1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the parser class for .ll files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/AsmParser/LLParser.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/AsmParser/LLToken.h" 20 #include "llvm/AsmParser/SlotMapping.h" 21 #include "llvm/BinaryFormat/Dwarf.h" 22 #include "llvm/IR/Argument.h" 23 #include "llvm/IR/AutoUpgrade.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallingConv.h" 26 #include "llvm/IR/Comdat.h" 27 #include "llvm/IR/ConstantRange.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DebugInfoMetadata.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/GlobalIFunc.h" 33 #include "llvm/IR/GlobalObject.h" 34 #include "llvm/IR/InlineAsm.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/LLVMContext.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/Value.h" 41 #include "llvm/IR/ValueSymbolTable.h" 42 #include "llvm/Support/Casting.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/MathExtras.h" 45 #include "llvm/Support/SaveAndRestore.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include <algorithm> 48 #include <cassert> 49 #include <cstring> 50 #include <iterator> 51 #include <vector> 52 53 using namespace llvm; 54 55 static std::string getTypeString(Type *T) { 56 std::string Result; 57 raw_string_ostream Tmp(Result); 58 Tmp << *T; 59 return Tmp.str(); 60 } 61 62 /// Run: module ::= toplevelentity* 63 bool LLParser::Run(bool UpgradeDebugInfo, 64 DataLayoutCallbackTy DataLayoutCallback) { 65 // Prime the lexer. 66 Lex.Lex(); 67 68 if (Context.shouldDiscardValueNames()) 69 return error( 70 Lex.getLoc(), 71 "Can't read textual IR with a Context that discards named Values"); 72 73 if (M) { 74 if (parseTargetDefinitions()) 75 return true; 76 77 if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple())) 78 M->setDataLayout(*LayoutOverride); 79 } 80 81 return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) || 82 validateEndOfIndex(); 83 } 84 85 bool LLParser::parseStandaloneConstantValue(Constant *&C, 86 const SlotMapping *Slots) { 87 restoreParsingState(Slots); 88 Lex.Lex(); 89 90 Type *Ty = nullptr; 91 if (parseType(Ty) || parseConstantValue(Ty, C)) 92 return true; 93 if (Lex.getKind() != lltok::Eof) 94 return error(Lex.getLoc(), "expected end of string"); 95 return false; 96 } 97 98 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 99 const SlotMapping *Slots) { 100 restoreParsingState(Slots); 101 Lex.Lex(); 102 103 Read = 0; 104 SMLoc Start = Lex.getLoc(); 105 Ty = nullptr; 106 if (parseType(Ty)) 107 return true; 108 SMLoc End = Lex.getLoc(); 109 Read = End.getPointer() - Start.getPointer(); 110 111 return false; 112 } 113 114 void LLParser::restoreParsingState(const SlotMapping *Slots) { 115 if (!Slots) 116 return; 117 NumberedVals = Slots->GlobalValues; 118 NumberedMetadata = Slots->MetadataNodes; 119 for (const auto &I : Slots->NamedTypes) 120 NamedTypes.insert( 121 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 122 for (const auto &I : Slots->Types) 123 NumberedTypes.insert( 124 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 125 } 126 127 /// validateEndOfModule - Do final validity and sanity checks at the end of the 128 /// module. 129 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) { 130 if (!M) 131 return false; 132 // Handle any function attribute group forward references. 133 for (const auto &RAG : ForwardRefAttrGroups) { 134 Value *V = RAG.first; 135 const std::vector<unsigned> &Attrs = RAG.second; 136 AttrBuilder B; 137 138 for (const auto &Attr : Attrs) 139 B.merge(NumberedAttrBuilders[Attr]); 140 141 if (Function *Fn = dyn_cast<Function>(V)) { 142 AttributeList AS = Fn->getAttributes(); 143 AttrBuilder FnAttrs(AS.getFnAttrs()); 144 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 145 146 FnAttrs.merge(B); 147 148 // If the alignment was parsed as an attribute, move to the alignment 149 // field. 150 if (FnAttrs.hasAlignmentAttr()) { 151 Fn->setAlignment(FnAttrs.getAlignment()); 152 FnAttrs.removeAttribute(Attribute::Alignment); 153 } 154 155 AS = AS.addFnAttributes(Context, AttributeSet::get(Context, FnAttrs)); 156 Fn->setAttributes(AS); 157 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 158 AttributeList AS = CI->getAttributes(); 159 AttrBuilder FnAttrs(AS.getFnAttrs()); 160 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 161 FnAttrs.merge(B); 162 AS = AS.addFnAttributes(Context, AttributeSet::get(Context, FnAttrs)); 163 CI->setAttributes(AS); 164 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 165 AttributeList AS = II->getAttributes(); 166 AttrBuilder FnAttrs(AS.getFnAttrs()); 167 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 168 FnAttrs.merge(B); 169 AS = AS.addFnAttributes(Context, AttributeSet::get(Context, FnAttrs)); 170 II->setAttributes(AS); 171 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) { 172 AttributeList AS = CBI->getAttributes(); 173 AttrBuilder FnAttrs(AS.getFnAttrs()); 174 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 175 FnAttrs.merge(B); 176 AS = AS.addFnAttributes(Context, AttributeSet::get(Context, FnAttrs)); 177 CBI->setAttributes(AS); 178 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 179 AttrBuilder Attrs(GV->getAttributes()); 180 Attrs.merge(B); 181 GV->setAttributes(AttributeSet::get(Context,Attrs)); 182 } else { 183 llvm_unreachable("invalid object with forward attribute group reference"); 184 } 185 } 186 187 // If there are entries in ForwardRefBlockAddresses at this point, the 188 // function was never defined. 189 if (!ForwardRefBlockAddresses.empty()) 190 return error(ForwardRefBlockAddresses.begin()->first.Loc, 191 "expected function name in blockaddress"); 192 193 for (const auto &NT : NumberedTypes) 194 if (NT.second.second.isValid()) 195 return error(NT.second.second, 196 "use of undefined type '%" + Twine(NT.first) + "'"); 197 198 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 199 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 200 if (I->second.second.isValid()) 201 return error(I->second.second, 202 "use of undefined type named '" + I->getKey() + "'"); 203 204 if (!ForwardRefComdats.empty()) 205 return error(ForwardRefComdats.begin()->second, 206 "use of undefined comdat '$" + 207 ForwardRefComdats.begin()->first + "'"); 208 209 if (!ForwardRefVals.empty()) 210 return error(ForwardRefVals.begin()->second.second, 211 "use of undefined value '@" + ForwardRefVals.begin()->first + 212 "'"); 213 214 if (!ForwardRefValIDs.empty()) 215 return error(ForwardRefValIDs.begin()->second.second, 216 "use of undefined value '@" + 217 Twine(ForwardRefValIDs.begin()->first) + "'"); 218 219 if (!ForwardRefMDNodes.empty()) 220 return error(ForwardRefMDNodes.begin()->second.second, 221 "use of undefined metadata '!" + 222 Twine(ForwardRefMDNodes.begin()->first) + "'"); 223 224 // Resolve metadata cycles. 225 for (auto &N : NumberedMetadata) { 226 if (N.second && !N.second->isResolved()) 227 N.second->resolveCycles(); 228 } 229 230 for (auto *Inst : InstsWithTBAATag) { 231 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 232 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 233 auto *UpgradedMD = UpgradeTBAANode(*MD); 234 if (MD != UpgradedMD) 235 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 236 } 237 238 // Look for intrinsic functions and CallInst that need to be upgraded 239 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 240 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 241 242 // Some types could be renamed during loading if several modules are 243 // loaded in the same LLVMContext (LTO scenario). In this case we should 244 // remangle intrinsics names as well. 245 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) { 246 Function *F = &*FI++; 247 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 248 F->replaceAllUsesWith(Remangled.getValue()); 249 F->eraseFromParent(); 250 } 251 } 252 253 if (UpgradeDebugInfo) 254 llvm::UpgradeDebugInfo(*M); 255 256 UpgradeModuleFlags(*M); 257 UpgradeSectionAttributes(*M); 258 259 if (!Slots) 260 return false; 261 // Initialize the slot mapping. 262 // Because by this point we've parsed and validated everything, we can "steal" 263 // the mapping from LLParser as it doesn't need it anymore. 264 Slots->GlobalValues = std::move(NumberedVals); 265 Slots->MetadataNodes = std::move(NumberedMetadata); 266 for (const auto &I : NamedTypes) 267 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 268 for (const auto &I : NumberedTypes) 269 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 270 271 return false; 272 } 273 274 /// Do final validity and sanity checks at the end of the index. 275 bool LLParser::validateEndOfIndex() { 276 if (!Index) 277 return false; 278 279 if (!ForwardRefValueInfos.empty()) 280 return error(ForwardRefValueInfos.begin()->second.front().second, 281 "use of undefined summary '^" + 282 Twine(ForwardRefValueInfos.begin()->first) + "'"); 283 284 if (!ForwardRefAliasees.empty()) 285 return error(ForwardRefAliasees.begin()->second.front().second, 286 "use of undefined summary '^" + 287 Twine(ForwardRefAliasees.begin()->first) + "'"); 288 289 if (!ForwardRefTypeIds.empty()) 290 return error(ForwardRefTypeIds.begin()->second.front().second, 291 "use of undefined type id summary '^" + 292 Twine(ForwardRefTypeIds.begin()->first) + "'"); 293 294 return false; 295 } 296 297 //===----------------------------------------------------------------------===// 298 // Top-Level Entities 299 //===----------------------------------------------------------------------===// 300 301 bool LLParser::parseTargetDefinitions() { 302 while (true) { 303 switch (Lex.getKind()) { 304 case lltok::kw_target: 305 if (parseTargetDefinition()) 306 return true; 307 break; 308 case lltok::kw_source_filename: 309 if (parseSourceFileName()) 310 return true; 311 break; 312 default: 313 return false; 314 } 315 } 316 } 317 318 bool LLParser::parseTopLevelEntities() { 319 // If there is no Module, then parse just the summary index entries. 320 if (!M) { 321 while (true) { 322 switch (Lex.getKind()) { 323 case lltok::Eof: 324 return false; 325 case lltok::SummaryID: 326 if (parseSummaryEntry()) 327 return true; 328 break; 329 case lltok::kw_source_filename: 330 if (parseSourceFileName()) 331 return true; 332 break; 333 default: 334 // Skip everything else 335 Lex.Lex(); 336 } 337 } 338 } 339 while (true) { 340 switch (Lex.getKind()) { 341 default: 342 return tokError("expected top-level entity"); 343 case lltok::Eof: return false; 344 case lltok::kw_declare: 345 if (parseDeclare()) 346 return true; 347 break; 348 case lltok::kw_define: 349 if (parseDefine()) 350 return true; 351 break; 352 case lltok::kw_module: 353 if (parseModuleAsm()) 354 return true; 355 break; 356 case lltok::LocalVarID: 357 if (parseUnnamedType()) 358 return true; 359 break; 360 case lltok::LocalVar: 361 if (parseNamedType()) 362 return true; 363 break; 364 case lltok::GlobalID: 365 if (parseUnnamedGlobal()) 366 return true; 367 break; 368 case lltok::GlobalVar: 369 if (parseNamedGlobal()) 370 return true; 371 break; 372 case lltok::ComdatVar: if (parseComdat()) return true; break; 373 case lltok::exclaim: 374 if (parseStandaloneMetadata()) 375 return true; 376 break; 377 case lltok::SummaryID: 378 if (parseSummaryEntry()) 379 return true; 380 break; 381 case lltok::MetadataVar: 382 if (parseNamedMetadata()) 383 return true; 384 break; 385 case lltok::kw_attributes: 386 if (parseUnnamedAttrGrp()) 387 return true; 388 break; 389 case lltok::kw_uselistorder: 390 if (parseUseListOrder()) 391 return true; 392 break; 393 case lltok::kw_uselistorder_bb: 394 if (parseUseListOrderBB()) 395 return true; 396 break; 397 } 398 } 399 } 400 401 /// toplevelentity 402 /// ::= 'module' 'asm' STRINGCONSTANT 403 bool LLParser::parseModuleAsm() { 404 assert(Lex.getKind() == lltok::kw_module); 405 Lex.Lex(); 406 407 std::string AsmStr; 408 if (parseToken(lltok::kw_asm, "expected 'module asm'") || 409 parseStringConstant(AsmStr)) 410 return true; 411 412 M->appendModuleInlineAsm(AsmStr); 413 return false; 414 } 415 416 /// toplevelentity 417 /// ::= 'target' 'triple' '=' STRINGCONSTANT 418 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 419 bool LLParser::parseTargetDefinition() { 420 assert(Lex.getKind() == lltok::kw_target); 421 std::string Str; 422 switch (Lex.Lex()) { 423 default: 424 return tokError("unknown target property"); 425 case lltok::kw_triple: 426 Lex.Lex(); 427 if (parseToken(lltok::equal, "expected '=' after target triple") || 428 parseStringConstant(Str)) 429 return true; 430 M->setTargetTriple(Str); 431 return false; 432 case lltok::kw_datalayout: 433 Lex.Lex(); 434 if (parseToken(lltok::equal, "expected '=' after target datalayout") || 435 parseStringConstant(Str)) 436 return true; 437 M->setDataLayout(Str); 438 return false; 439 } 440 } 441 442 /// toplevelentity 443 /// ::= 'source_filename' '=' STRINGCONSTANT 444 bool LLParser::parseSourceFileName() { 445 assert(Lex.getKind() == lltok::kw_source_filename); 446 Lex.Lex(); 447 if (parseToken(lltok::equal, "expected '=' after source_filename") || 448 parseStringConstant(SourceFileName)) 449 return true; 450 if (M) 451 M->setSourceFileName(SourceFileName); 452 return false; 453 } 454 455 /// parseUnnamedType: 456 /// ::= LocalVarID '=' 'type' type 457 bool LLParser::parseUnnamedType() { 458 LocTy TypeLoc = Lex.getLoc(); 459 unsigned TypeID = Lex.getUIntVal(); 460 Lex.Lex(); // eat LocalVarID; 461 462 if (parseToken(lltok::equal, "expected '=' after name") || 463 parseToken(lltok::kw_type, "expected 'type' after '='")) 464 return true; 465 466 Type *Result = nullptr; 467 if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result)) 468 return true; 469 470 if (!isa<StructType>(Result)) { 471 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 472 if (Entry.first) 473 return error(TypeLoc, "non-struct types may not be recursive"); 474 Entry.first = Result; 475 Entry.second = SMLoc(); 476 } 477 478 return false; 479 } 480 481 /// toplevelentity 482 /// ::= LocalVar '=' 'type' type 483 bool LLParser::parseNamedType() { 484 std::string Name = Lex.getStrVal(); 485 LocTy NameLoc = Lex.getLoc(); 486 Lex.Lex(); // eat LocalVar. 487 488 if (parseToken(lltok::equal, "expected '=' after name") || 489 parseToken(lltok::kw_type, "expected 'type' after name")) 490 return true; 491 492 Type *Result = nullptr; 493 if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result)) 494 return true; 495 496 if (!isa<StructType>(Result)) { 497 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 498 if (Entry.first) 499 return error(NameLoc, "non-struct types may not be recursive"); 500 Entry.first = Result; 501 Entry.second = SMLoc(); 502 } 503 504 return false; 505 } 506 507 /// toplevelentity 508 /// ::= 'declare' FunctionHeader 509 bool LLParser::parseDeclare() { 510 assert(Lex.getKind() == lltok::kw_declare); 511 Lex.Lex(); 512 513 std::vector<std::pair<unsigned, MDNode *>> MDs; 514 while (Lex.getKind() == lltok::MetadataVar) { 515 unsigned MDK; 516 MDNode *N; 517 if (parseMetadataAttachment(MDK, N)) 518 return true; 519 MDs.push_back({MDK, N}); 520 } 521 522 Function *F; 523 if (parseFunctionHeader(F, false)) 524 return true; 525 for (auto &MD : MDs) 526 F->addMetadata(MD.first, *MD.second); 527 return false; 528 } 529 530 /// toplevelentity 531 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 532 bool LLParser::parseDefine() { 533 assert(Lex.getKind() == lltok::kw_define); 534 Lex.Lex(); 535 536 Function *F; 537 return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) || 538 parseFunctionBody(*F); 539 } 540 541 /// parseGlobalType 542 /// ::= 'constant' 543 /// ::= 'global' 544 bool LLParser::parseGlobalType(bool &IsConstant) { 545 if (Lex.getKind() == lltok::kw_constant) 546 IsConstant = true; 547 else if (Lex.getKind() == lltok::kw_global) 548 IsConstant = false; 549 else { 550 IsConstant = false; 551 return tokError("expected 'global' or 'constant'"); 552 } 553 Lex.Lex(); 554 return false; 555 } 556 557 bool LLParser::parseOptionalUnnamedAddr( 558 GlobalVariable::UnnamedAddr &UnnamedAddr) { 559 if (EatIfPresent(lltok::kw_unnamed_addr)) 560 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 561 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 562 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 563 else 564 UnnamedAddr = GlobalValue::UnnamedAddr::None; 565 return false; 566 } 567 568 /// parseUnnamedGlobal: 569 /// OptionalVisibility (ALIAS | IFUNC) ... 570 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 571 /// OptionalDLLStorageClass 572 /// ... -> global variable 573 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 574 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier 575 /// OptionalVisibility 576 /// OptionalDLLStorageClass 577 /// ... -> global variable 578 bool LLParser::parseUnnamedGlobal() { 579 unsigned VarID = NumberedVals.size(); 580 std::string Name; 581 LocTy NameLoc = Lex.getLoc(); 582 583 // Handle the GlobalID form. 584 if (Lex.getKind() == lltok::GlobalID) { 585 if (Lex.getUIntVal() != VarID) 586 return error(Lex.getLoc(), 587 "variable expected to be numbered '%" + Twine(VarID) + "'"); 588 Lex.Lex(); // eat GlobalID; 589 590 if (parseToken(lltok::equal, "expected '=' after name")) 591 return true; 592 } 593 594 bool HasLinkage; 595 unsigned Linkage, Visibility, DLLStorageClass; 596 bool DSOLocal; 597 GlobalVariable::ThreadLocalMode TLM; 598 GlobalVariable::UnnamedAddr UnnamedAddr; 599 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 600 DSOLocal) || 601 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 602 return true; 603 604 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 605 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 606 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 607 608 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 609 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 610 } 611 612 /// parseNamedGlobal: 613 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 614 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 615 /// OptionalVisibility OptionalDLLStorageClass 616 /// ... -> global variable 617 bool LLParser::parseNamedGlobal() { 618 assert(Lex.getKind() == lltok::GlobalVar); 619 LocTy NameLoc = Lex.getLoc(); 620 std::string Name = Lex.getStrVal(); 621 Lex.Lex(); 622 623 bool HasLinkage; 624 unsigned Linkage, Visibility, DLLStorageClass; 625 bool DSOLocal; 626 GlobalVariable::ThreadLocalMode TLM; 627 GlobalVariable::UnnamedAddr UnnamedAddr; 628 if (parseToken(lltok::equal, "expected '=' in global variable") || 629 parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 630 DSOLocal) || 631 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 632 return true; 633 634 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 635 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 636 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 637 638 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 639 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 640 } 641 642 bool LLParser::parseComdat() { 643 assert(Lex.getKind() == lltok::ComdatVar); 644 std::string Name = Lex.getStrVal(); 645 LocTy NameLoc = Lex.getLoc(); 646 Lex.Lex(); 647 648 if (parseToken(lltok::equal, "expected '=' here")) 649 return true; 650 651 if (parseToken(lltok::kw_comdat, "expected comdat keyword")) 652 return tokError("expected comdat type"); 653 654 Comdat::SelectionKind SK; 655 switch (Lex.getKind()) { 656 default: 657 return tokError("unknown selection kind"); 658 case lltok::kw_any: 659 SK = Comdat::Any; 660 break; 661 case lltok::kw_exactmatch: 662 SK = Comdat::ExactMatch; 663 break; 664 case lltok::kw_largest: 665 SK = Comdat::Largest; 666 break; 667 case lltok::kw_nodeduplicate: 668 SK = Comdat::NoDeduplicate; 669 break; 670 case lltok::kw_samesize: 671 SK = Comdat::SameSize; 672 break; 673 } 674 Lex.Lex(); 675 676 // See if the comdat was forward referenced, if so, use the comdat. 677 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 678 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 679 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 680 return error(NameLoc, "redefinition of comdat '$" + Name + "'"); 681 682 Comdat *C; 683 if (I != ComdatSymTab.end()) 684 C = &I->second; 685 else 686 C = M->getOrInsertComdat(Name); 687 C->setSelectionKind(SK); 688 689 return false; 690 } 691 692 // MDString: 693 // ::= '!' STRINGCONSTANT 694 bool LLParser::parseMDString(MDString *&Result) { 695 std::string Str; 696 if (parseStringConstant(Str)) 697 return true; 698 Result = MDString::get(Context, Str); 699 return false; 700 } 701 702 // MDNode: 703 // ::= '!' MDNodeNumber 704 bool LLParser::parseMDNodeID(MDNode *&Result) { 705 // !{ ..., !42, ... } 706 LocTy IDLoc = Lex.getLoc(); 707 unsigned MID = 0; 708 if (parseUInt32(MID)) 709 return true; 710 711 // If not a forward reference, just return it now. 712 if (NumberedMetadata.count(MID)) { 713 Result = NumberedMetadata[MID]; 714 return false; 715 } 716 717 // Otherwise, create MDNode forward reference. 718 auto &FwdRef = ForwardRefMDNodes[MID]; 719 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 720 721 Result = FwdRef.first.get(); 722 NumberedMetadata[MID].reset(Result); 723 return false; 724 } 725 726 /// parseNamedMetadata: 727 /// !foo = !{ !1, !2 } 728 bool LLParser::parseNamedMetadata() { 729 assert(Lex.getKind() == lltok::MetadataVar); 730 std::string Name = Lex.getStrVal(); 731 Lex.Lex(); 732 733 if (parseToken(lltok::equal, "expected '=' here") || 734 parseToken(lltok::exclaim, "Expected '!' here") || 735 parseToken(lltok::lbrace, "Expected '{' here")) 736 return true; 737 738 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 739 if (Lex.getKind() != lltok::rbrace) 740 do { 741 MDNode *N = nullptr; 742 // parse DIExpressions inline as a special case. They are still MDNodes, 743 // so they can still appear in named metadata. Remove this logic if they 744 // become plain Metadata. 745 if (Lex.getKind() == lltok::MetadataVar && 746 Lex.getStrVal() == "DIExpression") { 747 if (parseDIExpression(N, /*IsDistinct=*/false)) 748 return true; 749 // DIArgLists should only appear inline in a function, as they may 750 // contain LocalAsMetadata arguments which require a function context. 751 } else if (Lex.getKind() == lltok::MetadataVar && 752 Lex.getStrVal() == "DIArgList") { 753 return tokError("found DIArgList outside of function"); 754 } else if (parseToken(lltok::exclaim, "Expected '!' here") || 755 parseMDNodeID(N)) { 756 return true; 757 } 758 NMD->addOperand(N); 759 } while (EatIfPresent(lltok::comma)); 760 761 return parseToken(lltok::rbrace, "expected end of metadata node"); 762 } 763 764 /// parseStandaloneMetadata: 765 /// !42 = !{...} 766 bool LLParser::parseStandaloneMetadata() { 767 assert(Lex.getKind() == lltok::exclaim); 768 Lex.Lex(); 769 unsigned MetadataID = 0; 770 771 MDNode *Init; 772 if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here")) 773 return true; 774 775 // Detect common error, from old metadata syntax. 776 if (Lex.getKind() == lltok::Type) 777 return tokError("unexpected type in metadata definition"); 778 779 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 780 if (Lex.getKind() == lltok::MetadataVar) { 781 if (parseSpecializedMDNode(Init, IsDistinct)) 782 return true; 783 } else if (parseToken(lltok::exclaim, "Expected '!' here") || 784 parseMDTuple(Init, IsDistinct)) 785 return true; 786 787 // See if this was forward referenced, if so, handle it. 788 auto FI = ForwardRefMDNodes.find(MetadataID); 789 if (FI != ForwardRefMDNodes.end()) { 790 FI->second.first->replaceAllUsesWith(Init); 791 ForwardRefMDNodes.erase(FI); 792 793 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 794 } else { 795 if (NumberedMetadata.count(MetadataID)) 796 return tokError("Metadata id is already used"); 797 NumberedMetadata[MetadataID].reset(Init); 798 } 799 800 return false; 801 } 802 803 // Skips a single module summary entry. 804 bool LLParser::skipModuleSummaryEntry() { 805 // Each module summary entry consists of a tag for the entry 806 // type, followed by a colon, then the fields which may be surrounded by 807 // nested sets of parentheses. The "tag:" looks like a Label. Once parsing 808 // support is in place we will look for the tokens corresponding to the 809 // expected tags. 810 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module && 811 Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags && 812 Lex.getKind() != lltok::kw_blockcount) 813 return tokError( 814 "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the " 815 "start of summary entry"); 816 if (Lex.getKind() == lltok::kw_flags) 817 return parseSummaryIndexFlags(); 818 if (Lex.getKind() == lltok::kw_blockcount) 819 return parseBlockCount(); 820 Lex.Lex(); 821 if (parseToken(lltok::colon, "expected ':' at start of summary entry") || 822 parseToken(lltok::lparen, "expected '(' at start of summary entry")) 823 return true; 824 // Now walk through the parenthesized entry, until the number of open 825 // parentheses goes back down to 0 (the first '(' was parsed above). 826 unsigned NumOpenParen = 1; 827 do { 828 switch (Lex.getKind()) { 829 case lltok::lparen: 830 NumOpenParen++; 831 break; 832 case lltok::rparen: 833 NumOpenParen--; 834 break; 835 case lltok::Eof: 836 return tokError("found end of file while parsing summary entry"); 837 default: 838 // Skip everything in between parentheses. 839 break; 840 } 841 Lex.Lex(); 842 } while (NumOpenParen > 0); 843 return false; 844 } 845 846 /// SummaryEntry 847 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry 848 bool LLParser::parseSummaryEntry() { 849 assert(Lex.getKind() == lltok::SummaryID); 850 unsigned SummaryID = Lex.getUIntVal(); 851 852 // For summary entries, colons should be treated as distinct tokens, 853 // not an indication of the end of a label token. 854 Lex.setIgnoreColonInIdentifiers(true); 855 856 Lex.Lex(); 857 if (parseToken(lltok::equal, "expected '=' here")) 858 return true; 859 860 // If we don't have an index object, skip the summary entry. 861 if (!Index) 862 return skipModuleSummaryEntry(); 863 864 bool result = false; 865 switch (Lex.getKind()) { 866 case lltok::kw_gv: 867 result = parseGVEntry(SummaryID); 868 break; 869 case lltok::kw_module: 870 result = parseModuleEntry(SummaryID); 871 break; 872 case lltok::kw_typeid: 873 result = parseTypeIdEntry(SummaryID); 874 break; 875 case lltok::kw_typeidCompatibleVTable: 876 result = parseTypeIdCompatibleVtableEntry(SummaryID); 877 break; 878 case lltok::kw_flags: 879 result = parseSummaryIndexFlags(); 880 break; 881 case lltok::kw_blockcount: 882 result = parseBlockCount(); 883 break; 884 default: 885 result = error(Lex.getLoc(), "unexpected summary kind"); 886 break; 887 } 888 Lex.setIgnoreColonInIdentifiers(false); 889 return result; 890 } 891 892 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 893 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 894 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 895 } 896 897 // If there was an explicit dso_local, update GV. In the absence of an explicit 898 // dso_local we keep the default value. 899 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { 900 if (DSOLocal) 901 GV.setDSOLocal(true); 902 } 903 904 static std::string typeComparisonErrorMessage(StringRef Message, Type *Ty1, 905 Type *Ty2) { 906 std::string ErrString; 907 raw_string_ostream ErrOS(ErrString); 908 ErrOS << Message << " (" << *Ty1 << " vs " << *Ty2 << ")"; 909 return ErrOS.str(); 910 } 911 912 /// parseIndirectSymbol: 913 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 914 /// OptionalVisibility OptionalDLLStorageClass 915 /// OptionalThreadLocal OptionalUnnamedAddr 916 /// 'alias|ifunc' IndirectSymbol IndirectSymbolAttr* 917 /// 918 /// IndirectSymbol 919 /// ::= TypeAndValue 920 /// 921 /// IndirectSymbolAttr 922 /// ::= ',' 'partition' StringConstant 923 /// 924 /// Everything through OptionalUnnamedAddr has already been parsed. 925 /// 926 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc, 927 unsigned L, unsigned Visibility, 928 unsigned DLLStorageClass, bool DSOLocal, 929 GlobalVariable::ThreadLocalMode TLM, 930 GlobalVariable::UnnamedAddr UnnamedAddr) { 931 bool IsAlias; 932 if (Lex.getKind() == lltok::kw_alias) 933 IsAlias = true; 934 else if (Lex.getKind() == lltok::kw_ifunc) 935 IsAlias = false; 936 else 937 llvm_unreachable("Not an alias or ifunc!"); 938 Lex.Lex(); 939 940 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 941 942 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 943 return error(NameLoc, "invalid linkage type for alias"); 944 945 if (!isValidVisibilityForLinkage(Visibility, L)) 946 return error(NameLoc, 947 "symbol with local linkage must have default visibility"); 948 949 Type *Ty; 950 LocTy ExplicitTypeLoc = Lex.getLoc(); 951 if (parseType(Ty) || 952 parseToken(lltok::comma, "expected comma after alias or ifunc's type")) 953 return true; 954 955 Constant *Aliasee; 956 LocTy AliaseeLoc = Lex.getLoc(); 957 if (Lex.getKind() != lltok::kw_bitcast && 958 Lex.getKind() != lltok::kw_getelementptr && 959 Lex.getKind() != lltok::kw_addrspacecast && 960 Lex.getKind() != lltok::kw_inttoptr) { 961 if (parseGlobalTypeAndValue(Aliasee)) 962 return true; 963 } else { 964 // The bitcast dest type is not present, it is implied by the dest type. 965 ValID ID; 966 if (parseValID(ID, /*PFS=*/nullptr)) 967 return true; 968 if (ID.Kind != ValID::t_Constant) 969 return error(AliaseeLoc, "invalid aliasee"); 970 Aliasee = ID.ConstantVal; 971 } 972 973 Type *AliaseeType = Aliasee->getType(); 974 auto *PTy = dyn_cast<PointerType>(AliaseeType); 975 if (!PTy) 976 return error(AliaseeLoc, "An alias or ifunc must have pointer type"); 977 unsigned AddrSpace = PTy->getAddressSpace(); 978 979 if (IsAlias && !PTy->isOpaqueOrPointeeTypeMatches(Ty)) { 980 return error( 981 ExplicitTypeLoc, 982 typeComparisonErrorMessage( 983 "explicit pointee type doesn't match operand's pointee type", Ty, 984 PTy->getElementType())); 985 } 986 987 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) { 988 return error(ExplicitTypeLoc, 989 "explicit pointee type should be a function type"); 990 } 991 992 GlobalValue *GVal = nullptr; 993 994 // See if the alias was forward referenced, if so, prepare to replace the 995 // forward reference. 996 if (!Name.empty()) { 997 auto I = ForwardRefVals.find(Name); 998 if (I != ForwardRefVals.end()) { 999 GVal = I->second.first; 1000 ForwardRefVals.erase(Name); 1001 } else if (M->getNamedValue(Name)) { 1002 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1003 } 1004 } else { 1005 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1006 if (I != ForwardRefValIDs.end()) { 1007 GVal = I->second.first; 1008 ForwardRefValIDs.erase(I); 1009 } 1010 } 1011 1012 // Okay, create the alias but do not insert it into the module yet. 1013 std::unique_ptr<GlobalIndirectSymbol> GA; 1014 if (IsAlias) 1015 GA.reset(GlobalAlias::create(Ty, AddrSpace, 1016 (GlobalValue::LinkageTypes)Linkage, Name, 1017 Aliasee, /*Parent*/ nullptr)); 1018 else 1019 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 1020 (GlobalValue::LinkageTypes)Linkage, Name, 1021 Aliasee, /*Parent*/ nullptr)); 1022 GA->setThreadLocalMode(TLM); 1023 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1024 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1025 GA->setUnnamedAddr(UnnamedAddr); 1026 maybeSetDSOLocal(DSOLocal, *GA); 1027 1028 // At this point we've parsed everything except for the IndirectSymbolAttrs. 1029 // Now parse them if there are any. 1030 while (Lex.getKind() == lltok::comma) { 1031 Lex.Lex(); 1032 1033 if (Lex.getKind() == lltok::kw_partition) { 1034 Lex.Lex(); 1035 GA->setPartition(Lex.getStrVal()); 1036 if (parseToken(lltok::StringConstant, "expected partition string")) 1037 return true; 1038 } else { 1039 return tokError("unknown alias or ifunc property!"); 1040 } 1041 } 1042 1043 if (Name.empty()) 1044 NumberedVals.push_back(GA.get()); 1045 1046 if (GVal) { 1047 // Verify that types agree. 1048 if (GVal->getType() != GA->getType()) 1049 return error( 1050 ExplicitTypeLoc, 1051 "forward reference and definition of alias have different types"); 1052 1053 // If they agree, just RAUW the old value with the alias and remove the 1054 // forward ref info. 1055 GVal->replaceAllUsesWith(GA.get()); 1056 GVal->eraseFromParent(); 1057 } 1058 1059 // Insert into the module, we know its name won't collide now. 1060 if (IsAlias) 1061 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 1062 else 1063 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 1064 assert(GA->getName() == Name && "Should not be a name conflict!"); 1065 1066 // The module owns this now 1067 GA.release(); 1068 1069 return false; 1070 } 1071 1072 /// parseGlobal 1073 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 1074 /// OptionalVisibility OptionalDLLStorageClass 1075 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 1076 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 1077 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 1078 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 1079 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 1080 /// Const OptionalAttrs 1081 /// 1082 /// Everything up to and including OptionalUnnamedAddr has been parsed 1083 /// already. 1084 /// 1085 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc, 1086 unsigned Linkage, bool HasLinkage, 1087 unsigned Visibility, unsigned DLLStorageClass, 1088 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 1089 GlobalVariable::UnnamedAddr UnnamedAddr) { 1090 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 1091 return error(NameLoc, 1092 "symbol with local linkage must have default visibility"); 1093 1094 unsigned AddrSpace; 1095 bool IsConstant, IsExternallyInitialized; 1096 LocTy IsExternallyInitializedLoc; 1097 LocTy TyLoc; 1098 1099 Type *Ty = nullptr; 1100 if (parseOptionalAddrSpace(AddrSpace) || 1101 parseOptionalToken(lltok::kw_externally_initialized, 1102 IsExternallyInitialized, 1103 &IsExternallyInitializedLoc) || 1104 parseGlobalType(IsConstant) || parseType(Ty, TyLoc)) 1105 return true; 1106 1107 // If the linkage is specified and is external, then no initializer is 1108 // present. 1109 Constant *Init = nullptr; 1110 if (!HasLinkage || 1111 !GlobalValue::isValidDeclarationLinkage( 1112 (GlobalValue::LinkageTypes)Linkage)) { 1113 if (parseGlobalValue(Ty, Init)) 1114 return true; 1115 } 1116 1117 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 1118 return error(TyLoc, "invalid type for global variable"); 1119 1120 GlobalValue *GVal = nullptr; 1121 1122 // See if the global was forward referenced, if so, use the global. 1123 if (!Name.empty()) { 1124 auto I = ForwardRefVals.find(Name); 1125 if (I != ForwardRefVals.end()) { 1126 GVal = I->second.first; 1127 ForwardRefVals.erase(I); 1128 } else if (M->getNamedValue(Name)) { 1129 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1130 } 1131 } else { 1132 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1133 if (I != ForwardRefValIDs.end()) { 1134 GVal = I->second.first; 1135 ForwardRefValIDs.erase(I); 1136 } 1137 } 1138 1139 GlobalVariable *GV = new GlobalVariable( 1140 *M, Ty, false, GlobalValue::ExternalLinkage, nullptr, Name, nullptr, 1141 GlobalVariable::NotThreadLocal, AddrSpace); 1142 1143 if (Name.empty()) 1144 NumberedVals.push_back(GV); 1145 1146 // Set the parsed properties on the global. 1147 if (Init) 1148 GV->setInitializer(Init); 1149 GV->setConstant(IsConstant); 1150 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 1151 maybeSetDSOLocal(DSOLocal, *GV); 1152 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1153 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1154 GV->setExternallyInitialized(IsExternallyInitialized); 1155 GV->setThreadLocalMode(TLM); 1156 GV->setUnnamedAddr(UnnamedAddr); 1157 1158 if (GVal) { 1159 if (!GVal->getType()->isOpaque() && GVal->getValueType() != Ty) 1160 return error( 1161 TyLoc, 1162 "forward reference and definition of global have different types"); 1163 1164 GVal->replaceAllUsesWith(GV); 1165 GVal->eraseFromParent(); 1166 } 1167 1168 // parse attributes on the global. 1169 while (Lex.getKind() == lltok::comma) { 1170 Lex.Lex(); 1171 1172 if (Lex.getKind() == lltok::kw_section) { 1173 Lex.Lex(); 1174 GV->setSection(Lex.getStrVal()); 1175 if (parseToken(lltok::StringConstant, "expected global section string")) 1176 return true; 1177 } else if (Lex.getKind() == lltok::kw_partition) { 1178 Lex.Lex(); 1179 GV->setPartition(Lex.getStrVal()); 1180 if (parseToken(lltok::StringConstant, "expected partition string")) 1181 return true; 1182 } else if (Lex.getKind() == lltok::kw_align) { 1183 MaybeAlign Alignment; 1184 if (parseOptionalAlignment(Alignment)) 1185 return true; 1186 GV->setAlignment(Alignment); 1187 } else if (Lex.getKind() == lltok::MetadataVar) { 1188 if (parseGlobalObjectMetadataAttachment(*GV)) 1189 return true; 1190 } else { 1191 Comdat *C; 1192 if (parseOptionalComdat(Name, C)) 1193 return true; 1194 if (C) 1195 GV->setComdat(C); 1196 else 1197 return tokError("unknown global variable property!"); 1198 } 1199 } 1200 1201 AttrBuilder Attrs; 1202 LocTy BuiltinLoc; 1203 std::vector<unsigned> FwdRefAttrGrps; 1204 if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 1205 return true; 1206 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 1207 GV->setAttributes(AttributeSet::get(Context, Attrs)); 1208 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 1209 } 1210 1211 return false; 1212 } 1213 1214 /// parseUnnamedAttrGrp 1215 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 1216 bool LLParser::parseUnnamedAttrGrp() { 1217 assert(Lex.getKind() == lltok::kw_attributes); 1218 LocTy AttrGrpLoc = Lex.getLoc(); 1219 Lex.Lex(); 1220 1221 if (Lex.getKind() != lltok::AttrGrpID) 1222 return tokError("expected attribute group id"); 1223 1224 unsigned VarID = Lex.getUIntVal(); 1225 std::vector<unsigned> unused; 1226 LocTy BuiltinLoc; 1227 Lex.Lex(); 1228 1229 if (parseToken(lltok::equal, "expected '=' here") || 1230 parseToken(lltok::lbrace, "expected '{' here") || 1231 parseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 1232 BuiltinLoc) || 1233 parseToken(lltok::rbrace, "expected end of attribute group")) 1234 return true; 1235 1236 if (!NumberedAttrBuilders[VarID].hasAttributes()) 1237 return error(AttrGrpLoc, "attribute group has no attributes"); 1238 1239 return false; 1240 } 1241 1242 static Attribute::AttrKind tokenToAttribute(lltok::Kind Kind) { 1243 switch (Kind) { 1244 #define GET_ATTR_NAMES 1245 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) \ 1246 case lltok::kw_##DISPLAY_NAME: \ 1247 return Attribute::ENUM_NAME; 1248 #include "llvm/IR/Attributes.inc" 1249 default: 1250 return Attribute::None; 1251 } 1252 } 1253 1254 bool LLParser::parseEnumAttribute(Attribute::AttrKind Attr, AttrBuilder &B, 1255 bool InAttrGroup) { 1256 if (Attribute::isTypeAttrKind(Attr)) 1257 return parseRequiredTypeAttr(B, Lex.getKind(), Attr); 1258 1259 switch (Attr) { 1260 case Attribute::Alignment: { 1261 MaybeAlign Alignment; 1262 if (InAttrGroup) { 1263 uint32_t Value = 0; 1264 Lex.Lex(); 1265 if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value)) 1266 return true; 1267 Alignment = Align(Value); 1268 } else { 1269 if (parseOptionalAlignment(Alignment, true)) 1270 return true; 1271 } 1272 B.addAlignmentAttr(Alignment); 1273 return false; 1274 } 1275 case Attribute::StackAlignment: { 1276 unsigned Alignment; 1277 if (InAttrGroup) { 1278 Lex.Lex(); 1279 if (parseToken(lltok::equal, "expected '=' here") || 1280 parseUInt32(Alignment)) 1281 return true; 1282 } else { 1283 if (parseOptionalStackAlignment(Alignment)) 1284 return true; 1285 } 1286 B.addStackAlignmentAttr(Alignment); 1287 return false; 1288 } 1289 case Attribute::AllocSize: { 1290 unsigned ElemSizeArg; 1291 Optional<unsigned> NumElemsArg; 1292 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1293 return true; 1294 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1295 return false; 1296 } 1297 case Attribute::VScaleRange: { 1298 unsigned MinValue, MaxValue; 1299 if (parseVScaleRangeArguments(MinValue, MaxValue)) 1300 return true; 1301 B.addVScaleRangeAttr(MinValue, MaxValue); 1302 return false; 1303 } 1304 case Attribute::Dereferenceable: { 1305 uint64_t Bytes; 1306 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1307 return true; 1308 B.addDereferenceableAttr(Bytes); 1309 return false; 1310 } 1311 case Attribute::DereferenceableOrNull: { 1312 uint64_t Bytes; 1313 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1314 return true; 1315 B.addDereferenceableOrNullAttr(Bytes); 1316 return false; 1317 } 1318 default: 1319 B.addAttribute(Attr); 1320 Lex.Lex(); 1321 return false; 1322 } 1323 } 1324 1325 /// parseFnAttributeValuePairs 1326 /// ::= <attr> | <attr> '=' <value> 1327 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B, 1328 std::vector<unsigned> &FwdRefAttrGrps, 1329 bool InAttrGrp, LocTy &BuiltinLoc) { 1330 bool HaveError = false; 1331 1332 B.clear(); 1333 1334 while (true) { 1335 lltok::Kind Token = Lex.getKind(); 1336 if (Token == lltok::rbrace) 1337 return HaveError; // Finished. 1338 1339 if (Token == lltok::StringConstant) { 1340 if (parseStringAttribute(B)) 1341 return true; 1342 continue; 1343 } 1344 1345 if (Token == lltok::AttrGrpID) { 1346 // Allow a function to reference an attribute group: 1347 // 1348 // define void @foo() #1 { ... } 1349 if (InAttrGrp) { 1350 HaveError |= error( 1351 Lex.getLoc(), 1352 "cannot have an attribute group reference in an attribute group"); 1353 } else { 1354 // Save the reference to the attribute group. We'll fill it in later. 1355 FwdRefAttrGrps.push_back(Lex.getUIntVal()); 1356 } 1357 Lex.Lex(); 1358 continue; 1359 } 1360 1361 SMLoc Loc = Lex.getLoc(); 1362 if (Token == lltok::kw_builtin) 1363 BuiltinLoc = Loc; 1364 1365 Attribute::AttrKind Attr = tokenToAttribute(Token); 1366 if (Attr == Attribute::None) { 1367 if (!InAttrGrp) 1368 return HaveError; 1369 return error(Lex.getLoc(), "unterminated attribute group"); 1370 } 1371 1372 if (parseEnumAttribute(Attr, B, InAttrGrp)) 1373 return true; 1374 1375 // As a hack, we allow function alignment to be initially parsed as an 1376 // attribute on a function declaration/definition or added to an attribute 1377 // group and later moved to the alignment field. 1378 if (!Attribute::canUseAsFnAttr(Attr) && Attr != Attribute::Alignment) 1379 HaveError |= error(Loc, "this attribute does not apply to functions"); 1380 } 1381 } 1382 1383 //===----------------------------------------------------------------------===// 1384 // GlobalValue Reference/Resolution Routines. 1385 //===----------------------------------------------------------------------===// 1386 1387 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy) { 1388 // For opaque pointers, the used global type does not matter. We will later 1389 // RAUW it with a global/function of the correct type. 1390 if (PTy->isOpaque()) 1391 return new GlobalVariable(*M, Type::getInt8Ty(M->getContext()), false, 1392 GlobalValue::ExternalWeakLinkage, nullptr, "", 1393 nullptr, GlobalVariable::NotThreadLocal, 1394 PTy->getAddressSpace()); 1395 1396 if (auto *FT = dyn_cast<FunctionType>(PTy->getPointerElementType())) 1397 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, 1398 PTy->getAddressSpace(), "", M); 1399 else 1400 return new GlobalVariable(*M, PTy->getPointerElementType(), false, 1401 GlobalValue::ExternalWeakLinkage, nullptr, "", 1402 nullptr, GlobalVariable::NotThreadLocal, 1403 PTy->getAddressSpace()); 1404 } 1405 1406 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty, 1407 Value *Val, bool IsCall) { 1408 Type *ValTy = Val->getType(); 1409 if (ValTy == Ty) 1410 return Val; 1411 // For calls, we also allow opaque pointers. 1412 if (IsCall && ValTy == PointerType::get(Ty->getContext(), 1413 Ty->getPointerAddressSpace())) 1414 return Val; 1415 if (Ty->isLabelTy()) 1416 error(Loc, "'" + Name + "' is not a basic block"); 1417 else 1418 error(Loc, "'" + Name + "' defined with type '" + 1419 getTypeString(Val->getType()) + "' but expected '" + 1420 getTypeString(Ty) + "'"); 1421 return nullptr; 1422 } 1423 1424 /// getGlobalVal - Get a value with the specified name or ID, creating a 1425 /// forward reference record if needed. This can return null if the value 1426 /// exists but does not have the right type. 1427 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty, 1428 LocTy Loc, bool IsCall) { 1429 PointerType *PTy = dyn_cast<PointerType>(Ty); 1430 if (!PTy) { 1431 error(Loc, "global variable reference must have pointer type"); 1432 return nullptr; 1433 } 1434 1435 // Look this name up in the normal function symbol table. 1436 GlobalValue *Val = 1437 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1438 1439 // If this is a forward reference for the value, see if we already created a 1440 // forward ref record. 1441 if (!Val) { 1442 auto I = ForwardRefVals.find(Name); 1443 if (I != ForwardRefVals.end()) 1444 Val = I->second.first; 1445 } 1446 1447 // If we have the value in the symbol table or fwd-ref table, return it. 1448 if (Val) 1449 return cast_or_null<GlobalValue>( 1450 checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall)); 1451 1452 // Otherwise, create a new forward reference for this value and remember it. 1453 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy); 1454 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1455 return FwdVal; 1456 } 1457 1458 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc, 1459 bool IsCall) { 1460 PointerType *PTy = dyn_cast<PointerType>(Ty); 1461 if (!PTy) { 1462 error(Loc, "global variable reference must have pointer type"); 1463 return nullptr; 1464 } 1465 1466 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1467 1468 // If this is a forward reference for the value, see if we already created a 1469 // forward ref record. 1470 if (!Val) { 1471 auto I = ForwardRefValIDs.find(ID); 1472 if (I != ForwardRefValIDs.end()) 1473 Val = I->second.first; 1474 } 1475 1476 // If we have the value in the symbol table or fwd-ref table, return it. 1477 if (Val) 1478 return cast_or_null<GlobalValue>( 1479 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall)); 1480 1481 // Otherwise, create a new forward reference for this value and remember it. 1482 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy); 1483 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1484 return FwdVal; 1485 } 1486 1487 //===----------------------------------------------------------------------===// 1488 // Comdat Reference/Resolution Routines. 1489 //===----------------------------------------------------------------------===// 1490 1491 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1492 // Look this name up in the comdat symbol table. 1493 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1494 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1495 if (I != ComdatSymTab.end()) 1496 return &I->second; 1497 1498 // Otherwise, create a new forward reference for this value and remember it. 1499 Comdat *C = M->getOrInsertComdat(Name); 1500 ForwardRefComdats[Name] = Loc; 1501 return C; 1502 } 1503 1504 //===----------------------------------------------------------------------===// 1505 // Helper Routines. 1506 //===----------------------------------------------------------------------===// 1507 1508 /// parseToken - If the current token has the specified kind, eat it and return 1509 /// success. Otherwise, emit the specified error and return failure. 1510 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) { 1511 if (Lex.getKind() != T) 1512 return tokError(ErrMsg); 1513 Lex.Lex(); 1514 return false; 1515 } 1516 1517 /// parseStringConstant 1518 /// ::= StringConstant 1519 bool LLParser::parseStringConstant(std::string &Result) { 1520 if (Lex.getKind() != lltok::StringConstant) 1521 return tokError("expected string constant"); 1522 Result = Lex.getStrVal(); 1523 Lex.Lex(); 1524 return false; 1525 } 1526 1527 /// parseUInt32 1528 /// ::= uint32 1529 bool LLParser::parseUInt32(uint32_t &Val) { 1530 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1531 return tokError("expected integer"); 1532 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1533 if (Val64 != unsigned(Val64)) 1534 return tokError("expected 32-bit integer (too large)"); 1535 Val = Val64; 1536 Lex.Lex(); 1537 return false; 1538 } 1539 1540 /// parseUInt64 1541 /// ::= uint64 1542 bool LLParser::parseUInt64(uint64_t &Val) { 1543 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1544 return tokError("expected integer"); 1545 Val = Lex.getAPSIntVal().getLimitedValue(); 1546 Lex.Lex(); 1547 return false; 1548 } 1549 1550 /// parseTLSModel 1551 /// := 'localdynamic' 1552 /// := 'initialexec' 1553 /// := 'localexec' 1554 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1555 switch (Lex.getKind()) { 1556 default: 1557 return tokError("expected localdynamic, initialexec or localexec"); 1558 case lltok::kw_localdynamic: 1559 TLM = GlobalVariable::LocalDynamicTLSModel; 1560 break; 1561 case lltok::kw_initialexec: 1562 TLM = GlobalVariable::InitialExecTLSModel; 1563 break; 1564 case lltok::kw_localexec: 1565 TLM = GlobalVariable::LocalExecTLSModel; 1566 break; 1567 } 1568 1569 Lex.Lex(); 1570 return false; 1571 } 1572 1573 /// parseOptionalThreadLocal 1574 /// := /*empty*/ 1575 /// := 'thread_local' 1576 /// := 'thread_local' '(' tlsmodel ')' 1577 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1578 TLM = GlobalVariable::NotThreadLocal; 1579 if (!EatIfPresent(lltok::kw_thread_local)) 1580 return false; 1581 1582 TLM = GlobalVariable::GeneralDynamicTLSModel; 1583 if (Lex.getKind() == lltok::lparen) { 1584 Lex.Lex(); 1585 return parseTLSModel(TLM) || 1586 parseToken(lltok::rparen, "expected ')' after thread local model"); 1587 } 1588 return false; 1589 } 1590 1591 /// parseOptionalAddrSpace 1592 /// := /*empty*/ 1593 /// := 'addrspace' '(' uint32 ')' 1594 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) { 1595 AddrSpace = DefaultAS; 1596 if (!EatIfPresent(lltok::kw_addrspace)) 1597 return false; 1598 return parseToken(lltok::lparen, "expected '(' in address space") || 1599 parseUInt32(AddrSpace) || 1600 parseToken(lltok::rparen, "expected ')' in address space"); 1601 } 1602 1603 /// parseStringAttribute 1604 /// := StringConstant 1605 /// := StringConstant '=' StringConstant 1606 bool LLParser::parseStringAttribute(AttrBuilder &B) { 1607 std::string Attr = Lex.getStrVal(); 1608 Lex.Lex(); 1609 std::string Val; 1610 if (EatIfPresent(lltok::equal) && parseStringConstant(Val)) 1611 return true; 1612 B.addAttribute(Attr, Val); 1613 return false; 1614 } 1615 1616 /// Parse a potentially empty list of parameter or return attributes. 1617 bool LLParser::parseOptionalParamOrReturnAttrs(AttrBuilder &B, bool IsParam) { 1618 bool HaveError = false; 1619 1620 B.clear(); 1621 1622 while (true) { 1623 lltok::Kind Token = Lex.getKind(); 1624 if (Token == lltok::StringConstant) { 1625 if (parseStringAttribute(B)) 1626 return true; 1627 continue; 1628 } 1629 1630 SMLoc Loc = Lex.getLoc(); 1631 Attribute::AttrKind Attr = tokenToAttribute(Token); 1632 if (Attr == Attribute::None) 1633 return HaveError; 1634 1635 if (parseEnumAttribute(Attr, B, /* InAttrGroup */ false)) 1636 return true; 1637 1638 if (IsParam && !Attribute::canUseAsParamAttr(Attr)) 1639 HaveError |= error(Loc, "this attribute does not apply to parameters"); 1640 if (!IsParam && !Attribute::canUseAsRetAttr(Attr)) 1641 HaveError |= error(Loc, "this attribute does not apply to return values"); 1642 } 1643 } 1644 1645 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1646 HasLinkage = true; 1647 switch (Kind) { 1648 default: 1649 HasLinkage = false; 1650 return GlobalValue::ExternalLinkage; 1651 case lltok::kw_private: 1652 return GlobalValue::PrivateLinkage; 1653 case lltok::kw_internal: 1654 return GlobalValue::InternalLinkage; 1655 case lltok::kw_weak: 1656 return GlobalValue::WeakAnyLinkage; 1657 case lltok::kw_weak_odr: 1658 return GlobalValue::WeakODRLinkage; 1659 case lltok::kw_linkonce: 1660 return GlobalValue::LinkOnceAnyLinkage; 1661 case lltok::kw_linkonce_odr: 1662 return GlobalValue::LinkOnceODRLinkage; 1663 case lltok::kw_available_externally: 1664 return GlobalValue::AvailableExternallyLinkage; 1665 case lltok::kw_appending: 1666 return GlobalValue::AppendingLinkage; 1667 case lltok::kw_common: 1668 return GlobalValue::CommonLinkage; 1669 case lltok::kw_extern_weak: 1670 return GlobalValue::ExternalWeakLinkage; 1671 case lltok::kw_external: 1672 return GlobalValue::ExternalLinkage; 1673 } 1674 } 1675 1676 /// parseOptionalLinkage 1677 /// ::= /*empty*/ 1678 /// ::= 'private' 1679 /// ::= 'internal' 1680 /// ::= 'weak' 1681 /// ::= 'weak_odr' 1682 /// ::= 'linkonce' 1683 /// ::= 'linkonce_odr' 1684 /// ::= 'available_externally' 1685 /// ::= 'appending' 1686 /// ::= 'common' 1687 /// ::= 'extern_weak' 1688 /// ::= 'external' 1689 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1690 unsigned &Visibility, 1691 unsigned &DLLStorageClass, bool &DSOLocal) { 1692 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1693 if (HasLinkage) 1694 Lex.Lex(); 1695 parseOptionalDSOLocal(DSOLocal); 1696 parseOptionalVisibility(Visibility); 1697 parseOptionalDLLStorageClass(DLLStorageClass); 1698 1699 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 1700 return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 1701 } 1702 1703 return false; 1704 } 1705 1706 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) { 1707 switch (Lex.getKind()) { 1708 default: 1709 DSOLocal = false; 1710 break; 1711 case lltok::kw_dso_local: 1712 DSOLocal = true; 1713 Lex.Lex(); 1714 break; 1715 case lltok::kw_dso_preemptable: 1716 DSOLocal = false; 1717 Lex.Lex(); 1718 break; 1719 } 1720 } 1721 1722 /// parseOptionalVisibility 1723 /// ::= /*empty*/ 1724 /// ::= 'default' 1725 /// ::= 'hidden' 1726 /// ::= 'protected' 1727 /// 1728 void LLParser::parseOptionalVisibility(unsigned &Res) { 1729 switch (Lex.getKind()) { 1730 default: 1731 Res = GlobalValue::DefaultVisibility; 1732 return; 1733 case lltok::kw_default: 1734 Res = GlobalValue::DefaultVisibility; 1735 break; 1736 case lltok::kw_hidden: 1737 Res = GlobalValue::HiddenVisibility; 1738 break; 1739 case lltok::kw_protected: 1740 Res = GlobalValue::ProtectedVisibility; 1741 break; 1742 } 1743 Lex.Lex(); 1744 } 1745 1746 /// parseOptionalDLLStorageClass 1747 /// ::= /*empty*/ 1748 /// ::= 'dllimport' 1749 /// ::= 'dllexport' 1750 /// 1751 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) { 1752 switch (Lex.getKind()) { 1753 default: 1754 Res = GlobalValue::DefaultStorageClass; 1755 return; 1756 case lltok::kw_dllimport: 1757 Res = GlobalValue::DLLImportStorageClass; 1758 break; 1759 case lltok::kw_dllexport: 1760 Res = GlobalValue::DLLExportStorageClass; 1761 break; 1762 } 1763 Lex.Lex(); 1764 } 1765 1766 /// parseOptionalCallingConv 1767 /// ::= /*empty*/ 1768 /// ::= 'ccc' 1769 /// ::= 'fastcc' 1770 /// ::= 'intel_ocl_bicc' 1771 /// ::= 'coldcc' 1772 /// ::= 'cfguard_checkcc' 1773 /// ::= 'x86_stdcallcc' 1774 /// ::= 'x86_fastcallcc' 1775 /// ::= 'x86_thiscallcc' 1776 /// ::= 'x86_vectorcallcc' 1777 /// ::= 'arm_apcscc' 1778 /// ::= 'arm_aapcscc' 1779 /// ::= 'arm_aapcs_vfpcc' 1780 /// ::= 'aarch64_vector_pcs' 1781 /// ::= 'aarch64_sve_vector_pcs' 1782 /// ::= 'msp430_intrcc' 1783 /// ::= 'avr_intrcc' 1784 /// ::= 'avr_signalcc' 1785 /// ::= 'ptx_kernel' 1786 /// ::= 'ptx_device' 1787 /// ::= 'spir_func' 1788 /// ::= 'spir_kernel' 1789 /// ::= 'x86_64_sysvcc' 1790 /// ::= 'win64cc' 1791 /// ::= 'webkit_jscc' 1792 /// ::= 'anyregcc' 1793 /// ::= 'preserve_mostcc' 1794 /// ::= 'preserve_allcc' 1795 /// ::= 'ghccc' 1796 /// ::= 'swiftcc' 1797 /// ::= 'swifttailcc' 1798 /// ::= 'x86_intrcc' 1799 /// ::= 'hhvmcc' 1800 /// ::= 'hhvm_ccc' 1801 /// ::= 'cxx_fast_tlscc' 1802 /// ::= 'amdgpu_vs' 1803 /// ::= 'amdgpu_ls' 1804 /// ::= 'amdgpu_hs' 1805 /// ::= 'amdgpu_es' 1806 /// ::= 'amdgpu_gs' 1807 /// ::= 'amdgpu_ps' 1808 /// ::= 'amdgpu_cs' 1809 /// ::= 'amdgpu_kernel' 1810 /// ::= 'tailcc' 1811 /// ::= 'cc' UINT 1812 /// 1813 bool LLParser::parseOptionalCallingConv(unsigned &CC) { 1814 switch (Lex.getKind()) { 1815 default: CC = CallingConv::C; return false; 1816 case lltok::kw_ccc: CC = CallingConv::C; break; 1817 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1818 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1819 case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break; 1820 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1821 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1822 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 1823 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1824 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1825 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1826 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1827 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1828 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break; 1829 case lltok::kw_aarch64_sve_vector_pcs: 1830 CC = CallingConv::AArch64_SVE_VectorCall; 1831 break; 1832 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1833 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 1834 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 1835 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1836 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1837 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1838 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1839 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1840 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1841 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 1842 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1843 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1844 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1845 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1846 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1847 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 1848 case lltok::kw_swifttailcc: CC = CallingConv::SwiftTail; break; 1849 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 1850 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 1851 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 1852 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 1853 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 1854 case lltok::kw_amdgpu_gfx: CC = CallingConv::AMDGPU_Gfx; break; 1855 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 1856 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 1857 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 1858 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 1859 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 1860 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 1861 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 1862 case lltok::kw_tailcc: CC = CallingConv::Tail; break; 1863 case lltok::kw_cc: { 1864 Lex.Lex(); 1865 return parseUInt32(CC); 1866 } 1867 } 1868 1869 Lex.Lex(); 1870 return false; 1871 } 1872 1873 /// parseMetadataAttachment 1874 /// ::= !dbg !42 1875 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 1876 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 1877 1878 std::string Name = Lex.getStrVal(); 1879 Kind = M->getMDKindID(Name); 1880 Lex.Lex(); 1881 1882 return parseMDNode(MD); 1883 } 1884 1885 /// parseInstructionMetadata 1886 /// ::= !dbg !42 (',' !dbg !57)* 1887 bool LLParser::parseInstructionMetadata(Instruction &Inst) { 1888 do { 1889 if (Lex.getKind() != lltok::MetadataVar) 1890 return tokError("expected metadata after comma"); 1891 1892 unsigned MDK; 1893 MDNode *N; 1894 if (parseMetadataAttachment(MDK, N)) 1895 return true; 1896 1897 Inst.setMetadata(MDK, N); 1898 if (MDK == LLVMContext::MD_tbaa) 1899 InstsWithTBAATag.push_back(&Inst); 1900 1901 // If this is the end of the list, we're done. 1902 } while (EatIfPresent(lltok::comma)); 1903 return false; 1904 } 1905 1906 /// parseGlobalObjectMetadataAttachment 1907 /// ::= !dbg !57 1908 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) { 1909 unsigned MDK; 1910 MDNode *N; 1911 if (parseMetadataAttachment(MDK, N)) 1912 return true; 1913 1914 GO.addMetadata(MDK, *N); 1915 return false; 1916 } 1917 1918 /// parseOptionalFunctionMetadata 1919 /// ::= (!dbg !57)* 1920 bool LLParser::parseOptionalFunctionMetadata(Function &F) { 1921 while (Lex.getKind() == lltok::MetadataVar) 1922 if (parseGlobalObjectMetadataAttachment(F)) 1923 return true; 1924 return false; 1925 } 1926 1927 /// parseOptionalAlignment 1928 /// ::= /* empty */ 1929 /// ::= 'align' 4 1930 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) { 1931 Alignment = None; 1932 if (!EatIfPresent(lltok::kw_align)) 1933 return false; 1934 LocTy AlignLoc = Lex.getLoc(); 1935 uint32_t Value = 0; 1936 1937 LocTy ParenLoc = Lex.getLoc(); 1938 bool HaveParens = false; 1939 if (AllowParens) { 1940 if (EatIfPresent(lltok::lparen)) 1941 HaveParens = true; 1942 } 1943 1944 if (parseUInt32(Value)) 1945 return true; 1946 1947 if (HaveParens && !EatIfPresent(lltok::rparen)) 1948 return error(ParenLoc, "expected ')'"); 1949 1950 if (!isPowerOf2_32(Value)) 1951 return error(AlignLoc, "alignment is not a power of two"); 1952 if (Value > Value::MaximumAlignment) 1953 return error(AlignLoc, "huge alignments are not supported yet"); 1954 Alignment = Align(Value); 1955 return false; 1956 } 1957 1958 /// parseOptionalDerefAttrBytes 1959 /// ::= /* empty */ 1960 /// ::= AttrKind '(' 4 ')' 1961 /// 1962 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 1963 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind, 1964 uint64_t &Bytes) { 1965 assert((AttrKind == lltok::kw_dereferenceable || 1966 AttrKind == lltok::kw_dereferenceable_or_null) && 1967 "contract!"); 1968 1969 Bytes = 0; 1970 if (!EatIfPresent(AttrKind)) 1971 return false; 1972 LocTy ParenLoc = Lex.getLoc(); 1973 if (!EatIfPresent(lltok::lparen)) 1974 return error(ParenLoc, "expected '('"); 1975 LocTy DerefLoc = Lex.getLoc(); 1976 if (parseUInt64(Bytes)) 1977 return true; 1978 ParenLoc = Lex.getLoc(); 1979 if (!EatIfPresent(lltok::rparen)) 1980 return error(ParenLoc, "expected ')'"); 1981 if (!Bytes) 1982 return error(DerefLoc, "dereferenceable bytes must be non-zero"); 1983 return false; 1984 } 1985 1986 /// parseOptionalCommaAlign 1987 /// ::= 1988 /// ::= ',' align 4 1989 /// 1990 /// This returns with AteExtraComma set to true if it ate an excess comma at the 1991 /// end. 1992 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment, 1993 bool &AteExtraComma) { 1994 AteExtraComma = false; 1995 while (EatIfPresent(lltok::comma)) { 1996 // Metadata at the end is an early exit. 1997 if (Lex.getKind() == lltok::MetadataVar) { 1998 AteExtraComma = true; 1999 return false; 2000 } 2001 2002 if (Lex.getKind() != lltok::kw_align) 2003 return error(Lex.getLoc(), "expected metadata or 'align'"); 2004 2005 if (parseOptionalAlignment(Alignment)) 2006 return true; 2007 } 2008 2009 return false; 2010 } 2011 2012 /// parseOptionalCommaAddrSpace 2013 /// ::= 2014 /// ::= ',' addrspace(1) 2015 /// 2016 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2017 /// end. 2018 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc, 2019 bool &AteExtraComma) { 2020 AteExtraComma = false; 2021 while (EatIfPresent(lltok::comma)) { 2022 // Metadata at the end is an early exit. 2023 if (Lex.getKind() == lltok::MetadataVar) { 2024 AteExtraComma = true; 2025 return false; 2026 } 2027 2028 Loc = Lex.getLoc(); 2029 if (Lex.getKind() != lltok::kw_addrspace) 2030 return error(Lex.getLoc(), "expected metadata or 'addrspace'"); 2031 2032 if (parseOptionalAddrSpace(AddrSpace)) 2033 return true; 2034 } 2035 2036 return false; 2037 } 2038 2039 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 2040 Optional<unsigned> &HowManyArg) { 2041 Lex.Lex(); 2042 2043 auto StartParen = Lex.getLoc(); 2044 if (!EatIfPresent(lltok::lparen)) 2045 return error(StartParen, "expected '('"); 2046 2047 if (parseUInt32(BaseSizeArg)) 2048 return true; 2049 2050 if (EatIfPresent(lltok::comma)) { 2051 auto HowManyAt = Lex.getLoc(); 2052 unsigned HowMany; 2053 if (parseUInt32(HowMany)) 2054 return true; 2055 if (HowMany == BaseSizeArg) 2056 return error(HowManyAt, 2057 "'allocsize' indices can't refer to the same parameter"); 2058 HowManyArg = HowMany; 2059 } else 2060 HowManyArg = None; 2061 2062 auto EndParen = Lex.getLoc(); 2063 if (!EatIfPresent(lltok::rparen)) 2064 return error(EndParen, "expected ')'"); 2065 return false; 2066 } 2067 2068 bool LLParser::parseVScaleRangeArguments(unsigned &MinValue, 2069 unsigned &MaxValue) { 2070 Lex.Lex(); 2071 2072 auto StartParen = Lex.getLoc(); 2073 if (!EatIfPresent(lltok::lparen)) 2074 return error(StartParen, "expected '('"); 2075 2076 if (parseUInt32(MinValue)) 2077 return true; 2078 2079 if (EatIfPresent(lltok::comma)) { 2080 if (parseUInt32(MaxValue)) 2081 return true; 2082 } else 2083 MaxValue = MinValue; 2084 2085 auto EndParen = Lex.getLoc(); 2086 if (!EatIfPresent(lltok::rparen)) 2087 return error(EndParen, "expected ')'"); 2088 return false; 2089 } 2090 2091 /// parseScopeAndOrdering 2092 /// if isAtomic: ::= SyncScope? AtomicOrdering 2093 /// else: ::= 2094 /// 2095 /// This sets Scope and Ordering to the parsed values. 2096 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID, 2097 AtomicOrdering &Ordering) { 2098 if (!IsAtomic) 2099 return false; 2100 2101 return parseScope(SSID) || parseOrdering(Ordering); 2102 } 2103 2104 /// parseScope 2105 /// ::= syncscope("singlethread" | "<target scope>")? 2106 /// 2107 /// This sets synchronization scope ID to the ID of the parsed value. 2108 bool LLParser::parseScope(SyncScope::ID &SSID) { 2109 SSID = SyncScope::System; 2110 if (EatIfPresent(lltok::kw_syncscope)) { 2111 auto StartParenAt = Lex.getLoc(); 2112 if (!EatIfPresent(lltok::lparen)) 2113 return error(StartParenAt, "Expected '(' in syncscope"); 2114 2115 std::string SSN; 2116 auto SSNAt = Lex.getLoc(); 2117 if (parseStringConstant(SSN)) 2118 return error(SSNAt, "Expected synchronization scope name"); 2119 2120 auto EndParenAt = Lex.getLoc(); 2121 if (!EatIfPresent(lltok::rparen)) 2122 return error(EndParenAt, "Expected ')' in syncscope"); 2123 2124 SSID = Context.getOrInsertSyncScopeID(SSN); 2125 } 2126 2127 return false; 2128 } 2129 2130 /// parseOrdering 2131 /// ::= AtomicOrdering 2132 /// 2133 /// This sets Ordering to the parsed value. 2134 bool LLParser::parseOrdering(AtomicOrdering &Ordering) { 2135 switch (Lex.getKind()) { 2136 default: 2137 return tokError("Expected ordering on atomic instruction"); 2138 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2139 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2140 // Not specified yet: 2141 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2142 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2143 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2144 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2145 case lltok::kw_seq_cst: 2146 Ordering = AtomicOrdering::SequentiallyConsistent; 2147 break; 2148 } 2149 Lex.Lex(); 2150 return false; 2151 } 2152 2153 /// parseOptionalStackAlignment 2154 /// ::= /* empty */ 2155 /// ::= 'alignstack' '(' 4 ')' 2156 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) { 2157 Alignment = 0; 2158 if (!EatIfPresent(lltok::kw_alignstack)) 2159 return false; 2160 LocTy ParenLoc = Lex.getLoc(); 2161 if (!EatIfPresent(lltok::lparen)) 2162 return error(ParenLoc, "expected '('"); 2163 LocTy AlignLoc = Lex.getLoc(); 2164 if (parseUInt32(Alignment)) 2165 return true; 2166 ParenLoc = Lex.getLoc(); 2167 if (!EatIfPresent(lltok::rparen)) 2168 return error(ParenLoc, "expected ')'"); 2169 if (!isPowerOf2_32(Alignment)) 2170 return error(AlignLoc, "stack alignment is not a power of two"); 2171 return false; 2172 } 2173 2174 /// parseIndexList - This parses the index list for an insert/extractvalue 2175 /// instruction. This sets AteExtraComma in the case where we eat an extra 2176 /// comma at the end of the line and find that it is followed by metadata. 2177 /// Clients that don't allow metadata can call the version of this function that 2178 /// only takes one argument. 2179 /// 2180 /// parseIndexList 2181 /// ::= (',' uint32)+ 2182 /// 2183 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices, 2184 bool &AteExtraComma) { 2185 AteExtraComma = false; 2186 2187 if (Lex.getKind() != lltok::comma) 2188 return tokError("expected ',' as start of index list"); 2189 2190 while (EatIfPresent(lltok::comma)) { 2191 if (Lex.getKind() == lltok::MetadataVar) { 2192 if (Indices.empty()) 2193 return tokError("expected index"); 2194 AteExtraComma = true; 2195 return false; 2196 } 2197 unsigned Idx = 0; 2198 if (parseUInt32(Idx)) 2199 return true; 2200 Indices.push_back(Idx); 2201 } 2202 2203 return false; 2204 } 2205 2206 //===----------------------------------------------------------------------===// 2207 // Type Parsing. 2208 //===----------------------------------------------------------------------===// 2209 2210 /// parseType - parse a type. 2211 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2212 SMLoc TypeLoc = Lex.getLoc(); 2213 switch (Lex.getKind()) { 2214 default: 2215 return tokError(Msg); 2216 case lltok::Type: 2217 // Type ::= 'float' | 'void' (etc) 2218 Result = Lex.getTyVal(); 2219 Lex.Lex(); 2220 break; 2221 case lltok::lbrace: 2222 // Type ::= StructType 2223 if (parseAnonStructType(Result, false)) 2224 return true; 2225 break; 2226 case lltok::lsquare: 2227 // Type ::= '[' ... ']' 2228 Lex.Lex(); // eat the lsquare. 2229 if (parseArrayVectorType(Result, false)) 2230 return true; 2231 break; 2232 case lltok::less: // Either vector or packed struct. 2233 // Type ::= '<' ... '>' 2234 Lex.Lex(); 2235 if (Lex.getKind() == lltok::lbrace) { 2236 if (parseAnonStructType(Result, true) || 2237 parseToken(lltok::greater, "expected '>' at end of packed struct")) 2238 return true; 2239 } else if (parseArrayVectorType(Result, true)) 2240 return true; 2241 break; 2242 case lltok::LocalVar: { 2243 // Type ::= %foo 2244 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2245 2246 // If the type hasn't been defined yet, create a forward definition and 2247 // remember where that forward def'n was seen (in case it never is defined). 2248 if (!Entry.first) { 2249 Entry.first = StructType::create(Context, Lex.getStrVal()); 2250 Entry.second = Lex.getLoc(); 2251 } 2252 Result = Entry.first; 2253 Lex.Lex(); 2254 break; 2255 } 2256 2257 case lltok::LocalVarID: { 2258 // Type ::= %4 2259 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2260 2261 // If the type hasn't been defined yet, create a forward definition and 2262 // remember where that forward def'n was seen (in case it never is defined). 2263 if (!Entry.first) { 2264 Entry.first = StructType::create(Context); 2265 Entry.second = Lex.getLoc(); 2266 } 2267 Result = Entry.first; 2268 Lex.Lex(); 2269 break; 2270 } 2271 } 2272 2273 // Handle (explicit) opaque pointer types (not --force-opaque-pointers). 2274 // 2275 // Type ::= ptr ('addrspace' '(' uint32 ')')? 2276 if (Result->isOpaquePointerTy()) { 2277 unsigned AddrSpace; 2278 if (parseOptionalAddrSpace(AddrSpace)) 2279 return true; 2280 Result = PointerType::get(getContext(), AddrSpace); 2281 2282 // Give a nice error for 'ptr*'. 2283 if (Lex.getKind() == lltok::star) 2284 return tokError("ptr* is invalid - use ptr instead"); 2285 2286 // Fall through to parsing the type suffixes only if this 'ptr' is a 2287 // function return. Otherwise, return success, implicitly rejecting other 2288 // suffixes. 2289 if (Lex.getKind() != lltok::lparen) 2290 return false; 2291 } 2292 2293 // parse the type suffixes. 2294 while (true) { 2295 switch (Lex.getKind()) { 2296 // End of type. 2297 default: 2298 if (!AllowVoid && Result->isVoidTy()) 2299 return error(TypeLoc, "void type only allowed for function results"); 2300 return false; 2301 2302 // Type ::= Type '*' 2303 case lltok::star: 2304 if (Result->isLabelTy()) 2305 return tokError("basic block pointers are invalid"); 2306 if (Result->isVoidTy()) 2307 return tokError("pointers to void are invalid - use i8* instead"); 2308 if (!PointerType::isValidElementType(Result)) 2309 return tokError("pointer to this type is invalid"); 2310 Result = PointerType::getUnqual(Result); 2311 Lex.Lex(); 2312 break; 2313 2314 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2315 case lltok::kw_addrspace: { 2316 if (Result->isLabelTy()) 2317 return tokError("basic block pointers are invalid"); 2318 if (Result->isVoidTy()) 2319 return tokError("pointers to void are invalid; use i8* instead"); 2320 if (!PointerType::isValidElementType(Result)) 2321 return tokError("pointer to this type is invalid"); 2322 unsigned AddrSpace; 2323 if (parseOptionalAddrSpace(AddrSpace) || 2324 parseToken(lltok::star, "expected '*' in address space")) 2325 return true; 2326 2327 Result = PointerType::get(Result, AddrSpace); 2328 break; 2329 } 2330 2331 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2332 case lltok::lparen: 2333 if (parseFunctionType(Result)) 2334 return true; 2335 break; 2336 } 2337 } 2338 } 2339 2340 /// parseParameterList 2341 /// ::= '(' ')' 2342 /// ::= '(' Arg (',' Arg)* ')' 2343 /// Arg 2344 /// ::= Type OptionalAttributes Value OptionalAttributes 2345 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2346 PerFunctionState &PFS, bool IsMustTailCall, 2347 bool InVarArgsFunc) { 2348 if (parseToken(lltok::lparen, "expected '(' in call")) 2349 return true; 2350 2351 while (Lex.getKind() != lltok::rparen) { 2352 // If this isn't the first argument, we need a comma. 2353 if (!ArgList.empty() && 2354 parseToken(lltok::comma, "expected ',' in argument list")) 2355 return true; 2356 2357 // parse an ellipsis if this is a musttail call in a variadic function. 2358 if (Lex.getKind() == lltok::dotdotdot) { 2359 const char *Msg = "unexpected ellipsis in argument list for "; 2360 if (!IsMustTailCall) 2361 return tokError(Twine(Msg) + "non-musttail call"); 2362 if (!InVarArgsFunc) 2363 return tokError(Twine(Msg) + "musttail call in non-varargs function"); 2364 Lex.Lex(); // Lex the '...', it is purely for readability. 2365 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 2366 } 2367 2368 // parse the argument. 2369 LocTy ArgLoc; 2370 Type *ArgTy = nullptr; 2371 AttrBuilder ArgAttrs; 2372 Value *V; 2373 if (parseType(ArgTy, ArgLoc)) 2374 return true; 2375 2376 if (ArgTy->isMetadataTy()) { 2377 if (parseMetadataAsValue(V, PFS)) 2378 return true; 2379 } else { 2380 // Otherwise, handle normal operands. 2381 if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS)) 2382 return true; 2383 } 2384 ArgList.push_back(ParamInfo( 2385 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2386 } 2387 2388 if (IsMustTailCall && InVarArgsFunc) 2389 return tokError("expected '...' at end of argument list for musttail call " 2390 "in varargs function"); 2391 2392 Lex.Lex(); // Lex the ')'. 2393 return false; 2394 } 2395 2396 /// parseRequiredTypeAttr 2397 /// ::= attrname(<ty>) 2398 bool LLParser::parseRequiredTypeAttr(AttrBuilder &B, lltok::Kind AttrToken, 2399 Attribute::AttrKind AttrKind) { 2400 Type *Ty = nullptr; 2401 if (!EatIfPresent(AttrToken)) 2402 return true; 2403 if (!EatIfPresent(lltok::lparen)) 2404 return error(Lex.getLoc(), "expected '('"); 2405 if (parseType(Ty)) 2406 return true; 2407 if (!EatIfPresent(lltok::rparen)) 2408 return error(Lex.getLoc(), "expected ')'"); 2409 2410 B.addTypeAttr(AttrKind, Ty); 2411 return false; 2412 } 2413 2414 /// parseOptionalOperandBundles 2415 /// ::= /*empty*/ 2416 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2417 /// 2418 /// OperandBundle 2419 /// ::= bundle-tag '(' ')' 2420 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2421 /// 2422 /// bundle-tag ::= String Constant 2423 bool LLParser::parseOptionalOperandBundles( 2424 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2425 LocTy BeginLoc = Lex.getLoc(); 2426 if (!EatIfPresent(lltok::lsquare)) 2427 return false; 2428 2429 while (Lex.getKind() != lltok::rsquare) { 2430 // If this isn't the first operand bundle, we need a comma. 2431 if (!BundleList.empty() && 2432 parseToken(lltok::comma, "expected ',' in input list")) 2433 return true; 2434 2435 std::string Tag; 2436 if (parseStringConstant(Tag)) 2437 return true; 2438 2439 if (parseToken(lltok::lparen, "expected '(' in operand bundle")) 2440 return true; 2441 2442 std::vector<Value *> Inputs; 2443 while (Lex.getKind() != lltok::rparen) { 2444 // If this isn't the first input, we need a comma. 2445 if (!Inputs.empty() && 2446 parseToken(lltok::comma, "expected ',' in input list")) 2447 return true; 2448 2449 Type *Ty = nullptr; 2450 Value *Input = nullptr; 2451 if (parseType(Ty) || parseValue(Ty, Input, PFS)) 2452 return true; 2453 Inputs.push_back(Input); 2454 } 2455 2456 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2457 2458 Lex.Lex(); // Lex the ')'. 2459 } 2460 2461 if (BundleList.empty()) 2462 return error(BeginLoc, "operand bundle set must not be empty"); 2463 2464 Lex.Lex(); // Lex the ']'. 2465 return false; 2466 } 2467 2468 /// parseArgumentList - parse the argument list for a function type or function 2469 /// prototype. 2470 /// ::= '(' ArgTypeListI ')' 2471 /// ArgTypeListI 2472 /// ::= /*empty*/ 2473 /// ::= '...' 2474 /// ::= ArgTypeList ',' '...' 2475 /// ::= ArgType (',' ArgType)* 2476 /// 2477 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2478 bool &IsVarArg) { 2479 unsigned CurValID = 0; 2480 IsVarArg = false; 2481 assert(Lex.getKind() == lltok::lparen); 2482 Lex.Lex(); // eat the (. 2483 2484 if (Lex.getKind() == lltok::rparen) { 2485 // empty 2486 } else if (Lex.getKind() == lltok::dotdotdot) { 2487 IsVarArg = true; 2488 Lex.Lex(); 2489 } else { 2490 LocTy TypeLoc = Lex.getLoc(); 2491 Type *ArgTy = nullptr; 2492 AttrBuilder Attrs; 2493 std::string Name; 2494 2495 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) 2496 return true; 2497 2498 if (ArgTy->isVoidTy()) 2499 return error(TypeLoc, "argument can not have void type"); 2500 2501 if (Lex.getKind() == lltok::LocalVar) { 2502 Name = Lex.getStrVal(); 2503 Lex.Lex(); 2504 } else if (Lex.getKind() == lltok::LocalVarID) { 2505 if (Lex.getUIntVal() != CurValID) 2506 return error(TypeLoc, "argument expected to be numbered '%" + 2507 Twine(CurValID) + "'"); 2508 ++CurValID; 2509 Lex.Lex(); 2510 } 2511 2512 if (!FunctionType::isValidArgumentType(ArgTy)) 2513 return error(TypeLoc, "invalid type for function argument"); 2514 2515 ArgList.emplace_back(TypeLoc, ArgTy, 2516 AttributeSet::get(ArgTy->getContext(), Attrs), 2517 std::move(Name)); 2518 2519 while (EatIfPresent(lltok::comma)) { 2520 // Handle ... at end of arg list. 2521 if (EatIfPresent(lltok::dotdotdot)) { 2522 IsVarArg = true; 2523 break; 2524 } 2525 2526 // Otherwise must be an argument type. 2527 TypeLoc = Lex.getLoc(); 2528 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) 2529 return true; 2530 2531 if (ArgTy->isVoidTy()) 2532 return error(TypeLoc, "argument can not have void type"); 2533 2534 if (Lex.getKind() == lltok::LocalVar) { 2535 Name = Lex.getStrVal(); 2536 Lex.Lex(); 2537 } else { 2538 if (Lex.getKind() == lltok::LocalVarID) { 2539 if (Lex.getUIntVal() != CurValID) 2540 return error(TypeLoc, "argument expected to be numbered '%" + 2541 Twine(CurValID) + "'"); 2542 Lex.Lex(); 2543 } 2544 ++CurValID; 2545 Name = ""; 2546 } 2547 2548 if (!ArgTy->isFirstClassType()) 2549 return error(TypeLoc, "invalid type for function argument"); 2550 2551 ArgList.emplace_back(TypeLoc, ArgTy, 2552 AttributeSet::get(ArgTy->getContext(), Attrs), 2553 std::move(Name)); 2554 } 2555 } 2556 2557 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 2558 } 2559 2560 /// parseFunctionType 2561 /// ::= Type ArgumentList OptionalAttrs 2562 bool LLParser::parseFunctionType(Type *&Result) { 2563 assert(Lex.getKind() == lltok::lparen); 2564 2565 if (!FunctionType::isValidReturnType(Result)) 2566 return tokError("invalid function return type"); 2567 2568 SmallVector<ArgInfo, 8> ArgList; 2569 bool IsVarArg; 2570 if (parseArgumentList(ArgList, IsVarArg)) 2571 return true; 2572 2573 // Reject names on the arguments lists. 2574 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2575 if (!ArgList[i].Name.empty()) 2576 return error(ArgList[i].Loc, "argument name invalid in function type"); 2577 if (ArgList[i].Attrs.hasAttributes()) 2578 return error(ArgList[i].Loc, 2579 "argument attributes invalid in function type"); 2580 } 2581 2582 SmallVector<Type*, 16> ArgListTy; 2583 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2584 ArgListTy.push_back(ArgList[i].Ty); 2585 2586 Result = FunctionType::get(Result, ArgListTy, IsVarArg); 2587 return false; 2588 } 2589 2590 /// parseAnonStructType - parse an anonymous struct type, which is inlined into 2591 /// other structs. 2592 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) { 2593 SmallVector<Type*, 8> Elts; 2594 if (parseStructBody(Elts)) 2595 return true; 2596 2597 Result = StructType::get(Context, Elts, Packed); 2598 return false; 2599 } 2600 2601 /// parseStructDefinition - parse a struct in a 'type' definition. 2602 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name, 2603 std::pair<Type *, LocTy> &Entry, 2604 Type *&ResultTy) { 2605 // If the type was already defined, diagnose the redefinition. 2606 if (Entry.first && !Entry.second.isValid()) 2607 return error(TypeLoc, "redefinition of type"); 2608 2609 // If we have opaque, just return without filling in the definition for the 2610 // struct. This counts as a definition as far as the .ll file goes. 2611 if (EatIfPresent(lltok::kw_opaque)) { 2612 // This type is being defined, so clear the location to indicate this. 2613 Entry.second = SMLoc(); 2614 2615 // If this type number has never been uttered, create it. 2616 if (!Entry.first) 2617 Entry.first = StructType::create(Context, Name); 2618 ResultTy = Entry.first; 2619 return false; 2620 } 2621 2622 // If the type starts with '<', then it is either a packed struct or a vector. 2623 bool isPacked = EatIfPresent(lltok::less); 2624 2625 // If we don't have a struct, then we have a random type alias, which we 2626 // accept for compatibility with old files. These types are not allowed to be 2627 // forward referenced and not allowed to be recursive. 2628 if (Lex.getKind() != lltok::lbrace) { 2629 if (Entry.first) 2630 return error(TypeLoc, "forward references to non-struct type"); 2631 2632 ResultTy = nullptr; 2633 if (isPacked) 2634 return parseArrayVectorType(ResultTy, true); 2635 return parseType(ResultTy); 2636 } 2637 2638 // This type is being defined, so clear the location to indicate this. 2639 Entry.second = SMLoc(); 2640 2641 // If this type number has never been uttered, create it. 2642 if (!Entry.first) 2643 Entry.first = StructType::create(Context, Name); 2644 2645 StructType *STy = cast<StructType>(Entry.first); 2646 2647 SmallVector<Type*, 8> Body; 2648 if (parseStructBody(Body) || 2649 (isPacked && parseToken(lltok::greater, "expected '>' in packed struct"))) 2650 return true; 2651 2652 STy->setBody(Body, isPacked); 2653 ResultTy = STy; 2654 return false; 2655 } 2656 2657 /// parseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2658 /// StructType 2659 /// ::= '{' '}' 2660 /// ::= '{' Type (',' Type)* '}' 2661 /// ::= '<' '{' '}' '>' 2662 /// ::= '<' '{' Type (',' Type)* '}' '>' 2663 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) { 2664 assert(Lex.getKind() == lltok::lbrace); 2665 Lex.Lex(); // Consume the '{' 2666 2667 // Handle the empty struct. 2668 if (EatIfPresent(lltok::rbrace)) 2669 return false; 2670 2671 LocTy EltTyLoc = Lex.getLoc(); 2672 Type *Ty = nullptr; 2673 if (parseType(Ty)) 2674 return true; 2675 Body.push_back(Ty); 2676 2677 if (!StructType::isValidElementType(Ty)) 2678 return error(EltTyLoc, "invalid element type for struct"); 2679 2680 while (EatIfPresent(lltok::comma)) { 2681 EltTyLoc = Lex.getLoc(); 2682 if (parseType(Ty)) 2683 return true; 2684 2685 if (!StructType::isValidElementType(Ty)) 2686 return error(EltTyLoc, "invalid element type for struct"); 2687 2688 Body.push_back(Ty); 2689 } 2690 2691 return parseToken(lltok::rbrace, "expected '}' at end of struct"); 2692 } 2693 2694 /// parseArrayVectorType - parse an array or vector type, assuming the first 2695 /// token has already been consumed. 2696 /// Type 2697 /// ::= '[' APSINTVAL 'x' Types ']' 2698 /// ::= '<' APSINTVAL 'x' Types '>' 2699 /// ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>' 2700 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) { 2701 bool Scalable = false; 2702 2703 if (IsVector && Lex.getKind() == lltok::kw_vscale) { 2704 Lex.Lex(); // consume the 'vscale' 2705 if (parseToken(lltok::kw_x, "expected 'x' after vscale")) 2706 return true; 2707 2708 Scalable = true; 2709 } 2710 2711 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2712 Lex.getAPSIntVal().getBitWidth() > 64) 2713 return tokError("expected number in address space"); 2714 2715 LocTy SizeLoc = Lex.getLoc(); 2716 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2717 Lex.Lex(); 2718 2719 if (parseToken(lltok::kw_x, "expected 'x' after element count")) 2720 return true; 2721 2722 LocTy TypeLoc = Lex.getLoc(); 2723 Type *EltTy = nullptr; 2724 if (parseType(EltTy)) 2725 return true; 2726 2727 if (parseToken(IsVector ? lltok::greater : lltok::rsquare, 2728 "expected end of sequential type")) 2729 return true; 2730 2731 if (IsVector) { 2732 if (Size == 0) 2733 return error(SizeLoc, "zero element vector is illegal"); 2734 if ((unsigned)Size != Size) 2735 return error(SizeLoc, "size too large for vector"); 2736 if (!VectorType::isValidElementType(EltTy)) 2737 return error(TypeLoc, "invalid vector element type"); 2738 Result = VectorType::get(EltTy, unsigned(Size), Scalable); 2739 } else { 2740 if (!ArrayType::isValidElementType(EltTy)) 2741 return error(TypeLoc, "invalid array element type"); 2742 Result = ArrayType::get(EltTy, Size); 2743 } 2744 return false; 2745 } 2746 2747 //===----------------------------------------------------------------------===// 2748 // Function Semantic Analysis. 2749 //===----------------------------------------------------------------------===// 2750 2751 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2752 int functionNumber) 2753 : P(p), F(f), FunctionNumber(functionNumber) { 2754 2755 // Insert unnamed arguments into the NumberedVals list. 2756 for (Argument &A : F.args()) 2757 if (!A.hasName()) 2758 NumberedVals.push_back(&A); 2759 } 2760 2761 LLParser::PerFunctionState::~PerFunctionState() { 2762 // If there were any forward referenced non-basicblock values, delete them. 2763 2764 for (const auto &P : ForwardRefVals) { 2765 if (isa<BasicBlock>(P.second.first)) 2766 continue; 2767 P.second.first->replaceAllUsesWith( 2768 UndefValue::get(P.second.first->getType())); 2769 P.second.first->deleteValue(); 2770 } 2771 2772 for (const auto &P : ForwardRefValIDs) { 2773 if (isa<BasicBlock>(P.second.first)) 2774 continue; 2775 P.second.first->replaceAllUsesWith( 2776 UndefValue::get(P.second.first->getType())); 2777 P.second.first->deleteValue(); 2778 } 2779 } 2780 2781 bool LLParser::PerFunctionState::finishFunction() { 2782 if (!ForwardRefVals.empty()) 2783 return P.error(ForwardRefVals.begin()->second.second, 2784 "use of undefined value '%" + ForwardRefVals.begin()->first + 2785 "'"); 2786 if (!ForwardRefValIDs.empty()) 2787 return P.error(ForwardRefValIDs.begin()->second.second, 2788 "use of undefined value '%" + 2789 Twine(ForwardRefValIDs.begin()->first) + "'"); 2790 return false; 2791 } 2792 2793 /// getVal - Get a value with the specified name or ID, creating a 2794 /// forward reference record if needed. This can return null if the value 2795 /// exists but does not have the right type. 2796 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty, 2797 LocTy Loc, bool IsCall) { 2798 // Look this name up in the normal function symbol table. 2799 Value *Val = F.getValueSymbolTable()->lookup(Name); 2800 2801 // If this is a forward reference for the value, see if we already created a 2802 // forward ref record. 2803 if (!Val) { 2804 auto I = ForwardRefVals.find(Name); 2805 if (I != ForwardRefVals.end()) 2806 Val = I->second.first; 2807 } 2808 2809 // If we have the value in the symbol table or fwd-ref table, return it. 2810 if (Val) 2811 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall); 2812 2813 // Don't make placeholders with invalid type. 2814 if (!Ty->isFirstClassType()) { 2815 P.error(Loc, "invalid use of a non-first-class type"); 2816 return nullptr; 2817 } 2818 2819 // Otherwise, create a new forward reference for this value and remember it. 2820 Value *FwdVal; 2821 if (Ty->isLabelTy()) { 2822 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2823 } else { 2824 FwdVal = new Argument(Ty, Name); 2825 } 2826 2827 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2828 return FwdVal; 2829 } 2830 2831 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc, 2832 bool IsCall) { 2833 // Look this name up in the normal function symbol table. 2834 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2835 2836 // If this is a forward reference for the value, see if we already created a 2837 // forward ref record. 2838 if (!Val) { 2839 auto I = ForwardRefValIDs.find(ID); 2840 if (I != ForwardRefValIDs.end()) 2841 Val = I->second.first; 2842 } 2843 2844 // If we have the value in the symbol table or fwd-ref table, return it. 2845 if (Val) 2846 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall); 2847 2848 if (!Ty->isFirstClassType()) { 2849 P.error(Loc, "invalid use of a non-first-class type"); 2850 return nullptr; 2851 } 2852 2853 // Otherwise, create a new forward reference for this value and remember it. 2854 Value *FwdVal; 2855 if (Ty->isLabelTy()) { 2856 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2857 } else { 2858 FwdVal = new Argument(Ty); 2859 } 2860 2861 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2862 return FwdVal; 2863 } 2864 2865 /// setInstName - After an instruction is parsed and inserted into its 2866 /// basic block, this installs its name. 2867 bool LLParser::PerFunctionState::setInstName(int NameID, 2868 const std::string &NameStr, 2869 LocTy NameLoc, Instruction *Inst) { 2870 // If this instruction has void type, it cannot have a name or ID specified. 2871 if (Inst->getType()->isVoidTy()) { 2872 if (NameID != -1 || !NameStr.empty()) 2873 return P.error(NameLoc, "instructions returning void cannot have a name"); 2874 return false; 2875 } 2876 2877 // If this was a numbered instruction, verify that the instruction is the 2878 // expected value and resolve any forward references. 2879 if (NameStr.empty()) { 2880 // If neither a name nor an ID was specified, just use the next ID. 2881 if (NameID == -1) 2882 NameID = NumberedVals.size(); 2883 2884 if (unsigned(NameID) != NumberedVals.size()) 2885 return P.error(NameLoc, "instruction expected to be numbered '%" + 2886 Twine(NumberedVals.size()) + "'"); 2887 2888 auto FI = ForwardRefValIDs.find(NameID); 2889 if (FI != ForwardRefValIDs.end()) { 2890 Value *Sentinel = FI->second.first; 2891 if (Sentinel->getType() != Inst->getType()) 2892 return P.error(NameLoc, "instruction forward referenced with type '" + 2893 getTypeString(FI->second.first->getType()) + 2894 "'"); 2895 2896 Sentinel->replaceAllUsesWith(Inst); 2897 Sentinel->deleteValue(); 2898 ForwardRefValIDs.erase(FI); 2899 } 2900 2901 NumberedVals.push_back(Inst); 2902 return false; 2903 } 2904 2905 // Otherwise, the instruction had a name. Resolve forward refs and set it. 2906 auto FI = ForwardRefVals.find(NameStr); 2907 if (FI != ForwardRefVals.end()) { 2908 Value *Sentinel = FI->second.first; 2909 if (Sentinel->getType() != Inst->getType()) 2910 return P.error(NameLoc, "instruction forward referenced with type '" + 2911 getTypeString(FI->second.first->getType()) + 2912 "'"); 2913 2914 Sentinel->replaceAllUsesWith(Inst); 2915 Sentinel->deleteValue(); 2916 ForwardRefVals.erase(FI); 2917 } 2918 2919 // Set the name on the instruction. 2920 Inst->setName(NameStr); 2921 2922 if (Inst->getName() != NameStr) 2923 return P.error(NameLoc, "multiple definition of local value named '" + 2924 NameStr + "'"); 2925 return false; 2926 } 2927 2928 /// getBB - Get a basic block with the specified name or ID, creating a 2929 /// forward reference record if needed. 2930 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name, 2931 LocTy Loc) { 2932 return dyn_cast_or_null<BasicBlock>( 2933 getVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 2934 } 2935 2936 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) { 2937 return dyn_cast_or_null<BasicBlock>( 2938 getVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 2939 } 2940 2941 /// defineBB - Define the specified basic block, which is either named or 2942 /// unnamed. If there is an error, this returns null otherwise it returns 2943 /// the block being defined. 2944 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name, 2945 int NameID, LocTy Loc) { 2946 BasicBlock *BB; 2947 if (Name.empty()) { 2948 if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) { 2949 P.error(Loc, "label expected to be numbered '" + 2950 Twine(NumberedVals.size()) + "'"); 2951 return nullptr; 2952 } 2953 BB = getBB(NumberedVals.size(), Loc); 2954 if (!BB) { 2955 P.error(Loc, "unable to create block numbered '" + 2956 Twine(NumberedVals.size()) + "'"); 2957 return nullptr; 2958 } 2959 } else { 2960 BB = getBB(Name, Loc); 2961 if (!BB) { 2962 P.error(Loc, "unable to create block named '" + Name + "'"); 2963 return nullptr; 2964 } 2965 } 2966 2967 // Move the block to the end of the function. Forward ref'd blocks are 2968 // inserted wherever they happen to be referenced. 2969 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 2970 2971 // Remove the block from forward ref sets. 2972 if (Name.empty()) { 2973 ForwardRefValIDs.erase(NumberedVals.size()); 2974 NumberedVals.push_back(BB); 2975 } else { 2976 // BB forward references are already in the function symbol table. 2977 ForwardRefVals.erase(Name); 2978 } 2979 2980 return BB; 2981 } 2982 2983 //===----------------------------------------------------------------------===// 2984 // Constants. 2985 //===----------------------------------------------------------------------===// 2986 2987 /// parseValID - parse an abstract value that doesn't necessarily have a 2988 /// type implied. For example, if we parse "4" we don't know what integer type 2989 /// it has. The value will later be combined with its type and checked for 2990 /// sanity. PFS is used to convert function-local operands of metadata (since 2991 /// metadata operands are not just parsed here but also converted to values). 2992 /// PFS can be null when we are not parsing metadata values inside a function. 2993 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS, Type *ExpectedTy) { 2994 ID.Loc = Lex.getLoc(); 2995 switch (Lex.getKind()) { 2996 default: 2997 return tokError("expected value token"); 2998 case lltok::GlobalID: // @42 2999 ID.UIntVal = Lex.getUIntVal(); 3000 ID.Kind = ValID::t_GlobalID; 3001 break; 3002 case lltok::GlobalVar: // @foo 3003 ID.StrVal = Lex.getStrVal(); 3004 ID.Kind = ValID::t_GlobalName; 3005 break; 3006 case lltok::LocalVarID: // %42 3007 ID.UIntVal = Lex.getUIntVal(); 3008 ID.Kind = ValID::t_LocalID; 3009 break; 3010 case lltok::LocalVar: // %foo 3011 ID.StrVal = Lex.getStrVal(); 3012 ID.Kind = ValID::t_LocalName; 3013 break; 3014 case lltok::APSInt: 3015 ID.APSIntVal = Lex.getAPSIntVal(); 3016 ID.Kind = ValID::t_APSInt; 3017 break; 3018 case lltok::APFloat: 3019 ID.APFloatVal = Lex.getAPFloatVal(); 3020 ID.Kind = ValID::t_APFloat; 3021 break; 3022 case lltok::kw_true: 3023 ID.ConstantVal = ConstantInt::getTrue(Context); 3024 ID.Kind = ValID::t_Constant; 3025 break; 3026 case lltok::kw_false: 3027 ID.ConstantVal = ConstantInt::getFalse(Context); 3028 ID.Kind = ValID::t_Constant; 3029 break; 3030 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 3031 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 3032 case lltok::kw_poison: ID.Kind = ValID::t_Poison; break; 3033 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 3034 case lltok::kw_none: ID.Kind = ValID::t_None; break; 3035 3036 case lltok::lbrace: { 3037 // ValID ::= '{' ConstVector '}' 3038 Lex.Lex(); 3039 SmallVector<Constant*, 16> Elts; 3040 if (parseGlobalValueVector(Elts) || 3041 parseToken(lltok::rbrace, "expected end of struct constant")) 3042 return true; 3043 3044 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3045 ID.UIntVal = Elts.size(); 3046 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3047 Elts.size() * sizeof(Elts[0])); 3048 ID.Kind = ValID::t_ConstantStruct; 3049 return false; 3050 } 3051 case lltok::less: { 3052 // ValID ::= '<' ConstVector '>' --> Vector. 3053 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 3054 Lex.Lex(); 3055 bool isPackedStruct = EatIfPresent(lltok::lbrace); 3056 3057 SmallVector<Constant*, 16> Elts; 3058 LocTy FirstEltLoc = Lex.getLoc(); 3059 if (parseGlobalValueVector(Elts) || 3060 (isPackedStruct && 3061 parseToken(lltok::rbrace, "expected end of packed struct")) || 3062 parseToken(lltok::greater, "expected end of constant")) 3063 return true; 3064 3065 if (isPackedStruct) { 3066 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3067 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3068 Elts.size() * sizeof(Elts[0])); 3069 ID.UIntVal = Elts.size(); 3070 ID.Kind = ValID::t_PackedConstantStruct; 3071 return false; 3072 } 3073 3074 if (Elts.empty()) 3075 return error(ID.Loc, "constant vector must not be empty"); 3076 3077 if (!Elts[0]->getType()->isIntegerTy() && 3078 !Elts[0]->getType()->isFloatingPointTy() && 3079 !Elts[0]->getType()->isPointerTy()) 3080 return error( 3081 FirstEltLoc, 3082 "vector elements must have integer, pointer or floating point type"); 3083 3084 // Verify that all the vector elements have the same type. 3085 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 3086 if (Elts[i]->getType() != Elts[0]->getType()) 3087 return error(FirstEltLoc, "vector element #" + Twine(i) + 3088 " is not of type '" + 3089 getTypeString(Elts[0]->getType())); 3090 3091 ID.ConstantVal = ConstantVector::get(Elts); 3092 ID.Kind = ValID::t_Constant; 3093 return false; 3094 } 3095 case lltok::lsquare: { // Array Constant 3096 Lex.Lex(); 3097 SmallVector<Constant*, 16> Elts; 3098 LocTy FirstEltLoc = Lex.getLoc(); 3099 if (parseGlobalValueVector(Elts) || 3100 parseToken(lltok::rsquare, "expected end of array constant")) 3101 return true; 3102 3103 // Handle empty element. 3104 if (Elts.empty()) { 3105 // Use undef instead of an array because it's inconvenient to determine 3106 // the element type at this point, there being no elements to examine. 3107 ID.Kind = ValID::t_EmptyArray; 3108 return false; 3109 } 3110 3111 if (!Elts[0]->getType()->isFirstClassType()) 3112 return error(FirstEltLoc, "invalid array element type: " + 3113 getTypeString(Elts[0]->getType())); 3114 3115 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 3116 3117 // Verify all elements are correct type! 3118 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 3119 if (Elts[i]->getType() != Elts[0]->getType()) 3120 return error(FirstEltLoc, "array element #" + Twine(i) + 3121 " is not of type '" + 3122 getTypeString(Elts[0]->getType())); 3123 } 3124 3125 ID.ConstantVal = ConstantArray::get(ATy, Elts); 3126 ID.Kind = ValID::t_Constant; 3127 return false; 3128 } 3129 case lltok::kw_c: // c "foo" 3130 Lex.Lex(); 3131 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 3132 false); 3133 if (parseToken(lltok::StringConstant, "expected string")) 3134 return true; 3135 ID.Kind = ValID::t_Constant; 3136 return false; 3137 3138 case lltok::kw_asm: { 3139 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 3140 // STRINGCONSTANT 3141 bool HasSideEffect, AlignStack, AsmDialect, CanThrow; 3142 Lex.Lex(); 3143 if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 3144 parseOptionalToken(lltok::kw_alignstack, AlignStack) || 3145 parseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 3146 parseOptionalToken(lltok::kw_unwind, CanThrow) || 3147 parseStringConstant(ID.StrVal) || 3148 parseToken(lltok::comma, "expected comma in inline asm expression") || 3149 parseToken(lltok::StringConstant, "expected constraint string")) 3150 return true; 3151 ID.StrVal2 = Lex.getStrVal(); 3152 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack) << 1) | 3153 (unsigned(AsmDialect) << 2) | (unsigned(CanThrow) << 3); 3154 ID.Kind = ValID::t_InlineAsm; 3155 return false; 3156 } 3157 3158 case lltok::kw_blockaddress: { 3159 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 3160 Lex.Lex(); 3161 3162 ValID Fn, Label; 3163 3164 if (parseToken(lltok::lparen, "expected '(' in block address expression") || 3165 parseValID(Fn, PFS) || 3166 parseToken(lltok::comma, 3167 "expected comma in block address expression") || 3168 parseValID(Label, PFS) || 3169 parseToken(lltok::rparen, "expected ')' in block address expression")) 3170 return true; 3171 3172 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3173 return error(Fn.Loc, "expected function name in blockaddress"); 3174 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 3175 return error(Label.Loc, "expected basic block name in blockaddress"); 3176 3177 // Try to find the function (but skip it if it's forward-referenced). 3178 GlobalValue *GV = nullptr; 3179 if (Fn.Kind == ValID::t_GlobalID) { 3180 if (Fn.UIntVal < NumberedVals.size()) 3181 GV = NumberedVals[Fn.UIntVal]; 3182 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3183 GV = M->getNamedValue(Fn.StrVal); 3184 } 3185 Function *F = nullptr; 3186 if (GV) { 3187 // Confirm that it's actually a function with a definition. 3188 if (!isa<Function>(GV)) 3189 return error(Fn.Loc, "expected function name in blockaddress"); 3190 F = cast<Function>(GV); 3191 if (F->isDeclaration()) 3192 return error(Fn.Loc, "cannot take blockaddress inside a declaration"); 3193 } 3194 3195 if (!F) { 3196 // Make a global variable as a placeholder for this reference. 3197 GlobalValue *&FwdRef = 3198 ForwardRefBlockAddresses.insert(std::make_pair( 3199 std::move(Fn), 3200 std::map<ValID, GlobalValue *>())) 3201 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 3202 .first->second; 3203 if (!FwdRef) { 3204 unsigned FwdDeclAS; 3205 if (ExpectedTy) { 3206 // If we know the type that the blockaddress is being assigned to, 3207 // we can use the address space of that type. 3208 if (!ExpectedTy->isPointerTy()) 3209 return error(ID.Loc, 3210 "type of blockaddress must be a pointer and not '" + 3211 getTypeString(ExpectedTy) + "'"); 3212 FwdDeclAS = ExpectedTy->getPointerAddressSpace(); 3213 } else if (PFS) { 3214 // Otherwise, we default the address space of the current function. 3215 FwdDeclAS = PFS->getFunction().getAddressSpace(); 3216 } else { 3217 llvm_unreachable("Unknown address space for blockaddress"); 3218 } 3219 FwdRef = new GlobalVariable( 3220 *M, Type::getInt8Ty(Context), false, GlobalValue::InternalLinkage, 3221 nullptr, "", nullptr, GlobalValue::NotThreadLocal, FwdDeclAS); 3222 } 3223 3224 ID.ConstantVal = FwdRef; 3225 ID.Kind = ValID::t_Constant; 3226 return false; 3227 } 3228 3229 // We found the function; now find the basic block. Don't use PFS, since we 3230 // might be inside a constant expression. 3231 BasicBlock *BB; 3232 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 3233 if (Label.Kind == ValID::t_LocalID) 3234 BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc); 3235 else 3236 BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc); 3237 if (!BB) 3238 return error(Label.Loc, "referenced value is not a basic block"); 3239 } else { 3240 if (Label.Kind == ValID::t_LocalID) 3241 return error(Label.Loc, "cannot take address of numeric label after " 3242 "the function is defined"); 3243 BB = dyn_cast_or_null<BasicBlock>( 3244 F->getValueSymbolTable()->lookup(Label.StrVal)); 3245 if (!BB) 3246 return error(Label.Loc, "referenced value is not a basic block"); 3247 } 3248 3249 ID.ConstantVal = BlockAddress::get(F, BB); 3250 ID.Kind = ValID::t_Constant; 3251 return false; 3252 } 3253 3254 case lltok::kw_dso_local_equivalent: { 3255 // ValID ::= 'dso_local_equivalent' @foo 3256 Lex.Lex(); 3257 3258 ValID Fn; 3259 3260 if (parseValID(Fn, PFS)) 3261 return true; 3262 3263 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3264 return error(Fn.Loc, 3265 "expected global value name in dso_local_equivalent"); 3266 3267 // Try to find the function (but skip it if it's forward-referenced). 3268 GlobalValue *GV = nullptr; 3269 if (Fn.Kind == ValID::t_GlobalID) { 3270 if (Fn.UIntVal < NumberedVals.size()) 3271 GV = NumberedVals[Fn.UIntVal]; 3272 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3273 GV = M->getNamedValue(Fn.StrVal); 3274 } 3275 3276 assert(GV && "Could not find a corresponding global variable"); 3277 3278 if (!GV->getValueType()->isFunctionTy()) 3279 return error(Fn.Loc, "expected a function, alias to function, or ifunc " 3280 "in dso_local_equivalent"); 3281 3282 ID.ConstantVal = DSOLocalEquivalent::get(GV); 3283 ID.Kind = ValID::t_Constant; 3284 return false; 3285 } 3286 3287 case lltok::kw_trunc: 3288 case lltok::kw_zext: 3289 case lltok::kw_sext: 3290 case lltok::kw_fptrunc: 3291 case lltok::kw_fpext: 3292 case lltok::kw_bitcast: 3293 case lltok::kw_addrspacecast: 3294 case lltok::kw_uitofp: 3295 case lltok::kw_sitofp: 3296 case lltok::kw_fptoui: 3297 case lltok::kw_fptosi: 3298 case lltok::kw_inttoptr: 3299 case lltok::kw_ptrtoint: { 3300 unsigned Opc = Lex.getUIntVal(); 3301 Type *DestTy = nullptr; 3302 Constant *SrcVal; 3303 Lex.Lex(); 3304 if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3305 parseGlobalTypeAndValue(SrcVal) || 3306 parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3307 parseType(DestTy) || 3308 parseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3309 return true; 3310 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3311 return error(ID.Loc, "invalid cast opcode for cast from '" + 3312 getTypeString(SrcVal->getType()) + "' to '" + 3313 getTypeString(DestTy) + "'"); 3314 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3315 SrcVal, DestTy); 3316 ID.Kind = ValID::t_Constant; 3317 return false; 3318 } 3319 case lltok::kw_extractvalue: { 3320 Lex.Lex(); 3321 Constant *Val; 3322 SmallVector<unsigned, 4> Indices; 3323 if (parseToken(lltok::lparen, 3324 "expected '(' in extractvalue constantexpr") || 3325 parseGlobalTypeAndValue(Val) || parseIndexList(Indices) || 3326 parseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 3327 return true; 3328 3329 if (!Val->getType()->isAggregateType()) 3330 return error(ID.Loc, "extractvalue operand must be aggregate type"); 3331 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 3332 return error(ID.Loc, "invalid indices for extractvalue"); 3333 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 3334 ID.Kind = ValID::t_Constant; 3335 return false; 3336 } 3337 case lltok::kw_insertvalue: { 3338 Lex.Lex(); 3339 Constant *Val0, *Val1; 3340 SmallVector<unsigned, 4> Indices; 3341 if (parseToken(lltok::lparen, "expected '(' in insertvalue constantexpr") || 3342 parseGlobalTypeAndValue(Val0) || 3343 parseToken(lltok::comma, 3344 "expected comma in insertvalue constantexpr") || 3345 parseGlobalTypeAndValue(Val1) || parseIndexList(Indices) || 3346 parseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 3347 return true; 3348 if (!Val0->getType()->isAggregateType()) 3349 return error(ID.Loc, "insertvalue operand must be aggregate type"); 3350 Type *IndexedType = 3351 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3352 if (!IndexedType) 3353 return error(ID.Loc, "invalid indices for insertvalue"); 3354 if (IndexedType != Val1->getType()) 3355 return error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3356 getTypeString(Val1->getType()) + 3357 "' instead of '" + getTypeString(IndexedType) + 3358 "'"); 3359 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3360 ID.Kind = ValID::t_Constant; 3361 return false; 3362 } 3363 case lltok::kw_icmp: 3364 case lltok::kw_fcmp: { 3365 unsigned PredVal, Opc = Lex.getUIntVal(); 3366 Constant *Val0, *Val1; 3367 Lex.Lex(); 3368 if (parseCmpPredicate(PredVal, Opc) || 3369 parseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3370 parseGlobalTypeAndValue(Val0) || 3371 parseToken(lltok::comma, "expected comma in compare constantexpr") || 3372 parseGlobalTypeAndValue(Val1) || 3373 parseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3374 return true; 3375 3376 if (Val0->getType() != Val1->getType()) 3377 return error(ID.Loc, "compare operands must have the same type"); 3378 3379 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3380 3381 if (Opc == Instruction::FCmp) { 3382 if (!Val0->getType()->isFPOrFPVectorTy()) 3383 return error(ID.Loc, "fcmp requires floating point operands"); 3384 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3385 } else { 3386 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3387 if (!Val0->getType()->isIntOrIntVectorTy() && 3388 !Val0->getType()->isPtrOrPtrVectorTy()) 3389 return error(ID.Loc, "icmp requires pointer or integer operands"); 3390 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3391 } 3392 ID.Kind = ValID::t_Constant; 3393 return false; 3394 } 3395 3396 // Unary Operators. 3397 case lltok::kw_fneg: { 3398 unsigned Opc = Lex.getUIntVal(); 3399 Constant *Val; 3400 Lex.Lex(); 3401 if (parseToken(lltok::lparen, "expected '(' in unary constantexpr") || 3402 parseGlobalTypeAndValue(Val) || 3403 parseToken(lltok::rparen, "expected ')' in unary constantexpr")) 3404 return true; 3405 3406 // Check that the type is valid for the operator. 3407 switch (Opc) { 3408 case Instruction::FNeg: 3409 if (!Val->getType()->isFPOrFPVectorTy()) 3410 return error(ID.Loc, "constexpr requires fp operands"); 3411 break; 3412 default: llvm_unreachable("Unknown unary operator!"); 3413 } 3414 unsigned Flags = 0; 3415 Constant *C = ConstantExpr::get(Opc, Val, Flags); 3416 ID.ConstantVal = C; 3417 ID.Kind = ValID::t_Constant; 3418 return false; 3419 } 3420 // Binary Operators. 3421 case lltok::kw_add: 3422 case lltok::kw_fadd: 3423 case lltok::kw_sub: 3424 case lltok::kw_fsub: 3425 case lltok::kw_mul: 3426 case lltok::kw_fmul: 3427 case lltok::kw_udiv: 3428 case lltok::kw_sdiv: 3429 case lltok::kw_fdiv: 3430 case lltok::kw_urem: 3431 case lltok::kw_srem: 3432 case lltok::kw_frem: 3433 case lltok::kw_shl: 3434 case lltok::kw_lshr: 3435 case lltok::kw_ashr: { 3436 bool NUW = false; 3437 bool NSW = false; 3438 bool Exact = false; 3439 unsigned Opc = Lex.getUIntVal(); 3440 Constant *Val0, *Val1; 3441 Lex.Lex(); 3442 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3443 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3444 if (EatIfPresent(lltok::kw_nuw)) 3445 NUW = true; 3446 if (EatIfPresent(lltok::kw_nsw)) { 3447 NSW = true; 3448 if (EatIfPresent(lltok::kw_nuw)) 3449 NUW = true; 3450 } 3451 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3452 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3453 if (EatIfPresent(lltok::kw_exact)) 3454 Exact = true; 3455 } 3456 if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3457 parseGlobalTypeAndValue(Val0) || 3458 parseToken(lltok::comma, "expected comma in binary constantexpr") || 3459 parseGlobalTypeAndValue(Val1) || 3460 parseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3461 return true; 3462 if (Val0->getType() != Val1->getType()) 3463 return error(ID.Loc, "operands of constexpr must have same type"); 3464 // Check that the type is valid for the operator. 3465 switch (Opc) { 3466 case Instruction::Add: 3467 case Instruction::Sub: 3468 case Instruction::Mul: 3469 case Instruction::UDiv: 3470 case Instruction::SDiv: 3471 case Instruction::URem: 3472 case Instruction::SRem: 3473 case Instruction::Shl: 3474 case Instruction::AShr: 3475 case Instruction::LShr: 3476 if (!Val0->getType()->isIntOrIntVectorTy()) 3477 return error(ID.Loc, "constexpr requires integer operands"); 3478 break; 3479 case Instruction::FAdd: 3480 case Instruction::FSub: 3481 case Instruction::FMul: 3482 case Instruction::FDiv: 3483 case Instruction::FRem: 3484 if (!Val0->getType()->isFPOrFPVectorTy()) 3485 return error(ID.Loc, "constexpr requires fp operands"); 3486 break; 3487 default: llvm_unreachable("Unknown binary operator!"); 3488 } 3489 unsigned Flags = 0; 3490 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3491 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3492 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3493 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3494 ID.ConstantVal = C; 3495 ID.Kind = ValID::t_Constant; 3496 return false; 3497 } 3498 3499 // Logical Operations 3500 case lltok::kw_and: 3501 case lltok::kw_or: 3502 case lltok::kw_xor: { 3503 unsigned Opc = Lex.getUIntVal(); 3504 Constant *Val0, *Val1; 3505 Lex.Lex(); 3506 if (parseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3507 parseGlobalTypeAndValue(Val0) || 3508 parseToken(lltok::comma, "expected comma in logical constantexpr") || 3509 parseGlobalTypeAndValue(Val1) || 3510 parseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3511 return true; 3512 if (Val0->getType() != Val1->getType()) 3513 return error(ID.Loc, "operands of constexpr must have same type"); 3514 if (!Val0->getType()->isIntOrIntVectorTy()) 3515 return error(ID.Loc, 3516 "constexpr requires integer or integer vector operands"); 3517 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3518 ID.Kind = ValID::t_Constant; 3519 return false; 3520 } 3521 3522 case lltok::kw_getelementptr: 3523 case lltok::kw_shufflevector: 3524 case lltok::kw_insertelement: 3525 case lltok::kw_extractelement: 3526 case lltok::kw_select: { 3527 unsigned Opc = Lex.getUIntVal(); 3528 SmallVector<Constant*, 16> Elts; 3529 bool InBounds = false; 3530 Type *Ty; 3531 Lex.Lex(); 3532 3533 if (Opc == Instruction::GetElementPtr) 3534 InBounds = EatIfPresent(lltok::kw_inbounds); 3535 3536 if (parseToken(lltok::lparen, "expected '(' in constantexpr")) 3537 return true; 3538 3539 LocTy ExplicitTypeLoc = Lex.getLoc(); 3540 if (Opc == Instruction::GetElementPtr) { 3541 if (parseType(Ty) || 3542 parseToken(lltok::comma, "expected comma after getelementptr's type")) 3543 return true; 3544 } 3545 3546 Optional<unsigned> InRangeOp; 3547 if (parseGlobalValueVector( 3548 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3549 parseToken(lltok::rparen, "expected ')' in constantexpr")) 3550 return true; 3551 3552 if (Opc == Instruction::GetElementPtr) { 3553 if (Elts.size() == 0 || 3554 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 3555 return error(ID.Loc, "base of getelementptr must be a pointer"); 3556 3557 Type *BaseType = Elts[0]->getType(); 3558 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3559 if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) { 3560 return error( 3561 ExplicitTypeLoc, 3562 typeComparisonErrorMessage( 3563 "explicit pointee type doesn't match operand's pointee type", 3564 Ty, BasePointerType->getElementType())); 3565 } 3566 3567 unsigned GEPWidth = 3568 BaseType->isVectorTy() 3569 ? cast<FixedVectorType>(BaseType)->getNumElements() 3570 : 0; 3571 3572 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3573 for (Constant *Val : Indices) { 3574 Type *ValTy = Val->getType(); 3575 if (!ValTy->isIntOrIntVectorTy()) 3576 return error(ID.Loc, "getelementptr index must be an integer"); 3577 if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) { 3578 unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements(); 3579 if (GEPWidth && (ValNumEl != GEPWidth)) 3580 return error( 3581 ID.Loc, 3582 "getelementptr vector index has a wrong number of elements"); 3583 // GEPWidth may have been unknown because the base is a scalar, 3584 // but it is known now. 3585 GEPWidth = ValNumEl; 3586 } 3587 } 3588 3589 SmallPtrSet<Type*, 4> Visited; 3590 if (!Indices.empty() && !Ty->isSized(&Visited)) 3591 return error(ID.Loc, "base element of getelementptr must be sized"); 3592 3593 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3594 return error(ID.Loc, "invalid getelementptr indices"); 3595 3596 if (InRangeOp) { 3597 if (*InRangeOp == 0) 3598 return error(ID.Loc, 3599 "inrange keyword may not appear on pointer operand"); 3600 --*InRangeOp; 3601 } 3602 3603 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3604 InBounds, InRangeOp); 3605 } else if (Opc == Instruction::Select) { 3606 if (Elts.size() != 3) 3607 return error(ID.Loc, "expected three operands to select"); 3608 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3609 Elts[2])) 3610 return error(ID.Loc, Reason); 3611 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3612 } else if (Opc == Instruction::ShuffleVector) { 3613 if (Elts.size() != 3) 3614 return error(ID.Loc, "expected three operands to shufflevector"); 3615 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3616 return error(ID.Loc, "invalid operands to shufflevector"); 3617 SmallVector<int, 16> Mask; 3618 ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask); 3619 ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask); 3620 } else if (Opc == Instruction::ExtractElement) { 3621 if (Elts.size() != 2) 3622 return error(ID.Loc, "expected two operands to extractelement"); 3623 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3624 return error(ID.Loc, "invalid extractelement operands"); 3625 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3626 } else { 3627 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3628 if (Elts.size() != 3) 3629 return error(ID.Loc, "expected three operands to insertelement"); 3630 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3631 return error(ID.Loc, "invalid insertelement operands"); 3632 ID.ConstantVal = 3633 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3634 } 3635 3636 ID.Kind = ValID::t_Constant; 3637 return false; 3638 } 3639 } 3640 3641 Lex.Lex(); 3642 return false; 3643 } 3644 3645 /// parseGlobalValue - parse a global value with the specified type. 3646 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) { 3647 C = nullptr; 3648 ValID ID; 3649 Value *V = nullptr; 3650 bool Parsed = parseValID(ID, /*PFS=*/nullptr, Ty) || 3651 convertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false); 3652 if (V && !(C = dyn_cast<Constant>(V))) 3653 return error(ID.Loc, "global values must be constants"); 3654 return Parsed; 3655 } 3656 3657 bool LLParser::parseGlobalTypeAndValue(Constant *&V) { 3658 Type *Ty = nullptr; 3659 return parseType(Ty) || parseGlobalValue(Ty, V); 3660 } 3661 3662 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3663 C = nullptr; 3664 3665 LocTy KwLoc = Lex.getLoc(); 3666 if (!EatIfPresent(lltok::kw_comdat)) 3667 return false; 3668 3669 if (EatIfPresent(lltok::lparen)) { 3670 if (Lex.getKind() != lltok::ComdatVar) 3671 return tokError("expected comdat variable"); 3672 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3673 Lex.Lex(); 3674 if (parseToken(lltok::rparen, "expected ')' after comdat var")) 3675 return true; 3676 } else { 3677 if (GlobalName.empty()) 3678 return tokError("comdat cannot be unnamed"); 3679 C = getComdat(std::string(GlobalName), KwLoc); 3680 } 3681 3682 return false; 3683 } 3684 3685 /// parseGlobalValueVector 3686 /// ::= /*empty*/ 3687 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 3688 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 3689 Optional<unsigned> *InRangeOp) { 3690 // Empty list. 3691 if (Lex.getKind() == lltok::rbrace || 3692 Lex.getKind() == lltok::rsquare || 3693 Lex.getKind() == lltok::greater || 3694 Lex.getKind() == lltok::rparen) 3695 return false; 3696 3697 do { 3698 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 3699 *InRangeOp = Elts.size(); 3700 3701 Constant *C; 3702 if (parseGlobalTypeAndValue(C)) 3703 return true; 3704 Elts.push_back(C); 3705 } while (EatIfPresent(lltok::comma)); 3706 3707 return false; 3708 } 3709 3710 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) { 3711 SmallVector<Metadata *, 16> Elts; 3712 if (parseMDNodeVector(Elts)) 3713 return true; 3714 3715 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3716 return false; 3717 } 3718 3719 /// MDNode: 3720 /// ::= !{ ... } 3721 /// ::= !7 3722 /// ::= !DILocation(...) 3723 bool LLParser::parseMDNode(MDNode *&N) { 3724 if (Lex.getKind() == lltok::MetadataVar) 3725 return parseSpecializedMDNode(N); 3726 3727 return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N); 3728 } 3729 3730 bool LLParser::parseMDNodeTail(MDNode *&N) { 3731 // !{ ... } 3732 if (Lex.getKind() == lltok::lbrace) 3733 return parseMDTuple(N); 3734 3735 // !42 3736 return parseMDNodeID(N); 3737 } 3738 3739 namespace { 3740 3741 /// Structure to represent an optional metadata field. 3742 template <class FieldTy> struct MDFieldImpl { 3743 typedef MDFieldImpl ImplTy; 3744 FieldTy Val; 3745 bool Seen; 3746 3747 void assign(FieldTy Val) { 3748 Seen = true; 3749 this->Val = std::move(Val); 3750 } 3751 3752 explicit MDFieldImpl(FieldTy Default) 3753 : Val(std::move(Default)), Seen(false) {} 3754 }; 3755 3756 /// Structure to represent an optional metadata field that 3757 /// can be of either type (A or B) and encapsulates the 3758 /// MD<typeofA>Field and MD<typeofB>Field structs, so not 3759 /// to reimplement the specifics for representing each Field. 3760 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl { 3761 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy; 3762 FieldTypeA A; 3763 FieldTypeB B; 3764 bool Seen; 3765 3766 enum { 3767 IsInvalid = 0, 3768 IsTypeA = 1, 3769 IsTypeB = 2 3770 } WhatIs; 3771 3772 void assign(FieldTypeA A) { 3773 Seen = true; 3774 this->A = std::move(A); 3775 WhatIs = IsTypeA; 3776 } 3777 3778 void assign(FieldTypeB B) { 3779 Seen = true; 3780 this->B = std::move(B); 3781 WhatIs = IsTypeB; 3782 } 3783 3784 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) 3785 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), 3786 WhatIs(IsInvalid) {} 3787 }; 3788 3789 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3790 uint64_t Max; 3791 3792 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3793 : ImplTy(Default), Max(Max) {} 3794 }; 3795 3796 struct LineField : public MDUnsignedField { 3797 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3798 }; 3799 3800 struct ColumnField : public MDUnsignedField { 3801 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3802 }; 3803 3804 struct DwarfTagField : public MDUnsignedField { 3805 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3806 DwarfTagField(dwarf::Tag DefaultTag) 3807 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3808 }; 3809 3810 struct DwarfMacinfoTypeField : public MDUnsignedField { 3811 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 3812 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 3813 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 3814 }; 3815 3816 struct DwarfAttEncodingField : public MDUnsignedField { 3817 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3818 }; 3819 3820 struct DwarfVirtualityField : public MDUnsignedField { 3821 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3822 }; 3823 3824 struct DwarfLangField : public MDUnsignedField { 3825 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3826 }; 3827 3828 struct DwarfCCField : public MDUnsignedField { 3829 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 3830 }; 3831 3832 struct EmissionKindField : public MDUnsignedField { 3833 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 3834 }; 3835 3836 struct NameTableKindField : public MDUnsignedField { 3837 NameTableKindField() 3838 : MDUnsignedField( 3839 0, (unsigned) 3840 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {} 3841 }; 3842 3843 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 3844 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 3845 }; 3846 3847 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> { 3848 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {} 3849 }; 3850 3851 struct MDAPSIntField : public MDFieldImpl<APSInt> { 3852 MDAPSIntField() : ImplTy(APSInt()) {} 3853 }; 3854 3855 struct MDSignedField : public MDFieldImpl<int64_t> { 3856 int64_t Min; 3857 int64_t Max; 3858 3859 MDSignedField(int64_t Default = 0) 3860 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3861 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3862 : ImplTy(Default), Min(Min), Max(Max) {} 3863 }; 3864 3865 struct MDBoolField : public MDFieldImpl<bool> { 3866 MDBoolField(bool Default = false) : ImplTy(Default) {} 3867 }; 3868 3869 struct MDField : public MDFieldImpl<Metadata *> { 3870 bool AllowNull; 3871 3872 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3873 }; 3874 3875 struct MDStringField : public MDFieldImpl<MDString *> { 3876 bool AllowEmpty; 3877 MDStringField(bool AllowEmpty = true) 3878 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3879 }; 3880 3881 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3882 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3883 }; 3884 3885 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 3886 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 3887 }; 3888 3889 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> { 3890 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) 3891 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} 3892 3893 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, 3894 bool AllowNull = true) 3895 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} 3896 3897 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3898 bool isMDField() const { return WhatIs == IsTypeB; } 3899 int64_t getMDSignedValue() const { 3900 assert(isMDSignedField() && "Wrong field type"); 3901 return A.Val; 3902 } 3903 Metadata *getMDFieldValue() const { 3904 assert(isMDField() && "Wrong field type"); 3905 return B.Val; 3906 } 3907 }; 3908 3909 } // end anonymous namespace 3910 3911 namespace llvm { 3912 3913 template <> 3914 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) { 3915 if (Lex.getKind() != lltok::APSInt) 3916 return tokError("expected integer"); 3917 3918 Result.assign(Lex.getAPSIntVal()); 3919 Lex.Lex(); 3920 return false; 3921 } 3922 3923 template <> 3924 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 3925 MDUnsignedField &Result) { 3926 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3927 return tokError("expected unsigned integer"); 3928 3929 auto &U = Lex.getAPSIntVal(); 3930 if (U.ugt(Result.Max)) 3931 return tokError("value for '" + Name + "' too large, limit is " + 3932 Twine(Result.Max)); 3933 Result.assign(U.getZExtValue()); 3934 assert(Result.Val <= Result.Max && "Expected value in range"); 3935 Lex.Lex(); 3936 return false; 3937 } 3938 3939 template <> 3940 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) { 3941 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3942 } 3943 template <> 3944 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 3945 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3946 } 3947 3948 template <> 3949 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 3950 if (Lex.getKind() == lltok::APSInt) 3951 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3952 3953 if (Lex.getKind() != lltok::DwarfTag) 3954 return tokError("expected DWARF tag"); 3955 3956 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 3957 if (Tag == dwarf::DW_TAG_invalid) 3958 return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 3959 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 3960 3961 Result.assign(Tag); 3962 Lex.Lex(); 3963 return false; 3964 } 3965 3966 template <> 3967 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 3968 DwarfMacinfoTypeField &Result) { 3969 if (Lex.getKind() == lltok::APSInt) 3970 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3971 3972 if (Lex.getKind() != lltok::DwarfMacinfo) 3973 return tokError("expected DWARF macinfo type"); 3974 3975 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 3976 if (Macinfo == dwarf::DW_MACINFO_invalid) 3977 return tokError("invalid DWARF macinfo type" + Twine(" '") + 3978 Lex.getStrVal() + "'"); 3979 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 3980 3981 Result.assign(Macinfo); 3982 Lex.Lex(); 3983 return false; 3984 } 3985 3986 template <> 3987 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 3988 DwarfVirtualityField &Result) { 3989 if (Lex.getKind() == lltok::APSInt) 3990 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3991 3992 if (Lex.getKind() != lltok::DwarfVirtuality) 3993 return tokError("expected DWARF virtuality code"); 3994 3995 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 3996 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 3997 return tokError("invalid DWARF virtuality code" + Twine(" '") + 3998 Lex.getStrVal() + "'"); 3999 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 4000 Result.assign(Virtuality); 4001 Lex.Lex(); 4002 return false; 4003 } 4004 4005 template <> 4006 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 4007 if (Lex.getKind() == lltok::APSInt) 4008 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4009 4010 if (Lex.getKind() != lltok::DwarfLang) 4011 return tokError("expected DWARF language"); 4012 4013 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 4014 if (!Lang) 4015 return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 4016 "'"); 4017 assert(Lang <= Result.Max && "Expected valid DWARF language"); 4018 Result.assign(Lang); 4019 Lex.Lex(); 4020 return false; 4021 } 4022 4023 template <> 4024 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 4025 if (Lex.getKind() == lltok::APSInt) 4026 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4027 4028 if (Lex.getKind() != lltok::DwarfCC) 4029 return tokError("expected DWARF calling convention"); 4030 4031 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 4032 if (!CC) 4033 return tokError("invalid DWARF calling convention" + Twine(" '") + 4034 Lex.getStrVal() + "'"); 4035 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 4036 Result.assign(CC); 4037 Lex.Lex(); 4038 return false; 4039 } 4040 4041 template <> 4042 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4043 EmissionKindField &Result) { 4044 if (Lex.getKind() == lltok::APSInt) 4045 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4046 4047 if (Lex.getKind() != lltok::EmissionKind) 4048 return tokError("expected emission kind"); 4049 4050 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 4051 if (!Kind) 4052 return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 4053 "'"); 4054 assert(*Kind <= Result.Max && "Expected valid emission kind"); 4055 Result.assign(*Kind); 4056 Lex.Lex(); 4057 return false; 4058 } 4059 4060 template <> 4061 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4062 NameTableKindField &Result) { 4063 if (Lex.getKind() == lltok::APSInt) 4064 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4065 4066 if (Lex.getKind() != lltok::NameTableKind) 4067 return tokError("expected nameTable kind"); 4068 4069 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal()); 4070 if (!Kind) 4071 return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() + 4072 "'"); 4073 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind"); 4074 Result.assign((unsigned)*Kind); 4075 Lex.Lex(); 4076 return false; 4077 } 4078 4079 template <> 4080 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4081 DwarfAttEncodingField &Result) { 4082 if (Lex.getKind() == lltok::APSInt) 4083 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4084 4085 if (Lex.getKind() != lltok::DwarfAttEncoding) 4086 return tokError("expected DWARF type attribute encoding"); 4087 4088 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 4089 if (!Encoding) 4090 return tokError("invalid DWARF type attribute encoding" + Twine(" '") + 4091 Lex.getStrVal() + "'"); 4092 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 4093 Result.assign(Encoding); 4094 Lex.Lex(); 4095 return false; 4096 } 4097 4098 /// DIFlagField 4099 /// ::= uint32 4100 /// ::= DIFlagVector 4101 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 4102 template <> 4103 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 4104 4105 // parser for a single flag. 4106 auto parseFlag = [&](DINode::DIFlags &Val) { 4107 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4108 uint32_t TempVal = static_cast<uint32_t>(Val); 4109 bool Res = parseUInt32(TempVal); 4110 Val = static_cast<DINode::DIFlags>(TempVal); 4111 return Res; 4112 } 4113 4114 if (Lex.getKind() != lltok::DIFlag) 4115 return tokError("expected debug info flag"); 4116 4117 Val = DINode::getFlag(Lex.getStrVal()); 4118 if (!Val) 4119 return tokError(Twine("invalid debug info flag flag '") + 4120 Lex.getStrVal() + "'"); 4121 Lex.Lex(); 4122 return false; 4123 }; 4124 4125 // parse the flags and combine them together. 4126 DINode::DIFlags Combined = DINode::FlagZero; 4127 do { 4128 DINode::DIFlags Val; 4129 if (parseFlag(Val)) 4130 return true; 4131 Combined |= Val; 4132 } while (EatIfPresent(lltok::bar)); 4133 4134 Result.assign(Combined); 4135 return false; 4136 } 4137 4138 /// DISPFlagField 4139 /// ::= uint32 4140 /// ::= DISPFlagVector 4141 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32 4142 template <> 4143 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) { 4144 4145 // parser for a single flag. 4146 auto parseFlag = [&](DISubprogram::DISPFlags &Val) { 4147 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4148 uint32_t TempVal = static_cast<uint32_t>(Val); 4149 bool Res = parseUInt32(TempVal); 4150 Val = static_cast<DISubprogram::DISPFlags>(TempVal); 4151 return Res; 4152 } 4153 4154 if (Lex.getKind() != lltok::DISPFlag) 4155 return tokError("expected debug info flag"); 4156 4157 Val = DISubprogram::getFlag(Lex.getStrVal()); 4158 if (!Val) 4159 return tokError(Twine("invalid subprogram debug info flag '") + 4160 Lex.getStrVal() + "'"); 4161 Lex.Lex(); 4162 return false; 4163 }; 4164 4165 // parse the flags and combine them together. 4166 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero; 4167 do { 4168 DISubprogram::DISPFlags Val; 4169 if (parseFlag(Val)) 4170 return true; 4171 Combined |= Val; 4172 } while (EatIfPresent(lltok::bar)); 4173 4174 Result.assign(Combined); 4175 return false; 4176 } 4177 4178 template <> 4179 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) { 4180 if (Lex.getKind() != lltok::APSInt) 4181 return tokError("expected signed integer"); 4182 4183 auto &S = Lex.getAPSIntVal(); 4184 if (S < Result.Min) 4185 return tokError("value for '" + Name + "' too small, limit is " + 4186 Twine(Result.Min)); 4187 if (S > Result.Max) 4188 return tokError("value for '" + Name + "' too large, limit is " + 4189 Twine(Result.Max)); 4190 Result.assign(S.getExtValue()); 4191 assert(Result.Val >= Result.Min && "Expected value in range"); 4192 assert(Result.Val <= Result.Max && "Expected value in range"); 4193 Lex.Lex(); 4194 return false; 4195 } 4196 4197 template <> 4198 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 4199 switch (Lex.getKind()) { 4200 default: 4201 return tokError("expected 'true' or 'false'"); 4202 case lltok::kw_true: 4203 Result.assign(true); 4204 break; 4205 case lltok::kw_false: 4206 Result.assign(false); 4207 break; 4208 } 4209 Lex.Lex(); 4210 return false; 4211 } 4212 4213 template <> 4214 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) { 4215 if (Lex.getKind() == lltok::kw_null) { 4216 if (!Result.AllowNull) 4217 return tokError("'" + Name + "' cannot be null"); 4218 Lex.Lex(); 4219 Result.assign(nullptr); 4220 return false; 4221 } 4222 4223 Metadata *MD; 4224 if (parseMetadata(MD, nullptr)) 4225 return true; 4226 4227 Result.assign(MD); 4228 return false; 4229 } 4230 4231 template <> 4232 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4233 MDSignedOrMDField &Result) { 4234 // Try to parse a signed int. 4235 if (Lex.getKind() == lltok::APSInt) { 4236 MDSignedField Res = Result.A; 4237 if (!parseMDField(Loc, Name, Res)) { 4238 Result.assign(Res); 4239 return false; 4240 } 4241 return true; 4242 } 4243 4244 // Otherwise, try to parse as an MDField. 4245 MDField Res = Result.B; 4246 if (!parseMDField(Loc, Name, Res)) { 4247 Result.assign(Res); 4248 return false; 4249 } 4250 4251 return true; 4252 } 4253 4254 template <> 4255 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 4256 LocTy ValueLoc = Lex.getLoc(); 4257 std::string S; 4258 if (parseStringConstant(S)) 4259 return true; 4260 4261 if (!Result.AllowEmpty && S.empty()) 4262 return error(ValueLoc, "'" + Name + "' cannot be empty"); 4263 4264 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 4265 return false; 4266 } 4267 4268 template <> 4269 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 4270 SmallVector<Metadata *, 4> MDs; 4271 if (parseMDNodeVector(MDs)) 4272 return true; 4273 4274 Result.assign(std::move(MDs)); 4275 return false; 4276 } 4277 4278 template <> 4279 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4280 ChecksumKindField &Result) { 4281 Optional<DIFile::ChecksumKind> CSKind = 4282 DIFile::getChecksumKind(Lex.getStrVal()); 4283 4284 if (Lex.getKind() != lltok::ChecksumKind || !CSKind) 4285 return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() + 4286 "'"); 4287 4288 Result.assign(*CSKind); 4289 Lex.Lex(); 4290 return false; 4291 } 4292 4293 } // end namespace llvm 4294 4295 template <class ParserTy> 4296 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) { 4297 do { 4298 if (Lex.getKind() != lltok::LabelStr) 4299 return tokError("expected field label here"); 4300 4301 if (ParseField()) 4302 return true; 4303 } while (EatIfPresent(lltok::comma)); 4304 4305 return false; 4306 } 4307 4308 template <class ParserTy> 4309 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) { 4310 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4311 Lex.Lex(); 4312 4313 if (parseToken(lltok::lparen, "expected '(' here")) 4314 return true; 4315 if (Lex.getKind() != lltok::rparen) 4316 if (parseMDFieldsImplBody(ParseField)) 4317 return true; 4318 4319 ClosingLoc = Lex.getLoc(); 4320 return parseToken(lltok::rparen, "expected ')' here"); 4321 } 4322 4323 template <class FieldTy> 4324 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) { 4325 if (Result.Seen) 4326 return tokError("field '" + Name + "' cannot be specified more than once"); 4327 4328 LocTy Loc = Lex.getLoc(); 4329 Lex.Lex(); 4330 return parseMDField(Loc, Name, Result); 4331 } 4332 4333 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 4334 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4335 4336 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 4337 if (Lex.getStrVal() == #CLASS) \ 4338 return parse##CLASS(N, IsDistinct); 4339 #include "llvm/IR/Metadata.def" 4340 4341 return tokError("expected metadata type"); 4342 } 4343 4344 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 4345 #define NOP_FIELD(NAME, TYPE, INIT) 4346 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 4347 if (!NAME.Seen) \ 4348 return error(ClosingLoc, "missing required field '" #NAME "'"); 4349 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 4350 if (Lex.getStrVal() == #NAME) \ 4351 return parseMDField(#NAME, NAME); 4352 #define PARSE_MD_FIELDS() \ 4353 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 4354 do { \ 4355 LocTy ClosingLoc; \ 4356 if (parseMDFieldsImpl( \ 4357 [&]() -> bool { \ 4358 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 4359 return tokError(Twine("invalid field '") + Lex.getStrVal() + \ 4360 "'"); \ 4361 }, \ 4362 ClosingLoc)) \ 4363 return true; \ 4364 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 4365 } while (false) 4366 #define GET_OR_DISTINCT(CLASS, ARGS) \ 4367 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 4368 4369 /// parseDILocationFields: 4370 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6, 4371 /// isImplicitCode: true) 4372 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) { 4373 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4374 OPTIONAL(line, LineField, ); \ 4375 OPTIONAL(column, ColumnField, ); \ 4376 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4377 OPTIONAL(inlinedAt, MDField, ); \ 4378 OPTIONAL(isImplicitCode, MDBoolField, (false)); 4379 PARSE_MD_FIELDS(); 4380 #undef VISIT_MD_FIELDS 4381 4382 Result = 4383 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val, 4384 inlinedAt.Val, isImplicitCode.Val)); 4385 return false; 4386 } 4387 4388 /// parseGenericDINode: 4389 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 4390 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) { 4391 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4392 REQUIRED(tag, DwarfTagField, ); \ 4393 OPTIONAL(header, MDStringField, ); \ 4394 OPTIONAL(operands, MDFieldList, ); 4395 PARSE_MD_FIELDS(); 4396 #undef VISIT_MD_FIELDS 4397 4398 Result = GET_OR_DISTINCT(GenericDINode, 4399 (Context, tag.Val, header.Val, operands.Val)); 4400 return false; 4401 } 4402 4403 /// parseDISubrange: 4404 /// ::= !DISubrange(count: 30, lowerBound: 2) 4405 /// ::= !DISubrange(count: !node, lowerBound: 2) 4406 /// ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3) 4407 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) { 4408 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4409 OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ 4410 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 4411 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 4412 OPTIONAL(stride, MDSignedOrMDField, ); 4413 PARSE_MD_FIELDS(); 4414 #undef VISIT_MD_FIELDS 4415 4416 Metadata *Count = nullptr; 4417 Metadata *LowerBound = nullptr; 4418 Metadata *UpperBound = nullptr; 4419 Metadata *Stride = nullptr; 4420 4421 auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 4422 if (Bound.isMDSignedField()) 4423 return ConstantAsMetadata::get(ConstantInt::getSigned( 4424 Type::getInt64Ty(Context), Bound.getMDSignedValue())); 4425 if (Bound.isMDField()) 4426 return Bound.getMDFieldValue(); 4427 return nullptr; 4428 }; 4429 4430 Count = convToMetadata(count); 4431 LowerBound = convToMetadata(lowerBound); 4432 UpperBound = convToMetadata(upperBound); 4433 Stride = convToMetadata(stride); 4434 4435 Result = GET_OR_DISTINCT(DISubrange, 4436 (Context, Count, LowerBound, UpperBound, Stride)); 4437 4438 return false; 4439 } 4440 4441 /// parseDIGenericSubrange: 4442 /// ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride: 4443 /// !node3) 4444 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) { 4445 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4446 OPTIONAL(count, MDSignedOrMDField, ); \ 4447 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 4448 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 4449 OPTIONAL(stride, MDSignedOrMDField, ); 4450 PARSE_MD_FIELDS(); 4451 #undef VISIT_MD_FIELDS 4452 4453 auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 4454 if (Bound.isMDSignedField()) 4455 return DIExpression::get( 4456 Context, {dwarf::DW_OP_consts, 4457 static_cast<uint64_t>(Bound.getMDSignedValue())}); 4458 if (Bound.isMDField()) 4459 return Bound.getMDFieldValue(); 4460 return nullptr; 4461 }; 4462 4463 Metadata *Count = ConvToMetadata(count); 4464 Metadata *LowerBound = ConvToMetadata(lowerBound); 4465 Metadata *UpperBound = ConvToMetadata(upperBound); 4466 Metadata *Stride = ConvToMetadata(stride); 4467 4468 Result = GET_OR_DISTINCT(DIGenericSubrange, 4469 (Context, Count, LowerBound, UpperBound, Stride)); 4470 4471 return false; 4472 } 4473 4474 /// parseDIEnumerator: 4475 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind") 4476 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) { 4477 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4478 REQUIRED(name, MDStringField, ); \ 4479 REQUIRED(value, MDAPSIntField, ); \ 4480 OPTIONAL(isUnsigned, MDBoolField, (false)); 4481 PARSE_MD_FIELDS(); 4482 #undef VISIT_MD_FIELDS 4483 4484 if (isUnsigned.Val && value.Val.isNegative()) 4485 return tokError("unsigned enumerator with negative value"); 4486 4487 APSInt Value(value.Val); 4488 // Add a leading zero so that unsigned values with the msb set are not 4489 // mistaken for negative values when used for signed enumerators. 4490 if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet()) 4491 Value = Value.zext(Value.getBitWidth() + 1); 4492 4493 Result = 4494 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val)); 4495 4496 return false; 4497 } 4498 4499 /// parseDIBasicType: 4500 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32, 4501 /// encoding: DW_ATE_encoding, flags: 0) 4502 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) { 4503 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4504 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 4505 OPTIONAL(name, MDStringField, ); \ 4506 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4507 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4508 OPTIONAL(encoding, DwarfAttEncodingField, ); \ 4509 OPTIONAL(flags, DIFlagField, ); 4510 PARSE_MD_FIELDS(); 4511 #undef VISIT_MD_FIELDS 4512 4513 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 4514 align.Val, encoding.Val, flags.Val)); 4515 return false; 4516 } 4517 4518 /// parseDIStringType: 4519 /// ::= !DIStringType(name: "character(4)", size: 32, align: 32) 4520 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) { 4521 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4522 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type)); \ 4523 OPTIONAL(name, MDStringField, ); \ 4524 OPTIONAL(stringLength, MDField, ); \ 4525 OPTIONAL(stringLengthExpression, MDField, ); \ 4526 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4527 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4528 OPTIONAL(encoding, DwarfAttEncodingField, ); 4529 PARSE_MD_FIELDS(); 4530 #undef VISIT_MD_FIELDS 4531 4532 Result = GET_OR_DISTINCT(DIStringType, 4533 (Context, tag.Val, name.Val, stringLength.Val, 4534 stringLengthExpression.Val, size.Val, align.Val, 4535 encoding.Val)); 4536 return false; 4537 } 4538 4539 /// parseDIDerivedType: 4540 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 4541 /// line: 7, scope: !1, baseType: !2, size: 32, 4542 /// align: 32, offset: 0, flags: 0, extraData: !3, 4543 /// dwarfAddressSpace: 3) 4544 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) { 4545 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4546 REQUIRED(tag, DwarfTagField, ); \ 4547 OPTIONAL(name, MDStringField, ); \ 4548 OPTIONAL(file, MDField, ); \ 4549 OPTIONAL(line, LineField, ); \ 4550 OPTIONAL(scope, MDField, ); \ 4551 REQUIRED(baseType, MDField, ); \ 4552 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4553 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4554 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4555 OPTIONAL(flags, DIFlagField, ); \ 4556 OPTIONAL(extraData, MDField, ); \ 4557 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); 4558 PARSE_MD_FIELDS(); 4559 #undef VISIT_MD_FIELDS 4560 4561 Optional<unsigned> DWARFAddressSpace; 4562 if (dwarfAddressSpace.Val != UINT32_MAX) 4563 DWARFAddressSpace = dwarfAddressSpace.Val; 4564 4565 Result = GET_OR_DISTINCT(DIDerivedType, 4566 (Context, tag.Val, name.Val, file.Val, line.Val, 4567 scope.Val, baseType.Val, size.Val, align.Val, 4568 offset.Val, DWARFAddressSpace, flags.Val, 4569 extraData.Val)); 4570 return false; 4571 } 4572 4573 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) { 4574 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4575 REQUIRED(tag, DwarfTagField, ); \ 4576 OPTIONAL(name, MDStringField, ); \ 4577 OPTIONAL(file, MDField, ); \ 4578 OPTIONAL(line, LineField, ); \ 4579 OPTIONAL(scope, MDField, ); \ 4580 OPTIONAL(baseType, MDField, ); \ 4581 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4582 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4583 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4584 OPTIONAL(flags, DIFlagField, ); \ 4585 OPTIONAL(elements, MDField, ); \ 4586 OPTIONAL(runtimeLang, DwarfLangField, ); \ 4587 OPTIONAL(vtableHolder, MDField, ); \ 4588 OPTIONAL(templateParams, MDField, ); \ 4589 OPTIONAL(identifier, MDStringField, ); \ 4590 OPTIONAL(discriminator, MDField, ); \ 4591 OPTIONAL(dataLocation, MDField, ); \ 4592 OPTIONAL(associated, MDField, ); \ 4593 OPTIONAL(allocated, MDField, ); \ 4594 OPTIONAL(rank, MDSignedOrMDField, ); \ 4595 OPTIONAL(annotations, MDField, ); 4596 PARSE_MD_FIELDS(); 4597 #undef VISIT_MD_FIELDS 4598 4599 Metadata *Rank = nullptr; 4600 if (rank.isMDSignedField()) 4601 Rank = ConstantAsMetadata::get(ConstantInt::getSigned( 4602 Type::getInt64Ty(Context), rank.getMDSignedValue())); 4603 else if (rank.isMDField()) 4604 Rank = rank.getMDFieldValue(); 4605 4606 // If this has an identifier try to build an ODR type. 4607 if (identifier.Val) 4608 if (auto *CT = DICompositeType::buildODRType( 4609 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 4610 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 4611 elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val, 4612 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, 4613 Rank, annotations.Val)) { 4614 Result = CT; 4615 return false; 4616 } 4617 4618 // Create a new node, and save it in the context if it belongs in the type 4619 // map. 4620 Result = GET_OR_DISTINCT( 4621 DICompositeType, 4622 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 4623 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 4624 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val, 4625 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, Rank, 4626 annotations.Val)); 4627 return false; 4628 } 4629 4630 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) { 4631 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4632 OPTIONAL(flags, DIFlagField, ); \ 4633 OPTIONAL(cc, DwarfCCField, ); \ 4634 REQUIRED(types, MDField, ); 4635 PARSE_MD_FIELDS(); 4636 #undef VISIT_MD_FIELDS 4637 4638 Result = GET_OR_DISTINCT(DISubroutineType, 4639 (Context, flags.Val, cc.Val, types.Val)); 4640 return false; 4641 } 4642 4643 /// parseDIFileType: 4644 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir", 4645 /// checksumkind: CSK_MD5, 4646 /// checksum: "000102030405060708090a0b0c0d0e0f", 4647 /// source: "source file contents") 4648 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) { 4649 // The default constructed value for checksumkind is required, but will never 4650 // be used, as the parser checks if the field was actually Seen before using 4651 // the Val. 4652 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4653 REQUIRED(filename, MDStringField, ); \ 4654 REQUIRED(directory, MDStringField, ); \ 4655 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \ 4656 OPTIONAL(checksum, MDStringField, ); \ 4657 OPTIONAL(source, MDStringField, ); 4658 PARSE_MD_FIELDS(); 4659 #undef VISIT_MD_FIELDS 4660 4661 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum; 4662 if (checksumkind.Seen && checksum.Seen) 4663 OptChecksum.emplace(checksumkind.Val, checksum.Val); 4664 else if (checksumkind.Seen || checksum.Seen) 4665 return Lex.Error("'checksumkind' and 'checksum' must be provided together"); 4666 4667 Optional<MDString *> OptSource; 4668 if (source.Seen) 4669 OptSource = source.Val; 4670 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val, 4671 OptChecksum, OptSource)); 4672 return false; 4673 } 4674 4675 /// parseDICompileUnit: 4676 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 4677 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 4678 /// splitDebugFilename: "abc.debug", 4679 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 4680 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd, 4681 /// sysroot: "/", sdk: "MacOSX.sdk") 4682 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) { 4683 if (!IsDistinct) 4684 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 4685 4686 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4687 REQUIRED(language, DwarfLangField, ); \ 4688 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 4689 OPTIONAL(producer, MDStringField, ); \ 4690 OPTIONAL(isOptimized, MDBoolField, ); \ 4691 OPTIONAL(flags, MDStringField, ); \ 4692 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 4693 OPTIONAL(splitDebugFilename, MDStringField, ); \ 4694 OPTIONAL(emissionKind, EmissionKindField, ); \ 4695 OPTIONAL(enums, MDField, ); \ 4696 OPTIONAL(retainedTypes, MDField, ); \ 4697 OPTIONAL(globals, MDField, ); \ 4698 OPTIONAL(imports, MDField, ); \ 4699 OPTIONAL(macros, MDField, ); \ 4700 OPTIONAL(dwoId, MDUnsignedField, ); \ 4701 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 4702 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 4703 OPTIONAL(nameTableKind, NameTableKindField, ); \ 4704 OPTIONAL(rangesBaseAddress, MDBoolField, = false); \ 4705 OPTIONAL(sysroot, MDStringField, ); \ 4706 OPTIONAL(sdk, MDStringField, ); 4707 PARSE_MD_FIELDS(); 4708 #undef VISIT_MD_FIELDS 4709 4710 Result = DICompileUnit::getDistinct( 4711 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 4712 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 4713 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 4714 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val, 4715 rangesBaseAddress.Val, sysroot.Val, sdk.Val); 4716 return false; 4717 } 4718 4719 /// parseDISubprogram: 4720 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 4721 /// file: !1, line: 7, type: !2, isLocal: false, 4722 /// isDefinition: true, scopeLine: 8, containingType: !3, 4723 /// virtuality: DW_VIRTUALTIY_pure_virtual, 4724 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 4725 /// spFlags: 10, isOptimized: false, templateParams: !4, 4726 /// declaration: !5, retainedNodes: !6, thrownTypes: !7) 4727 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) { 4728 auto Loc = Lex.getLoc(); 4729 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4730 OPTIONAL(scope, MDField, ); \ 4731 OPTIONAL(name, MDStringField, ); \ 4732 OPTIONAL(linkageName, MDStringField, ); \ 4733 OPTIONAL(file, MDField, ); \ 4734 OPTIONAL(line, LineField, ); \ 4735 OPTIONAL(type, MDField, ); \ 4736 OPTIONAL(isLocal, MDBoolField, ); \ 4737 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4738 OPTIONAL(scopeLine, LineField, ); \ 4739 OPTIONAL(containingType, MDField, ); \ 4740 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 4741 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 4742 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 4743 OPTIONAL(flags, DIFlagField, ); \ 4744 OPTIONAL(spFlags, DISPFlagField, ); \ 4745 OPTIONAL(isOptimized, MDBoolField, ); \ 4746 OPTIONAL(unit, MDField, ); \ 4747 OPTIONAL(templateParams, MDField, ); \ 4748 OPTIONAL(declaration, MDField, ); \ 4749 OPTIONAL(retainedNodes, MDField, ); \ 4750 OPTIONAL(thrownTypes, MDField, ); 4751 PARSE_MD_FIELDS(); 4752 #undef VISIT_MD_FIELDS 4753 4754 // An explicit spFlags field takes precedence over individual fields in 4755 // older IR versions. 4756 DISubprogram::DISPFlags SPFlags = 4757 spFlags.Seen ? spFlags.Val 4758 : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val, 4759 isOptimized.Val, virtuality.Val); 4760 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct) 4761 return Lex.Error( 4762 Loc, 4763 "missing 'distinct', required for !DISubprogram that is a Definition"); 4764 Result = GET_OR_DISTINCT( 4765 DISubprogram, 4766 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 4767 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val, 4768 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val, 4769 declaration.Val, retainedNodes.Val, thrownTypes.Val)); 4770 return false; 4771 } 4772 4773 /// parseDILexicalBlock: 4774 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 4775 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 4776 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4777 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4778 OPTIONAL(file, MDField, ); \ 4779 OPTIONAL(line, LineField, ); \ 4780 OPTIONAL(column, ColumnField, ); 4781 PARSE_MD_FIELDS(); 4782 #undef VISIT_MD_FIELDS 4783 4784 Result = GET_OR_DISTINCT( 4785 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 4786 return false; 4787 } 4788 4789 /// parseDILexicalBlockFile: 4790 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 4791 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 4792 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4793 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4794 OPTIONAL(file, MDField, ); \ 4795 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 4796 PARSE_MD_FIELDS(); 4797 #undef VISIT_MD_FIELDS 4798 4799 Result = GET_OR_DISTINCT(DILexicalBlockFile, 4800 (Context, scope.Val, file.Val, discriminator.Val)); 4801 return false; 4802 } 4803 4804 /// parseDICommonBlock: 4805 /// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9) 4806 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) { 4807 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4808 REQUIRED(scope, MDField, ); \ 4809 OPTIONAL(declaration, MDField, ); \ 4810 OPTIONAL(name, MDStringField, ); \ 4811 OPTIONAL(file, MDField, ); \ 4812 OPTIONAL(line, LineField, ); 4813 PARSE_MD_FIELDS(); 4814 #undef VISIT_MD_FIELDS 4815 4816 Result = GET_OR_DISTINCT(DICommonBlock, 4817 (Context, scope.Val, declaration.Val, name.Val, 4818 file.Val, line.Val)); 4819 return false; 4820 } 4821 4822 /// parseDINamespace: 4823 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 4824 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) { 4825 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4826 REQUIRED(scope, MDField, ); \ 4827 OPTIONAL(name, MDStringField, ); \ 4828 OPTIONAL(exportSymbols, MDBoolField, ); 4829 PARSE_MD_FIELDS(); 4830 #undef VISIT_MD_FIELDS 4831 4832 Result = GET_OR_DISTINCT(DINamespace, 4833 (Context, scope.Val, name.Val, exportSymbols.Val)); 4834 return false; 4835 } 4836 4837 /// parseDIMacro: 4838 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: 4839 /// "SomeValue") 4840 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) { 4841 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4842 REQUIRED(type, DwarfMacinfoTypeField, ); \ 4843 OPTIONAL(line, LineField, ); \ 4844 REQUIRED(name, MDStringField, ); \ 4845 OPTIONAL(value, MDStringField, ); 4846 PARSE_MD_FIELDS(); 4847 #undef VISIT_MD_FIELDS 4848 4849 Result = GET_OR_DISTINCT(DIMacro, 4850 (Context, type.Val, line.Val, name.Val, value.Val)); 4851 return false; 4852 } 4853 4854 /// parseDIMacroFile: 4855 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 4856 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) { 4857 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4858 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 4859 OPTIONAL(line, LineField, ); \ 4860 REQUIRED(file, MDField, ); \ 4861 OPTIONAL(nodes, MDField, ); 4862 PARSE_MD_FIELDS(); 4863 #undef VISIT_MD_FIELDS 4864 4865 Result = GET_OR_DISTINCT(DIMacroFile, 4866 (Context, type.Val, line.Val, file.Val, nodes.Val)); 4867 return false; 4868 } 4869 4870 /// parseDIModule: 4871 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: 4872 /// "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes", 4873 /// file: !1, line: 4, isDecl: false) 4874 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) { 4875 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4876 REQUIRED(scope, MDField, ); \ 4877 REQUIRED(name, MDStringField, ); \ 4878 OPTIONAL(configMacros, MDStringField, ); \ 4879 OPTIONAL(includePath, MDStringField, ); \ 4880 OPTIONAL(apinotes, MDStringField, ); \ 4881 OPTIONAL(file, MDField, ); \ 4882 OPTIONAL(line, LineField, ); \ 4883 OPTIONAL(isDecl, MDBoolField, ); 4884 PARSE_MD_FIELDS(); 4885 #undef VISIT_MD_FIELDS 4886 4887 Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val, 4888 configMacros.Val, includePath.Val, 4889 apinotes.Val, line.Val, isDecl.Val)); 4890 return false; 4891 } 4892 4893 /// parseDITemplateTypeParameter: 4894 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false) 4895 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 4896 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4897 OPTIONAL(name, MDStringField, ); \ 4898 REQUIRED(type, MDField, ); \ 4899 OPTIONAL(defaulted, MDBoolField, ); 4900 PARSE_MD_FIELDS(); 4901 #undef VISIT_MD_FIELDS 4902 4903 Result = GET_OR_DISTINCT(DITemplateTypeParameter, 4904 (Context, name.Val, type.Val, defaulted.Val)); 4905 return false; 4906 } 4907 4908 /// parseDITemplateValueParameter: 4909 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 4910 /// name: "V", type: !1, defaulted: false, 4911 /// value: i32 7) 4912 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 4913 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4914 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 4915 OPTIONAL(name, MDStringField, ); \ 4916 OPTIONAL(type, MDField, ); \ 4917 OPTIONAL(defaulted, MDBoolField, ); \ 4918 REQUIRED(value, MDField, ); 4919 4920 PARSE_MD_FIELDS(); 4921 #undef VISIT_MD_FIELDS 4922 4923 Result = GET_OR_DISTINCT( 4924 DITemplateValueParameter, 4925 (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val)); 4926 return false; 4927 } 4928 4929 /// parseDIGlobalVariable: 4930 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 4931 /// file: !1, line: 7, type: !2, isLocal: false, 4932 /// isDefinition: true, templateParams: !3, 4933 /// declaration: !4, align: 8) 4934 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 4935 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4936 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 4937 OPTIONAL(scope, MDField, ); \ 4938 OPTIONAL(linkageName, MDStringField, ); \ 4939 OPTIONAL(file, MDField, ); \ 4940 OPTIONAL(line, LineField, ); \ 4941 OPTIONAL(type, MDField, ); \ 4942 OPTIONAL(isLocal, MDBoolField, ); \ 4943 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4944 OPTIONAL(templateParams, MDField, ); \ 4945 OPTIONAL(declaration, MDField, ); \ 4946 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4947 PARSE_MD_FIELDS(); 4948 #undef VISIT_MD_FIELDS 4949 4950 Result = 4951 GET_OR_DISTINCT(DIGlobalVariable, 4952 (Context, scope.Val, name.Val, linkageName.Val, file.Val, 4953 line.Val, type.Val, isLocal.Val, isDefinition.Val, 4954 declaration.Val, templateParams.Val, align.Val)); 4955 return false; 4956 } 4957 4958 /// parseDILocalVariable: 4959 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 4960 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4961 /// align: 8) 4962 /// ::= !DILocalVariable(scope: !0, name: "foo", 4963 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4964 /// align: 8) 4965 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) { 4966 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4967 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4968 OPTIONAL(name, MDStringField, ); \ 4969 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 4970 OPTIONAL(file, MDField, ); \ 4971 OPTIONAL(line, LineField, ); \ 4972 OPTIONAL(type, MDField, ); \ 4973 OPTIONAL(flags, DIFlagField, ); \ 4974 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4975 PARSE_MD_FIELDS(); 4976 #undef VISIT_MD_FIELDS 4977 4978 Result = GET_OR_DISTINCT(DILocalVariable, 4979 (Context, scope.Val, name.Val, file.Val, line.Val, 4980 type.Val, arg.Val, flags.Val, align.Val)); 4981 return false; 4982 } 4983 4984 /// parseDILabel: 4985 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7) 4986 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) { 4987 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4988 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4989 REQUIRED(name, MDStringField, ); \ 4990 REQUIRED(file, MDField, ); \ 4991 REQUIRED(line, LineField, ); 4992 PARSE_MD_FIELDS(); 4993 #undef VISIT_MD_FIELDS 4994 4995 Result = GET_OR_DISTINCT(DILabel, 4996 (Context, scope.Val, name.Val, file.Val, line.Val)); 4997 return false; 4998 } 4999 5000 /// parseDIExpression: 5001 /// ::= !DIExpression(0, 7, -1) 5002 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) { 5003 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5004 Lex.Lex(); 5005 5006 if (parseToken(lltok::lparen, "expected '(' here")) 5007 return true; 5008 5009 SmallVector<uint64_t, 8> Elements; 5010 if (Lex.getKind() != lltok::rparen) 5011 do { 5012 if (Lex.getKind() == lltok::DwarfOp) { 5013 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 5014 Lex.Lex(); 5015 Elements.push_back(Op); 5016 continue; 5017 } 5018 return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 5019 } 5020 5021 if (Lex.getKind() == lltok::DwarfAttEncoding) { 5022 if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) { 5023 Lex.Lex(); 5024 Elements.push_back(Op); 5025 continue; 5026 } 5027 return tokError(Twine("invalid DWARF attribute encoding '") + 5028 Lex.getStrVal() + "'"); 5029 } 5030 5031 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 5032 return tokError("expected unsigned integer"); 5033 5034 auto &U = Lex.getAPSIntVal(); 5035 if (U.ugt(UINT64_MAX)) 5036 return tokError("element too large, limit is " + Twine(UINT64_MAX)); 5037 Elements.push_back(U.getZExtValue()); 5038 Lex.Lex(); 5039 } while (EatIfPresent(lltok::comma)); 5040 5041 if (parseToken(lltok::rparen, "expected ')' here")) 5042 return true; 5043 5044 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 5045 return false; 5046 } 5047 5048 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct) { 5049 return parseDIArgList(Result, IsDistinct, nullptr); 5050 } 5051 /// ParseDIArgList: 5052 /// ::= !DIArgList(i32 7, i64 %0) 5053 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct, 5054 PerFunctionState *PFS) { 5055 assert(PFS && "Expected valid function state"); 5056 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5057 Lex.Lex(); 5058 5059 if (parseToken(lltok::lparen, "expected '(' here")) 5060 return true; 5061 5062 SmallVector<ValueAsMetadata *, 4> Args; 5063 if (Lex.getKind() != lltok::rparen) 5064 do { 5065 Metadata *MD; 5066 if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS)) 5067 return true; 5068 Args.push_back(dyn_cast<ValueAsMetadata>(MD)); 5069 } while (EatIfPresent(lltok::comma)); 5070 5071 if (parseToken(lltok::rparen, "expected ')' here")) 5072 return true; 5073 5074 Result = GET_OR_DISTINCT(DIArgList, (Context, Args)); 5075 return false; 5076 } 5077 5078 /// parseDIGlobalVariableExpression: 5079 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 5080 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result, 5081 bool IsDistinct) { 5082 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5083 REQUIRED(var, MDField, ); \ 5084 REQUIRED(expr, MDField, ); 5085 PARSE_MD_FIELDS(); 5086 #undef VISIT_MD_FIELDS 5087 5088 Result = 5089 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 5090 return false; 5091 } 5092 5093 /// parseDIObjCProperty: 5094 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 5095 /// getter: "getFoo", attributes: 7, type: !2) 5096 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 5097 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5098 OPTIONAL(name, MDStringField, ); \ 5099 OPTIONAL(file, MDField, ); \ 5100 OPTIONAL(line, LineField, ); \ 5101 OPTIONAL(setter, MDStringField, ); \ 5102 OPTIONAL(getter, MDStringField, ); \ 5103 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 5104 OPTIONAL(type, MDField, ); 5105 PARSE_MD_FIELDS(); 5106 #undef VISIT_MD_FIELDS 5107 5108 Result = GET_OR_DISTINCT(DIObjCProperty, 5109 (Context, name.Val, file.Val, line.Val, setter.Val, 5110 getter.Val, attributes.Val, type.Val)); 5111 return false; 5112 } 5113 5114 /// parseDIImportedEntity: 5115 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 5116 /// line: 7, name: "foo") 5117 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 5118 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5119 REQUIRED(tag, DwarfTagField, ); \ 5120 REQUIRED(scope, MDField, ); \ 5121 OPTIONAL(entity, MDField, ); \ 5122 OPTIONAL(file, MDField, ); \ 5123 OPTIONAL(line, LineField, ); \ 5124 OPTIONAL(name, MDStringField, ); 5125 PARSE_MD_FIELDS(); 5126 #undef VISIT_MD_FIELDS 5127 5128 Result = GET_OR_DISTINCT( 5129 DIImportedEntity, 5130 (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val)); 5131 return false; 5132 } 5133 5134 #undef PARSE_MD_FIELD 5135 #undef NOP_FIELD 5136 #undef REQUIRE_FIELD 5137 #undef DECLARE_FIELD 5138 5139 /// parseMetadataAsValue 5140 /// ::= metadata i32 %local 5141 /// ::= metadata i32 @global 5142 /// ::= metadata i32 7 5143 /// ::= metadata !0 5144 /// ::= metadata !{...} 5145 /// ::= metadata !"string" 5146 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 5147 // Note: the type 'metadata' has already been parsed. 5148 Metadata *MD; 5149 if (parseMetadata(MD, &PFS)) 5150 return true; 5151 5152 V = MetadataAsValue::get(Context, MD); 5153 return false; 5154 } 5155 5156 /// parseValueAsMetadata 5157 /// ::= i32 %local 5158 /// ::= i32 @global 5159 /// ::= i32 7 5160 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 5161 PerFunctionState *PFS) { 5162 Type *Ty; 5163 LocTy Loc; 5164 if (parseType(Ty, TypeMsg, Loc)) 5165 return true; 5166 if (Ty->isMetadataTy()) 5167 return error(Loc, "invalid metadata-value-metadata roundtrip"); 5168 5169 Value *V; 5170 if (parseValue(Ty, V, PFS)) 5171 return true; 5172 5173 MD = ValueAsMetadata::get(V); 5174 return false; 5175 } 5176 5177 /// parseMetadata 5178 /// ::= i32 %local 5179 /// ::= i32 @global 5180 /// ::= i32 7 5181 /// ::= !42 5182 /// ::= !{...} 5183 /// ::= !"string" 5184 /// ::= !DILocation(...) 5185 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) { 5186 if (Lex.getKind() == lltok::MetadataVar) { 5187 MDNode *N; 5188 // DIArgLists are a special case, as they are a list of ValueAsMetadata and 5189 // so parsing this requires a Function State. 5190 if (Lex.getStrVal() == "DIArgList") { 5191 if (parseDIArgList(N, false, PFS)) 5192 return true; 5193 } else if (parseSpecializedMDNode(N)) { 5194 return true; 5195 } 5196 MD = N; 5197 return false; 5198 } 5199 5200 // ValueAsMetadata: 5201 // <type> <value> 5202 if (Lex.getKind() != lltok::exclaim) 5203 return parseValueAsMetadata(MD, "expected metadata operand", PFS); 5204 5205 // '!'. 5206 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 5207 Lex.Lex(); 5208 5209 // MDString: 5210 // ::= '!' STRINGCONSTANT 5211 if (Lex.getKind() == lltok::StringConstant) { 5212 MDString *S; 5213 if (parseMDString(S)) 5214 return true; 5215 MD = S; 5216 return false; 5217 } 5218 5219 // MDNode: 5220 // !{ ... } 5221 // !7 5222 MDNode *N; 5223 if (parseMDNodeTail(N)) 5224 return true; 5225 MD = N; 5226 return false; 5227 } 5228 5229 //===----------------------------------------------------------------------===// 5230 // Function Parsing. 5231 //===----------------------------------------------------------------------===// 5232 5233 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V, 5234 PerFunctionState *PFS, bool IsCall) { 5235 if (Ty->isFunctionTy()) 5236 return error(ID.Loc, "functions are not values, refer to them as pointers"); 5237 5238 switch (ID.Kind) { 5239 case ValID::t_LocalID: 5240 if (!PFS) 5241 return error(ID.Loc, "invalid use of function-local name"); 5242 V = PFS->getVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5243 return V == nullptr; 5244 case ValID::t_LocalName: 5245 if (!PFS) 5246 return error(ID.Loc, "invalid use of function-local name"); 5247 V = PFS->getVal(ID.StrVal, Ty, ID.Loc, IsCall); 5248 return V == nullptr; 5249 case ValID::t_InlineAsm: { 5250 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 5251 return error(ID.Loc, "invalid type for inline asm constraint string"); 5252 V = InlineAsm::get( 5253 ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, (ID.UIntVal >> 1) & 1, 5254 InlineAsm::AsmDialect((ID.UIntVal >> 2) & 1), (ID.UIntVal >> 3) & 1); 5255 return false; 5256 } 5257 case ValID::t_GlobalName: 5258 V = getGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall); 5259 return V == nullptr; 5260 case ValID::t_GlobalID: 5261 V = getGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5262 return V == nullptr; 5263 case ValID::t_APSInt: 5264 if (!Ty->isIntegerTy()) 5265 return error(ID.Loc, "integer constant must have integer type"); 5266 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 5267 V = ConstantInt::get(Context, ID.APSIntVal); 5268 return false; 5269 case ValID::t_APFloat: 5270 if (!Ty->isFloatingPointTy() || 5271 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 5272 return error(ID.Loc, "floating point constant invalid for type"); 5273 5274 // The lexer has no type info, so builds all half, bfloat, float, and double 5275 // FP constants as double. Fix this here. Long double does not need this. 5276 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 5277 // Check for signaling before potentially converting and losing that info. 5278 bool IsSNAN = ID.APFloatVal.isSignaling(); 5279 bool Ignored; 5280 if (Ty->isHalfTy()) 5281 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 5282 &Ignored); 5283 else if (Ty->isBFloatTy()) 5284 ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven, 5285 &Ignored); 5286 else if (Ty->isFloatTy()) 5287 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 5288 &Ignored); 5289 if (IsSNAN) { 5290 // The convert call above may quiet an SNaN, so manufacture another 5291 // SNaN. The bitcast works because the payload (significand) parameter 5292 // is truncated to fit. 5293 APInt Payload = ID.APFloatVal.bitcastToAPInt(); 5294 ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(), 5295 ID.APFloatVal.isNegative(), &Payload); 5296 } 5297 } 5298 V = ConstantFP::get(Context, ID.APFloatVal); 5299 5300 if (V->getType() != Ty) 5301 return error(ID.Loc, "floating point constant does not have type '" + 5302 getTypeString(Ty) + "'"); 5303 5304 return false; 5305 case ValID::t_Null: 5306 if (!Ty->isPointerTy()) 5307 return error(ID.Loc, "null must be a pointer type"); 5308 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 5309 return false; 5310 case ValID::t_Undef: 5311 // FIXME: LabelTy should not be a first-class type. 5312 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5313 return error(ID.Loc, "invalid type for undef constant"); 5314 V = UndefValue::get(Ty); 5315 return false; 5316 case ValID::t_EmptyArray: 5317 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 5318 return error(ID.Loc, "invalid empty array initializer"); 5319 V = UndefValue::get(Ty); 5320 return false; 5321 case ValID::t_Zero: 5322 // FIXME: LabelTy should not be a first-class type. 5323 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5324 return error(ID.Loc, "invalid type for null constant"); 5325 V = Constant::getNullValue(Ty); 5326 return false; 5327 case ValID::t_None: 5328 if (!Ty->isTokenTy()) 5329 return error(ID.Loc, "invalid type for none constant"); 5330 V = Constant::getNullValue(Ty); 5331 return false; 5332 case ValID::t_Poison: 5333 // FIXME: LabelTy should not be a first-class type. 5334 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5335 return error(ID.Loc, "invalid type for poison constant"); 5336 V = PoisonValue::get(Ty); 5337 return false; 5338 case ValID::t_Constant: 5339 if (ID.ConstantVal->getType() != Ty) 5340 return error(ID.Loc, "constant expression type mismatch: got type '" + 5341 getTypeString(ID.ConstantVal->getType()) + 5342 "' but expected '" + getTypeString(Ty) + "'"); 5343 V = ID.ConstantVal; 5344 return false; 5345 case ValID::t_ConstantStruct: 5346 case ValID::t_PackedConstantStruct: 5347 if (StructType *ST = dyn_cast<StructType>(Ty)) { 5348 if (ST->getNumElements() != ID.UIntVal) 5349 return error(ID.Loc, 5350 "initializer with struct type has wrong # elements"); 5351 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 5352 return error(ID.Loc, "packed'ness of initializer and type don't match"); 5353 5354 // Verify that the elements are compatible with the structtype. 5355 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 5356 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 5357 return error( 5358 ID.Loc, 5359 "element " + Twine(i) + 5360 " of struct initializer doesn't match struct element type"); 5361 5362 V = ConstantStruct::get( 5363 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 5364 } else 5365 return error(ID.Loc, "constant expression type mismatch"); 5366 return false; 5367 } 5368 llvm_unreachable("Invalid ValID"); 5369 } 5370 5371 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 5372 C = nullptr; 5373 ValID ID; 5374 auto Loc = Lex.getLoc(); 5375 if (parseValID(ID, /*PFS=*/nullptr)) 5376 return true; 5377 switch (ID.Kind) { 5378 case ValID::t_APSInt: 5379 case ValID::t_APFloat: 5380 case ValID::t_Undef: 5381 case ValID::t_Constant: 5382 case ValID::t_ConstantStruct: 5383 case ValID::t_PackedConstantStruct: { 5384 Value *V; 5385 if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false)) 5386 return true; 5387 assert(isa<Constant>(V) && "Expected a constant value"); 5388 C = cast<Constant>(V); 5389 return false; 5390 } 5391 case ValID::t_Null: 5392 C = Constant::getNullValue(Ty); 5393 return false; 5394 default: 5395 return error(Loc, "expected a constant value"); 5396 } 5397 } 5398 5399 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 5400 V = nullptr; 5401 ValID ID; 5402 return parseValID(ID, PFS, Ty) || 5403 convertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false); 5404 } 5405 5406 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) { 5407 Type *Ty = nullptr; 5408 return parseType(Ty) || parseValue(Ty, V, PFS); 5409 } 5410 5411 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 5412 PerFunctionState &PFS) { 5413 Value *V; 5414 Loc = Lex.getLoc(); 5415 if (parseTypeAndValue(V, PFS)) 5416 return true; 5417 if (!isa<BasicBlock>(V)) 5418 return error(Loc, "expected a basic block"); 5419 BB = cast<BasicBlock>(V); 5420 return false; 5421 } 5422 5423 /// FunctionHeader 5424 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 5425 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 5426 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign 5427 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 5428 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) { 5429 // parse the linkage. 5430 LocTy LinkageLoc = Lex.getLoc(); 5431 unsigned Linkage; 5432 unsigned Visibility; 5433 unsigned DLLStorageClass; 5434 bool DSOLocal; 5435 AttrBuilder RetAttrs; 5436 unsigned CC; 5437 bool HasLinkage; 5438 Type *RetType = nullptr; 5439 LocTy RetTypeLoc = Lex.getLoc(); 5440 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 5441 DSOLocal) || 5442 parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 5443 parseType(RetType, RetTypeLoc, true /*void allowed*/)) 5444 return true; 5445 5446 // Verify that the linkage is ok. 5447 switch ((GlobalValue::LinkageTypes)Linkage) { 5448 case GlobalValue::ExternalLinkage: 5449 break; // always ok. 5450 case GlobalValue::ExternalWeakLinkage: 5451 if (IsDefine) 5452 return error(LinkageLoc, "invalid linkage for function definition"); 5453 break; 5454 case GlobalValue::PrivateLinkage: 5455 case GlobalValue::InternalLinkage: 5456 case GlobalValue::AvailableExternallyLinkage: 5457 case GlobalValue::LinkOnceAnyLinkage: 5458 case GlobalValue::LinkOnceODRLinkage: 5459 case GlobalValue::WeakAnyLinkage: 5460 case GlobalValue::WeakODRLinkage: 5461 if (!IsDefine) 5462 return error(LinkageLoc, "invalid linkage for function declaration"); 5463 break; 5464 case GlobalValue::AppendingLinkage: 5465 case GlobalValue::CommonLinkage: 5466 return error(LinkageLoc, "invalid function linkage type"); 5467 } 5468 5469 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 5470 return error(LinkageLoc, 5471 "symbol with local linkage must have default visibility"); 5472 5473 if (!FunctionType::isValidReturnType(RetType)) 5474 return error(RetTypeLoc, "invalid function return type"); 5475 5476 LocTy NameLoc = Lex.getLoc(); 5477 5478 std::string FunctionName; 5479 if (Lex.getKind() == lltok::GlobalVar) { 5480 FunctionName = Lex.getStrVal(); 5481 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 5482 unsigned NameID = Lex.getUIntVal(); 5483 5484 if (NameID != NumberedVals.size()) 5485 return tokError("function expected to be numbered '%" + 5486 Twine(NumberedVals.size()) + "'"); 5487 } else { 5488 return tokError("expected function name"); 5489 } 5490 5491 Lex.Lex(); 5492 5493 if (Lex.getKind() != lltok::lparen) 5494 return tokError("expected '(' in function argument list"); 5495 5496 SmallVector<ArgInfo, 8> ArgList; 5497 bool IsVarArg; 5498 AttrBuilder FuncAttrs; 5499 std::vector<unsigned> FwdRefAttrGrps; 5500 LocTy BuiltinLoc; 5501 std::string Section; 5502 std::string Partition; 5503 MaybeAlign Alignment; 5504 std::string GC; 5505 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 5506 unsigned AddrSpace = 0; 5507 Constant *Prefix = nullptr; 5508 Constant *Prologue = nullptr; 5509 Constant *PersonalityFn = nullptr; 5510 Comdat *C; 5511 5512 if (parseArgumentList(ArgList, IsVarArg) || 5513 parseOptionalUnnamedAddr(UnnamedAddr) || 5514 parseOptionalProgramAddrSpace(AddrSpace) || 5515 parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 5516 BuiltinLoc) || 5517 (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) || 5518 (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) || 5519 parseOptionalComdat(FunctionName, C) || 5520 parseOptionalAlignment(Alignment) || 5521 (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) || 5522 (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) || 5523 (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) || 5524 (EatIfPresent(lltok::kw_personality) && 5525 parseGlobalTypeAndValue(PersonalityFn))) 5526 return true; 5527 5528 if (FuncAttrs.contains(Attribute::Builtin)) 5529 return error(BuiltinLoc, "'builtin' attribute not valid on function"); 5530 5531 // If the alignment was parsed as an attribute, move to the alignment field. 5532 if (FuncAttrs.hasAlignmentAttr()) { 5533 Alignment = FuncAttrs.getAlignment(); 5534 FuncAttrs.removeAttribute(Attribute::Alignment); 5535 } 5536 5537 // Okay, if we got here, the function is syntactically valid. Convert types 5538 // and do semantic checks. 5539 std::vector<Type*> ParamTypeList; 5540 SmallVector<AttributeSet, 8> Attrs; 5541 5542 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5543 ParamTypeList.push_back(ArgList[i].Ty); 5544 Attrs.push_back(ArgList[i].Attrs); 5545 } 5546 5547 AttributeList PAL = 5548 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 5549 AttributeSet::get(Context, RetAttrs), Attrs); 5550 5551 if (PAL.hasParamAttr(0, Attribute::StructRet) && !RetType->isVoidTy()) 5552 return error(RetTypeLoc, "functions with 'sret' argument must return void"); 5553 5554 FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg); 5555 PointerType *PFT = PointerType::get(FT, AddrSpace); 5556 5557 Fn = nullptr; 5558 GlobalValue *FwdFn = nullptr; 5559 if (!FunctionName.empty()) { 5560 // If this was a definition of a forward reference, remove the definition 5561 // from the forward reference table and fill in the forward ref. 5562 auto FRVI = ForwardRefVals.find(FunctionName); 5563 if (FRVI != ForwardRefVals.end()) { 5564 FwdFn = FRVI->second.first; 5565 if (!FwdFn->getType()->isOpaque()) { 5566 if (!FwdFn->getType()->getPointerElementType()->isFunctionTy()) 5567 return error(FRVI->second.second, "invalid forward reference to " 5568 "function as global value!"); 5569 if (FwdFn->getType() != PFT) 5570 return error(FRVI->second.second, 5571 "invalid forward reference to " 5572 "function '" + 5573 FunctionName + 5574 "' with wrong type: " 5575 "expected '" + 5576 getTypeString(PFT) + "' but was '" + 5577 getTypeString(FwdFn->getType()) + "'"); 5578 } 5579 ForwardRefVals.erase(FRVI); 5580 } else if ((Fn = M->getFunction(FunctionName))) { 5581 // Reject redefinitions. 5582 return error(NameLoc, 5583 "invalid redefinition of function '" + FunctionName + "'"); 5584 } else if (M->getNamedValue(FunctionName)) { 5585 return error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 5586 } 5587 5588 } else { 5589 // If this is a definition of a forward referenced function, make sure the 5590 // types agree. 5591 auto I = ForwardRefValIDs.find(NumberedVals.size()); 5592 if (I != ForwardRefValIDs.end()) { 5593 FwdFn = cast<Function>(I->second.first); 5594 if (!FwdFn->getType()->isOpaque() && FwdFn->getType() != PFT) 5595 return error(NameLoc, "type of definition and forward reference of '@" + 5596 Twine(NumberedVals.size()) + 5597 "' disagree: " 5598 "expected '" + 5599 getTypeString(PFT) + "' but was '" + 5600 getTypeString(FwdFn->getType()) + "'"); 5601 ForwardRefValIDs.erase(I); 5602 } 5603 } 5604 5605 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace, 5606 FunctionName, M); 5607 5608 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS"); 5609 5610 if (FunctionName.empty()) 5611 NumberedVals.push_back(Fn); 5612 5613 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 5614 maybeSetDSOLocal(DSOLocal, *Fn); 5615 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 5616 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 5617 Fn->setCallingConv(CC); 5618 Fn->setAttributes(PAL); 5619 Fn->setUnnamedAddr(UnnamedAddr); 5620 Fn->setAlignment(MaybeAlign(Alignment)); 5621 Fn->setSection(Section); 5622 Fn->setPartition(Partition); 5623 Fn->setComdat(C); 5624 Fn->setPersonalityFn(PersonalityFn); 5625 if (!GC.empty()) Fn->setGC(GC); 5626 Fn->setPrefixData(Prefix); 5627 Fn->setPrologueData(Prologue); 5628 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 5629 5630 // Add all of the arguments we parsed to the function. 5631 Function::arg_iterator ArgIt = Fn->arg_begin(); 5632 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 5633 // If the argument has a name, insert it into the argument symbol table. 5634 if (ArgList[i].Name.empty()) continue; 5635 5636 // Set the name, if it conflicted, it will be auto-renamed. 5637 ArgIt->setName(ArgList[i].Name); 5638 5639 if (ArgIt->getName() != ArgList[i].Name) 5640 return error(ArgList[i].Loc, 5641 "redefinition of argument '%" + ArgList[i].Name + "'"); 5642 } 5643 5644 if (FwdFn) { 5645 FwdFn->replaceAllUsesWith(Fn); 5646 FwdFn->eraseFromParent(); 5647 } 5648 5649 if (IsDefine) 5650 return false; 5651 5652 // Check the declaration has no block address forward references. 5653 ValID ID; 5654 if (FunctionName.empty()) { 5655 ID.Kind = ValID::t_GlobalID; 5656 ID.UIntVal = NumberedVals.size() - 1; 5657 } else { 5658 ID.Kind = ValID::t_GlobalName; 5659 ID.StrVal = FunctionName; 5660 } 5661 auto Blocks = ForwardRefBlockAddresses.find(ID); 5662 if (Blocks != ForwardRefBlockAddresses.end()) 5663 return error(Blocks->first.Loc, 5664 "cannot take blockaddress inside a declaration"); 5665 return false; 5666 } 5667 5668 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 5669 ValID ID; 5670 if (FunctionNumber == -1) { 5671 ID.Kind = ValID::t_GlobalName; 5672 ID.StrVal = std::string(F.getName()); 5673 } else { 5674 ID.Kind = ValID::t_GlobalID; 5675 ID.UIntVal = FunctionNumber; 5676 } 5677 5678 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 5679 if (Blocks == P.ForwardRefBlockAddresses.end()) 5680 return false; 5681 5682 for (const auto &I : Blocks->second) { 5683 const ValID &BBID = I.first; 5684 GlobalValue *GV = I.second; 5685 5686 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 5687 "Expected local id or name"); 5688 BasicBlock *BB; 5689 if (BBID.Kind == ValID::t_LocalName) 5690 BB = getBB(BBID.StrVal, BBID.Loc); 5691 else 5692 BB = getBB(BBID.UIntVal, BBID.Loc); 5693 if (!BB) 5694 return P.error(BBID.Loc, "referenced value is not a basic block"); 5695 5696 Value *ResolvedVal = BlockAddress::get(&F, BB); 5697 ResolvedVal = P.checkValidVariableType(BBID.Loc, BBID.StrVal, GV->getType(), 5698 ResolvedVal, false); 5699 if (!ResolvedVal) 5700 return true; 5701 GV->replaceAllUsesWith(ResolvedVal); 5702 GV->eraseFromParent(); 5703 } 5704 5705 P.ForwardRefBlockAddresses.erase(Blocks); 5706 return false; 5707 } 5708 5709 /// parseFunctionBody 5710 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 5711 bool LLParser::parseFunctionBody(Function &Fn) { 5712 if (Lex.getKind() != lltok::lbrace) 5713 return tokError("expected '{' in function body"); 5714 Lex.Lex(); // eat the {. 5715 5716 int FunctionNumber = -1; 5717 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 5718 5719 PerFunctionState PFS(*this, Fn, FunctionNumber); 5720 5721 // Resolve block addresses and allow basic blocks to be forward-declared 5722 // within this function. 5723 if (PFS.resolveForwardRefBlockAddresses()) 5724 return true; 5725 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 5726 5727 // We need at least one basic block. 5728 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 5729 return tokError("function body requires at least one basic block"); 5730 5731 while (Lex.getKind() != lltok::rbrace && 5732 Lex.getKind() != lltok::kw_uselistorder) 5733 if (parseBasicBlock(PFS)) 5734 return true; 5735 5736 while (Lex.getKind() != lltok::rbrace) 5737 if (parseUseListOrder(&PFS)) 5738 return true; 5739 5740 // Eat the }. 5741 Lex.Lex(); 5742 5743 // Verify function is ok. 5744 return PFS.finishFunction(); 5745 } 5746 5747 /// parseBasicBlock 5748 /// ::= (LabelStr|LabelID)? Instruction* 5749 bool LLParser::parseBasicBlock(PerFunctionState &PFS) { 5750 // If this basic block starts out with a name, remember it. 5751 std::string Name; 5752 int NameID = -1; 5753 LocTy NameLoc = Lex.getLoc(); 5754 if (Lex.getKind() == lltok::LabelStr) { 5755 Name = Lex.getStrVal(); 5756 Lex.Lex(); 5757 } else if (Lex.getKind() == lltok::LabelID) { 5758 NameID = Lex.getUIntVal(); 5759 Lex.Lex(); 5760 } 5761 5762 BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc); 5763 if (!BB) 5764 return true; 5765 5766 std::string NameStr; 5767 5768 // parse the instructions in this block until we get a terminator. 5769 Instruction *Inst; 5770 do { 5771 // This instruction may have three possibilities for a name: a) none 5772 // specified, b) name specified "%foo =", c) number specified: "%4 =". 5773 LocTy NameLoc = Lex.getLoc(); 5774 int NameID = -1; 5775 NameStr = ""; 5776 5777 if (Lex.getKind() == lltok::LocalVarID) { 5778 NameID = Lex.getUIntVal(); 5779 Lex.Lex(); 5780 if (parseToken(lltok::equal, "expected '=' after instruction id")) 5781 return true; 5782 } else if (Lex.getKind() == lltok::LocalVar) { 5783 NameStr = Lex.getStrVal(); 5784 Lex.Lex(); 5785 if (parseToken(lltok::equal, "expected '=' after instruction name")) 5786 return true; 5787 } 5788 5789 switch (parseInstruction(Inst, BB, PFS)) { 5790 default: 5791 llvm_unreachable("Unknown parseInstruction result!"); 5792 case InstError: return true; 5793 case InstNormal: 5794 BB->getInstList().push_back(Inst); 5795 5796 // With a normal result, we check to see if the instruction is followed by 5797 // a comma and metadata. 5798 if (EatIfPresent(lltok::comma)) 5799 if (parseInstructionMetadata(*Inst)) 5800 return true; 5801 break; 5802 case InstExtraComma: 5803 BB->getInstList().push_back(Inst); 5804 5805 // If the instruction parser ate an extra comma at the end of it, it 5806 // *must* be followed by metadata. 5807 if (parseInstructionMetadata(*Inst)) 5808 return true; 5809 break; 5810 } 5811 5812 // Set the name on the instruction. 5813 if (PFS.setInstName(NameID, NameStr, NameLoc, Inst)) 5814 return true; 5815 } while (!Inst->isTerminator()); 5816 5817 return false; 5818 } 5819 5820 //===----------------------------------------------------------------------===// 5821 // Instruction Parsing. 5822 //===----------------------------------------------------------------------===// 5823 5824 /// parseInstruction - parse one of the many different instructions. 5825 /// 5826 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB, 5827 PerFunctionState &PFS) { 5828 lltok::Kind Token = Lex.getKind(); 5829 if (Token == lltok::Eof) 5830 return tokError("found end of file when expecting more instructions"); 5831 LocTy Loc = Lex.getLoc(); 5832 unsigned KeywordVal = Lex.getUIntVal(); 5833 Lex.Lex(); // Eat the keyword. 5834 5835 switch (Token) { 5836 default: 5837 return error(Loc, "expected instruction opcode"); 5838 // Terminator Instructions. 5839 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 5840 case lltok::kw_ret: 5841 return parseRet(Inst, BB, PFS); 5842 case lltok::kw_br: 5843 return parseBr(Inst, PFS); 5844 case lltok::kw_switch: 5845 return parseSwitch(Inst, PFS); 5846 case lltok::kw_indirectbr: 5847 return parseIndirectBr(Inst, PFS); 5848 case lltok::kw_invoke: 5849 return parseInvoke(Inst, PFS); 5850 case lltok::kw_resume: 5851 return parseResume(Inst, PFS); 5852 case lltok::kw_cleanupret: 5853 return parseCleanupRet(Inst, PFS); 5854 case lltok::kw_catchret: 5855 return parseCatchRet(Inst, PFS); 5856 case lltok::kw_catchswitch: 5857 return parseCatchSwitch(Inst, PFS); 5858 case lltok::kw_catchpad: 5859 return parseCatchPad(Inst, PFS); 5860 case lltok::kw_cleanuppad: 5861 return parseCleanupPad(Inst, PFS); 5862 case lltok::kw_callbr: 5863 return parseCallBr(Inst, PFS); 5864 // Unary Operators. 5865 case lltok::kw_fneg: { 5866 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5867 int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true); 5868 if (Res != 0) 5869 return Res; 5870 if (FMF.any()) 5871 Inst->setFastMathFlags(FMF); 5872 return false; 5873 } 5874 // Binary Operators. 5875 case lltok::kw_add: 5876 case lltok::kw_sub: 5877 case lltok::kw_mul: 5878 case lltok::kw_shl: { 5879 bool NUW = EatIfPresent(lltok::kw_nuw); 5880 bool NSW = EatIfPresent(lltok::kw_nsw); 5881 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 5882 5883 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 5884 return true; 5885 5886 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 5887 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 5888 return false; 5889 } 5890 case lltok::kw_fadd: 5891 case lltok::kw_fsub: 5892 case lltok::kw_fmul: 5893 case lltok::kw_fdiv: 5894 case lltok::kw_frem: { 5895 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5896 int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true); 5897 if (Res != 0) 5898 return Res; 5899 if (FMF.any()) 5900 Inst->setFastMathFlags(FMF); 5901 return 0; 5902 } 5903 5904 case lltok::kw_sdiv: 5905 case lltok::kw_udiv: 5906 case lltok::kw_lshr: 5907 case lltok::kw_ashr: { 5908 bool Exact = EatIfPresent(lltok::kw_exact); 5909 5910 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 5911 return true; 5912 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 5913 return false; 5914 } 5915 5916 case lltok::kw_urem: 5917 case lltok::kw_srem: 5918 return parseArithmetic(Inst, PFS, KeywordVal, 5919 /*IsFP*/ false); 5920 case lltok::kw_and: 5921 case lltok::kw_or: 5922 case lltok::kw_xor: 5923 return parseLogical(Inst, PFS, KeywordVal); 5924 case lltok::kw_icmp: 5925 return parseCompare(Inst, PFS, KeywordVal); 5926 case lltok::kw_fcmp: { 5927 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5928 int Res = parseCompare(Inst, PFS, KeywordVal); 5929 if (Res != 0) 5930 return Res; 5931 if (FMF.any()) 5932 Inst->setFastMathFlags(FMF); 5933 return 0; 5934 } 5935 5936 // Casts. 5937 case lltok::kw_trunc: 5938 case lltok::kw_zext: 5939 case lltok::kw_sext: 5940 case lltok::kw_fptrunc: 5941 case lltok::kw_fpext: 5942 case lltok::kw_bitcast: 5943 case lltok::kw_addrspacecast: 5944 case lltok::kw_uitofp: 5945 case lltok::kw_sitofp: 5946 case lltok::kw_fptoui: 5947 case lltok::kw_fptosi: 5948 case lltok::kw_inttoptr: 5949 case lltok::kw_ptrtoint: 5950 return parseCast(Inst, PFS, KeywordVal); 5951 // Other. 5952 case lltok::kw_select: { 5953 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5954 int Res = parseSelect(Inst, PFS); 5955 if (Res != 0) 5956 return Res; 5957 if (FMF.any()) { 5958 if (!isa<FPMathOperator>(Inst)) 5959 return error(Loc, "fast-math-flags specified for select without " 5960 "floating-point scalar or vector return type"); 5961 Inst->setFastMathFlags(FMF); 5962 } 5963 return 0; 5964 } 5965 case lltok::kw_va_arg: 5966 return parseVAArg(Inst, PFS); 5967 case lltok::kw_extractelement: 5968 return parseExtractElement(Inst, PFS); 5969 case lltok::kw_insertelement: 5970 return parseInsertElement(Inst, PFS); 5971 case lltok::kw_shufflevector: 5972 return parseShuffleVector(Inst, PFS); 5973 case lltok::kw_phi: { 5974 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5975 int Res = parsePHI(Inst, PFS); 5976 if (Res != 0) 5977 return Res; 5978 if (FMF.any()) { 5979 if (!isa<FPMathOperator>(Inst)) 5980 return error(Loc, "fast-math-flags specified for phi without " 5981 "floating-point scalar or vector return type"); 5982 Inst->setFastMathFlags(FMF); 5983 } 5984 return 0; 5985 } 5986 case lltok::kw_landingpad: 5987 return parseLandingPad(Inst, PFS); 5988 case lltok::kw_freeze: 5989 return parseFreeze(Inst, PFS); 5990 // Call. 5991 case lltok::kw_call: 5992 return parseCall(Inst, PFS, CallInst::TCK_None); 5993 case lltok::kw_tail: 5994 return parseCall(Inst, PFS, CallInst::TCK_Tail); 5995 case lltok::kw_musttail: 5996 return parseCall(Inst, PFS, CallInst::TCK_MustTail); 5997 case lltok::kw_notail: 5998 return parseCall(Inst, PFS, CallInst::TCK_NoTail); 5999 // Memory. 6000 case lltok::kw_alloca: 6001 return parseAlloc(Inst, PFS); 6002 case lltok::kw_load: 6003 return parseLoad(Inst, PFS); 6004 case lltok::kw_store: 6005 return parseStore(Inst, PFS); 6006 case lltok::kw_cmpxchg: 6007 return parseCmpXchg(Inst, PFS); 6008 case lltok::kw_atomicrmw: 6009 return parseAtomicRMW(Inst, PFS); 6010 case lltok::kw_fence: 6011 return parseFence(Inst, PFS); 6012 case lltok::kw_getelementptr: 6013 return parseGetElementPtr(Inst, PFS); 6014 case lltok::kw_extractvalue: 6015 return parseExtractValue(Inst, PFS); 6016 case lltok::kw_insertvalue: 6017 return parseInsertValue(Inst, PFS); 6018 } 6019 } 6020 6021 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind. 6022 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) { 6023 if (Opc == Instruction::FCmp) { 6024 switch (Lex.getKind()) { 6025 default: 6026 return tokError("expected fcmp predicate (e.g. 'oeq')"); 6027 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 6028 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 6029 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 6030 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 6031 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 6032 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 6033 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 6034 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 6035 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 6036 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 6037 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 6038 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 6039 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 6040 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 6041 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 6042 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 6043 } 6044 } else { 6045 switch (Lex.getKind()) { 6046 default: 6047 return tokError("expected icmp predicate (e.g. 'eq')"); 6048 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 6049 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 6050 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 6051 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 6052 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 6053 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 6054 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 6055 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 6056 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 6057 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 6058 } 6059 } 6060 Lex.Lex(); 6061 return false; 6062 } 6063 6064 //===----------------------------------------------------------------------===// 6065 // Terminator Instructions. 6066 //===----------------------------------------------------------------------===// 6067 6068 /// parseRet - parse a return instruction. 6069 /// ::= 'ret' void (',' !dbg, !1)* 6070 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 6071 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB, 6072 PerFunctionState &PFS) { 6073 SMLoc TypeLoc = Lex.getLoc(); 6074 Type *Ty = nullptr; 6075 if (parseType(Ty, true /*void allowed*/)) 6076 return true; 6077 6078 Type *ResType = PFS.getFunction().getReturnType(); 6079 6080 if (Ty->isVoidTy()) { 6081 if (!ResType->isVoidTy()) 6082 return error(TypeLoc, "value doesn't match function result type '" + 6083 getTypeString(ResType) + "'"); 6084 6085 Inst = ReturnInst::Create(Context); 6086 return false; 6087 } 6088 6089 Value *RV; 6090 if (parseValue(Ty, RV, PFS)) 6091 return true; 6092 6093 if (ResType != RV->getType()) 6094 return error(TypeLoc, "value doesn't match function result type '" + 6095 getTypeString(ResType) + "'"); 6096 6097 Inst = ReturnInst::Create(Context, RV); 6098 return false; 6099 } 6100 6101 /// parseBr 6102 /// ::= 'br' TypeAndValue 6103 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6104 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) { 6105 LocTy Loc, Loc2; 6106 Value *Op0; 6107 BasicBlock *Op1, *Op2; 6108 if (parseTypeAndValue(Op0, Loc, PFS)) 6109 return true; 6110 6111 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 6112 Inst = BranchInst::Create(BB); 6113 return false; 6114 } 6115 6116 if (Op0->getType() != Type::getInt1Ty(Context)) 6117 return error(Loc, "branch condition must have 'i1' type"); 6118 6119 if (parseToken(lltok::comma, "expected ',' after branch condition") || 6120 parseTypeAndBasicBlock(Op1, Loc, PFS) || 6121 parseToken(lltok::comma, "expected ',' after true destination") || 6122 parseTypeAndBasicBlock(Op2, Loc2, PFS)) 6123 return true; 6124 6125 Inst = BranchInst::Create(Op1, Op2, Op0); 6126 return false; 6127 } 6128 6129 /// parseSwitch 6130 /// Instruction 6131 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 6132 /// JumpTable 6133 /// ::= (TypeAndValue ',' TypeAndValue)* 6134 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6135 LocTy CondLoc, BBLoc; 6136 Value *Cond; 6137 BasicBlock *DefaultBB; 6138 if (parseTypeAndValue(Cond, CondLoc, PFS) || 6139 parseToken(lltok::comma, "expected ',' after switch condition") || 6140 parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 6141 parseToken(lltok::lsquare, "expected '[' with switch table")) 6142 return true; 6143 6144 if (!Cond->getType()->isIntegerTy()) 6145 return error(CondLoc, "switch condition must have integer type"); 6146 6147 // parse the jump table pairs. 6148 SmallPtrSet<Value*, 32> SeenCases; 6149 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 6150 while (Lex.getKind() != lltok::rsquare) { 6151 Value *Constant; 6152 BasicBlock *DestBB; 6153 6154 if (parseTypeAndValue(Constant, CondLoc, PFS) || 6155 parseToken(lltok::comma, "expected ',' after case value") || 6156 parseTypeAndBasicBlock(DestBB, PFS)) 6157 return true; 6158 6159 if (!SeenCases.insert(Constant).second) 6160 return error(CondLoc, "duplicate case value in switch"); 6161 if (!isa<ConstantInt>(Constant)) 6162 return error(CondLoc, "case value is not a constant integer"); 6163 6164 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 6165 } 6166 6167 Lex.Lex(); // Eat the ']'. 6168 6169 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 6170 for (unsigned i = 0, e = Table.size(); i != e; ++i) 6171 SI->addCase(Table[i].first, Table[i].second); 6172 Inst = SI; 6173 return false; 6174 } 6175 6176 /// parseIndirectBr 6177 /// Instruction 6178 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 6179 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 6180 LocTy AddrLoc; 6181 Value *Address; 6182 if (parseTypeAndValue(Address, AddrLoc, PFS) || 6183 parseToken(lltok::comma, "expected ',' after indirectbr address") || 6184 parseToken(lltok::lsquare, "expected '[' with indirectbr")) 6185 return true; 6186 6187 if (!Address->getType()->isPointerTy()) 6188 return error(AddrLoc, "indirectbr address must have pointer type"); 6189 6190 // parse the destination list. 6191 SmallVector<BasicBlock*, 16> DestList; 6192 6193 if (Lex.getKind() != lltok::rsquare) { 6194 BasicBlock *DestBB; 6195 if (parseTypeAndBasicBlock(DestBB, PFS)) 6196 return true; 6197 DestList.push_back(DestBB); 6198 6199 while (EatIfPresent(lltok::comma)) { 6200 if (parseTypeAndBasicBlock(DestBB, PFS)) 6201 return true; 6202 DestList.push_back(DestBB); 6203 } 6204 } 6205 6206 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 6207 return true; 6208 6209 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 6210 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 6211 IBI->addDestination(DestList[i]); 6212 Inst = IBI; 6213 return false; 6214 } 6215 6216 /// parseInvoke 6217 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 6218 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 6219 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 6220 LocTy CallLoc = Lex.getLoc(); 6221 AttrBuilder RetAttrs, FnAttrs; 6222 std::vector<unsigned> FwdRefAttrGrps; 6223 LocTy NoBuiltinLoc; 6224 unsigned CC; 6225 unsigned InvokeAddrSpace; 6226 Type *RetType = nullptr; 6227 LocTy RetTypeLoc; 6228 ValID CalleeID; 6229 SmallVector<ParamInfo, 16> ArgList; 6230 SmallVector<OperandBundleDef, 2> BundleList; 6231 6232 BasicBlock *NormalBB, *UnwindBB; 6233 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6234 parseOptionalProgramAddrSpace(InvokeAddrSpace) || 6235 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6236 parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) || 6237 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6238 NoBuiltinLoc) || 6239 parseOptionalOperandBundles(BundleList, PFS) || 6240 parseToken(lltok::kw_to, "expected 'to' in invoke") || 6241 parseTypeAndBasicBlock(NormalBB, PFS) || 6242 parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 6243 parseTypeAndBasicBlock(UnwindBB, PFS)) 6244 return true; 6245 6246 // If RetType is a non-function pointer type, then this is the short syntax 6247 // for the call, which means that RetType is just the return type. Infer the 6248 // rest of the function argument types from the arguments that are present. 6249 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6250 if (!Ty) { 6251 // Pull out the types of all of the arguments... 6252 std::vector<Type*> ParamTypes; 6253 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6254 ParamTypes.push_back(ArgList[i].V->getType()); 6255 6256 if (!FunctionType::isValidReturnType(RetType)) 6257 return error(RetTypeLoc, "Invalid result type for LLVM function"); 6258 6259 Ty = FunctionType::get(RetType, ParamTypes, false); 6260 } 6261 6262 CalleeID.FTy = Ty; 6263 6264 // Look up the callee. 6265 Value *Callee; 6266 if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID, 6267 Callee, &PFS, /*IsCall=*/true)) 6268 return true; 6269 6270 // Set up the Attribute for the function. 6271 SmallVector<Value *, 8> Args; 6272 SmallVector<AttributeSet, 8> ArgAttrs; 6273 6274 // Loop through FunctionType's arguments and ensure they are specified 6275 // correctly. Also, gather any parameter attributes. 6276 FunctionType::param_iterator I = Ty->param_begin(); 6277 FunctionType::param_iterator E = Ty->param_end(); 6278 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6279 Type *ExpectedTy = nullptr; 6280 if (I != E) { 6281 ExpectedTy = *I++; 6282 } else if (!Ty->isVarArg()) { 6283 return error(ArgList[i].Loc, "too many arguments specified"); 6284 } 6285 6286 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6287 return error(ArgList[i].Loc, "argument is not of expected type '" + 6288 getTypeString(ExpectedTy) + "'"); 6289 Args.push_back(ArgList[i].V); 6290 ArgAttrs.push_back(ArgList[i].Attrs); 6291 } 6292 6293 if (I != E) 6294 return error(CallLoc, "not enough parameters specified for call"); 6295 6296 if (FnAttrs.hasAlignmentAttr()) 6297 return error(CallLoc, "invoke instructions may not have an alignment"); 6298 6299 // Finish off the Attribute and check them 6300 AttributeList PAL = 6301 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6302 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6303 6304 InvokeInst *II = 6305 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 6306 II->setCallingConv(CC); 6307 II->setAttributes(PAL); 6308 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 6309 Inst = II; 6310 return false; 6311 } 6312 6313 /// parseResume 6314 /// ::= 'resume' TypeAndValue 6315 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) { 6316 Value *Exn; LocTy ExnLoc; 6317 if (parseTypeAndValue(Exn, ExnLoc, PFS)) 6318 return true; 6319 6320 ResumeInst *RI = ResumeInst::Create(Exn); 6321 Inst = RI; 6322 return false; 6323 } 6324 6325 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args, 6326 PerFunctionState &PFS) { 6327 if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 6328 return true; 6329 6330 while (Lex.getKind() != lltok::rsquare) { 6331 // If this isn't the first argument, we need a comma. 6332 if (!Args.empty() && 6333 parseToken(lltok::comma, "expected ',' in argument list")) 6334 return true; 6335 6336 // parse the argument. 6337 LocTy ArgLoc; 6338 Type *ArgTy = nullptr; 6339 if (parseType(ArgTy, ArgLoc)) 6340 return true; 6341 6342 Value *V; 6343 if (ArgTy->isMetadataTy()) { 6344 if (parseMetadataAsValue(V, PFS)) 6345 return true; 6346 } else { 6347 if (parseValue(ArgTy, V, PFS)) 6348 return true; 6349 } 6350 Args.push_back(V); 6351 } 6352 6353 Lex.Lex(); // Lex the ']'. 6354 return false; 6355 } 6356 6357 /// parseCleanupRet 6358 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 6359 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 6360 Value *CleanupPad = nullptr; 6361 6362 if (parseToken(lltok::kw_from, "expected 'from' after cleanupret")) 6363 return true; 6364 6365 if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 6366 return true; 6367 6368 if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 6369 return true; 6370 6371 BasicBlock *UnwindBB = nullptr; 6372 if (Lex.getKind() == lltok::kw_to) { 6373 Lex.Lex(); 6374 if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 6375 return true; 6376 } else { 6377 if (parseTypeAndBasicBlock(UnwindBB, PFS)) { 6378 return true; 6379 } 6380 } 6381 6382 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 6383 return false; 6384 } 6385 6386 /// parseCatchRet 6387 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 6388 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 6389 Value *CatchPad = nullptr; 6390 6391 if (parseToken(lltok::kw_from, "expected 'from' after catchret")) 6392 return true; 6393 6394 if (parseValue(Type::getTokenTy(Context), CatchPad, PFS)) 6395 return true; 6396 6397 BasicBlock *BB; 6398 if (parseToken(lltok::kw_to, "expected 'to' in catchret") || 6399 parseTypeAndBasicBlock(BB, PFS)) 6400 return true; 6401 6402 Inst = CatchReturnInst::Create(CatchPad, BB); 6403 return false; 6404 } 6405 6406 /// parseCatchSwitch 6407 /// ::= 'catchswitch' within Parent 6408 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6409 Value *ParentPad; 6410 6411 if (parseToken(lltok::kw_within, "expected 'within' after catchswitch")) 6412 return true; 6413 6414 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6415 Lex.getKind() != lltok::LocalVarID) 6416 return tokError("expected scope value for catchswitch"); 6417 6418 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6419 return true; 6420 6421 if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 6422 return true; 6423 6424 SmallVector<BasicBlock *, 32> Table; 6425 do { 6426 BasicBlock *DestBB; 6427 if (parseTypeAndBasicBlock(DestBB, PFS)) 6428 return true; 6429 Table.push_back(DestBB); 6430 } while (EatIfPresent(lltok::comma)); 6431 6432 if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 6433 return true; 6434 6435 if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope")) 6436 return true; 6437 6438 BasicBlock *UnwindBB = nullptr; 6439 if (EatIfPresent(lltok::kw_to)) { 6440 if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 6441 return true; 6442 } else { 6443 if (parseTypeAndBasicBlock(UnwindBB, PFS)) 6444 return true; 6445 } 6446 6447 auto *CatchSwitch = 6448 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 6449 for (BasicBlock *DestBB : Table) 6450 CatchSwitch->addHandler(DestBB); 6451 Inst = CatchSwitch; 6452 return false; 6453 } 6454 6455 /// parseCatchPad 6456 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 6457 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 6458 Value *CatchSwitch = nullptr; 6459 6460 if (parseToken(lltok::kw_within, "expected 'within' after catchpad")) 6461 return true; 6462 6463 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 6464 return tokError("expected scope value for catchpad"); 6465 6466 if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 6467 return true; 6468 6469 SmallVector<Value *, 8> Args; 6470 if (parseExceptionArgs(Args, PFS)) 6471 return true; 6472 6473 Inst = CatchPadInst::Create(CatchSwitch, Args); 6474 return false; 6475 } 6476 6477 /// parseCleanupPad 6478 /// ::= 'cleanuppad' within Parent ParamList 6479 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 6480 Value *ParentPad = nullptr; 6481 6482 if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 6483 return true; 6484 6485 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6486 Lex.getKind() != lltok::LocalVarID) 6487 return tokError("expected scope value for cleanuppad"); 6488 6489 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6490 return true; 6491 6492 SmallVector<Value *, 8> Args; 6493 if (parseExceptionArgs(Args, PFS)) 6494 return true; 6495 6496 Inst = CleanupPadInst::Create(ParentPad, Args); 6497 return false; 6498 } 6499 6500 //===----------------------------------------------------------------------===// 6501 // Unary Operators. 6502 //===----------------------------------------------------------------------===// 6503 6504 /// parseUnaryOp 6505 /// ::= UnaryOp TypeAndValue ',' Value 6506 /// 6507 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6508 /// operand is allowed. 6509 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS, 6510 unsigned Opc, bool IsFP) { 6511 LocTy Loc; Value *LHS; 6512 if (parseTypeAndValue(LHS, Loc, PFS)) 6513 return true; 6514 6515 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6516 : LHS->getType()->isIntOrIntVectorTy(); 6517 6518 if (!Valid) 6519 return error(Loc, "invalid operand type for instruction"); 6520 6521 Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 6522 return false; 6523 } 6524 6525 /// parseCallBr 6526 /// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList 6527 /// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue 6528 /// '[' LabelList ']' 6529 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) { 6530 LocTy CallLoc = Lex.getLoc(); 6531 AttrBuilder RetAttrs, FnAttrs; 6532 std::vector<unsigned> FwdRefAttrGrps; 6533 LocTy NoBuiltinLoc; 6534 unsigned CC; 6535 Type *RetType = nullptr; 6536 LocTy RetTypeLoc; 6537 ValID CalleeID; 6538 SmallVector<ParamInfo, 16> ArgList; 6539 SmallVector<OperandBundleDef, 2> BundleList; 6540 6541 BasicBlock *DefaultDest; 6542 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6543 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6544 parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) || 6545 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6546 NoBuiltinLoc) || 6547 parseOptionalOperandBundles(BundleList, PFS) || 6548 parseToken(lltok::kw_to, "expected 'to' in callbr") || 6549 parseTypeAndBasicBlock(DefaultDest, PFS) || 6550 parseToken(lltok::lsquare, "expected '[' in callbr")) 6551 return true; 6552 6553 // parse the destination list. 6554 SmallVector<BasicBlock *, 16> IndirectDests; 6555 6556 if (Lex.getKind() != lltok::rsquare) { 6557 BasicBlock *DestBB; 6558 if (parseTypeAndBasicBlock(DestBB, PFS)) 6559 return true; 6560 IndirectDests.push_back(DestBB); 6561 6562 while (EatIfPresent(lltok::comma)) { 6563 if (parseTypeAndBasicBlock(DestBB, PFS)) 6564 return true; 6565 IndirectDests.push_back(DestBB); 6566 } 6567 } 6568 6569 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 6570 return true; 6571 6572 // If RetType is a non-function pointer type, then this is the short syntax 6573 // for the call, which means that RetType is just the return type. Infer the 6574 // rest of the function argument types from the arguments that are present. 6575 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6576 if (!Ty) { 6577 // Pull out the types of all of the arguments... 6578 std::vector<Type *> ParamTypes; 6579 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6580 ParamTypes.push_back(ArgList[i].V->getType()); 6581 6582 if (!FunctionType::isValidReturnType(RetType)) 6583 return error(RetTypeLoc, "Invalid result type for LLVM function"); 6584 6585 Ty = FunctionType::get(RetType, ParamTypes, false); 6586 } 6587 6588 CalleeID.FTy = Ty; 6589 6590 // Look up the callee. 6591 Value *Callee; 6592 if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS, 6593 /*IsCall=*/true)) 6594 return true; 6595 6596 // Set up the Attribute for the function. 6597 SmallVector<Value *, 8> Args; 6598 SmallVector<AttributeSet, 8> ArgAttrs; 6599 6600 // Loop through FunctionType's arguments and ensure they are specified 6601 // correctly. Also, gather any parameter attributes. 6602 FunctionType::param_iterator I = Ty->param_begin(); 6603 FunctionType::param_iterator E = Ty->param_end(); 6604 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6605 Type *ExpectedTy = nullptr; 6606 if (I != E) { 6607 ExpectedTy = *I++; 6608 } else if (!Ty->isVarArg()) { 6609 return error(ArgList[i].Loc, "too many arguments specified"); 6610 } 6611 6612 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6613 return error(ArgList[i].Loc, "argument is not of expected type '" + 6614 getTypeString(ExpectedTy) + "'"); 6615 Args.push_back(ArgList[i].V); 6616 ArgAttrs.push_back(ArgList[i].Attrs); 6617 } 6618 6619 if (I != E) 6620 return error(CallLoc, "not enough parameters specified for call"); 6621 6622 if (FnAttrs.hasAlignmentAttr()) 6623 return error(CallLoc, "callbr instructions may not have an alignment"); 6624 6625 // Finish off the Attribute and check them 6626 AttributeList PAL = 6627 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6628 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6629 6630 CallBrInst *CBI = 6631 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args, 6632 BundleList); 6633 CBI->setCallingConv(CC); 6634 CBI->setAttributes(PAL); 6635 ForwardRefAttrGroups[CBI] = FwdRefAttrGrps; 6636 Inst = CBI; 6637 return false; 6638 } 6639 6640 //===----------------------------------------------------------------------===// 6641 // Binary Operators. 6642 //===----------------------------------------------------------------------===// 6643 6644 /// parseArithmetic 6645 /// ::= ArithmeticOps TypeAndValue ',' Value 6646 /// 6647 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6648 /// operand is allowed. 6649 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 6650 unsigned Opc, bool IsFP) { 6651 LocTy Loc; Value *LHS, *RHS; 6652 if (parseTypeAndValue(LHS, Loc, PFS) || 6653 parseToken(lltok::comma, "expected ',' in arithmetic operation") || 6654 parseValue(LHS->getType(), RHS, PFS)) 6655 return true; 6656 6657 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6658 : LHS->getType()->isIntOrIntVectorTy(); 6659 6660 if (!Valid) 6661 return error(Loc, "invalid operand type for instruction"); 6662 6663 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6664 return false; 6665 } 6666 6667 /// parseLogical 6668 /// ::= ArithmeticOps TypeAndValue ',' Value { 6669 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS, 6670 unsigned Opc) { 6671 LocTy Loc; Value *LHS, *RHS; 6672 if (parseTypeAndValue(LHS, Loc, PFS) || 6673 parseToken(lltok::comma, "expected ',' in logical operation") || 6674 parseValue(LHS->getType(), RHS, PFS)) 6675 return true; 6676 6677 if (!LHS->getType()->isIntOrIntVectorTy()) 6678 return error(Loc, 6679 "instruction requires integer or integer vector operands"); 6680 6681 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6682 return false; 6683 } 6684 6685 /// parseCompare 6686 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 6687 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 6688 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS, 6689 unsigned Opc) { 6690 // parse the integer/fp comparison predicate. 6691 LocTy Loc; 6692 unsigned Pred; 6693 Value *LHS, *RHS; 6694 if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) || 6695 parseToken(lltok::comma, "expected ',' after compare value") || 6696 parseValue(LHS->getType(), RHS, PFS)) 6697 return true; 6698 6699 if (Opc == Instruction::FCmp) { 6700 if (!LHS->getType()->isFPOrFPVectorTy()) 6701 return error(Loc, "fcmp requires floating point operands"); 6702 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6703 } else { 6704 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 6705 if (!LHS->getType()->isIntOrIntVectorTy() && 6706 !LHS->getType()->isPtrOrPtrVectorTy()) 6707 return error(Loc, "icmp requires integer operands"); 6708 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6709 } 6710 return false; 6711 } 6712 6713 //===----------------------------------------------------------------------===// 6714 // Other Instructions. 6715 //===----------------------------------------------------------------------===// 6716 6717 /// parseCast 6718 /// ::= CastOpc TypeAndValue 'to' Type 6719 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS, 6720 unsigned Opc) { 6721 LocTy Loc; 6722 Value *Op; 6723 Type *DestTy = nullptr; 6724 if (parseTypeAndValue(Op, Loc, PFS) || 6725 parseToken(lltok::kw_to, "expected 'to' after cast value") || 6726 parseType(DestTy)) 6727 return true; 6728 6729 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 6730 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 6731 return error(Loc, "invalid cast opcode for cast from '" + 6732 getTypeString(Op->getType()) + "' to '" + 6733 getTypeString(DestTy) + "'"); 6734 } 6735 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 6736 return false; 6737 } 6738 6739 /// parseSelect 6740 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6741 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) { 6742 LocTy Loc; 6743 Value *Op0, *Op1, *Op2; 6744 if (parseTypeAndValue(Op0, Loc, PFS) || 6745 parseToken(lltok::comma, "expected ',' after select condition") || 6746 parseTypeAndValue(Op1, PFS) || 6747 parseToken(lltok::comma, "expected ',' after select value") || 6748 parseTypeAndValue(Op2, PFS)) 6749 return true; 6750 6751 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 6752 return error(Loc, Reason); 6753 6754 Inst = SelectInst::Create(Op0, Op1, Op2); 6755 return false; 6756 } 6757 6758 /// parseVAArg 6759 /// ::= 'va_arg' TypeAndValue ',' Type 6760 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) { 6761 Value *Op; 6762 Type *EltTy = nullptr; 6763 LocTy TypeLoc; 6764 if (parseTypeAndValue(Op, PFS) || 6765 parseToken(lltok::comma, "expected ',' after vaarg operand") || 6766 parseType(EltTy, TypeLoc)) 6767 return true; 6768 6769 if (!EltTy->isFirstClassType()) 6770 return error(TypeLoc, "va_arg requires operand with first class type"); 6771 6772 Inst = new VAArgInst(Op, EltTy); 6773 return false; 6774 } 6775 6776 /// parseExtractElement 6777 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 6778 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 6779 LocTy Loc; 6780 Value *Op0, *Op1; 6781 if (parseTypeAndValue(Op0, Loc, PFS) || 6782 parseToken(lltok::comma, "expected ',' after extract value") || 6783 parseTypeAndValue(Op1, PFS)) 6784 return true; 6785 6786 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 6787 return error(Loc, "invalid extractelement operands"); 6788 6789 Inst = ExtractElementInst::Create(Op0, Op1); 6790 return false; 6791 } 6792 6793 /// parseInsertElement 6794 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6795 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 6796 LocTy Loc; 6797 Value *Op0, *Op1, *Op2; 6798 if (parseTypeAndValue(Op0, Loc, PFS) || 6799 parseToken(lltok::comma, "expected ',' after insertelement value") || 6800 parseTypeAndValue(Op1, PFS) || 6801 parseToken(lltok::comma, "expected ',' after insertelement value") || 6802 parseTypeAndValue(Op2, PFS)) 6803 return true; 6804 6805 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 6806 return error(Loc, "invalid insertelement operands"); 6807 6808 Inst = InsertElementInst::Create(Op0, Op1, Op2); 6809 return false; 6810 } 6811 6812 /// parseShuffleVector 6813 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6814 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 6815 LocTy Loc; 6816 Value *Op0, *Op1, *Op2; 6817 if (parseTypeAndValue(Op0, Loc, PFS) || 6818 parseToken(lltok::comma, "expected ',' after shuffle mask") || 6819 parseTypeAndValue(Op1, PFS) || 6820 parseToken(lltok::comma, "expected ',' after shuffle value") || 6821 parseTypeAndValue(Op2, PFS)) 6822 return true; 6823 6824 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 6825 return error(Loc, "invalid shufflevector operands"); 6826 6827 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 6828 return false; 6829 } 6830 6831 /// parsePHI 6832 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 6833 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) { 6834 Type *Ty = nullptr; LocTy TypeLoc; 6835 Value *Op0, *Op1; 6836 6837 if (parseType(Ty, TypeLoc) || 6838 parseToken(lltok::lsquare, "expected '[' in phi value list") || 6839 parseValue(Ty, Op0, PFS) || 6840 parseToken(lltok::comma, "expected ',' after insertelement value") || 6841 parseValue(Type::getLabelTy(Context), Op1, PFS) || 6842 parseToken(lltok::rsquare, "expected ']' in phi value list")) 6843 return true; 6844 6845 bool AteExtraComma = false; 6846 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 6847 6848 while (true) { 6849 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 6850 6851 if (!EatIfPresent(lltok::comma)) 6852 break; 6853 6854 if (Lex.getKind() == lltok::MetadataVar) { 6855 AteExtraComma = true; 6856 break; 6857 } 6858 6859 if (parseToken(lltok::lsquare, "expected '[' in phi value list") || 6860 parseValue(Ty, Op0, PFS) || 6861 parseToken(lltok::comma, "expected ',' after insertelement value") || 6862 parseValue(Type::getLabelTy(Context), Op1, PFS) || 6863 parseToken(lltok::rsquare, "expected ']' in phi value list")) 6864 return true; 6865 } 6866 6867 if (!Ty->isFirstClassType()) 6868 return error(TypeLoc, "phi node must have first class type"); 6869 6870 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 6871 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 6872 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 6873 Inst = PN; 6874 return AteExtraComma ? InstExtraComma : InstNormal; 6875 } 6876 6877 /// parseLandingPad 6878 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 6879 /// Clause 6880 /// ::= 'catch' TypeAndValue 6881 /// ::= 'filter' 6882 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 6883 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 6884 Type *Ty = nullptr; LocTy TyLoc; 6885 6886 if (parseType(Ty, TyLoc)) 6887 return true; 6888 6889 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 6890 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 6891 6892 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 6893 LandingPadInst::ClauseType CT; 6894 if (EatIfPresent(lltok::kw_catch)) 6895 CT = LandingPadInst::Catch; 6896 else if (EatIfPresent(lltok::kw_filter)) 6897 CT = LandingPadInst::Filter; 6898 else 6899 return tokError("expected 'catch' or 'filter' clause type"); 6900 6901 Value *V; 6902 LocTy VLoc; 6903 if (parseTypeAndValue(V, VLoc, PFS)) 6904 return true; 6905 6906 // A 'catch' type expects a non-array constant. A filter clause expects an 6907 // array constant. 6908 if (CT == LandingPadInst::Catch) { 6909 if (isa<ArrayType>(V->getType())) 6910 error(VLoc, "'catch' clause has an invalid type"); 6911 } else { 6912 if (!isa<ArrayType>(V->getType())) 6913 error(VLoc, "'filter' clause has an invalid type"); 6914 } 6915 6916 Constant *CV = dyn_cast<Constant>(V); 6917 if (!CV) 6918 return error(VLoc, "clause argument must be a constant"); 6919 LP->addClause(CV); 6920 } 6921 6922 Inst = LP.release(); 6923 return false; 6924 } 6925 6926 /// parseFreeze 6927 /// ::= 'freeze' Type Value 6928 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) { 6929 LocTy Loc; 6930 Value *Op; 6931 if (parseTypeAndValue(Op, Loc, PFS)) 6932 return true; 6933 6934 Inst = new FreezeInst(Op); 6935 return false; 6936 } 6937 6938 /// parseCall 6939 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 6940 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6941 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 6942 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6943 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 6944 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6945 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 6946 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6947 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS, 6948 CallInst::TailCallKind TCK) { 6949 AttrBuilder RetAttrs, FnAttrs; 6950 std::vector<unsigned> FwdRefAttrGrps; 6951 LocTy BuiltinLoc; 6952 unsigned CallAddrSpace; 6953 unsigned CC; 6954 Type *RetType = nullptr; 6955 LocTy RetTypeLoc; 6956 ValID CalleeID; 6957 SmallVector<ParamInfo, 16> ArgList; 6958 SmallVector<OperandBundleDef, 2> BundleList; 6959 LocTy CallLoc = Lex.getLoc(); 6960 6961 if (TCK != CallInst::TCK_None && 6962 parseToken(lltok::kw_call, 6963 "expected 'tail call', 'musttail call', or 'notail call'")) 6964 return true; 6965 6966 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6967 6968 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6969 parseOptionalProgramAddrSpace(CallAddrSpace) || 6970 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6971 parseValID(CalleeID, &PFS) || 6972 parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 6973 PFS.getFunction().isVarArg()) || 6974 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 6975 parseOptionalOperandBundles(BundleList, PFS)) 6976 return true; 6977 6978 // If RetType is a non-function pointer type, then this is the short syntax 6979 // for the call, which means that RetType is just the return type. Infer the 6980 // rest of the function argument types from the arguments that are present. 6981 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6982 if (!Ty) { 6983 // Pull out the types of all of the arguments... 6984 std::vector<Type*> ParamTypes; 6985 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6986 ParamTypes.push_back(ArgList[i].V->getType()); 6987 6988 if (!FunctionType::isValidReturnType(RetType)) 6989 return error(RetTypeLoc, "Invalid result type for LLVM function"); 6990 6991 Ty = FunctionType::get(RetType, ParamTypes, false); 6992 } 6993 6994 CalleeID.FTy = Ty; 6995 6996 // Look up the callee. 6997 Value *Callee; 6998 if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee, 6999 &PFS, /*IsCall=*/true)) 7000 return true; 7001 7002 // Set up the Attribute for the function. 7003 SmallVector<AttributeSet, 8> Attrs; 7004 7005 SmallVector<Value*, 8> Args; 7006 7007 // Loop through FunctionType's arguments and ensure they are specified 7008 // correctly. Also, gather any parameter attributes. 7009 FunctionType::param_iterator I = Ty->param_begin(); 7010 FunctionType::param_iterator E = Ty->param_end(); 7011 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 7012 Type *ExpectedTy = nullptr; 7013 if (I != E) { 7014 ExpectedTy = *I++; 7015 } else if (!Ty->isVarArg()) { 7016 return error(ArgList[i].Loc, "too many arguments specified"); 7017 } 7018 7019 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 7020 return error(ArgList[i].Loc, "argument is not of expected type '" + 7021 getTypeString(ExpectedTy) + "'"); 7022 Args.push_back(ArgList[i].V); 7023 Attrs.push_back(ArgList[i].Attrs); 7024 } 7025 7026 if (I != E) 7027 return error(CallLoc, "not enough parameters specified for call"); 7028 7029 if (FnAttrs.hasAlignmentAttr()) 7030 return error(CallLoc, "call instructions may not have an alignment"); 7031 7032 // Finish off the Attribute and check them 7033 AttributeList PAL = 7034 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 7035 AttributeSet::get(Context, RetAttrs), Attrs); 7036 7037 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 7038 CI->setTailCallKind(TCK); 7039 CI->setCallingConv(CC); 7040 if (FMF.any()) { 7041 if (!isa<FPMathOperator>(CI)) { 7042 CI->deleteValue(); 7043 return error(CallLoc, "fast-math-flags specified for call without " 7044 "floating-point scalar or vector return type"); 7045 } 7046 CI->setFastMathFlags(FMF); 7047 } 7048 CI->setAttributes(PAL); 7049 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 7050 Inst = CI; 7051 return false; 7052 } 7053 7054 //===----------------------------------------------------------------------===// 7055 // Memory Instructions. 7056 //===----------------------------------------------------------------------===// 7057 7058 /// parseAlloc 7059 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 7060 /// (',' 'align' i32)? (',', 'addrspace(n))? 7061 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 7062 Value *Size = nullptr; 7063 LocTy SizeLoc, TyLoc, ASLoc; 7064 MaybeAlign Alignment; 7065 unsigned AddrSpace = 0; 7066 Type *Ty = nullptr; 7067 7068 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 7069 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 7070 7071 if (parseType(Ty, TyLoc)) 7072 return true; 7073 7074 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 7075 return error(TyLoc, "invalid type for alloca"); 7076 7077 bool AteExtraComma = false; 7078 if (EatIfPresent(lltok::comma)) { 7079 if (Lex.getKind() == lltok::kw_align) { 7080 if (parseOptionalAlignment(Alignment)) 7081 return true; 7082 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7083 return true; 7084 } else if (Lex.getKind() == lltok::kw_addrspace) { 7085 ASLoc = Lex.getLoc(); 7086 if (parseOptionalAddrSpace(AddrSpace)) 7087 return true; 7088 } else if (Lex.getKind() == lltok::MetadataVar) { 7089 AteExtraComma = true; 7090 } else { 7091 if (parseTypeAndValue(Size, SizeLoc, PFS)) 7092 return true; 7093 if (EatIfPresent(lltok::comma)) { 7094 if (Lex.getKind() == lltok::kw_align) { 7095 if (parseOptionalAlignment(Alignment)) 7096 return true; 7097 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7098 return true; 7099 } else if (Lex.getKind() == lltok::kw_addrspace) { 7100 ASLoc = Lex.getLoc(); 7101 if (parseOptionalAddrSpace(AddrSpace)) 7102 return true; 7103 } else if (Lex.getKind() == lltok::MetadataVar) { 7104 AteExtraComma = true; 7105 } 7106 } 7107 } 7108 } 7109 7110 if (Size && !Size->getType()->isIntegerTy()) 7111 return error(SizeLoc, "element count must have integer type"); 7112 7113 SmallPtrSet<Type *, 4> Visited; 7114 if (!Alignment && !Ty->isSized(&Visited)) 7115 return error(TyLoc, "Cannot allocate unsized type"); 7116 if (!Alignment) 7117 Alignment = M->getDataLayout().getPrefTypeAlign(Ty); 7118 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment); 7119 AI->setUsedWithInAlloca(IsInAlloca); 7120 AI->setSwiftError(IsSwiftError); 7121 Inst = AI; 7122 return AteExtraComma ? InstExtraComma : InstNormal; 7123 } 7124 7125 /// parseLoad 7126 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 7127 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 7128 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7129 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) { 7130 Value *Val; LocTy Loc; 7131 MaybeAlign Alignment; 7132 bool AteExtraComma = false; 7133 bool isAtomic = false; 7134 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7135 SyncScope::ID SSID = SyncScope::System; 7136 7137 if (Lex.getKind() == lltok::kw_atomic) { 7138 isAtomic = true; 7139 Lex.Lex(); 7140 } 7141 7142 bool isVolatile = false; 7143 if (Lex.getKind() == lltok::kw_volatile) { 7144 isVolatile = true; 7145 Lex.Lex(); 7146 } 7147 7148 Type *Ty; 7149 LocTy ExplicitTypeLoc = Lex.getLoc(); 7150 if (parseType(Ty) || 7151 parseToken(lltok::comma, "expected comma after load's type") || 7152 parseTypeAndValue(Val, Loc, PFS) || 7153 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 7154 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7155 return true; 7156 7157 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 7158 return error(Loc, "load operand must be a pointer to a first class type"); 7159 if (isAtomic && !Alignment) 7160 return error(Loc, "atomic load must have explicit non-zero alignment"); 7161 if (Ordering == AtomicOrdering::Release || 7162 Ordering == AtomicOrdering::AcquireRelease) 7163 return error(Loc, "atomic load cannot use Release ordering"); 7164 7165 if (!cast<PointerType>(Val->getType())->isOpaqueOrPointeeTypeMatches(Ty)) { 7166 return error( 7167 ExplicitTypeLoc, 7168 typeComparisonErrorMessage( 7169 "explicit pointee type doesn't match operand's pointee type", Ty, 7170 cast<PointerType>(Val->getType())->getElementType())); 7171 } 7172 SmallPtrSet<Type *, 4> Visited; 7173 if (!Alignment && !Ty->isSized(&Visited)) 7174 return error(ExplicitTypeLoc, "loading unsized types is not allowed"); 7175 if (!Alignment) 7176 Alignment = M->getDataLayout().getABITypeAlign(Ty); 7177 Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID); 7178 return AteExtraComma ? InstExtraComma : InstNormal; 7179 } 7180 7181 /// parseStore 7182 7183 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 7184 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 7185 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7186 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) { 7187 Value *Val, *Ptr; LocTy Loc, PtrLoc; 7188 MaybeAlign Alignment; 7189 bool AteExtraComma = false; 7190 bool isAtomic = false; 7191 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7192 SyncScope::ID SSID = SyncScope::System; 7193 7194 if (Lex.getKind() == lltok::kw_atomic) { 7195 isAtomic = true; 7196 Lex.Lex(); 7197 } 7198 7199 bool isVolatile = false; 7200 if (Lex.getKind() == lltok::kw_volatile) { 7201 isVolatile = true; 7202 Lex.Lex(); 7203 } 7204 7205 if (parseTypeAndValue(Val, Loc, PFS) || 7206 parseToken(lltok::comma, "expected ',' after store operand") || 7207 parseTypeAndValue(Ptr, PtrLoc, PFS) || 7208 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 7209 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7210 return true; 7211 7212 if (!Ptr->getType()->isPointerTy()) 7213 return error(PtrLoc, "store operand must be a pointer"); 7214 if (!Val->getType()->isFirstClassType()) 7215 return error(Loc, "store operand must be a first class value"); 7216 if (!cast<PointerType>(Ptr->getType()) 7217 ->isOpaqueOrPointeeTypeMatches(Val->getType())) 7218 return error(Loc, "stored value and pointer type do not match"); 7219 if (isAtomic && !Alignment) 7220 return error(Loc, "atomic store must have explicit non-zero alignment"); 7221 if (Ordering == AtomicOrdering::Acquire || 7222 Ordering == AtomicOrdering::AcquireRelease) 7223 return error(Loc, "atomic store cannot use Acquire ordering"); 7224 SmallPtrSet<Type *, 4> Visited; 7225 if (!Alignment && !Val->getType()->isSized(&Visited)) 7226 return error(Loc, "storing unsized types is not allowed"); 7227 if (!Alignment) 7228 Alignment = M->getDataLayout().getABITypeAlign(Val->getType()); 7229 7230 Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID); 7231 return AteExtraComma ? InstExtraComma : InstNormal; 7232 } 7233 7234 /// parseCmpXchg 7235 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 7236 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ',' 7237 /// 'Align'? 7238 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 7239 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 7240 bool AteExtraComma = false; 7241 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 7242 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 7243 SyncScope::ID SSID = SyncScope::System; 7244 bool isVolatile = false; 7245 bool isWeak = false; 7246 MaybeAlign Alignment; 7247 7248 if (EatIfPresent(lltok::kw_weak)) 7249 isWeak = true; 7250 7251 if (EatIfPresent(lltok::kw_volatile)) 7252 isVolatile = true; 7253 7254 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 7255 parseToken(lltok::comma, "expected ',' after cmpxchg address") || 7256 parseTypeAndValue(Cmp, CmpLoc, PFS) || 7257 parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 7258 parseTypeAndValue(New, NewLoc, PFS) || 7259 parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 7260 parseOrdering(FailureOrdering) || 7261 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7262 return true; 7263 7264 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 7265 return tokError("invalid cmpxchg success ordering"); 7266 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 7267 return tokError("invalid cmpxchg failure ordering"); 7268 if (!Ptr->getType()->isPointerTy()) 7269 return error(PtrLoc, "cmpxchg operand must be a pointer"); 7270 if (!cast<PointerType>(Ptr->getType()) 7271 ->isOpaqueOrPointeeTypeMatches(Cmp->getType())) 7272 return error(CmpLoc, "compare value and pointer type do not match"); 7273 if (!cast<PointerType>(Ptr->getType()) 7274 ->isOpaqueOrPointeeTypeMatches(New->getType())) 7275 return error(NewLoc, "new value and pointer type do not match"); 7276 if (Cmp->getType() != New->getType()) 7277 return error(NewLoc, "compare value and new value type do not match"); 7278 if (!New->getType()->isFirstClassType()) 7279 return error(NewLoc, "cmpxchg operand must be a first class value"); 7280 7281 const Align DefaultAlignment( 7282 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7283 Cmp->getType())); 7284 7285 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 7286 Ptr, Cmp, New, Alignment.getValueOr(DefaultAlignment), SuccessOrdering, 7287 FailureOrdering, SSID); 7288 CXI->setVolatile(isVolatile); 7289 CXI->setWeak(isWeak); 7290 7291 Inst = CXI; 7292 return AteExtraComma ? InstExtraComma : InstNormal; 7293 } 7294 7295 /// parseAtomicRMW 7296 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 7297 /// 'singlethread'? AtomicOrdering 7298 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 7299 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 7300 bool AteExtraComma = false; 7301 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7302 SyncScope::ID SSID = SyncScope::System; 7303 bool isVolatile = false; 7304 bool IsFP = false; 7305 AtomicRMWInst::BinOp Operation; 7306 MaybeAlign Alignment; 7307 7308 if (EatIfPresent(lltok::kw_volatile)) 7309 isVolatile = true; 7310 7311 switch (Lex.getKind()) { 7312 default: 7313 return tokError("expected binary operation in atomicrmw"); 7314 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 7315 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 7316 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 7317 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 7318 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 7319 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 7320 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 7321 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 7322 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 7323 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 7324 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 7325 case lltok::kw_fadd: 7326 Operation = AtomicRMWInst::FAdd; 7327 IsFP = true; 7328 break; 7329 case lltok::kw_fsub: 7330 Operation = AtomicRMWInst::FSub; 7331 IsFP = true; 7332 break; 7333 } 7334 Lex.Lex(); // Eat the operation. 7335 7336 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 7337 parseToken(lltok::comma, "expected ',' after atomicrmw address") || 7338 parseTypeAndValue(Val, ValLoc, PFS) || 7339 parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) || 7340 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7341 return true; 7342 7343 if (Ordering == AtomicOrdering::Unordered) 7344 return tokError("atomicrmw cannot be unordered"); 7345 if (!Ptr->getType()->isPointerTy()) 7346 return error(PtrLoc, "atomicrmw operand must be a pointer"); 7347 if (!cast<PointerType>(Ptr->getType()) 7348 ->isOpaqueOrPointeeTypeMatches(Val->getType())) 7349 return error(ValLoc, "atomicrmw value and pointer type do not match"); 7350 7351 if (Operation == AtomicRMWInst::Xchg) { 7352 if (!Val->getType()->isIntegerTy() && 7353 !Val->getType()->isFloatingPointTy()) { 7354 return error(ValLoc, 7355 "atomicrmw " + AtomicRMWInst::getOperationName(Operation) + 7356 " operand must be an integer or floating point type"); 7357 } 7358 } else if (IsFP) { 7359 if (!Val->getType()->isFloatingPointTy()) { 7360 return error(ValLoc, "atomicrmw " + 7361 AtomicRMWInst::getOperationName(Operation) + 7362 " operand must be a floating point type"); 7363 } 7364 } else { 7365 if (!Val->getType()->isIntegerTy()) { 7366 return error(ValLoc, "atomicrmw " + 7367 AtomicRMWInst::getOperationName(Operation) + 7368 " operand must be an integer"); 7369 } 7370 } 7371 7372 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 7373 if (Size < 8 || (Size & (Size - 1))) 7374 return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 7375 " integer"); 7376 const Align DefaultAlignment( 7377 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7378 Val->getType())); 7379 AtomicRMWInst *RMWI = 7380 new AtomicRMWInst(Operation, Ptr, Val, 7381 Alignment.getValueOr(DefaultAlignment), Ordering, SSID); 7382 RMWI->setVolatile(isVolatile); 7383 Inst = RMWI; 7384 return AteExtraComma ? InstExtraComma : InstNormal; 7385 } 7386 7387 /// parseFence 7388 /// ::= 'fence' 'singlethread'? AtomicOrdering 7389 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) { 7390 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7391 SyncScope::ID SSID = SyncScope::System; 7392 if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7393 return true; 7394 7395 if (Ordering == AtomicOrdering::Unordered) 7396 return tokError("fence cannot be unordered"); 7397 if (Ordering == AtomicOrdering::Monotonic) 7398 return tokError("fence cannot be monotonic"); 7399 7400 Inst = new FenceInst(Context, Ordering, SSID); 7401 return InstNormal; 7402 } 7403 7404 /// parseGetElementPtr 7405 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 7406 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 7407 Value *Ptr = nullptr; 7408 Value *Val = nullptr; 7409 LocTy Loc, EltLoc; 7410 7411 bool InBounds = EatIfPresent(lltok::kw_inbounds); 7412 7413 Type *Ty = nullptr; 7414 LocTy ExplicitTypeLoc = Lex.getLoc(); 7415 if (parseType(Ty) || 7416 parseToken(lltok::comma, "expected comma after getelementptr's type") || 7417 parseTypeAndValue(Ptr, Loc, PFS)) 7418 return true; 7419 7420 Type *BaseType = Ptr->getType(); 7421 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 7422 if (!BasePointerType) 7423 return error(Loc, "base of getelementptr must be a pointer"); 7424 7425 if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) { 7426 return error( 7427 ExplicitTypeLoc, 7428 typeComparisonErrorMessage( 7429 "explicit pointee type doesn't match operand's pointee type", Ty, 7430 BasePointerType->getElementType())); 7431 } 7432 7433 SmallVector<Value*, 16> Indices; 7434 bool AteExtraComma = false; 7435 // GEP returns a vector of pointers if at least one of parameters is a vector. 7436 // All vector parameters should have the same vector width. 7437 ElementCount GEPWidth = BaseType->isVectorTy() 7438 ? cast<VectorType>(BaseType)->getElementCount() 7439 : ElementCount::getFixed(0); 7440 7441 while (EatIfPresent(lltok::comma)) { 7442 if (Lex.getKind() == lltok::MetadataVar) { 7443 AteExtraComma = true; 7444 break; 7445 } 7446 if (parseTypeAndValue(Val, EltLoc, PFS)) 7447 return true; 7448 if (!Val->getType()->isIntOrIntVectorTy()) 7449 return error(EltLoc, "getelementptr index must be an integer"); 7450 7451 if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) { 7452 ElementCount ValNumEl = ValVTy->getElementCount(); 7453 if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl) 7454 return error( 7455 EltLoc, 7456 "getelementptr vector index has a wrong number of elements"); 7457 GEPWidth = ValNumEl; 7458 } 7459 Indices.push_back(Val); 7460 } 7461 7462 SmallPtrSet<Type*, 4> Visited; 7463 if (!Indices.empty() && !Ty->isSized(&Visited)) 7464 return error(Loc, "base element of getelementptr must be sized"); 7465 7466 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 7467 return error(Loc, "invalid getelementptr indices"); 7468 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 7469 if (InBounds) 7470 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 7471 return AteExtraComma ? InstExtraComma : InstNormal; 7472 } 7473 7474 /// parseExtractValue 7475 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 7476 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 7477 Value *Val; LocTy Loc; 7478 SmallVector<unsigned, 4> Indices; 7479 bool AteExtraComma; 7480 if (parseTypeAndValue(Val, Loc, PFS) || 7481 parseIndexList(Indices, AteExtraComma)) 7482 return true; 7483 7484 if (!Val->getType()->isAggregateType()) 7485 return error(Loc, "extractvalue operand must be aggregate type"); 7486 7487 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 7488 return error(Loc, "invalid indices for extractvalue"); 7489 Inst = ExtractValueInst::Create(Val, Indices); 7490 return AteExtraComma ? InstExtraComma : InstNormal; 7491 } 7492 7493 /// parseInsertValue 7494 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 7495 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 7496 Value *Val0, *Val1; LocTy Loc0, Loc1; 7497 SmallVector<unsigned, 4> Indices; 7498 bool AteExtraComma; 7499 if (parseTypeAndValue(Val0, Loc0, PFS) || 7500 parseToken(lltok::comma, "expected comma after insertvalue operand") || 7501 parseTypeAndValue(Val1, Loc1, PFS) || 7502 parseIndexList(Indices, AteExtraComma)) 7503 return true; 7504 7505 if (!Val0->getType()->isAggregateType()) 7506 return error(Loc0, "insertvalue operand must be aggregate type"); 7507 7508 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 7509 if (!IndexedType) 7510 return error(Loc0, "invalid indices for insertvalue"); 7511 if (IndexedType != Val1->getType()) 7512 return error(Loc1, "insertvalue operand and field disagree in type: '" + 7513 getTypeString(Val1->getType()) + "' instead of '" + 7514 getTypeString(IndexedType) + "'"); 7515 Inst = InsertValueInst::Create(Val0, Val1, Indices); 7516 return AteExtraComma ? InstExtraComma : InstNormal; 7517 } 7518 7519 //===----------------------------------------------------------------------===// 7520 // Embedded metadata. 7521 //===----------------------------------------------------------------------===// 7522 7523 /// parseMDNodeVector 7524 /// ::= { Element (',' Element)* } 7525 /// Element 7526 /// ::= 'null' | TypeAndValue 7527 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 7528 if (parseToken(lltok::lbrace, "expected '{' here")) 7529 return true; 7530 7531 // Check for an empty list. 7532 if (EatIfPresent(lltok::rbrace)) 7533 return false; 7534 7535 do { 7536 // Null is a special case since it is typeless. 7537 if (EatIfPresent(lltok::kw_null)) { 7538 Elts.push_back(nullptr); 7539 continue; 7540 } 7541 7542 Metadata *MD; 7543 if (parseMetadata(MD, nullptr)) 7544 return true; 7545 Elts.push_back(MD); 7546 } while (EatIfPresent(lltok::comma)); 7547 7548 return parseToken(lltok::rbrace, "expected end of metadata node"); 7549 } 7550 7551 //===----------------------------------------------------------------------===// 7552 // Use-list order directives. 7553 //===----------------------------------------------------------------------===// 7554 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 7555 SMLoc Loc) { 7556 if (V->use_empty()) 7557 return error(Loc, "value has no uses"); 7558 7559 unsigned NumUses = 0; 7560 SmallDenseMap<const Use *, unsigned, 16> Order; 7561 for (const Use &U : V->uses()) { 7562 if (++NumUses > Indexes.size()) 7563 break; 7564 Order[&U] = Indexes[NumUses - 1]; 7565 } 7566 if (NumUses < 2) 7567 return error(Loc, "value only has one use"); 7568 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 7569 return error(Loc, 7570 "wrong number of indexes, expected " + Twine(V->getNumUses())); 7571 7572 V->sortUseList([&](const Use &L, const Use &R) { 7573 return Order.lookup(&L) < Order.lookup(&R); 7574 }); 7575 return false; 7576 } 7577 7578 /// parseUseListOrderIndexes 7579 /// ::= '{' uint32 (',' uint32)+ '}' 7580 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 7581 SMLoc Loc = Lex.getLoc(); 7582 if (parseToken(lltok::lbrace, "expected '{' here")) 7583 return true; 7584 if (Lex.getKind() == lltok::rbrace) 7585 return Lex.Error("expected non-empty list of uselistorder indexes"); 7586 7587 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 7588 // indexes should be distinct numbers in the range [0, size-1], and should 7589 // not be in order. 7590 unsigned Offset = 0; 7591 unsigned Max = 0; 7592 bool IsOrdered = true; 7593 assert(Indexes.empty() && "Expected empty order vector"); 7594 do { 7595 unsigned Index; 7596 if (parseUInt32(Index)) 7597 return true; 7598 7599 // Update consistency checks. 7600 Offset += Index - Indexes.size(); 7601 Max = std::max(Max, Index); 7602 IsOrdered &= Index == Indexes.size(); 7603 7604 Indexes.push_back(Index); 7605 } while (EatIfPresent(lltok::comma)); 7606 7607 if (parseToken(lltok::rbrace, "expected '}' here")) 7608 return true; 7609 7610 if (Indexes.size() < 2) 7611 return error(Loc, "expected >= 2 uselistorder indexes"); 7612 if (Offset != 0 || Max >= Indexes.size()) 7613 return error(Loc, 7614 "expected distinct uselistorder indexes in range [0, size)"); 7615 if (IsOrdered) 7616 return error(Loc, "expected uselistorder indexes to change the order"); 7617 7618 return false; 7619 } 7620 7621 /// parseUseListOrder 7622 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 7623 bool LLParser::parseUseListOrder(PerFunctionState *PFS) { 7624 SMLoc Loc = Lex.getLoc(); 7625 if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 7626 return true; 7627 7628 Value *V; 7629 SmallVector<unsigned, 16> Indexes; 7630 if (parseTypeAndValue(V, PFS) || 7631 parseToken(lltok::comma, "expected comma in uselistorder directive") || 7632 parseUseListOrderIndexes(Indexes)) 7633 return true; 7634 7635 return sortUseListOrder(V, Indexes, Loc); 7636 } 7637 7638 /// parseUseListOrderBB 7639 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 7640 bool LLParser::parseUseListOrderBB() { 7641 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 7642 SMLoc Loc = Lex.getLoc(); 7643 Lex.Lex(); 7644 7645 ValID Fn, Label; 7646 SmallVector<unsigned, 16> Indexes; 7647 if (parseValID(Fn, /*PFS=*/nullptr) || 7648 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7649 parseValID(Label, /*PFS=*/nullptr) || 7650 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7651 parseUseListOrderIndexes(Indexes)) 7652 return true; 7653 7654 // Check the function. 7655 GlobalValue *GV; 7656 if (Fn.Kind == ValID::t_GlobalName) 7657 GV = M->getNamedValue(Fn.StrVal); 7658 else if (Fn.Kind == ValID::t_GlobalID) 7659 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 7660 else 7661 return error(Fn.Loc, "expected function name in uselistorder_bb"); 7662 if (!GV) 7663 return error(Fn.Loc, 7664 "invalid function forward reference in uselistorder_bb"); 7665 auto *F = dyn_cast<Function>(GV); 7666 if (!F) 7667 return error(Fn.Loc, "expected function name in uselistorder_bb"); 7668 if (F->isDeclaration()) 7669 return error(Fn.Loc, "invalid declaration in uselistorder_bb"); 7670 7671 // Check the basic block. 7672 if (Label.Kind == ValID::t_LocalID) 7673 return error(Label.Loc, "invalid numeric label in uselistorder_bb"); 7674 if (Label.Kind != ValID::t_LocalName) 7675 return error(Label.Loc, "expected basic block name in uselistorder_bb"); 7676 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 7677 if (!V) 7678 return error(Label.Loc, "invalid basic block in uselistorder_bb"); 7679 if (!isa<BasicBlock>(V)) 7680 return error(Label.Loc, "expected basic block in uselistorder_bb"); 7681 7682 return sortUseListOrder(V, Indexes, Loc); 7683 } 7684 7685 /// ModuleEntry 7686 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')' 7687 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')' 7688 bool LLParser::parseModuleEntry(unsigned ID) { 7689 assert(Lex.getKind() == lltok::kw_module); 7690 Lex.Lex(); 7691 7692 std::string Path; 7693 if (parseToken(lltok::colon, "expected ':' here") || 7694 parseToken(lltok::lparen, "expected '(' here") || 7695 parseToken(lltok::kw_path, "expected 'path' here") || 7696 parseToken(lltok::colon, "expected ':' here") || 7697 parseStringConstant(Path) || 7698 parseToken(lltok::comma, "expected ',' here") || 7699 parseToken(lltok::kw_hash, "expected 'hash' here") || 7700 parseToken(lltok::colon, "expected ':' here") || 7701 parseToken(lltok::lparen, "expected '(' here")) 7702 return true; 7703 7704 ModuleHash Hash; 7705 if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") || 7706 parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") || 7707 parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") || 7708 parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") || 7709 parseUInt32(Hash[4])) 7710 return true; 7711 7712 if (parseToken(lltok::rparen, "expected ')' here") || 7713 parseToken(lltok::rparen, "expected ')' here")) 7714 return true; 7715 7716 auto ModuleEntry = Index->addModule(Path, ID, Hash); 7717 ModuleIdMap[ID] = ModuleEntry->first(); 7718 7719 return false; 7720 } 7721 7722 /// TypeIdEntry 7723 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')' 7724 bool LLParser::parseTypeIdEntry(unsigned ID) { 7725 assert(Lex.getKind() == lltok::kw_typeid); 7726 Lex.Lex(); 7727 7728 std::string Name; 7729 if (parseToken(lltok::colon, "expected ':' here") || 7730 parseToken(lltok::lparen, "expected '(' here") || 7731 parseToken(lltok::kw_name, "expected 'name' here") || 7732 parseToken(lltok::colon, "expected ':' here") || 7733 parseStringConstant(Name)) 7734 return true; 7735 7736 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name); 7737 if (parseToken(lltok::comma, "expected ',' here") || 7738 parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here")) 7739 return true; 7740 7741 // Check if this ID was forward referenced, and if so, update the 7742 // corresponding GUIDs. 7743 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7744 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7745 for (auto TIDRef : FwdRefTIDs->second) { 7746 assert(!*TIDRef.first && 7747 "Forward referenced type id GUID expected to be 0"); 7748 *TIDRef.first = GlobalValue::getGUID(Name); 7749 } 7750 ForwardRefTypeIds.erase(FwdRefTIDs); 7751 } 7752 7753 return false; 7754 } 7755 7756 /// TypeIdSummary 7757 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')' 7758 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) { 7759 if (parseToken(lltok::kw_summary, "expected 'summary' here") || 7760 parseToken(lltok::colon, "expected ':' here") || 7761 parseToken(lltok::lparen, "expected '(' here") || 7762 parseTypeTestResolution(TIS.TTRes)) 7763 return true; 7764 7765 if (EatIfPresent(lltok::comma)) { 7766 // Expect optional wpdResolutions field 7767 if (parseOptionalWpdResolutions(TIS.WPDRes)) 7768 return true; 7769 } 7770 7771 if (parseToken(lltok::rparen, "expected ')' here")) 7772 return true; 7773 7774 return false; 7775 } 7776 7777 static ValueInfo EmptyVI = 7778 ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8); 7779 7780 /// TypeIdCompatibleVtableEntry 7781 /// ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ',' 7782 /// TypeIdCompatibleVtableInfo 7783 /// ')' 7784 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) { 7785 assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable); 7786 Lex.Lex(); 7787 7788 std::string Name; 7789 if (parseToken(lltok::colon, "expected ':' here") || 7790 parseToken(lltok::lparen, "expected '(' here") || 7791 parseToken(lltok::kw_name, "expected 'name' here") || 7792 parseToken(lltok::colon, "expected ':' here") || 7793 parseStringConstant(Name)) 7794 return true; 7795 7796 TypeIdCompatibleVtableInfo &TI = 7797 Index->getOrInsertTypeIdCompatibleVtableSummary(Name); 7798 if (parseToken(lltok::comma, "expected ',' here") || 7799 parseToken(lltok::kw_summary, "expected 'summary' here") || 7800 parseToken(lltok::colon, "expected ':' here") || 7801 parseToken(lltok::lparen, "expected '(' here")) 7802 return true; 7803 7804 IdToIndexMapType IdToIndexMap; 7805 // parse each call edge 7806 do { 7807 uint64_t Offset; 7808 if (parseToken(lltok::lparen, "expected '(' here") || 7809 parseToken(lltok::kw_offset, "expected 'offset' here") || 7810 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 7811 parseToken(lltok::comma, "expected ',' here")) 7812 return true; 7813 7814 LocTy Loc = Lex.getLoc(); 7815 unsigned GVId; 7816 ValueInfo VI; 7817 if (parseGVReference(VI, GVId)) 7818 return true; 7819 7820 // Keep track of the TypeIdCompatibleVtableInfo array index needing a 7821 // forward reference. We will save the location of the ValueInfo needing an 7822 // update, but can only do so once the std::vector is finalized. 7823 if (VI == EmptyVI) 7824 IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc)); 7825 TI.push_back({Offset, VI}); 7826 7827 if (parseToken(lltok::rparen, "expected ')' in call")) 7828 return true; 7829 } while (EatIfPresent(lltok::comma)); 7830 7831 // Now that the TI vector is finalized, it is safe to save the locations 7832 // of any forward GV references that need updating later. 7833 for (auto I : IdToIndexMap) { 7834 auto &Infos = ForwardRefValueInfos[I.first]; 7835 for (auto P : I.second) { 7836 assert(TI[P.first].VTableVI == EmptyVI && 7837 "Forward referenced ValueInfo expected to be empty"); 7838 Infos.emplace_back(&TI[P.first].VTableVI, P.second); 7839 } 7840 } 7841 7842 if (parseToken(lltok::rparen, "expected ')' here") || 7843 parseToken(lltok::rparen, "expected ')' here")) 7844 return true; 7845 7846 // Check if this ID was forward referenced, and if so, update the 7847 // corresponding GUIDs. 7848 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7849 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7850 for (auto TIDRef : FwdRefTIDs->second) { 7851 assert(!*TIDRef.first && 7852 "Forward referenced type id GUID expected to be 0"); 7853 *TIDRef.first = GlobalValue::getGUID(Name); 7854 } 7855 ForwardRefTypeIds.erase(FwdRefTIDs); 7856 } 7857 7858 return false; 7859 } 7860 7861 /// TypeTestResolution 7862 /// ::= 'typeTestRes' ':' '(' 'kind' ':' 7863 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ',' 7864 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]? 7865 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]? 7866 /// [',' 'inlinesBits' ':' UInt64]? ')' 7867 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) { 7868 if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") || 7869 parseToken(lltok::colon, "expected ':' here") || 7870 parseToken(lltok::lparen, "expected '(' here") || 7871 parseToken(lltok::kw_kind, "expected 'kind' here") || 7872 parseToken(lltok::colon, "expected ':' here")) 7873 return true; 7874 7875 switch (Lex.getKind()) { 7876 case lltok::kw_unknown: 7877 TTRes.TheKind = TypeTestResolution::Unknown; 7878 break; 7879 case lltok::kw_unsat: 7880 TTRes.TheKind = TypeTestResolution::Unsat; 7881 break; 7882 case lltok::kw_byteArray: 7883 TTRes.TheKind = TypeTestResolution::ByteArray; 7884 break; 7885 case lltok::kw_inline: 7886 TTRes.TheKind = TypeTestResolution::Inline; 7887 break; 7888 case lltok::kw_single: 7889 TTRes.TheKind = TypeTestResolution::Single; 7890 break; 7891 case lltok::kw_allOnes: 7892 TTRes.TheKind = TypeTestResolution::AllOnes; 7893 break; 7894 default: 7895 return error(Lex.getLoc(), "unexpected TypeTestResolution kind"); 7896 } 7897 Lex.Lex(); 7898 7899 if (parseToken(lltok::comma, "expected ',' here") || 7900 parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") || 7901 parseToken(lltok::colon, "expected ':' here") || 7902 parseUInt32(TTRes.SizeM1BitWidth)) 7903 return true; 7904 7905 // parse optional fields 7906 while (EatIfPresent(lltok::comma)) { 7907 switch (Lex.getKind()) { 7908 case lltok::kw_alignLog2: 7909 Lex.Lex(); 7910 if (parseToken(lltok::colon, "expected ':'") || 7911 parseUInt64(TTRes.AlignLog2)) 7912 return true; 7913 break; 7914 case lltok::kw_sizeM1: 7915 Lex.Lex(); 7916 if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1)) 7917 return true; 7918 break; 7919 case lltok::kw_bitMask: { 7920 unsigned Val; 7921 Lex.Lex(); 7922 if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val)) 7923 return true; 7924 assert(Val <= 0xff); 7925 TTRes.BitMask = (uint8_t)Val; 7926 break; 7927 } 7928 case lltok::kw_inlineBits: 7929 Lex.Lex(); 7930 if (parseToken(lltok::colon, "expected ':'") || 7931 parseUInt64(TTRes.InlineBits)) 7932 return true; 7933 break; 7934 default: 7935 return error(Lex.getLoc(), "expected optional TypeTestResolution field"); 7936 } 7937 } 7938 7939 if (parseToken(lltok::rparen, "expected ')' here")) 7940 return true; 7941 7942 return false; 7943 } 7944 7945 /// OptionalWpdResolutions 7946 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')' 7947 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')' 7948 bool LLParser::parseOptionalWpdResolutions( 7949 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) { 7950 if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") || 7951 parseToken(lltok::colon, "expected ':' here") || 7952 parseToken(lltok::lparen, "expected '(' here")) 7953 return true; 7954 7955 do { 7956 uint64_t Offset; 7957 WholeProgramDevirtResolution WPDRes; 7958 if (parseToken(lltok::lparen, "expected '(' here") || 7959 parseToken(lltok::kw_offset, "expected 'offset' here") || 7960 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 7961 parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) || 7962 parseToken(lltok::rparen, "expected ')' here")) 7963 return true; 7964 WPDResMap[Offset] = WPDRes; 7965 } while (EatIfPresent(lltok::comma)); 7966 7967 if (parseToken(lltok::rparen, "expected ')' here")) 7968 return true; 7969 7970 return false; 7971 } 7972 7973 /// WpdRes 7974 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir' 7975 /// [',' OptionalResByArg]? ')' 7976 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl' 7977 /// ',' 'singleImplName' ':' STRINGCONSTANT ',' 7978 /// [',' OptionalResByArg]? ')' 7979 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel' 7980 /// [',' OptionalResByArg]? ')' 7981 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) { 7982 if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") || 7983 parseToken(lltok::colon, "expected ':' here") || 7984 parseToken(lltok::lparen, "expected '(' here") || 7985 parseToken(lltok::kw_kind, "expected 'kind' here") || 7986 parseToken(lltok::colon, "expected ':' here")) 7987 return true; 7988 7989 switch (Lex.getKind()) { 7990 case lltok::kw_indir: 7991 WPDRes.TheKind = WholeProgramDevirtResolution::Indir; 7992 break; 7993 case lltok::kw_singleImpl: 7994 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl; 7995 break; 7996 case lltok::kw_branchFunnel: 7997 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel; 7998 break; 7999 default: 8000 return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind"); 8001 } 8002 Lex.Lex(); 8003 8004 // parse optional fields 8005 while (EatIfPresent(lltok::comma)) { 8006 switch (Lex.getKind()) { 8007 case lltok::kw_singleImplName: 8008 Lex.Lex(); 8009 if (parseToken(lltok::colon, "expected ':' here") || 8010 parseStringConstant(WPDRes.SingleImplName)) 8011 return true; 8012 break; 8013 case lltok::kw_resByArg: 8014 if (parseOptionalResByArg(WPDRes.ResByArg)) 8015 return true; 8016 break; 8017 default: 8018 return error(Lex.getLoc(), 8019 "expected optional WholeProgramDevirtResolution field"); 8020 } 8021 } 8022 8023 if (parseToken(lltok::rparen, "expected ')' here")) 8024 return true; 8025 8026 return false; 8027 } 8028 8029 /// OptionalResByArg 8030 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')' 8031 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':' 8032 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' | 8033 /// 'virtualConstProp' ) 8034 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]? 8035 /// [',' 'bit' ':' UInt32]? ')' 8036 bool LLParser::parseOptionalResByArg( 8037 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg> 8038 &ResByArg) { 8039 if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") || 8040 parseToken(lltok::colon, "expected ':' here") || 8041 parseToken(lltok::lparen, "expected '(' here")) 8042 return true; 8043 8044 do { 8045 std::vector<uint64_t> Args; 8046 if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") || 8047 parseToken(lltok::kw_byArg, "expected 'byArg here") || 8048 parseToken(lltok::colon, "expected ':' here") || 8049 parseToken(lltok::lparen, "expected '(' here") || 8050 parseToken(lltok::kw_kind, "expected 'kind' here") || 8051 parseToken(lltok::colon, "expected ':' here")) 8052 return true; 8053 8054 WholeProgramDevirtResolution::ByArg ByArg; 8055 switch (Lex.getKind()) { 8056 case lltok::kw_indir: 8057 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir; 8058 break; 8059 case lltok::kw_uniformRetVal: 8060 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 8061 break; 8062 case lltok::kw_uniqueRetVal: 8063 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 8064 break; 8065 case lltok::kw_virtualConstProp: 8066 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 8067 break; 8068 default: 8069 return error(Lex.getLoc(), 8070 "unexpected WholeProgramDevirtResolution::ByArg kind"); 8071 } 8072 Lex.Lex(); 8073 8074 // parse optional fields 8075 while (EatIfPresent(lltok::comma)) { 8076 switch (Lex.getKind()) { 8077 case lltok::kw_info: 8078 Lex.Lex(); 8079 if (parseToken(lltok::colon, "expected ':' here") || 8080 parseUInt64(ByArg.Info)) 8081 return true; 8082 break; 8083 case lltok::kw_byte: 8084 Lex.Lex(); 8085 if (parseToken(lltok::colon, "expected ':' here") || 8086 parseUInt32(ByArg.Byte)) 8087 return true; 8088 break; 8089 case lltok::kw_bit: 8090 Lex.Lex(); 8091 if (parseToken(lltok::colon, "expected ':' here") || 8092 parseUInt32(ByArg.Bit)) 8093 return true; 8094 break; 8095 default: 8096 return error(Lex.getLoc(), 8097 "expected optional whole program devirt field"); 8098 } 8099 } 8100 8101 if (parseToken(lltok::rparen, "expected ')' here")) 8102 return true; 8103 8104 ResByArg[Args] = ByArg; 8105 } while (EatIfPresent(lltok::comma)); 8106 8107 if (parseToken(lltok::rparen, "expected ')' here")) 8108 return true; 8109 8110 return false; 8111 } 8112 8113 /// OptionalResByArg 8114 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')' 8115 bool LLParser::parseArgs(std::vector<uint64_t> &Args) { 8116 if (parseToken(lltok::kw_args, "expected 'args' here") || 8117 parseToken(lltok::colon, "expected ':' here") || 8118 parseToken(lltok::lparen, "expected '(' here")) 8119 return true; 8120 8121 do { 8122 uint64_t Val; 8123 if (parseUInt64(Val)) 8124 return true; 8125 Args.push_back(Val); 8126 } while (EatIfPresent(lltok::comma)); 8127 8128 if (parseToken(lltok::rparen, "expected ')' here")) 8129 return true; 8130 8131 return false; 8132 } 8133 8134 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8; 8135 8136 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) { 8137 bool ReadOnly = Fwd->isReadOnly(); 8138 bool WriteOnly = Fwd->isWriteOnly(); 8139 assert(!(ReadOnly && WriteOnly)); 8140 *Fwd = Resolved; 8141 if (ReadOnly) 8142 Fwd->setReadOnly(); 8143 if (WriteOnly) 8144 Fwd->setWriteOnly(); 8145 } 8146 8147 /// Stores the given Name/GUID and associated summary into the Index. 8148 /// Also updates any forward references to the associated entry ID. 8149 void LLParser::addGlobalValueToIndex( 8150 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage, 8151 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) { 8152 // First create the ValueInfo utilizing the Name or GUID. 8153 ValueInfo VI; 8154 if (GUID != 0) { 8155 assert(Name.empty()); 8156 VI = Index->getOrInsertValueInfo(GUID); 8157 } else { 8158 assert(!Name.empty()); 8159 if (M) { 8160 auto *GV = M->getNamedValue(Name); 8161 assert(GV); 8162 VI = Index->getOrInsertValueInfo(GV); 8163 } else { 8164 assert( 8165 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) && 8166 "Need a source_filename to compute GUID for local"); 8167 GUID = GlobalValue::getGUID( 8168 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName)); 8169 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name)); 8170 } 8171 } 8172 8173 // Resolve forward references from calls/refs 8174 auto FwdRefVIs = ForwardRefValueInfos.find(ID); 8175 if (FwdRefVIs != ForwardRefValueInfos.end()) { 8176 for (auto VIRef : FwdRefVIs->second) { 8177 assert(VIRef.first->getRef() == FwdVIRef && 8178 "Forward referenced ValueInfo expected to be empty"); 8179 resolveFwdRef(VIRef.first, VI); 8180 } 8181 ForwardRefValueInfos.erase(FwdRefVIs); 8182 } 8183 8184 // Resolve forward references from aliases 8185 auto FwdRefAliasees = ForwardRefAliasees.find(ID); 8186 if (FwdRefAliasees != ForwardRefAliasees.end()) { 8187 for (auto AliaseeRef : FwdRefAliasees->second) { 8188 assert(!AliaseeRef.first->hasAliasee() && 8189 "Forward referencing alias already has aliasee"); 8190 assert(Summary && "Aliasee must be a definition"); 8191 AliaseeRef.first->setAliasee(VI, Summary.get()); 8192 } 8193 ForwardRefAliasees.erase(FwdRefAliasees); 8194 } 8195 8196 // Add the summary if one was provided. 8197 if (Summary) 8198 Index->addGlobalValueSummary(VI, std::move(Summary)); 8199 8200 // Save the associated ValueInfo for use in later references by ID. 8201 if (ID == NumberedValueInfos.size()) 8202 NumberedValueInfos.push_back(VI); 8203 else { 8204 // Handle non-continuous numbers (to make test simplification easier). 8205 if (ID > NumberedValueInfos.size()) 8206 NumberedValueInfos.resize(ID + 1); 8207 NumberedValueInfos[ID] = VI; 8208 } 8209 } 8210 8211 /// parseSummaryIndexFlags 8212 /// ::= 'flags' ':' UInt64 8213 bool LLParser::parseSummaryIndexFlags() { 8214 assert(Lex.getKind() == lltok::kw_flags); 8215 Lex.Lex(); 8216 8217 if (parseToken(lltok::colon, "expected ':' here")) 8218 return true; 8219 uint64_t Flags; 8220 if (parseUInt64(Flags)) 8221 return true; 8222 if (Index) 8223 Index->setFlags(Flags); 8224 return false; 8225 } 8226 8227 /// parseBlockCount 8228 /// ::= 'blockcount' ':' UInt64 8229 bool LLParser::parseBlockCount() { 8230 assert(Lex.getKind() == lltok::kw_blockcount); 8231 Lex.Lex(); 8232 8233 if (parseToken(lltok::colon, "expected ':' here")) 8234 return true; 8235 uint64_t BlockCount; 8236 if (parseUInt64(BlockCount)) 8237 return true; 8238 if (Index) 8239 Index->setBlockCount(BlockCount); 8240 return false; 8241 } 8242 8243 /// parseGVEntry 8244 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64) 8245 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')' 8246 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')' 8247 bool LLParser::parseGVEntry(unsigned ID) { 8248 assert(Lex.getKind() == lltok::kw_gv); 8249 Lex.Lex(); 8250 8251 if (parseToken(lltok::colon, "expected ':' here") || 8252 parseToken(lltok::lparen, "expected '(' here")) 8253 return true; 8254 8255 std::string Name; 8256 GlobalValue::GUID GUID = 0; 8257 switch (Lex.getKind()) { 8258 case lltok::kw_name: 8259 Lex.Lex(); 8260 if (parseToken(lltok::colon, "expected ':' here") || 8261 parseStringConstant(Name)) 8262 return true; 8263 // Can't create GUID/ValueInfo until we have the linkage. 8264 break; 8265 case lltok::kw_guid: 8266 Lex.Lex(); 8267 if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID)) 8268 return true; 8269 break; 8270 default: 8271 return error(Lex.getLoc(), "expected name or guid tag"); 8272 } 8273 8274 if (!EatIfPresent(lltok::comma)) { 8275 // No summaries. Wrap up. 8276 if (parseToken(lltok::rparen, "expected ')' here")) 8277 return true; 8278 // This was created for a call to an external or indirect target. 8279 // A GUID with no summary came from a VALUE_GUID record, dummy GUID 8280 // created for indirect calls with VP. A Name with no GUID came from 8281 // an external definition. We pass ExternalLinkage since that is only 8282 // used when the GUID must be computed from Name, and in that case 8283 // the symbol must have external linkage. 8284 addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID, 8285 nullptr); 8286 return false; 8287 } 8288 8289 // Have a list of summaries 8290 if (parseToken(lltok::kw_summaries, "expected 'summaries' here") || 8291 parseToken(lltok::colon, "expected ':' here") || 8292 parseToken(lltok::lparen, "expected '(' here")) 8293 return true; 8294 do { 8295 switch (Lex.getKind()) { 8296 case lltok::kw_function: 8297 if (parseFunctionSummary(Name, GUID, ID)) 8298 return true; 8299 break; 8300 case lltok::kw_variable: 8301 if (parseVariableSummary(Name, GUID, ID)) 8302 return true; 8303 break; 8304 case lltok::kw_alias: 8305 if (parseAliasSummary(Name, GUID, ID)) 8306 return true; 8307 break; 8308 default: 8309 return error(Lex.getLoc(), "expected summary type"); 8310 } 8311 } while (EatIfPresent(lltok::comma)); 8312 8313 if (parseToken(lltok::rparen, "expected ')' here") || 8314 parseToken(lltok::rparen, "expected ')' here")) 8315 return true; 8316 8317 return false; 8318 } 8319 8320 /// FunctionSummary 8321 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8322 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]? 8323 /// [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]? 8324 /// [',' OptionalRefs]? ')' 8325 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID, 8326 unsigned ID) { 8327 assert(Lex.getKind() == lltok::kw_function); 8328 Lex.Lex(); 8329 8330 StringRef ModulePath; 8331 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8332 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8333 /*NotEligibleToImport=*/false, 8334 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8335 unsigned InstCount; 8336 std::vector<FunctionSummary::EdgeTy> Calls; 8337 FunctionSummary::TypeIdInfo TypeIdInfo; 8338 std::vector<FunctionSummary::ParamAccess> ParamAccesses; 8339 std::vector<ValueInfo> Refs; 8340 // Default is all-zeros (conservative values). 8341 FunctionSummary::FFlags FFlags = {}; 8342 if (parseToken(lltok::colon, "expected ':' here") || 8343 parseToken(lltok::lparen, "expected '(' here") || 8344 parseModuleReference(ModulePath) || 8345 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8346 parseToken(lltok::comma, "expected ',' here") || 8347 parseToken(lltok::kw_insts, "expected 'insts' here") || 8348 parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount)) 8349 return true; 8350 8351 // parse optional fields 8352 while (EatIfPresent(lltok::comma)) { 8353 switch (Lex.getKind()) { 8354 case lltok::kw_funcFlags: 8355 if (parseOptionalFFlags(FFlags)) 8356 return true; 8357 break; 8358 case lltok::kw_calls: 8359 if (parseOptionalCalls(Calls)) 8360 return true; 8361 break; 8362 case lltok::kw_typeIdInfo: 8363 if (parseOptionalTypeIdInfo(TypeIdInfo)) 8364 return true; 8365 break; 8366 case lltok::kw_refs: 8367 if (parseOptionalRefs(Refs)) 8368 return true; 8369 break; 8370 case lltok::kw_params: 8371 if (parseOptionalParamAccesses(ParamAccesses)) 8372 return true; 8373 break; 8374 default: 8375 return error(Lex.getLoc(), "expected optional function summary field"); 8376 } 8377 } 8378 8379 if (parseToken(lltok::rparen, "expected ')' here")) 8380 return true; 8381 8382 auto FS = std::make_unique<FunctionSummary>( 8383 GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs), 8384 std::move(Calls), std::move(TypeIdInfo.TypeTests), 8385 std::move(TypeIdInfo.TypeTestAssumeVCalls), 8386 std::move(TypeIdInfo.TypeCheckedLoadVCalls), 8387 std::move(TypeIdInfo.TypeTestAssumeConstVCalls), 8388 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls), 8389 std::move(ParamAccesses)); 8390 8391 FS->setModulePath(ModulePath); 8392 8393 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8394 ID, std::move(FS)); 8395 8396 return false; 8397 } 8398 8399 /// VariableSummary 8400 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8401 /// [',' OptionalRefs]? ')' 8402 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID, 8403 unsigned ID) { 8404 assert(Lex.getKind() == lltok::kw_variable); 8405 Lex.Lex(); 8406 8407 StringRef ModulePath; 8408 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8409 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8410 /*NotEligibleToImport=*/false, 8411 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8412 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false, 8413 /* WriteOnly */ false, 8414 /* Constant */ false, 8415 GlobalObject::VCallVisibilityPublic); 8416 std::vector<ValueInfo> Refs; 8417 VTableFuncList VTableFuncs; 8418 if (parseToken(lltok::colon, "expected ':' here") || 8419 parseToken(lltok::lparen, "expected '(' here") || 8420 parseModuleReference(ModulePath) || 8421 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8422 parseToken(lltok::comma, "expected ',' here") || 8423 parseGVarFlags(GVarFlags)) 8424 return true; 8425 8426 // parse optional fields 8427 while (EatIfPresent(lltok::comma)) { 8428 switch (Lex.getKind()) { 8429 case lltok::kw_vTableFuncs: 8430 if (parseOptionalVTableFuncs(VTableFuncs)) 8431 return true; 8432 break; 8433 case lltok::kw_refs: 8434 if (parseOptionalRefs(Refs)) 8435 return true; 8436 break; 8437 default: 8438 return error(Lex.getLoc(), "expected optional variable summary field"); 8439 } 8440 } 8441 8442 if (parseToken(lltok::rparen, "expected ')' here")) 8443 return true; 8444 8445 auto GS = 8446 std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs)); 8447 8448 GS->setModulePath(ModulePath); 8449 GS->setVTableFuncs(std::move(VTableFuncs)); 8450 8451 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8452 ID, std::move(GS)); 8453 8454 return false; 8455 } 8456 8457 /// AliasSummary 8458 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ',' 8459 /// 'aliasee' ':' GVReference ')' 8460 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID, 8461 unsigned ID) { 8462 assert(Lex.getKind() == lltok::kw_alias); 8463 LocTy Loc = Lex.getLoc(); 8464 Lex.Lex(); 8465 8466 StringRef ModulePath; 8467 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8468 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8469 /*NotEligibleToImport=*/false, 8470 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8471 if (parseToken(lltok::colon, "expected ':' here") || 8472 parseToken(lltok::lparen, "expected '(' here") || 8473 parseModuleReference(ModulePath) || 8474 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8475 parseToken(lltok::comma, "expected ',' here") || 8476 parseToken(lltok::kw_aliasee, "expected 'aliasee' here") || 8477 parseToken(lltok::colon, "expected ':' here")) 8478 return true; 8479 8480 ValueInfo AliaseeVI; 8481 unsigned GVId; 8482 if (parseGVReference(AliaseeVI, GVId)) 8483 return true; 8484 8485 if (parseToken(lltok::rparen, "expected ')' here")) 8486 return true; 8487 8488 auto AS = std::make_unique<AliasSummary>(GVFlags); 8489 8490 AS->setModulePath(ModulePath); 8491 8492 // Record forward reference if the aliasee is not parsed yet. 8493 if (AliaseeVI.getRef() == FwdVIRef) { 8494 ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc); 8495 } else { 8496 auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath); 8497 assert(Summary && "Aliasee must be a definition"); 8498 AS->setAliasee(AliaseeVI, Summary); 8499 } 8500 8501 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8502 ID, std::move(AS)); 8503 8504 return false; 8505 } 8506 8507 /// Flag 8508 /// ::= [0|1] 8509 bool LLParser::parseFlag(unsigned &Val) { 8510 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 8511 return tokError("expected integer"); 8512 Val = (unsigned)Lex.getAPSIntVal().getBoolValue(); 8513 Lex.Lex(); 8514 return false; 8515 } 8516 8517 /// OptionalFFlags 8518 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]? 8519 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]? 8520 /// [',' 'returnDoesNotAlias' ':' Flag]? ')' 8521 /// [',' 'noInline' ':' Flag]? ')' 8522 /// [',' 'alwaysInline' ':' Flag]? ')' 8523 8524 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) { 8525 assert(Lex.getKind() == lltok::kw_funcFlags); 8526 Lex.Lex(); 8527 8528 if (parseToken(lltok::colon, "expected ':' in funcFlags") | 8529 parseToken(lltok::lparen, "expected '(' in funcFlags")) 8530 return true; 8531 8532 do { 8533 unsigned Val = 0; 8534 switch (Lex.getKind()) { 8535 case lltok::kw_readNone: 8536 Lex.Lex(); 8537 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8538 return true; 8539 FFlags.ReadNone = Val; 8540 break; 8541 case lltok::kw_readOnly: 8542 Lex.Lex(); 8543 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8544 return true; 8545 FFlags.ReadOnly = Val; 8546 break; 8547 case lltok::kw_noRecurse: 8548 Lex.Lex(); 8549 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8550 return true; 8551 FFlags.NoRecurse = Val; 8552 break; 8553 case lltok::kw_returnDoesNotAlias: 8554 Lex.Lex(); 8555 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8556 return true; 8557 FFlags.ReturnDoesNotAlias = Val; 8558 break; 8559 case lltok::kw_noInline: 8560 Lex.Lex(); 8561 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8562 return true; 8563 FFlags.NoInline = Val; 8564 break; 8565 case lltok::kw_alwaysInline: 8566 Lex.Lex(); 8567 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8568 return true; 8569 FFlags.AlwaysInline = Val; 8570 break; 8571 default: 8572 return error(Lex.getLoc(), "expected function flag type"); 8573 } 8574 } while (EatIfPresent(lltok::comma)); 8575 8576 if (parseToken(lltok::rparen, "expected ')' in funcFlags")) 8577 return true; 8578 8579 return false; 8580 } 8581 8582 /// OptionalCalls 8583 /// := 'calls' ':' '(' Call [',' Call]* ')' 8584 /// Call ::= '(' 'callee' ':' GVReference 8585 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')' 8586 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) { 8587 assert(Lex.getKind() == lltok::kw_calls); 8588 Lex.Lex(); 8589 8590 if (parseToken(lltok::colon, "expected ':' in calls") | 8591 parseToken(lltok::lparen, "expected '(' in calls")) 8592 return true; 8593 8594 IdToIndexMapType IdToIndexMap; 8595 // parse each call edge 8596 do { 8597 ValueInfo VI; 8598 if (parseToken(lltok::lparen, "expected '(' in call") || 8599 parseToken(lltok::kw_callee, "expected 'callee' in call") || 8600 parseToken(lltok::colon, "expected ':'")) 8601 return true; 8602 8603 LocTy Loc = Lex.getLoc(); 8604 unsigned GVId; 8605 if (parseGVReference(VI, GVId)) 8606 return true; 8607 8608 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 8609 unsigned RelBF = 0; 8610 if (EatIfPresent(lltok::comma)) { 8611 // Expect either hotness or relbf 8612 if (EatIfPresent(lltok::kw_hotness)) { 8613 if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness)) 8614 return true; 8615 } else { 8616 if (parseToken(lltok::kw_relbf, "expected relbf") || 8617 parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF)) 8618 return true; 8619 } 8620 } 8621 // Keep track of the Call array index needing a forward reference. 8622 // We will save the location of the ValueInfo needing an update, but 8623 // can only do so once the std::vector is finalized. 8624 if (VI.getRef() == FwdVIRef) 8625 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc)); 8626 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)}); 8627 8628 if (parseToken(lltok::rparen, "expected ')' in call")) 8629 return true; 8630 } while (EatIfPresent(lltok::comma)); 8631 8632 // Now that the Calls vector is finalized, it is safe to save the locations 8633 // of any forward GV references that need updating later. 8634 for (auto I : IdToIndexMap) { 8635 auto &Infos = ForwardRefValueInfos[I.first]; 8636 for (auto P : I.second) { 8637 assert(Calls[P.first].first.getRef() == FwdVIRef && 8638 "Forward referenced ValueInfo expected to be empty"); 8639 Infos.emplace_back(&Calls[P.first].first, P.second); 8640 } 8641 } 8642 8643 if (parseToken(lltok::rparen, "expected ')' in calls")) 8644 return true; 8645 8646 return false; 8647 } 8648 8649 /// Hotness 8650 /// := ('unknown'|'cold'|'none'|'hot'|'critical') 8651 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) { 8652 switch (Lex.getKind()) { 8653 case lltok::kw_unknown: 8654 Hotness = CalleeInfo::HotnessType::Unknown; 8655 break; 8656 case lltok::kw_cold: 8657 Hotness = CalleeInfo::HotnessType::Cold; 8658 break; 8659 case lltok::kw_none: 8660 Hotness = CalleeInfo::HotnessType::None; 8661 break; 8662 case lltok::kw_hot: 8663 Hotness = CalleeInfo::HotnessType::Hot; 8664 break; 8665 case lltok::kw_critical: 8666 Hotness = CalleeInfo::HotnessType::Critical; 8667 break; 8668 default: 8669 return error(Lex.getLoc(), "invalid call edge hotness"); 8670 } 8671 Lex.Lex(); 8672 return false; 8673 } 8674 8675 /// OptionalVTableFuncs 8676 /// := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')' 8677 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')' 8678 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) { 8679 assert(Lex.getKind() == lltok::kw_vTableFuncs); 8680 Lex.Lex(); 8681 8682 if (parseToken(lltok::colon, "expected ':' in vTableFuncs") | 8683 parseToken(lltok::lparen, "expected '(' in vTableFuncs")) 8684 return true; 8685 8686 IdToIndexMapType IdToIndexMap; 8687 // parse each virtual function pair 8688 do { 8689 ValueInfo VI; 8690 if (parseToken(lltok::lparen, "expected '(' in vTableFunc") || 8691 parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") || 8692 parseToken(lltok::colon, "expected ':'")) 8693 return true; 8694 8695 LocTy Loc = Lex.getLoc(); 8696 unsigned GVId; 8697 if (parseGVReference(VI, GVId)) 8698 return true; 8699 8700 uint64_t Offset; 8701 if (parseToken(lltok::comma, "expected comma") || 8702 parseToken(lltok::kw_offset, "expected offset") || 8703 parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset)) 8704 return true; 8705 8706 // Keep track of the VTableFuncs array index needing a forward reference. 8707 // We will save the location of the ValueInfo needing an update, but 8708 // can only do so once the std::vector is finalized. 8709 if (VI == EmptyVI) 8710 IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc)); 8711 VTableFuncs.push_back({VI, Offset}); 8712 8713 if (parseToken(lltok::rparen, "expected ')' in vTableFunc")) 8714 return true; 8715 } while (EatIfPresent(lltok::comma)); 8716 8717 // Now that the VTableFuncs vector is finalized, it is safe to save the 8718 // locations of any forward GV references that need updating later. 8719 for (auto I : IdToIndexMap) { 8720 auto &Infos = ForwardRefValueInfos[I.first]; 8721 for (auto P : I.second) { 8722 assert(VTableFuncs[P.first].FuncVI == EmptyVI && 8723 "Forward referenced ValueInfo expected to be empty"); 8724 Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second); 8725 } 8726 } 8727 8728 if (parseToken(lltok::rparen, "expected ')' in vTableFuncs")) 8729 return true; 8730 8731 return false; 8732 } 8733 8734 /// ParamNo := 'param' ':' UInt64 8735 bool LLParser::parseParamNo(uint64_t &ParamNo) { 8736 if (parseToken(lltok::kw_param, "expected 'param' here") || 8737 parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo)) 8738 return true; 8739 return false; 8740 } 8741 8742 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']' 8743 bool LLParser::parseParamAccessOffset(ConstantRange &Range) { 8744 APSInt Lower; 8745 APSInt Upper; 8746 auto ParseAPSInt = [&](APSInt &Val) { 8747 if (Lex.getKind() != lltok::APSInt) 8748 return tokError("expected integer"); 8749 Val = Lex.getAPSIntVal(); 8750 Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 8751 Val.setIsSigned(true); 8752 Lex.Lex(); 8753 return false; 8754 }; 8755 if (parseToken(lltok::kw_offset, "expected 'offset' here") || 8756 parseToken(lltok::colon, "expected ':' here") || 8757 parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) || 8758 parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) || 8759 parseToken(lltok::rsquare, "expected ']' here")) 8760 return true; 8761 8762 ++Upper; 8763 Range = 8764 (Lower == Upper && !Lower.isMaxValue()) 8765 ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth) 8766 : ConstantRange(Lower, Upper); 8767 8768 return false; 8769 } 8770 8771 /// ParamAccessCall 8772 /// := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')' 8773 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call, 8774 IdLocListType &IdLocList) { 8775 if (parseToken(lltok::lparen, "expected '(' here") || 8776 parseToken(lltok::kw_callee, "expected 'callee' here") || 8777 parseToken(lltok::colon, "expected ':' here")) 8778 return true; 8779 8780 unsigned GVId; 8781 ValueInfo VI; 8782 LocTy Loc = Lex.getLoc(); 8783 if (parseGVReference(VI, GVId)) 8784 return true; 8785 8786 Call.Callee = VI; 8787 IdLocList.emplace_back(GVId, Loc); 8788 8789 if (parseToken(lltok::comma, "expected ',' here") || 8790 parseParamNo(Call.ParamNo) || 8791 parseToken(lltok::comma, "expected ',' here") || 8792 parseParamAccessOffset(Call.Offsets)) 8793 return true; 8794 8795 if (parseToken(lltok::rparen, "expected ')' here")) 8796 return true; 8797 8798 return false; 8799 } 8800 8801 /// ParamAccess 8802 /// := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')' 8803 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')' 8804 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param, 8805 IdLocListType &IdLocList) { 8806 if (parseToken(lltok::lparen, "expected '(' here") || 8807 parseParamNo(Param.ParamNo) || 8808 parseToken(lltok::comma, "expected ',' here") || 8809 parseParamAccessOffset(Param.Use)) 8810 return true; 8811 8812 if (EatIfPresent(lltok::comma)) { 8813 if (parseToken(lltok::kw_calls, "expected 'calls' here") || 8814 parseToken(lltok::colon, "expected ':' here") || 8815 parseToken(lltok::lparen, "expected '(' here")) 8816 return true; 8817 do { 8818 FunctionSummary::ParamAccess::Call Call; 8819 if (parseParamAccessCall(Call, IdLocList)) 8820 return true; 8821 Param.Calls.push_back(Call); 8822 } while (EatIfPresent(lltok::comma)); 8823 8824 if (parseToken(lltok::rparen, "expected ')' here")) 8825 return true; 8826 } 8827 8828 if (parseToken(lltok::rparen, "expected ')' here")) 8829 return true; 8830 8831 return false; 8832 } 8833 8834 /// OptionalParamAccesses 8835 /// := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')' 8836 bool LLParser::parseOptionalParamAccesses( 8837 std::vector<FunctionSummary::ParamAccess> &Params) { 8838 assert(Lex.getKind() == lltok::kw_params); 8839 Lex.Lex(); 8840 8841 if (parseToken(lltok::colon, "expected ':' here") || 8842 parseToken(lltok::lparen, "expected '(' here")) 8843 return true; 8844 8845 IdLocListType VContexts; 8846 size_t CallsNum = 0; 8847 do { 8848 FunctionSummary::ParamAccess ParamAccess; 8849 if (parseParamAccess(ParamAccess, VContexts)) 8850 return true; 8851 CallsNum += ParamAccess.Calls.size(); 8852 assert(VContexts.size() == CallsNum); 8853 (void)CallsNum; 8854 Params.emplace_back(std::move(ParamAccess)); 8855 } while (EatIfPresent(lltok::comma)); 8856 8857 if (parseToken(lltok::rparen, "expected ')' here")) 8858 return true; 8859 8860 // Now that the Params is finalized, it is safe to save the locations 8861 // of any forward GV references that need updating later. 8862 IdLocListType::const_iterator ItContext = VContexts.begin(); 8863 for (auto &PA : Params) { 8864 for (auto &C : PA.Calls) { 8865 if (C.Callee.getRef() == FwdVIRef) 8866 ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee, 8867 ItContext->second); 8868 ++ItContext; 8869 } 8870 } 8871 assert(ItContext == VContexts.end()); 8872 8873 return false; 8874 } 8875 8876 /// OptionalRefs 8877 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')' 8878 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) { 8879 assert(Lex.getKind() == lltok::kw_refs); 8880 Lex.Lex(); 8881 8882 if (parseToken(lltok::colon, "expected ':' in refs") || 8883 parseToken(lltok::lparen, "expected '(' in refs")) 8884 return true; 8885 8886 struct ValueContext { 8887 ValueInfo VI; 8888 unsigned GVId; 8889 LocTy Loc; 8890 }; 8891 std::vector<ValueContext> VContexts; 8892 // parse each ref edge 8893 do { 8894 ValueContext VC; 8895 VC.Loc = Lex.getLoc(); 8896 if (parseGVReference(VC.VI, VC.GVId)) 8897 return true; 8898 VContexts.push_back(VC); 8899 } while (EatIfPresent(lltok::comma)); 8900 8901 // Sort value contexts so that ones with writeonly 8902 // and readonly ValueInfo are at the end of VContexts vector. 8903 // See FunctionSummary::specialRefCounts() 8904 llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) { 8905 return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier(); 8906 }); 8907 8908 IdToIndexMapType IdToIndexMap; 8909 for (auto &VC : VContexts) { 8910 // Keep track of the Refs array index needing a forward reference. 8911 // We will save the location of the ValueInfo needing an update, but 8912 // can only do so once the std::vector is finalized. 8913 if (VC.VI.getRef() == FwdVIRef) 8914 IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc)); 8915 Refs.push_back(VC.VI); 8916 } 8917 8918 // Now that the Refs vector is finalized, it is safe to save the locations 8919 // of any forward GV references that need updating later. 8920 for (auto I : IdToIndexMap) { 8921 auto &Infos = ForwardRefValueInfos[I.first]; 8922 for (auto P : I.second) { 8923 assert(Refs[P.first].getRef() == FwdVIRef && 8924 "Forward referenced ValueInfo expected to be empty"); 8925 Infos.emplace_back(&Refs[P.first], P.second); 8926 } 8927 } 8928 8929 if (parseToken(lltok::rparen, "expected ')' in refs")) 8930 return true; 8931 8932 return false; 8933 } 8934 8935 /// OptionalTypeIdInfo 8936 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]? 8937 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]? 8938 /// [',' TypeCheckedLoadConstVCalls]? ')' 8939 bool LLParser::parseOptionalTypeIdInfo( 8940 FunctionSummary::TypeIdInfo &TypeIdInfo) { 8941 assert(Lex.getKind() == lltok::kw_typeIdInfo); 8942 Lex.Lex(); 8943 8944 if (parseToken(lltok::colon, "expected ':' here") || 8945 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 8946 return true; 8947 8948 do { 8949 switch (Lex.getKind()) { 8950 case lltok::kw_typeTests: 8951 if (parseTypeTests(TypeIdInfo.TypeTests)) 8952 return true; 8953 break; 8954 case lltok::kw_typeTestAssumeVCalls: 8955 if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls, 8956 TypeIdInfo.TypeTestAssumeVCalls)) 8957 return true; 8958 break; 8959 case lltok::kw_typeCheckedLoadVCalls: 8960 if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls, 8961 TypeIdInfo.TypeCheckedLoadVCalls)) 8962 return true; 8963 break; 8964 case lltok::kw_typeTestAssumeConstVCalls: 8965 if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls, 8966 TypeIdInfo.TypeTestAssumeConstVCalls)) 8967 return true; 8968 break; 8969 case lltok::kw_typeCheckedLoadConstVCalls: 8970 if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls, 8971 TypeIdInfo.TypeCheckedLoadConstVCalls)) 8972 return true; 8973 break; 8974 default: 8975 return error(Lex.getLoc(), "invalid typeIdInfo list type"); 8976 } 8977 } while (EatIfPresent(lltok::comma)); 8978 8979 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 8980 return true; 8981 8982 return false; 8983 } 8984 8985 /// TypeTests 8986 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64) 8987 /// [',' (SummaryID | UInt64)]* ')' 8988 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) { 8989 assert(Lex.getKind() == lltok::kw_typeTests); 8990 Lex.Lex(); 8991 8992 if (parseToken(lltok::colon, "expected ':' here") || 8993 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 8994 return true; 8995 8996 IdToIndexMapType IdToIndexMap; 8997 do { 8998 GlobalValue::GUID GUID = 0; 8999 if (Lex.getKind() == lltok::SummaryID) { 9000 unsigned ID = Lex.getUIntVal(); 9001 LocTy Loc = Lex.getLoc(); 9002 // Keep track of the TypeTests array index needing a forward reference. 9003 // We will save the location of the GUID needing an update, but 9004 // can only do so once the std::vector is finalized. 9005 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc)); 9006 Lex.Lex(); 9007 } else if (parseUInt64(GUID)) 9008 return true; 9009 TypeTests.push_back(GUID); 9010 } while (EatIfPresent(lltok::comma)); 9011 9012 // Now that the TypeTests vector is finalized, it is safe to save the 9013 // locations of any forward GV references that need updating later. 9014 for (auto I : IdToIndexMap) { 9015 auto &Ids = ForwardRefTypeIds[I.first]; 9016 for (auto P : I.second) { 9017 assert(TypeTests[P.first] == 0 && 9018 "Forward referenced type id GUID expected to be 0"); 9019 Ids.emplace_back(&TypeTests[P.first], P.second); 9020 } 9021 } 9022 9023 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 9024 return true; 9025 9026 return false; 9027 } 9028 9029 /// VFuncIdList 9030 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')' 9031 bool LLParser::parseVFuncIdList( 9032 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) { 9033 assert(Lex.getKind() == Kind); 9034 Lex.Lex(); 9035 9036 if (parseToken(lltok::colon, "expected ':' here") || 9037 parseToken(lltok::lparen, "expected '(' here")) 9038 return true; 9039 9040 IdToIndexMapType IdToIndexMap; 9041 do { 9042 FunctionSummary::VFuncId VFuncId; 9043 if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size())) 9044 return true; 9045 VFuncIdList.push_back(VFuncId); 9046 } while (EatIfPresent(lltok::comma)); 9047 9048 if (parseToken(lltok::rparen, "expected ')' here")) 9049 return true; 9050 9051 // Now that the VFuncIdList vector is finalized, it is safe to save the 9052 // locations of any forward GV references that need updating later. 9053 for (auto I : IdToIndexMap) { 9054 auto &Ids = ForwardRefTypeIds[I.first]; 9055 for (auto P : I.second) { 9056 assert(VFuncIdList[P.first].GUID == 0 && 9057 "Forward referenced type id GUID expected to be 0"); 9058 Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second); 9059 } 9060 } 9061 9062 return false; 9063 } 9064 9065 /// ConstVCallList 9066 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')' 9067 bool LLParser::parseConstVCallList( 9068 lltok::Kind Kind, 9069 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) { 9070 assert(Lex.getKind() == Kind); 9071 Lex.Lex(); 9072 9073 if (parseToken(lltok::colon, "expected ':' here") || 9074 parseToken(lltok::lparen, "expected '(' here")) 9075 return true; 9076 9077 IdToIndexMapType IdToIndexMap; 9078 do { 9079 FunctionSummary::ConstVCall ConstVCall; 9080 if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size())) 9081 return true; 9082 ConstVCallList.push_back(ConstVCall); 9083 } while (EatIfPresent(lltok::comma)); 9084 9085 if (parseToken(lltok::rparen, "expected ')' here")) 9086 return true; 9087 9088 // Now that the ConstVCallList vector is finalized, it is safe to save the 9089 // locations of any forward GV references that need updating later. 9090 for (auto I : IdToIndexMap) { 9091 auto &Ids = ForwardRefTypeIds[I.first]; 9092 for (auto P : I.second) { 9093 assert(ConstVCallList[P.first].VFunc.GUID == 0 && 9094 "Forward referenced type id GUID expected to be 0"); 9095 Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second); 9096 } 9097 } 9098 9099 return false; 9100 } 9101 9102 /// ConstVCall 9103 /// ::= '(' VFuncId ',' Args ')' 9104 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall, 9105 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9106 if (parseToken(lltok::lparen, "expected '(' here") || 9107 parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index)) 9108 return true; 9109 9110 if (EatIfPresent(lltok::comma)) 9111 if (parseArgs(ConstVCall.Args)) 9112 return true; 9113 9114 if (parseToken(lltok::rparen, "expected ')' here")) 9115 return true; 9116 9117 return false; 9118 } 9119 9120 /// VFuncId 9121 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ',' 9122 /// 'offset' ':' UInt64 ')' 9123 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId, 9124 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9125 assert(Lex.getKind() == lltok::kw_vFuncId); 9126 Lex.Lex(); 9127 9128 if (parseToken(lltok::colon, "expected ':' here") || 9129 parseToken(lltok::lparen, "expected '(' here")) 9130 return true; 9131 9132 if (Lex.getKind() == lltok::SummaryID) { 9133 VFuncId.GUID = 0; 9134 unsigned ID = Lex.getUIntVal(); 9135 LocTy Loc = Lex.getLoc(); 9136 // Keep track of the array index needing a forward reference. 9137 // We will save the location of the GUID needing an update, but 9138 // can only do so once the caller's std::vector is finalized. 9139 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc)); 9140 Lex.Lex(); 9141 } else if (parseToken(lltok::kw_guid, "expected 'guid' here") || 9142 parseToken(lltok::colon, "expected ':' here") || 9143 parseUInt64(VFuncId.GUID)) 9144 return true; 9145 9146 if (parseToken(lltok::comma, "expected ',' here") || 9147 parseToken(lltok::kw_offset, "expected 'offset' here") || 9148 parseToken(lltok::colon, "expected ':' here") || 9149 parseUInt64(VFuncId.Offset) || 9150 parseToken(lltok::rparen, "expected ')' here")) 9151 return true; 9152 9153 return false; 9154 } 9155 9156 /// GVFlags 9157 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ',' 9158 /// 'visibility' ':' Flag 'notEligibleToImport' ':' Flag ',' 9159 /// 'live' ':' Flag ',' 'dsoLocal' ':' Flag ',' 9160 /// 'canAutoHide' ':' Flag ',' ')' 9161 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) { 9162 assert(Lex.getKind() == lltok::kw_flags); 9163 Lex.Lex(); 9164 9165 if (parseToken(lltok::colon, "expected ':' here") || 9166 parseToken(lltok::lparen, "expected '(' here")) 9167 return true; 9168 9169 do { 9170 unsigned Flag = 0; 9171 switch (Lex.getKind()) { 9172 case lltok::kw_linkage: 9173 Lex.Lex(); 9174 if (parseToken(lltok::colon, "expected ':'")) 9175 return true; 9176 bool HasLinkage; 9177 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 9178 assert(HasLinkage && "Linkage not optional in summary entry"); 9179 Lex.Lex(); 9180 break; 9181 case lltok::kw_visibility: 9182 Lex.Lex(); 9183 if (parseToken(lltok::colon, "expected ':'")) 9184 return true; 9185 parseOptionalVisibility(Flag); 9186 GVFlags.Visibility = Flag; 9187 break; 9188 case lltok::kw_notEligibleToImport: 9189 Lex.Lex(); 9190 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9191 return true; 9192 GVFlags.NotEligibleToImport = Flag; 9193 break; 9194 case lltok::kw_live: 9195 Lex.Lex(); 9196 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9197 return true; 9198 GVFlags.Live = Flag; 9199 break; 9200 case lltok::kw_dsoLocal: 9201 Lex.Lex(); 9202 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9203 return true; 9204 GVFlags.DSOLocal = Flag; 9205 break; 9206 case lltok::kw_canAutoHide: 9207 Lex.Lex(); 9208 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9209 return true; 9210 GVFlags.CanAutoHide = Flag; 9211 break; 9212 default: 9213 return error(Lex.getLoc(), "expected gv flag type"); 9214 } 9215 } while (EatIfPresent(lltok::comma)); 9216 9217 if (parseToken(lltok::rparen, "expected ')' here")) 9218 return true; 9219 9220 return false; 9221 } 9222 9223 /// GVarFlags 9224 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag 9225 /// ',' 'writeonly' ':' Flag 9226 /// ',' 'constant' ':' Flag ')' 9227 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) { 9228 assert(Lex.getKind() == lltok::kw_varFlags); 9229 Lex.Lex(); 9230 9231 if (parseToken(lltok::colon, "expected ':' here") || 9232 parseToken(lltok::lparen, "expected '(' here")) 9233 return true; 9234 9235 auto ParseRest = [this](unsigned int &Val) { 9236 Lex.Lex(); 9237 if (parseToken(lltok::colon, "expected ':'")) 9238 return true; 9239 return parseFlag(Val); 9240 }; 9241 9242 do { 9243 unsigned Flag = 0; 9244 switch (Lex.getKind()) { 9245 case lltok::kw_readonly: 9246 if (ParseRest(Flag)) 9247 return true; 9248 GVarFlags.MaybeReadOnly = Flag; 9249 break; 9250 case lltok::kw_writeonly: 9251 if (ParseRest(Flag)) 9252 return true; 9253 GVarFlags.MaybeWriteOnly = Flag; 9254 break; 9255 case lltok::kw_constant: 9256 if (ParseRest(Flag)) 9257 return true; 9258 GVarFlags.Constant = Flag; 9259 break; 9260 case lltok::kw_vcall_visibility: 9261 if (ParseRest(Flag)) 9262 return true; 9263 GVarFlags.VCallVisibility = Flag; 9264 break; 9265 default: 9266 return error(Lex.getLoc(), "expected gvar flag type"); 9267 } 9268 } while (EatIfPresent(lltok::comma)); 9269 return parseToken(lltok::rparen, "expected ')' here"); 9270 } 9271 9272 /// ModuleReference 9273 /// ::= 'module' ':' UInt 9274 bool LLParser::parseModuleReference(StringRef &ModulePath) { 9275 // parse module id. 9276 if (parseToken(lltok::kw_module, "expected 'module' here") || 9277 parseToken(lltok::colon, "expected ':' here") || 9278 parseToken(lltok::SummaryID, "expected module ID")) 9279 return true; 9280 9281 unsigned ModuleID = Lex.getUIntVal(); 9282 auto I = ModuleIdMap.find(ModuleID); 9283 // We should have already parsed all module IDs 9284 assert(I != ModuleIdMap.end()); 9285 ModulePath = I->second; 9286 return false; 9287 } 9288 9289 /// GVReference 9290 /// ::= SummaryID 9291 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) { 9292 bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly); 9293 if (!ReadOnly) 9294 WriteOnly = EatIfPresent(lltok::kw_writeonly); 9295 if (parseToken(lltok::SummaryID, "expected GV ID")) 9296 return true; 9297 9298 GVId = Lex.getUIntVal(); 9299 // Check if we already have a VI for this GV 9300 if (GVId < NumberedValueInfos.size()) { 9301 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef); 9302 VI = NumberedValueInfos[GVId]; 9303 } else 9304 // We will create a forward reference to the stored location. 9305 VI = ValueInfo(false, FwdVIRef); 9306 9307 if (ReadOnly) 9308 VI.setReadOnly(); 9309 if (WriteOnly) 9310 VI.setWriteOnly(); 9311 return false; 9312 } 9313