1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the parser class for .ll files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "llvm/AsmParser/LLParser.h" 14 #include "llvm/ADT/APSInt.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/AsmParser/LLToken.h" 20 #include "llvm/AsmParser/SlotMapping.h" 21 #include "llvm/BinaryFormat/Dwarf.h" 22 #include "llvm/IR/Argument.h" 23 #include "llvm/IR/AutoUpgrade.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallingConv.h" 26 #include "llvm/IR/Comdat.h" 27 #include "llvm/IR/ConstantRange.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DebugInfoMetadata.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/GlobalIFunc.h" 33 #include "llvm/IR/GlobalObject.h" 34 #include "llvm/IR/InlineAsm.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/LLVMContext.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/Operator.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/IR/ValueSymbolTable.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/MathExtras.h" 46 #include "llvm/Support/SaveAndRestore.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <cstring> 51 #include <vector> 52 53 using namespace llvm; 54 55 static std::string getTypeString(Type *T) { 56 std::string Result; 57 raw_string_ostream Tmp(Result); 58 Tmp << *T; 59 return Tmp.str(); 60 } 61 62 static void setContextOpaquePointers(LLLexer &L, LLVMContext &C) { 63 while (true) { 64 lltok::Kind K = L.Lex(); 65 // LLLexer will set the opaque pointers option in LLVMContext if it sees an 66 // explicit "ptr". 67 if (K == lltok::star || K == lltok::Error || K == lltok::Eof || 68 isa_and_nonnull<PointerType>(L.getTyVal())) { 69 if (K == lltok::star) 70 C.setOpaquePointers(false); 71 return; 72 } 73 } 74 } 75 76 /// Run: module ::= toplevelentity* 77 bool LLParser::Run(bool UpgradeDebugInfo, 78 DataLayoutCallbackTy DataLayoutCallback) { 79 // If we haven't decided on whether or not we're using opaque pointers, do a 80 // quick lex over the tokens to see if we explicitly construct any typed or 81 // opaque pointer types. 82 // Don't bail out on an error so we do the same work in the parsing below 83 // regardless of if --opaque-pointers is set. 84 if (!Context.hasSetOpaquePointersValue()) 85 setContextOpaquePointers(OPLex, Context); 86 87 // Prime the lexer. 88 Lex.Lex(); 89 90 if (Context.shouldDiscardValueNames()) 91 return error( 92 Lex.getLoc(), 93 "Can't read textual IR with a Context that discards named Values"); 94 95 if (M) { 96 if (parseTargetDefinitions()) 97 return true; 98 99 if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple())) 100 M->setDataLayout(*LayoutOverride); 101 } 102 103 return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) || 104 validateEndOfIndex(); 105 } 106 107 bool LLParser::parseStandaloneConstantValue(Constant *&C, 108 const SlotMapping *Slots) { 109 restoreParsingState(Slots); 110 Lex.Lex(); 111 112 Type *Ty = nullptr; 113 if (parseType(Ty) || parseConstantValue(Ty, C)) 114 return true; 115 if (Lex.getKind() != lltok::Eof) 116 return error(Lex.getLoc(), "expected end of string"); 117 return false; 118 } 119 120 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 121 const SlotMapping *Slots) { 122 restoreParsingState(Slots); 123 Lex.Lex(); 124 125 Read = 0; 126 SMLoc Start = Lex.getLoc(); 127 Ty = nullptr; 128 if (parseType(Ty)) 129 return true; 130 SMLoc End = Lex.getLoc(); 131 Read = End.getPointer() - Start.getPointer(); 132 133 return false; 134 } 135 136 void LLParser::restoreParsingState(const SlotMapping *Slots) { 137 if (!Slots) 138 return; 139 NumberedVals = Slots->GlobalValues; 140 NumberedMetadata = Slots->MetadataNodes; 141 for (const auto &I : Slots->NamedTypes) 142 NamedTypes.insert( 143 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 144 for (const auto &I : Slots->Types) 145 NumberedTypes.insert( 146 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 147 } 148 149 /// validateEndOfModule - Do final validity and basic correctness checks at the 150 /// end of the module. 151 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) { 152 if (!M) 153 return false; 154 // Handle any function attribute group forward references. 155 for (const auto &RAG : ForwardRefAttrGroups) { 156 Value *V = RAG.first; 157 const std::vector<unsigned> &Attrs = RAG.second; 158 AttrBuilder B(Context); 159 160 for (const auto &Attr : Attrs) { 161 auto R = NumberedAttrBuilders.find(Attr); 162 if (R != NumberedAttrBuilders.end()) 163 B.merge(R->second); 164 } 165 166 if (Function *Fn = dyn_cast<Function>(V)) { 167 AttributeList AS = Fn->getAttributes(); 168 AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs()); 169 AS = AS.removeFnAttributes(Context); 170 171 FnAttrs.merge(B); 172 173 // If the alignment was parsed as an attribute, move to the alignment 174 // field. 175 if (FnAttrs.hasAlignmentAttr()) { 176 Fn->setAlignment(FnAttrs.getAlignment()); 177 FnAttrs.removeAttribute(Attribute::Alignment); 178 } 179 180 AS = AS.addFnAttributes(Context, FnAttrs); 181 Fn->setAttributes(AS); 182 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 183 AttributeList AS = CI->getAttributes(); 184 AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs()); 185 AS = AS.removeFnAttributes(Context); 186 FnAttrs.merge(B); 187 AS = AS.addFnAttributes(Context, FnAttrs); 188 CI->setAttributes(AS); 189 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 190 AttributeList AS = II->getAttributes(); 191 AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs()); 192 AS = AS.removeFnAttributes(Context); 193 FnAttrs.merge(B); 194 AS = AS.addFnAttributes(Context, FnAttrs); 195 II->setAttributes(AS); 196 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) { 197 AttributeList AS = CBI->getAttributes(); 198 AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs()); 199 AS = AS.removeFnAttributes(Context); 200 FnAttrs.merge(B); 201 AS = AS.addFnAttributes(Context, FnAttrs); 202 CBI->setAttributes(AS); 203 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 204 AttrBuilder Attrs(M->getContext(), GV->getAttributes()); 205 Attrs.merge(B); 206 GV->setAttributes(AttributeSet::get(Context,Attrs)); 207 } else { 208 llvm_unreachable("invalid object with forward attribute group reference"); 209 } 210 } 211 212 // If there are entries in ForwardRefBlockAddresses at this point, the 213 // function was never defined. 214 if (!ForwardRefBlockAddresses.empty()) 215 return error(ForwardRefBlockAddresses.begin()->first.Loc, 216 "expected function name in blockaddress"); 217 218 for (const auto &NT : NumberedTypes) 219 if (NT.second.second.isValid()) 220 return error(NT.second.second, 221 "use of undefined type '%" + Twine(NT.first) + "'"); 222 223 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 224 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 225 if (I->second.second.isValid()) 226 return error(I->second.second, 227 "use of undefined type named '" + I->getKey() + "'"); 228 229 if (!ForwardRefComdats.empty()) 230 return error(ForwardRefComdats.begin()->second, 231 "use of undefined comdat '$" + 232 ForwardRefComdats.begin()->first + "'"); 233 234 if (!ForwardRefVals.empty()) 235 return error(ForwardRefVals.begin()->second.second, 236 "use of undefined value '@" + ForwardRefVals.begin()->first + 237 "'"); 238 239 if (!ForwardRefValIDs.empty()) 240 return error(ForwardRefValIDs.begin()->second.second, 241 "use of undefined value '@" + 242 Twine(ForwardRefValIDs.begin()->first) + "'"); 243 244 if (!ForwardRefMDNodes.empty()) 245 return error(ForwardRefMDNodes.begin()->second.second, 246 "use of undefined metadata '!" + 247 Twine(ForwardRefMDNodes.begin()->first) + "'"); 248 249 // Resolve metadata cycles. 250 for (auto &N : NumberedMetadata) { 251 if (N.second && !N.second->isResolved()) 252 N.second->resolveCycles(); 253 } 254 255 for (auto *Inst : InstsWithTBAATag) { 256 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 257 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 258 auto *UpgradedMD = UpgradeTBAANode(*MD); 259 if (MD != UpgradedMD) 260 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 261 } 262 263 // Look for intrinsic functions and CallInst that need to be upgraded. We use 264 // make_early_inc_range here because we may remove some functions. 265 for (Function &F : llvm::make_early_inc_range(*M)) 266 UpgradeCallsToIntrinsic(&F); 267 268 // Some types could be renamed during loading if several modules are 269 // loaded in the same LLVMContext (LTO scenario). In this case we should 270 // remangle intrinsics names as well. 271 for (Function &F : llvm::make_early_inc_range(*M)) { 272 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) { 273 F.replaceAllUsesWith(*Remangled); 274 F.eraseFromParent(); 275 } 276 } 277 278 if (UpgradeDebugInfo) 279 llvm::UpgradeDebugInfo(*M); 280 281 UpgradeModuleFlags(*M); 282 UpgradeSectionAttributes(*M); 283 284 if (!Slots) 285 return false; 286 // Initialize the slot mapping. 287 // Because by this point we've parsed and validated everything, we can "steal" 288 // the mapping from LLParser as it doesn't need it anymore. 289 Slots->GlobalValues = std::move(NumberedVals); 290 Slots->MetadataNodes = std::move(NumberedMetadata); 291 for (const auto &I : NamedTypes) 292 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 293 for (const auto &I : NumberedTypes) 294 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 295 296 return false; 297 } 298 299 /// Do final validity and basic correctness checks at the end of the index. 300 bool LLParser::validateEndOfIndex() { 301 if (!Index) 302 return false; 303 304 if (!ForwardRefValueInfos.empty()) 305 return error(ForwardRefValueInfos.begin()->second.front().second, 306 "use of undefined summary '^" + 307 Twine(ForwardRefValueInfos.begin()->first) + "'"); 308 309 if (!ForwardRefAliasees.empty()) 310 return error(ForwardRefAliasees.begin()->second.front().second, 311 "use of undefined summary '^" + 312 Twine(ForwardRefAliasees.begin()->first) + "'"); 313 314 if (!ForwardRefTypeIds.empty()) 315 return error(ForwardRefTypeIds.begin()->second.front().second, 316 "use of undefined type id summary '^" + 317 Twine(ForwardRefTypeIds.begin()->first) + "'"); 318 319 return false; 320 } 321 322 //===----------------------------------------------------------------------===// 323 // Top-Level Entities 324 //===----------------------------------------------------------------------===// 325 326 bool LLParser::parseTargetDefinitions() { 327 while (true) { 328 switch (Lex.getKind()) { 329 case lltok::kw_target: 330 if (parseTargetDefinition()) 331 return true; 332 break; 333 case lltok::kw_source_filename: 334 if (parseSourceFileName()) 335 return true; 336 break; 337 default: 338 return false; 339 } 340 } 341 } 342 343 bool LLParser::parseTopLevelEntities() { 344 // If there is no Module, then parse just the summary index entries. 345 if (!M) { 346 while (true) { 347 switch (Lex.getKind()) { 348 case lltok::Eof: 349 return false; 350 case lltok::SummaryID: 351 if (parseSummaryEntry()) 352 return true; 353 break; 354 case lltok::kw_source_filename: 355 if (parseSourceFileName()) 356 return true; 357 break; 358 default: 359 // Skip everything else 360 Lex.Lex(); 361 } 362 } 363 } 364 while (true) { 365 switch (Lex.getKind()) { 366 default: 367 return tokError("expected top-level entity"); 368 case lltok::Eof: return false; 369 case lltok::kw_declare: 370 if (parseDeclare()) 371 return true; 372 break; 373 case lltok::kw_define: 374 if (parseDefine()) 375 return true; 376 break; 377 case lltok::kw_module: 378 if (parseModuleAsm()) 379 return true; 380 break; 381 case lltok::LocalVarID: 382 if (parseUnnamedType()) 383 return true; 384 break; 385 case lltok::LocalVar: 386 if (parseNamedType()) 387 return true; 388 break; 389 case lltok::GlobalID: 390 if (parseUnnamedGlobal()) 391 return true; 392 break; 393 case lltok::GlobalVar: 394 if (parseNamedGlobal()) 395 return true; 396 break; 397 case lltok::ComdatVar: if (parseComdat()) return true; break; 398 case lltok::exclaim: 399 if (parseStandaloneMetadata()) 400 return true; 401 break; 402 case lltok::SummaryID: 403 if (parseSummaryEntry()) 404 return true; 405 break; 406 case lltok::MetadataVar: 407 if (parseNamedMetadata()) 408 return true; 409 break; 410 case lltok::kw_attributes: 411 if (parseUnnamedAttrGrp()) 412 return true; 413 break; 414 case lltok::kw_uselistorder: 415 if (parseUseListOrder()) 416 return true; 417 break; 418 case lltok::kw_uselistorder_bb: 419 if (parseUseListOrderBB()) 420 return true; 421 break; 422 } 423 } 424 } 425 426 /// toplevelentity 427 /// ::= 'module' 'asm' STRINGCONSTANT 428 bool LLParser::parseModuleAsm() { 429 assert(Lex.getKind() == lltok::kw_module); 430 Lex.Lex(); 431 432 std::string AsmStr; 433 if (parseToken(lltok::kw_asm, "expected 'module asm'") || 434 parseStringConstant(AsmStr)) 435 return true; 436 437 M->appendModuleInlineAsm(AsmStr); 438 return false; 439 } 440 441 /// toplevelentity 442 /// ::= 'target' 'triple' '=' STRINGCONSTANT 443 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 444 bool LLParser::parseTargetDefinition() { 445 assert(Lex.getKind() == lltok::kw_target); 446 std::string Str; 447 switch (Lex.Lex()) { 448 default: 449 return tokError("unknown target property"); 450 case lltok::kw_triple: 451 Lex.Lex(); 452 if (parseToken(lltok::equal, "expected '=' after target triple") || 453 parseStringConstant(Str)) 454 return true; 455 M->setTargetTriple(Str); 456 return false; 457 case lltok::kw_datalayout: 458 Lex.Lex(); 459 if (parseToken(lltok::equal, "expected '=' after target datalayout") || 460 parseStringConstant(Str)) 461 return true; 462 M->setDataLayout(Str); 463 return false; 464 } 465 } 466 467 /// toplevelentity 468 /// ::= 'source_filename' '=' STRINGCONSTANT 469 bool LLParser::parseSourceFileName() { 470 assert(Lex.getKind() == lltok::kw_source_filename); 471 Lex.Lex(); 472 if (parseToken(lltok::equal, "expected '=' after source_filename") || 473 parseStringConstant(SourceFileName)) 474 return true; 475 if (M) 476 M->setSourceFileName(SourceFileName); 477 return false; 478 } 479 480 /// parseUnnamedType: 481 /// ::= LocalVarID '=' 'type' type 482 bool LLParser::parseUnnamedType() { 483 LocTy TypeLoc = Lex.getLoc(); 484 unsigned TypeID = Lex.getUIntVal(); 485 Lex.Lex(); // eat LocalVarID; 486 487 if (parseToken(lltok::equal, "expected '=' after name") || 488 parseToken(lltok::kw_type, "expected 'type' after '='")) 489 return true; 490 491 Type *Result = nullptr; 492 if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result)) 493 return true; 494 495 if (!isa<StructType>(Result)) { 496 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 497 if (Entry.first) 498 return error(TypeLoc, "non-struct types may not be recursive"); 499 Entry.first = Result; 500 Entry.second = SMLoc(); 501 } 502 503 return false; 504 } 505 506 /// toplevelentity 507 /// ::= LocalVar '=' 'type' type 508 bool LLParser::parseNamedType() { 509 std::string Name = Lex.getStrVal(); 510 LocTy NameLoc = Lex.getLoc(); 511 Lex.Lex(); // eat LocalVar. 512 513 if (parseToken(lltok::equal, "expected '=' after name") || 514 parseToken(lltok::kw_type, "expected 'type' after name")) 515 return true; 516 517 Type *Result = nullptr; 518 if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result)) 519 return true; 520 521 if (!isa<StructType>(Result)) { 522 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 523 if (Entry.first) 524 return error(NameLoc, "non-struct types may not be recursive"); 525 Entry.first = Result; 526 Entry.second = SMLoc(); 527 } 528 529 return false; 530 } 531 532 /// toplevelentity 533 /// ::= 'declare' FunctionHeader 534 bool LLParser::parseDeclare() { 535 assert(Lex.getKind() == lltok::kw_declare); 536 Lex.Lex(); 537 538 std::vector<std::pair<unsigned, MDNode *>> MDs; 539 while (Lex.getKind() == lltok::MetadataVar) { 540 unsigned MDK; 541 MDNode *N; 542 if (parseMetadataAttachment(MDK, N)) 543 return true; 544 MDs.push_back({MDK, N}); 545 } 546 547 Function *F; 548 if (parseFunctionHeader(F, false)) 549 return true; 550 for (auto &MD : MDs) 551 F->addMetadata(MD.first, *MD.second); 552 return false; 553 } 554 555 /// toplevelentity 556 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 557 bool LLParser::parseDefine() { 558 assert(Lex.getKind() == lltok::kw_define); 559 Lex.Lex(); 560 561 Function *F; 562 return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) || 563 parseFunctionBody(*F); 564 } 565 566 /// parseGlobalType 567 /// ::= 'constant' 568 /// ::= 'global' 569 bool LLParser::parseGlobalType(bool &IsConstant) { 570 if (Lex.getKind() == lltok::kw_constant) 571 IsConstant = true; 572 else if (Lex.getKind() == lltok::kw_global) 573 IsConstant = false; 574 else { 575 IsConstant = false; 576 return tokError("expected 'global' or 'constant'"); 577 } 578 Lex.Lex(); 579 return false; 580 } 581 582 bool LLParser::parseOptionalUnnamedAddr( 583 GlobalVariable::UnnamedAddr &UnnamedAddr) { 584 if (EatIfPresent(lltok::kw_unnamed_addr)) 585 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 586 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 587 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 588 else 589 UnnamedAddr = GlobalValue::UnnamedAddr::None; 590 return false; 591 } 592 593 /// parseUnnamedGlobal: 594 /// OptionalVisibility (ALIAS | IFUNC) ... 595 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 596 /// OptionalDLLStorageClass 597 /// ... -> global variable 598 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 599 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier 600 /// OptionalVisibility 601 /// OptionalDLLStorageClass 602 /// ... -> global variable 603 bool LLParser::parseUnnamedGlobal() { 604 unsigned VarID = NumberedVals.size(); 605 std::string Name; 606 LocTy NameLoc = Lex.getLoc(); 607 608 // Handle the GlobalID form. 609 if (Lex.getKind() == lltok::GlobalID) { 610 if (Lex.getUIntVal() != VarID) 611 return error(Lex.getLoc(), 612 "variable expected to be numbered '%" + Twine(VarID) + "'"); 613 Lex.Lex(); // eat GlobalID; 614 615 if (parseToken(lltok::equal, "expected '=' after name")) 616 return true; 617 } 618 619 bool HasLinkage; 620 unsigned Linkage, Visibility, DLLStorageClass; 621 bool DSOLocal; 622 GlobalVariable::ThreadLocalMode TLM; 623 GlobalVariable::UnnamedAddr UnnamedAddr; 624 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 625 DSOLocal) || 626 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 627 return true; 628 629 switch (Lex.getKind()) { 630 default: 631 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 632 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 633 case lltok::kw_alias: 634 case lltok::kw_ifunc: 635 return parseAliasOrIFunc(Name, NameLoc, Linkage, Visibility, 636 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 637 } 638 } 639 640 /// parseNamedGlobal: 641 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 642 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 643 /// OptionalVisibility OptionalDLLStorageClass 644 /// ... -> global variable 645 bool LLParser::parseNamedGlobal() { 646 assert(Lex.getKind() == lltok::GlobalVar); 647 LocTy NameLoc = Lex.getLoc(); 648 std::string Name = Lex.getStrVal(); 649 Lex.Lex(); 650 651 bool HasLinkage; 652 unsigned Linkage, Visibility, DLLStorageClass; 653 bool DSOLocal; 654 GlobalVariable::ThreadLocalMode TLM; 655 GlobalVariable::UnnamedAddr UnnamedAddr; 656 if (parseToken(lltok::equal, "expected '=' in global variable") || 657 parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 658 DSOLocal) || 659 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 660 return true; 661 662 switch (Lex.getKind()) { 663 default: 664 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 665 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 666 case lltok::kw_alias: 667 case lltok::kw_ifunc: 668 return parseAliasOrIFunc(Name, NameLoc, Linkage, Visibility, 669 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 670 } 671 } 672 673 bool LLParser::parseComdat() { 674 assert(Lex.getKind() == lltok::ComdatVar); 675 std::string Name = Lex.getStrVal(); 676 LocTy NameLoc = Lex.getLoc(); 677 Lex.Lex(); 678 679 if (parseToken(lltok::equal, "expected '=' here")) 680 return true; 681 682 if (parseToken(lltok::kw_comdat, "expected comdat keyword")) 683 return tokError("expected comdat type"); 684 685 Comdat::SelectionKind SK; 686 switch (Lex.getKind()) { 687 default: 688 return tokError("unknown selection kind"); 689 case lltok::kw_any: 690 SK = Comdat::Any; 691 break; 692 case lltok::kw_exactmatch: 693 SK = Comdat::ExactMatch; 694 break; 695 case lltok::kw_largest: 696 SK = Comdat::Largest; 697 break; 698 case lltok::kw_nodeduplicate: 699 SK = Comdat::NoDeduplicate; 700 break; 701 case lltok::kw_samesize: 702 SK = Comdat::SameSize; 703 break; 704 } 705 Lex.Lex(); 706 707 // See if the comdat was forward referenced, if so, use the comdat. 708 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 709 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 710 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 711 return error(NameLoc, "redefinition of comdat '$" + Name + "'"); 712 713 Comdat *C; 714 if (I != ComdatSymTab.end()) 715 C = &I->second; 716 else 717 C = M->getOrInsertComdat(Name); 718 C->setSelectionKind(SK); 719 720 return false; 721 } 722 723 // MDString: 724 // ::= '!' STRINGCONSTANT 725 bool LLParser::parseMDString(MDString *&Result) { 726 std::string Str; 727 if (parseStringConstant(Str)) 728 return true; 729 Result = MDString::get(Context, Str); 730 return false; 731 } 732 733 // MDNode: 734 // ::= '!' MDNodeNumber 735 bool LLParser::parseMDNodeID(MDNode *&Result) { 736 // !{ ..., !42, ... } 737 LocTy IDLoc = Lex.getLoc(); 738 unsigned MID = 0; 739 if (parseUInt32(MID)) 740 return true; 741 742 // If not a forward reference, just return it now. 743 if (NumberedMetadata.count(MID)) { 744 Result = NumberedMetadata[MID]; 745 return false; 746 } 747 748 // Otherwise, create MDNode forward reference. 749 auto &FwdRef = ForwardRefMDNodes[MID]; 750 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 751 752 Result = FwdRef.first.get(); 753 NumberedMetadata[MID].reset(Result); 754 return false; 755 } 756 757 /// parseNamedMetadata: 758 /// !foo = !{ !1, !2 } 759 bool LLParser::parseNamedMetadata() { 760 assert(Lex.getKind() == lltok::MetadataVar); 761 std::string Name = Lex.getStrVal(); 762 Lex.Lex(); 763 764 if (parseToken(lltok::equal, "expected '=' here") || 765 parseToken(lltok::exclaim, "Expected '!' here") || 766 parseToken(lltok::lbrace, "Expected '{' here")) 767 return true; 768 769 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 770 if (Lex.getKind() != lltok::rbrace) 771 do { 772 MDNode *N = nullptr; 773 // parse DIExpressions inline as a special case. They are still MDNodes, 774 // so they can still appear in named metadata. Remove this logic if they 775 // become plain Metadata. 776 if (Lex.getKind() == lltok::MetadataVar && 777 Lex.getStrVal() == "DIExpression") { 778 if (parseDIExpression(N, /*IsDistinct=*/false)) 779 return true; 780 // DIArgLists should only appear inline in a function, as they may 781 // contain LocalAsMetadata arguments which require a function context. 782 } else if (Lex.getKind() == lltok::MetadataVar && 783 Lex.getStrVal() == "DIArgList") { 784 return tokError("found DIArgList outside of function"); 785 } else if (parseToken(lltok::exclaim, "Expected '!' here") || 786 parseMDNodeID(N)) { 787 return true; 788 } 789 NMD->addOperand(N); 790 } while (EatIfPresent(lltok::comma)); 791 792 return parseToken(lltok::rbrace, "expected end of metadata node"); 793 } 794 795 /// parseStandaloneMetadata: 796 /// !42 = !{...} 797 bool LLParser::parseStandaloneMetadata() { 798 assert(Lex.getKind() == lltok::exclaim); 799 Lex.Lex(); 800 unsigned MetadataID = 0; 801 802 MDNode *Init; 803 if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here")) 804 return true; 805 806 // Detect common error, from old metadata syntax. 807 if (Lex.getKind() == lltok::Type) 808 return tokError("unexpected type in metadata definition"); 809 810 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 811 if (Lex.getKind() == lltok::MetadataVar) { 812 if (parseSpecializedMDNode(Init, IsDistinct)) 813 return true; 814 } else if (parseToken(lltok::exclaim, "Expected '!' here") || 815 parseMDTuple(Init, IsDistinct)) 816 return true; 817 818 // See if this was forward referenced, if so, handle it. 819 auto FI = ForwardRefMDNodes.find(MetadataID); 820 if (FI != ForwardRefMDNodes.end()) { 821 FI->second.first->replaceAllUsesWith(Init); 822 ForwardRefMDNodes.erase(FI); 823 824 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 825 } else { 826 if (NumberedMetadata.count(MetadataID)) 827 return tokError("Metadata id is already used"); 828 NumberedMetadata[MetadataID].reset(Init); 829 } 830 831 return false; 832 } 833 834 // Skips a single module summary entry. 835 bool LLParser::skipModuleSummaryEntry() { 836 // Each module summary entry consists of a tag for the entry 837 // type, followed by a colon, then the fields which may be surrounded by 838 // nested sets of parentheses. The "tag:" looks like a Label. Once parsing 839 // support is in place we will look for the tokens corresponding to the 840 // expected tags. 841 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module && 842 Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags && 843 Lex.getKind() != lltok::kw_blockcount) 844 return tokError( 845 "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the " 846 "start of summary entry"); 847 if (Lex.getKind() == lltok::kw_flags) 848 return parseSummaryIndexFlags(); 849 if (Lex.getKind() == lltok::kw_blockcount) 850 return parseBlockCount(); 851 Lex.Lex(); 852 if (parseToken(lltok::colon, "expected ':' at start of summary entry") || 853 parseToken(lltok::lparen, "expected '(' at start of summary entry")) 854 return true; 855 // Now walk through the parenthesized entry, until the number of open 856 // parentheses goes back down to 0 (the first '(' was parsed above). 857 unsigned NumOpenParen = 1; 858 do { 859 switch (Lex.getKind()) { 860 case lltok::lparen: 861 NumOpenParen++; 862 break; 863 case lltok::rparen: 864 NumOpenParen--; 865 break; 866 case lltok::Eof: 867 return tokError("found end of file while parsing summary entry"); 868 default: 869 // Skip everything in between parentheses. 870 break; 871 } 872 Lex.Lex(); 873 } while (NumOpenParen > 0); 874 return false; 875 } 876 877 /// SummaryEntry 878 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry 879 bool LLParser::parseSummaryEntry() { 880 assert(Lex.getKind() == lltok::SummaryID); 881 unsigned SummaryID = Lex.getUIntVal(); 882 883 // For summary entries, colons should be treated as distinct tokens, 884 // not an indication of the end of a label token. 885 Lex.setIgnoreColonInIdentifiers(true); 886 887 Lex.Lex(); 888 if (parseToken(lltok::equal, "expected '=' here")) 889 return true; 890 891 // If we don't have an index object, skip the summary entry. 892 if (!Index) 893 return skipModuleSummaryEntry(); 894 895 bool result = false; 896 switch (Lex.getKind()) { 897 case lltok::kw_gv: 898 result = parseGVEntry(SummaryID); 899 break; 900 case lltok::kw_module: 901 result = parseModuleEntry(SummaryID); 902 break; 903 case lltok::kw_typeid: 904 result = parseTypeIdEntry(SummaryID); 905 break; 906 case lltok::kw_typeidCompatibleVTable: 907 result = parseTypeIdCompatibleVtableEntry(SummaryID); 908 break; 909 case lltok::kw_flags: 910 result = parseSummaryIndexFlags(); 911 break; 912 case lltok::kw_blockcount: 913 result = parseBlockCount(); 914 break; 915 default: 916 result = error(Lex.getLoc(), "unexpected summary kind"); 917 break; 918 } 919 Lex.setIgnoreColonInIdentifiers(false); 920 return result; 921 } 922 923 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 924 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 925 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 926 } 927 928 // If there was an explicit dso_local, update GV. In the absence of an explicit 929 // dso_local we keep the default value. 930 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { 931 if (DSOLocal) 932 GV.setDSOLocal(true); 933 } 934 935 static std::string typeComparisonErrorMessage(StringRef Message, Type *Ty1, 936 Type *Ty2) { 937 std::string ErrString; 938 raw_string_ostream ErrOS(ErrString); 939 ErrOS << Message << " (" << *Ty1 << " vs " << *Ty2 << ")"; 940 return ErrOS.str(); 941 } 942 943 /// parseAliasOrIFunc: 944 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 945 /// OptionalVisibility OptionalDLLStorageClass 946 /// OptionalThreadLocal OptionalUnnamedAddr 947 /// 'alias|ifunc' AliaseeOrResolver SymbolAttrs* 948 /// 949 /// AliaseeOrResolver 950 /// ::= TypeAndValue 951 /// 952 /// SymbolAttrs 953 /// ::= ',' 'partition' StringConstant 954 /// 955 /// Everything through OptionalUnnamedAddr has already been parsed. 956 /// 957 bool LLParser::parseAliasOrIFunc(const std::string &Name, LocTy NameLoc, 958 unsigned L, unsigned Visibility, 959 unsigned DLLStorageClass, bool DSOLocal, 960 GlobalVariable::ThreadLocalMode TLM, 961 GlobalVariable::UnnamedAddr UnnamedAddr) { 962 bool IsAlias; 963 if (Lex.getKind() == lltok::kw_alias) 964 IsAlias = true; 965 else if (Lex.getKind() == lltok::kw_ifunc) 966 IsAlias = false; 967 else 968 llvm_unreachable("Not an alias or ifunc!"); 969 Lex.Lex(); 970 971 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 972 973 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 974 return error(NameLoc, "invalid linkage type for alias"); 975 976 if (!isValidVisibilityForLinkage(Visibility, L)) 977 return error(NameLoc, 978 "symbol with local linkage must have default visibility"); 979 980 Type *Ty; 981 LocTy ExplicitTypeLoc = Lex.getLoc(); 982 if (parseType(Ty) || 983 parseToken(lltok::comma, "expected comma after alias or ifunc's type")) 984 return true; 985 986 Constant *Aliasee; 987 LocTy AliaseeLoc = Lex.getLoc(); 988 if (Lex.getKind() != lltok::kw_bitcast && 989 Lex.getKind() != lltok::kw_getelementptr && 990 Lex.getKind() != lltok::kw_addrspacecast && 991 Lex.getKind() != lltok::kw_inttoptr) { 992 if (parseGlobalTypeAndValue(Aliasee)) 993 return true; 994 } else { 995 // The bitcast dest type is not present, it is implied by the dest type. 996 ValID ID; 997 if (parseValID(ID, /*PFS=*/nullptr)) 998 return true; 999 if (ID.Kind != ValID::t_Constant) 1000 return error(AliaseeLoc, "invalid aliasee"); 1001 Aliasee = ID.ConstantVal; 1002 } 1003 1004 Type *AliaseeType = Aliasee->getType(); 1005 auto *PTy = dyn_cast<PointerType>(AliaseeType); 1006 if (!PTy) 1007 return error(AliaseeLoc, "An alias or ifunc must have pointer type"); 1008 unsigned AddrSpace = PTy->getAddressSpace(); 1009 1010 if (IsAlias) { 1011 if (!PTy->isOpaqueOrPointeeTypeMatches(Ty)) 1012 return error( 1013 ExplicitTypeLoc, 1014 typeComparisonErrorMessage( 1015 "explicit pointee type doesn't match operand's pointee type", Ty, 1016 PTy->getNonOpaquePointerElementType())); 1017 } else { 1018 if (!PTy->isOpaque() && 1019 !PTy->getNonOpaquePointerElementType()->isFunctionTy()) 1020 return error(ExplicitTypeLoc, 1021 "explicit pointee type should be a function type"); 1022 } 1023 1024 GlobalValue *GVal = nullptr; 1025 1026 // See if the alias was forward referenced, if so, prepare to replace the 1027 // forward reference. 1028 if (!Name.empty()) { 1029 auto I = ForwardRefVals.find(Name); 1030 if (I != ForwardRefVals.end()) { 1031 GVal = I->second.first; 1032 ForwardRefVals.erase(Name); 1033 } else if (M->getNamedValue(Name)) { 1034 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1035 } 1036 } else { 1037 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1038 if (I != ForwardRefValIDs.end()) { 1039 GVal = I->second.first; 1040 ForwardRefValIDs.erase(I); 1041 } 1042 } 1043 1044 // Okay, create the alias/ifunc but do not insert it into the module yet. 1045 std::unique_ptr<GlobalAlias> GA; 1046 std::unique_ptr<GlobalIFunc> GI; 1047 GlobalValue *GV; 1048 if (IsAlias) { 1049 GA.reset(GlobalAlias::create(Ty, AddrSpace, 1050 (GlobalValue::LinkageTypes)Linkage, Name, 1051 Aliasee, /*Parent*/ nullptr)); 1052 GV = GA.get(); 1053 } else { 1054 GI.reset(GlobalIFunc::create(Ty, AddrSpace, 1055 (GlobalValue::LinkageTypes)Linkage, Name, 1056 Aliasee, /*Parent*/ nullptr)); 1057 GV = GI.get(); 1058 } 1059 GV->setThreadLocalMode(TLM); 1060 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1061 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1062 GV->setUnnamedAddr(UnnamedAddr); 1063 maybeSetDSOLocal(DSOLocal, *GV); 1064 1065 // At this point we've parsed everything except for the IndirectSymbolAttrs. 1066 // Now parse them if there are any. 1067 while (Lex.getKind() == lltok::comma) { 1068 Lex.Lex(); 1069 1070 if (Lex.getKind() == lltok::kw_partition) { 1071 Lex.Lex(); 1072 GV->setPartition(Lex.getStrVal()); 1073 if (parseToken(lltok::StringConstant, "expected partition string")) 1074 return true; 1075 } else { 1076 return tokError("unknown alias or ifunc property!"); 1077 } 1078 } 1079 1080 if (Name.empty()) 1081 NumberedVals.push_back(GV); 1082 1083 if (GVal) { 1084 // Verify that types agree. 1085 if (GVal->getType() != GV->getType()) 1086 return error( 1087 ExplicitTypeLoc, 1088 "forward reference and definition of alias have different types"); 1089 1090 // If they agree, just RAUW the old value with the alias and remove the 1091 // forward ref info. 1092 GVal->replaceAllUsesWith(GV); 1093 GVal->eraseFromParent(); 1094 } 1095 1096 // Insert into the module, we know its name won't collide now. 1097 if (IsAlias) 1098 M->getAliasList().push_back(GA.release()); 1099 else 1100 M->getIFuncList().push_back(GI.release()); 1101 assert(GV->getName() == Name && "Should not be a name conflict!"); 1102 1103 return false; 1104 } 1105 1106 static bool isSanitizer(lltok::Kind Kind) { 1107 switch (Kind) { 1108 case lltok::kw_no_sanitize_address: 1109 case lltok::kw_no_sanitize_hwaddress: 1110 case lltok::kw_no_sanitize_memtag: 1111 case lltok::kw_sanitize_address_dyninit: 1112 return true; 1113 default: 1114 return false; 1115 } 1116 } 1117 1118 bool LLParser::parseSanitizer(GlobalVariable *GV) { 1119 using SanitizerMetadata = GlobalValue::SanitizerMetadata; 1120 SanitizerMetadata Meta; 1121 if (GV->hasSanitizerMetadata()) 1122 Meta = GV->getSanitizerMetadata(); 1123 1124 switch (Lex.getKind()) { 1125 case lltok::kw_no_sanitize_address: 1126 Meta.NoAddress = true; 1127 break; 1128 case lltok::kw_no_sanitize_hwaddress: 1129 Meta.NoHWAddress = true; 1130 break; 1131 case lltok::kw_no_sanitize_memtag: 1132 Meta.NoMemtag = true; 1133 break; 1134 case lltok::kw_sanitize_address_dyninit: 1135 Meta.IsDynInit = true; 1136 break; 1137 default: 1138 return tokError("non-sanitizer token passed to LLParser::parseSanitizer()"); 1139 } 1140 GV->setSanitizerMetadata(Meta); 1141 Lex.Lex(); 1142 return false; 1143 } 1144 1145 /// parseGlobal 1146 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 1147 /// OptionalVisibility OptionalDLLStorageClass 1148 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 1149 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 1150 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 1151 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 1152 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 1153 /// Const OptionalAttrs 1154 /// 1155 /// Everything up to and including OptionalUnnamedAddr has been parsed 1156 /// already. 1157 /// 1158 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc, 1159 unsigned Linkage, bool HasLinkage, 1160 unsigned Visibility, unsigned DLLStorageClass, 1161 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 1162 GlobalVariable::UnnamedAddr UnnamedAddr) { 1163 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 1164 return error(NameLoc, 1165 "symbol with local linkage must have default visibility"); 1166 1167 unsigned AddrSpace; 1168 bool IsConstant, IsExternallyInitialized; 1169 LocTy IsExternallyInitializedLoc; 1170 LocTy TyLoc; 1171 1172 Type *Ty = nullptr; 1173 if (parseOptionalAddrSpace(AddrSpace) || 1174 parseOptionalToken(lltok::kw_externally_initialized, 1175 IsExternallyInitialized, 1176 &IsExternallyInitializedLoc) || 1177 parseGlobalType(IsConstant) || parseType(Ty, TyLoc)) 1178 return true; 1179 1180 // If the linkage is specified and is external, then no initializer is 1181 // present. 1182 Constant *Init = nullptr; 1183 if (!HasLinkage || 1184 !GlobalValue::isValidDeclarationLinkage( 1185 (GlobalValue::LinkageTypes)Linkage)) { 1186 if (parseGlobalValue(Ty, Init)) 1187 return true; 1188 } 1189 1190 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 1191 return error(TyLoc, "invalid type for global variable"); 1192 1193 GlobalValue *GVal = nullptr; 1194 1195 // See if the global was forward referenced, if so, use the global. 1196 if (!Name.empty()) { 1197 auto I = ForwardRefVals.find(Name); 1198 if (I != ForwardRefVals.end()) { 1199 GVal = I->second.first; 1200 ForwardRefVals.erase(I); 1201 } else if (M->getNamedValue(Name)) { 1202 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1203 } 1204 } else { 1205 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1206 if (I != ForwardRefValIDs.end()) { 1207 GVal = I->second.first; 1208 ForwardRefValIDs.erase(I); 1209 } 1210 } 1211 1212 GlobalVariable *GV = new GlobalVariable( 1213 *M, Ty, false, GlobalValue::ExternalLinkage, nullptr, Name, nullptr, 1214 GlobalVariable::NotThreadLocal, AddrSpace); 1215 1216 if (Name.empty()) 1217 NumberedVals.push_back(GV); 1218 1219 // Set the parsed properties on the global. 1220 if (Init) 1221 GV->setInitializer(Init); 1222 GV->setConstant(IsConstant); 1223 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 1224 maybeSetDSOLocal(DSOLocal, *GV); 1225 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1226 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1227 GV->setExternallyInitialized(IsExternallyInitialized); 1228 GV->setThreadLocalMode(TLM); 1229 GV->setUnnamedAddr(UnnamedAddr); 1230 1231 if (GVal) { 1232 if (GVal->getType() != Ty->getPointerTo(AddrSpace)) 1233 return error( 1234 TyLoc, 1235 "forward reference and definition of global have different types"); 1236 1237 GVal->replaceAllUsesWith(GV); 1238 GVal->eraseFromParent(); 1239 } 1240 1241 // parse attributes on the global. 1242 while (Lex.getKind() == lltok::comma) { 1243 Lex.Lex(); 1244 1245 if (Lex.getKind() == lltok::kw_section) { 1246 Lex.Lex(); 1247 GV->setSection(Lex.getStrVal()); 1248 if (parseToken(lltok::StringConstant, "expected global section string")) 1249 return true; 1250 } else if (Lex.getKind() == lltok::kw_partition) { 1251 Lex.Lex(); 1252 GV->setPartition(Lex.getStrVal()); 1253 if (parseToken(lltok::StringConstant, "expected partition string")) 1254 return true; 1255 } else if (Lex.getKind() == lltok::kw_align) { 1256 MaybeAlign Alignment; 1257 if (parseOptionalAlignment(Alignment)) 1258 return true; 1259 GV->setAlignment(Alignment); 1260 } else if (Lex.getKind() == lltok::MetadataVar) { 1261 if (parseGlobalObjectMetadataAttachment(*GV)) 1262 return true; 1263 } else if (isSanitizer(Lex.getKind())) { 1264 if (parseSanitizer(GV)) 1265 return true; 1266 } else { 1267 Comdat *C; 1268 if (parseOptionalComdat(Name, C)) 1269 return true; 1270 if (C) 1271 GV->setComdat(C); 1272 else 1273 return tokError("unknown global variable property!"); 1274 } 1275 } 1276 1277 AttrBuilder Attrs(M->getContext()); 1278 LocTy BuiltinLoc; 1279 std::vector<unsigned> FwdRefAttrGrps; 1280 if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 1281 return true; 1282 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 1283 GV->setAttributes(AttributeSet::get(Context, Attrs)); 1284 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 1285 } 1286 1287 return false; 1288 } 1289 1290 /// parseUnnamedAttrGrp 1291 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 1292 bool LLParser::parseUnnamedAttrGrp() { 1293 assert(Lex.getKind() == lltok::kw_attributes); 1294 LocTy AttrGrpLoc = Lex.getLoc(); 1295 Lex.Lex(); 1296 1297 if (Lex.getKind() != lltok::AttrGrpID) 1298 return tokError("expected attribute group id"); 1299 1300 unsigned VarID = Lex.getUIntVal(); 1301 std::vector<unsigned> unused; 1302 LocTy BuiltinLoc; 1303 Lex.Lex(); 1304 1305 if (parseToken(lltok::equal, "expected '=' here") || 1306 parseToken(lltok::lbrace, "expected '{' here")) 1307 return true; 1308 1309 auto R = NumberedAttrBuilders.find(VarID); 1310 if (R == NumberedAttrBuilders.end()) 1311 R = NumberedAttrBuilders.emplace(VarID, AttrBuilder(M->getContext())).first; 1312 1313 if (parseFnAttributeValuePairs(R->second, unused, true, BuiltinLoc) || 1314 parseToken(lltok::rbrace, "expected end of attribute group")) 1315 return true; 1316 1317 if (!R->second.hasAttributes()) 1318 return error(AttrGrpLoc, "attribute group has no attributes"); 1319 1320 return false; 1321 } 1322 1323 static Attribute::AttrKind tokenToAttribute(lltok::Kind Kind) { 1324 switch (Kind) { 1325 #define GET_ATTR_NAMES 1326 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) \ 1327 case lltok::kw_##DISPLAY_NAME: \ 1328 return Attribute::ENUM_NAME; 1329 #include "llvm/IR/Attributes.inc" 1330 default: 1331 return Attribute::None; 1332 } 1333 } 1334 1335 bool LLParser::parseEnumAttribute(Attribute::AttrKind Attr, AttrBuilder &B, 1336 bool InAttrGroup) { 1337 if (Attribute::isTypeAttrKind(Attr)) 1338 return parseRequiredTypeAttr(B, Lex.getKind(), Attr); 1339 1340 switch (Attr) { 1341 case Attribute::Alignment: { 1342 MaybeAlign Alignment; 1343 if (InAttrGroup) { 1344 uint32_t Value = 0; 1345 Lex.Lex(); 1346 if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value)) 1347 return true; 1348 Alignment = Align(Value); 1349 } else { 1350 if (parseOptionalAlignment(Alignment, true)) 1351 return true; 1352 } 1353 B.addAlignmentAttr(Alignment); 1354 return false; 1355 } 1356 case Attribute::StackAlignment: { 1357 unsigned Alignment; 1358 if (InAttrGroup) { 1359 Lex.Lex(); 1360 if (parseToken(lltok::equal, "expected '=' here") || 1361 parseUInt32(Alignment)) 1362 return true; 1363 } else { 1364 if (parseOptionalStackAlignment(Alignment)) 1365 return true; 1366 } 1367 B.addStackAlignmentAttr(Alignment); 1368 return false; 1369 } 1370 case Attribute::AllocSize: { 1371 unsigned ElemSizeArg; 1372 Optional<unsigned> NumElemsArg; 1373 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1374 return true; 1375 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1376 return false; 1377 } 1378 case Attribute::VScaleRange: { 1379 unsigned MinValue, MaxValue; 1380 if (parseVScaleRangeArguments(MinValue, MaxValue)) 1381 return true; 1382 B.addVScaleRangeAttr(MinValue, 1383 MaxValue > 0 ? MaxValue : Optional<unsigned>()); 1384 return false; 1385 } 1386 case Attribute::Dereferenceable: { 1387 uint64_t Bytes; 1388 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1389 return true; 1390 B.addDereferenceableAttr(Bytes); 1391 return false; 1392 } 1393 case Attribute::DereferenceableOrNull: { 1394 uint64_t Bytes; 1395 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1396 return true; 1397 B.addDereferenceableOrNullAttr(Bytes); 1398 return false; 1399 } 1400 case Attribute::UWTable: { 1401 UWTableKind Kind; 1402 if (parseOptionalUWTableKind(Kind)) 1403 return true; 1404 B.addUWTableAttr(Kind); 1405 return false; 1406 } 1407 case Attribute::AllocKind: { 1408 AllocFnKind Kind = AllocFnKind::Unknown; 1409 if (parseAllocKind(Kind)) 1410 return true; 1411 B.addAllocKindAttr(Kind); 1412 return false; 1413 } 1414 default: 1415 B.addAttribute(Attr); 1416 Lex.Lex(); 1417 return false; 1418 } 1419 } 1420 1421 /// parseFnAttributeValuePairs 1422 /// ::= <attr> | <attr> '=' <value> 1423 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B, 1424 std::vector<unsigned> &FwdRefAttrGrps, 1425 bool InAttrGrp, LocTy &BuiltinLoc) { 1426 bool HaveError = false; 1427 1428 B.clear(); 1429 1430 while (true) { 1431 lltok::Kind Token = Lex.getKind(); 1432 if (Token == lltok::rbrace) 1433 return HaveError; // Finished. 1434 1435 if (Token == lltok::StringConstant) { 1436 if (parseStringAttribute(B)) 1437 return true; 1438 continue; 1439 } 1440 1441 if (Token == lltok::AttrGrpID) { 1442 // Allow a function to reference an attribute group: 1443 // 1444 // define void @foo() #1 { ... } 1445 if (InAttrGrp) { 1446 HaveError |= error( 1447 Lex.getLoc(), 1448 "cannot have an attribute group reference in an attribute group"); 1449 } else { 1450 // Save the reference to the attribute group. We'll fill it in later. 1451 FwdRefAttrGrps.push_back(Lex.getUIntVal()); 1452 } 1453 Lex.Lex(); 1454 continue; 1455 } 1456 1457 SMLoc Loc = Lex.getLoc(); 1458 if (Token == lltok::kw_builtin) 1459 BuiltinLoc = Loc; 1460 1461 Attribute::AttrKind Attr = tokenToAttribute(Token); 1462 if (Attr == Attribute::None) { 1463 if (!InAttrGrp) 1464 return HaveError; 1465 return error(Lex.getLoc(), "unterminated attribute group"); 1466 } 1467 1468 if (parseEnumAttribute(Attr, B, InAttrGrp)) 1469 return true; 1470 1471 // As a hack, we allow function alignment to be initially parsed as an 1472 // attribute on a function declaration/definition or added to an attribute 1473 // group and later moved to the alignment field. 1474 if (!Attribute::canUseAsFnAttr(Attr) && Attr != Attribute::Alignment) 1475 HaveError |= error(Loc, "this attribute does not apply to functions"); 1476 } 1477 } 1478 1479 //===----------------------------------------------------------------------===// 1480 // GlobalValue Reference/Resolution Routines. 1481 //===----------------------------------------------------------------------===// 1482 1483 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy) { 1484 // For opaque pointers, the used global type does not matter. We will later 1485 // RAUW it with a global/function of the correct type. 1486 if (PTy->isOpaque()) 1487 return new GlobalVariable(*M, Type::getInt8Ty(M->getContext()), false, 1488 GlobalValue::ExternalWeakLinkage, nullptr, "", 1489 nullptr, GlobalVariable::NotThreadLocal, 1490 PTy->getAddressSpace()); 1491 1492 Type *ElemTy = PTy->getNonOpaquePointerElementType(); 1493 if (auto *FT = dyn_cast<FunctionType>(ElemTy)) 1494 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, 1495 PTy->getAddressSpace(), "", M); 1496 else 1497 return new GlobalVariable( 1498 *M, ElemTy, false, GlobalValue::ExternalWeakLinkage, nullptr, "", 1499 nullptr, GlobalVariable::NotThreadLocal, PTy->getAddressSpace()); 1500 } 1501 1502 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty, 1503 Value *Val) { 1504 Type *ValTy = Val->getType(); 1505 if (ValTy == Ty) 1506 return Val; 1507 if (Ty->isLabelTy()) 1508 error(Loc, "'" + Name + "' is not a basic block"); 1509 else 1510 error(Loc, "'" + Name + "' defined with type '" + 1511 getTypeString(Val->getType()) + "' but expected '" + 1512 getTypeString(Ty) + "'"); 1513 return nullptr; 1514 } 1515 1516 /// getGlobalVal - Get a value with the specified name or ID, creating a 1517 /// forward reference record if needed. This can return null if the value 1518 /// exists but does not have the right type. 1519 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty, 1520 LocTy Loc) { 1521 PointerType *PTy = dyn_cast<PointerType>(Ty); 1522 if (!PTy) { 1523 error(Loc, "global variable reference must have pointer type"); 1524 return nullptr; 1525 } 1526 1527 // Look this name up in the normal function symbol table. 1528 GlobalValue *Val = 1529 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1530 1531 // If this is a forward reference for the value, see if we already created a 1532 // forward ref record. 1533 if (!Val) { 1534 auto I = ForwardRefVals.find(Name); 1535 if (I != ForwardRefVals.end()) 1536 Val = I->second.first; 1537 } 1538 1539 // If we have the value in the symbol table or fwd-ref table, return it. 1540 if (Val) 1541 return cast_or_null<GlobalValue>( 1542 checkValidVariableType(Loc, "@" + Name, Ty, Val)); 1543 1544 // Otherwise, create a new forward reference for this value and remember it. 1545 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy); 1546 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1547 return FwdVal; 1548 } 1549 1550 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { 1551 PointerType *PTy = dyn_cast<PointerType>(Ty); 1552 if (!PTy) { 1553 error(Loc, "global variable reference must have pointer type"); 1554 return nullptr; 1555 } 1556 1557 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1558 1559 // If this is a forward reference for the value, see if we already created a 1560 // forward ref record. 1561 if (!Val) { 1562 auto I = ForwardRefValIDs.find(ID); 1563 if (I != ForwardRefValIDs.end()) 1564 Val = I->second.first; 1565 } 1566 1567 // If we have the value in the symbol table or fwd-ref table, return it. 1568 if (Val) 1569 return cast_or_null<GlobalValue>( 1570 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val)); 1571 1572 // Otherwise, create a new forward reference for this value and remember it. 1573 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy); 1574 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1575 return FwdVal; 1576 } 1577 1578 //===----------------------------------------------------------------------===// 1579 // Comdat Reference/Resolution Routines. 1580 //===----------------------------------------------------------------------===// 1581 1582 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1583 // Look this name up in the comdat symbol table. 1584 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1585 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1586 if (I != ComdatSymTab.end()) 1587 return &I->second; 1588 1589 // Otherwise, create a new forward reference for this value and remember it. 1590 Comdat *C = M->getOrInsertComdat(Name); 1591 ForwardRefComdats[Name] = Loc; 1592 return C; 1593 } 1594 1595 //===----------------------------------------------------------------------===// 1596 // Helper Routines. 1597 //===----------------------------------------------------------------------===// 1598 1599 /// parseToken - If the current token has the specified kind, eat it and return 1600 /// success. Otherwise, emit the specified error and return failure. 1601 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) { 1602 if (Lex.getKind() != T) 1603 return tokError(ErrMsg); 1604 Lex.Lex(); 1605 return false; 1606 } 1607 1608 /// parseStringConstant 1609 /// ::= StringConstant 1610 bool LLParser::parseStringConstant(std::string &Result) { 1611 if (Lex.getKind() != lltok::StringConstant) 1612 return tokError("expected string constant"); 1613 Result = Lex.getStrVal(); 1614 Lex.Lex(); 1615 return false; 1616 } 1617 1618 /// parseUInt32 1619 /// ::= uint32 1620 bool LLParser::parseUInt32(uint32_t &Val) { 1621 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1622 return tokError("expected integer"); 1623 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1624 if (Val64 != unsigned(Val64)) 1625 return tokError("expected 32-bit integer (too large)"); 1626 Val = Val64; 1627 Lex.Lex(); 1628 return false; 1629 } 1630 1631 /// parseUInt64 1632 /// ::= uint64 1633 bool LLParser::parseUInt64(uint64_t &Val) { 1634 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1635 return tokError("expected integer"); 1636 Val = Lex.getAPSIntVal().getLimitedValue(); 1637 Lex.Lex(); 1638 return false; 1639 } 1640 1641 /// parseTLSModel 1642 /// := 'localdynamic' 1643 /// := 'initialexec' 1644 /// := 'localexec' 1645 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1646 switch (Lex.getKind()) { 1647 default: 1648 return tokError("expected localdynamic, initialexec or localexec"); 1649 case lltok::kw_localdynamic: 1650 TLM = GlobalVariable::LocalDynamicTLSModel; 1651 break; 1652 case lltok::kw_initialexec: 1653 TLM = GlobalVariable::InitialExecTLSModel; 1654 break; 1655 case lltok::kw_localexec: 1656 TLM = GlobalVariable::LocalExecTLSModel; 1657 break; 1658 } 1659 1660 Lex.Lex(); 1661 return false; 1662 } 1663 1664 /// parseOptionalThreadLocal 1665 /// := /*empty*/ 1666 /// := 'thread_local' 1667 /// := 'thread_local' '(' tlsmodel ')' 1668 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1669 TLM = GlobalVariable::NotThreadLocal; 1670 if (!EatIfPresent(lltok::kw_thread_local)) 1671 return false; 1672 1673 TLM = GlobalVariable::GeneralDynamicTLSModel; 1674 if (Lex.getKind() == lltok::lparen) { 1675 Lex.Lex(); 1676 return parseTLSModel(TLM) || 1677 parseToken(lltok::rparen, "expected ')' after thread local model"); 1678 } 1679 return false; 1680 } 1681 1682 /// parseOptionalAddrSpace 1683 /// := /*empty*/ 1684 /// := 'addrspace' '(' uint32 ')' 1685 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) { 1686 AddrSpace = DefaultAS; 1687 if (!EatIfPresent(lltok::kw_addrspace)) 1688 return false; 1689 return parseToken(lltok::lparen, "expected '(' in address space") || 1690 parseUInt32(AddrSpace) || 1691 parseToken(lltok::rparen, "expected ')' in address space"); 1692 } 1693 1694 /// parseStringAttribute 1695 /// := StringConstant 1696 /// := StringConstant '=' StringConstant 1697 bool LLParser::parseStringAttribute(AttrBuilder &B) { 1698 std::string Attr = Lex.getStrVal(); 1699 Lex.Lex(); 1700 std::string Val; 1701 if (EatIfPresent(lltok::equal) && parseStringConstant(Val)) 1702 return true; 1703 B.addAttribute(Attr, Val); 1704 return false; 1705 } 1706 1707 /// Parse a potentially empty list of parameter or return attributes. 1708 bool LLParser::parseOptionalParamOrReturnAttrs(AttrBuilder &B, bool IsParam) { 1709 bool HaveError = false; 1710 1711 B.clear(); 1712 1713 while (true) { 1714 lltok::Kind Token = Lex.getKind(); 1715 if (Token == lltok::StringConstant) { 1716 if (parseStringAttribute(B)) 1717 return true; 1718 continue; 1719 } 1720 1721 SMLoc Loc = Lex.getLoc(); 1722 Attribute::AttrKind Attr = tokenToAttribute(Token); 1723 if (Attr == Attribute::None) 1724 return HaveError; 1725 1726 if (parseEnumAttribute(Attr, B, /* InAttrGroup */ false)) 1727 return true; 1728 1729 if (IsParam && !Attribute::canUseAsParamAttr(Attr)) 1730 HaveError |= error(Loc, "this attribute does not apply to parameters"); 1731 if (!IsParam && !Attribute::canUseAsRetAttr(Attr)) 1732 HaveError |= error(Loc, "this attribute does not apply to return values"); 1733 } 1734 } 1735 1736 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1737 HasLinkage = true; 1738 switch (Kind) { 1739 default: 1740 HasLinkage = false; 1741 return GlobalValue::ExternalLinkage; 1742 case lltok::kw_private: 1743 return GlobalValue::PrivateLinkage; 1744 case lltok::kw_internal: 1745 return GlobalValue::InternalLinkage; 1746 case lltok::kw_weak: 1747 return GlobalValue::WeakAnyLinkage; 1748 case lltok::kw_weak_odr: 1749 return GlobalValue::WeakODRLinkage; 1750 case lltok::kw_linkonce: 1751 return GlobalValue::LinkOnceAnyLinkage; 1752 case lltok::kw_linkonce_odr: 1753 return GlobalValue::LinkOnceODRLinkage; 1754 case lltok::kw_available_externally: 1755 return GlobalValue::AvailableExternallyLinkage; 1756 case lltok::kw_appending: 1757 return GlobalValue::AppendingLinkage; 1758 case lltok::kw_common: 1759 return GlobalValue::CommonLinkage; 1760 case lltok::kw_extern_weak: 1761 return GlobalValue::ExternalWeakLinkage; 1762 case lltok::kw_external: 1763 return GlobalValue::ExternalLinkage; 1764 } 1765 } 1766 1767 /// parseOptionalLinkage 1768 /// ::= /*empty*/ 1769 /// ::= 'private' 1770 /// ::= 'internal' 1771 /// ::= 'weak' 1772 /// ::= 'weak_odr' 1773 /// ::= 'linkonce' 1774 /// ::= 'linkonce_odr' 1775 /// ::= 'available_externally' 1776 /// ::= 'appending' 1777 /// ::= 'common' 1778 /// ::= 'extern_weak' 1779 /// ::= 'external' 1780 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1781 unsigned &Visibility, 1782 unsigned &DLLStorageClass, bool &DSOLocal) { 1783 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1784 if (HasLinkage) 1785 Lex.Lex(); 1786 parseOptionalDSOLocal(DSOLocal); 1787 parseOptionalVisibility(Visibility); 1788 parseOptionalDLLStorageClass(DLLStorageClass); 1789 1790 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 1791 return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 1792 } 1793 1794 return false; 1795 } 1796 1797 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) { 1798 switch (Lex.getKind()) { 1799 default: 1800 DSOLocal = false; 1801 break; 1802 case lltok::kw_dso_local: 1803 DSOLocal = true; 1804 Lex.Lex(); 1805 break; 1806 case lltok::kw_dso_preemptable: 1807 DSOLocal = false; 1808 Lex.Lex(); 1809 break; 1810 } 1811 } 1812 1813 /// parseOptionalVisibility 1814 /// ::= /*empty*/ 1815 /// ::= 'default' 1816 /// ::= 'hidden' 1817 /// ::= 'protected' 1818 /// 1819 void LLParser::parseOptionalVisibility(unsigned &Res) { 1820 switch (Lex.getKind()) { 1821 default: 1822 Res = GlobalValue::DefaultVisibility; 1823 return; 1824 case lltok::kw_default: 1825 Res = GlobalValue::DefaultVisibility; 1826 break; 1827 case lltok::kw_hidden: 1828 Res = GlobalValue::HiddenVisibility; 1829 break; 1830 case lltok::kw_protected: 1831 Res = GlobalValue::ProtectedVisibility; 1832 break; 1833 } 1834 Lex.Lex(); 1835 } 1836 1837 /// parseOptionalDLLStorageClass 1838 /// ::= /*empty*/ 1839 /// ::= 'dllimport' 1840 /// ::= 'dllexport' 1841 /// 1842 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) { 1843 switch (Lex.getKind()) { 1844 default: 1845 Res = GlobalValue::DefaultStorageClass; 1846 return; 1847 case lltok::kw_dllimport: 1848 Res = GlobalValue::DLLImportStorageClass; 1849 break; 1850 case lltok::kw_dllexport: 1851 Res = GlobalValue::DLLExportStorageClass; 1852 break; 1853 } 1854 Lex.Lex(); 1855 } 1856 1857 /// parseOptionalCallingConv 1858 /// ::= /*empty*/ 1859 /// ::= 'ccc' 1860 /// ::= 'fastcc' 1861 /// ::= 'intel_ocl_bicc' 1862 /// ::= 'coldcc' 1863 /// ::= 'cfguard_checkcc' 1864 /// ::= 'x86_stdcallcc' 1865 /// ::= 'x86_fastcallcc' 1866 /// ::= 'x86_thiscallcc' 1867 /// ::= 'x86_vectorcallcc' 1868 /// ::= 'arm_apcscc' 1869 /// ::= 'arm_aapcscc' 1870 /// ::= 'arm_aapcs_vfpcc' 1871 /// ::= 'aarch64_vector_pcs' 1872 /// ::= 'aarch64_sve_vector_pcs' 1873 /// ::= 'msp430_intrcc' 1874 /// ::= 'avr_intrcc' 1875 /// ::= 'avr_signalcc' 1876 /// ::= 'ptx_kernel' 1877 /// ::= 'ptx_device' 1878 /// ::= 'spir_func' 1879 /// ::= 'spir_kernel' 1880 /// ::= 'x86_64_sysvcc' 1881 /// ::= 'win64cc' 1882 /// ::= 'webkit_jscc' 1883 /// ::= 'anyregcc' 1884 /// ::= 'preserve_mostcc' 1885 /// ::= 'preserve_allcc' 1886 /// ::= 'ghccc' 1887 /// ::= 'swiftcc' 1888 /// ::= 'swifttailcc' 1889 /// ::= 'x86_intrcc' 1890 /// ::= 'hhvmcc' 1891 /// ::= 'hhvm_ccc' 1892 /// ::= 'cxx_fast_tlscc' 1893 /// ::= 'amdgpu_vs' 1894 /// ::= 'amdgpu_ls' 1895 /// ::= 'amdgpu_hs' 1896 /// ::= 'amdgpu_es' 1897 /// ::= 'amdgpu_gs' 1898 /// ::= 'amdgpu_ps' 1899 /// ::= 'amdgpu_cs' 1900 /// ::= 'amdgpu_kernel' 1901 /// ::= 'tailcc' 1902 /// ::= 'cc' UINT 1903 /// 1904 bool LLParser::parseOptionalCallingConv(unsigned &CC) { 1905 switch (Lex.getKind()) { 1906 default: CC = CallingConv::C; return false; 1907 case lltok::kw_ccc: CC = CallingConv::C; break; 1908 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1909 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1910 case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break; 1911 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1912 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1913 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 1914 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1915 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1916 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1917 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1918 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1919 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break; 1920 case lltok::kw_aarch64_sve_vector_pcs: 1921 CC = CallingConv::AArch64_SVE_VectorCall; 1922 break; 1923 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1924 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 1925 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 1926 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1927 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1928 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1929 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1930 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1931 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1932 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 1933 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1934 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1935 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1936 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1937 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1938 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 1939 case lltok::kw_swifttailcc: CC = CallingConv::SwiftTail; break; 1940 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 1941 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 1942 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 1943 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 1944 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 1945 case lltok::kw_amdgpu_gfx: CC = CallingConv::AMDGPU_Gfx; break; 1946 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 1947 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 1948 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 1949 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 1950 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 1951 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 1952 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 1953 case lltok::kw_tailcc: CC = CallingConv::Tail; break; 1954 case lltok::kw_cc: { 1955 Lex.Lex(); 1956 return parseUInt32(CC); 1957 } 1958 } 1959 1960 Lex.Lex(); 1961 return false; 1962 } 1963 1964 /// parseMetadataAttachment 1965 /// ::= !dbg !42 1966 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 1967 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 1968 1969 std::string Name = Lex.getStrVal(); 1970 Kind = M->getMDKindID(Name); 1971 Lex.Lex(); 1972 1973 return parseMDNode(MD); 1974 } 1975 1976 /// parseInstructionMetadata 1977 /// ::= !dbg !42 (',' !dbg !57)* 1978 bool LLParser::parseInstructionMetadata(Instruction &Inst) { 1979 do { 1980 if (Lex.getKind() != lltok::MetadataVar) 1981 return tokError("expected metadata after comma"); 1982 1983 unsigned MDK; 1984 MDNode *N; 1985 if (parseMetadataAttachment(MDK, N)) 1986 return true; 1987 1988 Inst.setMetadata(MDK, N); 1989 if (MDK == LLVMContext::MD_tbaa) 1990 InstsWithTBAATag.push_back(&Inst); 1991 1992 // If this is the end of the list, we're done. 1993 } while (EatIfPresent(lltok::comma)); 1994 return false; 1995 } 1996 1997 /// parseGlobalObjectMetadataAttachment 1998 /// ::= !dbg !57 1999 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) { 2000 unsigned MDK; 2001 MDNode *N; 2002 if (parseMetadataAttachment(MDK, N)) 2003 return true; 2004 2005 GO.addMetadata(MDK, *N); 2006 return false; 2007 } 2008 2009 /// parseOptionalFunctionMetadata 2010 /// ::= (!dbg !57)* 2011 bool LLParser::parseOptionalFunctionMetadata(Function &F) { 2012 while (Lex.getKind() == lltok::MetadataVar) 2013 if (parseGlobalObjectMetadataAttachment(F)) 2014 return true; 2015 return false; 2016 } 2017 2018 /// parseOptionalAlignment 2019 /// ::= /* empty */ 2020 /// ::= 'align' 4 2021 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) { 2022 Alignment = None; 2023 if (!EatIfPresent(lltok::kw_align)) 2024 return false; 2025 LocTy AlignLoc = Lex.getLoc(); 2026 uint64_t Value = 0; 2027 2028 LocTy ParenLoc = Lex.getLoc(); 2029 bool HaveParens = false; 2030 if (AllowParens) { 2031 if (EatIfPresent(lltok::lparen)) 2032 HaveParens = true; 2033 } 2034 2035 if (parseUInt64(Value)) 2036 return true; 2037 2038 if (HaveParens && !EatIfPresent(lltok::rparen)) 2039 return error(ParenLoc, "expected ')'"); 2040 2041 if (!isPowerOf2_64(Value)) 2042 return error(AlignLoc, "alignment is not a power of two"); 2043 if (Value > Value::MaximumAlignment) 2044 return error(AlignLoc, "huge alignments are not supported yet"); 2045 Alignment = Align(Value); 2046 return false; 2047 } 2048 2049 /// parseOptionalDerefAttrBytes 2050 /// ::= /* empty */ 2051 /// ::= AttrKind '(' 4 ')' 2052 /// 2053 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 2054 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind, 2055 uint64_t &Bytes) { 2056 assert((AttrKind == lltok::kw_dereferenceable || 2057 AttrKind == lltok::kw_dereferenceable_or_null) && 2058 "contract!"); 2059 2060 Bytes = 0; 2061 if (!EatIfPresent(AttrKind)) 2062 return false; 2063 LocTy ParenLoc = Lex.getLoc(); 2064 if (!EatIfPresent(lltok::lparen)) 2065 return error(ParenLoc, "expected '('"); 2066 LocTy DerefLoc = Lex.getLoc(); 2067 if (parseUInt64(Bytes)) 2068 return true; 2069 ParenLoc = Lex.getLoc(); 2070 if (!EatIfPresent(lltok::rparen)) 2071 return error(ParenLoc, "expected ')'"); 2072 if (!Bytes) 2073 return error(DerefLoc, "dereferenceable bytes must be non-zero"); 2074 return false; 2075 } 2076 2077 bool LLParser::parseOptionalUWTableKind(UWTableKind &Kind) { 2078 Lex.Lex(); 2079 Kind = UWTableKind::Default; 2080 if (!EatIfPresent(lltok::lparen)) 2081 return false; 2082 LocTy KindLoc = Lex.getLoc(); 2083 if (Lex.getKind() == lltok::kw_sync) 2084 Kind = UWTableKind::Sync; 2085 else if (Lex.getKind() == lltok::kw_async) 2086 Kind = UWTableKind::Async; 2087 else 2088 return error(KindLoc, "expected unwind table kind"); 2089 Lex.Lex(); 2090 return parseToken(lltok::rparen, "expected ')'"); 2091 } 2092 2093 bool LLParser::parseAllocKind(AllocFnKind &Kind) { 2094 Lex.Lex(); 2095 LocTy ParenLoc = Lex.getLoc(); 2096 if (!EatIfPresent(lltok::lparen)) 2097 return error(ParenLoc, "expected '('"); 2098 LocTy KindLoc = Lex.getLoc(); 2099 std::string Arg; 2100 if (parseStringConstant(Arg)) 2101 return error(KindLoc, "expected allockind value"); 2102 for (StringRef A : llvm::split(Arg, ",")) { 2103 if (A == "alloc") { 2104 Kind |= AllocFnKind::Alloc; 2105 } else if (A == "realloc") { 2106 Kind |= AllocFnKind::Realloc; 2107 } else if (A == "free") { 2108 Kind |= AllocFnKind::Free; 2109 } else if (A == "uninitialized") { 2110 Kind |= AllocFnKind::Uninitialized; 2111 } else if (A == "zeroed") { 2112 Kind |= AllocFnKind::Zeroed; 2113 } else if (A == "aligned") { 2114 Kind |= AllocFnKind::Aligned; 2115 } else { 2116 return error(KindLoc, Twine("unknown allockind ") + A); 2117 } 2118 } 2119 ParenLoc = Lex.getLoc(); 2120 if (!EatIfPresent(lltok::rparen)) 2121 return error(ParenLoc, "expected ')'"); 2122 if (Kind == AllocFnKind::Unknown) 2123 return error(KindLoc, "expected allockind value"); 2124 return false; 2125 } 2126 2127 /// parseOptionalCommaAlign 2128 /// ::= 2129 /// ::= ',' align 4 2130 /// 2131 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2132 /// end. 2133 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment, 2134 bool &AteExtraComma) { 2135 AteExtraComma = false; 2136 while (EatIfPresent(lltok::comma)) { 2137 // Metadata at the end is an early exit. 2138 if (Lex.getKind() == lltok::MetadataVar) { 2139 AteExtraComma = true; 2140 return false; 2141 } 2142 2143 if (Lex.getKind() != lltok::kw_align) 2144 return error(Lex.getLoc(), "expected metadata or 'align'"); 2145 2146 if (parseOptionalAlignment(Alignment)) 2147 return true; 2148 } 2149 2150 return false; 2151 } 2152 2153 /// parseOptionalCommaAddrSpace 2154 /// ::= 2155 /// ::= ',' addrspace(1) 2156 /// 2157 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2158 /// end. 2159 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc, 2160 bool &AteExtraComma) { 2161 AteExtraComma = false; 2162 while (EatIfPresent(lltok::comma)) { 2163 // Metadata at the end is an early exit. 2164 if (Lex.getKind() == lltok::MetadataVar) { 2165 AteExtraComma = true; 2166 return false; 2167 } 2168 2169 Loc = Lex.getLoc(); 2170 if (Lex.getKind() != lltok::kw_addrspace) 2171 return error(Lex.getLoc(), "expected metadata or 'addrspace'"); 2172 2173 if (parseOptionalAddrSpace(AddrSpace)) 2174 return true; 2175 } 2176 2177 return false; 2178 } 2179 2180 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 2181 Optional<unsigned> &HowManyArg) { 2182 Lex.Lex(); 2183 2184 auto StartParen = Lex.getLoc(); 2185 if (!EatIfPresent(lltok::lparen)) 2186 return error(StartParen, "expected '('"); 2187 2188 if (parseUInt32(BaseSizeArg)) 2189 return true; 2190 2191 if (EatIfPresent(lltok::comma)) { 2192 auto HowManyAt = Lex.getLoc(); 2193 unsigned HowMany; 2194 if (parseUInt32(HowMany)) 2195 return true; 2196 if (HowMany == BaseSizeArg) 2197 return error(HowManyAt, 2198 "'allocsize' indices can't refer to the same parameter"); 2199 HowManyArg = HowMany; 2200 } else 2201 HowManyArg = None; 2202 2203 auto EndParen = Lex.getLoc(); 2204 if (!EatIfPresent(lltok::rparen)) 2205 return error(EndParen, "expected ')'"); 2206 return false; 2207 } 2208 2209 bool LLParser::parseVScaleRangeArguments(unsigned &MinValue, 2210 unsigned &MaxValue) { 2211 Lex.Lex(); 2212 2213 auto StartParen = Lex.getLoc(); 2214 if (!EatIfPresent(lltok::lparen)) 2215 return error(StartParen, "expected '('"); 2216 2217 if (parseUInt32(MinValue)) 2218 return true; 2219 2220 if (EatIfPresent(lltok::comma)) { 2221 if (parseUInt32(MaxValue)) 2222 return true; 2223 } else 2224 MaxValue = MinValue; 2225 2226 auto EndParen = Lex.getLoc(); 2227 if (!EatIfPresent(lltok::rparen)) 2228 return error(EndParen, "expected ')'"); 2229 return false; 2230 } 2231 2232 /// parseScopeAndOrdering 2233 /// if isAtomic: ::= SyncScope? AtomicOrdering 2234 /// else: ::= 2235 /// 2236 /// This sets Scope and Ordering to the parsed values. 2237 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID, 2238 AtomicOrdering &Ordering) { 2239 if (!IsAtomic) 2240 return false; 2241 2242 return parseScope(SSID) || parseOrdering(Ordering); 2243 } 2244 2245 /// parseScope 2246 /// ::= syncscope("singlethread" | "<target scope>")? 2247 /// 2248 /// This sets synchronization scope ID to the ID of the parsed value. 2249 bool LLParser::parseScope(SyncScope::ID &SSID) { 2250 SSID = SyncScope::System; 2251 if (EatIfPresent(lltok::kw_syncscope)) { 2252 auto StartParenAt = Lex.getLoc(); 2253 if (!EatIfPresent(lltok::lparen)) 2254 return error(StartParenAt, "Expected '(' in syncscope"); 2255 2256 std::string SSN; 2257 auto SSNAt = Lex.getLoc(); 2258 if (parseStringConstant(SSN)) 2259 return error(SSNAt, "Expected synchronization scope name"); 2260 2261 auto EndParenAt = Lex.getLoc(); 2262 if (!EatIfPresent(lltok::rparen)) 2263 return error(EndParenAt, "Expected ')' in syncscope"); 2264 2265 SSID = Context.getOrInsertSyncScopeID(SSN); 2266 } 2267 2268 return false; 2269 } 2270 2271 /// parseOrdering 2272 /// ::= AtomicOrdering 2273 /// 2274 /// This sets Ordering to the parsed value. 2275 bool LLParser::parseOrdering(AtomicOrdering &Ordering) { 2276 switch (Lex.getKind()) { 2277 default: 2278 return tokError("Expected ordering on atomic instruction"); 2279 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2280 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2281 // Not specified yet: 2282 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2283 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2284 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2285 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2286 case lltok::kw_seq_cst: 2287 Ordering = AtomicOrdering::SequentiallyConsistent; 2288 break; 2289 } 2290 Lex.Lex(); 2291 return false; 2292 } 2293 2294 /// parseOptionalStackAlignment 2295 /// ::= /* empty */ 2296 /// ::= 'alignstack' '(' 4 ')' 2297 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) { 2298 Alignment = 0; 2299 if (!EatIfPresent(lltok::kw_alignstack)) 2300 return false; 2301 LocTy ParenLoc = Lex.getLoc(); 2302 if (!EatIfPresent(lltok::lparen)) 2303 return error(ParenLoc, "expected '('"); 2304 LocTy AlignLoc = Lex.getLoc(); 2305 if (parseUInt32(Alignment)) 2306 return true; 2307 ParenLoc = Lex.getLoc(); 2308 if (!EatIfPresent(lltok::rparen)) 2309 return error(ParenLoc, "expected ')'"); 2310 if (!isPowerOf2_32(Alignment)) 2311 return error(AlignLoc, "stack alignment is not a power of two"); 2312 return false; 2313 } 2314 2315 /// parseIndexList - This parses the index list for an insert/extractvalue 2316 /// instruction. This sets AteExtraComma in the case where we eat an extra 2317 /// comma at the end of the line and find that it is followed by metadata. 2318 /// Clients that don't allow metadata can call the version of this function that 2319 /// only takes one argument. 2320 /// 2321 /// parseIndexList 2322 /// ::= (',' uint32)+ 2323 /// 2324 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices, 2325 bool &AteExtraComma) { 2326 AteExtraComma = false; 2327 2328 if (Lex.getKind() != lltok::comma) 2329 return tokError("expected ',' as start of index list"); 2330 2331 while (EatIfPresent(lltok::comma)) { 2332 if (Lex.getKind() == lltok::MetadataVar) { 2333 if (Indices.empty()) 2334 return tokError("expected index"); 2335 AteExtraComma = true; 2336 return false; 2337 } 2338 unsigned Idx = 0; 2339 if (parseUInt32(Idx)) 2340 return true; 2341 Indices.push_back(Idx); 2342 } 2343 2344 return false; 2345 } 2346 2347 //===----------------------------------------------------------------------===// 2348 // Type Parsing. 2349 //===----------------------------------------------------------------------===// 2350 2351 /// parseType - parse a type. 2352 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2353 SMLoc TypeLoc = Lex.getLoc(); 2354 switch (Lex.getKind()) { 2355 default: 2356 return tokError(Msg); 2357 case lltok::Type: 2358 // Type ::= 'float' | 'void' (etc) 2359 Result = Lex.getTyVal(); 2360 Lex.Lex(); 2361 2362 // Handle "ptr" opaque pointer type. 2363 // 2364 // Type ::= ptr ('addrspace' '(' uint32 ')')? 2365 if (Result->isOpaquePointerTy()) { 2366 unsigned AddrSpace; 2367 if (parseOptionalAddrSpace(AddrSpace)) 2368 return true; 2369 Result = PointerType::get(getContext(), AddrSpace); 2370 2371 // Give a nice error for 'ptr*'. 2372 if (Lex.getKind() == lltok::star) 2373 return tokError("ptr* is invalid - use ptr instead"); 2374 2375 // Fall through to parsing the type suffixes only if this 'ptr' is a 2376 // function return. Otherwise, return success, implicitly rejecting other 2377 // suffixes. 2378 if (Lex.getKind() != lltok::lparen) 2379 return false; 2380 } 2381 break; 2382 case lltok::lbrace: 2383 // Type ::= StructType 2384 if (parseAnonStructType(Result, false)) 2385 return true; 2386 break; 2387 case lltok::lsquare: 2388 // Type ::= '[' ... ']' 2389 Lex.Lex(); // eat the lsquare. 2390 if (parseArrayVectorType(Result, false)) 2391 return true; 2392 break; 2393 case lltok::less: // Either vector or packed struct. 2394 // Type ::= '<' ... '>' 2395 Lex.Lex(); 2396 if (Lex.getKind() == lltok::lbrace) { 2397 if (parseAnonStructType(Result, true) || 2398 parseToken(lltok::greater, "expected '>' at end of packed struct")) 2399 return true; 2400 } else if (parseArrayVectorType(Result, true)) 2401 return true; 2402 break; 2403 case lltok::LocalVar: { 2404 // Type ::= %foo 2405 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2406 2407 // If the type hasn't been defined yet, create a forward definition and 2408 // remember where that forward def'n was seen (in case it never is defined). 2409 if (!Entry.first) { 2410 Entry.first = StructType::create(Context, Lex.getStrVal()); 2411 Entry.second = Lex.getLoc(); 2412 } 2413 Result = Entry.first; 2414 Lex.Lex(); 2415 break; 2416 } 2417 2418 case lltok::LocalVarID: { 2419 // Type ::= %4 2420 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2421 2422 // If the type hasn't been defined yet, create a forward definition and 2423 // remember where that forward def'n was seen (in case it never is defined). 2424 if (!Entry.first) { 2425 Entry.first = StructType::create(Context); 2426 Entry.second = Lex.getLoc(); 2427 } 2428 Result = Entry.first; 2429 Lex.Lex(); 2430 break; 2431 } 2432 } 2433 2434 // parse the type suffixes. 2435 while (true) { 2436 switch (Lex.getKind()) { 2437 // End of type. 2438 default: 2439 if (!AllowVoid && Result->isVoidTy()) 2440 return error(TypeLoc, "void type only allowed for function results"); 2441 return false; 2442 2443 // Type ::= Type '*' 2444 case lltok::star: 2445 if (Result->isLabelTy()) 2446 return tokError("basic block pointers are invalid"); 2447 if (Result->isVoidTy()) 2448 return tokError("pointers to void are invalid - use i8* instead"); 2449 if (!PointerType::isValidElementType(Result)) 2450 return tokError("pointer to this type is invalid"); 2451 Result = PointerType::getUnqual(Result); 2452 Lex.Lex(); 2453 break; 2454 2455 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2456 case lltok::kw_addrspace: { 2457 if (Result->isLabelTy()) 2458 return tokError("basic block pointers are invalid"); 2459 if (Result->isVoidTy()) 2460 return tokError("pointers to void are invalid; use i8* instead"); 2461 if (!PointerType::isValidElementType(Result)) 2462 return tokError("pointer to this type is invalid"); 2463 unsigned AddrSpace; 2464 if (parseOptionalAddrSpace(AddrSpace) || 2465 parseToken(lltok::star, "expected '*' in address space")) 2466 return true; 2467 2468 Result = PointerType::get(Result, AddrSpace); 2469 break; 2470 } 2471 2472 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2473 case lltok::lparen: 2474 if (parseFunctionType(Result)) 2475 return true; 2476 break; 2477 } 2478 } 2479 } 2480 2481 /// parseParameterList 2482 /// ::= '(' ')' 2483 /// ::= '(' Arg (',' Arg)* ')' 2484 /// Arg 2485 /// ::= Type OptionalAttributes Value OptionalAttributes 2486 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2487 PerFunctionState &PFS, bool IsMustTailCall, 2488 bool InVarArgsFunc) { 2489 if (parseToken(lltok::lparen, "expected '(' in call")) 2490 return true; 2491 2492 while (Lex.getKind() != lltok::rparen) { 2493 // If this isn't the first argument, we need a comma. 2494 if (!ArgList.empty() && 2495 parseToken(lltok::comma, "expected ',' in argument list")) 2496 return true; 2497 2498 // parse an ellipsis if this is a musttail call in a variadic function. 2499 if (Lex.getKind() == lltok::dotdotdot) { 2500 const char *Msg = "unexpected ellipsis in argument list for "; 2501 if (!IsMustTailCall) 2502 return tokError(Twine(Msg) + "non-musttail call"); 2503 if (!InVarArgsFunc) 2504 return tokError(Twine(Msg) + "musttail call in non-varargs function"); 2505 Lex.Lex(); // Lex the '...', it is purely for readability. 2506 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 2507 } 2508 2509 // parse the argument. 2510 LocTy ArgLoc; 2511 Type *ArgTy = nullptr; 2512 Value *V; 2513 if (parseType(ArgTy, ArgLoc)) 2514 return true; 2515 2516 AttrBuilder ArgAttrs(M->getContext()); 2517 2518 if (ArgTy->isMetadataTy()) { 2519 if (parseMetadataAsValue(V, PFS)) 2520 return true; 2521 } else { 2522 // Otherwise, handle normal operands. 2523 if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS)) 2524 return true; 2525 } 2526 ArgList.push_back(ParamInfo( 2527 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2528 } 2529 2530 if (IsMustTailCall && InVarArgsFunc) 2531 return tokError("expected '...' at end of argument list for musttail call " 2532 "in varargs function"); 2533 2534 Lex.Lex(); // Lex the ')'. 2535 return false; 2536 } 2537 2538 /// parseRequiredTypeAttr 2539 /// ::= attrname(<ty>) 2540 bool LLParser::parseRequiredTypeAttr(AttrBuilder &B, lltok::Kind AttrToken, 2541 Attribute::AttrKind AttrKind) { 2542 Type *Ty = nullptr; 2543 if (!EatIfPresent(AttrToken)) 2544 return true; 2545 if (!EatIfPresent(lltok::lparen)) 2546 return error(Lex.getLoc(), "expected '('"); 2547 if (parseType(Ty)) 2548 return true; 2549 if (!EatIfPresent(lltok::rparen)) 2550 return error(Lex.getLoc(), "expected ')'"); 2551 2552 B.addTypeAttr(AttrKind, Ty); 2553 return false; 2554 } 2555 2556 /// parseOptionalOperandBundles 2557 /// ::= /*empty*/ 2558 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2559 /// 2560 /// OperandBundle 2561 /// ::= bundle-tag '(' ')' 2562 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2563 /// 2564 /// bundle-tag ::= String Constant 2565 bool LLParser::parseOptionalOperandBundles( 2566 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2567 LocTy BeginLoc = Lex.getLoc(); 2568 if (!EatIfPresent(lltok::lsquare)) 2569 return false; 2570 2571 while (Lex.getKind() != lltok::rsquare) { 2572 // If this isn't the first operand bundle, we need a comma. 2573 if (!BundleList.empty() && 2574 parseToken(lltok::comma, "expected ',' in input list")) 2575 return true; 2576 2577 std::string Tag; 2578 if (parseStringConstant(Tag)) 2579 return true; 2580 2581 if (parseToken(lltok::lparen, "expected '(' in operand bundle")) 2582 return true; 2583 2584 std::vector<Value *> Inputs; 2585 while (Lex.getKind() != lltok::rparen) { 2586 // If this isn't the first input, we need a comma. 2587 if (!Inputs.empty() && 2588 parseToken(lltok::comma, "expected ',' in input list")) 2589 return true; 2590 2591 Type *Ty = nullptr; 2592 Value *Input = nullptr; 2593 if (parseType(Ty) || parseValue(Ty, Input, PFS)) 2594 return true; 2595 Inputs.push_back(Input); 2596 } 2597 2598 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2599 2600 Lex.Lex(); // Lex the ')'. 2601 } 2602 2603 if (BundleList.empty()) 2604 return error(BeginLoc, "operand bundle set must not be empty"); 2605 2606 Lex.Lex(); // Lex the ']'. 2607 return false; 2608 } 2609 2610 /// parseArgumentList - parse the argument list for a function type or function 2611 /// prototype. 2612 /// ::= '(' ArgTypeListI ')' 2613 /// ArgTypeListI 2614 /// ::= /*empty*/ 2615 /// ::= '...' 2616 /// ::= ArgTypeList ',' '...' 2617 /// ::= ArgType (',' ArgType)* 2618 /// 2619 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2620 bool &IsVarArg) { 2621 unsigned CurValID = 0; 2622 IsVarArg = false; 2623 assert(Lex.getKind() == lltok::lparen); 2624 Lex.Lex(); // eat the (. 2625 2626 if (Lex.getKind() == lltok::rparen) { 2627 // empty 2628 } else if (Lex.getKind() == lltok::dotdotdot) { 2629 IsVarArg = true; 2630 Lex.Lex(); 2631 } else { 2632 LocTy TypeLoc = Lex.getLoc(); 2633 Type *ArgTy = nullptr; 2634 AttrBuilder Attrs(M->getContext()); 2635 std::string Name; 2636 2637 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) 2638 return true; 2639 2640 if (ArgTy->isVoidTy()) 2641 return error(TypeLoc, "argument can not have void type"); 2642 2643 if (Lex.getKind() == lltok::LocalVar) { 2644 Name = Lex.getStrVal(); 2645 Lex.Lex(); 2646 } else if (Lex.getKind() == lltok::LocalVarID) { 2647 if (Lex.getUIntVal() != CurValID) 2648 return error(TypeLoc, "argument expected to be numbered '%" + 2649 Twine(CurValID) + "'"); 2650 ++CurValID; 2651 Lex.Lex(); 2652 } 2653 2654 if (!FunctionType::isValidArgumentType(ArgTy)) 2655 return error(TypeLoc, "invalid type for function argument"); 2656 2657 ArgList.emplace_back(TypeLoc, ArgTy, 2658 AttributeSet::get(ArgTy->getContext(), Attrs), 2659 std::move(Name)); 2660 2661 while (EatIfPresent(lltok::comma)) { 2662 // Handle ... at end of arg list. 2663 if (EatIfPresent(lltok::dotdotdot)) { 2664 IsVarArg = true; 2665 break; 2666 } 2667 2668 // Otherwise must be an argument type. 2669 TypeLoc = Lex.getLoc(); 2670 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) 2671 return true; 2672 2673 if (ArgTy->isVoidTy()) 2674 return error(TypeLoc, "argument can not have void type"); 2675 2676 if (Lex.getKind() == lltok::LocalVar) { 2677 Name = Lex.getStrVal(); 2678 Lex.Lex(); 2679 } else { 2680 if (Lex.getKind() == lltok::LocalVarID) { 2681 if (Lex.getUIntVal() != CurValID) 2682 return error(TypeLoc, "argument expected to be numbered '%" + 2683 Twine(CurValID) + "'"); 2684 Lex.Lex(); 2685 } 2686 ++CurValID; 2687 Name = ""; 2688 } 2689 2690 if (!ArgTy->isFirstClassType()) 2691 return error(TypeLoc, "invalid type for function argument"); 2692 2693 ArgList.emplace_back(TypeLoc, ArgTy, 2694 AttributeSet::get(ArgTy->getContext(), Attrs), 2695 std::move(Name)); 2696 } 2697 } 2698 2699 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 2700 } 2701 2702 /// parseFunctionType 2703 /// ::= Type ArgumentList OptionalAttrs 2704 bool LLParser::parseFunctionType(Type *&Result) { 2705 assert(Lex.getKind() == lltok::lparen); 2706 2707 if (!FunctionType::isValidReturnType(Result)) 2708 return tokError("invalid function return type"); 2709 2710 SmallVector<ArgInfo, 8> ArgList; 2711 bool IsVarArg; 2712 if (parseArgumentList(ArgList, IsVarArg)) 2713 return true; 2714 2715 // Reject names on the arguments lists. 2716 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2717 if (!ArgList[i].Name.empty()) 2718 return error(ArgList[i].Loc, "argument name invalid in function type"); 2719 if (ArgList[i].Attrs.hasAttributes()) 2720 return error(ArgList[i].Loc, 2721 "argument attributes invalid in function type"); 2722 } 2723 2724 SmallVector<Type*, 16> ArgListTy; 2725 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2726 ArgListTy.push_back(ArgList[i].Ty); 2727 2728 Result = FunctionType::get(Result, ArgListTy, IsVarArg); 2729 return false; 2730 } 2731 2732 /// parseAnonStructType - parse an anonymous struct type, which is inlined into 2733 /// other structs. 2734 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) { 2735 SmallVector<Type*, 8> Elts; 2736 if (parseStructBody(Elts)) 2737 return true; 2738 2739 Result = StructType::get(Context, Elts, Packed); 2740 return false; 2741 } 2742 2743 /// parseStructDefinition - parse a struct in a 'type' definition. 2744 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name, 2745 std::pair<Type *, LocTy> &Entry, 2746 Type *&ResultTy) { 2747 // If the type was already defined, diagnose the redefinition. 2748 if (Entry.first && !Entry.second.isValid()) 2749 return error(TypeLoc, "redefinition of type"); 2750 2751 // If we have opaque, just return without filling in the definition for the 2752 // struct. This counts as a definition as far as the .ll file goes. 2753 if (EatIfPresent(lltok::kw_opaque)) { 2754 // This type is being defined, so clear the location to indicate this. 2755 Entry.second = SMLoc(); 2756 2757 // If this type number has never been uttered, create it. 2758 if (!Entry.first) 2759 Entry.first = StructType::create(Context, Name); 2760 ResultTy = Entry.first; 2761 return false; 2762 } 2763 2764 // If the type starts with '<', then it is either a packed struct or a vector. 2765 bool isPacked = EatIfPresent(lltok::less); 2766 2767 // If we don't have a struct, then we have a random type alias, which we 2768 // accept for compatibility with old files. These types are not allowed to be 2769 // forward referenced and not allowed to be recursive. 2770 if (Lex.getKind() != lltok::lbrace) { 2771 if (Entry.first) 2772 return error(TypeLoc, "forward references to non-struct type"); 2773 2774 ResultTy = nullptr; 2775 if (isPacked) 2776 return parseArrayVectorType(ResultTy, true); 2777 return parseType(ResultTy); 2778 } 2779 2780 // This type is being defined, so clear the location to indicate this. 2781 Entry.second = SMLoc(); 2782 2783 // If this type number has never been uttered, create it. 2784 if (!Entry.first) 2785 Entry.first = StructType::create(Context, Name); 2786 2787 StructType *STy = cast<StructType>(Entry.first); 2788 2789 SmallVector<Type*, 8> Body; 2790 if (parseStructBody(Body) || 2791 (isPacked && parseToken(lltok::greater, "expected '>' in packed struct"))) 2792 return true; 2793 2794 STy->setBody(Body, isPacked); 2795 ResultTy = STy; 2796 return false; 2797 } 2798 2799 /// parseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2800 /// StructType 2801 /// ::= '{' '}' 2802 /// ::= '{' Type (',' Type)* '}' 2803 /// ::= '<' '{' '}' '>' 2804 /// ::= '<' '{' Type (',' Type)* '}' '>' 2805 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) { 2806 assert(Lex.getKind() == lltok::lbrace); 2807 Lex.Lex(); // Consume the '{' 2808 2809 // Handle the empty struct. 2810 if (EatIfPresent(lltok::rbrace)) 2811 return false; 2812 2813 LocTy EltTyLoc = Lex.getLoc(); 2814 Type *Ty = nullptr; 2815 if (parseType(Ty)) 2816 return true; 2817 Body.push_back(Ty); 2818 2819 if (!StructType::isValidElementType(Ty)) 2820 return error(EltTyLoc, "invalid element type for struct"); 2821 2822 while (EatIfPresent(lltok::comma)) { 2823 EltTyLoc = Lex.getLoc(); 2824 if (parseType(Ty)) 2825 return true; 2826 2827 if (!StructType::isValidElementType(Ty)) 2828 return error(EltTyLoc, "invalid element type for struct"); 2829 2830 Body.push_back(Ty); 2831 } 2832 2833 return parseToken(lltok::rbrace, "expected '}' at end of struct"); 2834 } 2835 2836 /// parseArrayVectorType - parse an array or vector type, assuming the first 2837 /// token has already been consumed. 2838 /// Type 2839 /// ::= '[' APSINTVAL 'x' Types ']' 2840 /// ::= '<' APSINTVAL 'x' Types '>' 2841 /// ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>' 2842 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) { 2843 bool Scalable = false; 2844 2845 if (IsVector && Lex.getKind() == lltok::kw_vscale) { 2846 Lex.Lex(); // consume the 'vscale' 2847 if (parseToken(lltok::kw_x, "expected 'x' after vscale")) 2848 return true; 2849 2850 Scalable = true; 2851 } 2852 2853 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2854 Lex.getAPSIntVal().getBitWidth() > 64) 2855 return tokError("expected number in address space"); 2856 2857 LocTy SizeLoc = Lex.getLoc(); 2858 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2859 Lex.Lex(); 2860 2861 if (parseToken(lltok::kw_x, "expected 'x' after element count")) 2862 return true; 2863 2864 LocTy TypeLoc = Lex.getLoc(); 2865 Type *EltTy = nullptr; 2866 if (parseType(EltTy)) 2867 return true; 2868 2869 if (parseToken(IsVector ? lltok::greater : lltok::rsquare, 2870 "expected end of sequential type")) 2871 return true; 2872 2873 if (IsVector) { 2874 if (Size == 0) 2875 return error(SizeLoc, "zero element vector is illegal"); 2876 if ((unsigned)Size != Size) 2877 return error(SizeLoc, "size too large for vector"); 2878 if (!VectorType::isValidElementType(EltTy)) 2879 return error(TypeLoc, "invalid vector element type"); 2880 Result = VectorType::get(EltTy, unsigned(Size), Scalable); 2881 } else { 2882 if (!ArrayType::isValidElementType(EltTy)) 2883 return error(TypeLoc, "invalid array element type"); 2884 Result = ArrayType::get(EltTy, Size); 2885 } 2886 return false; 2887 } 2888 2889 //===----------------------------------------------------------------------===// 2890 // Function Semantic Analysis. 2891 //===----------------------------------------------------------------------===// 2892 2893 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2894 int functionNumber) 2895 : P(p), F(f), FunctionNumber(functionNumber) { 2896 2897 // Insert unnamed arguments into the NumberedVals list. 2898 for (Argument &A : F.args()) 2899 if (!A.hasName()) 2900 NumberedVals.push_back(&A); 2901 } 2902 2903 LLParser::PerFunctionState::~PerFunctionState() { 2904 // If there were any forward referenced non-basicblock values, delete them. 2905 2906 for (const auto &P : ForwardRefVals) { 2907 if (isa<BasicBlock>(P.second.first)) 2908 continue; 2909 P.second.first->replaceAllUsesWith( 2910 UndefValue::get(P.second.first->getType())); 2911 P.second.first->deleteValue(); 2912 } 2913 2914 for (const auto &P : ForwardRefValIDs) { 2915 if (isa<BasicBlock>(P.second.first)) 2916 continue; 2917 P.second.first->replaceAllUsesWith( 2918 UndefValue::get(P.second.first->getType())); 2919 P.second.first->deleteValue(); 2920 } 2921 } 2922 2923 bool LLParser::PerFunctionState::finishFunction() { 2924 if (!ForwardRefVals.empty()) 2925 return P.error(ForwardRefVals.begin()->second.second, 2926 "use of undefined value '%" + ForwardRefVals.begin()->first + 2927 "'"); 2928 if (!ForwardRefValIDs.empty()) 2929 return P.error(ForwardRefValIDs.begin()->second.second, 2930 "use of undefined value '%" + 2931 Twine(ForwardRefValIDs.begin()->first) + "'"); 2932 return false; 2933 } 2934 2935 /// getVal - Get a value with the specified name or ID, creating a 2936 /// forward reference record if needed. This can return null if the value 2937 /// exists but does not have the right type. 2938 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty, 2939 LocTy Loc) { 2940 // Look this name up in the normal function symbol table. 2941 Value *Val = F.getValueSymbolTable()->lookup(Name); 2942 2943 // If this is a forward reference for the value, see if we already created a 2944 // forward ref record. 2945 if (!Val) { 2946 auto I = ForwardRefVals.find(Name); 2947 if (I != ForwardRefVals.end()) 2948 Val = I->second.first; 2949 } 2950 2951 // If we have the value in the symbol table or fwd-ref table, return it. 2952 if (Val) 2953 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val); 2954 2955 // Don't make placeholders with invalid type. 2956 if (!Ty->isFirstClassType()) { 2957 P.error(Loc, "invalid use of a non-first-class type"); 2958 return nullptr; 2959 } 2960 2961 // Otherwise, create a new forward reference for this value and remember it. 2962 Value *FwdVal; 2963 if (Ty->isLabelTy()) { 2964 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2965 } else { 2966 FwdVal = new Argument(Ty, Name); 2967 } 2968 2969 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2970 return FwdVal; 2971 } 2972 2973 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc) { 2974 // Look this name up in the normal function symbol table. 2975 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2976 2977 // If this is a forward reference for the value, see if we already created a 2978 // forward ref record. 2979 if (!Val) { 2980 auto I = ForwardRefValIDs.find(ID); 2981 if (I != ForwardRefValIDs.end()) 2982 Val = I->second.first; 2983 } 2984 2985 // If we have the value in the symbol table or fwd-ref table, return it. 2986 if (Val) 2987 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val); 2988 2989 if (!Ty->isFirstClassType()) { 2990 P.error(Loc, "invalid use of a non-first-class type"); 2991 return nullptr; 2992 } 2993 2994 // Otherwise, create a new forward reference for this value and remember it. 2995 Value *FwdVal; 2996 if (Ty->isLabelTy()) { 2997 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2998 } else { 2999 FwdVal = new Argument(Ty); 3000 } 3001 3002 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 3003 return FwdVal; 3004 } 3005 3006 /// setInstName - After an instruction is parsed and inserted into its 3007 /// basic block, this installs its name. 3008 bool LLParser::PerFunctionState::setInstName(int NameID, 3009 const std::string &NameStr, 3010 LocTy NameLoc, Instruction *Inst) { 3011 // If this instruction has void type, it cannot have a name or ID specified. 3012 if (Inst->getType()->isVoidTy()) { 3013 if (NameID != -1 || !NameStr.empty()) 3014 return P.error(NameLoc, "instructions returning void cannot have a name"); 3015 return false; 3016 } 3017 3018 // If this was a numbered instruction, verify that the instruction is the 3019 // expected value and resolve any forward references. 3020 if (NameStr.empty()) { 3021 // If neither a name nor an ID was specified, just use the next ID. 3022 if (NameID == -1) 3023 NameID = NumberedVals.size(); 3024 3025 if (unsigned(NameID) != NumberedVals.size()) 3026 return P.error(NameLoc, "instruction expected to be numbered '%" + 3027 Twine(NumberedVals.size()) + "'"); 3028 3029 auto FI = ForwardRefValIDs.find(NameID); 3030 if (FI != ForwardRefValIDs.end()) { 3031 Value *Sentinel = FI->second.first; 3032 if (Sentinel->getType() != Inst->getType()) 3033 return P.error(NameLoc, "instruction forward referenced with type '" + 3034 getTypeString(FI->second.first->getType()) + 3035 "'"); 3036 3037 Sentinel->replaceAllUsesWith(Inst); 3038 Sentinel->deleteValue(); 3039 ForwardRefValIDs.erase(FI); 3040 } 3041 3042 NumberedVals.push_back(Inst); 3043 return false; 3044 } 3045 3046 // Otherwise, the instruction had a name. Resolve forward refs and set it. 3047 auto FI = ForwardRefVals.find(NameStr); 3048 if (FI != ForwardRefVals.end()) { 3049 Value *Sentinel = FI->second.first; 3050 if (Sentinel->getType() != Inst->getType()) 3051 return P.error(NameLoc, "instruction forward referenced with type '" + 3052 getTypeString(FI->second.first->getType()) + 3053 "'"); 3054 3055 Sentinel->replaceAllUsesWith(Inst); 3056 Sentinel->deleteValue(); 3057 ForwardRefVals.erase(FI); 3058 } 3059 3060 // Set the name on the instruction. 3061 Inst->setName(NameStr); 3062 3063 if (Inst->getName() != NameStr) 3064 return P.error(NameLoc, "multiple definition of local value named '" + 3065 NameStr + "'"); 3066 return false; 3067 } 3068 3069 /// getBB - Get a basic block with the specified name or ID, creating a 3070 /// forward reference record if needed. 3071 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name, 3072 LocTy Loc) { 3073 return dyn_cast_or_null<BasicBlock>( 3074 getVal(Name, Type::getLabelTy(F.getContext()), Loc)); 3075 } 3076 3077 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) { 3078 return dyn_cast_or_null<BasicBlock>( 3079 getVal(ID, Type::getLabelTy(F.getContext()), Loc)); 3080 } 3081 3082 /// defineBB - Define the specified basic block, which is either named or 3083 /// unnamed. If there is an error, this returns null otherwise it returns 3084 /// the block being defined. 3085 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name, 3086 int NameID, LocTy Loc) { 3087 BasicBlock *BB; 3088 if (Name.empty()) { 3089 if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) { 3090 P.error(Loc, "label expected to be numbered '" + 3091 Twine(NumberedVals.size()) + "'"); 3092 return nullptr; 3093 } 3094 BB = getBB(NumberedVals.size(), Loc); 3095 if (!BB) { 3096 P.error(Loc, "unable to create block numbered '" + 3097 Twine(NumberedVals.size()) + "'"); 3098 return nullptr; 3099 } 3100 } else { 3101 BB = getBB(Name, Loc); 3102 if (!BB) { 3103 P.error(Loc, "unable to create block named '" + Name + "'"); 3104 return nullptr; 3105 } 3106 } 3107 3108 // Move the block to the end of the function. Forward ref'd blocks are 3109 // inserted wherever they happen to be referenced. 3110 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 3111 3112 // Remove the block from forward ref sets. 3113 if (Name.empty()) { 3114 ForwardRefValIDs.erase(NumberedVals.size()); 3115 NumberedVals.push_back(BB); 3116 } else { 3117 // BB forward references are already in the function symbol table. 3118 ForwardRefVals.erase(Name); 3119 } 3120 3121 return BB; 3122 } 3123 3124 //===----------------------------------------------------------------------===// 3125 // Constants. 3126 //===----------------------------------------------------------------------===// 3127 3128 /// parseValID - parse an abstract value that doesn't necessarily have a 3129 /// type implied. For example, if we parse "4" we don't know what integer type 3130 /// it has. The value will later be combined with its type and checked for 3131 /// basic correctness. PFS is used to convert function-local operands of 3132 /// metadata (since metadata operands are not just parsed here but also 3133 /// converted to values). PFS can be null when we are not parsing metadata 3134 /// values inside a function. 3135 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS, Type *ExpectedTy) { 3136 ID.Loc = Lex.getLoc(); 3137 switch (Lex.getKind()) { 3138 default: 3139 return tokError("expected value token"); 3140 case lltok::GlobalID: // @42 3141 ID.UIntVal = Lex.getUIntVal(); 3142 ID.Kind = ValID::t_GlobalID; 3143 break; 3144 case lltok::GlobalVar: // @foo 3145 ID.StrVal = Lex.getStrVal(); 3146 ID.Kind = ValID::t_GlobalName; 3147 break; 3148 case lltok::LocalVarID: // %42 3149 ID.UIntVal = Lex.getUIntVal(); 3150 ID.Kind = ValID::t_LocalID; 3151 break; 3152 case lltok::LocalVar: // %foo 3153 ID.StrVal = Lex.getStrVal(); 3154 ID.Kind = ValID::t_LocalName; 3155 break; 3156 case lltok::APSInt: 3157 ID.APSIntVal = Lex.getAPSIntVal(); 3158 ID.Kind = ValID::t_APSInt; 3159 break; 3160 case lltok::APFloat: 3161 ID.APFloatVal = Lex.getAPFloatVal(); 3162 ID.Kind = ValID::t_APFloat; 3163 break; 3164 case lltok::kw_true: 3165 ID.ConstantVal = ConstantInt::getTrue(Context); 3166 ID.Kind = ValID::t_Constant; 3167 break; 3168 case lltok::kw_false: 3169 ID.ConstantVal = ConstantInt::getFalse(Context); 3170 ID.Kind = ValID::t_Constant; 3171 break; 3172 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 3173 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 3174 case lltok::kw_poison: ID.Kind = ValID::t_Poison; break; 3175 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 3176 case lltok::kw_none: ID.Kind = ValID::t_None; break; 3177 3178 case lltok::lbrace: { 3179 // ValID ::= '{' ConstVector '}' 3180 Lex.Lex(); 3181 SmallVector<Constant*, 16> Elts; 3182 if (parseGlobalValueVector(Elts) || 3183 parseToken(lltok::rbrace, "expected end of struct constant")) 3184 return true; 3185 3186 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3187 ID.UIntVal = Elts.size(); 3188 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3189 Elts.size() * sizeof(Elts[0])); 3190 ID.Kind = ValID::t_ConstantStruct; 3191 return false; 3192 } 3193 case lltok::less: { 3194 // ValID ::= '<' ConstVector '>' --> Vector. 3195 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 3196 Lex.Lex(); 3197 bool isPackedStruct = EatIfPresent(lltok::lbrace); 3198 3199 SmallVector<Constant*, 16> Elts; 3200 LocTy FirstEltLoc = Lex.getLoc(); 3201 if (parseGlobalValueVector(Elts) || 3202 (isPackedStruct && 3203 parseToken(lltok::rbrace, "expected end of packed struct")) || 3204 parseToken(lltok::greater, "expected end of constant")) 3205 return true; 3206 3207 if (isPackedStruct) { 3208 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3209 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3210 Elts.size() * sizeof(Elts[0])); 3211 ID.UIntVal = Elts.size(); 3212 ID.Kind = ValID::t_PackedConstantStruct; 3213 return false; 3214 } 3215 3216 if (Elts.empty()) 3217 return error(ID.Loc, "constant vector must not be empty"); 3218 3219 if (!Elts[0]->getType()->isIntegerTy() && 3220 !Elts[0]->getType()->isFloatingPointTy() && 3221 !Elts[0]->getType()->isPointerTy()) 3222 return error( 3223 FirstEltLoc, 3224 "vector elements must have integer, pointer or floating point type"); 3225 3226 // Verify that all the vector elements have the same type. 3227 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 3228 if (Elts[i]->getType() != Elts[0]->getType()) 3229 return error(FirstEltLoc, "vector element #" + Twine(i) + 3230 " is not of type '" + 3231 getTypeString(Elts[0]->getType())); 3232 3233 ID.ConstantVal = ConstantVector::get(Elts); 3234 ID.Kind = ValID::t_Constant; 3235 return false; 3236 } 3237 case lltok::lsquare: { // Array Constant 3238 Lex.Lex(); 3239 SmallVector<Constant*, 16> Elts; 3240 LocTy FirstEltLoc = Lex.getLoc(); 3241 if (parseGlobalValueVector(Elts) || 3242 parseToken(lltok::rsquare, "expected end of array constant")) 3243 return true; 3244 3245 // Handle empty element. 3246 if (Elts.empty()) { 3247 // Use undef instead of an array because it's inconvenient to determine 3248 // the element type at this point, there being no elements to examine. 3249 ID.Kind = ValID::t_EmptyArray; 3250 return false; 3251 } 3252 3253 if (!Elts[0]->getType()->isFirstClassType()) 3254 return error(FirstEltLoc, "invalid array element type: " + 3255 getTypeString(Elts[0]->getType())); 3256 3257 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 3258 3259 // Verify all elements are correct type! 3260 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 3261 if (Elts[i]->getType() != Elts[0]->getType()) 3262 return error(FirstEltLoc, "array element #" + Twine(i) + 3263 " is not of type '" + 3264 getTypeString(Elts[0]->getType())); 3265 } 3266 3267 ID.ConstantVal = ConstantArray::get(ATy, Elts); 3268 ID.Kind = ValID::t_Constant; 3269 return false; 3270 } 3271 case lltok::kw_c: // c "foo" 3272 Lex.Lex(); 3273 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 3274 false); 3275 if (parseToken(lltok::StringConstant, "expected string")) 3276 return true; 3277 ID.Kind = ValID::t_Constant; 3278 return false; 3279 3280 case lltok::kw_asm: { 3281 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 3282 // STRINGCONSTANT 3283 bool HasSideEffect, AlignStack, AsmDialect, CanThrow; 3284 Lex.Lex(); 3285 if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 3286 parseOptionalToken(lltok::kw_alignstack, AlignStack) || 3287 parseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 3288 parseOptionalToken(lltok::kw_unwind, CanThrow) || 3289 parseStringConstant(ID.StrVal) || 3290 parseToken(lltok::comma, "expected comma in inline asm expression") || 3291 parseToken(lltok::StringConstant, "expected constraint string")) 3292 return true; 3293 ID.StrVal2 = Lex.getStrVal(); 3294 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack) << 1) | 3295 (unsigned(AsmDialect) << 2) | (unsigned(CanThrow) << 3); 3296 ID.Kind = ValID::t_InlineAsm; 3297 return false; 3298 } 3299 3300 case lltok::kw_blockaddress: { 3301 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 3302 Lex.Lex(); 3303 3304 ValID Fn, Label; 3305 3306 if (parseToken(lltok::lparen, "expected '(' in block address expression") || 3307 parseValID(Fn, PFS) || 3308 parseToken(lltok::comma, 3309 "expected comma in block address expression") || 3310 parseValID(Label, PFS) || 3311 parseToken(lltok::rparen, "expected ')' in block address expression")) 3312 return true; 3313 3314 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3315 return error(Fn.Loc, "expected function name in blockaddress"); 3316 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 3317 return error(Label.Loc, "expected basic block name in blockaddress"); 3318 3319 // Try to find the function (but skip it if it's forward-referenced). 3320 GlobalValue *GV = nullptr; 3321 if (Fn.Kind == ValID::t_GlobalID) { 3322 if (Fn.UIntVal < NumberedVals.size()) 3323 GV = NumberedVals[Fn.UIntVal]; 3324 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3325 GV = M->getNamedValue(Fn.StrVal); 3326 } 3327 Function *F = nullptr; 3328 if (GV) { 3329 // Confirm that it's actually a function with a definition. 3330 if (!isa<Function>(GV)) 3331 return error(Fn.Loc, "expected function name in blockaddress"); 3332 F = cast<Function>(GV); 3333 if (F->isDeclaration()) 3334 return error(Fn.Loc, "cannot take blockaddress inside a declaration"); 3335 } 3336 3337 if (!F) { 3338 // Make a global variable as a placeholder for this reference. 3339 GlobalValue *&FwdRef = 3340 ForwardRefBlockAddresses.insert(std::make_pair( 3341 std::move(Fn), 3342 std::map<ValID, GlobalValue *>())) 3343 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 3344 .first->second; 3345 if (!FwdRef) { 3346 unsigned FwdDeclAS; 3347 if (ExpectedTy) { 3348 // If we know the type that the blockaddress is being assigned to, 3349 // we can use the address space of that type. 3350 if (!ExpectedTy->isPointerTy()) 3351 return error(ID.Loc, 3352 "type of blockaddress must be a pointer and not '" + 3353 getTypeString(ExpectedTy) + "'"); 3354 FwdDeclAS = ExpectedTy->getPointerAddressSpace(); 3355 } else if (PFS) { 3356 // Otherwise, we default the address space of the current function. 3357 FwdDeclAS = PFS->getFunction().getAddressSpace(); 3358 } else { 3359 llvm_unreachable("Unknown address space for blockaddress"); 3360 } 3361 FwdRef = new GlobalVariable( 3362 *M, Type::getInt8Ty(Context), false, GlobalValue::InternalLinkage, 3363 nullptr, "", nullptr, GlobalValue::NotThreadLocal, FwdDeclAS); 3364 } 3365 3366 ID.ConstantVal = FwdRef; 3367 ID.Kind = ValID::t_Constant; 3368 return false; 3369 } 3370 3371 // We found the function; now find the basic block. Don't use PFS, since we 3372 // might be inside a constant expression. 3373 BasicBlock *BB; 3374 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 3375 if (Label.Kind == ValID::t_LocalID) 3376 BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc); 3377 else 3378 BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc); 3379 if (!BB) 3380 return error(Label.Loc, "referenced value is not a basic block"); 3381 } else { 3382 if (Label.Kind == ValID::t_LocalID) 3383 return error(Label.Loc, "cannot take address of numeric label after " 3384 "the function is defined"); 3385 BB = dyn_cast_or_null<BasicBlock>( 3386 F->getValueSymbolTable()->lookup(Label.StrVal)); 3387 if (!BB) 3388 return error(Label.Loc, "referenced value is not a basic block"); 3389 } 3390 3391 ID.ConstantVal = BlockAddress::get(F, BB); 3392 ID.Kind = ValID::t_Constant; 3393 return false; 3394 } 3395 3396 case lltok::kw_dso_local_equivalent: { 3397 // ValID ::= 'dso_local_equivalent' @foo 3398 Lex.Lex(); 3399 3400 ValID Fn; 3401 3402 if (parseValID(Fn, PFS)) 3403 return true; 3404 3405 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3406 return error(Fn.Loc, 3407 "expected global value name in dso_local_equivalent"); 3408 3409 // Try to find the function (but skip it if it's forward-referenced). 3410 GlobalValue *GV = nullptr; 3411 if (Fn.Kind == ValID::t_GlobalID) { 3412 if (Fn.UIntVal < NumberedVals.size()) 3413 GV = NumberedVals[Fn.UIntVal]; 3414 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3415 GV = M->getNamedValue(Fn.StrVal); 3416 } 3417 3418 assert(GV && "Could not find a corresponding global variable"); 3419 3420 if (!GV->getValueType()->isFunctionTy()) 3421 return error(Fn.Loc, "expected a function, alias to function, or ifunc " 3422 "in dso_local_equivalent"); 3423 3424 ID.ConstantVal = DSOLocalEquivalent::get(GV); 3425 ID.Kind = ValID::t_Constant; 3426 return false; 3427 } 3428 3429 case lltok::kw_no_cfi: { 3430 // ValID ::= 'no_cfi' @foo 3431 Lex.Lex(); 3432 3433 if (parseValID(ID, PFS)) 3434 return true; 3435 3436 if (ID.Kind != ValID::t_GlobalID && ID.Kind != ValID::t_GlobalName) 3437 return error(ID.Loc, "expected global value name in no_cfi"); 3438 3439 ID.NoCFI = true; 3440 return false; 3441 } 3442 3443 case lltok::kw_trunc: 3444 case lltok::kw_zext: 3445 case lltok::kw_sext: 3446 case lltok::kw_fptrunc: 3447 case lltok::kw_fpext: 3448 case lltok::kw_bitcast: 3449 case lltok::kw_addrspacecast: 3450 case lltok::kw_uitofp: 3451 case lltok::kw_sitofp: 3452 case lltok::kw_fptoui: 3453 case lltok::kw_fptosi: 3454 case lltok::kw_inttoptr: 3455 case lltok::kw_ptrtoint: { 3456 unsigned Opc = Lex.getUIntVal(); 3457 Type *DestTy = nullptr; 3458 Constant *SrcVal; 3459 Lex.Lex(); 3460 if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3461 parseGlobalTypeAndValue(SrcVal) || 3462 parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3463 parseType(DestTy) || 3464 parseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3465 return true; 3466 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3467 return error(ID.Loc, "invalid cast opcode for cast from '" + 3468 getTypeString(SrcVal->getType()) + "' to '" + 3469 getTypeString(DestTy) + "'"); 3470 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3471 SrcVal, DestTy); 3472 ID.Kind = ValID::t_Constant; 3473 return false; 3474 } 3475 case lltok::kw_extractvalue: 3476 return error(ID.Loc, "extractvalue constexprs are no longer supported"); 3477 case lltok::kw_insertvalue: 3478 return error(ID.Loc, "insertvalue constexprs are no longer supported"); 3479 case lltok::kw_udiv: 3480 return error(ID.Loc, "udiv constexprs are no longer supported"); 3481 case lltok::kw_sdiv: 3482 return error(ID.Loc, "sdiv constexprs are no longer supported"); 3483 case lltok::kw_urem: 3484 return error(ID.Loc, "urem constexprs are no longer supported"); 3485 case lltok::kw_srem: 3486 return error(ID.Loc, "srem constexprs are no longer supported"); 3487 case lltok::kw_fadd: 3488 return error(ID.Loc, "fadd constexprs are no longer supported"); 3489 case lltok::kw_fsub: 3490 return error(ID.Loc, "fsub constexprs are no longer supported"); 3491 case lltok::kw_fmul: 3492 return error(ID.Loc, "fmul constexprs are no longer supported"); 3493 case lltok::kw_fdiv: 3494 return error(ID.Loc, "fdiv constexprs are no longer supported"); 3495 case lltok::kw_frem: 3496 return error(ID.Loc, "frem constexprs are no longer supported"); 3497 case lltok::kw_icmp: 3498 case lltok::kw_fcmp: { 3499 unsigned PredVal, Opc = Lex.getUIntVal(); 3500 Constant *Val0, *Val1; 3501 Lex.Lex(); 3502 if (parseCmpPredicate(PredVal, Opc) || 3503 parseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3504 parseGlobalTypeAndValue(Val0) || 3505 parseToken(lltok::comma, "expected comma in compare constantexpr") || 3506 parseGlobalTypeAndValue(Val1) || 3507 parseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3508 return true; 3509 3510 if (Val0->getType() != Val1->getType()) 3511 return error(ID.Loc, "compare operands must have the same type"); 3512 3513 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3514 3515 if (Opc == Instruction::FCmp) { 3516 if (!Val0->getType()->isFPOrFPVectorTy()) 3517 return error(ID.Loc, "fcmp requires floating point operands"); 3518 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3519 } else { 3520 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3521 if (!Val0->getType()->isIntOrIntVectorTy() && 3522 !Val0->getType()->isPtrOrPtrVectorTy()) 3523 return error(ID.Loc, "icmp requires pointer or integer operands"); 3524 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3525 } 3526 ID.Kind = ValID::t_Constant; 3527 return false; 3528 } 3529 3530 // Unary Operators. 3531 case lltok::kw_fneg: { 3532 unsigned Opc = Lex.getUIntVal(); 3533 Constant *Val; 3534 Lex.Lex(); 3535 if (parseToken(lltok::lparen, "expected '(' in unary constantexpr") || 3536 parseGlobalTypeAndValue(Val) || 3537 parseToken(lltok::rparen, "expected ')' in unary constantexpr")) 3538 return true; 3539 3540 // Check that the type is valid for the operator. 3541 switch (Opc) { 3542 case Instruction::FNeg: 3543 if (!Val->getType()->isFPOrFPVectorTy()) 3544 return error(ID.Loc, "constexpr requires fp operands"); 3545 break; 3546 default: llvm_unreachable("Unknown unary operator!"); 3547 } 3548 unsigned Flags = 0; 3549 Constant *C = ConstantExpr::get(Opc, Val, Flags); 3550 ID.ConstantVal = C; 3551 ID.Kind = ValID::t_Constant; 3552 return false; 3553 } 3554 // Binary Operators. 3555 case lltok::kw_add: 3556 case lltok::kw_sub: 3557 case lltok::kw_mul: 3558 case lltok::kw_shl: 3559 case lltok::kw_lshr: 3560 case lltok::kw_ashr: { 3561 bool NUW = false; 3562 bool NSW = false; 3563 bool Exact = false; 3564 unsigned Opc = Lex.getUIntVal(); 3565 Constant *Val0, *Val1; 3566 Lex.Lex(); 3567 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3568 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3569 if (EatIfPresent(lltok::kw_nuw)) 3570 NUW = true; 3571 if (EatIfPresent(lltok::kw_nsw)) { 3572 NSW = true; 3573 if (EatIfPresent(lltok::kw_nuw)) 3574 NUW = true; 3575 } 3576 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3577 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3578 if (EatIfPresent(lltok::kw_exact)) 3579 Exact = true; 3580 } 3581 if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3582 parseGlobalTypeAndValue(Val0) || 3583 parseToken(lltok::comma, "expected comma in binary constantexpr") || 3584 parseGlobalTypeAndValue(Val1) || 3585 parseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3586 return true; 3587 if (Val0->getType() != Val1->getType()) 3588 return error(ID.Loc, "operands of constexpr must have same type"); 3589 // Check that the type is valid for the operator. 3590 switch (Opc) { 3591 case Instruction::Add: 3592 case Instruction::Sub: 3593 case Instruction::Mul: 3594 case Instruction::UDiv: 3595 case Instruction::SDiv: 3596 case Instruction::URem: 3597 case Instruction::SRem: 3598 case Instruction::Shl: 3599 case Instruction::AShr: 3600 case Instruction::LShr: 3601 if (!Val0->getType()->isIntOrIntVectorTy()) 3602 return error(ID.Loc, "constexpr requires integer operands"); 3603 break; 3604 case Instruction::FAdd: 3605 case Instruction::FSub: 3606 case Instruction::FMul: 3607 case Instruction::FDiv: 3608 case Instruction::FRem: 3609 if (!Val0->getType()->isFPOrFPVectorTy()) 3610 return error(ID.Loc, "constexpr requires fp operands"); 3611 break; 3612 default: llvm_unreachable("Unknown binary operator!"); 3613 } 3614 unsigned Flags = 0; 3615 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3616 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3617 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3618 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3619 ID.ConstantVal = C; 3620 ID.Kind = ValID::t_Constant; 3621 return false; 3622 } 3623 3624 // Logical Operations 3625 case lltok::kw_and: 3626 case lltok::kw_or: 3627 case lltok::kw_xor: { 3628 unsigned Opc = Lex.getUIntVal(); 3629 Constant *Val0, *Val1; 3630 Lex.Lex(); 3631 if (parseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3632 parseGlobalTypeAndValue(Val0) || 3633 parseToken(lltok::comma, "expected comma in logical constantexpr") || 3634 parseGlobalTypeAndValue(Val1) || 3635 parseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3636 return true; 3637 if (Val0->getType() != Val1->getType()) 3638 return error(ID.Loc, "operands of constexpr must have same type"); 3639 if (!Val0->getType()->isIntOrIntVectorTy()) 3640 return error(ID.Loc, 3641 "constexpr requires integer or integer vector operands"); 3642 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3643 ID.Kind = ValID::t_Constant; 3644 return false; 3645 } 3646 3647 case lltok::kw_getelementptr: 3648 case lltok::kw_shufflevector: 3649 case lltok::kw_insertelement: 3650 case lltok::kw_extractelement: 3651 case lltok::kw_select: { 3652 unsigned Opc = Lex.getUIntVal(); 3653 SmallVector<Constant*, 16> Elts; 3654 bool InBounds = false; 3655 Type *Ty; 3656 Lex.Lex(); 3657 3658 if (Opc == Instruction::GetElementPtr) 3659 InBounds = EatIfPresent(lltok::kw_inbounds); 3660 3661 if (parseToken(lltok::lparen, "expected '(' in constantexpr")) 3662 return true; 3663 3664 LocTy ExplicitTypeLoc = Lex.getLoc(); 3665 if (Opc == Instruction::GetElementPtr) { 3666 if (parseType(Ty) || 3667 parseToken(lltok::comma, "expected comma after getelementptr's type")) 3668 return true; 3669 } 3670 3671 Optional<unsigned> InRangeOp; 3672 if (parseGlobalValueVector( 3673 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3674 parseToken(lltok::rparen, "expected ')' in constantexpr")) 3675 return true; 3676 3677 if (Opc == Instruction::GetElementPtr) { 3678 if (Elts.size() == 0 || 3679 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 3680 return error(ID.Loc, "base of getelementptr must be a pointer"); 3681 3682 Type *BaseType = Elts[0]->getType(); 3683 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3684 if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) { 3685 return error( 3686 ExplicitTypeLoc, 3687 typeComparisonErrorMessage( 3688 "explicit pointee type doesn't match operand's pointee type", 3689 Ty, BasePointerType->getNonOpaquePointerElementType())); 3690 } 3691 3692 unsigned GEPWidth = 3693 BaseType->isVectorTy() 3694 ? cast<FixedVectorType>(BaseType)->getNumElements() 3695 : 0; 3696 3697 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3698 for (Constant *Val : Indices) { 3699 Type *ValTy = Val->getType(); 3700 if (!ValTy->isIntOrIntVectorTy()) 3701 return error(ID.Loc, "getelementptr index must be an integer"); 3702 if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) { 3703 unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements(); 3704 if (GEPWidth && (ValNumEl != GEPWidth)) 3705 return error( 3706 ID.Loc, 3707 "getelementptr vector index has a wrong number of elements"); 3708 // GEPWidth may have been unknown because the base is a scalar, 3709 // but it is known now. 3710 GEPWidth = ValNumEl; 3711 } 3712 } 3713 3714 SmallPtrSet<Type*, 4> Visited; 3715 if (!Indices.empty() && !Ty->isSized(&Visited)) 3716 return error(ID.Loc, "base element of getelementptr must be sized"); 3717 3718 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3719 return error(ID.Loc, "invalid getelementptr indices"); 3720 3721 if (InRangeOp) { 3722 if (*InRangeOp == 0) 3723 return error(ID.Loc, 3724 "inrange keyword may not appear on pointer operand"); 3725 --*InRangeOp; 3726 } 3727 3728 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3729 InBounds, InRangeOp); 3730 } else if (Opc == Instruction::Select) { 3731 if (Elts.size() != 3) 3732 return error(ID.Loc, "expected three operands to select"); 3733 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3734 Elts[2])) 3735 return error(ID.Loc, Reason); 3736 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3737 } else if (Opc == Instruction::ShuffleVector) { 3738 if (Elts.size() != 3) 3739 return error(ID.Loc, "expected three operands to shufflevector"); 3740 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3741 return error(ID.Loc, "invalid operands to shufflevector"); 3742 SmallVector<int, 16> Mask; 3743 ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask); 3744 ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask); 3745 } else if (Opc == Instruction::ExtractElement) { 3746 if (Elts.size() != 2) 3747 return error(ID.Loc, "expected two operands to extractelement"); 3748 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3749 return error(ID.Loc, "invalid extractelement operands"); 3750 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3751 } else { 3752 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3753 if (Elts.size() != 3) 3754 return error(ID.Loc, "expected three operands to insertelement"); 3755 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3756 return error(ID.Loc, "invalid insertelement operands"); 3757 ID.ConstantVal = 3758 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3759 } 3760 3761 ID.Kind = ValID::t_Constant; 3762 return false; 3763 } 3764 } 3765 3766 Lex.Lex(); 3767 return false; 3768 } 3769 3770 /// parseGlobalValue - parse a global value with the specified type. 3771 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) { 3772 C = nullptr; 3773 ValID ID; 3774 Value *V = nullptr; 3775 bool Parsed = parseValID(ID, /*PFS=*/nullptr, Ty) || 3776 convertValIDToValue(Ty, ID, V, nullptr); 3777 if (V && !(C = dyn_cast<Constant>(V))) 3778 return error(ID.Loc, "global values must be constants"); 3779 return Parsed; 3780 } 3781 3782 bool LLParser::parseGlobalTypeAndValue(Constant *&V) { 3783 Type *Ty = nullptr; 3784 return parseType(Ty) || parseGlobalValue(Ty, V); 3785 } 3786 3787 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3788 C = nullptr; 3789 3790 LocTy KwLoc = Lex.getLoc(); 3791 if (!EatIfPresent(lltok::kw_comdat)) 3792 return false; 3793 3794 if (EatIfPresent(lltok::lparen)) { 3795 if (Lex.getKind() != lltok::ComdatVar) 3796 return tokError("expected comdat variable"); 3797 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3798 Lex.Lex(); 3799 if (parseToken(lltok::rparen, "expected ')' after comdat var")) 3800 return true; 3801 } else { 3802 if (GlobalName.empty()) 3803 return tokError("comdat cannot be unnamed"); 3804 C = getComdat(std::string(GlobalName), KwLoc); 3805 } 3806 3807 return false; 3808 } 3809 3810 /// parseGlobalValueVector 3811 /// ::= /*empty*/ 3812 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 3813 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 3814 Optional<unsigned> *InRangeOp) { 3815 // Empty list. 3816 if (Lex.getKind() == lltok::rbrace || 3817 Lex.getKind() == lltok::rsquare || 3818 Lex.getKind() == lltok::greater || 3819 Lex.getKind() == lltok::rparen) 3820 return false; 3821 3822 do { 3823 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 3824 *InRangeOp = Elts.size(); 3825 3826 Constant *C; 3827 if (parseGlobalTypeAndValue(C)) 3828 return true; 3829 Elts.push_back(C); 3830 } while (EatIfPresent(lltok::comma)); 3831 3832 return false; 3833 } 3834 3835 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) { 3836 SmallVector<Metadata *, 16> Elts; 3837 if (parseMDNodeVector(Elts)) 3838 return true; 3839 3840 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3841 return false; 3842 } 3843 3844 /// MDNode: 3845 /// ::= !{ ... } 3846 /// ::= !7 3847 /// ::= !DILocation(...) 3848 bool LLParser::parseMDNode(MDNode *&N) { 3849 if (Lex.getKind() == lltok::MetadataVar) 3850 return parseSpecializedMDNode(N); 3851 3852 return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N); 3853 } 3854 3855 bool LLParser::parseMDNodeTail(MDNode *&N) { 3856 // !{ ... } 3857 if (Lex.getKind() == lltok::lbrace) 3858 return parseMDTuple(N); 3859 3860 // !42 3861 return parseMDNodeID(N); 3862 } 3863 3864 namespace { 3865 3866 /// Structure to represent an optional metadata field. 3867 template <class FieldTy> struct MDFieldImpl { 3868 typedef MDFieldImpl ImplTy; 3869 FieldTy Val; 3870 bool Seen; 3871 3872 void assign(FieldTy Val) { 3873 Seen = true; 3874 this->Val = std::move(Val); 3875 } 3876 3877 explicit MDFieldImpl(FieldTy Default) 3878 : Val(std::move(Default)), Seen(false) {} 3879 }; 3880 3881 /// Structure to represent an optional metadata field that 3882 /// can be of either type (A or B) and encapsulates the 3883 /// MD<typeofA>Field and MD<typeofB>Field structs, so not 3884 /// to reimplement the specifics for representing each Field. 3885 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl { 3886 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy; 3887 FieldTypeA A; 3888 FieldTypeB B; 3889 bool Seen; 3890 3891 enum { 3892 IsInvalid = 0, 3893 IsTypeA = 1, 3894 IsTypeB = 2 3895 } WhatIs; 3896 3897 void assign(FieldTypeA A) { 3898 Seen = true; 3899 this->A = std::move(A); 3900 WhatIs = IsTypeA; 3901 } 3902 3903 void assign(FieldTypeB B) { 3904 Seen = true; 3905 this->B = std::move(B); 3906 WhatIs = IsTypeB; 3907 } 3908 3909 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) 3910 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), 3911 WhatIs(IsInvalid) {} 3912 }; 3913 3914 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3915 uint64_t Max; 3916 3917 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3918 : ImplTy(Default), Max(Max) {} 3919 }; 3920 3921 struct LineField : public MDUnsignedField { 3922 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3923 }; 3924 3925 struct ColumnField : public MDUnsignedField { 3926 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3927 }; 3928 3929 struct DwarfTagField : public MDUnsignedField { 3930 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3931 DwarfTagField(dwarf::Tag DefaultTag) 3932 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3933 }; 3934 3935 struct DwarfMacinfoTypeField : public MDUnsignedField { 3936 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 3937 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 3938 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 3939 }; 3940 3941 struct DwarfAttEncodingField : public MDUnsignedField { 3942 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3943 }; 3944 3945 struct DwarfVirtualityField : public MDUnsignedField { 3946 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3947 }; 3948 3949 struct DwarfLangField : public MDUnsignedField { 3950 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3951 }; 3952 3953 struct DwarfCCField : public MDUnsignedField { 3954 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 3955 }; 3956 3957 struct EmissionKindField : public MDUnsignedField { 3958 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 3959 }; 3960 3961 struct NameTableKindField : public MDUnsignedField { 3962 NameTableKindField() 3963 : MDUnsignedField( 3964 0, (unsigned) 3965 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {} 3966 }; 3967 3968 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 3969 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 3970 }; 3971 3972 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> { 3973 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {} 3974 }; 3975 3976 struct MDAPSIntField : public MDFieldImpl<APSInt> { 3977 MDAPSIntField() : ImplTy(APSInt()) {} 3978 }; 3979 3980 struct MDSignedField : public MDFieldImpl<int64_t> { 3981 int64_t Min = INT64_MIN; 3982 int64_t Max = INT64_MAX; 3983 3984 MDSignedField(int64_t Default = 0) 3985 : ImplTy(Default) {} 3986 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3987 : ImplTy(Default), Min(Min), Max(Max) {} 3988 }; 3989 3990 struct MDBoolField : public MDFieldImpl<bool> { 3991 MDBoolField(bool Default = false) : ImplTy(Default) {} 3992 }; 3993 3994 struct MDField : public MDFieldImpl<Metadata *> { 3995 bool AllowNull; 3996 3997 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3998 }; 3999 4000 struct MDStringField : public MDFieldImpl<MDString *> { 4001 bool AllowEmpty; 4002 MDStringField(bool AllowEmpty = true) 4003 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 4004 }; 4005 4006 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 4007 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 4008 }; 4009 4010 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 4011 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 4012 }; 4013 4014 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> { 4015 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) 4016 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} 4017 4018 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, 4019 bool AllowNull = true) 4020 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} 4021 4022 bool isMDSignedField() const { return WhatIs == IsTypeA; } 4023 bool isMDField() const { return WhatIs == IsTypeB; } 4024 int64_t getMDSignedValue() const { 4025 assert(isMDSignedField() && "Wrong field type"); 4026 return A.Val; 4027 } 4028 Metadata *getMDFieldValue() const { 4029 assert(isMDField() && "Wrong field type"); 4030 return B.Val; 4031 } 4032 }; 4033 4034 } // end anonymous namespace 4035 4036 namespace llvm { 4037 4038 template <> 4039 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) { 4040 if (Lex.getKind() != lltok::APSInt) 4041 return tokError("expected integer"); 4042 4043 Result.assign(Lex.getAPSIntVal()); 4044 Lex.Lex(); 4045 return false; 4046 } 4047 4048 template <> 4049 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4050 MDUnsignedField &Result) { 4051 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4052 return tokError("expected unsigned integer"); 4053 4054 auto &U = Lex.getAPSIntVal(); 4055 if (U.ugt(Result.Max)) 4056 return tokError("value for '" + Name + "' too large, limit is " + 4057 Twine(Result.Max)); 4058 Result.assign(U.getZExtValue()); 4059 assert(Result.Val <= Result.Max && "Expected value in range"); 4060 Lex.Lex(); 4061 return false; 4062 } 4063 4064 template <> 4065 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) { 4066 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4067 } 4068 template <> 4069 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 4070 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4071 } 4072 4073 template <> 4074 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 4075 if (Lex.getKind() == lltok::APSInt) 4076 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4077 4078 if (Lex.getKind() != lltok::DwarfTag) 4079 return tokError("expected DWARF tag"); 4080 4081 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 4082 if (Tag == dwarf::DW_TAG_invalid) 4083 return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 4084 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 4085 4086 Result.assign(Tag); 4087 Lex.Lex(); 4088 return false; 4089 } 4090 4091 template <> 4092 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4093 DwarfMacinfoTypeField &Result) { 4094 if (Lex.getKind() == lltok::APSInt) 4095 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4096 4097 if (Lex.getKind() != lltok::DwarfMacinfo) 4098 return tokError("expected DWARF macinfo type"); 4099 4100 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 4101 if (Macinfo == dwarf::DW_MACINFO_invalid) 4102 return tokError("invalid DWARF macinfo type" + Twine(" '") + 4103 Lex.getStrVal() + "'"); 4104 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 4105 4106 Result.assign(Macinfo); 4107 Lex.Lex(); 4108 return false; 4109 } 4110 4111 template <> 4112 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4113 DwarfVirtualityField &Result) { 4114 if (Lex.getKind() == lltok::APSInt) 4115 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4116 4117 if (Lex.getKind() != lltok::DwarfVirtuality) 4118 return tokError("expected DWARF virtuality code"); 4119 4120 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 4121 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 4122 return tokError("invalid DWARF virtuality code" + Twine(" '") + 4123 Lex.getStrVal() + "'"); 4124 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 4125 Result.assign(Virtuality); 4126 Lex.Lex(); 4127 return false; 4128 } 4129 4130 template <> 4131 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 4132 if (Lex.getKind() == lltok::APSInt) 4133 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4134 4135 if (Lex.getKind() != lltok::DwarfLang) 4136 return tokError("expected DWARF language"); 4137 4138 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 4139 if (!Lang) 4140 return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 4141 "'"); 4142 assert(Lang <= Result.Max && "Expected valid DWARF language"); 4143 Result.assign(Lang); 4144 Lex.Lex(); 4145 return false; 4146 } 4147 4148 template <> 4149 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 4150 if (Lex.getKind() == lltok::APSInt) 4151 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4152 4153 if (Lex.getKind() != lltok::DwarfCC) 4154 return tokError("expected DWARF calling convention"); 4155 4156 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 4157 if (!CC) 4158 return tokError("invalid DWARF calling convention" + Twine(" '") + 4159 Lex.getStrVal() + "'"); 4160 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 4161 Result.assign(CC); 4162 Lex.Lex(); 4163 return false; 4164 } 4165 4166 template <> 4167 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4168 EmissionKindField &Result) { 4169 if (Lex.getKind() == lltok::APSInt) 4170 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4171 4172 if (Lex.getKind() != lltok::EmissionKind) 4173 return tokError("expected emission kind"); 4174 4175 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 4176 if (!Kind) 4177 return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 4178 "'"); 4179 assert(*Kind <= Result.Max && "Expected valid emission kind"); 4180 Result.assign(*Kind); 4181 Lex.Lex(); 4182 return false; 4183 } 4184 4185 template <> 4186 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4187 NameTableKindField &Result) { 4188 if (Lex.getKind() == lltok::APSInt) 4189 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4190 4191 if (Lex.getKind() != lltok::NameTableKind) 4192 return tokError("expected nameTable kind"); 4193 4194 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal()); 4195 if (!Kind) 4196 return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() + 4197 "'"); 4198 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind"); 4199 Result.assign((unsigned)*Kind); 4200 Lex.Lex(); 4201 return false; 4202 } 4203 4204 template <> 4205 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4206 DwarfAttEncodingField &Result) { 4207 if (Lex.getKind() == lltok::APSInt) 4208 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4209 4210 if (Lex.getKind() != lltok::DwarfAttEncoding) 4211 return tokError("expected DWARF type attribute encoding"); 4212 4213 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 4214 if (!Encoding) 4215 return tokError("invalid DWARF type attribute encoding" + Twine(" '") + 4216 Lex.getStrVal() + "'"); 4217 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 4218 Result.assign(Encoding); 4219 Lex.Lex(); 4220 return false; 4221 } 4222 4223 /// DIFlagField 4224 /// ::= uint32 4225 /// ::= DIFlagVector 4226 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 4227 template <> 4228 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 4229 4230 // parser for a single flag. 4231 auto parseFlag = [&](DINode::DIFlags &Val) { 4232 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4233 uint32_t TempVal = static_cast<uint32_t>(Val); 4234 bool Res = parseUInt32(TempVal); 4235 Val = static_cast<DINode::DIFlags>(TempVal); 4236 return Res; 4237 } 4238 4239 if (Lex.getKind() != lltok::DIFlag) 4240 return tokError("expected debug info flag"); 4241 4242 Val = DINode::getFlag(Lex.getStrVal()); 4243 if (!Val) 4244 return tokError(Twine("invalid debug info flag '") + Lex.getStrVal() + 4245 "'"); 4246 Lex.Lex(); 4247 return false; 4248 }; 4249 4250 // parse the flags and combine them together. 4251 DINode::DIFlags Combined = DINode::FlagZero; 4252 do { 4253 DINode::DIFlags Val; 4254 if (parseFlag(Val)) 4255 return true; 4256 Combined |= Val; 4257 } while (EatIfPresent(lltok::bar)); 4258 4259 Result.assign(Combined); 4260 return false; 4261 } 4262 4263 /// DISPFlagField 4264 /// ::= uint32 4265 /// ::= DISPFlagVector 4266 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32 4267 template <> 4268 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) { 4269 4270 // parser for a single flag. 4271 auto parseFlag = [&](DISubprogram::DISPFlags &Val) { 4272 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4273 uint32_t TempVal = static_cast<uint32_t>(Val); 4274 bool Res = parseUInt32(TempVal); 4275 Val = static_cast<DISubprogram::DISPFlags>(TempVal); 4276 return Res; 4277 } 4278 4279 if (Lex.getKind() != lltok::DISPFlag) 4280 return tokError("expected debug info flag"); 4281 4282 Val = DISubprogram::getFlag(Lex.getStrVal()); 4283 if (!Val) 4284 return tokError(Twine("invalid subprogram debug info flag '") + 4285 Lex.getStrVal() + "'"); 4286 Lex.Lex(); 4287 return false; 4288 }; 4289 4290 // parse the flags and combine them together. 4291 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero; 4292 do { 4293 DISubprogram::DISPFlags Val; 4294 if (parseFlag(Val)) 4295 return true; 4296 Combined |= Val; 4297 } while (EatIfPresent(lltok::bar)); 4298 4299 Result.assign(Combined); 4300 return false; 4301 } 4302 4303 template <> 4304 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) { 4305 if (Lex.getKind() != lltok::APSInt) 4306 return tokError("expected signed integer"); 4307 4308 auto &S = Lex.getAPSIntVal(); 4309 if (S < Result.Min) 4310 return tokError("value for '" + Name + "' too small, limit is " + 4311 Twine(Result.Min)); 4312 if (S > Result.Max) 4313 return tokError("value for '" + Name + "' too large, limit is " + 4314 Twine(Result.Max)); 4315 Result.assign(S.getExtValue()); 4316 assert(Result.Val >= Result.Min && "Expected value in range"); 4317 assert(Result.Val <= Result.Max && "Expected value in range"); 4318 Lex.Lex(); 4319 return false; 4320 } 4321 4322 template <> 4323 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 4324 switch (Lex.getKind()) { 4325 default: 4326 return tokError("expected 'true' or 'false'"); 4327 case lltok::kw_true: 4328 Result.assign(true); 4329 break; 4330 case lltok::kw_false: 4331 Result.assign(false); 4332 break; 4333 } 4334 Lex.Lex(); 4335 return false; 4336 } 4337 4338 template <> 4339 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) { 4340 if (Lex.getKind() == lltok::kw_null) { 4341 if (!Result.AllowNull) 4342 return tokError("'" + Name + "' cannot be null"); 4343 Lex.Lex(); 4344 Result.assign(nullptr); 4345 return false; 4346 } 4347 4348 Metadata *MD; 4349 if (parseMetadata(MD, nullptr)) 4350 return true; 4351 4352 Result.assign(MD); 4353 return false; 4354 } 4355 4356 template <> 4357 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4358 MDSignedOrMDField &Result) { 4359 // Try to parse a signed int. 4360 if (Lex.getKind() == lltok::APSInt) { 4361 MDSignedField Res = Result.A; 4362 if (!parseMDField(Loc, Name, Res)) { 4363 Result.assign(Res); 4364 return false; 4365 } 4366 return true; 4367 } 4368 4369 // Otherwise, try to parse as an MDField. 4370 MDField Res = Result.B; 4371 if (!parseMDField(Loc, Name, Res)) { 4372 Result.assign(Res); 4373 return false; 4374 } 4375 4376 return true; 4377 } 4378 4379 template <> 4380 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 4381 LocTy ValueLoc = Lex.getLoc(); 4382 std::string S; 4383 if (parseStringConstant(S)) 4384 return true; 4385 4386 if (!Result.AllowEmpty && S.empty()) 4387 return error(ValueLoc, "'" + Name + "' cannot be empty"); 4388 4389 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 4390 return false; 4391 } 4392 4393 template <> 4394 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 4395 SmallVector<Metadata *, 4> MDs; 4396 if (parseMDNodeVector(MDs)) 4397 return true; 4398 4399 Result.assign(std::move(MDs)); 4400 return false; 4401 } 4402 4403 template <> 4404 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4405 ChecksumKindField &Result) { 4406 Optional<DIFile::ChecksumKind> CSKind = 4407 DIFile::getChecksumKind(Lex.getStrVal()); 4408 4409 if (Lex.getKind() != lltok::ChecksumKind || !CSKind) 4410 return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() + 4411 "'"); 4412 4413 Result.assign(*CSKind); 4414 Lex.Lex(); 4415 return false; 4416 } 4417 4418 } // end namespace llvm 4419 4420 template <class ParserTy> 4421 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) { 4422 do { 4423 if (Lex.getKind() != lltok::LabelStr) 4424 return tokError("expected field label here"); 4425 4426 if (ParseField()) 4427 return true; 4428 } while (EatIfPresent(lltok::comma)); 4429 4430 return false; 4431 } 4432 4433 template <class ParserTy> 4434 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) { 4435 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4436 Lex.Lex(); 4437 4438 if (parseToken(lltok::lparen, "expected '(' here")) 4439 return true; 4440 if (Lex.getKind() != lltok::rparen) 4441 if (parseMDFieldsImplBody(ParseField)) 4442 return true; 4443 4444 ClosingLoc = Lex.getLoc(); 4445 return parseToken(lltok::rparen, "expected ')' here"); 4446 } 4447 4448 template <class FieldTy> 4449 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) { 4450 if (Result.Seen) 4451 return tokError("field '" + Name + "' cannot be specified more than once"); 4452 4453 LocTy Loc = Lex.getLoc(); 4454 Lex.Lex(); 4455 return parseMDField(Loc, Name, Result); 4456 } 4457 4458 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 4459 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4460 4461 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 4462 if (Lex.getStrVal() == #CLASS) \ 4463 return parse##CLASS(N, IsDistinct); 4464 #include "llvm/IR/Metadata.def" 4465 4466 return tokError("expected metadata type"); 4467 } 4468 4469 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 4470 #define NOP_FIELD(NAME, TYPE, INIT) 4471 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 4472 if (!NAME.Seen) \ 4473 return error(ClosingLoc, "missing required field '" #NAME "'"); 4474 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 4475 if (Lex.getStrVal() == #NAME) \ 4476 return parseMDField(#NAME, NAME); 4477 #define PARSE_MD_FIELDS() \ 4478 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 4479 do { \ 4480 LocTy ClosingLoc; \ 4481 if (parseMDFieldsImpl( \ 4482 [&]() -> bool { \ 4483 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 4484 return tokError(Twine("invalid field '") + Lex.getStrVal() + \ 4485 "'"); \ 4486 }, \ 4487 ClosingLoc)) \ 4488 return true; \ 4489 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 4490 } while (false) 4491 #define GET_OR_DISTINCT(CLASS, ARGS) \ 4492 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 4493 4494 /// parseDILocationFields: 4495 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6, 4496 /// isImplicitCode: true) 4497 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) { 4498 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4499 OPTIONAL(line, LineField, ); \ 4500 OPTIONAL(column, ColumnField, ); \ 4501 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4502 OPTIONAL(inlinedAt, MDField, ); \ 4503 OPTIONAL(isImplicitCode, MDBoolField, (false)); 4504 PARSE_MD_FIELDS(); 4505 #undef VISIT_MD_FIELDS 4506 4507 Result = 4508 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val, 4509 inlinedAt.Val, isImplicitCode.Val)); 4510 return false; 4511 } 4512 4513 /// parseGenericDINode: 4514 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 4515 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) { 4516 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4517 REQUIRED(tag, DwarfTagField, ); \ 4518 OPTIONAL(header, MDStringField, ); \ 4519 OPTIONAL(operands, MDFieldList, ); 4520 PARSE_MD_FIELDS(); 4521 #undef VISIT_MD_FIELDS 4522 4523 Result = GET_OR_DISTINCT(GenericDINode, 4524 (Context, tag.Val, header.Val, operands.Val)); 4525 return false; 4526 } 4527 4528 /// parseDISubrange: 4529 /// ::= !DISubrange(count: 30, lowerBound: 2) 4530 /// ::= !DISubrange(count: !node, lowerBound: 2) 4531 /// ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3) 4532 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) { 4533 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4534 OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ 4535 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 4536 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 4537 OPTIONAL(stride, MDSignedOrMDField, ); 4538 PARSE_MD_FIELDS(); 4539 #undef VISIT_MD_FIELDS 4540 4541 Metadata *Count = nullptr; 4542 Metadata *LowerBound = nullptr; 4543 Metadata *UpperBound = nullptr; 4544 Metadata *Stride = nullptr; 4545 4546 auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 4547 if (Bound.isMDSignedField()) 4548 return ConstantAsMetadata::get(ConstantInt::getSigned( 4549 Type::getInt64Ty(Context), Bound.getMDSignedValue())); 4550 if (Bound.isMDField()) 4551 return Bound.getMDFieldValue(); 4552 return nullptr; 4553 }; 4554 4555 Count = convToMetadata(count); 4556 LowerBound = convToMetadata(lowerBound); 4557 UpperBound = convToMetadata(upperBound); 4558 Stride = convToMetadata(stride); 4559 4560 Result = GET_OR_DISTINCT(DISubrange, 4561 (Context, Count, LowerBound, UpperBound, Stride)); 4562 4563 return false; 4564 } 4565 4566 /// parseDIGenericSubrange: 4567 /// ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride: 4568 /// !node3) 4569 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) { 4570 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4571 OPTIONAL(count, MDSignedOrMDField, ); \ 4572 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 4573 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 4574 OPTIONAL(stride, MDSignedOrMDField, ); 4575 PARSE_MD_FIELDS(); 4576 #undef VISIT_MD_FIELDS 4577 4578 auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 4579 if (Bound.isMDSignedField()) 4580 return DIExpression::get( 4581 Context, {dwarf::DW_OP_consts, 4582 static_cast<uint64_t>(Bound.getMDSignedValue())}); 4583 if (Bound.isMDField()) 4584 return Bound.getMDFieldValue(); 4585 return nullptr; 4586 }; 4587 4588 Metadata *Count = ConvToMetadata(count); 4589 Metadata *LowerBound = ConvToMetadata(lowerBound); 4590 Metadata *UpperBound = ConvToMetadata(upperBound); 4591 Metadata *Stride = ConvToMetadata(stride); 4592 4593 Result = GET_OR_DISTINCT(DIGenericSubrange, 4594 (Context, Count, LowerBound, UpperBound, Stride)); 4595 4596 return false; 4597 } 4598 4599 /// parseDIEnumerator: 4600 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind") 4601 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) { 4602 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4603 REQUIRED(name, MDStringField, ); \ 4604 REQUIRED(value, MDAPSIntField, ); \ 4605 OPTIONAL(isUnsigned, MDBoolField, (false)); 4606 PARSE_MD_FIELDS(); 4607 #undef VISIT_MD_FIELDS 4608 4609 if (isUnsigned.Val && value.Val.isNegative()) 4610 return tokError("unsigned enumerator with negative value"); 4611 4612 APSInt Value(value.Val); 4613 // Add a leading zero so that unsigned values with the msb set are not 4614 // mistaken for negative values when used for signed enumerators. 4615 if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet()) 4616 Value = Value.zext(Value.getBitWidth() + 1); 4617 4618 Result = 4619 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val)); 4620 4621 return false; 4622 } 4623 4624 /// parseDIBasicType: 4625 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32, 4626 /// encoding: DW_ATE_encoding, flags: 0) 4627 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) { 4628 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4629 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 4630 OPTIONAL(name, MDStringField, ); \ 4631 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4632 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4633 OPTIONAL(encoding, DwarfAttEncodingField, ); \ 4634 OPTIONAL(flags, DIFlagField, ); 4635 PARSE_MD_FIELDS(); 4636 #undef VISIT_MD_FIELDS 4637 4638 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 4639 align.Val, encoding.Val, flags.Val)); 4640 return false; 4641 } 4642 4643 /// parseDIStringType: 4644 /// ::= !DIStringType(name: "character(4)", size: 32, align: 32) 4645 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) { 4646 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4647 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type)); \ 4648 OPTIONAL(name, MDStringField, ); \ 4649 OPTIONAL(stringLength, MDField, ); \ 4650 OPTIONAL(stringLengthExpression, MDField, ); \ 4651 OPTIONAL(stringLocationExpression, MDField, ); \ 4652 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4653 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4654 OPTIONAL(encoding, DwarfAttEncodingField, ); 4655 PARSE_MD_FIELDS(); 4656 #undef VISIT_MD_FIELDS 4657 4658 Result = GET_OR_DISTINCT( 4659 DIStringType, 4660 (Context, tag.Val, name.Val, stringLength.Val, stringLengthExpression.Val, 4661 stringLocationExpression.Val, size.Val, align.Val, encoding.Val)); 4662 return false; 4663 } 4664 4665 /// parseDIDerivedType: 4666 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 4667 /// line: 7, scope: !1, baseType: !2, size: 32, 4668 /// align: 32, offset: 0, flags: 0, extraData: !3, 4669 /// dwarfAddressSpace: 3) 4670 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) { 4671 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4672 REQUIRED(tag, DwarfTagField, ); \ 4673 OPTIONAL(name, MDStringField, ); \ 4674 OPTIONAL(file, MDField, ); \ 4675 OPTIONAL(line, LineField, ); \ 4676 OPTIONAL(scope, MDField, ); \ 4677 REQUIRED(baseType, MDField, ); \ 4678 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4679 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4680 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4681 OPTIONAL(flags, DIFlagField, ); \ 4682 OPTIONAL(extraData, MDField, ); \ 4683 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); \ 4684 OPTIONAL(annotations, MDField, ); 4685 PARSE_MD_FIELDS(); 4686 #undef VISIT_MD_FIELDS 4687 4688 Optional<unsigned> DWARFAddressSpace; 4689 if (dwarfAddressSpace.Val != UINT32_MAX) 4690 DWARFAddressSpace = dwarfAddressSpace.Val; 4691 4692 Result = GET_OR_DISTINCT(DIDerivedType, 4693 (Context, tag.Val, name.Val, file.Val, line.Val, 4694 scope.Val, baseType.Val, size.Val, align.Val, 4695 offset.Val, DWARFAddressSpace, flags.Val, 4696 extraData.Val, annotations.Val)); 4697 return false; 4698 } 4699 4700 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) { 4701 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4702 REQUIRED(tag, DwarfTagField, ); \ 4703 OPTIONAL(name, MDStringField, ); \ 4704 OPTIONAL(file, MDField, ); \ 4705 OPTIONAL(line, LineField, ); \ 4706 OPTIONAL(scope, MDField, ); \ 4707 OPTIONAL(baseType, MDField, ); \ 4708 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4709 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4710 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4711 OPTIONAL(flags, DIFlagField, ); \ 4712 OPTIONAL(elements, MDField, ); \ 4713 OPTIONAL(runtimeLang, DwarfLangField, ); \ 4714 OPTIONAL(vtableHolder, MDField, ); \ 4715 OPTIONAL(templateParams, MDField, ); \ 4716 OPTIONAL(identifier, MDStringField, ); \ 4717 OPTIONAL(discriminator, MDField, ); \ 4718 OPTIONAL(dataLocation, MDField, ); \ 4719 OPTIONAL(associated, MDField, ); \ 4720 OPTIONAL(allocated, MDField, ); \ 4721 OPTIONAL(rank, MDSignedOrMDField, ); \ 4722 OPTIONAL(annotations, MDField, ); 4723 PARSE_MD_FIELDS(); 4724 #undef VISIT_MD_FIELDS 4725 4726 Metadata *Rank = nullptr; 4727 if (rank.isMDSignedField()) 4728 Rank = ConstantAsMetadata::get(ConstantInt::getSigned( 4729 Type::getInt64Ty(Context), rank.getMDSignedValue())); 4730 else if (rank.isMDField()) 4731 Rank = rank.getMDFieldValue(); 4732 4733 // If this has an identifier try to build an ODR type. 4734 if (identifier.Val) 4735 if (auto *CT = DICompositeType::buildODRType( 4736 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 4737 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 4738 elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val, 4739 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, 4740 Rank, annotations.Val)) { 4741 Result = CT; 4742 return false; 4743 } 4744 4745 // Create a new node, and save it in the context if it belongs in the type 4746 // map. 4747 Result = GET_OR_DISTINCT( 4748 DICompositeType, 4749 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 4750 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 4751 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val, 4752 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, Rank, 4753 annotations.Val)); 4754 return false; 4755 } 4756 4757 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) { 4758 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4759 OPTIONAL(flags, DIFlagField, ); \ 4760 OPTIONAL(cc, DwarfCCField, ); \ 4761 REQUIRED(types, MDField, ); 4762 PARSE_MD_FIELDS(); 4763 #undef VISIT_MD_FIELDS 4764 4765 Result = GET_OR_DISTINCT(DISubroutineType, 4766 (Context, flags.Val, cc.Val, types.Val)); 4767 return false; 4768 } 4769 4770 /// parseDIFileType: 4771 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir", 4772 /// checksumkind: CSK_MD5, 4773 /// checksum: "000102030405060708090a0b0c0d0e0f", 4774 /// source: "source file contents") 4775 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) { 4776 // The default constructed value for checksumkind is required, but will never 4777 // be used, as the parser checks if the field was actually Seen before using 4778 // the Val. 4779 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4780 REQUIRED(filename, MDStringField, ); \ 4781 REQUIRED(directory, MDStringField, ); \ 4782 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \ 4783 OPTIONAL(checksum, MDStringField, ); \ 4784 OPTIONAL(source, MDStringField, ); 4785 PARSE_MD_FIELDS(); 4786 #undef VISIT_MD_FIELDS 4787 4788 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum; 4789 if (checksumkind.Seen && checksum.Seen) 4790 OptChecksum.emplace(checksumkind.Val, checksum.Val); 4791 else if (checksumkind.Seen || checksum.Seen) 4792 return Lex.Error("'checksumkind' and 'checksum' must be provided together"); 4793 4794 Optional<MDString *> OptSource; 4795 if (source.Seen) 4796 OptSource = source.Val; 4797 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val, 4798 OptChecksum, OptSource)); 4799 return false; 4800 } 4801 4802 /// parseDICompileUnit: 4803 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 4804 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 4805 /// splitDebugFilename: "abc.debug", 4806 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 4807 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd, 4808 /// sysroot: "/", sdk: "MacOSX.sdk") 4809 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) { 4810 if (!IsDistinct) 4811 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 4812 4813 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4814 REQUIRED(language, DwarfLangField, ); \ 4815 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 4816 OPTIONAL(producer, MDStringField, ); \ 4817 OPTIONAL(isOptimized, MDBoolField, ); \ 4818 OPTIONAL(flags, MDStringField, ); \ 4819 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 4820 OPTIONAL(splitDebugFilename, MDStringField, ); \ 4821 OPTIONAL(emissionKind, EmissionKindField, ); \ 4822 OPTIONAL(enums, MDField, ); \ 4823 OPTIONAL(retainedTypes, MDField, ); \ 4824 OPTIONAL(globals, MDField, ); \ 4825 OPTIONAL(imports, MDField, ); \ 4826 OPTIONAL(macros, MDField, ); \ 4827 OPTIONAL(dwoId, MDUnsignedField, ); \ 4828 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 4829 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 4830 OPTIONAL(nameTableKind, NameTableKindField, ); \ 4831 OPTIONAL(rangesBaseAddress, MDBoolField, = false); \ 4832 OPTIONAL(sysroot, MDStringField, ); \ 4833 OPTIONAL(sdk, MDStringField, ); 4834 PARSE_MD_FIELDS(); 4835 #undef VISIT_MD_FIELDS 4836 4837 Result = DICompileUnit::getDistinct( 4838 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 4839 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 4840 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 4841 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val, 4842 rangesBaseAddress.Val, sysroot.Val, sdk.Val); 4843 return false; 4844 } 4845 4846 /// parseDISubprogram: 4847 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 4848 /// file: !1, line: 7, type: !2, isLocal: false, 4849 /// isDefinition: true, scopeLine: 8, containingType: !3, 4850 /// virtuality: DW_VIRTUALTIY_pure_virtual, 4851 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 4852 /// spFlags: 10, isOptimized: false, templateParams: !4, 4853 /// declaration: !5, retainedNodes: !6, thrownTypes: !7, 4854 /// annotations: !8) 4855 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) { 4856 auto Loc = Lex.getLoc(); 4857 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4858 OPTIONAL(scope, MDField, ); \ 4859 OPTIONAL(name, MDStringField, ); \ 4860 OPTIONAL(linkageName, MDStringField, ); \ 4861 OPTIONAL(file, MDField, ); \ 4862 OPTIONAL(line, LineField, ); \ 4863 OPTIONAL(type, MDField, ); \ 4864 OPTIONAL(isLocal, MDBoolField, ); \ 4865 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4866 OPTIONAL(scopeLine, LineField, ); \ 4867 OPTIONAL(containingType, MDField, ); \ 4868 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 4869 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 4870 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 4871 OPTIONAL(flags, DIFlagField, ); \ 4872 OPTIONAL(spFlags, DISPFlagField, ); \ 4873 OPTIONAL(isOptimized, MDBoolField, ); \ 4874 OPTIONAL(unit, MDField, ); \ 4875 OPTIONAL(templateParams, MDField, ); \ 4876 OPTIONAL(declaration, MDField, ); \ 4877 OPTIONAL(retainedNodes, MDField, ); \ 4878 OPTIONAL(thrownTypes, MDField, ); \ 4879 OPTIONAL(annotations, MDField, ); \ 4880 OPTIONAL(targetFuncName, MDStringField, ); 4881 PARSE_MD_FIELDS(); 4882 #undef VISIT_MD_FIELDS 4883 4884 // An explicit spFlags field takes precedence over individual fields in 4885 // older IR versions. 4886 DISubprogram::DISPFlags SPFlags = 4887 spFlags.Seen ? spFlags.Val 4888 : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val, 4889 isOptimized.Val, virtuality.Val); 4890 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct) 4891 return Lex.Error( 4892 Loc, 4893 "missing 'distinct', required for !DISubprogram that is a Definition"); 4894 Result = GET_OR_DISTINCT( 4895 DISubprogram, 4896 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 4897 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val, 4898 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val, 4899 declaration.Val, retainedNodes.Val, thrownTypes.Val, annotations.Val, 4900 targetFuncName.Val)); 4901 return false; 4902 } 4903 4904 /// parseDILexicalBlock: 4905 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 4906 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 4907 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4908 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4909 OPTIONAL(file, MDField, ); \ 4910 OPTIONAL(line, LineField, ); \ 4911 OPTIONAL(column, ColumnField, ); 4912 PARSE_MD_FIELDS(); 4913 #undef VISIT_MD_FIELDS 4914 4915 Result = GET_OR_DISTINCT( 4916 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 4917 return false; 4918 } 4919 4920 /// parseDILexicalBlockFile: 4921 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 4922 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 4923 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4924 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4925 OPTIONAL(file, MDField, ); \ 4926 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 4927 PARSE_MD_FIELDS(); 4928 #undef VISIT_MD_FIELDS 4929 4930 Result = GET_OR_DISTINCT(DILexicalBlockFile, 4931 (Context, scope.Val, file.Val, discriminator.Val)); 4932 return false; 4933 } 4934 4935 /// parseDICommonBlock: 4936 /// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9) 4937 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) { 4938 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4939 REQUIRED(scope, MDField, ); \ 4940 OPTIONAL(declaration, MDField, ); \ 4941 OPTIONAL(name, MDStringField, ); \ 4942 OPTIONAL(file, MDField, ); \ 4943 OPTIONAL(line, LineField, ); 4944 PARSE_MD_FIELDS(); 4945 #undef VISIT_MD_FIELDS 4946 4947 Result = GET_OR_DISTINCT(DICommonBlock, 4948 (Context, scope.Val, declaration.Val, name.Val, 4949 file.Val, line.Val)); 4950 return false; 4951 } 4952 4953 /// parseDINamespace: 4954 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 4955 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) { 4956 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4957 REQUIRED(scope, MDField, ); \ 4958 OPTIONAL(name, MDStringField, ); \ 4959 OPTIONAL(exportSymbols, MDBoolField, ); 4960 PARSE_MD_FIELDS(); 4961 #undef VISIT_MD_FIELDS 4962 4963 Result = GET_OR_DISTINCT(DINamespace, 4964 (Context, scope.Val, name.Val, exportSymbols.Val)); 4965 return false; 4966 } 4967 4968 /// parseDIMacro: 4969 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: 4970 /// "SomeValue") 4971 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) { 4972 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4973 REQUIRED(type, DwarfMacinfoTypeField, ); \ 4974 OPTIONAL(line, LineField, ); \ 4975 REQUIRED(name, MDStringField, ); \ 4976 OPTIONAL(value, MDStringField, ); 4977 PARSE_MD_FIELDS(); 4978 #undef VISIT_MD_FIELDS 4979 4980 Result = GET_OR_DISTINCT(DIMacro, 4981 (Context, type.Val, line.Val, name.Val, value.Val)); 4982 return false; 4983 } 4984 4985 /// parseDIMacroFile: 4986 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 4987 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) { 4988 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4989 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 4990 OPTIONAL(line, LineField, ); \ 4991 REQUIRED(file, MDField, ); \ 4992 OPTIONAL(nodes, MDField, ); 4993 PARSE_MD_FIELDS(); 4994 #undef VISIT_MD_FIELDS 4995 4996 Result = GET_OR_DISTINCT(DIMacroFile, 4997 (Context, type.Val, line.Val, file.Val, nodes.Val)); 4998 return false; 4999 } 5000 5001 /// parseDIModule: 5002 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: 5003 /// "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes", 5004 /// file: !1, line: 4, isDecl: false) 5005 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) { 5006 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5007 REQUIRED(scope, MDField, ); \ 5008 REQUIRED(name, MDStringField, ); \ 5009 OPTIONAL(configMacros, MDStringField, ); \ 5010 OPTIONAL(includePath, MDStringField, ); \ 5011 OPTIONAL(apinotes, MDStringField, ); \ 5012 OPTIONAL(file, MDField, ); \ 5013 OPTIONAL(line, LineField, ); \ 5014 OPTIONAL(isDecl, MDBoolField, ); 5015 PARSE_MD_FIELDS(); 5016 #undef VISIT_MD_FIELDS 5017 5018 Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val, 5019 configMacros.Val, includePath.Val, 5020 apinotes.Val, line.Val, isDecl.Val)); 5021 return false; 5022 } 5023 5024 /// parseDITemplateTypeParameter: 5025 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false) 5026 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 5027 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5028 OPTIONAL(name, MDStringField, ); \ 5029 REQUIRED(type, MDField, ); \ 5030 OPTIONAL(defaulted, MDBoolField, ); 5031 PARSE_MD_FIELDS(); 5032 #undef VISIT_MD_FIELDS 5033 5034 Result = GET_OR_DISTINCT(DITemplateTypeParameter, 5035 (Context, name.Val, type.Val, defaulted.Val)); 5036 return false; 5037 } 5038 5039 /// parseDITemplateValueParameter: 5040 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 5041 /// name: "V", type: !1, defaulted: false, 5042 /// value: i32 7) 5043 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 5044 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5045 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 5046 OPTIONAL(name, MDStringField, ); \ 5047 OPTIONAL(type, MDField, ); \ 5048 OPTIONAL(defaulted, MDBoolField, ); \ 5049 REQUIRED(value, MDField, ); 5050 5051 PARSE_MD_FIELDS(); 5052 #undef VISIT_MD_FIELDS 5053 5054 Result = GET_OR_DISTINCT( 5055 DITemplateValueParameter, 5056 (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val)); 5057 return false; 5058 } 5059 5060 /// parseDIGlobalVariable: 5061 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 5062 /// file: !1, line: 7, type: !2, isLocal: false, 5063 /// isDefinition: true, templateParams: !3, 5064 /// declaration: !4, align: 8) 5065 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 5066 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5067 OPTIONAL(name, MDStringField, (/* AllowEmpty */ false)); \ 5068 OPTIONAL(scope, MDField, ); \ 5069 OPTIONAL(linkageName, MDStringField, ); \ 5070 OPTIONAL(file, MDField, ); \ 5071 OPTIONAL(line, LineField, ); \ 5072 OPTIONAL(type, MDField, ); \ 5073 OPTIONAL(isLocal, MDBoolField, ); \ 5074 OPTIONAL(isDefinition, MDBoolField, (true)); \ 5075 OPTIONAL(templateParams, MDField, ); \ 5076 OPTIONAL(declaration, MDField, ); \ 5077 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 5078 OPTIONAL(annotations, MDField, ); 5079 PARSE_MD_FIELDS(); 5080 #undef VISIT_MD_FIELDS 5081 5082 Result = 5083 GET_OR_DISTINCT(DIGlobalVariable, 5084 (Context, scope.Val, name.Val, linkageName.Val, file.Val, 5085 line.Val, type.Val, isLocal.Val, isDefinition.Val, 5086 declaration.Val, templateParams.Val, align.Val, 5087 annotations.Val)); 5088 return false; 5089 } 5090 5091 /// parseDILocalVariable: 5092 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 5093 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 5094 /// align: 8) 5095 /// ::= !DILocalVariable(scope: !0, name: "foo", 5096 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 5097 /// align: 8) 5098 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) { 5099 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5100 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5101 OPTIONAL(name, MDStringField, ); \ 5102 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 5103 OPTIONAL(file, MDField, ); \ 5104 OPTIONAL(line, LineField, ); \ 5105 OPTIONAL(type, MDField, ); \ 5106 OPTIONAL(flags, DIFlagField, ); \ 5107 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 5108 OPTIONAL(annotations, MDField, ); 5109 PARSE_MD_FIELDS(); 5110 #undef VISIT_MD_FIELDS 5111 5112 Result = GET_OR_DISTINCT(DILocalVariable, 5113 (Context, scope.Val, name.Val, file.Val, line.Val, 5114 type.Val, arg.Val, flags.Val, align.Val, 5115 annotations.Val)); 5116 return false; 5117 } 5118 5119 /// parseDILabel: 5120 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7) 5121 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) { 5122 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5123 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5124 REQUIRED(name, MDStringField, ); \ 5125 REQUIRED(file, MDField, ); \ 5126 REQUIRED(line, LineField, ); 5127 PARSE_MD_FIELDS(); 5128 #undef VISIT_MD_FIELDS 5129 5130 Result = GET_OR_DISTINCT(DILabel, 5131 (Context, scope.Val, name.Val, file.Val, line.Val)); 5132 return false; 5133 } 5134 5135 /// parseDIExpression: 5136 /// ::= !DIExpression(0, 7, -1) 5137 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) { 5138 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5139 Lex.Lex(); 5140 5141 if (parseToken(lltok::lparen, "expected '(' here")) 5142 return true; 5143 5144 SmallVector<uint64_t, 8> Elements; 5145 if (Lex.getKind() != lltok::rparen) 5146 do { 5147 if (Lex.getKind() == lltok::DwarfOp) { 5148 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 5149 Lex.Lex(); 5150 Elements.push_back(Op); 5151 continue; 5152 } 5153 return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 5154 } 5155 5156 if (Lex.getKind() == lltok::DwarfAttEncoding) { 5157 if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) { 5158 Lex.Lex(); 5159 Elements.push_back(Op); 5160 continue; 5161 } 5162 return tokError(Twine("invalid DWARF attribute encoding '") + 5163 Lex.getStrVal() + "'"); 5164 } 5165 5166 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 5167 return tokError("expected unsigned integer"); 5168 5169 auto &U = Lex.getAPSIntVal(); 5170 if (U.ugt(UINT64_MAX)) 5171 return tokError("element too large, limit is " + Twine(UINT64_MAX)); 5172 Elements.push_back(U.getZExtValue()); 5173 Lex.Lex(); 5174 } while (EatIfPresent(lltok::comma)); 5175 5176 if (parseToken(lltok::rparen, "expected ')' here")) 5177 return true; 5178 5179 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 5180 return false; 5181 } 5182 5183 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct) { 5184 return parseDIArgList(Result, IsDistinct, nullptr); 5185 } 5186 /// ParseDIArgList: 5187 /// ::= !DIArgList(i32 7, i64 %0) 5188 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct, 5189 PerFunctionState *PFS) { 5190 assert(PFS && "Expected valid function state"); 5191 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5192 Lex.Lex(); 5193 5194 if (parseToken(lltok::lparen, "expected '(' here")) 5195 return true; 5196 5197 SmallVector<ValueAsMetadata *, 4> Args; 5198 if (Lex.getKind() != lltok::rparen) 5199 do { 5200 Metadata *MD; 5201 if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS)) 5202 return true; 5203 Args.push_back(dyn_cast<ValueAsMetadata>(MD)); 5204 } while (EatIfPresent(lltok::comma)); 5205 5206 if (parseToken(lltok::rparen, "expected ')' here")) 5207 return true; 5208 5209 Result = GET_OR_DISTINCT(DIArgList, (Context, Args)); 5210 return false; 5211 } 5212 5213 /// parseDIGlobalVariableExpression: 5214 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 5215 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result, 5216 bool IsDistinct) { 5217 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5218 REQUIRED(var, MDField, ); \ 5219 REQUIRED(expr, MDField, ); 5220 PARSE_MD_FIELDS(); 5221 #undef VISIT_MD_FIELDS 5222 5223 Result = 5224 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 5225 return false; 5226 } 5227 5228 /// parseDIObjCProperty: 5229 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 5230 /// getter: "getFoo", attributes: 7, type: !2) 5231 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 5232 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5233 OPTIONAL(name, MDStringField, ); \ 5234 OPTIONAL(file, MDField, ); \ 5235 OPTIONAL(line, LineField, ); \ 5236 OPTIONAL(setter, MDStringField, ); \ 5237 OPTIONAL(getter, MDStringField, ); \ 5238 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 5239 OPTIONAL(type, MDField, ); 5240 PARSE_MD_FIELDS(); 5241 #undef VISIT_MD_FIELDS 5242 5243 Result = GET_OR_DISTINCT(DIObjCProperty, 5244 (Context, name.Val, file.Val, line.Val, setter.Val, 5245 getter.Val, attributes.Val, type.Val)); 5246 return false; 5247 } 5248 5249 /// parseDIImportedEntity: 5250 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 5251 /// line: 7, name: "foo", elements: !2) 5252 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 5253 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5254 REQUIRED(tag, DwarfTagField, ); \ 5255 REQUIRED(scope, MDField, ); \ 5256 OPTIONAL(entity, MDField, ); \ 5257 OPTIONAL(file, MDField, ); \ 5258 OPTIONAL(line, LineField, ); \ 5259 OPTIONAL(name, MDStringField, ); \ 5260 OPTIONAL(elements, MDField, ); 5261 PARSE_MD_FIELDS(); 5262 #undef VISIT_MD_FIELDS 5263 5264 Result = GET_OR_DISTINCT(DIImportedEntity, 5265 (Context, tag.Val, scope.Val, entity.Val, file.Val, 5266 line.Val, name.Val, elements.Val)); 5267 return false; 5268 } 5269 5270 #undef PARSE_MD_FIELD 5271 #undef NOP_FIELD 5272 #undef REQUIRE_FIELD 5273 #undef DECLARE_FIELD 5274 5275 /// parseMetadataAsValue 5276 /// ::= metadata i32 %local 5277 /// ::= metadata i32 @global 5278 /// ::= metadata i32 7 5279 /// ::= metadata !0 5280 /// ::= metadata !{...} 5281 /// ::= metadata !"string" 5282 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 5283 // Note: the type 'metadata' has already been parsed. 5284 Metadata *MD; 5285 if (parseMetadata(MD, &PFS)) 5286 return true; 5287 5288 V = MetadataAsValue::get(Context, MD); 5289 return false; 5290 } 5291 5292 /// parseValueAsMetadata 5293 /// ::= i32 %local 5294 /// ::= i32 @global 5295 /// ::= i32 7 5296 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 5297 PerFunctionState *PFS) { 5298 Type *Ty; 5299 LocTy Loc; 5300 if (parseType(Ty, TypeMsg, Loc)) 5301 return true; 5302 if (Ty->isMetadataTy()) 5303 return error(Loc, "invalid metadata-value-metadata roundtrip"); 5304 5305 Value *V; 5306 if (parseValue(Ty, V, PFS)) 5307 return true; 5308 5309 MD = ValueAsMetadata::get(V); 5310 return false; 5311 } 5312 5313 /// parseMetadata 5314 /// ::= i32 %local 5315 /// ::= i32 @global 5316 /// ::= i32 7 5317 /// ::= !42 5318 /// ::= !{...} 5319 /// ::= !"string" 5320 /// ::= !DILocation(...) 5321 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) { 5322 if (Lex.getKind() == lltok::MetadataVar) { 5323 MDNode *N; 5324 // DIArgLists are a special case, as they are a list of ValueAsMetadata and 5325 // so parsing this requires a Function State. 5326 if (Lex.getStrVal() == "DIArgList") { 5327 if (parseDIArgList(N, false, PFS)) 5328 return true; 5329 } else if (parseSpecializedMDNode(N)) { 5330 return true; 5331 } 5332 MD = N; 5333 return false; 5334 } 5335 5336 // ValueAsMetadata: 5337 // <type> <value> 5338 if (Lex.getKind() != lltok::exclaim) 5339 return parseValueAsMetadata(MD, "expected metadata operand", PFS); 5340 5341 // '!'. 5342 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 5343 Lex.Lex(); 5344 5345 // MDString: 5346 // ::= '!' STRINGCONSTANT 5347 if (Lex.getKind() == lltok::StringConstant) { 5348 MDString *S; 5349 if (parseMDString(S)) 5350 return true; 5351 MD = S; 5352 return false; 5353 } 5354 5355 // MDNode: 5356 // !{ ... } 5357 // !7 5358 MDNode *N; 5359 if (parseMDNodeTail(N)) 5360 return true; 5361 MD = N; 5362 return false; 5363 } 5364 5365 //===----------------------------------------------------------------------===// 5366 // Function Parsing. 5367 //===----------------------------------------------------------------------===// 5368 5369 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V, 5370 PerFunctionState *PFS) { 5371 if (Ty->isFunctionTy()) 5372 return error(ID.Loc, "functions are not values, refer to them as pointers"); 5373 5374 switch (ID.Kind) { 5375 case ValID::t_LocalID: 5376 if (!PFS) 5377 return error(ID.Loc, "invalid use of function-local name"); 5378 V = PFS->getVal(ID.UIntVal, Ty, ID.Loc); 5379 return V == nullptr; 5380 case ValID::t_LocalName: 5381 if (!PFS) 5382 return error(ID.Loc, "invalid use of function-local name"); 5383 V = PFS->getVal(ID.StrVal, Ty, ID.Loc); 5384 return V == nullptr; 5385 case ValID::t_InlineAsm: { 5386 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 5387 return error(ID.Loc, "invalid type for inline asm constraint string"); 5388 V = InlineAsm::get( 5389 ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, (ID.UIntVal >> 1) & 1, 5390 InlineAsm::AsmDialect((ID.UIntVal >> 2) & 1), (ID.UIntVal >> 3) & 1); 5391 return false; 5392 } 5393 case ValID::t_GlobalName: 5394 V = getGlobalVal(ID.StrVal, Ty, ID.Loc); 5395 if (V && ID.NoCFI) 5396 V = NoCFIValue::get(cast<GlobalValue>(V)); 5397 return V == nullptr; 5398 case ValID::t_GlobalID: 5399 V = getGlobalVal(ID.UIntVal, Ty, ID.Loc); 5400 if (V && ID.NoCFI) 5401 V = NoCFIValue::get(cast<GlobalValue>(V)); 5402 return V == nullptr; 5403 case ValID::t_APSInt: 5404 if (!Ty->isIntegerTy()) 5405 return error(ID.Loc, "integer constant must have integer type"); 5406 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 5407 V = ConstantInt::get(Context, ID.APSIntVal); 5408 return false; 5409 case ValID::t_APFloat: 5410 if (!Ty->isFloatingPointTy() || 5411 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 5412 return error(ID.Loc, "floating point constant invalid for type"); 5413 5414 // The lexer has no type info, so builds all half, bfloat, float, and double 5415 // FP constants as double. Fix this here. Long double does not need this. 5416 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 5417 // Check for signaling before potentially converting and losing that info. 5418 bool IsSNAN = ID.APFloatVal.isSignaling(); 5419 bool Ignored; 5420 if (Ty->isHalfTy()) 5421 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 5422 &Ignored); 5423 else if (Ty->isBFloatTy()) 5424 ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven, 5425 &Ignored); 5426 else if (Ty->isFloatTy()) 5427 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 5428 &Ignored); 5429 if (IsSNAN) { 5430 // The convert call above may quiet an SNaN, so manufacture another 5431 // SNaN. The bitcast works because the payload (significand) parameter 5432 // is truncated to fit. 5433 APInt Payload = ID.APFloatVal.bitcastToAPInt(); 5434 ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(), 5435 ID.APFloatVal.isNegative(), &Payload); 5436 } 5437 } 5438 V = ConstantFP::get(Context, ID.APFloatVal); 5439 5440 if (V->getType() != Ty) 5441 return error(ID.Loc, "floating point constant does not have type '" + 5442 getTypeString(Ty) + "'"); 5443 5444 return false; 5445 case ValID::t_Null: 5446 if (!Ty->isPointerTy()) 5447 return error(ID.Loc, "null must be a pointer type"); 5448 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 5449 return false; 5450 case ValID::t_Undef: 5451 // FIXME: LabelTy should not be a first-class type. 5452 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5453 return error(ID.Loc, "invalid type for undef constant"); 5454 V = UndefValue::get(Ty); 5455 return false; 5456 case ValID::t_EmptyArray: 5457 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 5458 return error(ID.Loc, "invalid empty array initializer"); 5459 V = UndefValue::get(Ty); 5460 return false; 5461 case ValID::t_Zero: 5462 // FIXME: LabelTy should not be a first-class type. 5463 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5464 return error(ID.Loc, "invalid type for null constant"); 5465 V = Constant::getNullValue(Ty); 5466 return false; 5467 case ValID::t_None: 5468 if (!Ty->isTokenTy()) 5469 return error(ID.Loc, "invalid type for none constant"); 5470 V = Constant::getNullValue(Ty); 5471 return false; 5472 case ValID::t_Poison: 5473 // FIXME: LabelTy should not be a first-class type. 5474 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5475 return error(ID.Loc, "invalid type for poison constant"); 5476 V = PoisonValue::get(Ty); 5477 return false; 5478 case ValID::t_Constant: 5479 if (ID.ConstantVal->getType() != Ty) 5480 return error(ID.Loc, "constant expression type mismatch: got type '" + 5481 getTypeString(ID.ConstantVal->getType()) + 5482 "' but expected '" + getTypeString(Ty) + "'"); 5483 V = ID.ConstantVal; 5484 return false; 5485 case ValID::t_ConstantStruct: 5486 case ValID::t_PackedConstantStruct: 5487 if (StructType *ST = dyn_cast<StructType>(Ty)) { 5488 if (ST->getNumElements() != ID.UIntVal) 5489 return error(ID.Loc, 5490 "initializer with struct type has wrong # elements"); 5491 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 5492 return error(ID.Loc, "packed'ness of initializer and type don't match"); 5493 5494 // Verify that the elements are compatible with the structtype. 5495 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 5496 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 5497 return error( 5498 ID.Loc, 5499 "element " + Twine(i) + 5500 " of struct initializer doesn't match struct element type"); 5501 5502 V = ConstantStruct::get( 5503 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 5504 } else 5505 return error(ID.Loc, "constant expression type mismatch"); 5506 return false; 5507 } 5508 llvm_unreachable("Invalid ValID"); 5509 } 5510 5511 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 5512 C = nullptr; 5513 ValID ID; 5514 auto Loc = Lex.getLoc(); 5515 if (parseValID(ID, /*PFS=*/nullptr)) 5516 return true; 5517 switch (ID.Kind) { 5518 case ValID::t_APSInt: 5519 case ValID::t_APFloat: 5520 case ValID::t_Undef: 5521 case ValID::t_Constant: 5522 case ValID::t_ConstantStruct: 5523 case ValID::t_PackedConstantStruct: { 5524 Value *V; 5525 if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr)) 5526 return true; 5527 assert(isa<Constant>(V) && "Expected a constant value"); 5528 C = cast<Constant>(V); 5529 return false; 5530 } 5531 case ValID::t_Null: 5532 C = Constant::getNullValue(Ty); 5533 return false; 5534 default: 5535 return error(Loc, "expected a constant value"); 5536 } 5537 } 5538 5539 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 5540 V = nullptr; 5541 ValID ID; 5542 return parseValID(ID, PFS, Ty) || 5543 convertValIDToValue(Ty, ID, V, PFS); 5544 } 5545 5546 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) { 5547 Type *Ty = nullptr; 5548 return parseType(Ty) || parseValue(Ty, V, PFS); 5549 } 5550 5551 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 5552 PerFunctionState &PFS) { 5553 Value *V; 5554 Loc = Lex.getLoc(); 5555 if (parseTypeAndValue(V, PFS)) 5556 return true; 5557 if (!isa<BasicBlock>(V)) 5558 return error(Loc, "expected a basic block"); 5559 BB = cast<BasicBlock>(V); 5560 return false; 5561 } 5562 5563 /// FunctionHeader 5564 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 5565 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 5566 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign 5567 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 5568 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) { 5569 // parse the linkage. 5570 LocTy LinkageLoc = Lex.getLoc(); 5571 unsigned Linkage; 5572 unsigned Visibility; 5573 unsigned DLLStorageClass; 5574 bool DSOLocal; 5575 AttrBuilder RetAttrs(M->getContext()); 5576 unsigned CC; 5577 bool HasLinkage; 5578 Type *RetType = nullptr; 5579 LocTy RetTypeLoc = Lex.getLoc(); 5580 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 5581 DSOLocal) || 5582 parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 5583 parseType(RetType, RetTypeLoc, true /*void allowed*/)) 5584 return true; 5585 5586 // Verify that the linkage is ok. 5587 switch ((GlobalValue::LinkageTypes)Linkage) { 5588 case GlobalValue::ExternalLinkage: 5589 break; // always ok. 5590 case GlobalValue::ExternalWeakLinkage: 5591 if (IsDefine) 5592 return error(LinkageLoc, "invalid linkage for function definition"); 5593 break; 5594 case GlobalValue::PrivateLinkage: 5595 case GlobalValue::InternalLinkage: 5596 case GlobalValue::AvailableExternallyLinkage: 5597 case GlobalValue::LinkOnceAnyLinkage: 5598 case GlobalValue::LinkOnceODRLinkage: 5599 case GlobalValue::WeakAnyLinkage: 5600 case GlobalValue::WeakODRLinkage: 5601 if (!IsDefine) 5602 return error(LinkageLoc, "invalid linkage for function declaration"); 5603 break; 5604 case GlobalValue::AppendingLinkage: 5605 case GlobalValue::CommonLinkage: 5606 return error(LinkageLoc, "invalid function linkage type"); 5607 } 5608 5609 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 5610 return error(LinkageLoc, 5611 "symbol with local linkage must have default visibility"); 5612 5613 if (!FunctionType::isValidReturnType(RetType)) 5614 return error(RetTypeLoc, "invalid function return type"); 5615 5616 LocTy NameLoc = Lex.getLoc(); 5617 5618 std::string FunctionName; 5619 if (Lex.getKind() == lltok::GlobalVar) { 5620 FunctionName = Lex.getStrVal(); 5621 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 5622 unsigned NameID = Lex.getUIntVal(); 5623 5624 if (NameID != NumberedVals.size()) 5625 return tokError("function expected to be numbered '%" + 5626 Twine(NumberedVals.size()) + "'"); 5627 } else { 5628 return tokError("expected function name"); 5629 } 5630 5631 Lex.Lex(); 5632 5633 if (Lex.getKind() != lltok::lparen) 5634 return tokError("expected '(' in function argument list"); 5635 5636 SmallVector<ArgInfo, 8> ArgList; 5637 bool IsVarArg; 5638 AttrBuilder FuncAttrs(M->getContext()); 5639 std::vector<unsigned> FwdRefAttrGrps; 5640 LocTy BuiltinLoc; 5641 std::string Section; 5642 std::string Partition; 5643 MaybeAlign Alignment; 5644 std::string GC; 5645 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 5646 unsigned AddrSpace = 0; 5647 Constant *Prefix = nullptr; 5648 Constant *Prologue = nullptr; 5649 Constant *PersonalityFn = nullptr; 5650 Comdat *C; 5651 5652 if (parseArgumentList(ArgList, IsVarArg) || 5653 parseOptionalUnnamedAddr(UnnamedAddr) || 5654 parseOptionalProgramAddrSpace(AddrSpace) || 5655 parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 5656 BuiltinLoc) || 5657 (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) || 5658 (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) || 5659 parseOptionalComdat(FunctionName, C) || 5660 parseOptionalAlignment(Alignment) || 5661 (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) || 5662 (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) || 5663 (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) || 5664 (EatIfPresent(lltok::kw_personality) && 5665 parseGlobalTypeAndValue(PersonalityFn))) 5666 return true; 5667 5668 if (FuncAttrs.contains(Attribute::Builtin)) 5669 return error(BuiltinLoc, "'builtin' attribute not valid on function"); 5670 5671 // If the alignment was parsed as an attribute, move to the alignment field. 5672 if (FuncAttrs.hasAlignmentAttr()) { 5673 Alignment = FuncAttrs.getAlignment(); 5674 FuncAttrs.removeAttribute(Attribute::Alignment); 5675 } 5676 5677 // Okay, if we got here, the function is syntactically valid. Convert types 5678 // and do semantic checks. 5679 std::vector<Type*> ParamTypeList; 5680 SmallVector<AttributeSet, 8> Attrs; 5681 5682 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5683 ParamTypeList.push_back(ArgList[i].Ty); 5684 Attrs.push_back(ArgList[i].Attrs); 5685 } 5686 5687 AttributeList PAL = 5688 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 5689 AttributeSet::get(Context, RetAttrs), Attrs); 5690 5691 if (PAL.hasParamAttr(0, Attribute::StructRet) && !RetType->isVoidTy()) 5692 return error(RetTypeLoc, "functions with 'sret' argument must return void"); 5693 5694 FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg); 5695 PointerType *PFT = PointerType::get(FT, AddrSpace); 5696 5697 Fn = nullptr; 5698 GlobalValue *FwdFn = nullptr; 5699 if (!FunctionName.empty()) { 5700 // If this was a definition of a forward reference, remove the definition 5701 // from the forward reference table and fill in the forward ref. 5702 auto FRVI = ForwardRefVals.find(FunctionName); 5703 if (FRVI != ForwardRefVals.end()) { 5704 FwdFn = FRVI->second.first; 5705 if (!FwdFn->getType()->isOpaque() && 5706 !FwdFn->getType()->getNonOpaquePointerElementType()->isFunctionTy()) 5707 return error(FRVI->second.second, "invalid forward reference to " 5708 "function as global value!"); 5709 if (FwdFn->getType() != PFT) 5710 return error(FRVI->second.second, 5711 "invalid forward reference to " 5712 "function '" + 5713 FunctionName + 5714 "' with wrong type: " 5715 "expected '" + 5716 getTypeString(PFT) + "' but was '" + 5717 getTypeString(FwdFn->getType()) + "'"); 5718 ForwardRefVals.erase(FRVI); 5719 } else if ((Fn = M->getFunction(FunctionName))) { 5720 // Reject redefinitions. 5721 return error(NameLoc, 5722 "invalid redefinition of function '" + FunctionName + "'"); 5723 } else if (M->getNamedValue(FunctionName)) { 5724 return error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 5725 } 5726 5727 } else { 5728 // If this is a definition of a forward referenced function, make sure the 5729 // types agree. 5730 auto I = ForwardRefValIDs.find(NumberedVals.size()); 5731 if (I != ForwardRefValIDs.end()) { 5732 FwdFn = I->second.first; 5733 if (FwdFn->getType() != PFT) 5734 return error(NameLoc, "type of definition and forward reference of '@" + 5735 Twine(NumberedVals.size()) + 5736 "' disagree: " 5737 "expected '" + 5738 getTypeString(PFT) + "' but was '" + 5739 getTypeString(FwdFn->getType()) + "'"); 5740 ForwardRefValIDs.erase(I); 5741 } 5742 } 5743 5744 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace, 5745 FunctionName, M); 5746 5747 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS"); 5748 5749 if (FunctionName.empty()) 5750 NumberedVals.push_back(Fn); 5751 5752 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 5753 maybeSetDSOLocal(DSOLocal, *Fn); 5754 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 5755 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 5756 Fn->setCallingConv(CC); 5757 Fn->setAttributes(PAL); 5758 Fn->setUnnamedAddr(UnnamedAddr); 5759 Fn->setAlignment(MaybeAlign(Alignment)); 5760 Fn->setSection(Section); 5761 Fn->setPartition(Partition); 5762 Fn->setComdat(C); 5763 Fn->setPersonalityFn(PersonalityFn); 5764 if (!GC.empty()) Fn->setGC(GC); 5765 Fn->setPrefixData(Prefix); 5766 Fn->setPrologueData(Prologue); 5767 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 5768 5769 // Add all of the arguments we parsed to the function. 5770 Function::arg_iterator ArgIt = Fn->arg_begin(); 5771 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 5772 // If the argument has a name, insert it into the argument symbol table. 5773 if (ArgList[i].Name.empty()) continue; 5774 5775 // Set the name, if it conflicted, it will be auto-renamed. 5776 ArgIt->setName(ArgList[i].Name); 5777 5778 if (ArgIt->getName() != ArgList[i].Name) 5779 return error(ArgList[i].Loc, 5780 "redefinition of argument '%" + ArgList[i].Name + "'"); 5781 } 5782 5783 if (FwdFn) { 5784 FwdFn->replaceAllUsesWith(Fn); 5785 FwdFn->eraseFromParent(); 5786 } 5787 5788 if (IsDefine) 5789 return false; 5790 5791 // Check the declaration has no block address forward references. 5792 ValID ID; 5793 if (FunctionName.empty()) { 5794 ID.Kind = ValID::t_GlobalID; 5795 ID.UIntVal = NumberedVals.size() - 1; 5796 } else { 5797 ID.Kind = ValID::t_GlobalName; 5798 ID.StrVal = FunctionName; 5799 } 5800 auto Blocks = ForwardRefBlockAddresses.find(ID); 5801 if (Blocks != ForwardRefBlockAddresses.end()) 5802 return error(Blocks->first.Loc, 5803 "cannot take blockaddress inside a declaration"); 5804 return false; 5805 } 5806 5807 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 5808 ValID ID; 5809 if (FunctionNumber == -1) { 5810 ID.Kind = ValID::t_GlobalName; 5811 ID.StrVal = std::string(F.getName()); 5812 } else { 5813 ID.Kind = ValID::t_GlobalID; 5814 ID.UIntVal = FunctionNumber; 5815 } 5816 5817 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 5818 if (Blocks == P.ForwardRefBlockAddresses.end()) 5819 return false; 5820 5821 for (const auto &I : Blocks->second) { 5822 const ValID &BBID = I.first; 5823 GlobalValue *GV = I.second; 5824 5825 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 5826 "Expected local id or name"); 5827 BasicBlock *BB; 5828 if (BBID.Kind == ValID::t_LocalName) 5829 BB = getBB(BBID.StrVal, BBID.Loc); 5830 else 5831 BB = getBB(BBID.UIntVal, BBID.Loc); 5832 if (!BB) 5833 return P.error(BBID.Loc, "referenced value is not a basic block"); 5834 5835 Value *ResolvedVal = BlockAddress::get(&F, BB); 5836 ResolvedVal = P.checkValidVariableType(BBID.Loc, BBID.StrVal, GV->getType(), 5837 ResolvedVal); 5838 if (!ResolvedVal) 5839 return true; 5840 GV->replaceAllUsesWith(ResolvedVal); 5841 GV->eraseFromParent(); 5842 } 5843 5844 P.ForwardRefBlockAddresses.erase(Blocks); 5845 return false; 5846 } 5847 5848 /// parseFunctionBody 5849 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 5850 bool LLParser::parseFunctionBody(Function &Fn) { 5851 if (Lex.getKind() != lltok::lbrace) 5852 return tokError("expected '{' in function body"); 5853 Lex.Lex(); // eat the {. 5854 5855 int FunctionNumber = -1; 5856 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 5857 5858 PerFunctionState PFS(*this, Fn, FunctionNumber); 5859 5860 // Resolve block addresses and allow basic blocks to be forward-declared 5861 // within this function. 5862 if (PFS.resolveForwardRefBlockAddresses()) 5863 return true; 5864 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 5865 5866 // We need at least one basic block. 5867 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 5868 return tokError("function body requires at least one basic block"); 5869 5870 while (Lex.getKind() != lltok::rbrace && 5871 Lex.getKind() != lltok::kw_uselistorder) 5872 if (parseBasicBlock(PFS)) 5873 return true; 5874 5875 while (Lex.getKind() != lltok::rbrace) 5876 if (parseUseListOrder(&PFS)) 5877 return true; 5878 5879 // Eat the }. 5880 Lex.Lex(); 5881 5882 // Verify function is ok. 5883 return PFS.finishFunction(); 5884 } 5885 5886 /// parseBasicBlock 5887 /// ::= (LabelStr|LabelID)? Instruction* 5888 bool LLParser::parseBasicBlock(PerFunctionState &PFS) { 5889 // If this basic block starts out with a name, remember it. 5890 std::string Name; 5891 int NameID = -1; 5892 LocTy NameLoc = Lex.getLoc(); 5893 if (Lex.getKind() == lltok::LabelStr) { 5894 Name = Lex.getStrVal(); 5895 Lex.Lex(); 5896 } else if (Lex.getKind() == lltok::LabelID) { 5897 NameID = Lex.getUIntVal(); 5898 Lex.Lex(); 5899 } 5900 5901 BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc); 5902 if (!BB) 5903 return true; 5904 5905 std::string NameStr; 5906 5907 // parse the instructions in this block until we get a terminator. 5908 Instruction *Inst; 5909 do { 5910 // This instruction may have three possibilities for a name: a) none 5911 // specified, b) name specified "%foo =", c) number specified: "%4 =". 5912 LocTy NameLoc = Lex.getLoc(); 5913 int NameID = -1; 5914 NameStr = ""; 5915 5916 if (Lex.getKind() == lltok::LocalVarID) { 5917 NameID = Lex.getUIntVal(); 5918 Lex.Lex(); 5919 if (parseToken(lltok::equal, "expected '=' after instruction id")) 5920 return true; 5921 } else if (Lex.getKind() == lltok::LocalVar) { 5922 NameStr = Lex.getStrVal(); 5923 Lex.Lex(); 5924 if (parseToken(lltok::equal, "expected '=' after instruction name")) 5925 return true; 5926 } 5927 5928 switch (parseInstruction(Inst, BB, PFS)) { 5929 default: 5930 llvm_unreachable("Unknown parseInstruction result!"); 5931 case InstError: return true; 5932 case InstNormal: 5933 BB->getInstList().push_back(Inst); 5934 5935 // With a normal result, we check to see if the instruction is followed by 5936 // a comma and metadata. 5937 if (EatIfPresent(lltok::comma)) 5938 if (parseInstructionMetadata(*Inst)) 5939 return true; 5940 break; 5941 case InstExtraComma: 5942 BB->getInstList().push_back(Inst); 5943 5944 // If the instruction parser ate an extra comma at the end of it, it 5945 // *must* be followed by metadata. 5946 if (parseInstructionMetadata(*Inst)) 5947 return true; 5948 break; 5949 } 5950 5951 // Set the name on the instruction. 5952 if (PFS.setInstName(NameID, NameStr, NameLoc, Inst)) 5953 return true; 5954 } while (!Inst->isTerminator()); 5955 5956 return false; 5957 } 5958 5959 //===----------------------------------------------------------------------===// 5960 // Instruction Parsing. 5961 //===----------------------------------------------------------------------===// 5962 5963 /// parseInstruction - parse one of the many different instructions. 5964 /// 5965 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB, 5966 PerFunctionState &PFS) { 5967 lltok::Kind Token = Lex.getKind(); 5968 if (Token == lltok::Eof) 5969 return tokError("found end of file when expecting more instructions"); 5970 LocTy Loc = Lex.getLoc(); 5971 unsigned KeywordVal = Lex.getUIntVal(); 5972 Lex.Lex(); // Eat the keyword. 5973 5974 switch (Token) { 5975 default: 5976 return error(Loc, "expected instruction opcode"); 5977 // Terminator Instructions. 5978 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 5979 case lltok::kw_ret: 5980 return parseRet(Inst, BB, PFS); 5981 case lltok::kw_br: 5982 return parseBr(Inst, PFS); 5983 case lltok::kw_switch: 5984 return parseSwitch(Inst, PFS); 5985 case lltok::kw_indirectbr: 5986 return parseIndirectBr(Inst, PFS); 5987 case lltok::kw_invoke: 5988 return parseInvoke(Inst, PFS); 5989 case lltok::kw_resume: 5990 return parseResume(Inst, PFS); 5991 case lltok::kw_cleanupret: 5992 return parseCleanupRet(Inst, PFS); 5993 case lltok::kw_catchret: 5994 return parseCatchRet(Inst, PFS); 5995 case lltok::kw_catchswitch: 5996 return parseCatchSwitch(Inst, PFS); 5997 case lltok::kw_catchpad: 5998 return parseCatchPad(Inst, PFS); 5999 case lltok::kw_cleanuppad: 6000 return parseCleanupPad(Inst, PFS); 6001 case lltok::kw_callbr: 6002 return parseCallBr(Inst, PFS); 6003 // Unary Operators. 6004 case lltok::kw_fneg: { 6005 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6006 int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true); 6007 if (Res != 0) 6008 return Res; 6009 if (FMF.any()) 6010 Inst->setFastMathFlags(FMF); 6011 return false; 6012 } 6013 // Binary Operators. 6014 case lltok::kw_add: 6015 case lltok::kw_sub: 6016 case lltok::kw_mul: 6017 case lltok::kw_shl: { 6018 bool NUW = EatIfPresent(lltok::kw_nuw); 6019 bool NSW = EatIfPresent(lltok::kw_nsw); 6020 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 6021 6022 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 6023 return true; 6024 6025 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 6026 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 6027 return false; 6028 } 6029 case lltok::kw_fadd: 6030 case lltok::kw_fsub: 6031 case lltok::kw_fmul: 6032 case lltok::kw_fdiv: 6033 case lltok::kw_frem: { 6034 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6035 int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true); 6036 if (Res != 0) 6037 return Res; 6038 if (FMF.any()) 6039 Inst->setFastMathFlags(FMF); 6040 return 0; 6041 } 6042 6043 case lltok::kw_sdiv: 6044 case lltok::kw_udiv: 6045 case lltok::kw_lshr: 6046 case lltok::kw_ashr: { 6047 bool Exact = EatIfPresent(lltok::kw_exact); 6048 6049 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 6050 return true; 6051 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 6052 return false; 6053 } 6054 6055 case lltok::kw_urem: 6056 case lltok::kw_srem: 6057 return parseArithmetic(Inst, PFS, KeywordVal, 6058 /*IsFP*/ false); 6059 case lltok::kw_and: 6060 case lltok::kw_or: 6061 case lltok::kw_xor: 6062 return parseLogical(Inst, PFS, KeywordVal); 6063 case lltok::kw_icmp: 6064 return parseCompare(Inst, PFS, KeywordVal); 6065 case lltok::kw_fcmp: { 6066 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6067 int Res = parseCompare(Inst, PFS, KeywordVal); 6068 if (Res != 0) 6069 return Res; 6070 if (FMF.any()) 6071 Inst->setFastMathFlags(FMF); 6072 return 0; 6073 } 6074 6075 // Casts. 6076 case lltok::kw_trunc: 6077 case lltok::kw_zext: 6078 case lltok::kw_sext: 6079 case lltok::kw_fptrunc: 6080 case lltok::kw_fpext: 6081 case lltok::kw_bitcast: 6082 case lltok::kw_addrspacecast: 6083 case lltok::kw_uitofp: 6084 case lltok::kw_sitofp: 6085 case lltok::kw_fptoui: 6086 case lltok::kw_fptosi: 6087 case lltok::kw_inttoptr: 6088 case lltok::kw_ptrtoint: 6089 return parseCast(Inst, PFS, KeywordVal); 6090 // Other. 6091 case lltok::kw_select: { 6092 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6093 int Res = parseSelect(Inst, PFS); 6094 if (Res != 0) 6095 return Res; 6096 if (FMF.any()) { 6097 if (!isa<FPMathOperator>(Inst)) 6098 return error(Loc, "fast-math-flags specified for select without " 6099 "floating-point scalar or vector return type"); 6100 Inst->setFastMathFlags(FMF); 6101 } 6102 return 0; 6103 } 6104 case lltok::kw_va_arg: 6105 return parseVAArg(Inst, PFS); 6106 case lltok::kw_extractelement: 6107 return parseExtractElement(Inst, PFS); 6108 case lltok::kw_insertelement: 6109 return parseInsertElement(Inst, PFS); 6110 case lltok::kw_shufflevector: 6111 return parseShuffleVector(Inst, PFS); 6112 case lltok::kw_phi: { 6113 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6114 int Res = parsePHI(Inst, PFS); 6115 if (Res != 0) 6116 return Res; 6117 if (FMF.any()) { 6118 if (!isa<FPMathOperator>(Inst)) 6119 return error(Loc, "fast-math-flags specified for phi without " 6120 "floating-point scalar or vector return type"); 6121 Inst->setFastMathFlags(FMF); 6122 } 6123 return 0; 6124 } 6125 case lltok::kw_landingpad: 6126 return parseLandingPad(Inst, PFS); 6127 case lltok::kw_freeze: 6128 return parseFreeze(Inst, PFS); 6129 // Call. 6130 case lltok::kw_call: 6131 return parseCall(Inst, PFS, CallInst::TCK_None); 6132 case lltok::kw_tail: 6133 return parseCall(Inst, PFS, CallInst::TCK_Tail); 6134 case lltok::kw_musttail: 6135 return parseCall(Inst, PFS, CallInst::TCK_MustTail); 6136 case lltok::kw_notail: 6137 return parseCall(Inst, PFS, CallInst::TCK_NoTail); 6138 // Memory. 6139 case lltok::kw_alloca: 6140 return parseAlloc(Inst, PFS); 6141 case lltok::kw_load: 6142 return parseLoad(Inst, PFS); 6143 case lltok::kw_store: 6144 return parseStore(Inst, PFS); 6145 case lltok::kw_cmpxchg: 6146 return parseCmpXchg(Inst, PFS); 6147 case lltok::kw_atomicrmw: 6148 return parseAtomicRMW(Inst, PFS); 6149 case lltok::kw_fence: 6150 return parseFence(Inst, PFS); 6151 case lltok::kw_getelementptr: 6152 return parseGetElementPtr(Inst, PFS); 6153 case lltok::kw_extractvalue: 6154 return parseExtractValue(Inst, PFS); 6155 case lltok::kw_insertvalue: 6156 return parseInsertValue(Inst, PFS); 6157 } 6158 } 6159 6160 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind. 6161 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) { 6162 if (Opc == Instruction::FCmp) { 6163 switch (Lex.getKind()) { 6164 default: 6165 return tokError("expected fcmp predicate (e.g. 'oeq')"); 6166 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 6167 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 6168 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 6169 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 6170 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 6171 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 6172 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 6173 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 6174 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 6175 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 6176 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 6177 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 6178 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 6179 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 6180 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 6181 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 6182 } 6183 } else { 6184 switch (Lex.getKind()) { 6185 default: 6186 return tokError("expected icmp predicate (e.g. 'eq')"); 6187 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 6188 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 6189 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 6190 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 6191 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 6192 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 6193 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 6194 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 6195 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 6196 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 6197 } 6198 } 6199 Lex.Lex(); 6200 return false; 6201 } 6202 6203 //===----------------------------------------------------------------------===// 6204 // Terminator Instructions. 6205 //===----------------------------------------------------------------------===// 6206 6207 /// parseRet - parse a return instruction. 6208 /// ::= 'ret' void (',' !dbg, !1)* 6209 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 6210 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB, 6211 PerFunctionState &PFS) { 6212 SMLoc TypeLoc = Lex.getLoc(); 6213 Type *Ty = nullptr; 6214 if (parseType(Ty, true /*void allowed*/)) 6215 return true; 6216 6217 Type *ResType = PFS.getFunction().getReturnType(); 6218 6219 if (Ty->isVoidTy()) { 6220 if (!ResType->isVoidTy()) 6221 return error(TypeLoc, "value doesn't match function result type '" + 6222 getTypeString(ResType) + "'"); 6223 6224 Inst = ReturnInst::Create(Context); 6225 return false; 6226 } 6227 6228 Value *RV; 6229 if (parseValue(Ty, RV, PFS)) 6230 return true; 6231 6232 if (ResType != RV->getType()) 6233 return error(TypeLoc, "value doesn't match function result type '" + 6234 getTypeString(ResType) + "'"); 6235 6236 Inst = ReturnInst::Create(Context, RV); 6237 return false; 6238 } 6239 6240 /// parseBr 6241 /// ::= 'br' TypeAndValue 6242 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6243 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) { 6244 LocTy Loc, Loc2; 6245 Value *Op0; 6246 BasicBlock *Op1, *Op2; 6247 if (parseTypeAndValue(Op0, Loc, PFS)) 6248 return true; 6249 6250 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 6251 Inst = BranchInst::Create(BB); 6252 return false; 6253 } 6254 6255 if (Op0->getType() != Type::getInt1Ty(Context)) 6256 return error(Loc, "branch condition must have 'i1' type"); 6257 6258 if (parseToken(lltok::comma, "expected ',' after branch condition") || 6259 parseTypeAndBasicBlock(Op1, Loc, PFS) || 6260 parseToken(lltok::comma, "expected ',' after true destination") || 6261 parseTypeAndBasicBlock(Op2, Loc2, PFS)) 6262 return true; 6263 6264 Inst = BranchInst::Create(Op1, Op2, Op0); 6265 return false; 6266 } 6267 6268 /// parseSwitch 6269 /// Instruction 6270 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 6271 /// JumpTable 6272 /// ::= (TypeAndValue ',' TypeAndValue)* 6273 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6274 LocTy CondLoc, BBLoc; 6275 Value *Cond; 6276 BasicBlock *DefaultBB; 6277 if (parseTypeAndValue(Cond, CondLoc, PFS) || 6278 parseToken(lltok::comma, "expected ',' after switch condition") || 6279 parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 6280 parseToken(lltok::lsquare, "expected '[' with switch table")) 6281 return true; 6282 6283 if (!Cond->getType()->isIntegerTy()) 6284 return error(CondLoc, "switch condition must have integer type"); 6285 6286 // parse the jump table pairs. 6287 SmallPtrSet<Value*, 32> SeenCases; 6288 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 6289 while (Lex.getKind() != lltok::rsquare) { 6290 Value *Constant; 6291 BasicBlock *DestBB; 6292 6293 if (parseTypeAndValue(Constant, CondLoc, PFS) || 6294 parseToken(lltok::comma, "expected ',' after case value") || 6295 parseTypeAndBasicBlock(DestBB, PFS)) 6296 return true; 6297 6298 if (!SeenCases.insert(Constant).second) 6299 return error(CondLoc, "duplicate case value in switch"); 6300 if (!isa<ConstantInt>(Constant)) 6301 return error(CondLoc, "case value is not a constant integer"); 6302 6303 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 6304 } 6305 6306 Lex.Lex(); // Eat the ']'. 6307 6308 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 6309 for (unsigned i = 0, e = Table.size(); i != e; ++i) 6310 SI->addCase(Table[i].first, Table[i].second); 6311 Inst = SI; 6312 return false; 6313 } 6314 6315 /// parseIndirectBr 6316 /// Instruction 6317 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 6318 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 6319 LocTy AddrLoc; 6320 Value *Address; 6321 if (parseTypeAndValue(Address, AddrLoc, PFS) || 6322 parseToken(lltok::comma, "expected ',' after indirectbr address") || 6323 parseToken(lltok::lsquare, "expected '[' with indirectbr")) 6324 return true; 6325 6326 if (!Address->getType()->isPointerTy()) 6327 return error(AddrLoc, "indirectbr address must have pointer type"); 6328 6329 // parse the destination list. 6330 SmallVector<BasicBlock*, 16> DestList; 6331 6332 if (Lex.getKind() != lltok::rsquare) { 6333 BasicBlock *DestBB; 6334 if (parseTypeAndBasicBlock(DestBB, PFS)) 6335 return true; 6336 DestList.push_back(DestBB); 6337 6338 while (EatIfPresent(lltok::comma)) { 6339 if (parseTypeAndBasicBlock(DestBB, PFS)) 6340 return true; 6341 DestList.push_back(DestBB); 6342 } 6343 } 6344 6345 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 6346 return true; 6347 6348 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 6349 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 6350 IBI->addDestination(DestList[i]); 6351 Inst = IBI; 6352 return false; 6353 } 6354 6355 /// parseInvoke 6356 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 6357 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 6358 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 6359 LocTy CallLoc = Lex.getLoc(); 6360 AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext()); 6361 std::vector<unsigned> FwdRefAttrGrps; 6362 LocTy NoBuiltinLoc; 6363 unsigned CC; 6364 unsigned InvokeAddrSpace; 6365 Type *RetType = nullptr; 6366 LocTy RetTypeLoc; 6367 ValID CalleeID; 6368 SmallVector<ParamInfo, 16> ArgList; 6369 SmallVector<OperandBundleDef, 2> BundleList; 6370 6371 BasicBlock *NormalBB, *UnwindBB; 6372 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6373 parseOptionalProgramAddrSpace(InvokeAddrSpace) || 6374 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6375 parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) || 6376 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6377 NoBuiltinLoc) || 6378 parseOptionalOperandBundles(BundleList, PFS) || 6379 parseToken(lltok::kw_to, "expected 'to' in invoke") || 6380 parseTypeAndBasicBlock(NormalBB, PFS) || 6381 parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 6382 parseTypeAndBasicBlock(UnwindBB, PFS)) 6383 return true; 6384 6385 // If RetType is a non-function pointer type, then this is the short syntax 6386 // for the call, which means that RetType is just the return type. Infer the 6387 // rest of the function argument types from the arguments that are present. 6388 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6389 if (!Ty) { 6390 // Pull out the types of all of the arguments... 6391 std::vector<Type*> ParamTypes; 6392 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6393 ParamTypes.push_back(ArgList[i].V->getType()); 6394 6395 if (!FunctionType::isValidReturnType(RetType)) 6396 return error(RetTypeLoc, "Invalid result type for LLVM function"); 6397 6398 Ty = FunctionType::get(RetType, ParamTypes, false); 6399 } 6400 6401 CalleeID.FTy = Ty; 6402 6403 // Look up the callee. 6404 Value *Callee; 6405 if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID, 6406 Callee, &PFS)) 6407 return true; 6408 6409 // Set up the Attribute for the function. 6410 SmallVector<Value *, 8> Args; 6411 SmallVector<AttributeSet, 8> ArgAttrs; 6412 6413 // Loop through FunctionType's arguments and ensure they are specified 6414 // correctly. Also, gather any parameter attributes. 6415 FunctionType::param_iterator I = Ty->param_begin(); 6416 FunctionType::param_iterator E = Ty->param_end(); 6417 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6418 Type *ExpectedTy = nullptr; 6419 if (I != E) { 6420 ExpectedTy = *I++; 6421 } else if (!Ty->isVarArg()) { 6422 return error(ArgList[i].Loc, "too many arguments specified"); 6423 } 6424 6425 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6426 return error(ArgList[i].Loc, "argument is not of expected type '" + 6427 getTypeString(ExpectedTy) + "'"); 6428 Args.push_back(ArgList[i].V); 6429 ArgAttrs.push_back(ArgList[i].Attrs); 6430 } 6431 6432 if (I != E) 6433 return error(CallLoc, "not enough parameters specified for call"); 6434 6435 if (FnAttrs.hasAlignmentAttr()) 6436 return error(CallLoc, "invoke instructions may not have an alignment"); 6437 6438 // Finish off the Attribute and check them 6439 AttributeList PAL = 6440 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6441 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6442 6443 InvokeInst *II = 6444 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 6445 II->setCallingConv(CC); 6446 II->setAttributes(PAL); 6447 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 6448 Inst = II; 6449 return false; 6450 } 6451 6452 /// parseResume 6453 /// ::= 'resume' TypeAndValue 6454 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) { 6455 Value *Exn; LocTy ExnLoc; 6456 if (parseTypeAndValue(Exn, ExnLoc, PFS)) 6457 return true; 6458 6459 ResumeInst *RI = ResumeInst::Create(Exn); 6460 Inst = RI; 6461 return false; 6462 } 6463 6464 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args, 6465 PerFunctionState &PFS) { 6466 if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 6467 return true; 6468 6469 while (Lex.getKind() != lltok::rsquare) { 6470 // If this isn't the first argument, we need a comma. 6471 if (!Args.empty() && 6472 parseToken(lltok::comma, "expected ',' in argument list")) 6473 return true; 6474 6475 // parse the argument. 6476 LocTy ArgLoc; 6477 Type *ArgTy = nullptr; 6478 if (parseType(ArgTy, ArgLoc)) 6479 return true; 6480 6481 Value *V; 6482 if (ArgTy->isMetadataTy()) { 6483 if (parseMetadataAsValue(V, PFS)) 6484 return true; 6485 } else { 6486 if (parseValue(ArgTy, V, PFS)) 6487 return true; 6488 } 6489 Args.push_back(V); 6490 } 6491 6492 Lex.Lex(); // Lex the ']'. 6493 return false; 6494 } 6495 6496 /// parseCleanupRet 6497 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 6498 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 6499 Value *CleanupPad = nullptr; 6500 6501 if (parseToken(lltok::kw_from, "expected 'from' after cleanupret")) 6502 return true; 6503 6504 if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 6505 return true; 6506 6507 if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 6508 return true; 6509 6510 BasicBlock *UnwindBB = nullptr; 6511 if (Lex.getKind() == lltok::kw_to) { 6512 Lex.Lex(); 6513 if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 6514 return true; 6515 } else { 6516 if (parseTypeAndBasicBlock(UnwindBB, PFS)) { 6517 return true; 6518 } 6519 } 6520 6521 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 6522 return false; 6523 } 6524 6525 /// parseCatchRet 6526 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 6527 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 6528 Value *CatchPad = nullptr; 6529 6530 if (parseToken(lltok::kw_from, "expected 'from' after catchret")) 6531 return true; 6532 6533 if (parseValue(Type::getTokenTy(Context), CatchPad, PFS)) 6534 return true; 6535 6536 BasicBlock *BB; 6537 if (parseToken(lltok::kw_to, "expected 'to' in catchret") || 6538 parseTypeAndBasicBlock(BB, PFS)) 6539 return true; 6540 6541 Inst = CatchReturnInst::Create(CatchPad, BB); 6542 return false; 6543 } 6544 6545 /// parseCatchSwitch 6546 /// ::= 'catchswitch' within Parent 6547 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6548 Value *ParentPad; 6549 6550 if (parseToken(lltok::kw_within, "expected 'within' after catchswitch")) 6551 return true; 6552 6553 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6554 Lex.getKind() != lltok::LocalVarID) 6555 return tokError("expected scope value for catchswitch"); 6556 6557 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6558 return true; 6559 6560 if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 6561 return true; 6562 6563 SmallVector<BasicBlock *, 32> Table; 6564 do { 6565 BasicBlock *DestBB; 6566 if (parseTypeAndBasicBlock(DestBB, PFS)) 6567 return true; 6568 Table.push_back(DestBB); 6569 } while (EatIfPresent(lltok::comma)); 6570 6571 if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 6572 return true; 6573 6574 if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope")) 6575 return true; 6576 6577 BasicBlock *UnwindBB = nullptr; 6578 if (EatIfPresent(lltok::kw_to)) { 6579 if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 6580 return true; 6581 } else { 6582 if (parseTypeAndBasicBlock(UnwindBB, PFS)) 6583 return true; 6584 } 6585 6586 auto *CatchSwitch = 6587 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 6588 for (BasicBlock *DestBB : Table) 6589 CatchSwitch->addHandler(DestBB); 6590 Inst = CatchSwitch; 6591 return false; 6592 } 6593 6594 /// parseCatchPad 6595 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 6596 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 6597 Value *CatchSwitch = nullptr; 6598 6599 if (parseToken(lltok::kw_within, "expected 'within' after catchpad")) 6600 return true; 6601 6602 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 6603 return tokError("expected scope value for catchpad"); 6604 6605 if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 6606 return true; 6607 6608 SmallVector<Value *, 8> Args; 6609 if (parseExceptionArgs(Args, PFS)) 6610 return true; 6611 6612 Inst = CatchPadInst::Create(CatchSwitch, Args); 6613 return false; 6614 } 6615 6616 /// parseCleanupPad 6617 /// ::= 'cleanuppad' within Parent ParamList 6618 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 6619 Value *ParentPad = nullptr; 6620 6621 if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 6622 return true; 6623 6624 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6625 Lex.getKind() != lltok::LocalVarID) 6626 return tokError("expected scope value for cleanuppad"); 6627 6628 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6629 return true; 6630 6631 SmallVector<Value *, 8> Args; 6632 if (parseExceptionArgs(Args, PFS)) 6633 return true; 6634 6635 Inst = CleanupPadInst::Create(ParentPad, Args); 6636 return false; 6637 } 6638 6639 //===----------------------------------------------------------------------===// 6640 // Unary Operators. 6641 //===----------------------------------------------------------------------===// 6642 6643 /// parseUnaryOp 6644 /// ::= UnaryOp TypeAndValue ',' Value 6645 /// 6646 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6647 /// operand is allowed. 6648 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS, 6649 unsigned Opc, bool IsFP) { 6650 LocTy Loc; Value *LHS; 6651 if (parseTypeAndValue(LHS, Loc, PFS)) 6652 return true; 6653 6654 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6655 : LHS->getType()->isIntOrIntVectorTy(); 6656 6657 if (!Valid) 6658 return error(Loc, "invalid operand type for instruction"); 6659 6660 Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 6661 return false; 6662 } 6663 6664 /// parseCallBr 6665 /// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList 6666 /// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue 6667 /// '[' LabelList ']' 6668 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) { 6669 LocTy CallLoc = Lex.getLoc(); 6670 AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext()); 6671 std::vector<unsigned> FwdRefAttrGrps; 6672 LocTy NoBuiltinLoc; 6673 unsigned CC; 6674 Type *RetType = nullptr; 6675 LocTy RetTypeLoc; 6676 ValID CalleeID; 6677 SmallVector<ParamInfo, 16> ArgList; 6678 SmallVector<OperandBundleDef, 2> BundleList; 6679 6680 BasicBlock *DefaultDest; 6681 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6682 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6683 parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) || 6684 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6685 NoBuiltinLoc) || 6686 parseOptionalOperandBundles(BundleList, PFS) || 6687 parseToken(lltok::kw_to, "expected 'to' in callbr") || 6688 parseTypeAndBasicBlock(DefaultDest, PFS) || 6689 parseToken(lltok::lsquare, "expected '[' in callbr")) 6690 return true; 6691 6692 // parse the destination list. 6693 SmallVector<BasicBlock *, 16> IndirectDests; 6694 6695 if (Lex.getKind() != lltok::rsquare) { 6696 BasicBlock *DestBB; 6697 if (parseTypeAndBasicBlock(DestBB, PFS)) 6698 return true; 6699 IndirectDests.push_back(DestBB); 6700 6701 while (EatIfPresent(lltok::comma)) { 6702 if (parseTypeAndBasicBlock(DestBB, PFS)) 6703 return true; 6704 IndirectDests.push_back(DestBB); 6705 } 6706 } 6707 6708 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 6709 return true; 6710 6711 // If RetType is a non-function pointer type, then this is the short syntax 6712 // for the call, which means that RetType is just the return type. Infer the 6713 // rest of the function argument types from the arguments that are present. 6714 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6715 if (!Ty) { 6716 // Pull out the types of all of the arguments... 6717 std::vector<Type *> ParamTypes; 6718 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6719 ParamTypes.push_back(ArgList[i].V->getType()); 6720 6721 if (!FunctionType::isValidReturnType(RetType)) 6722 return error(RetTypeLoc, "Invalid result type for LLVM function"); 6723 6724 Ty = FunctionType::get(RetType, ParamTypes, false); 6725 } 6726 6727 CalleeID.FTy = Ty; 6728 6729 // Look up the callee. 6730 Value *Callee; 6731 if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 6732 return true; 6733 6734 // Set up the Attribute for the function. 6735 SmallVector<Value *, 8> Args; 6736 SmallVector<AttributeSet, 8> ArgAttrs; 6737 6738 // Loop through FunctionType's arguments and ensure they are specified 6739 // correctly. Also, gather any parameter attributes. 6740 FunctionType::param_iterator I = Ty->param_begin(); 6741 FunctionType::param_iterator E = Ty->param_end(); 6742 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6743 Type *ExpectedTy = nullptr; 6744 if (I != E) { 6745 ExpectedTy = *I++; 6746 } else if (!Ty->isVarArg()) { 6747 return error(ArgList[i].Loc, "too many arguments specified"); 6748 } 6749 6750 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6751 return error(ArgList[i].Loc, "argument is not of expected type '" + 6752 getTypeString(ExpectedTy) + "'"); 6753 Args.push_back(ArgList[i].V); 6754 ArgAttrs.push_back(ArgList[i].Attrs); 6755 } 6756 6757 if (I != E) 6758 return error(CallLoc, "not enough parameters specified for call"); 6759 6760 if (FnAttrs.hasAlignmentAttr()) 6761 return error(CallLoc, "callbr instructions may not have an alignment"); 6762 6763 // Finish off the Attribute and check them 6764 AttributeList PAL = 6765 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6766 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6767 6768 CallBrInst *CBI = 6769 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args, 6770 BundleList); 6771 CBI->setCallingConv(CC); 6772 CBI->setAttributes(PAL); 6773 ForwardRefAttrGroups[CBI] = FwdRefAttrGrps; 6774 Inst = CBI; 6775 return false; 6776 } 6777 6778 //===----------------------------------------------------------------------===// 6779 // Binary Operators. 6780 //===----------------------------------------------------------------------===// 6781 6782 /// parseArithmetic 6783 /// ::= ArithmeticOps TypeAndValue ',' Value 6784 /// 6785 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6786 /// operand is allowed. 6787 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 6788 unsigned Opc, bool IsFP) { 6789 LocTy Loc; Value *LHS, *RHS; 6790 if (parseTypeAndValue(LHS, Loc, PFS) || 6791 parseToken(lltok::comma, "expected ',' in arithmetic operation") || 6792 parseValue(LHS->getType(), RHS, PFS)) 6793 return true; 6794 6795 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6796 : LHS->getType()->isIntOrIntVectorTy(); 6797 6798 if (!Valid) 6799 return error(Loc, "invalid operand type for instruction"); 6800 6801 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6802 return false; 6803 } 6804 6805 /// parseLogical 6806 /// ::= ArithmeticOps TypeAndValue ',' Value { 6807 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS, 6808 unsigned Opc) { 6809 LocTy Loc; Value *LHS, *RHS; 6810 if (parseTypeAndValue(LHS, Loc, PFS) || 6811 parseToken(lltok::comma, "expected ',' in logical operation") || 6812 parseValue(LHS->getType(), RHS, PFS)) 6813 return true; 6814 6815 if (!LHS->getType()->isIntOrIntVectorTy()) 6816 return error(Loc, 6817 "instruction requires integer or integer vector operands"); 6818 6819 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6820 return false; 6821 } 6822 6823 /// parseCompare 6824 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 6825 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 6826 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS, 6827 unsigned Opc) { 6828 // parse the integer/fp comparison predicate. 6829 LocTy Loc; 6830 unsigned Pred; 6831 Value *LHS, *RHS; 6832 if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) || 6833 parseToken(lltok::comma, "expected ',' after compare value") || 6834 parseValue(LHS->getType(), RHS, PFS)) 6835 return true; 6836 6837 if (Opc == Instruction::FCmp) { 6838 if (!LHS->getType()->isFPOrFPVectorTy()) 6839 return error(Loc, "fcmp requires floating point operands"); 6840 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6841 } else { 6842 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 6843 if (!LHS->getType()->isIntOrIntVectorTy() && 6844 !LHS->getType()->isPtrOrPtrVectorTy()) 6845 return error(Loc, "icmp requires integer operands"); 6846 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6847 } 6848 return false; 6849 } 6850 6851 //===----------------------------------------------------------------------===// 6852 // Other Instructions. 6853 //===----------------------------------------------------------------------===// 6854 6855 /// parseCast 6856 /// ::= CastOpc TypeAndValue 'to' Type 6857 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS, 6858 unsigned Opc) { 6859 LocTy Loc; 6860 Value *Op; 6861 Type *DestTy = nullptr; 6862 if (parseTypeAndValue(Op, Loc, PFS) || 6863 parseToken(lltok::kw_to, "expected 'to' after cast value") || 6864 parseType(DestTy)) 6865 return true; 6866 6867 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 6868 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 6869 return error(Loc, "invalid cast opcode for cast from '" + 6870 getTypeString(Op->getType()) + "' to '" + 6871 getTypeString(DestTy) + "'"); 6872 } 6873 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 6874 return false; 6875 } 6876 6877 /// parseSelect 6878 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6879 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) { 6880 LocTy Loc; 6881 Value *Op0, *Op1, *Op2; 6882 if (parseTypeAndValue(Op0, Loc, PFS) || 6883 parseToken(lltok::comma, "expected ',' after select condition") || 6884 parseTypeAndValue(Op1, PFS) || 6885 parseToken(lltok::comma, "expected ',' after select value") || 6886 parseTypeAndValue(Op2, PFS)) 6887 return true; 6888 6889 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 6890 return error(Loc, Reason); 6891 6892 Inst = SelectInst::Create(Op0, Op1, Op2); 6893 return false; 6894 } 6895 6896 /// parseVAArg 6897 /// ::= 'va_arg' TypeAndValue ',' Type 6898 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) { 6899 Value *Op; 6900 Type *EltTy = nullptr; 6901 LocTy TypeLoc; 6902 if (parseTypeAndValue(Op, PFS) || 6903 parseToken(lltok::comma, "expected ',' after vaarg operand") || 6904 parseType(EltTy, TypeLoc)) 6905 return true; 6906 6907 if (!EltTy->isFirstClassType()) 6908 return error(TypeLoc, "va_arg requires operand with first class type"); 6909 6910 Inst = new VAArgInst(Op, EltTy); 6911 return false; 6912 } 6913 6914 /// parseExtractElement 6915 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 6916 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 6917 LocTy Loc; 6918 Value *Op0, *Op1; 6919 if (parseTypeAndValue(Op0, Loc, PFS) || 6920 parseToken(lltok::comma, "expected ',' after extract value") || 6921 parseTypeAndValue(Op1, PFS)) 6922 return true; 6923 6924 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 6925 return error(Loc, "invalid extractelement operands"); 6926 6927 Inst = ExtractElementInst::Create(Op0, Op1); 6928 return false; 6929 } 6930 6931 /// parseInsertElement 6932 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6933 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 6934 LocTy Loc; 6935 Value *Op0, *Op1, *Op2; 6936 if (parseTypeAndValue(Op0, Loc, PFS) || 6937 parseToken(lltok::comma, "expected ',' after insertelement value") || 6938 parseTypeAndValue(Op1, PFS) || 6939 parseToken(lltok::comma, "expected ',' after insertelement value") || 6940 parseTypeAndValue(Op2, PFS)) 6941 return true; 6942 6943 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 6944 return error(Loc, "invalid insertelement operands"); 6945 6946 Inst = InsertElementInst::Create(Op0, Op1, Op2); 6947 return false; 6948 } 6949 6950 /// parseShuffleVector 6951 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6952 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 6953 LocTy Loc; 6954 Value *Op0, *Op1, *Op2; 6955 if (parseTypeAndValue(Op0, Loc, PFS) || 6956 parseToken(lltok::comma, "expected ',' after shuffle mask") || 6957 parseTypeAndValue(Op1, PFS) || 6958 parseToken(lltok::comma, "expected ',' after shuffle value") || 6959 parseTypeAndValue(Op2, PFS)) 6960 return true; 6961 6962 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 6963 return error(Loc, "invalid shufflevector operands"); 6964 6965 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 6966 return false; 6967 } 6968 6969 /// parsePHI 6970 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 6971 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) { 6972 Type *Ty = nullptr; LocTy TypeLoc; 6973 Value *Op0, *Op1; 6974 6975 if (parseType(Ty, TypeLoc) || 6976 parseToken(lltok::lsquare, "expected '[' in phi value list") || 6977 parseValue(Ty, Op0, PFS) || 6978 parseToken(lltok::comma, "expected ',' after insertelement value") || 6979 parseValue(Type::getLabelTy(Context), Op1, PFS) || 6980 parseToken(lltok::rsquare, "expected ']' in phi value list")) 6981 return true; 6982 6983 bool AteExtraComma = false; 6984 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 6985 6986 while (true) { 6987 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 6988 6989 if (!EatIfPresent(lltok::comma)) 6990 break; 6991 6992 if (Lex.getKind() == lltok::MetadataVar) { 6993 AteExtraComma = true; 6994 break; 6995 } 6996 6997 if (parseToken(lltok::lsquare, "expected '[' in phi value list") || 6998 parseValue(Ty, Op0, PFS) || 6999 parseToken(lltok::comma, "expected ',' after insertelement value") || 7000 parseValue(Type::getLabelTy(Context), Op1, PFS) || 7001 parseToken(lltok::rsquare, "expected ']' in phi value list")) 7002 return true; 7003 } 7004 7005 if (!Ty->isFirstClassType()) 7006 return error(TypeLoc, "phi node must have first class type"); 7007 7008 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 7009 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 7010 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 7011 Inst = PN; 7012 return AteExtraComma ? InstExtraComma : InstNormal; 7013 } 7014 7015 /// parseLandingPad 7016 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 7017 /// Clause 7018 /// ::= 'catch' TypeAndValue 7019 /// ::= 'filter' 7020 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 7021 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 7022 Type *Ty = nullptr; LocTy TyLoc; 7023 7024 if (parseType(Ty, TyLoc)) 7025 return true; 7026 7027 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 7028 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 7029 7030 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 7031 LandingPadInst::ClauseType CT; 7032 if (EatIfPresent(lltok::kw_catch)) 7033 CT = LandingPadInst::Catch; 7034 else if (EatIfPresent(lltok::kw_filter)) 7035 CT = LandingPadInst::Filter; 7036 else 7037 return tokError("expected 'catch' or 'filter' clause type"); 7038 7039 Value *V; 7040 LocTy VLoc; 7041 if (parseTypeAndValue(V, VLoc, PFS)) 7042 return true; 7043 7044 // A 'catch' type expects a non-array constant. A filter clause expects an 7045 // array constant. 7046 if (CT == LandingPadInst::Catch) { 7047 if (isa<ArrayType>(V->getType())) 7048 error(VLoc, "'catch' clause has an invalid type"); 7049 } else { 7050 if (!isa<ArrayType>(V->getType())) 7051 error(VLoc, "'filter' clause has an invalid type"); 7052 } 7053 7054 Constant *CV = dyn_cast<Constant>(V); 7055 if (!CV) 7056 return error(VLoc, "clause argument must be a constant"); 7057 LP->addClause(CV); 7058 } 7059 7060 Inst = LP.release(); 7061 return false; 7062 } 7063 7064 /// parseFreeze 7065 /// ::= 'freeze' Type Value 7066 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) { 7067 LocTy Loc; 7068 Value *Op; 7069 if (parseTypeAndValue(Op, Loc, PFS)) 7070 return true; 7071 7072 Inst = new FreezeInst(Op); 7073 return false; 7074 } 7075 7076 /// parseCall 7077 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 7078 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7079 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 7080 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7081 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 7082 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7083 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 7084 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7085 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS, 7086 CallInst::TailCallKind TCK) { 7087 AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext()); 7088 std::vector<unsigned> FwdRefAttrGrps; 7089 LocTy BuiltinLoc; 7090 unsigned CallAddrSpace; 7091 unsigned CC; 7092 Type *RetType = nullptr; 7093 LocTy RetTypeLoc; 7094 ValID CalleeID; 7095 SmallVector<ParamInfo, 16> ArgList; 7096 SmallVector<OperandBundleDef, 2> BundleList; 7097 LocTy CallLoc = Lex.getLoc(); 7098 7099 if (TCK != CallInst::TCK_None && 7100 parseToken(lltok::kw_call, 7101 "expected 'tail call', 'musttail call', or 'notail call'")) 7102 return true; 7103 7104 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 7105 7106 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 7107 parseOptionalProgramAddrSpace(CallAddrSpace) || 7108 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 7109 parseValID(CalleeID, &PFS) || 7110 parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 7111 PFS.getFunction().isVarArg()) || 7112 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 7113 parseOptionalOperandBundles(BundleList, PFS)) 7114 return true; 7115 7116 // If RetType is a non-function pointer type, then this is the short syntax 7117 // for the call, which means that RetType is just the return type. Infer the 7118 // rest of the function argument types from the arguments that are present. 7119 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 7120 if (!Ty) { 7121 // Pull out the types of all of the arguments... 7122 std::vector<Type*> ParamTypes; 7123 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 7124 ParamTypes.push_back(ArgList[i].V->getType()); 7125 7126 if (!FunctionType::isValidReturnType(RetType)) 7127 return error(RetTypeLoc, "Invalid result type for LLVM function"); 7128 7129 Ty = FunctionType::get(RetType, ParamTypes, false); 7130 } 7131 7132 CalleeID.FTy = Ty; 7133 7134 // Look up the callee. 7135 Value *Callee; 7136 if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee, 7137 &PFS)) 7138 return true; 7139 7140 // Set up the Attribute for the function. 7141 SmallVector<AttributeSet, 8> Attrs; 7142 7143 SmallVector<Value*, 8> Args; 7144 7145 // Loop through FunctionType's arguments and ensure they are specified 7146 // correctly. Also, gather any parameter attributes. 7147 FunctionType::param_iterator I = Ty->param_begin(); 7148 FunctionType::param_iterator E = Ty->param_end(); 7149 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 7150 Type *ExpectedTy = nullptr; 7151 if (I != E) { 7152 ExpectedTy = *I++; 7153 } else if (!Ty->isVarArg()) { 7154 return error(ArgList[i].Loc, "too many arguments specified"); 7155 } 7156 7157 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 7158 return error(ArgList[i].Loc, "argument is not of expected type '" + 7159 getTypeString(ExpectedTy) + "'"); 7160 Args.push_back(ArgList[i].V); 7161 Attrs.push_back(ArgList[i].Attrs); 7162 } 7163 7164 if (I != E) 7165 return error(CallLoc, "not enough parameters specified for call"); 7166 7167 if (FnAttrs.hasAlignmentAttr()) 7168 return error(CallLoc, "call instructions may not have an alignment"); 7169 7170 // Finish off the Attribute and check them 7171 AttributeList PAL = 7172 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 7173 AttributeSet::get(Context, RetAttrs), Attrs); 7174 7175 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 7176 CI->setTailCallKind(TCK); 7177 CI->setCallingConv(CC); 7178 if (FMF.any()) { 7179 if (!isa<FPMathOperator>(CI)) { 7180 CI->deleteValue(); 7181 return error(CallLoc, "fast-math-flags specified for call without " 7182 "floating-point scalar or vector return type"); 7183 } 7184 CI->setFastMathFlags(FMF); 7185 } 7186 CI->setAttributes(PAL); 7187 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 7188 Inst = CI; 7189 return false; 7190 } 7191 7192 //===----------------------------------------------------------------------===// 7193 // Memory Instructions. 7194 //===----------------------------------------------------------------------===// 7195 7196 /// parseAlloc 7197 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 7198 /// (',' 'align' i32)? (',', 'addrspace(n))? 7199 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 7200 Value *Size = nullptr; 7201 LocTy SizeLoc, TyLoc, ASLoc; 7202 MaybeAlign Alignment; 7203 unsigned AddrSpace = 0; 7204 Type *Ty = nullptr; 7205 7206 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 7207 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 7208 7209 if (parseType(Ty, TyLoc)) 7210 return true; 7211 7212 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 7213 return error(TyLoc, "invalid type for alloca"); 7214 7215 bool AteExtraComma = false; 7216 if (EatIfPresent(lltok::comma)) { 7217 if (Lex.getKind() == lltok::kw_align) { 7218 if (parseOptionalAlignment(Alignment)) 7219 return true; 7220 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7221 return true; 7222 } else if (Lex.getKind() == lltok::kw_addrspace) { 7223 ASLoc = Lex.getLoc(); 7224 if (parseOptionalAddrSpace(AddrSpace)) 7225 return true; 7226 } else if (Lex.getKind() == lltok::MetadataVar) { 7227 AteExtraComma = true; 7228 } else { 7229 if (parseTypeAndValue(Size, SizeLoc, PFS)) 7230 return true; 7231 if (EatIfPresent(lltok::comma)) { 7232 if (Lex.getKind() == lltok::kw_align) { 7233 if (parseOptionalAlignment(Alignment)) 7234 return true; 7235 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7236 return true; 7237 } else if (Lex.getKind() == lltok::kw_addrspace) { 7238 ASLoc = Lex.getLoc(); 7239 if (parseOptionalAddrSpace(AddrSpace)) 7240 return true; 7241 } else if (Lex.getKind() == lltok::MetadataVar) { 7242 AteExtraComma = true; 7243 } 7244 } 7245 } 7246 } 7247 7248 if (Size && !Size->getType()->isIntegerTy()) 7249 return error(SizeLoc, "element count must have integer type"); 7250 7251 SmallPtrSet<Type *, 4> Visited; 7252 if (!Alignment && !Ty->isSized(&Visited)) 7253 return error(TyLoc, "Cannot allocate unsized type"); 7254 if (!Alignment) 7255 Alignment = M->getDataLayout().getPrefTypeAlign(Ty); 7256 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment); 7257 AI->setUsedWithInAlloca(IsInAlloca); 7258 AI->setSwiftError(IsSwiftError); 7259 Inst = AI; 7260 return AteExtraComma ? InstExtraComma : InstNormal; 7261 } 7262 7263 /// parseLoad 7264 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 7265 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 7266 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7267 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) { 7268 Value *Val; LocTy Loc; 7269 MaybeAlign Alignment; 7270 bool AteExtraComma = false; 7271 bool isAtomic = false; 7272 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7273 SyncScope::ID SSID = SyncScope::System; 7274 7275 if (Lex.getKind() == lltok::kw_atomic) { 7276 isAtomic = true; 7277 Lex.Lex(); 7278 } 7279 7280 bool isVolatile = false; 7281 if (Lex.getKind() == lltok::kw_volatile) { 7282 isVolatile = true; 7283 Lex.Lex(); 7284 } 7285 7286 Type *Ty; 7287 LocTy ExplicitTypeLoc = Lex.getLoc(); 7288 if (parseType(Ty) || 7289 parseToken(lltok::comma, "expected comma after load's type") || 7290 parseTypeAndValue(Val, Loc, PFS) || 7291 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 7292 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7293 return true; 7294 7295 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 7296 return error(Loc, "load operand must be a pointer to a first class type"); 7297 if (isAtomic && !Alignment) 7298 return error(Loc, "atomic load must have explicit non-zero alignment"); 7299 if (Ordering == AtomicOrdering::Release || 7300 Ordering == AtomicOrdering::AcquireRelease) 7301 return error(Loc, "atomic load cannot use Release ordering"); 7302 7303 if (!cast<PointerType>(Val->getType())->isOpaqueOrPointeeTypeMatches(Ty)) { 7304 return error( 7305 ExplicitTypeLoc, 7306 typeComparisonErrorMessage( 7307 "explicit pointee type doesn't match operand's pointee type", Ty, 7308 Val->getType()->getNonOpaquePointerElementType())); 7309 } 7310 SmallPtrSet<Type *, 4> Visited; 7311 if (!Alignment && !Ty->isSized(&Visited)) 7312 return error(ExplicitTypeLoc, "loading unsized types is not allowed"); 7313 if (!Alignment) 7314 Alignment = M->getDataLayout().getABITypeAlign(Ty); 7315 Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID); 7316 return AteExtraComma ? InstExtraComma : InstNormal; 7317 } 7318 7319 /// parseStore 7320 7321 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 7322 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 7323 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7324 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) { 7325 Value *Val, *Ptr; LocTy Loc, PtrLoc; 7326 MaybeAlign Alignment; 7327 bool AteExtraComma = false; 7328 bool isAtomic = false; 7329 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7330 SyncScope::ID SSID = SyncScope::System; 7331 7332 if (Lex.getKind() == lltok::kw_atomic) { 7333 isAtomic = true; 7334 Lex.Lex(); 7335 } 7336 7337 bool isVolatile = false; 7338 if (Lex.getKind() == lltok::kw_volatile) { 7339 isVolatile = true; 7340 Lex.Lex(); 7341 } 7342 7343 if (parseTypeAndValue(Val, Loc, PFS) || 7344 parseToken(lltok::comma, "expected ',' after store operand") || 7345 parseTypeAndValue(Ptr, PtrLoc, PFS) || 7346 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 7347 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7348 return true; 7349 7350 if (!Ptr->getType()->isPointerTy()) 7351 return error(PtrLoc, "store operand must be a pointer"); 7352 if (!Val->getType()->isFirstClassType()) 7353 return error(Loc, "store operand must be a first class value"); 7354 if (!cast<PointerType>(Ptr->getType()) 7355 ->isOpaqueOrPointeeTypeMatches(Val->getType())) 7356 return error(Loc, "stored value and pointer type do not match"); 7357 if (isAtomic && !Alignment) 7358 return error(Loc, "atomic store must have explicit non-zero alignment"); 7359 if (Ordering == AtomicOrdering::Acquire || 7360 Ordering == AtomicOrdering::AcquireRelease) 7361 return error(Loc, "atomic store cannot use Acquire ordering"); 7362 SmallPtrSet<Type *, 4> Visited; 7363 if (!Alignment && !Val->getType()->isSized(&Visited)) 7364 return error(Loc, "storing unsized types is not allowed"); 7365 if (!Alignment) 7366 Alignment = M->getDataLayout().getABITypeAlign(Val->getType()); 7367 7368 Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID); 7369 return AteExtraComma ? InstExtraComma : InstNormal; 7370 } 7371 7372 /// parseCmpXchg 7373 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 7374 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ',' 7375 /// 'Align'? 7376 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 7377 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 7378 bool AteExtraComma = false; 7379 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 7380 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 7381 SyncScope::ID SSID = SyncScope::System; 7382 bool isVolatile = false; 7383 bool isWeak = false; 7384 MaybeAlign Alignment; 7385 7386 if (EatIfPresent(lltok::kw_weak)) 7387 isWeak = true; 7388 7389 if (EatIfPresent(lltok::kw_volatile)) 7390 isVolatile = true; 7391 7392 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 7393 parseToken(lltok::comma, "expected ',' after cmpxchg address") || 7394 parseTypeAndValue(Cmp, CmpLoc, PFS) || 7395 parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 7396 parseTypeAndValue(New, NewLoc, PFS) || 7397 parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 7398 parseOrdering(FailureOrdering) || 7399 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7400 return true; 7401 7402 if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering)) 7403 return tokError("invalid cmpxchg success ordering"); 7404 if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering)) 7405 return tokError("invalid cmpxchg failure ordering"); 7406 if (!Ptr->getType()->isPointerTy()) 7407 return error(PtrLoc, "cmpxchg operand must be a pointer"); 7408 if (!cast<PointerType>(Ptr->getType()) 7409 ->isOpaqueOrPointeeTypeMatches(Cmp->getType())) 7410 return error(CmpLoc, "compare value and pointer type do not match"); 7411 if (!cast<PointerType>(Ptr->getType()) 7412 ->isOpaqueOrPointeeTypeMatches(New->getType())) 7413 return error(NewLoc, "new value and pointer type do not match"); 7414 if (Cmp->getType() != New->getType()) 7415 return error(NewLoc, "compare value and new value type do not match"); 7416 if (!New->getType()->isFirstClassType()) 7417 return error(NewLoc, "cmpxchg operand must be a first class value"); 7418 7419 const Align DefaultAlignment( 7420 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7421 Cmp->getType())); 7422 7423 AtomicCmpXchgInst *CXI = 7424 new AtomicCmpXchgInst(Ptr, Cmp, New, Alignment.value_or(DefaultAlignment), 7425 SuccessOrdering, FailureOrdering, SSID); 7426 CXI->setVolatile(isVolatile); 7427 CXI->setWeak(isWeak); 7428 7429 Inst = CXI; 7430 return AteExtraComma ? InstExtraComma : InstNormal; 7431 } 7432 7433 /// parseAtomicRMW 7434 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 7435 /// 'singlethread'? AtomicOrdering 7436 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 7437 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 7438 bool AteExtraComma = false; 7439 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7440 SyncScope::ID SSID = SyncScope::System; 7441 bool isVolatile = false; 7442 bool IsFP = false; 7443 AtomicRMWInst::BinOp Operation; 7444 MaybeAlign Alignment; 7445 7446 if (EatIfPresent(lltok::kw_volatile)) 7447 isVolatile = true; 7448 7449 switch (Lex.getKind()) { 7450 default: 7451 return tokError("expected binary operation in atomicrmw"); 7452 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 7453 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 7454 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 7455 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 7456 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 7457 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 7458 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 7459 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 7460 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 7461 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 7462 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 7463 case lltok::kw_fadd: 7464 Operation = AtomicRMWInst::FAdd; 7465 IsFP = true; 7466 break; 7467 case lltok::kw_fsub: 7468 Operation = AtomicRMWInst::FSub; 7469 IsFP = true; 7470 break; 7471 case lltok::kw_fmax: 7472 Operation = AtomicRMWInst::FMax; 7473 IsFP = true; 7474 break; 7475 case lltok::kw_fmin: 7476 Operation = AtomicRMWInst::FMin; 7477 IsFP = true; 7478 break; 7479 } 7480 Lex.Lex(); // Eat the operation. 7481 7482 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 7483 parseToken(lltok::comma, "expected ',' after atomicrmw address") || 7484 parseTypeAndValue(Val, ValLoc, PFS) || 7485 parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) || 7486 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7487 return true; 7488 7489 if (Ordering == AtomicOrdering::Unordered) 7490 return tokError("atomicrmw cannot be unordered"); 7491 if (!Ptr->getType()->isPointerTy()) 7492 return error(PtrLoc, "atomicrmw operand must be a pointer"); 7493 if (!cast<PointerType>(Ptr->getType()) 7494 ->isOpaqueOrPointeeTypeMatches(Val->getType())) 7495 return error(ValLoc, "atomicrmw value and pointer type do not match"); 7496 7497 if (Operation == AtomicRMWInst::Xchg) { 7498 if (!Val->getType()->isIntegerTy() && 7499 !Val->getType()->isFloatingPointTy() && 7500 !Val->getType()->isPointerTy()) { 7501 return error( 7502 ValLoc, 7503 "atomicrmw " + AtomicRMWInst::getOperationName(Operation) + 7504 " operand must be an integer, floating point, or pointer type"); 7505 } 7506 } else if (IsFP) { 7507 if (!Val->getType()->isFloatingPointTy()) { 7508 return error(ValLoc, "atomicrmw " + 7509 AtomicRMWInst::getOperationName(Operation) + 7510 " operand must be a floating point type"); 7511 } 7512 } else { 7513 if (!Val->getType()->isIntegerTy()) { 7514 return error(ValLoc, "atomicrmw " + 7515 AtomicRMWInst::getOperationName(Operation) + 7516 " operand must be an integer"); 7517 } 7518 } 7519 7520 unsigned Size = 7521 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSizeInBits( 7522 Val->getType()); 7523 if (Size < 8 || (Size & (Size - 1))) 7524 return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 7525 " integer"); 7526 const Align DefaultAlignment( 7527 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7528 Val->getType())); 7529 AtomicRMWInst *RMWI = 7530 new AtomicRMWInst(Operation, Ptr, Val, 7531 Alignment.value_or(DefaultAlignment), Ordering, SSID); 7532 RMWI->setVolatile(isVolatile); 7533 Inst = RMWI; 7534 return AteExtraComma ? InstExtraComma : InstNormal; 7535 } 7536 7537 /// parseFence 7538 /// ::= 'fence' 'singlethread'? AtomicOrdering 7539 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) { 7540 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7541 SyncScope::ID SSID = SyncScope::System; 7542 if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7543 return true; 7544 7545 if (Ordering == AtomicOrdering::Unordered) 7546 return tokError("fence cannot be unordered"); 7547 if (Ordering == AtomicOrdering::Monotonic) 7548 return tokError("fence cannot be monotonic"); 7549 7550 Inst = new FenceInst(Context, Ordering, SSID); 7551 return InstNormal; 7552 } 7553 7554 /// parseGetElementPtr 7555 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 7556 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 7557 Value *Ptr = nullptr; 7558 Value *Val = nullptr; 7559 LocTy Loc, EltLoc; 7560 7561 bool InBounds = EatIfPresent(lltok::kw_inbounds); 7562 7563 Type *Ty = nullptr; 7564 LocTy ExplicitTypeLoc = Lex.getLoc(); 7565 if (parseType(Ty) || 7566 parseToken(lltok::comma, "expected comma after getelementptr's type") || 7567 parseTypeAndValue(Ptr, Loc, PFS)) 7568 return true; 7569 7570 Type *BaseType = Ptr->getType(); 7571 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 7572 if (!BasePointerType) 7573 return error(Loc, "base of getelementptr must be a pointer"); 7574 7575 if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) { 7576 return error( 7577 ExplicitTypeLoc, 7578 typeComparisonErrorMessage( 7579 "explicit pointee type doesn't match operand's pointee type", Ty, 7580 BasePointerType->getNonOpaquePointerElementType())); 7581 } 7582 7583 SmallVector<Value*, 16> Indices; 7584 bool AteExtraComma = false; 7585 // GEP returns a vector of pointers if at least one of parameters is a vector. 7586 // All vector parameters should have the same vector width. 7587 ElementCount GEPWidth = BaseType->isVectorTy() 7588 ? cast<VectorType>(BaseType)->getElementCount() 7589 : ElementCount::getFixed(0); 7590 7591 while (EatIfPresent(lltok::comma)) { 7592 if (Lex.getKind() == lltok::MetadataVar) { 7593 AteExtraComma = true; 7594 break; 7595 } 7596 if (parseTypeAndValue(Val, EltLoc, PFS)) 7597 return true; 7598 if (!Val->getType()->isIntOrIntVectorTy()) 7599 return error(EltLoc, "getelementptr index must be an integer"); 7600 7601 if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) { 7602 ElementCount ValNumEl = ValVTy->getElementCount(); 7603 if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl) 7604 return error( 7605 EltLoc, 7606 "getelementptr vector index has a wrong number of elements"); 7607 GEPWidth = ValNumEl; 7608 } 7609 Indices.push_back(Val); 7610 } 7611 7612 SmallPtrSet<Type*, 4> Visited; 7613 if (!Indices.empty() && !Ty->isSized(&Visited)) 7614 return error(Loc, "base element of getelementptr must be sized"); 7615 7616 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 7617 return error(Loc, "invalid getelementptr indices"); 7618 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 7619 if (InBounds) 7620 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 7621 return AteExtraComma ? InstExtraComma : InstNormal; 7622 } 7623 7624 /// parseExtractValue 7625 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 7626 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 7627 Value *Val; LocTy Loc; 7628 SmallVector<unsigned, 4> Indices; 7629 bool AteExtraComma; 7630 if (parseTypeAndValue(Val, Loc, PFS) || 7631 parseIndexList(Indices, AteExtraComma)) 7632 return true; 7633 7634 if (!Val->getType()->isAggregateType()) 7635 return error(Loc, "extractvalue operand must be aggregate type"); 7636 7637 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 7638 return error(Loc, "invalid indices for extractvalue"); 7639 Inst = ExtractValueInst::Create(Val, Indices); 7640 return AteExtraComma ? InstExtraComma : InstNormal; 7641 } 7642 7643 /// parseInsertValue 7644 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 7645 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 7646 Value *Val0, *Val1; LocTy Loc0, Loc1; 7647 SmallVector<unsigned, 4> Indices; 7648 bool AteExtraComma; 7649 if (parseTypeAndValue(Val0, Loc0, PFS) || 7650 parseToken(lltok::comma, "expected comma after insertvalue operand") || 7651 parseTypeAndValue(Val1, Loc1, PFS) || 7652 parseIndexList(Indices, AteExtraComma)) 7653 return true; 7654 7655 if (!Val0->getType()->isAggregateType()) 7656 return error(Loc0, "insertvalue operand must be aggregate type"); 7657 7658 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 7659 if (!IndexedType) 7660 return error(Loc0, "invalid indices for insertvalue"); 7661 if (IndexedType != Val1->getType()) 7662 return error(Loc1, "insertvalue operand and field disagree in type: '" + 7663 getTypeString(Val1->getType()) + "' instead of '" + 7664 getTypeString(IndexedType) + "'"); 7665 Inst = InsertValueInst::Create(Val0, Val1, Indices); 7666 return AteExtraComma ? InstExtraComma : InstNormal; 7667 } 7668 7669 //===----------------------------------------------------------------------===// 7670 // Embedded metadata. 7671 //===----------------------------------------------------------------------===// 7672 7673 /// parseMDNodeVector 7674 /// ::= { Element (',' Element)* } 7675 /// Element 7676 /// ::= 'null' | TypeAndValue 7677 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 7678 if (parseToken(lltok::lbrace, "expected '{' here")) 7679 return true; 7680 7681 // Check for an empty list. 7682 if (EatIfPresent(lltok::rbrace)) 7683 return false; 7684 7685 do { 7686 // Null is a special case since it is typeless. 7687 if (EatIfPresent(lltok::kw_null)) { 7688 Elts.push_back(nullptr); 7689 continue; 7690 } 7691 7692 Metadata *MD; 7693 if (parseMetadata(MD, nullptr)) 7694 return true; 7695 Elts.push_back(MD); 7696 } while (EatIfPresent(lltok::comma)); 7697 7698 return parseToken(lltok::rbrace, "expected end of metadata node"); 7699 } 7700 7701 //===----------------------------------------------------------------------===// 7702 // Use-list order directives. 7703 //===----------------------------------------------------------------------===// 7704 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 7705 SMLoc Loc) { 7706 if (V->use_empty()) 7707 return error(Loc, "value has no uses"); 7708 7709 unsigned NumUses = 0; 7710 SmallDenseMap<const Use *, unsigned, 16> Order; 7711 for (const Use &U : V->uses()) { 7712 if (++NumUses > Indexes.size()) 7713 break; 7714 Order[&U] = Indexes[NumUses - 1]; 7715 } 7716 if (NumUses < 2) 7717 return error(Loc, "value only has one use"); 7718 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 7719 return error(Loc, 7720 "wrong number of indexes, expected " + Twine(V->getNumUses())); 7721 7722 V->sortUseList([&](const Use &L, const Use &R) { 7723 return Order.lookup(&L) < Order.lookup(&R); 7724 }); 7725 return false; 7726 } 7727 7728 /// parseUseListOrderIndexes 7729 /// ::= '{' uint32 (',' uint32)+ '}' 7730 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 7731 SMLoc Loc = Lex.getLoc(); 7732 if (parseToken(lltok::lbrace, "expected '{' here")) 7733 return true; 7734 if (Lex.getKind() == lltok::rbrace) 7735 return Lex.Error("expected non-empty list of uselistorder indexes"); 7736 7737 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 7738 // indexes should be distinct numbers in the range [0, size-1], and should 7739 // not be in order. 7740 unsigned Offset = 0; 7741 unsigned Max = 0; 7742 bool IsOrdered = true; 7743 assert(Indexes.empty() && "Expected empty order vector"); 7744 do { 7745 unsigned Index; 7746 if (parseUInt32(Index)) 7747 return true; 7748 7749 // Update consistency checks. 7750 Offset += Index - Indexes.size(); 7751 Max = std::max(Max, Index); 7752 IsOrdered &= Index == Indexes.size(); 7753 7754 Indexes.push_back(Index); 7755 } while (EatIfPresent(lltok::comma)); 7756 7757 if (parseToken(lltok::rbrace, "expected '}' here")) 7758 return true; 7759 7760 if (Indexes.size() < 2) 7761 return error(Loc, "expected >= 2 uselistorder indexes"); 7762 if (Offset != 0 || Max >= Indexes.size()) 7763 return error(Loc, 7764 "expected distinct uselistorder indexes in range [0, size)"); 7765 if (IsOrdered) 7766 return error(Loc, "expected uselistorder indexes to change the order"); 7767 7768 return false; 7769 } 7770 7771 /// parseUseListOrder 7772 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 7773 bool LLParser::parseUseListOrder(PerFunctionState *PFS) { 7774 SMLoc Loc = Lex.getLoc(); 7775 if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 7776 return true; 7777 7778 Value *V; 7779 SmallVector<unsigned, 16> Indexes; 7780 if (parseTypeAndValue(V, PFS) || 7781 parseToken(lltok::comma, "expected comma in uselistorder directive") || 7782 parseUseListOrderIndexes(Indexes)) 7783 return true; 7784 7785 return sortUseListOrder(V, Indexes, Loc); 7786 } 7787 7788 /// parseUseListOrderBB 7789 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 7790 bool LLParser::parseUseListOrderBB() { 7791 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 7792 SMLoc Loc = Lex.getLoc(); 7793 Lex.Lex(); 7794 7795 ValID Fn, Label; 7796 SmallVector<unsigned, 16> Indexes; 7797 if (parseValID(Fn, /*PFS=*/nullptr) || 7798 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7799 parseValID(Label, /*PFS=*/nullptr) || 7800 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7801 parseUseListOrderIndexes(Indexes)) 7802 return true; 7803 7804 // Check the function. 7805 GlobalValue *GV; 7806 if (Fn.Kind == ValID::t_GlobalName) 7807 GV = M->getNamedValue(Fn.StrVal); 7808 else if (Fn.Kind == ValID::t_GlobalID) 7809 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 7810 else 7811 return error(Fn.Loc, "expected function name in uselistorder_bb"); 7812 if (!GV) 7813 return error(Fn.Loc, 7814 "invalid function forward reference in uselistorder_bb"); 7815 auto *F = dyn_cast<Function>(GV); 7816 if (!F) 7817 return error(Fn.Loc, "expected function name in uselistorder_bb"); 7818 if (F->isDeclaration()) 7819 return error(Fn.Loc, "invalid declaration in uselistorder_bb"); 7820 7821 // Check the basic block. 7822 if (Label.Kind == ValID::t_LocalID) 7823 return error(Label.Loc, "invalid numeric label in uselistorder_bb"); 7824 if (Label.Kind != ValID::t_LocalName) 7825 return error(Label.Loc, "expected basic block name in uselistorder_bb"); 7826 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 7827 if (!V) 7828 return error(Label.Loc, "invalid basic block in uselistorder_bb"); 7829 if (!isa<BasicBlock>(V)) 7830 return error(Label.Loc, "expected basic block in uselistorder_bb"); 7831 7832 return sortUseListOrder(V, Indexes, Loc); 7833 } 7834 7835 /// ModuleEntry 7836 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')' 7837 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')' 7838 bool LLParser::parseModuleEntry(unsigned ID) { 7839 assert(Lex.getKind() == lltok::kw_module); 7840 Lex.Lex(); 7841 7842 std::string Path; 7843 if (parseToken(lltok::colon, "expected ':' here") || 7844 parseToken(lltok::lparen, "expected '(' here") || 7845 parseToken(lltok::kw_path, "expected 'path' here") || 7846 parseToken(lltok::colon, "expected ':' here") || 7847 parseStringConstant(Path) || 7848 parseToken(lltok::comma, "expected ',' here") || 7849 parseToken(lltok::kw_hash, "expected 'hash' here") || 7850 parseToken(lltok::colon, "expected ':' here") || 7851 parseToken(lltok::lparen, "expected '(' here")) 7852 return true; 7853 7854 ModuleHash Hash; 7855 if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") || 7856 parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") || 7857 parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") || 7858 parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") || 7859 parseUInt32(Hash[4])) 7860 return true; 7861 7862 if (parseToken(lltok::rparen, "expected ')' here") || 7863 parseToken(lltok::rparen, "expected ')' here")) 7864 return true; 7865 7866 auto ModuleEntry = Index->addModule(Path, ID, Hash); 7867 ModuleIdMap[ID] = ModuleEntry->first(); 7868 7869 return false; 7870 } 7871 7872 /// TypeIdEntry 7873 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')' 7874 bool LLParser::parseTypeIdEntry(unsigned ID) { 7875 assert(Lex.getKind() == lltok::kw_typeid); 7876 Lex.Lex(); 7877 7878 std::string Name; 7879 if (parseToken(lltok::colon, "expected ':' here") || 7880 parseToken(lltok::lparen, "expected '(' here") || 7881 parseToken(lltok::kw_name, "expected 'name' here") || 7882 parseToken(lltok::colon, "expected ':' here") || 7883 parseStringConstant(Name)) 7884 return true; 7885 7886 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name); 7887 if (parseToken(lltok::comma, "expected ',' here") || 7888 parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here")) 7889 return true; 7890 7891 // Check if this ID was forward referenced, and if so, update the 7892 // corresponding GUIDs. 7893 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7894 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7895 for (auto TIDRef : FwdRefTIDs->second) { 7896 assert(!*TIDRef.first && 7897 "Forward referenced type id GUID expected to be 0"); 7898 *TIDRef.first = GlobalValue::getGUID(Name); 7899 } 7900 ForwardRefTypeIds.erase(FwdRefTIDs); 7901 } 7902 7903 return false; 7904 } 7905 7906 /// TypeIdSummary 7907 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')' 7908 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) { 7909 if (parseToken(lltok::kw_summary, "expected 'summary' here") || 7910 parseToken(lltok::colon, "expected ':' here") || 7911 parseToken(lltok::lparen, "expected '(' here") || 7912 parseTypeTestResolution(TIS.TTRes)) 7913 return true; 7914 7915 if (EatIfPresent(lltok::comma)) { 7916 // Expect optional wpdResolutions field 7917 if (parseOptionalWpdResolutions(TIS.WPDRes)) 7918 return true; 7919 } 7920 7921 if (parseToken(lltok::rparen, "expected ')' here")) 7922 return true; 7923 7924 return false; 7925 } 7926 7927 static ValueInfo EmptyVI = 7928 ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8); 7929 7930 /// TypeIdCompatibleVtableEntry 7931 /// ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ',' 7932 /// TypeIdCompatibleVtableInfo 7933 /// ')' 7934 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) { 7935 assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable); 7936 Lex.Lex(); 7937 7938 std::string Name; 7939 if (parseToken(lltok::colon, "expected ':' here") || 7940 parseToken(lltok::lparen, "expected '(' here") || 7941 parseToken(lltok::kw_name, "expected 'name' here") || 7942 parseToken(lltok::colon, "expected ':' here") || 7943 parseStringConstant(Name)) 7944 return true; 7945 7946 TypeIdCompatibleVtableInfo &TI = 7947 Index->getOrInsertTypeIdCompatibleVtableSummary(Name); 7948 if (parseToken(lltok::comma, "expected ',' here") || 7949 parseToken(lltok::kw_summary, "expected 'summary' here") || 7950 parseToken(lltok::colon, "expected ':' here") || 7951 parseToken(lltok::lparen, "expected '(' here")) 7952 return true; 7953 7954 IdToIndexMapType IdToIndexMap; 7955 // parse each call edge 7956 do { 7957 uint64_t Offset; 7958 if (parseToken(lltok::lparen, "expected '(' here") || 7959 parseToken(lltok::kw_offset, "expected 'offset' here") || 7960 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 7961 parseToken(lltok::comma, "expected ',' here")) 7962 return true; 7963 7964 LocTy Loc = Lex.getLoc(); 7965 unsigned GVId; 7966 ValueInfo VI; 7967 if (parseGVReference(VI, GVId)) 7968 return true; 7969 7970 // Keep track of the TypeIdCompatibleVtableInfo array index needing a 7971 // forward reference. We will save the location of the ValueInfo needing an 7972 // update, but can only do so once the std::vector is finalized. 7973 if (VI == EmptyVI) 7974 IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc)); 7975 TI.push_back({Offset, VI}); 7976 7977 if (parseToken(lltok::rparen, "expected ')' in call")) 7978 return true; 7979 } while (EatIfPresent(lltok::comma)); 7980 7981 // Now that the TI vector is finalized, it is safe to save the locations 7982 // of any forward GV references that need updating later. 7983 for (auto I : IdToIndexMap) { 7984 auto &Infos = ForwardRefValueInfos[I.first]; 7985 for (auto P : I.second) { 7986 assert(TI[P.first].VTableVI == EmptyVI && 7987 "Forward referenced ValueInfo expected to be empty"); 7988 Infos.emplace_back(&TI[P.first].VTableVI, P.second); 7989 } 7990 } 7991 7992 if (parseToken(lltok::rparen, "expected ')' here") || 7993 parseToken(lltok::rparen, "expected ')' here")) 7994 return true; 7995 7996 // Check if this ID was forward referenced, and if so, update the 7997 // corresponding GUIDs. 7998 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7999 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 8000 for (auto TIDRef : FwdRefTIDs->second) { 8001 assert(!*TIDRef.first && 8002 "Forward referenced type id GUID expected to be 0"); 8003 *TIDRef.first = GlobalValue::getGUID(Name); 8004 } 8005 ForwardRefTypeIds.erase(FwdRefTIDs); 8006 } 8007 8008 return false; 8009 } 8010 8011 /// TypeTestResolution 8012 /// ::= 'typeTestRes' ':' '(' 'kind' ':' 8013 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ',' 8014 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]? 8015 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]? 8016 /// [',' 'inlinesBits' ':' UInt64]? ')' 8017 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) { 8018 if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") || 8019 parseToken(lltok::colon, "expected ':' here") || 8020 parseToken(lltok::lparen, "expected '(' here") || 8021 parseToken(lltok::kw_kind, "expected 'kind' here") || 8022 parseToken(lltok::colon, "expected ':' here")) 8023 return true; 8024 8025 switch (Lex.getKind()) { 8026 case lltok::kw_unknown: 8027 TTRes.TheKind = TypeTestResolution::Unknown; 8028 break; 8029 case lltok::kw_unsat: 8030 TTRes.TheKind = TypeTestResolution::Unsat; 8031 break; 8032 case lltok::kw_byteArray: 8033 TTRes.TheKind = TypeTestResolution::ByteArray; 8034 break; 8035 case lltok::kw_inline: 8036 TTRes.TheKind = TypeTestResolution::Inline; 8037 break; 8038 case lltok::kw_single: 8039 TTRes.TheKind = TypeTestResolution::Single; 8040 break; 8041 case lltok::kw_allOnes: 8042 TTRes.TheKind = TypeTestResolution::AllOnes; 8043 break; 8044 default: 8045 return error(Lex.getLoc(), "unexpected TypeTestResolution kind"); 8046 } 8047 Lex.Lex(); 8048 8049 if (parseToken(lltok::comma, "expected ',' here") || 8050 parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") || 8051 parseToken(lltok::colon, "expected ':' here") || 8052 parseUInt32(TTRes.SizeM1BitWidth)) 8053 return true; 8054 8055 // parse optional fields 8056 while (EatIfPresent(lltok::comma)) { 8057 switch (Lex.getKind()) { 8058 case lltok::kw_alignLog2: 8059 Lex.Lex(); 8060 if (parseToken(lltok::colon, "expected ':'") || 8061 parseUInt64(TTRes.AlignLog2)) 8062 return true; 8063 break; 8064 case lltok::kw_sizeM1: 8065 Lex.Lex(); 8066 if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1)) 8067 return true; 8068 break; 8069 case lltok::kw_bitMask: { 8070 unsigned Val; 8071 Lex.Lex(); 8072 if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val)) 8073 return true; 8074 assert(Val <= 0xff); 8075 TTRes.BitMask = (uint8_t)Val; 8076 break; 8077 } 8078 case lltok::kw_inlineBits: 8079 Lex.Lex(); 8080 if (parseToken(lltok::colon, "expected ':'") || 8081 parseUInt64(TTRes.InlineBits)) 8082 return true; 8083 break; 8084 default: 8085 return error(Lex.getLoc(), "expected optional TypeTestResolution field"); 8086 } 8087 } 8088 8089 if (parseToken(lltok::rparen, "expected ')' here")) 8090 return true; 8091 8092 return false; 8093 } 8094 8095 /// OptionalWpdResolutions 8096 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')' 8097 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')' 8098 bool LLParser::parseOptionalWpdResolutions( 8099 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) { 8100 if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") || 8101 parseToken(lltok::colon, "expected ':' here") || 8102 parseToken(lltok::lparen, "expected '(' here")) 8103 return true; 8104 8105 do { 8106 uint64_t Offset; 8107 WholeProgramDevirtResolution WPDRes; 8108 if (parseToken(lltok::lparen, "expected '(' here") || 8109 parseToken(lltok::kw_offset, "expected 'offset' here") || 8110 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 8111 parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) || 8112 parseToken(lltok::rparen, "expected ')' here")) 8113 return true; 8114 WPDResMap[Offset] = WPDRes; 8115 } while (EatIfPresent(lltok::comma)); 8116 8117 if (parseToken(lltok::rparen, "expected ')' here")) 8118 return true; 8119 8120 return false; 8121 } 8122 8123 /// WpdRes 8124 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir' 8125 /// [',' OptionalResByArg]? ')' 8126 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl' 8127 /// ',' 'singleImplName' ':' STRINGCONSTANT ',' 8128 /// [',' OptionalResByArg]? ')' 8129 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel' 8130 /// [',' OptionalResByArg]? ')' 8131 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) { 8132 if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") || 8133 parseToken(lltok::colon, "expected ':' here") || 8134 parseToken(lltok::lparen, "expected '(' here") || 8135 parseToken(lltok::kw_kind, "expected 'kind' here") || 8136 parseToken(lltok::colon, "expected ':' here")) 8137 return true; 8138 8139 switch (Lex.getKind()) { 8140 case lltok::kw_indir: 8141 WPDRes.TheKind = WholeProgramDevirtResolution::Indir; 8142 break; 8143 case lltok::kw_singleImpl: 8144 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl; 8145 break; 8146 case lltok::kw_branchFunnel: 8147 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel; 8148 break; 8149 default: 8150 return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind"); 8151 } 8152 Lex.Lex(); 8153 8154 // parse optional fields 8155 while (EatIfPresent(lltok::comma)) { 8156 switch (Lex.getKind()) { 8157 case lltok::kw_singleImplName: 8158 Lex.Lex(); 8159 if (parseToken(lltok::colon, "expected ':' here") || 8160 parseStringConstant(WPDRes.SingleImplName)) 8161 return true; 8162 break; 8163 case lltok::kw_resByArg: 8164 if (parseOptionalResByArg(WPDRes.ResByArg)) 8165 return true; 8166 break; 8167 default: 8168 return error(Lex.getLoc(), 8169 "expected optional WholeProgramDevirtResolution field"); 8170 } 8171 } 8172 8173 if (parseToken(lltok::rparen, "expected ')' here")) 8174 return true; 8175 8176 return false; 8177 } 8178 8179 /// OptionalResByArg 8180 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')' 8181 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':' 8182 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' | 8183 /// 'virtualConstProp' ) 8184 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]? 8185 /// [',' 'bit' ':' UInt32]? ')' 8186 bool LLParser::parseOptionalResByArg( 8187 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg> 8188 &ResByArg) { 8189 if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") || 8190 parseToken(lltok::colon, "expected ':' here") || 8191 parseToken(lltok::lparen, "expected '(' here")) 8192 return true; 8193 8194 do { 8195 std::vector<uint64_t> Args; 8196 if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") || 8197 parseToken(lltok::kw_byArg, "expected 'byArg here") || 8198 parseToken(lltok::colon, "expected ':' here") || 8199 parseToken(lltok::lparen, "expected '(' here") || 8200 parseToken(lltok::kw_kind, "expected 'kind' here") || 8201 parseToken(lltok::colon, "expected ':' here")) 8202 return true; 8203 8204 WholeProgramDevirtResolution::ByArg ByArg; 8205 switch (Lex.getKind()) { 8206 case lltok::kw_indir: 8207 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir; 8208 break; 8209 case lltok::kw_uniformRetVal: 8210 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 8211 break; 8212 case lltok::kw_uniqueRetVal: 8213 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 8214 break; 8215 case lltok::kw_virtualConstProp: 8216 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 8217 break; 8218 default: 8219 return error(Lex.getLoc(), 8220 "unexpected WholeProgramDevirtResolution::ByArg kind"); 8221 } 8222 Lex.Lex(); 8223 8224 // parse optional fields 8225 while (EatIfPresent(lltok::comma)) { 8226 switch (Lex.getKind()) { 8227 case lltok::kw_info: 8228 Lex.Lex(); 8229 if (parseToken(lltok::colon, "expected ':' here") || 8230 parseUInt64(ByArg.Info)) 8231 return true; 8232 break; 8233 case lltok::kw_byte: 8234 Lex.Lex(); 8235 if (parseToken(lltok::colon, "expected ':' here") || 8236 parseUInt32(ByArg.Byte)) 8237 return true; 8238 break; 8239 case lltok::kw_bit: 8240 Lex.Lex(); 8241 if (parseToken(lltok::colon, "expected ':' here") || 8242 parseUInt32(ByArg.Bit)) 8243 return true; 8244 break; 8245 default: 8246 return error(Lex.getLoc(), 8247 "expected optional whole program devirt field"); 8248 } 8249 } 8250 8251 if (parseToken(lltok::rparen, "expected ')' here")) 8252 return true; 8253 8254 ResByArg[Args] = ByArg; 8255 } while (EatIfPresent(lltok::comma)); 8256 8257 if (parseToken(lltok::rparen, "expected ')' here")) 8258 return true; 8259 8260 return false; 8261 } 8262 8263 /// OptionalResByArg 8264 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')' 8265 bool LLParser::parseArgs(std::vector<uint64_t> &Args) { 8266 if (parseToken(lltok::kw_args, "expected 'args' here") || 8267 parseToken(lltok::colon, "expected ':' here") || 8268 parseToken(lltok::lparen, "expected '(' here")) 8269 return true; 8270 8271 do { 8272 uint64_t Val; 8273 if (parseUInt64(Val)) 8274 return true; 8275 Args.push_back(Val); 8276 } while (EatIfPresent(lltok::comma)); 8277 8278 if (parseToken(lltok::rparen, "expected ')' here")) 8279 return true; 8280 8281 return false; 8282 } 8283 8284 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8; 8285 8286 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) { 8287 bool ReadOnly = Fwd->isReadOnly(); 8288 bool WriteOnly = Fwd->isWriteOnly(); 8289 assert(!(ReadOnly && WriteOnly)); 8290 *Fwd = Resolved; 8291 if (ReadOnly) 8292 Fwd->setReadOnly(); 8293 if (WriteOnly) 8294 Fwd->setWriteOnly(); 8295 } 8296 8297 /// Stores the given Name/GUID and associated summary into the Index. 8298 /// Also updates any forward references to the associated entry ID. 8299 void LLParser::addGlobalValueToIndex( 8300 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage, 8301 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) { 8302 // First create the ValueInfo utilizing the Name or GUID. 8303 ValueInfo VI; 8304 if (GUID != 0) { 8305 assert(Name.empty()); 8306 VI = Index->getOrInsertValueInfo(GUID); 8307 } else { 8308 assert(!Name.empty()); 8309 if (M) { 8310 auto *GV = M->getNamedValue(Name); 8311 assert(GV); 8312 VI = Index->getOrInsertValueInfo(GV); 8313 } else { 8314 assert( 8315 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) && 8316 "Need a source_filename to compute GUID for local"); 8317 GUID = GlobalValue::getGUID( 8318 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName)); 8319 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name)); 8320 } 8321 } 8322 8323 // Resolve forward references from calls/refs 8324 auto FwdRefVIs = ForwardRefValueInfos.find(ID); 8325 if (FwdRefVIs != ForwardRefValueInfos.end()) { 8326 for (auto VIRef : FwdRefVIs->second) { 8327 assert(VIRef.first->getRef() == FwdVIRef && 8328 "Forward referenced ValueInfo expected to be empty"); 8329 resolveFwdRef(VIRef.first, VI); 8330 } 8331 ForwardRefValueInfos.erase(FwdRefVIs); 8332 } 8333 8334 // Resolve forward references from aliases 8335 auto FwdRefAliasees = ForwardRefAliasees.find(ID); 8336 if (FwdRefAliasees != ForwardRefAliasees.end()) { 8337 for (auto AliaseeRef : FwdRefAliasees->second) { 8338 assert(!AliaseeRef.first->hasAliasee() && 8339 "Forward referencing alias already has aliasee"); 8340 assert(Summary && "Aliasee must be a definition"); 8341 AliaseeRef.first->setAliasee(VI, Summary.get()); 8342 } 8343 ForwardRefAliasees.erase(FwdRefAliasees); 8344 } 8345 8346 // Add the summary if one was provided. 8347 if (Summary) 8348 Index->addGlobalValueSummary(VI, std::move(Summary)); 8349 8350 // Save the associated ValueInfo for use in later references by ID. 8351 if (ID == NumberedValueInfos.size()) 8352 NumberedValueInfos.push_back(VI); 8353 else { 8354 // Handle non-continuous numbers (to make test simplification easier). 8355 if (ID > NumberedValueInfos.size()) 8356 NumberedValueInfos.resize(ID + 1); 8357 NumberedValueInfos[ID] = VI; 8358 } 8359 } 8360 8361 /// parseSummaryIndexFlags 8362 /// ::= 'flags' ':' UInt64 8363 bool LLParser::parseSummaryIndexFlags() { 8364 assert(Lex.getKind() == lltok::kw_flags); 8365 Lex.Lex(); 8366 8367 if (parseToken(lltok::colon, "expected ':' here")) 8368 return true; 8369 uint64_t Flags; 8370 if (parseUInt64(Flags)) 8371 return true; 8372 if (Index) 8373 Index->setFlags(Flags); 8374 return false; 8375 } 8376 8377 /// parseBlockCount 8378 /// ::= 'blockcount' ':' UInt64 8379 bool LLParser::parseBlockCount() { 8380 assert(Lex.getKind() == lltok::kw_blockcount); 8381 Lex.Lex(); 8382 8383 if (parseToken(lltok::colon, "expected ':' here")) 8384 return true; 8385 uint64_t BlockCount; 8386 if (parseUInt64(BlockCount)) 8387 return true; 8388 if (Index) 8389 Index->setBlockCount(BlockCount); 8390 return false; 8391 } 8392 8393 /// parseGVEntry 8394 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64) 8395 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')' 8396 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')' 8397 bool LLParser::parseGVEntry(unsigned ID) { 8398 assert(Lex.getKind() == lltok::kw_gv); 8399 Lex.Lex(); 8400 8401 if (parseToken(lltok::colon, "expected ':' here") || 8402 parseToken(lltok::lparen, "expected '(' here")) 8403 return true; 8404 8405 std::string Name; 8406 GlobalValue::GUID GUID = 0; 8407 switch (Lex.getKind()) { 8408 case lltok::kw_name: 8409 Lex.Lex(); 8410 if (parseToken(lltok::colon, "expected ':' here") || 8411 parseStringConstant(Name)) 8412 return true; 8413 // Can't create GUID/ValueInfo until we have the linkage. 8414 break; 8415 case lltok::kw_guid: 8416 Lex.Lex(); 8417 if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID)) 8418 return true; 8419 break; 8420 default: 8421 return error(Lex.getLoc(), "expected name or guid tag"); 8422 } 8423 8424 if (!EatIfPresent(lltok::comma)) { 8425 // No summaries. Wrap up. 8426 if (parseToken(lltok::rparen, "expected ')' here")) 8427 return true; 8428 // This was created for a call to an external or indirect target. 8429 // A GUID with no summary came from a VALUE_GUID record, dummy GUID 8430 // created for indirect calls with VP. A Name with no GUID came from 8431 // an external definition. We pass ExternalLinkage since that is only 8432 // used when the GUID must be computed from Name, and in that case 8433 // the symbol must have external linkage. 8434 addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID, 8435 nullptr); 8436 return false; 8437 } 8438 8439 // Have a list of summaries 8440 if (parseToken(lltok::kw_summaries, "expected 'summaries' here") || 8441 parseToken(lltok::colon, "expected ':' here") || 8442 parseToken(lltok::lparen, "expected '(' here")) 8443 return true; 8444 do { 8445 switch (Lex.getKind()) { 8446 case lltok::kw_function: 8447 if (parseFunctionSummary(Name, GUID, ID)) 8448 return true; 8449 break; 8450 case lltok::kw_variable: 8451 if (parseVariableSummary(Name, GUID, ID)) 8452 return true; 8453 break; 8454 case lltok::kw_alias: 8455 if (parseAliasSummary(Name, GUID, ID)) 8456 return true; 8457 break; 8458 default: 8459 return error(Lex.getLoc(), "expected summary type"); 8460 } 8461 } while (EatIfPresent(lltok::comma)); 8462 8463 if (parseToken(lltok::rparen, "expected ')' here") || 8464 parseToken(lltok::rparen, "expected ')' here")) 8465 return true; 8466 8467 return false; 8468 } 8469 8470 /// FunctionSummary 8471 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8472 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]? 8473 /// [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]? 8474 /// [',' OptionalRefs]? ')' 8475 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID, 8476 unsigned ID) { 8477 assert(Lex.getKind() == lltok::kw_function); 8478 Lex.Lex(); 8479 8480 StringRef ModulePath; 8481 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8482 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8483 /*NotEligibleToImport=*/false, 8484 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8485 unsigned InstCount; 8486 std::vector<FunctionSummary::EdgeTy> Calls; 8487 FunctionSummary::TypeIdInfo TypeIdInfo; 8488 std::vector<FunctionSummary::ParamAccess> ParamAccesses; 8489 std::vector<ValueInfo> Refs; 8490 // Default is all-zeros (conservative values). 8491 FunctionSummary::FFlags FFlags = {}; 8492 if (parseToken(lltok::colon, "expected ':' here") || 8493 parseToken(lltok::lparen, "expected '(' here") || 8494 parseModuleReference(ModulePath) || 8495 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8496 parseToken(lltok::comma, "expected ',' here") || 8497 parseToken(lltok::kw_insts, "expected 'insts' here") || 8498 parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount)) 8499 return true; 8500 8501 // parse optional fields 8502 while (EatIfPresent(lltok::comma)) { 8503 switch (Lex.getKind()) { 8504 case lltok::kw_funcFlags: 8505 if (parseOptionalFFlags(FFlags)) 8506 return true; 8507 break; 8508 case lltok::kw_calls: 8509 if (parseOptionalCalls(Calls)) 8510 return true; 8511 break; 8512 case lltok::kw_typeIdInfo: 8513 if (parseOptionalTypeIdInfo(TypeIdInfo)) 8514 return true; 8515 break; 8516 case lltok::kw_refs: 8517 if (parseOptionalRefs(Refs)) 8518 return true; 8519 break; 8520 case lltok::kw_params: 8521 if (parseOptionalParamAccesses(ParamAccesses)) 8522 return true; 8523 break; 8524 default: 8525 return error(Lex.getLoc(), "expected optional function summary field"); 8526 } 8527 } 8528 8529 if (parseToken(lltok::rparen, "expected ')' here")) 8530 return true; 8531 8532 auto FS = std::make_unique<FunctionSummary>( 8533 GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs), 8534 std::move(Calls), std::move(TypeIdInfo.TypeTests), 8535 std::move(TypeIdInfo.TypeTestAssumeVCalls), 8536 std::move(TypeIdInfo.TypeCheckedLoadVCalls), 8537 std::move(TypeIdInfo.TypeTestAssumeConstVCalls), 8538 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls), 8539 std::move(ParamAccesses)); 8540 8541 FS->setModulePath(ModulePath); 8542 8543 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8544 ID, std::move(FS)); 8545 8546 return false; 8547 } 8548 8549 /// VariableSummary 8550 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8551 /// [',' OptionalRefs]? ')' 8552 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID, 8553 unsigned ID) { 8554 assert(Lex.getKind() == lltok::kw_variable); 8555 Lex.Lex(); 8556 8557 StringRef ModulePath; 8558 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8559 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8560 /*NotEligibleToImport=*/false, 8561 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8562 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false, 8563 /* WriteOnly */ false, 8564 /* Constant */ false, 8565 GlobalObject::VCallVisibilityPublic); 8566 std::vector<ValueInfo> Refs; 8567 VTableFuncList VTableFuncs; 8568 if (parseToken(lltok::colon, "expected ':' here") || 8569 parseToken(lltok::lparen, "expected '(' here") || 8570 parseModuleReference(ModulePath) || 8571 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8572 parseToken(lltok::comma, "expected ',' here") || 8573 parseGVarFlags(GVarFlags)) 8574 return true; 8575 8576 // parse optional fields 8577 while (EatIfPresent(lltok::comma)) { 8578 switch (Lex.getKind()) { 8579 case lltok::kw_vTableFuncs: 8580 if (parseOptionalVTableFuncs(VTableFuncs)) 8581 return true; 8582 break; 8583 case lltok::kw_refs: 8584 if (parseOptionalRefs(Refs)) 8585 return true; 8586 break; 8587 default: 8588 return error(Lex.getLoc(), "expected optional variable summary field"); 8589 } 8590 } 8591 8592 if (parseToken(lltok::rparen, "expected ')' here")) 8593 return true; 8594 8595 auto GS = 8596 std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs)); 8597 8598 GS->setModulePath(ModulePath); 8599 GS->setVTableFuncs(std::move(VTableFuncs)); 8600 8601 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8602 ID, std::move(GS)); 8603 8604 return false; 8605 } 8606 8607 /// AliasSummary 8608 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ',' 8609 /// 'aliasee' ':' GVReference ')' 8610 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID, 8611 unsigned ID) { 8612 assert(Lex.getKind() == lltok::kw_alias); 8613 LocTy Loc = Lex.getLoc(); 8614 Lex.Lex(); 8615 8616 StringRef ModulePath; 8617 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8618 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8619 /*NotEligibleToImport=*/false, 8620 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8621 if (parseToken(lltok::colon, "expected ':' here") || 8622 parseToken(lltok::lparen, "expected '(' here") || 8623 parseModuleReference(ModulePath) || 8624 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8625 parseToken(lltok::comma, "expected ',' here") || 8626 parseToken(lltok::kw_aliasee, "expected 'aliasee' here") || 8627 parseToken(lltok::colon, "expected ':' here")) 8628 return true; 8629 8630 ValueInfo AliaseeVI; 8631 unsigned GVId; 8632 if (parseGVReference(AliaseeVI, GVId)) 8633 return true; 8634 8635 if (parseToken(lltok::rparen, "expected ')' here")) 8636 return true; 8637 8638 auto AS = std::make_unique<AliasSummary>(GVFlags); 8639 8640 AS->setModulePath(ModulePath); 8641 8642 // Record forward reference if the aliasee is not parsed yet. 8643 if (AliaseeVI.getRef() == FwdVIRef) { 8644 ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc); 8645 } else { 8646 auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath); 8647 assert(Summary && "Aliasee must be a definition"); 8648 AS->setAliasee(AliaseeVI, Summary); 8649 } 8650 8651 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8652 ID, std::move(AS)); 8653 8654 return false; 8655 } 8656 8657 /// Flag 8658 /// ::= [0|1] 8659 bool LLParser::parseFlag(unsigned &Val) { 8660 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 8661 return tokError("expected integer"); 8662 Val = (unsigned)Lex.getAPSIntVal().getBoolValue(); 8663 Lex.Lex(); 8664 return false; 8665 } 8666 8667 /// OptionalFFlags 8668 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]? 8669 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]? 8670 /// [',' 'returnDoesNotAlias' ':' Flag]? ')' 8671 /// [',' 'noInline' ':' Flag]? ')' 8672 /// [',' 'alwaysInline' ':' Flag]? ')' 8673 /// [',' 'noUnwind' ':' Flag]? ')' 8674 /// [',' 'mayThrow' ':' Flag]? ')' 8675 /// [',' 'hasUnknownCall' ':' Flag]? ')' 8676 /// [',' 'mustBeUnreachable' ':' Flag]? ')' 8677 8678 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) { 8679 assert(Lex.getKind() == lltok::kw_funcFlags); 8680 Lex.Lex(); 8681 8682 if (parseToken(lltok::colon, "expected ':' in funcFlags") || 8683 parseToken(lltok::lparen, "expected '(' in funcFlags")) 8684 return true; 8685 8686 do { 8687 unsigned Val = 0; 8688 switch (Lex.getKind()) { 8689 case lltok::kw_readNone: 8690 Lex.Lex(); 8691 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8692 return true; 8693 FFlags.ReadNone = Val; 8694 break; 8695 case lltok::kw_readOnly: 8696 Lex.Lex(); 8697 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8698 return true; 8699 FFlags.ReadOnly = Val; 8700 break; 8701 case lltok::kw_noRecurse: 8702 Lex.Lex(); 8703 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8704 return true; 8705 FFlags.NoRecurse = Val; 8706 break; 8707 case lltok::kw_returnDoesNotAlias: 8708 Lex.Lex(); 8709 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8710 return true; 8711 FFlags.ReturnDoesNotAlias = Val; 8712 break; 8713 case lltok::kw_noInline: 8714 Lex.Lex(); 8715 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8716 return true; 8717 FFlags.NoInline = Val; 8718 break; 8719 case lltok::kw_alwaysInline: 8720 Lex.Lex(); 8721 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8722 return true; 8723 FFlags.AlwaysInline = Val; 8724 break; 8725 case lltok::kw_noUnwind: 8726 Lex.Lex(); 8727 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8728 return true; 8729 FFlags.NoUnwind = Val; 8730 break; 8731 case lltok::kw_mayThrow: 8732 Lex.Lex(); 8733 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8734 return true; 8735 FFlags.MayThrow = Val; 8736 break; 8737 case lltok::kw_hasUnknownCall: 8738 Lex.Lex(); 8739 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8740 return true; 8741 FFlags.HasUnknownCall = Val; 8742 break; 8743 case lltok::kw_mustBeUnreachable: 8744 Lex.Lex(); 8745 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8746 return true; 8747 FFlags.MustBeUnreachable = Val; 8748 break; 8749 default: 8750 return error(Lex.getLoc(), "expected function flag type"); 8751 } 8752 } while (EatIfPresent(lltok::comma)); 8753 8754 if (parseToken(lltok::rparen, "expected ')' in funcFlags")) 8755 return true; 8756 8757 return false; 8758 } 8759 8760 /// OptionalCalls 8761 /// := 'calls' ':' '(' Call [',' Call]* ')' 8762 /// Call ::= '(' 'callee' ':' GVReference 8763 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')' 8764 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) { 8765 assert(Lex.getKind() == lltok::kw_calls); 8766 Lex.Lex(); 8767 8768 if (parseToken(lltok::colon, "expected ':' in calls") || 8769 parseToken(lltok::lparen, "expected '(' in calls")) 8770 return true; 8771 8772 IdToIndexMapType IdToIndexMap; 8773 // parse each call edge 8774 do { 8775 ValueInfo VI; 8776 if (parseToken(lltok::lparen, "expected '(' in call") || 8777 parseToken(lltok::kw_callee, "expected 'callee' in call") || 8778 parseToken(lltok::colon, "expected ':'")) 8779 return true; 8780 8781 LocTy Loc = Lex.getLoc(); 8782 unsigned GVId; 8783 if (parseGVReference(VI, GVId)) 8784 return true; 8785 8786 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 8787 unsigned RelBF = 0; 8788 if (EatIfPresent(lltok::comma)) { 8789 // Expect either hotness or relbf 8790 if (EatIfPresent(lltok::kw_hotness)) { 8791 if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness)) 8792 return true; 8793 } else { 8794 if (parseToken(lltok::kw_relbf, "expected relbf") || 8795 parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF)) 8796 return true; 8797 } 8798 } 8799 // Keep track of the Call array index needing a forward reference. 8800 // We will save the location of the ValueInfo needing an update, but 8801 // can only do so once the std::vector is finalized. 8802 if (VI.getRef() == FwdVIRef) 8803 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc)); 8804 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)}); 8805 8806 if (parseToken(lltok::rparen, "expected ')' in call")) 8807 return true; 8808 } while (EatIfPresent(lltok::comma)); 8809 8810 // Now that the Calls vector is finalized, it is safe to save the locations 8811 // of any forward GV references that need updating later. 8812 for (auto I : IdToIndexMap) { 8813 auto &Infos = ForwardRefValueInfos[I.first]; 8814 for (auto P : I.second) { 8815 assert(Calls[P.first].first.getRef() == FwdVIRef && 8816 "Forward referenced ValueInfo expected to be empty"); 8817 Infos.emplace_back(&Calls[P.first].first, P.second); 8818 } 8819 } 8820 8821 if (parseToken(lltok::rparen, "expected ')' in calls")) 8822 return true; 8823 8824 return false; 8825 } 8826 8827 /// Hotness 8828 /// := ('unknown'|'cold'|'none'|'hot'|'critical') 8829 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) { 8830 switch (Lex.getKind()) { 8831 case lltok::kw_unknown: 8832 Hotness = CalleeInfo::HotnessType::Unknown; 8833 break; 8834 case lltok::kw_cold: 8835 Hotness = CalleeInfo::HotnessType::Cold; 8836 break; 8837 case lltok::kw_none: 8838 Hotness = CalleeInfo::HotnessType::None; 8839 break; 8840 case lltok::kw_hot: 8841 Hotness = CalleeInfo::HotnessType::Hot; 8842 break; 8843 case lltok::kw_critical: 8844 Hotness = CalleeInfo::HotnessType::Critical; 8845 break; 8846 default: 8847 return error(Lex.getLoc(), "invalid call edge hotness"); 8848 } 8849 Lex.Lex(); 8850 return false; 8851 } 8852 8853 /// OptionalVTableFuncs 8854 /// := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')' 8855 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')' 8856 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) { 8857 assert(Lex.getKind() == lltok::kw_vTableFuncs); 8858 Lex.Lex(); 8859 8860 if (parseToken(lltok::colon, "expected ':' in vTableFuncs") || 8861 parseToken(lltok::lparen, "expected '(' in vTableFuncs")) 8862 return true; 8863 8864 IdToIndexMapType IdToIndexMap; 8865 // parse each virtual function pair 8866 do { 8867 ValueInfo VI; 8868 if (parseToken(lltok::lparen, "expected '(' in vTableFunc") || 8869 parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") || 8870 parseToken(lltok::colon, "expected ':'")) 8871 return true; 8872 8873 LocTy Loc = Lex.getLoc(); 8874 unsigned GVId; 8875 if (parseGVReference(VI, GVId)) 8876 return true; 8877 8878 uint64_t Offset; 8879 if (parseToken(lltok::comma, "expected comma") || 8880 parseToken(lltok::kw_offset, "expected offset") || 8881 parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset)) 8882 return true; 8883 8884 // Keep track of the VTableFuncs array index needing a forward reference. 8885 // We will save the location of the ValueInfo needing an update, but 8886 // can only do so once the std::vector is finalized. 8887 if (VI == EmptyVI) 8888 IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc)); 8889 VTableFuncs.push_back({VI, Offset}); 8890 8891 if (parseToken(lltok::rparen, "expected ')' in vTableFunc")) 8892 return true; 8893 } while (EatIfPresent(lltok::comma)); 8894 8895 // Now that the VTableFuncs vector is finalized, it is safe to save the 8896 // locations of any forward GV references that need updating later. 8897 for (auto I : IdToIndexMap) { 8898 auto &Infos = ForwardRefValueInfos[I.first]; 8899 for (auto P : I.second) { 8900 assert(VTableFuncs[P.first].FuncVI == EmptyVI && 8901 "Forward referenced ValueInfo expected to be empty"); 8902 Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second); 8903 } 8904 } 8905 8906 if (parseToken(lltok::rparen, "expected ')' in vTableFuncs")) 8907 return true; 8908 8909 return false; 8910 } 8911 8912 /// ParamNo := 'param' ':' UInt64 8913 bool LLParser::parseParamNo(uint64_t &ParamNo) { 8914 if (parseToken(lltok::kw_param, "expected 'param' here") || 8915 parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo)) 8916 return true; 8917 return false; 8918 } 8919 8920 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']' 8921 bool LLParser::parseParamAccessOffset(ConstantRange &Range) { 8922 APSInt Lower; 8923 APSInt Upper; 8924 auto ParseAPSInt = [&](APSInt &Val) { 8925 if (Lex.getKind() != lltok::APSInt) 8926 return tokError("expected integer"); 8927 Val = Lex.getAPSIntVal(); 8928 Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 8929 Val.setIsSigned(true); 8930 Lex.Lex(); 8931 return false; 8932 }; 8933 if (parseToken(lltok::kw_offset, "expected 'offset' here") || 8934 parseToken(lltok::colon, "expected ':' here") || 8935 parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) || 8936 parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) || 8937 parseToken(lltok::rsquare, "expected ']' here")) 8938 return true; 8939 8940 ++Upper; 8941 Range = 8942 (Lower == Upper && !Lower.isMaxValue()) 8943 ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth) 8944 : ConstantRange(Lower, Upper); 8945 8946 return false; 8947 } 8948 8949 /// ParamAccessCall 8950 /// := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')' 8951 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call, 8952 IdLocListType &IdLocList) { 8953 if (parseToken(lltok::lparen, "expected '(' here") || 8954 parseToken(lltok::kw_callee, "expected 'callee' here") || 8955 parseToken(lltok::colon, "expected ':' here")) 8956 return true; 8957 8958 unsigned GVId; 8959 ValueInfo VI; 8960 LocTy Loc = Lex.getLoc(); 8961 if (parseGVReference(VI, GVId)) 8962 return true; 8963 8964 Call.Callee = VI; 8965 IdLocList.emplace_back(GVId, Loc); 8966 8967 if (parseToken(lltok::comma, "expected ',' here") || 8968 parseParamNo(Call.ParamNo) || 8969 parseToken(lltok::comma, "expected ',' here") || 8970 parseParamAccessOffset(Call.Offsets)) 8971 return true; 8972 8973 if (parseToken(lltok::rparen, "expected ')' here")) 8974 return true; 8975 8976 return false; 8977 } 8978 8979 /// ParamAccess 8980 /// := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')' 8981 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')' 8982 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param, 8983 IdLocListType &IdLocList) { 8984 if (parseToken(lltok::lparen, "expected '(' here") || 8985 parseParamNo(Param.ParamNo) || 8986 parseToken(lltok::comma, "expected ',' here") || 8987 parseParamAccessOffset(Param.Use)) 8988 return true; 8989 8990 if (EatIfPresent(lltok::comma)) { 8991 if (parseToken(lltok::kw_calls, "expected 'calls' here") || 8992 parseToken(lltok::colon, "expected ':' here") || 8993 parseToken(lltok::lparen, "expected '(' here")) 8994 return true; 8995 do { 8996 FunctionSummary::ParamAccess::Call Call; 8997 if (parseParamAccessCall(Call, IdLocList)) 8998 return true; 8999 Param.Calls.push_back(Call); 9000 } while (EatIfPresent(lltok::comma)); 9001 9002 if (parseToken(lltok::rparen, "expected ')' here")) 9003 return true; 9004 } 9005 9006 if (parseToken(lltok::rparen, "expected ')' here")) 9007 return true; 9008 9009 return false; 9010 } 9011 9012 /// OptionalParamAccesses 9013 /// := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')' 9014 bool LLParser::parseOptionalParamAccesses( 9015 std::vector<FunctionSummary::ParamAccess> &Params) { 9016 assert(Lex.getKind() == lltok::kw_params); 9017 Lex.Lex(); 9018 9019 if (parseToken(lltok::colon, "expected ':' here") || 9020 parseToken(lltok::lparen, "expected '(' here")) 9021 return true; 9022 9023 IdLocListType VContexts; 9024 size_t CallsNum = 0; 9025 do { 9026 FunctionSummary::ParamAccess ParamAccess; 9027 if (parseParamAccess(ParamAccess, VContexts)) 9028 return true; 9029 CallsNum += ParamAccess.Calls.size(); 9030 assert(VContexts.size() == CallsNum); 9031 (void)CallsNum; 9032 Params.emplace_back(std::move(ParamAccess)); 9033 } while (EatIfPresent(lltok::comma)); 9034 9035 if (parseToken(lltok::rparen, "expected ')' here")) 9036 return true; 9037 9038 // Now that the Params is finalized, it is safe to save the locations 9039 // of any forward GV references that need updating later. 9040 IdLocListType::const_iterator ItContext = VContexts.begin(); 9041 for (auto &PA : Params) { 9042 for (auto &C : PA.Calls) { 9043 if (C.Callee.getRef() == FwdVIRef) 9044 ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee, 9045 ItContext->second); 9046 ++ItContext; 9047 } 9048 } 9049 assert(ItContext == VContexts.end()); 9050 9051 return false; 9052 } 9053 9054 /// OptionalRefs 9055 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')' 9056 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) { 9057 assert(Lex.getKind() == lltok::kw_refs); 9058 Lex.Lex(); 9059 9060 if (parseToken(lltok::colon, "expected ':' in refs") || 9061 parseToken(lltok::lparen, "expected '(' in refs")) 9062 return true; 9063 9064 struct ValueContext { 9065 ValueInfo VI; 9066 unsigned GVId; 9067 LocTy Loc; 9068 }; 9069 std::vector<ValueContext> VContexts; 9070 // parse each ref edge 9071 do { 9072 ValueContext VC; 9073 VC.Loc = Lex.getLoc(); 9074 if (parseGVReference(VC.VI, VC.GVId)) 9075 return true; 9076 VContexts.push_back(VC); 9077 } while (EatIfPresent(lltok::comma)); 9078 9079 // Sort value contexts so that ones with writeonly 9080 // and readonly ValueInfo are at the end of VContexts vector. 9081 // See FunctionSummary::specialRefCounts() 9082 llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) { 9083 return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier(); 9084 }); 9085 9086 IdToIndexMapType IdToIndexMap; 9087 for (auto &VC : VContexts) { 9088 // Keep track of the Refs array index needing a forward reference. 9089 // We will save the location of the ValueInfo needing an update, but 9090 // can only do so once the std::vector is finalized. 9091 if (VC.VI.getRef() == FwdVIRef) 9092 IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc)); 9093 Refs.push_back(VC.VI); 9094 } 9095 9096 // Now that the Refs vector is finalized, it is safe to save the locations 9097 // of any forward GV references that need updating later. 9098 for (auto I : IdToIndexMap) { 9099 auto &Infos = ForwardRefValueInfos[I.first]; 9100 for (auto P : I.second) { 9101 assert(Refs[P.first].getRef() == FwdVIRef && 9102 "Forward referenced ValueInfo expected to be empty"); 9103 Infos.emplace_back(&Refs[P.first], P.second); 9104 } 9105 } 9106 9107 if (parseToken(lltok::rparen, "expected ')' in refs")) 9108 return true; 9109 9110 return false; 9111 } 9112 9113 /// OptionalTypeIdInfo 9114 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]? 9115 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]? 9116 /// [',' TypeCheckedLoadConstVCalls]? ')' 9117 bool LLParser::parseOptionalTypeIdInfo( 9118 FunctionSummary::TypeIdInfo &TypeIdInfo) { 9119 assert(Lex.getKind() == lltok::kw_typeIdInfo); 9120 Lex.Lex(); 9121 9122 if (parseToken(lltok::colon, "expected ':' here") || 9123 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 9124 return true; 9125 9126 do { 9127 switch (Lex.getKind()) { 9128 case lltok::kw_typeTests: 9129 if (parseTypeTests(TypeIdInfo.TypeTests)) 9130 return true; 9131 break; 9132 case lltok::kw_typeTestAssumeVCalls: 9133 if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls, 9134 TypeIdInfo.TypeTestAssumeVCalls)) 9135 return true; 9136 break; 9137 case lltok::kw_typeCheckedLoadVCalls: 9138 if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls, 9139 TypeIdInfo.TypeCheckedLoadVCalls)) 9140 return true; 9141 break; 9142 case lltok::kw_typeTestAssumeConstVCalls: 9143 if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls, 9144 TypeIdInfo.TypeTestAssumeConstVCalls)) 9145 return true; 9146 break; 9147 case lltok::kw_typeCheckedLoadConstVCalls: 9148 if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls, 9149 TypeIdInfo.TypeCheckedLoadConstVCalls)) 9150 return true; 9151 break; 9152 default: 9153 return error(Lex.getLoc(), "invalid typeIdInfo list type"); 9154 } 9155 } while (EatIfPresent(lltok::comma)); 9156 9157 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 9158 return true; 9159 9160 return false; 9161 } 9162 9163 /// TypeTests 9164 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64) 9165 /// [',' (SummaryID | UInt64)]* ')' 9166 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) { 9167 assert(Lex.getKind() == lltok::kw_typeTests); 9168 Lex.Lex(); 9169 9170 if (parseToken(lltok::colon, "expected ':' here") || 9171 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 9172 return true; 9173 9174 IdToIndexMapType IdToIndexMap; 9175 do { 9176 GlobalValue::GUID GUID = 0; 9177 if (Lex.getKind() == lltok::SummaryID) { 9178 unsigned ID = Lex.getUIntVal(); 9179 LocTy Loc = Lex.getLoc(); 9180 // Keep track of the TypeTests array index needing a forward reference. 9181 // We will save the location of the GUID needing an update, but 9182 // can only do so once the std::vector is finalized. 9183 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc)); 9184 Lex.Lex(); 9185 } else if (parseUInt64(GUID)) 9186 return true; 9187 TypeTests.push_back(GUID); 9188 } while (EatIfPresent(lltok::comma)); 9189 9190 // Now that the TypeTests vector is finalized, it is safe to save the 9191 // locations of any forward GV references that need updating later. 9192 for (auto I : IdToIndexMap) { 9193 auto &Ids = ForwardRefTypeIds[I.first]; 9194 for (auto P : I.second) { 9195 assert(TypeTests[P.first] == 0 && 9196 "Forward referenced type id GUID expected to be 0"); 9197 Ids.emplace_back(&TypeTests[P.first], P.second); 9198 } 9199 } 9200 9201 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 9202 return true; 9203 9204 return false; 9205 } 9206 9207 /// VFuncIdList 9208 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')' 9209 bool LLParser::parseVFuncIdList( 9210 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) { 9211 assert(Lex.getKind() == Kind); 9212 Lex.Lex(); 9213 9214 if (parseToken(lltok::colon, "expected ':' here") || 9215 parseToken(lltok::lparen, "expected '(' here")) 9216 return true; 9217 9218 IdToIndexMapType IdToIndexMap; 9219 do { 9220 FunctionSummary::VFuncId VFuncId; 9221 if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size())) 9222 return true; 9223 VFuncIdList.push_back(VFuncId); 9224 } while (EatIfPresent(lltok::comma)); 9225 9226 if (parseToken(lltok::rparen, "expected ')' here")) 9227 return true; 9228 9229 // Now that the VFuncIdList vector is finalized, it is safe to save the 9230 // locations of any forward GV references that need updating later. 9231 for (auto I : IdToIndexMap) { 9232 auto &Ids = ForwardRefTypeIds[I.first]; 9233 for (auto P : I.second) { 9234 assert(VFuncIdList[P.first].GUID == 0 && 9235 "Forward referenced type id GUID expected to be 0"); 9236 Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second); 9237 } 9238 } 9239 9240 return false; 9241 } 9242 9243 /// ConstVCallList 9244 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')' 9245 bool LLParser::parseConstVCallList( 9246 lltok::Kind Kind, 9247 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) { 9248 assert(Lex.getKind() == Kind); 9249 Lex.Lex(); 9250 9251 if (parseToken(lltok::colon, "expected ':' here") || 9252 parseToken(lltok::lparen, "expected '(' here")) 9253 return true; 9254 9255 IdToIndexMapType IdToIndexMap; 9256 do { 9257 FunctionSummary::ConstVCall ConstVCall; 9258 if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size())) 9259 return true; 9260 ConstVCallList.push_back(ConstVCall); 9261 } while (EatIfPresent(lltok::comma)); 9262 9263 if (parseToken(lltok::rparen, "expected ')' here")) 9264 return true; 9265 9266 // Now that the ConstVCallList vector is finalized, it is safe to save the 9267 // locations of any forward GV references that need updating later. 9268 for (auto I : IdToIndexMap) { 9269 auto &Ids = ForwardRefTypeIds[I.first]; 9270 for (auto P : I.second) { 9271 assert(ConstVCallList[P.first].VFunc.GUID == 0 && 9272 "Forward referenced type id GUID expected to be 0"); 9273 Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second); 9274 } 9275 } 9276 9277 return false; 9278 } 9279 9280 /// ConstVCall 9281 /// ::= '(' VFuncId ',' Args ')' 9282 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall, 9283 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9284 if (parseToken(lltok::lparen, "expected '(' here") || 9285 parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index)) 9286 return true; 9287 9288 if (EatIfPresent(lltok::comma)) 9289 if (parseArgs(ConstVCall.Args)) 9290 return true; 9291 9292 if (parseToken(lltok::rparen, "expected ')' here")) 9293 return true; 9294 9295 return false; 9296 } 9297 9298 /// VFuncId 9299 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ',' 9300 /// 'offset' ':' UInt64 ')' 9301 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId, 9302 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9303 assert(Lex.getKind() == lltok::kw_vFuncId); 9304 Lex.Lex(); 9305 9306 if (parseToken(lltok::colon, "expected ':' here") || 9307 parseToken(lltok::lparen, "expected '(' here")) 9308 return true; 9309 9310 if (Lex.getKind() == lltok::SummaryID) { 9311 VFuncId.GUID = 0; 9312 unsigned ID = Lex.getUIntVal(); 9313 LocTy Loc = Lex.getLoc(); 9314 // Keep track of the array index needing a forward reference. 9315 // We will save the location of the GUID needing an update, but 9316 // can only do so once the caller's std::vector is finalized. 9317 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc)); 9318 Lex.Lex(); 9319 } else if (parseToken(lltok::kw_guid, "expected 'guid' here") || 9320 parseToken(lltok::colon, "expected ':' here") || 9321 parseUInt64(VFuncId.GUID)) 9322 return true; 9323 9324 if (parseToken(lltok::comma, "expected ',' here") || 9325 parseToken(lltok::kw_offset, "expected 'offset' here") || 9326 parseToken(lltok::colon, "expected ':' here") || 9327 parseUInt64(VFuncId.Offset) || 9328 parseToken(lltok::rparen, "expected ')' here")) 9329 return true; 9330 9331 return false; 9332 } 9333 9334 /// GVFlags 9335 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ',' 9336 /// 'visibility' ':' Flag 'notEligibleToImport' ':' Flag ',' 9337 /// 'live' ':' Flag ',' 'dsoLocal' ':' Flag ',' 9338 /// 'canAutoHide' ':' Flag ',' ')' 9339 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) { 9340 assert(Lex.getKind() == lltok::kw_flags); 9341 Lex.Lex(); 9342 9343 if (parseToken(lltok::colon, "expected ':' here") || 9344 parseToken(lltok::lparen, "expected '(' here")) 9345 return true; 9346 9347 do { 9348 unsigned Flag = 0; 9349 switch (Lex.getKind()) { 9350 case lltok::kw_linkage: 9351 Lex.Lex(); 9352 if (parseToken(lltok::colon, "expected ':'")) 9353 return true; 9354 bool HasLinkage; 9355 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 9356 assert(HasLinkage && "Linkage not optional in summary entry"); 9357 Lex.Lex(); 9358 break; 9359 case lltok::kw_visibility: 9360 Lex.Lex(); 9361 if (parseToken(lltok::colon, "expected ':'")) 9362 return true; 9363 parseOptionalVisibility(Flag); 9364 GVFlags.Visibility = Flag; 9365 break; 9366 case lltok::kw_notEligibleToImport: 9367 Lex.Lex(); 9368 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9369 return true; 9370 GVFlags.NotEligibleToImport = Flag; 9371 break; 9372 case lltok::kw_live: 9373 Lex.Lex(); 9374 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9375 return true; 9376 GVFlags.Live = Flag; 9377 break; 9378 case lltok::kw_dsoLocal: 9379 Lex.Lex(); 9380 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9381 return true; 9382 GVFlags.DSOLocal = Flag; 9383 break; 9384 case lltok::kw_canAutoHide: 9385 Lex.Lex(); 9386 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9387 return true; 9388 GVFlags.CanAutoHide = Flag; 9389 break; 9390 default: 9391 return error(Lex.getLoc(), "expected gv flag type"); 9392 } 9393 } while (EatIfPresent(lltok::comma)); 9394 9395 if (parseToken(lltok::rparen, "expected ')' here")) 9396 return true; 9397 9398 return false; 9399 } 9400 9401 /// GVarFlags 9402 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag 9403 /// ',' 'writeonly' ':' Flag 9404 /// ',' 'constant' ':' Flag ')' 9405 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) { 9406 assert(Lex.getKind() == lltok::kw_varFlags); 9407 Lex.Lex(); 9408 9409 if (parseToken(lltok::colon, "expected ':' here") || 9410 parseToken(lltok::lparen, "expected '(' here")) 9411 return true; 9412 9413 auto ParseRest = [this](unsigned int &Val) { 9414 Lex.Lex(); 9415 if (parseToken(lltok::colon, "expected ':'")) 9416 return true; 9417 return parseFlag(Val); 9418 }; 9419 9420 do { 9421 unsigned Flag = 0; 9422 switch (Lex.getKind()) { 9423 case lltok::kw_readonly: 9424 if (ParseRest(Flag)) 9425 return true; 9426 GVarFlags.MaybeReadOnly = Flag; 9427 break; 9428 case lltok::kw_writeonly: 9429 if (ParseRest(Flag)) 9430 return true; 9431 GVarFlags.MaybeWriteOnly = Flag; 9432 break; 9433 case lltok::kw_constant: 9434 if (ParseRest(Flag)) 9435 return true; 9436 GVarFlags.Constant = Flag; 9437 break; 9438 case lltok::kw_vcall_visibility: 9439 if (ParseRest(Flag)) 9440 return true; 9441 GVarFlags.VCallVisibility = Flag; 9442 break; 9443 default: 9444 return error(Lex.getLoc(), "expected gvar flag type"); 9445 } 9446 } while (EatIfPresent(lltok::comma)); 9447 return parseToken(lltok::rparen, "expected ')' here"); 9448 } 9449 9450 /// ModuleReference 9451 /// ::= 'module' ':' UInt 9452 bool LLParser::parseModuleReference(StringRef &ModulePath) { 9453 // parse module id. 9454 if (parseToken(lltok::kw_module, "expected 'module' here") || 9455 parseToken(lltok::colon, "expected ':' here") || 9456 parseToken(lltok::SummaryID, "expected module ID")) 9457 return true; 9458 9459 unsigned ModuleID = Lex.getUIntVal(); 9460 auto I = ModuleIdMap.find(ModuleID); 9461 // We should have already parsed all module IDs 9462 assert(I != ModuleIdMap.end()); 9463 ModulePath = I->second; 9464 return false; 9465 } 9466 9467 /// GVReference 9468 /// ::= SummaryID 9469 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) { 9470 bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly); 9471 if (!ReadOnly) 9472 WriteOnly = EatIfPresent(lltok::kw_writeonly); 9473 if (parseToken(lltok::SummaryID, "expected GV ID")) 9474 return true; 9475 9476 GVId = Lex.getUIntVal(); 9477 // Check if we already have a VI for this GV 9478 if (GVId < NumberedValueInfos.size()) { 9479 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef); 9480 VI = NumberedValueInfos[GVId]; 9481 } else 9482 // We will create a forward reference to the stored location. 9483 VI = ValueInfo(false, FwdVIRef); 9484 9485 if (ReadOnly) 9486 VI.setReadOnly(); 9487 if (WriteOnly) 9488 VI.setWriteOnly(); 9489 return false; 9490 } 9491