1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the parser class for .ll files. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LLParser.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/STLExtras.h" 20 #include "llvm/AsmParser/SlotMapping.h" 21 #include "llvm/IR/Argument.h" 22 #include "llvm/IR/AutoUpgrade.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/CallingConv.h" 25 #include "llvm/IR/Comdat.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DebugInfoMetadata.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/GlobalIFunc.h" 31 #include "llvm/IR/GlobalObject.h" 32 #include "llvm/IR/InlineAsm.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/IR/ValueSymbolTable.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/Dwarf.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/MathExtras.h" 47 #include "llvm/Support/SaveAndRestore.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <cstring> 52 #include <iterator> 53 #include <vector> 54 55 using namespace llvm; 56 57 static std::string getTypeString(Type *T) { 58 std::string Result; 59 raw_string_ostream Tmp(Result); 60 Tmp << *T; 61 return Tmp.str(); 62 } 63 64 /// Run: module ::= toplevelentity* 65 bool LLParser::Run() { 66 // Prime the lexer. 67 Lex.Lex(); 68 69 if (Context.shouldDiscardValueNames()) 70 return Error( 71 Lex.getLoc(), 72 "Can't read textual IR with a Context that discards named Values"); 73 74 return ParseTopLevelEntities() || 75 ValidateEndOfModule(); 76 } 77 78 bool LLParser::parseStandaloneConstantValue(Constant *&C, 79 const SlotMapping *Slots) { 80 restoreParsingState(Slots); 81 Lex.Lex(); 82 83 Type *Ty = nullptr; 84 if (ParseType(Ty) || parseConstantValue(Ty, C)) 85 return true; 86 if (Lex.getKind() != lltok::Eof) 87 return Error(Lex.getLoc(), "expected end of string"); 88 return false; 89 } 90 91 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 92 const SlotMapping *Slots) { 93 restoreParsingState(Slots); 94 Lex.Lex(); 95 96 Read = 0; 97 SMLoc Start = Lex.getLoc(); 98 Ty = nullptr; 99 if (ParseType(Ty)) 100 return true; 101 SMLoc End = Lex.getLoc(); 102 Read = End.getPointer() - Start.getPointer(); 103 104 return false; 105 } 106 107 void LLParser::restoreParsingState(const SlotMapping *Slots) { 108 if (!Slots) 109 return; 110 NumberedVals = Slots->GlobalValues; 111 NumberedMetadata = Slots->MetadataNodes; 112 for (const auto &I : Slots->NamedTypes) 113 NamedTypes.insert( 114 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 115 for (const auto &I : Slots->Types) 116 NumberedTypes.insert( 117 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 118 } 119 120 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 121 /// module. 122 bool LLParser::ValidateEndOfModule() { 123 // Handle any function attribute group forward references. 124 for (std::map<Value*, std::vector<unsigned> >::iterator 125 I = ForwardRefAttrGroups.begin(), E = ForwardRefAttrGroups.end(); 126 I != E; ++I) { 127 Value *V = I->first; 128 std::vector<unsigned> &Vec = I->second; 129 AttrBuilder B; 130 131 for (std::vector<unsigned>::iterator VI = Vec.begin(), VE = Vec.end(); 132 VI != VE; ++VI) 133 B.merge(NumberedAttrBuilders[*VI]); 134 135 if (Function *Fn = dyn_cast<Function>(V)) { 136 AttributeSet AS = Fn->getAttributes(); 137 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 138 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 139 AS.getFnAttributes()); 140 141 FnAttrs.merge(B); 142 143 // If the alignment was parsed as an attribute, move to the alignment 144 // field. 145 if (FnAttrs.hasAlignmentAttr()) { 146 Fn->setAlignment(FnAttrs.getAlignment()); 147 FnAttrs.removeAttribute(Attribute::Alignment); 148 } 149 150 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 151 AttributeSet::get(Context, 152 AttributeSet::FunctionIndex, 153 FnAttrs)); 154 Fn->setAttributes(AS); 155 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 156 AttributeSet AS = CI->getAttributes(); 157 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 158 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 159 AS.getFnAttributes()); 160 FnAttrs.merge(B); 161 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 162 AttributeSet::get(Context, 163 AttributeSet::FunctionIndex, 164 FnAttrs)); 165 CI->setAttributes(AS); 166 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 167 AttributeSet AS = II->getAttributes(); 168 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 169 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 170 AS.getFnAttributes()); 171 FnAttrs.merge(B); 172 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 173 AttributeSet::get(Context, 174 AttributeSet::FunctionIndex, 175 FnAttrs)); 176 II->setAttributes(AS); 177 } else { 178 llvm_unreachable("invalid object with forward attribute group reference"); 179 } 180 } 181 182 // If there are entries in ForwardRefBlockAddresses at this point, the 183 // function was never defined. 184 if (!ForwardRefBlockAddresses.empty()) 185 return Error(ForwardRefBlockAddresses.begin()->first.Loc, 186 "expected function name in blockaddress"); 187 188 for (const auto &NT : NumberedTypes) 189 if (NT.second.second.isValid()) 190 return Error(NT.second.second, 191 "use of undefined type '%" + Twine(NT.first) + "'"); 192 193 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 194 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 195 if (I->second.second.isValid()) 196 return Error(I->second.second, 197 "use of undefined type named '" + I->getKey() + "'"); 198 199 if (!ForwardRefComdats.empty()) 200 return Error(ForwardRefComdats.begin()->second, 201 "use of undefined comdat '$" + 202 ForwardRefComdats.begin()->first + "'"); 203 204 if (!ForwardRefVals.empty()) 205 return Error(ForwardRefVals.begin()->second.second, 206 "use of undefined value '@" + ForwardRefVals.begin()->first + 207 "'"); 208 209 if (!ForwardRefValIDs.empty()) 210 return Error(ForwardRefValIDs.begin()->second.second, 211 "use of undefined value '@" + 212 Twine(ForwardRefValIDs.begin()->first) + "'"); 213 214 if (!ForwardRefMDNodes.empty()) 215 return Error(ForwardRefMDNodes.begin()->second.second, 216 "use of undefined metadata '!" + 217 Twine(ForwardRefMDNodes.begin()->first) + "'"); 218 219 // Resolve metadata cycles. 220 for (auto &N : NumberedMetadata) { 221 if (N.second && !N.second->isResolved()) 222 N.second->resolveCycles(); 223 } 224 225 for (auto *Inst : InstsWithTBAATag) { 226 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 227 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 228 auto *UpgradedMD = UpgradeTBAANode(*MD); 229 if (MD != UpgradedMD) 230 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 231 } 232 233 // Look for intrinsic functions and CallInst that need to be upgraded 234 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 235 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 236 237 // Some types could be renamed during loading if several modules are 238 // loaded in the same LLVMContext (LTO scenario). In this case we should 239 // remangle intrinsics names as well. 240 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) { 241 Function *F = &*FI++; 242 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 243 F->replaceAllUsesWith(Remangled.getValue()); 244 F->eraseFromParent(); 245 } 246 } 247 248 UpgradeDebugInfo(*M); 249 250 UpgradeModuleFlags(*M); 251 252 if (!Slots) 253 return false; 254 // Initialize the slot mapping. 255 // Because by this point we've parsed and validated everything, we can "steal" 256 // the mapping from LLParser as it doesn't need it anymore. 257 Slots->GlobalValues = std::move(NumberedVals); 258 Slots->MetadataNodes = std::move(NumberedMetadata); 259 for (const auto &I : NamedTypes) 260 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 261 for (const auto &I : NumberedTypes) 262 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 263 264 return false; 265 } 266 267 //===----------------------------------------------------------------------===// 268 // Top-Level Entities 269 //===----------------------------------------------------------------------===// 270 271 bool LLParser::ParseTopLevelEntities() { 272 while (true) { 273 switch (Lex.getKind()) { 274 default: return TokError("expected top-level entity"); 275 case lltok::Eof: return false; 276 case lltok::kw_declare: if (ParseDeclare()) return true; break; 277 case lltok::kw_define: if (ParseDefine()) return true; break; 278 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 279 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 280 case lltok::kw_source_filename: 281 if (ParseSourceFileName()) 282 return true; 283 break; 284 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 285 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 286 case lltok::LocalVar: if (ParseNamedType()) return true; break; 287 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 288 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 289 case lltok::ComdatVar: if (parseComdat()) return true; break; 290 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 291 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break; 292 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break; 293 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break; 294 case lltok::kw_uselistorder_bb: 295 if (ParseUseListOrderBB()) 296 return true; 297 break; 298 } 299 } 300 } 301 302 /// toplevelentity 303 /// ::= 'module' 'asm' STRINGCONSTANT 304 bool LLParser::ParseModuleAsm() { 305 assert(Lex.getKind() == lltok::kw_module); 306 Lex.Lex(); 307 308 std::string AsmStr; 309 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 310 ParseStringConstant(AsmStr)) return true; 311 312 M->appendModuleInlineAsm(AsmStr); 313 return false; 314 } 315 316 /// toplevelentity 317 /// ::= 'target' 'triple' '=' STRINGCONSTANT 318 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 319 bool LLParser::ParseTargetDefinition() { 320 assert(Lex.getKind() == lltok::kw_target); 321 std::string Str; 322 switch (Lex.Lex()) { 323 default: return TokError("unknown target property"); 324 case lltok::kw_triple: 325 Lex.Lex(); 326 if (ParseToken(lltok::equal, "expected '=' after target triple") || 327 ParseStringConstant(Str)) 328 return true; 329 M->setTargetTriple(Str); 330 return false; 331 case lltok::kw_datalayout: 332 Lex.Lex(); 333 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 334 ParseStringConstant(Str)) 335 return true; 336 M->setDataLayout(Str); 337 return false; 338 } 339 } 340 341 /// toplevelentity 342 /// ::= 'source_filename' '=' STRINGCONSTANT 343 bool LLParser::ParseSourceFileName() { 344 assert(Lex.getKind() == lltok::kw_source_filename); 345 std::string Str; 346 Lex.Lex(); 347 if (ParseToken(lltok::equal, "expected '=' after source_filename") || 348 ParseStringConstant(Str)) 349 return true; 350 M->setSourceFileName(Str); 351 return false; 352 } 353 354 /// toplevelentity 355 /// ::= 'deplibs' '=' '[' ']' 356 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 357 /// FIXME: Remove in 4.0. Currently parse, but ignore. 358 bool LLParser::ParseDepLibs() { 359 assert(Lex.getKind() == lltok::kw_deplibs); 360 Lex.Lex(); 361 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 362 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 363 return true; 364 365 if (EatIfPresent(lltok::rsquare)) 366 return false; 367 368 do { 369 std::string Str; 370 if (ParseStringConstant(Str)) return true; 371 } while (EatIfPresent(lltok::comma)); 372 373 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 374 } 375 376 /// ParseUnnamedType: 377 /// ::= LocalVarID '=' 'type' type 378 bool LLParser::ParseUnnamedType() { 379 LocTy TypeLoc = Lex.getLoc(); 380 unsigned TypeID = Lex.getUIntVal(); 381 Lex.Lex(); // eat LocalVarID; 382 383 if (ParseToken(lltok::equal, "expected '=' after name") || 384 ParseToken(lltok::kw_type, "expected 'type' after '='")) 385 return true; 386 387 Type *Result = nullptr; 388 if (ParseStructDefinition(TypeLoc, "", 389 NumberedTypes[TypeID], Result)) return true; 390 391 if (!isa<StructType>(Result)) { 392 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 393 if (Entry.first) 394 return Error(TypeLoc, "non-struct types may not be recursive"); 395 Entry.first = Result; 396 Entry.second = SMLoc(); 397 } 398 399 return false; 400 } 401 402 /// toplevelentity 403 /// ::= LocalVar '=' 'type' type 404 bool LLParser::ParseNamedType() { 405 std::string Name = Lex.getStrVal(); 406 LocTy NameLoc = Lex.getLoc(); 407 Lex.Lex(); // eat LocalVar. 408 409 if (ParseToken(lltok::equal, "expected '=' after name") || 410 ParseToken(lltok::kw_type, "expected 'type' after name")) 411 return true; 412 413 Type *Result = nullptr; 414 if (ParseStructDefinition(NameLoc, Name, 415 NamedTypes[Name], Result)) return true; 416 417 if (!isa<StructType>(Result)) { 418 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 419 if (Entry.first) 420 return Error(NameLoc, "non-struct types may not be recursive"); 421 Entry.first = Result; 422 Entry.second = SMLoc(); 423 } 424 425 return false; 426 } 427 428 /// toplevelentity 429 /// ::= 'declare' FunctionHeader 430 bool LLParser::ParseDeclare() { 431 assert(Lex.getKind() == lltok::kw_declare); 432 Lex.Lex(); 433 434 std::vector<std::pair<unsigned, MDNode *>> MDs; 435 while (Lex.getKind() == lltok::MetadataVar) { 436 unsigned MDK; 437 MDNode *N; 438 if (ParseMetadataAttachment(MDK, N)) 439 return true; 440 MDs.push_back({MDK, N}); 441 } 442 443 Function *F; 444 if (ParseFunctionHeader(F, false)) 445 return true; 446 for (auto &MD : MDs) 447 F->addMetadata(MD.first, *MD.second); 448 return false; 449 } 450 451 /// toplevelentity 452 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 453 bool LLParser::ParseDefine() { 454 assert(Lex.getKind() == lltok::kw_define); 455 Lex.Lex(); 456 457 Function *F; 458 return ParseFunctionHeader(F, true) || 459 ParseOptionalFunctionMetadata(*F) || 460 ParseFunctionBody(*F); 461 } 462 463 /// ParseGlobalType 464 /// ::= 'constant' 465 /// ::= 'global' 466 bool LLParser::ParseGlobalType(bool &IsConstant) { 467 if (Lex.getKind() == lltok::kw_constant) 468 IsConstant = true; 469 else if (Lex.getKind() == lltok::kw_global) 470 IsConstant = false; 471 else { 472 IsConstant = false; 473 return TokError("expected 'global' or 'constant'"); 474 } 475 Lex.Lex(); 476 return false; 477 } 478 479 bool LLParser::ParseOptionalUnnamedAddr( 480 GlobalVariable::UnnamedAddr &UnnamedAddr) { 481 if (EatIfPresent(lltok::kw_unnamed_addr)) 482 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 483 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 484 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 485 else 486 UnnamedAddr = GlobalValue::UnnamedAddr::None; 487 return false; 488 } 489 490 /// ParseUnnamedGlobal: 491 /// OptionalVisibility (ALIAS | IFUNC) ... 492 /// OptionalLinkage OptionalVisibility OptionalDLLStorageClass 493 /// ... -> global variable 494 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 495 /// GlobalID '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 496 /// ... -> global variable 497 bool LLParser::ParseUnnamedGlobal() { 498 unsigned VarID = NumberedVals.size(); 499 std::string Name; 500 LocTy NameLoc = Lex.getLoc(); 501 502 // Handle the GlobalID form. 503 if (Lex.getKind() == lltok::GlobalID) { 504 if (Lex.getUIntVal() != VarID) 505 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 506 Twine(VarID) + "'"); 507 Lex.Lex(); // eat GlobalID; 508 509 if (ParseToken(lltok::equal, "expected '=' after name")) 510 return true; 511 } 512 513 bool HasLinkage; 514 unsigned Linkage, Visibility, DLLStorageClass; 515 GlobalVariable::ThreadLocalMode TLM; 516 GlobalVariable::UnnamedAddr UnnamedAddr; 517 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) || 518 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 519 return true; 520 521 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 522 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 523 DLLStorageClass, TLM, UnnamedAddr); 524 525 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 526 DLLStorageClass, TLM, UnnamedAddr); 527 } 528 529 /// ParseNamedGlobal: 530 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 531 /// GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 532 /// ... -> global variable 533 bool LLParser::ParseNamedGlobal() { 534 assert(Lex.getKind() == lltok::GlobalVar); 535 LocTy NameLoc = Lex.getLoc(); 536 std::string Name = Lex.getStrVal(); 537 Lex.Lex(); 538 539 bool HasLinkage; 540 unsigned Linkage, Visibility, DLLStorageClass; 541 GlobalVariable::ThreadLocalMode TLM; 542 GlobalVariable::UnnamedAddr UnnamedAddr; 543 if (ParseToken(lltok::equal, "expected '=' in global variable") || 544 ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) || 545 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 546 return true; 547 548 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 549 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 550 DLLStorageClass, TLM, UnnamedAddr); 551 552 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 553 DLLStorageClass, TLM, UnnamedAddr); 554 } 555 556 bool LLParser::parseComdat() { 557 assert(Lex.getKind() == lltok::ComdatVar); 558 std::string Name = Lex.getStrVal(); 559 LocTy NameLoc = Lex.getLoc(); 560 Lex.Lex(); 561 562 if (ParseToken(lltok::equal, "expected '=' here")) 563 return true; 564 565 if (ParseToken(lltok::kw_comdat, "expected comdat keyword")) 566 return TokError("expected comdat type"); 567 568 Comdat::SelectionKind SK; 569 switch (Lex.getKind()) { 570 default: 571 return TokError("unknown selection kind"); 572 case lltok::kw_any: 573 SK = Comdat::Any; 574 break; 575 case lltok::kw_exactmatch: 576 SK = Comdat::ExactMatch; 577 break; 578 case lltok::kw_largest: 579 SK = Comdat::Largest; 580 break; 581 case lltok::kw_noduplicates: 582 SK = Comdat::NoDuplicates; 583 break; 584 case lltok::kw_samesize: 585 SK = Comdat::SameSize; 586 break; 587 } 588 Lex.Lex(); 589 590 // See if the comdat was forward referenced, if so, use the comdat. 591 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 592 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 593 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 594 return Error(NameLoc, "redefinition of comdat '$" + Name + "'"); 595 596 Comdat *C; 597 if (I != ComdatSymTab.end()) 598 C = &I->second; 599 else 600 C = M->getOrInsertComdat(Name); 601 C->setSelectionKind(SK); 602 603 return false; 604 } 605 606 // MDString: 607 // ::= '!' STRINGCONSTANT 608 bool LLParser::ParseMDString(MDString *&Result) { 609 std::string Str; 610 if (ParseStringConstant(Str)) return true; 611 Result = MDString::get(Context, Str); 612 return false; 613 } 614 615 // MDNode: 616 // ::= '!' MDNodeNumber 617 bool LLParser::ParseMDNodeID(MDNode *&Result) { 618 // !{ ..., !42, ... } 619 LocTy IDLoc = Lex.getLoc(); 620 unsigned MID = 0; 621 if (ParseUInt32(MID)) 622 return true; 623 624 // If not a forward reference, just return it now. 625 if (NumberedMetadata.count(MID)) { 626 Result = NumberedMetadata[MID]; 627 return false; 628 } 629 630 // Otherwise, create MDNode forward reference. 631 auto &FwdRef = ForwardRefMDNodes[MID]; 632 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 633 634 Result = FwdRef.first.get(); 635 NumberedMetadata[MID].reset(Result); 636 return false; 637 } 638 639 /// ParseNamedMetadata: 640 /// !foo = !{ !1, !2 } 641 bool LLParser::ParseNamedMetadata() { 642 assert(Lex.getKind() == lltok::MetadataVar); 643 std::string Name = Lex.getStrVal(); 644 Lex.Lex(); 645 646 if (ParseToken(lltok::equal, "expected '=' here") || 647 ParseToken(lltok::exclaim, "Expected '!' here") || 648 ParseToken(lltok::lbrace, "Expected '{' here")) 649 return true; 650 651 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 652 if (Lex.getKind() != lltok::rbrace) 653 do { 654 if (ParseToken(lltok::exclaim, "Expected '!' here")) 655 return true; 656 657 MDNode *N = nullptr; 658 if (ParseMDNodeID(N)) return true; 659 NMD->addOperand(N); 660 } while (EatIfPresent(lltok::comma)); 661 662 return ParseToken(lltok::rbrace, "expected end of metadata node"); 663 } 664 665 /// ParseStandaloneMetadata: 666 /// !42 = !{...} 667 bool LLParser::ParseStandaloneMetadata() { 668 assert(Lex.getKind() == lltok::exclaim); 669 Lex.Lex(); 670 unsigned MetadataID = 0; 671 672 MDNode *Init; 673 if (ParseUInt32(MetadataID) || 674 ParseToken(lltok::equal, "expected '=' here")) 675 return true; 676 677 // Detect common error, from old metadata syntax. 678 if (Lex.getKind() == lltok::Type) 679 return TokError("unexpected type in metadata definition"); 680 681 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 682 if (Lex.getKind() == lltok::MetadataVar) { 683 if (ParseSpecializedMDNode(Init, IsDistinct)) 684 return true; 685 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 686 ParseMDTuple(Init, IsDistinct)) 687 return true; 688 689 // See if this was forward referenced, if so, handle it. 690 auto FI = ForwardRefMDNodes.find(MetadataID); 691 if (FI != ForwardRefMDNodes.end()) { 692 FI->second.first->replaceAllUsesWith(Init); 693 ForwardRefMDNodes.erase(FI); 694 695 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 696 } else { 697 if (NumberedMetadata.count(MetadataID)) 698 return TokError("Metadata id is already used"); 699 NumberedMetadata[MetadataID].reset(Init); 700 } 701 702 return false; 703 } 704 705 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 706 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 707 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 708 } 709 710 /// parseIndirectSymbol: 711 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility 712 /// OptionalDLLStorageClass OptionalThreadLocal 713 /// OptionalUnnamedAddr 'alias|ifunc' IndirectSymbol 714 /// 715 /// IndirectSymbol 716 /// ::= TypeAndValue 717 /// 718 /// Everything through OptionalUnnamedAddr has already been parsed. 719 /// 720 bool LLParser::parseIndirectSymbol( 721 const std::string &Name, LocTy NameLoc, unsigned L, unsigned Visibility, 722 unsigned DLLStorageClass, GlobalVariable::ThreadLocalMode TLM, 723 GlobalVariable::UnnamedAddr UnnamedAddr) { 724 bool IsAlias; 725 if (Lex.getKind() == lltok::kw_alias) 726 IsAlias = true; 727 else if (Lex.getKind() == lltok::kw_ifunc) 728 IsAlias = false; 729 else 730 llvm_unreachable("Not an alias or ifunc!"); 731 Lex.Lex(); 732 733 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 734 735 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 736 return Error(NameLoc, "invalid linkage type for alias"); 737 738 if (!isValidVisibilityForLinkage(Visibility, L)) 739 return Error(NameLoc, 740 "symbol with local linkage must have default visibility"); 741 742 Type *Ty; 743 LocTy ExplicitTypeLoc = Lex.getLoc(); 744 if (ParseType(Ty) || 745 ParseToken(lltok::comma, "expected comma after alias or ifunc's type")) 746 return true; 747 748 Constant *Aliasee; 749 LocTy AliaseeLoc = Lex.getLoc(); 750 if (Lex.getKind() != lltok::kw_bitcast && 751 Lex.getKind() != lltok::kw_getelementptr && 752 Lex.getKind() != lltok::kw_addrspacecast && 753 Lex.getKind() != lltok::kw_inttoptr) { 754 if (ParseGlobalTypeAndValue(Aliasee)) 755 return true; 756 } else { 757 // The bitcast dest type is not present, it is implied by the dest type. 758 ValID ID; 759 if (ParseValID(ID)) 760 return true; 761 if (ID.Kind != ValID::t_Constant) 762 return Error(AliaseeLoc, "invalid aliasee"); 763 Aliasee = ID.ConstantVal; 764 } 765 766 Type *AliaseeType = Aliasee->getType(); 767 auto *PTy = dyn_cast<PointerType>(AliaseeType); 768 if (!PTy) 769 return Error(AliaseeLoc, "An alias or ifunc must have pointer type"); 770 unsigned AddrSpace = PTy->getAddressSpace(); 771 772 if (IsAlias && Ty != PTy->getElementType()) 773 return Error( 774 ExplicitTypeLoc, 775 "explicit pointee type doesn't match operand's pointee type"); 776 777 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) 778 return Error( 779 ExplicitTypeLoc, 780 "explicit pointee type should be a function type"); 781 782 GlobalValue *GVal = nullptr; 783 784 // See if the alias was forward referenced, if so, prepare to replace the 785 // forward reference. 786 if (!Name.empty()) { 787 GVal = M->getNamedValue(Name); 788 if (GVal) { 789 if (!ForwardRefVals.erase(Name)) 790 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 791 } 792 } else { 793 auto I = ForwardRefValIDs.find(NumberedVals.size()); 794 if (I != ForwardRefValIDs.end()) { 795 GVal = I->second.first; 796 ForwardRefValIDs.erase(I); 797 } 798 } 799 800 // Okay, create the alias but do not insert it into the module yet. 801 std::unique_ptr<GlobalIndirectSymbol> GA; 802 if (IsAlias) 803 GA.reset(GlobalAlias::create(Ty, AddrSpace, 804 (GlobalValue::LinkageTypes)Linkage, Name, 805 Aliasee, /*Parent*/ nullptr)); 806 else 807 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 808 (GlobalValue::LinkageTypes)Linkage, Name, 809 Aliasee, /*Parent*/ nullptr)); 810 GA->setThreadLocalMode(TLM); 811 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 812 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 813 GA->setUnnamedAddr(UnnamedAddr); 814 815 if (Name.empty()) 816 NumberedVals.push_back(GA.get()); 817 818 if (GVal) { 819 // Verify that types agree. 820 if (GVal->getType() != GA->getType()) 821 return Error( 822 ExplicitTypeLoc, 823 "forward reference and definition of alias have different types"); 824 825 // If they agree, just RAUW the old value with the alias and remove the 826 // forward ref info. 827 GVal->replaceAllUsesWith(GA.get()); 828 GVal->eraseFromParent(); 829 } 830 831 // Insert into the module, we know its name won't collide now. 832 if (IsAlias) 833 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 834 else 835 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 836 assert(GA->getName() == Name && "Should not be a name conflict!"); 837 838 // The module owns this now 839 GA.release(); 840 841 return false; 842 } 843 844 /// ParseGlobal 845 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 846 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 847 /// OptionalExternallyInitialized GlobalType Type Const 848 /// ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass 849 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 850 /// OptionalExternallyInitialized GlobalType Type Const 851 /// 852 /// Everything up to and including OptionalUnnamedAddr has been parsed 853 /// already. 854 /// 855 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 856 unsigned Linkage, bool HasLinkage, 857 unsigned Visibility, unsigned DLLStorageClass, 858 GlobalVariable::ThreadLocalMode TLM, 859 GlobalVariable::UnnamedAddr UnnamedAddr) { 860 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 861 return Error(NameLoc, 862 "symbol with local linkage must have default visibility"); 863 864 unsigned AddrSpace; 865 bool IsConstant, IsExternallyInitialized; 866 LocTy IsExternallyInitializedLoc; 867 LocTy TyLoc; 868 869 Type *Ty = nullptr; 870 if (ParseOptionalAddrSpace(AddrSpace) || 871 ParseOptionalToken(lltok::kw_externally_initialized, 872 IsExternallyInitialized, 873 &IsExternallyInitializedLoc) || 874 ParseGlobalType(IsConstant) || 875 ParseType(Ty, TyLoc)) 876 return true; 877 878 // If the linkage is specified and is external, then no initializer is 879 // present. 880 Constant *Init = nullptr; 881 if (!HasLinkage || 882 !GlobalValue::isValidDeclarationLinkage( 883 (GlobalValue::LinkageTypes)Linkage)) { 884 if (ParseGlobalValue(Ty, Init)) 885 return true; 886 } 887 888 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 889 return Error(TyLoc, "invalid type for global variable"); 890 891 GlobalValue *GVal = nullptr; 892 893 // See if the global was forward referenced, if so, use the global. 894 if (!Name.empty()) { 895 GVal = M->getNamedValue(Name); 896 if (GVal) { 897 if (!ForwardRefVals.erase(Name)) 898 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 899 } 900 } else { 901 auto I = ForwardRefValIDs.find(NumberedVals.size()); 902 if (I != ForwardRefValIDs.end()) { 903 GVal = I->second.first; 904 ForwardRefValIDs.erase(I); 905 } 906 } 907 908 GlobalVariable *GV; 909 if (!GVal) { 910 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 911 Name, nullptr, GlobalVariable::NotThreadLocal, 912 AddrSpace); 913 } else { 914 if (GVal->getValueType() != Ty) 915 return Error(TyLoc, 916 "forward reference and definition of global have different types"); 917 918 GV = cast<GlobalVariable>(GVal); 919 920 // Move the forward-reference to the correct spot in the module. 921 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 922 } 923 924 if (Name.empty()) 925 NumberedVals.push_back(GV); 926 927 // Set the parsed properties on the global. 928 if (Init) 929 GV->setInitializer(Init); 930 GV->setConstant(IsConstant); 931 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 932 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 933 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 934 GV->setExternallyInitialized(IsExternallyInitialized); 935 GV->setThreadLocalMode(TLM); 936 GV->setUnnamedAddr(UnnamedAddr); 937 938 // Parse attributes on the global. 939 while (Lex.getKind() == lltok::comma) { 940 Lex.Lex(); 941 942 if (Lex.getKind() == lltok::kw_section) { 943 Lex.Lex(); 944 GV->setSection(Lex.getStrVal()); 945 if (ParseToken(lltok::StringConstant, "expected global section string")) 946 return true; 947 } else if (Lex.getKind() == lltok::kw_align) { 948 unsigned Alignment; 949 if (ParseOptionalAlignment(Alignment)) return true; 950 GV->setAlignment(Alignment); 951 } else if (Lex.getKind() == lltok::MetadataVar) { 952 if (ParseGlobalObjectMetadataAttachment(*GV)) 953 return true; 954 } else { 955 Comdat *C; 956 if (parseOptionalComdat(Name, C)) 957 return true; 958 if (C) 959 GV->setComdat(C); 960 else 961 return TokError("unknown global variable property!"); 962 } 963 } 964 965 return false; 966 } 967 968 /// ParseUnnamedAttrGrp 969 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 970 bool LLParser::ParseUnnamedAttrGrp() { 971 assert(Lex.getKind() == lltok::kw_attributes); 972 LocTy AttrGrpLoc = Lex.getLoc(); 973 Lex.Lex(); 974 975 if (Lex.getKind() != lltok::AttrGrpID) 976 return TokError("expected attribute group id"); 977 978 unsigned VarID = Lex.getUIntVal(); 979 std::vector<unsigned> unused; 980 LocTy BuiltinLoc; 981 Lex.Lex(); 982 983 if (ParseToken(lltok::equal, "expected '=' here") || 984 ParseToken(lltok::lbrace, "expected '{' here") || 985 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 986 BuiltinLoc) || 987 ParseToken(lltok::rbrace, "expected end of attribute group")) 988 return true; 989 990 if (!NumberedAttrBuilders[VarID].hasAttributes()) 991 return Error(AttrGrpLoc, "attribute group has no attributes"); 992 993 return false; 994 } 995 996 /// ParseFnAttributeValuePairs 997 /// ::= <attr> | <attr> '=' <value> 998 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B, 999 std::vector<unsigned> &FwdRefAttrGrps, 1000 bool inAttrGrp, LocTy &BuiltinLoc) { 1001 bool HaveError = false; 1002 1003 B.clear(); 1004 1005 while (true) { 1006 lltok::Kind Token = Lex.getKind(); 1007 if (Token == lltok::kw_builtin) 1008 BuiltinLoc = Lex.getLoc(); 1009 switch (Token) { 1010 default: 1011 if (!inAttrGrp) return HaveError; 1012 return Error(Lex.getLoc(), "unterminated attribute group"); 1013 case lltok::rbrace: 1014 // Finished. 1015 return false; 1016 1017 case lltok::AttrGrpID: { 1018 // Allow a function to reference an attribute group: 1019 // 1020 // define void @foo() #1 { ... } 1021 if (inAttrGrp) 1022 HaveError |= 1023 Error(Lex.getLoc(), 1024 "cannot have an attribute group reference in an attribute group"); 1025 1026 unsigned AttrGrpNum = Lex.getUIntVal(); 1027 if (inAttrGrp) break; 1028 1029 // Save the reference to the attribute group. We'll fill it in later. 1030 FwdRefAttrGrps.push_back(AttrGrpNum); 1031 break; 1032 } 1033 // Target-dependent attributes: 1034 case lltok::StringConstant: { 1035 if (ParseStringAttribute(B)) 1036 return true; 1037 continue; 1038 } 1039 1040 // Target-independent attributes: 1041 case lltok::kw_align: { 1042 // As a hack, we allow function alignment to be initially parsed as an 1043 // attribute on a function declaration/definition or added to an attribute 1044 // group and later moved to the alignment field. 1045 unsigned Alignment; 1046 if (inAttrGrp) { 1047 Lex.Lex(); 1048 if (ParseToken(lltok::equal, "expected '=' here") || 1049 ParseUInt32(Alignment)) 1050 return true; 1051 } else { 1052 if (ParseOptionalAlignment(Alignment)) 1053 return true; 1054 } 1055 B.addAlignmentAttr(Alignment); 1056 continue; 1057 } 1058 case lltok::kw_alignstack: { 1059 unsigned Alignment; 1060 if (inAttrGrp) { 1061 Lex.Lex(); 1062 if (ParseToken(lltok::equal, "expected '=' here") || 1063 ParseUInt32(Alignment)) 1064 return true; 1065 } else { 1066 if (ParseOptionalStackAlignment(Alignment)) 1067 return true; 1068 } 1069 B.addStackAlignmentAttr(Alignment); 1070 continue; 1071 } 1072 case lltok::kw_allocsize: { 1073 unsigned ElemSizeArg; 1074 Optional<unsigned> NumElemsArg; 1075 // inAttrGrp doesn't matter; we only support allocsize(a[, b]) 1076 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1077 return true; 1078 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1079 continue; 1080 } 1081 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 1082 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 1083 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 1084 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 1085 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 1086 case lltok::kw_inaccessiblememonly: 1087 B.addAttribute(Attribute::InaccessibleMemOnly); break; 1088 case lltok::kw_inaccessiblemem_or_argmemonly: 1089 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break; 1090 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 1091 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 1092 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 1093 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 1094 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 1095 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 1096 case lltok::kw_noimplicitfloat: 1097 B.addAttribute(Attribute::NoImplicitFloat); break; 1098 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1099 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1100 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1101 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1102 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1103 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1104 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1105 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1106 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1107 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1108 case lltok::kw_returns_twice: 1109 B.addAttribute(Attribute::ReturnsTwice); break; 1110 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1111 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1112 case lltok::kw_sspstrong: 1113 B.addAttribute(Attribute::StackProtectStrong); break; 1114 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1115 case lltok::kw_sanitize_address: 1116 B.addAttribute(Attribute::SanitizeAddress); break; 1117 case lltok::kw_sanitize_thread: 1118 B.addAttribute(Attribute::SanitizeThread); break; 1119 case lltok::kw_sanitize_memory: 1120 B.addAttribute(Attribute::SanitizeMemory); break; 1121 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1122 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1123 1124 // Error handling. 1125 case lltok::kw_inreg: 1126 case lltok::kw_signext: 1127 case lltok::kw_zeroext: 1128 HaveError |= 1129 Error(Lex.getLoc(), 1130 "invalid use of attribute on a function"); 1131 break; 1132 case lltok::kw_byval: 1133 case lltok::kw_dereferenceable: 1134 case lltok::kw_dereferenceable_or_null: 1135 case lltok::kw_inalloca: 1136 case lltok::kw_nest: 1137 case lltok::kw_noalias: 1138 case lltok::kw_nocapture: 1139 case lltok::kw_nonnull: 1140 case lltok::kw_returned: 1141 case lltok::kw_sret: 1142 case lltok::kw_swifterror: 1143 case lltok::kw_swiftself: 1144 HaveError |= 1145 Error(Lex.getLoc(), 1146 "invalid use of parameter-only attribute on a function"); 1147 break; 1148 } 1149 1150 Lex.Lex(); 1151 } 1152 } 1153 1154 //===----------------------------------------------------------------------===// 1155 // GlobalValue Reference/Resolution Routines. 1156 //===----------------------------------------------------------------------===// 1157 1158 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1159 const std::string &Name) { 1160 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1161 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M); 1162 else 1163 return new GlobalVariable(*M, PTy->getElementType(), false, 1164 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1165 nullptr, GlobalVariable::NotThreadLocal, 1166 PTy->getAddressSpace()); 1167 } 1168 1169 /// GetGlobalVal - Get a value with the specified name or ID, creating a 1170 /// forward reference record if needed. This can return null if the value 1171 /// exists but does not have the right type. 1172 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 1173 LocTy Loc) { 1174 PointerType *PTy = dyn_cast<PointerType>(Ty); 1175 if (!PTy) { 1176 Error(Loc, "global variable reference must have pointer type"); 1177 return nullptr; 1178 } 1179 1180 // Look this name up in the normal function symbol table. 1181 GlobalValue *Val = 1182 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1183 1184 // If this is a forward reference for the value, see if we already created a 1185 // forward ref record. 1186 if (!Val) { 1187 auto I = ForwardRefVals.find(Name); 1188 if (I != ForwardRefVals.end()) 1189 Val = I->second.first; 1190 } 1191 1192 // If we have the value in the symbol table or fwd-ref table, return it. 1193 if (Val) { 1194 if (Val->getType() == Ty) return Val; 1195 Error(Loc, "'@" + Name + "' defined with type '" + 1196 getTypeString(Val->getType()) + "'"); 1197 return nullptr; 1198 } 1199 1200 // Otherwise, create a new forward reference for this value and remember it. 1201 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1202 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1203 return FwdVal; 1204 } 1205 1206 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { 1207 PointerType *PTy = dyn_cast<PointerType>(Ty); 1208 if (!PTy) { 1209 Error(Loc, "global variable reference must have pointer type"); 1210 return nullptr; 1211 } 1212 1213 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1214 1215 // If this is a forward reference for the value, see if we already created a 1216 // forward ref record. 1217 if (!Val) { 1218 auto I = ForwardRefValIDs.find(ID); 1219 if (I != ForwardRefValIDs.end()) 1220 Val = I->second.first; 1221 } 1222 1223 // If we have the value in the symbol table or fwd-ref table, return it. 1224 if (Val) { 1225 if (Val->getType() == Ty) return Val; 1226 Error(Loc, "'@" + Twine(ID) + "' defined with type '" + 1227 getTypeString(Val->getType()) + "'"); 1228 return nullptr; 1229 } 1230 1231 // Otherwise, create a new forward reference for this value and remember it. 1232 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1233 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1234 return FwdVal; 1235 } 1236 1237 //===----------------------------------------------------------------------===// 1238 // Comdat Reference/Resolution Routines. 1239 //===----------------------------------------------------------------------===// 1240 1241 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1242 // Look this name up in the comdat symbol table. 1243 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1244 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1245 if (I != ComdatSymTab.end()) 1246 return &I->second; 1247 1248 // Otherwise, create a new forward reference for this value and remember it. 1249 Comdat *C = M->getOrInsertComdat(Name); 1250 ForwardRefComdats[Name] = Loc; 1251 return C; 1252 } 1253 1254 //===----------------------------------------------------------------------===// 1255 // Helper Routines. 1256 //===----------------------------------------------------------------------===// 1257 1258 /// ParseToken - If the current token has the specified kind, eat it and return 1259 /// success. Otherwise, emit the specified error and return failure. 1260 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 1261 if (Lex.getKind() != T) 1262 return TokError(ErrMsg); 1263 Lex.Lex(); 1264 return false; 1265 } 1266 1267 /// ParseStringConstant 1268 /// ::= StringConstant 1269 bool LLParser::ParseStringConstant(std::string &Result) { 1270 if (Lex.getKind() != lltok::StringConstant) 1271 return TokError("expected string constant"); 1272 Result = Lex.getStrVal(); 1273 Lex.Lex(); 1274 return false; 1275 } 1276 1277 /// ParseUInt32 1278 /// ::= uint32 1279 bool LLParser::ParseUInt32(uint32_t &Val) { 1280 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1281 return TokError("expected integer"); 1282 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1283 if (Val64 != unsigned(Val64)) 1284 return TokError("expected 32-bit integer (too large)"); 1285 Val = Val64; 1286 Lex.Lex(); 1287 return false; 1288 } 1289 1290 /// ParseUInt64 1291 /// ::= uint64 1292 bool LLParser::ParseUInt64(uint64_t &Val) { 1293 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1294 return TokError("expected integer"); 1295 Val = Lex.getAPSIntVal().getLimitedValue(); 1296 Lex.Lex(); 1297 return false; 1298 } 1299 1300 /// ParseTLSModel 1301 /// := 'localdynamic' 1302 /// := 'initialexec' 1303 /// := 'localexec' 1304 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1305 switch (Lex.getKind()) { 1306 default: 1307 return TokError("expected localdynamic, initialexec or localexec"); 1308 case lltok::kw_localdynamic: 1309 TLM = GlobalVariable::LocalDynamicTLSModel; 1310 break; 1311 case lltok::kw_initialexec: 1312 TLM = GlobalVariable::InitialExecTLSModel; 1313 break; 1314 case lltok::kw_localexec: 1315 TLM = GlobalVariable::LocalExecTLSModel; 1316 break; 1317 } 1318 1319 Lex.Lex(); 1320 return false; 1321 } 1322 1323 /// ParseOptionalThreadLocal 1324 /// := /*empty*/ 1325 /// := 'thread_local' 1326 /// := 'thread_local' '(' tlsmodel ')' 1327 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1328 TLM = GlobalVariable::NotThreadLocal; 1329 if (!EatIfPresent(lltok::kw_thread_local)) 1330 return false; 1331 1332 TLM = GlobalVariable::GeneralDynamicTLSModel; 1333 if (Lex.getKind() == lltok::lparen) { 1334 Lex.Lex(); 1335 return ParseTLSModel(TLM) || 1336 ParseToken(lltok::rparen, "expected ')' after thread local model"); 1337 } 1338 return false; 1339 } 1340 1341 /// ParseOptionalAddrSpace 1342 /// := /*empty*/ 1343 /// := 'addrspace' '(' uint32 ')' 1344 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) { 1345 AddrSpace = 0; 1346 if (!EatIfPresent(lltok::kw_addrspace)) 1347 return false; 1348 return ParseToken(lltok::lparen, "expected '(' in address space") || 1349 ParseUInt32(AddrSpace) || 1350 ParseToken(lltok::rparen, "expected ')' in address space"); 1351 } 1352 1353 /// ParseStringAttribute 1354 /// := StringConstant 1355 /// := StringConstant '=' StringConstant 1356 bool LLParser::ParseStringAttribute(AttrBuilder &B) { 1357 std::string Attr = Lex.getStrVal(); 1358 Lex.Lex(); 1359 std::string Val; 1360 if (EatIfPresent(lltok::equal) && ParseStringConstant(Val)) 1361 return true; 1362 B.addAttribute(Attr, Val); 1363 return false; 1364 } 1365 1366 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes. 1367 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) { 1368 bool HaveError = false; 1369 1370 B.clear(); 1371 1372 while (true) { 1373 lltok::Kind Token = Lex.getKind(); 1374 switch (Token) { 1375 default: // End of attributes. 1376 return HaveError; 1377 case lltok::StringConstant: { 1378 if (ParseStringAttribute(B)) 1379 return true; 1380 continue; 1381 } 1382 case lltok::kw_align: { 1383 unsigned Alignment; 1384 if (ParseOptionalAlignment(Alignment)) 1385 return true; 1386 B.addAlignmentAttr(Alignment); 1387 continue; 1388 } 1389 case lltok::kw_byval: B.addAttribute(Attribute::ByVal); break; 1390 case lltok::kw_dereferenceable: { 1391 uint64_t Bytes; 1392 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1393 return true; 1394 B.addDereferenceableAttr(Bytes); 1395 continue; 1396 } 1397 case lltok::kw_dereferenceable_or_null: { 1398 uint64_t Bytes; 1399 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1400 return true; 1401 B.addDereferenceableOrNullAttr(Bytes); 1402 continue; 1403 } 1404 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break; 1405 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1406 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1407 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1408 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1409 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1410 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1411 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1412 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1413 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1414 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break; 1415 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break; 1416 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break; 1417 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1418 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1419 1420 case lltok::kw_alignstack: 1421 case lltok::kw_alwaysinline: 1422 case lltok::kw_argmemonly: 1423 case lltok::kw_builtin: 1424 case lltok::kw_inlinehint: 1425 case lltok::kw_jumptable: 1426 case lltok::kw_minsize: 1427 case lltok::kw_naked: 1428 case lltok::kw_nobuiltin: 1429 case lltok::kw_noduplicate: 1430 case lltok::kw_noimplicitfloat: 1431 case lltok::kw_noinline: 1432 case lltok::kw_nonlazybind: 1433 case lltok::kw_noredzone: 1434 case lltok::kw_noreturn: 1435 case lltok::kw_nounwind: 1436 case lltok::kw_optnone: 1437 case lltok::kw_optsize: 1438 case lltok::kw_returns_twice: 1439 case lltok::kw_sanitize_address: 1440 case lltok::kw_sanitize_memory: 1441 case lltok::kw_sanitize_thread: 1442 case lltok::kw_ssp: 1443 case lltok::kw_sspreq: 1444 case lltok::kw_sspstrong: 1445 case lltok::kw_safestack: 1446 case lltok::kw_uwtable: 1447 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1448 break; 1449 } 1450 1451 Lex.Lex(); 1452 } 1453 } 1454 1455 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes. 1456 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) { 1457 bool HaveError = false; 1458 1459 B.clear(); 1460 1461 while (true) { 1462 lltok::Kind Token = Lex.getKind(); 1463 switch (Token) { 1464 default: // End of attributes. 1465 return HaveError; 1466 case lltok::StringConstant: { 1467 if (ParseStringAttribute(B)) 1468 return true; 1469 continue; 1470 } 1471 case lltok::kw_dereferenceable: { 1472 uint64_t Bytes; 1473 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1474 return true; 1475 B.addDereferenceableAttr(Bytes); 1476 continue; 1477 } 1478 case lltok::kw_dereferenceable_or_null: { 1479 uint64_t Bytes; 1480 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1481 return true; 1482 B.addDereferenceableOrNullAttr(Bytes); 1483 continue; 1484 } 1485 case lltok::kw_align: { 1486 unsigned Alignment; 1487 if (ParseOptionalAlignment(Alignment)) 1488 return true; 1489 B.addAlignmentAttr(Alignment); 1490 continue; 1491 } 1492 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1493 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1494 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1495 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1496 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1497 1498 // Error handling. 1499 case lltok::kw_byval: 1500 case lltok::kw_inalloca: 1501 case lltok::kw_nest: 1502 case lltok::kw_nocapture: 1503 case lltok::kw_returned: 1504 case lltok::kw_sret: 1505 case lltok::kw_swifterror: 1506 case lltok::kw_swiftself: 1507 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1508 break; 1509 1510 case lltok::kw_alignstack: 1511 case lltok::kw_alwaysinline: 1512 case lltok::kw_argmemonly: 1513 case lltok::kw_builtin: 1514 case lltok::kw_cold: 1515 case lltok::kw_inlinehint: 1516 case lltok::kw_jumptable: 1517 case lltok::kw_minsize: 1518 case lltok::kw_naked: 1519 case lltok::kw_nobuiltin: 1520 case lltok::kw_noduplicate: 1521 case lltok::kw_noimplicitfloat: 1522 case lltok::kw_noinline: 1523 case lltok::kw_nonlazybind: 1524 case lltok::kw_noredzone: 1525 case lltok::kw_noreturn: 1526 case lltok::kw_nounwind: 1527 case lltok::kw_optnone: 1528 case lltok::kw_optsize: 1529 case lltok::kw_returns_twice: 1530 case lltok::kw_sanitize_address: 1531 case lltok::kw_sanitize_memory: 1532 case lltok::kw_sanitize_thread: 1533 case lltok::kw_ssp: 1534 case lltok::kw_sspreq: 1535 case lltok::kw_sspstrong: 1536 case lltok::kw_safestack: 1537 case lltok::kw_uwtable: 1538 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1539 break; 1540 1541 case lltok::kw_readnone: 1542 case lltok::kw_readonly: 1543 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type"); 1544 } 1545 1546 Lex.Lex(); 1547 } 1548 } 1549 1550 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1551 HasLinkage = true; 1552 switch (Kind) { 1553 default: 1554 HasLinkage = false; 1555 return GlobalValue::ExternalLinkage; 1556 case lltok::kw_private: 1557 return GlobalValue::PrivateLinkage; 1558 case lltok::kw_internal: 1559 return GlobalValue::InternalLinkage; 1560 case lltok::kw_weak: 1561 return GlobalValue::WeakAnyLinkage; 1562 case lltok::kw_weak_odr: 1563 return GlobalValue::WeakODRLinkage; 1564 case lltok::kw_linkonce: 1565 return GlobalValue::LinkOnceAnyLinkage; 1566 case lltok::kw_linkonce_odr: 1567 return GlobalValue::LinkOnceODRLinkage; 1568 case lltok::kw_available_externally: 1569 return GlobalValue::AvailableExternallyLinkage; 1570 case lltok::kw_appending: 1571 return GlobalValue::AppendingLinkage; 1572 case lltok::kw_common: 1573 return GlobalValue::CommonLinkage; 1574 case lltok::kw_extern_weak: 1575 return GlobalValue::ExternalWeakLinkage; 1576 case lltok::kw_external: 1577 return GlobalValue::ExternalLinkage; 1578 } 1579 } 1580 1581 /// ParseOptionalLinkage 1582 /// ::= /*empty*/ 1583 /// ::= 'private' 1584 /// ::= 'internal' 1585 /// ::= 'weak' 1586 /// ::= 'weak_odr' 1587 /// ::= 'linkonce' 1588 /// ::= 'linkonce_odr' 1589 /// ::= 'available_externally' 1590 /// ::= 'appending' 1591 /// ::= 'common' 1592 /// ::= 'extern_weak' 1593 /// ::= 'external' 1594 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1595 unsigned &Visibility, 1596 unsigned &DLLStorageClass) { 1597 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1598 if (HasLinkage) 1599 Lex.Lex(); 1600 ParseOptionalVisibility(Visibility); 1601 ParseOptionalDLLStorageClass(DLLStorageClass); 1602 return false; 1603 } 1604 1605 /// ParseOptionalVisibility 1606 /// ::= /*empty*/ 1607 /// ::= 'default' 1608 /// ::= 'hidden' 1609 /// ::= 'protected' 1610 /// 1611 void LLParser::ParseOptionalVisibility(unsigned &Res) { 1612 switch (Lex.getKind()) { 1613 default: 1614 Res = GlobalValue::DefaultVisibility; 1615 return; 1616 case lltok::kw_default: 1617 Res = GlobalValue::DefaultVisibility; 1618 break; 1619 case lltok::kw_hidden: 1620 Res = GlobalValue::HiddenVisibility; 1621 break; 1622 case lltok::kw_protected: 1623 Res = GlobalValue::ProtectedVisibility; 1624 break; 1625 } 1626 Lex.Lex(); 1627 } 1628 1629 /// ParseOptionalDLLStorageClass 1630 /// ::= /*empty*/ 1631 /// ::= 'dllimport' 1632 /// ::= 'dllexport' 1633 /// 1634 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) { 1635 switch (Lex.getKind()) { 1636 default: 1637 Res = GlobalValue::DefaultStorageClass; 1638 return; 1639 case lltok::kw_dllimport: 1640 Res = GlobalValue::DLLImportStorageClass; 1641 break; 1642 case lltok::kw_dllexport: 1643 Res = GlobalValue::DLLExportStorageClass; 1644 break; 1645 } 1646 Lex.Lex(); 1647 } 1648 1649 /// ParseOptionalCallingConv 1650 /// ::= /*empty*/ 1651 /// ::= 'ccc' 1652 /// ::= 'fastcc' 1653 /// ::= 'intel_ocl_bicc' 1654 /// ::= 'coldcc' 1655 /// ::= 'x86_stdcallcc' 1656 /// ::= 'x86_fastcallcc' 1657 /// ::= 'x86_thiscallcc' 1658 /// ::= 'x86_vectorcallcc' 1659 /// ::= 'arm_apcscc' 1660 /// ::= 'arm_aapcscc' 1661 /// ::= 'arm_aapcs_vfpcc' 1662 /// ::= 'msp430_intrcc' 1663 /// ::= 'avr_intrcc' 1664 /// ::= 'avr_signalcc' 1665 /// ::= 'ptx_kernel' 1666 /// ::= 'ptx_device' 1667 /// ::= 'spir_func' 1668 /// ::= 'spir_kernel' 1669 /// ::= 'x86_64_sysvcc' 1670 /// ::= 'x86_64_win64cc' 1671 /// ::= 'webkit_jscc' 1672 /// ::= 'anyregcc' 1673 /// ::= 'preserve_mostcc' 1674 /// ::= 'preserve_allcc' 1675 /// ::= 'ghccc' 1676 /// ::= 'swiftcc' 1677 /// ::= 'x86_intrcc' 1678 /// ::= 'hhvmcc' 1679 /// ::= 'hhvm_ccc' 1680 /// ::= 'cxx_fast_tlscc' 1681 /// ::= 'amdgpu_vs' 1682 /// ::= 'amdgpu_tcs' 1683 /// ::= 'amdgpu_tes' 1684 /// ::= 'amdgpu_gs' 1685 /// ::= 'amdgpu_ps' 1686 /// ::= 'amdgpu_cs' 1687 /// ::= 'amdgpu_kernel' 1688 /// ::= 'cc' UINT 1689 /// 1690 bool LLParser::ParseOptionalCallingConv(unsigned &CC) { 1691 switch (Lex.getKind()) { 1692 default: CC = CallingConv::C; return false; 1693 case lltok::kw_ccc: CC = CallingConv::C; break; 1694 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1695 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1696 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1697 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1698 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 1699 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1700 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1701 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1702 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1703 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1704 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1705 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 1706 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 1707 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1708 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1709 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1710 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1711 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1712 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1713 case lltok::kw_x86_64_win64cc: CC = CallingConv::X86_64_Win64; break; 1714 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1715 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1716 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1717 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1718 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1719 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 1720 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 1721 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 1722 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 1723 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 1724 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 1725 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 1726 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 1727 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 1728 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 1729 case lltok::kw_cc: { 1730 Lex.Lex(); 1731 return ParseUInt32(CC); 1732 } 1733 } 1734 1735 Lex.Lex(); 1736 return false; 1737 } 1738 1739 /// ParseMetadataAttachment 1740 /// ::= !dbg !42 1741 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 1742 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 1743 1744 std::string Name = Lex.getStrVal(); 1745 Kind = M->getMDKindID(Name); 1746 Lex.Lex(); 1747 1748 return ParseMDNode(MD); 1749 } 1750 1751 /// ParseInstructionMetadata 1752 /// ::= !dbg !42 (',' !dbg !57)* 1753 bool LLParser::ParseInstructionMetadata(Instruction &Inst) { 1754 do { 1755 if (Lex.getKind() != lltok::MetadataVar) 1756 return TokError("expected metadata after comma"); 1757 1758 unsigned MDK; 1759 MDNode *N; 1760 if (ParseMetadataAttachment(MDK, N)) 1761 return true; 1762 1763 Inst.setMetadata(MDK, N); 1764 if (MDK == LLVMContext::MD_tbaa) 1765 InstsWithTBAATag.push_back(&Inst); 1766 1767 // If this is the end of the list, we're done. 1768 } while (EatIfPresent(lltok::comma)); 1769 return false; 1770 } 1771 1772 /// ParseGlobalObjectMetadataAttachment 1773 /// ::= !dbg !57 1774 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) { 1775 unsigned MDK; 1776 MDNode *N; 1777 if (ParseMetadataAttachment(MDK, N)) 1778 return true; 1779 1780 GO.addMetadata(MDK, *N); 1781 return false; 1782 } 1783 1784 /// ParseOptionalFunctionMetadata 1785 /// ::= (!dbg !57)* 1786 bool LLParser::ParseOptionalFunctionMetadata(Function &F) { 1787 while (Lex.getKind() == lltok::MetadataVar) 1788 if (ParseGlobalObjectMetadataAttachment(F)) 1789 return true; 1790 return false; 1791 } 1792 1793 /// ParseOptionalAlignment 1794 /// ::= /* empty */ 1795 /// ::= 'align' 4 1796 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { 1797 Alignment = 0; 1798 if (!EatIfPresent(lltok::kw_align)) 1799 return false; 1800 LocTy AlignLoc = Lex.getLoc(); 1801 if (ParseUInt32(Alignment)) return true; 1802 if (!isPowerOf2_32(Alignment)) 1803 return Error(AlignLoc, "alignment is not a power of two"); 1804 if (Alignment > Value::MaximumAlignment) 1805 return Error(AlignLoc, "huge alignments are not supported yet"); 1806 return false; 1807 } 1808 1809 /// ParseOptionalDerefAttrBytes 1810 /// ::= /* empty */ 1811 /// ::= AttrKind '(' 4 ')' 1812 /// 1813 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 1814 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind, 1815 uint64_t &Bytes) { 1816 assert((AttrKind == lltok::kw_dereferenceable || 1817 AttrKind == lltok::kw_dereferenceable_or_null) && 1818 "contract!"); 1819 1820 Bytes = 0; 1821 if (!EatIfPresent(AttrKind)) 1822 return false; 1823 LocTy ParenLoc = Lex.getLoc(); 1824 if (!EatIfPresent(lltok::lparen)) 1825 return Error(ParenLoc, "expected '('"); 1826 LocTy DerefLoc = Lex.getLoc(); 1827 if (ParseUInt64(Bytes)) return true; 1828 ParenLoc = Lex.getLoc(); 1829 if (!EatIfPresent(lltok::rparen)) 1830 return Error(ParenLoc, "expected ')'"); 1831 if (!Bytes) 1832 return Error(DerefLoc, "dereferenceable bytes must be non-zero"); 1833 return false; 1834 } 1835 1836 /// ParseOptionalCommaAlign 1837 /// ::= 1838 /// ::= ',' align 4 1839 /// 1840 /// This returns with AteExtraComma set to true if it ate an excess comma at the 1841 /// end. 1842 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, 1843 bool &AteExtraComma) { 1844 AteExtraComma = false; 1845 while (EatIfPresent(lltok::comma)) { 1846 // Metadata at the end is an early exit. 1847 if (Lex.getKind() == lltok::MetadataVar) { 1848 AteExtraComma = true; 1849 return false; 1850 } 1851 1852 if (Lex.getKind() != lltok::kw_align) 1853 return Error(Lex.getLoc(), "expected metadata or 'align'"); 1854 1855 if (ParseOptionalAlignment(Alignment)) return true; 1856 } 1857 1858 return false; 1859 } 1860 1861 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 1862 Optional<unsigned> &HowManyArg) { 1863 Lex.Lex(); 1864 1865 auto StartParen = Lex.getLoc(); 1866 if (!EatIfPresent(lltok::lparen)) 1867 return Error(StartParen, "expected '('"); 1868 1869 if (ParseUInt32(BaseSizeArg)) 1870 return true; 1871 1872 if (EatIfPresent(lltok::comma)) { 1873 auto HowManyAt = Lex.getLoc(); 1874 unsigned HowMany; 1875 if (ParseUInt32(HowMany)) 1876 return true; 1877 if (HowMany == BaseSizeArg) 1878 return Error(HowManyAt, 1879 "'allocsize' indices can't refer to the same parameter"); 1880 HowManyArg = HowMany; 1881 } else 1882 HowManyArg = None; 1883 1884 auto EndParen = Lex.getLoc(); 1885 if (!EatIfPresent(lltok::rparen)) 1886 return Error(EndParen, "expected ')'"); 1887 return false; 1888 } 1889 1890 /// ParseScopeAndOrdering 1891 /// if isAtomic: ::= 'singlethread'? AtomicOrdering 1892 /// else: ::= 1893 /// 1894 /// This sets Scope and Ordering to the parsed values. 1895 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope, 1896 AtomicOrdering &Ordering) { 1897 if (!isAtomic) 1898 return false; 1899 1900 Scope = CrossThread; 1901 if (EatIfPresent(lltok::kw_singlethread)) 1902 Scope = SingleThread; 1903 1904 return ParseOrdering(Ordering); 1905 } 1906 1907 /// ParseOrdering 1908 /// ::= AtomicOrdering 1909 /// 1910 /// This sets Ordering to the parsed value. 1911 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) { 1912 switch (Lex.getKind()) { 1913 default: return TokError("Expected ordering on atomic instruction"); 1914 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 1915 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 1916 // Not specified yet: 1917 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 1918 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 1919 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 1920 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 1921 case lltok::kw_seq_cst: 1922 Ordering = AtomicOrdering::SequentiallyConsistent; 1923 break; 1924 } 1925 Lex.Lex(); 1926 return false; 1927 } 1928 1929 /// ParseOptionalStackAlignment 1930 /// ::= /* empty */ 1931 /// ::= 'alignstack' '(' 4 ')' 1932 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 1933 Alignment = 0; 1934 if (!EatIfPresent(lltok::kw_alignstack)) 1935 return false; 1936 LocTy ParenLoc = Lex.getLoc(); 1937 if (!EatIfPresent(lltok::lparen)) 1938 return Error(ParenLoc, "expected '('"); 1939 LocTy AlignLoc = Lex.getLoc(); 1940 if (ParseUInt32(Alignment)) return true; 1941 ParenLoc = Lex.getLoc(); 1942 if (!EatIfPresent(lltok::rparen)) 1943 return Error(ParenLoc, "expected ')'"); 1944 if (!isPowerOf2_32(Alignment)) 1945 return Error(AlignLoc, "stack alignment is not a power of two"); 1946 return false; 1947 } 1948 1949 /// ParseIndexList - This parses the index list for an insert/extractvalue 1950 /// instruction. This sets AteExtraComma in the case where we eat an extra 1951 /// comma at the end of the line and find that it is followed by metadata. 1952 /// Clients that don't allow metadata can call the version of this function that 1953 /// only takes one argument. 1954 /// 1955 /// ParseIndexList 1956 /// ::= (',' uint32)+ 1957 /// 1958 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 1959 bool &AteExtraComma) { 1960 AteExtraComma = false; 1961 1962 if (Lex.getKind() != lltok::comma) 1963 return TokError("expected ',' as start of index list"); 1964 1965 while (EatIfPresent(lltok::comma)) { 1966 if (Lex.getKind() == lltok::MetadataVar) { 1967 if (Indices.empty()) return TokError("expected index"); 1968 AteExtraComma = true; 1969 return false; 1970 } 1971 unsigned Idx = 0; 1972 if (ParseUInt32(Idx)) return true; 1973 Indices.push_back(Idx); 1974 } 1975 1976 return false; 1977 } 1978 1979 //===----------------------------------------------------------------------===// 1980 // Type Parsing. 1981 //===----------------------------------------------------------------------===// 1982 1983 /// ParseType - Parse a type. 1984 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 1985 SMLoc TypeLoc = Lex.getLoc(); 1986 switch (Lex.getKind()) { 1987 default: 1988 return TokError(Msg); 1989 case lltok::Type: 1990 // Type ::= 'float' | 'void' (etc) 1991 Result = Lex.getTyVal(); 1992 Lex.Lex(); 1993 break; 1994 case lltok::lbrace: 1995 // Type ::= StructType 1996 if (ParseAnonStructType(Result, false)) 1997 return true; 1998 break; 1999 case lltok::lsquare: 2000 // Type ::= '[' ... ']' 2001 Lex.Lex(); // eat the lsquare. 2002 if (ParseArrayVectorType(Result, false)) 2003 return true; 2004 break; 2005 case lltok::less: // Either vector or packed struct. 2006 // Type ::= '<' ... '>' 2007 Lex.Lex(); 2008 if (Lex.getKind() == lltok::lbrace) { 2009 if (ParseAnonStructType(Result, true) || 2010 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 2011 return true; 2012 } else if (ParseArrayVectorType(Result, true)) 2013 return true; 2014 break; 2015 case lltok::LocalVar: { 2016 // Type ::= %foo 2017 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2018 2019 // If the type hasn't been defined yet, create a forward definition and 2020 // remember where that forward def'n was seen (in case it never is defined). 2021 if (!Entry.first) { 2022 Entry.first = StructType::create(Context, Lex.getStrVal()); 2023 Entry.second = Lex.getLoc(); 2024 } 2025 Result = Entry.first; 2026 Lex.Lex(); 2027 break; 2028 } 2029 2030 case lltok::LocalVarID: { 2031 // Type ::= %4 2032 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2033 2034 // If the type hasn't been defined yet, create a forward definition and 2035 // remember where that forward def'n was seen (in case it never is defined). 2036 if (!Entry.first) { 2037 Entry.first = StructType::create(Context); 2038 Entry.second = Lex.getLoc(); 2039 } 2040 Result = Entry.first; 2041 Lex.Lex(); 2042 break; 2043 } 2044 } 2045 2046 // Parse the type suffixes. 2047 while (true) { 2048 switch (Lex.getKind()) { 2049 // End of type. 2050 default: 2051 if (!AllowVoid && Result->isVoidTy()) 2052 return Error(TypeLoc, "void type only allowed for function results"); 2053 return false; 2054 2055 // Type ::= Type '*' 2056 case lltok::star: 2057 if (Result->isLabelTy()) 2058 return TokError("basic block pointers are invalid"); 2059 if (Result->isVoidTy()) 2060 return TokError("pointers to void are invalid - use i8* instead"); 2061 if (!PointerType::isValidElementType(Result)) 2062 return TokError("pointer to this type is invalid"); 2063 Result = PointerType::getUnqual(Result); 2064 Lex.Lex(); 2065 break; 2066 2067 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2068 case lltok::kw_addrspace: { 2069 if (Result->isLabelTy()) 2070 return TokError("basic block pointers are invalid"); 2071 if (Result->isVoidTy()) 2072 return TokError("pointers to void are invalid; use i8* instead"); 2073 if (!PointerType::isValidElementType(Result)) 2074 return TokError("pointer to this type is invalid"); 2075 unsigned AddrSpace; 2076 if (ParseOptionalAddrSpace(AddrSpace) || 2077 ParseToken(lltok::star, "expected '*' in address space")) 2078 return true; 2079 2080 Result = PointerType::get(Result, AddrSpace); 2081 break; 2082 } 2083 2084 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2085 case lltok::lparen: 2086 if (ParseFunctionType(Result)) 2087 return true; 2088 break; 2089 } 2090 } 2091 } 2092 2093 /// ParseParameterList 2094 /// ::= '(' ')' 2095 /// ::= '(' Arg (',' Arg)* ')' 2096 /// Arg 2097 /// ::= Type OptionalAttributes Value OptionalAttributes 2098 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2099 PerFunctionState &PFS, bool IsMustTailCall, 2100 bool InVarArgsFunc) { 2101 if (ParseToken(lltok::lparen, "expected '(' in call")) 2102 return true; 2103 2104 unsigned AttrIndex = 1; 2105 while (Lex.getKind() != lltok::rparen) { 2106 // If this isn't the first argument, we need a comma. 2107 if (!ArgList.empty() && 2108 ParseToken(lltok::comma, "expected ',' in argument list")) 2109 return true; 2110 2111 // Parse an ellipsis if this is a musttail call in a variadic function. 2112 if (Lex.getKind() == lltok::dotdotdot) { 2113 const char *Msg = "unexpected ellipsis in argument list for "; 2114 if (!IsMustTailCall) 2115 return TokError(Twine(Msg) + "non-musttail call"); 2116 if (!InVarArgsFunc) 2117 return TokError(Twine(Msg) + "musttail call in non-varargs function"); 2118 Lex.Lex(); // Lex the '...', it is purely for readability. 2119 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2120 } 2121 2122 // Parse the argument. 2123 LocTy ArgLoc; 2124 Type *ArgTy = nullptr; 2125 AttrBuilder ArgAttrs; 2126 Value *V; 2127 if (ParseType(ArgTy, ArgLoc)) 2128 return true; 2129 2130 if (ArgTy->isMetadataTy()) { 2131 if (ParseMetadataAsValue(V, PFS)) 2132 return true; 2133 } else { 2134 // Otherwise, handle normal operands. 2135 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS)) 2136 return true; 2137 } 2138 ArgList.push_back(ParamInfo(ArgLoc, V, AttributeSet::get(V->getContext(), 2139 AttrIndex++, 2140 ArgAttrs))); 2141 } 2142 2143 if (IsMustTailCall && InVarArgsFunc) 2144 return TokError("expected '...' at end of argument list for musttail call " 2145 "in varargs function"); 2146 2147 Lex.Lex(); // Lex the ')'. 2148 return false; 2149 } 2150 2151 /// ParseOptionalOperandBundles 2152 /// ::= /*empty*/ 2153 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2154 /// 2155 /// OperandBundle 2156 /// ::= bundle-tag '(' ')' 2157 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2158 /// 2159 /// bundle-tag ::= String Constant 2160 bool LLParser::ParseOptionalOperandBundles( 2161 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2162 LocTy BeginLoc = Lex.getLoc(); 2163 if (!EatIfPresent(lltok::lsquare)) 2164 return false; 2165 2166 while (Lex.getKind() != lltok::rsquare) { 2167 // If this isn't the first operand bundle, we need a comma. 2168 if (!BundleList.empty() && 2169 ParseToken(lltok::comma, "expected ',' in input list")) 2170 return true; 2171 2172 std::string Tag; 2173 if (ParseStringConstant(Tag)) 2174 return true; 2175 2176 if (ParseToken(lltok::lparen, "expected '(' in operand bundle")) 2177 return true; 2178 2179 std::vector<Value *> Inputs; 2180 while (Lex.getKind() != lltok::rparen) { 2181 // If this isn't the first input, we need a comma. 2182 if (!Inputs.empty() && 2183 ParseToken(lltok::comma, "expected ',' in input list")) 2184 return true; 2185 2186 Type *Ty = nullptr; 2187 Value *Input = nullptr; 2188 if (ParseType(Ty) || ParseValue(Ty, Input, PFS)) 2189 return true; 2190 Inputs.push_back(Input); 2191 } 2192 2193 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2194 2195 Lex.Lex(); // Lex the ')'. 2196 } 2197 2198 if (BundleList.empty()) 2199 return Error(BeginLoc, "operand bundle set must not be empty"); 2200 2201 Lex.Lex(); // Lex the ']'. 2202 return false; 2203 } 2204 2205 /// ParseArgumentList - Parse the argument list for a function type or function 2206 /// prototype. 2207 /// ::= '(' ArgTypeListI ')' 2208 /// ArgTypeListI 2209 /// ::= /*empty*/ 2210 /// ::= '...' 2211 /// ::= ArgTypeList ',' '...' 2212 /// ::= ArgType (',' ArgType)* 2213 /// 2214 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2215 bool &isVarArg){ 2216 isVarArg = false; 2217 assert(Lex.getKind() == lltok::lparen); 2218 Lex.Lex(); // eat the (. 2219 2220 if (Lex.getKind() == lltok::rparen) { 2221 // empty 2222 } else if (Lex.getKind() == lltok::dotdotdot) { 2223 isVarArg = true; 2224 Lex.Lex(); 2225 } else { 2226 LocTy TypeLoc = Lex.getLoc(); 2227 Type *ArgTy = nullptr; 2228 AttrBuilder Attrs; 2229 std::string Name; 2230 2231 if (ParseType(ArgTy) || 2232 ParseOptionalParamAttrs(Attrs)) return true; 2233 2234 if (ArgTy->isVoidTy()) 2235 return Error(TypeLoc, "argument can not have void type"); 2236 2237 if (Lex.getKind() == lltok::LocalVar) { 2238 Name = Lex.getStrVal(); 2239 Lex.Lex(); 2240 } 2241 2242 if (!FunctionType::isValidArgumentType(ArgTy)) 2243 return Error(TypeLoc, "invalid type for function argument"); 2244 2245 unsigned AttrIndex = 1; 2246 ArgList.emplace_back(TypeLoc, ArgTy, AttributeSet::get(ArgTy->getContext(), 2247 AttrIndex++, Attrs), 2248 std::move(Name)); 2249 2250 while (EatIfPresent(lltok::comma)) { 2251 // Handle ... at end of arg list. 2252 if (EatIfPresent(lltok::dotdotdot)) { 2253 isVarArg = true; 2254 break; 2255 } 2256 2257 // Otherwise must be an argument type. 2258 TypeLoc = Lex.getLoc(); 2259 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true; 2260 2261 if (ArgTy->isVoidTy()) 2262 return Error(TypeLoc, "argument can not have void type"); 2263 2264 if (Lex.getKind() == lltok::LocalVar) { 2265 Name = Lex.getStrVal(); 2266 Lex.Lex(); 2267 } else { 2268 Name = ""; 2269 } 2270 2271 if (!ArgTy->isFirstClassType()) 2272 return Error(TypeLoc, "invalid type for function argument"); 2273 2274 ArgList.emplace_back( 2275 TypeLoc, ArgTy, 2276 AttributeSet::get(ArgTy->getContext(), AttrIndex++, Attrs), 2277 std::move(Name)); 2278 } 2279 } 2280 2281 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2282 } 2283 2284 /// ParseFunctionType 2285 /// ::= Type ArgumentList OptionalAttrs 2286 bool LLParser::ParseFunctionType(Type *&Result) { 2287 assert(Lex.getKind() == lltok::lparen); 2288 2289 if (!FunctionType::isValidReturnType(Result)) 2290 return TokError("invalid function return type"); 2291 2292 SmallVector<ArgInfo, 8> ArgList; 2293 bool isVarArg; 2294 if (ParseArgumentList(ArgList, isVarArg)) 2295 return true; 2296 2297 // Reject names on the arguments lists. 2298 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2299 if (!ArgList[i].Name.empty()) 2300 return Error(ArgList[i].Loc, "argument name invalid in function type"); 2301 if (ArgList[i].Attrs.hasAttributes(i + 1)) 2302 return Error(ArgList[i].Loc, 2303 "argument attributes invalid in function type"); 2304 } 2305 2306 SmallVector<Type*, 16> ArgListTy; 2307 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2308 ArgListTy.push_back(ArgList[i].Ty); 2309 2310 Result = FunctionType::get(Result, ArgListTy, isVarArg); 2311 return false; 2312 } 2313 2314 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 2315 /// other structs. 2316 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 2317 SmallVector<Type*, 8> Elts; 2318 if (ParseStructBody(Elts)) return true; 2319 2320 Result = StructType::get(Context, Elts, Packed); 2321 return false; 2322 } 2323 2324 /// ParseStructDefinition - Parse a struct in a 'type' definition. 2325 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 2326 std::pair<Type*, LocTy> &Entry, 2327 Type *&ResultTy) { 2328 // If the type was already defined, diagnose the redefinition. 2329 if (Entry.first && !Entry.second.isValid()) 2330 return Error(TypeLoc, "redefinition of type"); 2331 2332 // If we have opaque, just return without filling in the definition for the 2333 // struct. This counts as a definition as far as the .ll file goes. 2334 if (EatIfPresent(lltok::kw_opaque)) { 2335 // This type is being defined, so clear the location to indicate this. 2336 Entry.second = SMLoc(); 2337 2338 // If this type number has never been uttered, create it. 2339 if (!Entry.first) 2340 Entry.first = StructType::create(Context, Name); 2341 ResultTy = Entry.first; 2342 return false; 2343 } 2344 2345 // If the type starts with '<', then it is either a packed struct or a vector. 2346 bool isPacked = EatIfPresent(lltok::less); 2347 2348 // If we don't have a struct, then we have a random type alias, which we 2349 // accept for compatibility with old files. These types are not allowed to be 2350 // forward referenced and not allowed to be recursive. 2351 if (Lex.getKind() != lltok::lbrace) { 2352 if (Entry.first) 2353 return Error(TypeLoc, "forward references to non-struct type"); 2354 2355 ResultTy = nullptr; 2356 if (isPacked) 2357 return ParseArrayVectorType(ResultTy, true); 2358 return ParseType(ResultTy); 2359 } 2360 2361 // This type is being defined, so clear the location to indicate this. 2362 Entry.second = SMLoc(); 2363 2364 // If this type number has never been uttered, create it. 2365 if (!Entry.first) 2366 Entry.first = StructType::create(Context, Name); 2367 2368 StructType *STy = cast<StructType>(Entry.first); 2369 2370 SmallVector<Type*, 8> Body; 2371 if (ParseStructBody(Body) || 2372 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 2373 return true; 2374 2375 STy->setBody(Body, isPacked); 2376 ResultTy = STy; 2377 return false; 2378 } 2379 2380 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2381 /// StructType 2382 /// ::= '{' '}' 2383 /// ::= '{' Type (',' Type)* '}' 2384 /// ::= '<' '{' '}' '>' 2385 /// ::= '<' '{' Type (',' Type)* '}' '>' 2386 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 2387 assert(Lex.getKind() == lltok::lbrace); 2388 Lex.Lex(); // Consume the '{' 2389 2390 // Handle the empty struct. 2391 if (EatIfPresent(lltok::rbrace)) 2392 return false; 2393 2394 LocTy EltTyLoc = Lex.getLoc(); 2395 Type *Ty = nullptr; 2396 if (ParseType(Ty)) return true; 2397 Body.push_back(Ty); 2398 2399 if (!StructType::isValidElementType(Ty)) 2400 return Error(EltTyLoc, "invalid element type for struct"); 2401 2402 while (EatIfPresent(lltok::comma)) { 2403 EltTyLoc = Lex.getLoc(); 2404 if (ParseType(Ty)) return true; 2405 2406 if (!StructType::isValidElementType(Ty)) 2407 return Error(EltTyLoc, "invalid element type for struct"); 2408 2409 Body.push_back(Ty); 2410 } 2411 2412 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 2413 } 2414 2415 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 2416 /// token has already been consumed. 2417 /// Type 2418 /// ::= '[' APSINTVAL 'x' Types ']' 2419 /// ::= '<' APSINTVAL 'x' Types '>' 2420 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 2421 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2422 Lex.getAPSIntVal().getBitWidth() > 64) 2423 return TokError("expected number in address space"); 2424 2425 LocTy SizeLoc = Lex.getLoc(); 2426 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2427 Lex.Lex(); 2428 2429 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 2430 return true; 2431 2432 LocTy TypeLoc = Lex.getLoc(); 2433 Type *EltTy = nullptr; 2434 if (ParseType(EltTy)) return true; 2435 2436 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 2437 "expected end of sequential type")) 2438 return true; 2439 2440 if (isVector) { 2441 if (Size == 0) 2442 return Error(SizeLoc, "zero element vector is illegal"); 2443 if ((unsigned)Size != Size) 2444 return Error(SizeLoc, "size too large for vector"); 2445 if (!VectorType::isValidElementType(EltTy)) 2446 return Error(TypeLoc, "invalid vector element type"); 2447 Result = VectorType::get(EltTy, unsigned(Size)); 2448 } else { 2449 if (!ArrayType::isValidElementType(EltTy)) 2450 return Error(TypeLoc, "invalid array element type"); 2451 Result = ArrayType::get(EltTy, Size); 2452 } 2453 return false; 2454 } 2455 2456 //===----------------------------------------------------------------------===// 2457 // Function Semantic Analysis. 2458 //===----------------------------------------------------------------------===// 2459 2460 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2461 int functionNumber) 2462 : P(p), F(f), FunctionNumber(functionNumber) { 2463 2464 // Insert unnamed arguments into the NumberedVals list. 2465 for (Argument &A : F.args()) 2466 if (!A.hasName()) 2467 NumberedVals.push_back(&A); 2468 } 2469 2470 LLParser::PerFunctionState::~PerFunctionState() { 2471 // If there were any forward referenced non-basicblock values, delete them. 2472 2473 for (const auto &P : ForwardRefVals) { 2474 if (isa<BasicBlock>(P.second.first)) 2475 continue; 2476 P.second.first->replaceAllUsesWith( 2477 UndefValue::get(P.second.first->getType())); 2478 delete P.second.first; 2479 } 2480 2481 for (const auto &P : ForwardRefValIDs) { 2482 if (isa<BasicBlock>(P.second.first)) 2483 continue; 2484 P.second.first->replaceAllUsesWith( 2485 UndefValue::get(P.second.first->getType())); 2486 delete P.second.first; 2487 } 2488 } 2489 2490 bool LLParser::PerFunctionState::FinishFunction() { 2491 if (!ForwardRefVals.empty()) 2492 return P.Error(ForwardRefVals.begin()->second.second, 2493 "use of undefined value '%" + ForwardRefVals.begin()->first + 2494 "'"); 2495 if (!ForwardRefValIDs.empty()) 2496 return P.Error(ForwardRefValIDs.begin()->second.second, 2497 "use of undefined value '%" + 2498 Twine(ForwardRefValIDs.begin()->first) + "'"); 2499 return false; 2500 } 2501 2502 /// GetVal - Get a value with the specified name or ID, creating a 2503 /// forward reference record if needed. This can return null if the value 2504 /// exists but does not have the right type. 2505 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty, 2506 LocTy Loc) { 2507 // Look this name up in the normal function symbol table. 2508 Value *Val = F.getValueSymbolTable()->lookup(Name); 2509 2510 // If this is a forward reference for the value, see if we already created a 2511 // forward ref record. 2512 if (!Val) { 2513 auto I = ForwardRefVals.find(Name); 2514 if (I != ForwardRefVals.end()) 2515 Val = I->second.first; 2516 } 2517 2518 // If we have the value in the symbol table or fwd-ref table, return it. 2519 if (Val) { 2520 if (Val->getType() == Ty) return Val; 2521 if (Ty->isLabelTy()) 2522 P.Error(Loc, "'%" + Name + "' is not a basic block"); 2523 else 2524 P.Error(Loc, "'%" + Name + "' defined with type '" + 2525 getTypeString(Val->getType()) + "'"); 2526 return nullptr; 2527 } 2528 2529 // Don't make placeholders with invalid type. 2530 if (!Ty->isFirstClassType()) { 2531 P.Error(Loc, "invalid use of a non-first-class type"); 2532 return nullptr; 2533 } 2534 2535 // Otherwise, create a new forward reference for this value and remember it. 2536 Value *FwdVal; 2537 if (Ty->isLabelTy()) { 2538 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2539 } else { 2540 FwdVal = new Argument(Ty, Name); 2541 } 2542 2543 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2544 return FwdVal; 2545 } 2546 2547 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc) { 2548 // Look this name up in the normal function symbol table. 2549 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2550 2551 // If this is a forward reference for the value, see if we already created a 2552 // forward ref record. 2553 if (!Val) { 2554 auto I = ForwardRefValIDs.find(ID); 2555 if (I != ForwardRefValIDs.end()) 2556 Val = I->second.first; 2557 } 2558 2559 // If we have the value in the symbol table or fwd-ref table, return it. 2560 if (Val) { 2561 if (Val->getType() == Ty) return Val; 2562 if (Ty->isLabelTy()) 2563 P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block"); 2564 else 2565 P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" + 2566 getTypeString(Val->getType()) + "'"); 2567 return nullptr; 2568 } 2569 2570 if (!Ty->isFirstClassType()) { 2571 P.Error(Loc, "invalid use of a non-first-class type"); 2572 return nullptr; 2573 } 2574 2575 // Otherwise, create a new forward reference for this value and remember it. 2576 Value *FwdVal; 2577 if (Ty->isLabelTy()) { 2578 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2579 } else { 2580 FwdVal = new Argument(Ty); 2581 } 2582 2583 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2584 return FwdVal; 2585 } 2586 2587 /// SetInstName - After an instruction is parsed and inserted into its 2588 /// basic block, this installs its name. 2589 bool LLParser::PerFunctionState::SetInstName(int NameID, 2590 const std::string &NameStr, 2591 LocTy NameLoc, Instruction *Inst) { 2592 // If this instruction has void type, it cannot have a name or ID specified. 2593 if (Inst->getType()->isVoidTy()) { 2594 if (NameID != -1 || !NameStr.empty()) 2595 return P.Error(NameLoc, "instructions returning void cannot have a name"); 2596 return false; 2597 } 2598 2599 // If this was a numbered instruction, verify that the instruction is the 2600 // expected value and resolve any forward references. 2601 if (NameStr.empty()) { 2602 // If neither a name nor an ID was specified, just use the next ID. 2603 if (NameID == -1) 2604 NameID = NumberedVals.size(); 2605 2606 if (unsigned(NameID) != NumberedVals.size()) 2607 return P.Error(NameLoc, "instruction expected to be numbered '%" + 2608 Twine(NumberedVals.size()) + "'"); 2609 2610 auto FI = ForwardRefValIDs.find(NameID); 2611 if (FI != ForwardRefValIDs.end()) { 2612 Value *Sentinel = FI->second.first; 2613 if (Sentinel->getType() != Inst->getType()) 2614 return P.Error(NameLoc, "instruction forward referenced with type '" + 2615 getTypeString(FI->second.first->getType()) + "'"); 2616 2617 Sentinel->replaceAllUsesWith(Inst); 2618 delete Sentinel; 2619 ForwardRefValIDs.erase(FI); 2620 } 2621 2622 NumberedVals.push_back(Inst); 2623 return false; 2624 } 2625 2626 // Otherwise, the instruction had a name. Resolve forward refs and set it. 2627 auto FI = ForwardRefVals.find(NameStr); 2628 if (FI != ForwardRefVals.end()) { 2629 Value *Sentinel = FI->second.first; 2630 if (Sentinel->getType() != Inst->getType()) 2631 return P.Error(NameLoc, "instruction forward referenced with type '" + 2632 getTypeString(FI->second.first->getType()) + "'"); 2633 2634 Sentinel->replaceAllUsesWith(Inst); 2635 delete Sentinel; 2636 ForwardRefVals.erase(FI); 2637 } 2638 2639 // Set the name on the instruction. 2640 Inst->setName(NameStr); 2641 2642 if (Inst->getName() != NameStr) 2643 return P.Error(NameLoc, "multiple definition of local value named '" + 2644 NameStr + "'"); 2645 return false; 2646 } 2647 2648 /// GetBB - Get a basic block with the specified name or ID, creating a 2649 /// forward reference record if needed. 2650 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 2651 LocTy Loc) { 2652 return dyn_cast_or_null<BasicBlock>(GetVal(Name, 2653 Type::getLabelTy(F.getContext()), Loc)); 2654 } 2655 2656 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 2657 return dyn_cast_or_null<BasicBlock>(GetVal(ID, 2658 Type::getLabelTy(F.getContext()), Loc)); 2659 } 2660 2661 /// DefineBB - Define the specified basic block, which is either named or 2662 /// unnamed. If there is an error, this returns null otherwise it returns 2663 /// the block being defined. 2664 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 2665 LocTy Loc) { 2666 BasicBlock *BB; 2667 if (Name.empty()) 2668 BB = GetBB(NumberedVals.size(), Loc); 2669 else 2670 BB = GetBB(Name, Loc); 2671 if (!BB) return nullptr; // Already diagnosed error. 2672 2673 // Move the block to the end of the function. Forward ref'd blocks are 2674 // inserted wherever they happen to be referenced. 2675 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 2676 2677 // Remove the block from forward ref sets. 2678 if (Name.empty()) { 2679 ForwardRefValIDs.erase(NumberedVals.size()); 2680 NumberedVals.push_back(BB); 2681 } else { 2682 // BB forward references are already in the function symbol table. 2683 ForwardRefVals.erase(Name); 2684 } 2685 2686 return BB; 2687 } 2688 2689 //===----------------------------------------------------------------------===// 2690 // Constants. 2691 //===----------------------------------------------------------------------===// 2692 2693 /// ParseValID - Parse an abstract value that doesn't necessarily have a 2694 /// type implied. For example, if we parse "4" we don't know what integer type 2695 /// it has. The value will later be combined with its type and checked for 2696 /// sanity. PFS is used to convert function-local operands of metadata (since 2697 /// metadata operands are not just parsed here but also converted to values). 2698 /// PFS can be null when we are not parsing metadata values inside a function. 2699 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 2700 ID.Loc = Lex.getLoc(); 2701 switch (Lex.getKind()) { 2702 default: return TokError("expected value token"); 2703 case lltok::GlobalID: // @42 2704 ID.UIntVal = Lex.getUIntVal(); 2705 ID.Kind = ValID::t_GlobalID; 2706 break; 2707 case lltok::GlobalVar: // @foo 2708 ID.StrVal = Lex.getStrVal(); 2709 ID.Kind = ValID::t_GlobalName; 2710 break; 2711 case lltok::LocalVarID: // %42 2712 ID.UIntVal = Lex.getUIntVal(); 2713 ID.Kind = ValID::t_LocalID; 2714 break; 2715 case lltok::LocalVar: // %foo 2716 ID.StrVal = Lex.getStrVal(); 2717 ID.Kind = ValID::t_LocalName; 2718 break; 2719 case lltok::APSInt: 2720 ID.APSIntVal = Lex.getAPSIntVal(); 2721 ID.Kind = ValID::t_APSInt; 2722 break; 2723 case lltok::APFloat: 2724 ID.APFloatVal = Lex.getAPFloatVal(); 2725 ID.Kind = ValID::t_APFloat; 2726 break; 2727 case lltok::kw_true: 2728 ID.ConstantVal = ConstantInt::getTrue(Context); 2729 ID.Kind = ValID::t_Constant; 2730 break; 2731 case lltok::kw_false: 2732 ID.ConstantVal = ConstantInt::getFalse(Context); 2733 ID.Kind = ValID::t_Constant; 2734 break; 2735 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 2736 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 2737 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 2738 case lltok::kw_none: ID.Kind = ValID::t_None; break; 2739 2740 case lltok::lbrace: { 2741 // ValID ::= '{' ConstVector '}' 2742 Lex.Lex(); 2743 SmallVector<Constant*, 16> Elts; 2744 if (ParseGlobalValueVector(Elts) || 2745 ParseToken(lltok::rbrace, "expected end of struct constant")) 2746 return true; 2747 2748 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 2749 ID.UIntVal = Elts.size(); 2750 memcpy(ID.ConstantStructElts.get(), Elts.data(), 2751 Elts.size() * sizeof(Elts[0])); 2752 ID.Kind = ValID::t_ConstantStruct; 2753 return false; 2754 } 2755 case lltok::less: { 2756 // ValID ::= '<' ConstVector '>' --> Vector. 2757 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 2758 Lex.Lex(); 2759 bool isPackedStruct = EatIfPresent(lltok::lbrace); 2760 2761 SmallVector<Constant*, 16> Elts; 2762 LocTy FirstEltLoc = Lex.getLoc(); 2763 if (ParseGlobalValueVector(Elts) || 2764 (isPackedStruct && 2765 ParseToken(lltok::rbrace, "expected end of packed struct")) || 2766 ParseToken(lltok::greater, "expected end of constant")) 2767 return true; 2768 2769 if (isPackedStruct) { 2770 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 2771 memcpy(ID.ConstantStructElts.get(), Elts.data(), 2772 Elts.size() * sizeof(Elts[0])); 2773 ID.UIntVal = Elts.size(); 2774 ID.Kind = ValID::t_PackedConstantStruct; 2775 return false; 2776 } 2777 2778 if (Elts.empty()) 2779 return Error(ID.Loc, "constant vector must not be empty"); 2780 2781 if (!Elts[0]->getType()->isIntegerTy() && 2782 !Elts[0]->getType()->isFloatingPointTy() && 2783 !Elts[0]->getType()->isPointerTy()) 2784 return Error(FirstEltLoc, 2785 "vector elements must have integer, pointer or floating point type"); 2786 2787 // Verify that all the vector elements have the same type. 2788 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 2789 if (Elts[i]->getType() != Elts[0]->getType()) 2790 return Error(FirstEltLoc, 2791 "vector element #" + Twine(i) + 2792 " is not of type '" + getTypeString(Elts[0]->getType())); 2793 2794 ID.ConstantVal = ConstantVector::get(Elts); 2795 ID.Kind = ValID::t_Constant; 2796 return false; 2797 } 2798 case lltok::lsquare: { // Array Constant 2799 Lex.Lex(); 2800 SmallVector<Constant*, 16> Elts; 2801 LocTy FirstEltLoc = Lex.getLoc(); 2802 if (ParseGlobalValueVector(Elts) || 2803 ParseToken(lltok::rsquare, "expected end of array constant")) 2804 return true; 2805 2806 // Handle empty element. 2807 if (Elts.empty()) { 2808 // Use undef instead of an array because it's inconvenient to determine 2809 // the element type at this point, there being no elements to examine. 2810 ID.Kind = ValID::t_EmptyArray; 2811 return false; 2812 } 2813 2814 if (!Elts[0]->getType()->isFirstClassType()) 2815 return Error(FirstEltLoc, "invalid array element type: " + 2816 getTypeString(Elts[0]->getType())); 2817 2818 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 2819 2820 // Verify all elements are correct type! 2821 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 2822 if (Elts[i]->getType() != Elts[0]->getType()) 2823 return Error(FirstEltLoc, 2824 "array element #" + Twine(i) + 2825 " is not of type '" + getTypeString(Elts[0]->getType())); 2826 } 2827 2828 ID.ConstantVal = ConstantArray::get(ATy, Elts); 2829 ID.Kind = ValID::t_Constant; 2830 return false; 2831 } 2832 case lltok::kw_c: // c "foo" 2833 Lex.Lex(); 2834 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 2835 false); 2836 if (ParseToken(lltok::StringConstant, "expected string")) return true; 2837 ID.Kind = ValID::t_Constant; 2838 return false; 2839 2840 case lltok::kw_asm: { 2841 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 2842 // STRINGCONSTANT 2843 bool HasSideEffect, AlignStack, AsmDialect; 2844 Lex.Lex(); 2845 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 2846 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 2847 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 2848 ParseStringConstant(ID.StrVal) || 2849 ParseToken(lltok::comma, "expected comma in inline asm expression") || 2850 ParseToken(lltok::StringConstant, "expected constraint string")) 2851 return true; 2852 ID.StrVal2 = Lex.getStrVal(); 2853 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 2854 (unsigned(AsmDialect)<<2); 2855 ID.Kind = ValID::t_InlineAsm; 2856 return false; 2857 } 2858 2859 case lltok::kw_blockaddress: { 2860 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 2861 Lex.Lex(); 2862 2863 ValID Fn, Label; 2864 2865 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 2866 ParseValID(Fn) || 2867 ParseToken(lltok::comma, "expected comma in block address expression")|| 2868 ParseValID(Label) || 2869 ParseToken(lltok::rparen, "expected ')' in block address expression")) 2870 return true; 2871 2872 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 2873 return Error(Fn.Loc, "expected function name in blockaddress"); 2874 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 2875 return Error(Label.Loc, "expected basic block name in blockaddress"); 2876 2877 // Try to find the function (but skip it if it's forward-referenced). 2878 GlobalValue *GV = nullptr; 2879 if (Fn.Kind == ValID::t_GlobalID) { 2880 if (Fn.UIntVal < NumberedVals.size()) 2881 GV = NumberedVals[Fn.UIntVal]; 2882 } else if (!ForwardRefVals.count(Fn.StrVal)) { 2883 GV = M->getNamedValue(Fn.StrVal); 2884 } 2885 Function *F = nullptr; 2886 if (GV) { 2887 // Confirm that it's actually a function with a definition. 2888 if (!isa<Function>(GV)) 2889 return Error(Fn.Loc, "expected function name in blockaddress"); 2890 F = cast<Function>(GV); 2891 if (F->isDeclaration()) 2892 return Error(Fn.Loc, "cannot take blockaddress inside a declaration"); 2893 } 2894 2895 if (!F) { 2896 // Make a global variable as a placeholder for this reference. 2897 GlobalValue *&FwdRef = 2898 ForwardRefBlockAddresses.insert(std::make_pair( 2899 std::move(Fn), 2900 std::map<ValID, GlobalValue *>())) 2901 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 2902 .first->second; 2903 if (!FwdRef) 2904 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 2905 GlobalValue::InternalLinkage, nullptr, ""); 2906 ID.ConstantVal = FwdRef; 2907 ID.Kind = ValID::t_Constant; 2908 return false; 2909 } 2910 2911 // We found the function; now find the basic block. Don't use PFS, since we 2912 // might be inside a constant expression. 2913 BasicBlock *BB; 2914 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 2915 if (Label.Kind == ValID::t_LocalID) 2916 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc); 2917 else 2918 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc); 2919 if (!BB) 2920 return Error(Label.Loc, "referenced value is not a basic block"); 2921 } else { 2922 if (Label.Kind == ValID::t_LocalID) 2923 return Error(Label.Loc, "cannot take address of numeric label after " 2924 "the function is defined"); 2925 BB = dyn_cast_or_null<BasicBlock>( 2926 F->getValueSymbolTable()->lookup(Label.StrVal)); 2927 if (!BB) 2928 return Error(Label.Loc, "referenced value is not a basic block"); 2929 } 2930 2931 ID.ConstantVal = BlockAddress::get(F, BB); 2932 ID.Kind = ValID::t_Constant; 2933 return false; 2934 } 2935 2936 case lltok::kw_trunc: 2937 case lltok::kw_zext: 2938 case lltok::kw_sext: 2939 case lltok::kw_fptrunc: 2940 case lltok::kw_fpext: 2941 case lltok::kw_bitcast: 2942 case lltok::kw_addrspacecast: 2943 case lltok::kw_uitofp: 2944 case lltok::kw_sitofp: 2945 case lltok::kw_fptoui: 2946 case lltok::kw_fptosi: 2947 case lltok::kw_inttoptr: 2948 case lltok::kw_ptrtoint: { 2949 unsigned Opc = Lex.getUIntVal(); 2950 Type *DestTy = nullptr; 2951 Constant *SrcVal; 2952 Lex.Lex(); 2953 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 2954 ParseGlobalTypeAndValue(SrcVal) || 2955 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 2956 ParseType(DestTy) || 2957 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 2958 return true; 2959 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 2960 return Error(ID.Loc, "invalid cast opcode for cast from '" + 2961 getTypeString(SrcVal->getType()) + "' to '" + 2962 getTypeString(DestTy) + "'"); 2963 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 2964 SrcVal, DestTy); 2965 ID.Kind = ValID::t_Constant; 2966 return false; 2967 } 2968 case lltok::kw_extractvalue: { 2969 Lex.Lex(); 2970 Constant *Val; 2971 SmallVector<unsigned, 4> Indices; 2972 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 2973 ParseGlobalTypeAndValue(Val) || 2974 ParseIndexList(Indices) || 2975 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 2976 return true; 2977 2978 if (!Val->getType()->isAggregateType()) 2979 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 2980 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 2981 return Error(ID.Loc, "invalid indices for extractvalue"); 2982 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 2983 ID.Kind = ValID::t_Constant; 2984 return false; 2985 } 2986 case lltok::kw_insertvalue: { 2987 Lex.Lex(); 2988 Constant *Val0, *Val1; 2989 SmallVector<unsigned, 4> Indices; 2990 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 2991 ParseGlobalTypeAndValue(Val0) || 2992 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 2993 ParseGlobalTypeAndValue(Val1) || 2994 ParseIndexList(Indices) || 2995 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 2996 return true; 2997 if (!Val0->getType()->isAggregateType()) 2998 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 2999 Type *IndexedType = 3000 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3001 if (!IndexedType) 3002 return Error(ID.Loc, "invalid indices for insertvalue"); 3003 if (IndexedType != Val1->getType()) 3004 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3005 getTypeString(Val1->getType()) + 3006 "' instead of '" + getTypeString(IndexedType) + 3007 "'"); 3008 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3009 ID.Kind = ValID::t_Constant; 3010 return false; 3011 } 3012 case lltok::kw_icmp: 3013 case lltok::kw_fcmp: { 3014 unsigned PredVal, Opc = Lex.getUIntVal(); 3015 Constant *Val0, *Val1; 3016 Lex.Lex(); 3017 if (ParseCmpPredicate(PredVal, Opc) || 3018 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3019 ParseGlobalTypeAndValue(Val0) || 3020 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 3021 ParseGlobalTypeAndValue(Val1) || 3022 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3023 return true; 3024 3025 if (Val0->getType() != Val1->getType()) 3026 return Error(ID.Loc, "compare operands must have the same type"); 3027 3028 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3029 3030 if (Opc == Instruction::FCmp) { 3031 if (!Val0->getType()->isFPOrFPVectorTy()) 3032 return Error(ID.Loc, "fcmp requires floating point operands"); 3033 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3034 } else { 3035 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3036 if (!Val0->getType()->isIntOrIntVectorTy() && 3037 !Val0->getType()->getScalarType()->isPointerTy()) 3038 return Error(ID.Loc, "icmp requires pointer or integer operands"); 3039 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3040 } 3041 ID.Kind = ValID::t_Constant; 3042 return false; 3043 } 3044 3045 // Binary Operators. 3046 case lltok::kw_add: 3047 case lltok::kw_fadd: 3048 case lltok::kw_sub: 3049 case lltok::kw_fsub: 3050 case lltok::kw_mul: 3051 case lltok::kw_fmul: 3052 case lltok::kw_udiv: 3053 case lltok::kw_sdiv: 3054 case lltok::kw_fdiv: 3055 case lltok::kw_urem: 3056 case lltok::kw_srem: 3057 case lltok::kw_frem: 3058 case lltok::kw_shl: 3059 case lltok::kw_lshr: 3060 case lltok::kw_ashr: { 3061 bool NUW = false; 3062 bool NSW = false; 3063 bool Exact = false; 3064 unsigned Opc = Lex.getUIntVal(); 3065 Constant *Val0, *Val1; 3066 Lex.Lex(); 3067 LocTy ModifierLoc = Lex.getLoc(); 3068 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3069 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3070 if (EatIfPresent(lltok::kw_nuw)) 3071 NUW = true; 3072 if (EatIfPresent(lltok::kw_nsw)) { 3073 NSW = true; 3074 if (EatIfPresent(lltok::kw_nuw)) 3075 NUW = true; 3076 } 3077 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3078 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3079 if (EatIfPresent(lltok::kw_exact)) 3080 Exact = true; 3081 } 3082 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3083 ParseGlobalTypeAndValue(Val0) || 3084 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 3085 ParseGlobalTypeAndValue(Val1) || 3086 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3087 return true; 3088 if (Val0->getType() != Val1->getType()) 3089 return Error(ID.Loc, "operands of constexpr must have same type"); 3090 if (!Val0->getType()->isIntOrIntVectorTy()) { 3091 if (NUW) 3092 return Error(ModifierLoc, "nuw only applies to integer operations"); 3093 if (NSW) 3094 return Error(ModifierLoc, "nsw only applies to integer operations"); 3095 } 3096 // Check that the type is valid for the operator. 3097 switch (Opc) { 3098 case Instruction::Add: 3099 case Instruction::Sub: 3100 case Instruction::Mul: 3101 case Instruction::UDiv: 3102 case Instruction::SDiv: 3103 case Instruction::URem: 3104 case Instruction::SRem: 3105 case Instruction::Shl: 3106 case Instruction::AShr: 3107 case Instruction::LShr: 3108 if (!Val0->getType()->isIntOrIntVectorTy()) 3109 return Error(ID.Loc, "constexpr requires integer operands"); 3110 break; 3111 case Instruction::FAdd: 3112 case Instruction::FSub: 3113 case Instruction::FMul: 3114 case Instruction::FDiv: 3115 case Instruction::FRem: 3116 if (!Val0->getType()->isFPOrFPVectorTy()) 3117 return Error(ID.Loc, "constexpr requires fp operands"); 3118 break; 3119 default: llvm_unreachable("Unknown binary operator!"); 3120 } 3121 unsigned Flags = 0; 3122 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3123 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3124 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3125 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3126 ID.ConstantVal = C; 3127 ID.Kind = ValID::t_Constant; 3128 return false; 3129 } 3130 3131 // Logical Operations 3132 case lltok::kw_and: 3133 case lltok::kw_or: 3134 case lltok::kw_xor: { 3135 unsigned Opc = Lex.getUIntVal(); 3136 Constant *Val0, *Val1; 3137 Lex.Lex(); 3138 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3139 ParseGlobalTypeAndValue(Val0) || 3140 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 3141 ParseGlobalTypeAndValue(Val1) || 3142 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3143 return true; 3144 if (Val0->getType() != Val1->getType()) 3145 return Error(ID.Loc, "operands of constexpr must have same type"); 3146 if (!Val0->getType()->isIntOrIntVectorTy()) 3147 return Error(ID.Loc, 3148 "constexpr requires integer or integer vector operands"); 3149 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3150 ID.Kind = ValID::t_Constant; 3151 return false; 3152 } 3153 3154 case lltok::kw_getelementptr: 3155 case lltok::kw_shufflevector: 3156 case lltok::kw_insertelement: 3157 case lltok::kw_extractelement: 3158 case lltok::kw_select: { 3159 unsigned Opc = Lex.getUIntVal(); 3160 SmallVector<Constant*, 16> Elts; 3161 bool InBounds = false; 3162 Type *Ty; 3163 Lex.Lex(); 3164 3165 if (Opc == Instruction::GetElementPtr) 3166 InBounds = EatIfPresent(lltok::kw_inbounds); 3167 3168 if (ParseToken(lltok::lparen, "expected '(' in constantexpr")) 3169 return true; 3170 3171 LocTy ExplicitTypeLoc = Lex.getLoc(); 3172 if (Opc == Instruction::GetElementPtr) { 3173 if (ParseType(Ty) || 3174 ParseToken(lltok::comma, "expected comma after getelementptr's type")) 3175 return true; 3176 } 3177 3178 if (ParseGlobalValueVector(Elts) || 3179 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 3180 return true; 3181 3182 if (Opc == Instruction::GetElementPtr) { 3183 if (Elts.size() == 0 || 3184 !Elts[0]->getType()->getScalarType()->isPointerTy()) 3185 return Error(ID.Loc, "base of getelementptr must be a pointer"); 3186 3187 Type *BaseType = Elts[0]->getType(); 3188 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3189 if (Ty != BasePointerType->getElementType()) 3190 return Error( 3191 ExplicitTypeLoc, 3192 "explicit pointee type doesn't match operand's pointee type"); 3193 3194 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3195 for (Constant *Val : Indices) { 3196 Type *ValTy = Val->getType(); 3197 if (!ValTy->getScalarType()->isIntegerTy()) 3198 return Error(ID.Loc, "getelementptr index must be an integer"); 3199 if (ValTy->isVectorTy() != BaseType->isVectorTy()) 3200 return Error(ID.Loc, "getelementptr index type missmatch"); 3201 if (ValTy->isVectorTy()) { 3202 unsigned ValNumEl = ValTy->getVectorNumElements(); 3203 unsigned PtrNumEl = BaseType->getVectorNumElements(); 3204 if (ValNumEl != PtrNumEl) 3205 return Error( 3206 ID.Loc, 3207 "getelementptr vector index has a wrong number of elements"); 3208 } 3209 } 3210 3211 SmallPtrSet<Type*, 4> Visited; 3212 if (!Indices.empty() && !Ty->isSized(&Visited)) 3213 return Error(ID.Loc, "base element of getelementptr must be sized"); 3214 3215 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3216 return Error(ID.Loc, "invalid getelementptr indices"); 3217 ID.ConstantVal = 3218 ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, InBounds); 3219 } else if (Opc == Instruction::Select) { 3220 if (Elts.size() != 3) 3221 return Error(ID.Loc, "expected three operands to select"); 3222 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3223 Elts[2])) 3224 return Error(ID.Loc, Reason); 3225 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3226 } else if (Opc == Instruction::ShuffleVector) { 3227 if (Elts.size() != 3) 3228 return Error(ID.Loc, "expected three operands to shufflevector"); 3229 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3230 return Error(ID.Loc, "invalid operands to shufflevector"); 3231 ID.ConstantVal = 3232 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 3233 } else if (Opc == Instruction::ExtractElement) { 3234 if (Elts.size() != 2) 3235 return Error(ID.Loc, "expected two operands to extractelement"); 3236 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3237 return Error(ID.Loc, "invalid extractelement operands"); 3238 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3239 } else { 3240 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3241 if (Elts.size() != 3) 3242 return Error(ID.Loc, "expected three operands to insertelement"); 3243 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3244 return Error(ID.Loc, "invalid insertelement operands"); 3245 ID.ConstantVal = 3246 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3247 } 3248 3249 ID.Kind = ValID::t_Constant; 3250 return false; 3251 } 3252 } 3253 3254 Lex.Lex(); 3255 return false; 3256 } 3257 3258 /// ParseGlobalValue - Parse a global value with the specified type. 3259 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 3260 C = nullptr; 3261 ValID ID; 3262 Value *V = nullptr; 3263 bool Parsed = ParseValID(ID) || 3264 ConvertValIDToValue(Ty, ID, V, nullptr); 3265 if (V && !(C = dyn_cast<Constant>(V))) 3266 return Error(ID.Loc, "global values must be constants"); 3267 return Parsed; 3268 } 3269 3270 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 3271 Type *Ty = nullptr; 3272 return ParseType(Ty) || 3273 ParseGlobalValue(Ty, V); 3274 } 3275 3276 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3277 C = nullptr; 3278 3279 LocTy KwLoc = Lex.getLoc(); 3280 if (!EatIfPresent(lltok::kw_comdat)) 3281 return false; 3282 3283 if (EatIfPresent(lltok::lparen)) { 3284 if (Lex.getKind() != lltok::ComdatVar) 3285 return TokError("expected comdat variable"); 3286 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3287 Lex.Lex(); 3288 if (ParseToken(lltok::rparen, "expected ')' after comdat var")) 3289 return true; 3290 } else { 3291 if (GlobalName.empty()) 3292 return TokError("comdat cannot be unnamed"); 3293 C = getComdat(GlobalName, KwLoc); 3294 } 3295 3296 return false; 3297 } 3298 3299 /// ParseGlobalValueVector 3300 /// ::= /*empty*/ 3301 /// ::= TypeAndValue (',' TypeAndValue)* 3302 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts) { 3303 // Empty list. 3304 if (Lex.getKind() == lltok::rbrace || 3305 Lex.getKind() == lltok::rsquare || 3306 Lex.getKind() == lltok::greater || 3307 Lex.getKind() == lltok::rparen) 3308 return false; 3309 3310 Constant *C; 3311 if (ParseGlobalTypeAndValue(C)) return true; 3312 Elts.push_back(C); 3313 3314 while (EatIfPresent(lltok::comma)) { 3315 if (ParseGlobalTypeAndValue(C)) return true; 3316 Elts.push_back(C); 3317 } 3318 3319 return false; 3320 } 3321 3322 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) { 3323 SmallVector<Metadata *, 16> Elts; 3324 if (ParseMDNodeVector(Elts)) 3325 return true; 3326 3327 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3328 return false; 3329 } 3330 3331 /// MDNode: 3332 /// ::= !{ ... } 3333 /// ::= !7 3334 /// ::= !DILocation(...) 3335 bool LLParser::ParseMDNode(MDNode *&N) { 3336 if (Lex.getKind() == lltok::MetadataVar) 3337 return ParseSpecializedMDNode(N); 3338 3339 return ParseToken(lltok::exclaim, "expected '!' here") || 3340 ParseMDNodeTail(N); 3341 } 3342 3343 bool LLParser::ParseMDNodeTail(MDNode *&N) { 3344 // !{ ... } 3345 if (Lex.getKind() == lltok::lbrace) 3346 return ParseMDTuple(N); 3347 3348 // !42 3349 return ParseMDNodeID(N); 3350 } 3351 3352 namespace { 3353 3354 /// Structure to represent an optional metadata field. 3355 template <class FieldTy> struct MDFieldImpl { 3356 typedef MDFieldImpl ImplTy; 3357 FieldTy Val; 3358 bool Seen; 3359 3360 void assign(FieldTy Val) { 3361 Seen = true; 3362 this->Val = std::move(Val); 3363 } 3364 3365 explicit MDFieldImpl(FieldTy Default) 3366 : Val(std::move(Default)), Seen(false) {} 3367 }; 3368 3369 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3370 uint64_t Max; 3371 3372 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3373 : ImplTy(Default), Max(Max) {} 3374 }; 3375 3376 struct LineField : public MDUnsignedField { 3377 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3378 }; 3379 3380 struct ColumnField : public MDUnsignedField { 3381 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3382 }; 3383 3384 struct DwarfTagField : public MDUnsignedField { 3385 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3386 DwarfTagField(dwarf::Tag DefaultTag) 3387 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3388 }; 3389 3390 struct DwarfMacinfoTypeField : public MDUnsignedField { 3391 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 3392 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 3393 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 3394 }; 3395 3396 struct DwarfAttEncodingField : public MDUnsignedField { 3397 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3398 }; 3399 3400 struct DwarfVirtualityField : public MDUnsignedField { 3401 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3402 }; 3403 3404 struct DwarfLangField : public MDUnsignedField { 3405 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3406 }; 3407 3408 struct DwarfCCField : public MDUnsignedField { 3409 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 3410 }; 3411 3412 struct EmissionKindField : public MDUnsignedField { 3413 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 3414 }; 3415 3416 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 3417 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 3418 }; 3419 3420 struct MDSignedField : public MDFieldImpl<int64_t> { 3421 int64_t Min; 3422 int64_t Max; 3423 3424 MDSignedField(int64_t Default = 0) 3425 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3426 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3427 : ImplTy(Default), Min(Min), Max(Max) {} 3428 }; 3429 3430 struct MDBoolField : public MDFieldImpl<bool> { 3431 MDBoolField(bool Default = false) : ImplTy(Default) {} 3432 }; 3433 3434 struct MDField : public MDFieldImpl<Metadata *> { 3435 bool AllowNull; 3436 3437 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3438 }; 3439 3440 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 3441 MDConstant() : ImplTy(nullptr) {} 3442 }; 3443 3444 struct MDStringField : public MDFieldImpl<MDString *> { 3445 bool AllowEmpty; 3446 MDStringField(bool AllowEmpty = true) 3447 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3448 }; 3449 3450 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3451 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3452 }; 3453 3454 } // end anonymous namespace 3455 3456 namespace llvm { 3457 3458 template <> 3459 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3460 MDUnsignedField &Result) { 3461 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3462 return TokError("expected unsigned integer"); 3463 3464 auto &U = Lex.getAPSIntVal(); 3465 if (U.ugt(Result.Max)) 3466 return TokError("value for '" + Name + "' too large, limit is " + 3467 Twine(Result.Max)); 3468 Result.assign(U.getZExtValue()); 3469 assert(Result.Val <= Result.Max && "Expected value in range"); 3470 Lex.Lex(); 3471 return false; 3472 } 3473 3474 template <> 3475 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) { 3476 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3477 } 3478 template <> 3479 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 3480 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3481 } 3482 3483 template <> 3484 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 3485 if (Lex.getKind() == lltok::APSInt) 3486 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3487 3488 if (Lex.getKind() != lltok::DwarfTag) 3489 return TokError("expected DWARF tag"); 3490 3491 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 3492 if (Tag == dwarf::DW_TAG_invalid) 3493 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 3494 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 3495 3496 Result.assign(Tag); 3497 Lex.Lex(); 3498 return false; 3499 } 3500 3501 template <> 3502 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3503 DwarfMacinfoTypeField &Result) { 3504 if (Lex.getKind() == lltok::APSInt) 3505 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3506 3507 if (Lex.getKind() != lltok::DwarfMacinfo) 3508 return TokError("expected DWARF macinfo type"); 3509 3510 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 3511 if (Macinfo == dwarf::DW_MACINFO_invalid) 3512 return TokError( 3513 "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'"); 3514 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 3515 3516 Result.assign(Macinfo); 3517 Lex.Lex(); 3518 return false; 3519 } 3520 3521 template <> 3522 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3523 DwarfVirtualityField &Result) { 3524 if (Lex.getKind() == lltok::APSInt) 3525 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3526 3527 if (Lex.getKind() != lltok::DwarfVirtuality) 3528 return TokError("expected DWARF virtuality code"); 3529 3530 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 3531 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 3532 return TokError("invalid DWARF virtuality code" + Twine(" '") + 3533 Lex.getStrVal() + "'"); 3534 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 3535 Result.assign(Virtuality); 3536 Lex.Lex(); 3537 return false; 3538 } 3539 3540 template <> 3541 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 3542 if (Lex.getKind() == lltok::APSInt) 3543 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3544 3545 if (Lex.getKind() != lltok::DwarfLang) 3546 return TokError("expected DWARF language"); 3547 3548 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 3549 if (!Lang) 3550 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 3551 "'"); 3552 assert(Lang <= Result.Max && "Expected valid DWARF language"); 3553 Result.assign(Lang); 3554 Lex.Lex(); 3555 return false; 3556 } 3557 3558 template <> 3559 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 3560 if (Lex.getKind() == lltok::APSInt) 3561 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3562 3563 if (Lex.getKind() != lltok::DwarfCC) 3564 return TokError("expected DWARF calling convention"); 3565 3566 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 3567 if (!CC) 3568 return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() + 3569 "'"); 3570 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 3571 Result.assign(CC); 3572 Lex.Lex(); 3573 return false; 3574 } 3575 3576 template <> 3577 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) { 3578 if (Lex.getKind() == lltok::APSInt) 3579 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3580 3581 if (Lex.getKind() != lltok::EmissionKind) 3582 return TokError("expected emission kind"); 3583 3584 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 3585 if (!Kind) 3586 return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 3587 "'"); 3588 assert(*Kind <= Result.Max && "Expected valid emission kind"); 3589 Result.assign(*Kind); 3590 Lex.Lex(); 3591 return false; 3592 } 3593 3594 template <> 3595 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3596 DwarfAttEncodingField &Result) { 3597 if (Lex.getKind() == lltok::APSInt) 3598 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3599 3600 if (Lex.getKind() != lltok::DwarfAttEncoding) 3601 return TokError("expected DWARF type attribute encoding"); 3602 3603 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 3604 if (!Encoding) 3605 return TokError("invalid DWARF type attribute encoding" + Twine(" '") + 3606 Lex.getStrVal() + "'"); 3607 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 3608 Result.assign(Encoding); 3609 Lex.Lex(); 3610 return false; 3611 } 3612 3613 /// DIFlagField 3614 /// ::= uint32 3615 /// ::= DIFlagVector 3616 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 3617 template <> 3618 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 3619 3620 // Parser for a single flag. 3621 auto parseFlag = [&](DINode::DIFlags &Val) { 3622 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 3623 uint32_t TempVal = static_cast<uint32_t>(Val); 3624 bool Res = ParseUInt32(TempVal); 3625 Val = static_cast<DINode::DIFlags>(TempVal); 3626 return Res; 3627 } 3628 3629 if (Lex.getKind() != lltok::DIFlag) 3630 return TokError("expected debug info flag"); 3631 3632 Val = DINode::getFlag(Lex.getStrVal()); 3633 if (!Val) 3634 return TokError(Twine("invalid debug info flag flag '") + 3635 Lex.getStrVal() + "'"); 3636 Lex.Lex(); 3637 return false; 3638 }; 3639 3640 // Parse the flags and combine them together. 3641 DINode::DIFlags Combined = DINode::FlagZero; 3642 do { 3643 DINode::DIFlags Val; 3644 if (parseFlag(Val)) 3645 return true; 3646 Combined |= Val; 3647 } while (EatIfPresent(lltok::bar)); 3648 3649 Result.assign(Combined); 3650 return false; 3651 } 3652 3653 template <> 3654 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3655 MDSignedField &Result) { 3656 if (Lex.getKind() != lltok::APSInt) 3657 return TokError("expected signed integer"); 3658 3659 auto &S = Lex.getAPSIntVal(); 3660 if (S < Result.Min) 3661 return TokError("value for '" + Name + "' too small, limit is " + 3662 Twine(Result.Min)); 3663 if (S > Result.Max) 3664 return TokError("value for '" + Name + "' too large, limit is " + 3665 Twine(Result.Max)); 3666 Result.assign(S.getExtValue()); 3667 assert(Result.Val >= Result.Min && "Expected value in range"); 3668 assert(Result.Val <= Result.Max && "Expected value in range"); 3669 Lex.Lex(); 3670 return false; 3671 } 3672 3673 template <> 3674 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 3675 switch (Lex.getKind()) { 3676 default: 3677 return TokError("expected 'true' or 'false'"); 3678 case lltok::kw_true: 3679 Result.assign(true); 3680 break; 3681 case lltok::kw_false: 3682 Result.assign(false); 3683 break; 3684 } 3685 Lex.Lex(); 3686 return false; 3687 } 3688 3689 template <> 3690 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) { 3691 if (Lex.getKind() == lltok::kw_null) { 3692 if (!Result.AllowNull) 3693 return TokError("'" + Name + "' cannot be null"); 3694 Lex.Lex(); 3695 Result.assign(nullptr); 3696 return false; 3697 } 3698 3699 Metadata *MD; 3700 if (ParseMetadata(MD, nullptr)) 3701 return true; 3702 3703 Result.assign(MD); 3704 return false; 3705 } 3706 3707 template <> 3708 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 3709 LocTy ValueLoc = Lex.getLoc(); 3710 std::string S; 3711 if (ParseStringConstant(S)) 3712 return true; 3713 3714 if (!Result.AllowEmpty && S.empty()) 3715 return Error(ValueLoc, "'" + Name + "' cannot be empty"); 3716 3717 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 3718 return false; 3719 } 3720 3721 template <> 3722 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 3723 SmallVector<Metadata *, 4> MDs; 3724 if (ParseMDNodeVector(MDs)) 3725 return true; 3726 3727 Result.assign(std::move(MDs)); 3728 return false; 3729 } 3730 3731 } // end namespace llvm 3732 3733 template <class ParserTy> 3734 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) { 3735 do { 3736 if (Lex.getKind() != lltok::LabelStr) 3737 return TokError("expected field label here"); 3738 3739 if (parseField()) 3740 return true; 3741 } while (EatIfPresent(lltok::comma)); 3742 3743 return false; 3744 } 3745 3746 template <class ParserTy> 3747 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) { 3748 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 3749 Lex.Lex(); 3750 3751 if (ParseToken(lltok::lparen, "expected '(' here")) 3752 return true; 3753 if (Lex.getKind() != lltok::rparen) 3754 if (ParseMDFieldsImplBody(parseField)) 3755 return true; 3756 3757 ClosingLoc = Lex.getLoc(); 3758 return ParseToken(lltok::rparen, "expected ')' here"); 3759 } 3760 3761 template <class FieldTy> 3762 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) { 3763 if (Result.Seen) 3764 return TokError("field '" + Name + "' cannot be specified more than once"); 3765 3766 LocTy Loc = Lex.getLoc(); 3767 Lex.Lex(); 3768 return ParseMDField(Loc, Name, Result); 3769 } 3770 3771 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 3772 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 3773 3774 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 3775 if (Lex.getStrVal() == #CLASS) \ 3776 return Parse##CLASS(N, IsDistinct); 3777 #include "llvm/IR/Metadata.def" 3778 3779 return TokError("expected metadata type"); 3780 } 3781 3782 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 3783 #define NOP_FIELD(NAME, TYPE, INIT) 3784 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 3785 if (!NAME.Seen) \ 3786 return Error(ClosingLoc, "missing required field '" #NAME "'"); 3787 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 3788 if (Lex.getStrVal() == #NAME) \ 3789 return ParseMDField(#NAME, NAME); 3790 #define PARSE_MD_FIELDS() \ 3791 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 3792 do { \ 3793 LocTy ClosingLoc; \ 3794 if (ParseMDFieldsImpl([&]() -> bool { \ 3795 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 3796 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \ 3797 }, ClosingLoc)) \ 3798 return true; \ 3799 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 3800 } while (false) 3801 #define GET_OR_DISTINCT(CLASS, ARGS) \ 3802 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 3803 3804 /// ParseDILocationFields: 3805 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6) 3806 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) { 3807 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3808 OPTIONAL(line, LineField, ); \ 3809 OPTIONAL(column, ColumnField, ); \ 3810 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 3811 OPTIONAL(inlinedAt, MDField, ); 3812 PARSE_MD_FIELDS(); 3813 #undef VISIT_MD_FIELDS 3814 3815 Result = GET_OR_DISTINCT( 3816 DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val)); 3817 return false; 3818 } 3819 3820 /// ParseGenericDINode: 3821 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 3822 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) { 3823 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3824 REQUIRED(tag, DwarfTagField, ); \ 3825 OPTIONAL(header, MDStringField, ); \ 3826 OPTIONAL(operands, MDFieldList, ); 3827 PARSE_MD_FIELDS(); 3828 #undef VISIT_MD_FIELDS 3829 3830 Result = GET_OR_DISTINCT(GenericDINode, 3831 (Context, tag.Val, header.Val, operands.Val)); 3832 return false; 3833 } 3834 3835 /// ParseDISubrange: 3836 /// ::= !DISubrange(count: 30, lowerBound: 2) 3837 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) { 3838 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3839 REQUIRED(count, MDSignedField, (-1, -1, INT64_MAX)); \ 3840 OPTIONAL(lowerBound, MDSignedField, ); 3841 PARSE_MD_FIELDS(); 3842 #undef VISIT_MD_FIELDS 3843 3844 Result = GET_OR_DISTINCT(DISubrange, (Context, count.Val, lowerBound.Val)); 3845 return false; 3846 } 3847 3848 /// ParseDIEnumerator: 3849 /// ::= !DIEnumerator(value: 30, name: "SomeKind") 3850 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) { 3851 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3852 REQUIRED(name, MDStringField, ); \ 3853 REQUIRED(value, MDSignedField, ); 3854 PARSE_MD_FIELDS(); 3855 #undef VISIT_MD_FIELDS 3856 3857 Result = GET_OR_DISTINCT(DIEnumerator, (Context, value.Val, name.Val)); 3858 return false; 3859 } 3860 3861 /// ParseDIBasicType: 3862 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32) 3863 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) { 3864 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3865 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 3866 OPTIONAL(name, MDStringField, ); \ 3867 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3868 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \ 3869 OPTIONAL(encoding, DwarfAttEncodingField, ); 3870 PARSE_MD_FIELDS(); 3871 #undef VISIT_MD_FIELDS 3872 3873 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 3874 align.Val, encoding.Val)); 3875 return false; 3876 } 3877 3878 /// ParseDIDerivedType: 3879 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 3880 /// line: 7, scope: !1, baseType: !2, size: 32, 3881 /// align: 32, offset: 0, flags: 0, extraData: !3) 3882 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) { 3883 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3884 REQUIRED(tag, DwarfTagField, ); \ 3885 OPTIONAL(name, MDStringField, ); \ 3886 OPTIONAL(file, MDField, ); \ 3887 OPTIONAL(line, LineField, ); \ 3888 OPTIONAL(scope, MDField, ); \ 3889 REQUIRED(baseType, MDField, ); \ 3890 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3891 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \ 3892 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 3893 OPTIONAL(flags, DIFlagField, ); \ 3894 OPTIONAL(extraData, MDField, ); 3895 PARSE_MD_FIELDS(); 3896 #undef VISIT_MD_FIELDS 3897 3898 Result = GET_OR_DISTINCT(DIDerivedType, 3899 (Context, tag.Val, name.Val, file.Val, line.Val, 3900 scope.Val, baseType.Val, size.Val, align.Val, 3901 offset.Val, flags.Val, extraData.Val)); 3902 return false; 3903 } 3904 3905 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) { 3906 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3907 REQUIRED(tag, DwarfTagField, ); \ 3908 OPTIONAL(name, MDStringField, ); \ 3909 OPTIONAL(file, MDField, ); \ 3910 OPTIONAL(line, LineField, ); \ 3911 OPTIONAL(scope, MDField, ); \ 3912 OPTIONAL(baseType, MDField, ); \ 3913 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3914 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \ 3915 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 3916 OPTIONAL(flags, DIFlagField, ); \ 3917 OPTIONAL(elements, MDField, ); \ 3918 OPTIONAL(runtimeLang, DwarfLangField, ); \ 3919 OPTIONAL(vtableHolder, MDField, ); \ 3920 OPTIONAL(templateParams, MDField, ); \ 3921 OPTIONAL(identifier, MDStringField, ); 3922 PARSE_MD_FIELDS(); 3923 #undef VISIT_MD_FIELDS 3924 3925 // If this has an identifier try to build an ODR type. 3926 if (identifier.Val) 3927 if (auto *CT = DICompositeType::buildODRType( 3928 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 3929 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 3930 elements.Val, runtimeLang.Val, vtableHolder.Val, 3931 templateParams.Val)) { 3932 Result = CT; 3933 return false; 3934 } 3935 3936 // Create a new node, and save it in the context if it belongs in the type 3937 // map. 3938 Result = GET_OR_DISTINCT( 3939 DICompositeType, 3940 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 3941 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 3942 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val)); 3943 return false; 3944 } 3945 3946 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) { 3947 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3948 OPTIONAL(flags, DIFlagField, ); \ 3949 OPTIONAL(cc, DwarfCCField, ); \ 3950 REQUIRED(types, MDField, ); 3951 PARSE_MD_FIELDS(); 3952 #undef VISIT_MD_FIELDS 3953 3954 Result = GET_OR_DISTINCT(DISubroutineType, 3955 (Context, flags.Val, cc.Val, types.Val)); 3956 return false; 3957 } 3958 3959 /// ParseDIFileType: 3960 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir") 3961 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) { 3962 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3963 REQUIRED(filename, MDStringField, ); \ 3964 REQUIRED(directory, MDStringField, ); 3965 PARSE_MD_FIELDS(); 3966 #undef VISIT_MD_FIELDS 3967 3968 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val)); 3969 return false; 3970 } 3971 3972 /// ParseDICompileUnit: 3973 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 3974 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 3975 /// splitDebugFilename: "abc.debug", 3976 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 3977 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd) 3978 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) { 3979 if (!IsDistinct) 3980 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 3981 3982 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3983 REQUIRED(language, DwarfLangField, ); \ 3984 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 3985 OPTIONAL(producer, MDStringField, ); \ 3986 OPTIONAL(isOptimized, MDBoolField, ); \ 3987 OPTIONAL(flags, MDStringField, ); \ 3988 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 3989 OPTIONAL(splitDebugFilename, MDStringField, ); \ 3990 OPTIONAL(emissionKind, EmissionKindField, ); \ 3991 OPTIONAL(enums, MDField, ); \ 3992 OPTIONAL(retainedTypes, MDField, ); \ 3993 OPTIONAL(globals, MDField, ); \ 3994 OPTIONAL(imports, MDField, ); \ 3995 OPTIONAL(macros, MDField, ); \ 3996 OPTIONAL(dwoId, MDUnsignedField, ); \ 3997 OPTIONAL(splitDebugInlining, MDBoolField, = true); 3998 PARSE_MD_FIELDS(); 3999 #undef VISIT_MD_FIELDS 4000 4001 Result = DICompileUnit::getDistinct( 4002 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 4003 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 4004 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 4005 splitDebugInlining.Val); 4006 return false; 4007 } 4008 4009 /// ParseDISubprogram: 4010 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 4011 /// file: !1, line: 7, type: !2, isLocal: false, 4012 /// isDefinition: true, scopeLine: 8, containingType: !3, 4013 /// virtuality: DW_VIRTUALTIY_pure_virtual, 4014 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 4015 /// isOptimized: false, templateParams: !4, declaration: !5, 4016 /// variables: !6) 4017 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) { 4018 auto Loc = Lex.getLoc(); 4019 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4020 OPTIONAL(scope, MDField, ); \ 4021 OPTIONAL(name, MDStringField, ); \ 4022 OPTIONAL(linkageName, MDStringField, ); \ 4023 OPTIONAL(file, MDField, ); \ 4024 OPTIONAL(line, LineField, ); \ 4025 OPTIONAL(type, MDField, ); \ 4026 OPTIONAL(isLocal, MDBoolField, ); \ 4027 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4028 OPTIONAL(scopeLine, LineField, ); \ 4029 OPTIONAL(containingType, MDField, ); \ 4030 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 4031 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 4032 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 4033 OPTIONAL(flags, DIFlagField, ); \ 4034 OPTIONAL(isOptimized, MDBoolField, ); \ 4035 OPTIONAL(unit, MDField, ); \ 4036 OPTIONAL(templateParams, MDField, ); \ 4037 OPTIONAL(declaration, MDField, ); \ 4038 OPTIONAL(variables, MDField, ); 4039 PARSE_MD_FIELDS(); 4040 #undef VISIT_MD_FIELDS 4041 4042 if (isDefinition.Val && !IsDistinct) 4043 return Lex.Error( 4044 Loc, 4045 "missing 'distinct', required for !DISubprogram when 'isDefinition'"); 4046 4047 Result = GET_OR_DISTINCT( 4048 DISubprogram, (Context, scope.Val, name.Val, linkageName.Val, file.Val, 4049 line.Val, type.Val, isLocal.Val, isDefinition.Val, 4050 scopeLine.Val, containingType.Val, virtuality.Val, 4051 virtualIndex.Val, thisAdjustment.Val, flags.Val, 4052 isOptimized.Val, unit.Val, templateParams.Val, 4053 declaration.Val, variables.Val)); 4054 return false; 4055 } 4056 4057 /// ParseDILexicalBlock: 4058 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 4059 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 4060 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4061 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4062 OPTIONAL(file, MDField, ); \ 4063 OPTIONAL(line, LineField, ); \ 4064 OPTIONAL(column, ColumnField, ); 4065 PARSE_MD_FIELDS(); 4066 #undef VISIT_MD_FIELDS 4067 4068 Result = GET_OR_DISTINCT( 4069 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 4070 return false; 4071 } 4072 4073 /// ParseDILexicalBlockFile: 4074 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 4075 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 4076 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4077 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4078 OPTIONAL(file, MDField, ); \ 4079 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 4080 PARSE_MD_FIELDS(); 4081 #undef VISIT_MD_FIELDS 4082 4083 Result = GET_OR_DISTINCT(DILexicalBlockFile, 4084 (Context, scope.Val, file.Val, discriminator.Val)); 4085 return false; 4086 } 4087 4088 /// ParseDINamespace: 4089 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 4090 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) { 4091 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4092 REQUIRED(scope, MDField, ); \ 4093 OPTIONAL(file, MDField, ); \ 4094 OPTIONAL(name, MDStringField, ); \ 4095 OPTIONAL(line, LineField, ); 4096 PARSE_MD_FIELDS(); 4097 #undef VISIT_MD_FIELDS 4098 4099 Result = GET_OR_DISTINCT(DINamespace, 4100 (Context, scope.Val, file.Val, name.Val, line.Val)); 4101 return false; 4102 } 4103 4104 /// ParseDIMacro: 4105 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue") 4106 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) { 4107 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4108 REQUIRED(type, DwarfMacinfoTypeField, ); \ 4109 REQUIRED(line, LineField, ); \ 4110 REQUIRED(name, MDStringField, ); \ 4111 OPTIONAL(value, MDStringField, ); 4112 PARSE_MD_FIELDS(); 4113 #undef VISIT_MD_FIELDS 4114 4115 Result = GET_OR_DISTINCT(DIMacro, 4116 (Context, type.Val, line.Val, name.Val, value.Val)); 4117 return false; 4118 } 4119 4120 /// ParseDIMacroFile: 4121 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 4122 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) { 4123 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4124 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 4125 REQUIRED(line, LineField, ); \ 4126 REQUIRED(file, MDField, ); \ 4127 OPTIONAL(nodes, MDField, ); 4128 PARSE_MD_FIELDS(); 4129 #undef VISIT_MD_FIELDS 4130 4131 Result = GET_OR_DISTINCT(DIMacroFile, 4132 (Context, type.Val, line.Val, file.Val, nodes.Val)); 4133 return false; 4134 } 4135 4136 /// ParseDIModule: 4137 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG", 4138 /// includePath: "/usr/include", isysroot: "/") 4139 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) { 4140 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4141 REQUIRED(scope, MDField, ); \ 4142 REQUIRED(name, MDStringField, ); \ 4143 OPTIONAL(configMacros, MDStringField, ); \ 4144 OPTIONAL(includePath, MDStringField, ); \ 4145 OPTIONAL(isysroot, MDStringField, ); 4146 PARSE_MD_FIELDS(); 4147 #undef VISIT_MD_FIELDS 4148 4149 Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val, 4150 configMacros.Val, includePath.Val, isysroot.Val)); 4151 return false; 4152 } 4153 4154 /// ParseDITemplateTypeParameter: 4155 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1) 4156 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 4157 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4158 OPTIONAL(name, MDStringField, ); \ 4159 REQUIRED(type, MDField, ); 4160 PARSE_MD_FIELDS(); 4161 #undef VISIT_MD_FIELDS 4162 4163 Result = 4164 GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val)); 4165 return false; 4166 } 4167 4168 /// ParseDITemplateValueParameter: 4169 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 4170 /// name: "V", type: !1, value: i32 7) 4171 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 4172 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4173 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 4174 OPTIONAL(name, MDStringField, ); \ 4175 OPTIONAL(type, MDField, ); \ 4176 REQUIRED(value, MDField, ); 4177 PARSE_MD_FIELDS(); 4178 #undef VISIT_MD_FIELDS 4179 4180 Result = GET_OR_DISTINCT(DITemplateValueParameter, 4181 (Context, tag.Val, name.Val, type.Val, value.Val)); 4182 return false; 4183 } 4184 4185 /// ParseDIGlobalVariable: 4186 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 4187 /// file: !1, line: 7, type: !2, isLocal: false, 4188 /// isDefinition: true, variable: i32* @foo, 4189 /// declaration: !3) 4190 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 4191 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4192 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 4193 OPTIONAL(scope, MDField, ); \ 4194 OPTIONAL(linkageName, MDStringField, ); \ 4195 OPTIONAL(file, MDField, ); \ 4196 OPTIONAL(line, LineField, ); \ 4197 OPTIONAL(type, MDField, ); \ 4198 OPTIONAL(isLocal, MDBoolField, ); \ 4199 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4200 OPTIONAL(expr, MDField, ); \ 4201 OPTIONAL(declaration, MDField, ); 4202 PARSE_MD_FIELDS(); 4203 #undef VISIT_MD_FIELDS 4204 4205 Result = GET_OR_DISTINCT(DIGlobalVariable, 4206 (Context, scope.Val, name.Val, linkageName.Val, 4207 file.Val, line.Val, type.Val, isLocal.Val, 4208 isDefinition.Val, expr.Val, declaration.Val)); 4209 return false; 4210 } 4211 4212 /// ParseDILocalVariable: 4213 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 4214 /// file: !1, line: 7, type: !2, arg: 2, flags: 7) 4215 /// ::= !DILocalVariable(scope: !0, name: "foo", 4216 /// file: !1, line: 7, type: !2, arg: 2, flags: 7) 4217 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) { 4218 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4219 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4220 OPTIONAL(name, MDStringField, ); \ 4221 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 4222 OPTIONAL(file, MDField, ); \ 4223 OPTIONAL(line, LineField, ); \ 4224 OPTIONAL(type, MDField, ); \ 4225 OPTIONAL(flags, DIFlagField, ); 4226 PARSE_MD_FIELDS(); 4227 #undef VISIT_MD_FIELDS 4228 4229 Result = GET_OR_DISTINCT(DILocalVariable, 4230 (Context, scope.Val, name.Val, file.Val, line.Val, 4231 type.Val, arg.Val, flags.Val)); 4232 return false; 4233 } 4234 4235 /// ParseDIExpression: 4236 /// ::= !DIExpression(0, 7, -1) 4237 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) { 4238 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4239 Lex.Lex(); 4240 4241 if (ParseToken(lltok::lparen, "expected '(' here")) 4242 return true; 4243 4244 SmallVector<uint64_t, 8> Elements; 4245 if (Lex.getKind() != lltok::rparen) 4246 do { 4247 if (Lex.getKind() == lltok::DwarfOp) { 4248 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 4249 Lex.Lex(); 4250 Elements.push_back(Op); 4251 continue; 4252 } 4253 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 4254 } 4255 4256 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4257 return TokError("expected unsigned integer"); 4258 4259 auto &U = Lex.getAPSIntVal(); 4260 if (U.ugt(UINT64_MAX)) 4261 return TokError("element too large, limit is " + Twine(UINT64_MAX)); 4262 Elements.push_back(U.getZExtValue()); 4263 Lex.Lex(); 4264 } while (EatIfPresent(lltok::comma)); 4265 4266 if (ParseToken(lltok::rparen, "expected ')' here")) 4267 return true; 4268 4269 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 4270 return false; 4271 } 4272 4273 /// ParseDIObjCProperty: 4274 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 4275 /// getter: "getFoo", attributes: 7, type: !2) 4276 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 4277 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4278 OPTIONAL(name, MDStringField, ); \ 4279 OPTIONAL(file, MDField, ); \ 4280 OPTIONAL(line, LineField, ); \ 4281 OPTIONAL(setter, MDStringField, ); \ 4282 OPTIONAL(getter, MDStringField, ); \ 4283 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 4284 OPTIONAL(type, MDField, ); 4285 PARSE_MD_FIELDS(); 4286 #undef VISIT_MD_FIELDS 4287 4288 Result = GET_OR_DISTINCT(DIObjCProperty, 4289 (Context, name.Val, file.Val, line.Val, setter.Val, 4290 getter.Val, attributes.Val, type.Val)); 4291 return false; 4292 } 4293 4294 /// ParseDIImportedEntity: 4295 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 4296 /// line: 7, name: "foo") 4297 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 4298 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4299 REQUIRED(tag, DwarfTagField, ); \ 4300 REQUIRED(scope, MDField, ); \ 4301 OPTIONAL(entity, MDField, ); \ 4302 OPTIONAL(line, LineField, ); \ 4303 OPTIONAL(name, MDStringField, ); 4304 PARSE_MD_FIELDS(); 4305 #undef VISIT_MD_FIELDS 4306 4307 Result = GET_OR_DISTINCT(DIImportedEntity, (Context, tag.Val, scope.Val, 4308 entity.Val, line.Val, name.Val)); 4309 return false; 4310 } 4311 4312 #undef PARSE_MD_FIELD 4313 #undef NOP_FIELD 4314 #undef REQUIRE_FIELD 4315 #undef DECLARE_FIELD 4316 4317 /// ParseMetadataAsValue 4318 /// ::= metadata i32 %local 4319 /// ::= metadata i32 @global 4320 /// ::= metadata i32 7 4321 /// ::= metadata !0 4322 /// ::= metadata !{...} 4323 /// ::= metadata !"string" 4324 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 4325 // Note: the type 'metadata' has already been parsed. 4326 Metadata *MD; 4327 if (ParseMetadata(MD, &PFS)) 4328 return true; 4329 4330 V = MetadataAsValue::get(Context, MD); 4331 return false; 4332 } 4333 4334 /// ParseValueAsMetadata 4335 /// ::= i32 %local 4336 /// ::= i32 @global 4337 /// ::= i32 7 4338 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 4339 PerFunctionState *PFS) { 4340 Type *Ty; 4341 LocTy Loc; 4342 if (ParseType(Ty, TypeMsg, Loc)) 4343 return true; 4344 if (Ty->isMetadataTy()) 4345 return Error(Loc, "invalid metadata-value-metadata roundtrip"); 4346 4347 Value *V; 4348 if (ParseValue(Ty, V, PFS)) 4349 return true; 4350 4351 MD = ValueAsMetadata::get(V); 4352 return false; 4353 } 4354 4355 /// ParseMetadata 4356 /// ::= i32 %local 4357 /// ::= i32 @global 4358 /// ::= i32 7 4359 /// ::= !42 4360 /// ::= !{...} 4361 /// ::= !"string" 4362 /// ::= !DILocation(...) 4363 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) { 4364 if (Lex.getKind() == lltok::MetadataVar) { 4365 MDNode *N; 4366 if (ParseSpecializedMDNode(N)) 4367 return true; 4368 MD = N; 4369 return false; 4370 } 4371 4372 // ValueAsMetadata: 4373 // <type> <value> 4374 if (Lex.getKind() != lltok::exclaim) 4375 return ParseValueAsMetadata(MD, "expected metadata operand", PFS); 4376 4377 // '!'. 4378 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 4379 Lex.Lex(); 4380 4381 // MDString: 4382 // ::= '!' STRINGCONSTANT 4383 if (Lex.getKind() == lltok::StringConstant) { 4384 MDString *S; 4385 if (ParseMDString(S)) 4386 return true; 4387 MD = S; 4388 return false; 4389 } 4390 4391 // MDNode: 4392 // !{ ... } 4393 // !7 4394 MDNode *N; 4395 if (ParseMDNodeTail(N)) 4396 return true; 4397 MD = N; 4398 return false; 4399 } 4400 4401 //===----------------------------------------------------------------------===// 4402 // Function Parsing. 4403 //===----------------------------------------------------------------------===// 4404 4405 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 4406 PerFunctionState *PFS) { 4407 if (Ty->isFunctionTy()) 4408 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 4409 4410 switch (ID.Kind) { 4411 case ValID::t_LocalID: 4412 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4413 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc); 4414 return V == nullptr; 4415 case ValID::t_LocalName: 4416 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4417 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc); 4418 return V == nullptr; 4419 case ValID::t_InlineAsm: { 4420 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 4421 return Error(ID.Loc, "invalid type for inline asm constraint string"); 4422 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, 4423 (ID.UIntVal >> 1) & 1, 4424 (InlineAsm::AsmDialect(ID.UIntVal >> 2))); 4425 return false; 4426 } 4427 case ValID::t_GlobalName: 4428 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc); 4429 return V == nullptr; 4430 case ValID::t_GlobalID: 4431 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc); 4432 return V == nullptr; 4433 case ValID::t_APSInt: 4434 if (!Ty->isIntegerTy()) 4435 return Error(ID.Loc, "integer constant must have integer type"); 4436 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 4437 V = ConstantInt::get(Context, ID.APSIntVal); 4438 return false; 4439 case ValID::t_APFloat: 4440 if (!Ty->isFloatingPointTy() || 4441 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 4442 return Error(ID.Loc, "floating point constant invalid for type"); 4443 4444 // The lexer has no type info, so builds all half, float, and double FP 4445 // constants as double. Fix this here. Long double does not need this. 4446 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) { 4447 bool Ignored; 4448 if (Ty->isHalfTy()) 4449 ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, 4450 &Ignored); 4451 else if (Ty->isFloatTy()) 4452 ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, 4453 &Ignored); 4454 } 4455 V = ConstantFP::get(Context, ID.APFloatVal); 4456 4457 if (V->getType() != Ty) 4458 return Error(ID.Loc, "floating point constant does not have type '" + 4459 getTypeString(Ty) + "'"); 4460 4461 return false; 4462 case ValID::t_Null: 4463 if (!Ty->isPointerTy()) 4464 return Error(ID.Loc, "null must be a pointer type"); 4465 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 4466 return false; 4467 case ValID::t_Undef: 4468 // FIXME: LabelTy should not be a first-class type. 4469 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4470 return Error(ID.Loc, "invalid type for undef constant"); 4471 V = UndefValue::get(Ty); 4472 return false; 4473 case ValID::t_EmptyArray: 4474 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 4475 return Error(ID.Loc, "invalid empty array initializer"); 4476 V = UndefValue::get(Ty); 4477 return false; 4478 case ValID::t_Zero: 4479 // FIXME: LabelTy should not be a first-class type. 4480 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4481 return Error(ID.Loc, "invalid type for null constant"); 4482 V = Constant::getNullValue(Ty); 4483 return false; 4484 case ValID::t_None: 4485 if (!Ty->isTokenTy()) 4486 return Error(ID.Loc, "invalid type for none constant"); 4487 V = Constant::getNullValue(Ty); 4488 return false; 4489 case ValID::t_Constant: 4490 if (ID.ConstantVal->getType() != Ty) 4491 return Error(ID.Loc, "constant expression type mismatch"); 4492 4493 V = ID.ConstantVal; 4494 return false; 4495 case ValID::t_ConstantStruct: 4496 case ValID::t_PackedConstantStruct: 4497 if (StructType *ST = dyn_cast<StructType>(Ty)) { 4498 if (ST->getNumElements() != ID.UIntVal) 4499 return Error(ID.Loc, 4500 "initializer with struct type has wrong # elements"); 4501 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 4502 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 4503 4504 // Verify that the elements are compatible with the structtype. 4505 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 4506 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 4507 return Error(ID.Loc, "element " + Twine(i) + 4508 " of struct initializer doesn't match struct element type"); 4509 4510 V = ConstantStruct::get( 4511 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 4512 } else 4513 return Error(ID.Loc, "constant expression type mismatch"); 4514 return false; 4515 } 4516 llvm_unreachable("Invalid ValID"); 4517 } 4518 4519 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 4520 C = nullptr; 4521 ValID ID; 4522 auto Loc = Lex.getLoc(); 4523 if (ParseValID(ID, /*PFS=*/nullptr)) 4524 return true; 4525 switch (ID.Kind) { 4526 case ValID::t_APSInt: 4527 case ValID::t_APFloat: 4528 case ValID::t_Undef: 4529 case ValID::t_Constant: 4530 case ValID::t_ConstantStruct: 4531 case ValID::t_PackedConstantStruct: { 4532 Value *V; 4533 if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr)) 4534 return true; 4535 assert(isa<Constant>(V) && "Expected a constant value"); 4536 C = cast<Constant>(V); 4537 return false; 4538 } 4539 default: 4540 return Error(Loc, "expected a constant value"); 4541 } 4542 } 4543 4544 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 4545 V = nullptr; 4546 ValID ID; 4547 return ParseValID(ID, PFS) || ConvertValIDToValue(Ty, ID, V, PFS); 4548 } 4549 4550 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 4551 Type *Ty = nullptr; 4552 return ParseType(Ty) || 4553 ParseValue(Ty, V, PFS); 4554 } 4555 4556 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 4557 PerFunctionState &PFS) { 4558 Value *V; 4559 Loc = Lex.getLoc(); 4560 if (ParseTypeAndValue(V, PFS)) return true; 4561 if (!isa<BasicBlock>(V)) 4562 return Error(Loc, "expected a basic block"); 4563 BB = cast<BasicBlock>(V); 4564 return false; 4565 } 4566 4567 /// FunctionHeader 4568 /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs 4569 /// OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection 4570 /// OptionalAlign OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 4571 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 4572 // Parse the linkage. 4573 LocTy LinkageLoc = Lex.getLoc(); 4574 unsigned Linkage; 4575 4576 unsigned Visibility; 4577 unsigned DLLStorageClass; 4578 AttrBuilder RetAttrs; 4579 unsigned CC; 4580 bool HasLinkage; 4581 Type *RetType = nullptr; 4582 LocTy RetTypeLoc = Lex.getLoc(); 4583 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) || 4584 ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 4585 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 4586 return true; 4587 4588 // Verify that the linkage is ok. 4589 switch ((GlobalValue::LinkageTypes)Linkage) { 4590 case GlobalValue::ExternalLinkage: 4591 break; // always ok. 4592 case GlobalValue::ExternalWeakLinkage: 4593 if (isDefine) 4594 return Error(LinkageLoc, "invalid linkage for function definition"); 4595 break; 4596 case GlobalValue::PrivateLinkage: 4597 case GlobalValue::InternalLinkage: 4598 case GlobalValue::AvailableExternallyLinkage: 4599 case GlobalValue::LinkOnceAnyLinkage: 4600 case GlobalValue::LinkOnceODRLinkage: 4601 case GlobalValue::WeakAnyLinkage: 4602 case GlobalValue::WeakODRLinkage: 4603 if (!isDefine) 4604 return Error(LinkageLoc, "invalid linkage for function declaration"); 4605 break; 4606 case GlobalValue::AppendingLinkage: 4607 case GlobalValue::CommonLinkage: 4608 return Error(LinkageLoc, "invalid function linkage type"); 4609 } 4610 4611 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 4612 return Error(LinkageLoc, 4613 "symbol with local linkage must have default visibility"); 4614 4615 if (!FunctionType::isValidReturnType(RetType)) 4616 return Error(RetTypeLoc, "invalid function return type"); 4617 4618 LocTy NameLoc = Lex.getLoc(); 4619 4620 std::string FunctionName; 4621 if (Lex.getKind() == lltok::GlobalVar) { 4622 FunctionName = Lex.getStrVal(); 4623 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 4624 unsigned NameID = Lex.getUIntVal(); 4625 4626 if (NameID != NumberedVals.size()) 4627 return TokError("function expected to be numbered '%" + 4628 Twine(NumberedVals.size()) + "'"); 4629 } else { 4630 return TokError("expected function name"); 4631 } 4632 4633 Lex.Lex(); 4634 4635 if (Lex.getKind() != lltok::lparen) 4636 return TokError("expected '(' in function argument list"); 4637 4638 SmallVector<ArgInfo, 8> ArgList; 4639 bool isVarArg; 4640 AttrBuilder FuncAttrs; 4641 std::vector<unsigned> FwdRefAttrGrps; 4642 LocTy BuiltinLoc; 4643 std::string Section; 4644 unsigned Alignment; 4645 std::string GC; 4646 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4647 LocTy UnnamedAddrLoc; 4648 Constant *Prefix = nullptr; 4649 Constant *Prologue = nullptr; 4650 Constant *PersonalityFn = nullptr; 4651 Comdat *C; 4652 4653 if (ParseArgumentList(ArgList, isVarArg) || 4654 ParseOptionalUnnamedAddr(UnnamedAddr) || 4655 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 4656 BuiltinLoc) || 4657 (EatIfPresent(lltok::kw_section) && 4658 ParseStringConstant(Section)) || 4659 parseOptionalComdat(FunctionName, C) || 4660 ParseOptionalAlignment(Alignment) || 4661 (EatIfPresent(lltok::kw_gc) && 4662 ParseStringConstant(GC)) || 4663 (EatIfPresent(lltok::kw_prefix) && 4664 ParseGlobalTypeAndValue(Prefix)) || 4665 (EatIfPresent(lltok::kw_prologue) && 4666 ParseGlobalTypeAndValue(Prologue)) || 4667 (EatIfPresent(lltok::kw_personality) && 4668 ParseGlobalTypeAndValue(PersonalityFn))) 4669 return true; 4670 4671 if (FuncAttrs.contains(Attribute::Builtin)) 4672 return Error(BuiltinLoc, "'builtin' attribute not valid on function"); 4673 4674 // If the alignment was parsed as an attribute, move to the alignment field. 4675 if (FuncAttrs.hasAlignmentAttr()) { 4676 Alignment = FuncAttrs.getAlignment(); 4677 FuncAttrs.removeAttribute(Attribute::Alignment); 4678 } 4679 4680 // Okay, if we got here, the function is syntactically valid. Convert types 4681 // and do semantic checks. 4682 std::vector<Type*> ParamTypeList; 4683 SmallVector<AttributeSet, 8> Attrs; 4684 4685 if (RetAttrs.hasAttributes()) 4686 Attrs.push_back(AttributeSet::get(RetType->getContext(), 4687 AttributeSet::ReturnIndex, 4688 RetAttrs)); 4689 4690 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 4691 ParamTypeList.push_back(ArgList[i].Ty); 4692 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 4693 AttrBuilder B(ArgList[i].Attrs, i + 1); 4694 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 4695 } 4696 } 4697 4698 if (FuncAttrs.hasAttributes()) 4699 Attrs.push_back(AttributeSet::get(RetType->getContext(), 4700 AttributeSet::FunctionIndex, 4701 FuncAttrs)); 4702 4703 AttributeSet PAL = AttributeSet::get(Context, Attrs); 4704 4705 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 4706 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 4707 4708 FunctionType *FT = 4709 FunctionType::get(RetType, ParamTypeList, isVarArg); 4710 PointerType *PFT = PointerType::getUnqual(FT); 4711 4712 Fn = nullptr; 4713 if (!FunctionName.empty()) { 4714 // If this was a definition of a forward reference, remove the definition 4715 // from the forward reference table and fill in the forward ref. 4716 auto FRVI = ForwardRefVals.find(FunctionName); 4717 if (FRVI != ForwardRefVals.end()) { 4718 Fn = M->getFunction(FunctionName); 4719 if (!Fn) 4720 return Error(FRVI->second.second, "invalid forward reference to " 4721 "function as global value!"); 4722 if (Fn->getType() != PFT) 4723 return Error(FRVI->second.second, "invalid forward reference to " 4724 "function '" + FunctionName + "' with wrong type!"); 4725 4726 ForwardRefVals.erase(FRVI); 4727 } else if ((Fn = M->getFunction(FunctionName))) { 4728 // Reject redefinitions. 4729 return Error(NameLoc, "invalid redefinition of function '" + 4730 FunctionName + "'"); 4731 } else if (M->getNamedValue(FunctionName)) { 4732 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 4733 } 4734 4735 } else { 4736 // If this is a definition of a forward referenced function, make sure the 4737 // types agree. 4738 auto I = ForwardRefValIDs.find(NumberedVals.size()); 4739 if (I != ForwardRefValIDs.end()) { 4740 Fn = cast<Function>(I->second.first); 4741 if (Fn->getType() != PFT) 4742 return Error(NameLoc, "type of definition and forward reference of '@" + 4743 Twine(NumberedVals.size()) + "' disagree"); 4744 ForwardRefValIDs.erase(I); 4745 } 4746 } 4747 4748 if (!Fn) 4749 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M); 4750 else // Move the forward-reference to the correct spot in the module. 4751 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 4752 4753 if (FunctionName.empty()) 4754 NumberedVals.push_back(Fn); 4755 4756 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 4757 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 4758 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 4759 Fn->setCallingConv(CC); 4760 Fn->setAttributes(PAL); 4761 Fn->setUnnamedAddr(UnnamedAddr); 4762 Fn->setAlignment(Alignment); 4763 Fn->setSection(Section); 4764 Fn->setComdat(C); 4765 Fn->setPersonalityFn(PersonalityFn); 4766 if (!GC.empty()) Fn->setGC(GC); 4767 Fn->setPrefixData(Prefix); 4768 Fn->setPrologueData(Prologue); 4769 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 4770 4771 // Add all of the arguments we parsed to the function. 4772 Function::arg_iterator ArgIt = Fn->arg_begin(); 4773 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 4774 // If the argument has a name, insert it into the argument symbol table. 4775 if (ArgList[i].Name.empty()) continue; 4776 4777 // Set the name, if it conflicted, it will be auto-renamed. 4778 ArgIt->setName(ArgList[i].Name); 4779 4780 if (ArgIt->getName() != ArgList[i].Name) 4781 return Error(ArgList[i].Loc, "redefinition of argument '%" + 4782 ArgList[i].Name + "'"); 4783 } 4784 4785 if (isDefine) 4786 return false; 4787 4788 // Check the declaration has no block address forward references. 4789 ValID ID; 4790 if (FunctionName.empty()) { 4791 ID.Kind = ValID::t_GlobalID; 4792 ID.UIntVal = NumberedVals.size() - 1; 4793 } else { 4794 ID.Kind = ValID::t_GlobalName; 4795 ID.StrVal = FunctionName; 4796 } 4797 auto Blocks = ForwardRefBlockAddresses.find(ID); 4798 if (Blocks != ForwardRefBlockAddresses.end()) 4799 return Error(Blocks->first.Loc, 4800 "cannot take blockaddress inside a declaration"); 4801 return false; 4802 } 4803 4804 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 4805 ValID ID; 4806 if (FunctionNumber == -1) { 4807 ID.Kind = ValID::t_GlobalName; 4808 ID.StrVal = F.getName(); 4809 } else { 4810 ID.Kind = ValID::t_GlobalID; 4811 ID.UIntVal = FunctionNumber; 4812 } 4813 4814 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 4815 if (Blocks == P.ForwardRefBlockAddresses.end()) 4816 return false; 4817 4818 for (const auto &I : Blocks->second) { 4819 const ValID &BBID = I.first; 4820 GlobalValue *GV = I.second; 4821 4822 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 4823 "Expected local id or name"); 4824 BasicBlock *BB; 4825 if (BBID.Kind == ValID::t_LocalName) 4826 BB = GetBB(BBID.StrVal, BBID.Loc); 4827 else 4828 BB = GetBB(BBID.UIntVal, BBID.Loc); 4829 if (!BB) 4830 return P.Error(BBID.Loc, "referenced value is not a basic block"); 4831 4832 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 4833 GV->eraseFromParent(); 4834 } 4835 4836 P.ForwardRefBlockAddresses.erase(Blocks); 4837 return false; 4838 } 4839 4840 /// ParseFunctionBody 4841 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 4842 bool LLParser::ParseFunctionBody(Function &Fn) { 4843 if (Lex.getKind() != lltok::lbrace) 4844 return TokError("expected '{' in function body"); 4845 Lex.Lex(); // eat the {. 4846 4847 int FunctionNumber = -1; 4848 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 4849 4850 PerFunctionState PFS(*this, Fn, FunctionNumber); 4851 4852 // Resolve block addresses and allow basic blocks to be forward-declared 4853 // within this function. 4854 if (PFS.resolveForwardRefBlockAddresses()) 4855 return true; 4856 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 4857 4858 // We need at least one basic block. 4859 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 4860 return TokError("function body requires at least one basic block"); 4861 4862 while (Lex.getKind() != lltok::rbrace && 4863 Lex.getKind() != lltok::kw_uselistorder) 4864 if (ParseBasicBlock(PFS)) return true; 4865 4866 while (Lex.getKind() != lltok::rbrace) 4867 if (ParseUseListOrder(&PFS)) 4868 return true; 4869 4870 // Eat the }. 4871 Lex.Lex(); 4872 4873 // Verify function is ok. 4874 return PFS.FinishFunction(); 4875 } 4876 4877 /// ParseBasicBlock 4878 /// ::= LabelStr? Instruction* 4879 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 4880 // If this basic block starts out with a name, remember it. 4881 std::string Name; 4882 LocTy NameLoc = Lex.getLoc(); 4883 if (Lex.getKind() == lltok::LabelStr) { 4884 Name = Lex.getStrVal(); 4885 Lex.Lex(); 4886 } 4887 4888 BasicBlock *BB = PFS.DefineBB(Name, NameLoc); 4889 if (!BB) 4890 return Error(NameLoc, 4891 "unable to create block named '" + Name + "'"); 4892 4893 std::string NameStr; 4894 4895 // Parse the instructions in this block until we get a terminator. 4896 Instruction *Inst; 4897 do { 4898 // This instruction may have three possibilities for a name: a) none 4899 // specified, b) name specified "%foo =", c) number specified: "%4 =". 4900 LocTy NameLoc = Lex.getLoc(); 4901 int NameID = -1; 4902 NameStr = ""; 4903 4904 if (Lex.getKind() == lltok::LocalVarID) { 4905 NameID = Lex.getUIntVal(); 4906 Lex.Lex(); 4907 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 4908 return true; 4909 } else if (Lex.getKind() == lltok::LocalVar) { 4910 NameStr = Lex.getStrVal(); 4911 Lex.Lex(); 4912 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 4913 return true; 4914 } 4915 4916 switch (ParseInstruction(Inst, BB, PFS)) { 4917 default: llvm_unreachable("Unknown ParseInstruction result!"); 4918 case InstError: return true; 4919 case InstNormal: 4920 BB->getInstList().push_back(Inst); 4921 4922 // With a normal result, we check to see if the instruction is followed by 4923 // a comma and metadata. 4924 if (EatIfPresent(lltok::comma)) 4925 if (ParseInstructionMetadata(*Inst)) 4926 return true; 4927 break; 4928 case InstExtraComma: 4929 BB->getInstList().push_back(Inst); 4930 4931 // If the instruction parser ate an extra comma at the end of it, it 4932 // *must* be followed by metadata. 4933 if (ParseInstructionMetadata(*Inst)) 4934 return true; 4935 break; 4936 } 4937 4938 // Set the name on the instruction. 4939 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 4940 } while (!isa<TerminatorInst>(Inst)); 4941 4942 return false; 4943 } 4944 4945 //===----------------------------------------------------------------------===// 4946 // Instruction Parsing. 4947 //===----------------------------------------------------------------------===// 4948 4949 /// ParseInstruction - Parse one of the many different instructions. 4950 /// 4951 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 4952 PerFunctionState &PFS) { 4953 lltok::Kind Token = Lex.getKind(); 4954 if (Token == lltok::Eof) 4955 return TokError("found end of file when expecting more instructions"); 4956 LocTy Loc = Lex.getLoc(); 4957 unsigned KeywordVal = Lex.getUIntVal(); 4958 Lex.Lex(); // Eat the keyword. 4959 4960 switch (Token) { 4961 default: return Error(Loc, "expected instruction opcode"); 4962 // Terminator Instructions. 4963 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 4964 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 4965 case lltok::kw_br: return ParseBr(Inst, PFS); 4966 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 4967 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 4968 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 4969 case lltok::kw_resume: return ParseResume(Inst, PFS); 4970 case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS); 4971 case lltok::kw_catchret: return ParseCatchRet(Inst, PFS); 4972 case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS); 4973 case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS); 4974 case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS); 4975 // Binary Operators. 4976 case lltok::kw_add: 4977 case lltok::kw_sub: 4978 case lltok::kw_mul: 4979 case lltok::kw_shl: { 4980 bool NUW = EatIfPresent(lltok::kw_nuw); 4981 bool NSW = EatIfPresent(lltok::kw_nsw); 4982 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 4983 4984 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 4985 4986 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 4987 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 4988 return false; 4989 } 4990 case lltok::kw_fadd: 4991 case lltok::kw_fsub: 4992 case lltok::kw_fmul: 4993 case lltok::kw_fdiv: 4994 case lltok::kw_frem: { 4995 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 4996 int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2); 4997 if (Res != 0) 4998 return Res; 4999 if (FMF.any()) 5000 Inst->setFastMathFlags(FMF); 5001 return 0; 5002 } 5003 5004 case lltok::kw_sdiv: 5005 case lltok::kw_udiv: 5006 case lltok::kw_lshr: 5007 case lltok::kw_ashr: { 5008 bool Exact = EatIfPresent(lltok::kw_exact); 5009 5010 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 5011 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 5012 return false; 5013 } 5014 5015 case lltok::kw_urem: 5016 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1); 5017 case lltok::kw_and: 5018 case lltok::kw_or: 5019 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 5020 case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal); 5021 case lltok::kw_fcmp: { 5022 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5023 int Res = ParseCompare(Inst, PFS, KeywordVal); 5024 if (Res != 0) 5025 return Res; 5026 if (FMF.any()) 5027 Inst->setFastMathFlags(FMF); 5028 return 0; 5029 } 5030 5031 // Casts. 5032 case lltok::kw_trunc: 5033 case lltok::kw_zext: 5034 case lltok::kw_sext: 5035 case lltok::kw_fptrunc: 5036 case lltok::kw_fpext: 5037 case lltok::kw_bitcast: 5038 case lltok::kw_addrspacecast: 5039 case lltok::kw_uitofp: 5040 case lltok::kw_sitofp: 5041 case lltok::kw_fptoui: 5042 case lltok::kw_fptosi: 5043 case lltok::kw_inttoptr: 5044 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 5045 // Other. 5046 case lltok::kw_select: return ParseSelect(Inst, PFS); 5047 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 5048 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 5049 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 5050 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 5051 case lltok::kw_phi: return ParsePHI(Inst, PFS); 5052 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 5053 // Call. 5054 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None); 5055 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail); 5056 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail); 5057 case lltok::kw_notail: return ParseCall(Inst, PFS, CallInst::TCK_NoTail); 5058 // Memory. 5059 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 5060 case lltok::kw_load: return ParseLoad(Inst, PFS); 5061 case lltok::kw_store: return ParseStore(Inst, PFS); 5062 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 5063 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 5064 case lltok::kw_fence: return ParseFence(Inst, PFS); 5065 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 5066 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 5067 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 5068 } 5069 } 5070 5071 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 5072 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 5073 if (Opc == Instruction::FCmp) { 5074 switch (Lex.getKind()) { 5075 default: return TokError("expected fcmp predicate (e.g. 'oeq')"); 5076 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 5077 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 5078 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 5079 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 5080 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 5081 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 5082 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 5083 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 5084 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 5085 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 5086 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 5087 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 5088 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 5089 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 5090 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 5091 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 5092 } 5093 } else { 5094 switch (Lex.getKind()) { 5095 default: return TokError("expected icmp predicate (e.g. 'eq')"); 5096 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 5097 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 5098 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 5099 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 5100 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 5101 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 5102 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 5103 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 5104 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 5105 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 5106 } 5107 } 5108 Lex.Lex(); 5109 return false; 5110 } 5111 5112 //===----------------------------------------------------------------------===// 5113 // Terminator Instructions. 5114 //===----------------------------------------------------------------------===// 5115 5116 /// ParseRet - Parse a return instruction. 5117 /// ::= 'ret' void (',' !dbg, !1)* 5118 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 5119 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 5120 PerFunctionState &PFS) { 5121 SMLoc TypeLoc = Lex.getLoc(); 5122 Type *Ty = nullptr; 5123 if (ParseType(Ty, true /*void allowed*/)) return true; 5124 5125 Type *ResType = PFS.getFunction().getReturnType(); 5126 5127 if (Ty->isVoidTy()) { 5128 if (!ResType->isVoidTy()) 5129 return Error(TypeLoc, "value doesn't match function result type '" + 5130 getTypeString(ResType) + "'"); 5131 5132 Inst = ReturnInst::Create(Context); 5133 return false; 5134 } 5135 5136 Value *RV; 5137 if (ParseValue(Ty, RV, PFS)) return true; 5138 5139 if (ResType != RV->getType()) 5140 return Error(TypeLoc, "value doesn't match function result type '" + 5141 getTypeString(ResType) + "'"); 5142 5143 Inst = ReturnInst::Create(Context, RV); 5144 return false; 5145 } 5146 5147 /// ParseBr 5148 /// ::= 'br' TypeAndValue 5149 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5150 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 5151 LocTy Loc, Loc2; 5152 Value *Op0; 5153 BasicBlock *Op1, *Op2; 5154 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 5155 5156 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 5157 Inst = BranchInst::Create(BB); 5158 return false; 5159 } 5160 5161 if (Op0->getType() != Type::getInt1Ty(Context)) 5162 return Error(Loc, "branch condition must have 'i1' type"); 5163 5164 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 5165 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 5166 ParseToken(lltok::comma, "expected ',' after true destination") || 5167 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 5168 return true; 5169 5170 Inst = BranchInst::Create(Op1, Op2, Op0); 5171 return false; 5172 } 5173 5174 /// ParseSwitch 5175 /// Instruction 5176 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 5177 /// JumpTable 5178 /// ::= (TypeAndValue ',' TypeAndValue)* 5179 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5180 LocTy CondLoc, BBLoc; 5181 Value *Cond; 5182 BasicBlock *DefaultBB; 5183 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 5184 ParseToken(lltok::comma, "expected ',' after switch condition") || 5185 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 5186 ParseToken(lltok::lsquare, "expected '[' with switch table")) 5187 return true; 5188 5189 if (!Cond->getType()->isIntegerTy()) 5190 return Error(CondLoc, "switch condition must have integer type"); 5191 5192 // Parse the jump table pairs. 5193 SmallPtrSet<Value*, 32> SeenCases; 5194 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 5195 while (Lex.getKind() != lltok::rsquare) { 5196 Value *Constant; 5197 BasicBlock *DestBB; 5198 5199 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 5200 ParseToken(lltok::comma, "expected ',' after case value") || 5201 ParseTypeAndBasicBlock(DestBB, PFS)) 5202 return true; 5203 5204 if (!SeenCases.insert(Constant).second) 5205 return Error(CondLoc, "duplicate case value in switch"); 5206 if (!isa<ConstantInt>(Constant)) 5207 return Error(CondLoc, "case value is not a constant integer"); 5208 5209 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 5210 } 5211 5212 Lex.Lex(); // Eat the ']'. 5213 5214 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 5215 for (unsigned i = 0, e = Table.size(); i != e; ++i) 5216 SI->addCase(Table[i].first, Table[i].second); 5217 Inst = SI; 5218 return false; 5219 } 5220 5221 /// ParseIndirectBr 5222 /// Instruction 5223 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 5224 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 5225 LocTy AddrLoc; 5226 Value *Address; 5227 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 5228 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 5229 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 5230 return true; 5231 5232 if (!Address->getType()->isPointerTy()) 5233 return Error(AddrLoc, "indirectbr address must have pointer type"); 5234 5235 // Parse the destination list. 5236 SmallVector<BasicBlock*, 16> DestList; 5237 5238 if (Lex.getKind() != lltok::rsquare) { 5239 BasicBlock *DestBB; 5240 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5241 return true; 5242 DestList.push_back(DestBB); 5243 5244 while (EatIfPresent(lltok::comma)) { 5245 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5246 return true; 5247 DestList.push_back(DestBB); 5248 } 5249 } 5250 5251 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 5252 return true; 5253 5254 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 5255 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 5256 IBI->addDestination(DestList[i]); 5257 Inst = IBI; 5258 return false; 5259 } 5260 5261 /// ParseInvoke 5262 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 5263 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 5264 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 5265 LocTy CallLoc = Lex.getLoc(); 5266 AttrBuilder RetAttrs, FnAttrs; 5267 std::vector<unsigned> FwdRefAttrGrps; 5268 LocTy NoBuiltinLoc; 5269 unsigned CC; 5270 Type *RetType = nullptr; 5271 LocTy RetTypeLoc; 5272 ValID CalleeID; 5273 SmallVector<ParamInfo, 16> ArgList; 5274 SmallVector<OperandBundleDef, 2> BundleList; 5275 5276 BasicBlock *NormalBB, *UnwindBB; 5277 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5278 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5279 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 5280 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 5281 NoBuiltinLoc) || 5282 ParseOptionalOperandBundles(BundleList, PFS) || 5283 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 5284 ParseTypeAndBasicBlock(NormalBB, PFS) || 5285 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 5286 ParseTypeAndBasicBlock(UnwindBB, PFS)) 5287 return true; 5288 5289 // If RetType is a non-function pointer type, then this is the short syntax 5290 // for the call, which means that RetType is just the return type. Infer the 5291 // rest of the function argument types from the arguments that are present. 5292 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 5293 if (!Ty) { 5294 // Pull out the types of all of the arguments... 5295 std::vector<Type*> ParamTypes; 5296 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 5297 ParamTypes.push_back(ArgList[i].V->getType()); 5298 5299 if (!FunctionType::isValidReturnType(RetType)) 5300 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 5301 5302 Ty = FunctionType::get(RetType, ParamTypes, false); 5303 } 5304 5305 CalleeID.FTy = Ty; 5306 5307 // Look up the callee. 5308 Value *Callee; 5309 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 5310 return true; 5311 5312 // Set up the Attribute for the function. 5313 SmallVector<AttributeSet, 8> Attrs; 5314 if (RetAttrs.hasAttributes()) 5315 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5316 AttributeSet::ReturnIndex, 5317 RetAttrs)); 5318 5319 SmallVector<Value*, 8> Args; 5320 5321 // Loop through FunctionType's arguments and ensure they are specified 5322 // correctly. Also, gather any parameter attributes. 5323 FunctionType::param_iterator I = Ty->param_begin(); 5324 FunctionType::param_iterator E = Ty->param_end(); 5325 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5326 Type *ExpectedTy = nullptr; 5327 if (I != E) { 5328 ExpectedTy = *I++; 5329 } else if (!Ty->isVarArg()) { 5330 return Error(ArgList[i].Loc, "too many arguments specified"); 5331 } 5332 5333 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 5334 return Error(ArgList[i].Loc, "argument is not of expected type '" + 5335 getTypeString(ExpectedTy) + "'"); 5336 Args.push_back(ArgList[i].V); 5337 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 5338 AttrBuilder B(ArgList[i].Attrs, i + 1); 5339 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 5340 } 5341 } 5342 5343 if (I != E) 5344 return Error(CallLoc, "not enough parameters specified for call"); 5345 5346 if (FnAttrs.hasAttributes()) { 5347 if (FnAttrs.hasAlignmentAttr()) 5348 return Error(CallLoc, "invoke instructions may not have an alignment"); 5349 5350 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5351 AttributeSet::FunctionIndex, 5352 FnAttrs)); 5353 } 5354 5355 // Finish off the Attribute and check them 5356 AttributeSet PAL = AttributeSet::get(Context, Attrs); 5357 5358 InvokeInst *II = 5359 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 5360 II->setCallingConv(CC); 5361 II->setAttributes(PAL); 5362 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 5363 Inst = II; 5364 return false; 5365 } 5366 5367 /// ParseResume 5368 /// ::= 'resume' TypeAndValue 5369 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 5370 Value *Exn; LocTy ExnLoc; 5371 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 5372 return true; 5373 5374 ResumeInst *RI = ResumeInst::Create(Exn); 5375 Inst = RI; 5376 return false; 5377 } 5378 5379 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args, 5380 PerFunctionState &PFS) { 5381 if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 5382 return true; 5383 5384 while (Lex.getKind() != lltok::rsquare) { 5385 // If this isn't the first argument, we need a comma. 5386 if (!Args.empty() && 5387 ParseToken(lltok::comma, "expected ',' in argument list")) 5388 return true; 5389 5390 // Parse the argument. 5391 LocTy ArgLoc; 5392 Type *ArgTy = nullptr; 5393 if (ParseType(ArgTy, ArgLoc)) 5394 return true; 5395 5396 Value *V; 5397 if (ArgTy->isMetadataTy()) { 5398 if (ParseMetadataAsValue(V, PFS)) 5399 return true; 5400 } else { 5401 if (ParseValue(ArgTy, V, PFS)) 5402 return true; 5403 } 5404 Args.push_back(V); 5405 } 5406 5407 Lex.Lex(); // Lex the ']'. 5408 return false; 5409 } 5410 5411 /// ParseCleanupRet 5412 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 5413 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 5414 Value *CleanupPad = nullptr; 5415 5416 if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret")) 5417 return true; 5418 5419 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 5420 return true; 5421 5422 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 5423 return true; 5424 5425 BasicBlock *UnwindBB = nullptr; 5426 if (Lex.getKind() == lltok::kw_to) { 5427 Lex.Lex(); 5428 if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 5429 return true; 5430 } else { 5431 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 5432 return true; 5433 } 5434 } 5435 5436 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 5437 return false; 5438 } 5439 5440 /// ParseCatchRet 5441 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 5442 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 5443 Value *CatchPad = nullptr; 5444 5445 if (ParseToken(lltok::kw_from, "expected 'from' after catchret")) 5446 return true; 5447 5448 if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS)) 5449 return true; 5450 5451 BasicBlock *BB; 5452 if (ParseToken(lltok::kw_to, "expected 'to' in catchret") || 5453 ParseTypeAndBasicBlock(BB, PFS)) 5454 return true; 5455 5456 Inst = CatchReturnInst::Create(CatchPad, BB); 5457 return false; 5458 } 5459 5460 /// ParseCatchSwitch 5461 /// ::= 'catchswitch' within Parent 5462 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5463 Value *ParentPad; 5464 LocTy BBLoc; 5465 5466 if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch")) 5467 return true; 5468 5469 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 5470 Lex.getKind() != lltok::LocalVarID) 5471 return TokError("expected scope value for catchswitch"); 5472 5473 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 5474 return true; 5475 5476 if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 5477 return true; 5478 5479 SmallVector<BasicBlock *, 32> Table; 5480 do { 5481 BasicBlock *DestBB; 5482 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5483 return true; 5484 Table.push_back(DestBB); 5485 } while (EatIfPresent(lltok::comma)); 5486 5487 if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 5488 return true; 5489 5490 if (ParseToken(lltok::kw_unwind, 5491 "expected 'unwind' after catchswitch scope")) 5492 return true; 5493 5494 BasicBlock *UnwindBB = nullptr; 5495 if (EatIfPresent(lltok::kw_to)) { 5496 if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 5497 return true; 5498 } else { 5499 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) 5500 return true; 5501 } 5502 5503 auto *CatchSwitch = 5504 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 5505 for (BasicBlock *DestBB : Table) 5506 CatchSwitch->addHandler(DestBB); 5507 Inst = CatchSwitch; 5508 return false; 5509 } 5510 5511 /// ParseCatchPad 5512 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 5513 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 5514 Value *CatchSwitch = nullptr; 5515 5516 if (ParseToken(lltok::kw_within, "expected 'within' after catchpad")) 5517 return true; 5518 5519 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 5520 return TokError("expected scope value for catchpad"); 5521 5522 if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 5523 return true; 5524 5525 SmallVector<Value *, 8> Args; 5526 if (ParseExceptionArgs(Args, PFS)) 5527 return true; 5528 5529 Inst = CatchPadInst::Create(CatchSwitch, Args); 5530 return false; 5531 } 5532 5533 /// ParseCleanupPad 5534 /// ::= 'cleanuppad' within Parent ParamList 5535 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 5536 Value *ParentPad = nullptr; 5537 5538 if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 5539 return true; 5540 5541 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 5542 Lex.getKind() != lltok::LocalVarID) 5543 return TokError("expected scope value for cleanuppad"); 5544 5545 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 5546 return true; 5547 5548 SmallVector<Value *, 8> Args; 5549 if (ParseExceptionArgs(Args, PFS)) 5550 return true; 5551 5552 Inst = CleanupPadInst::Create(ParentPad, Args); 5553 return false; 5554 } 5555 5556 //===----------------------------------------------------------------------===// 5557 // Binary Operators. 5558 //===----------------------------------------------------------------------===// 5559 5560 /// ParseArithmetic 5561 /// ::= ArithmeticOps TypeAndValue ',' Value 5562 /// 5563 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, 5564 /// then any integer operand is allowed, if it is 2, any fp operand is allowed. 5565 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 5566 unsigned Opc, unsigned OperandType) { 5567 LocTy Loc; Value *LHS, *RHS; 5568 if (ParseTypeAndValue(LHS, Loc, PFS) || 5569 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 5570 ParseValue(LHS->getType(), RHS, PFS)) 5571 return true; 5572 5573 bool Valid; 5574 switch (OperandType) { 5575 default: llvm_unreachable("Unknown operand type!"); 5576 case 0: // int or FP. 5577 Valid = LHS->getType()->isIntOrIntVectorTy() || 5578 LHS->getType()->isFPOrFPVectorTy(); 5579 break; 5580 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break; 5581 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break; 5582 } 5583 5584 if (!Valid) 5585 return Error(Loc, "invalid operand type for instruction"); 5586 5587 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5588 return false; 5589 } 5590 5591 /// ParseLogical 5592 /// ::= ArithmeticOps TypeAndValue ',' Value { 5593 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 5594 unsigned Opc) { 5595 LocTy Loc; Value *LHS, *RHS; 5596 if (ParseTypeAndValue(LHS, Loc, PFS) || 5597 ParseToken(lltok::comma, "expected ',' in logical operation") || 5598 ParseValue(LHS->getType(), RHS, PFS)) 5599 return true; 5600 5601 if (!LHS->getType()->isIntOrIntVectorTy()) 5602 return Error(Loc,"instruction requires integer or integer vector operands"); 5603 5604 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5605 return false; 5606 } 5607 5608 /// ParseCompare 5609 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 5610 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 5611 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 5612 unsigned Opc) { 5613 // Parse the integer/fp comparison predicate. 5614 LocTy Loc; 5615 unsigned Pred; 5616 Value *LHS, *RHS; 5617 if (ParseCmpPredicate(Pred, Opc) || 5618 ParseTypeAndValue(LHS, Loc, PFS) || 5619 ParseToken(lltok::comma, "expected ',' after compare value") || 5620 ParseValue(LHS->getType(), RHS, PFS)) 5621 return true; 5622 5623 if (Opc == Instruction::FCmp) { 5624 if (!LHS->getType()->isFPOrFPVectorTy()) 5625 return Error(Loc, "fcmp requires floating point operands"); 5626 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 5627 } else { 5628 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 5629 if (!LHS->getType()->isIntOrIntVectorTy() && 5630 !LHS->getType()->getScalarType()->isPointerTy()) 5631 return Error(Loc, "icmp requires integer operands"); 5632 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 5633 } 5634 return false; 5635 } 5636 5637 //===----------------------------------------------------------------------===// 5638 // Other Instructions. 5639 //===----------------------------------------------------------------------===// 5640 5641 5642 /// ParseCast 5643 /// ::= CastOpc TypeAndValue 'to' Type 5644 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 5645 unsigned Opc) { 5646 LocTy Loc; 5647 Value *Op; 5648 Type *DestTy = nullptr; 5649 if (ParseTypeAndValue(Op, Loc, PFS) || 5650 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 5651 ParseType(DestTy)) 5652 return true; 5653 5654 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 5655 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 5656 return Error(Loc, "invalid cast opcode for cast from '" + 5657 getTypeString(Op->getType()) + "' to '" + 5658 getTypeString(DestTy) + "'"); 5659 } 5660 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 5661 return false; 5662 } 5663 5664 /// ParseSelect 5665 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5666 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 5667 LocTy Loc; 5668 Value *Op0, *Op1, *Op2; 5669 if (ParseTypeAndValue(Op0, Loc, PFS) || 5670 ParseToken(lltok::comma, "expected ',' after select condition") || 5671 ParseTypeAndValue(Op1, PFS) || 5672 ParseToken(lltok::comma, "expected ',' after select value") || 5673 ParseTypeAndValue(Op2, PFS)) 5674 return true; 5675 5676 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 5677 return Error(Loc, Reason); 5678 5679 Inst = SelectInst::Create(Op0, Op1, Op2); 5680 return false; 5681 } 5682 5683 /// ParseVA_Arg 5684 /// ::= 'va_arg' TypeAndValue ',' Type 5685 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 5686 Value *Op; 5687 Type *EltTy = nullptr; 5688 LocTy TypeLoc; 5689 if (ParseTypeAndValue(Op, PFS) || 5690 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 5691 ParseType(EltTy, TypeLoc)) 5692 return true; 5693 5694 if (!EltTy->isFirstClassType()) 5695 return Error(TypeLoc, "va_arg requires operand with first class type"); 5696 5697 Inst = new VAArgInst(Op, EltTy); 5698 return false; 5699 } 5700 5701 /// ParseExtractElement 5702 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 5703 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 5704 LocTy Loc; 5705 Value *Op0, *Op1; 5706 if (ParseTypeAndValue(Op0, Loc, PFS) || 5707 ParseToken(lltok::comma, "expected ',' after extract value") || 5708 ParseTypeAndValue(Op1, PFS)) 5709 return true; 5710 5711 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 5712 return Error(Loc, "invalid extractelement operands"); 5713 5714 Inst = ExtractElementInst::Create(Op0, Op1); 5715 return false; 5716 } 5717 5718 /// ParseInsertElement 5719 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5720 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 5721 LocTy Loc; 5722 Value *Op0, *Op1, *Op2; 5723 if (ParseTypeAndValue(Op0, Loc, PFS) || 5724 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5725 ParseTypeAndValue(Op1, PFS) || 5726 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5727 ParseTypeAndValue(Op2, PFS)) 5728 return true; 5729 5730 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 5731 return Error(Loc, "invalid insertelement operands"); 5732 5733 Inst = InsertElementInst::Create(Op0, Op1, Op2); 5734 return false; 5735 } 5736 5737 /// ParseShuffleVector 5738 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5739 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 5740 LocTy Loc; 5741 Value *Op0, *Op1, *Op2; 5742 if (ParseTypeAndValue(Op0, Loc, PFS) || 5743 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 5744 ParseTypeAndValue(Op1, PFS) || 5745 ParseToken(lltok::comma, "expected ',' after shuffle value") || 5746 ParseTypeAndValue(Op2, PFS)) 5747 return true; 5748 5749 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 5750 return Error(Loc, "invalid shufflevector operands"); 5751 5752 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 5753 return false; 5754 } 5755 5756 /// ParsePHI 5757 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 5758 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 5759 Type *Ty = nullptr; LocTy TypeLoc; 5760 Value *Op0, *Op1; 5761 5762 if (ParseType(Ty, TypeLoc) || 5763 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 5764 ParseValue(Ty, Op0, PFS) || 5765 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5766 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 5767 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 5768 return true; 5769 5770 bool AteExtraComma = false; 5771 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 5772 5773 while (true) { 5774 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 5775 5776 if (!EatIfPresent(lltok::comma)) 5777 break; 5778 5779 if (Lex.getKind() == lltok::MetadataVar) { 5780 AteExtraComma = true; 5781 break; 5782 } 5783 5784 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 5785 ParseValue(Ty, Op0, PFS) || 5786 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5787 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 5788 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 5789 return true; 5790 } 5791 5792 if (!Ty->isFirstClassType()) 5793 return Error(TypeLoc, "phi node must have first class type"); 5794 5795 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 5796 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 5797 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 5798 Inst = PN; 5799 return AteExtraComma ? InstExtraComma : InstNormal; 5800 } 5801 5802 /// ParseLandingPad 5803 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 5804 /// Clause 5805 /// ::= 'catch' TypeAndValue 5806 /// ::= 'filter' 5807 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 5808 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 5809 Type *Ty = nullptr; LocTy TyLoc; 5810 5811 if (ParseType(Ty, TyLoc)) 5812 return true; 5813 5814 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 5815 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 5816 5817 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 5818 LandingPadInst::ClauseType CT; 5819 if (EatIfPresent(lltok::kw_catch)) 5820 CT = LandingPadInst::Catch; 5821 else if (EatIfPresent(lltok::kw_filter)) 5822 CT = LandingPadInst::Filter; 5823 else 5824 return TokError("expected 'catch' or 'filter' clause type"); 5825 5826 Value *V; 5827 LocTy VLoc; 5828 if (ParseTypeAndValue(V, VLoc, PFS)) 5829 return true; 5830 5831 // A 'catch' type expects a non-array constant. A filter clause expects an 5832 // array constant. 5833 if (CT == LandingPadInst::Catch) { 5834 if (isa<ArrayType>(V->getType())) 5835 Error(VLoc, "'catch' clause has an invalid type"); 5836 } else { 5837 if (!isa<ArrayType>(V->getType())) 5838 Error(VLoc, "'filter' clause has an invalid type"); 5839 } 5840 5841 Constant *CV = dyn_cast<Constant>(V); 5842 if (!CV) 5843 return Error(VLoc, "clause argument must be a constant"); 5844 LP->addClause(CV); 5845 } 5846 5847 Inst = LP.release(); 5848 return false; 5849 } 5850 5851 /// ParseCall 5852 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 5853 /// OptionalAttrs Type Value ParameterList OptionalAttrs 5854 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 5855 /// OptionalAttrs Type Value ParameterList OptionalAttrs 5856 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 5857 /// OptionalAttrs Type Value ParameterList OptionalAttrs 5858 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 5859 /// OptionalAttrs Type Value ParameterList OptionalAttrs 5860 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 5861 CallInst::TailCallKind TCK) { 5862 AttrBuilder RetAttrs, FnAttrs; 5863 std::vector<unsigned> FwdRefAttrGrps; 5864 LocTy BuiltinLoc; 5865 unsigned CC; 5866 Type *RetType = nullptr; 5867 LocTy RetTypeLoc; 5868 ValID CalleeID; 5869 SmallVector<ParamInfo, 16> ArgList; 5870 SmallVector<OperandBundleDef, 2> BundleList; 5871 LocTy CallLoc = Lex.getLoc(); 5872 5873 if (TCK != CallInst::TCK_None && 5874 ParseToken(lltok::kw_call, 5875 "expected 'tail call', 'musttail call', or 'notail call'")) 5876 return true; 5877 5878 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5879 5880 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5881 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5882 ParseValID(CalleeID) || 5883 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 5884 PFS.getFunction().isVarArg()) || 5885 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 5886 ParseOptionalOperandBundles(BundleList, PFS)) 5887 return true; 5888 5889 if (FMF.any() && !RetType->isFPOrFPVectorTy()) 5890 return Error(CallLoc, "fast-math-flags specified for call without " 5891 "floating-point scalar or vector return type"); 5892 5893 // If RetType is a non-function pointer type, then this is the short syntax 5894 // for the call, which means that RetType is just the return type. Infer the 5895 // rest of the function argument types from the arguments that are present. 5896 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 5897 if (!Ty) { 5898 // Pull out the types of all of the arguments... 5899 std::vector<Type*> ParamTypes; 5900 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 5901 ParamTypes.push_back(ArgList[i].V->getType()); 5902 5903 if (!FunctionType::isValidReturnType(RetType)) 5904 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 5905 5906 Ty = FunctionType::get(RetType, ParamTypes, false); 5907 } 5908 5909 CalleeID.FTy = Ty; 5910 5911 // Look up the callee. 5912 Value *Callee; 5913 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 5914 return true; 5915 5916 // Set up the Attribute for the function. 5917 SmallVector<AttributeSet, 8> Attrs; 5918 if (RetAttrs.hasAttributes()) 5919 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5920 AttributeSet::ReturnIndex, 5921 RetAttrs)); 5922 5923 SmallVector<Value*, 8> Args; 5924 5925 // Loop through FunctionType's arguments and ensure they are specified 5926 // correctly. Also, gather any parameter attributes. 5927 FunctionType::param_iterator I = Ty->param_begin(); 5928 FunctionType::param_iterator E = Ty->param_end(); 5929 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5930 Type *ExpectedTy = nullptr; 5931 if (I != E) { 5932 ExpectedTy = *I++; 5933 } else if (!Ty->isVarArg()) { 5934 return Error(ArgList[i].Loc, "too many arguments specified"); 5935 } 5936 5937 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 5938 return Error(ArgList[i].Loc, "argument is not of expected type '" + 5939 getTypeString(ExpectedTy) + "'"); 5940 Args.push_back(ArgList[i].V); 5941 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 5942 AttrBuilder B(ArgList[i].Attrs, i + 1); 5943 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 5944 } 5945 } 5946 5947 if (I != E) 5948 return Error(CallLoc, "not enough parameters specified for call"); 5949 5950 if (FnAttrs.hasAttributes()) { 5951 if (FnAttrs.hasAlignmentAttr()) 5952 return Error(CallLoc, "call instructions may not have an alignment"); 5953 5954 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5955 AttributeSet::FunctionIndex, 5956 FnAttrs)); 5957 } 5958 5959 // Finish off the Attribute and check them 5960 AttributeSet PAL = AttributeSet::get(Context, Attrs); 5961 5962 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 5963 CI->setTailCallKind(TCK); 5964 CI->setCallingConv(CC); 5965 if (FMF.any()) 5966 CI->setFastMathFlags(FMF); 5967 CI->setAttributes(PAL); 5968 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 5969 Inst = CI; 5970 return false; 5971 } 5972 5973 //===----------------------------------------------------------------------===// 5974 // Memory Instructions. 5975 //===----------------------------------------------------------------------===// 5976 5977 /// ParseAlloc 5978 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 5979 /// (',' 'align' i32)? 5980 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 5981 Value *Size = nullptr; 5982 LocTy SizeLoc, TyLoc; 5983 unsigned Alignment = 0; 5984 Type *Ty = nullptr; 5985 5986 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 5987 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 5988 5989 if (ParseType(Ty, TyLoc)) return true; 5990 5991 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 5992 return Error(TyLoc, "invalid type for alloca"); 5993 5994 bool AteExtraComma = false; 5995 if (EatIfPresent(lltok::comma)) { 5996 if (Lex.getKind() == lltok::kw_align) { 5997 if (ParseOptionalAlignment(Alignment)) return true; 5998 } else if (Lex.getKind() == lltok::MetadataVar) { 5999 AteExtraComma = true; 6000 } else { 6001 if (ParseTypeAndValue(Size, SizeLoc, PFS) || 6002 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6003 return true; 6004 } 6005 } 6006 6007 if (Size && !Size->getType()->isIntegerTy()) 6008 return Error(SizeLoc, "element count must have integer type"); 6009 6010 AllocaInst *AI = new AllocaInst(Ty, Size, Alignment); 6011 AI->setUsedWithInAlloca(IsInAlloca); 6012 AI->setSwiftError(IsSwiftError); 6013 Inst = AI; 6014 return AteExtraComma ? InstExtraComma : InstNormal; 6015 } 6016 6017 /// ParseLoad 6018 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 6019 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 6020 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6021 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 6022 Value *Val; LocTy Loc; 6023 unsigned Alignment = 0; 6024 bool AteExtraComma = false; 6025 bool isAtomic = false; 6026 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6027 SynchronizationScope Scope = CrossThread; 6028 6029 if (Lex.getKind() == lltok::kw_atomic) { 6030 isAtomic = true; 6031 Lex.Lex(); 6032 } 6033 6034 bool isVolatile = false; 6035 if (Lex.getKind() == lltok::kw_volatile) { 6036 isVolatile = true; 6037 Lex.Lex(); 6038 } 6039 6040 Type *Ty; 6041 LocTy ExplicitTypeLoc = Lex.getLoc(); 6042 if (ParseType(Ty) || 6043 ParseToken(lltok::comma, "expected comma after load's type") || 6044 ParseTypeAndValue(Val, Loc, PFS) || 6045 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 6046 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6047 return true; 6048 6049 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 6050 return Error(Loc, "load operand must be a pointer to a first class type"); 6051 if (isAtomic && !Alignment) 6052 return Error(Loc, "atomic load must have explicit non-zero alignment"); 6053 if (Ordering == AtomicOrdering::Release || 6054 Ordering == AtomicOrdering::AcquireRelease) 6055 return Error(Loc, "atomic load cannot use Release ordering"); 6056 6057 if (Ty != cast<PointerType>(Val->getType())->getElementType()) 6058 return Error(ExplicitTypeLoc, 6059 "explicit pointee type doesn't match operand's pointee type"); 6060 6061 Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, Scope); 6062 return AteExtraComma ? InstExtraComma : InstNormal; 6063 } 6064 6065 /// ParseStore 6066 6067 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 6068 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 6069 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6070 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 6071 Value *Val, *Ptr; LocTy Loc, PtrLoc; 6072 unsigned Alignment = 0; 6073 bool AteExtraComma = false; 6074 bool isAtomic = false; 6075 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6076 SynchronizationScope Scope = CrossThread; 6077 6078 if (Lex.getKind() == lltok::kw_atomic) { 6079 isAtomic = true; 6080 Lex.Lex(); 6081 } 6082 6083 bool isVolatile = false; 6084 if (Lex.getKind() == lltok::kw_volatile) { 6085 isVolatile = true; 6086 Lex.Lex(); 6087 } 6088 6089 if (ParseTypeAndValue(Val, Loc, PFS) || 6090 ParseToken(lltok::comma, "expected ',' after store operand") || 6091 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6092 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 6093 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6094 return true; 6095 6096 if (!Ptr->getType()->isPointerTy()) 6097 return Error(PtrLoc, "store operand must be a pointer"); 6098 if (!Val->getType()->isFirstClassType()) 6099 return Error(Loc, "store operand must be a first class value"); 6100 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6101 return Error(Loc, "stored value and pointer type do not match"); 6102 if (isAtomic && !Alignment) 6103 return Error(Loc, "atomic store must have explicit non-zero alignment"); 6104 if (Ordering == AtomicOrdering::Acquire || 6105 Ordering == AtomicOrdering::AcquireRelease) 6106 return Error(Loc, "atomic store cannot use Acquire ordering"); 6107 6108 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope); 6109 return AteExtraComma ? InstExtraComma : InstNormal; 6110 } 6111 6112 /// ParseCmpXchg 6113 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 6114 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering 6115 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 6116 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 6117 bool AteExtraComma = false; 6118 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 6119 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 6120 SynchronizationScope Scope = CrossThread; 6121 bool isVolatile = false; 6122 bool isWeak = false; 6123 6124 if (EatIfPresent(lltok::kw_weak)) 6125 isWeak = true; 6126 6127 if (EatIfPresent(lltok::kw_volatile)) 6128 isVolatile = true; 6129 6130 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6131 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 6132 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 6133 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 6134 ParseTypeAndValue(New, NewLoc, PFS) || 6135 ParseScopeAndOrdering(true /*Always atomic*/, Scope, SuccessOrdering) || 6136 ParseOrdering(FailureOrdering)) 6137 return true; 6138 6139 if (SuccessOrdering == AtomicOrdering::Unordered || 6140 FailureOrdering == AtomicOrdering::Unordered) 6141 return TokError("cmpxchg cannot be unordered"); 6142 if (isStrongerThan(FailureOrdering, SuccessOrdering)) 6143 return TokError("cmpxchg failure argument shall be no stronger than the " 6144 "success argument"); 6145 if (FailureOrdering == AtomicOrdering::Release || 6146 FailureOrdering == AtomicOrdering::AcquireRelease) 6147 return TokError( 6148 "cmpxchg failure ordering cannot include release semantics"); 6149 if (!Ptr->getType()->isPointerTy()) 6150 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 6151 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 6152 return Error(CmpLoc, "compare value and pointer type do not match"); 6153 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 6154 return Error(NewLoc, "new value and pointer type do not match"); 6155 if (!New->getType()->isFirstClassType()) 6156 return Error(NewLoc, "cmpxchg operand must be a first class value"); 6157 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 6158 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, Scope); 6159 CXI->setVolatile(isVolatile); 6160 CXI->setWeak(isWeak); 6161 Inst = CXI; 6162 return AteExtraComma ? InstExtraComma : InstNormal; 6163 } 6164 6165 /// ParseAtomicRMW 6166 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 6167 /// 'singlethread'? AtomicOrdering 6168 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 6169 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 6170 bool AteExtraComma = false; 6171 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6172 SynchronizationScope Scope = CrossThread; 6173 bool isVolatile = false; 6174 AtomicRMWInst::BinOp Operation; 6175 6176 if (EatIfPresent(lltok::kw_volatile)) 6177 isVolatile = true; 6178 6179 switch (Lex.getKind()) { 6180 default: return TokError("expected binary operation in atomicrmw"); 6181 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 6182 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 6183 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 6184 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 6185 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 6186 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 6187 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 6188 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 6189 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 6190 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 6191 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 6192 } 6193 Lex.Lex(); // Eat the operation. 6194 6195 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6196 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 6197 ParseTypeAndValue(Val, ValLoc, PFS) || 6198 ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 6199 return true; 6200 6201 if (Ordering == AtomicOrdering::Unordered) 6202 return TokError("atomicrmw cannot be unordered"); 6203 if (!Ptr->getType()->isPointerTy()) 6204 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 6205 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6206 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 6207 if (!Val->getType()->isIntegerTy()) 6208 return Error(ValLoc, "atomicrmw operand must be an integer"); 6209 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 6210 if (Size < 8 || (Size & (Size - 1))) 6211 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 6212 " integer"); 6213 6214 AtomicRMWInst *RMWI = 6215 new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope); 6216 RMWI->setVolatile(isVolatile); 6217 Inst = RMWI; 6218 return AteExtraComma ? InstExtraComma : InstNormal; 6219 } 6220 6221 /// ParseFence 6222 /// ::= 'fence' 'singlethread'? AtomicOrdering 6223 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 6224 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6225 SynchronizationScope Scope = CrossThread; 6226 if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 6227 return true; 6228 6229 if (Ordering == AtomicOrdering::Unordered) 6230 return TokError("fence cannot be unordered"); 6231 if (Ordering == AtomicOrdering::Monotonic) 6232 return TokError("fence cannot be monotonic"); 6233 6234 Inst = new FenceInst(Context, Ordering, Scope); 6235 return InstNormal; 6236 } 6237 6238 /// ParseGetElementPtr 6239 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 6240 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 6241 Value *Ptr = nullptr; 6242 Value *Val = nullptr; 6243 LocTy Loc, EltLoc; 6244 6245 bool InBounds = EatIfPresent(lltok::kw_inbounds); 6246 6247 Type *Ty = nullptr; 6248 LocTy ExplicitTypeLoc = Lex.getLoc(); 6249 if (ParseType(Ty) || 6250 ParseToken(lltok::comma, "expected comma after getelementptr's type") || 6251 ParseTypeAndValue(Ptr, Loc, PFS)) 6252 return true; 6253 6254 Type *BaseType = Ptr->getType(); 6255 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 6256 if (!BasePointerType) 6257 return Error(Loc, "base of getelementptr must be a pointer"); 6258 6259 if (Ty != BasePointerType->getElementType()) 6260 return Error(ExplicitTypeLoc, 6261 "explicit pointee type doesn't match operand's pointee type"); 6262 6263 SmallVector<Value*, 16> Indices; 6264 bool AteExtraComma = false; 6265 // GEP returns a vector of pointers if at least one of parameters is a vector. 6266 // All vector parameters should have the same vector width. 6267 unsigned GEPWidth = BaseType->isVectorTy() ? 6268 BaseType->getVectorNumElements() : 0; 6269 6270 while (EatIfPresent(lltok::comma)) { 6271 if (Lex.getKind() == lltok::MetadataVar) { 6272 AteExtraComma = true; 6273 break; 6274 } 6275 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 6276 if (!Val->getType()->getScalarType()->isIntegerTy()) 6277 return Error(EltLoc, "getelementptr index must be an integer"); 6278 6279 if (Val->getType()->isVectorTy()) { 6280 unsigned ValNumEl = Val->getType()->getVectorNumElements(); 6281 if (GEPWidth && GEPWidth != ValNumEl) 6282 return Error(EltLoc, 6283 "getelementptr vector index has a wrong number of elements"); 6284 GEPWidth = ValNumEl; 6285 } 6286 Indices.push_back(Val); 6287 } 6288 6289 SmallPtrSet<Type*, 4> Visited; 6290 if (!Indices.empty() && !Ty->isSized(&Visited)) 6291 return Error(Loc, "base element of getelementptr must be sized"); 6292 6293 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 6294 return Error(Loc, "invalid getelementptr indices"); 6295 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 6296 if (InBounds) 6297 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 6298 return AteExtraComma ? InstExtraComma : InstNormal; 6299 } 6300 6301 /// ParseExtractValue 6302 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 6303 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 6304 Value *Val; LocTy Loc; 6305 SmallVector<unsigned, 4> Indices; 6306 bool AteExtraComma; 6307 if (ParseTypeAndValue(Val, Loc, PFS) || 6308 ParseIndexList(Indices, AteExtraComma)) 6309 return true; 6310 6311 if (!Val->getType()->isAggregateType()) 6312 return Error(Loc, "extractvalue operand must be aggregate type"); 6313 6314 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 6315 return Error(Loc, "invalid indices for extractvalue"); 6316 Inst = ExtractValueInst::Create(Val, Indices); 6317 return AteExtraComma ? InstExtraComma : InstNormal; 6318 } 6319 6320 /// ParseInsertValue 6321 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 6322 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 6323 Value *Val0, *Val1; LocTy Loc0, Loc1; 6324 SmallVector<unsigned, 4> Indices; 6325 bool AteExtraComma; 6326 if (ParseTypeAndValue(Val0, Loc0, PFS) || 6327 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 6328 ParseTypeAndValue(Val1, Loc1, PFS) || 6329 ParseIndexList(Indices, AteExtraComma)) 6330 return true; 6331 6332 if (!Val0->getType()->isAggregateType()) 6333 return Error(Loc0, "insertvalue operand must be aggregate type"); 6334 6335 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 6336 if (!IndexedType) 6337 return Error(Loc0, "invalid indices for insertvalue"); 6338 if (IndexedType != Val1->getType()) 6339 return Error(Loc1, "insertvalue operand and field disagree in type: '" + 6340 getTypeString(Val1->getType()) + "' instead of '" + 6341 getTypeString(IndexedType) + "'"); 6342 Inst = InsertValueInst::Create(Val0, Val1, Indices); 6343 return AteExtraComma ? InstExtraComma : InstNormal; 6344 } 6345 6346 //===----------------------------------------------------------------------===// 6347 // Embedded metadata. 6348 //===----------------------------------------------------------------------===// 6349 6350 /// ParseMDNodeVector 6351 /// ::= { Element (',' Element)* } 6352 /// Element 6353 /// ::= 'null' | TypeAndValue 6354 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 6355 if (ParseToken(lltok::lbrace, "expected '{' here")) 6356 return true; 6357 6358 // Check for an empty list. 6359 if (EatIfPresent(lltok::rbrace)) 6360 return false; 6361 6362 do { 6363 // Null is a special case since it is typeless. 6364 if (EatIfPresent(lltok::kw_null)) { 6365 Elts.push_back(nullptr); 6366 continue; 6367 } 6368 6369 Metadata *MD; 6370 if (ParseMetadata(MD, nullptr)) 6371 return true; 6372 Elts.push_back(MD); 6373 } while (EatIfPresent(lltok::comma)); 6374 6375 return ParseToken(lltok::rbrace, "expected end of metadata node"); 6376 } 6377 6378 //===----------------------------------------------------------------------===// 6379 // Use-list order directives. 6380 //===----------------------------------------------------------------------===// 6381 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 6382 SMLoc Loc) { 6383 if (V->use_empty()) 6384 return Error(Loc, "value has no uses"); 6385 6386 unsigned NumUses = 0; 6387 SmallDenseMap<const Use *, unsigned, 16> Order; 6388 for (const Use &U : V->uses()) { 6389 if (++NumUses > Indexes.size()) 6390 break; 6391 Order[&U] = Indexes[NumUses - 1]; 6392 } 6393 if (NumUses < 2) 6394 return Error(Loc, "value only has one use"); 6395 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 6396 return Error(Loc, "wrong number of indexes, expected " + 6397 Twine(std::distance(V->use_begin(), V->use_end()))); 6398 6399 V->sortUseList([&](const Use &L, const Use &R) { 6400 return Order.lookup(&L) < Order.lookup(&R); 6401 }); 6402 return false; 6403 } 6404 6405 /// ParseUseListOrderIndexes 6406 /// ::= '{' uint32 (',' uint32)+ '}' 6407 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 6408 SMLoc Loc = Lex.getLoc(); 6409 if (ParseToken(lltok::lbrace, "expected '{' here")) 6410 return true; 6411 if (Lex.getKind() == lltok::rbrace) 6412 return Lex.Error("expected non-empty list of uselistorder indexes"); 6413 6414 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 6415 // indexes should be distinct numbers in the range [0, size-1], and should 6416 // not be in order. 6417 unsigned Offset = 0; 6418 unsigned Max = 0; 6419 bool IsOrdered = true; 6420 assert(Indexes.empty() && "Expected empty order vector"); 6421 do { 6422 unsigned Index; 6423 if (ParseUInt32(Index)) 6424 return true; 6425 6426 // Update consistency checks. 6427 Offset += Index - Indexes.size(); 6428 Max = std::max(Max, Index); 6429 IsOrdered &= Index == Indexes.size(); 6430 6431 Indexes.push_back(Index); 6432 } while (EatIfPresent(lltok::comma)); 6433 6434 if (ParseToken(lltok::rbrace, "expected '}' here")) 6435 return true; 6436 6437 if (Indexes.size() < 2) 6438 return Error(Loc, "expected >= 2 uselistorder indexes"); 6439 if (Offset != 0 || Max >= Indexes.size()) 6440 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)"); 6441 if (IsOrdered) 6442 return Error(Loc, "expected uselistorder indexes to change the order"); 6443 6444 return false; 6445 } 6446 6447 /// ParseUseListOrder 6448 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 6449 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) { 6450 SMLoc Loc = Lex.getLoc(); 6451 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 6452 return true; 6453 6454 Value *V; 6455 SmallVector<unsigned, 16> Indexes; 6456 if (ParseTypeAndValue(V, PFS) || 6457 ParseToken(lltok::comma, "expected comma in uselistorder directive") || 6458 ParseUseListOrderIndexes(Indexes)) 6459 return true; 6460 6461 return sortUseListOrder(V, Indexes, Loc); 6462 } 6463 6464 /// ParseUseListOrderBB 6465 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 6466 bool LLParser::ParseUseListOrderBB() { 6467 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 6468 SMLoc Loc = Lex.getLoc(); 6469 Lex.Lex(); 6470 6471 ValID Fn, Label; 6472 SmallVector<unsigned, 16> Indexes; 6473 if (ParseValID(Fn) || 6474 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6475 ParseValID(Label) || 6476 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6477 ParseUseListOrderIndexes(Indexes)) 6478 return true; 6479 6480 // Check the function. 6481 GlobalValue *GV; 6482 if (Fn.Kind == ValID::t_GlobalName) 6483 GV = M->getNamedValue(Fn.StrVal); 6484 else if (Fn.Kind == ValID::t_GlobalID) 6485 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 6486 else 6487 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 6488 if (!GV) 6489 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb"); 6490 auto *F = dyn_cast<Function>(GV); 6491 if (!F) 6492 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 6493 if (F->isDeclaration()) 6494 return Error(Fn.Loc, "invalid declaration in uselistorder_bb"); 6495 6496 // Check the basic block. 6497 if (Label.Kind == ValID::t_LocalID) 6498 return Error(Label.Loc, "invalid numeric label in uselistorder_bb"); 6499 if (Label.Kind != ValID::t_LocalName) 6500 return Error(Label.Loc, "expected basic block name in uselistorder_bb"); 6501 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 6502 if (!V) 6503 return Error(Label.Loc, "invalid basic block in uselistorder_bb"); 6504 if (!isa<BasicBlock>(V)) 6505 return Error(Label.Loc, "expected basic block in uselistorder_bb"); 6506 6507 return sortUseListOrder(V, Indexes, Loc); 6508 } 6509