1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the parser class for .ll files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "LLParser.h" 14 #include "LLToken.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/AsmParser/SlotMapping.h" 21 #include "llvm/BinaryFormat/Dwarf.h" 22 #include "llvm/IR/Argument.h" 23 #include "llvm/IR/AutoUpgrade.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallingConv.h" 26 #include "llvm/IR/Comdat.h" 27 #include "llvm/IR/ConstantRange.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DebugInfoMetadata.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/GlobalIFunc.h" 33 #include "llvm/IR/GlobalObject.h" 34 #include "llvm/IR/InlineAsm.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/IR/ValueSymbolTable.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/MathExtras.h" 44 #include "llvm/Support/SaveAndRestore.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include <algorithm> 47 #include <cassert> 48 #include <cstring> 49 #include <iterator> 50 #include <vector> 51 52 using namespace llvm; 53 54 static std::string getTypeString(Type *T) { 55 std::string Result; 56 raw_string_ostream Tmp(Result); 57 Tmp << *T; 58 return Tmp.str(); 59 } 60 61 /// Run: module ::= toplevelentity* 62 bool LLParser::Run(bool UpgradeDebugInfo, 63 DataLayoutCallbackTy DataLayoutCallback) { 64 // Prime the lexer. 65 Lex.Lex(); 66 67 if (Context.shouldDiscardValueNames()) 68 return Error( 69 Lex.getLoc(), 70 "Can't read textual IR with a Context that discards named Values"); 71 72 if (M) { 73 if (ParseTargetDefinitions()) 74 return true; 75 76 if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple())) 77 M->setDataLayout(*LayoutOverride); 78 } 79 80 return ParseTopLevelEntities() || ValidateEndOfModule(UpgradeDebugInfo) || 81 ValidateEndOfIndex(); 82 } 83 84 bool LLParser::parseStandaloneConstantValue(Constant *&C, 85 const SlotMapping *Slots) { 86 restoreParsingState(Slots); 87 Lex.Lex(); 88 89 Type *Ty = nullptr; 90 if (ParseType(Ty) || parseConstantValue(Ty, C)) 91 return true; 92 if (Lex.getKind() != lltok::Eof) 93 return Error(Lex.getLoc(), "expected end of string"); 94 return false; 95 } 96 97 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 98 const SlotMapping *Slots) { 99 restoreParsingState(Slots); 100 Lex.Lex(); 101 102 Read = 0; 103 SMLoc Start = Lex.getLoc(); 104 Ty = nullptr; 105 if (ParseType(Ty)) 106 return true; 107 SMLoc End = Lex.getLoc(); 108 Read = End.getPointer() - Start.getPointer(); 109 110 return false; 111 } 112 113 void LLParser::restoreParsingState(const SlotMapping *Slots) { 114 if (!Slots) 115 return; 116 NumberedVals = Slots->GlobalValues; 117 NumberedMetadata = Slots->MetadataNodes; 118 for (const auto &I : Slots->NamedTypes) 119 NamedTypes.insert( 120 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 121 for (const auto &I : Slots->Types) 122 NumberedTypes.insert( 123 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 124 } 125 126 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 127 /// module. 128 bool LLParser::ValidateEndOfModule(bool UpgradeDebugInfo) { 129 if (!M) 130 return false; 131 // Handle any function attribute group forward references. 132 for (const auto &RAG : ForwardRefAttrGroups) { 133 Value *V = RAG.first; 134 const std::vector<unsigned> &Attrs = RAG.second; 135 AttrBuilder B; 136 137 for (const auto &Attr : Attrs) 138 B.merge(NumberedAttrBuilders[Attr]); 139 140 if (Function *Fn = dyn_cast<Function>(V)) { 141 AttributeList AS = Fn->getAttributes(); 142 AttrBuilder FnAttrs(AS.getFnAttributes()); 143 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 144 145 FnAttrs.merge(B); 146 147 // If the alignment was parsed as an attribute, move to the alignment 148 // field. 149 if (FnAttrs.hasAlignmentAttr()) { 150 Fn->setAlignment(FnAttrs.getAlignment()); 151 FnAttrs.removeAttribute(Attribute::Alignment); 152 } 153 154 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 155 AttributeSet::get(Context, FnAttrs)); 156 Fn->setAttributes(AS); 157 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 158 AttributeList AS = CI->getAttributes(); 159 AttrBuilder FnAttrs(AS.getFnAttributes()); 160 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 161 FnAttrs.merge(B); 162 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 163 AttributeSet::get(Context, FnAttrs)); 164 CI->setAttributes(AS); 165 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 166 AttributeList AS = II->getAttributes(); 167 AttrBuilder FnAttrs(AS.getFnAttributes()); 168 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 169 FnAttrs.merge(B); 170 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 171 AttributeSet::get(Context, FnAttrs)); 172 II->setAttributes(AS); 173 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) { 174 AttributeList AS = CBI->getAttributes(); 175 AttrBuilder FnAttrs(AS.getFnAttributes()); 176 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 177 FnAttrs.merge(B); 178 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 179 AttributeSet::get(Context, FnAttrs)); 180 CBI->setAttributes(AS); 181 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 182 AttrBuilder Attrs(GV->getAttributes()); 183 Attrs.merge(B); 184 GV->setAttributes(AttributeSet::get(Context,Attrs)); 185 } else { 186 llvm_unreachable("invalid object with forward attribute group reference"); 187 } 188 } 189 190 // If there are entries in ForwardRefBlockAddresses at this point, the 191 // function was never defined. 192 if (!ForwardRefBlockAddresses.empty()) 193 return Error(ForwardRefBlockAddresses.begin()->first.Loc, 194 "expected function name in blockaddress"); 195 196 for (const auto &NT : NumberedTypes) 197 if (NT.second.second.isValid()) 198 return Error(NT.second.second, 199 "use of undefined type '%" + Twine(NT.first) + "'"); 200 201 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 202 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 203 if (I->second.second.isValid()) 204 return Error(I->second.second, 205 "use of undefined type named '" + I->getKey() + "'"); 206 207 if (!ForwardRefComdats.empty()) 208 return Error(ForwardRefComdats.begin()->second, 209 "use of undefined comdat '$" + 210 ForwardRefComdats.begin()->first + "'"); 211 212 if (!ForwardRefVals.empty()) 213 return Error(ForwardRefVals.begin()->second.second, 214 "use of undefined value '@" + ForwardRefVals.begin()->first + 215 "'"); 216 217 if (!ForwardRefValIDs.empty()) 218 return Error(ForwardRefValIDs.begin()->second.second, 219 "use of undefined value '@" + 220 Twine(ForwardRefValIDs.begin()->first) + "'"); 221 222 if (!ForwardRefMDNodes.empty()) 223 return Error(ForwardRefMDNodes.begin()->second.second, 224 "use of undefined metadata '!" + 225 Twine(ForwardRefMDNodes.begin()->first) + "'"); 226 227 // Resolve metadata cycles. 228 for (auto &N : NumberedMetadata) { 229 if (N.second && !N.second->isResolved()) 230 N.second->resolveCycles(); 231 } 232 233 for (auto *Inst : InstsWithTBAATag) { 234 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 235 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 236 auto *UpgradedMD = UpgradeTBAANode(*MD); 237 if (MD != UpgradedMD) 238 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 239 } 240 241 // Look for intrinsic functions and CallInst that need to be upgraded 242 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 243 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 244 245 // Some types could be renamed during loading if several modules are 246 // loaded in the same LLVMContext (LTO scenario). In this case we should 247 // remangle intrinsics names as well. 248 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) { 249 Function *F = &*FI++; 250 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 251 F->replaceAllUsesWith(Remangled.getValue()); 252 F->eraseFromParent(); 253 } 254 } 255 256 if (UpgradeDebugInfo) 257 llvm::UpgradeDebugInfo(*M); 258 259 UpgradeModuleFlags(*M); 260 UpgradeSectionAttributes(*M); 261 262 if (!Slots) 263 return false; 264 // Initialize the slot mapping. 265 // Because by this point we've parsed and validated everything, we can "steal" 266 // the mapping from LLParser as it doesn't need it anymore. 267 Slots->GlobalValues = std::move(NumberedVals); 268 Slots->MetadataNodes = std::move(NumberedMetadata); 269 for (const auto &I : NamedTypes) 270 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 271 for (const auto &I : NumberedTypes) 272 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 273 274 return false; 275 } 276 277 /// Do final validity and sanity checks at the end of the index. 278 bool LLParser::ValidateEndOfIndex() { 279 if (!Index) 280 return false; 281 282 if (!ForwardRefValueInfos.empty()) 283 return Error(ForwardRefValueInfos.begin()->second.front().second, 284 "use of undefined summary '^" + 285 Twine(ForwardRefValueInfos.begin()->first) + "'"); 286 287 if (!ForwardRefAliasees.empty()) 288 return Error(ForwardRefAliasees.begin()->second.front().second, 289 "use of undefined summary '^" + 290 Twine(ForwardRefAliasees.begin()->first) + "'"); 291 292 if (!ForwardRefTypeIds.empty()) 293 return Error(ForwardRefTypeIds.begin()->second.front().second, 294 "use of undefined type id summary '^" + 295 Twine(ForwardRefTypeIds.begin()->first) + "'"); 296 297 return false; 298 } 299 300 //===----------------------------------------------------------------------===// 301 // Top-Level Entities 302 //===----------------------------------------------------------------------===// 303 304 bool LLParser::ParseTargetDefinitions() { 305 while (true) { 306 switch (Lex.getKind()) { 307 case lltok::kw_target: 308 if (ParseTargetDefinition()) 309 return true; 310 break; 311 case lltok::kw_source_filename: 312 if (ParseSourceFileName()) 313 return true; 314 break; 315 default: 316 return false; 317 } 318 } 319 } 320 321 bool LLParser::ParseTopLevelEntities() { 322 // If there is no Module, then parse just the summary index entries. 323 if (!M) { 324 while (true) { 325 switch (Lex.getKind()) { 326 case lltok::Eof: 327 return false; 328 case lltok::SummaryID: 329 if (ParseSummaryEntry()) 330 return true; 331 break; 332 case lltok::kw_source_filename: 333 if (ParseSourceFileName()) 334 return true; 335 break; 336 default: 337 // Skip everything else 338 Lex.Lex(); 339 } 340 } 341 } 342 while (true) { 343 switch (Lex.getKind()) { 344 default: return TokError("expected top-level entity"); 345 case lltok::Eof: return false; 346 case lltok::kw_declare: if (ParseDeclare()) return true; break; 347 case lltok::kw_define: if (ParseDefine()) return true; break; 348 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 349 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 350 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 351 case lltok::LocalVar: if (ParseNamedType()) return true; break; 352 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 353 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 354 case lltok::ComdatVar: if (parseComdat()) return true; break; 355 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 356 case lltok::SummaryID: 357 if (ParseSummaryEntry()) 358 return true; 359 break; 360 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break; 361 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break; 362 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break; 363 case lltok::kw_uselistorder_bb: 364 if (ParseUseListOrderBB()) 365 return true; 366 break; 367 } 368 } 369 } 370 371 /// toplevelentity 372 /// ::= 'module' 'asm' STRINGCONSTANT 373 bool LLParser::ParseModuleAsm() { 374 assert(Lex.getKind() == lltok::kw_module); 375 Lex.Lex(); 376 377 std::string AsmStr; 378 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 379 ParseStringConstant(AsmStr)) return true; 380 381 M->appendModuleInlineAsm(AsmStr); 382 return false; 383 } 384 385 /// toplevelentity 386 /// ::= 'target' 'triple' '=' STRINGCONSTANT 387 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 388 bool LLParser::ParseTargetDefinition() { 389 assert(Lex.getKind() == lltok::kw_target); 390 std::string Str; 391 switch (Lex.Lex()) { 392 default: return TokError("unknown target property"); 393 case lltok::kw_triple: 394 Lex.Lex(); 395 if (ParseToken(lltok::equal, "expected '=' after target triple") || 396 ParseStringConstant(Str)) 397 return true; 398 M->setTargetTriple(Str); 399 return false; 400 case lltok::kw_datalayout: 401 Lex.Lex(); 402 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 403 ParseStringConstant(Str)) 404 return true; 405 M->setDataLayout(Str); 406 return false; 407 } 408 } 409 410 /// toplevelentity 411 /// ::= 'source_filename' '=' STRINGCONSTANT 412 bool LLParser::ParseSourceFileName() { 413 assert(Lex.getKind() == lltok::kw_source_filename); 414 Lex.Lex(); 415 if (ParseToken(lltok::equal, "expected '=' after source_filename") || 416 ParseStringConstant(SourceFileName)) 417 return true; 418 if (M) 419 M->setSourceFileName(SourceFileName); 420 return false; 421 } 422 423 /// toplevelentity 424 /// ::= 'deplibs' '=' '[' ']' 425 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 426 /// FIXME: Remove in 4.0. Currently parse, but ignore. 427 bool LLParser::ParseDepLibs() { 428 assert(Lex.getKind() == lltok::kw_deplibs); 429 Lex.Lex(); 430 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 431 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 432 return true; 433 434 if (EatIfPresent(lltok::rsquare)) 435 return false; 436 437 do { 438 std::string Str; 439 if (ParseStringConstant(Str)) return true; 440 } while (EatIfPresent(lltok::comma)); 441 442 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 443 } 444 445 /// ParseUnnamedType: 446 /// ::= LocalVarID '=' 'type' type 447 bool LLParser::ParseUnnamedType() { 448 LocTy TypeLoc = Lex.getLoc(); 449 unsigned TypeID = Lex.getUIntVal(); 450 Lex.Lex(); // eat LocalVarID; 451 452 if (ParseToken(lltok::equal, "expected '=' after name") || 453 ParseToken(lltok::kw_type, "expected 'type' after '='")) 454 return true; 455 456 Type *Result = nullptr; 457 if (ParseStructDefinition(TypeLoc, "", 458 NumberedTypes[TypeID], Result)) return true; 459 460 if (!isa<StructType>(Result)) { 461 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 462 if (Entry.first) 463 return Error(TypeLoc, "non-struct types may not be recursive"); 464 Entry.first = Result; 465 Entry.second = SMLoc(); 466 } 467 468 return false; 469 } 470 471 /// toplevelentity 472 /// ::= LocalVar '=' 'type' type 473 bool LLParser::ParseNamedType() { 474 std::string Name = Lex.getStrVal(); 475 LocTy NameLoc = Lex.getLoc(); 476 Lex.Lex(); // eat LocalVar. 477 478 if (ParseToken(lltok::equal, "expected '=' after name") || 479 ParseToken(lltok::kw_type, "expected 'type' after name")) 480 return true; 481 482 Type *Result = nullptr; 483 if (ParseStructDefinition(NameLoc, Name, 484 NamedTypes[Name], Result)) return true; 485 486 if (!isa<StructType>(Result)) { 487 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 488 if (Entry.first) 489 return Error(NameLoc, "non-struct types may not be recursive"); 490 Entry.first = Result; 491 Entry.second = SMLoc(); 492 } 493 494 return false; 495 } 496 497 /// toplevelentity 498 /// ::= 'declare' FunctionHeader 499 bool LLParser::ParseDeclare() { 500 assert(Lex.getKind() == lltok::kw_declare); 501 Lex.Lex(); 502 503 std::vector<std::pair<unsigned, MDNode *>> MDs; 504 while (Lex.getKind() == lltok::MetadataVar) { 505 unsigned MDK; 506 MDNode *N; 507 if (ParseMetadataAttachment(MDK, N)) 508 return true; 509 MDs.push_back({MDK, N}); 510 } 511 512 Function *F; 513 if (ParseFunctionHeader(F, false)) 514 return true; 515 for (auto &MD : MDs) 516 F->addMetadata(MD.first, *MD.second); 517 return false; 518 } 519 520 /// toplevelentity 521 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 522 bool LLParser::ParseDefine() { 523 assert(Lex.getKind() == lltok::kw_define); 524 Lex.Lex(); 525 526 Function *F; 527 return ParseFunctionHeader(F, true) || 528 ParseOptionalFunctionMetadata(*F) || 529 ParseFunctionBody(*F); 530 } 531 532 /// ParseGlobalType 533 /// ::= 'constant' 534 /// ::= 'global' 535 bool LLParser::ParseGlobalType(bool &IsConstant) { 536 if (Lex.getKind() == lltok::kw_constant) 537 IsConstant = true; 538 else if (Lex.getKind() == lltok::kw_global) 539 IsConstant = false; 540 else { 541 IsConstant = false; 542 return TokError("expected 'global' or 'constant'"); 543 } 544 Lex.Lex(); 545 return false; 546 } 547 548 bool LLParser::ParseOptionalUnnamedAddr( 549 GlobalVariable::UnnamedAddr &UnnamedAddr) { 550 if (EatIfPresent(lltok::kw_unnamed_addr)) 551 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 552 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 553 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 554 else 555 UnnamedAddr = GlobalValue::UnnamedAddr::None; 556 return false; 557 } 558 559 /// ParseUnnamedGlobal: 560 /// OptionalVisibility (ALIAS | IFUNC) ... 561 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 562 /// OptionalDLLStorageClass 563 /// ... -> global variable 564 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 565 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 566 /// OptionalDLLStorageClass 567 /// ... -> global variable 568 bool LLParser::ParseUnnamedGlobal() { 569 unsigned VarID = NumberedVals.size(); 570 std::string Name; 571 LocTy NameLoc = Lex.getLoc(); 572 573 // Handle the GlobalID form. 574 if (Lex.getKind() == lltok::GlobalID) { 575 if (Lex.getUIntVal() != VarID) 576 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 577 Twine(VarID) + "'"); 578 Lex.Lex(); // eat GlobalID; 579 580 if (ParseToken(lltok::equal, "expected '=' after name")) 581 return true; 582 } 583 584 bool HasLinkage; 585 unsigned Linkage, Visibility, DLLStorageClass; 586 bool DSOLocal; 587 GlobalVariable::ThreadLocalMode TLM; 588 GlobalVariable::UnnamedAddr UnnamedAddr; 589 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 590 DSOLocal) || 591 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 592 return true; 593 594 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 595 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 596 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 597 598 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 599 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 600 } 601 602 /// ParseNamedGlobal: 603 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 604 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 605 /// OptionalVisibility OptionalDLLStorageClass 606 /// ... -> global variable 607 bool LLParser::ParseNamedGlobal() { 608 assert(Lex.getKind() == lltok::GlobalVar); 609 LocTy NameLoc = Lex.getLoc(); 610 std::string Name = Lex.getStrVal(); 611 Lex.Lex(); 612 613 bool HasLinkage; 614 unsigned Linkage, Visibility, DLLStorageClass; 615 bool DSOLocal; 616 GlobalVariable::ThreadLocalMode TLM; 617 GlobalVariable::UnnamedAddr UnnamedAddr; 618 if (ParseToken(lltok::equal, "expected '=' in global variable") || 619 ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 620 DSOLocal) || 621 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 622 return true; 623 624 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 625 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 626 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 627 628 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 629 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 630 } 631 632 bool LLParser::parseComdat() { 633 assert(Lex.getKind() == lltok::ComdatVar); 634 std::string Name = Lex.getStrVal(); 635 LocTy NameLoc = Lex.getLoc(); 636 Lex.Lex(); 637 638 if (ParseToken(lltok::equal, "expected '=' here")) 639 return true; 640 641 if (ParseToken(lltok::kw_comdat, "expected comdat keyword")) 642 return TokError("expected comdat type"); 643 644 Comdat::SelectionKind SK; 645 switch (Lex.getKind()) { 646 default: 647 return TokError("unknown selection kind"); 648 case lltok::kw_any: 649 SK = Comdat::Any; 650 break; 651 case lltok::kw_exactmatch: 652 SK = Comdat::ExactMatch; 653 break; 654 case lltok::kw_largest: 655 SK = Comdat::Largest; 656 break; 657 case lltok::kw_noduplicates: 658 SK = Comdat::NoDuplicates; 659 break; 660 case lltok::kw_samesize: 661 SK = Comdat::SameSize; 662 break; 663 } 664 Lex.Lex(); 665 666 // See if the comdat was forward referenced, if so, use the comdat. 667 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 668 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 669 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 670 return Error(NameLoc, "redefinition of comdat '$" + Name + "'"); 671 672 Comdat *C; 673 if (I != ComdatSymTab.end()) 674 C = &I->second; 675 else 676 C = M->getOrInsertComdat(Name); 677 C->setSelectionKind(SK); 678 679 return false; 680 } 681 682 // MDString: 683 // ::= '!' STRINGCONSTANT 684 bool LLParser::ParseMDString(MDString *&Result) { 685 std::string Str; 686 if (ParseStringConstant(Str)) return true; 687 Result = MDString::get(Context, Str); 688 return false; 689 } 690 691 // MDNode: 692 // ::= '!' MDNodeNumber 693 bool LLParser::ParseMDNodeID(MDNode *&Result) { 694 // !{ ..., !42, ... } 695 LocTy IDLoc = Lex.getLoc(); 696 unsigned MID = 0; 697 if (ParseUInt32(MID)) 698 return true; 699 700 // If not a forward reference, just return it now. 701 if (NumberedMetadata.count(MID)) { 702 Result = NumberedMetadata[MID]; 703 return false; 704 } 705 706 // Otherwise, create MDNode forward reference. 707 auto &FwdRef = ForwardRefMDNodes[MID]; 708 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 709 710 Result = FwdRef.first.get(); 711 NumberedMetadata[MID].reset(Result); 712 return false; 713 } 714 715 /// ParseNamedMetadata: 716 /// !foo = !{ !1, !2 } 717 bool LLParser::ParseNamedMetadata() { 718 assert(Lex.getKind() == lltok::MetadataVar); 719 std::string Name = Lex.getStrVal(); 720 Lex.Lex(); 721 722 if (ParseToken(lltok::equal, "expected '=' here") || 723 ParseToken(lltok::exclaim, "Expected '!' here") || 724 ParseToken(lltok::lbrace, "Expected '{' here")) 725 return true; 726 727 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 728 if (Lex.getKind() != lltok::rbrace) 729 do { 730 MDNode *N = nullptr; 731 // Parse DIExpressions inline as a special case. They are still MDNodes, 732 // so they can still appear in named metadata. Remove this logic if they 733 // become plain Metadata. 734 if (Lex.getKind() == lltok::MetadataVar && 735 Lex.getStrVal() == "DIExpression") { 736 if (ParseDIExpression(N, /*IsDistinct=*/false)) 737 return true; 738 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 739 ParseMDNodeID(N)) { 740 return true; 741 } 742 NMD->addOperand(N); 743 } while (EatIfPresent(lltok::comma)); 744 745 return ParseToken(lltok::rbrace, "expected end of metadata node"); 746 } 747 748 /// ParseStandaloneMetadata: 749 /// !42 = !{...} 750 bool LLParser::ParseStandaloneMetadata() { 751 assert(Lex.getKind() == lltok::exclaim); 752 Lex.Lex(); 753 unsigned MetadataID = 0; 754 755 MDNode *Init; 756 if (ParseUInt32(MetadataID) || 757 ParseToken(lltok::equal, "expected '=' here")) 758 return true; 759 760 // Detect common error, from old metadata syntax. 761 if (Lex.getKind() == lltok::Type) 762 return TokError("unexpected type in metadata definition"); 763 764 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 765 if (Lex.getKind() == lltok::MetadataVar) { 766 if (ParseSpecializedMDNode(Init, IsDistinct)) 767 return true; 768 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 769 ParseMDTuple(Init, IsDistinct)) 770 return true; 771 772 // See if this was forward referenced, if so, handle it. 773 auto FI = ForwardRefMDNodes.find(MetadataID); 774 if (FI != ForwardRefMDNodes.end()) { 775 FI->second.first->replaceAllUsesWith(Init); 776 ForwardRefMDNodes.erase(FI); 777 778 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 779 } else { 780 if (NumberedMetadata.count(MetadataID)) 781 return TokError("Metadata id is already used"); 782 NumberedMetadata[MetadataID].reset(Init); 783 } 784 785 return false; 786 } 787 788 // Skips a single module summary entry. 789 bool LLParser::SkipModuleSummaryEntry() { 790 // Each module summary entry consists of a tag for the entry 791 // type, followed by a colon, then the fields which may be surrounded by 792 // nested sets of parentheses. The "tag:" looks like a Label. Once parsing 793 // support is in place we will look for the tokens corresponding to the 794 // expected tags. 795 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module && 796 Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags && 797 Lex.getKind() != lltok::kw_blockcount) 798 return TokError( 799 "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the " 800 "start of summary entry"); 801 if (Lex.getKind() == lltok::kw_flags) 802 return ParseSummaryIndexFlags(); 803 if (Lex.getKind() == lltok::kw_blockcount) 804 return ParseBlockCount(); 805 Lex.Lex(); 806 if (ParseToken(lltok::colon, "expected ':' at start of summary entry") || 807 ParseToken(lltok::lparen, "expected '(' at start of summary entry")) 808 return true; 809 // Now walk through the parenthesized entry, until the number of open 810 // parentheses goes back down to 0 (the first '(' was parsed above). 811 unsigned NumOpenParen = 1; 812 do { 813 switch (Lex.getKind()) { 814 case lltok::lparen: 815 NumOpenParen++; 816 break; 817 case lltok::rparen: 818 NumOpenParen--; 819 break; 820 case lltok::Eof: 821 return TokError("found end of file while parsing summary entry"); 822 default: 823 // Skip everything in between parentheses. 824 break; 825 } 826 Lex.Lex(); 827 } while (NumOpenParen > 0); 828 return false; 829 } 830 831 /// SummaryEntry 832 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry 833 bool LLParser::ParseSummaryEntry() { 834 assert(Lex.getKind() == lltok::SummaryID); 835 unsigned SummaryID = Lex.getUIntVal(); 836 837 // For summary entries, colons should be treated as distinct tokens, 838 // not an indication of the end of a label token. 839 Lex.setIgnoreColonInIdentifiers(true); 840 841 Lex.Lex(); 842 if (ParseToken(lltok::equal, "expected '=' here")) 843 return true; 844 845 // If we don't have an index object, skip the summary entry. 846 if (!Index) 847 return SkipModuleSummaryEntry(); 848 849 bool result = false; 850 switch (Lex.getKind()) { 851 case lltok::kw_gv: 852 result = ParseGVEntry(SummaryID); 853 break; 854 case lltok::kw_module: 855 result = ParseModuleEntry(SummaryID); 856 break; 857 case lltok::kw_typeid: 858 result = ParseTypeIdEntry(SummaryID); 859 break; 860 case lltok::kw_typeidCompatibleVTable: 861 result = ParseTypeIdCompatibleVtableEntry(SummaryID); 862 break; 863 case lltok::kw_flags: 864 result = ParseSummaryIndexFlags(); 865 break; 866 case lltok::kw_blockcount: 867 result = ParseBlockCount(); 868 break; 869 default: 870 result = Error(Lex.getLoc(), "unexpected summary kind"); 871 break; 872 } 873 Lex.setIgnoreColonInIdentifiers(false); 874 return result; 875 } 876 877 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 878 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 879 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 880 } 881 882 // If there was an explicit dso_local, update GV. In the absence of an explicit 883 // dso_local we keep the default value. 884 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { 885 if (DSOLocal) 886 GV.setDSOLocal(true); 887 } 888 889 /// parseIndirectSymbol: 890 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 891 /// OptionalVisibility OptionalDLLStorageClass 892 /// OptionalThreadLocal OptionalUnnamedAddr 893 /// 'alias|ifunc' IndirectSymbol IndirectSymbolAttr* 894 /// 895 /// IndirectSymbol 896 /// ::= TypeAndValue 897 /// 898 /// IndirectSymbolAttr 899 /// ::= ',' 'partition' StringConstant 900 /// 901 /// Everything through OptionalUnnamedAddr has already been parsed. 902 /// 903 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc, 904 unsigned L, unsigned Visibility, 905 unsigned DLLStorageClass, bool DSOLocal, 906 GlobalVariable::ThreadLocalMode TLM, 907 GlobalVariable::UnnamedAddr UnnamedAddr) { 908 bool IsAlias; 909 if (Lex.getKind() == lltok::kw_alias) 910 IsAlias = true; 911 else if (Lex.getKind() == lltok::kw_ifunc) 912 IsAlias = false; 913 else 914 llvm_unreachable("Not an alias or ifunc!"); 915 Lex.Lex(); 916 917 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 918 919 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 920 return Error(NameLoc, "invalid linkage type for alias"); 921 922 if (!isValidVisibilityForLinkage(Visibility, L)) 923 return Error(NameLoc, 924 "symbol with local linkage must have default visibility"); 925 926 Type *Ty; 927 LocTy ExplicitTypeLoc = Lex.getLoc(); 928 if (ParseType(Ty) || 929 ParseToken(lltok::comma, "expected comma after alias or ifunc's type")) 930 return true; 931 932 Constant *Aliasee; 933 LocTy AliaseeLoc = Lex.getLoc(); 934 if (Lex.getKind() != lltok::kw_bitcast && 935 Lex.getKind() != lltok::kw_getelementptr && 936 Lex.getKind() != lltok::kw_addrspacecast && 937 Lex.getKind() != lltok::kw_inttoptr) { 938 if (ParseGlobalTypeAndValue(Aliasee)) 939 return true; 940 } else { 941 // The bitcast dest type is not present, it is implied by the dest type. 942 ValID ID; 943 if (ParseValID(ID)) 944 return true; 945 if (ID.Kind != ValID::t_Constant) 946 return Error(AliaseeLoc, "invalid aliasee"); 947 Aliasee = ID.ConstantVal; 948 } 949 950 Type *AliaseeType = Aliasee->getType(); 951 auto *PTy = dyn_cast<PointerType>(AliaseeType); 952 if (!PTy) 953 return Error(AliaseeLoc, "An alias or ifunc must have pointer type"); 954 unsigned AddrSpace = PTy->getAddressSpace(); 955 956 if (IsAlias && Ty != PTy->getElementType()) 957 return Error( 958 ExplicitTypeLoc, 959 "explicit pointee type doesn't match operand's pointee type"); 960 961 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) 962 return Error( 963 ExplicitTypeLoc, 964 "explicit pointee type should be a function type"); 965 966 GlobalValue *GVal = nullptr; 967 968 // See if the alias was forward referenced, if so, prepare to replace the 969 // forward reference. 970 if (!Name.empty()) { 971 GVal = M->getNamedValue(Name); 972 if (GVal) { 973 if (!ForwardRefVals.erase(Name)) 974 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 975 } 976 } else { 977 auto I = ForwardRefValIDs.find(NumberedVals.size()); 978 if (I != ForwardRefValIDs.end()) { 979 GVal = I->second.first; 980 ForwardRefValIDs.erase(I); 981 } 982 } 983 984 // Okay, create the alias but do not insert it into the module yet. 985 std::unique_ptr<GlobalIndirectSymbol> GA; 986 if (IsAlias) 987 GA.reset(GlobalAlias::create(Ty, AddrSpace, 988 (GlobalValue::LinkageTypes)Linkage, Name, 989 Aliasee, /*Parent*/ nullptr)); 990 else 991 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 992 (GlobalValue::LinkageTypes)Linkage, Name, 993 Aliasee, /*Parent*/ nullptr)); 994 GA->setThreadLocalMode(TLM); 995 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 996 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 997 GA->setUnnamedAddr(UnnamedAddr); 998 maybeSetDSOLocal(DSOLocal, *GA); 999 1000 // At this point we've parsed everything except for the IndirectSymbolAttrs. 1001 // Now parse them if there are any. 1002 while (Lex.getKind() == lltok::comma) { 1003 Lex.Lex(); 1004 1005 if (Lex.getKind() == lltok::kw_partition) { 1006 Lex.Lex(); 1007 GA->setPartition(Lex.getStrVal()); 1008 if (ParseToken(lltok::StringConstant, "expected partition string")) 1009 return true; 1010 } else { 1011 return TokError("unknown alias or ifunc property!"); 1012 } 1013 } 1014 1015 if (Name.empty()) 1016 NumberedVals.push_back(GA.get()); 1017 1018 if (GVal) { 1019 // Verify that types agree. 1020 if (GVal->getType() != GA->getType()) 1021 return Error( 1022 ExplicitTypeLoc, 1023 "forward reference and definition of alias have different types"); 1024 1025 // If they agree, just RAUW the old value with the alias and remove the 1026 // forward ref info. 1027 GVal->replaceAllUsesWith(GA.get()); 1028 GVal->eraseFromParent(); 1029 } 1030 1031 // Insert into the module, we know its name won't collide now. 1032 if (IsAlias) 1033 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 1034 else 1035 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 1036 assert(GA->getName() == Name && "Should not be a name conflict!"); 1037 1038 // The module owns this now 1039 GA.release(); 1040 1041 return false; 1042 } 1043 1044 /// ParseGlobal 1045 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 1046 /// OptionalVisibility OptionalDLLStorageClass 1047 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 1048 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 1049 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 1050 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 1051 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 1052 /// Const OptionalAttrs 1053 /// 1054 /// Everything up to and including OptionalUnnamedAddr has been parsed 1055 /// already. 1056 /// 1057 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 1058 unsigned Linkage, bool HasLinkage, 1059 unsigned Visibility, unsigned DLLStorageClass, 1060 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 1061 GlobalVariable::UnnamedAddr UnnamedAddr) { 1062 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 1063 return Error(NameLoc, 1064 "symbol with local linkage must have default visibility"); 1065 1066 unsigned AddrSpace; 1067 bool IsConstant, IsExternallyInitialized; 1068 LocTy IsExternallyInitializedLoc; 1069 LocTy TyLoc; 1070 1071 Type *Ty = nullptr; 1072 if (ParseOptionalAddrSpace(AddrSpace) || 1073 ParseOptionalToken(lltok::kw_externally_initialized, 1074 IsExternallyInitialized, 1075 &IsExternallyInitializedLoc) || 1076 ParseGlobalType(IsConstant) || 1077 ParseType(Ty, TyLoc)) 1078 return true; 1079 1080 // If the linkage is specified and is external, then no initializer is 1081 // present. 1082 Constant *Init = nullptr; 1083 if (!HasLinkage || 1084 !GlobalValue::isValidDeclarationLinkage( 1085 (GlobalValue::LinkageTypes)Linkage)) { 1086 if (ParseGlobalValue(Ty, Init)) 1087 return true; 1088 } 1089 1090 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 1091 return Error(TyLoc, "invalid type for global variable"); 1092 1093 GlobalValue *GVal = nullptr; 1094 1095 // See if the global was forward referenced, if so, use the global. 1096 if (!Name.empty()) { 1097 GVal = M->getNamedValue(Name); 1098 if (GVal) { 1099 if (!ForwardRefVals.erase(Name)) 1100 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 1101 } 1102 } else { 1103 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1104 if (I != ForwardRefValIDs.end()) { 1105 GVal = I->second.first; 1106 ForwardRefValIDs.erase(I); 1107 } 1108 } 1109 1110 GlobalVariable *GV; 1111 if (!GVal) { 1112 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 1113 Name, nullptr, GlobalVariable::NotThreadLocal, 1114 AddrSpace); 1115 } else { 1116 if (GVal->getValueType() != Ty) 1117 return Error(TyLoc, 1118 "forward reference and definition of global have different types"); 1119 1120 GV = cast<GlobalVariable>(GVal); 1121 1122 // Move the forward-reference to the correct spot in the module. 1123 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 1124 } 1125 1126 if (Name.empty()) 1127 NumberedVals.push_back(GV); 1128 1129 // Set the parsed properties on the global. 1130 if (Init) 1131 GV->setInitializer(Init); 1132 GV->setConstant(IsConstant); 1133 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 1134 maybeSetDSOLocal(DSOLocal, *GV); 1135 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1136 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1137 GV->setExternallyInitialized(IsExternallyInitialized); 1138 GV->setThreadLocalMode(TLM); 1139 GV->setUnnamedAddr(UnnamedAddr); 1140 1141 // Parse attributes on the global. 1142 while (Lex.getKind() == lltok::comma) { 1143 Lex.Lex(); 1144 1145 if (Lex.getKind() == lltok::kw_section) { 1146 Lex.Lex(); 1147 GV->setSection(Lex.getStrVal()); 1148 if (ParseToken(lltok::StringConstant, "expected global section string")) 1149 return true; 1150 } else if (Lex.getKind() == lltok::kw_partition) { 1151 Lex.Lex(); 1152 GV->setPartition(Lex.getStrVal()); 1153 if (ParseToken(lltok::StringConstant, "expected partition string")) 1154 return true; 1155 } else if (Lex.getKind() == lltok::kw_align) { 1156 MaybeAlign Alignment; 1157 if (ParseOptionalAlignment(Alignment)) return true; 1158 GV->setAlignment(Alignment); 1159 } else if (Lex.getKind() == lltok::MetadataVar) { 1160 if (ParseGlobalObjectMetadataAttachment(*GV)) 1161 return true; 1162 } else { 1163 Comdat *C; 1164 if (parseOptionalComdat(Name, C)) 1165 return true; 1166 if (C) 1167 GV->setComdat(C); 1168 else 1169 return TokError("unknown global variable property!"); 1170 } 1171 } 1172 1173 AttrBuilder Attrs; 1174 LocTy BuiltinLoc; 1175 std::vector<unsigned> FwdRefAttrGrps; 1176 if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 1177 return true; 1178 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 1179 GV->setAttributes(AttributeSet::get(Context, Attrs)); 1180 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 1181 } 1182 1183 return false; 1184 } 1185 1186 /// ParseUnnamedAttrGrp 1187 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 1188 bool LLParser::ParseUnnamedAttrGrp() { 1189 assert(Lex.getKind() == lltok::kw_attributes); 1190 LocTy AttrGrpLoc = Lex.getLoc(); 1191 Lex.Lex(); 1192 1193 if (Lex.getKind() != lltok::AttrGrpID) 1194 return TokError("expected attribute group id"); 1195 1196 unsigned VarID = Lex.getUIntVal(); 1197 std::vector<unsigned> unused; 1198 LocTy BuiltinLoc; 1199 Lex.Lex(); 1200 1201 if (ParseToken(lltok::equal, "expected '=' here") || 1202 ParseToken(lltok::lbrace, "expected '{' here") || 1203 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 1204 BuiltinLoc) || 1205 ParseToken(lltok::rbrace, "expected end of attribute group")) 1206 return true; 1207 1208 if (!NumberedAttrBuilders[VarID].hasAttributes()) 1209 return Error(AttrGrpLoc, "attribute group has no attributes"); 1210 1211 return false; 1212 } 1213 1214 /// ParseFnAttributeValuePairs 1215 /// ::= <attr> | <attr> '=' <value> 1216 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B, 1217 std::vector<unsigned> &FwdRefAttrGrps, 1218 bool inAttrGrp, LocTy &BuiltinLoc) { 1219 bool HaveError = false; 1220 1221 B.clear(); 1222 1223 while (true) { 1224 lltok::Kind Token = Lex.getKind(); 1225 if (Token == lltok::kw_builtin) 1226 BuiltinLoc = Lex.getLoc(); 1227 switch (Token) { 1228 default: 1229 if (!inAttrGrp) return HaveError; 1230 return Error(Lex.getLoc(), "unterminated attribute group"); 1231 case lltok::rbrace: 1232 // Finished. 1233 return false; 1234 1235 case lltok::AttrGrpID: { 1236 // Allow a function to reference an attribute group: 1237 // 1238 // define void @foo() #1 { ... } 1239 if (inAttrGrp) 1240 HaveError |= 1241 Error(Lex.getLoc(), 1242 "cannot have an attribute group reference in an attribute group"); 1243 1244 unsigned AttrGrpNum = Lex.getUIntVal(); 1245 if (inAttrGrp) break; 1246 1247 // Save the reference to the attribute group. We'll fill it in later. 1248 FwdRefAttrGrps.push_back(AttrGrpNum); 1249 break; 1250 } 1251 // Target-dependent attributes: 1252 case lltok::StringConstant: { 1253 if (ParseStringAttribute(B)) 1254 return true; 1255 continue; 1256 } 1257 1258 // Target-independent attributes: 1259 case lltok::kw_align: { 1260 // As a hack, we allow function alignment to be initially parsed as an 1261 // attribute on a function declaration/definition or added to an attribute 1262 // group and later moved to the alignment field. 1263 MaybeAlign Alignment; 1264 if (inAttrGrp) { 1265 Lex.Lex(); 1266 uint32_t Value = 0; 1267 if (ParseToken(lltok::equal, "expected '=' here") || ParseUInt32(Value)) 1268 return true; 1269 Alignment = Align(Value); 1270 } else { 1271 if (ParseOptionalAlignment(Alignment)) 1272 return true; 1273 } 1274 B.addAlignmentAttr(Alignment); 1275 continue; 1276 } 1277 case lltok::kw_alignstack: { 1278 unsigned Alignment; 1279 if (inAttrGrp) { 1280 Lex.Lex(); 1281 if (ParseToken(lltok::equal, "expected '=' here") || 1282 ParseUInt32(Alignment)) 1283 return true; 1284 } else { 1285 if (ParseOptionalStackAlignment(Alignment)) 1286 return true; 1287 } 1288 B.addStackAlignmentAttr(Alignment); 1289 continue; 1290 } 1291 case lltok::kw_allocsize: { 1292 unsigned ElemSizeArg; 1293 Optional<unsigned> NumElemsArg; 1294 // inAttrGrp doesn't matter; we only support allocsize(a[, b]) 1295 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1296 return true; 1297 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1298 continue; 1299 } 1300 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 1301 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 1302 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 1303 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 1304 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 1305 case lltok::kw_inaccessiblememonly: 1306 B.addAttribute(Attribute::InaccessibleMemOnly); break; 1307 case lltok::kw_inaccessiblemem_or_argmemonly: 1308 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break; 1309 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 1310 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 1311 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 1312 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 1313 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 1314 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 1315 case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break; 1316 case lltok::kw_noimplicitfloat: 1317 B.addAttribute(Attribute::NoImplicitFloat); break; 1318 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1319 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1320 case lltok::kw_nomerge: B.addAttribute(Attribute::NoMerge); break; 1321 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1322 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1323 case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break; 1324 case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break; 1325 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1326 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1327 case lltok::kw_null_pointer_is_valid: 1328 B.addAttribute(Attribute::NullPointerIsValid); break; 1329 case lltok::kw_optforfuzzing: 1330 B.addAttribute(Attribute::OptForFuzzing); break; 1331 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1332 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1333 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1334 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1335 case lltok::kw_returns_twice: 1336 B.addAttribute(Attribute::ReturnsTwice); break; 1337 case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break; 1338 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1339 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1340 case lltok::kw_sspstrong: 1341 B.addAttribute(Attribute::StackProtectStrong); break; 1342 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1343 case lltok::kw_shadowcallstack: 1344 B.addAttribute(Attribute::ShadowCallStack); break; 1345 case lltok::kw_sanitize_address: 1346 B.addAttribute(Attribute::SanitizeAddress); break; 1347 case lltok::kw_sanitize_hwaddress: 1348 B.addAttribute(Attribute::SanitizeHWAddress); break; 1349 case lltok::kw_sanitize_memtag: 1350 B.addAttribute(Attribute::SanitizeMemTag); break; 1351 case lltok::kw_sanitize_thread: 1352 B.addAttribute(Attribute::SanitizeThread); break; 1353 case lltok::kw_sanitize_memory: 1354 B.addAttribute(Attribute::SanitizeMemory); break; 1355 case lltok::kw_speculative_load_hardening: 1356 B.addAttribute(Attribute::SpeculativeLoadHardening); 1357 break; 1358 case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break; 1359 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1360 case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break; 1361 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1362 case lltok::kw_preallocated: { 1363 Type *Ty; 1364 if (ParsePreallocated(Ty)) 1365 return true; 1366 B.addPreallocatedAttr(Ty); 1367 break; 1368 } 1369 1370 // Error handling. 1371 case lltok::kw_inreg: 1372 case lltok::kw_signext: 1373 case lltok::kw_zeroext: 1374 HaveError |= 1375 Error(Lex.getLoc(), 1376 "invalid use of attribute on a function"); 1377 break; 1378 case lltok::kw_byval: 1379 case lltok::kw_dereferenceable: 1380 case lltok::kw_dereferenceable_or_null: 1381 case lltok::kw_inalloca: 1382 case lltok::kw_nest: 1383 case lltok::kw_noalias: 1384 case lltok::kw_noundef: 1385 case lltok::kw_nocapture: 1386 case lltok::kw_nonnull: 1387 case lltok::kw_returned: 1388 case lltok::kw_sret: 1389 case lltok::kw_swifterror: 1390 case lltok::kw_swiftself: 1391 case lltok::kw_immarg: 1392 case lltok::kw_byref: 1393 HaveError |= 1394 Error(Lex.getLoc(), 1395 "invalid use of parameter-only attribute on a function"); 1396 break; 1397 } 1398 1399 // ParsePreallocated() consumes token 1400 if (Token != lltok::kw_preallocated) 1401 Lex.Lex(); 1402 } 1403 } 1404 1405 //===----------------------------------------------------------------------===// 1406 // GlobalValue Reference/Resolution Routines. 1407 //===----------------------------------------------------------------------===// 1408 1409 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1410 const std::string &Name) { 1411 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1412 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, 1413 PTy->getAddressSpace(), Name, M); 1414 else 1415 return new GlobalVariable(*M, PTy->getElementType(), false, 1416 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1417 nullptr, GlobalVariable::NotThreadLocal, 1418 PTy->getAddressSpace()); 1419 } 1420 1421 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty, 1422 Value *Val, bool IsCall) { 1423 if (Val->getType() == Ty) 1424 return Val; 1425 // For calls we also accept variables in the program address space. 1426 Type *SuggestedTy = Ty; 1427 if (IsCall && isa<PointerType>(Ty)) { 1428 Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo( 1429 M->getDataLayout().getProgramAddressSpace()); 1430 SuggestedTy = TyInProgAS; 1431 if (Val->getType() == TyInProgAS) 1432 return Val; 1433 } 1434 if (Ty->isLabelTy()) 1435 Error(Loc, "'" + Name + "' is not a basic block"); 1436 else 1437 Error(Loc, "'" + Name + "' defined with type '" + 1438 getTypeString(Val->getType()) + "' but expected '" + 1439 getTypeString(SuggestedTy) + "'"); 1440 return nullptr; 1441 } 1442 1443 /// GetGlobalVal - Get a value with the specified name or ID, creating a 1444 /// forward reference record if needed. This can return null if the value 1445 /// exists but does not have the right type. 1446 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 1447 LocTy Loc, bool IsCall) { 1448 PointerType *PTy = dyn_cast<PointerType>(Ty); 1449 if (!PTy) { 1450 Error(Loc, "global variable reference must have pointer type"); 1451 return nullptr; 1452 } 1453 1454 // Look this name up in the normal function symbol table. 1455 GlobalValue *Val = 1456 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1457 1458 // If this is a forward reference for the value, see if we already created a 1459 // forward ref record. 1460 if (!Val) { 1461 auto I = ForwardRefVals.find(Name); 1462 if (I != ForwardRefVals.end()) 1463 Val = I->second.first; 1464 } 1465 1466 // If we have the value in the symbol table or fwd-ref table, return it. 1467 if (Val) 1468 return cast_or_null<GlobalValue>( 1469 checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall)); 1470 1471 // Otherwise, create a new forward reference for this value and remember it. 1472 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1473 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1474 return FwdVal; 1475 } 1476 1477 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc, 1478 bool IsCall) { 1479 PointerType *PTy = dyn_cast<PointerType>(Ty); 1480 if (!PTy) { 1481 Error(Loc, "global variable reference must have pointer type"); 1482 return nullptr; 1483 } 1484 1485 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1486 1487 // If this is a forward reference for the value, see if we already created a 1488 // forward ref record. 1489 if (!Val) { 1490 auto I = ForwardRefValIDs.find(ID); 1491 if (I != ForwardRefValIDs.end()) 1492 Val = I->second.first; 1493 } 1494 1495 // If we have the value in the symbol table or fwd-ref table, return it. 1496 if (Val) 1497 return cast_or_null<GlobalValue>( 1498 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall)); 1499 1500 // Otherwise, create a new forward reference for this value and remember it. 1501 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1502 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1503 return FwdVal; 1504 } 1505 1506 //===----------------------------------------------------------------------===// 1507 // Comdat Reference/Resolution Routines. 1508 //===----------------------------------------------------------------------===// 1509 1510 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1511 // Look this name up in the comdat symbol table. 1512 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1513 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1514 if (I != ComdatSymTab.end()) 1515 return &I->second; 1516 1517 // Otherwise, create a new forward reference for this value and remember it. 1518 Comdat *C = M->getOrInsertComdat(Name); 1519 ForwardRefComdats[Name] = Loc; 1520 return C; 1521 } 1522 1523 //===----------------------------------------------------------------------===// 1524 // Helper Routines. 1525 //===----------------------------------------------------------------------===// 1526 1527 /// ParseToken - If the current token has the specified kind, eat it and return 1528 /// success. Otherwise, emit the specified error and return failure. 1529 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 1530 if (Lex.getKind() != T) 1531 return TokError(ErrMsg); 1532 Lex.Lex(); 1533 return false; 1534 } 1535 1536 /// ParseStringConstant 1537 /// ::= StringConstant 1538 bool LLParser::ParseStringConstant(std::string &Result) { 1539 if (Lex.getKind() != lltok::StringConstant) 1540 return TokError("expected string constant"); 1541 Result = Lex.getStrVal(); 1542 Lex.Lex(); 1543 return false; 1544 } 1545 1546 /// ParseUInt32 1547 /// ::= uint32 1548 bool LLParser::ParseUInt32(uint32_t &Val) { 1549 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1550 return TokError("expected integer"); 1551 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1552 if (Val64 != unsigned(Val64)) 1553 return TokError("expected 32-bit integer (too large)"); 1554 Val = Val64; 1555 Lex.Lex(); 1556 return false; 1557 } 1558 1559 /// ParseUInt64 1560 /// ::= uint64 1561 bool LLParser::ParseUInt64(uint64_t &Val) { 1562 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1563 return TokError("expected integer"); 1564 Val = Lex.getAPSIntVal().getLimitedValue(); 1565 Lex.Lex(); 1566 return false; 1567 } 1568 1569 /// ParseTLSModel 1570 /// := 'localdynamic' 1571 /// := 'initialexec' 1572 /// := 'localexec' 1573 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1574 switch (Lex.getKind()) { 1575 default: 1576 return TokError("expected localdynamic, initialexec or localexec"); 1577 case lltok::kw_localdynamic: 1578 TLM = GlobalVariable::LocalDynamicTLSModel; 1579 break; 1580 case lltok::kw_initialexec: 1581 TLM = GlobalVariable::InitialExecTLSModel; 1582 break; 1583 case lltok::kw_localexec: 1584 TLM = GlobalVariable::LocalExecTLSModel; 1585 break; 1586 } 1587 1588 Lex.Lex(); 1589 return false; 1590 } 1591 1592 /// ParseOptionalThreadLocal 1593 /// := /*empty*/ 1594 /// := 'thread_local' 1595 /// := 'thread_local' '(' tlsmodel ')' 1596 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1597 TLM = GlobalVariable::NotThreadLocal; 1598 if (!EatIfPresent(lltok::kw_thread_local)) 1599 return false; 1600 1601 TLM = GlobalVariable::GeneralDynamicTLSModel; 1602 if (Lex.getKind() == lltok::lparen) { 1603 Lex.Lex(); 1604 return ParseTLSModel(TLM) || 1605 ParseToken(lltok::rparen, "expected ')' after thread local model"); 1606 } 1607 return false; 1608 } 1609 1610 /// ParseOptionalAddrSpace 1611 /// := /*empty*/ 1612 /// := 'addrspace' '(' uint32 ')' 1613 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) { 1614 AddrSpace = DefaultAS; 1615 if (!EatIfPresent(lltok::kw_addrspace)) 1616 return false; 1617 return ParseToken(lltok::lparen, "expected '(' in address space") || 1618 ParseUInt32(AddrSpace) || 1619 ParseToken(lltok::rparen, "expected ')' in address space"); 1620 } 1621 1622 /// ParseStringAttribute 1623 /// := StringConstant 1624 /// := StringConstant '=' StringConstant 1625 bool LLParser::ParseStringAttribute(AttrBuilder &B) { 1626 std::string Attr = Lex.getStrVal(); 1627 Lex.Lex(); 1628 std::string Val; 1629 if (EatIfPresent(lltok::equal) && ParseStringConstant(Val)) 1630 return true; 1631 B.addAttribute(Attr, Val); 1632 return false; 1633 } 1634 1635 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes. 1636 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) { 1637 bool HaveError = false; 1638 1639 B.clear(); 1640 1641 while (true) { 1642 lltok::Kind Token = Lex.getKind(); 1643 switch (Token) { 1644 default: // End of attributes. 1645 return HaveError; 1646 case lltok::StringConstant: { 1647 if (ParseStringAttribute(B)) 1648 return true; 1649 continue; 1650 } 1651 case lltok::kw_align: { 1652 MaybeAlign Alignment; 1653 if (ParseOptionalAlignment(Alignment, true)) 1654 return true; 1655 B.addAlignmentAttr(Alignment); 1656 continue; 1657 } 1658 case lltok::kw_byval: { 1659 Type *Ty; 1660 if (ParseOptionalTypeAttr(Ty, lltok::kw_byval)) 1661 return true; 1662 B.addByValAttr(Ty); 1663 continue; 1664 } 1665 case lltok::kw_sret: { 1666 Type *Ty; 1667 if (ParseOptionalTypeAttr(Ty, lltok::kw_sret)) 1668 return true; 1669 B.addStructRetAttr(Ty); 1670 continue; 1671 } 1672 case lltok::kw_preallocated: { 1673 Type *Ty; 1674 if (ParsePreallocated(Ty)) 1675 return true; 1676 B.addPreallocatedAttr(Ty); 1677 continue; 1678 } 1679 case lltok::kw_dereferenceable: { 1680 uint64_t Bytes; 1681 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1682 return true; 1683 B.addDereferenceableAttr(Bytes); 1684 continue; 1685 } 1686 case lltok::kw_dereferenceable_or_null: { 1687 uint64_t Bytes; 1688 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1689 return true; 1690 B.addDereferenceableOrNullAttr(Bytes); 1691 continue; 1692 } 1693 case lltok::kw_byref: { 1694 Type *Ty; 1695 if (ParseByRef(Ty)) 1696 return true; 1697 B.addByRefAttr(Ty); 1698 continue; 1699 } 1700 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break; 1701 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1702 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1703 case lltok::kw_noundef: 1704 B.addAttribute(Attribute::NoUndef); 1705 break; 1706 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1707 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1708 case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break; 1709 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1710 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1711 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1712 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1713 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1714 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break; 1715 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break; 1716 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1717 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1718 case lltok::kw_immarg: B.addAttribute(Attribute::ImmArg); break; 1719 1720 case lltok::kw_alignstack: 1721 case lltok::kw_alwaysinline: 1722 case lltok::kw_argmemonly: 1723 case lltok::kw_builtin: 1724 case lltok::kw_inlinehint: 1725 case lltok::kw_jumptable: 1726 case lltok::kw_minsize: 1727 case lltok::kw_naked: 1728 case lltok::kw_nobuiltin: 1729 case lltok::kw_noduplicate: 1730 case lltok::kw_noimplicitfloat: 1731 case lltok::kw_noinline: 1732 case lltok::kw_nonlazybind: 1733 case lltok::kw_nomerge: 1734 case lltok::kw_noredzone: 1735 case lltok::kw_noreturn: 1736 case lltok::kw_nocf_check: 1737 case lltok::kw_nounwind: 1738 case lltok::kw_optforfuzzing: 1739 case lltok::kw_optnone: 1740 case lltok::kw_optsize: 1741 case lltok::kw_returns_twice: 1742 case lltok::kw_sanitize_address: 1743 case lltok::kw_sanitize_hwaddress: 1744 case lltok::kw_sanitize_memtag: 1745 case lltok::kw_sanitize_memory: 1746 case lltok::kw_sanitize_thread: 1747 case lltok::kw_speculative_load_hardening: 1748 case lltok::kw_ssp: 1749 case lltok::kw_sspreq: 1750 case lltok::kw_sspstrong: 1751 case lltok::kw_safestack: 1752 case lltok::kw_shadowcallstack: 1753 case lltok::kw_strictfp: 1754 case lltok::kw_uwtable: 1755 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1756 break; 1757 } 1758 1759 Lex.Lex(); 1760 } 1761 } 1762 1763 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes. 1764 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) { 1765 bool HaveError = false; 1766 1767 B.clear(); 1768 1769 while (true) { 1770 lltok::Kind Token = Lex.getKind(); 1771 switch (Token) { 1772 default: // End of attributes. 1773 return HaveError; 1774 case lltok::StringConstant: { 1775 if (ParseStringAttribute(B)) 1776 return true; 1777 continue; 1778 } 1779 case lltok::kw_dereferenceable: { 1780 uint64_t Bytes; 1781 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1782 return true; 1783 B.addDereferenceableAttr(Bytes); 1784 continue; 1785 } 1786 case lltok::kw_dereferenceable_or_null: { 1787 uint64_t Bytes; 1788 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1789 return true; 1790 B.addDereferenceableOrNullAttr(Bytes); 1791 continue; 1792 } 1793 case lltok::kw_align: { 1794 MaybeAlign Alignment; 1795 if (ParseOptionalAlignment(Alignment)) 1796 return true; 1797 B.addAlignmentAttr(Alignment); 1798 continue; 1799 } 1800 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1801 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1802 case lltok::kw_noundef: 1803 B.addAttribute(Attribute::NoUndef); 1804 break; 1805 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1806 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1807 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1808 1809 // Error handling. 1810 case lltok::kw_byval: 1811 case lltok::kw_inalloca: 1812 case lltok::kw_nest: 1813 case lltok::kw_nocapture: 1814 case lltok::kw_returned: 1815 case lltok::kw_sret: 1816 case lltok::kw_swifterror: 1817 case lltok::kw_swiftself: 1818 case lltok::kw_immarg: 1819 case lltok::kw_byref: 1820 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1821 break; 1822 1823 case lltok::kw_alignstack: 1824 case lltok::kw_alwaysinline: 1825 case lltok::kw_argmemonly: 1826 case lltok::kw_builtin: 1827 case lltok::kw_cold: 1828 case lltok::kw_inlinehint: 1829 case lltok::kw_jumptable: 1830 case lltok::kw_minsize: 1831 case lltok::kw_naked: 1832 case lltok::kw_nobuiltin: 1833 case lltok::kw_noduplicate: 1834 case lltok::kw_noimplicitfloat: 1835 case lltok::kw_noinline: 1836 case lltok::kw_nonlazybind: 1837 case lltok::kw_nomerge: 1838 case lltok::kw_noredzone: 1839 case lltok::kw_noreturn: 1840 case lltok::kw_nocf_check: 1841 case lltok::kw_nounwind: 1842 case lltok::kw_optforfuzzing: 1843 case lltok::kw_optnone: 1844 case lltok::kw_optsize: 1845 case lltok::kw_returns_twice: 1846 case lltok::kw_sanitize_address: 1847 case lltok::kw_sanitize_hwaddress: 1848 case lltok::kw_sanitize_memtag: 1849 case lltok::kw_sanitize_memory: 1850 case lltok::kw_sanitize_thread: 1851 case lltok::kw_speculative_load_hardening: 1852 case lltok::kw_ssp: 1853 case lltok::kw_sspreq: 1854 case lltok::kw_sspstrong: 1855 case lltok::kw_safestack: 1856 case lltok::kw_shadowcallstack: 1857 case lltok::kw_strictfp: 1858 case lltok::kw_uwtable: 1859 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1860 break; 1861 case lltok::kw_readnone: 1862 case lltok::kw_readonly: 1863 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type"); 1864 break; 1865 case lltok::kw_preallocated: 1866 HaveError |= 1867 Error(Lex.getLoc(), 1868 "invalid use of parameter-only/call site-only attribute"); 1869 break; 1870 } 1871 1872 Lex.Lex(); 1873 } 1874 } 1875 1876 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1877 HasLinkage = true; 1878 switch (Kind) { 1879 default: 1880 HasLinkage = false; 1881 return GlobalValue::ExternalLinkage; 1882 case lltok::kw_private: 1883 return GlobalValue::PrivateLinkage; 1884 case lltok::kw_internal: 1885 return GlobalValue::InternalLinkage; 1886 case lltok::kw_weak: 1887 return GlobalValue::WeakAnyLinkage; 1888 case lltok::kw_weak_odr: 1889 return GlobalValue::WeakODRLinkage; 1890 case lltok::kw_linkonce: 1891 return GlobalValue::LinkOnceAnyLinkage; 1892 case lltok::kw_linkonce_odr: 1893 return GlobalValue::LinkOnceODRLinkage; 1894 case lltok::kw_available_externally: 1895 return GlobalValue::AvailableExternallyLinkage; 1896 case lltok::kw_appending: 1897 return GlobalValue::AppendingLinkage; 1898 case lltok::kw_common: 1899 return GlobalValue::CommonLinkage; 1900 case lltok::kw_extern_weak: 1901 return GlobalValue::ExternalWeakLinkage; 1902 case lltok::kw_external: 1903 return GlobalValue::ExternalLinkage; 1904 } 1905 } 1906 1907 /// ParseOptionalLinkage 1908 /// ::= /*empty*/ 1909 /// ::= 'private' 1910 /// ::= 'internal' 1911 /// ::= 'weak' 1912 /// ::= 'weak_odr' 1913 /// ::= 'linkonce' 1914 /// ::= 'linkonce_odr' 1915 /// ::= 'available_externally' 1916 /// ::= 'appending' 1917 /// ::= 'common' 1918 /// ::= 'extern_weak' 1919 /// ::= 'external' 1920 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1921 unsigned &Visibility, 1922 unsigned &DLLStorageClass, 1923 bool &DSOLocal) { 1924 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1925 if (HasLinkage) 1926 Lex.Lex(); 1927 ParseOptionalDSOLocal(DSOLocal); 1928 ParseOptionalVisibility(Visibility); 1929 ParseOptionalDLLStorageClass(DLLStorageClass); 1930 1931 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 1932 return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 1933 } 1934 1935 return false; 1936 } 1937 1938 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) { 1939 switch (Lex.getKind()) { 1940 default: 1941 DSOLocal = false; 1942 break; 1943 case lltok::kw_dso_local: 1944 DSOLocal = true; 1945 Lex.Lex(); 1946 break; 1947 case lltok::kw_dso_preemptable: 1948 DSOLocal = false; 1949 Lex.Lex(); 1950 break; 1951 } 1952 } 1953 1954 /// ParseOptionalVisibility 1955 /// ::= /*empty*/ 1956 /// ::= 'default' 1957 /// ::= 'hidden' 1958 /// ::= 'protected' 1959 /// 1960 void LLParser::ParseOptionalVisibility(unsigned &Res) { 1961 switch (Lex.getKind()) { 1962 default: 1963 Res = GlobalValue::DefaultVisibility; 1964 return; 1965 case lltok::kw_default: 1966 Res = GlobalValue::DefaultVisibility; 1967 break; 1968 case lltok::kw_hidden: 1969 Res = GlobalValue::HiddenVisibility; 1970 break; 1971 case lltok::kw_protected: 1972 Res = GlobalValue::ProtectedVisibility; 1973 break; 1974 } 1975 Lex.Lex(); 1976 } 1977 1978 /// ParseOptionalDLLStorageClass 1979 /// ::= /*empty*/ 1980 /// ::= 'dllimport' 1981 /// ::= 'dllexport' 1982 /// 1983 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) { 1984 switch (Lex.getKind()) { 1985 default: 1986 Res = GlobalValue::DefaultStorageClass; 1987 return; 1988 case lltok::kw_dllimport: 1989 Res = GlobalValue::DLLImportStorageClass; 1990 break; 1991 case lltok::kw_dllexport: 1992 Res = GlobalValue::DLLExportStorageClass; 1993 break; 1994 } 1995 Lex.Lex(); 1996 } 1997 1998 /// ParseOptionalCallingConv 1999 /// ::= /*empty*/ 2000 /// ::= 'ccc' 2001 /// ::= 'fastcc' 2002 /// ::= 'intel_ocl_bicc' 2003 /// ::= 'coldcc' 2004 /// ::= 'cfguard_checkcc' 2005 /// ::= 'x86_stdcallcc' 2006 /// ::= 'x86_fastcallcc' 2007 /// ::= 'x86_thiscallcc' 2008 /// ::= 'x86_vectorcallcc' 2009 /// ::= 'arm_apcscc' 2010 /// ::= 'arm_aapcscc' 2011 /// ::= 'arm_aapcs_vfpcc' 2012 /// ::= 'aarch64_vector_pcs' 2013 /// ::= 'aarch64_sve_vector_pcs' 2014 /// ::= 'msp430_intrcc' 2015 /// ::= 'avr_intrcc' 2016 /// ::= 'avr_signalcc' 2017 /// ::= 'ptx_kernel' 2018 /// ::= 'ptx_device' 2019 /// ::= 'spir_func' 2020 /// ::= 'spir_kernel' 2021 /// ::= 'x86_64_sysvcc' 2022 /// ::= 'win64cc' 2023 /// ::= 'webkit_jscc' 2024 /// ::= 'anyregcc' 2025 /// ::= 'preserve_mostcc' 2026 /// ::= 'preserve_allcc' 2027 /// ::= 'ghccc' 2028 /// ::= 'swiftcc' 2029 /// ::= 'x86_intrcc' 2030 /// ::= 'hhvmcc' 2031 /// ::= 'hhvm_ccc' 2032 /// ::= 'cxx_fast_tlscc' 2033 /// ::= 'amdgpu_vs' 2034 /// ::= 'amdgpu_ls' 2035 /// ::= 'amdgpu_hs' 2036 /// ::= 'amdgpu_es' 2037 /// ::= 'amdgpu_gs' 2038 /// ::= 'amdgpu_ps' 2039 /// ::= 'amdgpu_cs' 2040 /// ::= 'amdgpu_kernel' 2041 /// ::= 'tailcc' 2042 /// ::= 'cc' UINT 2043 /// 2044 bool LLParser::ParseOptionalCallingConv(unsigned &CC) { 2045 switch (Lex.getKind()) { 2046 default: CC = CallingConv::C; return false; 2047 case lltok::kw_ccc: CC = CallingConv::C; break; 2048 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 2049 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 2050 case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break; 2051 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 2052 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 2053 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 2054 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 2055 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 2056 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 2057 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 2058 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 2059 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break; 2060 case lltok::kw_aarch64_sve_vector_pcs: 2061 CC = CallingConv::AArch64_SVE_VectorCall; 2062 break; 2063 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 2064 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 2065 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 2066 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 2067 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 2068 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 2069 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 2070 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 2071 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 2072 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 2073 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 2074 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 2075 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 2076 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 2077 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 2078 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 2079 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 2080 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 2081 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 2082 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 2083 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 2084 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 2085 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 2086 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 2087 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 2088 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 2089 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 2090 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 2091 case lltok::kw_tailcc: CC = CallingConv::Tail; break; 2092 case lltok::kw_cc: { 2093 Lex.Lex(); 2094 return ParseUInt32(CC); 2095 } 2096 } 2097 2098 Lex.Lex(); 2099 return false; 2100 } 2101 2102 /// ParseMetadataAttachment 2103 /// ::= !dbg !42 2104 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 2105 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 2106 2107 std::string Name = Lex.getStrVal(); 2108 Kind = M->getMDKindID(Name); 2109 Lex.Lex(); 2110 2111 return ParseMDNode(MD); 2112 } 2113 2114 /// ParseInstructionMetadata 2115 /// ::= !dbg !42 (',' !dbg !57)* 2116 bool LLParser::ParseInstructionMetadata(Instruction &Inst) { 2117 do { 2118 if (Lex.getKind() != lltok::MetadataVar) 2119 return TokError("expected metadata after comma"); 2120 2121 unsigned MDK; 2122 MDNode *N; 2123 if (ParseMetadataAttachment(MDK, N)) 2124 return true; 2125 2126 Inst.setMetadata(MDK, N); 2127 if (MDK == LLVMContext::MD_tbaa) 2128 InstsWithTBAATag.push_back(&Inst); 2129 2130 // If this is the end of the list, we're done. 2131 } while (EatIfPresent(lltok::comma)); 2132 return false; 2133 } 2134 2135 /// ParseGlobalObjectMetadataAttachment 2136 /// ::= !dbg !57 2137 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) { 2138 unsigned MDK; 2139 MDNode *N; 2140 if (ParseMetadataAttachment(MDK, N)) 2141 return true; 2142 2143 GO.addMetadata(MDK, *N); 2144 return false; 2145 } 2146 2147 /// ParseOptionalFunctionMetadata 2148 /// ::= (!dbg !57)* 2149 bool LLParser::ParseOptionalFunctionMetadata(Function &F) { 2150 while (Lex.getKind() == lltok::MetadataVar) 2151 if (ParseGlobalObjectMetadataAttachment(F)) 2152 return true; 2153 return false; 2154 } 2155 2156 /// ParseOptionalAlignment 2157 /// ::= /* empty */ 2158 /// ::= 'align' 4 2159 bool LLParser::ParseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) { 2160 Alignment = None; 2161 if (!EatIfPresent(lltok::kw_align)) 2162 return false; 2163 LocTy AlignLoc = Lex.getLoc(); 2164 uint32_t Value = 0; 2165 2166 LocTy ParenLoc = Lex.getLoc(); 2167 bool HaveParens = false; 2168 if (AllowParens) { 2169 if (EatIfPresent(lltok::lparen)) 2170 HaveParens = true; 2171 } 2172 2173 if (ParseUInt32(Value)) 2174 return true; 2175 2176 if (HaveParens && !EatIfPresent(lltok::rparen)) 2177 return Error(ParenLoc, "expected ')'"); 2178 2179 if (!isPowerOf2_32(Value)) 2180 return Error(AlignLoc, "alignment is not a power of two"); 2181 if (Value > Value::MaximumAlignment) 2182 return Error(AlignLoc, "huge alignments are not supported yet"); 2183 Alignment = Align(Value); 2184 return false; 2185 } 2186 2187 /// ParseOptionalDerefAttrBytes 2188 /// ::= /* empty */ 2189 /// ::= AttrKind '(' 4 ')' 2190 /// 2191 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 2192 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind, 2193 uint64_t &Bytes) { 2194 assert((AttrKind == lltok::kw_dereferenceable || 2195 AttrKind == lltok::kw_dereferenceable_or_null) && 2196 "contract!"); 2197 2198 Bytes = 0; 2199 if (!EatIfPresent(AttrKind)) 2200 return false; 2201 LocTy ParenLoc = Lex.getLoc(); 2202 if (!EatIfPresent(lltok::lparen)) 2203 return Error(ParenLoc, "expected '('"); 2204 LocTy DerefLoc = Lex.getLoc(); 2205 if (ParseUInt64(Bytes)) return true; 2206 ParenLoc = Lex.getLoc(); 2207 if (!EatIfPresent(lltok::rparen)) 2208 return Error(ParenLoc, "expected ')'"); 2209 if (!Bytes) 2210 return Error(DerefLoc, "dereferenceable bytes must be non-zero"); 2211 return false; 2212 } 2213 2214 /// ParseOptionalCommaAlign 2215 /// ::= 2216 /// ::= ',' align 4 2217 /// 2218 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2219 /// end. 2220 bool LLParser::ParseOptionalCommaAlign(MaybeAlign &Alignment, 2221 bool &AteExtraComma) { 2222 AteExtraComma = false; 2223 while (EatIfPresent(lltok::comma)) { 2224 // Metadata at the end is an early exit. 2225 if (Lex.getKind() == lltok::MetadataVar) { 2226 AteExtraComma = true; 2227 return false; 2228 } 2229 2230 if (Lex.getKind() != lltok::kw_align) 2231 return Error(Lex.getLoc(), "expected metadata or 'align'"); 2232 2233 if (ParseOptionalAlignment(Alignment)) return true; 2234 } 2235 2236 return false; 2237 } 2238 2239 /// ParseOptionalCommaAddrSpace 2240 /// ::= 2241 /// ::= ',' addrspace(1) 2242 /// 2243 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2244 /// end. 2245 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace, 2246 LocTy &Loc, 2247 bool &AteExtraComma) { 2248 AteExtraComma = false; 2249 while (EatIfPresent(lltok::comma)) { 2250 // Metadata at the end is an early exit. 2251 if (Lex.getKind() == lltok::MetadataVar) { 2252 AteExtraComma = true; 2253 return false; 2254 } 2255 2256 Loc = Lex.getLoc(); 2257 if (Lex.getKind() != lltok::kw_addrspace) 2258 return Error(Lex.getLoc(), "expected metadata or 'addrspace'"); 2259 2260 if (ParseOptionalAddrSpace(AddrSpace)) 2261 return true; 2262 } 2263 2264 return false; 2265 } 2266 2267 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 2268 Optional<unsigned> &HowManyArg) { 2269 Lex.Lex(); 2270 2271 auto StartParen = Lex.getLoc(); 2272 if (!EatIfPresent(lltok::lparen)) 2273 return Error(StartParen, "expected '('"); 2274 2275 if (ParseUInt32(BaseSizeArg)) 2276 return true; 2277 2278 if (EatIfPresent(lltok::comma)) { 2279 auto HowManyAt = Lex.getLoc(); 2280 unsigned HowMany; 2281 if (ParseUInt32(HowMany)) 2282 return true; 2283 if (HowMany == BaseSizeArg) 2284 return Error(HowManyAt, 2285 "'allocsize' indices can't refer to the same parameter"); 2286 HowManyArg = HowMany; 2287 } else 2288 HowManyArg = None; 2289 2290 auto EndParen = Lex.getLoc(); 2291 if (!EatIfPresent(lltok::rparen)) 2292 return Error(EndParen, "expected ')'"); 2293 return false; 2294 } 2295 2296 /// ParseScopeAndOrdering 2297 /// if isAtomic: ::= SyncScope? AtomicOrdering 2298 /// else: ::= 2299 /// 2300 /// This sets Scope and Ordering to the parsed values. 2301 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID, 2302 AtomicOrdering &Ordering) { 2303 if (!isAtomic) 2304 return false; 2305 2306 return ParseScope(SSID) || ParseOrdering(Ordering); 2307 } 2308 2309 /// ParseScope 2310 /// ::= syncscope("singlethread" | "<target scope>")? 2311 /// 2312 /// This sets synchronization scope ID to the ID of the parsed value. 2313 bool LLParser::ParseScope(SyncScope::ID &SSID) { 2314 SSID = SyncScope::System; 2315 if (EatIfPresent(lltok::kw_syncscope)) { 2316 auto StartParenAt = Lex.getLoc(); 2317 if (!EatIfPresent(lltok::lparen)) 2318 return Error(StartParenAt, "Expected '(' in syncscope"); 2319 2320 std::string SSN; 2321 auto SSNAt = Lex.getLoc(); 2322 if (ParseStringConstant(SSN)) 2323 return Error(SSNAt, "Expected synchronization scope name"); 2324 2325 auto EndParenAt = Lex.getLoc(); 2326 if (!EatIfPresent(lltok::rparen)) 2327 return Error(EndParenAt, "Expected ')' in syncscope"); 2328 2329 SSID = Context.getOrInsertSyncScopeID(SSN); 2330 } 2331 2332 return false; 2333 } 2334 2335 /// ParseOrdering 2336 /// ::= AtomicOrdering 2337 /// 2338 /// This sets Ordering to the parsed value. 2339 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) { 2340 switch (Lex.getKind()) { 2341 default: return TokError("Expected ordering on atomic instruction"); 2342 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2343 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2344 // Not specified yet: 2345 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2346 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2347 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2348 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2349 case lltok::kw_seq_cst: 2350 Ordering = AtomicOrdering::SequentiallyConsistent; 2351 break; 2352 } 2353 Lex.Lex(); 2354 return false; 2355 } 2356 2357 /// ParseOptionalStackAlignment 2358 /// ::= /* empty */ 2359 /// ::= 'alignstack' '(' 4 ')' 2360 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 2361 Alignment = 0; 2362 if (!EatIfPresent(lltok::kw_alignstack)) 2363 return false; 2364 LocTy ParenLoc = Lex.getLoc(); 2365 if (!EatIfPresent(lltok::lparen)) 2366 return Error(ParenLoc, "expected '('"); 2367 LocTy AlignLoc = Lex.getLoc(); 2368 if (ParseUInt32(Alignment)) return true; 2369 ParenLoc = Lex.getLoc(); 2370 if (!EatIfPresent(lltok::rparen)) 2371 return Error(ParenLoc, "expected ')'"); 2372 if (!isPowerOf2_32(Alignment)) 2373 return Error(AlignLoc, "stack alignment is not a power of two"); 2374 return false; 2375 } 2376 2377 /// ParseIndexList - This parses the index list for an insert/extractvalue 2378 /// instruction. This sets AteExtraComma in the case where we eat an extra 2379 /// comma at the end of the line and find that it is followed by metadata. 2380 /// Clients that don't allow metadata can call the version of this function that 2381 /// only takes one argument. 2382 /// 2383 /// ParseIndexList 2384 /// ::= (',' uint32)+ 2385 /// 2386 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 2387 bool &AteExtraComma) { 2388 AteExtraComma = false; 2389 2390 if (Lex.getKind() != lltok::comma) 2391 return TokError("expected ',' as start of index list"); 2392 2393 while (EatIfPresent(lltok::comma)) { 2394 if (Lex.getKind() == lltok::MetadataVar) { 2395 if (Indices.empty()) return TokError("expected index"); 2396 AteExtraComma = true; 2397 return false; 2398 } 2399 unsigned Idx = 0; 2400 if (ParseUInt32(Idx)) return true; 2401 Indices.push_back(Idx); 2402 } 2403 2404 return false; 2405 } 2406 2407 //===----------------------------------------------------------------------===// 2408 // Type Parsing. 2409 //===----------------------------------------------------------------------===// 2410 2411 /// ParseType - Parse a type. 2412 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2413 SMLoc TypeLoc = Lex.getLoc(); 2414 switch (Lex.getKind()) { 2415 default: 2416 return TokError(Msg); 2417 case lltok::Type: 2418 // Type ::= 'float' | 'void' (etc) 2419 Result = Lex.getTyVal(); 2420 Lex.Lex(); 2421 break; 2422 case lltok::lbrace: 2423 // Type ::= StructType 2424 if (ParseAnonStructType(Result, false)) 2425 return true; 2426 break; 2427 case lltok::lsquare: 2428 // Type ::= '[' ... ']' 2429 Lex.Lex(); // eat the lsquare. 2430 if (ParseArrayVectorType(Result, false)) 2431 return true; 2432 break; 2433 case lltok::less: // Either vector or packed struct. 2434 // Type ::= '<' ... '>' 2435 Lex.Lex(); 2436 if (Lex.getKind() == lltok::lbrace) { 2437 if (ParseAnonStructType(Result, true) || 2438 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 2439 return true; 2440 } else if (ParseArrayVectorType(Result, true)) 2441 return true; 2442 break; 2443 case lltok::LocalVar: { 2444 // Type ::= %foo 2445 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2446 2447 // If the type hasn't been defined yet, create a forward definition and 2448 // remember where that forward def'n was seen (in case it never is defined). 2449 if (!Entry.first) { 2450 Entry.first = StructType::create(Context, Lex.getStrVal()); 2451 Entry.second = Lex.getLoc(); 2452 } 2453 Result = Entry.first; 2454 Lex.Lex(); 2455 break; 2456 } 2457 2458 case lltok::LocalVarID: { 2459 // Type ::= %4 2460 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2461 2462 // If the type hasn't been defined yet, create a forward definition and 2463 // remember where that forward def'n was seen (in case it never is defined). 2464 if (!Entry.first) { 2465 Entry.first = StructType::create(Context); 2466 Entry.second = Lex.getLoc(); 2467 } 2468 Result = Entry.first; 2469 Lex.Lex(); 2470 break; 2471 } 2472 } 2473 2474 // Parse the type suffixes. 2475 while (true) { 2476 switch (Lex.getKind()) { 2477 // End of type. 2478 default: 2479 if (!AllowVoid && Result->isVoidTy()) 2480 return Error(TypeLoc, "void type only allowed for function results"); 2481 return false; 2482 2483 // Type ::= Type '*' 2484 case lltok::star: 2485 if (Result->isLabelTy()) 2486 return TokError("basic block pointers are invalid"); 2487 if (Result->isVoidTy()) 2488 return TokError("pointers to void are invalid - use i8* instead"); 2489 if (!PointerType::isValidElementType(Result)) 2490 return TokError("pointer to this type is invalid"); 2491 Result = PointerType::getUnqual(Result); 2492 Lex.Lex(); 2493 break; 2494 2495 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2496 case lltok::kw_addrspace: { 2497 if (Result->isLabelTy()) 2498 return TokError("basic block pointers are invalid"); 2499 if (Result->isVoidTy()) 2500 return TokError("pointers to void are invalid; use i8* instead"); 2501 if (!PointerType::isValidElementType(Result)) 2502 return TokError("pointer to this type is invalid"); 2503 unsigned AddrSpace; 2504 if (ParseOptionalAddrSpace(AddrSpace) || 2505 ParseToken(lltok::star, "expected '*' in address space")) 2506 return true; 2507 2508 Result = PointerType::get(Result, AddrSpace); 2509 break; 2510 } 2511 2512 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2513 case lltok::lparen: 2514 if (ParseFunctionType(Result)) 2515 return true; 2516 break; 2517 } 2518 } 2519 } 2520 2521 /// ParseParameterList 2522 /// ::= '(' ')' 2523 /// ::= '(' Arg (',' Arg)* ')' 2524 /// Arg 2525 /// ::= Type OptionalAttributes Value OptionalAttributes 2526 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2527 PerFunctionState &PFS, bool IsMustTailCall, 2528 bool InVarArgsFunc) { 2529 if (ParseToken(lltok::lparen, "expected '(' in call")) 2530 return true; 2531 2532 while (Lex.getKind() != lltok::rparen) { 2533 // If this isn't the first argument, we need a comma. 2534 if (!ArgList.empty() && 2535 ParseToken(lltok::comma, "expected ',' in argument list")) 2536 return true; 2537 2538 // Parse an ellipsis if this is a musttail call in a variadic function. 2539 if (Lex.getKind() == lltok::dotdotdot) { 2540 const char *Msg = "unexpected ellipsis in argument list for "; 2541 if (!IsMustTailCall) 2542 return TokError(Twine(Msg) + "non-musttail call"); 2543 if (!InVarArgsFunc) 2544 return TokError(Twine(Msg) + "musttail call in non-varargs function"); 2545 Lex.Lex(); // Lex the '...', it is purely for readability. 2546 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2547 } 2548 2549 // Parse the argument. 2550 LocTy ArgLoc; 2551 Type *ArgTy = nullptr; 2552 AttrBuilder ArgAttrs; 2553 Value *V; 2554 if (ParseType(ArgTy, ArgLoc)) 2555 return true; 2556 2557 if (ArgTy->isMetadataTy()) { 2558 if (ParseMetadataAsValue(V, PFS)) 2559 return true; 2560 } else { 2561 // Otherwise, handle normal operands. 2562 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS)) 2563 return true; 2564 } 2565 ArgList.push_back(ParamInfo( 2566 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2567 } 2568 2569 if (IsMustTailCall && InVarArgsFunc) 2570 return TokError("expected '...' at end of argument list for musttail call " 2571 "in varargs function"); 2572 2573 Lex.Lex(); // Lex the ')'. 2574 return false; 2575 } 2576 2577 /// ParseByValWithOptionalType 2578 /// ::= byval 2579 /// ::= byval(<ty>) 2580 bool LLParser::ParseOptionalTypeAttr(Type *&Result, lltok::Kind AttrName) { 2581 Result = nullptr; 2582 if (!EatIfPresent(AttrName)) 2583 return true; 2584 if (!EatIfPresent(lltok::lparen)) 2585 return false; 2586 if (ParseType(Result)) 2587 return true; 2588 if (!EatIfPresent(lltok::rparen)) 2589 return Error(Lex.getLoc(), "expected ')'"); 2590 return false; 2591 } 2592 2593 /// ParseRequiredTypeAttr 2594 /// ::= attrname(<ty>) 2595 bool LLParser::ParseRequiredTypeAttr(Type *&Result, lltok::Kind AttrName) { 2596 Result = nullptr; 2597 if (!EatIfPresent(AttrName)) 2598 return true; 2599 if (!EatIfPresent(lltok::lparen)) 2600 return Error(Lex.getLoc(), "expected '('"); 2601 if (ParseType(Result)) 2602 return true; 2603 if (!EatIfPresent(lltok::rparen)) 2604 return Error(Lex.getLoc(), "expected ')'"); 2605 return false; 2606 } 2607 2608 /// ParsePreallocated 2609 /// ::= preallocated(<ty>) 2610 bool LLParser::ParsePreallocated(Type *&Result) { 2611 return ParseRequiredTypeAttr(Result, lltok::kw_preallocated); 2612 } 2613 2614 /// ParseByRef 2615 /// ::= byref(<type>) 2616 bool LLParser::ParseByRef(Type *&Result) { 2617 return ParseRequiredTypeAttr(Result, lltok::kw_byref); 2618 } 2619 2620 /// ParseOptionalOperandBundles 2621 /// ::= /*empty*/ 2622 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2623 /// 2624 /// OperandBundle 2625 /// ::= bundle-tag '(' ')' 2626 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2627 /// 2628 /// bundle-tag ::= String Constant 2629 bool LLParser::ParseOptionalOperandBundles( 2630 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2631 LocTy BeginLoc = Lex.getLoc(); 2632 if (!EatIfPresent(lltok::lsquare)) 2633 return false; 2634 2635 while (Lex.getKind() != lltok::rsquare) { 2636 // If this isn't the first operand bundle, we need a comma. 2637 if (!BundleList.empty() && 2638 ParseToken(lltok::comma, "expected ',' in input list")) 2639 return true; 2640 2641 std::string Tag; 2642 if (ParseStringConstant(Tag)) 2643 return true; 2644 2645 if (ParseToken(lltok::lparen, "expected '(' in operand bundle")) 2646 return true; 2647 2648 std::vector<Value *> Inputs; 2649 while (Lex.getKind() != lltok::rparen) { 2650 // If this isn't the first input, we need a comma. 2651 if (!Inputs.empty() && 2652 ParseToken(lltok::comma, "expected ',' in input list")) 2653 return true; 2654 2655 Type *Ty = nullptr; 2656 Value *Input = nullptr; 2657 if (ParseType(Ty) || ParseValue(Ty, Input, PFS)) 2658 return true; 2659 Inputs.push_back(Input); 2660 } 2661 2662 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2663 2664 Lex.Lex(); // Lex the ')'. 2665 } 2666 2667 if (BundleList.empty()) 2668 return Error(BeginLoc, "operand bundle set must not be empty"); 2669 2670 Lex.Lex(); // Lex the ']'. 2671 return false; 2672 } 2673 2674 /// ParseArgumentList - Parse the argument list for a function type or function 2675 /// prototype. 2676 /// ::= '(' ArgTypeListI ')' 2677 /// ArgTypeListI 2678 /// ::= /*empty*/ 2679 /// ::= '...' 2680 /// ::= ArgTypeList ',' '...' 2681 /// ::= ArgType (',' ArgType)* 2682 /// 2683 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2684 bool &isVarArg){ 2685 unsigned CurValID = 0; 2686 isVarArg = false; 2687 assert(Lex.getKind() == lltok::lparen); 2688 Lex.Lex(); // eat the (. 2689 2690 if (Lex.getKind() == lltok::rparen) { 2691 // empty 2692 } else if (Lex.getKind() == lltok::dotdotdot) { 2693 isVarArg = true; 2694 Lex.Lex(); 2695 } else { 2696 LocTy TypeLoc = Lex.getLoc(); 2697 Type *ArgTy = nullptr; 2698 AttrBuilder Attrs; 2699 std::string Name; 2700 2701 if (ParseType(ArgTy) || 2702 ParseOptionalParamAttrs(Attrs)) return true; 2703 2704 if (ArgTy->isVoidTy()) 2705 return Error(TypeLoc, "argument can not have void type"); 2706 2707 if (Lex.getKind() == lltok::LocalVar) { 2708 Name = Lex.getStrVal(); 2709 Lex.Lex(); 2710 } else if (Lex.getKind() == lltok::LocalVarID) { 2711 if (Lex.getUIntVal() != CurValID) 2712 return Error(TypeLoc, "argument expected to be numbered '%" + 2713 Twine(CurValID) + "'"); 2714 ++CurValID; 2715 Lex.Lex(); 2716 } 2717 2718 if (!FunctionType::isValidArgumentType(ArgTy)) 2719 return Error(TypeLoc, "invalid type for function argument"); 2720 2721 ArgList.emplace_back(TypeLoc, ArgTy, 2722 AttributeSet::get(ArgTy->getContext(), Attrs), 2723 std::move(Name)); 2724 2725 while (EatIfPresent(lltok::comma)) { 2726 // Handle ... at end of arg list. 2727 if (EatIfPresent(lltok::dotdotdot)) { 2728 isVarArg = true; 2729 break; 2730 } 2731 2732 // Otherwise must be an argument type. 2733 TypeLoc = Lex.getLoc(); 2734 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true; 2735 2736 if (ArgTy->isVoidTy()) 2737 return Error(TypeLoc, "argument can not have void type"); 2738 2739 if (Lex.getKind() == lltok::LocalVar) { 2740 Name = Lex.getStrVal(); 2741 Lex.Lex(); 2742 } else { 2743 if (Lex.getKind() == lltok::LocalVarID) { 2744 if (Lex.getUIntVal() != CurValID) 2745 return Error(TypeLoc, "argument expected to be numbered '%" + 2746 Twine(CurValID) + "'"); 2747 Lex.Lex(); 2748 } 2749 ++CurValID; 2750 Name = ""; 2751 } 2752 2753 if (!ArgTy->isFirstClassType()) 2754 return Error(TypeLoc, "invalid type for function argument"); 2755 2756 ArgList.emplace_back(TypeLoc, ArgTy, 2757 AttributeSet::get(ArgTy->getContext(), Attrs), 2758 std::move(Name)); 2759 } 2760 } 2761 2762 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2763 } 2764 2765 /// ParseFunctionType 2766 /// ::= Type ArgumentList OptionalAttrs 2767 bool LLParser::ParseFunctionType(Type *&Result) { 2768 assert(Lex.getKind() == lltok::lparen); 2769 2770 if (!FunctionType::isValidReturnType(Result)) 2771 return TokError("invalid function return type"); 2772 2773 SmallVector<ArgInfo, 8> ArgList; 2774 bool isVarArg; 2775 if (ParseArgumentList(ArgList, isVarArg)) 2776 return true; 2777 2778 // Reject names on the arguments lists. 2779 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2780 if (!ArgList[i].Name.empty()) 2781 return Error(ArgList[i].Loc, "argument name invalid in function type"); 2782 if (ArgList[i].Attrs.hasAttributes()) 2783 return Error(ArgList[i].Loc, 2784 "argument attributes invalid in function type"); 2785 } 2786 2787 SmallVector<Type*, 16> ArgListTy; 2788 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2789 ArgListTy.push_back(ArgList[i].Ty); 2790 2791 Result = FunctionType::get(Result, ArgListTy, isVarArg); 2792 return false; 2793 } 2794 2795 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 2796 /// other structs. 2797 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 2798 SmallVector<Type*, 8> Elts; 2799 if (ParseStructBody(Elts)) return true; 2800 2801 Result = StructType::get(Context, Elts, Packed); 2802 return false; 2803 } 2804 2805 /// ParseStructDefinition - Parse a struct in a 'type' definition. 2806 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 2807 std::pair<Type*, LocTy> &Entry, 2808 Type *&ResultTy) { 2809 // If the type was already defined, diagnose the redefinition. 2810 if (Entry.first && !Entry.second.isValid()) 2811 return Error(TypeLoc, "redefinition of type"); 2812 2813 // If we have opaque, just return without filling in the definition for the 2814 // struct. This counts as a definition as far as the .ll file goes. 2815 if (EatIfPresent(lltok::kw_opaque)) { 2816 // This type is being defined, so clear the location to indicate this. 2817 Entry.second = SMLoc(); 2818 2819 // If this type number has never been uttered, create it. 2820 if (!Entry.first) 2821 Entry.first = StructType::create(Context, Name); 2822 ResultTy = Entry.first; 2823 return false; 2824 } 2825 2826 // If the type starts with '<', then it is either a packed struct or a vector. 2827 bool isPacked = EatIfPresent(lltok::less); 2828 2829 // If we don't have a struct, then we have a random type alias, which we 2830 // accept for compatibility with old files. These types are not allowed to be 2831 // forward referenced and not allowed to be recursive. 2832 if (Lex.getKind() != lltok::lbrace) { 2833 if (Entry.first) 2834 return Error(TypeLoc, "forward references to non-struct type"); 2835 2836 ResultTy = nullptr; 2837 if (isPacked) 2838 return ParseArrayVectorType(ResultTy, true); 2839 return ParseType(ResultTy); 2840 } 2841 2842 // This type is being defined, so clear the location to indicate this. 2843 Entry.second = SMLoc(); 2844 2845 // If this type number has never been uttered, create it. 2846 if (!Entry.first) 2847 Entry.first = StructType::create(Context, Name); 2848 2849 StructType *STy = cast<StructType>(Entry.first); 2850 2851 SmallVector<Type*, 8> Body; 2852 if (ParseStructBody(Body) || 2853 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 2854 return true; 2855 2856 STy->setBody(Body, isPacked); 2857 ResultTy = STy; 2858 return false; 2859 } 2860 2861 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2862 /// StructType 2863 /// ::= '{' '}' 2864 /// ::= '{' Type (',' Type)* '}' 2865 /// ::= '<' '{' '}' '>' 2866 /// ::= '<' '{' Type (',' Type)* '}' '>' 2867 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 2868 assert(Lex.getKind() == lltok::lbrace); 2869 Lex.Lex(); // Consume the '{' 2870 2871 // Handle the empty struct. 2872 if (EatIfPresent(lltok::rbrace)) 2873 return false; 2874 2875 LocTy EltTyLoc = Lex.getLoc(); 2876 Type *Ty = nullptr; 2877 if (ParseType(Ty)) return true; 2878 Body.push_back(Ty); 2879 2880 if (!StructType::isValidElementType(Ty)) 2881 return Error(EltTyLoc, "invalid element type for struct"); 2882 2883 while (EatIfPresent(lltok::comma)) { 2884 EltTyLoc = Lex.getLoc(); 2885 if (ParseType(Ty)) return true; 2886 2887 if (!StructType::isValidElementType(Ty)) 2888 return Error(EltTyLoc, "invalid element type for struct"); 2889 2890 Body.push_back(Ty); 2891 } 2892 2893 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 2894 } 2895 2896 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 2897 /// token has already been consumed. 2898 /// Type 2899 /// ::= '[' APSINTVAL 'x' Types ']' 2900 /// ::= '<' APSINTVAL 'x' Types '>' 2901 /// ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>' 2902 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 2903 bool Scalable = false; 2904 2905 if (isVector && Lex.getKind() == lltok::kw_vscale) { 2906 Lex.Lex(); // consume the 'vscale' 2907 if (ParseToken(lltok::kw_x, "expected 'x' after vscale")) 2908 return true; 2909 2910 Scalable = true; 2911 } 2912 2913 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2914 Lex.getAPSIntVal().getBitWidth() > 64) 2915 return TokError("expected number in address space"); 2916 2917 LocTy SizeLoc = Lex.getLoc(); 2918 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2919 Lex.Lex(); 2920 2921 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 2922 return true; 2923 2924 LocTy TypeLoc = Lex.getLoc(); 2925 Type *EltTy = nullptr; 2926 if (ParseType(EltTy)) return true; 2927 2928 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 2929 "expected end of sequential type")) 2930 return true; 2931 2932 if (isVector) { 2933 if (Size == 0) 2934 return Error(SizeLoc, "zero element vector is illegal"); 2935 if ((unsigned)Size != Size) 2936 return Error(SizeLoc, "size too large for vector"); 2937 if (!VectorType::isValidElementType(EltTy)) 2938 return Error(TypeLoc, "invalid vector element type"); 2939 Result = VectorType::get(EltTy, unsigned(Size), Scalable); 2940 } else { 2941 if (!ArrayType::isValidElementType(EltTy)) 2942 return Error(TypeLoc, "invalid array element type"); 2943 Result = ArrayType::get(EltTy, Size); 2944 } 2945 return false; 2946 } 2947 2948 //===----------------------------------------------------------------------===// 2949 // Function Semantic Analysis. 2950 //===----------------------------------------------------------------------===// 2951 2952 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2953 int functionNumber) 2954 : P(p), F(f), FunctionNumber(functionNumber) { 2955 2956 // Insert unnamed arguments into the NumberedVals list. 2957 for (Argument &A : F.args()) 2958 if (!A.hasName()) 2959 NumberedVals.push_back(&A); 2960 } 2961 2962 LLParser::PerFunctionState::~PerFunctionState() { 2963 // If there were any forward referenced non-basicblock values, delete them. 2964 2965 for (const auto &P : ForwardRefVals) { 2966 if (isa<BasicBlock>(P.second.first)) 2967 continue; 2968 P.second.first->replaceAllUsesWith( 2969 UndefValue::get(P.second.first->getType())); 2970 P.second.first->deleteValue(); 2971 } 2972 2973 for (const auto &P : ForwardRefValIDs) { 2974 if (isa<BasicBlock>(P.second.first)) 2975 continue; 2976 P.second.first->replaceAllUsesWith( 2977 UndefValue::get(P.second.first->getType())); 2978 P.second.first->deleteValue(); 2979 } 2980 } 2981 2982 bool LLParser::PerFunctionState::FinishFunction() { 2983 if (!ForwardRefVals.empty()) 2984 return P.Error(ForwardRefVals.begin()->second.second, 2985 "use of undefined value '%" + ForwardRefVals.begin()->first + 2986 "'"); 2987 if (!ForwardRefValIDs.empty()) 2988 return P.Error(ForwardRefValIDs.begin()->second.second, 2989 "use of undefined value '%" + 2990 Twine(ForwardRefValIDs.begin()->first) + "'"); 2991 return false; 2992 } 2993 2994 /// GetVal - Get a value with the specified name or ID, creating a 2995 /// forward reference record if needed. This can return null if the value 2996 /// exists but does not have the right type. 2997 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty, 2998 LocTy Loc, bool IsCall) { 2999 // Look this name up in the normal function symbol table. 3000 Value *Val = F.getValueSymbolTable()->lookup(Name); 3001 3002 // If this is a forward reference for the value, see if we already created a 3003 // forward ref record. 3004 if (!Val) { 3005 auto I = ForwardRefVals.find(Name); 3006 if (I != ForwardRefVals.end()) 3007 Val = I->second.first; 3008 } 3009 3010 // If we have the value in the symbol table or fwd-ref table, return it. 3011 if (Val) 3012 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall); 3013 3014 // Don't make placeholders with invalid type. 3015 if (!Ty->isFirstClassType()) { 3016 P.Error(Loc, "invalid use of a non-first-class type"); 3017 return nullptr; 3018 } 3019 3020 // Otherwise, create a new forward reference for this value and remember it. 3021 Value *FwdVal; 3022 if (Ty->isLabelTy()) { 3023 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 3024 } else { 3025 FwdVal = new Argument(Ty, Name); 3026 } 3027 3028 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 3029 return FwdVal; 3030 } 3031 3032 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc, 3033 bool IsCall) { 3034 // Look this name up in the normal function symbol table. 3035 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 3036 3037 // If this is a forward reference for the value, see if we already created a 3038 // forward ref record. 3039 if (!Val) { 3040 auto I = ForwardRefValIDs.find(ID); 3041 if (I != ForwardRefValIDs.end()) 3042 Val = I->second.first; 3043 } 3044 3045 // If we have the value in the symbol table or fwd-ref table, return it. 3046 if (Val) 3047 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall); 3048 3049 if (!Ty->isFirstClassType()) { 3050 P.Error(Loc, "invalid use of a non-first-class type"); 3051 return nullptr; 3052 } 3053 3054 // Otherwise, create a new forward reference for this value and remember it. 3055 Value *FwdVal; 3056 if (Ty->isLabelTy()) { 3057 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 3058 } else { 3059 FwdVal = new Argument(Ty); 3060 } 3061 3062 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 3063 return FwdVal; 3064 } 3065 3066 /// SetInstName - After an instruction is parsed and inserted into its 3067 /// basic block, this installs its name. 3068 bool LLParser::PerFunctionState::SetInstName(int NameID, 3069 const std::string &NameStr, 3070 LocTy NameLoc, Instruction *Inst) { 3071 // If this instruction has void type, it cannot have a name or ID specified. 3072 if (Inst->getType()->isVoidTy()) { 3073 if (NameID != -1 || !NameStr.empty()) 3074 return P.Error(NameLoc, "instructions returning void cannot have a name"); 3075 return false; 3076 } 3077 3078 // If this was a numbered instruction, verify that the instruction is the 3079 // expected value and resolve any forward references. 3080 if (NameStr.empty()) { 3081 // If neither a name nor an ID was specified, just use the next ID. 3082 if (NameID == -1) 3083 NameID = NumberedVals.size(); 3084 3085 if (unsigned(NameID) != NumberedVals.size()) 3086 return P.Error(NameLoc, "instruction expected to be numbered '%" + 3087 Twine(NumberedVals.size()) + "'"); 3088 3089 auto FI = ForwardRefValIDs.find(NameID); 3090 if (FI != ForwardRefValIDs.end()) { 3091 Value *Sentinel = FI->second.first; 3092 if (Sentinel->getType() != Inst->getType()) 3093 return P.Error(NameLoc, "instruction forward referenced with type '" + 3094 getTypeString(FI->second.first->getType()) + "'"); 3095 3096 Sentinel->replaceAllUsesWith(Inst); 3097 Sentinel->deleteValue(); 3098 ForwardRefValIDs.erase(FI); 3099 } 3100 3101 NumberedVals.push_back(Inst); 3102 return false; 3103 } 3104 3105 // Otherwise, the instruction had a name. Resolve forward refs and set it. 3106 auto FI = ForwardRefVals.find(NameStr); 3107 if (FI != ForwardRefVals.end()) { 3108 Value *Sentinel = FI->second.first; 3109 if (Sentinel->getType() != Inst->getType()) 3110 return P.Error(NameLoc, "instruction forward referenced with type '" + 3111 getTypeString(FI->second.first->getType()) + "'"); 3112 3113 Sentinel->replaceAllUsesWith(Inst); 3114 Sentinel->deleteValue(); 3115 ForwardRefVals.erase(FI); 3116 } 3117 3118 // Set the name on the instruction. 3119 Inst->setName(NameStr); 3120 3121 if (Inst->getName() != NameStr) 3122 return P.Error(NameLoc, "multiple definition of local value named '" + 3123 NameStr + "'"); 3124 return false; 3125 } 3126 3127 /// GetBB - Get a basic block with the specified name or ID, creating a 3128 /// forward reference record if needed. 3129 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 3130 LocTy Loc) { 3131 return dyn_cast_or_null<BasicBlock>( 3132 GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 3133 } 3134 3135 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 3136 return dyn_cast_or_null<BasicBlock>( 3137 GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 3138 } 3139 3140 /// DefineBB - Define the specified basic block, which is either named or 3141 /// unnamed. If there is an error, this returns null otherwise it returns 3142 /// the block being defined. 3143 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 3144 int NameID, LocTy Loc) { 3145 BasicBlock *BB; 3146 if (Name.empty()) { 3147 if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) { 3148 P.Error(Loc, "label expected to be numbered '" + 3149 Twine(NumberedVals.size()) + "'"); 3150 return nullptr; 3151 } 3152 BB = GetBB(NumberedVals.size(), Loc); 3153 if (!BB) { 3154 P.Error(Loc, "unable to create block numbered '" + 3155 Twine(NumberedVals.size()) + "'"); 3156 return nullptr; 3157 } 3158 } else { 3159 BB = GetBB(Name, Loc); 3160 if (!BB) { 3161 P.Error(Loc, "unable to create block named '" + Name + "'"); 3162 return nullptr; 3163 } 3164 } 3165 3166 // Move the block to the end of the function. Forward ref'd blocks are 3167 // inserted wherever they happen to be referenced. 3168 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 3169 3170 // Remove the block from forward ref sets. 3171 if (Name.empty()) { 3172 ForwardRefValIDs.erase(NumberedVals.size()); 3173 NumberedVals.push_back(BB); 3174 } else { 3175 // BB forward references are already in the function symbol table. 3176 ForwardRefVals.erase(Name); 3177 } 3178 3179 return BB; 3180 } 3181 3182 //===----------------------------------------------------------------------===// 3183 // Constants. 3184 //===----------------------------------------------------------------------===// 3185 3186 /// ParseValID - Parse an abstract value that doesn't necessarily have a 3187 /// type implied. For example, if we parse "4" we don't know what integer type 3188 /// it has. The value will later be combined with its type and checked for 3189 /// sanity. PFS is used to convert function-local operands of metadata (since 3190 /// metadata operands are not just parsed here but also converted to values). 3191 /// PFS can be null when we are not parsing metadata values inside a function. 3192 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 3193 ID.Loc = Lex.getLoc(); 3194 switch (Lex.getKind()) { 3195 default: return TokError("expected value token"); 3196 case lltok::GlobalID: // @42 3197 ID.UIntVal = Lex.getUIntVal(); 3198 ID.Kind = ValID::t_GlobalID; 3199 break; 3200 case lltok::GlobalVar: // @foo 3201 ID.StrVal = Lex.getStrVal(); 3202 ID.Kind = ValID::t_GlobalName; 3203 break; 3204 case lltok::LocalVarID: // %42 3205 ID.UIntVal = Lex.getUIntVal(); 3206 ID.Kind = ValID::t_LocalID; 3207 break; 3208 case lltok::LocalVar: // %foo 3209 ID.StrVal = Lex.getStrVal(); 3210 ID.Kind = ValID::t_LocalName; 3211 break; 3212 case lltok::APSInt: 3213 ID.APSIntVal = Lex.getAPSIntVal(); 3214 ID.Kind = ValID::t_APSInt; 3215 break; 3216 case lltok::APFloat: 3217 ID.APFloatVal = Lex.getAPFloatVal(); 3218 ID.Kind = ValID::t_APFloat; 3219 break; 3220 case lltok::kw_true: 3221 ID.ConstantVal = ConstantInt::getTrue(Context); 3222 ID.Kind = ValID::t_Constant; 3223 break; 3224 case lltok::kw_false: 3225 ID.ConstantVal = ConstantInt::getFalse(Context); 3226 ID.Kind = ValID::t_Constant; 3227 break; 3228 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 3229 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 3230 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 3231 case lltok::kw_none: ID.Kind = ValID::t_None; break; 3232 3233 case lltok::lbrace: { 3234 // ValID ::= '{' ConstVector '}' 3235 Lex.Lex(); 3236 SmallVector<Constant*, 16> Elts; 3237 if (ParseGlobalValueVector(Elts) || 3238 ParseToken(lltok::rbrace, "expected end of struct constant")) 3239 return true; 3240 3241 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3242 ID.UIntVal = Elts.size(); 3243 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3244 Elts.size() * sizeof(Elts[0])); 3245 ID.Kind = ValID::t_ConstantStruct; 3246 return false; 3247 } 3248 case lltok::less: { 3249 // ValID ::= '<' ConstVector '>' --> Vector. 3250 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 3251 Lex.Lex(); 3252 bool isPackedStruct = EatIfPresent(lltok::lbrace); 3253 3254 SmallVector<Constant*, 16> Elts; 3255 LocTy FirstEltLoc = Lex.getLoc(); 3256 if (ParseGlobalValueVector(Elts) || 3257 (isPackedStruct && 3258 ParseToken(lltok::rbrace, "expected end of packed struct")) || 3259 ParseToken(lltok::greater, "expected end of constant")) 3260 return true; 3261 3262 if (isPackedStruct) { 3263 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3264 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3265 Elts.size() * sizeof(Elts[0])); 3266 ID.UIntVal = Elts.size(); 3267 ID.Kind = ValID::t_PackedConstantStruct; 3268 return false; 3269 } 3270 3271 if (Elts.empty()) 3272 return Error(ID.Loc, "constant vector must not be empty"); 3273 3274 if (!Elts[0]->getType()->isIntegerTy() && 3275 !Elts[0]->getType()->isFloatingPointTy() && 3276 !Elts[0]->getType()->isPointerTy()) 3277 return Error(FirstEltLoc, 3278 "vector elements must have integer, pointer or floating point type"); 3279 3280 // Verify that all the vector elements have the same type. 3281 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 3282 if (Elts[i]->getType() != Elts[0]->getType()) 3283 return Error(FirstEltLoc, 3284 "vector element #" + Twine(i) + 3285 " is not of type '" + getTypeString(Elts[0]->getType())); 3286 3287 ID.ConstantVal = ConstantVector::get(Elts); 3288 ID.Kind = ValID::t_Constant; 3289 return false; 3290 } 3291 case lltok::lsquare: { // Array Constant 3292 Lex.Lex(); 3293 SmallVector<Constant*, 16> Elts; 3294 LocTy FirstEltLoc = Lex.getLoc(); 3295 if (ParseGlobalValueVector(Elts) || 3296 ParseToken(lltok::rsquare, "expected end of array constant")) 3297 return true; 3298 3299 // Handle empty element. 3300 if (Elts.empty()) { 3301 // Use undef instead of an array because it's inconvenient to determine 3302 // the element type at this point, there being no elements to examine. 3303 ID.Kind = ValID::t_EmptyArray; 3304 return false; 3305 } 3306 3307 if (!Elts[0]->getType()->isFirstClassType()) 3308 return Error(FirstEltLoc, "invalid array element type: " + 3309 getTypeString(Elts[0]->getType())); 3310 3311 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 3312 3313 // Verify all elements are correct type! 3314 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 3315 if (Elts[i]->getType() != Elts[0]->getType()) 3316 return Error(FirstEltLoc, 3317 "array element #" + Twine(i) + 3318 " is not of type '" + getTypeString(Elts[0]->getType())); 3319 } 3320 3321 ID.ConstantVal = ConstantArray::get(ATy, Elts); 3322 ID.Kind = ValID::t_Constant; 3323 return false; 3324 } 3325 case lltok::kw_c: // c "foo" 3326 Lex.Lex(); 3327 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 3328 false); 3329 if (ParseToken(lltok::StringConstant, "expected string")) return true; 3330 ID.Kind = ValID::t_Constant; 3331 return false; 3332 3333 case lltok::kw_asm: { 3334 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 3335 // STRINGCONSTANT 3336 bool HasSideEffect, AlignStack, AsmDialect; 3337 Lex.Lex(); 3338 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 3339 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 3340 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 3341 ParseStringConstant(ID.StrVal) || 3342 ParseToken(lltok::comma, "expected comma in inline asm expression") || 3343 ParseToken(lltok::StringConstant, "expected constraint string")) 3344 return true; 3345 ID.StrVal2 = Lex.getStrVal(); 3346 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 3347 (unsigned(AsmDialect)<<2); 3348 ID.Kind = ValID::t_InlineAsm; 3349 return false; 3350 } 3351 3352 case lltok::kw_blockaddress: { 3353 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 3354 Lex.Lex(); 3355 3356 ValID Fn, Label; 3357 3358 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 3359 ParseValID(Fn) || 3360 ParseToken(lltok::comma, "expected comma in block address expression")|| 3361 ParseValID(Label) || 3362 ParseToken(lltok::rparen, "expected ')' in block address expression")) 3363 return true; 3364 3365 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3366 return Error(Fn.Loc, "expected function name in blockaddress"); 3367 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 3368 return Error(Label.Loc, "expected basic block name in blockaddress"); 3369 3370 // Try to find the function (but skip it if it's forward-referenced). 3371 GlobalValue *GV = nullptr; 3372 if (Fn.Kind == ValID::t_GlobalID) { 3373 if (Fn.UIntVal < NumberedVals.size()) 3374 GV = NumberedVals[Fn.UIntVal]; 3375 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3376 GV = M->getNamedValue(Fn.StrVal); 3377 } 3378 Function *F = nullptr; 3379 if (GV) { 3380 // Confirm that it's actually a function with a definition. 3381 if (!isa<Function>(GV)) 3382 return Error(Fn.Loc, "expected function name in blockaddress"); 3383 F = cast<Function>(GV); 3384 if (F->isDeclaration()) 3385 return Error(Fn.Loc, "cannot take blockaddress inside a declaration"); 3386 } 3387 3388 if (!F) { 3389 // Make a global variable as a placeholder for this reference. 3390 GlobalValue *&FwdRef = 3391 ForwardRefBlockAddresses.insert(std::make_pair( 3392 std::move(Fn), 3393 std::map<ValID, GlobalValue *>())) 3394 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 3395 .first->second; 3396 if (!FwdRef) 3397 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 3398 GlobalValue::InternalLinkage, nullptr, ""); 3399 ID.ConstantVal = FwdRef; 3400 ID.Kind = ValID::t_Constant; 3401 return false; 3402 } 3403 3404 // We found the function; now find the basic block. Don't use PFS, since we 3405 // might be inside a constant expression. 3406 BasicBlock *BB; 3407 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 3408 if (Label.Kind == ValID::t_LocalID) 3409 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc); 3410 else 3411 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc); 3412 if (!BB) 3413 return Error(Label.Loc, "referenced value is not a basic block"); 3414 } else { 3415 if (Label.Kind == ValID::t_LocalID) 3416 return Error(Label.Loc, "cannot take address of numeric label after " 3417 "the function is defined"); 3418 BB = dyn_cast_or_null<BasicBlock>( 3419 F->getValueSymbolTable()->lookup(Label.StrVal)); 3420 if (!BB) 3421 return Error(Label.Loc, "referenced value is not a basic block"); 3422 } 3423 3424 ID.ConstantVal = BlockAddress::get(F, BB); 3425 ID.Kind = ValID::t_Constant; 3426 return false; 3427 } 3428 3429 case lltok::kw_trunc: 3430 case lltok::kw_zext: 3431 case lltok::kw_sext: 3432 case lltok::kw_fptrunc: 3433 case lltok::kw_fpext: 3434 case lltok::kw_bitcast: 3435 case lltok::kw_addrspacecast: 3436 case lltok::kw_uitofp: 3437 case lltok::kw_sitofp: 3438 case lltok::kw_fptoui: 3439 case lltok::kw_fptosi: 3440 case lltok::kw_inttoptr: 3441 case lltok::kw_ptrtoint: { 3442 unsigned Opc = Lex.getUIntVal(); 3443 Type *DestTy = nullptr; 3444 Constant *SrcVal; 3445 Lex.Lex(); 3446 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3447 ParseGlobalTypeAndValue(SrcVal) || 3448 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3449 ParseType(DestTy) || 3450 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3451 return true; 3452 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3453 return Error(ID.Loc, "invalid cast opcode for cast from '" + 3454 getTypeString(SrcVal->getType()) + "' to '" + 3455 getTypeString(DestTy) + "'"); 3456 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3457 SrcVal, DestTy); 3458 ID.Kind = ValID::t_Constant; 3459 return false; 3460 } 3461 case lltok::kw_extractvalue: { 3462 Lex.Lex(); 3463 Constant *Val; 3464 SmallVector<unsigned, 4> Indices; 3465 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 3466 ParseGlobalTypeAndValue(Val) || 3467 ParseIndexList(Indices) || 3468 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 3469 return true; 3470 3471 if (!Val->getType()->isAggregateType()) 3472 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 3473 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 3474 return Error(ID.Loc, "invalid indices for extractvalue"); 3475 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 3476 ID.Kind = ValID::t_Constant; 3477 return false; 3478 } 3479 case lltok::kw_insertvalue: { 3480 Lex.Lex(); 3481 Constant *Val0, *Val1; 3482 SmallVector<unsigned, 4> Indices; 3483 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 3484 ParseGlobalTypeAndValue(Val0) || 3485 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 3486 ParseGlobalTypeAndValue(Val1) || 3487 ParseIndexList(Indices) || 3488 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 3489 return true; 3490 if (!Val0->getType()->isAggregateType()) 3491 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 3492 Type *IndexedType = 3493 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3494 if (!IndexedType) 3495 return Error(ID.Loc, "invalid indices for insertvalue"); 3496 if (IndexedType != Val1->getType()) 3497 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3498 getTypeString(Val1->getType()) + 3499 "' instead of '" + getTypeString(IndexedType) + 3500 "'"); 3501 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3502 ID.Kind = ValID::t_Constant; 3503 return false; 3504 } 3505 case lltok::kw_icmp: 3506 case lltok::kw_fcmp: { 3507 unsigned PredVal, Opc = Lex.getUIntVal(); 3508 Constant *Val0, *Val1; 3509 Lex.Lex(); 3510 if (ParseCmpPredicate(PredVal, Opc) || 3511 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3512 ParseGlobalTypeAndValue(Val0) || 3513 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 3514 ParseGlobalTypeAndValue(Val1) || 3515 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3516 return true; 3517 3518 if (Val0->getType() != Val1->getType()) 3519 return Error(ID.Loc, "compare operands must have the same type"); 3520 3521 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3522 3523 if (Opc == Instruction::FCmp) { 3524 if (!Val0->getType()->isFPOrFPVectorTy()) 3525 return Error(ID.Loc, "fcmp requires floating point operands"); 3526 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3527 } else { 3528 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3529 if (!Val0->getType()->isIntOrIntVectorTy() && 3530 !Val0->getType()->isPtrOrPtrVectorTy()) 3531 return Error(ID.Loc, "icmp requires pointer or integer operands"); 3532 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3533 } 3534 ID.Kind = ValID::t_Constant; 3535 return false; 3536 } 3537 3538 // Unary Operators. 3539 case lltok::kw_fneg: { 3540 unsigned Opc = Lex.getUIntVal(); 3541 Constant *Val; 3542 Lex.Lex(); 3543 if (ParseToken(lltok::lparen, "expected '(' in unary constantexpr") || 3544 ParseGlobalTypeAndValue(Val) || 3545 ParseToken(lltok::rparen, "expected ')' in unary constantexpr")) 3546 return true; 3547 3548 // Check that the type is valid for the operator. 3549 switch (Opc) { 3550 case Instruction::FNeg: 3551 if (!Val->getType()->isFPOrFPVectorTy()) 3552 return Error(ID.Loc, "constexpr requires fp operands"); 3553 break; 3554 default: llvm_unreachable("Unknown unary operator!"); 3555 } 3556 unsigned Flags = 0; 3557 Constant *C = ConstantExpr::get(Opc, Val, Flags); 3558 ID.ConstantVal = C; 3559 ID.Kind = ValID::t_Constant; 3560 return false; 3561 } 3562 // Binary Operators. 3563 case lltok::kw_add: 3564 case lltok::kw_fadd: 3565 case lltok::kw_sub: 3566 case lltok::kw_fsub: 3567 case lltok::kw_mul: 3568 case lltok::kw_fmul: 3569 case lltok::kw_udiv: 3570 case lltok::kw_sdiv: 3571 case lltok::kw_fdiv: 3572 case lltok::kw_urem: 3573 case lltok::kw_srem: 3574 case lltok::kw_frem: 3575 case lltok::kw_shl: 3576 case lltok::kw_lshr: 3577 case lltok::kw_ashr: { 3578 bool NUW = false; 3579 bool NSW = false; 3580 bool Exact = false; 3581 unsigned Opc = Lex.getUIntVal(); 3582 Constant *Val0, *Val1; 3583 Lex.Lex(); 3584 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3585 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3586 if (EatIfPresent(lltok::kw_nuw)) 3587 NUW = true; 3588 if (EatIfPresent(lltok::kw_nsw)) { 3589 NSW = true; 3590 if (EatIfPresent(lltok::kw_nuw)) 3591 NUW = true; 3592 } 3593 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3594 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3595 if (EatIfPresent(lltok::kw_exact)) 3596 Exact = true; 3597 } 3598 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3599 ParseGlobalTypeAndValue(Val0) || 3600 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 3601 ParseGlobalTypeAndValue(Val1) || 3602 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3603 return true; 3604 if (Val0->getType() != Val1->getType()) 3605 return Error(ID.Loc, "operands of constexpr must have same type"); 3606 // Check that the type is valid for the operator. 3607 switch (Opc) { 3608 case Instruction::Add: 3609 case Instruction::Sub: 3610 case Instruction::Mul: 3611 case Instruction::UDiv: 3612 case Instruction::SDiv: 3613 case Instruction::URem: 3614 case Instruction::SRem: 3615 case Instruction::Shl: 3616 case Instruction::AShr: 3617 case Instruction::LShr: 3618 if (!Val0->getType()->isIntOrIntVectorTy()) 3619 return Error(ID.Loc, "constexpr requires integer operands"); 3620 break; 3621 case Instruction::FAdd: 3622 case Instruction::FSub: 3623 case Instruction::FMul: 3624 case Instruction::FDiv: 3625 case Instruction::FRem: 3626 if (!Val0->getType()->isFPOrFPVectorTy()) 3627 return Error(ID.Loc, "constexpr requires fp operands"); 3628 break; 3629 default: llvm_unreachable("Unknown binary operator!"); 3630 } 3631 unsigned Flags = 0; 3632 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3633 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3634 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3635 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3636 ID.ConstantVal = C; 3637 ID.Kind = ValID::t_Constant; 3638 return false; 3639 } 3640 3641 // Logical Operations 3642 case lltok::kw_and: 3643 case lltok::kw_or: 3644 case lltok::kw_xor: { 3645 unsigned Opc = Lex.getUIntVal(); 3646 Constant *Val0, *Val1; 3647 Lex.Lex(); 3648 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3649 ParseGlobalTypeAndValue(Val0) || 3650 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 3651 ParseGlobalTypeAndValue(Val1) || 3652 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3653 return true; 3654 if (Val0->getType() != Val1->getType()) 3655 return Error(ID.Loc, "operands of constexpr must have same type"); 3656 if (!Val0->getType()->isIntOrIntVectorTy()) 3657 return Error(ID.Loc, 3658 "constexpr requires integer or integer vector operands"); 3659 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3660 ID.Kind = ValID::t_Constant; 3661 return false; 3662 } 3663 3664 case lltok::kw_getelementptr: 3665 case lltok::kw_shufflevector: 3666 case lltok::kw_insertelement: 3667 case lltok::kw_extractelement: 3668 case lltok::kw_select: { 3669 unsigned Opc = Lex.getUIntVal(); 3670 SmallVector<Constant*, 16> Elts; 3671 bool InBounds = false; 3672 Type *Ty; 3673 Lex.Lex(); 3674 3675 if (Opc == Instruction::GetElementPtr) 3676 InBounds = EatIfPresent(lltok::kw_inbounds); 3677 3678 if (ParseToken(lltok::lparen, "expected '(' in constantexpr")) 3679 return true; 3680 3681 LocTy ExplicitTypeLoc = Lex.getLoc(); 3682 if (Opc == Instruction::GetElementPtr) { 3683 if (ParseType(Ty) || 3684 ParseToken(lltok::comma, "expected comma after getelementptr's type")) 3685 return true; 3686 } 3687 3688 Optional<unsigned> InRangeOp; 3689 if (ParseGlobalValueVector( 3690 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3691 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 3692 return true; 3693 3694 if (Opc == Instruction::GetElementPtr) { 3695 if (Elts.size() == 0 || 3696 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 3697 return Error(ID.Loc, "base of getelementptr must be a pointer"); 3698 3699 Type *BaseType = Elts[0]->getType(); 3700 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3701 if (Ty != BasePointerType->getElementType()) 3702 return Error( 3703 ExplicitTypeLoc, 3704 "explicit pointee type doesn't match operand's pointee type"); 3705 3706 unsigned GEPWidth = 3707 BaseType->isVectorTy() 3708 ? cast<FixedVectorType>(BaseType)->getNumElements() 3709 : 0; 3710 3711 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3712 for (Constant *Val : Indices) { 3713 Type *ValTy = Val->getType(); 3714 if (!ValTy->isIntOrIntVectorTy()) 3715 return Error(ID.Loc, "getelementptr index must be an integer"); 3716 if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) { 3717 unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements(); 3718 if (GEPWidth && (ValNumEl != GEPWidth)) 3719 return Error( 3720 ID.Loc, 3721 "getelementptr vector index has a wrong number of elements"); 3722 // GEPWidth may have been unknown because the base is a scalar, 3723 // but it is known now. 3724 GEPWidth = ValNumEl; 3725 } 3726 } 3727 3728 SmallPtrSet<Type*, 4> Visited; 3729 if (!Indices.empty() && !Ty->isSized(&Visited)) 3730 return Error(ID.Loc, "base element of getelementptr must be sized"); 3731 3732 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3733 return Error(ID.Loc, "invalid getelementptr indices"); 3734 3735 if (InRangeOp) { 3736 if (*InRangeOp == 0) 3737 return Error(ID.Loc, 3738 "inrange keyword may not appear on pointer operand"); 3739 --*InRangeOp; 3740 } 3741 3742 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3743 InBounds, InRangeOp); 3744 } else if (Opc == Instruction::Select) { 3745 if (Elts.size() != 3) 3746 return Error(ID.Loc, "expected three operands to select"); 3747 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3748 Elts[2])) 3749 return Error(ID.Loc, Reason); 3750 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3751 } else if (Opc == Instruction::ShuffleVector) { 3752 if (Elts.size() != 3) 3753 return Error(ID.Loc, "expected three operands to shufflevector"); 3754 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3755 return Error(ID.Loc, "invalid operands to shufflevector"); 3756 SmallVector<int, 16> Mask; 3757 ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask); 3758 ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask); 3759 } else if (Opc == Instruction::ExtractElement) { 3760 if (Elts.size() != 2) 3761 return Error(ID.Loc, "expected two operands to extractelement"); 3762 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3763 return Error(ID.Loc, "invalid extractelement operands"); 3764 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3765 } else { 3766 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3767 if (Elts.size() != 3) 3768 return Error(ID.Loc, "expected three operands to insertelement"); 3769 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3770 return Error(ID.Loc, "invalid insertelement operands"); 3771 ID.ConstantVal = 3772 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3773 } 3774 3775 ID.Kind = ValID::t_Constant; 3776 return false; 3777 } 3778 } 3779 3780 Lex.Lex(); 3781 return false; 3782 } 3783 3784 /// ParseGlobalValue - Parse a global value with the specified type. 3785 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 3786 C = nullptr; 3787 ValID ID; 3788 Value *V = nullptr; 3789 bool Parsed = ParseValID(ID) || 3790 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false); 3791 if (V && !(C = dyn_cast<Constant>(V))) 3792 return Error(ID.Loc, "global values must be constants"); 3793 return Parsed; 3794 } 3795 3796 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 3797 Type *Ty = nullptr; 3798 return ParseType(Ty) || 3799 ParseGlobalValue(Ty, V); 3800 } 3801 3802 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3803 C = nullptr; 3804 3805 LocTy KwLoc = Lex.getLoc(); 3806 if (!EatIfPresent(lltok::kw_comdat)) 3807 return false; 3808 3809 if (EatIfPresent(lltok::lparen)) { 3810 if (Lex.getKind() != lltok::ComdatVar) 3811 return TokError("expected comdat variable"); 3812 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3813 Lex.Lex(); 3814 if (ParseToken(lltok::rparen, "expected ')' after comdat var")) 3815 return true; 3816 } else { 3817 if (GlobalName.empty()) 3818 return TokError("comdat cannot be unnamed"); 3819 C = getComdat(std::string(GlobalName), KwLoc); 3820 } 3821 3822 return false; 3823 } 3824 3825 /// ParseGlobalValueVector 3826 /// ::= /*empty*/ 3827 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 3828 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 3829 Optional<unsigned> *InRangeOp) { 3830 // Empty list. 3831 if (Lex.getKind() == lltok::rbrace || 3832 Lex.getKind() == lltok::rsquare || 3833 Lex.getKind() == lltok::greater || 3834 Lex.getKind() == lltok::rparen) 3835 return false; 3836 3837 do { 3838 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 3839 *InRangeOp = Elts.size(); 3840 3841 Constant *C; 3842 if (ParseGlobalTypeAndValue(C)) return true; 3843 Elts.push_back(C); 3844 } while (EatIfPresent(lltok::comma)); 3845 3846 return false; 3847 } 3848 3849 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) { 3850 SmallVector<Metadata *, 16> Elts; 3851 if (ParseMDNodeVector(Elts)) 3852 return true; 3853 3854 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3855 return false; 3856 } 3857 3858 /// MDNode: 3859 /// ::= !{ ... } 3860 /// ::= !7 3861 /// ::= !DILocation(...) 3862 bool LLParser::ParseMDNode(MDNode *&N) { 3863 if (Lex.getKind() == lltok::MetadataVar) 3864 return ParseSpecializedMDNode(N); 3865 3866 return ParseToken(lltok::exclaim, "expected '!' here") || 3867 ParseMDNodeTail(N); 3868 } 3869 3870 bool LLParser::ParseMDNodeTail(MDNode *&N) { 3871 // !{ ... } 3872 if (Lex.getKind() == lltok::lbrace) 3873 return ParseMDTuple(N); 3874 3875 // !42 3876 return ParseMDNodeID(N); 3877 } 3878 3879 namespace { 3880 3881 /// Structure to represent an optional metadata field. 3882 template <class FieldTy> struct MDFieldImpl { 3883 typedef MDFieldImpl ImplTy; 3884 FieldTy Val; 3885 bool Seen; 3886 3887 void assign(FieldTy Val) { 3888 Seen = true; 3889 this->Val = std::move(Val); 3890 } 3891 3892 explicit MDFieldImpl(FieldTy Default) 3893 : Val(std::move(Default)), Seen(false) {} 3894 }; 3895 3896 /// Structure to represent an optional metadata field that 3897 /// can be of either type (A or B) and encapsulates the 3898 /// MD<typeofA>Field and MD<typeofB>Field structs, so not 3899 /// to reimplement the specifics for representing each Field. 3900 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl { 3901 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy; 3902 FieldTypeA A; 3903 FieldTypeB B; 3904 bool Seen; 3905 3906 enum { 3907 IsInvalid = 0, 3908 IsTypeA = 1, 3909 IsTypeB = 2 3910 } WhatIs; 3911 3912 void assign(FieldTypeA A) { 3913 Seen = true; 3914 this->A = std::move(A); 3915 WhatIs = IsTypeA; 3916 } 3917 3918 void assign(FieldTypeB B) { 3919 Seen = true; 3920 this->B = std::move(B); 3921 WhatIs = IsTypeB; 3922 } 3923 3924 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) 3925 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), 3926 WhatIs(IsInvalid) {} 3927 }; 3928 3929 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3930 uint64_t Max; 3931 3932 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3933 : ImplTy(Default), Max(Max) {} 3934 }; 3935 3936 struct LineField : public MDUnsignedField { 3937 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3938 }; 3939 3940 struct ColumnField : public MDUnsignedField { 3941 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3942 }; 3943 3944 struct DwarfTagField : public MDUnsignedField { 3945 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3946 DwarfTagField(dwarf::Tag DefaultTag) 3947 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3948 }; 3949 3950 struct DwarfMacinfoTypeField : public MDUnsignedField { 3951 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 3952 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 3953 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 3954 }; 3955 3956 struct DwarfAttEncodingField : public MDUnsignedField { 3957 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3958 }; 3959 3960 struct DwarfVirtualityField : public MDUnsignedField { 3961 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3962 }; 3963 3964 struct DwarfLangField : public MDUnsignedField { 3965 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3966 }; 3967 3968 struct DwarfCCField : public MDUnsignedField { 3969 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 3970 }; 3971 3972 struct EmissionKindField : public MDUnsignedField { 3973 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 3974 }; 3975 3976 struct NameTableKindField : public MDUnsignedField { 3977 NameTableKindField() 3978 : MDUnsignedField( 3979 0, (unsigned) 3980 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {} 3981 }; 3982 3983 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 3984 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 3985 }; 3986 3987 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> { 3988 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {} 3989 }; 3990 3991 struct MDAPSIntField : public MDFieldImpl<APSInt> { 3992 MDAPSIntField() : ImplTy(APSInt()) {} 3993 }; 3994 3995 struct MDSignedField : public MDFieldImpl<int64_t> { 3996 int64_t Min; 3997 int64_t Max; 3998 3999 MDSignedField(int64_t Default = 0) 4000 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 4001 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 4002 : ImplTy(Default), Min(Min), Max(Max) {} 4003 }; 4004 4005 struct MDBoolField : public MDFieldImpl<bool> { 4006 MDBoolField(bool Default = false) : ImplTy(Default) {} 4007 }; 4008 4009 struct MDField : public MDFieldImpl<Metadata *> { 4010 bool AllowNull; 4011 4012 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 4013 }; 4014 4015 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 4016 MDConstant() : ImplTy(nullptr) {} 4017 }; 4018 4019 struct MDStringField : public MDFieldImpl<MDString *> { 4020 bool AllowEmpty; 4021 MDStringField(bool AllowEmpty = true) 4022 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 4023 }; 4024 4025 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 4026 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 4027 }; 4028 4029 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 4030 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 4031 }; 4032 4033 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> { 4034 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) 4035 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} 4036 4037 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, 4038 bool AllowNull = true) 4039 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} 4040 4041 bool isMDSignedField() const { return WhatIs == IsTypeA; } 4042 bool isMDField() const { return WhatIs == IsTypeB; } 4043 int64_t getMDSignedValue() const { 4044 assert(isMDSignedField() && "Wrong field type"); 4045 return A.Val; 4046 } 4047 Metadata *getMDFieldValue() const { 4048 assert(isMDField() && "Wrong field type"); 4049 return B.Val; 4050 } 4051 }; 4052 4053 struct MDSignedOrUnsignedField 4054 : MDEitherFieldImpl<MDSignedField, MDUnsignedField> { 4055 MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {} 4056 4057 bool isMDSignedField() const { return WhatIs == IsTypeA; } 4058 bool isMDUnsignedField() const { return WhatIs == IsTypeB; } 4059 int64_t getMDSignedValue() const { 4060 assert(isMDSignedField() && "Wrong field type"); 4061 return A.Val; 4062 } 4063 uint64_t getMDUnsignedValue() const { 4064 assert(isMDUnsignedField() && "Wrong field type"); 4065 return B.Val; 4066 } 4067 }; 4068 4069 } // end anonymous namespace 4070 4071 namespace llvm { 4072 4073 template <> 4074 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) { 4075 if (Lex.getKind() != lltok::APSInt) 4076 return TokError("expected integer"); 4077 4078 Result.assign(Lex.getAPSIntVal()); 4079 Lex.Lex(); 4080 return false; 4081 } 4082 4083 template <> 4084 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4085 MDUnsignedField &Result) { 4086 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4087 return TokError("expected unsigned integer"); 4088 4089 auto &U = Lex.getAPSIntVal(); 4090 if (U.ugt(Result.Max)) 4091 return TokError("value for '" + Name + "' too large, limit is " + 4092 Twine(Result.Max)); 4093 Result.assign(U.getZExtValue()); 4094 assert(Result.Val <= Result.Max && "Expected value in range"); 4095 Lex.Lex(); 4096 return false; 4097 } 4098 4099 template <> 4100 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) { 4101 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4102 } 4103 template <> 4104 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 4105 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4106 } 4107 4108 template <> 4109 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 4110 if (Lex.getKind() == lltok::APSInt) 4111 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4112 4113 if (Lex.getKind() != lltok::DwarfTag) 4114 return TokError("expected DWARF tag"); 4115 4116 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 4117 if (Tag == dwarf::DW_TAG_invalid) 4118 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 4119 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 4120 4121 Result.assign(Tag); 4122 Lex.Lex(); 4123 return false; 4124 } 4125 4126 template <> 4127 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4128 DwarfMacinfoTypeField &Result) { 4129 if (Lex.getKind() == lltok::APSInt) 4130 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4131 4132 if (Lex.getKind() != lltok::DwarfMacinfo) 4133 return TokError("expected DWARF macinfo type"); 4134 4135 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 4136 if (Macinfo == dwarf::DW_MACINFO_invalid) 4137 return TokError( 4138 "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'"); 4139 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 4140 4141 Result.assign(Macinfo); 4142 Lex.Lex(); 4143 return false; 4144 } 4145 4146 template <> 4147 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4148 DwarfVirtualityField &Result) { 4149 if (Lex.getKind() == lltok::APSInt) 4150 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4151 4152 if (Lex.getKind() != lltok::DwarfVirtuality) 4153 return TokError("expected DWARF virtuality code"); 4154 4155 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 4156 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 4157 return TokError("invalid DWARF virtuality code" + Twine(" '") + 4158 Lex.getStrVal() + "'"); 4159 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 4160 Result.assign(Virtuality); 4161 Lex.Lex(); 4162 return false; 4163 } 4164 4165 template <> 4166 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 4167 if (Lex.getKind() == lltok::APSInt) 4168 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4169 4170 if (Lex.getKind() != lltok::DwarfLang) 4171 return TokError("expected DWARF language"); 4172 4173 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 4174 if (!Lang) 4175 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 4176 "'"); 4177 assert(Lang <= Result.Max && "Expected valid DWARF language"); 4178 Result.assign(Lang); 4179 Lex.Lex(); 4180 return false; 4181 } 4182 4183 template <> 4184 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 4185 if (Lex.getKind() == lltok::APSInt) 4186 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4187 4188 if (Lex.getKind() != lltok::DwarfCC) 4189 return TokError("expected DWARF calling convention"); 4190 4191 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 4192 if (!CC) 4193 return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() + 4194 "'"); 4195 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 4196 Result.assign(CC); 4197 Lex.Lex(); 4198 return false; 4199 } 4200 4201 template <> 4202 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) { 4203 if (Lex.getKind() == lltok::APSInt) 4204 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4205 4206 if (Lex.getKind() != lltok::EmissionKind) 4207 return TokError("expected emission kind"); 4208 4209 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 4210 if (!Kind) 4211 return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 4212 "'"); 4213 assert(*Kind <= Result.Max && "Expected valid emission kind"); 4214 Result.assign(*Kind); 4215 Lex.Lex(); 4216 return false; 4217 } 4218 4219 template <> 4220 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4221 NameTableKindField &Result) { 4222 if (Lex.getKind() == lltok::APSInt) 4223 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4224 4225 if (Lex.getKind() != lltok::NameTableKind) 4226 return TokError("expected nameTable kind"); 4227 4228 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal()); 4229 if (!Kind) 4230 return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() + 4231 "'"); 4232 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind"); 4233 Result.assign((unsigned)*Kind); 4234 Lex.Lex(); 4235 return false; 4236 } 4237 4238 template <> 4239 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4240 DwarfAttEncodingField &Result) { 4241 if (Lex.getKind() == lltok::APSInt) 4242 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4243 4244 if (Lex.getKind() != lltok::DwarfAttEncoding) 4245 return TokError("expected DWARF type attribute encoding"); 4246 4247 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 4248 if (!Encoding) 4249 return TokError("invalid DWARF type attribute encoding" + Twine(" '") + 4250 Lex.getStrVal() + "'"); 4251 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 4252 Result.assign(Encoding); 4253 Lex.Lex(); 4254 return false; 4255 } 4256 4257 /// DIFlagField 4258 /// ::= uint32 4259 /// ::= DIFlagVector 4260 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 4261 template <> 4262 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 4263 4264 // Parser for a single flag. 4265 auto parseFlag = [&](DINode::DIFlags &Val) { 4266 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4267 uint32_t TempVal = static_cast<uint32_t>(Val); 4268 bool Res = ParseUInt32(TempVal); 4269 Val = static_cast<DINode::DIFlags>(TempVal); 4270 return Res; 4271 } 4272 4273 if (Lex.getKind() != lltok::DIFlag) 4274 return TokError("expected debug info flag"); 4275 4276 Val = DINode::getFlag(Lex.getStrVal()); 4277 if (!Val) 4278 return TokError(Twine("invalid debug info flag flag '") + 4279 Lex.getStrVal() + "'"); 4280 Lex.Lex(); 4281 return false; 4282 }; 4283 4284 // Parse the flags and combine them together. 4285 DINode::DIFlags Combined = DINode::FlagZero; 4286 do { 4287 DINode::DIFlags Val; 4288 if (parseFlag(Val)) 4289 return true; 4290 Combined |= Val; 4291 } while (EatIfPresent(lltok::bar)); 4292 4293 Result.assign(Combined); 4294 return false; 4295 } 4296 4297 /// DISPFlagField 4298 /// ::= uint32 4299 /// ::= DISPFlagVector 4300 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32 4301 template <> 4302 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) { 4303 4304 // Parser for a single flag. 4305 auto parseFlag = [&](DISubprogram::DISPFlags &Val) { 4306 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4307 uint32_t TempVal = static_cast<uint32_t>(Val); 4308 bool Res = ParseUInt32(TempVal); 4309 Val = static_cast<DISubprogram::DISPFlags>(TempVal); 4310 return Res; 4311 } 4312 4313 if (Lex.getKind() != lltok::DISPFlag) 4314 return TokError("expected debug info flag"); 4315 4316 Val = DISubprogram::getFlag(Lex.getStrVal()); 4317 if (!Val) 4318 return TokError(Twine("invalid subprogram debug info flag '") + 4319 Lex.getStrVal() + "'"); 4320 Lex.Lex(); 4321 return false; 4322 }; 4323 4324 // Parse the flags and combine them together. 4325 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero; 4326 do { 4327 DISubprogram::DISPFlags Val; 4328 if (parseFlag(Val)) 4329 return true; 4330 Combined |= Val; 4331 } while (EatIfPresent(lltok::bar)); 4332 4333 Result.assign(Combined); 4334 return false; 4335 } 4336 4337 template <> 4338 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4339 MDSignedField &Result) { 4340 if (Lex.getKind() != lltok::APSInt) 4341 return TokError("expected signed integer"); 4342 4343 auto &S = Lex.getAPSIntVal(); 4344 if (S < Result.Min) 4345 return TokError("value for '" + Name + "' too small, limit is " + 4346 Twine(Result.Min)); 4347 if (S > Result.Max) 4348 return TokError("value for '" + Name + "' too large, limit is " + 4349 Twine(Result.Max)); 4350 Result.assign(S.getExtValue()); 4351 assert(Result.Val >= Result.Min && "Expected value in range"); 4352 assert(Result.Val <= Result.Max && "Expected value in range"); 4353 Lex.Lex(); 4354 return false; 4355 } 4356 4357 template <> 4358 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 4359 switch (Lex.getKind()) { 4360 default: 4361 return TokError("expected 'true' or 'false'"); 4362 case lltok::kw_true: 4363 Result.assign(true); 4364 break; 4365 case lltok::kw_false: 4366 Result.assign(false); 4367 break; 4368 } 4369 Lex.Lex(); 4370 return false; 4371 } 4372 4373 template <> 4374 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) { 4375 if (Lex.getKind() == lltok::kw_null) { 4376 if (!Result.AllowNull) 4377 return TokError("'" + Name + "' cannot be null"); 4378 Lex.Lex(); 4379 Result.assign(nullptr); 4380 return false; 4381 } 4382 4383 Metadata *MD; 4384 if (ParseMetadata(MD, nullptr)) 4385 return true; 4386 4387 Result.assign(MD); 4388 return false; 4389 } 4390 4391 template <> 4392 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4393 MDSignedOrMDField &Result) { 4394 // Try to parse a signed int. 4395 if (Lex.getKind() == lltok::APSInt) { 4396 MDSignedField Res = Result.A; 4397 if (!ParseMDField(Loc, Name, Res)) { 4398 Result.assign(Res); 4399 return false; 4400 } 4401 return true; 4402 } 4403 4404 // Otherwise, try to parse as an MDField. 4405 MDField Res = Result.B; 4406 if (!ParseMDField(Loc, Name, Res)) { 4407 Result.assign(Res); 4408 return false; 4409 } 4410 4411 return true; 4412 } 4413 4414 template <> 4415 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 4416 LocTy ValueLoc = Lex.getLoc(); 4417 std::string S; 4418 if (ParseStringConstant(S)) 4419 return true; 4420 4421 if (!Result.AllowEmpty && S.empty()) 4422 return Error(ValueLoc, "'" + Name + "' cannot be empty"); 4423 4424 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 4425 return false; 4426 } 4427 4428 template <> 4429 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 4430 SmallVector<Metadata *, 4> MDs; 4431 if (ParseMDNodeVector(MDs)) 4432 return true; 4433 4434 Result.assign(std::move(MDs)); 4435 return false; 4436 } 4437 4438 template <> 4439 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4440 ChecksumKindField &Result) { 4441 Optional<DIFile::ChecksumKind> CSKind = 4442 DIFile::getChecksumKind(Lex.getStrVal()); 4443 4444 if (Lex.getKind() != lltok::ChecksumKind || !CSKind) 4445 return TokError( 4446 "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'"); 4447 4448 Result.assign(*CSKind); 4449 Lex.Lex(); 4450 return false; 4451 } 4452 4453 } // end namespace llvm 4454 4455 template <class ParserTy> 4456 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) { 4457 do { 4458 if (Lex.getKind() != lltok::LabelStr) 4459 return TokError("expected field label here"); 4460 4461 if (parseField()) 4462 return true; 4463 } while (EatIfPresent(lltok::comma)); 4464 4465 return false; 4466 } 4467 4468 template <class ParserTy> 4469 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) { 4470 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4471 Lex.Lex(); 4472 4473 if (ParseToken(lltok::lparen, "expected '(' here")) 4474 return true; 4475 if (Lex.getKind() != lltok::rparen) 4476 if (ParseMDFieldsImplBody(parseField)) 4477 return true; 4478 4479 ClosingLoc = Lex.getLoc(); 4480 return ParseToken(lltok::rparen, "expected ')' here"); 4481 } 4482 4483 template <class FieldTy> 4484 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) { 4485 if (Result.Seen) 4486 return TokError("field '" + Name + "' cannot be specified more than once"); 4487 4488 LocTy Loc = Lex.getLoc(); 4489 Lex.Lex(); 4490 return ParseMDField(Loc, Name, Result); 4491 } 4492 4493 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 4494 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4495 4496 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 4497 if (Lex.getStrVal() == #CLASS) \ 4498 return Parse##CLASS(N, IsDistinct); 4499 #include "llvm/IR/Metadata.def" 4500 4501 return TokError("expected metadata type"); 4502 } 4503 4504 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 4505 #define NOP_FIELD(NAME, TYPE, INIT) 4506 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 4507 if (!NAME.Seen) \ 4508 return Error(ClosingLoc, "missing required field '" #NAME "'"); 4509 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 4510 if (Lex.getStrVal() == #NAME) \ 4511 return ParseMDField(#NAME, NAME); 4512 #define PARSE_MD_FIELDS() \ 4513 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 4514 do { \ 4515 LocTy ClosingLoc; \ 4516 if (ParseMDFieldsImpl([&]() -> bool { \ 4517 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 4518 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \ 4519 }, ClosingLoc)) \ 4520 return true; \ 4521 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 4522 } while (false) 4523 #define GET_OR_DISTINCT(CLASS, ARGS) \ 4524 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 4525 4526 /// ParseDILocationFields: 4527 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6, 4528 /// isImplicitCode: true) 4529 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) { 4530 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4531 OPTIONAL(line, LineField, ); \ 4532 OPTIONAL(column, ColumnField, ); \ 4533 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4534 OPTIONAL(inlinedAt, MDField, ); \ 4535 OPTIONAL(isImplicitCode, MDBoolField, (false)); 4536 PARSE_MD_FIELDS(); 4537 #undef VISIT_MD_FIELDS 4538 4539 Result = 4540 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val, 4541 inlinedAt.Val, isImplicitCode.Val)); 4542 return false; 4543 } 4544 4545 /// ParseGenericDINode: 4546 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 4547 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) { 4548 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4549 REQUIRED(tag, DwarfTagField, ); \ 4550 OPTIONAL(header, MDStringField, ); \ 4551 OPTIONAL(operands, MDFieldList, ); 4552 PARSE_MD_FIELDS(); 4553 #undef VISIT_MD_FIELDS 4554 4555 Result = GET_OR_DISTINCT(GenericDINode, 4556 (Context, tag.Val, header.Val, operands.Val)); 4557 return false; 4558 } 4559 4560 /// ParseDISubrange: 4561 /// ::= !DISubrange(count: 30, lowerBound: 2) 4562 /// ::= !DISubrange(count: !node, lowerBound: 2) 4563 /// ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3) 4564 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) { 4565 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4566 OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ 4567 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 4568 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 4569 OPTIONAL(stride, MDSignedOrMDField, ); 4570 PARSE_MD_FIELDS(); 4571 #undef VISIT_MD_FIELDS 4572 4573 Metadata *Count = nullptr; 4574 Metadata *LowerBound = nullptr; 4575 Metadata *UpperBound = nullptr; 4576 Metadata *Stride = nullptr; 4577 if (count.isMDSignedField()) 4578 Count = ConstantAsMetadata::get(ConstantInt::getSigned( 4579 Type::getInt64Ty(Context), count.getMDSignedValue())); 4580 else if (count.isMDField()) 4581 Count = count.getMDFieldValue(); 4582 4583 auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 4584 if (Bound.isMDSignedField()) 4585 return ConstantAsMetadata::get(ConstantInt::getSigned( 4586 Type::getInt64Ty(Context), Bound.getMDSignedValue())); 4587 if (Bound.isMDField()) 4588 return Bound.getMDFieldValue(); 4589 return nullptr; 4590 }; 4591 4592 LowerBound = convToMetadata(lowerBound); 4593 UpperBound = convToMetadata(upperBound); 4594 Stride = convToMetadata(stride); 4595 4596 Result = GET_OR_DISTINCT(DISubrange, 4597 (Context, Count, LowerBound, UpperBound, Stride)); 4598 4599 return false; 4600 } 4601 4602 /// ParseDIEnumerator: 4603 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind") 4604 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) { 4605 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4606 REQUIRED(name, MDStringField, ); \ 4607 REQUIRED(value, MDAPSIntField, ); \ 4608 OPTIONAL(isUnsigned, MDBoolField, (false)); 4609 PARSE_MD_FIELDS(); 4610 #undef VISIT_MD_FIELDS 4611 4612 if (isUnsigned.Val && value.Val.isNegative()) 4613 return TokError("unsigned enumerator with negative value"); 4614 4615 APSInt Value(value.Val); 4616 // Add a leading zero so that unsigned values with the msb set are not 4617 // mistaken for negative values when used for signed enumerators. 4618 if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet()) 4619 Value = Value.zext(Value.getBitWidth() + 1); 4620 4621 Result = 4622 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val)); 4623 4624 return false; 4625 } 4626 4627 /// ParseDIBasicType: 4628 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32, 4629 /// encoding: DW_ATE_encoding, flags: 0) 4630 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) { 4631 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4632 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 4633 OPTIONAL(name, MDStringField, ); \ 4634 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4635 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4636 OPTIONAL(encoding, DwarfAttEncodingField, ); \ 4637 OPTIONAL(flags, DIFlagField, ); 4638 PARSE_MD_FIELDS(); 4639 #undef VISIT_MD_FIELDS 4640 4641 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 4642 align.Val, encoding.Val, flags.Val)); 4643 return false; 4644 } 4645 4646 /// ParseDIStringType: 4647 /// ::= !DIStringType(name: "character(4)", size: 32, align: 32) 4648 bool LLParser::ParseDIStringType(MDNode *&Result, bool IsDistinct) { 4649 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4650 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type)); \ 4651 OPTIONAL(name, MDStringField, ); \ 4652 OPTIONAL(stringLength, MDField, ); \ 4653 OPTIONAL(stringLengthExpression, MDField, ); \ 4654 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4655 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4656 OPTIONAL(encoding, DwarfAttEncodingField, ); 4657 PARSE_MD_FIELDS(); 4658 #undef VISIT_MD_FIELDS 4659 4660 Result = GET_OR_DISTINCT(DIStringType, 4661 (Context, tag.Val, name.Val, stringLength.Val, 4662 stringLengthExpression.Val, size.Val, align.Val, 4663 encoding.Val)); 4664 return false; 4665 } 4666 4667 /// ParseDIDerivedType: 4668 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 4669 /// line: 7, scope: !1, baseType: !2, size: 32, 4670 /// align: 32, offset: 0, flags: 0, extraData: !3, 4671 /// dwarfAddressSpace: 3) 4672 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) { 4673 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4674 REQUIRED(tag, DwarfTagField, ); \ 4675 OPTIONAL(name, MDStringField, ); \ 4676 OPTIONAL(file, MDField, ); \ 4677 OPTIONAL(line, LineField, ); \ 4678 OPTIONAL(scope, MDField, ); \ 4679 REQUIRED(baseType, MDField, ); \ 4680 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4681 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4682 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4683 OPTIONAL(flags, DIFlagField, ); \ 4684 OPTIONAL(extraData, MDField, ); \ 4685 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); 4686 PARSE_MD_FIELDS(); 4687 #undef VISIT_MD_FIELDS 4688 4689 Optional<unsigned> DWARFAddressSpace; 4690 if (dwarfAddressSpace.Val != UINT32_MAX) 4691 DWARFAddressSpace = dwarfAddressSpace.Val; 4692 4693 Result = GET_OR_DISTINCT(DIDerivedType, 4694 (Context, tag.Val, name.Val, file.Val, line.Val, 4695 scope.Val, baseType.Val, size.Val, align.Val, 4696 offset.Val, DWARFAddressSpace, flags.Val, 4697 extraData.Val)); 4698 return false; 4699 } 4700 4701 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) { 4702 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4703 REQUIRED(tag, DwarfTagField, ); \ 4704 OPTIONAL(name, MDStringField, ); \ 4705 OPTIONAL(file, MDField, ); \ 4706 OPTIONAL(line, LineField, ); \ 4707 OPTIONAL(scope, MDField, ); \ 4708 OPTIONAL(baseType, MDField, ); \ 4709 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4710 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4711 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4712 OPTIONAL(flags, DIFlagField, ); \ 4713 OPTIONAL(elements, MDField, ); \ 4714 OPTIONAL(runtimeLang, DwarfLangField, ); \ 4715 OPTIONAL(vtableHolder, MDField, ); \ 4716 OPTIONAL(templateParams, MDField, ); \ 4717 OPTIONAL(identifier, MDStringField, ); \ 4718 OPTIONAL(discriminator, MDField, ); \ 4719 OPTIONAL(dataLocation, MDField, ); \ 4720 OPTIONAL(associated, MDField, ); \ 4721 OPTIONAL(allocated, MDField, ); \ 4722 OPTIONAL(rank, MDSignedOrMDField, ); 4723 PARSE_MD_FIELDS(); 4724 #undef VISIT_MD_FIELDS 4725 4726 Metadata *Rank = nullptr; 4727 if (rank.isMDSignedField()) 4728 Rank = ConstantAsMetadata::get(ConstantInt::getSigned( 4729 Type::getInt64Ty(Context), rank.getMDSignedValue())); 4730 else if (rank.isMDField()) 4731 Rank = rank.getMDFieldValue(); 4732 4733 // If this has an identifier try to build an ODR type. 4734 if (identifier.Val) 4735 if (auto *CT = DICompositeType::buildODRType( 4736 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 4737 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 4738 elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val, 4739 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, 4740 Rank)) { 4741 Result = CT; 4742 return false; 4743 } 4744 4745 // Create a new node, and save it in the context if it belongs in the type 4746 // map. 4747 Result = GET_OR_DISTINCT( 4748 DICompositeType, 4749 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 4750 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 4751 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val, 4752 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, 4753 Rank)); 4754 return false; 4755 } 4756 4757 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) { 4758 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4759 OPTIONAL(flags, DIFlagField, ); \ 4760 OPTIONAL(cc, DwarfCCField, ); \ 4761 REQUIRED(types, MDField, ); 4762 PARSE_MD_FIELDS(); 4763 #undef VISIT_MD_FIELDS 4764 4765 Result = GET_OR_DISTINCT(DISubroutineType, 4766 (Context, flags.Val, cc.Val, types.Val)); 4767 return false; 4768 } 4769 4770 /// ParseDIFileType: 4771 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir", 4772 /// checksumkind: CSK_MD5, 4773 /// checksum: "000102030405060708090a0b0c0d0e0f", 4774 /// source: "source file contents") 4775 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) { 4776 // The default constructed value for checksumkind is required, but will never 4777 // be used, as the parser checks if the field was actually Seen before using 4778 // the Val. 4779 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4780 REQUIRED(filename, MDStringField, ); \ 4781 REQUIRED(directory, MDStringField, ); \ 4782 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \ 4783 OPTIONAL(checksum, MDStringField, ); \ 4784 OPTIONAL(source, MDStringField, ); 4785 PARSE_MD_FIELDS(); 4786 #undef VISIT_MD_FIELDS 4787 4788 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum; 4789 if (checksumkind.Seen && checksum.Seen) 4790 OptChecksum.emplace(checksumkind.Val, checksum.Val); 4791 else if (checksumkind.Seen || checksum.Seen) 4792 return Lex.Error("'checksumkind' and 'checksum' must be provided together"); 4793 4794 Optional<MDString *> OptSource; 4795 if (source.Seen) 4796 OptSource = source.Val; 4797 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val, 4798 OptChecksum, OptSource)); 4799 return false; 4800 } 4801 4802 /// ParseDICompileUnit: 4803 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 4804 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 4805 /// splitDebugFilename: "abc.debug", 4806 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 4807 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd, 4808 /// sysroot: "/", sdk: "MacOSX.sdk") 4809 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) { 4810 if (!IsDistinct) 4811 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 4812 4813 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4814 REQUIRED(language, DwarfLangField, ); \ 4815 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 4816 OPTIONAL(producer, MDStringField, ); \ 4817 OPTIONAL(isOptimized, MDBoolField, ); \ 4818 OPTIONAL(flags, MDStringField, ); \ 4819 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 4820 OPTIONAL(splitDebugFilename, MDStringField, ); \ 4821 OPTIONAL(emissionKind, EmissionKindField, ); \ 4822 OPTIONAL(enums, MDField, ); \ 4823 OPTIONAL(retainedTypes, MDField, ); \ 4824 OPTIONAL(globals, MDField, ); \ 4825 OPTIONAL(imports, MDField, ); \ 4826 OPTIONAL(macros, MDField, ); \ 4827 OPTIONAL(dwoId, MDUnsignedField, ); \ 4828 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 4829 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 4830 OPTIONAL(nameTableKind, NameTableKindField, ); \ 4831 OPTIONAL(rangesBaseAddress, MDBoolField, = false); \ 4832 OPTIONAL(sysroot, MDStringField, ); \ 4833 OPTIONAL(sdk, MDStringField, ); 4834 PARSE_MD_FIELDS(); 4835 #undef VISIT_MD_FIELDS 4836 4837 Result = DICompileUnit::getDistinct( 4838 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 4839 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 4840 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 4841 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val, 4842 rangesBaseAddress.Val, sysroot.Val, sdk.Val); 4843 return false; 4844 } 4845 4846 /// ParseDISubprogram: 4847 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 4848 /// file: !1, line: 7, type: !2, isLocal: false, 4849 /// isDefinition: true, scopeLine: 8, containingType: !3, 4850 /// virtuality: DW_VIRTUALTIY_pure_virtual, 4851 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 4852 /// spFlags: 10, isOptimized: false, templateParams: !4, 4853 /// declaration: !5, retainedNodes: !6, thrownTypes: !7) 4854 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) { 4855 auto Loc = Lex.getLoc(); 4856 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4857 OPTIONAL(scope, MDField, ); \ 4858 OPTIONAL(name, MDStringField, ); \ 4859 OPTIONAL(linkageName, MDStringField, ); \ 4860 OPTIONAL(file, MDField, ); \ 4861 OPTIONAL(line, LineField, ); \ 4862 OPTIONAL(type, MDField, ); \ 4863 OPTIONAL(isLocal, MDBoolField, ); \ 4864 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4865 OPTIONAL(scopeLine, LineField, ); \ 4866 OPTIONAL(containingType, MDField, ); \ 4867 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 4868 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 4869 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 4870 OPTIONAL(flags, DIFlagField, ); \ 4871 OPTIONAL(spFlags, DISPFlagField, ); \ 4872 OPTIONAL(isOptimized, MDBoolField, ); \ 4873 OPTIONAL(unit, MDField, ); \ 4874 OPTIONAL(templateParams, MDField, ); \ 4875 OPTIONAL(declaration, MDField, ); \ 4876 OPTIONAL(retainedNodes, MDField, ); \ 4877 OPTIONAL(thrownTypes, MDField, ); 4878 PARSE_MD_FIELDS(); 4879 #undef VISIT_MD_FIELDS 4880 4881 // An explicit spFlags field takes precedence over individual fields in 4882 // older IR versions. 4883 DISubprogram::DISPFlags SPFlags = 4884 spFlags.Seen ? spFlags.Val 4885 : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val, 4886 isOptimized.Val, virtuality.Val); 4887 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct) 4888 return Lex.Error( 4889 Loc, 4890 "missing 'distinct', required for !DISubprogram that is a Definition"); 4891 Result = GET_OR_DISTINCT( 4892 DISubprogram, 4893 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 4894 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val, 4895 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val, 4896 declaration.Val, retainedNodes.Val, thrownTypes.Val)); 4897 return false; 4898 } 4899 4900 /// ParseDILexicalBlock: 4901 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 4902 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 4903 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4904 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4905 OPTIONAL(file, MDField, ); \ 4906 OPTIONAL(line, LineField, ); \ 4907 OPTIONAL(column, ColumnField, ); 4908 PARSE_MD_FIELDS(); 4909 #undef VISIT_MD_FIELDS 4910 4911 Result = GET_OR_DISTINCT( 4912 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 4913 return false; 4914 } 4915 4916 /// ParseDILexicalBlockFile: 4917 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 4918 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 4919 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4920 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4921 OPTIONAL(file, MDField, ); \ 4922 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 4923 PARSE_MD_FIELDS(); 4924 #undef VISIT_MD_FIELDS 4925 4926 Result = GET_OR_DISTINCT(DILexicalBlockFile, 4927 (Context, scope.Val, file.Val, discriminator.Val)); 4928 return false; 4929 } 4930 4931 /// ParseDICommonBlock: 4932 /// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9) 4933 bool LLParser::ParseDICommonBlock(MDNode *&Result, bool IsDistinct) { 4934 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4935 REQUIRED(scope, MDField, ); \ 4936 OPTIONAL(declaration, MDField, ); \ 4937 OPTIONAL(name, MDStringField, ); \ 4938 OPTIONAL(file, MDField, ); \ 4939 OPTIONAL(line, LineField, ); 4940 PARSE_MD_FIELDS(); 4941 #undef VISIT_MD_FIELDS 4942 4943 Result = GET_OR_DISTINCT(DICommonBlock, 4944 (Context, scope.Val, declaration.Val, name.Val, 4945 file.Val, line.Val)); 4946 return false; 4947 } 4948 4949 /// ParseDINamespace: 4950 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 4951 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) { 4952 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4953 REQUIRED(scope, MDField, ); \ 4954 OPTIONAL(name, MDStringField, ); \ 4955 OPTIONAL(exportSymbols, MDBoolField, ); 4956 PARSE_MD_FIELDS(); 4957 #undef VISIT_MD_FIELDS 4958 4959 Result = GET_OR_DISTINCT(DINamespace, 4960 (Context, scope.Val, name.Val, exportSymbols.Val)); 4961 return false; 4962 } 4963 4964 /// ParseDIMacro: 4965 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue") 4966 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) { 4967 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4968 REQUIRED(type, DwarfMacinfoTypeField, ); \ 4969 OPTIONAL(line, LineField, ); \ 4970 REQUIRED(name, MDStringField, ); \ 4971 OPTIONAL(value, MDStringField, ); 4972 PARSE_MD_FIELDS(); 4973 #undef VISIT_MD_FIELDS 4974 4975 Result = GET_OR_DISTINCT(DIMacro, 4976 (Context, type.Val, line.Val, name.Val, value.Val)); 4977 return false; 4978 } 4979 4980 /// ParseDIMacroFile: 4981 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 4982 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) { 4983 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4984 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 4985 OPTIONAL(line, LineField, ); \ 4986 REQUIRED(file, MDField, ); \ 4987 OPTIONAL(nodes, MDField, ); 4988 PARSE_MD_FIELDS(); 4989 #undef VISIT_MD_FIELDS 4990 4991 Result = GET_OR_DISTINCT(DIMacroFile, 4992 (Context, type.Val, line.Val, file.Val, nodes.Val)); 4993 return false; 4994 } 4995 4996 /// ParseDIModule: 4997 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: 4998 /// "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes", 4999 /// file: !1, line: 4) 5000 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) { 5001 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5002 REQUIRED(scope, MDField, ); \ 5003 REQUIRED(name, MDStringField, ); \ 5004 OPTIONAL(configMacros, MDStringField, ); \ 5005 OPTIONAL(includePath, MDStringField, ); \ 5006 OPTIONAL(apinotes, MDStringField, ); \ 5007 OPTIONAL(file, MDField, ); \ 5008 OPTIONAL(line, LineField, ); 5009 PARSE_MD_FIELDS(); 5010 #undef VISIT_MD_FIELDS 5011 5012 Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val, 5013 configMacros.Val, includePath.Val, 5014 apinotes.Val, line.Val)); 5015 return false; 5016 } 5017 5018 /// ParseDITemplateTypeParameter: 5019 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false) 5020 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 5021 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5022 OPTIONAL(name, MDStringField, ); \ 5023 REQUIRED(type, MDField, ); \ 5024 OPTIONAL(defaulted, MDBoolField, ); 5025 PARSE_MD_FIELDS(); 5026 #undef VISIT_MD_FIELDS 5027 5028 Result = GET_OR_DISTINCT(DITemplateTypeParameter, 5029 (Context, name.Val, type.Val, defaulted.Val)); 5030 return false; 5031 } 5032 5033 /// ParseDITemplateValueParameter: 5034 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 5035 /// name: "V", type: !1, defaulted: false, 5036 /// value: i32 7) 5037 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 5038 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5039 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 5040 OPTIONAL(name, MDStringField, ); \ 5041 OPTIONAL(type, MDField, ); \ 5042 OPTIONAL(defaulted, MDBoolField, ); \ 5043 REQUIRED(value, MDField, ); 5044 5045 PARSE_MD_FIELDS(); 5046 #undef VISIT_MD_FIELDS 5047 5048 Result = GET_OR_DISTINCT( 5049 DITemplateValueParameter, 5050 (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val)); 5051 return false; 5052 } 5053 5054 /// ParseDIGlobalVariable: 5055 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 5056 /// file: !1, line: 7, type: !2, isLocal: false, 5057 /// isDefinition: true, templateParams: !3, 5058 /// declaration: !4, align: 8) 5059 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 5060 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5061 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 5062 OPTIONAL(scope, MDField, ); \ 5063 OPTIONAL(linkageName, MDStringField, ); \ 5064 OPTIONAL(file, MDField, ); \ 5065 OPTIONAL(line, LineField, ); \ 5066 OPTIONAL(type, MDField, ); \ 5067 OPTIONAL(isLocal, MDBoolField, ); \ 5068 OPTIONAL(isDefinition, MDBoolField, (true)); \ 5069 OPTIONAL(templateParams, MDField, ); \ 5070 OPTIONAL(declaration, MDField, ); \ 5071 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 5072 PARSE_MD_FIELDS(); 5073 #undef VISIT_MD_FIELDS 5074 5075 Result = 5076 GET_OR_DISTINCT(DIGlobalVariable, 5077 (Context, scope.Val, name.Val, linkageName.Val, file.Val, 5078 line.Val, type.Val, isLocal.Val, isDefinition.Val, 5079 declaration.Val, templateParams.Val, align.Val)); 5080 return false; 5081 } 5082 5083 /// ParseDILocalVariable: 5084 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 5085 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 5086 /// align: 8) 5087 /// ::= !DILocalVariable(scope: !0, name: "foo", 5088 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 5089 /// align: 8) 5090 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) { 5091 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5092 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5093 OPTIONAL(name, MDStringField, ); \ 5094 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 5095 OPTIONAL(file, MDField, ); \ 5096 OPTIONAL(line, LineField, ); \ 5097 OPTIONAL(type, MDField, ); \ 5098 OPTIONAL(flags, DIFlagField, ); \ 5099 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 5100 PARSE_MD_FIELDS(); 5101 #undef VISIT_MD_FIELDS 5102 5103 Result = GET_OR_DISTINCT(DILocalVariable, 5104 (Context, scope.Val, name.Val, file.Val, line.Val, 5105 type.Val, arg.Val, flags.Val, align.Val)); 5106 return false; 5107 } 5108 5109 /// ParseDILabel: 5110 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7) 5111 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) { 5112 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5113 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5114 REQUIRED(name, MDStringField, ); \ 5115 REQUIRED(file, MDField, ); \ 5116 REQUIRED(line, LineField, ); 5117 PARSE_MD_FIELDS(); 5118 #undef VISIT_MD_FIELDS 5119 5120 Result = GET_OR_DISTINCT(DILabel, 5121 (Context, scope.Val, name.Val, file.Val, line.Val)); 5122 return false; 5123 } 5124 5125 /// ParseDIExpression: 5126 /// ::= !DIExpression(0, 7, -1) 5127 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) { 5128 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5129 Lex.Lex(); 5130 5131 if (ParseToken(lltok::lparen, "expected '(' here")) 5132 return true; 5133 5134 SmallVector<uint64_t, 8> Elements; 5135 if (Lex.getKind() != lltok::rparen) 5136 do { 5137 if (Lex.getKind() == lltok::DwarfOp) { 5138 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 5139 Lex.Lex(); 5140 Elements.push_back(Op); 5141 continue; 5142 } 5143 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 5144 } 5145 5146 if (Lex.getKind() == lltok::DwarfAttEncoding) { 5147 if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) { 5148 Lex.Lex(); 5149 Elements.push_back(Op); 5150 continue; 5151 } 5152 return TokError(Twine("invalid DWARF attribute encoding '") + Lex.getStrVal() + "'"); 5153 } 5154 5155 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 5156 return TokError("expected unsigned integer"); 5157 5158 auto &U = Lex.getAPSIntVal(); 5159 if (U.ugt(UINT64_MAX)) 5160 return TokError("element too large, limit is " + Twine(UINT64_MAX)); 5161 Elements.push_back(U.getZExtValue()); 5162 Lex.Lex(); 5163 } while (EatIfPresent(lltok::comma)); 5164 5165 if (ParseToken(lltok::rparen, "expected ')' here")) 5166 return true; 5167 5168 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 5169 return false; 5170 } 5171 5172 /// ParseDIGlobalVariableExpression: 5173 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 5174 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result, 5175 bool IsDistinct) { 5176 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5177 REQUIRED(var, MDField, ); \ 5178 REQUIRED(expr, MDField, ); 5179 PARSE_MD_FIELDS(); 5180 #undef VISIT_MD_FIELDS 5181 5182 Result = 5183 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 5184 return false; 5185 } 5186 5187 /// ParseDIObjCProperty: 5188 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 5189 /// getter: "getFoo", attributes: 7, type: !2) 5190 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 5191 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5192 OPTIONAL(name, MDStringField, ); \ 5193 OPTIONAL(file, MDField, ); \ 5194 OPTIONAL(line, LineField, ); \ 5195 OPTIONAL(setter, MDStringField, ); \ 5196 OPTIONAL(getter, MDStringField, ); \ 5197 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 5198 OPTIONAL(type, MDField, ); 5199 PARSE_MD_FIELDS(); 5200 #undef VISIT_MD_FIELDS 5201 5202 Result = GET_OR_DISTINCT(DIObjCProperty, 5203 (Context, name.Val, file.Val, line.Val, setter.Val, 5204 getter.Val, attributes.Val, type.Val)); 5205 return false; 5206 } 5207 5208 /// ParseDIImportedEntity: 5209 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 5210 /// line: 7, name: "foo") 5211 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 5212 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5213 REQUIRED(tag, DwarfTagField, ); \ 5214 REQUIRED(scope, MDField, ); \ 5215 OPTIONAL(entity, MDField, ); \ 5216 OPTIONAL(file, MDField, ); \ 5217 OPTIONAL(line, LineField, ); \ 5218 OPTIONAL(name, MDStringField, ); 5219 PARSE_MD_FIELDS(); 5220 #undef VISIT_MD_FIELDS 5221 5222 Result = GET_OR_DISTINCT( 5223 DIImportedEntity, 5224 (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val)); 5225 return false; 5226 } 5227 5228 #undef PARSE_MD_FIELD 5229 #undef NOP_FIELD 5230 #undef REQUIRE_FIELD 5231 #undef DECLARE_FIELD 5232 5233 /// ParseMetadataAsValue 5234 /// ::= metadata i32 %local 5235 /// ::= metadata i32 @global 5236 /// ::= metadata i32 7 5237 /// ::= metadata !0 5238 /// ::= metadata !{...} 5239 /// ::= metadata !"string" 5240 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 5241 // Note: the type 'metadata' has already been parsed. 5242 Metadata *MD; 5243 if (ParseMetadata(MD, &PFS)) 5244 return true; 5245 5246 V = MetadataAsValue::get(Context, MD); 5247 return false; 5248 } 5249 5250 /// ParseValueAsMetadata 5251 /// ::= i32 %local 5252 /// ::= i32 @global 5253 /// ::= i32 7 5254 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 5255 PerFunctionState *PFS) { 5256 Type *Ty; 5257 LocTy Loc; 5258 if (ParseType(Ty, TypeMsg, Loc)) 5259 return true; 5260 if (Ty->isMetadataTy()) 5261 return Error(Loc, "invalid metadata-value-metadata roundtrip"); 5262 5263 Value *V; 5264 if (ParseValue(Ty, V, PFS)) 5265 return true; 5266 5267 MD = ValueAsMetadata::get(V); 5268 return false; 5269 } 5270 5271 /// ParseMetadata 5272 /// ::= i32 %local 5273 /// ::= i32 @global 5274 /// ::= i32 7 5275 /// ::= !42 5276 /// ::= !{...} 5277 /// ::= !"string" 5278 /// ::= !DILocation(...) 5279 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) { 5280 if (Lex.getKind() == lltok::MetadataVar) { 5281 MDNode *N; 5282 if (ParseSpecializedMDNode(N)) 5283 return true; 5284 MD = N; 5285 return false; 5286 } 5287 5288 // ValueAsMetadata: 5289 // <type> <value> 5290 if (Lex.getKind() != lltok::exclaim) 5291 return ParseValueAsMetadata(MD, "expected metadata operand", PFS); 5292 5293 // '!'. 5294 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 5295 Lex.Lex(); 5296 5297 // MDString: 5298 // ::= '!' STRINGCONSTANT 5299 if (Lex.getKind() == lltok::StringConstant) { 5300 MDString *S; 5301 if (ParseMDString(S)) 5302 return true; 5303 MD = S; 5304 return false; 5305 } 5306 5307 // MDNode: 5308 // !{ ... } 5309 // !7 5310 MDNode *N; 5311 if (ParseMDNodeTail(N)) 5312 return true; 5313 MD = N; 5314 return false; 5315 } 5316 5317 //===----------------------------------------------------------------------===// 5318 // Function Parsing. 5319 //===----------------------------------------------------------------------===// 5320 5321 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 5322 PerFunctionState *PFS, bool IsCall) { 5323 if (Ty->isFunctionTy()) 5324 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 5325 5326 switch (ID.Kind) { 5327 case ValID::t_LocalID: 5328 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 5329 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5330 return V == nullptr; 5331 case ValID::t_LocalName: 5332 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 5333 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall); 5334 return V == nullptr; 5335 case ValID::t_InlineAsm: { 5336 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 5337 return Error(ID.Loc, "invalid type for inline asm constraint string"); 5338 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, 5339 (ID.UIntVal >> 1) & 1, 5340 (InlineAsm::AsmDialect(ID.UIntVal >> 2))); 5341 return false; 5342 } 5343 case ValID::t_GlobalName: 5344 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall); 5345 return V == nullptr; 5346 case ValID::t_GlobalID: 5347 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5348 return V == nullptr; 5349 case ValID::t_APSInt: 5350 if (!Ty->isIntegerTy()) 5351 return Error(ID.Loc, "integer constant must have integer type"); 5352 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 5353 V = ConstantInt::get(Context, ID.APSIntVal); 5354 return false; 5355 case ValID::t_APFloat: 5356 if (!Ty->isFloatingPointTy() || 5357 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 5358 return Error(ID.Loc, "floating point constant invalid for type"); 5359 5360 // The lexer has no type info, so builds all half, bfloat, float, and double 5361 // FP constants as double. Fix this here. Long double does not need this. 5362 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 5363 // Check for signaling before potentially converting and losing that info. 5364 bool IsSNAN = ID.APFloatVal.isSignaling(); 5365 bool Ignored; 5366 if (Ty->isHalfTy()) 5367 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 5368 &Ignored); 5369 else if (Ty->isBFloatTy()) 5370 ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven, 5371 &Ignored); 5372 else if (Ty->isFloatTy()) 5373 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 5374 &Ignored); 5375 if (IsSNAN) { 5376 // The convert call above may quiet an SNaN, so manufacture another 5377 // SNaN. The bitcast works because the payload (significand) parameter 5378 // is truncated to fit. 5379 APInt Payload = ID.APFloatVal.bitcastToAPInt(); 5380 ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(), 5381 ID.APFloatVal.isNegative(), &Payload); 5382 } 5383 } 5384 V = ConstantFP::get(Context, ID.APFloatVal); 5385 5386 if (V->getType() != Ty) 5387 return Error(ID.Loc, "floating point constant does not have type '" + 5388 getTypeString(Ty) + "'"); 5389 5390 return false; 5391 case ValID::t_Null: 5392 if (!Ty->isPointerTy()) 5393 return Error(ID.Loc, "null must be a pointer type"); 5394 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 5395 return false; 5396 case ValID::t_Undef: 5397 // FIXME: LabelTy should not be a first-class type. 5398 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5399 return Error(ID.Loc, "invalid type for undef constant"); 5400 V = UndefValue::get(Ty); 5401 return false; 5402 case ValID::t_EmptyArray: 5403 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 5404 return Error(ID.Loc, "invalid empty array initializer"); 5405 V = UndefValue::get(Ty); 5406 return false; 5407 case ValID::t_Zero: 5408 // FIXME: LabelTy should not be a first-class type. 5409 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5410 return Error(ID.Loc, "invalid type for null constant"); 5411 V = Constant::getNullValue(Ty); 5412 return false; 5413 case ValID::t_None: 5414 if (!Ty->isTokenTy()) 5415 return Error(ID.Loc, "invalid type for none constant"); 5416 V = Constant::getNullValue(Ty); 5417 return false; 5418 case ValID::t_Constant: 5419 if (ID.ConstantVal->getType() != Ty) 5420 return Error(ID.Loc, "constant expression type mismatch"); 5421 5422 V = ID.ConstantVal; 5423 return false; 5424 case ValID::t_ConstantStruct: 5425 case ValID::t_PackedConstantStruct: 5426 if (StructType *ST = dyn_cast<StructType>(Ty)) { 5427 if (ST->getNumElements() != ID.UIntVal) 5428 return Error(ID.Loc, 5429 "initializer with struct type has wrong # elements"); 5430 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 5431 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 5432 5433 // Verify that the elements are compatible with the structtype. 5434 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 5435 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 5436 return Error(ID.Loc, "element " + Twine(i) + 5437 " of struct initializer doesn't match struct element type"); 5438 5439 V = ConstantStruct::get( 5440 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 5441 } else 5442 return Error(ID.Loc, "constant expression type mismatch"); 5443 return false; 5444 } 5445 llvm_unreachable("Invalid ValID"); 5446 } 5447 5448 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 5449 C = nullptr; 5450 ValID ID; 5451 auto Loc = Lex.getLoc(); 5452 if (ParseValID(ID, /*PFS=*/nullptr)) 5453 return true; 5454 switch (ID.Kind) { 5455 case ValID::t_APSInt: 5456 case ValID::t_APFloat: 5457 case ValID::t_Undef: 5458 case ValID::t_Constant: 5459 case ValID::t_ConstantStruct: 5460 case ValID::t_PackedConstantStruct: { 5461 Value *V; 5462 if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false)) 5463 return true; 5464 assert(isa<Constant>(V) && "Expected a constant value"); 5465 C = cast<Constant>(V); 5466 return false; 5467 } 5468 case ValID::t_Null: 5469 C = Constant::getNullValue(Ty); 5470 return false; 5471 default: 5472 return Error(Loc, "expected a constant value"); 5473 } 5474 } 5475 5476 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 5477 V = nullptr; 5478 ValID ID; 5479 return ParseValID(ID, PFS) || 5480 ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false); 5481 } 5482 5483 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 5484 Type *Ty = nullptr; 5485 return ParseType(Ty) || 5486 ParseValue(Ty, V, PFS); 5487 } 5488 5489 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 5490 PerFunctionState &PFS) { 5491 Value *V; 5492 Loc = Lex.getLoc(); 5493 if (ParseTypeAndValue(V, PFS)) return true; 5494 if (!isa<BasicBlock>(V)) 5495 return Error(Loc, "expected a basic block"); 5496 BB = cast<BasicBlock>(V); 5497 return false; 5498 } 5499 5500 /// FunctionHeader 5501 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 5502 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 5503 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign 5504 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 5505 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 5506 // Parse the linkage. 5507 LocTy LinkageLoc = Lex.getLoc(); 5508 unsigned Linkage; 5509 unsigned Visibility; 5510 unsigned DLLStorageClass; 5511 bool DSOLocal; 5512 AttrBuilder RetAttrs; 5513 unsigned CC; 5514 bool HasLinkage; 5515 Type *RetType = nullptr; 5516 LocTy RetTypeLoc = Lex.getLoc(); 5517 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 5518 DSOLocal) || 5519 ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5520 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 5521 return true; 5522 5523 // Verify that the linkage is ok. 5524 switch ((GlobalValue::LinkageTypes)Linkage) { 5525 case GlobalValue::ExternalLinkage: 5526 break; // always ok. 5527 case GlobalValue::ExternalWeakLinkage: 5528 if (isDefine) 5529 return Error(LinkageLoc, "invalid linkage for function definition"); 5530 break; 5531 case GlobalValue::PrivateLinkage: 5532 case GlobalValue::InternalLinkage: 5533 case GlobalValue::AvailableExternallyLinkage: 5534 case GlobalValue::LinkOnceAnyLinkage: 5535 case GlobalValue::LinkOnceODRLinkage: 5536 case GlobalValue::WeakAnyLinkage: 5537 case GlobalValue::WeakODRLinkage: 5538 if (!isDefine) 5539 return Error(LinkageLoc, "invalid linkage for function declaration"); 5540 break; 5541 case GlobalValue::AppendingLinkage: 5542 case GlobalValue::CommonLinkage: 5543 return Error(LinkageLoc, "invalid function linkage type"); 5544 } 5545 5546 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 5547 return Error(LinkageLoc, 5548 "symbol with local linkage must have default visibility"); 5549 5550 if (!FunctionType::isValidReturnType(RetType)) 5551 return Error(RetTypeLoc, "invalid function return type"); 5552 5553 LocTy NameLoc = Lex.getLoc(); 5554 5555 std::string FunctionName; 5556 if (Lex.getKind() == lltok::GlobalVar) { 5557 FunctionName = Lex.getStrVal(); 5558 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 5559 unsigned NameID = Lex.getUIntVal(); 5560 5561 if (NameID != NumberedVals.size()) 5562 return TokError("function expected to be numbered '%" + 5563 Twine(NumberedVals.size()) + "'"); 5564 } else { 5565 return TokError("expected function name"); 5566 } 5567 5568 Lex.Lex(); 5569 5570 if (Lex.getKind() != lltok::lparen) 5571 return TokError("expected '(' in function argument list"); 5572 5573 SmallVector<ArgInfo, 8> ArgList; 5574 bool isVarArg; 5575 AttrBuilder FuncAttrs; 5576 std::vector<unsigned> FwdRefAttrGrps; 5577 LocTy BuiltinLoc; 5578 std::string Section; 5579 std::string Partition; 5580 MaybeAlign Alignment; 5581 std::string GC; 5582 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 5583 unsigned AddrSpace = 0; 5584 Constant *Prefix = nullptr; 5585 Constant *Prologue = nullptr; 5586 Constant *PersonalityFn = nullptr; 5587 Comdat *C; 5588 5589 if (ParseArgumentList(ArgList, isVarArg) || 5590 ParseOptionalUnnamedAddr(UnnamedAddr) || 5591 ParseOptionalProgramAddrSpace(AddrSpace) || 5592 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 5593 BuiltinLoc) || 5594 (EatIfPresent(lltok::kw_section) && 5595 ParseStringConstant(Section)) || 5596 (EatIfPresent(lltok::kw_partition) && 5597 ParseStringConstant(Partition)) || 5598 parseOptionalComdat(FunctionName, C) || 5599 ParseOptionalAlignment(Alignment) || 5600 (EatIfPresent(lltok::kw_gc) && 5601 ParseStringConstant(GC)) || 5602 (EatIfPresent(lltok::kw_prefix) && 5603 ParseGlobalTypeAndValue(Prefix)) || 5604 (EatIfPresent(lltok::kw_prologue) && 5605 ParseGlobalTypeAndValue(Prologue)) || 5606 (EatIfPresent(lltok::kw_personality) && 5607 ParseGlobalTypeAndValue(PersonalityFn))) 5608 return true; 5609 5610 if (FuncAttrs.contains(Attribute::Builtin)) 5611 return Error(BuiltinLoc, "'builtin' attribute not valid on function"); 5612 5613 // If the alignment was parsed as an attribute, move to the alignment field. 5614 if (FuncAttrs.hasAlignmentAttr()) { 5615 Alignment = FuncAttrs.getAlignment(); 5616 FuncAttrs.removeAttribute(Attribute::Alignment); 5617 } 5618 5619 // Okay, if we got here, the function is syntactically valid. Convert types 5620 // and do semantic checks. 5621 std::vector<Type*> ParamTypeList; 5622 SmallVector<AttributeSet, 8> Attrs; 5623 5624 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5625 ParamTypeList.push_back(ArgList[i].Ty); 5626 Attrs.push_back(ArgList[i].Attrs); 5627 } 5628 5629 AttributeList PAL = 5630 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 5631 AttributeSet::get(Context, RetAttrs), Attrs); 5632 5633 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 5634 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 5635 5636 FunctionType *FT = 5637 FunctionType::get(RetType, ParamTypeList, isVarArg); 5638 PointerType *PFT = PointerType::get(FT, AddrSpace); 5639 5640 Fn = nullptr; 5641 if (!FunctionName.empty()) { 5642 // If this was a definition of a forward reference, remove the definition 5643 // from the forward reference table and fill in the forward ref. 5644 auto FRVI = ForwardRefVals.find(FunctionName); 5645 if (FRVI != ForwardRefVals.end()) { 5646 Fn = M->getFunction(FunctionName); 5647 if (!Fn) 5648 return Error(FRVI->second.second, "invalid forward reference to " 5649 "function as global value!"); 5650 if (Fn->getType() != PFT) 5651 return Error(FRVI->second.second, "invalid forward reference to " 5652 "function '" + FunctionName + "' with wrong type: " 5653 "expected '" + getTypeString(PFT) + "' but was '" + 5654 getTypeString(Fn->getType()) + "'"); 5655 ForwardRefVals.erase(FRVI); 5656 } else if ((Fn = M->getFunction(FunctionName))) { 5657 // Reject redefinitions. 5658 return Error(NameLoc, "invalid redefinition of function '" + 5659 FunctionName + "'"); 5660 } else if (M->getNamedValue(FunctionName)) { 5661 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 5662 } 5663 5664 } else { 5665 // If this is a definition of a forward referenced function, make sure the 5666 // types agree. 5667 auto I = ForwardRefValIDs.find(NumberedVals.size()); 5668 if (I != ForwardRefValIDs.end()) { 5669 Fn = cast<Function>(I->second.first); 5670 if (Fn->getType() != PFT) 5671 return Error(NameLoc, "type of definition and forward reference of '@" + 5672 Twine(NumberedVals.size()) + "' disagree: " 5673 "expected '" + getTypeString(PFT) + "' but was '" + 5674 getTypeString(Fn->getType()) + "'"); 5675 ForwardRefValIDs.erase(I); 5676 } 5677 } 5678 5679 if (!Fn) 5680 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace, 5681 FunctionName, M); 5682 else // Move the forward-reference to the correct spot in the module. 5683 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 5684 5685 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS"); 5686 5687 if (FunctionName.empty()) 5688 NumberedVals.push_back(Fn); 5689 5690 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 5691 maybeSetDSOLocal(DSOLocal, *Fn); 5692 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 5693 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 5694 Fn->setCallingConv(CC); 5695 Fn->setAttributes(PAL); 5696 Fn->setUnnamedAddr(UnnamedAddr); 5697 Fn->setAlignment(MaybeAlign(Alignment)); 5698 Fn->setSection(Section); 5699 Fn->setPartition(Partition); 5700 Fn->setComdat(C); 5701 Fn->setPersonalityFn(PersonalityFn); 5702 if (!GC.empty()) Fn->setGC(GC); 5703 Fn->setPrefixData(Prefix); 5704 Fn->setPrologueData(Prologue); 5705 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 5706 5707 // Add all of the arguments we parsed to the function. 5708 Function::arg_iterator ArgIt = Fn->arg_begin(); 5709 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 5710 // If the argument has a name, insert it into the argument symbol table. 5711 if (ArgList[i].Name.empty()) continue; 5712 5713 // Set the name, if it conflicted, it will be auto-renamed. 5714 ArgIt->setName(ArgList[i].Name); 5715 5716 if (ArgIt->getName() != ArgList[i].Name) 5717 return Error(ArgList[i].Loc, "redefinition of argument '%" + 5718 ArgList[i].Name + "'"); 5719 } 5720 5721 if (isDefine) 5722 return false; 5723 5724 // Check the declaration has no block address forward references. 5725 ValID ID; 5726 if (FunctionName.empty()) { 5727 ID.Kind = ValID::t_GlobalID; 5728 ID.UIntVal = NumberedVals.size() - 1; 5729 } else { 5730 ID.Kind = ValID::t_GlobalName; 5731 ID.StrVal = FunctionName; 5732 } 5733 auto Blocks = ForwardRefBlockAddresses.find(ID); 5734 if (Blocks != ForwardRefBlockAddresses.end()) 5735 return Error(Blocks->first.Loc, 5736 "cannot take blockaddress inside a declaration"); 5737 return false; 5738 } 5739 5740 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 5741 ValID ID; 5742 if (FunctionNumber == -1) { 5743 ID.Kind = ValID::t_GlobalName; 5744 ID.StrVal = std::string(F.getName()); 5745 } else { 5746 ID.Kind = ValID::t_GlobalID; 5747 ID.UIntVal = FunctionNumber; 5748 } 5749 5750 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 5751 if (Blocks == P.ForwardRefBlockAddresses.end()) 5752 return false; 5753 5754 for (const auto &I : Blocks->second) { 5755 const ValID &BBID = I.first; 5756 GlobalValue *GV = I.second; 5757 5758 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 5759 "Expected local id or name"); 5760 BasicBlock *BB; 5761 if (BBID.Kind == ValID::t_LocalName) 5762 BB = GetBB(BBID.StrVal, BBID.Loc); 5763 else 5764 BB = GetBB(BBID.UIntVal, BBID.Loc); 5765 if (!BB) 5766 return P.Error(BBID.Loc, "referenced value is not a basic block"); 5767 5768 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 5769 GV->eraseFromParent(); 5770 } 5771 5772 P.ForwardRefBlockAddresses.erase(Blocks); 5773 return false; 5774 } 5775 5776 /// ParseFunctionBody 5777 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 5778 bool LLParser::ParseFunctionBody(Function &Fn) { 5779 if (Lex.getKind() != lltok::lbrace) 5780 return TokError("expected '{' in function body"); 5781 Lex.Lex(); // eat the {. 5782 5783 int FunctionNumber = -1; 5784 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 5785 5786 PerFunctionState PFS(*this, Fn, FunctionNumber); 5787 5788 // Resolve block addresses and allow basic blocks to be forward-declared 5789 // within this function. 5790 if (PFS.resolveForwardRefBlockAddresses()) 5791 return true; 5792 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 5793 5794 // We need at least one basic block. 5795 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 5796 return TokError("function body requires at least one basic block"); 5797 5798 while (Lex.getKind() != lltok::rbrace && 5799 Lex.getKind() != lltok::kw_uselistorder) 5800 if (ParseBasicBlock(PFS)) return true; 5801 5802 while (Lex.getKind() != lltok::rbrace) 5803 if (ParseUseListOrder(&PFS)) 5804 return true; 5805 5806 // Eat the }. 5807 Lex.Lex(); 5808 5809 // Verify function is ok. 5810 return PFS.FinishFunction(); 5811 } 5812 5813 /// ParseBasicBlock 5814 /// ::= (LabelStr|LabelID)? Instruction* 5815 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 5816 // If this basic block starts out with a name, remember it. 5817 std::string Name; 5818 int NameID = -1; 5819 LocTy NameLoc = Lex.getLoc(); 5820 if (Lex.getKind() == lltok::LabelStr) { 5821 Name = Lex.getStrVal(); 5822 Lex.Lex(); 5823 } else if (Lex.getKind() == lltok::LabelID) { 5824 NameID = Lex.getUIntVal(); 5825 Lex.Lex(); 5826 } 5827 5828 BasicBlock *BB = PFS.DefineBB(Name, NameID, NameLoc); 5829 if (!BB) 5830 return true; 5831 5832 std::string NameStr; 5833 5834 // Parse the instructions in this block until we get a terminator. 5835 Instruction *Inst; 5836 do { 5837 // This instruction may have three possibilities for a name: a) none 5838 // specified, b) name specified "%foo =", c) number specified: "%4 =". 5839 LocTy NameLoc = Lex.getLoc(); 5840 int NameID = -1; 5841 NameStr = ""; 5842 5843 if (Lex.getKind() == lltok::LocalVarID) { 5844 NameID = Lex.getUIntVal(); 5845 Lex.Lex(); 5846 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 5847 return true; 5848 } else if (Lex.getKind() == lltok::LocalVar) { 5849 NameStr = Lex.getStrVal(); 5850 Lex.Lex(); 5851 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 5852 return true; 5853 } 5854 5855 switch (ParseInstruction(Inst, BB, PFS)) { 5856 default: llvm_unreachable("Unknown ParseInstruction result!"); 5857 case InstError: return true; 5858 case InstNormal: 5859 BB->getInstList().push_back(Inst); 5860 5861 // With a normal result, we check to see if the instruction is followed by 5862 // a comma and metadata. 5863 if (EatIfPresent(lltok::comma)) 5864 if (ParseInstructionMetadata(*Inst)) 5865 return true; 5866 break; 5867 case InstExtraComma: 5868 BB->getInstList().push_back(Inst); 5869 5870 // If the instruction parser ate an extra comma at the end of it, it 5871 // *must* be followed by metadata. 5872 if (ParseInstructionMetadata(*Inst)) 5873 return true; 5874 break; 5875 } 5876 5877 // Set the name on the instruction. 5878 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 5879 } while (!Inst->isTerminator()); 5880 5881 return false; 5882 } 5883 5884 //===----------------------------------------------------------------------===// 5885 // Instruction Parsing. 5886 //===----------------------------------------------------------------------===// 5887 5888 /// ParseInstruction - Parse one of the many different instructions. 5889 /// 5890 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 5891 PerFunctionState &PFS) { 5892 lltok::Kind Token = Lex.getKind(); 5893 if (Token == lltok::Eof) 5894 return TokError("found end of file when expecting more instructions"); 5895 LocTy Loc = Lex.getLoc(); 5896 unsigned KeywordVal = Lex.getUIntVal(); 5897 Lex.Lex(); // Eat the keyword. 5898 5899 switch (Token) { 5900 default: return Error(Loc, "expected instruction opcode"); 5901 // Terminator Instructions. 5902 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 5903 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 5904 case lltok::kw_br: return ParseBr(Inst, PFS); 5905 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 5906 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 5907 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 5908 case lltok::kw_resume: return ParseResume(Inst, PFS); 5909 case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS); 5910 case lltok::kw_catchret: return ParseCatchRet(Inst, PFS); 5911 case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS); 5912 case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS); 5913 case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS); 5914 case lltok::kw_callbr: return ParseCallBr(Inst, PFS); 5915 // Unary Operators. 5916 case lltok::kw_fneg: { 5917 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5918 int Res = ParseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/true); 5919 if (Res != 0) 5920 return Res; 5921 if (FMF.any()) 5922 Inst->setFastMathFlags(FMF); 5923 return false; 5924 } 5925 // Binary Operators. 5926 case lltok::kw_add: 5927 case lltok::kw_sub: 5928 case lltok::kw_mul: 5929 case lltok::kw_shl: { 5930 bool NUW = EatIfPresent(lltok::kw_nuw); 5931 bool NSW = EatIfPresent(lltok::kw_nsw); 5932 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 5933 5934 if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true; 5935 5936 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 5937 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 5938 return false; 5939 } 5940 case lltok::kw_fadd: 5941 case lltok::kw_fsub: 5942 case lltok::kw_fmul: 5943 case lltok::kw_fdiv: 5944 case lltok::kw_frem: { 5945 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5946 int Res = ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/true); 5947 if (Res != 0) 5948 return Res; 5949 if (FMF.any()) 5950 Inst->setFastMathFlags(FMF); 5951 return 0; 5952 } 5953 5954 case lltok::kw_sdiv: 5955 case lltok::kw_udiv: 5956 case lltok::kw_lshr: 5957 case lltok::kw_ashr: { 5958 bool Exact = EatIfPresent(lltok::kw_exact); 5959 5960 if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true; 5961 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 5962 return false; 5963 } 5964 5965 case lltok::kw_urem: 5966 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 5967 /*IsFP*/false); 5968 case lltok::kw_and: 5969 case lltok::kw_or: 5970 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 5971 case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal); 5972 case lltok::kw_fcmp: { 5973 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5974 int Res = ParseCompare(Inst, PFS, KeywordVal); 5975 if (Res != 0) 5976 return Res; 5977 if (FMF.any()) 5978 Inst->setFastMathFlags(FMF); 5979 return 0; 5980 } 5981 5982 // Casts. 5983 case lltok::kw_trunc: 5984 case lltok::kw_zext: 5985 case lltok::kw_sext: 5986 case lltok::kw_fptrunc: 5987 case lltok::kw_fpext: 5988 case lltok::kw_bitcast: 5989 case lltok::kw_addrspacecast: 5990 case lltok::kw_uitofp: 5991 case lltok::kw_sitofp: 5992 case lltok::kw_fptoui: 5993 case lltok::kw_fptosi: 5994 case lltok::kw_inttoptr: 5995 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 5996 // Other. 5997 case lltok::kw_select: { 5998 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5999 int Res = ParseSelect(Inst, PFS); 6000 if (Res != 0) 6001 return Res; 6002 if (FMF.any()) { 6003 if (!isa<FPMathOperator>(Inst)) 6004 return Error(Loc, "fast-math-flags specified for select without " 6005 "floating-point scalar or vector return type"); 6006 Inst->setFastMathFlags(FMF); 6007 } 6008 return 0; 6009 } 6010 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 6011 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 6012 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 6013 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 6014 case lltok::kw_phi: { 6015 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6016 int Res = ParsePHI(Inst, PFS); 6017 if (Res != 0) 6018 return Res; 6019 if (FMF.any()) { 6020 if (!isa<FPMathOperator>(Inst)) 6021 return Error(Loc, "fast-math-flags specified for phi without " 6022 "floating-point scalar or vector return type"); 6023 Inst->setFastMathFlags(FMF); 6024 } 6025 return 0; 6026 } 6027 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 6028 case lltok::kw_freeze: return ParseFreeze(Inst, PFS); 6029 // Call. 6030 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None); 6031 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail); 6032 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail); 6033 case lltok::kw_notail: return ParseCall(Inst, PFS, CallInst::TCK_NoTail); 6034 // Memory. 6035 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 6036 case lltok::kw_load: return ParseLoad(Inst, PFS); 6037 case lltok::kw_store: return ParseStore(Inst, PFS); 6038 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 6039 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 6040 case lltok::kw_fence: return ParseFence(Inst, PFS); 6041 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 6042 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 6043 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 6044 } 6045 } 6046 6047 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 6048 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 6049 if (Opc == Instruction::FCmp) { 6050 switch (Lex.getKind()) { 6051 default: return TokError("expected fcmp predicate (e.g. 'oeq')"); 6052 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 6053 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 6054 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 6055 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 6056 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 6057 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 6058 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 6059 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 6060 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 6061 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 6062 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 6063 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 6064 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 6065 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 6066 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 6067 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 6068 } 6069 } else { 6070 switch (Lex.getKind()) { 6071 default: return TokError("expected icmp predicate (e.g. 'eq')"); 6072 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 6073 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 6074 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 6075 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 6076 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 6077 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 6078 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 6079 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 6080 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 6081 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 6082 } 6083 } 6084 Lex.Lex(); 6085 return false; 6086 } 6087 6088 //===----------------------------------------------------------------------===// 6089 // Terminator Instructions. 6090 //===----------------------------------------------------------------------===// 6091 6092 /// ParseRet - Parse a return instruction. 6093 /// ::= 'ret' void (',' !dbg, !1)* 6094 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 6095 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 6096 PerFunctionState &PFS) { 6097 SMLoc TypeLoc = Lex.getLoc(); 6098 Type *Ty = nullptr; 6099 if (ParseType(Ty, true /*void allowed*/)) return true; 6100 6101 Type *ResType = PFS.getFunction().getReturnType(); 6102 6103 if (Ty->isVoidTy()) { 6104 if (!ResType->isVoidTy()) 6105 return Error(TypeLoc, "value doesn't match function result type '" + 6106 getTypeString(ResType) + "'"); 6107 6108 Inst = ReturnInst::Create(Context); 6109 return false; 6110 } 6111 6112 Value *RV; 6113 if (ParseValue(Ty, RV, PFS)) return true; 6114 6115 if (ResType != RV->getType()) 6116 return Error(TypeLoc, "value doesn't match function result type '" + 6117 getTypeString(ResType) + "'"); 6118 6119 Inst = ReturnInst::Create(Context, RV); 6120 return false; 6121 } 6122 6123 /// ParseBr 6124 /// ::= 'br' TypeAndValue 6125 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6126 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 6127 LocTy Loc, Loc2; 6128 Value *Op0; 6129 BasicBlock *Op1, *Op2; 6130 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 6131 6132 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 6133 Inst = BranchInst::Create(BB); 6134 return false; 6135 } 6136 6137 if (Op0->getType() != Type::getInt1Ty(Context)) 6138 return Error(Loc, "branch condition must have 'i1' type"); 6139 6140 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 6141 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 6142 ParseToken(lltok::comma, "expected ',' after true destination") || 6143 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 6144 return true; 6145 6146 Inst = BranchInst::Create(Op1, Op2, Op0); 6147 return false; 6148 } 6149 6150 /// ParseSwitch 6151 /// Instruction 6152 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 6153 /// JumpTable 6154 /// ::= (TypeAndValue ',' TypeAndValue)* 6155 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6156 LocTy CondLoc, BBLoc; 6157 Value *Cond; 6158 BasicBlock *DefaultBB; 6159 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 6160 ParseToken(lltok::comma, "expected ',' after switch condition") || 6161 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 6162 ParseToken(lltok::lsquare, "expected '[' with switch table")) 6163 return true; 6164 6165 if (!Cond->getType()->isIntegerTy()) 6166 return Error(CondLoc, "switch condition must have integer type"); 6167 6168 // Parse the jump table pairs. 6169 SmallPtrSet<Value*, 32> SeenCases; 6170 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 6171 while (Lex.getKind() != lltok::rsquare) { 6172 Value *Constant; 6173 BasicBlock *DestBB; 6174 6175 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 6176 ParseToken(lltok::comma, "expected ',' after case value") || 6177 ParseTypeAndBasicBlock(DestBB, PFS)) 6178 return true; 6179 6180 if (!SeenCases.insert(Constant).second) 6181 return Error(CondLoc, "duplicate case value in switch"); 6182 if (!isa<ConstantInt>(Constant)) 6183 return Error(CondLoc, "case value is not a constant integer"); 6184 6185 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 6186 } 6187 6188 Lex.Lex(); // Eat the ']'. 6189 6190 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 6191 for (unsigned i = 0, e = Table.size(); i != e; ++i) 6192 SI->addCase(Table[i].first, Table[i].second); 6193 Inst = SI; 6194 return false; 6195 } 6196 6197 /// ParseIndirectBr 6198 /// Instruction 6199 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 6200 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 6201 LocTy AddrLoc; 6202 Value *Address; 6203 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 6204 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 6205 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 6206 return true; 6207 6208 if (!Address->getType()->isPointerTy()) 6209 return Error(AddrLoc, "indirectbr address must have pointer type"); 6210 6211 // Parse the destination list. 6212 SmallVector<BasicBlock*, 16> DestList; 6213 6214 if (Lex.getKind() != lltok::rsquare) { 6215 BasicBlock *DestBB; 6216 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6217 return true; 6218 DestList.push_back(DestBB); 6219 6220 while (EatIfPresent(lltok::comma)) { 6221 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6222 return true; 6223 DestList.push_back(DestBB); 6224 } 6225 } 6226 6227 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 6228 return true; 6229 6230 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 6231 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 6232 IBI->addDestination(DestList[i]); 6233 Inst = IBI; 6234 return false; 6235 } 6236 6237 /// ParseInvoke 6238 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 6239 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 6240 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 6241 LocTy CallLoc = Lex.getLoc(); 6242 AttrBuilder RetAttrs, FnAttrs; 6243 std::vector<unsigned> FwdRefAttrGrps; 6244 LocTy NoBuiltinLoc; 6245 unsigned CC; 6246 unsigned InvokeAddrSpace; 6247 Type *RetType = nullptr; 6248 LocTy RetTypeLoc; 6249 ValID CalleeID; 6250 SmallVector<ParamInfo, 16> ArgList; 6251 SmallVector<OperandBundleDef, 2> BundleList; 6252 6253 BasicBlock *NormalBB, *UnwindBB; 6254 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6255 ParseOptionalProgramAddrSpace(InvokeAddrSpace) || 6256 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6257 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 6258 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6259 NoBuiltinLoc) || 6260 ParseOptionalOperandBundles(BundleList, PFS) || 6261 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 6262 ParseTypeAndBasicBlock(NormalBB, PFS) || 6263 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 6264 ParseTypeAndBasicBlock(UnwindBB, PFS)) 6265 return true; 6266 6267 // If RetType is a non-function pointer type, then this is the short syntax 6268 // for the call, which means that RetType is just the return type. Infer the 6269 // rest of the function argument types from the arguments that are present. 6270 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6271 if (!Ty) { 6272 // Pull out the types of all of the arguments... 6273 std::vector<Type*> ParamTypes; 6274 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6275 ParamTypes.push_back(ArgList[i].V->getType()); 6276 6277 if (!FunctionType::isValidReturnType(RetType)) 6278 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6279 6280 Ty = FunctionType::get(RetType, ParamTypes, false); 6281 } 6282 6283 CalleeID.FTy = Ty; 6284 6285 // Look up the callee. 6286 Value *Callee; 6287 if (ConvertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID, 6288 Callee, &PFS, /*IsCall=*/true)) 6289 return true; 6290 6291 // Set up the Attribute for the function. 6292 SmallVector<Value *, 8> Args; 6293 SmallVector<AttributeSet, 8> ArgAttrs; 6294 6295 // Loop through FunctionType's arguments and ensure they are specified 6296 // correctly. Also, gather any parameter attributes. 6297 FunctionType::param_iterator I = Ty->param_begin(); 6298 FunctionType::param_iterator E = Ty->param_end(); 6299 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6300 Type *ExpectedTy = nullptr; 6301 if (I != E) { 6302 ExpectedTy = *I++; 6303 } else if (!Ty->isVarArg()) { 6304 return Error(ArgList[i].Loc, "too many arguments specified"); 6305 } 6306 6307 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6308 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6309 getTypeString(ExpectedTy) + "'"); 6310 Args.push_back(ArgList[i].V); 6311 ArgAttrs.push_back(ArgList[i].Attrs); 6312 } 6313 6314 if (I != E) 6315 return Error(CallLoc, "not enough parameters specified for call"); 6316 6317 if (FnAttrs.hasAlignmentAttr()) 6318 return Error(CallLoc, "invoke instructions may not have an alignment"); 6319 6320 // Finish off the Attribute and check them 6321 AttributeList PAL = 6322 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6323 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6324 6325 InvokeInst *II = 6326 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 6327 II->setCallingConv(CC); 6328 II->setAttributes(PAL); 6329 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 6330 Inst = II; 6331 return false; 6332 } 6333 6334 /// ParseResume 6335 /// ::= 'resume' TypeAndValue 6336 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 6337 Value *Exn; LocTy ExnLoc; 6338 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 6339 return true; 6340 6341 ResumeInst *RI = ResumeInst::Create(Exn); 6342 Inst = RI; 6343 return false; 6344 } 6345 6346 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args, 6347 PerFunctionState &PFS) { 6348 if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 6349 return true; 6350 6351 while (Lex.getKind() != lltok::rsquare) { 6352 // If this isn't the first argument, we need a comma. 6353 if (!Args.empty() && 6354 ParseToken(lltok::comma, "expected ',' in argument list")) 6355 return true; 6356 6357 // Parse the argument. 6358 LocTy ArgLoc; 6359 Type *ArgTy = nullptr; 6360 if (ParseType(ArgTy, ArgLoc)) 6361 return true; 6362 6363 Value *V; 6364 if (ArgTy->isMetadataTy()) { 6365 if (ParseMetadataAsValue(V, PFS)) 6366 return true; 6367 } else { 6368 if (ParseValue(ArgTy, V, PFS)) 6369 return true; 6370 } 6371 Args.push_back(V); 6372 } 6373 6374 Lex.Lex(); // Lex the ']'. 6375 return false; 6376 } 6377 6378 /// ParseCleanupRet 6379 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 6380 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 6381 Value *CleanupPad = nullptr; 6382 6383 if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret")) 6384 return true; 6385 6386 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 6387 return true; 6388 6389 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 6390 return true; 6391 6392 BasicBlock *UnwindBB = nullptr; 6393 if (Lex.getKind() == lltok::kw_to) { 6394 Lex.Lex(); 6395 if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 6396 return true; 6397 } else { 6398 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 6399 return true; 6400 } 6401 } 6402 6403 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 6404 return false; 6405 } 6406 6407 /// ParseCatchRet 6408 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 6409 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 6410 Value *CatchPad = nullptr; 6411 6412 if (ParseToken(lltok::kw_from, "expected 'from' after catchret")) 6413 return true; 6414 6415 if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS)) 6416 return true; 6417 6418 BasicBlock *BB; 6419 if (ParseToken(lltok::kw_to, "expected 'to' in catchret") || 6420 ParseTypeAndBasicBlock(BB, PFS)) 6421 return true; 6422 6423 Inst = CatchReturnInst::Create(CatchPad, BB); 6424 return false; 6425 } 6426 6427 /// ParseCatchSwitch 6428 /// ::= 'catchswitch' within Parent 6429 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6430 Value *ParentPad; 6431 6432 if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch")) 6433 return true; 6434 6435 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6436 Lex.getKind() != lltok::LocalVarID) 6437 return TokError("expected scope value for catchswitch"); 6438 6439 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6440 return true; 6441 6442 if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 6443 return true; 6444 6445 SmallVector<BasicBlock *, 32> Table; 6446 do { 6447 BasicBlock *DestBB; 6448 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6449 return true; 6450 Table.push_back(DestBB); 6451 } while (EatIfPresent(lltok::comma)); 6452 6453 if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 6454 return true; 6455 6456 if (ParseToken(lltok::kw_unwind, 6457 "expected 'unwind' after catchswitch scope")) 6458 return true; 6459 6460 BasicBlock *UnwindBB = nullptr; 6461 if (EatIfPresent(lltok::kw_to)) { 6462 if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 6463 return true; 6464 } else { 6465 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) 6466 return true; 6467 } 6468 6469 auto *CatchSwitch = 6470 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 6471 for (BasicBlock *DestBB : Table) 6472 CatchSwitch->addHandler(DestBB); 6473 Inst = CatchSwitch; 6474 return false; 6475 } 6476 6477 /// ParseCatchPad 6478 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 6479 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 6480 Value *CatchSwitch = nullptr; 6481 6482 if (ParseToken(lltok::kw_within, "expected 'within' after catchpad")) 6483 return true; 6484 6485 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 6486 return TokError("expected scope value for catchpad"); 6487 6488 if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 6489 return true; 6490 6491 SmallVector<Value *, 8> Args; 6492 if (ParseExceptionArgs(Args, PFS)) 6493 return true; 6494 6495 Inst = CatchPadInst::Create(CatchSwitch, Args); 6496 return false; 6497 } 6498 6499 /// ParseCleanupPad 6500 /// ::= 'cleanuppad' within Parent ParamList 6501 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 6502 Value *ParentPad = nullptr; 6503 6504 if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 6505 return true; 6506 6507 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6508 Lex.getKind() != lltok::LocalVarID) 6509 return TokError("expected scope value for cleanuppad"); 6510 6511 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6512 return true; 6513 6514 SmallVector<Value *, 8> Args; 6515 if (ParseExceptionArgs(Args, PFS)) 6516 return true; 6517 6518 Inst = CleanupPadInst::Create(ParentPad, Args); 6519 return false; 6520 } 6521 6522 //===----------------------------------------------------------------------===// 6523 // Unary Operators. 6524 //===----------------------------------------------------------------------===// 6525 6526 /// ParseUnaryOp 6527 /// ::= UnaryOp TypeAndValue ',' Value 6528 /// 6529 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6530 /// operand is allowed. 6531 bool LLParser::ParseUnaryOp(Instruction *&Inst, PerFunctionState &PFS, 6532 unsigned Opc, bool IsFP) { 6533 LocTy Loc; Value *LHS; 6534 if (ParseTypeAndValue(LHS, Loc, PFS)) 6535 return true; 6536 6537 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6538 : LHS->getType()->isIntOrIntVectorTy(); 6539 6540 if (!Valid) 6541 return Error(Loc, "invalid operand type for instruction"); 6542 6543 Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 6544 return false; 6545 } 6546 6547 /// ParseCallBr 6548 /// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList 6549 /// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue 6550 /// '[' LabelList ']' 6551 bool LLParser::ParseCallBr(Instruction *&Inst, PerFunctionState &PFS) { 6552 LocTy CallLoc = Lex.getLoc(); 6553 AttrBuilder RetAttrs, FnAttrs; 6554 std::vector<unsigned> FwdRefAttrGrps; 6555 LocTy NoBuiltinLoc; 6556 unsigned CC; 6557 Type *RetType = nullptr; 6558 LocTy RetTypeLoc; 6559 ValID CalleeID; 6560 SmallVector<ParamInfo, 16> ArgList; 6561 SmallVector<OperandBundleDef, 2> BundleList; 6562 6563 BasicBlock *DefaultDest; 6564 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6565 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6566 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 6567 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6568 NoBuiltinLoc) || 6569 ParseOptionalOperandBundles(BundleList, PFS) || 6570 ParseToken(lltok::kw_to, "expected 'to' in callbr") || 6571 ParseTypeAndBasicBlock(DefaultDest, PFS) || 6572 ParseToken(lltok::lsquare, "expected '[' in callbr")) 6573 return true; 6574 6575 // Parse the destination list. 6576 SmallVector<BasicBlock *, 16> IndirectDests; 6577 6578 if (Lex.getKind() != lltok::rsquare) { 6579 BasicBlock *DestBB; 6580 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6581 return true; 6582 IndirectDests.push_back(DestBB); 6583 6584 while (EatIfPresent(lltok::comma)) { 6585 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6586 return true; 6587 IndirectDests.push_back(DestBB); 6588 } 6589 } 6590 6591 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 6592 return true; 6593 6594 // If RetType is a non-function pointer type, then this is the short syntax 6595 // for the call, which means that RetType is just the return type. Infer the 6596 // rest of the function argument types from the arguments that are present. 6597 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6598 if (!Ty) { 6599 // Pull out the types of all of the arguments... 6600 std::vector<Type *> ParamTypes; 6601 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6602 ParamTypes.push_back(ArgList[i].V->getType()); 6603 6604 if (!FunctionType::isValidReturnType(RetType)) 6605 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6606 6607 Ty = FunctionType::get(RetType, ParamTypes, false); 6608 } 6609 6610 CalleeID.FTy = Ty; 6611 6612 // Look up the callee. 6613 Value *Callee; 6614 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS, 6615 /*IsCall=*/true)) 6616 return true; 6617 6618 // Set up the Attribute for the function. 6619 SmallVector<Value *, 8> Args; 6620 SmallVector<AttributeSet, 8> ArgAttrs; 6621 6622 // Loop through FunctionType's arguments and ensure they are specified 6623 // correctly. Also, gather any parameter attributes. 6624 FunctionType::param_iterator I = Ty->param_begin(); 6625 FunctionType::param_iterator E = Ty->param_end(); 6626 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6627 Type *ExpectedTy = nullptr; 6628 if (I != E) { 6629 ExpectedTy = *I++; 6630 } else if (!Ty->isVarArg()) { 6631 return Error(ArgList[i].Loc, "too many arguments specified"); 6632 } 6633 6634 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6635 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6636 getTypeString(ExpectedTy) + "'"); 6637 Args.push_back(ArgList[i].V); 6638 ArgAttrs.push_back(ArgList[i].Attrs); 6639 } 6640 6641 if (I != E) 6642 return Error(CallLoc, "not enough parameters specified for call"); 6643 6644 if (FnAttrs.hasAlignmentAttr()) 6645 return Error(CallLoc, "callbr instructions may not have an alignment"); 6646 6647 // Finish off the Attribute and check them 6648 AttributeList PAL = 6649 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6650 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6651 6652 CallBrInst *CBI = 6653 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args, 6654 BundleList); 6655 CBI->setCallingConv(CC); 6656 CBI->setAttributes(PAL); 6657 ForwardRefAttrGroups[CBI] = FwdRefAttrGrps; 6658 Inst = CBI; 6659 return false; 6660 } 6661 6662 //===----------------------------------------------------------------------===// 6663 // Binary Operators. 6664 //===----------------------------------------------------------------------===// 6665 6666 /// ParseArithmetic 6667 /// ::= ArithmeticOps TypeAndValue ',' Value 6668 /// 6669 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6670 /// operand is allowed. 6671 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 6672 unsigned Opc, bool IsFP) { 6673 LocTy Loc; Value *LHS, *RHS; 6674 if (ParseTypeAndValue(LHS, Loc, PFS) || 6675 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 6676 ParseValue(LHS->getType(), RHS, PFS)) 6677 return true; 6678 6679 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6680 : LHS->getType()->isIntOrIntVectorTy(); 6681 6682 if (!Valid) 6683 return Error(Loc, "invalid operand type for instruction"); 6684 6685 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6686 return false; 6687 } 6688 6689 /// ParseLogical 6690 /// ::= ArithmeticOps TypeAndValue ',' Value { 6691 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 6692 unsigned Opc) { 6693 LocTy Loc; Value *LHS, *RHS; 6694 if (ParseTypeAndValue(LHS, Loc, PFS) || 6695 ParseToken(lltok::comma, "expected ',' in logical operation") || 6696 ParseValue(LHS->getType(), RHS, PFS)) 6697 return true; 6698 6699 if (!LHS->getType()->isIntOrIntVectorTy()) 6700 return Error(Loc,"instruction requires integer or integer vector operands"); 6701 6702 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6703 return false; 6704 } 6705 6706 /// ParseCompare 6707 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 6708 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 6709 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 6710 unsigned Opc) { 6711 // Parse the integer/fp comparison predicate. 6712 LocTy Loc; 6713 unsigned Pred; 6714 Value *LHS, *RHS; 6715 if (ParseCmpPredicate(Pred, Opc) || 6716 ParseTypeAndValue(LHS, Loc, PFS) || 6717 ParseToken(lltok::comma, "expected ',' after compare value") || 6718 ParseValue(LHS->getType(), RHS, PFS)) 6719 return true; 6720 6721 if (Opc == Instruction::FCmp) { 6722 if (!LHS->getType()->isFPOrFPVectorTy()) 6723 return Error(Loc, "fcmp requires floating point operands"); 6724 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6725 } else { 6726 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 6727 if (!LHS->getType()->isIntOrIntVectorTy() && 6728 !LHS->getType()->isPtrOrPtrVectorTy()) 6729 return Error(Loc, "icmp requires integer operands"); 6730 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6731 } 6732 return false; 6733 } 6734 6735 //===----------------------------------------------------------------------===// 6736 // Other Instructions. 6737 //===----------------------------------------------------------------------===// 6738 6739 6740 /// ParseCast 6741 /// ::= CastOpc TypeAndValue 'to' Type 6742 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 6743 unsigned Opc) { 6744 LocTy Loc; 6745 Value *Op; 6746 Type *DestTy = nullptr; 6747 if (ParseTypeAndValue(Op, Loc, PFS) || 6748 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 6749 ParseType(DestTy)) 6750 return true; 6751 6752 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 6753 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 6754 return Error(Loc, "invalid cast opcode for cast from '" + 6755 getTypeString(Op->getType()) + "' to '" + 6756 getTypeString(DestTy) + "'"); 6757 } 6758 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 6759 return false; 6760 } 6761 6762 /// ParseSelect 6763 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6764 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 6765 LocTy Loc; 6766 Value *Op0, *Op1, *Op2; 6767 if (ParseTypeAndValue(Op0, Loc, PFS) || 6768 ParseToken(lltok::comma, "expected ',' after select condition") || 6769 ParseTypeAndValue(Op1, PFS) || 6770 ParseToken(lltok::comma, "expected ',' after select value") || 6771 ParseTypeAndValue(Op2, PFS)) 6772 return true; 6773 6774 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 6775 return Error(Loc, Reason); 6776 6777 Inst = SelectInst::Create(Op0, Op1, Op2); 6778 return false; 6779 } 6780 6781 /// ParseVA_Arg 6782 /// ::= 'va_arg' TypeAndValue ',' Type 6783 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 6784 Value *Op; 6785 Type *EltTy = nullptr; 6786 LocTy TypeLoc; 6787 if (ParseTypeAndValue(Op, PFS) || 6788 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 6789 ParseType(EltTy, TypeLoc)) 6790 return true; 6791 6792 if (!EltTy->isFirstClassType()) 6793 return Error(TypeLoc, "va_arg requires operand with first class type"); 6794 6795 Inst = new VAArgInst(Op, EltTy); 6796 return false; 6797 } 6798 6799 /// ParseExtractElement 6800 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 6801 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 6802 LocTy Loc; 6803 Value *Op0, *Op1; 6804 if (ParseTypeAndValue(Op0, Loc, PFS) || 6805 ParseToken(lltok::comma, "expected ',' after extract value") || 6806 ParseTypeAndValue(Op1, PFS)) 6807 return true; 6808 6809 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 6810 return Error(Loc, "invalid extractelement operands"); 6811 6812 Inst = ExtractElementInst::Create(Op0, Op1); 6813 return false; 6814 } 6815 6816 /// ParseInsertElement 6817 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6818 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 6819 LocTy Loc; 6820 Value *Op0, *Op1, *Op2; 6821 if (ParseTypeAndValue(Op0, Loc, PFS) || 6822 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6823 ParseTypeAndValue(Op1, PFS) || 6824 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6825 ParseTypeAndValue(Op2, PFS)) 6826 return true; 6827 6828 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 6829 return Error(Loc, "invalid insertelement operands"); 6830 6831 Inst = InsertElementInst::Create(Op0, Op1, Op2); 6832 return false; 6833 } 6834 6835 /// ParseShuffleVector 6836 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6837 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 6838 LocTy Loc; 6839 Value *Op0, *Op1, *Op2; 6840 if (ParseTypeAndValue(Op0, Loc, PFS) || 6841 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 6842 ParseTypeAndValue(Op1, PFS) || 6843 ParseToken(lltok::comma, "expected ',' after shuffle value") || 6844 ParseTypeAndValue(Op2, PFS)) 6845 return true; 6846 6847 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 6848 return Error(Loc, "invalid shufflevector operands"); 6849 6850 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 6851 return false; 6852 } 6853 6854 /// ParsePHI 6855 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 6856 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 6857 Type *Ty = nullptr; LocTy TypeLoc; 6858 Value *Op0, *Op1; 6859 6860 if (ParseType(Ty, TypeLoc) || 6861 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 6862 ParseValue(Ty, Op0, PFS) || 6863 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6864 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 6865 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 6866 return true; 6867 6868 bool AteExtraComma = false; 6869 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 6870 6871 while (true) { 6872 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 6873 6874 if (!EatIfPresent(lltok::comma)) 6875 break; 6876 6877 if (Lex.getKind() == lltok::MetadataVar) { 6878 AteExtraComma = true; 6879 break; 6880 } 6881 6882 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 6883 ParseValue(Ty, Op0, PFS) || 6884 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6885 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 6886 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 6887 return true; 6888 } 6889 6890 if (!Ty->isFirstClassType()) 6891 return Error(TypeLoc, "phi node must have first class type"); 6892 6893 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 6894 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 6895 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 6896 Inst = PN; 6897 return AteExtraComma ? InstExtraComma : InstNormal; 6898 } 6899 6900 /// ParseLandingPad 6901 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 6902 /// Clause 6903 /// ::= 'catch' TypeAndValue 6904 /// ::= 'filter' 6905 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 6906 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 6907 Type *Ty = nullptr; LocTy TyLoc; 6908 6909 if (ParseType(Ty, TyLoc)) 6910 return true; 6911 6912 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 6913 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 6914 6915 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 6916 LandingPadInst::ClauseType CT; 6917 if (EatIfPresent(lltok::kw_catch)) 6918 CT = LandingPadInst::Catch; 6919 else if (EatIfPresent(lltok::kw_filter)) 6920 CT = LandingPadInst::Filter; 6921 else 6922 return TokError("expected 'catch' or 'filter' clause type"); 6923 6924 Value *V; 6925 LocTy VLoc; 6926 if (ParseTypeAndValue(V, VLoc, PFS)) 6927 return true; 6928 6929 // A 'catch' type expects a non-array constant. A filter clause expects an 6930 // array constant. 6931 if (CT == LandingPadInst::Catch) { 6932 if (isa<ArrayType>(V->getType())) 6933 Error(VLoc, "'catch' clause has an invalid type"); 6934 } else { 6935 if (!isa<ArrayType>(V->getType())) 6936 Error(VLoc, "'filter' clause has an invalid type"); 6937 } 6938 6939 Constant *CV = dyn_cast<Constant>(V); 6940 if (!CV) 6941 return Error(VLoc, "clause argument must be a constant"); 6942 LP->addClause(CV); 6943 } 6944 6945 Inst = LP.release(); 6946 return false; 6947 } 6948 6949 /// ParseFreeze 6950 /// ::= 'freeze' Type Value 6951 bool LLParser::ParseFreeze(Instruction *&Inst, PerFunctionState &PFS) { 6952 LocTy Loc; 6953 Value *Op; 6954 if (ParseTypeAndValue(Op, Loc, PFS)) 6955 return true; 6956 6957 Inst = new FreezeInst(Op); 6958 return false; 6959 } 6960 6961 /// ParseCall 6962 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 6963 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6964 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 6965 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6966 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 6967 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6968 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 6969 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6970 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 6971 CallInst::TailCallKind TCK) { 6972 AttrBuilder RetAttrs, FnAttrs; 6973 std::vector<unsigned> FwdRefAttrGrps; 6974 LocTy BuiltinLoc; 6975 unsigned CallAddrSpace; 6976 unsigned CC; 6977 Type *RetType = nullptr; 6978 LocTy RetTypeLoc; 6979 ValID CalleeID; 6980 SmallVector<ParamInfo, 16> ArgList; 6981 SmallVector<OperandBundleDef, 2> BundleList; 6982 LocTy CallLoc = Lex.getLoc(); 6983 6984 if (TCK != CallInst::TCK_None && 6985 ParseToken(lltok::kw_call, 6986 "expected 'tail call', 'musttail call', or 'notail call'")) 6987 return true; 6988 6989 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6990 6991 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6992 ParseOptionalProgramAddrSpace(CallAddrSpace) || 6993 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6994 ParseValID(CalleeID) || 6995 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 6996 PFS.getFunction().isVarArg()) || 6997 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 6998 ParseOptionalOperandBundles(BundleList, PFS)) 6999 return true; 7000 7001 // If RetType is a non-function pointer type, then this is the short syntax 7002 // for the call, which means that RetType is just the return type. Infer the 7003 // rest of the function argument types from the arguments that are present. 7004 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 7005 if (!Ty) { 7006 // Pull out the types of all of the arguments... 7007 std::vector<Type*> ParamTypes; 7008 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 7009 ParamTypes.push_back(ArgList[i].V->getType()); 7010 7011 if (!FunctionType::isValidReturnType(RetType)) 7012 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 7013 7014 Ty = FunctionType::get(RetType, ParamTypes, false); 7015 } 7016 7017 CalleeID.FTy = Ty; 7018 7019 // Look up the callee. 7020 Value *Callee; 7021 if (ConvertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee, 7022 &PFS, /*IsCall=*/true)) 7023 return true; 7024 7025 // Set up the Attribute for the function. 7026 SmallVector<AttributeSet, 8> Attrs; 7027 7028 SmallVector<Value*, 8> Args; 7029 7030 // Loop through FunctionType's arguments and ensure they are specified 7031 // correctly. Also, gather any parameter attributes. 7032 FunctionType::param_iterator I = Ty->param_begin(); 7033 FunctionType::param_iterator E = Ty->param_end(); 7034 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 7035 Type *ExpectedTy = nullptr; 7036 if (I != E) { 7037 ExpectedTy = *I++; 7038 } else if (!Ty->isVarArg()) { 7039 return Error(ArgList[i].Loc, "too many arguments specified"); 7040 } 7041 7042 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 7043 return Error(ArgList[i].Loc, "argument is not of expected type '" + 7044 getTypeString(ExpectedTy) + "'"); 7045 Args.push_back(ArgList[i].V); 7046 Attrs.push_back(ArgList[i].Attrs); 7047 } 7048 7049 if (I != E) 7050 return Error(CallLoc, "not enough parameters specified for call"); 7051 7052 if (FnAttrs.hasAlignmentAttr()) 7053 return Error(CallLoc, "call instructions may not have an alignment"); 7054 7055 // Finish off the Attribute and check them 7056 AttributeList PAL = 7057 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 7058 AttributeSet::get(Context, RetAttrs), Attrs); 7059 7060 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 7061 CI->setTailCallKind(TCK); 7062 CI->setCallingConv(CC); 7063 if (FMF.any()) { 7064 if (!isa<FPMathOperator>(CI)) { 7065 CI->deleteValue(); 7066 return Error(CallLoc, "fast-math-flags specified for call without " 7067 "floating-point scalar or vector return type"); 7068 } 7069 CI->setFastMathFlags(FMF); 7070 } 7071 CI->setAttributes(PAL); 7072 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 7073 Inst = CI; 7074 return false; 7075 } 7076 7077 //===----------------------------------------------------------------------===// 7078 // Memory Instructions. 7079 //===----------------------------------------------------------------------===// 7080 7081 /// ParseAlloc 7082 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 7083 /// (',' 'align' i32)? (',', 'addrspace(n))? 7084 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 7085 Value *Size = nullptr; 7086 LocTy SizeLoc, TyLoc, ASLoc; 7087 MaybeAlign Alignment; 7088 unsigned AddrSpace = 0; 7089 Type *Ty = nullptr; 7090 7091 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 7092 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 7093 7094 if (ParseType(Ty, TyLoc)) return true; 7095 7096 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 7097 return Error(TyLoc, "invalid type for alloca"); 7098 7099 bool AteExtraComma = false; 7100 if (EatIfPresent(lltok::comma)) { 7101 if (Lex.getKind() == lltok::kw_align) { 7102 if (ParseOptionalAlignment(Alignment)) 7103 return true; 7104 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7105 return true; 7106 } else if (Lex.getKind() == lltok::kw_addrspace) { 7107 ASLoc = Lex.getLoc(); 7108 if (ParseOptionalAddrSpace(AddrSpace)) 7109 return true; 7110 } else if (Lex.getKind() == lltok::MetadataVar) { 7111 AteExtraComma = true; 7112 } else { 7113 if (ParseTypeAndValue(Size, SizeLoc, PFS)) 7114 return true; 7115 if (EatIfPresent(lltok::comma)) { 7116 if (Lex.getKind() == lltok::kw_align) { 7117 if (ParseOptionalAlignment(Alignment)) 7118 return true; 7119 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7120 return true; 7121 } else if (Lex.getKind() == lltok::kw_addrspace) { 7122 ASLoc = Lex.getLoc(); 7123 if (ParseOptionalAddrSpace(AddrSpace)) 7124 return true; 7125 } else if (Lex.getKind() == lltok::MetadataVar) { 7126 AteExtraComma = true; 7127 } 7128 } 7129 } 7130 } 7131 7132 if (Size && !Size->getType()->isIntegerTy()) 7133 return Error(SizeLoc, "element count must have integer type"); 7134 7135 SmallPtrSet<Type *, 4> Visited; 7136 if (!Alignment && !Ty->isSized(&Visited)) 7137 return Error(TyLoc, "Cannot allocate unsized type"); 7138 if (!Alignment) 7139 Alignment = M->getDataLayout().getPrefTypeAlign(Ty); 7140 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment); 7141 AI->setUsedWithInAlloca(IsInAlloca); 7142 AI->setSwiftError(IsSwiftError); 7143 Inst = AI; 7144 return AteExtraComma ? InstExtraComma : InstNormal; 7145 } 7146 7147 /// ParseLoad 7148 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 7149 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 7150 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7151 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 7152 Value *Val; LocTy Loc; 7153 MaybeAlign Alignment; 7154 bool AteExtraComma = false; 7155 bool isAtomic = false; 7156 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7157 SyncScope::ID SSID = SyncScope::System; 7158 7159 if (Lex.getKind() == lltok::kw_atomic) { 7160 isAtomic = true; 7161 Lex.Lex(); 7162 } 7163 7164 bool isVolatile = false; 7165 if (Lex.getKind() == lltok::kw_volatile) { 7166 isVolatile = true; 7167 Lex.Lex(); 7168 } 7169 7170 Type *Ty; 7171 LocTy ExplicitTypeLoc = Lex.getLoc(); 7172 if (ParseType(Ty) || 7173 ParseToken(lltok::comma, "expected comma after load's type") || 7174 ParseTypeAndValue(Val, Loc, PFS) || 7175 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 7176 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 7177 return true; 7178 7179 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 7180 return Error(Loc, "load operand must be a pointer to a first class type"); 7181 if (isAtomic && !Alignment) 7182 return Error(Loc, "atomic load must have explicit non-zero alignment"); 7183 if (Ordering == AtomicOrdering::Release || 7184 Ordering == AtomicOrdering::AcquireRelease) 7185 return Error(Loc, "atomic load cannot use Release ordering"); 7186 7187 if (Ty != cast<PointerType>(Val->getType())->getElementType()) 7188 return Error(ExplicitTypeLoc, 7189 "explicit pointee type doesn't match operand's pointee type"); 7190 SmallPtrSet<Type *, 4> Visited; 7191 if (!Alignment && !Ty->isSized(&Visited)) 7192 return Error(ExplicitTypeLoc, "loading unsized types is not allowed"); 7193 if (!Alignment) 7194 Alignment = M->getDataLayout().getABITypeAlign(Ty); 7195 Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID); 7196 return AteExtraComma ? InstExtraComma : InstNormal; 7197 } 7198 7199 /// ParseStore 7200 7201 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 7202 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 7203 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7204 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 7205 Value *Val, *Ptr; LocTy Loc, PtrLoc; 7206 MaybeAlign Alignment; 7207 bool AteExtraComma = false; 7208 bool isAtomic = false; 7209 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7210 SyncScope::ID SSID = SyncScope::System; 7211 7212 if (Lex.getKind() == lltok::kw_atomic) { 7213 isAtomic = true; 7214 Lex.Lex(); 7215 } 7216 7217 bool isVolatile = false; 7218 if (Lex.getKind() == lltok::kw_volatile) { 7219 isVolatile = true; 7220 Lex.Lex(); 7221 } 7222 7223 if (ParseTypeAndValue(Val, Loc, PFS) || 7224 ParseToken(lltok::comma, "expected ',' after store operand") || 7225 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 7226 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 7227 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 7228 return true; 7229 7230 if (!Ptr->getType()->isPointerTy()) 7231 return Error(PtrLoc, "store operand must be a pointer"); 7232 if (!Val->getType()->isFirstClassType()) 7233 return Error(Loc, "store operand must be a first class value"); 7234 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 7235 return Error(Loc, "stored value and pointer type do not match"); 7236 if (isAtomic && !Alignment) 7237 return Error(Loc, "atomic store must have explicit non-zero alignment"); 7238 if (Ordering == AtomicOrdering::Acquire || 7239 Ordering == AtomicOrdering::AcquireRelease) 7240 return Error(Loc, "atomic store cannot use Acquire ordering"); 7241 SmallPtrSet<Type *, 4> Visited; 7242 if (!Alignment && !Val->getType()->isSized(&Visited)) 7243 return Error(Loc, "storing unsized types is not allowed"); 7244 if (!Alignment) 7245 Alignment = M->getDataLayout().getABITypeAlign(Val->getType()); 7246 7247 Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID); 7248 return AteExtraComma ? InstExtraComma : InstNormal; 7249 } 7250 7251 /// ParseCmpXchg 7252 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 7253 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering 7254 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 7255 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 7256 bool AteExtraComma = false; 7257 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 7258 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 7259 SyncScope::ID SSID = SyncScope::System; 7260 bool isVolatile = false; 7261 bool isWeak = false; 7262 7263 if (EatIfPresent(lltok::kw_weak)) 7264 isWeak = true; 7265 7266 if (EatIfPresent(lltok::kw_volatile)) 7267 isVolatile = true; 7268 7269 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 7270 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 7271 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 7272 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 7273 ParseTypeAndValue(New, NewLoc, PFS) || 7274 ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 7275 ParseOrdering(FailureOrdering)) 7276 return true; 7277 7278 if (SuccessOrdering == AtomicOrdering::Unordered || 7279 FailureOrdering == AtomicOrdering::Unordered) 7280 return TokError("cmpxchg cannot be unordered"); 7281 if (isStrongerThan(FailureOrdering, SuccessOrdering)) 7282 return TokError("cmpxchg failure argument shall be no stronger than the " 7283 "success argument"); 7284 if (FailureOrdering == AtomicOrdering::Release || 7285 FailureOrdering == AtomicOrdering::AcquireRelease) 7286 return TokError( 7287 "cmpxchg failure ordering cannot include release semantics"); 7288 if (!Ptr->getType()->isPointerTy()) 7289 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 7290 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 7291 return Error(CmpLoc, "compare value and pointer type do not match"); 7292 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 7293 return Error(NewLoc, "new value and pointer type do not match"); 7294 if (!New->getType()->isFirstClassType()) 7295 return Error(NewLoc, "cmpxchg operand must be a first class value"); 7296 7297 Align Alignment( 7298 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7299 Cmp->getType())); 7300 7301 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 7302 Ptr, Cmp, New, Alignment, SuccessOrdering, FailureOrdering, SSID); 7303 CXI->setVolatile(isVolatile); 7304 CXI->setWeak(isWeak); 7305 Inst = CXI; 7306 return AteExtraComma ? InstExtraComma : InstNormal; 7307 } 7308 7309 /// ParseAtomicRMW 7310 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 7311 /// 'singlethread'? AtomicOrdering 7312 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 7313 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 7314 bool AteExtraComma = false; 7315 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7316 SyncScope::ID SSID = SyncScope::System; 7317 bool isVolatile = false; 7318 bool IsFP = false; 7319 AtomicRMWInst::BinOp Operation; 7320 7321 if (EatIfPresent(lltok::kw_volatile)) 7322 isVolatile = true; 7323 7324 switch (Lex.getKind()) { 7325 default: return TokError("expected binary operation in atomicrmw"); 7326 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 7327 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 7328 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 7329 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 7330 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 7331 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 7332 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 7333 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 7334 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 7335 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 7336 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 7337 case lltok::kw_fadd: 7338 Operation = AtomicRMWInst::FAdd; 7339 IsFP = true; 7340 break; 7341 case lltok::kw_fsub: 7342 Operation = AtomicRMWInst::FSub; 7343 IsFP = true; 7344 break; 7345 } 7346 Lex.Lex(); // Eat the operation. 7347 7348 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 7349 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 7350 ParseTypeAndValue(Val, ValLoc, PFS) || 7351 ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7352 return true; 7353 7354 if (Ordering == AtomicOrdering::Unordered) 7355 return TokError("atomicrmw cannot be unordered"); 7356 if (!Ptr->getType()->isPointerTy()) 7357 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 7358 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 7359 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 7360 7361 if (Operation == AtomicRMWInst::Xchg) { 7362 if (!Val->getType()->isIntegerTy() && 7363 !Val->getType()->isFloatingPointTy()) { 7364 return Error(ValLoc, "atomicrmw " + 7365 AtomicRMWInst::getOperationName(Operation) + 7366 " operand must be an integer or floating point type"); 7367 } 7368 } else if (IsFP) { 7369 if (!Val->getType()->isFloatingPointTy()) { 7370 return Error(ValLoc, "atomicrmw " + 7371 AtomicRMWInst::getOperationName(Operation) + 7372 " operand must be a floating point type"); 7373 } 7374 } else { 7375 if (!Val->getType()->isIntegerTy()) { 7376 return Error(ValLoc, "atomicrmw " + 7377 AtomicRMWInst::getOperationName(Operation) + 7378 " operand must be an integer"); 7379 } 7380 } 7381 7382 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 7383 if (Size < 8 || (Size & (Size - 1))) 7384 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 7385 " integer"); 7386 Align Alignment( 7387 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7388 Val->getType())); 7389 AtomicRMWInst *RMWI = 7390 new AtomicRMWInst(Operation, Ptr, Val, Alignment, Ordering, SSID); 7391 RMWI->setVolatile(isVolatile); 7392 Inst = RMWI; 7393 return AteExtraComma ? InstExtraComma : InstNormal; 7394 } 7395 7396 /// ParseFence 7397 /// ::= 'fence' 'singlethread'? AtomicOrdering 7398 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 7399 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7400 SyncScope::ID SSID = SyncScope::System; 7401 if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7402 return true; 7403 7404 if (Ordering == AtomicOrdering::Unordered) 7405 return TokError("fence cannot be unordered"); 7406 if (Ordering == AtomicOrdering::Monotonic) 7407 return TokError("fence cannot be monotonic"); 7408 7409 Inst = new FenceInst(Context, Ordering, SSID); 7410 return InstNormal; 7411 } 7412 7413 /// ParseGetElementPtr 7414 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 7415 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 7416 Value *Ptr = nullptr; 7417 Value *Val = nullptr; 7418 LocTy Loc, EltLoc; 7419 7420 bool InBounds = EatIfPresent(lltok::kw_inbounds); 7421 7422 Type *Ty = nullptr; 7423 LocTy ExplicitTypeLoc = Lex.getLoc(); 7424 if (ParseType(Ty) || 7425 ParseToken(lltok::comma, "expected comma after getelementptr's type") || 7426 ParseTypeAndValue(Ptr, Loc, PFS)) 7427 return true; 7428 7429 Type *BaseType = Ptr->getType(); 7430 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 7431 if (!BasePointerType) 7432 return Error(Loc, "base of getelementptr must be a pointer"); 7433 7434 if (Ty != BasePointerType->getElementType()) 7435 return Error(ExplicitTypeLoc, 7436 "explicit pointee type doesn't match operand's pointee type"); 7437 7438 SmallVector<Value*, 16> Indices; 7439 bool AteExtraComma = false; 7440 // GEP returns a vector of pointers if at least one of parameters is a vector. 7441 // All vector parameters should have the same vector width. 7442 ElementCount GEPWidth = BaseType->isVectorTy() 7443 ? cast<VectorType>(BaseType)->getElementCount() 7444 : ElementCount::getFixed(0); 7445 7446 while (EatIfPresent(lltok::comma)) { 7447 if (Lex.getKind() == lltok::MetadataVar) { 7448 AteExtraComma = true; 7449 break; 7450 } 7451 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 7452 if (!Val->getType()->isIntOrIntVectorTy()) 7453 return Error(EltLoc, "getelementptr index must be an integer"); 7454 7455 if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) { 7456 ElementCount ValNumEl = ValVTy->getElementCount(); 7457 if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl) 7458 return Error(EltLoc, 7459 "getelementptr vector index has a wrong number of elements"); 7460 GEPWidth = ValNumEl; 7461 } 7462 Indices.push_back(Val); 7463 } 7464 7465 SmallPtrSet<Type*, 4> Visited; 7466 if (!Indices.empty() && !Ty->isSized(&Visited)) 7467 return Error(Loc, "base element of getelementptr must be sized"); 7468 7469 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 7470 return Error(Loc, "invalid getelementptr indices"); 7471 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 7472 if (InBounds) 7473 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 7474 return AteExtraComma ? InstExtraComma : InstNormal; 7475 } 7476 7477 /// ParseExtractValue 7478 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 7479 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 7480 Value *Val; LocTy Loc; 7481 SmallVector<unsigned, 4> Indices; 7482 bool AteExtraComma; 7483 if (ParseTypeAndValue(Val, Loc, PFS) || 7484 ParseIndexList(Indices, AteExtraComma)) 7485 return true; 7486 7487 if (!Val->getType()->isAggregateType()) 7488 return Error(Loc, "extractvalue operand must be aggregate type"); 7489 7490 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 7491 return Error(Loc, "invalid indices for extractvalue"); 7492 Inst = ExtractValueInst::Create(Val, Indices); 7493 return AteExtraComma ? InstExtraComma : InstNormal; 7494 } 7495 7496 /// ParseInsertValue 7497 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 7498 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 7499 Value *Val0, *Val1; LocTy Loc0, Loc1; 7500 SmallVector<unsigned, 4> Indices; 7501 bool AteExtraComma; 7502 if (ParseTypeAndValue(Val0, Loc0, PFS) || 7503 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 7504 ParseTypeAndValue(Val1, Loc1, PFS) || 7505 ParseIndexList(Indices, AteExtraComma)) 7506 return true; 7507 7508 if (!Val0->getType()->isAggregateType()) 7509 return Error(Loc0, "insertvalue operand must be aggregate type"); 7510 7511 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 7512 if (!IndexedType) 7513 return Error(Loc0, "invalid indices for insertvalue"); 7514 if (IndexedType != Val1->getType()) 7515 return Error(Loc1, "insertvalue operand and field disagree in type: '" + 7516 getTypeString(Val1->getType()) + "' instead of '" + 7517 getTypeString(IndexedType) + "'"); 7518 Inst = InsertValueInst::Create(Val0, Val1, Indices); 7519 return AteExtraComma ? InstExtraComma : InstNormal; 7520 } 7521 7522 //===----------------------------------------------------------------------===// 7523 // Embedded metadata. 7524 //===----------------------------------------------------------------------===// 7525 7526 /// ParseMDNodeVector 7527 /// ::= { Element (',' Element)* } 7528 /// Element 7529 /// ::= 'null' | TypeAndValue 7530 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 7531 if (ParseToken(lltok::lbrace, "expected '{' here")) 7532 return true; 7533 7534 // Check for an empty list. 7535 if (EatIfPresent(lltok::rbrace)) 7536 return false; 7537 7538 do { 7539 // Null is a special case since it is typeless. 7540 if (EatIfPresent(lltok::kw_null)) { 7541 Elts.push_back(nullptr); 7542 continue; 7543 } 7544 7545 Metadata *MD; 7546 if (ParseMetadata(MD, nullptr)) 7547 return true; 7548 Elts.push_back(MD); 7549 } while (EatIfPresent(lltok::comma)); 7550 7551 return ParseToken(lltok::rbrace, "expected end of metadata node"); 7552 } 7553 7554 //===----------------------------------------------------------------------===// 7555 // Use-list order directives. 7556 //===----------------------------------------------------------------------===// 7557 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 7558 SMLoc Loc) { 7559 if (V->use_empty()) 7560 return Error(Loc, "value has no uses"); 7561 7562 unsigned NumUses = 0; 7563 SmallDenseMap<const Use *, unsigned, 16> Order; 7564 for (const Use &U : V->uses()) { 7565 if (++NumUses > Indexes.size()) 7566 break; 7567 Order[&U] = Indexes[NumUses - 1]; 7568 } 7569 if (NumUses < 2) 7570 return Error(Loc, "value only has one use"); 7571 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 7572 return Error(Loc, 7573 "wrong number of indexes, expected " + Twine(V->getNumUses())); 7574 7575 V->sortUseList([&](const Use &L, const Use &R) { 7576 return Order.lookup(&L) < Order.lookup(&R); 7577 }); 7578 return false; 7579 } 7580 7581 /// ParseUseListOrderIndexes 7582 /// ::= '{' uint32 (',' uint32)+ '}' 7583 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 7584 SMLoc Loc = Lex.getLoc(); 7585 if (ParseToken(lltok::lbrace, "expected '{' here")) 7586 return true; 7587 if (Lex.getKind() == lltok::rbrace) 7588 return Lex.Error("expected non-empty list of uselistorder indexes"); 7589 7590 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 7591 // indexes should be distinct numbers in the range [0, size-1], and should 7592 // not be in order. 7593 unsigned Offset = 0; 7594 unsigned Max = 0; 7595 bool IsOrdered = true; 7596 assert(Indexes.empty() && "Expected empty order vector"); 7597 do { 7598 unsigned Index; 7599 if (ParseUInt32(Index)) 7600 return true; 7601 7602 // Update consistency checks. 7603 Offset += Index - Indexes.size(); 7604 Max = std::max(Max, Index); 7605 IsOrdered &= Index == Indexes.size(); 7606 7607 Indexes.push_back(Index); 7608 } while (EatIfPresent(lltok::comma)); 7609 7610 if (ParseToken(lltok::rbrace, "expected '}' here")) 7611 return true; 7612 7613 if (Indexes.size() < 2) 7614 return Error(Loc, "expected >= 2 uselistorder indexes"); 7615 if (Offset != 0 || Max >= Indexes.size()) 7616 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)"); 7617 if (IsOrdered) 7618 return Error(Loc, "expected uselistorder indexes to change the order"); 7619 7620 return false; 7621 } 7622 7623 /// ParseUseListOrder 7624 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 7625 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) { 7626 SMLoc Loc = Lex.getLoc(); 7627 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 7628 return true; 7629 7630 Value *V; 7631 SmallVector<unsigned, 16> Indexes; 7632 if (ParseTypeAndValue(V, PFS) || 7633 ParseToken(lltok::comma, "expected comma in uselistorder directive") || 7634 ParseUseListOrderIndexes(Indexes)) 7635 return true; 7636 7637 return sortUseListOrder(V, Indexes, Loc); 7638 } 7639 7640 /// ParseUseListOrderBB 7641 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 7642 bool LLParser::ParseUseListOrderBB() { 7643 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 7644 SMLoc Loc = Lex.getLoc(); 7645 Lex.Lex(); 7646 7647 ValID Fn, Label; 7648 SmallVector<unsigned, 16> Indexes; 7649 if (ParseValID(Fn) || 7650 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7651 ParseValID(Label) || 7652 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7653 ParseUseListOrderIndexes(Indexes)) 7654 return true; 7655 7656 // Check the function. 7657 GlobalValue *GV; 7658 if (Fn.Kind == ValID::t_GlobalName) 7659 GV = M->getNamedValue(Fn.StrVal); 7660 else if (Fn.Kind == ValID::t_GlobalID) 7661 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 7662 else 7663 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 7664 if (!GV) 7665 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb"); 7666 auto *F = dyn_cast<Function>(GV); 7667 if (!F) 7668 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 7669 if (F->isDeclaration()) 7670 return Error(Fn.Loc, "invalid declaration in uselistorder_bb"); 7671 7672 // Check the basic block. 7673 if (Label.Kind == ValID::t_LocalID) 7674 return Error(Label.Loc, "invalid numeric label in uselistorder_bb"); 7675 if (Label.Kind != ValID::t_LocalName) 7676 return Error(Label.Loc, "expected basic block name in uselistorder_bb"); 7677 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 7678 if (!V) 7679 return Error(Label.Loc, "invalid basic block in uselistorder_bb"); 7680 if (!isa<BasicBlock>(V)) 7681 return Error(Label.Loc, "expected basic block in uselistorder_bb"); 7682 7683 return sortUseListOrder(V, Indexes, Loc); 7684 } 7685 7686 /// ModuleEntry 7687 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')' 7688 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')' 7689 bool LLParser::ParseModuleEntry(unsigned ID) { 7690 assert(Lex.getKind() == lltok::kw_module); 7691 Lex.Lex(); 7692 7693 std::string Path; 7694 if (ParseToken(lltok::colon, "expected ':' here") || 7695 ParseToken(lltok::lparen, "expected '(' here") || 7696 ParseToken(lltok::kw_path, "expected 'path' here") || 7697 ParseToken(lltok::colon, "expected ':' here") || 7698 ParseStringConstant(Path) || 7699 ParseToken(lltok::comma, "expected ',' here") || 7700 ParseToken(lltok::kw_hash, "expected 'hash' here") || 7701 ParseToken(lltok::colon, "expected ':' here") || 7702 ParseToken(lltok::lparen, "expected '(' here")) 7703 return true; 7704 7705 ModuleHash Hash; 7706 if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") || 7707 ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") || 7708 ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") || 7709 ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") || 7710 ParseUInt32(Hash[4])) 7711 return true; 7712 7713 if (ParseToken(lltok::rparen, "expected ')' here") || 7714 ParseToken(lltok::rparen, "expected ')' here")) 7715 return true; 7716 7717 auto ModuleEntry = Index->addModule(Path, ID, Hash); 7718 ModuleIdMap[ID] = ModuleEntry->first(); 7719 7720 return false; 7721 } 7722 7723 /// TypeIdEntry 7724 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')' 7725 bool LLParser::ParseTypeIdEntry(unsigned ID) { 7726 assert(Lex.getKind() == lltok::kw_typeid); 7727 Lex.Lex(); 7728 7729 std::string Name; 7730 if (ParseToken(lltok::colon, "expected ':' here") || 7731 ParseToken(lltok::lparen, "expected '(' here") || 7732 ParseToken(lltok::kw_name, "expected 'name' here") || 7733 ParseToken(lltok::colon, "expected ':' here") || 7734 ParseStringConstant(Name)) 7735 return true; 7736 7737 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name); 7738 if (ParseToken(lltok::comma, "expected ',' here") || 7739 ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here")) 7740 return true; 7741 7742 // Check if this ID was forward referenced, and if so, update the 7743 // corresponding GUIDs. 7744 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7745 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7746 for (auto TIDRef : FwdRefTIDs->second) { 7747 assert(!*TIDRef.first && 7748 "Forward referenced type id GUID expected to be 0"); 7749 *TIDRef.first = GlobalValue::getGUID(Name); 7750 } 7751 ForwardRefTypeIds.erase(FwdRefTIDs); 7752 } 7753 7754 return false; 7755 } 7756 7757 /// TypeIdSummary 7758 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')' 7759 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) { 7760 if (ParseToken(lltok::kw_summary, "expected 'summary' here") || 7761 ParseToken(lltok::colon, "expected ':' here") || 7762 ParseToken(lltok::lparen, "expected '(' here") || 7763 ParseTypeTestResolution(TIS.TTRes)) 7764 return true; 7765 7766 if (EatIfPresent(lltok::comma)) { 7767 // Expect optional wpdResolutions field 7768 if (ParseOptionalWpdResolutions(TIS.WPDRes)) 7769 return true; 7770 } 7771 7772 if (ParseToken(lltok::rparen, "expected ')' here")) 7773 return true; 7774 7775 return false; 7776 } 7777 7778 static ValueInfo EmptyVI = 7779 ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8); 7780 7781 /// TypeIdCompatibleVtableEntry 7782 /// ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ',' 7783 /// TypeIdCompatibleVtableInfo 7784 /// ')' 7785 bool LLParser::ParseTypeIdCompatibleVtableEntry(unsigned ID) { 7786 assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable); 7787 Lex.Lex(); 7788 7789 std::string Name; 7790 if (ParseToken(lltok::colon, "expected ':' here") || 7791 ParseToken(lltok::lparen, "expected '(' here") || 7792 ParseToken(lltok::kw_name, "expected 'name' here") || 7793 ParseToken(lltok::colon, "expected ':' here") || 7794 ParseStringConstant(Name)) 7795 return true; 7796 7797 TypeIdCompatibleVtableInfo &TI = 7798 Index->getOrInsertTypeIdCompatibleVtableSummary(Name); 7799 if (ParseToken(lltok::comma, "expected ',' here") || 7800 ParseToken(lltok::kw_summary, "expected 'summary' here") || 7801 ParseToken(lltok::colon, "expected ':' here") || 7802 ParseToken(lltok::lparen, "expected '(' here")) 7803 return true; 7804 7805 IdToIndexMapType IdToIndexMap; 7806 // Parse each call edge 7807 do { 7808 uint64_t Offset; 7809 if (ParseToken(lltok::lparen, "expected '(' here") || 7810 ParseToken(lltok::kw_offset, "expected 'offset' here") || 7811 ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) || 7812 ParseToken(lltok::comma, "expected ',' here")) 7813 return true; 7814 7815 LocTy Loc = Lex.getLoc(); 7816 unsigned GVId; 7817 ValueInfo VI; 7818 if (ParseGVReference(VI, GVId)) 7819 return true; 7820 7821 // Keep track of the TypeIdCompatibleVtableInfo array index needing a 7822 // forward reference. We will save the location of the ValueInfo needing an 7823 // update, but can only do so once the std::vector is finalized. 7824 if (VI == EmptyVI) 7825 IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc)); 7826 TI.push_back({Offset, VI}); 7827 7828 if (ParseToken(lltok::rparen, "expected ')' in call")) 7829 return true; 7830 } while (EatIfPresent(lltok::comma)); 7831 7832 // Now that the TI vector is finalized, it is safe to save the locations 7833 // of any forward GV references that need updating later. 7834 for (auto I : IdToIndexMap) { 7835 auto &Infos = ForwardRefValueInfos[I.first]; 7836 for (auto P : I.second) { 7837 assert(TI[P.first].VTableVI == EmptyVI && 7838 "Forward referenced ValueInfo expected to be empty"); 7839 Infos.emplace_back(&TI[P.first].VTableVI, P.second); 7840 } 7841 } 7842 7843 if (ParseToken(lltok::rparen, "expected ')' here") || 7844 ParseToken(lltok::rparen, "expected ')' here")) 7845 return true; 7846 7847 // Check if this ID was forward referenced, and if so, update the 7848 // corresponding GUIDs. 7849 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7850 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7851 for (auto TIDRef : FwdRefTIDs->second) { 7852 assert(!*TIDRef.first && 7853 "Forward referenced type id GUID expected to be 0"); 7854 *TIDRef.first = GlobalValue::getGUID(Name); 7855 } 7856 ForwardRefTypeIds.erase(FwdRefTIDs); 7857 } 7858 7859 return false; 7860 } 7861 7862 /// TypeTestResolution 7863 /// ::= 'typeTestRes' ':' '(' 'kind' ':' 7864 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ',' 7865 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]? 7866 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]? 7867 /// [',' 'inlinesBits' ':' UInt64]? ')' 7868 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) { 7869 if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") || 7870 ParseToken(lltok::colon, "expected ':' here") || 7871 ParseToken(lltok::lparen, "expected '(' here") || 7872 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7873 ParseToken(lltok::colon, "expected ':' here")) 7874 return true; 7875 7876 switch (Lex.getKind()) { 7877 case lltok::kw_unknown: 7878 TTRes.TheKind = TypeTestResolution::Unknown; 7879 break; 7880 case lltok::kw_unsat: 7881 TTRes.TheKind = TypeTestResolution::Unsat; 7882 break; 7883 case lltok::kw_byteArray: 7884 TTRes.TheKind = TypeTestResolution::ByteArray; 7885 break; 7886 case lltok::kw_inline: 7887 TTRes.TheKind = TypeTestResolution::Inline; 7888 break; 7889 case lltok::kw_single: 7890 TTRes.TheKind = TypeTestResolution::Single; 7891 break; 7892 case lltok::kw_allOnes: 7893 TTRes.TheKind = TypeTestResolution::AllOnes; 7894 break; 7895 default: 7896 return Error(Lex.getLoc(), "unexpected TypeTestResolution kind"); 7897 } 7898 Lex.Lex(); 7899 7900 if (ParseToken(lltok::comma, "expected ',' here") || 7901 ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") || 7902 ParseToken(lltok::colon, "expected ':' here") || 7903 ParseUInt32(TTRes.SizeM1BitWidth)) 7904 return true; 7905 7906 // Parse optional fields 7907 while (EatIfPresent(lltok::comma)) { 7908 switch (Lex.getKind()) { 7909 case lltok::kw_alignLog2: 7910 Lex.Lex(); 7911 if (ParseToken(lltok::colon, "expected ':'") || 7912 ParseUInt64(TTRes.AlignLog2)) 7913 return true; 7914 break; 7915 case lltok::kw_sizeM1: 7916 Lex.Lex(); 7917 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1)) 7918 return true; 7919 break; 7920 case lltok::kw_bitMask: { 7921 unsigned Val; 7922 Lex.Lex(); 7923 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val)) 7924 return true; 7925 assert(Val <= 0xff); 7926 TTRes.BitMask = (uint8_t)Val; 7927 break; 7928 } 7929 case lltok::kw_inlineBits: 7930 Lex.Lex(); 7931 if (ParseToken(lltok::colon, "expected ':'") || 7932 ParseUInt64(TTRes.InlineBits)) 7933 return true; 7934 break; 7935 default: 7936 return Error(Lex.getLoc(), "expected optional TypeTestResolution field"); 7937 } 7938 } 7939 7940 if (ParseToken(lltok::rparen, "expected ')' here")) 7941 return true; 7942 7943 return false; 7944 } 7945 7946 /// OptionalWpdResolutions 7947 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')' 7948 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')' 7949 bool LLParser::ParseOptionalWpdResolutions( 7950 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) { 7951 if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") || 7952 ParseToken(lltok::colon, "expected ':' here") || 7953 ParseToken(lltok::lparen, "expected '(' here")) 7954 return true; 7955 7956 do { 7957 uint64_t Offset; 7958 WholeProgramDevirtResolution WPDRes; 7959 if (ParseToken(lltok::lparen, "expected '(' here") || 7960 ParseToken(lltok::kw_offset, "expected 'offset' here") || 7961 ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) || 7962 ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) || 7963 ParseToken(lltok::rparen, "expected ')' here")) 7964 return true; 7965 WPDResMap[Offset] = WPDRes; 7966 } while (EatIfPresent(lltok::comma)); 7967 7968 if (ParseToken(lltok::rparen, "expected ')' here")) 7969 return true; 7970 7971 return false; 7972 } 7973 7974 /// WpdRes 7975 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir' 7976 /// [',' OptionalResByArg]? ')' 7977 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl' 7978 /// ',' 'singleImplName' ':' STRINGCONSTANT ',' 7979 /// [',' OptionalResByArg]? ')' 7980 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel' 7981 /// [',' OptionalResByArg]? ')' 7982 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) { 7983 if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") || 7984 ParseToken(lltok::colon, "expected ':' here") || 7985 ParseToken(lltok::lparen, "expected '(' here") || 7986 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7987 ParseToken(lltok::colon, "expected ':' here")) 7988 return true; 7989 7990 switch (Lex.getKind()) { 7991 case lltok::kw_indir: 7992 WPDRes.TheKind = WholeProgramDevirtResolution::Indir; 7993 break; 7994 case lltok::kw_singleImpl: 7995 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl; 7996 break; 7997 case lltok::kw_branchFunnel: 7998 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel; 7999 break; 8000 default: 8001 return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind"); 8002 } 8003 Lex.Lex(); 8004 8005 // Parse optional fields 8006 while (EatIfPresent(lltok::comma)) { 8007 switch (Lex.getKind()) { 8008 case lltok::kw_singleImplName: 8009 Lex.Lex(); 8010 if (ParseToken(lltok::colon, "expected ':' here") || 8011 ParseStringConstant(WPDRes.SingleImplName)) 8012 return true; 8013 break; 8014 case lltok::kw_resByArg: 8015 if (ParseOptionalResByArg(WPDRes.ResByArg)) 8016 return true; 8017 break; 8018 default: 8019 return Error(Lex.getLoc(), 8020 "expected optional WholeProgramDevirtResolution field"); 8021 } 8022 } 8023 8024 if (ParseToken(lltok::rparen, "expected ')' here")) 8025 return true; 8026 8027 return false; 8028 } 8029 8030 /// OptionalResByArg 8031 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')' 8032 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':' 8033 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' | 8034 /// 'virtualConstProp' ) 8035 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]? 8036 /// [',' 'bit' ':' UInt32]? ')' 8037 bool LLParser::ParseOptionalResByArg( 8038 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg> 8039 &ResByArg) { 8040 if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") || 8041 ParseToken(lltok::colon, "expected ':' here") || 8042 ParseToken(lltok::lparen, "expected '(' here")) 8043 return true; 8044 8045 do { 8046 std::vector<uint64_t> Args; 8047 if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") || 8048 ParseToken(lltok::kw_byArg, "expected 'byArg here") || 8049 ParseToken(lltok::colon, "expected ':' here") || 8050 ParseToken(lltok::lparen, "expected '(' here") || 8051 ParseToken(lltok::kw_kind, "expected 'kind' here") || 8052 ParseToken(lltok::colon, "expected ':' here")) 8053 return true; 8054 8055 WholeProgramDevirtResolution::ByArg ByArg; 8056 switch (Lex.getKind()) { 8057 case lltok::kw_indir: 8058 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir; 8059 break; 8060 case lltok::kw_uniformRetVal: 8061 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 8062 break; 8063 case lltok::kw_uniqueRetVal: 8064 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 8065 break; 8066 case lltok::kw_virtualConstProp: 8067 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 8068 break; 8069 default: 8070 return Error(Lex.getLoc(), 8071 "unexpected WholeProgramDevirtResolution::ByArg kind"); 8072 } 8073 Lex.Lex(); 8074 8075 // Parse optional fields 8076 while (EatIfPresent(lltok::comma)) { 8077 switch (Lex.getKind()) { 8078 case lltok::kw_info: 8079 Lex.Lex(); 8080 if (ParseToken(lltok::colon, "expected ':' here") || 8081 ParseUInt64(ByArg.Info)) 8082 return true; 8083 break; 8084 case lltok::kw_byte: 8085 Lex.Lex(); 8086 if (ParseToken(lltok::colon, "expected ':' here") || 8087 ParseUInt32(ByArg.Byte)) 8088 return true; 8089 break; 8090 case lltok::kw_bit: 8091 Lex.Lex(); 8092 if (ParseToken(lltok::colon, "expected ':' here") || 8093 ParseUInt32(ByArg.Bit)) 8094 return true; 8095 break; 8096 default: 8097 return Error(Lex.getLoc(), 8098 "expected optional whole program devirt field"); 8099 } 8100 } 8101 8102 if (ParseToken(lltok::rparen, "expected ')' here")) 8103 return true; 8104 8105 ResByArg[Args] = ByArg; 8106 } while (EatIfPresent(lltok::comma)); 8107 8108 if (ParseToken(lltok::rparen, "expected ')' here")) 8109 return true; 8110 8111 return false; 8112 } 8113 8114 /// OptionalResByArg 8115 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')' 8116 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) { 8117 if (ParseToken(lltok::kw_args, "expected 'args' here") || 8118 ParseToken(lltok::colon, "expected ':' here") || 8119 ParseToken(lltok::lparen, "expected '(' here")) 8120 return true; 8121 8122 do { 8123 uint64_t Val; 8124 if (ParseUInt64(Val)) 8125 return true; 8126 Args.push_back(Val); 8127 } while (EatIfPresent(lltok::comma)); 8128 8129 if (ParseToken(lltok::rparen, "expected ')' here")) 8130 return true; 8131 8132 return false; 8133 } 8134 8135 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8; 8136 8137 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) { 8138 bool ReadOnly = Fwd->isReadOnly(); 8139 bool WriteOnly = Fwd->isWriteOnly(); 8140 assert(!(ReadOnly && WriteOnly)); 8141 *Fwd = Resolved; 8142 if (ReadOnly) 8143 Fwd->setReadOnly(); 8144 if (WriteOnly) 8145 Fwd->setWriteOnly(); 8146 } 8147 8148 /// Stores the given Name/GUID and associated summary into the Index. 8149 /// Also updates any forward references to the associated entry ID. 8150 void LLParser::AddGlobalValueToIndex( 8151 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage, 8152 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) { 8153 // First create the ValueInfo utilizing the Name or GUID. 8154 ValueInfo VI; 8155 if (GUID != 0) { 8156 assert(Name.empty()); 8157 VI = Index->getOrInsertValueInfo(GUID); 8158 } else { 8159 assert(!Name.empty()); 8160 if (M) { 8161 auto *GV = M->getNamedValue(Name); 8162 assert(GV); 8163 VI = Index->getOrInsertValueInfo(GV); 8164 } else { 8165 assert( 8166 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) && 8167 "Need a source_filename to compute GUID for local"); 8168 GUID = GlobalValue::getGUID( 8169 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName)); 8170 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name)); 8171 } 8172 } 8173 8174 // Resolve forward references from calls/refs 8175 auto FwdRefVIs = ForwardRefValueInfos.find(ID); 8176 if (FwdRefVIs != ForwardRefValueInfos.end()) { 8177 for (auto VIRef : FwdRefVIs->second) { 8178 assert(VIRef.first->getRef() == FwdVIRef && 8179 "Forward referenced ValueInfo expected to be empty"); 8180 resolveFwdRef(VIRef.first, VI); 8181 } 8182 ForwardRefValueInfos.erase(FwdRefVIs); 8183 } 8184 8185 // Resolve forward references from aliases 8186 auto FwdRefAliasees = ForwardRefAliasees.find(ID); 8187 if (FwdRefAliasees != ForwardRefAliasees.end()) { 8188 for (auto AliaseeRef : FwdRefAliasees->second) { 8189 assert(!AliaseeRef.first->hasAliasee() && 8190 "Forward referencing alias already has aliasee"); 8191 assert(Summary && "Aliasee must be a definition"); 8192 AliaseeRef.first->setAliasee(VI, Summary.get()); 8193 } 8194 ForwardRefAliasees.erase(FwdRefAliasees); 8195 } 8196 8197 // Add the summary if one was provided. 8198 if (Summary) 8199 Index->addGlobalValueSummary(VI, std::move(Summary)); 8200 8201 // Save the associated ValueInfo for use in later references by ID. 8202 if (ID == NumberedValueInfos.size()) 8203 NumberedValueInfos.push_back(VI); 8204 else { 8205 // Handle non-continuous numbers (to make test simplification easier). 8206 if (ID > NumberedValueInfos.size()) 8207 NumberedValueInfos.resize(ID + 1); 8208 NumberedValueInfos[ID] = VI; 8209 } 8210 } 8211 8212 /// ParseSummaryIndexFlags 8213 /// ::= 'flags' ':' UInt64 8214 bool LLParser::ParseSummaryIndexFlags() { 8215 assert(Lex.getKind() == lltok::kw_flags); 8216 Lex.Lex(); 8217 8218 if (ParseToken(lltok::colon, "expected ':' here")) 8219 return true; 8220 uint64_t Flags; 8221 if (ParseUInt64(Flags)) 8222 return true; 8223 if (Index) 8224 Index->setFlags(Flags); 8225 return false; 8226 } 8227 8228 /// ParseBlockCount 8229 /// ::= 'blockcount' ':' UInt64 8230 bool LLParser::ParseBlockCount() { 8231 assert(Lex.getKind() == lltok::kw_blockcount); 8232 Lex.Lex(); 8233 8234 if (ParseToken(lltok::colon, "expected ':' here")) 8235 return true; 8236 uint64_t BlockCount; 8237 if (ParseUInt64(BlockCount)) 8238 return true; 8239 if (Index) 8240 Index->setBlockCount(BlockCount); 8241 return false; 8242 } 8243 8244 /// ParseGVEntry 8245 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64) 8246 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')' 8247 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')' 8248 bool LLParser::ParseGVEntry(unsigned ID) { 8249 assert(Lex.getKind() == lltok::kw_gv); 8250 Lex.Lex(); 8251 8252 if (ParseToken(lltok::colon, "expected ':' here") || 8253 ParseToken(lltok::lparen, "expected '(' here")) 8254 return true; 8255 8256 std::string Name; 8257 GlobalValue::GUID GUID = 0; 8258 switch (Lex.getKind()) { 8259 case lltok::kw_name: 8260 Lex.Lex(); 8261 if (ParseToken(lltok::colon, "expected ':' here") || 8262 ParseStringConstant(Name)) 8263 return true; 8264 // Can't create GUID/ValueInfo until we have the linkage. 8265 break; 8266 case lltok::kw_guid: 8267 Lex.Lex(); 8268 if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID)) 8269 return true; 8270 break; 8271 default: 8272 return Error(Lex.getLoc(), "expected name or guid tag"); 8273 } 8274 8275 if (!EatIfPresent(lltok::comma)) { 8276 // No summaries. Wrap up. 8277 if (ParseToken(lltok::rparen, "expected ')' here")) 8278 return true; 8279 // This was created for a call to an external or indirect target. 8280 // A GUID with no summary came from a VALUE_GUID record, dummy GUID 8281 // created for indirect calls with VP. A Name with no GUID came from 8282 // an external definition. We pass ExternalLinkage since that is only 8283 // used when the GUID must be computed from Name, and in that case 8284 // the symbol must have external linkage. 8285 AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID, 8286 nullptr); 8287 return false; 8288 } 8289 8290 // Have a list of summaries 8291 if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") || 8292 ParseToken(lltok::colon, "expected ':' here") || 8293 ParseToken(lltok::lparen, "expected '(' here")) 8294 return true; 8295 do { 8296 switch (Lex.getKind()) { 8297 case lltok::kw_function: 8298 if (ParseFunctionSummary(Name, GUID, ID)) 8299 return true; 8300 break; 8301 case lltok::kw_variable: 8302 if (ParseVariableSummary(Name, GUID, ID)) 8303 return true; 8304 break; 8305 case lltok::kw_alias: 8306 if (ParseAliasSummary(Name, GUID, ID)) 8307 return true; 8308 break; 8309 default: 8310 return Error(Lex.getLoc(), "expected summary type"); 8311 } 8312 } while (EatIfPresent(lltok::comma)); 8313 8314 if (ParseToken(lltok::rparen, "expected ')' here") || 8315 ParseToken(lltok::rparen, "expected ')' here")) 8316 return true; 8317 8318 return false; 8319 } 8320 8321 /// FunctionSummary 8322 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8323 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]? 8324 /// [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]? 8325 /// [',' OptionalRefs]? ')' 8326 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID, 8327 unsigned ID) { 8328 assert(Lex.getKind() == lltok::kw_function); 8329 Lex.Lex(); 8330 8331 StringRef ModulePath; 8332 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8333 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 8334 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8335 unsigned InstCount; 8336 std::vector<FunctionSummary::EdgeTy> Calls; 8337 FunctionSummary::TypeIdInfo TypeIdInfo; 8338 std::vector<FunctionSummary::ParamAccess> ParamAccesses; 8339 std::vector<ValueInfo> Refs; 8340 // Default is all-zeros (conservative values). 8341 FunctionSummary::FFlags FFlags = {}; 8342 if (ParseToken(lltok::colon, "expected ':' here") || 8343 ParseToken(lltok::lparen, "expected '(' here") || 8344 ParseModuleReference(ModulePath) || 8345 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 8346 ParseToken(lltok::comma, "expected ',' here") || 8347 ParseToken(lltok::kw_insts, "expected 'insts' here") || 8348 ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount)) 8349 return true; 8350 8351 // Parse optional fields 8352 while (EatIfPresent(lltok::comma)) { 8353 switch (Lex.getKind()) { 8354 case lltok::kw_funcFlags: 8355 if (ParseOptionalFFlags(FFlags)) 8356 return true; 8357 break; 8358 case lltok::kw_calls: 8359 if (ParseOptionalCalls(Calls)) 8360 return true; 8361 break; 8362 case lltok::kw_typeIdInfo: 8363 if (ParseOptionalTypeIdInfo(TypeIdInfo)) 8364 return true; 8365 break; 8366 case lltok::kw_refs: 8367 if (ParseOptionalRefs(Refs)) 8368 return true; 8369 break; 8370 case lltok::kw_params: 8371 if (ParseOptionalParamAccesses(ParamAccesses)) 8372 return true; 8373 break; 8374 default: 8375 return Error(Lex.getLoc(), "expected optional function summary field"); 8376 } 8377 } 8378 8379 if (ParseToken(lltok::rparen, "expected ')' here")) 8380 return true; 8381 8382 auto FS = std::make_unique<FunctionSummary>( 8383 GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs), 8384 std::move(Calls), std::move(TypeIdInfo.TypeTests), 8385 std::move(TypeIdInfo.TypeTestAssumeVCalls), 8386 std::move(TypeIdInfo.TypeCheckedLoadVCalls), 8387 std::move(TypeIdInfo.TypeTestAssumeConstVCalls), 8388 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls), 8389 std::move(ParamAccesses)); 8390 8391 FS->setModulePath(ModulePath); 8392 8393 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8394 ID, std::move(FS)); 8395 8396 return false; 8397 } 8398 8399 /// VariableSummary 8400 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8401 /// [',' OptionalRefs]? ')' 8402 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID, 8403 unsigned ID) { 8404 assert(Lex.getKind() == lltok::kw_variable); 8405 Lex.Lex(); 8406 8407 StringRef ModulePath; 8408 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8409 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 8410 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8411 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false, 8412 /* WriteOnly */ false, 8413 /* Constant */ false, 8414 GlobalObject::VCallVisibilityPublic); 8415 std::vector<ValueInfo> Refs; 8416 VTableFuncList VTableFuncs; 8417 if (ParseToken(lltok::colon, "expected ':' here") || 8418 ParseToken(lltok::lparen, "expected '(' here") || 8419 ParseModuleReference(ModulePath) || 8420 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 8421 ParseToken(lltok::comma, "expected ',' here") || 8422 ParseGVarFlags(GVarFlags)) 8423 return true; 8424 8425 // Parse optional fields 8426 while (EatIfPresent(lltok::comma)) { 8427 switch (Lex.getKind()) { 8428 case lltok::kw_vTableFuncs: 8429 if (ParseOptionalVTableFuncs(VTableFuncs)) 8430 return true; 8431 break; 8432 case lltok::kw_refs: 8433 if (ParseOptionalRefs(Refs)) 8434 return true; 8435 break; 8436 default: 8437 return Error(Lex.getLoc(), "expected optional variable summary field"); 8438 } 8439 } 8440 8441 if (ParseToken(lltok::rparen, "expected ')' here")) 8442 return true; 8443 8444 auto GS = 8445 std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs)); 8446 8447 GS->setModulePath(ModulePath); 8448 GS->setVTableFuncs(std::move(VTableFuncs)); 8449 8450 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8451 ID, std::move(GS)); 8452 8453 return false; 8454 } 8455 8456 /// AliasSummary 8457 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ',' 8458 /// 'aliasee' ':' GVReference ')' 8459 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID, 8460 unsigned ID) { 8461 assert(Lex.getKind() == lltok::kw_alias); 8462 LocTy Loc = Lex.getLoc(); 8463 Lex.Lex(); 8464 8465 StringRef ModulePath; 8466 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8467 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 8468 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8469 if (ParseToken(lltok::colon, "expected ':' here") || 8470 ParseToken(lltok::lparen, "expected '(' here") || 8471 ParseModuleReference(ModulePath) || 8472 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 8473 ParseToken(lltok::comma, "expected ',' here") || 8474 ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") || 8475 ParseToken(lltok::colon, "expected ':' here")) 8476 return true; 8477 8478 ValueInfo AliaseeVI; 8479 unsigned GVId; 8480 if (ParseGVReference(AliaseeVI, GVId)) 8481 return true; 8482 8483 if (ParseToken(lltok::rparen, "expected ')' here")) 8484 return true; 8485 8486 auto AS = std::make_unique<AliasSummary>(GVFlags); 8487 8488 AS->setModulePath(ModulePath); 8489 8490 // Record forward reference if the aliasee is not parsed yet. 8491 if (AliaseeVI.getRef() == FwdVIRef) { 8492 ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc); 8493 } else { 8494 auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath); 8495 assert(Summary && "Aliasee must be a definition"); 8496 AS->setAliasee(AliaseeVI, Summary); 8497 } 8498 8499 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8500 ID, std::move(AS)); 8501 8502 return false; 8503 } 8504 8505 /// Flag 8506 /// ::= [0|1] 8507 bool LLParser::ParseFlag(unsigned &Val) { 8508 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 8509 return TokError("expected integer"); 8510 Val = (unsigned)Lex.getAPSIntVal().getBoolValue(); 8511 Lex.Lex(); 8512 return false; 8513 } 8514 8515 /// OptionalFFlags 8516 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]? 8517 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]? 8518 /// [',' 'returnDoesNotAlias' ':' Flag]? ')' 8519 /// [',' 'noInline' ':' Flag]? ')' 8520 /// [',' 'alwaysInline' ':' Flag]? ')' 8521 8522 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) { 8523 assert(Lex.getKind() == lltok::kw_funcFlags); 8524 Lex.Lex(); 8525 8526 if (ParseToken(lltok::colon, "expected ':' in funcFlags") | 8527 ParseToken(lltok::lparen, "expected '(' in funcFlags")) 8528 return true; 8529 8530 do { 8531 unsigned Val = 0; 8532 switch (Lex.getKind()) { 8533 case lltok::kw_readNone: 8534 Lex.Lex(); 8535 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8536 return true; 8537 FFlags.ReadNone = Val; 8538 break; 8539 case lltok::kw_readOnly: 8540 Lex.Lex(); 8541 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8542 return true; 8543 FFlags.ReadOnly = Val; 8544 break; 8545 case lltok::kw_noRecurse: 8546 Lex.Lex(); 8547 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8548 return true; 8549 FFlags.NoRecurse = Val; 8550 break; 8551 case lltok::kw_returnDoesNotAlias: 8552 Lex.Lex(); 8553 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8554 return true; 8555 FFlags.ReturnDoesNotAlias = Val; 8556 break; 8557 case lltok::kw_noInline: 8558 Lex.Lex(); 8559 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8560 return true; 8561 FFlags.NoInline = Val; 8562 break; 8563 case lltok::kw_alwaysInline: 8564 Lex.Lex(); 8565 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8566 return true; 8567 FFlags.AlwaysInline = Val; 8568 break; 8569 default: 8570 return Error(Lex.getLoc(), "expected function flag type"); 8571 } 8572 } while (EatIfPresent(lltok::comma)); 8573 8574 if (ParseToken(lltok::rparen, "expected ')' in funcFlags")) 8575 return true; 8576 8577 return false; 8578 } 8579 8580 /// OptionalCalls 8581 /// := 'calls' ':' '(' Call [',' Call]* ')' 8582 /// Call ::= '(' 'callee' ':' GVReference 8583 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')' 8584 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) { 8585 assert(Lex.getKind() == lltok::kw_calls); 8586 Lex.Lex(); 8587 8588 if (ParseToken(lltok::colon, "expected ':' in calls") | 8589 ParseToken(lltok::lparen, "expected '(' in calls")) 8590 return true; 8591 8592 IdToIndexMapType IdToIndexMap; 8593 // Parse each call edge 8594 do { 8595 ValueInfo VI; 8596 if (ParseToken(lltok::lparen, "expected '(' in call") || 8597 ParseToken(lltok::kw_callee, "expected 'callee' in call") || 8598 ParseToken(lltok::colon, "expected ':'")) 8599 return true; 8600 8601 LocTy Loc = Lex.getLoc(); 8602 unsigned GVId; 8603 if (ParseGVReference(VI, GVId)) 8604 return true; 8605 8606 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 8607 unsigned RelBF = 0; 8608 if (EatIfPresent(lltok::comma)) { 8609 // Expect either hotness or relbf 8610 if (EatIfPresent(lltok::kw_hotness)) { 8611 if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness)) 8612 return true; 8613 } else { 8614 if (ParseToken(lltok::kw_relbf, "expected relbf") || 8615 ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF)) 8616 return true; 8617 } 8618 } 8619 // Keep track of the Call array index needing a forward reference. 8620 // We will save the location of the ValueInfo needing an update, but 8621 // can only do so once the std::vector is finalized. 8622 if (VI.getRef() == FwdVIRef) 8623 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc)); 8624 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)}); 8625 8626 if (ParseToken(lltok::rparen, "expected ')' in call")) 8627 return true; 8628 } while (EatIfPresent(lltok::comma)); 8629 8630 // Now that the Calls vector is finalized, it is safe to save the locations 8631 // of any forward GV references that need updating later. 8632 for (auto I : IdToIndexMap) { 8633 auto &Infos = ForwardRefValueInfos[I.first]; 8634 for (auto P : I.second) { 8635 assert(Calls[P.first].first.getRef() == FwdVIRef && 8636 "Forward referenced ValueInfo expected to be empty"); 8637 Infos.emplace_back(&Calls[P.first].first, P.second); 8638 } 8639 } 8640 8641 if (ParseToken(lltok::rparen, "expected ')' in calls")) 8642 return true; 8643 8644 return false; 8645 } 8646 8647 /// Hotness 8648 /// := ('unknown'|'cold'|'none'|'hot'|'critical') 8649 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) { 8650 switch (Lex.getKind()) { 8651 case lltok::kw_unknown: 8652 Hotness = CalleeInfo::HotnessType::Unknown; 8653 break; 8654 case lltok::kw_cold: 8655 Hotness = CalleeInfo::HotnessType::Cold; 8656 break; 8657 case lltok::kw_none: 8658 Hotness = CalleeInfo::HotnessType::None; 8659 break; 8660 case lltok::kw_hot: 8661 Hotness = CalleeInfo::HotnessType::Hot; 8662 break; 8663 case lltok::kw_critical: 8664 Hotness = CalleeInfo::HotnessType::Critical; 8665 break; 8666 default: 8667 return Error(Lex.getLoc(), "invalid call edge hotness"); 8668 } 8669 Lex.Lex(); 8670 return false; 8671 } 8672 8673 /// OptionalVTableFuncs 8674 /// := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')' 8675 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')' 8676 bool LLParser::ParseOptionalVTableFuncs(VTableFuncList &VTableFuncs) { 8677 assert(Lex.getKind() == lltok::kw_vTableFuncs); 8678 Lex.Lex(); 8679 8680 if (ParseToken(lltok::colon, "expected ':' in vTableFuncs") | 8681 ParseToken(lltok::lparen, "expected '(' in vTableFuncs")) 8682 return true; 8683 8684 IdToIndexMapType IdToIndexMap; 8685 // Parse each virtual function pair 8686 do { 8687 ValueInfo VI; 8688 if (ParseToken(lltok::lparen, "expected '(' in vTableFunc") || 8689 ParseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") || 8690 ParseToken(lltok::colon, "expected ':'")) 8691 return true; 8692 8693 LocTy Loc = Lex.getLoc(); 8694 unsigned GVId; 8695 if (ParseGVReference(VI, GVId)) 8696 return true; 8697 8698 uint64_t Offset; 8699 if (ParseToken(lltok::comma, "expected comma") || 8700 ParseToken(lltok::kw_offset, "expected offset") || 8701 ParseToken(lltok::colon, "expected ':'") || ParseUInt64(Offset)) 8702 return true; 8703 8704 // Keep track of the VTableFuncs array index needing a forward reference. 8705 // We will save the location of the ValueInfo needing an update, but 8706 // can only do so once the std::vector is finalized. 8707 if (VI == EmptyVI) 8708 IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc)); 8709 VTableFuncs.push_back({VI, Offset}); 8710 8711 if (ParseToken(lltok::rparen, "expected ')' in vTableFunc")) 8712 return true; 8713 } while (EatIfPresent(lltok::comma)); 8714 8715 // Now that the VTableFuncs vector is finalized, it is safe to save the 8716 // locations of any forward GV references that need updating later. 8717 for (auto I : IdToIndexMap) { 8718 auto &Infos = ForwardRefValueInfos[I.first]; 8719 for (auto P : I.second) { 8720 assert(VTableFuncs[P.first].FuncVI == EmptyVI && 8721 "Forward referenced ValueInfo expected to be empty"); 8722 Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second); 8723 } 8724 } 8725 8726 if (ParseToken(lltok::rparen, "expected ')' in vTableFuncs")) 8727 return true; 8728 8729 return false; 8730 } 8731 8732 /// ParamNo := 'param' ':' UInt64 8733 bool LLParser::ParseParamNo(uint64_t &ParamNo) { 8734 if (ParseToken(lltok::kw_param, "expected 'param' here") || 8735 ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(ParamNo)) 8736 return true; 8737 return false; 8738 } 8739 8740 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']' 8741 bool LLParser::ParseParamAccessOffset(ConstantRange &Range) { 8742 APSInt Lower; 8743 APSInt Upper; 8744 auto ParseAPSInt = [&](APSInt &Val) { 8745 if (Lex.getKind() != lltok::APSInt) 8746 return TokError("expected integer"); 8747 Val = Lex.getAPSIntVal(); 8748 Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 8749 Val.setIsSigned(true); 8750 Lex.Lex(); 8751 return false; 8752 }; 8753 if (ParseToken(lltok::kw_offset, "expected 'offset' here") || 8754 ParseToken(lltok::colon, "expected ':' here") || 8755 ParseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) || 8756 ParseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) || 8757 ParseToken(lltok::rsquare, "expected ']' here")) 8758 return true; 8759 8760 ++Upper; 8761 Range = 8762 (Lower == Upper && !Lower.isMaxValue()) 8763 ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth) 8764 : ConstantRange(Lower, Upper); 8765 8766 return false; 8767 } 8768 8769 /// ParamAccessCall 8770 /// := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')' 8771 bool LLParser::ParseParamAccessCall(FunctionSummary::ParamAccess::Call &Call, 8772 IdLocListType &IdLocList) { 8773 if (ParseToken(lltok::lparen, "expected '(' here") || 8774 ParseToken(lltok::kw_callee, "expected 'callee' here") || 8775 ParseToken(lltok::colon, "expected ':' here")) 8776 return true; 8777 8778 unsigned GVId; 8779 ValueInfo VI; 8780 LocTy Loc = Lex.getLoc(); 8781 if (ParseGVReference(VI, GVId)) 8782 return true; 8783 8784 Call.Callee = VI; 8785 IdLocList.emplace_back(GVId, Loc); 8786 8787 if (ParseToken(lltok::comma, "expected ',' here") || 8788 ParseParamNo(Call.ParamNo) || 8789 ParseToken(lltok::comma, "expected ',' here") || 8790 ParseParamAccessOffset(Call.Offsets)) 8791 return true; 8792 8793 if (ParseToken(lltok::rparen, "expected ')' here")) 8794 return true; 8795 8796 return false; 8797 } 8798 8799 /// ParamAccess 8800 /// := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')' 8801 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')' 8802 bool LLParser::ParseParamAccess(FunctionSummary::ParamAccess &Param, 8803 IdLocListType &IdLocList) { 8804 if (ParseToken(lltok::lparen, "expected '(' here") || 8805 ParseParamNo(Param.ParamNo) || 8806 ParseToken(lltok::comma, "expected ',' here") || 8807 ParseParamAccessOffset(Param.Use)) 8808 return true; 8809 8810 if (EatIfPresent(lltok::comma)) { 8811 if (ParseToken(lltok::kw_calls, "expected 'calls' here") || 8812 ParseToken(lltok::colon, "expected ':' here") || 8813 ParseToken(lltok::lparen, "expected '(' here")) 8814 return true; 8815 do { 8816 FunctionSummary::ParamAccess::Call Call; 8817 if (ParseParamAccessCall(Call, IdLocList)) 8818 return true; 8819 Param.Calls.push_back(Call); 8820 } while (EatIfPresent(lltok::comma)); 8821 8822 if (ParseToken(lltok::rparen, "expected ')' here")) 8823 return true; 8824 } 8825 8826 if (ParseToken(lltok::rparen, "expected ')' here")) 8827 return true; 8828 8829 return false; 8830 } 8831 8832 /// OptionalParamAccesses 8833 /// := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')' 8834 bool LLParser::ParseOptionalParamAccesses( 8835 std::vector<FunctionSummary::ParamAccess> &Params) { 8836 assert(Lex.getKind() == lltok::kw_params); 8837 Lex.Lex(); 8838 8839 if (ParseToken(lltok::colon, "expected ':' here") || 8840 ParseToken(lltok::lparen, "expected '(' here")) 8841 return true; 8842 8843 IdLocListType VContexts; 8844 size_t CallsNum = 0; 8845 do { 8846 FunctionSummary::ParamAccess ParamAccess; 8847 if (ParseParamAccess(ParamAccess, VContexts)) 8848 return true; 8849 CallsNum += ParamAccess.Calls.size(); 8850 assert(VContexts.size() == CallsNum); 8851 Params.emplace_back(std::move(ParamAccess)); 8852 } while (EatIfPresent(lltok::comma)); 8853 8854 if (ParseToken(lltok::rparen, "expected ')' here")) 8855 return true; 8856 8857 // Now that the Params is finalized, it is safe to save the locations 8858 // of any forward GV references that need updating later. 8859 IdLocListType::const_iterator ItContext = VContexts.begin(); 8860 for (auto &PA : Params) { 8861 for (auto &C : PA.Calls) { 8862 if (C.Callee.getRef() == FwdVIRef) 8863 ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee, 8864 ItContext->second); 8865 ++ItContext; 8866 } 8867 } 8868 assert(ItContext == VContexts.end()); 8869 8870 return false; 8871 } 8872 8873 /// OptionalRefs 8874 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')' 8875 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) { 8876 assert(Lex.getKind() == lltok::kw_refs); 8877 Lex.Lex(); 8878 8879 if (ParseToken(lltok::colon, "expected ':' in refs") || 8880 ParseToken(lltok::lparen, "expected '(' in refs")) 8881 return true; 8882 8883 struct ValueContext { 8884 ValueInfo VI; 8885 unsigned GVId; 8886 LocTy Loc; 8887 }; 8888 std::vector<ValueContext> VContexts; 8889 // Parse each ref edge 8890 do { 8891 ValueContext VC; 8892 VC.Loc = Lex.getLoc(); 8893 if (ParseGVReference(VC.VI, VC.GVId)) 8894 return true; 8895 VContexts.push_back(VC); 8896 } while (EatIfPresent(lltok::comma)); 8897 8898 // Sort value contexts so that ones with writeonly 8899 // and readonly ValueInfo are at the end of VContexts vector. 8900 // See FunctionSummary::specialRefCounts() 8901 llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) { 8902 return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier(); 8903 }); 8904 8905 IdToIndexMapType IdToIndexMap; 8906 for (auto &VC : VContexts) { 8907 // Keep track of the Refs array index needing a forward reference. 8908 // We will save the location of the ValueInfo needing an update, but 8909 // can only do so once the std::vector is finalized. 8910 if (VC.VI.getRef() == FwdVIRef) 8911 IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc)); 8912 Refs.push_back(VC.VI); 8913 } 8914 8915 // Now that the Refs vector is finalized, it is safe to save the locations 8916 // of any forward GV references that need updating later. 8917 for (auto I : IdToIndexMap) { 8918 auto &Infos = ForwardRefValueInfos[I.first]; 8919 for (auto P : I.second) { 8920 assert(Refs[P.first].getRef() == FwdVIRef && 8921 "Forward referenced ValueInfo expected to be empty"); 8922 Infos.emplace_back(&Refs[P.first], P.second); 8923 } 8924 } 8925 8926 if (ParseToken(lltok::rparen, "expected ')' in refs")) 8927 return true; 8928 8929 return false; 8930 } 8931 8932 /// OptionalTypeIdInfo 8933 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]? 8934 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]? 8935 /// [',' TypeCheckedLoadConstVCalls]? ')' 8936 bool LLParser::ParseOptionalTypeIdInfo( 8937 FunctionSummary::TypeIdInfo &TypeIdInfo) { 8938 assert(Lex.getKind() == lltok::kw_typeIdInfo); 8939 Lex.Lex(); 8940 8941 if (ParseToken(lltok::colon, "expected ':' here") || 8942 ParseToken(lltok::lparen, "expected '(' in typeIdInfo")) 8943 return true; 8944 8945 do { 8946 switch (Lex.getKind()) { 8947 case lltok::kw_typeTests: 8948 if (ParseTypeTests(TypeIdInfo.TypeTests)) 8949 return true; 8950 break; 8951 case lltok::kw_typeTestAssumeVCalls: 8952 if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls, 8953 TypeIdInfo.TypeTestAssumeVCalls)) 8954 return true; 8955 break; 8956 case lltok::kw_typeCheckedLoadVCalls: 8957 if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls, 8958 TypeIdInfo.TypeCheckedLoadVCalls)) 8959 return true; 8960 break; 8961 case lltok::kw_typeTestAssumeConstVCalls: 8962 if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls, 8963 TypeIdInfo.TypeTestAssumeConstVCalls)) 8964 return true; 8965 break; 8966 case lltok::kw_typeCheckedLoadConstVCalls: 8967 if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls, 8968 TypeIdInfo.TypeCheckedLoadConstVCalls)) 8969 return true; 8970 break; 8971 default: 8972 return Error(Lex.getLoc(), "invalid typeIdInfo list type"); 8973 } 8974 } while (EatIfPresent(lltok::comma)); 8975 8976 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo")) 8977 return true; 8978 8979 return false; 8980 } 8981 8982 /// TypeTests 8983 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64) 8984 /// [',' (SummaryID | UInt64)]* ')' 8985 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) { 8986 assert(Lex.getKind() == lltok::kw_typeTests); 8987 Lex.Lex(); 8988 8989 if (ParseToken(lltok::colon, "expected ':' here") || 8990 ParseToken(lltok::lparen, "expected '(' in typeIdInfo")) 8991 return true; 8992 8993 IdToIndexMapType IdToIndexMap; 8994 do { 8995 GlobalValue::GUID GUID = 0; 8996 if (Lex.getKind() == lltok::SummaryID) { 8997 unsigned ID = Lex.getUIntVal(); 8998 LocTy Loc = Lex.getLoc(); 8999 // Keep track of the TypeTests array index needing a forward reference. 9000 // We will save the location of the GUID needing an update, but 9001 // can only do so once the std::vector is finalized. 9002 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc)); 9003 Lex.Lex(); 9004 } else if (ParseUInt64(GUID)) 9005 return true; 9006 TypeTests.push_back(GUID); 9007 } while (EatIfPresent(lltok::comma)); 9008 9009 // Now that the TypeTests vector is finalized, it is safe to save the 9010 // locations of any forward GV references that need updating later. 9011 for (auto I : IdToIndexMap) { 9012 auto &Ids = ForwardRefTypeIds[I.first]; 9013 for (auto P : I.second) { 9014 assert(TypeTests[P.first] == 0 && 9015 "Forward referenced type id GUID expected to be 0"); 9016 Ids.emplace_back(&TypeTests[P.first], P.second); 9017 } 9018 } 9019 9020 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo")) 9021 return true; 9022 9023 return false; 9024 } 9025 9026 /// VFuncIdList 9027 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')' 9028 bool LLParser::ParseVFuncIdList( 9029 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) { 9030 assert(Lex.getKind() == Kind); 9031 Lex.Lex(); 9032 9033 if (ParseToken(lltok::colon, "expected ':' here") || 9034 ParseToken(lltok::lparen, "expected '(' here")) 9035 return true; 9036 9037 IdToIndexMapType IdToIndexMap; 9038 do { 9039 FunctionSummary::VFuncId VFuncId; 9040 if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size())) 9041 return true; 9042 VFuncIdList.push_back(VFuncId); 9043 } while (EatIfPresent(lltok::comma)); 9044 9045 if (ParseToken(lltok::rparen, "expected ')' here")) 9046 return true; 9047 9048 // Now that the VFuncIdList vector is finalized, it is safe to save the 9049 // locations of any forward GV references that need updating later. 9050 for (auto I : IdToIndexMap) { 9051 auto &Ids = ForwardRefTypeIds[I.first]; 9052 for (auto P : I.second) { 9053 assert(VFuncIdList[P.first].GUID == 0 && 9054 "Forward referenced type id GUID expected to be 0"); 9055 Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second); 9056 } 9057 } 9058 9059 return false; 9060 } 9061 9062 /// ConstVCallList 9063 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')' 9064 bool LLParser::ParseConstVCallList( 9065 lltok::Kind Kind, 9066 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) { 9067 assert(Lex.getKind() == Kind); 9068 Lex.Lex(); 9069 9070 if (ParseToken(lltok::colon, "expected ':' here") || 9071 ParseToken(lltok::lparen, "expected '(' here")) 9072 return true; 9073 9074 IdToIndexMapType IdToIndexMap; 9075 do { 9076 FunctionSummary::ConstVCall ConstVCall; 9077 if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size())) 9078 return true; 9079 ConstVCallList.push_back(ConstVCall); 9080 } while (EatIfPresent(lltok::comma)); 9081 9082 if (ParseToken(lltok::rparen, "expected ')' here")) 9083 return true; 9084 9085 // Now that the ConstVCallList vector is finalized, it is safe to save the 9086 // locations of any forward GV references that need updating later. 9087 for (auto I : IdToIndexMap) { 9088 auto &Ids = ForwardRefTypeIds[I.first]; 9089 for (auto P : I.second) { 9090 assert(ConstVCallList[P.first].VFunc.GUID == 0 && 9091 "Forward referenced type id GUID expected to be 0"); 9092 Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second); 9093 } 9094 } 9095 9096 return false; 9097 } 9098 9099 /// ConstVCall 9100 /// ::= '(' VFuncId ',' Args ')' 9101 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall, 9102 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9103 if (ParseToken(lltok::lparen, "expected '(' here") || 9104 ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index)) 9105 return true; 9106 9107 if (EatIfPresent(lltok::comma)) 9108 if (ParseArgs(ConstVCall.Args)) 9109 return true; 9110 9111 if (ParseToken(lltok::rparen, "expected ')' here")) 9112 return true; 9113 9114 return false; 9115 } 9116 9117 /// VFuncId 9118 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ',' 9119 /// 'offset' ':' UInt64 ')' 9120 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId, 9121 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9122 assert(Lex.getKind() == lltok::kw_vFuncId); 9123 Lex.Lex(); 9124 9125 if (ParseToken(lltok::colon, "expected ':' here") || 9126 ParseToken(lltok::lparen, "expected '(' here")) 9127 return true; 9128 9129 if (Lex.getKind() == lltok::SummaryID) { 9130 VFuncId.GUID = 0; 9131 unsigned ID = Lex.getUIntVal(); 9132 LocTy Loc = Lex.getLoc(); 9133 // Keep track of the array index needing a forward reference. 9134 // We will save the location of the GUID needing an update, but 9135 // can only do so once the caller's std::vector is finalized. 9136 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc)); 9137 Lex.Lex(); 9138 } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") || 9139 ParseToken(lltok::colon, "expected ':' here") || 9140 ParseUInt64(VFuncId.GUID)) 9141 return true; 9142 9143 if (ParseToken(lltok::comma, "expected ',' here") || 9144 ParseToken(lltok::kw_offset, "expected 'offset' here") || 9145 ParseToken(lltok::colon, "expected ':' here") || 9146 ParseUInt64(VFuncId.Offset) || 9147 ParseToken(lltok::rparen, "expected ')' here")) 9148 return true; 9149 9150 return false; 9151 } 9152 9153 /// GVFlags 9154 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ',' 9155 /// 'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ',' 9156 /// 'dsoLocal' ':' Flag ',' 'canAutoHide' ':' Flag ')' 9157 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) { 9158 assert(Lex.getKind() == lltok::kw_flags); 9159 Lex.Lex(); 9160 9161 if (ParseToken(lltok::colon, "expected ':' here") || 9162 ParseToken(lltok::lparen, "expected '(' here")) 9163 return true; 9164 9165 do { 9166 unsigned Flag = 0; 9167 switch (Lex.getKind()) { 9168 case lltok::kw_linkage: 9169 Lex.Lex(); 9170 if (ParseToken(lltok::colon, "expected ':'")) 9171 return true; 9172 bool HasLinkage; 9173 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 9174 assert(HasLinkage && "Linkage not optional in summary entry"); 9175 Lex.Lex(); 9176 break; 9177 case lltok::kw_notEligibleToImport: 9178 Lex.Lex(); 9179 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag)) 9180 return true; 9181 GVFlags.NotEligibleToImport = Flag; 9182 break; 9183 case lltok::kw_live: 9184 Lex.Lex(); 9185 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag)) 9186 return true; 9187 GVFlags.Live = Flag; 9188 break; 9189 case lltok::kw_dsoLocal: 9190 Lex.Lex(); 9191 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag)) 9192 return true; 9193 GVFlags.DSOLocal = Flag; 9194 break; 9195 case lltok::kw_canAutoHide: 9196 Lex.Lex(); 9197 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag)) 9198 return true; 9199 GVFlags.CanAutoHide = Flag; 9200 break; 9201 default: 9202 return Error(Lex.getLoc(), "expected gv flag type"); 9203 } 9204 } while (EatIfPresent(lltok::comma)); 9205 9206 if (ParseToken(lltok::rparen, "expected ')' here")) 9207 return true; 9208 9209 return false; 9210 } 9211 9212 /// GVarFlags 9213 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag 9214 /// ',' 'writeonly' ':' Flag 9215 /// ',' 'constant' ':' Flag ')' 9216 bool LLParser::ParseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) { 9217 assert(Lex.getKind() == lltok::kw_varFlags); 9218 Lex.Lex(); 9219 9220 if (ParseToken(lltok::colon, "expected ':' here") || 9221 ParseToken(lltok::lparen, "expected '(' here")) 9222 return true; 9223 9224 auto ParseRest = [this](unsigned int &Val) { 9225 Lex.Lex(); 9226 if (ParseToken(lltok::colon, "expected ':'")) 9227 return true; 9228 return ParseFlag(Val); 9229 }; 9230 9231 do { 9232 unsigned Flag = 0; 9233 switch (Lex.getKind()) { 9234 case lltok::kw_readonly: 9235 if (ParseRest(Flag)) 9236 return true; 9237 GVarFlags.MaybeReadOnly = Flag; 9238 break; 9239 case lltok::kw_writeonly: 9240 if (ParseRest(Flag)) 9241 return true; 9242 GVarFlags.MaybeWriteOnly = Flag; 9243 break; 9244 case lltok::kw_constant: 9245 if (ParseRest(Flag)) 9246 return true; 9247 GVarFlags.Constant = Flag; 9248 break; 9249 case lltok::kw_vcall_visibility: 9250 if (ParseRest(Flag)) 9251 return true; 9252 GVarFlags.VCallVisibility = Flag; 9253 break; 9254 default: 9255 return Error(Lex.getLoc(), "expected gvar flag type"); 9256 } 9257 } while (EatIfPresent(lltok::comma)); 9258 return ParseToken(lltok::rparen, "expected ')' here"); 9259 } 9260 9261 /// ModuleReference 9262 /// ::= 'module' ':' UInt 9263 bool LLParser::ParseModuleReference(StringRef &ModulePath) { 9264 // Parse module id. 9265 if (ParseToken(lltok::kw_module, "expected 'module' here") || 9266 ParseToken(lltok::colon, "expected ':' here") || 9267 ParseToken(lltok::SummaryID, "expected module ID")) 9268 return true; 9269 9270 unsigned ModuleID = Lex.getUIntVal(); 9271 auto I = ModuleIdMap.find(ModuleID); 9272 // We should have already parsed all module IDs 9273 assert(I != ModuleIdMap.end()); 9274 ModulePath = I->second; 9275 return false; 9276 } 9277 9278 /// GVReference 9279 /// ::= SummaryID 9280 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) { 9281 bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly); 9282 if (!ReadOnly) 9283 WriteOnly = EatIfPresent(lltok::kw_writeonly); 9284 if (ParseToken(lltok::SummaryID, "expected GV ID")) 9285 return true; 9286 9287 GVId = Lex.getUIntVal(); 9288 // Check if we already have a VI for this GV 9289 if (GVId < NumberedValueInfos.size()) { 9290 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef); 9291 VI = NumberedValueInfos[GVId]; 9292 } else 9293 // We will create a forward reference to the stored location. 9294 VI = ValueInfo(false, FwdVIRef); 9295 9296 if (ReadOnly) 9297 VI.setReadOnly(); 9298 if (WriteOnly) 9299 VI.setWriteOnly(); 9300 return false; 9301 } 9302