back(GV); 1166 1167 // Set the parsed properties on the global. 1168 if (Init) 1169 GV->setInitializer(Init); 1170 GV->setConstant(IsConstant); 1171 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 1172 maybeSetDSOLocal(DSOLocal, *GV); 1173 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1174 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1175 GV->setExternallyInitialized(IsExternallyInitialized); 1176 GV->setThreadLocalMode(TLM); 1177 GV->setUnnamedAddr(UnnamedAddr); 1178 1179 // parse attributes on the global. 1180 while (Lex.getKind() == lltok::comma) { 1181 Lex.Lex(); 1182 1183 if (Lex.getKind() == lltok::kw_section) { 1184 Lex.Lex(); 1185 GV->setSection(Lex.getStrVal()); 1186 if (parseToken(lltok::StringConstant, "expected global section string")) 1187 return true; 1188 } else if (Lex.getKind() == lltok::kw_partition) { 1189 Lex.Lex(); 1190 GV->setPartition(Lex.getStrVal()); 1191 if (parseToken(lltok::StringConstant, "expected partition string")) 1192 return true; 1193 } else if (Lex.getKind() == lltok::kw_align) { 1194 MaybeAlign Alignment; 1195 if (parseOptionalAlignment(Alignment)) 1196 return true; 1197 GV->setAlignment(Alignment); 1198 } else if (Lex.getKind() == lltok::MetadataVar) { 1199 if (parseGlobalObjectMetadataAttachment(*GV)) 1200 return true; 1201 } else { 1202 Comdat *C; 1203 if (parseOptionalComdat(Name, C)) 1204 return true; 1205 if (C) 1206 GV->setComdat(C); 1207 else 1208 return tokError("unknown global variable property!"); 1209 } 1210 } 1211 1212 AttrBuilder Attrs; 1213 LocTy BuiltinLoc; 1214 std::vector<unsigned> FwdRefAttrGrps; 1215 if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 1216 return true; 1217 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 1218 GV->setAttributes(AttributeSet::get(Context, Attrs)); 1219 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 1220 } 1221 1222 return false; 1223 } 1224 1225 /// parseUnnamedAttrGrp 1226 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 1227 bool LLParser::parseUnnamedAttrGrp() { 1228 assert(Lex.getKind() == lltok::kw_attributes); 1229 LocTy AttrGrpLoc = Lex.getLoc(); 1230 Lex.Lex(); 1231 1232 if (Lex.getKind() != lltok::AttrGrpID) 1233 return tokError("expected attribute group id"); 1234 1235 unsigned VarID = Lex.getUIntVal(); 1236 std::vector<unsigned> unused; 1237 LocTy BuiltinLoc; 1238 Lex.Lex(); 1239 1240 if (parseToken(lltok::equal, "expected '=' here") || 1241 parseToken(lltok::lbrace, "expected '{' here") || 1242 parseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 1243 BuiltinLoc) || 1244 parseToken(lltok::rbrace, "expected end of attribute group")) 1245 return true; 1246 1247 if (!NumberedAttrBuilders[VarID].hasAttributes()) 1248 return error(AttrGrpLoc, "attribute group has no attributes"); 1249 1250 return false; 1251 } 1252 1253 /// parseFnAttributeValuePairs 1254 /// ::= <attr> | <attr> '=' <value> 1255 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B, 1256 std::vector<unsigned> &FwdRefAttrGrps, 1257 bool inAttrGrp, LocTy &BuiltinLoc) { 1258 bool HaveError = false; 1259 1260 B.clear(); 1261 1262 while (true) { 1263 lltok::Kind Token = Lex.getKind(); 1264 if (Token == lltok::kw_builtin) 1265 BuiltinLoc = Lex.getLoc(); 1266 switch (Token) { 1267 default: 1268 if (!inAttrGrp) return HaveError; 1269 return error(Lex.getLoc(), "unterminated attribute group"); 1270 case lltok::rbrace: 1271 // Finished. 1272 return false; 1273 1274 case lltok::AttrGrpID: { 1275 // Allow a function to reference an attribute group: 1276 // 1277 // define void @foo() #1 { ... } 1278 if (inAttrGrp) 1279 HaveError |= error( 1280 Lex.getLoc(), 1281 "cannot have an attribute group reference in an attribute group"); 1282 1283 unsigned AttrGrpNum = Lex.getUIntVal(); 1284 if (inAttrGrp) break; 1285 1286 // Save the reference to the attribute group. We'll fill it in later. 1287 FwdRefAttrGrps.push_back(AttrGrpNum); 1288 break; 1289 } 1290 // Target-dependent attributes: 1291 case lltok::StringConstant: { 1292 if (parseStringAttribute(B)) 1293 return true; 1294 continue; 1295 } 1296 1297 // Target-independent attributes: 1298 case lltok::kw_align: { 1299 // As a hack, we allow function alignment to be initially parsed as an 1300 // attribute on a function declaration/definition or added to an attribute 1301 // group and later moved to the alignment field. 1302 MaybeAlign Alignment; 1303 if (inAttrGrp) { 1304 Lex.Lex(); 1305 uint32_t Value = 0; 1306 if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value)) 1307 return true; 1308 Alignment = Align(Value); 1309 } else { 1310 if (parseOptionalAlignment(Alignment)) 1311 return true; 1312 } 1313 B.addAlignmentAttr(Alignment); 1314 continue; 1315 } 1316 case lltok::kw_alignstack: { 1317 unsigned Alignment; 1318 if (inAttrGrp) { 1319 Lex.Lex(); 1320 if (parseToken(lltok::equal, "expected '=' here") || 1321 parseUInt32(Alignment)) 1322 return true; 1323 } else { 1324 if (parseOptionalStackAlignment(Alignment)) 1325 return true; 1326 } 1327 B.addStackAlignmentAttr(Alignment); 1328 continue; 1329 } 1330 case lltok::kw_allocsize: { 1331 unsigned ElemSizeArg; 1332 Optional<unsigned> NumElemsArg; 1333 // inAttrGrp doesn't matter; we only support allocsize(a[, b]) 1334 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1335 return true; 1336 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1337 continue; 1338 } 1339 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 1340 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 1341 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 1342 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 1343 case lltok::kw_hot: B.addAttribute(Attribute::Hot); break; 1344 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 1345 case lltok::kw_inaccessiblememonly: 1346 B.addAttribute(Attribute::InaccessibleMemOnly); break; 1347 case lltok::kw_inaccessiblemem_or_argmemonly: 1348 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break; 1349 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 1350 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 1351 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 1352 case lltok::kw_mustprogress: 1353 B.addAttribute(Attribute::MustProgress); 1354 break; 1355 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 1356 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 1357 case lltok::kw_nocallback: 1358 B.addAttribute(Attribute::NoCallback); 1359 break; 1360 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 1361 case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break; 1362 case lltok::kw_noimplicitfloat: 1363 B.addAttribute(Attribute::NoImplicitFloat); break; 1364 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1365 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1366 case lltok::kw_nomerge: B.addAttribute(Attribute::NoMerge); break; 1367 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1368 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1369 case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break; 1370 case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break; 1371 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1372 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1373 case lltok::kw_null_pointer_is_valid: 1374 B.addAttribute(Attribute::NullPointerIsValid); break; 1375 case lltok::kw_optforfuzzing: 1376 B.addAttribute(Attribute::OptForFuzzing); break; 1377 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1378 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1379 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1380 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1381 case lltok::kw_returns_twice: 1382 B.addAttribute(Attribute::ReturnsTwice); break; 1383 case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break; 1384 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1385 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1386 case lltok::kw_sspstrong: 1387 B.addAttribute(Attribute::StackProtectStrong); break; 1388 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1389 case lltok::kw_shadowcallstack: 1390 B.addAttribute(Attribute::ShadowCallStack); break; 1391 case lltok::kw_sanitize_address: 1392 B.addAttribute(Attribute::SanitizeAddress); break; 1393 case lltok::kw_sanitize_hwaddress: 1394 B.addAttribute(Attribute::SanitizeHWAddress); break; 1395 case lltok::kw_sanitize_memtag: 1396 B.addAttribute(Attribute::SanitizeMemTag); break; 1397 case lltok::kw_sanitize_thread: 1398 B.addAttribute(Attribute::SanitizeThread); break; 1399 case lltok::kw_sanitize_memory: 1400 B.addAttribute(Attribute::SanitizeMemory); break; 1401 case lltok::kw_speculative_load_hardening: 1402 B.addAttribute(Attribute::SpeculativeLoadHardening); 1403 break; 1404 case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break; 1405 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1406 case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break; 1407 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1408 case lltok::kw_preallocated: { 1409 Type *Ty; 1410 if (parsePreallocated(Ty)) 1411 return true; 1412 B.addPreallocatedAttr(Ty); 1413 break; 1414 } 1415 1416 // error handling. 1417 case lltok::kw_inreg: 1418 case lltok::kw_signext: 1419 case lltok::kw_zeroext: 1420 HaveError |= 1421 error(Lex.getLoc(), "invalid use of attribute on a function"); 1422 break; 1423 case lltok::kw_byval: 1424 case lltok::kw_dereferenceable: 1425 case lltok::kw_dereferenceable_or_null: 1426 case lltok::kw_inalloca: 1427 case lltok::kw_nest: 1428 case lltok::kw_noalias: 1429 case lltok::kw_noundef: 1430 case lltok::kw_nocapture: 1431 case lltok::kw_nonnull: 1432 case lltok::kw_returned: 1433 case lltok::kw_sret: 1434 case lltok::kw_swifterror: 1435 case lltok::kw_swiftself: 1436 case lltok::kw_immarg: 1437 case lltok::kw_byref: 1438 HaveError |= 1439 error(Lex.getLoc(), 1440 "invalid use of parameter-only attribute on a function"); 1441 break; 1442 } 1443 1444 // parsePreallocated() consumes token 1445 if (Token != lltok::kw_preallocated) 1446 Lex.Lex(); 1447 } 1448 } 1449 1450 //===----------------------------------------------------------------------===// 1451 // GlobalValue Reference/Resolution Routines. 1452 //===----------------------------------------------------------------------===// 1453 1454 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1455 const std::string &Name) { 1456 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1457 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, 1458 PTy->getAddressSpace(), Name, M); 1459 else 1460 return new GlobalVariable(*M, PTy->getElementType(), false, 1461 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1462 nullptr, GlobalVariable::NotThreadLocal, 1463 PTy->getAddressSpace()); 1464 } 1465 1466 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty, 1467 Value *Val, bool IsCall) { 1468 if (Val->getType() == Ty) 1469 return Val; 1470 // For calls we also accept variables in the program address space. 1471 Type *SuggestedTy = Ty; 1472 if (IsCall && isa<PointerType>(Ty)) { 1473 Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo( 1474 M->getDataLayout().getProgramAddressSpace()); 1475 SuggestedTy = TyInProgAS; 1476 if (Val->getType() == TyInProgAS) 1477 return Val; 1478 } 1479 if (Ty->isLabelTy()) 1480 error(Loc, "'" + Name + "' is not a basic block"); 1481 else 1482 error(Loc, "'" + Name + "' defined with type '" + 1483 getTypeString(Val->getType()) + "' but expected '" + 1484 getTypeString(SuggestedTy) + "'"); 1485 return nullptr; 1486 } 1487 1488 /// getGlobalVal - Get a value with the specified name or ID, creating a 1489 /// forward reference record if needed. This can return null if the value 1490 /// exists but does not have the right type. 1491 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty, 1492 LocTy Loc, bool IsCall) { 1493 PointerType *PTy = dyn_cast<PointerType>(Ty); 1494 if (!PTy) { 1495 error(Loc, "global variable reference must have pointer type"); 1496 return nullptr; 1497 } 1498 1499 // Look this name up in the normal function symbol table. 1500 GlobalValue *Val = 1501 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1502 1503 // If this is a forward reference for the value, see if we already created a 1504 // forward ref record. 1505 if (!Val) { 1506 auto I = ForwardRefVals.find(Name); 1507 if (I != ForwardRefVals.end()) 1508 Val = I->second.first; 1509 } 1510 1511 // If we have the value in the symbol table or fwd-ref table, return it. 1512 if (Val) 1513 return cast_or_null<GlobalValue>( 1514 checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall)); 1515 1516 // Otherwise, create a new forward reference for this value and remember it. 1517 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1518 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1519 return FwdVal; 1520 } 1521 1522 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc, 1523 bool IsCall) { 1524 PointerType *PTy = dyn_cast<PointerType>(Ty); 1525 if (!PTy) { 1526 error(Loc, "global variable reference must have pointer type"); 1527 return nullptr; 1528 } 1529 1530 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1531 1532 // If this is a forward reference for the value, see if we already created a 1533 // forward ref record. 1534 if (!Val) { 1535 auto I = ForwardRefValIDs.find(ID); 1536 if (I != ForwardRefValIDs.end()) 1537 Val = I->second.first; 1538 } 1539 1540 // If we have the value in the symbol table or fwd-ref table, return it. 1541 if (Val) 1542 return cast_or_null<GlobalValue>( 1543 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall)); 1544 1545 // Otherwise, create a new forward reference for this value and remember it. 1546 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1547 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1548 return FwdVal; 1549 } 1550 1551 //===----------------------------------------------------------------------===// 1552 // Comdat Reference/Resolution Routines. 1553 //===----------------------------------------------------------------------===// 1554 1555 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1556 // Look this name up in the comdat symbol table. 1557 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1558 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1559 if (I != ComdatSymTab.end()) 1560 return &I->second; 1561 1562 // Otherwise, create a new forward reference for this value and remember it. 1563 Comdat *C = M->getOrInsertComdat(Name); 1564 ForwardRefComdats[Name] = Loc; 1565 return C; 1566 } 1567 1568 //===----------------------------------------------------------------------===// 1569 // Helper Routines. 1570 //===----------------------------------------------------------------------===// 1571 1572 /// parseToken - If the current token has the specified kind, eat it and return 1573 /// success. Otherwise, emit the specified error and return failure. 1574 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) { 1575 if (Lex.getKind() != T) 1576 return tokError(ErrMsg); 1577 Lex.Lex(); 1578 return false; 1579 } 1580 1581 /// parseStringConstant 1582 /// ::= StringConstant 1583 bool LLParser::parseStringConstant(std::string &Result) { 1584 if (Lex.getKind() != lltok::StringConstant) 1585 return tokError("expected string constant"); 1586 Result = Lex.getStrVal(); 1587 Lex.Lex(); 1588 return false; 1589 } 1590 1591 /// parseUInt32 1592 /// ::= uint32 1593 bool LLParser::parseUInt32(uint32_t &Val) { 1594 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1595 return tokError("expected integer"); 1596 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1597 if (Val64 != unsigned(Val64)) 1598 return tokError("expected 32-bit integer (too large)"); 1599 Val = Val64; 1600 Lex.Lex(); 1601 return false; 1602 } 1603 1604 /// parseUInt64 1605 /// ::= uint64 1606 bool LLParser::parseUInt64(uint64_t &Val) { 1607 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1608 return tokError("expected integer"); 1609 Val = Lex.getAPSIntVal().getLimitedValue(); 1610 Lex.Lex(); 1611 return false; 1612 } 1613 1614 /// parseTLSModel 1615 /// := 'localdynamic' 1616 /// := 'initialexec' 1617 /// := 'localexec' 1618 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1619 switch (Lex.getKind()) { 1620 default: 1621 return tokError("expected localdynamic, initialexec or localexec"); 1622 case lltok::kw_localdynamic: 1623 TLM = GlobalVariable::LocalDynamicTLSModel; 1624 break; 1625 case lltok::kw_initialexec: 1626 TLM = GlobalVariable::InitialExecTLSModel; 1627 break; 1628 case lltok::kw_localexec: 1629 TLM = GlobalVariable::LocalExecTLSModel; 1630 break; 1631 } 1632 1633 Lex.Lex(); 1634 return false; 1635 } 1636 1637 /// parseOptionalThreadLocal 1638 /// := /*empty*/ 1639 /// := 'thread_local' 1640 /// := 'thread_local' '(' tlsmodel ')' 1641 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1642 TLM = GlobalVariable::NotThreadLocal; 1643 if (!EatIfPresent(lltok::kw_thread_local)) 1644 return false; 1645 1646 TLM = GlobalVariable::GeneralDynamicTLSModel; 1647 if (Lex.getKind() == lltok::lparen) { 1648 Lex.Lex(); 1649 return parseTLSModel(TLM) || 1650 parseToken(lltok::rparen, "expected ')' after thread local model"); 1651 } 1652 return false; 1653 } 1654 1655 /// parseOptionalAddrSpace 1656 /// := /*empty*/ 1657 /// := 'addrspace' '(' uint32 ')' 1658 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) { 1659 AddrSpace = DefaultAS; 1660 if (!EatIfPresent(lltok::kw_addrspace)) 1661 return false; 1662 return parseToken(lltok::lparen, "expected '(' in address space") || 1663 parseUInt32(AddrSpace) || 1664 parseToken(lltok::rparen, "expected ')' in address space"); 1665 } 1666 1667 /// parseStringAttribute 1668 /// := StringConstant 1669 /// := StringConstant '=' StringConstant 1670 bool LLParser::parseStringAttribute(AttrBuilder &B) { 1671 std::string Attr = Lex.getStrVal(); 1672 Lex.Lex(); 1673 std::string Val; 1674 if (EatIfPresent(lltok::equal) && parseStringConstant(Val)) 1675 return true; 1676 B.addAttribute(Attr, Val); 1677 return false; 1678 } 1679 1680 /// parseOptionalParamAttrs - parse a potentially empty list of parameter 1681 /// attributes. 1682 bool LLParser::parseOptionalParamAttrs(AttrBuilder &B) { 1683 bool HaveError = false; 1684 1685 B.clear(); 1686 1687 while (true) { 1688 lltok::Kind Token = Lex.getKind(); 1689 switch (Token) { 1690 default: // End of attributes. 1691 return HaveError; 1692 case lltok::StringConstant: { 1693 if (parseStringAttribute(B)) 1694 return true; 1695 continue; 1696 } 1697 case lltok::kw_align: { 1698 MaybeAlign Alignment; 1699 if (parseOptionalAlignment(Alignment, true)) 1700 return true; 1701 B.addAlignmentAttr(Alignment); 1702 continue; 1703 } 1704 case lltok::kw_byval: { 1705 Type *Ty; 1706 if (parseRequiredTypeAttr(Ty, lltok::kw_byval)) 1707 return true; 1708 B.addByValAttr(Ty); 1709 continue; 1710 } 1711 case lltok::kw_sret: { 1712 Type *Ty; 1713 if (parseRequiredTypeAttr(Ty, lltok::kw_sret)) 1714 return true; 1715 B.addStructRetAttr(Ty); 1716 continue; 1717 } 1718 case lltok::kw_preallocated: { 1719 Type *Ty; 1720 if (parsePreallocated(Ty)) 1721 return true; 1722 B.addPreallocatedAttr(Ty); 1723 continue; 1724 } 1725 case lltok::kw_dereferenceable: { 1726 uint64_t Bytes; 1727 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1728 return true; 1729 B.addDereferenceableAttr(Bytes); 1730 continue; 1731 } 1732 case lltok::kw_dereferenceable_or_null: { 1733 uint64_t Bytes; 1734 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1735 return true; 1736 B.addDereferenceableOrNullAttr(Bytes); 1737 continue; 1738 } 1739 case lltok::kw_byref: { 1740 Type *Ty; 1741 if (parseByRef(Ty)) 1742 return true; 1743 B.addByRefAttr(Ty); 1744 continue; 1745 } 1746 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break; 1747 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1748 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1749 case lltok::kw_noundef: 1750 B.addAttribute(Attribute::NoUndef); 1751 break; 1752 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1753 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1754 case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break; 1755 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1756 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1757 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1758 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1759 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1760 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break; 1761 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break; 1762 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1763 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1764 case lltok::kw_immarg: B.addAttribute(Attribute::ImmArg); break; 1765 1766 case lltok::kw_alignstack: 1767 case lltok::kw_alwaysinline: 1768 case lltok::kw_argmemonly: 1769 case lltok::kw_builtin: 1770 case lltok::kw_inlinehint: 1771 case lltok::kw_jumptable: 1772 case lltok::kw_minsize: 1773 case lltok::kw_mustprogress: 1774 case lltok::kw_naked: 1775 case lltok::kw_nobuiltin: 1776 case lltok::kw_noduplicate: 1777 case lltok::kw_noimplicitfloat: 1778 case lltok::kw_noinline: 1779 case lltok::kw_nonlazybind: 1780 case lltok::kw_nomerge: 1781 case lltok::kw_noredzone: 1782 case lltok::kw_noreturn: 1783 case lltok::kw_nocf_check: 1784 case lltok::kw_nounwind: 1785 case lltok::kw_optforfuzzing: 1786 case lltok::kw_optnone: 1787 case lltok::kw_optsize: 1788 case lltok::kw_returns_twice: 1789 case lltok::kw_sanitize_address: 1790 case lltok::kw_sanitize_hwaddress: 1791 case lltok::kw_sanitize_memtag: 1792 case lltok::kw_sanitize_memory: 1793 case lltok::kw_sanitize_thread: 1794 case lltok::kw_speculative_load_hardening: 1795 case lltok::kw_ssp: 1796 case lltok::kw_sspreq: 1797 case lltok::kw_sspstrong: 1798 case lltok::kw_safestack: 1799 case lltok::kw_shadowcallstack: 1800 case lltok::kw_strictfp: 1801 case lltok::kw_uwtable: 1802 HaveError |= 1803 error(Lex.getLoc(), "invalid use of function-only attribute"); 1804 break; 1805 } 1806 1807 Lex.Lex(); 1808 } 1809 } 1810 1811 /// parseOptionalReturnAttrs - parse a potentially empty list of return 1812 /// attributes. 1813 bool LLParser::parseOptionalReturnAttrs(AttrBuilder &B) { 1814 bool HaveError = false; 1815 1816 B.clear(); 1817 1818 while (true) { 1819 lltok::Kind Token = Lex.getKind(); 1820 switch (Token) { 1821 default: // End of attributes. 1822 return HaveError; 1823 case lltok::StringConstant: { 1824 if (parseStringAttribute(B)) 1825 return true; 1826 continue; 1827 } 1828 case lltok::kw_dereferenceable: { 1829 uint64_t Bytes; 1830 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1831 return true; 1832 B.addDereferenceableAttr(Bytes); 1833 continue; 1834 } 1835 case lltok::kw_dereferenceable_or_null: { 1836 uint64_t Bytes; 1837 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1838 return true; 1839 B.addDereferenceableOrNullAttr(Bytes); 1840 continue; 1841 } 1842 case lltok::kw_align: { 1843 MaybeAlign Alignment; 1844 if (parseOptionalAlignment(Alignment)) 1845 return true; 1846 B.addAlignmentAttr(Alignment); 1847 continue; 1848 } 1849 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1850 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1851 case lltok::kw_noundef: 1852 B.addAttribute(Attribute::NoUndef); 1853 break; 1854 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1855 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1856 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1857 1858 // error handling. 1859 case lltok::kw_byval: 1860 case lltok::kw_inalloca: 1861 case lltok::kw_nest: 1862 case lltok::kw_nocapture: 1863 case lltok::kw_returned: 1864 case lltok::kw_sret: 1865 case lltok::kw_swifterror: 1866 case lltok::kw_swiftself: 1867 case lltok::kw_immarg: 1868 case lltok::kw_byref: 1869 HaveError |= 1870 error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1871 break; 1872 1873 case lltok::kw_alignstack: 1874 case lltok::kw_alwaysinline: 1875 case lltok::kw_argmemonly: 1876 case lltok::kw_builtin: 1877 case lltok::kw_cold: 1878 case lltok::kw_inlinehint: 1879 case lltok::kw_jumptable: 1880 case lltok::kw_minsize: 1881 case lltok::kw_mustprogress: 1882 case lltok::kw_naked: 1883 case lltok::kw_nobuiltin: 1884 case lltok::kw_noduplicate: 1885 case lltok::kw_noimplicitfloat: 1886 case lltok::kw_noinline: 1887 case lltok::kw_nonlazybind: 1888 case lltok::kw_nomerge: 1889 case lltok::kw_noredzone: 1890 case lltok::kw_noreturn: 1891 case lltok::kw_nocf_check: 1892 case lltok::kw_nounwind: 1893 case lltok::kw_optforfuzzing: 1894 case lltok::kw_optnone: 1895 case lltok::kw_optsize: 1896 case lltok::kw_returns_twice: 1897 case lltok::kw_sanitize_address: 1898 case lltok::kw_sanitize_hwaddress: 1899 case lltok::kw_sanitize_memtag: 1900 case lltok::kw_sanitize_memory: 1901 case lltok::kw_sanitize_thread: 1902 case lltok::kw_speculative_load_hardening: 1903 case lltok::kw_ssp: 1904 case lltok::kw_sspreq: 1905 case lltok::kw_sspstrong: 1906 case lltok::kw_safestack: 1907 case lltok::kw_shadowcallstack: 1908 case lltok::kw_strictfp: 1909 case lltok::kw_uwtable: 1910 HaveError |= 1911 error(Lex.getLoc(), "invalid use of function-only attribute"); 1912 break; 1913 case lltok::kw_readnone: 1914 case lltok::kw_readonly: 1915 HaveError |= 1916 error(Lex.getLoc(), "invalid use of attribute on return type"); 1917 break; 1918 case lltok::kw_preallocated: 1919 HaveError |= 1920 error(Lex.getLoc(), 1921 "invalid use of parameter-only/call site-only attribute"); 1922 break; 1923 } 1924 1925 Lex.Lex(); 1926 } 1927 } 1928 1929 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1930 HasLinkage = true; 1931 switch (Kind) { 1932 default: 1933 HasLinkage = false; 1934 return GlobalValue::ExternalLinkage; 1935 case lltok::kw_private: 1936 return GlobalValue::PrivateLinkage; 1937 case lltok::kw_internal: 1938 return GlobalValue::InternalLinkage; 1939 case lltok::kw_weak: 1940 return GlobalValue::WeakAnyLinkage; 1941 case lltok::kw_weak_odr: 1942 return GlobalValue::WeakODRLinkage; 1943 case lltok::kw_linkonce: 1944 return GlobalValue::LinkOnceAnyLinkage; 1945 case lltok::kw_linkonce_odr: 1946 return GlobalValue::LinkOnceODRLinkage; 1947 case lltok::kw_available_externally: 1948 return GlobalValue::AvailableExternallyLinkage; 1949 case lltok::kw_appending: 1950 return GlobalValue::AppendingLinkage; 1951 case lltok::kw_common: 1952 return GlobalValue::CommonLinkage; 1953 case lltok::kw_extern_weak: 1954 return GlobalValue::ExternalWeakLinkage; 1955 case lltok::kw_external: 1956 return GlobalValue::ExternalLinkage; 1957 } 1958 } 1959 1960 /// parseOptionalLinkage 1961 /// ::= /*empty*/ 1962 /// ::= 'private' 1963 /// ::= 'internal' 1964 /// ::= 'weak' 1965 /// ::= 'weak_odr' 1966 /// ::= 'linkonce' 1967 /// ::= 'linkonce_odr' 1968 /// ::= 'available_externally' 1969 /// ::= 'appending' 1970 /// ::= 'common' 1971 /// ::= 'extern_weak' 1972 /// ::= 'external' 1973 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1974 unsigned &Visibility, 1975 unsigned &DLLStorageClass, bool &DSOLocal) { 1976 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1977 if (HasLinkage) 1978 Lex.Lex(); 1979 parseOptionalDSOLocal(DSOLocal); 1980 parseOptionalVisibility(Visibility); 1981 parseOptionalDLLStorageClass(DLLStorageClass); 1982 1983 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 1984 return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 1985 } 1986 1987 return false; 1988 } 1989 1990 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) { 1991 switch (Lex.getKind()) { 1992 default: 1993 DSOLocal = false; 1994 break; 1995 case lltok::kw_dso_local: 1996 DSOLocal = true; 1997 Lex.Lex(); 1998 break; 1999 case lltok::kw_dso_preemptable: 2000 DSOLocal = false; 2001 Lex.Lex(); 2002 break; 2003 } 2004 } 2005 2006 /// parseOptionalVisibility 2007 /// ::= /*empty*/ 2008 /// ::= 'default' 2009 /// ::= 'hidden' 2010 /// ::= 'protected' 2011 /// 2012 void LLParser::parseOptionalVisibility(unsigned &Res) { 2013 switch (Lex.getKind()) { 2014 default: 2015 Res = GlobalValue::DefaultVisibility; 2016 return; 2017 case lltok::kw_default: 2018 Res = GlobalValue::DefaultVisibility; 2019 break; 2020 case lltok::kw_hidden: 2021 Res = GlobalValue::HiddenVisibility; 2022 break; 2023 case lltok::kw_protected: 2024 Res = GlobalValue::ProtectedVisibility; 2025 break; 2026 } 2027 Lex.Lex(); 2028 } 2029 2030 /// parseOptionalDLLStorageClass 2031 /// ::= /*empty*/ 2032 /// ::= 'dllimport' 2033 /// ::= 'dllexport' 2034 /// 2035 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) { 2036 switch (Lex.getKind()) { 2037 default: 2038 Res = GlobalValue::DefaultStorageClass; 2039 return; 2040 case lltok::kw_dllimport: 2041 Res = GlobalValue::DLLImportStorageClass; 2042 break; 2043 case lltok::kw_dllexport: 2044 Res = GlobalValue::DLLExportStorageClass; 2045 break; 2046 } 2047 Lex.Lex(); 2048 } 2049 2050 /// parseOptionalCallingConv 2051 /// ::= /*empty*/ 2052 /// ::= 'ccc' 2053 /// ::= 'fastcc' 2054 /// ::= 'intel_ocl_bicc' 2055 /// ::= 'coldcc' 2056 /// ::= 'cfguard_checkcc' 2057 /// ::= 'x86_stdcallcc' 2058 /// ::= 'x86_fastcallcc' 2059 /// ::= 'x86_thiscallcc' 2060 /// ::= 'x86_vectorcallcc' 2061 /// ::= 'arm_apcscc' 2062 /// ::= 'arm_aapcscc' 2063 /// ::= 'arm_aapcs_vfpcc' 2064 /// ::= 'aarch64_vector_pcs' 2065 /// ::= 'aarch64_sve_vector_pcs' 2066 /// ::= 'msp430_intrcc' 2067 /// ::= 'avr_intrcc' 2068 /// ::= 'avr_signalcc' 2069 /// ::= 'ptx_kernel' 2070 /// ::= 'ptx_device' 2071 /// ::= 'spir_func' 2072 /// ::= 'spir_kernel' 2073 /// ::= 'x86_64_sysvcc' 2074 /// ::= 'win64cc' 2075 /// ::= 'webkit_jscc' 2076 /// ::= 'anyregcc' 2077 /// ::= 'preserve_mostcc' 2078 /// ::= 'preserve_allcc' 2079 /// ::= 'ghccc' 2080 /// ::= 'swiftcc' 2081 /// ::= 'x86_intrcc' 2082 /// ::= 'hhvmcc' 2083 /// ::= 'hhvm_ccc' 2084 /// ::= 'cxx_fast_tlscc' 2085 /// ::= 'amdgpu_vs' 2086 /// ::= 'amdgpu_ls' 2087 /// ::= 'amdgpu_hs' 2088 /// ::= 'amdgpu_es' 2089 /// ::= 'amdgpu_gs' 2090 /// ::= 'amdgpu_ps' 2091 /// ::= 'amdgpu_cs' 2092 /// ::= 'amdgpu_kernel' 2093 /// ::= 'tailcc' 2094 /// ::= 'cc' UINT 2095 /// 2096 bool LLParser::parseOptionalCallingConv(unsigned &CC) { 2097 switch (Lex.getKind()) { 2098 default: CC = CallingConv::C; return false; 2099 case lltok::kw_ccc: CC = CallingConv::C; break; 2100 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 2101 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 2102 case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break; 2103 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 2104 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 2105 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 2106 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 2107 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 2108 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 2109 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 2110 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 2111 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break; 2112 case lltok::kw_aarch64_sve_vector_pcs: 2113 CC = CallingConv::AArch64_SVE_VectorCall; 2114 break; 2115 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 2116 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 2117 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 2118 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 2119 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 2120 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 2121 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 2122 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 2123 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 2124 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 2125 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 2126 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 2127 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 2128 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 2129 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 2130 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 2131 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 2132 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 2133 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 2134 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 2135 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 2136 case lltok::kw_amdgpu_gfx: CC = CallingConv::AMDGPU_Gfx; break; 2137 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 2138 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 2139 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 2140 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 2141 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 2142 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 2143 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 2144 case lltok::kw_tailcc: CC = CallingConv::Tail; break; 2145 case lltok::kw_cc: { 2146 Lex.Lex(); 2147 return parseUInt32(CC); 2148 } 2149 } 2150 2151 Lex.Lex(); 2152 return false; 2153 } 2154 2155 /// parseMetadataAttachment 2156 /// ::= !dbg !42 2157 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 2158 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 2159 2160 std::string Name = Lex.getStrVal(); 2161 Kind = M->getMDKindID(Name); 2162 Lex.Lex(); 2163 2164 return parseMDNode(MD); 2165 } 2166 2167 /// parseInstructionMetadata 2168 /// ::= !dbg !42 (',' !dbg !57)* 2169 bool LLParser::parseInstructionMetadata(Instruction &Inst) { 2170 do { 2171 if (Lex.getKind() != lltok::MetadataVar) 2172 return tokError("expected metadata after comma"); 2173 2174 unsigned MDK; 2175 MDNode *N; 2176 if (parseMetadataAttachment(MDK, N)) 2177 return true; 2178 2179 Inst.setMetadata(MDK, N); 2180 if (MDK == LLVMContext::MD_tbaa) 2181 InstsWithTBAATag.push_back(&Inst); 2182 2183 // If this is the end of the list, we're done. 2184 } while (EatIfPresent(lltok::comma)); 2185 return false; 2186 } 2187 2188 /// parseGlobalObjectMetadataAttachment 2189 /// ::= !dbg !57 2190 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) { 2191 unsigned MDK; 2192 MDNode *N; 2193 if (parseMetadataAttachment(MDK, N)) 2194 return true; 2195 2196 GO.addMetadata(MDK, *N); 2197 return false; 2198 } 2199 2200 /// parseOptionalFunctionMetadata 2201 /// ::= (!dbg !57)* 2202 bool LLParser::parseOptionalFunctionMetadata(Function &F) { 2203 while (Lex.getKind() == lltok::MetadataVar) 2204 if (parseGlobalObjectMetadataAttachment(F)) 2205 return true; 2206 return false; 2207 } 2208 2209 /// parseOptionalAlignment 2210 /// ::= /* empty */ 2211 /// ::= 'align' 4 2212 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) { 2213 Alignment = None; 2214 if (!EatIfPresent(lltok::kw_align)) 2215 return false; 2216 LocTy AlignLoc = Lex.getLoc(); 2217 uint32_t Value = 0; 2218 2219 LocTy ParenLoc = Lex.getLoc(); 2220 bool HaveParens = false; 2221 if (AllowParens) { 2222 if (EatIfPresent(lltok::lparen)) 2223 HaveParens = true; 2224 } 2225 2226 if (parseUInt32(Value)) 2227 return true; 2228 2229 if (HaveParens && !EatIfPresent(lltok::rparen)) 2230 return error(ParenLoc, "expected ')'"); 2231 2232 if (!isPowerOf2_32(Value)) 2233 return error(AlignLoc, "alignment is not a power of two"); 2234 if (Value > Value::MaximumAlignment) 2235 return error(AlignLoc, "huge alignments are not supported yet"); 2236 Alignment = Align(Value); 2237 return false; 2238 } 2239 2240 /// parseOptionalDerefAttrBytes 2241 /// ::= /* empty */ 2242 /// ::= AttrKind '(' 4 ')' 2243 /// 2244 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 2245 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind, 2246 uint64_t &Bytes) { 2247 assert((AttrKind == lltok::kw_dereferenceable || 2248 AttrKind == lltok::kw_dereferenceable_or_null) && 2249 "contract!"); 2250 2251 Bytes = 0; 2252 if (!EatIfPresent(AttrKind)) 2253 return false; 2254 LocTy ParenLoc = Lex.getLoc(); 2255 if (!EatIfPresent(lltok::lparen)) 2256 return error(ParenLoc, "expected '('"); 2257 LocTy DerefLoc = Lex.getLoc(); 2258 if (parseUInt64(Bytes)) 2259 return true; 2260 ParenLoc = Lex.getLoc(); 2261 if (!EatIfPresent(lltok::rparen)) 2262 return error(ParenLoc, "expected ')'"); 2263 if (!Bytes) 2264 return error(DerefLoc, "dereferenceable bytes must be non-zero"); 2265 return false; 2266 } 2267 2268 /// parseOptionalCommaAlign 2269 /// ::= 2270 /// ::= ',' align 4 2271 /// 2272 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2273 /// end. 2274 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment, 2275 bool &AteExtraComma) { 2276 AteExtraComma = false; 2277 while (EatIfPresent(lltok::comma)) { 2278 // Metadata at the end is an early exit. 2279 if (Lex.getKind() == lltok::MetadataVar) { 2280 AteExtraComma = true; 2281 return false; 2282 } 2283 2284 if (Lex.getKind() != lltok::kw_align) 2285 return error(Lex.getLoc(), "expected metadata or 'align'"); 2286 2287 if (parseOptionalAlignment(Alignment)) 2288 return true; 2289 } 2290 2291 return false; 2292 } 2293 2294 /// parseOptionalCommaAddrSpace 2295 /// ::= 2296 /// ::= ',' addrspace(1) 2297 /// 2298 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2299 /// end. 2300 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc, 2301 bool &AteExtraComma) { 2302 AteExtraComma = false; 2303 while (EatIfPresent(lltok::comma)) { 2304 // Metadata at the end is an early exit. 2305 if (Lex.getKind() == lltok::MetadataVar) { 2306 AteExtraComma = true; 2307 return false; 2308 } 2309 2310 Loc = Lex.getLoc(); 2311 if (Lex.getKind() != lltok::kw_addrspace) 2312 return error(Lex.getLoc(), "expected metadata or 'addrspace'"); 2313 2314 if (parseOptionalAddrSpace(AddrSpace)) 2315 return true; 2316 } 2317 2318 return false; 2319 } 2320 2321 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 2322 Optional<unsigned> &HowManyArg) { 2323 Lex.Lex(); 2324 2325 auto StartParen = Lex.getLoc(); 2326 if (!EatIfPresent(lltok::lparen)) 2327 return error(StartParen, "expected '('"); 2328 2329 if (parseUInt32(BaseSizeArg)) 2330 return true; 2331 2332 if (EatIfPresent(lltok::comma)) { 2333 auto HowManyAt = Lex.getLoc(); 2334 unsigned HowMany; 2335 if (parseUInt32(HowMany)) 2336 return true; 2337 if (HowMany == BaseSizeArg) 2338 return error(HowManyAt, 2339 "'allocsize' indices can't refer to the same parameter"); 2340 HowManyArg = HowMany; 2341 } else 2342 HowManyArg = None; 2343 2344 auto EndParen = Lex.getLoc(); 2345 if (!EatIfPresent(lltok::rparen)) 2346 return error(EndParen, "expected ')'"); 2347 return false; 2348 } 2349 2350 /// parseScopeAndOrdering 2351 /// if isAtomic: ::= SyncScope? AtomicOrdering 2352 /// else: ::= 2353 /// 2354 /// This sets Scope and Ordering to the parsed values. 2355 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID, 2356 AtomicOrdering &Ordering) { 2357 if (!IsAtomic) 2358 return false; 2359 2360 return parseScope(SSID) || parseOrdering(Ordering); 2361 } 2362 2363 /// parseScope 2364 /// ::= syncscope("singlethread" | "<target scope>")? 2365 /// 2366 /// This sets synchronization scope ID to the ID of the parsed value. 2367 bool LLParser::parseScope(SyncScope::ID &SSID) { 2368 SSID = SyncScope::System; 2369 if (EatIfPresent(lltok::kw_syncscope)) { 2370 auto StartParenAt = Lex.getLoc(); 2371 if (!EatIfPresent(lltok::lparen)) 2372 return error(StartParenAt, "Expected '(' in syncscope"); 2373 2374 std::string SSN; 2375 auto SSNAt = Lex.getLoc(); 2376 if (parseStringConstant(SSN)) 2377 return error(SSNAt, "Expected synchronization scope name"); 2378 2379 auto EndParenAt = Lex.getLoc(); 2380 if (!EatIfPresent(lltok::rparen)) 2381 return error(EndParenAt, "Expected ')' in syncscope"); 2382 2383 SSID = Context.getOrInsertSyncScopeID(SSN); 2384 } 2385 2386 return false; 2387 } 2388 2389 /// parseOrdering 2390 /// ::= AtomicOrdering 2391 /// 2392 /// This sets Ordering to the parsed value. 2393 bool LLParser::parseOrdering(AtomicOrdering &Ordering) { 2394 switch (Lex.getKind()) { 2395 default: 2396 return tokError("Expected ordering on atomic instruction"); 2397 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2398 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2399 // Not specified yet: 2400 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2401 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2402 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2403 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2404 case lltok::kw_seq_cst: 2405 Ordering = AtomicOrdering::SequentiallyConsistent; 2406 break; 2407 } 2408 Lex.Lex(); 2409 return false; 2410 } 2411 2412 /// parseOptionalStackAlignment 2413 /// ::= /* empty */ 2414 /// ::= 'alignstack' '(' 4 ')' 2415 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) { 2416 Alignment = 0; 2417 if (!EatIfPresent(lltok::kw_alignstack)) 2418 return false; 2419 LocTy ParenLoc = Lex.getLoc(); 2420 if (!EatIfPresent(lltok::lparen)) 2421 return error(ParenLoc, "expected '('"); 2422 LocTy AlignLoc = Lex.getLoc(); 2423 if (parseUInt32(Alignment)) 2424 return true; 2425 ParenLoc = Lex.getLoc(); 2426 if (!EatIfPresent(lltok::rparen)) 2427 return error(ParenLoc, "expected ')'"); 2428 if (!isPowerOf2_32(Alignment)) 2429 return error(AlignLoc, "stack alignment is not a power of two"); 2430 return false; 2431 } 2432 2433 /// parseIndexList - This parses the index list for an insert/extractvalue 2434 /// instruction. This sets AteExtraComma in the case where we eat an extra 2435 /// comma at the end of the line and find that it is followed by metadata. 2436 /// Clients that don't allow metadata can call the version of this function that 2437 /// only takes one argument. 2438 /// 2439 /// parseIndexList 2440 /// ::= (',' uint32)+ 2441 /// 2442 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices, 2443 bool &AteExtraComma) { 2444 AteExtraComma = false; 2445 2446 if (Lex.getKind() != lltok::comma) 2447 return tokError("expected ',' as start of index list"); 2448 2449 while (EatIfPresent(lltok::comma)) { 2450 if (Lex.getKind() == lltok::MetadataVar) { 2451 if (Indices.empty()) 2452 return tokError("expected index"); 2453 AteExtraComma = true; 2454 return false; 2455 } 2456 unsigned Idx = 0; 2457 if (parseUInt32(Idx)) 2458 return true; 2459 Indices.push_back(Idx); 2460 } 2461 2462 return false; 2463 } 2464 2465 //===----------------------------------------------------------------------===// 2466 // Type Parsing. 2467 //===----------------------------------------------------------------------===// 2468 2469 /// parseType - parse a type. 2470 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2471 SMLoc TypeLoc = Lex.getLoc(); 2472 switch (Lex.getKind()) { 2473 default: 2474 return tokError(Msg); 2475 case lltok::Type: 2476 // Type ::= 'float' | 'void' (etc) 2477 Result = Lex.getTyVal(); 2478 Lex.Lex(); 2479 break; 2480 case lltok::lbrace: 2481 // Type ::= StructType 2482 if (parseAnonStructType(Result, false)) 2483 return true; 2484 break; 2485 case lltok::lsquare: 2486 // Type ::= '[' ... ']' 2487 Lex.Lex(); // eat the lsquare. 2488 if (parseArrayVectorType(Result, false)) 2489 return true; 2490 break; 2491 case lltok::less: // Either vector or packed struct. 2492 // Type ::= '<' ... '>' 2493 Lex.Lex(); 2494 if (Lex.getKind() == lltok::lbrace) { 2495 if (parseAnonStructType(Result, true) || 2496 parseToken(lltok::greater, "expected '>' at end of packed struct")) 2497 return true; 2498 } else if (parseArrayVectorType(Result, true)) 2499 return true; 2500 break; 2501 case lltok::LocalVar: { 2502 // Type ::= %foo 2503 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2504 2505 // If the type hasn't been defined yet, create a forward definition and 2506 // remember where that forward def'n was seen (in case it never is defined). 2507 if (!Entry.first) { 2508 Entry.first = StructType::create(Context, Lex.getStrVal()); 2509 Entry.second = Lex.getLoc(); 2510 } 2511 Result = Entry.first; 2512 Lex.Lex(); 2513 break; 2514 } 2515 2516 case lltok::LocalVarID: { 2517 // Type ::= %4 2518 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2519 2520 // If the type hasn't been defined yet, create a forward definition and 2521 // remember where that forward def'n was seen (in case it never is defined). 2522 if (!Entry.first) { 2523 Entry.first = StructType::create(Context); 2524 Entry.second = Lex.getLoc(); 2525 } 2526 Result = Entry.first; 2527 Lex.Lex(); 2528 break; 2529 } 2530 } 2531 2532 // parse the type suffixes. 2533 while (true) { 2534 switch (Lex.getKind()) { 2535 // End of type. 2536 default: 2537 if (!AllowVoid && Result->isVoidTy()) 2538 return error(TypeLoc, "void type only allowed for function results"); 2539 return false; 2540 2541 // Type ::= Type '*' 2542 case lltok::star: 2543 if (Result->isLabelTy()) 2544 return tokError("basic block pointers are invalid"); 2545 if (Result->isVoidTy()) 2546 return tokError("pointers to void are invalid - use i8* instead"); 2547 if (!PointerType::isValidElementType(Result)) 2548 return tokError("pointer to this type is invalid"); 2549 Result = PointerType::getUnqual(Result); 2550 Lex.Lex(); 2551 break; 2552 2553 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2554 case lltok::kw_addrspace: { 2555 if (Result->isLabelTy()) 2556 return tokError("basic block pointers are invalid"); 2557 if (Result->isVoidTy()) 2558 return tokError("pointers to void are invalid; use i8* instead"); 2559 if (!PointerType::isValidElementType(Result)) 2560 return tokError("pointer to this type is invalid"); 2561 unsigned AddrSpace; 2562 if (parseOptionalAddrSpace(AddrSpace) || 2563 parseToken(lltok::star, "expected '*' in address space")) 2564 return true; 2565 2566 Result = PointerType::get(Result, AddrSpace); 2567 break; 2568 } 2569 2570 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2571 case lltok::lparen: 2572 if (parseFunctionType(Result)) 2573 return true; 2574 break; 2575 } 2576 } 2577 } 2578 2579 /// parseParameterList 2580 /// ::= '(' ')' 2581 /// ::= '(' Arg (',' Arg)* ')' 2582 /// Arg 2583 /// ::= Type OptionalAttributes Value OptionalAttributes 2584 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2585 PerFunctionState &PFS, bool IsMustTailCall, 2586 bool InVarArgsFunc) { 2587 if (parseToken(lltok::lparen, "expected '(' in call")) 2588 return true; 2589 2590 while (Lex.getKind() != lltok::rparen) { 2591 // If this isn't the first argument, we need a comma. 2592 if (!ArgList.empty() && 2593 parseToken(lltok::comma, "expected ',' in argument list")) 2594 return true; 2595 2596 // parse an ellipsis if this is a musttail call in a variadic function. 2597 if (Lex.getKind() == lltok::dotdotdot) { 2598 const char *Msg = "unexpected ellipsis in argument list for "; 2599 if (!IsMustTailCall) 2600 return tokError(Twine(Msg) + "non-musttail call"); 2601 if (!InVarArgsFunc) 2602 return tokError(Twine(Msg) + "musttail call in non-varargs function"); 2603 Lex.Lex(); // Lex the '...', it is purely for readability. 2604 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 2605 } 2606 2607 // parse the argument. 2608 LocTy ArgLoc; 2609 Type *ArgTy = nullptr; 2610 AttrBuilder ArgAttrs; 2611 Value *V; 2612 if (parseType(ArgTy, ArgLoc)) 2613 return true; 2614 2615 if (ArgTy->isMetadataTy()) { 2616 if (parseMetadataAsValue(V, PFS)) 2617 return true; 2618 } else { 2619 // Otherwise, handle normal operands. 2620 if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS)) 2621 return true; 2622 } 2623 ArgList.push_back(ParamInfo( 2624 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2625 } 2626 2627 if (IsMustTailCall && InVarArgsFunc) 2628 return tokError("expected '...' at end of argument list for musttail call " 2629 "in varargs function"); 2630 2631 Lex.Lex(); // Lex the ')'. 2632 return false; 2633 } 2634 2635 /// parseRequiredTypeAttr 2636 /// ::= attrname(<ty>) 2637 bool LLParser::parseRequiredTypeAttr(Type *&Result, lltok::Kind AttrName) { 2638 Result = nullptr; 2639 if (!EatIfPresent(AttrName)) 2640 return true; 2641 if (!EatIfPresent(lltok::lparen)) 2642 return error(Lex.getLoc(), "expected '('"); 2643 if (parseType(Result)) 2644 return true; 2645 if (!EatIfPresent(lltok::rparen)) 2646 return error(Lex.getLoc(), "expected ')'"); 2647 return false; 2648 } 2649 2650 /// parsePreallocated 2651 /// ::= preallocated(<ty>) 2652 bool LLParser::parsePreallocated(Type *&Result) { 2653 return parseRequiredTypeAttr(Result, lltok::kw_preallocated); 2654 } 2655 2656 /// parseByRef 2657 /// ::= byref(<type>) 2658 bool LLParser::parseByRef(Type *&Result) { 2659 return parseRequiredTypeAttr(Result, lltok::kw_byref); 2660 } 2661 2662 /// parseOptionalOperandBundles 2663 /// ::= /*empty*/ 2664 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2665 /// 2666 /// OperandBundle 2667 /// ::= bundle-tag '(' ')' 2668 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2669 /// 2670 /// bundle-tag ::= String Constant 2671 bool LLParser::parseOptionalOperandBundles( 2672 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2673 LocTy BeginLoc = Lex.getLoc(); 2674 if (!EatIfPresent(lltok::lsquare)) 2675 return false; 2676 2677 while (Lex.getKind() != lltok::rsquare) { 2678 // If this isn't the first operand bundle, we need a comma. 2679 if (!BundleList.empty() && 2680 parseToken(lltok::comma, "expected ',' in input list")) 2681 return true; 2682 2683 std::string Tag; 2684 if (parseStringConstant(Tag)) 2685 return true; 2686 2687 if (parseToken(lltok::lparen, "expected '(' in operand bundle")) 2688 return true; 2689 2690 std::vector<Value *> Inputs; 2691 while (Lex.getKind() != lltok::rparen) { 2692 // If this isn't the first input, we need a comma. 2693 if (!Inputs.empty() && 2694 parseToken(lltok::comma, "expected ',' in input list")) 2695 return true; 2696 2697 Type *Ty = nullptr; 2698 Value *Input = nullptr; 2699 if (parseType(Ty) || parseValue(Ty, Input, PFS)) 2700 return true; 2701 Inputs.push_back(Input); 2702 } 2703 2704 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2705 2706 Lex.Lex(); // Lex the ')'. 2707 } 2708 2709 if (BundleList.empty()) 2710 return error(BeginLoc, "operand bundle set must not be empty"); 2711 2712 Lex.Lex(); // Lex the ']'. 2713 return false; 2714 } 2715 2716 /// parseArgumentList - parse the argument list for a function type or function 2717 /// prototype. 2718 /// ::= '(' ArgTypeListI ')' 2719 /// ArgTypeListI 2720 /// ::= /*empty*/ 2721 /// ::= '...' 2722 /// ::= ArgTypeList ',' '...' 2723 /// ::= ArgType (',' ArgType)* 2724 /// 2725 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2726 bool &IsVarArg) { 2727 unsigned CurValID = 0; 2728 IsVarArg = false; 2729 assert(Lex.getKind() == lltok::lparen); 2730 Lex.Lex(); // eat the (. 2731 2732 if (Lex.getKind() == lltok::rparen) { 2733 // empty 2734 } else if (Lex.getKind() == lltok::dotdotdot) { 2735 IsVarArg = true; 2736 Lex.Lex(); 2737 } else { 2738 LocTy TypeLoc = Lex.getLoc(); 2739 Type *ArgTy = nullptr; 2740 AttrBuilder Attrs; 2741 std::string Name; 2742 2743 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) 2744 return true; 2745 2746 if (ArgTy->isVoidTy()) 2747 return error(TypeLoc, "argument can not have void type"); 2748 2749 if (Lex.getKind() == lltok::LocalVar) { 2750 Name = Lex.getStrVal(); 2751 Lex.Lex(); 2752 } else if (Lex.getKind() == lltok::LocalVarID) { 2753 if (Lex.getUIntVal() != CurValID) 2754 return error(TypeLoc, "argument expected to be numbered '%" + 2755 Twine(CurValID) + "'"); 2756 ++CurValID; 2757 Lex.Lex(); 2758 } 2759 2760 if (!FunctionType::isValidArgumentType(ArgTy)) 2761 return error(TypeLoc, "invalid type for function argument"); 2762 2763 ArgList.emplace_back(TypeLoc, ArgTy, 2764 AttributeSet::get(ArgTy->getContext(), Attrs), 2765 std::move(Name)); 2766 2767 while (EatIfPresent(lltok::comma)) { 2768 // Handle ... at end of arg list. 2769 if (EatIfPresent(lltok::dotdotdot)) { 2770 IsVarArg = true; 2771 break; 2772 } 2773 2774 // Otherwise must be an argument type. 2775 TypeLoc = Lex.getLoc(); 2776 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) 2777 return true; 2778 2779 if (ArgTy->isVoidTy()) 2780 return error(TypeLoc, "argument can not have void type"); 2781 2782 if (Lex.getKind() == lltok::LocalVar) { 2783 Name = Lex.getStrVal(); 2784 Lex.Lex(); 2785 } else { 2786 if (Lex.getKind() == lltok::LocalVarID) { 2787 if (Lex.getUIntVal() != CurValID) 2788 return error(TypeLoc, "argument expected to be numbered '%" + 2789 Twine(CurValID) + "'"); 2790 Lex.Lex(); 2791 } 2792 ++CurValID; 2793 Name = ""; 2794 } 2795 2796 if (!ArgTy->isFirstClassType()) 2797 return error(TypeLoc, "invalid type for function argument"); 2798 2799 ArgList.emplace_back(TypeLoc, ArgTy, 2800 AttributeSet::get(ArgTy->getContext(), Attrs), 2801 std::move(Name)); 2802 } 2803 } 2804 2805 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 2806 } 2807 2808 /// parseFunctionType 2809 /// ::= Type ArgumentList OptionalAttrs 2810 bool LLParser::parseFunctionType(Type *&Result) { 2811 assert(Lex.getKind() == lltok::lparen); 2812 2813 if (!FunctionType::isValidReturnType(Result)) 2814 return tokError("invalid function return type"); 2815 2816 SmallVector<ArgInfo, 8> ArgList; 2817 bool IsVarArg; 2818 if (parseArgumentList(ArgList, IsVarArg)) 2819 return true; 2820 2821 // Reject names on the arguments lists. 2822 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2823 if (!ArgList[i].Name.empty()) 2824 return error(ArgList[i].Loc, "argument name invalid in function type"); 2825 if (ArgList[i].Attrs.hasAttributes()) 2826 return error(ArgList[i].Loc, 2827 "argument attributes invalid in function type"); 2828 } 2829 2830 SmallVector<Type*, 16> ArgListTy; 2831 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2832 ArgListTy.push_back(ArgList[i].Ty); 2833 2834 Result = FunctionType::get(Result, ArgListTy, IsVarArg); 2835 return false; 2836 } 2837 2838 /// parseAnonStructType - parse an anonymous struct type, which is inlined into 2839 /// other structs. 2840 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) { 2841 SmallVector<Type*, 8> Elts; 2842 if (parseStructBody(Elts)) 2843 return true; 2844 2845 Result = StructType::get(Context, Elts, Packed); 2846 return false; 2847 } 2848 2849 /// parseStructDefinition - parse a struct in a 'type' definition. 2850 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name, 2851 std::pair<Type *, LocTy> &Entry, 2852 Type *&ResultTy) { 2853 // If the type was already defined, diagnose the redefinition. 2854 if (Entry.first && !Entry.second.isValid()) 2855 return error(TypeLoc, "redefinition of type"); 2856 2857 // If we have opaque, just return without filling in the definition for the 2858 // struct. This counts as a definition as far as the .ll file goes. 2859 if (EatIfPresent(lltok::kw_opaque)) { 2860 // This type is being defined, so clear the location to indicate this. 2861 Entry.second = SMLoc(); 2862 2863 // If this type number has never been uttered, create it. 2864 if (!Entry.first) 2865 Entry.first = StructType::create(Context, Name); 2866 ResultTy = Entry.first; 2867 return false; 2868 } 2869 2870 // If the type starts with '<', then it is either a packed struct or a vector. 2871 bool isPacked = EatIfPresent(lltok::less); 2872 2873 // If we don't have a struct, then we have a random type alias, which we 2874 // accept for compatibility with old files. These types are not allowed to be 2875 // forward referenced and not allowed to be recursive. 2876 if (Lex.getKind() != lltok::lbrace) { 2877 if (Entry.first) 2878 return error(TypeLoc, "forward references to non-struct type"); 2879 2880 ResultTy = nullptr; 2881 if (isPacked) 2882 return parseArrayVectorType(ResultTy, true); 2883 return parseType(ResultTy); 2884 } 2885 2886 // This type is being defined, so clear the location to indicate this. 2887 Entry.second = SMLoc(); 2888 2889 // If this type number has never been uttered, create it. 2890 if (!Entry.first) 2891 Entry.first = StructType::create(Context, Name); 2892 2893 StructType *STy = cast<StructType>(Entry.first); 2894 2895 SmallVector<Type*, 8> Body; 2896 if (parseStructBody(Body) || 2897 (isPacked && parseToken(lltok::greater, "expected '>' in packed struct"))) 2898 return true; 2899 2900 STy->setBody(Body, isPacked); 2901 ResultTy = STy; 2902 return false; 2903 } 2904 2905 /// parseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2906 /// StructType 2907 /// ::= '{' '}' 2908 /// ::= '{' Type (',' Type)* '}' 2909 /// ::= '<' '{' '}' '>' 2910 /// ::= '<' '{' Type (',' Type)* '}' '>' 2911 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) { 2912 assert(Lex.getKind() == lltok::lbrace); 2913 Lex.Lex(); // Consume the '{' 2914 2915 // Handle the empty struct. 2916 if (EatIfPresent(lltok::rbrace)) 2917 return false; 2918 2919 LocTy EltTyLoc = Lex.getLoc(); 2920 Type *Ty = nullptr; 2921 if (parseType(Ty)) 2922 return true; 2923 Body.push_back(Ty); 2924 2925 if (!StructType::isValidElementType(Ty)) 2926 return error(EltTyLoc, "invalid element type for struct"); 2927 2928 while (EatIfPresent(lltok::comma)) { 2929 EltTyLoc = Lex.getLoc(); 2930 if (parseType(Ty)) 2931 return true; 2932 2933 if (!StructType::isValidElementType(Ty)) 2934 return error(EltTyLoc, "invalid element type for struct"); 2935 2936 Body.push_back(Ty); 2937 } 2938 2939 return parseToken(lltok::rbrace, "expected '}' at end of struct"); 2940 } 2941 2942 /// parseArrayVectorType - parse an array or vector type, assuming the first 2943 /// token has already been consumed. 2944 /// Type 2945 /// ::= '[' APSINTVAL 'x' Types ']' 2946 /// ::= '<' APSINTVAL 'x' Types '>' 2947 /// ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>' 2948 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) { 2949 bool Scalable = false; 2950 2951 if (IsVector && Lex.getKind() == lltok::kw_vscale) { 2952 Lex.Lex(); // consume the 'vscale' 2953 if (parseToken(lltok::kw_x, "expected 'x' after vscale")) 2954 return true; 2955 2956 Scalable = true; 2957 } 2958 2959 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2960 Lex.getAPSIntVal().getBitWidth() > 64) 2961 return tokError("expected number in address space"); 2962 2963 LocTy SizeLoc = Lex.getLoc(); 2964 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2965 Lex.Lex(); 2966 2967 if (parseToken(lltok::kw_x, "expected 'x' after element count")) 2968 return true; 2969 2970 LocTy TypeLoc = Lex.getLoc(); 2971 Type *EltTy = nullptr; 2972 if (parseType(EltTy)) 2973 return true; 2974 2975 if (parseToken(IsVector ? lltok::greater : lltok::rsquare, 2976 "expected end of sequential type")) 2977 return true; 2978 2979 if (IsVector) { 2980 if (Size == 0) 2981 return error(SizeLoc, "zero element vector is illegal"); 2982 if ((unsigned)Size != Size) 2983 return error(SizeLoc, "size too large for vector"); 2984 if (!VectorType::isValidElementType(EltTy)) 2985 return error(TypeLoc, "invalid vector element type"); 2986 Result = VectorType::get(EltTy, unsigned(Size), Scalable); 2987 } else { 2988 if (!ArrayType::isValidElementType(EltTy)) 2989 return error(TypeLoc, "invalid array element type"); 2990 Result = ArrayType::get(EltTy, Size); 2991 } 2992 return false; 2993 } 2994 2995 //===----------------------------------------------------------------------===// 2996 // Function Semantic Analysis. 2997 //===----------------------------------------------------------------------===// 2998 2999 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 3000 int functionNumber) 3001 : P(p), F(f), FunctionNumber(functionNumber) { 3002 3003 // Insert unnamed arguments into the NumberedVals list. 3004 for (Argument &A : F.args()) 3005 if (!A.hasName()) 3006 NumberedVals.push_back(&A); 3007 } 3008 3009 LLParser::PerFunctionState::~PerFunctionState() { 3010 // If there were any forward referenced non-basicblock values, delete them. 3011 3012 for (const auto &P : ForwardRefVals) { 3013 if (isa<BasicBlock>(P.second.first)) 3014 continue; 3015 P.second.first->replaceAllUsesWith( 3016 UndefValue::get(P.second.first->getType())); 3017 P.second.first->deleteValue(); 3018 } 3019 3020 for (const auto &P : ForwardRefValIDs) { 3021 if (isa<BasicBlock>(P.second.first)) 3022 continue; 3023 P.second.first->replaceAllUsesWith( 3024 UndefValue::get(P.second.first->getType())); 3025 P.second.first->deleteValue(); 3026 } 3027 } 3028 3029 bool LLParser::PerFunctionState::finishFunction() { 3030 if (!ForwardRefVals.empty()) 3031 return P.error(ForwardRefVals.begin()->second.second, 3032 "use of undefined value '%" + ForwardRefVals.begin()->first + 3033 "'"); 3034 if (!ForwardRefValIDs.empty()) 3035 return P.error(ForwardRefValIDs.begin()->second.second, 3036 "use of undefined value '%" + 3037 Twine(ForwardRefValIDs.begin()->first) + "'"); 3038 return false; 3039 } 3040 3041 /// getVal - Get a value with the specified name or ID, creating a 3042 /// forward reference record if needed. This can return null if the value 3043 /// exists but does not have the right type. 3044 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty, 3045 LocTy Loc, bool IsCall) { 3046 // Look this name up in the normal function symbol table. 3047 Value *Val = F.getValueSymbolTable()->lookup(Name); 3048 3049 // If this is a forward reference for the value, see if we already created a 3050 // forward ref record. 3051 if (!Val) { 3052 auto I = ForwardRefVals.find(Name); 3053 if (I != ForwardRefVals.end()) 3054 Val = I->second.first; 3055 } 3056 3057 // If we have the value in the symbol table or fwd-ref table, return it. 3058 if (Val) 3059 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall); 3060 3061 // Don't make placeholders with invalid type. 3062 if (!Ty->isFirstClassType()) { 3063 P.error(Loc, "invalid use of a non-first-class type"); 3064 return nullptr; 3065 } 3066 3067 // Otherwise, create a new forward reference for this value and remember it. 3068 Value *FwdVal; 3069 if (Ty->isLabelTy()) { 3070 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 3071 } else { 3072 FwdVal = new Argument(Ty, Name); 3073 } 3074 3075 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 3076 return FwdVal; 3077 } 3078 3079 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc, 3080 bool IsCall) { 3081 // Look this name up in the normal function symbol table. 3082 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 3083 3084 // If this is a forward reference for the value, see if we already created a 3085 // forward ref record. 3086 if (!Val) { 3087 auto I = ForwardRefValIDs.find(ID); 3088 if (I != ForwardRefValIDs.end()) 3089 Val = I->second.first; 3090 } 3091 3092 // If we have the value in the symbol table or fwd-ref table, return it. 3093 if (Val) 3094 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall); 3095 3096 if (!Ty->isFirstClassType()) { 3097 P.error(Loc, "invalid use of a non-first-class type"); 3098 return nullptr; 3099 } 3100 3101 // Otherwise, create a new forward reference for this value and remember it. 3102 Value *FwdVal; 3103 if (Ty->isLabelTy()) { 3104 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 3105 } else { 3106 FwdVal = new Argument(Ty); 3107 } 3108 3109 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 3110 return FwdVal; 3111 } 3112 3113 /// setInstName - After an instruction is parsed and inserted into its 3114 /// basic block, this installs its name. 3115 bool LLParser::PerFunctionState::setInstName(int NameID, 3116 const std::string &NameStr, 3117 LocTy NameLoc, Instruction *Inst) { 3118 // If this instruction has void type, it cannot have a name or ID specified. 3119 if (Inst->getType()->isVoidTy()) { 3120 if (NameID != -1 || !NameStr.empty()) 3121 return P.error(NameLoc, "instructions returning void cannot have a name"); 3122 return false; 3123 } 3124 3125 // If this was a numbered instruction, verify that the instruction is the 3126 // expected value and resolve any forward references. 3127 if (NameStr.empty()) { 3128 // If neither a name nor an ID was specified, just use the next ID. 3129 if (NameID == -1) 3130 NameID = NumberedVals.size(); 3131 3132 if (unsigned(NameID) != NumberedVals.size()) 3133 return P.error(NameLoc, "instruction expected to be numbered '%" + 3134 Twine(NumberedVals.size()) + "'"); 3135 3136 auto FI = ForwardRefValIDs.find(NameID); 3137 if (FI != ForwardRefValIDs.end()) { 3138 Value *Sentinel = FI->second.first; 3139 if (Sentinel->getType() != Inst->getType()) 3140 return P.error(NameLoc, "instruction forward referenced with type '" + 3141 getTypeString(FI->second.first->getType()) + 3142 "'"); 3143 3144 Sentinel->replaceAllUsesWith(Inst); 3145 Sentinel->deleteValue(); 3146 ForwardRefValIDs.erase(FI); 3147 } 3148 3149 NumberedVals.push_back(Inst); 3150 return false; 3151 } 3152 3153 // Otherwise, the instruction had a name. Resolve forward refs and set it. 3154 auto FI = ForwardRefVals.find(NameStr); 3155 if (FI != ForwardRefVals.end()) { 3156 Value *Sentinel = FI->second.first; 3157 if (Sentinel->getType() != Inst->getType()) 3158 return P.error(NameLoc, "instruction forward referenced with type '" + 3159 getTypeString(FI->second.first->getType()) + 3160 "'"); 3161 3162 Sentinel->replaceAllUsesWith(Inst); 3163 Sentinel->deleteValue(); 3164 ForwardRefVals.erase(FI); 3165 } 3166 3167 // Set the name on the instruction. 3168 Inst->setName(NameStr); 3169 3170 if (Inst->getName() != NameStr) 3171 return P.error(NameLoc, "multiple definition of local value named '" + 3172 NameStr + "'"); 3173 return false; 3174 } 3175 3176 /// getBB - Get a basic block with the specified name or ID, creating a 3177 /// forward reference record if needed. 3178 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name, 3179 LocTy Loc) { 3180 return dyn_cast_or_null<BasicBlock>( 3181 getVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 3182 } 3183 3184 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) { 3185 return dyn_cast_or_null<BasicBlock>( 3186 getVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 3187 } 3188 3189 /// defineBB - Define the specified basic block, which is either named or 3190 /// unnamed. If there is an error, this returns null otherwise it returns 3191 /// the block being defined. 3192 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name, 3193 int NameID, LocTy Loc) { 3194 BasicBlock *BB; 3195 if (Name.empty()) { 3196 if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) { 3197 P.error(Loc, "label expected to be numbered '" + 3198 Twine(NumberedVals.size()) + "'"); 3199 return nullptr; 3200 } 3201 BB = getBB(NumberedVals.size(), Loc); 3202 if (!BB) { 3203 P.error(Loc, "unable to create block numbered '" + 3204 Twine(NumberedVals.size()) + "'"); 3205 return nullptr; 3206 } 3207 } else { 3208 BB = getBB(Name, Loc); 3209 if (!BB) { 3210 P.error(Loc, "unable to create block named '" + Name + "'"); 3211 return nullptr; 3212 } 3213 } 3214 3215 // Move the block to the end of the function. Forward ref'd blocks are 3216 // inserted wherever they happen to be referenced. 3217 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 3218 3219 // Remove the block from forward ref sets. 3220 if (Name.empty()) { 3221 ForwardRefValIDs.erase(NumberedVals.size()); 3222 NumberedVals.push_back(BB); 3223 } else { 3224 // BB forward references are already in the function symbol table. 3225 ForwardRefVals.erase(Name); 3226 } 3227 3228 return BB; 3229 } 3230 3231 //===----------------------------------------------------------------------===// 3232 // Constants. 3233 //===----------------------------------------------------------------------===// 3234 3235 /// parseValID - parse an abstract value that doesn't necessarily have a 3236 /// type implied. For example, if we parse "4" we don't know what integer type 3237 /// it has. The value will later be combined with its type and checked for 3238 /// sanity. PFS is used to convert function-local operands of metadata (since 3239 /// metadata operands are not just parsed here but also converted to values). 3240 /// PFS can be null when we are not parsing metadata values inside a function. 3241 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS) { 3242 ID.Loc = Lex.getLoc(); 3243 switch (Lex.getKind()) { 3244 default: 3245 return tokError("expected value token"); 3246 case lltok::GlobalID: // @42 3247 ID.UIntVal = Lex.getUIntVal(); 3248 ID.Kind = ValID::t_GlobalID; 3249 break; 3250 case lltok::GlobalVar: // @foo 3251 ID.StrVal = Lex.getStrVal(); 3252 ID.Kind = ValID::t_GlobalName; 3253 break; 3254 case lltok::LocalVarID: // %42 3255 ID.UIntVal = Lex.getUIntVal(); 3256 ID.Kind = ValID::t_LocalID; 3257 break; 3258 case lltok::LocalVar: // %foo 3259 ID.StrVal = Lex.getStrVal(); 3260 ID.Kind = ValID::t_LocalName; 3261 break; 3262 case lltok::APSInt: 3263 ID.APSIntVal = Lex.getAPSIntVal(); 3264 ID.Kind = ValID::t_APSInt; 3265 break; 3266 case lltok::APFloat: 3267 ID.APFloatVal = Lex.getAPFloatVal(); 3268 ID.Kind = ValID::t_APFloat; 3269 break; 3270 case lltok::kw_true: 3271 ID.ConstantVal = ConstantInt::getTrue(Context); 3272 ID.Kind = ValID::t_Constant; 3273 break; 3274 case lltok::kw_false: 3275 ID.ConstantVal = ConstantInt::getFalse(Context); 3276 ID.Kind = ValID::t_Constant; 3277 break; 3278 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 3279 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 3280 case lltok::kw_poison: ID.Kind = ValID::t_Poison; break; 3281 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 3282 case lltok::kw_none: ID.Kind = ValID::t_None; break; 3283 3284 case lltok::lbrace: { 3285 // ValID ::= '{' ConstVector '}' 3286 Lex.Lex(); 3287 SmallVector<Constant*, 16> Elts; 3288 if (parseGlobalValueVector(Elts) || 3289 parseToken(lltok::rbrace, "expected end of struct constant")) 3290 return true; 3291 3292 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3293 ID.UIntVal = Elts.size(); 3294 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3295 Elts.size() * sizeof(Elts[0])); 3296 ID.Kind = ValID::t_ConstantStruct; 3297 return false; 3298 } 3299 case lltok::less: { 3300 // ValID ::= '<' ConstVector '>' --> Vector. 3301 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 3302 Lex.Lex(); 3303 bool isPackedStruct = EatIfPresent(lltok::lbrace); 3304 3305 SmallVector<Constant*, 16> Elts; 3306 LocTy FirstEltLoc = Lex.getLoc(); 3307 if (parseGlobalValueVector(Elts) || 3308 (isPackedStruct && 3309 parseToken(lltok::rbrace, "expected end of packed struct")) || 3310 parseToken(lltok::greater, "expected end of constant")) 3311 return true; 3312 3313 if (isPackedStruct) { 3314 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3315 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3316 Elts.size() * sizeof(Elts[0])); 3317 ID.UIntVal = Elts.size(); 3318 ID.Kind = ValID::t_PackedConstantStruct; 3319 return false; 3320 } 3321 3322 if (Elts.empty()) 3323 return error(ID.Loc, "constant vector must not be empty"); 3324 3325 if (!Elts[0]->getType()->isIntegerTy() && 3326 !Elts[0]->getType()->isFloatingPointTy() && 3327 !Elts[0]->getType()->isPointerTy()) 3328 return error( 3329 FirstEltLoc, 3330 "vector elements must have integer, pointer or floating point type"); 3331 3332 // Verify that all the vector elements have the same type. 3333 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 3334 if (Elts[i]->getType() != Elts[0]->getType()) 3335 return error(FirstEltLoc, "vector element #" + Twine(i) + 3336 " is not of type '" + 3337 getTypeString(Elts[0]->getType())); 3338 3339 ID.ConstantVal = ConstantVector::get(Elts); 3340 ID.Kind = ValID::t_Constant; 3341 return false; 3342 } 3343 case lltok::lsquare: { // Array Constant 3344 Lex.Lex(); 3345 SmallVector<Constant*, 16> Elts; 3346 LocTy FirstEltLoc = Lex.getLoc(); 3347 if (parseGlobalValueVector(Elts) || 3348 parseToken(lltok::rsquare, "expected end of array constant")) 3349 return true; 3350 3351 // Handle empty element. 3352 if (Elts.empty()) { 3353 // Use undef instead of an array because it's inconvenient to determine 3354 // the element type at this point, there being no elements to examine. 3355 ID.Kind = ValID::t_EmptyArray; 3356 return false; 3357 } 3358 3359 if (!Elts[0]->getType()->isFirstClassType()) 3360 return error(FirstEltLoc, "invalid array element type: " + 3361 getTypeString(Elts[0]->getType())); 3362 3363 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 3364 3365 // Verify all elements are correct type! 3366 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 3367 if (Elts[i]->getType() != Elts[0]->getType()) 3368 return error(FirstEltLoc, "array element #" + Twine(i) + 3369 " is not of type '" + 3370 getTypeString(Elts[0]->getType())); 3371 } 3372 3373 ID.ConstantVal = ConstantArray::get(ATy, Elts); 3374 ID.Kind = ValID::t_Constant; 3375 return false; 3376 } 3377 case lltok::kw_c: // c "foo" 3378 Lex.Lex(); 3379 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 3380 false); 3381 if (parseToken(lltok::StringConstant, "expected string")) 3382 return true; 3383 ID.Kind = ValID::t_Constant; 3384 return false; 3385 3386 case lltok::kw_asm: { 3387 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 3388 // STRINGCONSTANT 3389 bool HasSideEffect, AlignStack, AsmDialect; 3390 Lex.Lex(); 3391 if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 3392 parseOptionalToken(lltok::kw_alignstack, AlignStack) || 3393 parseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 3394 parseStringConstant(ID.StrVal) || 3395 parseToken(lltok::comma, "expected comma in inline asm expression") || 3396 parseToken(lltok::StringConstant, "expected constraint string")) 3397 return true; 3398 ID.StrVal2 = Lex.getStrVal(); 3399 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 3400 (unsigned(AsmDialect)<<2); 3401 ID.Kind = ValID::t_InlineAsm; 3402 return false; 3403 } 3404 3405 case lltok::kw_blockaddress: { 3406 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 3407 Lex.Lex(); 3408 3409 ValID Fn, Label; 3410 3411 if (parseToken(lltok::lparen, "expected '(' in block address expression") || 3412 parseValID(Fn) || 3413 parseToken(lltok::comma, 3414 "expected comma in block address expression") || 3415 parseValID(Label) || 3416 parseToken(lltok::rparen, "expected ')' in block address expression")) 3417 return true; 3418 3419 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3420 return error(Fn.Loc, "expected function name in blockaddress"); 3421 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 3422 return error(Label.Loc, "expected basic block name in blockaddress"); 3423 3424 // Try to find the function (but skip it if it's forward-referenced). 3425 GlobalValue *GV = nullptr; 3426 if (Fn.Kind == ValID::t_GlobalID) { 3427 if (Fn.UIntVal < NumberedVals.size()) 3428 GV = NumberedVals[Fn.UIntVal]; 3429 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3430 GV = M->getNamedValue(Fn.StrVal); 3431 } 3432 Function *F = nullptr; 3433 if (GV) { 3434 // Confirm that it's actually a function with a definition. 3435 if (!isa<Function>(GV)) 3436 return error(Fn.Loc, "expected function name in blockaddress"); 3437 F = cast<Function>(GV); 3438 if (F->isDeclaration()) 3439 return error(Fn.Loc, "cannot take blockaddress inside a declaration"); 3440 } 3441 3442 if (!F) { 3443 // Make a global variable as a placeholder for this reference. 3444 GlobalValue *&FwdRef = 3445 ForwardRefBlockAddresses.insert(std::make_pair( 3446 std::move(Fn), 3447 std::map<ValID, GlobalValue *>())) 3448 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 3449 .first->second; 3450 if (!FwdRef) 3451 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 3452 GlobalValue::InternalLinkage, nullptr, ""); 3453 ID.ConstantVal = FwdRef; 3454 ID.Kind = ValID::t_Constant; 3455 return false; 3456 } 3457 3458 // We found the function; now find the basic block. Don't use PFS, since we 3459 // might be inside a constant expression. 3460 BasicBlock *BB; 3461 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 3462 if (Label.Kind == ValID::t_LocalID) 3463 BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc); 3464 else 3465 BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc); 3466 if (!BB) 3467 return error(Label.Loc, "referenced value is not a basic block"); 3468 } else { 3469 if (Label.Kind == ValID::t_LocalID) 3470 return error(Label.Loc, "cannot take address of numeric label after " 3471 "the function is defined"); 3472 BB = dyn_cast_or_null<BasicBlock>( 3473 F->getValueSymbolTable()->lookup(Label.StrVal)); 3474 if (!BB) 3475 return error(Label.Loc, "referenced value is not a basic block"); 3476 } 3477 3478 ID.ConstantVal = BlockAddress::get(F, BB); 3479 ID.Kind = ValID::t_Constant; 3480 return false; 3481 } 3482 3483 case lltok::kw_dso_local_equivalent: { 3484 // ValID ::= 'dso_local_equivalent' @foo 3485 Lex.Lex(); 3486 3487 ValID Fn; 3488 3489 if (parseValID(Fn)) 3490 return true; 3491 3492 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3493 return error(Fn.Loc, 3494 "expected global value name in dso_local_equivalent"); 3495 3496 // Try to find the function (but skip it if it's forward-referenced). 3497 GlobalValue *GV = nullptr; 3498 if (Fn.Kind == ValID::t_GlobalID) { 3499 if (Fn.UIntVal < NumberedVals.size()) 3500 GV = NumberedVals[Fn.UIntVal]; 3501 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3502 GV = M->getNamedValue(Fn.StrVal); 3503 } 3504 3505 assert(GV && "Could not find a corresponding global variable"); 3506 3507 if (!GV->getValueType()->isFunctionTy()) 3508 return error(Fn.Loc, "expected a function, alias to function, or ifunc " 3509 "in dso_local_equivalent"); 3510 3511 ID.ConstantVal = DSOLocalEquivalent::get(GV); 3512 ID.Kind = ValID::t_Constant; 3513 return false; 3514 } 3515 3516 case lltok::kw_trunc: 3517 case lltok::kw_zext: 3518 case lltok::kw_sext: 3519 case lltok::kw_fptrunc: 3520 case lltok::kw_fpext: 3521 case lltok::kw_bitcast: 3522 case lltok::kw_addrspacecast: 3523 case lltok::kw_uitofp: 3524 case lltok::kw_sitofp: 3525 case lltok::kw_fptoui: 3526 case lltok::kw_fptosi: 3527 case lltok::kw_inttoptr: 3528 case lltok::kw_ptrtoint: { 3529 unsigned Opc = Lex.getUIntVal(); 3530 Type *DestTy = nullptr; 3531 Constant *SrcVal; 3532 Lex.Lex(); 3533 if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3534 parseGlobalTypeAndValue(SrcVal) || 3535 parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3536 parseType(DestTy) || 3537 parseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3538 return true; 3539 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3540 return error(ID.Loc, "invalid cast opcode for cast from '" + 3541 getTypeString(SrcVal->getType()) + "' to '" + 3542 getTypeString(DestTy) + "'"); 3543 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3544 SrcVal, DestTy); 3545 ID.Kind = ValID::t_Constant; 3546 return false; 3547 } 3548 case lltok::kw_extractvalue: { 3549 Lex.Lex(); 3550 Constant *Val; 3551 SmallVector<unsigned, 4> Indices; 3552 if (parseToken(lltok::lparen, 3553 "expected '(' in extractvalue constantexpr") || 3554 parseGlobalTypeAndValue(Val) || parseIndexList(Indices) || 3555 parseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 3556 return true; 3557 3558 if (!Val->getType()->isAggregateType()) 3559 return error(ID.Loc, "extractvalue operand must be aggregate type"); 3560 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 3561 return error(ID.Loc, "invalid indices for extractvalue"); 3562 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 3563 ID.Kind = ValID::t_Constant; 3564 return false; 3565 } 3566 case lltok::kw_insertvalue: { 3567 Lex.Lex(); 3568 Constant *Val0, *Val1; 3569 SmallVector<unsigned, 4> Indices; 3570 if (parseToken(lltok::lparen, "expected '(' in insertvalue constantexpr") || 3571 parseGlobalTypeAndValue(Val0) || 3572 parseToken(lltok::comma, 3573 "expected comma in insertvalue constantexpr") || 3574 parseGlobalTypeAndValue(Val1) || parseIndexList(Indices) || 3575 parseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 3576 return true; 3577 if (!Val0->getType()->isAggregateType()) 3578 return error(ID.Loc, "insertvalue operand must be aggregate type"); 3579 Type *IndexedType = 3580 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3581 if (!IndexedType) 3582 return error(ID.Loc, "invalid indices for insertvalue"); 3583 if (IndexedType != Val1->getType()) 3584 return error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3585 getTypeString(Val1->getType()) + 3586 "' instead of '" + getTypeString(IndexedType) + 3587 "'"); 3588 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3589 ID.Kind = ValID::t_Constant; 3590 return false; 3591 } 3592 case lltok::kw_icmp: 3593 case lltok::kw_fcmp: { 3594 unsigned PredVal, Opc = Lex.getUIntVal(); 3595 Constant *Val0, *Val1; 3596 Lex.Lex(); 3597 if (parseCmpPredicate(PredVal, Opc) || 3598 parseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3599 parseGlobalTypeAndValue(Val0) || 3600 parseToken(lltok::comma, "expected comma in compare constantexpr") || 3601 parseGlobalTypeAndValue(Val1) || 3602 parseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3603 return true; 3604 3605 if (Val0->getType() != Val1->getType()) 3606 return error(ID.Loc, "compare operands must have the same type"); 3607 3608 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3609 3610 if (Opc == Instruction::FCmp) { 3611 if (!Val0->getType()->isFPOrFPVectorTy()) 3612 return error(ID.Loc, "fcmp requires floating point operands"); 3613 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3614 } else { 3615 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3616 if (!Val0->getType()->isIntOrIntVectorTy() && 3617 !Val0->getType()->isPtrOrPtrVectorTy()) 3618 return error(ID.Loc, "icmp requires pointer or integer operands"); 3619 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3620 } 3621 ID.Kind = ValID::t_Constant; 3622 return false; 3623 } 3624 3625 // Unary Operators. 3626 case lltok::kw_fneg: { 3627 unsigned Opc = Lex.getUIntVal(); 3628 Constant *Val; 3629 Lex.Lex(); 3630 if (parseToken(lltok::lparen, "expected '(' in unary constantexpr") || 3631 parseGlobalTypeAndValue(Val) || 3632 parseToken(lltok::rparen, "expected ')' in unary constantexpr")) 3633 return true; 3634 3635 // Check that the type is valid for the operator. 3636 switch (Opc) { 3637 case Instruction::FNeg: 3638 if (!Val->getType()->isFPOrFPVectorTy()) 3639 return error(ID.Loc, "constexpr requires fp operands"); 3640 break; 3641 default: llvm_unreachable("Unknown unary operator!"); 3642 } 3643 unsigned Flags = 0; 3644 Constant *C = ConstantExpr::get(Opc, Val, Flags); 3645 ID.ConstantVal = C; 3646 ID.Kind = ValID::t_Constant; 3647 return false; 3648 } 3649 // Binary Operators. 3650 case lltok::kw_add: 3651 case lltok::kw_fadd: 3652 case lltok::kw_sub: 3653 case lltok::kw_fsub: 3654 case lltok::kw_mul: 3655 case lltok::kw_fmul: 3656 case lltok::kw_udiv: 3657 case lltok::kw_sdiv: 3658 case lltok::kw_fdiv: 3659 case lltok::kw_urem: 3660 case lltok::kw_srem: 3661 case lltok::kw_frem: 3662 case lltok::kw_shl: 3663 case lltok::kw_lshr: 3664 case lltok::kw_ashr: { 3665 bool NUW = false; 3666 bool NSW = false; 3667 bool Exact = false; 3668 unsigned Opc = Lex.getUIntVal(); 3669 Constant *Val0, *Val1; 3670 Lex.Lex(); 3671 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3672 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3673 if (EatIfPresent(lltok::kw_nuw)) 3674 NUW = true; 3675 if (EatIfPresent(lltok::kw_nsw)) { 3676 NSW = true; 3677 if (EatIfPresent(lltok::kw_nuw)) 3678 NUW = true; 3679 } 3680 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3681 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3682 if (EatIfPresent(lltok::kw_exact)) 3683 Exact = true; 3684 } 3685 if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3686 parseGlobalTypeAndValue(Val0) || 3687 parseToken(lltok::comma, "expected comma in binary constantexpr") || 3688 parseGlobalTypeAndValue(Val1) || 3689 parseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3690 return true; 3691 if (Val0->getType() != Val1->getType()) 3692 return error(ID.Loc, "operands of constexpr must have same type"); 3693 // Check that the type is valid for the operator. 3694 switch (Opc) { 3695 case Instruction::Add: 3696 case Instruction::Sub: 3697 case Instruction::Mul: 3698 case Instruction::UDiv: 3699 case Instruction::SDiv: 3700 case Instruction::URem: 3701 case Instruction::SRem: 3702 case Instruction::Shl: 3703 case Instruction::AShr: 3704 case Instruction::LShr: 3705 if (!Val0->getType()->isIntOrIntVectorTy()) 3706 return error(ID.Loc, "constexpr requires integer operands"); 3707 break; 3708 case Instruction::FAdd: 3709 case Instruction::FSub: 3710 case Instruction::FMul: 3711 case Instruction::FDiv: 3712 case Instruction::FRem: 3713 if (!Val0->getType()->isFPOrFPVectorTy()) 3714 return error(ID.Loc, "constexpr requires fp operands"); 3715 break; 3716 default: llvm_unreachable("Unknown binary operator!"); 3717 } 3718 unsigned Flags = 0; 3719 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3720 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3721 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3722 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3723 ID.ConstantVal = C; 3724 ID.Kind = ValID::t_Constant; 3725 return false; 3726 } 3727 3728 // Logical Operations 3729 case lltok::kw_and: 3730 case lltok::kw_or: 3731 case lltok::kw_xor: { 3732 unsigned Opc = Lex.getUIntVal(); 3733 Constant *Val0, *Val1; 3734 Lex.Lex(); 3735 if (parseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3736 parseGlobalTypeAndValue(Val0) || 3737 parseToken(lltok::comma, "expected comma in logical constantexpr") || 3738 parseGlobalTypeAndValue(Val1) || 3739 parseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3740 return true; 3741 if (Val0->getType() != Val1->getType()) 3742 return error(ID.Loc, "operands of constexpr must have same type"); 3743 if (!Val0->getType()->isIntOrIntVectorTy()) 3744 return error(ID.Loc, 3745 "constexpr requires integer or integer vector operands"); 3746 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3747 ID.Kind = ValID::t_Constant; 3748 return false; 3749 } 3750 3751 case lltok::kw_getelementptr: 3752 case lltok::kw_shufflevector: 3753 case lltok::kw_insertelement: 3754 case lltok::kw_extractelement: 3755 case lltok::kw_select: { 3756 unsigned Opc = Lex.getUIntVal(); 3757 SmallVector<Constant*, 16> Elts; 3758 bool InBounds = false; 3759 Type *Ty; 3760 Lex.Lex(); 3761 3762 if (Opc == Instruction::GetElementPtr) 3763 InBounds = EatIfPresent(lltok::kw_inbounds); 3764 3765 if (parseToken(lltok::lparen, "expected '(' in constantexpr")) 3766 return true; 3767 3768 LocTy ExplicitTypeLoc = Lex.getLoc(); 3769 if (Opc == Instruction::GetElementPtr) { 3770 if (parseType(Ty) || 3771 parseToken(lltok::comma, "expected comma after getelementptr's type")) 3772 return true; 3773 } 3774 3775 Optional<unsigned> InRangeOp; 3776 if (parseGlobalValueVector( 3777 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3778 parseToken(lltok::rparen, "expected ')' in constantexpr")) 3779 return true; 3780 3781 if (Opc == Instruction::GetElementPtr) { 3782 if (Elts.size() == 0 || 3783 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 3784 return error(ID.Loc, "base of getelementptr must be a pointer"); 3785 3786 Type *BaseType = Elts[0]->getType(); 3787 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3788 if (Ty != BasePointerType->getElementType()) 3789 return error( 3790 ExplicitTypeLoc, 3791 "explicit pointee type doesn't match operand's pointee type"); 3792 3793 unsigned GEPWidth = 3794 BaseType->isVectorTy() 3795 ? cast<FixedVectorType>(BaseType)->getNumElements() 3796 : 0; 3797 3798 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3799 for (Constant *Val : Indices) { 3800 Type *ValTy = Val->getType(); 3801 if (!ValTy->isIntOrIntVectorTy()) 3802 return error(ID.Loc, "getelementptr index must be an integer"); 3803 if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) { 3804 unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements(); 3805 if (GEPWidth && (ValNumEl != GEPWidth)) 3806 return error( 3807 ID.Loc, 3808 "getelementptr vector index has a wrong number of elements"); 3809 // GEPWidth may have been unknown because the base is a scalar, 3810 // but it is known now. 3811 GEPWidth = ValNumEl; 3812 } 3813 } 3814 3815 SmallPtrSet<Type*, 4> Visited; 3816 if (!Indices.empty() && !Ty->isSized(&Visited)) 3817 return error(ID.Loc, "base element of getelementptr must be sized"); 3818 3819 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3820 return error(ID.Loc, "invalid getelementptr indices"); 3821 3822 if (InRangeOp) { 3823 if (*InRangeOp == 0) 3824 return error(ID.Loc, 3825 "inrange keyword may not appear on pointer operand"); 3826 --*InRangeOp; 3827 } 3828 3829 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3830 InBounds, InRangeOp); 3831 } else if (Opc == Instruction::Select) { 3832 if (Elts.size() != 3) 3833 return error(ID.Loc, "expected three operands to select"); 3834 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3835 Elts[2])) 3836 return error(ID.Loc, Reason); 3837 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3838 } else if (Opc == Instruction::ShuffleVector) { 3839 if (Elts.size() != 3) 3840 return error(ID.Loc, "expected three operands to shufflevector"); 3841 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3842 return error(ID.Loc, "invalid operands to shufflevector"); 3843 SmallVector<int, 16> Mask; 3844 ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask); 3845 ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask); 3846 } else if (Opc == Instruction::ExtractElement) { 3847 if (Elts.size() != 2) 3848 return error(ID.Loc, "expected two operands to extractelement"); 3849 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3850 return error(ID.Loc, "invalid extractelement operands"); 3851 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3852 } else { 3853 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3854 if (Elts.size() != 3) 3855 return error(ID.Loc, "expected three operands to insertelement"); 3856 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3857 return error(ID.Loc, "invalid insertelement operands"); 3858 ID.ConstantVal = 3859 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3860 } 3861 3862 ID.Kind = ValID::t_Constant; 3863 return false; 3864 } 3865 } 3866 3867 Lex.Lex(); 3868 return false; 3869 } 3870 3871 /// parseGlobalValue - parse a global value with the specified type. 3872 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) { 3873 C = nullptr; 3874 ValID ID; 3875 Value *V = nullptr; 3876 bool Parsed = parseValID(ID) || 3877 convertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false); 3878 if (V && !(C = dyn_cast<Constant>(V))) 3879 return error(ID.Loc, "global values must be constants"); 3880 return Parsed; 3881 } 3882 3883 bool LLParser::parseGlobalTypeAndValue(Constant *&V) { 3884 Type *Ty = nullptr; 3885 return parseType(Ty) || parseGlobalValue(Ty, V); 3886 } 3887 3888 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3889 C = nullptr; 3890 3891 LocTy KwLoc = Lex.getLoc(); 3892 if (!EatIfPresent(lltok::kw_comdat)) 3893 return false; 3894 3895 if (EatIfPresent(lltok::lparen)) { 3896 if (Lex.getKind() != lltok::ComdatVar) 3897 return tokError("expected comdat variable"); 3898 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3899 Lex.Lex(); 3900 if (parseToken(lltok::rparen, "expected ')' after comdat var")) 3901 return true; 3902 } else { 3903 if (GlobalName.empty()) 3904 return tokError("comdat cannot be unnamed"); 3905 C = getComdat(std::string(GlobalName), KwLoc); 3906 } 3907 3908 return false; 3909 } 3910 3911 /// parseGlobalValueVector 3912 /// ::= /*empty*/ 3913 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 3914 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 3915 Optional<unsigned> *InRangeOp) { 3916 // Empty list. 3917 if (Lex.getKind() == lltok::rbrace || 3918 Lex.getKind() == lltok::rsquare || 3919 Lex.getKind() == lltok::greater || 3920 Lex.getKind() == lltok::rparen) 3921 return false; 3922 3923 do { 3924 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 3925 *InRangeOp = Elts.size(); 3926 3927 Constant *C; 3928 if (parseGlobalTypeAndValue(C)) 3929 return true; 3930 Elts.push_back(C); 3931 } while (EatIfPresent(lltok::comma)); 3932 3933 return false; 3934 } 3935 3936 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) { 3937 SmallVector<Metadata *, 16> Elts; 3938 if (parseMDNodeVector(Elts)) 3939 return true; 3940 3941 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3942 return false; 3943 } 3944 3945 /// MDNode: 3946 /// ::= !{ ... } 3947 /// ::= !7 3948 /// ::= !DILocation(...) 3949 bool LLParser::parseMDNode(MDNode *&N) { 3950 if (Lex.getKind() == lltok::MetadataVar) 3951 return parseSpecializedMDNode(N); 3952 3953 return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N); 3954 } 3955 3956 bool LLParser::parseMDNodeTail(MDNode *&N) { 3957 // !{ ... } 3958 if (Lex.getKind() == lltok::lbrace) 3959 return parseMDTuple(N); 3960 3961 // !42 3962 return parseMDNodeID(N); 3963 } 3964 3965 namespace { 3966 3967 /// Structure to represent an optional metadata field. 3968 template <class FieldTy> struct MDFieldImpl { 3969 typedef MDFieldImpl ImplTy; 3970 FieldTy Val; 3971 bool Seen; 3972 3973 void assign(FieldTy Val) { 3974 Seen = true; 3975 this->Val = std::move(Val); 3976 } 3977 3978 explicit MDFieldImpl(FieldTy Default) 3979 : Val(std::move(Default)), Seen(false) {} 3980 }; 3981 3982 /// Structure to represent an optional metadata field that 3983 /// can be of either type (A or B) and encapsulates the 3984 /// MD<typeofA>Field and MD<typeofB>Field structs, so not 3985 /// to reimplement the specifics for representing each Field. 3986 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl { 3987 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy; 3988 FieldTypeA A; 3989 FieldTypeB B; 3990 bool Seen; 3991 3992 enum { 3993 IsInvalid = 0, 3994 IsTypeA = 1, 3995 IsTypeB = 2 3996 } WhatIs; 3997 3998 void assign(FieldTypeA A) { 3999 Seen = true; 4000 this->A = std::move(A); 4001 WhatIs = IsTypeA; 4002 } 4003 4004 void assign(FieldTypeB B) { 4005 Seen = true; 4006 this->B = std::move(B); 4007 WhatIs = IsTypeB; 4008 } 4009 4010 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) 4011 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), 4012 WhatIs(IsInvalid) {} 4013 }; 4014 4015 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 4016 uint64_t Max; 4017 4018 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 4019 : ImplTy(Default), Max(Max) {} 4020 }; 4021 4022 struct LineField : public MDUnsignedField { 4023 LineField() : MDUnsignedField(0, UINT32_MAX) {} 4024 }; 4025 4026 struct ColumnField : public MDUnsignedField { 4027 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 4028 }; 4029 4030 struct DwarfTagField : public MDUnsignedField { 4031 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 4032 DwarfTagField(dwarf::Tag DefaultTag) 4033 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 4034 }; 4035 4036 struct DwarfMacinfoTypeField : public MDUnsignedField { 4037 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 4038 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 4039 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 4040 }; 4041 4042 struct DwarfAttEncodingField : public MDUnsignedField { 4043 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 4044 }; 4045 4046 struct DwarfVirtualityField : public MDUnsignedField { 4047 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 4048 }; 4049 4050 struct DwarfLangField : public MDUnsignedField { 4051 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 4052 }; 4053 4054 struct DwarfCCField : public MDUnsignedField { 4055 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 4056 }; 4057 4058 struct EmissionKindField : public MDUnsignedField { 4059 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 4060 }; 4061 4062 struct NameTableKindField : public MDUnsignedField { 4063 NameTableKindField() 4064 : MDUnsignedField( 4065 0, (unsigned) 4066 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {} 4067 }; 4068 4069 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 4070 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 4071 }; 4072 4073 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> { 4074 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {} 4075 }; 4076 4077 struct MDAPSIntField : public MDFieldImpl<APSInt> { 4078 MDAPSIntField() : ImplTy(APSInt()) {} 4079 }; 4080 4081 struct MDSignedField : public MDFieldImpl<int64_t> { 4082 int64_t Min; 4083 int64_t Max; 4084 4085 MDSignedField(int64_t Default = 0) 4086 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 4087 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 4088 : ImplTy(Default), Min(Min), Max(Max) {} 4089 }; 4090 4091 struct MDBoolField : public MDFieldImpl<bool> { 4092 MDBoolField(bool Default = false) : ImplTy(Default) {} 4093 }; 4094 4095 struct MDField : public MDFieldImpl<Metadata *> { 4096 bool AllowNull; 4097 4098 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 4099 }; 4100 4101 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 4102 MDConstant() : ImplTy(nullptr) {} 4103 }; 4104 4105 struct MDStringField : public MDFieldImpl<MDString *> { 4106 bool AllowEmpty; 4107 MDStringField(bool AllowEmpty = true) 4108 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 4109 }; 4110 4111 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 4112 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 4113 }; 4114 4115 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 4116 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 4117 }; 4118 4119 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> { 4120 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) 4121 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} 4122 4123 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, 4124 bool AllowNull = true) 4125 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} 4126 4127 bool isMDSignedField() const { return WhatIs == IsTypeA; } 4128 bool isMDField() const { return WhatIs == IsTypeB; } 4129 int64_t getMDSignedValue() const { 4130 assert(isMDSignedField() && "Wrong field type"); 4131 return A.Val; 4132 } 4133 Metadata *getMDFieldValue() const { 4134 assert(isMDField() && "Wrong field type"); 4135 return B.Val; 4136 } 4137 }; 4138 4139 struct MDSignedOrUnsignedField 4140 : MDEitherFieldImpl<MDSignedField, MDUnsignedField> { 4141 MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {} 4142 4143 bool isMDSignedField() const { return WhatIs == IsTypeA; } 4144 bool isMDUnsignedField() const { return WhatIs == IsTypeB; } 4145 int64_t getMDSignedValue() const { 4146 assert(isMDSignedField() && "Wrong field type"); 4147 return A.Val; 4148 } 4149 uint64_t getMDUnsignedValue() const { 4150 assert(isMDUnsignedField() && "Wrong field type"); 4151 return B.Val; 4152 } 4153 }; 4154 4155 } // end anonymous namespace 4156 4157 namespace llvm { 4158 4159 template <> 4160 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) { 4161 if (Lex.getKind() != lltok::APSInt) 4162 return tokError("expected integer"); 4163 4164 Result.assign(Lex.getAPSIntVal()); 4165 Lex.Lex(); 4166 return false; 4167 } 4168 4169 template <> 4170 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4171 MDUnsignedField &Result) { 4172 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4173 return tokError("expected unsigned integer"); 4174 4175 auto &U = Lex.getAPSIntVal(); 4176 if (U.ugt(Result.Max)) 4177 return tokError("value for '" + Name + "' too large, limit is " + 4178 Twine(Result.Max)); 4179 Result.assign(U.getZExtValue()); 4180 assert(Result.Val <= Result.Max && "Expected value in range"); 4181 Lex.Lex(); 4182 return false; 4183 } 4184 4185 template <> 4186 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) { 4187 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4188 } 4189 template <> 4190 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 4191 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4192 } 4193 4194 template <> 4195 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 4196 if (Lex.getKind() == lltok::APSInt) 4197 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4198 4199 if (Lex.getKind() != lltok::DwarfTag) 4200 return tokError("expected DWARF tag"); 4201 4202 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 4203 if (Tag == dwarf::DW_TAG_invalid) 4204 return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 4205 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 4206 4207 Result.assign(Tag); 4208 Lex.Lex(); 4209 return false; 4210 } 4211 4212 template <> 4213 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4214 DwarfMacinfoTypeField &Result) { 4215 if (Lex.getKind() == lltok::APSInt) 4216 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4217 4218 if (Lex.getKind() != lltok::DwarfMacinfo) 4219 return tokError("expected DWARF macinfo type"); 4220 4221 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 4222 if (Macinfo == dwarf::DW_MACINFO_invalid) 4223 return tokError("invalid DWARF macinfo type" + Twine(" '") + 4224 Lex.getStrVal() + "'"); 4225 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 4226 4227 Result.assign(Macinfo); 4228 Lex.Lex(); 4229 return false; 4230 } 4231 4232 template <> 4233 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4234 DwarfVirtualityField &Result) { 4235 if (Lex.getKind() == lltok::APSInt) 4236 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4237 4238 if (Lex.getKind() != lltok::DwarfVirtuality) 4239 return tokError("expected DWARF virtuality code"); 4240 4241 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 4242 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 4243 return tokError("invalid DWARF virtuality code" + Twine(" '") + 4244 Lex.getStrVal() + "'"); 4245 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 4246 Result.assign(Virtuality); 4247 Lex.Lex(); 4248 return false; 4249 } 4250 4251 template <> 4252 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 4253 if (Lex.getKind() == lltok::APSInt) 4254 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4255 4256 if (Lex.getKind() != lltok::DwarfLang) 4257 return tokError("expected DWARF language"); 4258 4259 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 4260 if (!Lang) 4261 return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 4262 "'"); 4263 assert(Lang <= Result.Max && "Expected valid DWARF language"); 4264 Result.assign(Lang); 4265 Lex.Lex(); 4266 return false; 4267 } 4268 4269 template <> 4270 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 4271 if (Lex.getKind() == lltok::APSInt) 4272 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4273 4274 if (Lex.getKind() != lltok::DwarfCC) 4275 return tokError("expected DWARF calling convention"); 4276 4277 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 4278 if (!CC) 4279 return tokError("invalid DWARF calling convention" + Twine(" '") + 4280 Lex.getStrVal() + "'"); 4281 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 4282 Result.assign(CC); 4283 Lex.Lex(); 4284 return false; 4285 } 4286 4287 template <> 4288 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4289 EmissionKindField &Result) { 4290 if (Lex.getKind() == lltok::APSInt) 4291 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4292 4293 if (Lex.getKind() != lltok::EmissionKind) 4294 return tokError("expected emission kind"); 4295 4296 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 4297 if (!Kind) 4298 return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 4299 "'"); 4300 assert(*Kind <= Result.Max && "Expected valid emission kind"); 4301 Result.assign(*Kind); 4302 Lex.Lex(); 4303 return false; 4304 } 4305 4306 template <> 4307 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4308 NameTableKindField &Result) { 4309 if (Lex.getKind() == lltok::APSInt) 4310 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4311 4312 if (Lex.getKind() != lltok::NameTableKind) 4313 return tokError("expected nameTable kind"); 4314 4315 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal()); 4316 if (!Kind) 4317 return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() + 4318 "'"); 4319 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind"); 4320 Result.assign((unsigned)*Kind); 4321 Lex.Lex(); 4322 return false; 4323 } 4324 4325 template <> 4326 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4327 DwarfAttEncodingField &Result) { 4328 if (Lex.getKind() == lltok::APSInt) 4329 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4330 4331 if (Lex.getKind() != lltok::DwarfAttEncoding) 4332 return tokError("expected DWARF type attribute encoding"); 4333 4334 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 4335 if (!Encoding) 4336 return tokError("invalid DWARF type attribute encoding" + Twine(" '") + 4337 Lex.getStrVal() + "'"); 4338 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 4339 Result.assign(Encoding); 4340 Lex.Lex(); 4341 return false; 4342 } 4343 4344 /// DIFlagField 4345 /// ::= uint32 4346 /// ::= DIFlagVector 4347 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 4348 template <> 4349 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 4350 4351 // parser for a single flag. 4352 auto parseFlag = [&](DINode::DIFlags &Val) { 4353 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4354 uint32_t TempVal = static_cast<uint32_t>(Val); 4355 bool Res = parseUInt32(TempVal); 4356 Val = static_cast<DINode::DIFlags>(TempVal); 4357 return Res; 4358 } 4359 4360 if (Lex.getKind() != lltok::DIFlag) 4361 return tokError("expected debug info flag"); 4362 4363 Val = DINode::getFlag(Lex.getStrVal()); 4364 if (!Val) 4365 return tokError(Twine("invalid debug info flag flag '") + 4366 Lex.getStrVal() + "'"); 4367 Lex.Lex(); 4368 return false; 4369 }; 4370 4371 // parse the flags and combine them together. 4372 DINode::DIFlags Combined = DINode::FlagZero; 4373 do { 4374 DINode::DIFlags Val; 4375 if (parseFlag(Val)) 4376 return true; 4377 Combined |= Val; 4378 } while (EatIfPresent(lltok::bar)); 4379 4380 Result.assign(Combined); 4381 return false; 4382 } 4383 4384 /// DISPFlagField 4385 /// ::= uint32 4386 /// ::= DISPFlagVector 4387 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32 4388 template <> 4389 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) { 4390 4391 // parser for a single flag. 4392 auto parseFlag = [&](DISubprogram::DISPFlags &Val) { 4393 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4394 uint32_t TempVal = static_cast<uint32_t>(Val); 4395 bool Res = parseUInt32(TempVal); 4396 Val = static_cast<DISubprogram::DISPFlags>(TempVal); 4397 return Res; 4398 } 4399 4400 if (Lex.getKind() != lltok::DISPFlag) 4401 return tokError("expected debug info flag"); 4402 4403 Val = DISubprogram::getFlag(Lex.getStrVal()); 4404 if (!Val) 4405 return tokError(Twine("invalid subprogram debug info flag '") + 4406 Lex.getStrVal() + "'"); 4407 Lex.Lex(); 4408 return false; 4409 }; 4410 4411 // parse the flags and combine them together. 4412 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero; 4413 do { 4414 DISubprogram::DISPFlags Val; 4415 if (parseFlag(Val)) 4416 return true; 4417 Combined |= Val; 4418 } while (EatIfPresent(lltok::bar)); 4419 4420 Result.assign(Combined); 4421 return false; 4422 } 4423 4424 template <> 4425 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) { 4426 if (Lex.getKind() != lltok::APSInt) 4427 return tokError("expected signed integer"); 4428 4429 auto &S = Lex.getAPSIntVal(); 4430 if (S < Result.Min) 4431 return tokError("value for '" + Name + "' too small, limit is " + 4432 Twine(Result.Min)); 4433 if (S > Result.Max) 4434 return tokError("value for '" + Name + "' too large, limit is " + 4435 Twine(Result.Max)); 4436 Result.assign(S.getExtValue()); 4437 assert(Result.Val >= Result.Min && "Expected value in range"); 4438 assert(Result.Val <= Result.Max && "Expected value in range"); 4439 Lex.Lex(); 4440 return false; 4441 } 4442 4443 template <> 4444 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 4445 switch (Lex.getKind()) { 4446 default: 4447 return tokError("expected 'true' or 'false'"); 4448 case lltok::kw_true: 4449 Result.assign(true); 4450 break; 4451 case lltok::kw_false: 4452 Result.assign(false); 4453 break; 4454 } 4455 Lex.Lex(); 4456 return false; 4457 } 4458 4459 template <> 4460 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) { 4461 if (Lex.getKind() == lltok::kw_null) { 4462 if (!Result.AllowNull) 4463 return tokError("'" + Name + "' cannot be null"); 4464 Lex.Lex(); 4465 Result.assign(nullptr); 4466 return false; 4467 } 4468 4469 Metadata *MD; 4470 if (parseMetadata(MD, nullptr)) 4471 return true; 4472 4473 Result.assign(MD); 4474 return false; 4475 } 4476 4477 template <> 4478 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4479 MDSignedOrMDField &Result) { 4480 // Try to parse a signed int. 4481 if (Lex.getKind() == lltok::APSInt) { 4482 MDSignedField Res = Result.A; 4483 if (!parseMDField(Loc, Name, Res)) { 4484 Result.assign(Res); 4485 return false; 4486 } 4487 return true; 4488 } 4489 4490 // Otherwise, try to parse as an MDField. 4491 MDField Res = Result.B; 4492 if (!parseMDField(Loc, Name, Res)) { 4493 Result.assign(Res); 4494 return false; 4495 } 4496 4497 return true; 4498 } 4499 4500 template <> 4501 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 4502 LocTy ValueLoc = Lex.getLoc(); 4503 std::string S; 4504 if (parseStringConstant(S)) 4505 return true; 4506 4507 if (!Result.AllowEmpty && S.empty()) 4508 return error(ValueLoc, "'" + Name + "' cannot be empty"); 4509 4510 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 4511 return false; 4512 } 4513 4514 template <> 4515 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 4516 SmallVector<Metadata *, 4> MDs; 4517 if (parseMDNodeVector(MDs)) 4518 return true; 4519 4520 Result.assign(std::move(MDs)); 4521 return false; 4522 } 4523 4524 template <> 4525 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4526 ChecksumKindField &Result) { 4527 Optional<DIFile::ChecksumKind> CSKind = 4528 DIFile::getChecksumKind(Lex.getStrVal()); 4529 4530 if (Lex.getKind() != lltok::ChecksumKind || !CSKind) 4531 return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() + 4532 "'"); 4533 4534 Result.assign(*CSKind); 4535 Lex.Lex(); 4536 return false; 4537 } 4538 4539 } // end namespace llvm 4540 4541 template <class ParserTy> 4542 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) { 4543 do { 4544 if (Lex.getKind() != lltok::LabelStr) 4545 return tokError("expected field label here"); 4546 4547 if (ParseField()) 4548 return true; 4549 } while (EatIfPresent(lltok::comma)); 4550 4551 return false; 4552 } 4553 4554 template <class ParserTy> 4555 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) { 4556 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4557 Lex.Lex(); 4558 4559 if (parseToken(lltok::lparen, "expected '(' here")) 4560 return true; 4561 if (Lex.getKind() != lltok::rparen) 4562 if (parseMDFieldsImplBody(ParseField)) 4563 return true; 4564 4565 ClosingLoc = Lex.getLoc(); 4566 return parseToken(lltok::rparen, "expected ')' here"); 4567 } 4568 4569 template <class FieldTy> 4570 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) { 4571 if (Result.Seen) 4572 return tokError("field '" + Name + "' cannot be specified more than once"); 4573 4574 LocTy Loc = Lex.getLoc(); 4575 Lex.Lex(); 4576 return parseMDField(Loc, Name, Result); 4577 } 4578 4579 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 4580 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4581 4582 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 4583 if (Lex.getStrVal() == #CLASS) \ 4584 return parse##CLASS(N, IsDistinct); 4585 #include "llvm/IR/Metadata.def" 4586 4587 return tokError("expected metadata type"); 4588 } 4589 4590 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 4591 #define NOP_FIELD(NAME, TYPE, INIT) 4592 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 4593 if (!NAME.Seen) \ 4594 return error(ClosingLoc, "missing required field '" #NAME "'"); 4595 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 4596 if (Lex.getStrVal() == #NAME) \ 4597 return parseMDField(#NAME, NAME); 4598 #define PARSE_MD_FIELDS() \ 4599 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 4600 do { \ 4601 LocTy ClosingLoc; \ 4602 if (parseMDFieldsImpl( \ 4603 [&]() -> bool { \ 4604 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 4605 return tokError(Twine("invalid field '") + Lex.getStrVal() + \ 4606 "'"); \ 4607 }, \ 4608 ClosingLoc)) \ 4609 return true; \ 4610 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 4611 } while (false) 4612 #define GET_OR_DISTINCT(CLASS, ARGS) \ 4613 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 4614 4615 /// parseDILocationFields: 4616 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6, 4617 /// isImplicitCode: true) 4618 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) { 4619 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4620 OPTIONAL(line, LineField, ); \ 4621 OPTIONAL(column, ColumnField, ); \ 4622 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4623 OPTIONAL(inlinedAt, MDField, ); \ 4624 OPTIONAL(isImplicitCode, MDBoolField, (false)); 4625 PARSE_MD_FIELDS(); 4626 #undef VISIT_MD_FIELDS 4627 4628 Result = 4629 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val, 4630 inlinedAt.Val, isImplicitCode.Val)); 4631 return false; 4632 } 4633 4634 /// parseGenericDINode: 4635 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 4636 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) { 4637 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4638 REQUIRED(tag, DwarfTagField, ); \ 4639 OPTIONAL(header, MDStringField, ); \ 4640 OPTIONAL(operands, MDFieldList, ); 4641 PARSE_MD_FIELDS(); 4642 #undef VISIT_MD_FIELDS 4643 4644 Result = GET_OR_DISTINCT(GenericDINode, 4645 (Context, tag.Val, header.Val, operands.Val)); 4646 return false; 4647 } 4648 4649 /// parseDISubrange: 4650 /// ::= !DISubrange(count: 30, lowerBound: 2) 4651 /// ::= !DISubrange(count: !node, lowerBound: 2) 4652 /// ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3) 4653 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) { 4654 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4655 OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ 4656 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 4657 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 4658 OPTIONAL(stride, MDSignedOrMDField, ); 4659 PARSE_MD_FIELDS(); 4660 #undef VISIT_MD_FIELDS 4661 4662 Metadata *Count = nullptr; 4663 Metadata *LowerBound = nullptr; 4664 Metadata *UpperBound = nullptr; 4665 Metadata *Stride = nullptr; 4666 if (count.isMDSignedField()) 4667 Count = ConstantAsMetadata::get(ConstantInt::getSigned( 4668 Type::getInt64Ty(Context), count.getMDSignedValue())); 4669 else if (count.isMDField()) 4670 Count = count.getMDFieldValue(); 4671 4672 auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 4673 if (Bound.isMDSignedField()) 4674 return ConstantAsMetadata::get(ConstantInt::getSigned( 4675 Type::getInt64Ty(Context), Bound.getMDSignedValue())); 4676 if (Bound.isMDField()) 4677 return Bound.getMDFieldValue(); 4678 return nullptr; 4679 }; 4680 4681 LowerBound = convToMetadata(lowerBound); 4682 UpperBound = convToMetadata(upperBound); 4683 Stride = convToMetadata(stride); 4684 4685 Result = GET_OR_DISTINCT(DISubrange, 4686 (Context, Count, LowerBound, UpperBound, Stride)); 4687 4688 return false; 4689 } 4690 4691 /// parseDIGenericSubrange: 4692 /// ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride: 4693 /// !node3) 4694 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) { 4695 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4696 OPTIONAL(count, MDSignedOrMDField, ); \ 4697 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 4698 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 4699 OPTIONAL(stride, MDSignedOrMDField, ); 4700 PARSE_MD_FIELDS(); 4701 #undef VISIT_MD_FIELDS 4702 4703 auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 4704 if (Bound.isMDSignedField()) 4705 return DIExpression::get( 4706 Context, {dwarf::DW_OP_consts, 4707 static_cast<uint64_t>(Bound.getMDSignedValue())}); 4708 if (Bound.isMDField()) 4709 return Bound.getMDFieldValue(); 4710 return nullptr; 4711 }; 4712 4713 Metadata *Count = ConvToMetadata(count); 4714 Metadata *LowerBound = ConvToMetadata(lowerBound); 4715 Metadata *UpperBound = ConvToMetadata(upperBound); 4716 Metadata *Stride = ConvToMetadata(stride); 4717 4718 Result = GET_OR_DISTINCT(DIGenericSubrange, 4719 (Context, Count, LowerBound, UpperBound, Stride)); 4720 4721 return false; 4722 } 4723 4724 /// parseDIEnumerator: 4725 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind") 4726 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) { 4727 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4728 REQUIRED(name, MDStringField, ); \ 4729 REQUIRED(value, MDAPSIntField, ); \ 4730 OPTIONAL(isUnsigned, MDBoolField, (false)); 4731 PARSE_MD_FIELDS(); 4732 #undef VISIT_MD_FIELDS 4733 4734 if (isUnsigned.Val && value.Val.isNegative()) 4735 return tokError("unsigned enumerator with negative value"); 4736 4737 APSInt Value(value.Val); 4738 // Add a leading zero so that unsigned values with the msb set are not 4739 // mistaken for negative values when used for signed enumerators. 4740 if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet()) 4741 Value = Value.zext(Value.getBitWidth() + 1); 4742 4743 Result = 4744 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val)); 4745 4746 return false; 4747 } 4748 4749 /// parseDIBasicType: 4750 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32, 4751 /// encoding: DW_ATE_encoding, flags: 0) 4752 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) { 4753 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4754 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 4755 OPTIONAL(name, MDStringField, ); \ 4756 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4757 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4758 OPTIONAL(encoding, DwarfAttEncodingField, ); \ 4759 OPTIONAL(flags, DIFlagField, ); 4760 PARSE_MD_FIELDS(); 4761 #undef VISIT_MD_FIELDS 4762 4763 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 4764 align.Val, encoding.Val, flags.Val)); 4765 return false; 4766 } 4767 4768 /// parseDIStringType: 4769 /// ::= !DIStringType(name: "character(4)", size: 32, align: 32) 4770 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) { 4771 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4772 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type)); \ 4773 OPTIONAL(name, MDStringField, ); \ 4774 OPTIONAL(stringLength, MDField, ); \ 4775 OPTIONAL(stringLengthExpression, MDField, ); \ 4776 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4777 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4778 OPTIONAL(encoding, DwarfAttEncodingField, ); 4779 PARSE_MD_FIELDS(); 4780 #undef VISIT_MD_FIELDS 4781 4782 Result = GET_OR_DISTINCT(DIStringType, 4783 (Context, tag.Val, name.Val, stringLength.Val, 4784 stringLengthExpression.Val, size.Val, align.Val, 4785 encoding.Val)); 4786 return false; 4787 } 4788 4789 /// parseDIDerivedType: 4790 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 4791 /// line: 7, scope: !1, baseType: !2, size: 32, 4792 /// align: 32, offset: 0, flags: 0, extraData: !3, 4793 /// dwarfAddressSpace: 3) 4794 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) { 4795 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4796 REQUIRED(tag, DwarfTagField, ); \ 4797 OPTIONAL(name, MDStringField, ); \ 4798 OPTIONAL(file, MDField, ); \ 4799 OPTIONAL(line, LineField, ); \ 4800 OPTIONAL(scope, MDField, ); \ 4801 REQUIRED(baseType, MDField, ); \ 4802 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4803 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4804 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4805 OPTIONAL(flags, DIFlagField, ); \ 4806 OPTIONAL(extraData, MDField, ); \ 4807 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); 4808 PARSE_MD_FIELDS(); 4809 #undef VISIT_MD_FIELDS 4810 4811 Optional<unsigned> DWARFAddressSpace; 4812 if (dwarfAddressSpace.Val != UINT32_MAX) 4813 DWARFAddressSpace = dwarfAddressSpace.Val; 4814 4815 Result = GET_OR_DISTINCT(DIDerivedType, 4816 (Context, tag.Val, name.Val, file.Val, line.Val, 4817 scope.Val, baseType.Val, size.Val, align.Val, 4818 offset.Val, DWARFAddressSpace, flags.Val, 4819 extraData.Val)); 4820 return false; 4821 } 4822 4823 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) { 4824 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4825 REQUIRED(tag, DwarfTagField, ); \ 4826 OPTIONAL(name, MDStringField, ); \ 4827 OPTIONAL(file, MDField, ); \ 4828 OPTIONAL(line, LineField, ); \ 4829 OPTIONAL(scope, MDField, ); \ 4830 OPTIONAL(baseType, MDField, ); \ 4831 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4832 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4833 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4834 OPTIONAL(flags, DIFlagField, ); \ 4835 OPTIONAL(elements, MDField, ); \ 4836 OPTIONAL(runtimeLang, DwarfLangField, ); \ 4837 OPTIONAL(vtableHolder, MDField, ); \ 4838 OPTIONAL(templateParams, MDField, ); \ 4839 OPTIONAL(identifier, MDStringField, ); \ 4840 OPTIONAL(discriminator, MDField, ); \ 4841 OPTIONAL(dataLocation, MDField, ); \ 4842 OPTIONAL(associated, MDField, ); \ 4843 OPTIONAL(allocated, MDField, ); \ 4844 OPTIONAL(rank, MDSignedOrMDField, ); 4845 PARSE_MD_FIELDS(); 4846 #undef VISIT_MD_FIELDS 4847 4848 Metadata *Rank = nullptr; 4849 if (rank.isMDSignedField()) 4850 Rank = ConstantAsMetadata::get(ConstantInt::getSigned( 4851 Type::getInt64Ty(Context), rank.getMDSignedValue())); 4852 else if (rank.isMDField()) 4853 Rank = rank.getMDFieldValue(); 4854 4855 // If this has an identifier try to build an ODR type. 4856 if (identifier.Val) 4857 if (auto *CT = DICompositeType::buildODRType( 4858 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 4859 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 4860 elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val, 4861 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, 4862 Rank)) { 4863 Result = CT; 4864 return false; 4865 } 4866 4867 // Create a new node, and save it in the context if it belongs in the type 4868 // map. 4869 Result = GET_OR_DISTINCT( 4870 DICompositeType, 4871 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 4872 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 4873 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val, 4874 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, 4875 Rank)); 4876 return false; 4877 } 4878 4879 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) { 4880 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4881 OPTIONAL(flags, DIFlagField, ); \ 4882 OPTIONAL(cc, DwarfCCField, ); \ 4883 REQUIRED(types, MDField, ); 4884 PARSE_MD_FIELDS(); 4885 #undef VISIT_MD_FIELDS 4886 4887 Result = GET_OR_DISTINCT(DISubroutineType, 4888 (Context, flags.Val, cc.Val, types.Val)); 4889 return false; 4890 } 4891 4892 /// parseDIFileType: 4893 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir", 4894 /// checksumkind: CSK_MD5, 4895 /// checksum: "000102030405060708090a0b0c0d0e0f", 4896 /// source: "source file contents") 4897 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) { 4898 // The default constructed value for checksumkind is required, but will never 4899 // be used, as the parser checks if the field was actually Seen before using 4900 // the Val. 4901 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4902 REQUIRED(filename, MDStringField, ); \ 4903 REQUIRED(directory, MDStringField, ); \ 4904 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \ 4905 OPTIONAL(checksum, MDStringField, ); \ 4906 OPTIONAL(source, MDStringField, ); 4907 PARSE_MD_FIELDS(); 4908 #undef VISIT_MD_FIELDS 4909 4910 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum; 4911 if (checksumkind.Seen && checksum.Seen) 4912 OptChecksum.emplace(checksumkind.Val, checksum.Val); 4913 else if (checksumkind.Seen || checksum.Seen) 4914 return Lex.Error("'checksumkind' and 'checksum' must be provided together"); 4915 4916 Optional<MDString *> OptSource; 4917 if (source.Seen) 4918 OptSource = source.Val; 4919 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val, 4920 OptChecksum, OptSource)); 4921 return false; 4922 } 4923 4924 /// parseDICompileUnit: 4925 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 4926 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 4927 /// splitDebugFilename: "abc.debug", 4928 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 4929 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd, 4930 /// sysroot: "/", sdk: "MacOSX.sdk") 4931 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) { 4932 if (!IsDistinct) 4933 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 4934 4935 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4936 REQUIRED(language, DwarfLangField, ); \ 4937 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 4938 OPTIONAL(producer, MDStringField, ); \ 4939 OPTIONAL(isOptimized, MDBoolField, ); \ 4940 OPTIONAL(flags, MDStringField, ); \ 4941 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 4942 OPTIONAL(splitDebugFilename, MDStringField, ); \ 4943 OPTIONAL(emissionKind, EmissionKindField, ); \ 4944 OPTIONAL(enums, MDField, ); \ 4945 OPTIONAL(retainedTypes, MDField, ); \ 4946 OPTIONAL(globals, MDField, ); \ 4947 OPTIONAL(imports, MDField, ); \ 4948 OPTIONAL(macros, MDField, ); \ 4949 OPTIONAL(dwoId, MDUnsignedField, ); \ 4950 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 4951 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 4952 OPTIONAL(nameTableKind, NameTableKindField, ); \ 4953 OPTIONAL(rangesBaseAddress, MDBoolField, = false); \ 4954 OPTIONAL(sysroot, MDStringField, ); \ 4955 OPTIONAL(sdk, MDStringField, ); 4956 PARSE_MD_FIELDS(); 4957 #undef VISIT_MD_FIELDS 4958 4959 Result = DICompileUnit::getDistinct( 4960 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 4961 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 4962 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 4963 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val, 4964 rangesBaseAddress.Val, sysroot.Val, sdk.Val); 4965 return false; 4966 } 4967 4968 /// parseDISubprogram: 4969 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 4970 /// file: !1, line: 7, type: !2, isLocal: false, 4971 /// isDefinition: true, scopeLine: 8, containingType: !3, 4972 /// virtuality: DW_VIRTUALTIY_pure_virtual, 4973 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 4974 /// spFlags: 10, isOptimized: false, templateParams: !4, 4975 /// declaration: !5, retainedNodes: !6, thrownTypes: !7) 4976 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) { 4977 auto Loc = Lex.getLoc(); 4978 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4979 OPTIONAL(scope, MDField, ); \ 4980 OPTIONAL(name, MDStringField, ); \ 4981 OPTIONAL(linkageName, MDStringField, ); \ 4982 OPTIONAL(file, MDField, ); \ 4983 OPTIONAL(line, LineField, ); \ 4984 OPTIONAL(type, MDField, ); \ 4985 OPTIONAL(isLocal, MDBoolField, ); \ 4986 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4987 OPTIONAL(scopeLine, LineField, ); \ 4988 OPTIONAL(containingType, MDField, ); \ 4989 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 4990 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 4991 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 4992 OPTIONAL(flags, DIFlagField, ); \ 4993 OPTIONAL(spFlags, DISPFlagField, ); \ 4994 OPTIONAL(isOptimized, MDBoolField, ); \ 4995 OPTIONAL(unit, MDField, ); \ 4996 OPTIONAL(templateParams, MDField, ); \ 4997 OPTIONAL(declaration, MDField, ); \ 4998 OPTIONAL(retainedNodes, MDField, ); \ 4999 OPTIONAL(thrownTypes, MDField, ); 5000 PARSE_MD_FIELDS(); 5001 #undef VISIT_MD_FIELDS 5002 5003 // An explicit spFlags field takes precedence over individual fields in 5004 // older IR versions. 5005 DISubprogram::DISPFlags SPFlags = 5006 spFlags.Seen ? spFlags.Val 5007 : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val, 5008 isOptimized.Val, virtuality.Val); 5009 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct) 5010 return Lex.Error( 5011 Loc, 5012 "missing 'distinct', required for !DISubprogram that is a Definition"); 5013 Result = GET_OR_DISTINCT( 5014 DISubprogram, 5015 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 5016 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val, 5017 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val, 5018 declaration.Val, retainedNodes.Val, thrownTypes.Val)); 5019 return false; 5020 } 5021 5022 /// parseDILexicalBlock: 5023 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 5024 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 5025 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5026 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5027 OPTIONAL(file, MDField, ); \ 5028 OPTIONAL(line, LineField, ); \ 5029 OPTIONAL(column, ColumnField, ); 5030 PARSE_MD_FIELDS(); 5031 #undef VISIT_MD_FIELDS 5032 5033 Result = GET_OR_DISTINCT( 5034 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 5035 return false; 5036 } 5037 5038 /// parseDILexicalBlockFile: 5039 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 5040 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 5041 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5042 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5043 OPTIONAL(file, MDField, ); \ 5044 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 5045 PARSE_MD_FIELDS(); 5046 #undef VISIT_MD_FIELDS 5047 5048 Result = GET_OR_DISTINCT(DILexicalBlockFile, 5049 (Context, scope.Val, file.Val, discriminator.Val)); 5050 return false; 5051 } 5052 5053 /// parseDICommonBlock: 5054 /// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9) 5055 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) { 5056 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5057 REQUIRED(scope, MDField, ); \ 5058 OPTIONAL(declaration, MDField, ); \ 5059 OPTIONAL(name, MDStringField, ); \ 5060 OPTIONAL(file, MDField, ); \ 5061 OPTIONAL(line, LineField, ); 5062 PARSE_MD_FIELDS(); 5063 #undef VISIT_MD_FIELDS 5064 5065 Result = GET_OR_DISTINCT(DICommonBlock, 5066 (Context, scope.Val, declaration.Val, name.Val, 5067 file.Val, line.Val)); 5068 return false; 5069 } 5070 5071 /// parseDINamespace: 5072 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 5073 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) { 5074 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5075 REQUIRED(scope, MDField, ); \ 5076 OPTIONAL(name, MDStringField, ); \ 5077 OPTIONAL(exportSymbols, MDBoolField, ); 5078 PARSE_MD_FIELDS(); 5079 #undef VISIT_MD_FIELDS 5080 5081 Result = GET_OR_DISTINCT(DINamespace, 5082 (Context, scope.Val, name.Val, exportSymbols.Val)); 5083 return false; 5084 } 5085 5086 /// parseDIMacro: 5087 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: 5088 /// "SomeValue") 5089 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) { 5090 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5091 REQUIRED(type, DwarfMacinfoTypeField, ); \ 5092 OPTIONAL(line, LineField, ); \ 5093 REQUIRED(name, MDStringField, ); \ 5094 OPTIONAL(value, MDStringField, ); 5095 PARSE_MD_FIELDS(); 5096 #undef VISIT_MD_FIELDS 5097 5098 Result = GET_OR_DISTINCT(DIMacro, 5099 (Context, type.Val, line.Val, name.Val, value.Val)); 5100 return false; 5101 } 5102 5103 /// parseDIMacroFile: 5104 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 5105 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) { 5106 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5107 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 5108 OPTIONAL(line, LineField, ); \ 5109 REQUIRED(file, MDField, ); \ 5110 OPTIONAL(nodes, MDField, ); 5111 PARSE_MD_FIELDS(); 5112 #undef VISIT_MD_FIELDS 5113 5114 Result = GET_OR_DISTINCT(DIMacroFile, 5115 (Context, type.Val, line.Val, file.Val, nodes.Val)); 5116 return false; 5117 } 5118 5119 /// parseDIModule: 5120 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: 5121 /// "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes", 5122 /// file: !1, line: 4, isDecl: false) 5123 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) { 5124 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5125 REQUIRED(scope, MDField, ); \ 5126 REQUIRED(name, MDStringField, ); \ 5127 OPTIONAL(configMacros, MDStringField, ); \ 5128 OPTIONAL(includePath, MDStringField, ); \ 5129 OPTIONAL(apinotes, MDStringField, ); \ 5130 OPTIONAL(file, MDField, ); \ 5131 OPTIONAL(line, LineField, ); \ 5132 OPTIONAL(isDecl, MDBoolField, ); 5133 PARSE_MD_FIELDS(); 5134 #undef VISIT_MD_FIELDS 5135 5136 Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val, 5137 configMacros.Val, includePath.Val, 5138 apinotes.Val, line.Val, isDecl.Val)); 5139 return false; 5140 } 5141 5142 /// parseDITemplateTypeParameter: 5143 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false) 5144 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 5145 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5146 OPTIONAL(name, MDStringField, ); \ 5147 REQUIRED(type, MDField, ); \ 5148 OPTIONAL(defaulted, MDBoolField, ); 5149 PARSE_MD_FIELDS(); 5150 #undef VISIT_MD_FIELDS 5151 5152 Result = GET_OR_DISTINCT(DITemplateTypeParameter, 5153 (Context, name.Val, type.Val, defaulted.Val)); 5154 return false; 5155 } 5156 5157 /// parseDITemplateValueParameter: 5158 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 5159 /// name: "V", type: !1, defaulted: false, 5160 /// value: i32 7) 5161 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 5162 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5163 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 5164 OPTIONAL(name, MDStringField, ); \ 5165 OPTIONAL(type, MDField, ); \ 5166 OPTIONAL(defaulted, MDBoolField, ); \ 5167 REQUIRED(value, MDField, ); 5168 5169 PARSE_MD_FIELDS(); 5170 #undef VISIT_MD_FIELDS 5171 5172 Result = GET_OR_DISTINCT( 5173 DITemplateValueParameter, 5174 (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val)); 5175 return false; 5176 } 5177 5178 /// parseDIGlobalVariable: 5179 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 5180 /// file: !1, line: 7, type: !2, isLocal: false, 5181 /// isDefinition: true, templateParams: !3, 5182 /// declaration: !4, align: 8) 5183 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 5184 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5185 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 5186 OPTIONAL(scope, MDField, ); \ 5187 OPTIONAL(linkageName, MDStringField, ); \ 5188 OPTIONAL(file, MDField, ); \ 5189 OPTIONAL(line, LineField, ); \ 5190 OPTIONAL(type, MDField, ); \ 5191 OPTIONAL(isLocal, MDBoolField, ); \ 5192 OPTIONAL(isDefinition, MDBoolField, (true)); \ 5193 OPTIONAL(templateParams, MDField, ); \ 5194 OPTIONAL(declaration, MDField, ); \ 5195 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 5196 PARSE_MD_FIELDS(); 5197 #undef VISIT_MD_FIELDS 5198 5199 Result = 5200 GET_OR_DISTINCT(DIGlobalVariable, 5201 (Context, scope.Val, name.Val, linkageName.Val, file.Val, 5202 line.Val, type.Val, isLocal.Val, isDefinition.Val, 5203 declaration.Val, templateParams.Val, align.Val)); 5204 return false; 5205 } 5206 5207 /// parseDILocalVariable: 5208 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 5209 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 5210 /// align: 8) 5211 /// ::= !DILocalVariable(scope: !0, name: "foo", 5212 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 5213 /// align: 8) 5214 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) { 5215 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5216 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5217 OPTIONAL(name, MDStringField, ); \ 5218 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 5219 OPTIONAL(file, MDField, ); \ 5220 OPTIONAL(line, LineField, ); \ 5221 OPTIONAL(type, MDField, ); \ 5222 OPTIONAL(flags, DIFlagField, ); \ 5223 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 5224 PARSE_MD_FIELDS(); 5225 #undef VISIT_MD_FIELDS 5226 5227 Result = GET_OR_DISTINCT(DILocalVariable, 5228 (Context, scope.Val, name.Val, file.Val, line.Val, 5229 type.Val, arg.Val, flags.Val, align.Val)); 5230 return false; 5231 } 5232 5233 /// parseDILabel: 5234 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7) 5235 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) { 5236 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5237 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5238 REQUIRED(name, MDStringField, ); \ 5239 REQUIRED(file, MDField, ); \ 5240 REQUIRED(line, LineField, ); 5241 PARSE_MD_FIELDS(); 5242 #undef VISIT_MD_FIELDS 5243 5244 Result = GET_OR_DISTINCT(DILabel, 5245 (Context, scope.Val, name.Val, file.Val, line.Val)); 5246 return false; 5247 } 5248 5249 /// parseDIExpression: 5250 /// ::= !DIExpression(0, 7, -1) 5251 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) { 5252 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5253 Lex.Lex(); 5254 5255 if (parseToken(lltok::lparen, "expected '(' here")) 5256 return true; 5257 5258 SmallVector<uint64_t, 8> Elements; 5259 if (Lex.getKind() != lltok::rparen) 5260 do { 5261 if (Lex.getKind() == lltok::DwarfOp) { 5262 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 5263 Lex.Lex(); 5264 Elements.push_back(Op); 5265 continue; 5266 } 5267 return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 5268 } 5269 5270 if (Lex.getKind() == lltok::DwarfAttEncoding) { 5271 if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) { 5272 Lex.Lex(); 5273 Elements.push_back(Op); 5274 continue; 5275 } 5276 return tokError(Twine("invalid DWARF attribute encoding '") + 5277 Lex.getStrVal() + "'"); 5278 } 5279 5280 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 5281 return tokError("expected unsigned integer"); 5282 5283 auto &U = Lex.getAPSIntVal(); 5284 if (U.ugt(UINT64_MAX)) 5285 return tokError("element too large, limit is " + Twine(UINT64_MAX)); 5286 Elements.push_back(U.getZExtValue()); 5287 Lex.Lex(); 5288 } while (EatIfPresent(lltok::comma)); 5289 5290 if (parseToken(lltok::rparen, "expected ')' here")) 5291 return true; 5292 5293 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 5294 return false; 5295 } 5296 5297 /// parseDIGlobalVariableExpression: 5298 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 5299 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result, 5300 bool IsDistinct) { 5301 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5302 REQUIRED(var, MDField, ); \ 5303 REQUIRED(expr, MDField, ); 5304 PARSE_MD_FIELDS(); 5305 #undef VISIT_MD_FIELDS 5306 5307 Result = 5308 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 5309 return false; 5310 } 5311 5312 /// parseDIObjCProperty: 5313 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 5314 /// getter: "getFoo", attributes: 7, type: !2) 5315 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 5316 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5317 OPTIONAL(name, MDStringField, ); \ 5318 OPTIONAL(file, MDField, ); \ 5319 OPTIONAL(line, LineField, ); \ 5320 OPTIONAL(setter, MDStringField, ); \ 5321 OPTIONAL(getter, MDStringField, ); \ 5322 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 5323 OPTIONAL(type, MDField, ); 5324 PARSE_MD_FIELDS(); 5325 #undef VISIT_MD_FIELDS 5326 5327 Result = GET_OR_DISTINCT(DIObjCProperty, 5328 (Context, name.Val, file.Val, line.Val, setter.Val, 5329 getter.Val, attributes.Val, type.Val)); 5330 return false; 5331 } 5332 5333 /// parseDIImportedEntity: 5334 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 5335 /// line: 7, name: "foo") 5336 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 5337 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5338 REQUIRED(tag, DwarfTagField, ); \ 5339 REQUIRED(scope, MDField, ); \ 5340 OPTIONAL(entity, MDField, ); \ 5341 OPTIONAL(file, MDField, ); \ 5342 OPTIONAL(line, LineField, ); \ 5343 OPTIONAL(name, MDStringField, ); 5344 PARSE_MD_FIELDS(); 5345 #undef VISIT_MD_FIELDS 5346 5347 Result = GET_OR_DISTINCT( 5348 DIImportedEntity, 5349 (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val)); 5350 return false; 5351 } 5352 5353 #undef PARSE_MD_FIELD 5354 #undef NOP_FIELD 5355 #undef REQUIRE_FIELD 5356 #undef DECLARE_FIELD 5357 5358 /// parseMetadataAsValue 5359 /// ::= metadata i32 %local 5360 /// ::= metadata i32 @global 5361 /// ::= metadata i32 7 5362 /// ::= metadata !0 5363 /// ::= metadata !{...} 5364 /// ::= metadata !"string" 5365 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 5366 // Note: the type 'metadata' has already been parsed. 5367 Metadata *MD; 5368 if (parseMetadata(MD, &PFS)) 5369 return true; 5370 5371 V = MetadataAsValue::get(Context, MD); 5372 return false; 5373 } 5374 5375 /// parseValueAsMetadata 5376 /// ::= i32 %local 5377 /// ::= i32 @global 5378 /// ::= i32 7 5379 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 5380 PerFunctionState *PFS) { 5381 Type *Ty; 5382 LocTy Loc; 5383 if (parseType(Ty, TypeMsg, Loc)) 5384 return true; 5385 if (Ty->isMetadataTy()) 5386 return error(Loc, "invalid metadata-value-metadata roundtrip"); 5387 5388 Value *V; 5389 if (parseValue(Ty, V, PFS)) 5390 return true; 5391 5392 MD = ValueAsMetadata::get(V); 5393 return false; 5394 } 5395 5396 /// parseMetadata 5397 /// ::= i32 %local 5398 /// ::= i32 @global 5399 /// ::= i32 7 5400 /// ::= !42 5401 /// ::= !{...} 5402 /// ::= !"string" 5403 /// ::= !DILocation(...) 5404 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) { 5405 if (Lex.getKind() == lltok::MetadataVar) { 5406 MDNode *N; 5407 if (parseSpecializedMDNode(N)) 5408 return true; 5409 MD = N; 5410 return false; 5411 } 5412 5413 // ValueAsMetadata: 5414 // <type> <value> 5415 if (Lex.getKind() != lltok::exclaim) 5416 return parseValueAsMetadata(MD, "expected metadata operand", PFS); 5417 5418 // '!'. 5419 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 5420 Lex.Lex(); 5421 5422 // MDString: 5423 // ::= '!' STRINGCONSTANT 5424 if (Lex.getKind() == lltok::StringConstant) { 5425 MDString *S; 5426 if (parseMDString(S)) 5427 return true; 5428 MD = S; 5429 return false; 5430 } 5431 5432 // MDNode: 5433 // !{ ... } 5434 // !7 5435 MDNode *N; 5436 if (parseMDNodeTail(N)) 5437 return true; 5438 MD = N; 5439 return false; 5440 } 5441 5442 //===----------------------------------------------------------------------===// 5443 // Function Parsing. 5444 //===----------------------------------------------------------------------===// 5445 5446 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V, 5447 PerFunctionState *PFS, bool IsCall) { 5448 if (Ty->isFunctionTy()) 5449 return error(ID.Loc, "functions are not values, refer to them as pointers"); 5450 5451 switch (ID.Kind) { 5452 case ValID::t_LocalID: 5453 if (!PFS) 5454 return error(ID.Loc, "invalid use of function-local name"); 5455 V = PFS->getVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5456 return V == nullptr; 5457 case ValID::t_LocalName: 5458 if (!PFS) 5459 return error(ID.Loc, "invalid use of function-local name"); 5460 V = PFS->getVal(ID.StrVal, Ty, ID.Loc, IsCall); 5461 return V == nullptr; 5462 case ValID::t_InlineAsm: { 5463 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 5464 return error(ID.Loc, "invalid type for inline asm constraint string"); 5465 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, 5466 (ID.UIntVal >> 1) & 1, 5467 (InlineAsm::AsmDialect(ID.UIntVal >> 2))); 5468 return false; 5469 } 5470 case ValID::t_GlobalName: 5471 V = getGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall); 5472 return V == nullptr; 5473 case ValID::t_GlobalID: 5474 V = getGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5475 return V == nullptr; 5476 case ValID::t_APSInt: 5477 if (!Ty->isIntegerTy()) 5478 return error(ID.Loc, "integer constant must have integer type"); 5479 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 5480 V = ConstantInt::get(Context, ID.APSIntVal); 5481 return false; 5482 case ValID::t_APFloat: 5483 if (!Ty->isFloatingPointTy() || 5484 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 5485 return error(ID.Loc, "floating point constant invalid for type"); 5486 5487 // The lexer has no type info, so builds all half, bfloat, float, and double 5488 // FP constants as double. Fix this here. Long double does not need this. 5489 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 5490 // Check for signaling before potentially converting and losing that info. 5491 bool IsSNAN = ID.APFloatVal.isSignaling(); 5492 bool Ignored; 5493 if (Ty->isHalfTy()) 5494 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 5495 &Ignored); 5496 else if (Ty->isBFloatTy()) 5497 ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven, 5498 &Ignored); 5499 else if (Ty->isFloatTy()) 5500 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 5501 &Ignored); 5502 if (IsSNAN) { 5503 // The convert call above may quiet an SNaN, so manufacture another 5504 // SNaN. The bitcast works because the payload (significand) parameter 5505 // is truncated to fit. 5506 APInt Payload = ID.APFloatVal.bitcastToAPInt(); 5507 ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(), 5508 ID.APFloatVal.isNegative(), &Payload); 5509 } 5510 } 5511 V = ConstantFP::get(Context, ID.APFloatVal); 5512 5513 if (V->getType() != Ty) 5514 return error(ID.Loc, "floating point constant does not have type '" + 5515 getTypeString(Ty) + "'"); 5516 5517 return false; 5518 case ValID::t_Null: 5519 if (!Ty->isPointerTy()) 5520 return error(ID.Loc, "null must be a pointer type"); 5521 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 5522 return false; 5523 case ValID::t_Undef: 5524 // FIXME: LabelTy should not be a first-class type. 5525 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5526 return error(ID.Loc, "invalid type for undef constant"); 5527 V = UndefValue::get(Ty); 5528 return false; 5529 case ValID::t_EmptyArray: 5530 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 5531 return error(ID.Loc, "invalid empty array initializer"); 5532 V = UndefValue::get(Ty); 5533 return false; 5534 case ValID::t_Zero: 5535 // FIXME: LabelTy should not be a first-class type. 5536 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5537 return error(ID.Loc, "invalid type for null constant"); 5538 V = Constant::getNullValue(Ty); 5539 return false; 5540 case ValID::t_None: 5541 if (!Ty->isTokenTy()) 5542 return error(ID.Loc, "invalid type for none constant"); 5543 V = Constant::getNullValue(Ty); 5544 return false; 5545 case ValID::t_Poison: 5546 // FIXME: LabelTy should not be a first-class type. 5547 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5548 return error(ID.Loc, "invalid type for poison constant"); 5549 V = PoisonValue::get(Ty); 5550 return false; 5551 case ValID::t_Constant: 5552 if (ID.ConstantVal->getType() != Ty) 5553 return error(ID.Loc, "constant expression type mismatch"); 5554 V = ID.ConstantVal; 5555 return false; 5556 case ValID::t_ConstantStruct: 5557 case ValID::t_PackedConstantStruct: 5558 if (StructType *ST = dyn_cast<StructType>(Ty)) { 5559 if (ST->getNumElements() != ID.UIntVal) 5560 return error(ID.Loc, 5561 "initializer with struct type has wrong # elements"); 5562 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 5563 return error(ID.Loc, "packed'ness of initializer and type don't match"); 5564 5565 // Verify that the elements are compatible with the structtype. 5566 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 5567 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 5568 return error( 5569 ID.Loc, 5570 "element " + Twine(i) + 5571 " of struct initializer doesn't match struct element type"); 5572 5573 V = ConstantStruct::get( 5574 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 5575 } else 5576 return error(ID.Loc, "constant expression type mismatch"); 5577 return false; 5578 } 5579 llvm_unreachable("Invalid ValID"); 5580 } 5581 5582 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 5583 C = nullptr; 5584 ValID ID; 5585 auto Loc = Lex.getLoc(); 5586 if (parseValID(ID, /*PFS=*/nullptr)) 5587 return true; 5588 switch (ID.Kind) { 5589 case ValID::t_APSInt: 5590 case ValID::t_APFloat: 5591 case ValID::t_Undef: 5592 case ValID::t_Constant: 5593 case ValID::t_ConstantStruct: 5594 case ValID::t_PackedConstantStruct: { 5595 Value *V; 5596 if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false)) 5597 return true; 5598 assert(isa<Constant>(V) && "Expected a constant value"); 5599 C = cast<Constant>(V); 5600 return false; 5601 } 5602 case ValID::t_Null: 5603 C = Constant::getNullValue(Ty); 5604 return false; 5605 default: 5606 return error(Loc, "expected a constant value"); 5607 } 5608 } 5609 5610 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 5611 V = nullptr; 5612 ValID ID; 5613 return parseValID(ID, PFS) || 5614 convertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false); 5615 } 5616 5617 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) { 5618 Type *Ty = nullptr; 5619 return parseType(Ty) || parseValue(Ty, V, PFS); 5620 } 5621 5622 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 5623 PerFunctionState &PFS) { 5624 Value *V; 5625 Loc = Lex.getLoc(); 5626 if (parseTypeAndValue(V, PFS)) 5627 return true; 5628 if (!isa<BasicBlock>(V)) 5629 return error(Loc, "expected a basic block"); 5630 BB = cast<BasicBlock>(V); 5631 return false; 5632 } 5633 5634 /// FunctionHeader 5635 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 5636 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 5637 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign 5638 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 5639 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) { 5640 // parse the linkage. 5641 LocTy LinkageLoc = Lex.getLoc(); 5642 unsigned Linkage; 5643 unsigned Visibility; 5644 unsigned DLLStorageClass; 5645 bool DSOLocal; 5646 AttrBuilder RetAttrs; 5647 unsigned CC; 5648 bool HasLinkage; 5649 Type *RetType = nullptr; 5650 LocTy RetTypeLoc = Lex.getLoc(); 5651 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 5652 DSOLocal) || 5653 parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 5654 parseType(RetType, RetTypeLoc, true /*void allowed*/)) 5655 return true; 5656 5657 // Verify that the linkage is ok. 5658 switch ((GlobalValue::LinkageTypes)Linkage) { 5659 case GlobalValue::ExternalLinkage: 5660 break; // always ok. 5661 case GlobalValue::ExternalWeakLinkage: 5662 if (IsDefine) 5663 return error(LinkageLoc, "invalid linkage for function definition"); 5664 break; 5665 case GlobalValue::PrivateLinkage: 5666 case GlobalValue::InternalLinkage: 5667 case GlobalValue::AvailableExternallyLinkage: 5668 case GlobalValue::LinkOnceAnyLinkage: 5669 case GlobalValue::LinkOnceODRLinkage: 5670 case GlobalValue::WeakAnyLinkage: 5671 case GlobalValue::WeakODRLinkage: 5672 if (!IsDefine) 5673 return error(LinkageLoc, "invalid linkage for function declaration"); 5674 break; 5675 case GlobalValue::AppendingLinkage: 5676 case GlobalValue::CommonLinkage: 5677 return error(LinkageLoc, "invalid function linkage type"); 5678 } 5679 5680 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 5681 return error(LinkageLoc, 5682 "symbol with local linkage must have default visibility"); 5683 5684 if (!FunctionType::isValidReturnType(RetType)) 5685 return error(RetTypeLoc, "invalid function return type"); 5686 5687 LocTy NameLoc = Lex.getLoc(); 5688 5689 std::string FunctionName; 5690 if (Lex.getKind() == lltok::GlobalVar) { 5691 FunctionName = Lex.getStrVal(); 5692 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 5693 unsigned NameID = Lex.getUIntVal(); 5694 5695 if (NameID != NumberedVals.size()) 5696 return tokError("function expected to be numbered '%" + 5697 Twine(NumberedVals.size()) + "'"); 5698 } else { 5699 return tokError("expected function name"); 5700 } 5701 5702 Lex.Lex(); 5703 5704 if (Lex.getKind() != lltok::lparen) 5705 return tokError("expected '(' in function argument list"); 5706 5707 SmallVector<ArgInfo, 8> ArgList; 5708 bool IsVarArg; 5709 AttrBuilder FuncAttrs; 5710 std::vector<unsigned> FwdRefAttrGrps; 5711 LocTy BuiltinLoc; 5712 std::string Section; 5713 std::string Partition; 5714 MaybeAlign Alignment; 5715 std::string GC; 5716 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 5717 unsigned AddrSpace = 0; 5718 Constant *Prefix = nullptr; 5719 Constant *Prologue = nullptr; 5720 Constant *PersonalityFn = nullptr; 5721 Comdat *C; 5722 5723 if (parseArgumentList(ArgList, IsVarArg) || 5724 parseOptionalUnnamedAddr(UnnamedAddr) || 5725 parseOptionalProgramAddrSpace(AddrSpace) || 5726 parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 5727 BuiltinLoc) || 5728 (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) || 5729 (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) || 5730 parseOptionalComdat(FunctionName, C) || 5731 parseOptionalAlignment(Alignment) || 5732 (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) || 5733 (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) || 5734 (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) || 5735 (EatIfPresent(lltok::kw_personality) && 5736 parseGlobalTypeAndValue(PersonalityFn))) 5737 return true; 5738 5739 if (FuncAttrs.contains(Attribute::Builtin)) 5740 return error(BuiltinLoc, "'builtin' attribute not valid on function"); 5741 5742 // If the alignment was parsed as an attribute, move to the alignment field. 5743 if (FuncAttrs.hasAlignmentAttr()) { 5744 Alignment = FuncAttrs.getAlignment(); 5745 FuncAttrs.removeAttribute(Attribute::Alignment); 5746 } 5747 5748 // Okay, if we got here, the function is syntactically valid. Convert types 5749 // and do semantic checks. 5750 std::vector<Type*> ParamTypeList; 5751 SmallVector<AttributeSet, 8> Attrs; 5752 5753 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5754 ParamTypeList.push_back(ArgList[i].Ty); 5755 Attrs.push_back(ArgList[i].Attrs); 5756 } 5757 5758 AttributeList PAL = 5759 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 5760 AttributeSet::get(Context, RetAttrs), Attrs); 5761 5762 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 5763 return error(RetTypeLoc, "functions with 'sret' argument must return void"); 5764 5765 FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg); 5766 PointerType *PFT = PointerType::get(FT, AddrSpace); 5767 5768 Fn = nullptr; 5769 if (!FunctionName.empty()) { 5770 // If this was a definition of a forward reference, remove the definition 5771 // from the forward reference table and fill in the forward ref. 5772 auto FRVI = ForwardRefVals.find(FunctionName); 5773 if (FRVI != ForwardRefVals.end()) { 5774 Fn = M->getFunction(FunctionName); 5775 if (!Fn) 5776 return error(FRVI->second.second, "invalid forward reference to " 5777 "function as global value!"); 5778 if (Fn->getType() != PFT) 5779 return error(FRVI->second.second, 5780 "invalid forward reference to " 5781 "function '" + 5782 FunctionName + 5783 "' with wrong type: " 5784 "expected '" + 5785 getTypeString(PFT) + "' but was '" + 5786 getTypeString(Fn->getType()) + "'"); 5787 ForwardRefVals.erase(FRVI); 5788 } else if ((Fn = M->getFunction(FunctionName))) { 5789 // Reject redefinitions. 5790 return error(NameLoc, 5791 "invalid redefinition of function '" + FunctionName + "'"); 5792 } else if (M->getNamedValue(FunctionName)) { 5793 return error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 5794 } 5795 5796 } else { 5797 // If this is a definition of a forward referenced function, make sure the 5798 // types agree. 5799 auto I = ForwardRefValIDs.find(NumberedVals.size()); 5800 if (I != ForwardRefValIDs.end()) { 5801 Fn = cast<Function>(I->second.first); 5802 if (Fn->getType() != PFT) 5803 return error(NameLoc, "type of definition and forward reference of '@" + 5804 Twine(NumberedVals.size()) + 5805 "' disagree: " 5806 "expected '" + 5807 getTypeString(PFT) + "' but was '" + 5808 getTypeString(Fn->getType()) + "'"); 5809 ForwardRefValIDs.erase(I); 5810 } 5811 } 5812 5813 if (!Fn) 5814 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace, 5815 FunctionName, M); 5816 else // Move the forward-reference to the correct spot in the module. 5817 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 5818 5819 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS"); 5820 5821 if (FunctionName.empty()) 5822 NumberedVals.push_back(Fn); 5823 5824 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 5825 maybeSetDSOLocal(DSOLocal, *Fn); 5826 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 5827 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 5828 Fn->setCallingConv(CC); 5829 Fn->setAttributes(PAL); 5830 Fn->setUnnamedAddr(UnnamedAddr); 5831 Fn->setAlignment(MaybeAlign(Alignment)); 5832 Fn->setSection(Section); 5833 Fn->setPartition(Partition); 5834 Fn->setComdat(C); 5835 Fn->setPersonalityFn(PersonalityFn); 5836 if (!GC.empty()) Fn->setGC(GC); 5837 Fn->setPrefixData(Prefix); 5838 Fn->setPrologueData(Prologue); 5839 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 5840 5841 // Add all of the arguments we parsed to the function. 5842 Function::arg_iterator ArgIt = Fn->arg_begin(); 5843 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 5844 // If the argument has a name, insert it into the argument symbol table. 5845 if (ArgList[i].Name.empty()) continue; 5846 5847 // Set the name, if it conflicted, it will be auto-renamed. 5848 ArgIt->setName(ArgList[i].Name); 5849 5850 if (ArgIt->getName() != ArgList[i].Name) 5851 return error(ArgList[i].Loc, 5852 "redefinition of argument '%" + ArgList[i].Name + "'"); 5853 } 5854 5855 if (IsDefine) 5856 return false; 5857 5858 // Check the declaration has no block address forward references. 5859 ValID ID; 5860 if (FunctionName.empty()) { 5861 ID.Kind = ValID::t_GlobalID; 5862 ID.UIntVal = NumberedVals.size() - 1; 5863 } else { 5864 ID.Kind = ValID::t_GlobalName; 5865 ID.StrVal = FunctionName; 5866 } 5867 auto Blocks = ForwardRefBlockAddresses.find(ID); 5868 if (Blocks != ForwardRefBlockAddresses.end()) 5869 return error(Blocks->first.Loc, 5870 "cannot take blockaddress inside a declaration"); 5871 return false; 5872 } 5873 5874 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 5875 ValID ID; 5876 if (FunctionNumber == -1) { 5877 ID.Kind = ValID::t_GlobalName; 5878 ID.StrVal = std::string(F.getName()); 5879 } else { 5880 ID.Kind = ValID::t_GlobalID; 5881 ID.UIntVal = FunctionNumber; 5882 } 5883 5884 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 5885 if (Blocks == P.ForwardRefBlockAddresses.end()) 5886 return false; 5887 5888 for (const auto &I : Blocks->second) { 5889 const ValID &BBID = I.first; 5890 GlobalValue *GV = I.second; 5891 5892 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 5893 "Expected local id or name"); 5894 BasicBlock *BB; 5895 if (BBID.Kind == ValID::t_LocalName) 5896 BB = getBB(BBID.StrVal, BBID.Loc); 5897 else 5898 BB = getBB(BBID.UIntVal, BBID.Loc); 5899 if (!BB) 5900 return P.error(BBID.Loc, "referenced value is not a basic block"); 5901 5902 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 5903 GV->eraseFromParent(); 5904 } 5905 5906 P.ForwardRefBlockAddresses.erase(Blocks); 5907 return false; 5908 } 5909 5910 /// parseFunctionBody 5911 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 5912 bool LLParser::parseFunctionBody(Function &Fn) { 5913 if (Lex.getKind() != lltok::lbrace) 5914 return tokError("expected '{' in function body"); 5915 Lex.Lex(); // eat the {. 5916 5917 int FunctionNumber = -1; 5918 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 5919 5920 PerFunctionState PFS(*this, Fn, FunctionNumber); 5921 5922 // Resolve block addresses and allow basic blocks to be forward-declared 5923 // within this function. 5924 if (PFS.resolveForwardRefBlockAddresses()) 5925 return true; 5926 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 5927 5928 // We need at least one basic block. 5929 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 5930 return tokError("function body requires at least one basic block"); 5931 5932 while (Lex.getKind() != lltok::rbrace && 5933 Lex.getKind() != lltok::kw_uselistorder) 5934 if (parseBasicBlock(PFS)) 5935 return true; 5936 5937 while (Lex.getKind() != lltok::rbrace) 5938 if (parseUseListOrder(&PFS)) 5939 return true; 5940 5941 // Eat the }. 5942 Lex.Lex(); 5943 5944 // Verify function is ok. 5945 return PFS.finishFunction(); 5946 } 5947 5948 /// parseBasicBlock 5949 /// ::= (LabelStr|LabelID)? Instruction* 5950 bool LLParser::parseBasicBlock(PerFunctionState &PFS) { 5951 // If this basic block starts out with a name, remember it. 5952 std::string Name; 5953 int NameID = -1; 5954 LocTy NameLoc = Lex.getLoc(); 5955 if (Lex.getKind() == lltok::LabelStr) { 5956 Name = Lex.getStrVal(); 5957 Lex.Lex(); 5958 } else if (Lex.getKind() == lltok::LabelID) { 5959 NameID = Lex.getUIntVal(); 5960 Lex.Lex(); 5961 } 5962 5963 BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc); 5964 if (!BB) 5965 return true; 5966 5967 std::string NameStr; 5968 5969 // parse the instructions in this block until we get a terminator. 5970 Instruction *Inst; 5971 do { 5972 // This instruction may have three possibilities for a name: a) none 5973 // specified, b) name specified "%foo =", c) number specified: "%4 =". 5974 LocTy NameLoc = Lex.getLoc(); 5975 int NameID = -1; 5976 NameStr = ""; 5977 5978 if (Lex.getKind() == lltok::LocalVarID) { 5979 NameID = Lex.getUIntVal(); 5980 Lex.Lex(); 5981 if (parseToken(lltok::equal, "expected '=' after instruction id")) 5982 return true; 5983 } else if (Lex.getKind() == lltok::LocalVar) { 5984 NameStr = Lex.getStrVal(); 5985 Lex.Lex(); 5986 if (parseToken(lltok::equal, "expected '=' after instruction name")) 5987 return true; 5988 } 5989 5990 switch (parseInstruction(Inst, BB, PFS)) { 5991 default: 5992 llvm_unreachable("Unknown parseInstruction result!"); 5993 case InstError: return true; 5994 case InstNormal: 5995 BB->getInstList().push_back(Inst); 5996 5997 // With a normal result, we check to see if the instruction is followed by 5998 // a comma and metadata. 5999 if (EatIfPresent(lltok::comma)) 6000 if (parseInstructionMetadata(*Inst)) 6001 return true; 6002 break; 6003 case InstExtraComma: 6004 BB->getInstList().push_back(Inst); 6005 6006 // If the instruction parser ate an extra comma at the end of it, it 6007 // *must* be followed by metadata. 6008 if (parseInstructionMetadata(*Inst)) 6009 return true; 6010 break; 6011 } 6012 6013 // Set the name on the instruction. 6014 if (PFS.setInstName(NameID, NameStr, NameLoc, Inst)) 6015 return true; 6016 } while (!Inst->isTerminator()); 6017 6018 return false; 6019 } 6020 6021 //===----------------------------------------------------------------------===// 6022 // Instruction Parsing. 6023 //===----------------------------------------------------------------------===// 6024 6025 /// parseInstruction - parse one of the many different instructions. 6026 /// 6027 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB, 6028 PerFunctionState &PFS) { 6029 lltok::Kind Token = Lex.getKind(); 6030 if (Token == lltok::Eof) 6031 return tokError("found end of file when expecting more instructions"); 6032 LocTy Loc = Lex.getLoc(); 6033 unsigned KeywordVal = Lex.getUIntVal(); 6034 Lex.Lex(); // Eat the keyword. 6035 6036 switch (Token) { 6037 default: 6038 return error(Loc, "expected instruction opcode"); 6039 // Terminator Instructions. 6040 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 6041 case lltok::kw_ret: 6042 return parseRet(Inst, BB, PFS); 6043 case lltok::kw_br: 6044 return parseBr(Inst, PFS); 6045 case lltok::kw_switch: 6046 return parseSwitch(Inst, PFS); 6047 case lltok::kw_indirectbr: 6048 return parseIndirectBr(Inst, PFS); 6049 case lltok::kw_invoke: 6050 return parseInvoke(Inst, PFS); 6051 case lltok::kw_resume: 6052 return parseResume(Inst, PFS); 6053 case lltok::kw_cleanupret: 6054 return parseCleanupRet(Inst, PFS); 6055 case lltok::kw_catchret: 6056 return parseCatchRet(Inst, PFS); 6057 case lltok::kw_catchswitch: 6058 return parseCatchSwitch(Inst, PFS); 6059 case lltok::kw_catchpad: 6060 return parseCatchPad(Inst, PFS); 6061 case lltok::kw_cleanuppad: 6062 return parseCleanupPad(Inst, PFS); 6063 case lltok::kw_callbr: 6064 return parseCallBr(Inst, PFS); 6065 // Unary Operators. 6066 case lltok::kw_fneg: { 6067 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6068 int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true); 6069 if (Res != 0) 6070 return Res; 6071 if (FMF.any()) 6072 Inst->setFastMathFlags(FMF); 6073 return false; 6074 } 6075 // Binary Operators. 6076 case lltok::kw_add: 6077 case lltok::kw_sub: 6078 case lltok::kw_mul: 6079 case lltok::kw_shl: { 6080 bool NUW = EatIfPresent(lltok::kw_nuw); 6081 bool NSW = EatIfPresent(lltok::kw_nsw); 6082 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 6083 6084 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 6085 return true; 6086 6087 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 6088 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 6089 return false; 6090 } 6091 case lltok::kw_fadd: 6092 case lltok::kw_fsub: 6093 case lltok::kw_fmul: 6094 case lltok::kw_fdiv: 6095 case lltok::kw_frem: { 6096 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6097 int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true); 6098 if (Res != 0) 6099 return Res; 6100 if (FMF.any()) 6101 Inst->setFastMathFlags(FMF); 6102 return 0; 6103 } 6104 6105 case lltok::kw_sdiv: 6106 case lltok::kw_udiv: 6107 case lltok::kw_lshr: 6108 case lltok::kw_ashr: { 6109 bool Exact = EatIfPresent(lltok::kw_exact); 6110 6111 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 6112 return true; 6113 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 6114 return false; 6115 } 6116 6117 case lltok::kw_urem: 6118 case lltok::kw_srem: 6119 return parseArithmetic(Inst, PFS, KeywordVal, 6120 /*IsFP*/ false); 6121 case lltok::kw_and: 6122 case lltok::kw_or: 6123 case lltok::kw_xor: 6124 return parseLogical(Inst, PFS, KeywordVal); 6125 case lltok::kw_icmp: 6126 return parseCompare(Inst, PFS, KeywordVal); 6127 case lltok::kw_fcmp: { 6128 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6129 int Res = parseCompare(Inst, PFS, KeywordVal); 6130 if (Res != 0) 6131 return Res; 6132 if (FMF.any()) 6133 Inst->setFastMathFlags(FMF); 6134 return 0; 6135 } 6136 6137 // Casts. 6138 case lltok::kw_trunc: 6139 case lltok::kw_zext: 6140 case lltok::kw_sext: 6141 case lltok::kw_fptrunc: 6142 case lltok::kw_fpext: 6143 case lltok::kw_bitcast: 6144 case lltok::kw_addrspacecast: 6145 case lltok::kw_uitofp: 6146 case lltok::kw_sitofp: 6147 case lltok::kw_fptoui: 6148 case lltok::kw_fptosi: 6149 case lltok::kw_inttoptr: 6150 case lltok::kw_ptrtoint: 6151 return parseCast(Inst, PFS, KeywordVal); 6152 // Other. 6153 case lltok::kw_select: { 6154 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6155 int Res = parseSelect(Inst, PFS); 6156 if (Res != 0) 6157 return Res; 6158 if (FMF.any()) { 6159 if (!isa<FPMathOperator>(Inst)) 6160 return error(Loc, "fast-math-flags specified for select without " 6161 "floating-point scalar or vector return type"); 6162 Inst->setFastMathFlags(FMF); 6163 } 6164 return 0; 6165 } 6166 case lltok::kw_va_arg: 6167 return parseVAArg(Inst, PFS); 6168 case lltok::kw_extractelement: 6169 return parseExtractElement(Inst, PFS); 6170 case lltok::kw_insertelement: 6171 return parseInsertElement(Inst, PFS); 6172 case lltok::kw_shufflevector: 6173 return parseShuffleVector(Inst, PFS); 6174 case lltok::kw_phi: { 6175 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6176 int Res = parsePHI(Inst, PFS); 6177 if (Res != 0) 6178 return Res; 6179 if (FMF.any()) { 6180 if (!isa<FPMathOperator>(Inst)) 6181 return error(Loc, "fast-math-flags specified for phi without " 6182 "floating-point scalar or vector return type"); 6183 Inst->setFastMathFlags(FMF); 6184 } 6185 return 0; 6186 } 6187 case lltok::kw_landingpad: 6188 return parseLandingPad(Inst, PFS); 6189 case lltok::kw_freeze: 6190 return parseFreeze(Inst, PFS); 6191 // Call. 6192 case lltok::kw_call: 6193 return parseCall(Inst, PFS, CallInst::TCK_None); 6194 case lltok::kw_tail: 6195 return parseCall(Inst, PFS, CallInst::TCK_Tail); 6196 case lltok::kw_musttail: 6197 return parseCall(Inst, PFS, CallInst::TCK_MustTail); 6198 case lltok::kw_notail: 6199 return parseCall(Inst, PFS, CallInst::TCK_NoTail); 6200 // Memory. 6201 case lltok::kw_alloca: 6202 return parseAlloc(Inst, PFS); 6203 case lltok::kw_load: 6204 return parseLoad(Inst, PFS); 6205 case lltok::kw_store: 6206 return parseStore(Inst, PFS); 6207 case lltok::kw_cmpxchg: 6208 return parseCmpXchg(Inst, PFS); 6209 case lltok::kw_atomicrmw: 6210 return parseAtomicRMW(Inst, PFS); 6211 case lltok::kw_fence: 6212 return parseFence(Inst, PFS); 6213 case lltok::kw_getelementptr: 6214 return parseGetElementPtr(Inst, PFS); 6215 case lltok::kw_extractvalue: 6216 return parseExtractValue(Inst, PFS); 6217 case lltok::kw_insertvalue: 6218 return parseInsertValue(Inst, PFS); 6219 } 6220 } 6221 6222 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind. 6223 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) { 6224 if (Opc == Instruction::FCmp) { 6225 switch (Lex.getKind()) { 6226 default: 6227 return tokError("expected fcmp predicate (e.g. 'oeq')"); 6228 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 6229 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 6230 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 6231 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 6232 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 6233 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 6234 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 6235 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 6236 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 6237 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 6238 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 6239 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 6240 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 6241 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 6242 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 6243 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 6244 } 6245 } else { 6246 switch (Lex.getKind()) { 6247 default: 6248 return tokError("expected icmp predicate (e.g. 'eq')"); 6249 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 6250 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 6251 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 6252 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 6253 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 6254 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 6255 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 6256 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 6257 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 6258 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 6259 } 6260 } 6261 Lex.Lex(); 6262 return false; 6263 } 6264 6265 //===----------------------------------------------------------------------===// 6266 // Terminator Instructions. 6267 //===----------------------------------------------------------------------===// 6268 6269 /// parseRet - parse a return instruction. 6270 /// ::= 'ret' void (',' !dbg, !1)* 6271 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 6272 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB, 6273 PerFunctionState &PFS) { 6274 SMLoc TypeLoc = Lex.getLoc(); 6275 Type *Ty = nullptr; 6276 if (parseType(Ty, true /*void allowed*/)) 6277 return true; 6278 6279 Type *ResType = PFS.getFunction().getReturnType(); 6280 6281 if (Ty->isVoidTy()) { 6282 if (!ResType->isVoidTy()) 6283 return error(TypeLoc, "value doesn't match function result type '" + 6284 getTypeString(ResType) + "'"); 6285 6286 Inst = ReturnInst::Create(Context); 6287 return false; 6288 } 6289 6290 Value *RV; 6291 if (parseValue(Ty, RV, PFS)) 6292 return true; 6293 6294 if (ResType != RV->getType()) 6295 return error(TypeLoc, "value doesn't match function result type '" + 6296 getTypeString(ResType) + "'"); 6297 6298 Inst = ReturnInst::Create(Context, RV); 6299 return false; 6300 } 6301 6302 /// parseBr 6303 /// ::= 'br' TypeAndValue 6304 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6305 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) { 6306 LocTy Loc, Loc2; 6307 Value *Op0; 6308 BasicBlock *Op1, *Op2; 6309 if (parseTypeAndValue(Op0, Loc, PFS)) 6310 return true; 6311 6312 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 6313 Inst = BranchInst::Create(BB); 6314 return false; 6315 } 6316 6317 if (Op0->getType() != Type::getInt1Ty(Context)) 6318 return error(Loc, "branch condition must have 'i1' type"); 6319 6320 if (parseToken(lltok::comma, "expected ',' after branch condition") || 6321 parseTypeAndBasicBlock(Op1, Loc, PFS) || 6322 parseToken(lltok::comma, "expected ',' after true destination") || 6323 parseTypeAndBasicBlock(Op2, Loc2, PFS)) 6324 return true; 6325 6326 Inst = BranchInst::Create(Op1, Op2, Op0); 6327 return false; 6328 } 6329 6330 /// parseSwitch 6331 /// Instruction 6332 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 6333 /// JumpTable 6334 /// ::= (TypeAndValue ',' TypeAndValue)* 6335 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6336 LocTy CondLoc, BBLoc; 6337 Value *Cond; 6338 BasicBlock *DefaultBB; 6339 if (parseTypeAndValue(Cond, CondLoc, PFS) || 6340 parseToken(lltok::comma, "expected ',' after switch condition") || 6341 parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 6342 parseToken(lltok::lsquare, "expected '[' with switch table")) 6343 return true; 6344 6345 if (!Cond->getType()->isIntegerTy()) 6346 return error(CondLoc, "switch condition must have integer type"); 6347 6348 // parse the jump table pairs. 6349 SmallPtrSet<Value*, 32> SeenCases; 6350 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 6351 while (Lex.getKind() != lltok::rsquare) { 6352 Value *Constant; 6353 BasicBlock *DestBB; 6354 6355 if (parseTypeAndValue(Constant, CondLoc, PFS) || 6356 parseToken(lltok::comma, "expected ',' after case value") || 6357 parseTypeAndBasicBlock(DestBB, PFS)) 6358 return true; 6359 6360 if (!SeenCases.insert(Constant).second) 6361 return error(CondLoc, "duplicate case value in switch"); 6362 if (!isa<ConstantInt>(Constant)) 6363 return error(CondLoc, "case value is not a constant integer"); 6364 6365 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 6366 } 6367 6368 Lex.Lex(); // Eat the ']'. 6369 6370 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 6371 for (unsigned i = 0, e = Table.size(); i != e; ++i) 6372 SI->addCase(Table[i].first, Table[i].second); 6373 Inst = SI; 6374 return false; 6375 } 6376 6377 /// parseIndirectBr 6378 /// Instruction 6379 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 6380 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 6381 LocTy AddrLoc; 6382 Value *Address; 6383 if (parseTypeAndValue(Address, AddrLoc, PFS) || 6384 parseToken(lltok::comma, "expected ',' after indirectbr address") || 6385 parseToken(lltok::lsquare, "expected '[' with indirectbr")) 6386 return true; 6387 6388 if (!Address->getType()->isPointerTy()) 6389 return error(AddrLoc, "indirectbr address must have pointer type"); 6390 6391 // parse the destination list. 6392 SmallVector<BasicBlock*, 16> DestList; 6393 6394 if (Lex.getKind() != lltok::rsquare) { 6395 BasicBlock *DestBB; 6396 if (parseTypeAndBasicBlock(DestBB, PFS)) 6397 return true; 6398 DestList.push_back(DestBB); 6399 6400 while (EatIfPresent(lltok::comma)) { 6401 if (parseTypeAndBasicBlock(DestBB, PFS)) 6402 return true; 6403 DestList.push_back(DestBB); 6404 } 6405 } 6406 6407 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 6408 return true; 6409 6410 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 6411 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 6412 IBI->addDestination(DestList[i]); 6413 Inst = IBI; 6414 return false; 6415 } 6416 6417 /// parseInvoke 6418 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 6419 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 6420 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 6421 LocTy CallLoc = Lex.getLoc(); 6422 AttrBuilder RetAttrs, FnAttrs; 6423 std::vector<unsigned> FwdRefAttrGrps; 6424 LocTy NoBuiltinLoc; 6425 unsigned CC; 6426 unsigned InvokeAddrSpace; 6427 Type *RetType = nullptr; 6428 LocTy RetTypeLoc; 6429 ValID CalleeID; 6430 SmallVector<ParamInfo, 16> ArgList; 6431 SmallVector<OperandBundleDef, 2> BundleList; 6432 6433 BasicBlock *NormalBB, *UnwindBB; 6434 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6435 parseOptionalProgramAddrSpace(InvokeAddrSpace) || 6436 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6437 parseValID(CalleeID) || parseParameterList(ArgList, PFS) || 6438 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6439 NoBuiltinLoc) || 6440 parseOptionalOperandBundles(BundleList, PFS) || 6441 parseToken(lltok::kw_to, "expected 'to' in invoke") || 6442 parseTypeAndBasicBlock(NormalBB, PFS) || 6443 parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 6444 parseTypeAndBasicBlock(UnwindBB, PFS)) 6445 return true; 6446 6447 // If RetType is a non-function pointer type, then this is the short syntax 6448 // for the call, which means that RetType is just the return type. Infer the 6449 // rest of the function argument types from the arguments that are present. 6450 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6451 if (!Ty) { 6452 // Pull out the types of all of the arguments... 6453 std::vector<Type*> ParamTypes; 6454 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6455 ParamTypes.push_back(ArgList[i].V->getType()); 6456 6457 if (!FunctionType::isValidReturnType(RetType)) 6458 return error(RetTypeLoc, "Invalid result type for LLVM function"); 6459 6460 Ty = FunctionType::get(RetType, ParamTypes, false); 6461 } 6462 6463 CalleeID.FTy = Ty; 6464 6465 // Look up the callee. 6466 Value *Callee; 6467 if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID, 6468 Callee, &PFS, /*IsCall=*/true)) 6469 return true; 6470 6471 // Set up the Attribute for the function. 6472 SmallVector<Value *, 8> Args; 6473 SmallVector<AttributeSet, 8> ArgAttrs; 6474 6475 // Loop through FunctionType's arguments and ensure they are specified 6476 // correctly. Also, gather any parameter attributes. 6477 FunctionType::param_iterator I = Ty->param_begin(); 6478 FunctionType::param_iterator E = Ty->param_end(); 6479 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6480 Type *ExpectedTy = nullptr; 6481 if (I != E) { 6482 ExpectedTy = *I++; 6483 } else if (!Ty->isVarArg()) { 6484 return error(ArgList[i].Loc, "too many arguments specified"); 6485 } 6486 6487 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6488 return error(ArgList[i].Loc, "argument is not of expected type '" + 6489 getTypeString(ExpectedTy) + "'"); 6490 Args.push_back(ArgList[i].V); 6491 ArgAttrs.push_back(ArgList[i].Attrs); 6492 } 6493 6494 if (I != E) 6495 return error(CallLoc, "not enough parameters specified for call"); 6496 6497 if (FnAttrs.hasAlignmentAttr()) 6498 return error(CallLoc, "invoke instructions may not have an alignment"); 6499 6500 // Finish off the Attribute and check them 6501 AttributeList PAL = 6502 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6503 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6504 6505 InvokeInst *II = 6506 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 6507 II->setCallingConv(CC); 6508 II->setAttributes(PAL); 6509 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 6510 Inst = II; 6511 return false; 6512 } 6513 6514 /// parseResume 6515 /// ::= 'resume' TypeAndValue 6516 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) { 6517 Value *Exn; LocTy ExnLoc; 6518 if (parseTypeAndValue(Exn, ExnLoc, PFS)) 6519 return true; 6520 6521 ResumeInst *RI = ResumeInst::Create(Exn); 6522 Inst = RI; 6523 return false; 6524 } 6525 6526 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args, 6527 PerFunctionState &PFS) { 6528 if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 6529 return true; 6530 6531 while (Lex.getKind() != lltok::rsquare) { 6532 // If this isn't the first argument, we need a comma. 6533 if (!Args.empty() && 6534 parseToken(lltok::comma, "expected ',' in argument list")) 6535 return true; 6536 6537 // parse the argument. 6538 LocTy ArgLoc; 6539 Type *ArgTy = nullptr; 6540 if (parseType(ArgTy, ArgLoc)) 6541 return true; 6542 6543 Value *V; 6544 if (ArgTy->isMetadataTy()) { 6545 if (parseMetadataAsValue(V, PFS)) 6546 return true; 6547 } else { 6548 if (parseValue(ArgTy, V, PFS)) 6549 return true; 6550 } 6551 Args.push_back(V); 6552 } 6553 6554 Lex.Lex(); // Lex the ']'. 6555 return false; 6556 } 6557 6558 /// parseCleanupRet 6559 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 6560 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 6561 Value *CleanupPad = nullptr; 6562 6563 if (parseToken(lltok::kw_from, "expected 'from' after cleanupret")) 6564 return true; 6565 6566 if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 6567 return true; 6568 6569 if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 6570 return true; 6571 6572 BasicBlock *UnwindBB = nullptr; 6573 if (Lex.getKind() == lltok::kw_to) { 6574 Lex.Lex(); 6575 if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 6576 return true; 6577 } else { 6578 if (parseTypeAndBasicBlock(UnwindBB, PFS)) { 6579 return true; 6580 } 6581 } 6582 6583 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 6584 return false; 6585 } 6586 6587 /// parseCatchRet 6588 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 6589 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 6590 Value *CatchPad = nullptr; 6591 6592 if (parseToken(lltok::kw_from, "expected 'from' after catchret")) 6593 return true; 6594 6595 if (parseValue(Type::getTokenTy(Context), CatchPad, PFS)) 6596 return true; 6597 6598 BasicBlock *BB; 6599 if (parseToken(lltok::kw_to, "expected 'to' in catchret") || 6600 parseTypeAndBasicBlock(BB, PFS)) 6601 return true; 6602 6603 Inst = CatchReturnInst::Create(CatchPad, BB); 6604 return false; 6605 } 6606 6607 /// parseCatchSwitch 6608 /// ::= 'catchswitch' within Parent 6609 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6610 Value *ParentPad; 6611 6612 if (parseToken(lltok::kw_within, "expected 'within' after catchswitch")) 6613 return true; 6614 6615 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6616 Lex.getKind() != lltok::LocalVarID) 6617 return tokError("expected scope value for catchswitch"); 6618 6619 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6620 return true; 6621 6622 if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 6623 return true; 6624 6625 SmallVector<BasicBlock *, 32> Table; 6626 do { 6627 BasicBlock *DestBB; 6628 if (parseTypeAndBasicBlock(DestBB, PFS)) 6629 return true; 6630 Table.push_back(DestBB); 6631 } while (EatIfPresent(lltok::comma)); 6632 6633 if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 6634 return true; 6635 6636 if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope")) 6637 return true; 6638 6639 BasicBlock *UnwindBB = nullptr; 6640 if (EatIfPresent(lltok::kw_to)) { 6641 if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 6642 return true; 6643 } else { 6644 if (parseTypeAndBasicBlock(UnwindBB, PFS)) 6645 return true; 6646 } 6647 6648 auto *CatchSwitch = 6649 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 6650 for (BasicBlock *DestBB : Table) 6651 CatchSwitch->addHandler(DestBB); 6652 Inst = CatchSwitch; 6653 return false; 6654 } 6655 6656 /// parseCatchPad 6657 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 6658 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 6659 Value *CatchSwitch = nullptr; 6660 6661 if (parseToken(lltok::kw_within, "expected 'within' after catchpad")) 6662 return true; 6663 6664 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 6665 return tokError("expected scope value for catchpad"); 6666 6667 if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 6668 return true; 6669 6670 SmallVector<Value *, 8> Args; 6671 if (parseExceptionArgs(Args, PFS)) 6672 return true; 6673 6674 Inst = CatchPadInst::Create(CatchSwitch, Args); 6675 return false; 6676 } 6677 6678 /// parseCleanupPad 6679 /// ::= 'cleanuppad' within Parent ParamList 6680 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 6681 Value *ParentPad = nullptr; 6682 6683 if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 6684 return true; 6685 6686 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6687 Lex.getKind() != lltok::LocalVarID) 6688 return tokError("expected scope value for cleanuppad"); 6689 6690 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6691 return true; 6692 6693 SmallVector<Value *, 8> Args; 6694 if (parseExceptionArgs(Args, PFS)) 6695 return true; 6696 6697 Inst = CleanupPadInst::Create(ParentPad, Args); 6698 return false; 6699 } 6700 6701 //===----------------------------------------------------------------------===// 6702 // Unary Operators. 6703 //===----------------------------------------------------------------------===// 6704 6705 /// parseUnaryOp 6706 /// ::= UnaryOp TypeAndValue ',' Value 6707 /// 6708 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6709 /// operand is allowed. 6710 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS, 6711 unsigned Opc, bool IsFP) { 6712 LocTy Loc; Value *LHS; 6713 if (parseTypeAndValue(LHS, Loc, PFS)) 6714 return true; 6715 6716 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6717 : LHS->getType()->isIntOrIntVectorTy(); 6718 6719 if (!Valid) 6720 return error(Loc, "invalid operand type for instruction"); 6721 6722 Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 6723 return false; 6724 } 6725 6726 /// parseCallBr 6727 /// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList 6728 /// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue 6729 /// '[' LabelList ']' 6730 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) { 6731 LocTy CallLoc = Lex.getLoc(); 6732 AttrBuilder RetAttrs, FnAttrs; 6733 std::vector<unsigned> FwdRefAttrGrps; 6734 LocTy NoBuiltinLoc; 6735 unsigned CC; 6736 Type *RetType = nullptr; 6737 LocTy RetTypeLoc; 6738 ValID CalleeID; 6739 SmallVector<ParamInfo, 16> ArgList; 6740 SmallVector<OperandBundleDef, 2> BundleList; 6741 6742 BasicBlock *DefaultDest; 6743 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6744 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6745 parseValID(CalleeID) || parseParameterList(ArgList, PFS) || 6746 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6747 NoBuiltinLoc) || 6748 parseOptionalOperandBundles(BundleList, PFS) || 6749 parseToken(lltok::kw_to, "expected 'to' in callbr") || 6750 parseTypeAndBasicBlock(DefaultDest, PFS) || 6751 parseToken(lltok::lsquare, "expected '[' in callbr")) 6752 return true; 6753 6754 // parse the destination list. 6755 SmallVector<BasicBlock *, 16> IndirectDests; 6756 6757 if (Lex.getKind() != lltok::rsquare) { 6758 BasicBlock *DestBB; 6759 if (parseTypeAndBasicBlock(DestBB, PFS)) 6760 return true; 6761 IndirectDests.push_back(DestBB); 6762 6763 while (EatIfPresent(lltok::comma)) { 6764 if (parseTypeAndBasicBlock(DestBB, PFS)) 6765 return true; 6766 IndirectDests.push_back(DestBB); 6767 } 6768 } 6769 6770 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 6771 return true; 6772 6773 // If RetType is a non-function pointer type, then this is the short syntax 6774 // for the call, which means that RetType is just the return type. Infer the 6775 // rest of the function argument types from the arguments that are present. 6776 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6777 if (!Ty) { 6778 // Pull out the types of all of the arguments... 6779 std::vector<Type *> ParamTypes; 6780 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6781 ParamTypes.push_back(ArgList[i].V->getType()); 6782 6783 if (!FunctionType::isValidReturnType(RetType)) 6784 return error(RetTypeLoc, "Invalid result type for LLVM function"); 6785 6786 Ty = FunctionType::get(RetType, ParamTypes, false); 6787 } 6788 6789 CalleeID.FTy = Ty; 6790 6791 // Look up the callee. 6792 Value *Callee; 6793 if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS, 6794 /*IsCall=*/true)) 6795 return true; 6796 6797 // Set up the Attribute for the function. 6798 SmallVector<Value *, 8> Args; 6799 SmallVector<AttributeSet, 8> ArgAttrs; 6800 6801 // Loop through FunctionType's arguments and ensure they are specified 6802 // correctly. Also, gather any parameter attributes. 6803 FunctionType::param_iterator I = Ty->param_begin(); 6804 FunctionType::param_iterator E = Ty->param_end(); 6805 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6806 Type *ExpectedTy = nullptr; 6807 if (I != E) { 6808 ExpectedTy = *I++; 6809 } else if (!Ty->isVarArg()) { 6810 return error(ArgList[i].Loc, "too many arguments specified"); 6811 } 6812 6813 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6814 return error(ArgList[i].Loc, "argument is not of expected type '" + 6815 getTypeString(ExpectedTy) + "'"); 6816 Args.push_back(ArgList[i].V); 6817 ArgAttrs.push_back(ArgList[i].Attrs); 6818 } 6819 6820 if (I != E) 6821 return error(CallLoc, "not enough parameters specified for call"); 6822 6823 if (FnAttrs.hasAlignmentAttr()) 6824 return error(CallLoc, "callbr instructions may not have an alignment"); 6825 6826 // Finish off the Attribute and check them 6827 AttributeList PAL = 6828 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6829 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6830 6831 CallBrInst *CBI = 6832 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args, 6833 BundleList); 6834 CBI->setCallingConv(CC); 6835 CBI->setAttributes(PAL); 6836 ForwardRefAttrGroups[CBI] = FwdRefAttrGrps; 6837 Inst = CBI; 6838 return false; 6839 } 6840 6841 //===----------------------------------------------------------------------===// 6842 // Binary Operators. 6843 //===----------------------------------------------------------------------===// 6844 6845 /// parseArithmetic 6846 /// ::= ArithmeticOps TypeAndValue ',' Value 6847 /// 6848 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6849 /// operand is allowed. 6850 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 6851 unsigned Opc, bool IsFP) { 6852 LocTy Loc; Value *LHS, *RHS; 6853 if (parseTypeAndValue(LHS, Loc, PFS) || 6854 parseToken(lltok::comma, "expected ',' in arithmetic operation") || 6855 parseValue(LHS->getType(), RHS, PFS)) 6856 return true; 6857 6858 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6859 : LHS->getType()->isIntOrIntVectorTy(); 6860 6861 if (!Valid) 6862 return error(Loc, "invalid operand type for instruction"); 6863 6864 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6865 return false; 6866 } 6867 6868 /// parseLogical 6869 /// ::= ArithmeticOps TypeAndValue ',' Value { 6870 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS, 6871 unsigned Opc) { 6872 LocTy Loc; Value *LHS, *RHS; 6873 if (parseTypeAndValue(LHS, Loc, PFS) || 6874 parseToken(lltok::comma, "expected ',' in logical operation") || 6875 parseValue(LHS->getType(), RHS, PFS)) 6876 return true; 6877 6878 if (!LHS->getType()->isIntOrIntVectorTy()) 6879 return error(Loc, 6880 "instruction requires integer or integer vector operands"); 6881 6882 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6883 return false; 6884 } 6885 6886 /// parseCompare 6887 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 6888 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 6889 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS, 6890 unsigned Opc) { 6891 // parse the integer/fp comparison predicate. 6892 LocTy Loc; 6893 unsigned Pred; 6894 Value *LHS, *RHS; 6895 if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) || 6896 parseToken(lltok::comma, "expected ',' after compare value") || 6897 parseValue(LHS->getType(), RHS, PFS)) 6898 return true; 6899 6900 if (Opc == Instruction::FCmp) { 6901 if (!LHS->getType()->isFPOrFPVectorTy()) 6902 return error(Loc, "fcmp requires floating point operands"); 6903 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6904 } else { 6905 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 6906 if (!LHS->getType()->isIntOrIntVectorTy() && 6907 !LHS->getType()->isPtrOrPtrVectorTy()) 6908 return error(Loc, "icmp requires integer operands"); 6909 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6910 } 6911 return false; 6912 } 6913 6914 //===----------------------------------------------------------------------===// 6915 // Other Instructions. 6916 //===----------------------------------------------------------------------===// 6917 6918 /// parseCast 6919 /// ::= CastOpc TypeAndValue 'to' Type 6920 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS, 6921 unsigned Opc) { 6922 LocTy Loc; 6923 Value *Op; 6924 Type *DestTy = nullptr; 6925 if (parseTypeAndValue(Op, Loc, PFS) || 6926 parseToken(lltok::kw_to, "expected 'to' after cast value") || 6927 parseType(DestTy)) 6928 return true; 6929 6930 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 6931 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 6932 return error(Loc, "invalid cast opcode for cast from '" + 6933 getTypeString(Op->getType()) + "' to '" + 6934 getTypeString(DestTy) + "'"); 6935 } 6936 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 6937 return false; 6938 } 6939 6940 /// parseSelect 6941 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6942 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) { 6943 LocTy Loc; 6944 Value *Op0, *Op1, *Op2; 6945 if (parseTypeAndValue(Op0, Loc, PFS) || 6946 parseToken(lltok::comma, "expected ',' after select condition") || 6947 parseTypeAndValue(Op1, PFS) || 6948 parseToken(lltok::comma, "expected ',' after select value") || 6949 parseTypeAndValue(Op2, PFS)) 6950 return true; 6951 6952 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 6953 return error(Loc, Reason); 6954 6955 Inst = SelectInst::Create(Op0, Op1, Op2); 6956 return false; 6957 } 6958 6959 /// parseVAArg 6960 /// ::= 'va_arg' TypeAndValue ',' Type 6961 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) { 6962 Value *Op; 6963 Type *EltTy = nullptr; 6964 LocTy TypeLoc; 6965 if (parseTypeAndValue(Op, PFS) || 6966 parseToken(lltok::comma, "expected ',' after vaarg operand") || 6967 parseType(EltTy, TypeLoc)) 6968 return true; 6969 6970 if (!EltTy->isFirstClassType()) 6971 return error(TypeLoc, "va_arg requires operand with first class type"); 6972 6973 Inst = new VAArgInst(Op, EltTy); 6974 return false; 6975 } 6976 6977 /// parseExtractElement 6978 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 6979 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 6980 LocTy Loc; 6981 Value *Op0, *Op1; 6982 if (parseTypeAndValue(Op0, Loc, PFS) || 6983 parseToken(lltok::comma, "expected ',' after extract value") || 6984 parseTypeAndValue(Op1, PFS)) 6985 return true; 6986 6987 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 6988 return error(Loc, "invalid extractelement operands"); 6989 6990 Inst = ExtractElementInst::Create(Op0, Op1); 6991 return false; 6992 } 6993 6994 /// parseInsertElement 6995 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6996 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 6997 LocTy Loc; 6998 Value *Op0, *Op1, *Op2; 6999 if (parseTypeAndValue(Op0, Loc, PFS) || 7000 parseToken(lltok::comma, "expected ',' after insertelement value") || 7001 parseTypeAndValue(Op1, PFS) || 7002 parseToken(lltok::comma, "expected ',' after insertelement value") || 7003 parseTypeAndValue(Op2, PFS)) 7004 return true; 7005 7006 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 7007 return error(Loc, "invalid insertelement operands"); 7008 7009 Inst = InsertElementInst::Create(Op0, Op1, Op2); 7010 return false; 7011 } 7012 7013 /// parseShuffleVector 7014 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 7015 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 7016 LocTy Loc; 7017 Value *Op0, *Op1, *Op2; 7018 if (parseTypeAndValue(Op0, Loc, PFS) || 7019 parseToken(lltok::comma, "expected ',' after shuffle mask") || 7020 parseTypeAndValue(Op1, PFS) || 7021 parseToken(lltok::comma, "expected ',' after shuffle value") || 7022 parseTypeAndValue(Op2, PFS)) 7023 return true; 7024 7025 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 7026 return error(Loc, "invalid shufflevector operands"); 7027 7028 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 7029 return false; 7030 } 7031 7032 /// parsePHI 7033 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 7034 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) { 7035 Type *Ty = nullptr; LocTy TypeLoc; 7036 Value *Op0, *Op1; 7037 7038 if (parseType(Ty, TypeLoc) || 7039 parseToken(lltok::lsquare, "expected '[' in phi value list") || 7040 parseValue(Ty, Op0, PFS) || 7041 parseToken(lltok::comma, "expected ',' after insertelement value") || 7042 parseValue(Type::getLabelTy(Context), Op1, PFS) || 7043 parseToken(lltok::rsquare, "expected ']' in phi value list")) 7044 return true; 7045 7046 bool AteExtraComma = false; 7047 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 7048 7049 while (true) { 7050 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 7051 7052 if (!EatIfPresent(lltok::comma)) 7053 break; 7054 7055 if (Lex.getKind() == lltok::MetadataVar) { 7056 AteExtraComma = true; 7057 break; 7058 } 7059 7060 if (parseToken(lltok::lsquare, "expected '[' in phi value list") || 7061 parseValue(Ty, Op0, PFS) || 7062 parseToken(lltok::comma, "expected ',' after insertelement value") || 7063 parseValue(Type::getLabelTy(Context), Op1, PFS) || 7064 parseToken(lltok::rsquare, "expected ']' in phi value list")) 7065 return true; 7066 } 7067 7068 if (!Ty->isFirstClassType()) 7069 return error(TypeLoc, "phi node must have first class type"); 7070 7071 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 7072 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 7073 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 7074 Inst = PN; 7075 return AteExtraComma ? InstExtraComma : InstNormal; 7076 } 7077 7078 /// parseLandingPad 7079 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 7080 /// Clause 7081 /// ::= 'catch' TypeAndValue 7082 /// ::= 'filter' 7083 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 7084 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 7085 Type *Ty = nullptr; LocTy TyLoc; 7086 7087 if (parseType(Ty, TyLoc)) 7088 return true; 7089 7090 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 7091 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 7092 7093 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 7094 LandingPadInst::ClauseType CT; 7095 if (EatIfPresent(lltok::kw_catch)) 7096 CT = LandingPadInst::Catch; 7097 else if (EatIfPresent(lltok::kw_filter)) 7098 CT = LandingPadInst::Filter; 7099 else 7100 return tokError("expected 'catch' or 'filter' clause type"); 7101 7102 Value *V; 7103 LocTy VLoc; 7104 if (parseTypeAndValue(V, VLoc, PFS)) 7105 return true; 7106 7107 // A 'catch' type expects a non-array constant. A filter clause expects an 7108 // array constant. 7109 if (CT == LandingPadInst::Catch) { 7110 if (isa<ArrayType>(V->getType())) 7111 error(VLoc, "'catch' clause has an invalid type"); 7112 } else { 7113 if (!isa<ArrayType>(V->getType())) 7114 error(VLoc, "'filter' clause has an invalid type"); 7115 } 7116 7117 Constant *CV = dyn_cast<Constant>(V); 7118 if (!CV) 7119 return error(VLoc, "clause argument must be a constant"); 7120 LP->addClause(CV); 7121 } 7122 7123 Inst = LP.release(); 7124 return false; 7125 } 7126 7127 /// parseFreeze 7128 /// ::= 'freeze' Type Value 7129 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) { 7130 LocTy Loc; 7131 Value *Op; 7132 if (parseTypeAndValue(Op, Loc, PFS)) 7133 return true; 7134 7135 Inst = new FreezeInst(Op); 7136 return false; 7137 } 7138 7139 /// parseCall 7140 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 7141 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7142 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 7143 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7144 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 7145 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7146 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 7147 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7148 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS, 7149 CallInst::TailCallKind TCK) { 7150 AttrBuilder RetAttrs, FnAttrs; 7151 std::vector<unsigned> FwdRefAttrGrps; 7152 LocTy BuiltinLoc; 7153 unsigned CallAddrSpace; 7154 unsigned CC; 7155 Type *RetType = nullptr; 7156 LocTy RetTypeLoc; 7157 ValID CalleeID; 7158 SmallVector<ParamInfo, 16> ArgList; 7159 SmallVector<OperandBundleDef, 2> BundleList; 7160 LocTy CallLoc = Lex.getLoc(); 7161 7162 if (TCK != CallInst::TCK_None && 7163 parseToken(lltok::kw_call, 7164 "expected 'tail call', 'musttail call', or 'notail call'")) 7165 return true; 7166 7167 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 7168 7169 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 7170 parseOptionalProgramAddrSpace(CallAddrSpace) || 7171 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 7172 parseValID(CalleeID) || 7173 parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 7174 PFS.getFunction().isVarArg()) || 7175 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 7176 parseOptionalOperandBundles(BundleList, PFS)) 7177 return true; 7178 7179 // If RetType is a non-function pointer type, then this is the short syntax 7180 // for the call, which means that RetType is just the return type. Infer the 7181 // rest of the function argument types from the arguments that are present. 7182 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 7183 if (!Ty) { 7184 // Pull out the types of all of the arguments... 7185 std::vector<Type*> ParamTypes; 7186 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 7187 ParamTypes.push_back(ArgList[i].V->getType()); 7188 7189 if (!FunctionType::isValidReturnType(RetType)) 7190 return error(RetTypeLoc, "Invalid result type for LLVM function"); 7191 7192 Ty = FunctionType::get(RetType, ParamTypes, false); 7193 } 7194 7195 CalleeID.FTy = Ty; 7196 7197 // Look up the callee. 7198 Value *Callee; 7199 if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee, 7200 &PFS, /*IsCall=*/true)) 7201 return true; 7202 7203 // Set up the Attribute for the function. 7204 SmallVector<AttributeSet, 8> Attrs; 7205 7206 SmallVector<Value*, 8> Args; 7207 7208 // Loop through FunctionType's arguments and ensure they are specified 7209 // correctly. Also, gather any parameter attributes. 7210 FunctionType::param_iterator I = Ty->param_begin(); 7211 FunctionType::param_iterator E = Ty->param_end(); 7212 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 7213 Type *ExpectedTy = nullptr; 7214 if (I != E) { 7215 ExpectedTy = *I++; 7216 } else if (!Ty->isVarArg()) { 7217 return error(ArgList[i].Loc, "too many arguments specified"); 7218 } 7219 7220 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 7221 return error(ArgList[i].Loc, "argument is not of expected type '" + 7222 getTypeString(ExpectedTy) + "'"); 7223 Args.push_back(ArgList[i].V); 7224 Attrs.push_back(ArgList[i].Attrs); 7225 } 7226 7227 if (I != E) 7228 return error(CallLoc, "not enough parameters specified for call"); 7229 7230 if (FnAttrs.hasAlignmentAttr()) 7231 return error(CallLoc, "call instructions may not have an alignment"); 7232 7233 // Finish off the Attribute and check them 7234 AttributeList PAL = 7235 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 7236 AttributeSet::get(Context, RetAttrs), Attrs); 7237 7238 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 7239 CI->setTailCallKind(TCK); 7240 CI->setCallingConv(CC); 7241 if (FMF.any()) { 7242 if (!isa<FPMathOperator>(CI)) { 7243 CI->deleteValue(); 7244 return error(CallLoc, "fast-math-flags specified for call without " 7245 "floating-point scalar or vector return type"); 7246 } 7247 CI->setFastMathFlags(FMF); 7248 } 7249 CI->setAttributes(PAL); 7250 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 7251 Inst = CI; 7252 return false; 7253 } 7254 7255 //===----------------------------------------------------------------------===// 7256 // Memory Instructions. 7257 //===----------------------------------------------------------------------===// 7258 7259 /// parseAlloc 7260 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 7261 /// (',' 'align' i32)? (',', 'addrspace(n))? 7262 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 7263 Value *Size = nullptr; 7264 LocTy SizeLoc, TyLoc, ASLoc; 7265 MaybeAlign Alignment; 7266 unsigned AddrSpace = 0; 7267 Type *Ty = nullptr; 7268 7269 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 7270 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 7271 7272 if (parseType(Ty, TyLoc)) 7273 return true; 7274 7275 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 7276 return error(TyLoc, "invalid type for alloca"); 7277 7278 bool AteExtraComma = false; 7279 if (EatIfPresent(lltok::comma)) { 7280 if (Lex.getKind() == lltok::kw_align) { 7281 if (parseOptionalAlignment(Alignment)) 7282 return true; 7283 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7284 return true; 7285 } else if (Lex.getKind() == lltok::kw_addrspace) { 7286 ASLoc = Lex.getLoc(); 7287 if (parseOptionalAddrSpace(AddrSpace)) 7288 return true; 7289 } else if (Lex.getKind() == lltok::MetadataVar) { 7290 AteExtraComma = true; 7291 } else { 7292 if (parseTypeAndValue(Size, SizeLoc, PFS)) 7293 return true; 7294 if (EatIfPresent(lltok::comma)) { 7295 if (Lex.getKind() == lltok::kw_align) { 7296 if (parseOptionalAlignment(Alignment)) 7297 return true; 7298 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7299 return true; 7300 } else if (Lex.getKind() == lltok::kw_addrspace) { 7301 ASLoc = Lex.getLoc(); 7302 if (parseOptionalAddrSpace(AddrSpace)) 7303 return true; 7304 } else if (Lex.getKind() == lltok::MetadataVar) { 7305 AteExtraComma = true; 7306 } 7307 } 7308 } 7309 } 7310 7311 if (Size && !Size->getType()->isIntegerTy()) 7312 return error(SizeLoc, "element count must have integer type"); 7313 7314 SmallPtrSet<Type *, 4> Visited; 7315 if (!Alignment && !Ty->isSized(&Visited)) 7316 return error(TyLoc, "Cannot allocate unsized type"); 7317 if (!Alignment) 7318 Alignment = M->getDataLayout().getPrefTypeAlign(Ty); 7319 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment); 7320 AI->setUsedWithInAlloca(IsInAlloca); 7321 AI->setSwiftError(IsSwiftError); 7322 Inst = AI; 7323 return AteExtraComma ? InstExtraComma : InstNormal; 7324 } 7325 7326 /// parseLoad 7327 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 7328 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 7329 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7330 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) { 7331 Value *Val; LocTy Loc; 7332 MaybeAlign Alignment; 7333 bool AteExtraComma = false; 7334 bool isAtomic = false; 7335 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7336 SyncScope::ID SSID = SyncScope::System; 7337 7338 if (Lex.getKind() == lltok::kw_atomic) { 7339 isAtomic = true; 7340 Lex.Lex(); 7341 } 7342 7343 bool isVolatile = false; 7344 if (Lex.getKind() == lltok::kw_volatile) { 7345 isVolatile = true; 7346 Lex.Lex(); 7347 } 7348 7349 Type *Ty; 7350 LocTy ExplicitTypeLoc = Lex.getLoc(); 7351 if (parseType(Ty) || 7352 parseToken(lltok::comma, "expected comma after load's type") || 7353 parseTypeAndValue(Val, Loc, PFS) || 7354 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 7355 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7356 return true; 7357 7358 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 7359 return error(Loc, "load operand must be a pointer to a first class type"); 7360 if (isAtomic && !Alignment) 7361 return error(Loc, "atomic load must have explicit non-zero alignment"); 7362 if (Ordering == AtomicOrdering::Release || 7363 Ordering == AtomicOrdering::AcquireRelease) 7364 return error(Loc, "atomic load cannot use Release ordering"); 7365 7366 if (Ty != cast<PointerType>(Val->getType())->getElementType()) 7367 return error(ExplicitTypeLoc, 7368 "explicit pointee type doesn't match operand's pointee type"); 7369 SmallPtrSet<Type *, 4> Visited; 7370 if (!Alignment && !Ty->isSized(&Visited)) 7371 return error(ExplicitTypeLoc, "loading unsized types is not allowed"); 7372 if (!Alignment) 7373 Alignment = M->getDataLayout().getABITypeAlign(Ty); 7374 Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID); 7375 return AteExtraComma ? InstExtraComma : InstNormal; 7376 } 7377 7378 /// parseStore 7379 7380 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 7381 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 7382 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7383 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) { 7384 Value *Val, *Ptr; LocTy Loc, PtrLoc; 7385 MaybeAlign Alignment; 7386 bool AteExtraComma = false; 7387 bool isAtomic = false; 7388 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7389 SyncScope::ID SSID = SyncScope::System; 7390 7391 if (Lex.getKind() == lltok::kw_atomic) { 7392 isAtomic = true; 7393 Lex.Lex(); 7394 } 7395 7396 bool isVolatile = false; 7397 if (Lex.getKind() == lltok::kw_volatile) { 7398 isVolatile = true; 7399 Lex.Lex(); 7400 } 7401 7402 if (parseTypeAndValue(Val, Loc, PFS) || 7403 parseToken(lltok::comma, "expected ',' after store operand") || 7404 parseTypeAndValue(Ptr, PtrLoc, PFS) || 7405 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 7406 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7407 return true; 7408 7409 if (!Ptr->getType()->isPointerTy()) 7410 return error(PtrLoc, "store operand must be a pointer"); 7411 if (!Val->getType()->isFirstClassType()) 7412 return error(Loc, "store operand must be a first class value"); 7413 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 7414 return error(Loc, "stored value and pointer type do not match"); 7415 if (isAtomic && !Alignment) 7416 return error(Loc, "atomic store must have explicit non-zero alignment"); 7417 if (Ordering == AtomicOrdering::Acquire || 7418 Ordering == AtomicOrdering::AcquireRelease) 7419 return error(Loc, "atomic store cannot use Acquire ordering"); 7420 SmallPtrSet<Type *, 4> Visited; 7421 if (!Alignment && !Val->getType()->isSized(&Visited)) 7422 return error(Loc, "storing unsized types is not allowed"); 7423 if (!Alignment) 7424 Alignment = M->getDataLayout().getABITypeAlign(Val->getType()); 7425 7426 Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID); 7427 return AteExtraComma ? InstExtraComma : InstNormal; 7428 } 7429 7430 /// parseCmpXchg 7431 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 7432 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering 7433 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 7434 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 7435 bool AteExtraComma = false; 7436 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 7437 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 7438 SyncScope::ID SSID = SyncScope::System; 7439 bool isVolatile = false; 7440 bool isWeak = false; 7441 7442 if (EatIfPresent(lltok::kw_weak)) 7443 isWeak = true; 7444 7445 if (EatIfPresent(lltok::kw_volatile)) 7446 isVolatile = true; 7447 7448 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 7449 parseToken(lltok::comma, "expected ',' after cmpxchg address") || 7450 parseTypeAndValue(Cmp, CmpLoc, PFS) || 7451 parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 7452 parseTypeAndValue(New, NewLoc, PFS) || 7453 parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 7454 parseOrdering(FailureOrdering)) 7455 return true; 7456 7457 if (SuccessOrdering == AtomicOrdering::Unordered || 7458 FailureOrdering == AtomicOrdering::Unordered) 7459 return tokError("cmpxchg cannot be unordered"); 7460 if (isStrongerThan(FailureOrdering, SuccessOrdering)) 7461 return tokError("cmpxchg failure argument shall be no stronger than the " 7462 "success argument"); 7463 if (FailureOrdering == AtomicOrdering::Release || 7464 FailureOrdering == AtomicOrdering::AcquireRelease) 7465 return tokError( 7466 "cmpxchg failure ordering cannot include release semantics"); 7467 if (!Ptr->getType()->isPointerTy()) 7468 return error(PtrLoc, "cmpxchg operand must be a pointer"); 7469 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 7470 return error(CmpLoc, "compare value and pointer type do not match"); 7471 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 7472 return error(NewLoc, "new value and pointer type do not match"); 7473 if (!New->getType()->isFirstClassType()) 7474 return error(NewLoc, "cmpxchg operand must be a first class value"); 7475 7476 Align Alignment( 7477 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7478 Cmp->getType())); 7479 7480 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 7481 Ptr, Cmp, New, Alignment, SuccessOrdering, FailureOrdering, SSID); 7482 CXI->setVolatile(isVolatile); 7483 CXI->setWeak(isWeak); 7484 Inst = CXI; 7485 return AteExtraComma ? InstExtraComma : InstNormal; 7486 } 7487 7488 /// parseAtomicRMW 7489 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 7490 /// 'singlethread'? AtomicOrdering 7491 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 7492 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 7493 bool AteExtraComma = false; 7494 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7495 SyncScope::ID SSID = SyncScope::System; 7496 bool isVolatile = false; 7497 bool IsFP = false; 7498 AtomicRMWInst::BinOp Operation; 7499 7500 if (EatIfPresent(lltok::kw_volatile)) 7501 isVolatile = true; 7502 7503 switch (Lex.getKind()) { 7504 default: 7505 return tokError("expected binary operation in atomicrmw"); 7506 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 7507 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 7508 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 7509 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 7510 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 7511 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 7512 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 7513 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 7514 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 7515 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 7516 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 7517 case lltok::kw_fadd: 7518 Operation = AtomicRMWInst::FAdd; 7519 IsFP = true; 7520 break; 7521 case lltok::kw_fsub: 7522 Operation = AtomicRMWInst::FSub; 7523 IsFP = true; 7524 break; 7525 } 7526 Lex.Lex(); // Eat the operation. 7527 7528 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 7529 parseToken(lltok::comma, "expected ',' after atomicrmw address") || 7530 parseTypeAndValue(Val, ValLoc, PFS) || 7531 parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7532 return true; 7533 7534 if (Ordering == AtomicOrdering::Unordered) 7535 return tokError("atomicrmw cannot be unordered"); 7536 if (!Ptr->getType()->isPointerTy()) 7537 return error(PtrLoc, "atomicrmw operand must be a pointer"); 7538 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 7539 return error(ValLoc, "atomicrmw value and pointer type do not match"); 7540 7541 if (Operation == AtomicRMWInst::Xchg) { 7542 if (!Val->getType()->isIntegerTy() && 7543 !Val->getType()->isFloatingPointTy()) { 7544 return error(ValLoc, 7545 "atomicrmw " + AtomicRMWInst::getOperationName(Operation) + 7546 " operand must be an integer or floating point type"); 7547 } 7548 } else if (IsFP) { 7549 if (!Val->getType()->isFloatingPointTy()) { 7550 return error(ValLoc, "atomicrmw " + 7551 AtomicRMWInst::getOperationName(Operation) + 7552 " operand must be a floating point type"); 7553 } 7554 } else { 7555 if (!Val->getType()->isIntegerTy()) { 7556 return error(ValLoc, "atomicrmw " + 7557 AtomicRMWInst::getOperationName(Operation) + 7558 " operand must be an integer"); 7559 } 7560 } 7561 7562 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 7563 if (Size < 8 || (Size & (Size - 1))) 7564 return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 7565 " integer"); 7566 Align Alignment( 7567 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7568 Val->getType())); 7569 AtomicRMWInst *RMWI = 7570 new AtomicRMWInst(Operation, Ptr, Val, Alignment, Ordering, SSID); 7571 RMWI->setVolatile(isVolatile); 7572 Inst = RMWI; 7573 return AteExtraComma ? InstExtraComma : InstNormal; 7574 } 7575 7576 /// parseFence 7577 /// ::= 'fence' 'singlethread'? AtomicOrdering 7578 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) { 7579 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7580 SyncScope::ID SSID = SyncScope::System; 7581 if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7582 return true; 7583 7584 if (Ordering == AtomicOrdering::Unordered) 7585 return tokError("fence cannot be unordered"); 7586 if (Ordering == AtomicOrdering::Monotonic) 7587 return tokError("fence cannot be monotonic"); 7588 7589 Inst = new FenceInst(Context, Ordering, SSID); 7590 return InstNormal; 7591 } 7592 7593 /// parseGetElementPtr 7594 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 7595 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 7596 Value *Ptr = nullptr; 7597 Value *Val = nullptr; 7598 LocTy Loc, EltLoc; 7599 7600 bool InBounds = EatIfPresent(lltok::kw_inbounds); 7601 7602 Type *Ty = nullptr; 7603 LocTy ExplicitTypeLoc = Lex.getLoc(); 7604 if (parseType(Ty) || 7605 parseToken(lltok::comma, "expected comma after getelementptr's type") || 7606 parseTypeAndValue(Ptr, Loc, PFS)) 7607 return true; 7608 7609 Type *BaseType = Ptr->getType(); 7610 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 7611 if (!BasePointerType) 7612 return error(Loc, "base of getelementptr must be a pointer"); 7613 7614 if (Ty != BasePointerType->getElementType()) 7615 return error(ExplicitTypeLoc, 7616 "explicit pointee type doesn't match operand's pointee type"); 7617 7618 SmallVector<Value*, 16> Indices; 7619 bool AteExtraComma = false; 7620 // GEP returns a vector of pointers if at least one of parameters is a vector. 7621 // All vector parameters should have the same vector width. 7622 ElementCount GEPWidth = BaseType->isVectorTy() 7623 ? cast<VectorType>(BaseType)->getElementCount() 7624 : ElementCount::getFixed(0); 7625 7626 while (EatIfPresent(lltok::comma)) { 7627 if (Lex.getKind() == lltok::MetadataVar) { 7628 AteExtraComma = true; 7629 break; 7630 } 7631 if (parseTypeAndValue(Val, EltLoc, PFS)) 7632 return true; 7633 if (!Val->getType()->isIntOrIntVectorTy()) 7634 return error(EltLoc, "getelementptr index must be an integer"); 7635 7636 if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) { 7637 ElementCount ValNumEl = ValVTy->getElementCount(); 7638 if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl) 7639 return error( 7640 EltLoc, 7641 "getelementptr vector index has a wrong number of elements"); 7642 GEPWidth = ValNumEl; 7643 } 7644 Indices.push_back(Val); 7645 } 7646 7647 SmallPtrSet<Type*, 4> Visited; 7648 if (!Indices.empty() && !Ty->isSized(&Visited)) 7649 return error(Loc, "base element of getelementptr must be sized"); 7650 7651 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 7652 return error(Loc, "invalid getelementptr indices"); 7653 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 7654 if (InBounds) 7655 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 7656 return AteExtraComma ? InstExtraComma : InstNormal; 7657 } 7658 7659 /// parseExtractValue 7660 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 7661 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 7662 Value *Val; LocTy Loc; 7663 SmallVector<unsigned, 4> Indices; 7664 bool AteExtraComma; 7665 if (parseTypeAndValue(Val, Loc, PFS) || 7666 parseIndexList(Indices, AteExtraComma)) 7667 return true; 7668 7669 if (!Val->getType()->isAggregateType()) 7670 return error(Loc, "extractvalue operand must be aggregate type"); 7671 7672 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 7673 return error(Loc, "invalid indices for extractvalue"); 7674 Inst = ExtractValueInst::Create(Val, Indices); 7675 return AteExtraComma ? InstExtraComma : InstNormal; 7676 } 7677 7678 /// parseInsertValue 7679 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 7680 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 7681 Value *Val0, *Val1; LocTy Loc0, Loc1; 7682 SmallVector<unsigned, 4> Indices; 7683 bool AteExtraComma; 7684 if (parseTypeAndValue(Val0, Loc0, PFS) || 7685 parseToken(lltok::comma, "expected comma after insertvalue operand") || 7686 parseTypeAndValue(Val1, Loc1, PFS) || 7687 parseIndexList(Indices, AteExtraComma)) 7688 return true; 7689 7690 if (!Val0->getType()->isAggregateType()) 7691 return error(Loc0, "insertvalue operand must be aggregate type"); 7692 7693 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 7694 if (!IndexedType) 7695 return error(Loc0, "invalid indices for insertvalue"); 7696 if (IndexedType != Val1->getType()) 7697 return error(Loc1, "insertvalue operand and field disagree in type: '" + 7698 getTypeString(Val1->getType()) + "' instead of '" + 7699 getTypeString(IndexedType) + "'"); 7700 Inst = InsertValueInst::Create(Val0, Val1, Indices); 7701 return AteExtraComma ? InstExtraComma : InstNormal; 7702 } 7703 7704 //===----------------------------------------------------------------------===// 7705 // Embedded metadata. 7706 //===----------------------------------------------------------------------===// 7707 7708 /// parseMDNodeVector 7709 /// ::= { Element (',' Element)* } 7710 /// Element 7711 /// ::= 'null' | TypeAndValue 7712 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 7713 if (parseToken(lltok::lbrace, "expected '{' here")) 7714 return true; 7715 7716 // Check for an empty list. 7717 if (EatIfPresent(lltok::rbrace)) 7718 return false; 7719 7720 do { 7721 // Null is a special case since it is typeless. 7722 if (EatIfPresent(lltok::kw_null)) { 7723 Elts.push_back(nullptr); 7724 continue; 7725 } 7726 7727 Metadata *MD; 7728 if (parseMetadata(MD, nullptr)) 7729 return true; 7730 Elts.push_back(MD); 7731 } while (EatIfPresent(lltok::comma)); 7732 7733 return parseToken(lltok::rbrace, "expected end of metadata node"); 7734 } 7735 7736 //===----------------------------------------------------------------------===// 7737 // Use-list order directives. 7738 //===----------------------------------------------------------------------===// 7739 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 7740 SMLoc Loc) { 7741 if (V->use_empty()) 7742 return error(Loc, "value has no uses"); 7743 7744 unsigned NumUses = 0; 7745 SmallDenseMap<const Use *, unsigned, 16> Order; 7746 for (const Use &U : V->uses()) { 7747 if (++NumUses > Indexes.size()) 7748 break; 7749 Order[&U] = Indexes[NumUses - 1]; 7750 } 7751 if (NumUses < 2) 7752 return error(Loc, "value only has one use"); 7753 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 7754 return error(Loc, 7755 "wrong number of indexes, expected " + Twine(V->getNumUses())); 7756 7757 V->sortUseList([&](const Use &L, const Use &R) { 7758 return Order.lookup(&L) < Order.lookup(&R); 7759 }); 7760 return false; 7761 } 7762 7763 /// parseUseListOrderIndexes 7764 /// ::= '{' uint32 (',' uint32)+ '}' 7765 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 7766 SMLoc Loc = Lex.getLoc(); 7767 if (parseToken(lltok::lbrace, "expected '{' here")) 7768 return true; 7769 if (Lex.getKind() == lltok::rbrace) 7770 return Lex.Error("expected non-empty list of uselistorder indexes"); 7771 7772 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 7773 // indexes should be distinct numbers in the range [0, size-1], and should 7774 // not be in order. 7775 unsigned Offset = 0; 7776 unsigned Max = 0; 7777 bool IsOrdered = true; 7778 assert(Indexes.empty() && "Expected empty order vector"); 7779 do { 7780 unsigned Index; 7781 if (parseUInt32(Index)) 7782 return true; 7783 7784 // Update consistency checks. 7785 Offset += Index - Indexes.size(); 7786 Max = std::max(Max, Index); 7787 IsOrdered &= Index == Indexes.size(); 7788 7789 Indexes.push_back(Index); 7790 } while (EatIfPresent(lltok::comma)); 7791 7792 if (parseToken(lltok::rbrace, "expected '}' here")) 7793 return true; 7794 7795 if (Indexes.size() < 2) 7796 return error(Loc, "expected >= 2 uselistorder indexes"); 7797 if (Offset != 0 || Max >= Indexes.size()) 7798 return error(Loc, 7799 "expected distinct uselistorder indexes in range [0, size)"); 7800 if (IsOrdered) 7801 return error(Loc, "expected uselistorder indexes to change the order"); 7802 7803 return false; 7804 } 7805 7806 /// parseUseListOrder 7807 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 7808 bool LLParser::parseUseListOrder(PerFunctionState *PFS) { 7809 SMLoc Loc = Lex.getLoc(); 7810 if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 7811 return true; 7812 7813 Value *V; 7814 SmallVector<unsigned, 16> Indexes; 7815 if (parseTypeAndValue(V, PFS) || 7816 parseToken(lltok::comma, "expected comma in uselistorder directive") || 7817 parseUseListOrderIndexes(Indexes)) 7818 return true; 7819 7820 return sortUseListOrder(V, Indexes, Loc); 7821 } 7822 7823 /// parseUseListOrderBB 7824 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 7825 bool LLParser::parseUseListOrderBB() { 7826 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 7827 SMLoc Loc = Lex.getLoc(); 7828 Lex.Lex(); 7829 7830 ValID Fn, Label; 7831 SmallVector<unsigned, 16> Indexes; 7832 if (parseValID(Fn) || 7833 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7834 parseValID(Label) || 7835 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7836 parseUseListOrderIndexes(Indexes)) 7837 return true; 7838 7839 // Check the function. 7840 GlobalValue *GV; 7841 if (Fn.Kind == ValID::t_GlobalName) 7842 GV = M->getNamedValue(Fn.StrVal); 7843 else if (Fn.Kind == ValID::t_GlobalID) 7844 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 7845 else 7846 return error(Fn.Loc, "expected function name in uselistorder_bb"); 7847 if (!GV) 7848 return error(Fn.Loc, 7849 "invalid function forward reference in uselistorder_bb"); 7850 auto *F = dyn_cast<Function>(GV); 7851 if (!F) 7852 return error(Fn.Loc, "expected function name in uselistorder_bb"); 7853 if (F->isDeclaration()) 7854 return error(Fn.Loc, "invalid declaration in uselistorder_bb"); 7855 7856 // Check the basic block. 7857 if (Label.Kind == ValID::t_LocalID) 7858 return error(Label.Loc, "invalid numeric label in uselistorder_bb"); 7859 if (Label.Kind != ValID::t_LocalName) 7860 return error(Label.Loc, "expected basic block name in uselistorder_bb"); 7861 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 7862 if (!V) 7863 return error(Label.Loc, "invalid basic block in uselistorder_bb"); 7864 if (!isa<BasicBlock>(V)) 7865 return error(Label.Loc, "expected basic block in uselistorder_bb"); 7866 7867 return sortUseListOrder(V, Indexes, Loc); 7868 } 7869 7870 /// ModuleEntry 7871 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')' 7872 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')' 7873 bool LLParser::parseModuleEntry(unsigned ID) { 7874 assert(Lex.getKind() == lltok::kw_module); 7875 Lex.Lex(); 7876 7877 std::string Path; 7878 if (parseToken(lltok::colon, "expected ':' here") || 7879 parseToken(lltok::lparen, "expected '(' here") || 7880 parseToken(lltok::kw_path, "expected 'path' here") || 7881 parseToken(lltok::colon, "expected ':' here") || 7882 parseStringConstant(Path) || 7883 parseToken(lltok::comma, "expected ',' here") || 7884 parseToken(lltok::kw_hash, "expected 'hash' here") || 7885 parseToken(lltok::colon, "expected ':' here") || 7886 parseToken(lltok::lparen, "expected '(' here")) 7887 return true; 7888 7889 ModuleHash Hash; 7890 if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") || 7891 parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") || 7892 parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") || 7893 parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") || 7894 parseUInt32(Hash[4])) 7895 return true; 7896 7897 if (parseToken(lltok::rparen, "expected ')' here") || 7898 parseToken(lltok::rparen, "expected ')' here")) 7899 return true; 7900 7901 auto ModuleEntry = Index->addModule(Path, ID, Hash); 7902 ModuleIdMap[ID] = ModuleEntry->first(); 7903 7904 return false; 7905 } 7906 7907 /// TypeIdEntry 7908 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')' 7909 bool LLParser::parseTypeIdEntry(unsigned ID) { 7910 assert(Lex.getKind() == lltok::kw_typeid); 7911 Lex.Lex(); 7912 7913 std::string Name; 7914 if (parseToken(lltok::colon, "expected ':' here") || 7915 parseToken(lltok::lparen, "expected '(' here") || 7916 parseToken(lltok::kw_name, "expected 'name' here") || 7917 parseToken(lltok::colon, "expected ':' here") || 7918 parseStringConstant(Name)) 7919 return true; 7920 7921 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name); 7922 if (parseToken(lltok::comma, "expected ',' here") || 7923 parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here")) 7924 return true; 7925 7926 // Check if this ID was forward referenced, and if so, update the 7927 // corresponding GUIDs. 7928 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7929 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7930 for (auto TIDRef : FwdRefTIDs->second) { 7931 assert(!*TIDRef.first && 7932 "Forward referenced type id GUID expected to be 0"); 7933 *TIDRef.first = GlobalValue::getGUID(Name); 7934 } 7935 ForwardRefTypeIds.erase(FwdRefTIDs); 7936 } 7937 7938 return false; 7939 } 7940 7941 /// TypeIdSummary 7942 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')' 7943 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) { 7944 if (parseToken(lltok::kw_summary, "expected 'summary' here") || 7945 parseToken(lltok::colon, "expected ':' here") || 7946 parseToken(lltok::lparen, "expected '(' here") || 7947 parseTypeTestResolution(TIS.TTRes)) 7948 return true; 7949 7950 if (EatIfPresent(lltok::comma)) { 7951 // Expect optional wpdResolutions field 7952 if (parseOptionalWpdResolutions(TIS.WPDRes)) 7953 return true; 7954 } 7955 7956 if (parseToken(lltok::rparen, "expected ')' here")) 7957 return true; 7958 7959 return false; 7960 } 7961 7962 static ValueInfo EmptyVI = 7963 ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8); 7964 7965 /// TypeIdCompatibleVtableEntry 7966 /// ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ',' 7967 /// TypeIdCompatibleVtableInfo 7968 /// ')' 7969 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) { 7970 assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable); 7971 Lex.Lex(); 7972 7973 std::string Name; 7974 if (parseToken(lltok::colon, "expected ':' here") || 7975 parseToken(lltok::lparen, "expected '(' here") || 7976 parseToken(lltok::kw_name, "expected 'name' here") || 7977 parseToken(lltok::colon, "expected ':' here") || 7978 parseStringConstant(Name)) 7979 return true; 7980 7981 TypeIdCompatibleVtableInfo &TI = 7982 Index->getOrInsertTypeIdCompatibleVtableSummary(Name); 7983 if (parseToken(lltok::comma, "expected ',' here") || 7984 parseToken(lltok::kw_summary, "expected 'summary' here") || 7985 parseToken(lltok::colon, "expected ':' here") || 7986 parseToken(lltok::lparen, "expected '(' here")) 7987 return true; 7988 7989 IdToIndexMapType IdToIndexMap; 7990 // parse each call edge 7991 do { 7992 uint64_t Offset; 7993 if (parseToken(lltok::lparen, "expected '(' here") || 7994 parseToken(lltok::kw_offset, "expected 'offset' here") || 7995 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 7996 parseToken(lltok::comma, "expected ',' here")) 7997 return true; 7998 7999 LocTy Loc = Lex.getLoc(); 8000 unsigned GVId; 8001 ValueInfo VI; 8002 if (parseGVReference(VI, GVId)) 8003 return true; 8004 8005 // Keep track of the TypeIdCompatibleVtableInfo array index needing a 8006 // forward reference. We will save the location of the ValueInfo needing an 8007 // update, but can only do so once the std::vector is finalized. 8008 if (VI == EmptyVI) 8009 IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc)); 8010 TI.push_back({Offset, VI}); 8011 8012 if (parseToken(lltok::rparen, "expected ')' in call")) 8013 return true; 8014 } while (EatIfPresent(lltok::comma)); 8015 8016 // Now that the TI vector is finalized, it is safe to save the locations 8017 // of any forward GV references that need updating later. 8018 for (auto I : IdToIndexMap) { 8019 auto &Infos = ForwardRefValueInfos[I.first]; 8020 for (auto P : I.second) { 8021 assert(TI[P.first].VTableVI == EmptyVI && 8022 "Forward referenced ValueInfo expected to be empty"); 8023 Infos.emplace_back(&TI[P.first].VTableVI, P.second); 8024 } 8025 } 8026 8027 if (parseToken(lltok::rparen, "expected ')' here") || 8028 parseToken(lltok::rparen, "expected ')' here")) 8029 return true; 8030 8031 // Check if this ID was forward referenced, and if so, update the 8032 // corresponding GUIDs. 8033 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 8034 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 8035 for (auto TIDRef : FwdRefTIDs->second) { 8036 assert(!*TIDRef.first && 8037 "Forward referenced type id GUID expected to be 0"); 8038 *TIDRef.first = GlobalValue::getGUID(Name); 8039 } 8040 ForwardRefTypeIds.erase(FwdRefTIDs); 8041 } 8042 8043 return false; 8044 } 8045 8046 /// TypeTestResolution 8047 /// ::= 'typeTestRes' ':' '(' 'kind' ':' 8048 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ',' 8049 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]? 8050 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]? 8051 /// [',' 'inlinesBits' ':' UInt64]? ')' 8052 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) { 8053 if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") || 8054 parseToken(lltok::colon, "expected ':' here") || 8055 parseToken(lltok::lparen, "expected '(' here") || 8056 parseToken(lltok::kw_kind, "expected 'kind' here") || 8057 parseToken(lltok::colon, "expected ':' here")) 8058 return true; 8059 8060 switch (Lex.getKind()) { 8061 case lltok::kw_unknown: 8062 TTRes.TheKind = TypeTestResolution::Unknown; 8063 break; 8064 case lltok::kw_unsat: 8065 TTRes.TheKind = TypeTestResolution::Unsat; 8066 break; 8067 case lltok::kw_byteArray: 8068 TTRes.TheKind = TypeTestResolution::ByteArray; 8069 break; 8070 case lltok::kw_inline: 8071 TTRes.TheKind = TypeTestResolution::Inline; 8072 break; 8073 case lltok::kw_single: 8074 TTRes.TheKind = TypeTestResolution::Single; 8075 break; 8076 case lltok::kw_allOnes: 8077 TTRes.TheKind = TypeTestResolution::AllOnes; 8078 break; 8079 default: 8080 return error(Lex.getLoc(), "unexpected TypeTestResolution kind"); 8081 } 8082 Lex.Lex(); 8083 8084 if (parseToken(lltok::comma, "expected ',' here") || 8085 parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") || 8086 parseToken(lltok::colon, "expected ':' here") || 8087 parseUInt32(TTRes.SizeM1BitWidth)) 8088 return true; 8089 8090 // parse optional fields 8091 while (EatIfPresent(lltok::comma)) { 8092 switch (Lex.getKind()) { 8093 case lltok::kw_alignLog2: 8094 Lex.Lex(); 8095 if (parseToken(lltok::colon, "expected ':'") || 8096 parseUInt64(TTRes.AlignLog2)) 8097 return true; 8098 break; 8099 case lltok::kw_sizeM1: 8100 Lex.Lex(); 8101 if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1)) 8102 return true; 8103 break; 8104 case lltok::kw_bitMask: { 8105 unsigned Val; 8106 Lex.Lex(); 8107 if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val)) 8108 return true; 8109 assert(Val <= 0xff); 8110 TTRes.BitMask = (uint8_t)Val; 8111 break; 8112 } 8113 case lltok::kw_inlineBits: 8114 Lex.Lex(); 8115 if (parseToken(lltok::colon, "expected ':'") || 8116 parseUInt64(TTRes.InlineBits)) 8117 return true; 8118 break; 8119 default: 8120 return error(Lex.getLoc(), "expected optional TypeTestResolution field"); 8121 } 8122 } 8123 8124 if (parseToken(lltok::rparen, "expected ')' here")) 8125 return true; 8126 8127 return false; 8128 } 8129 8130 /// OptionalWpdResolutions 8131 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')' 8132 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')' 8133 bool LLParser::parseOptionalWpdResolutions( 8134 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) { 8135 if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") || 8136 parseToken(lltok::colon, "expected ':' here") || 8137 parseToken(lltok::lparen, "expected '(' here")) 8138 return true; 8139 8140 do { 8141 uint64_t Offset; 8142 WholeProgramDevirtResolution WPDRes; 8143 if (parseToken(lltok::lparen, "expected '(' here") || 8144 parseToken(lltok::kw_offset, "expected 'offset' here") || 8145 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 8146 parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) || 8147 parseToken(lltok::rparen, "expected ')' here")) 8148 return true; 8149 WPDResMap[Offset] = WPDRes; 8150 } while (EatIfPresent(lltok::comma)); 8151 8152 if (parseToken(lltok::rparen, "expected ')' here")) 8153 return true; 8154 8155 return false; 8156 } 8157 8158 /// WpdRes 8159 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir' 8160 /// [',' OptionalResByArg]? ')' 8161 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl' 8162 /// ',' 'singleImplName' ':' STRINGCONSTANT ',' 8163 /// [',' OptionalResByArg]? ')' 8164 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel' 8165 /// [',' OptionalResByArg]? ')' 8166 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) { 8167 if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") || 8168 parseToken(lltok::colon, "expected ':' here") || 8169 parseToken(lltok::lparen, "expected '(' here") || 8170 parseToken(lltok::kw_kind, "expected 'kind' here") || 8171 parseToken(lltok::colon, "expected ':' here")) 8172 return true; 8173 8174 switch (Lex.getKind()) { 8175 case lltok::kw_indir: 8176 WPDRes.TheKind = WholeProgramDevirtResolution::Indir; 8177 break; 8178 case lltok::kw_singleImpl: 8179 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl; 8180 break; 8181 case lltok::kw_branchFunnel: 8182 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel; 8183 break; 8184 default: 8185 return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind"); 8186 } 8187 Lex.Lex(); 8188 8189 // parse optional fields 8190 while (EatIfPresent(lltok::comma)) { 8191 switch (Lex.getKind()) { 8192 case lltok::kw_singleImplName: 8193 Lex.Lex(); 8194 if (parseToken(lltok::colon, "expected ':' here") || 8195 parseStringConstant(WPDRes.SingleImplName)) 8196 return true; 8197 break; 8198 case lltok::kw_resByArg: 8199 if (parseOptionalResByArg(WPDRes.ResByArg)) 8200 return true; 8201 break; 8202 default: 8203 return error(Lex.getLoc(), 8204 "expected optional WholeProgramDevirtResolution field"); 8205 } 8206 } 8207 8208 if (parseToken(lltok::rparen, "expected ')' here")) 8209 return true; 8210 8211 return false; 8212 } 8213 8214 /// OptionalResByArg 8215 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')' 8216 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':' 8217 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' | 8218 /// 'virtualConstProp' ) 8219 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]? 8220 /// [',' 'bit' ':' UInt32]? ')' 8221 bool LLParser::parseOptionalResByArg( 8222 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg> 8223 &ResByArg) { 8224 if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") || 8225 parseToken(lltok::colon, "expected ':' here") || 8226 parseToken(lltok::lparen, "expected '(' here")) 8227 return true; 8228 8229 do { 8230 std::vector<uint64_t> Args; 8231 if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") || 8232 parseToken(lltok::kw_byArg, "expected 'byArg here") || 8233 parseToken(lltok::colon, "expected ':' here") || 8234 parseToken(lltok::lparen, "expected '(' here") || 8235 parseToken(lltok::kw_kind, "expected 'kind' here") || 8236 parseToken(lltok::colon, "expected ':' here")) 8237 return true; 8238 8239 WholeProgramDevirtResolution::ByArg ByArg; 8240 switch (Lex.getKind()) { 8241 case lltok::kw_indir: 8242 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir; 8243 break; 8244 case lltok::kw_uniformRetVal: 8245 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 8246 break; 8247 case lltok::kw_uniqueRetVal: 8248 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 8249 break; 8250 case lltok::kw_virtualConstProp: 8251 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 8252 break; 8253 default: 8254 return error(Lex.getLoc(), 8255 "unexpected WholeProgramDevirtResolution::ByArg kind"); 8256 } 8257 Lex.Lex(); 8258 8259 // parse optional fields 8260 while (EatIfPresent(lltok::comma)) { 8261 switch (Lex.getKind()) { 8262 case lltok::kw_info: 8263 Lex.Lex(); 8264 if (parseToken(lltok::colon, "expected ':' here") || 8265 parseUInt64(ByArg.Info)) 8266 return true; 8267 break; 8268 case lltok::kw_byte: 8269 Lex.Lex(); 8270 if (parseToken(lltok::colon, "expected ':' here") || 8271 parseUInt32(ByArg.Byte)) 8272 return true; 8273 break; 8274 case lltok::kw_bit: 8275 Lex.Lex(); 8276 if (parseToken(lltok::colon, "expected ':' here") || 8277 parseUInt32(ByArg.Bit)) 8278 return true; 8279 break; 8280 default: 8281 return error(Lex.getLoc(), 8282 "expected optional whole program devirt field"); 8283 } 8284 } 8285 8286 if (parseToken(lltok::rparen, "expected ')' here")) 8287 return true; 8288 8289 ResByArg[Args] = ByArg; 8290 } while (EatIfPresent(lltok::comma)); 8291 8292 if (parseToken(lltok::rparen, "expected ')' here")) 8293 return true; 8294 8295 return false; 8296 } 8297 8298 /// OptionalResByArg 8299 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')' 8300 bool LLParser::parseArgs(std::vector<uint64_t> &Args) { 8301 if (parseToken(lltok::kw_args, "expected 'args' here") || 8302 parseToken(lltok::colon, "expected ':' here") || 8303 parseToken(lltok::lparen, "expected '(' here")) 8304 return true; 8305 8306 do { 8307 uint64_t Val; 8308 if (parseUInt64(Val)) 8309 return true; 8310 Args.push_back(Val); 8311 } while (EatIfPresent(lltok::comma)); 8312 8313 if (parseToken(lltok::rparen, "expected ')' here")) 8314 return true; 8315 8316 return false; 8317 } 8318 8319 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8; 8320 8321 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) { 8322 bool ReadOnly = Fwd->isReadOnly(); 8323 bool WriteOnly = Fwd->isWriteOnly(); 8324 assert(!(ReadOnly && WriteOnly)); 8325 *Fwd = Resolved; 8326 if (ReadOnly) 8327 Fwd->setReadOnly(); 8328 if (WriteOnly) 8329 Fwd->setWriteOnly(); 8330 } 8331 8332 /// Stores the given Name/GUID and associated summary into the Index. 8333 /// Also updates any forward references to the associated entry ID. 8334 void LLParser::addGlobalValueToIndex( 8335 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage, 8336 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) { 8337 // First create the ValueInfo utilizing the Name or GUID. 8338 ValueInfo VI; 8339 if (GUID != 0) { 8340 assert(Name.empty()); 8341 VI = Index->getOrInsertValueInfo(GUID); 8342 } else { 8343 assert(!Name.empty()); 8344 if (M) { 8345 auto *GV = M->getNamedValue(Name); 8346 assert(GV); 8347 VI = Index->getOrInsertValueInfo(GV); 8348 } else { 8349 assert( 8350 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) && 8351 "Need a source_filename to compute GUID for local"); 8352 GUID = GlobalValue::getGUID( 8353 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName)); 8354 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name)); 8355 } 8356 } 8357 8358 // Resolve forward references from calls/refs 8359 auto FwdRefVIs = ForwardRefValueInfos.find(ID); 8360 if (FwdRefVIs != ForwardRefValueInfos.end()) { 8361 for (auto VIRef : FwdRefVIs->second) { 8362 assert(VIRef.first->getRef() == FwdVIRef && 8363 "Forward referenced ValueInfo expected to be empty"); 8364 resolveFwdRef(VIRef.first, VI); 8365 } 8366 ForwardRefValueInfos.erase(FwdRefVIs); 8367 } 8368 8369 // Resolve forward references from aliases 8370 auto FwdRefAliasees = ForwardRefAliasees.find(ID); 8371 if (FwdRefAliasees != ForwardRefAliasees.end()) { 8372 for (auto AliaseeRef : FwdRefAliasees->second) { 8373 assert(!AliaseeRef.first->hasAliasee() && 8374 "Forward referencing alias already has aliasee"); 8375 assert(Summary && "Aliasee must be a definition"); 8376 AliaseeRef.first->setAliasee(VI, Summary.get()); 8377 } 8378 ForwardRefAliasees.erase(FwdRefAliasees); 8379 } 8380 8381 // Add the summary if one was provided. 8382 if (Summary) 8383 Index->addGlobalValueSummary(VI, std::move(Summary)); 8384 8385 // Save the associated ValueInfo for use in later references by ID. 8386 if (ID == NumberedValueInfos.size()) 8387 NumberedValueInfos.push_back(VI); 8388 else { 8389 // Handle non-continuous numbers (to make test simplification easier). 8390 if (ID > NumberedValueInfos.size()) 8391 NumberedValueInfos.resize(ID + 1); 8392 NumberedValueInfos[ID] = VI; 8393 } 8394 } 8395 8396 /// parseSummaryIndexFlags 8397 /// ::= 'flags' ':' UInt64 8398 bool LLParser::parseSummaryIndexFlags() { 8399 assert(Lex.getKind() == lltok::kw_flags); 8400 Lex.Lex(); 8401 8402 if (parseToken(lltok::colon, "expected ':' here")) 8403 return true; 8404 uint64_t Flags; 8405 if (parseUInt64(Flags)) 8406 return true; 8407 if (Index) 8408 Index->setFlags(Flags); 8409 return false; 8410 } 8411 8412 /// parseBlockCount 8413 /// ::= 'blockcount' ':' UInt64 8414 bool LLParser::parseBlockCount() { 8415 assert(Lex.getKind() == lltok::kw_blockcount); 8416 Lex.Lex(); 8417 8418 if (parseToken(lltok::colon, "expected ':' here")) 8419 return true; 8420 uint64_t BlockCount; 8421 if (parseUInt64(BlockCount)) 8422 return true; 8423 if (Index) 8424 Index->setBlockCount(BlockCount); 8425 return false; 8426 } 8427 8428 /// parseGVEntry 8429 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64) 8430 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')' 8431 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')' 8432 bool LLParser::parseGVEntry(unsigned ID) { 8433 assert(Lex.getKind() == lltok::kw_gv); 8434 Lex.Lex(); 8435 8436 if (parseToken(lltok::colon, "expected ':' here") || 8437 parseToken(lltok::lparen, "expected '(' here")) 8438 return true; 8439 8440 std::string Name; 8441 GlobalValue::GUID GUID = 0; 8442 switch (Lex.getKind()) { 8443 case lltok::kw_name: 8444 Lex.Lex(); 8445 if (parseToken(lltok::colon, "expected ':' here") || 8446 parseStringConstant(Name)) 8447 return true; 8448 // Can't create GUID/ValueInfo until we have the linkage. 8449 break; 8450 case lltok::kw_guid: 8451 Lex.Lex(); 8452 if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID)) 8453 return true; 8454 break; 8455 default: 8456 return error(Lex.getLoc(), "expected name or guid tag"); 8457 } 8458 8459 if (!EatIfPresent(lltok::comma)) { 8460 // No summaries. Wrap up. 8461 if (parseToken(lltok::rparen, "expected ')' here")) 8462 return true; 8463 // This was created for a call to an external or indirect target. 8464 // A GUID with no summary came from a VALUE_GUID record, dummy GUID 8465 // created for indirect calls with VP. A Name with no GUID came from 8466 // an external definition. We pass ExternalLinkage since that is only 8467 // used when the GUID must be computed from Name, and in that case 8468 // the symbol must have external linkage. 8469 addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID, 8470 nullptr); 8471 return false; 8472 } 8473 8474 // Have a list of summaries 8475 if (parseToken(lltok::kw_summaries, "expected 'summaries' here") || 8476 parseToken(lltok::colon, "expected ':' here") || 8477 parseToken(lltok::lparen, "expected '(' here")) 8478 return true; 8479 do { 8480 switch (Lex.getKind()) { 8481 case lltok::kw_function: 8482 if (parseFunctionSummary(Name, GUID, ID)) 8483 return true; 8484 break; 8485 case lltok::kw_variable: 8486 if (parseVariableSummary(Name, GUID, ID)) 8487 return true; 8488 break; 8489 case lltok::kw_alias: 8490 if (parseAliasSummary(Name, GUID, ID)) 8491 return true; 8492 break; 8493 default: 8494 return error(Lex.getLoc(), "expected summary type"); 8495 } 8496 } while (EatIfPresent(lltok::comma)); 8497 8498 if (parseToken(lltok::rparen, "expected ')' here") || 8499 parseToken(lltok::rparen, "expected ')' here")) 8500 return true; 8501 8502 return false; 8503 } 8504 8505 /// FunctionSummary 8506 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8507 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]? 8508 /// [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]? 8509 /// [',' OptionalRefs]? ')' 8510 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID, 8511 unsigned ID) { 8512 assert(Lex.getKind() == lltok::kw_function); 8513 Lex.Lex(); 8514 8515 StringRef ModulePath; 8516 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8517 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 8518 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8519 unsigned InstCount; 8520 std::vector<FunctionSummary::EdgeTy> Calls; 8521 FunctionSummary::TypeIdInfo TypeIdInfo; 8522 std::vector<FunctionSummary::ParamAccess> ParamAccesses; 8523 std::vector<ValueInfo> Refs; 8524 // Default is all-zeros (conservative values). 8525 FunctionSummary::FFlags FFlags = {}; 8526 if (parseToken(lltok::colon, "expected ':' here") || 8527 parseToken(lltok::lparen, "expected '(' here") || 8528 parseModuleReference(ModulePath) || 8529 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8530 parseToken(lltok::comma, "expected ',' here") || 8531 parseToken(lltok::kw_insts, "expected 'insts' here") || 8532 parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount)) 8533 return true; 8534 8535 // parse optional fields 8536 while (EatIfPresent(lltok::comma)) { 8537 switch (Lex.getKind()) { 8538 case lltok::kw_funcFlags: 8539 if (parseOptionalFFlags(FFlags)) 8540 return true; 8541 break; 8542 case lltok::kw_calls: 8543 if (parseOptionalCalls(Calls)) 8544 return true; 8545 break; 8546 case lltok::kw_typeIdInfo: 8547 if (parseOptionalTypeIdInfo(TypeIdInfo)) 8548 return true; 8549 break; 8550 case lltok::kw_refs: 8551 if (parseOptionalRefs(Refs)) 8552 return true; 8553 break; 8554 case lltok::kw_params: 8555 if (parseOptionalParamAccesses(ParamAccesses)) 8556 return true; 8557 break; 8558 default: 8559 return error(Lex.getLoc(), "expected optional function summary field"); 8560 } 8561 } 8562 8563 if (parseToken(lltok::rparen, "expected ')' here")) 8564 return true; 8565 8566 auto FS = std::make_unique<FunctionSummary>( 8567 GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs), 8568 std::move(Calls), std::move(TypeIdInfo.TypeTests), 8569 std::move(TypeIdInfo.TypeTestAssumeVCalls), 8570 std::move(TypeIdInfo.TypeCheckedLoadVCalls), 8571 std::move(TypeIdInfo.TypeTestAssumeConstVCalls), 8572 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls), 8573 std::move(ParamAccesses)); 8574 8575 FS->setModulePath(ModulePath); 8576 8577 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8578 ID, std::move(FS)); 8579 8580 return false; 8581 } 8582 8583 /// VariableSummary 8584 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8585 /// [',' OptionalRefs]? ')' 8586 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID, 8587 unsigned ID) { 8588 assert(Lex.getKind() == lltok::kw_variable); 8589 Lex.Lex(); 8590 8591 StringRef ModulePath; 8592 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8593 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 8594 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8595 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false, 8596 /* WriteOnly */ false, 8597 /* Constant */ false, 8598 GlobalObject::VCallVisibilityPublic); 8599 std::vector<ValueInfo> Refs; 8600 VTableFuncList VTableFuncs; 8601 if (parseToken(lltok::colon, "expected ':' here") || 8602 parseToken(lltok::lparen, "expected '(' here") || 8603 parseModuleReference(ModulePath) || 8604 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8605 parseToken(lltok::comma, "expected ',' here") || 8606 parseGVarFlags(GVarFlags)) 8607 return true; 8608 8609 // parse optional fields 8610 while (EatIfPresent(lltok::comma)) { 8611 switch (Lex.getKind()) { 8612 case lltok::kw_vTableFuncs: 8613 if (parseOptionalVTableFuncs(VTableFuncs)) 8614 return true; 8615 break; 8616 case lltok::kw_refs: 8617 if (parseOptionalRefs(Refs)) 8618 return true; 8619 break; 8620 default: 8621 return error(Lex.getLoc(), "expected optional variable summary field"); 8622 } 8623 } 8624 8625 if (parseToken(lltok::rparen, "expected ')' here")) 8626 return true; 8627 8628 auto GS = 8629 std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs)); 8630 8631 GS->setModulePath(ModulePath); 8632 GS->setVTableFuncs(std::move(VTableFuncs)); 8633 8634 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8635 ID, std::move(GS)); 8636 8637 return false; 8638 } 8639 8640 /// AliasSummary 8641 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ',' 8642 /// 'aliasee' ':' GVReference ')' 8643 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID, 8644 unsigned ID) { 8645 assert(Lex.getKind() == lltok::kw_alias); 8646 LocTy Loc = Lex.getLoc(); 8647 Lex.Lex(); 8648 8649 StringRef ModulePath; 8650 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8651 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 8652 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8653 if (parseToken(lltok::colon, "expected ':' here") || 8654 parseToken(lltok::lparen, "expected '(' here") || 8655 parseModuleReference(ModulePath) || 8656 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8657 parseToken(lltok::comma, "expected ',' here") || 8658 parseToken(lltok::kw_aliasee, "expected 'aliasee' here") || 8659 parseToken(lltok::colon, "expected ':' here")) 8660 return true; 8661 8662 ValueInfo AliaseeVI; 8663 unsigned GVId; 8664 if (parseGVReference(AliaseeVI, GVId)) 8665 return true; 8666 8667 if (parseToken(lltok::rparen, "expected ')' here")) 8668 return true; 8669 8670 auto AS = std::make_unique<AliasSummary>(GVFlags); 8671 8672 AS->setModulePath(ModulePath); 8673 8674 // Record forward reference if the aliasee is not parsed yet. 8675 if (AliaseeVI.getRef() == FwdVIRef) { 8676 ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc); 8677 } else { 8678 auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath); 8679 assert(Summary && "Aliasee must be a definition"); 8680 AS->setAliasee(AliaseeVI, Summary); 8681 } 8682 8683 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8684 ID, std::move(AS)); 8685 8686 return false; 8687 } 8688 8689 /// Flag 8690 /// ::= [0|1] 8691 bool LLParser::parseFlag(unsigned &Val) { 8692 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 8693 return tokError("expected integer"); 8694 Val = (unsigned)Lex.getAPSIntVal().getBoolValue(); 8695 Lex.Lex(); 8696 return false; 8697 } 8698 8699 /// OptionalFFlags 8700 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]? 8701 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]? 8702 /// [',' 'returnDoesNotAlias' ':' Flag]? ')' 8703 /// [',' 'noInline' ':' Flag]? ')' 8704 /// [',' 'alwaysInline' ':' Flag]? ')' 8705 8706 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) { 8707 assert(Lex.getKind() == lltok::kw_funcFlags); 8708 Lex.Lex(); 8709 8710 if (parseToken(lltok::colon, "expected ':' in funcFlags") | 8711 parseToken(lltok::lparen, "expected '(' in funcFlags")) 8712 return true; 8713 8714 do { 8715 unsigned Val = 0; 8716 switch (Lex.getKind()) { 8717 case lltok::kw_readNone: 8718 Lex.Lex(); 8719 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8720 return true; 8721 FFlags.ReadNone = Val; 8722 break; 8723 case lltok::kw_readOnly: 8724 Lex.Lex(); 8725 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8726 return true; 8727 FFlags.ReadOnly = Val; 8728 break; 8729 case lltok::kw_noRecurse: 8730 Lex.Lex(); 8731 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8732 return true; 8733 FFlags.NoRecurse = Val; 8734 break; 8735 case lltok::kw_returnDoesNotAlias: 8736 Lex.Lex(); 8737 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8738 return true; 8739 FFlags.ReturnDoesNotAlias = Val; 8740 break; 8741 case lltok::kw_noInline: 8742 Lex.Lex(); 8743 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8744 return true; 8745 FFlags.NoInline = Val; 8746 break; 8747 case lltok::kw_alwaysInline: 8748 Lex.Lex(); 8749 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8750 return true; 8751 FFlags.AlwaysInline = Val; 8752 break; 8753 default: 8754 return error(Lex.getLoc(), "expected function flag type"); 8755 } 8756 } while (EatIfPresent(lltok::comma)); 8757 8758 if (parseToken(lltok::rparen, "expected ')' in funcFlags")) 8759 return true; 8760 8761 return false; 8762 } 8763 8764 /// OptionalCalls 8765 /// := 'calls' ':' '(' Call [',' Call]* ')' 8766 /// Call ::= '(' 'callee' ':' GVReference 8767 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')' 8768 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) { 8769 assert(Lex.getKind() == lltok::kw_calls); 8770 Lex.Lex(); 8771 8772 if (parseToken(lltok::colon, "expected ':' in calls") | 8773 parseToken(lltok::lparen, "expected '(' in calls")) 8774 return true; 8775 8776 IdToIndexMapType IdToIndexMap; 8777 // parse each call edge 8778 do { 8779 ValueInfo VI; 8780 if (parseToken(lltok::lparen, "expected '(' in call") || 8781 parseToken(lltok::kw_callee, "expected 'callee' in call") || 8782 parseToken(lltok::colon, "expected ':'")) 8783 return true; 8784 8785 LocTy Loc = Lex.getLoc(); 8786 unsigned GVId; 8787 if (parseGVReference(VI, GVId)) 8788 return true; 8789 8790 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 8791 unsigned RelBF = 0; 8792 if (EatIfPresent(lltok::comma)) { 8793 // Expect either hotness or relbf 8794 if (EatIfPresent(lltok::kw_hotness)) { 8795 if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness)) 8796 return true; 8797 } else { 8798 if (parseToken(lltok::kw_relbf, "expected relbf") || 8799 parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF)) 8800 return true; 8801 } 8802 } 8803 // Keep track of the Call array index needing a forward reference. 8804 // We will save the location of the ValueInfo needing an update, but 8805 // can only do so once the std::vector is finalized. 8806 if (VI.getRef() == FwdVIRef) 8807 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc)); 8808 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)}); 8809 8810 if (parseToken(lltok::rparen, "expected ')' in call")) 8811 return true; 8812 } while (EatIfPresent(lltok::comma)); 8813 8814 // Now that the Calls vector is finalized, it is safe to save the locations 8815 // of any forward GV references that need updating later. 8816 for (auto I : IdToIndexMap) { 8817 auto &Infos = ForwardRefValueInfos[I.first]; 8818 for (auto P : I.second) { 8819 assert(Calls[P.first].first.getRef() == FwdVIRef && 8820 "Forward referenced ValueInfo expected to be empty"); 8821 Infos.emplace_back(&Calls[P.first].first, P.second); 8822 } 8823 } 8824 8825 if (parseToken(lltok::rparen, "expected ')' in calls")) 8826 return true; 8827 8828 return false; 8829 } 8830 8831 /// Hotness 8832 /// := ('unknown'|'cold'|'none'|'hot'|'critical') 8833 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) { 8834 switch (Lex.getKind()) { 8835 case lltok::kw_unknown: 8836 Hotness = CalleeInfo::HotnessType::Unknown; 8837 break; 8838 case lltok::kw_cold: 8839 Hotness = CalleeInfo::HotnessType::Cold; 8840 break; 8841 case lltok::kw_none: 8842 Hotness = CalleeInfo::HotnessType::None; 8843 break; 8844 case lltok::kw_hot: 8845 Hotness = CalleeInfo::HotnessType::Hot; 8846 break; 8847 case lltok::kw_critical: 8848 Hotness = CalleeInfo::HotnessType::Critical; 8849 break; 8850 default: 8851 return error(Lex.getLoc(), "invalid call edge hotness"); 8852 } 8853 Lex.Lex(); 8854 return false; 8855 } 8856 8857 /// OptionalVTableFuncs 8858 /// := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')' 8859 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')' 8860 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) { 8861 assert(Lex.getKind() == lltok::kw_vTableFuncs); 8862 Lex.Lex(); 8863 8864 if (parseToken(lltok::colon, "expected ':' in vTableFuncs") | 8865 parseToken(lltok::lparen, "expected '(' in vTableFuncs")) 8866 return true; 8867 8868 IdToIndexMapType IdToIndexMap; 8869 // parse each virtual function pair 8870 do { 8871 ValueInfo VI; 8872 if (parseToken(lltok::lparen, "expected '(' in vTableFunc") || 8873 parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") || 8874 parseToken(lltok::colon, "expected ':'")) 8875 return true; 8876 8877 LocTy Loc = Lex.getLoc(); 8878 unsigned GVId; 8879 if (parseGVReference(VI, GVId)) 8880 return true; 8881 8882 uint64_t Offset; 8883 if (parseToken(lltok::comma, "expected comma") || 8884 parseToken(lltok::kw_offset, "expected offset") || 8885 parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset)) 8886 return true; 8887 8888 // Keep track of the VTableFuncs array index needing a forward reference. 8889 // We will save the location of the ValueInfo needing an update, but 8890 // can only do so once the std::vector is finalized. 8891 if (VI == EmptyVI) 8892 IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc)); 8893 VTableFuncs.push_back({VI, Offset}); 8894 8895 if (parseToken(lltok::rparen, "expected ')' in vTableFunc")) 8896 return true; 8897 } while (EatIfPresent(lltok::comma)); 8898 8899 // Now that the VTableFuncs vector is finalized, it is safe to save the 8900 // locations of any forward GV references that need updating later. 8901 for (auto I : IdToIndexMap) { 8902 auto &Infos = ForwardRefValueInfos[I.first]; 8903 for (auto P : I.second) { 8904 assert(VTableFuncs[P.first].FuncVI == EmptyVI && 8905 "Forward referenced ValueInfo expected to be empty"); 8906 Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second); 8907 } 8908 } 8909 8910 if (parseToken(lltok::rparen, "expected ')' in vTableFuncs")) 8911 return true; 8912 8913 return false; 8914 } 8915 8916 /// ParamNo := 'param' ':' UInt64 8917 bool LLParser::parseParamNo(uint64_t &ParamNo) { 8918 if (parseToken(lltok::kw_param, "expected 'param' here") || 8919 parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo)) 8920 return true; 8921 return false; 8922 } 8923 8924 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']' 8925 bool LLParser::parseParamAccessOffset(ConstantRange &Range) { 8926 APSInt Lower; 8927 APSInt Upper; 8928 auto ParseAPSInt = [&](APSInt &Val) { 8929 if (Lex.getKind() != lltok::APSInt) 8930 return tokError("expected integer"); 8931 Val = Lex.getAPSIntVal(); 8932 Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 8933 Val.setIsSigned(true); 8934 Lex.Lex(); 8935 return false; 8936 }; 8937 if (parseToken(lltok::kw_offset, "expected 'offset' here") || 8938 parseToken(lltok::colon, "expected ':' here") || 8939 parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) || 8940 parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) || 8941 parseToken(lltok::rsquare, "expected ']' here")) 8942 return true; 8943 8944 ++Upper; 8945 Range = 8946 (Lower == Upper && !Lower.isMaxValue()) 8947 ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth) 8948 : ConstantRange(Lower, Upper); 8949 8950 return false; 8951 } 8952 8953 /// ParamAccessCall 8954 /// := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')' 8955 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call, 8956 IdLocListType &IdLocList) { 8957 if (parseToken(lltok::lparen, "expected '(' here") || 8958 parseToken(lltok::kw_callee, "expected 'callee' here") || 8959 parseToken(lltok::colon, "expected ':' here")) 8960 return true; 8961 8962 unsigned GVId; 8963 ValueInfo VI; 8964 LocTy Loc = Lex.getLoc(); 8965 if (parseGVReference(VI, GVId)) 8966 return true; 8967 8968 Call.Callee = VI; 8969 IdLocList.emplace_back(GVId, Loc); 8970 8971 if (parseToken(lltok::comma, "expected ',' here") || 8972 parseParamNo(Call.ParamNo) || 8973 parseToken(lltok::comma, "expected ',' here") || 8974 parseParamAccessOffset(Call.Offsets)) 8975 return true; 8976 8977 if (parseToken(lltok::rparen, "expected ')' here")) 8978 return true; 8979 8980 return false; 8981 } 8982 8983 /// ParamAccess 8984 /// := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')' 8985 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')' 8986 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param, 8987 IdLocListType &IdLocList) { 8988 if (parseToken(lltok::lparen, "expected '(' here") || 8989 parseParamNo(Param.ParamNo) || 8990 parseToken(lltok::comma, "expected ',' here") || 8991 parseParamAccessOffset(Param.Use)) 8992 return true; 8993 8994 if (EatIfPresent(lltok::comma)) { 8995 if (parseToken(lltok::kw_calls, "expected 'calls' here") || 8996 parseToken(lltok::colon, "expected ':' here") || 8997 parseToken(lltok::lparen, "expected '(' here")) 8998 return true; 8999 do { 9000 FunctionSummary::ParamAccess::Call Call; 9001 if (parseParamAccessCall(Call, IdLocList)) 9002 return true; 9003 Param.Calls.push_back(Call); 9004 } while (EatIfPresent(lltok::comma)); 9005 9006 if (parseToken(lltok::rparen, "expected ')' here")) 9007 return true; 9008 } 9009 9010 if (parseToken(lltok::rparen, "expected ')' here")) 9011 return true; 9012 9013 return false; 9014 } 9015 9016 /// OptionalParamAccesses 9017 /// := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')' 9018 bool LLParser::parseOptionalParamAccesses( 9019 std::vector<FunctionSummary::ParamAccess> &Params) { 9020 assert(Lex.getKind() == lltok::kw_params); 9021 Lex.Lex(); 9022 9023 if (parseToken(lltok::colon, "expected ':' here") || 9024 parseToken(lltok::lparen, "expected '(' here")) 9025 return true; 9026 9027 IdLocListType VContexts; 9028 size_t CallsNum = 0; 9029 do { 9030 FunctionSummary::ParamAccess ParamAccess; 9031 if (parseParamAccess(ParamAccess, VContexts)) 9032 return true; 9033 CallsNum += ParamAccess.Calls.size(); 9034 assert(VContexts.size() == CallsNum); 9035 Params.emplace_back(std::move(ParamAccess)); 9036 } while (EatIfPresent(lltok::comma)); 9037 9038 if (parseToken(lltok::rparen, "expected ')' here")) 9039 return true; 9040 9041 // Now that the Params is finalized, it is safe to save the locations 9042 // of any forward GV references that need updating later. 9043 IdLocListType::const_iterator ItContext = VContexts.begin(); 9044 for (auto &PA : Params) { 9045 for (auto &C : PA.Calls) { 9046 if (C.Callee.getRef() == FwdVIRef) 9047 ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee, 9048 ItContext->second); 9049 ++ItContext; 9050 } 9051 } 9052 assert(ItContext == VContexts.end()); 9053 9054 return false; 9055 } 9056 9057 /// OptionalRefs 9058 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')' 9059 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) { 9060 assert(Lex.getKind() == lltok::kw_refs); 9061 Lex.Lex(); 9062 9063 if (parseToken(lltok::colon, "expected ':' in refs") || 9064 parseToken(lltok::lparen, "expected '(' in refs")) 9065 return true; 9066 9067 struct ValueContext { 9068 ValueInfo VI; 9069 unsigned GVId; 9070 LocTy Loc; 9071 }; 9072 std::vector<ValueContext> VContexts; 9073 // parse each ref edge 9074 do { 9075 ValueContext VC; 9076 VC.Loc = Lex.getLoc(); 9077 if (parseGVReference(VC.VI, VC.GVId)) 9078 return true; 9079 VContexts.push_back(VC); 9080 } while (EatIfPresent(lltok::comma)); 9081 9082 // Sort value contexts so that ones with writeonly 9083 // and readonly ValueInfo are at the end of VContexts vector. 9084 // See FunctionSummary::specialRefCounts() 9085 llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) { 9086 return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier(); 9087 }); 9088 9089 IdToIndexMapType IdToIndexMap; 9090 for (auto &VC : VContexts) { 9091 // Keep track of the Refs array index needing a forward reference. 9092 // We will save the location of the ValueInfo needing an update, but 9093 // can only do so once the std::vector is finalized. 9094 if (VC.VI.getRef() == FwdVIRef) 9095 IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc)); 9096 Refs.push_back(VC.VI); 9097 } 9098 9099 // Now that the Refs vector is finalized, it is safe to save the locations 9100 // of any forward GV references that need updating later. 9101 for (auto I : IdToIndexMap) { 9102 auto &Infos = ForwardRefValueInfos[I.first]; 9103 for (auto P : I.second) { 9104 assert(Refs[P.first].getRef() == FwdVIRef && 9105 "Forward referenced ValueInfo expected to be empty"); 9106 Infos.emplace_back(&Refs[P.first], P.second); 9107 } 9108 } 9109 9110 if (parseToken(lltok::rparen, "expected ')' in refs")) 9111 return true; 9112 9113 return false; 9114 } 9115 9116 /// OptionalTypeIdInfo 9117 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]? 9118 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]? 9119 /// [',' TypeCheckedLoadConstVCalls]? ')' 9120 bool LLParser::parseOptionalTypeIdInfo( 9121 FunctionSummary::TypeIdInfo &TypeIdInfo) { 9122 assert(Lex.getKind() == lltok::kw_typeIdInfo); 9123 Lex.Lex(); 9124 9125 if (parseToken(lltok::colon, "expected ':' here") || 9126 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 9127 return true; 9128 9129 do { 9130 switch (Lex.getKind()) { 9131 case lltok::kw_typeTests: 9132 if (parseTypeTests(TypeIdInfo.TypeTests)) 9133 return true; 9134 break; 9135 case lltok::kw_typeTestAssumeVCalls: 9136 if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls, 9137 TypeIdInfo.TypeTestAssumeVCalls)) 9138 return true; 9139 break; 9140 case lltok::kw_typeCheckedLoadVCalls: 9141 if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls, 9142 TypeIdInfo.TypeCheckedLoadVCalls)) 9143 return true; 9144 break; 9145 case lltok::kw_typeTestAssumeConstVCalls: 9146 if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls, 9147 TypeIdInfo.TypeTestAssumeConstVCalls)) 9148 return true; 9149 break; 9150 case lltok::kw_typeCheckedLoadConstVCalls: 9151 if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls, 9152 TypeIdInfo.TypeCheckedLoadConstVCalls)) 9153 return true; 9154 break; 9155 default: 9156 return error(Lex.getLoc(), "invalid typeIdInfo list type"); 9157 } 9158 } while (EatIfPresent(lltok::comma)); 9159 9160 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 9161 return true; 9162 9163 return false; 9164 } 9165 9166 /// TypeTests 9167 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64) 9168 /// [',' (SummaryID | UInt64)]* ')' 9169 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) { 9170 assert(Lex.getKind() == lltok::kw_typeTests); 9171 Lex.Lex(); 9172 9173 if (parseToken(lltok::colon, "expected ':' here") || 9174 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 9175 return true; 9176 9177 IdToIndexMapType IdToIndexMap; 9178 do { 9179 GlobalValue::GUID GUID = 0; 9180 if (Lex.getKind() == lltok::SummaryID) { 9181 unsigned ID = Lex.getUIntVal(); 9182 LocTy Loc = Lex.getLoc(); 9183 // Keep track of the TypeTests array index needing a forward reference. 9184 // We will save the location of the GUID needing an update, but 9185 // can only do so once the std::vector is finalized. 9186 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc)); 9187 Lex.Lex(); 9188 } else if (parseUInt64(GUID)) 9189 return true; 9190 TypeTests.push_back(GUID); 9191 } while (EatIfPresent(lltok::comma)); 9192 9193 // Now that the TypeTests vector is finalized, it is safe to save the 9194 // locations of any forward GV references that need updating later. 9195 for (auto I : IdToIndexMap) { 9196 auto &Ids = ForwardRefTypeIds[I.first]; 9197 for (auto P : I.second) { 9198 assert(TypeTests[P.first] == 0 && 9199 "Forward referenced type id GUID expected to be 0"); 9200 Ids.emplace_back(&TypeTests[P.first], P.second); 9201 } 9202 } 9203 9204 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 9205 return true; 9206 9207 return false; 9208 } 9209 9210 /// VFuncIdList 9211 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')' 9212 bool LLParser::parseVFuncIdList( 9213 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) { 9214 assert(Lex.getKind() == Kind); 9215 Lex.Lex(); 9216 9217 if (parseToken(lltok::colon, "expected ':' here") || 9218 parseToken(lltok::lparen, "expected '(' here")) 9219 return true; 9220 9221 IdToIndexMapType IdToIndexMap; 9222 do { 9223 FunctionSummary::VFuncId VFuncId; 9224 if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size())) 9225 return true; 9226 VFuncIdList.push_back(VFuncId); 9227 } while (EatIfPresent(lltok::comma)); 9228 9229 if (parseToken(lltok::rparen, "expected ')' here")) 9230 return true; 9231 9232 // Now that the VFuncIdList vector is finalized, it is safe to save the 9233 // locations of any forward GV references that need updating later. 9234 for (auto I : IdToIndexMap) { 9235 auto &Ids = ForwardRefTypeIds[I.first]; 9236 for (auto P : I.second) { 9237 assert(VFuncIdList[P.first].GUID == 0 && 9238 "Forward referenced type id GUID expected to be 0"); 9239 Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second); 9240 } 9241 } 9242 9243 return false; 9244 } 9245 9246 /// ConstVCallList 9247 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')' 9248 bool LLParser::parseConstVCallList( 9249 lltok::Kind Kind, 9250 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) { 9251 assert(Lex.getKind() == Kind); 9252 Lex.Lex(); 9253 9254 if (parseToken(lltok::colon, "expected ':' here") || 9255 parseToken(lltok::lparen, "expected '(' here")) 9256 return true; 9257 9258 IdToIndexMapType IdToIndexMap; 9259 do { 9260 FunctionSummary::ConstVCall ConstVCall; 9261 if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size())) 9262 return true; 9263 ConstVCallList.push_back(ConstVCall); 9264 } while (EatIfPresent(lltok::comma)); 9265 9266 if (parseToken(lltok::rparen, "expected ')' here")) 9267 return true; 9268 9269 // Now that the ConstVCallList vector is finalized, it is safe to save the 9270 // locations of any forward GV references that need updating later. 9271 for (auto I : IdToIndexMap) { 9272 auto &Ids = ForwardRefTypeIds[I.first]; 9273 for (auto P : I.second) { 9274 assert(ConstVCallList[P.first].VFunc.GUID == 0 && 9275 "Forward referenced type id GUID expected to be 0"); 9276 Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second); 9277 } 9278 } 9279 9280 return false; 9281 } 9282 9283 /// ConstVCall 9284 /// ::= '(' VFuncId ',' Args ')' 9285 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall, 9286 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9287 if (parseToken(lltok::lparen, "expected '(' here") || 9288 parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index)) 9289 return true; 9290 9291 if (EatIfPresent(lltok::comma)) 9292 if (parseArgs(ConstVCall.Args)) 9293 return true; 9294 9295 if (parseToken(lltok::rparen, "expected ')' here")) 9296 return true; 9297 9298 return false; 9299 } 9300 9301 /// VFuncId 9302 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ',' 9303 /// 'offset' ':' UInt64 ')' 9304 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId, 9305 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9306 assert(Lex.getKind() == lltok::kw_vFuncId); 9307 Lex.Lex(); 9308 9309 if (parseToken(lltok::colon, "expected ':' here") || 9310 parseToken(lltok::lparen, "expected '(' here")) 9311 return true; 9312 9313 if (Lex.getKind() == lltok::SummaryID) { 9314 VFuncId.GUID = 0; 9315 unsigned ID = Lex.getUIntVal(); 9316 LocTy Loc = Lex.getLoc(); 9317 // Keep track of the array index needing a forward reference. 9318 // We will save the location of the GUID needing an update, but 9319 // can only do so once the caller's std::vector is finalized. 9320 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc)); 9321 Lex.Lex(); 9322 } else if (parseToken(lltok::kw_guid, "expected 'guid' here") || 9323 parseToken(lltok::colon, "expected ':' here") || 9324 parseUInt64(VFuncId.GUID)) 9325 return true; 9326 9327 if (parseToken(lltok::comma, "expected ',' here") || 9328 parseToken(lltok::kw_offset, "expected 'offset' here") || 9329 parseToken(lltok::colon, "expected ':' here") || 9330 parseUInt64(VFuncId.Offset) || 9331 parseToken(lltok::rparen, "expected ')' here")) 9332 return true; 9333 9334 return false; 9335 } 9336 9337 /// GVFlags 9338 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ',' 9339 /// 'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ',' 9340 /// 'dsoLocal' ':' Flag ',' 'canAutoHide' ':' Flag ')' 9341 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) { 9342 assert(Lex.getKind() == lltok::kw_flags); 9343 Lex.Lex(); 9344 9345 if (parseToken(lltok::colon, "expected ':' here") || 9346 parseToken(lltok::lparen, "expected '(' here")) 9347 return true; 9348 9349 do { 9350 unsigned Flag = 0; 9351 switch (Lex.getKind()) { 9352 case lltok::kw_linkage: 9353 Lex.Lex(); 9354 if (parseToken(lltok::colon, "expected ':'")) 9355 return true; 9356 bool HasLinkage; 9357 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 9358 assert(HasLinkage && "Linkage not optional in summary entry"); 9359 Lex.Lex(); 9360 break; 9361 case lltok::kw_notEligibleToImport: 9362 Lex.Lex(); 9363 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9364 return true; 9365 GVFlags.NotEligibleToImport = Flag; 9366 break; 9367 case lltok::kw_live: 9368 Lex.Lex(); 9369 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9370 return true; 9371 GVFlags.Live = Flag; 9372 break; 9373 case lltok::kw_dsoLocal: 9374 Lex.Lex(); 9375 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9376 return true; 9377 GVFlags.DSOLocal = Flag; 9378 break; 9379 case lltok::kw_canAutoHide: 9380 Lex.Lex(); 9381 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9382 return true; 9383 GVFlags.CanAutoHide = Flag; 9384 break; 9385 default: 9386 return error(Lex.getLoc(), "expected gv flag type"); 9387 } 9388 } while (EatIfPresent(lltok::comma)); 9389 9390 if (parseToken(lltok::rparen, "expected ')' here")) 9391 return true; 9392 9393 return false; 9394 } 9395 9396 /// GVarFlags 9397 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag 9398 /// ',' 'writeonly' ':' Flag 9399 /// ',' 'constant' ':' Flag ')' 9400 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) { 9401 assert(Lex.getKind() == lltok::kw_varFlags); 9402 Lex.Lex(); 9403 9404 if (parseToken(lltok::colon, "expected ':' here") || 9405 parseToken(lltok::lparen, "expected '(' here")) 9406 return true; 9407 9408 auto ParseRest = [this](unsigned int &Val) { 9409 Lex.Lex(); 9410 if (parseToken(lltok::colon, "expected ':'")) 9411 return true; 9412 return parseFlag(Val); 9413 }; 9414 9415 do { 9416 unsigned Flag = 0; 9417 switch (Lex.getKind()) { 9418 case lltok::kw_readonly: 9419 if (ParseRest(Flag)) 9420 return true; 9421 GVarFlags.MaybeReadOnly = Flag; 9422 break; 9423 case lltok::kw_writeonly: 9424 if (ParseRest(Flag)) 9425 return true; 9426 GVarFlags.MaybeWriteOnly = Flag; 9427 break; 9428 case lltok::kw_constant: 9429 if (ParseRest(Flag)) 9430 return true; 9431 GVarFlags.Constant = Flag; 9432 break; 9433 case lltok::kw_vcall_visibility: 9434 if (ParseRest(Flag)) 9435 return true; 9436 GVarFlags.VCallVisibility = Flag; 9437 break; 9438 default: 9439 return error(Lex.getLoc(), "expected gvar flag type"); 9440 } 9441 } while (EatIfPresent(lltok::comma)); 9442 return parseToken(lltok::rparen, "expected ')' here"); 9443 } 9444 9445 /// ModuleReference 9446 /// ::= 'module' ':' UInt 9447 bool LLParser::parseModuleReference(StringRef &ModulePath) { 9448 // parse module id. 9449 if (parseToken(lltok::kw_module, "expected 'module' here") || 9450 parseToken(lltok::colon, "expected ':' here") || 9451 parseToken(lltok::SummaryID, "expected module ID")) 9452 return true; 9453 9454 unsigned ModuleID = Lex.getUIntVal(); 9455 auto I = ModuleIdMap.find(ModuleID); 9456 // We should have already parsed all module IDs 9457 assert(I != ModuleIdMap.end()); 9458 ModulePath = I->second; 9459 return false; 9460 } 9461 9462 /// GVReference 9463 /// ::= SummaryID 9464 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) { 9465 bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly); 9466 if (!ReadOnly) 9467 WriteOnly = EatIfPresent(lltok::kw_writeonly); 9468 if (parseToken(lltok::SummaryID, "expected GV ID")) 9469 return true; 9470 9471 GVId = Lex.getUIntVal(); 9472 // Check if we already have a VI for this GV 9473 if (GVId < NumberedValueInfos.size()) { 9474 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef); 9475 VI = NumberedValueInfos[GVId]; 9476 } else 9477 // We will create a forward reference to the stored location. 9478 VI = ValueInfo(false, FwdVIRef); 9479 9480 if (ReadOnly) 9481 VI.setReadOnly(); 9482 if (WriteOnly) 9483 VI.setWriteOnly(); 9484 return false; 9485 } 9486