1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "LLParser.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/AsmParser/SlotMapping.h"
20 #include "llvm/BinaryFormat/Dwarf.h"
21 #include "llvm/IR/Argument.h"
22 #include "llvm/IR/AutoUpgrade.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/CallingConv.h"
25 #include "llvm/IR/Comdat.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugInfoMetadata.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalIFunc.h"
31 #include "llvm/IR/GlobalObject.h"
32 #include "llvm/IR/InlineAsm.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/IR/ValueSymbolTable.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/MathExtras.h"
46 #include "llvm/Support/SaveAndRestore.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstring>
51 #include <iterator>
52 #include <vector>
53 
54 using namespace llvm;
55 
56 static std::string getTypeString(Type *T) {
57   std::string Result;
58   raw_string_ostream Tmp(Result);
59   Tmp << *T;
60   return Tmp.str();
61 }
62 
63 /// Run: module ::= toplevelentity*
64 bool LLParser::Run() {
65   // Prime the lexer.
66   Lex.Lex();
67 
68   if (Context.shouldDiscardValueNames())
69     return Error(
70         Lex.getLoc(),
71         "Can't read textual IR with a Context that discards named Values");
72 
73   return ParseTopLevelEntities() || ValidateEndOfModule() ||
74          ValidateEndOfIndex();
75 }
76 
77 bool LLParser::parseStandaloneConstantValue(Constant *&C,
78                                             const SlotMapping *Slots) {
79   restoreParsingState(Slots);
80   Lex.Lex();
81 
82   Type *Ty = nullptr;
83   if (ParseType(Ty) || parseConstantValue(Ty, C))
84     return true;
85   if (Lex.getKind() != lltok::Eof)
86     return Error(Lex.getLoc(), "expected end of string");
87   return false;
88 }
89 
90 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
91                                     const SlotMapping *Slots) {
92   restoreParsingState(Slots);
93   Lex.Lex();
94 
95   Read = 0;
96   SMLoc Start = Lex.getLoc();
97   Ty = nullptr;
98   if (ParseType(Ty))
99     return true;
100   SMLoc End = Lex.getLoc();
101   Read = End.getPointer() - Start.getPointer();
102 
103   return false;
104 }
105 
106 void LLParser::restoreParsingState(const SlotMapping *Slots) {
107   if (!Slots)
108     return;
109   NumberedVals = Slots->GlobalValues;
110   NumberedMetadata = Slots->MetadataNodes;
111   for (const auto &I : Slots->NamedTypes)
112     NamedTypes.insert(
113         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
114   for (const auto &I : Slots->Types)
115     NumberedTypes.insert(
116         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
117 }
118 
119 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
120 /// module.
121 bool LLParser::ValidateEndOfModule() {
122   if (!M)
123     return false;
124   // Handle any function attribute group forward references.
125   for (const auto &RAG : ForwardRefAttrGroups) {
126     Value *V = RAG.first;
127     const std::vector<unsigned> &Attrs = RAG.second;
128     AttrBuilder B;
129 
130     for (const auto &Attr : Attrs)
131       B.merge(NumberedAttrBuilders[Attr]);
132 
133     if (Function *Fn = dyn_cast<Function>(V)) {
134       AttributeList AS = Fn->getAttributes();
135       AttrBuilder FnAttrs(AS.getFnAttributes());
136       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
137 
138       FnAttrs.merge(B);
139 
140       // If the alignment was parsed as an attribute, move to the alignment
141       // field.
142       if (FnAttrs.hasAlignmentAttr()) {
143         Fn->setAlignment(FnAttrs.getAlignment());
144         FnAttrs.removeAttribute(Attribute::Alignment);
145       }
146 
147       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
148                             AttributeSet::get(Context, FnAttrs));
149       Fn->setAttributes(AS);
150     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
151       AttributeList AS = CI->getAttributes();
152       AttrBuilder FnAttrs(AS.getFnAttributes());
153       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
154       FnAttrs.merge(B);
155       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
156                             AttributeSet::get(Context, FnAttrs));
157       CI->setAttributes(AS);
158     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
159       AttributeList AS = II->getAttributes();
160       AttrBuilder FnAttrs(AS.getFnAttributes());
161       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
162       FnAttrs.merge(B);
163       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
164                             AttributeSet::get(Context, FnAttrs));
165       II->setAttributes(AS);
166     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
167       AttrBuilder Attrs(GV->getAttributes());
168       Attrs.merge(B);
169       GV->setAttributes(AttributeSet::get(Context,Attrs));
170     } else {
171       llvm_unreachable("invalid object with forward attribute group reference");
172     }
173   }
174 
175   // If there are entries in ForwardRefBlockAddresses at this point, the
176   // function was never defined.
177   if (!ForwardRefBlockAddresses.empty())
178     return Error(ForwardRefBlockAddresses.begin()->first.Loc,
179                  "expected function name in blockaddress");
180 
181   for (const auto &NT : NumberedTypes)
182     if (NT.second.second.isValid())
183       return Error(NT.second.second,
184                    "use of undefined type '%" + Twine(NT.first) + "'");
185 
186   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
187        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
188     if (I->second.second.isValid())
189       return Error(I->second.second,
190                    "use of undefined type named '" + I->getKey() + "'");
191 
192   if (!ForwardRefComdats.empty())
193     return Error(ForwardRefComdats.begin()->second,
194                  "use of undefined comdat '$" +
195                      ForwardRefComdats.begin()->first + "'");
196 
197   if (!ForwardRefVals.empty())
198     return Error(ForwardRefVals.begin()->second.second,
199                  "use of undefined value '@" + ForwardRefVals.begin()->first +
200                  "'");
201 
202   if (!ForwardRefValIDs.empty())
203     return Error(ForwardRefValIDs.begin()->second.second,
204                  "use of undefined value '@" +
205                  Twine(ForwardRefValIDs.begin()->first) + "'");
206 
207   if (!ForwardRefMDNodes.empty())
208     return Error(ForwardRefMDNodes.begin()->second.second,
209                  "use of undefined metadata '!" +
210                  Twine(ForwardRefMDNodes.begin()->first) + "'");
211 
212   // Resolve metadata cycles.
213   for (auto &N : NumberedMetadata) {
214     if (N.second && !N.second->isResolved())
215       N.second->resolveCycles();
216   }
217 
218   for (auto *Inst : InstsWithTBAATag) {
219     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
220     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
221     auto *UpgradedMD = UpgradeTBAANode(*MD);
222     if (MD != UpgradedMD)
223       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
224   }
225 
226   // Look for intrinsic functions and CallInst that need to be upgraded
227   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
228     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
229 
230   // Some types could be renamed during loading if several modules are
231   // loaded in the same LLVMContext (LTO scenario). In this case we should
232   // remangle intrinsics names as well.
233   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
234     Function *F = &*FI++;
235     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
236       F->replaceAllUsesWith(Remangled.getValue());
237       F->eraseFromParent();
238     }
239   }
240 
241   if (UpgradeDebugInfo)
242     llvm::UpgradeDebugInfo(*M);
243 
244   UpgradeModuleFlags(*M);
245   UpgradeSectionAttributes(*M);
246 
247   if (!Slots)
248     return false;
249   // Initialize the slot mapping.
250   // Because by this point we've parsed and validated everything, we can "steal"
251   // the mapping from LLParser as it doesn't need it anymore.
252   Slots->GlobalValues = std::move(NumberedVals);
253   Slots->MetadataNodes = std::move(NumberedMetadata);
254   for (const auto &I : NamedTypes)
255     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
256   for (const auto &I : NumberedTypes)
257     Slots->Types.insert(std::make_pair(I.first, I.second.first));
258 
259   return false;
260 }
261 
262 /// Do final validity and sanity checks at the end of the index.
263 bool LLParser::ValidateEndOfIndex() {
264   if (!Index)
265     return false;
266 
267   if (!ForwardRefValueInfos.empty())
268     return Error(ForwardRefValueInfos.begin()->second.front().second,
269                  "use of undefined summary '^" +
270                      Twine(ForwardRefValueInfos.begin()->first) + "'");
271 
272   if (!ForwardRefAliasees.empty())
273     return Error(ForwardRefAliasees.begin()->second.front().second,
274                  "use of undefined summary '^" +
275                      Twine(ForwardRefAliasees.begin()->first) + "'");
276 
277   if (!ForwardRefTypeIds.empty())
278     return Error(ForwardRefTypeIds.begin()->second.front().second,
279                  "use of undefined type id summary '^" +
280                      Twine(ForwardRefTypeIds.begin()->first) + "'");
281 
282   return false;
283 }
284 
285 //===----------------------------------------------------------------------===//
286 // Top-Level Entities
287 //===----------------------------------------------------------------------===//
288 
289 bool LLParser::ParseTopLevelEntities() {
290   // If there is no Module, then parse just the summary index entries.
291   if (!M) {
292     while (true) {
293       switch (Lex.getKind()) {
294       case lltok::Eof:
295         return false;
296       case lltok::SummaryID:
297         if (ParseSummaryEntry())
298           return true;
299         break;
300       case lltok::kw_source_filename:
301         if (ParseSourceFileName())
302           return true;
303         break;
304       default:
305         // Skip everything else
306         Lex.Lex();
307       }
308     }
309   }
310   while (true) {
311     switch (Lex.getKind()) {
312     default:         return TokError("expected top-level entity");
313     case lltok::Eof: return false;
314     case lltok::kw_declare: if (ParseDeclare()) return true; break;
315     case lltok::kw_define:  if (ParseDefine()) return true; break;
316     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
317     case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
318     case lltok::kw_source_filename:
319       if (ParseSourceFileName())
320         return true;
321       break;
322     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
323     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
324     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
325     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
326     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
327     case lltok::ComdatVar:  if (parseComdat()) return true; break;
328     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
329     case lltok::SummaryID:
330       if (ParseSummaryEntry())
331         return true;
332       break;
333     case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
334     case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
335     case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
336     case lltok::kw_uselistorder_bb:
337       if (ParseUseListOrderBB())
338         return true;
339       break;
340     }
341   }
342 }
343 
344 /// toplevelentity
345 ///   ::= 'module' 'asm' STRINGCONSTANT
346 bool LLParser::ParseModuleAsm() {
347   assert(Lex.getKind() == lltok::kw_module);
348   Lex.Lex();
349 
350   std::string AsmStr;
351   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
352       ParseStringConstant(AsmStr)) return true;
353 
354   M->appendModuleInlineAsm(AsmStr);
355   return false;
356 }
357 
358 /// toplevelentity
359 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
360 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
361 bool LLParser::ParseTargetDefinition() {
362   assert(Lex.getKind() == lltok::kw_target);
363   std::string Str;
364   switch (Lex.Lex()) {
365   default: return TokError("unknown target property");
366   case lltok::kw_triple:
367     Lex.Lex();
368     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
369         ParseStringConstant(Str))
370       return true;
371     M->setTargetTriple(Str);
372     return false;
373   case lltok::kw_datalayout:
374     Lex.Lex();
375     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
376         ParseStringConstant(Str))
377       return true;
378     if (DataLayoutStr.empty())
379       M->setDataLayout(Str);
380     return false;
381   }
382 }
383 
384 /// toplevelentity
385 ///   ::= 'source_filename' '=' STRINGCONSTANT
386 bool LLParser::ParseSourceFileName() {
387   assert(Lex.getKind() == lltok::kw_source_filename);
388   Lex.Lex();
389   if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
390       ParseStringConstant(SourceFileName))
391     return true;
392   if (M)
393     M->setSourceFileName(SourceFileName);
394   return false;
395 }
396 
397 /// toplevelentity
398 ///   ::= 'deplibs' '=' '[' ']'
399 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
400 /// FIXME: Remove in 4.0. Currently parse, but ignore.
401 bool LLParser::ParseDepLibs() {
402   assert(Lex.getKind() == lltok::kw_deplibs);
403   Lex.Lex();
404   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
405       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
406     return true;
407 
408   if (EatIfPresent(lltok::rsquare))
409     return false;
410 
411   do {
412     std::string Str;
413     if (ParseStringConstant(Str)) return true;
414   } while (EatIfPresent(lltok::comma));
415 
416   return ParseToken(lltok::rsquare, "expected ']' at end of list");
417 }
418 
419 /// ParseUnnamedType:
420 ///   ::= LocalVarID '=' 'type' type
421 bool LLParser::ParseUnnamedType() {
422   LocTy TypeLoc = Lex.getLoc();
423   unsigned TypeID = Lex.getUIntVal();
424   Lex.Lex(); // eat LocalVarID;
425 
426   if (ParseToken(lltok::equal, "expected '=' after name") ||
427       ParseToken(lltok::kw_type, "expected 'type' after '='"))
428     return true;
429 
430   Type *Result = nullptr;
431   if (ParseStructDefinition(TypeLoc, "",
432                             NumberedTypes[TypeID], Result)) return true;
433 
434   if (!isa<StructType>(Result)) {
435     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
436     if (Entry.first)
437       return Error(TypeLoc, "non-struct types may not be recursive");
438     Entry.first = Result;
439     Entry.second = SMLoc();
440   }
441 
442   return false;
443 }
444 
445 /// toplevelentity
446 ///   ::= LocalVar '=' 'type' type
447 bool LLParser::ParseNamedType() {
448   std::string Name = Lex.getStrVal();
449   LocTy NameLoc = Lex.getLoc();
450   Lex.Lex();  // eat LocalVar.
451 
452   if (ParseToken(lltok::equal, "expected '=' after name") ||
453       ParseToken(lltok::kw_type, "expected 'type' after name"))
454     return true;
455 
456   Type *Result = nullptr;
457   if (ParseStructDefinition(NameLoc, Name,
458                             NamedTypes[Name], Result)) return true;
459 
460   if (!isa<StructType>(Result)) {
461     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
462     if (Entry.first)
463       return Error(NameLoc, "non-struct types may not be recursive");
464     Entry.first = Result;
465     Entry.second = SMLoc();
466   }
467 
468   return false;
469 }
470 
471 /// toplevelentity
472 ///   ::= 'declare' FunctionHeader
473 bool LLParser::ParseDeclare() {
474   assert(Lex.getKind() == lltok::kw_declare);
475   Lex.Lex();
476 
477   std::vector<std::pair<unsigned, MDNode *>> MDs;
478   while (Lex.getKind() == lltok::MetadataVar) {
479     unsigned MDK;
480     MDNode *N;
481     if (ParseMetadataAttachment(MDK, N))
482       return true;
483     MDs.push_back({MDK, N});
484   }
485 
486   Function *F;
487   if (ParseFunctionHeader(F, false))
488     return true;
489   for (auto &MD : MDs)
490     F->addMetadata(MD.first, *MD.second);
491   return false;
492 }
493 
494 /// toplevelentity
495 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
496 bool LLParser::ParseDefine() {
497   assert(Lex.getKind() == lltok::kw_define);
498   Lex.Lex();
499 
500   Function *F;
501   return ParseFunctionHeader(F, true) ||
502          ParseOptionalFunctionMetadata(*F) ||
503          ParseFunctionBody(*F);
504 }
505 
506 /// ParseGlobalType
507 ///   ::= 'constant'
508 ///   ::= 'global'
509 bool LLParser::ParseGlobalType(bool &IsConstant) {
510   if (Lex.getKind() == lltok::kw_constant)
511     IsConstant = true;
512   else if (Lex.getKind() == lltok::kw_global)
513     IsConstant = false;
514   else {
515     IsConstant = false;
516     return TokError("expected 'global' or 'constant'");
517   }
518   Lex.Lex();
519   return false;
520 }
521 
522 bool LLParser::ParseOptionalUnnamedAddr(
523     GlobalVariable::UnnamedAddr &UnnamedAddr) {
524   if (EatIfPresent(lltok::kw_unnamed_addr))
525     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
526   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
527     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
528   else
529     UnnamedAddr = GlobalValue::UnnamedAddr::None;
530   return false;
531 }
532 
533 /// ParseUnnamedGlobal:
534 ///   OptionalVisibility (ALIAS | IFUNC) ...
535 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
536 ///   OptionalDLLStorageClass
537 ///                                                     ...   -> global variable
538 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
539 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
540 ///                OptionalDLLStorageClass
541 ///                                                     ...   -> global variable
542 bool LLParser::ParseUnnamedGlobal() {
543   unsigned VarID = NumberedVals.size();
544   std::string Name;
545   LocTy NameLoc = Lex.getLoc();
546 
547   // Handle the GlobalID form.
548   if (Lex.getKind() == lltok::GlobalID) {
549     if (Lex.getUIntVal() != VarID)
550       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
551                    Twine(VarID) + "'");
552     Lex.Lex(); // eat GlobalID;
553 
554     if (ParseToken(lltok::equal, "expected '=' after name"))
555       return true;
556   }
557 
558   bool HasLinkage;
559   unsigned Linkage, Visibility, DLLStorageClass;
560   bool DSOLocal;
561   GlobalVariable::ThreadLocalMode TLM;
562   GlobalVariable::UnnamedAddr UnnamedAddr;
563   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
564                            DSOLocal) ||
565       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
566     return true;
567 
568   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
569     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
570                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
571 
572   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
573                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
574 }
575 
576 /// ParseNamedGlobal:
577 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
578 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
579 ///                 OptionalVisibility OptionalDLLStorageClass
580 ///                                                     ...   -> global variable
581 bool LLParser::ParseNamedGlobal() {
582   assert(Lex.getKind() == lltok::GlobalVar);
583   LocTy NameLoc = Lex.getLoc();
584   std::string Name = Lex.getStrVal();
585   Lex.Lex();
586 
587   bool HasLinkage;
588   unsigned Linkage, Visibility, DLLStorageClass;
589   bool DSOLocal;
590   GlobalVariable::ThreadLocalMode TLM;
591   GlobalVariable::UnnamedAddr UnnamedAddr;
592   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
593       ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
594                            DSOLocal) ||
595       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
596     return true;
597 
598   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
599     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
600                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
601 
602   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
603                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
604 }
605 
606 bool LLParser::parseComdat() {
607   assert(Lex.getKind() == lltok::ComdatVar);
608   std::string Name = Lex.getStrVal();
609   LocTy NameLoc = Lex.getLoc();
610   Lex.Lex();
611 
612   if (ParseToken(lltok::equal, "expected '=' here"))
613     return true;
614 
615   if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
616     return TokError("expected comdat type");
617 
618   Comdat::SelectionKind SK;
619   switch (Lex.getKind()) {
620   default:
621     return TokError("unknown selection kind");
622   case lltok::kw_any:
623     SK = Comdat::Any;
624     break;
625   case lltok::kw_exactmatch:
626     SK = Comdat::ExactMatch;
627     break;
628   case lltok::kw_largest:
629     SK = Comdat::Largest;
630     break;
631   case lltok::kw_noduplicates:
632     SK = Comdat::NoDuplicates;
633     break;
634   case lltok::kw_samesize:
635     SK = Comdat::SameSize;
636     break;
637   }
638   Lex.Lex();
639 
640   // See if the comdat was forward referenced, if so, use the comdat.
641   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
642   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
643   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
644     return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
645 
646   Comdat *C;
647   if (I != ComdatSymTab.end())
648     C = &I->second;
649   else
650     C = M->getOrInsertComdat(Name);
651   C->setSelectionKind(SK);
652 
653   return false;
654 }
655 
656 // MDString:
657 //   ::= '!' STRINGCONSTANT
658 bool LLParser::ParseMDString(MDString *&Result) {
659   std::string Str;
660   if (ParseStringConstant(Str)) return true;
661   Result = MDString::get(Context, Str);
662   return false;
663 }
664 
665 // MDNode:
666 //   ::= '!' MDNodeNumber
667 bool LLParser::ParseMDNodeID(MDNode *&Result) {
668   // !{ ..., !42, ... }
669   LocTy IDLoc = Lex.getLoc();
670   unsigned MID = 0;
671   if (ParseUInt32(MID))
672     return true;
673 
674   // If not a forward reference, just return it now.
675   if (NumberedMetadata.count(MID)) {
676     Result = NumberedMetadata[MID];
677     return false;
678   }
679 
680   // Otherwise, create MDNode forward reference.
681   auto &FwdRef = ForwardRefMDNodes[MID];
682   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
683 
684   Result = FwdRef.first.get();
685   NumberedMetadata[MID].reset(Result);
686   return false;
687 }
688 
689 /// ParseNamedMetadata:
690 ///   !foo = !{ !1, !2 }
691 bool LLParser::ParseNamedMetadata() {
692   assert(Lex.getKind() == lltok::MetadataVar);
693   std::string Name = Lex.getStrVal();
694   Lex.Lex();
695 
696   if (ParseToken(lltok::equal, "expected '=' here") ||
697       ParseToken(lltok::exclaim, "Expected '!' here") ||
698       ParseToken(lltok::lbrace, "Expected '{' here"))
699     return true;
700 
701   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
702   if (Lex.getKind() != lltok::rbrace)
703     do {
704       MDNode *N = nullptr;
705       // Parse DIExpressions inline as a special case. They are still MDNodes,
706       // so they can still appear in named metadata. Remove this logic if they
707       // become plain Metadata.
708       if (Lex.getKind() == lltok::MetadataVar &&
709           Lex.getStrVal() == "DIExpression") {
710         if (ParseDIExpression(N, /*IsDistinct=*/false))
711           return true;
712       } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
713                  ParseMDNodeID(N)) {
714         return true;
715       }
716       NMD->addOperand(N);
717     } while (EatIfPresent(lltok::comma));
718 
719   return ParseToken(lltok::rbrace, "expected end of metadata node");
720 }
721 
722 /// ParseStandaloneMetadata:
723 ///   !42 = !{...}
724 bool LLParser::ParseStandaloneMetadata() {
725   assert(Lex.getKind() == lltok::exclaim);
726   Lex.Lex();
727   unsigned MetadataID = 0;
728 
729   MDNode *Init;
730   if (ParseUInt32(MetadataID) ||
731       ParseToken(lltok::equal, "expected '=' here"))
732     return true;
733 
734   // Detect common error, from old metadata syntax.
735   if (Lex.getKind() == lltok::Type)
736     return TokError("unexpected type in metadata definition");
737 
738   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
739   if (Lex.getKind() == lltok::MetadataVar) {
740     if (ParseSpecializedMDNode(Init, IsDistinct))
741       return true;
742   } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
743              ParseMDTuple(Init, IsDistinct))
744     return true;
745 
746   // See if this was forward referenced, if so, handle it.
747   auto FI = ForwardRefMDNodes.find(MetadataID);
748   if (FI != ForwardRefMDNodes.end()) {
749     FI->second.first->replaceAllUsesWith(Init);
750     ForwardRefMDNodes.erase(FI);
751 
752     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
753   } else {
754     if (NumberedMetadata.count(MetadataID))
755       return TokError("Metadata id is already used");
756     NumberedMetadata[MetadataID].reset(Init);
757   }
758 
759   return false;
760 }
761 
762 // Skips a single module summary entry.
763 bool LLParser::SkipModuleSummaryEntry() {
764   // Each module summary entry consists of a tag for the entry
765   // type, followed by a colon, then the fields surrounded by nested sets of
766   // parentheses. The "tag:" looks like a Label. Once parsing support is
767   // in place we will look for the tokens corresponding to the expected tags.
768   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
769       Lex.getKind() != lltok::kw_typeid)
770     return TokError(
771         "Expected 'gv', 'module', or 'typeid' at the start of summary entry");
772   Lex.Lex();
773   if (ParseToken(lltok::colon, "expected ':' at start of summary entry") ||
774       ParseToken(lltok::lparen, "expected '(' at start of summary entry"))
775     return true;
776   // Now walk through the parenthesized entry, until the number of open
777   // parentheses goes back down to 0 (the first '(' was parsed above).
778   unsigned NumOpenParen = 1;
779   do {
780     switch (Lex.getKind()) {
781     case lltok::lparen:
782       NumOpenParen++;
783       break;
784     case lltok::rparen:
785       NumOpenParen--;
786       break;
787     case lltok::Eof:
788       return TokError("found end of file while parsing summary entry");
789     default:
790       // Skip everything in between parentheses.
791       break;
792     }
793     Lex.Lex();
794   } while (NumOpenParen > 0);
795   return false;
796 }
797 
798 /// SummaryEntry
799 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
800 bool LLParser::ParseSummaryEntry() {
801   assert(Lex.getKind() == lltok::SummaryID);
802   unsigned SummaryID = Lex.getUIntVal();
803 
804   // For summary entries, colons should be treated as distinct tokens,
805   // not an indication of the end of a label token.
806   Lex.setIgnoreColonInIdentifiers(true);
807 
808   Lex.Lex();
809   if (ParseToken(lltok::equal, "expected '=' here"))
810     return true;
811 
812   // If we don't have an index object, skip the summary entry.
813   if (!Index)
814     return SkipModuleSummaryEntry();
815 
816   switch (Lex.getKind()) {
817   case lltok::kw_gv:
818     return ParseGVEntry(SummaryID);
819   case lltok::kw_module:
820     return ParseModuleEntry(SummaryID);
821   case lltok::kw_typeid:
822     return ParseTypeIdEntry(SummaryID);
823     break;
824   default:
825     return Error(Lex.getLoc(), "unexpected summary kind");
826   }
827   Lex.setIgnoreColonInIdentifiers(false);
828   return false;
829 }
830 
831 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
832   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
833          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
834 }
835 
836 // If there was an explicit dso_local, update GV. In the absence of an explicit
837 // dso_local we keep the default value.
838 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
839   if (DSOLocal)
840     GV.setDSOLocal(true);
841 }
842 
843 /// parseIndirectSymbol:
844 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
845 ///                     OptionalVisibility OptionalDLLStorageClass
846 ///                     OptionalThreadLocal OptionalUnnamedAddr
847 //                      'alias|ifunc' IndirectSymbol
848 ///
849 /// IndirectSymbol
850 ///   ::= TypeAndValue
851 ///
852 /// Everything through OptionalUnnamedAddr has already been parsed.
853 ///
854 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
855                                    unsigned L, unsigned Visibility,
856                                    unsigned DLLStorageClass, bool DSOLocal,
857                                    GlobalVariable::ThreadLocalMode TLM,
858                                    GlobalVariable::UnnamedAddr UnnamedAddr) {
859   bool IsAlias;
860   if (Lex.getKind() == lltok::kw_alias)
861     IsAlias = true;
862   else if (Lex.getKind() == lltok::kw_ifunc)
863     IsAlias = false;
864   else
865     llvm_unreachable("Not an alias or ifunc!");
866   Lex.Lex();
867 
868   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
869 
870   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
871     return Error(NameLoc, "invalid linkage type for alias");
872 
873   if (!isValidVisibilityForLinkage(Visibility, L))
874     return Error(NameLoc,
875                  "symbol with local linkage must have default visibility");
876 
877   Type *Ty;
878   LocTy ExplicitTypeLoc = Lex.getLoc();
879   if (ParseType(Ty) ||
880       ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
881     return true;
882 
883   Constant *Aliasee;
884   LocTy AliaseeLoc = Lex.getLoc();
885   if (Lex.getKind() != lltok::kw_bitcast &&
886       Lex.getKind() != lltok::kw_getelementptr &&
887       Lex.getKind() != lltok::kw_addrspacecast &&
888       Lex.getKind() != lltok::kw_inttoptr) {
889     if (ParseGlobalTypeAndValue(Aliasee))
890       return true;
891   } else {
892     // The bitcast dest type is not present, it is implied by the dest type.
893     ValID ID;
894     if (ParseValID(ID))
895       return true;
896     if (ID.Kind != ValID::t_Constant)
897       return Error(AliaseeLoc, "invalid aliasee");
898     Aliasee = ID.ConstantVal;
899   }
900 
901   Type *AliaseeType = Aliasee->getType();
902   auto *PTy = dyn_cast<PointerType>(AliaseeType);
903   if (!PTy)
904     return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
905   unsigned AddrSpace = PTy->getAddressSpace();
906 
907   if (IsAlias && Ty != PTy->getElementType())
908     return Error(
909         ExplicitTypeLoc,
910         "explicit pointee type doesn't match operand's pointee type");
911 
912   if (!IsAlias && !PTy->getElementType()->isFunctionTy())
913     return Error(
914         ExplicitTypeLoc,
915         "explicit pointee type should be a function type");
916 
917   GlobalValue *GVal = nullptr;
918 
919   // See if the alias was forward referenced, if so, prepare to replace the
920   // forward reference.
921   if (!Name.empty()) {
922     GVal = M->getNamedValue(Name);
923     if (GVal) {
924       if (!ForwardRefVals.erase(Name))
925         return Error(NameLoc, "redefinition of global '@" + Name + "'");
926     }
927   } else {
928     auto I = ForwardRefValIDs.find(NumberedVals.size());
929     if (I != ForwardRefValIDs.end()) {
930       GVal = I->second.first;
931       ForwardRefValIDs.erase(I);
932     }
933   }
934 
935   // Okay, create the alias but do not insert it into the module yet.
936   std::unique_ptr<GlobalIndirectSymbol> GA;
937   if (IsAlias)
938     GA.reset(GlobalAlias::create(Ty, AddrSpace,
939                                  (GlobalValue::LinkageTypes)Linkage, Name,
940                                  Aliasee, /*Parent*/ nullptr));
941   else
942     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
943                                  (GlobalValue::LinkageTypes)Linkage, Name,
944                                  Aliasee, /*Parent*/ nullptr));
945   GA->setThreadLocalMode(TLM);
946   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
947   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
948   GA->setUnnamedAddr(UnnamedAddr);
949   maybeSetDSOLocal(DSOLocal, *GA);
950 
951   if (Name.empty())
952     NumberedVals.push_back(GA.get());
953 
954   if (GVal) {
955     // Verify that types agree.
956     if (GVal->getType() != GA->getType())
957       return Error(
958           ExplicitTypeLoc,
959           "forward reference and definition of alias have different types");
960 
961     // If they agree, just RAUW the old value with the alias and remove the
962     // forward ref info.
963     GVal->replaceAllUsesWith(GA.get());
964     GVal->eraseFromParent();
965   }
966 
967   // Insert into the module, we know its name won't collide now.
968   if (IsAlias)
969     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
970   else
971     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
972   assert(GA->getName() == Name && "Should not be a name conflict!");
973 
974   // The module owns this now
975   GA.release();
976 
977   return false;
978 }
979 
980 /// ParseGlobal
981 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
982 ///       OptionalVisibility OptionalDLLStorageClass
983 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
984 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
985 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
986 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
987 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
988 ///       Const OptionalAttrs
989 ///
990 /// Everything up to and including OptionalUnnamedAddr has been parsed
991 /// already.
992 ///
993 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
994                            unsigned Linkage, bool HasLinkage,
995                            unsigned Visibility, unsigned DLLStorageClass,
996                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
997                            GlobalVariable::UnnamedAddr UnnamedAddr) {
998   if (!isValidVisibilityForLinkage(Visibility, Linkage))
999     return Error(NameLoc,
1000                  "symbol with local linkage must have default visibility");
1001 
1002   unsigned AddrSpace;
1003   bool IsConstant, IsExternallyInitialized;
1004   LocTy IsExternallyInitializedLoc;
1005   LocTy TyLoc;
1006 
1007   Type *Ty = nullptr;
1008   if (ParseOptionalAddrSpace(AddrSpace) ||
1009       ParseOptionalToken(lltok::kw_externally_initialized,
1010                          IsExternallyInitialized,
1011                          &IsExternallyInitializedLoc) ||
1012       ParseGlobalType(IsConstant) ||
1013       ParseType(Ty, TyLoc))
1014     return true;
1015 
1016   // If the linkage is specified and is external, then no initializer is
1017   // present.
1018   Constant *Init = nullptr;
1019   if (!HasLinkage ||
1020       !GlobalValue::isValidDeclarationLinkage(
1021           (GlobalValue::LinkageTypes)Linkage)) {
1022     if (ParseGlobalValue(Ty, Init))
1023       return true;
1024   }
1025 
1026   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1027     return Error(TyLoc, "invalid type for global variable");
1028 
1029   GlobalValue *GVal = nullptr;
1030 
1031   // See if the global was forward referenced, if so, use the global.
1032   if (!Name.empty()) {
1033     GVal = M->getNamedValue(Name);
1034     if (GVal) {
1035       if (!ForwardRefVals.erase(Name))
1036         return Error(NameLoc, "redefinition of global '@" + Name + "'");
1037     }
1038   } else {
1039     auto I = ForwardRefValIDs.find(NumberedVals.size());
1040     if (I != ForwardRefValIDs.end()) {
1041       GVal = I->second.first;
1042       ForwardRefValIDs.erase(I);
1043     }
1044   }
1045 
1046   GlobalVariable *GV;
1047   if (!GVal) {
1048     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
1049                             Name, nullptr, GlobalVariable::NotThreadLocal,
1050                             AddrSpace);
1051   } else {
1052     if (GVal->getValueType() != Ty)
1053       return Error(TyLoc,
1054             "forward reference and definition of global have different types");
1055 
1056     GV = cast<GlobalVariable>(GVal);
1057 
1058     // Move the forward-reference to the correct spot in the module.
1059     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
1060   }
1061 
1062   if (Name.empty())
1063     NumberedVals.push_back(GV);
1064 
1065   // Set the parsed properties on the global.
1066   if (Init)
1067     GV->setInitializer(Init);
1068   GV->setConstant(IsConstant);
1069   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1070   maybeSetDSOLocal(DSOLocal, *GV);
1071   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1072   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1073   GV->setExternallyInitialized(IsExternallyInitialized);
1074   GV->setThreadLocalMode(TLM);
1075   GV->setUnnamedAddr(UnnamedAddr);
1076 
1077   // Parse attributes on the global.
1078   while (Lex.getKind() == lltok::comma) {
1079     Lex.Lex();
1080 
1081     if (Lex.getKind() == lltok::kw_section) {
1082       Lex.Lex();
1083       GV->setSection(Lex.getStrVal());
1084       if (ParseToken(lltok::StringConstant, "expected global section string"))
1085         return true;
1086     } else if (Lex.getKind() == lltok::kw_align) {
1087       unsigned Alignment;
1088       if (ParseOptionalAlignment(Alignment)) return true;
1089       GV->setAlignment(Alignment);
1090     } else if (Lex.getKind() == lltok::MetadataVar) {
1091       if (ParseGlobalObjectMetadataAttachment(*GV))
1092         return true;
1093     } else {
1094       Comdat *C;
1095       if (parseOptionalComdat(Name, C))
1096         return true;
1097       if (C)
1098         GV->setComdat(C);
1099       else
1100         return TokError("unknown global variable property!");
1101     }
1102   }
1103 
1104   AttrBuilder Attrs;
1105   LocTy BuiltinLoc;
1106   std::vector<unsigned> FwdRefAttrGrps;
1107   if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1108     return true;
1109   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1110     GV->setAttributes(AttributeSet::get(Context, Attrs));
1111     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1112   }
1113 
1114   return false;
1115 }
1116 
1117 /// ParseUnnamedAttrGrp
1118 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1119 bool LLParser::ParseUnnamedAttrGrp() {
1120   assert(Lex.getKind() == lltok::kw_attributes);
1121   LocTy AttrGrpLoc = Lex.getLoc();
1122   Lex.Lex();
1123 
1124   if (Lex.getKind() != lltok::AttrGrpID)
1125     return TokError("expected attribute group id");
1126 
1127   unsigned VarID = Lex.getUIntVal();
1128   std::vector<unsigned> unused;
1129   LocTy BuiltinLoc;
1130   Lex.Lex();
1131 
1132   if (ParseToken(lltok::equal, "expected '=' here") ||
1133       ParseToken(lltok::lbrace, "expected '{' here") ||
1134       ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1135                                  BuiltinLoc) ||
1136       ParseToken(lltok::rbrace, "expected end of attribute group"))
1137     return true;
1138 
1139   if (!NumberedAttrBuilders[VarID].hasAttributes())
1140     return Error(AttrGrpLoc, "attribute group has no attributes");
1141 
1142   return false;
1143 }
1144 
1145 /// ParseFnAttributeValuePairs
1146 ///   ::= <attr> | <attr> '=' <value>
1147 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
1148                                           std::vector<unsigned> &FwdRefAttrGrps,
1149                                           bool inAttrGrp, LocTy &BuiltinLoc) {
1150   bool HaveError = false;
1151 
1152   B.clear();
1153 
1154   while (true) {
1155     lltok::Kind Token = Lex.getKind();
1156     if (Token == lltok::kw_builtin)
1157       BuiltinLoc = Lex.getLoc();
1158     switch (Token) {
1159     default:
1160       if (!inAttrGrp) return HaveError;
1161       return Error(Lex.getLoc(), "unterminated attribute group");
1162     case lltok::rbrace:
1163       // Finished.
1164       return false;
1165 
1166     case lltok::AttrGrpID: {
1167       // Allow a function to reference an attribute group:
1168       //
1169       //   define void @foo() #1 { ... }
1170       if (inAttrGrp)
1171         HaveError |=
1172           Error(Lex.getLoc(),
1173               "cannot have an attribute group reference in an attribute group");
1174 
1175       unsigned AttrGrpNum = Lex.getUIntVal();
1176       if (inAttrGrp) break;
1177 
1178       // Save the reference to the attribute group. We'll fill it in later.
1179       FwdRefAttrGrps.push_back(AttrGrpNum);
1180       break;
1181     }
1182     // Target-dependent attributes:
1183     case lltok::StringConstant: {
1184       if (ParseStringAttribute(B))
1185         return true;
1186       continue;
1187     }
1188 
1189     // Target-independent attributes:
1190     case lltok::kw_align: {
1191       // As a hack, we allow function alignment to be initially parsed as an
1192       // attribute on a function declaration/definition or added to an attribute
1193       // group and later moved to the alignment field.
1194       unsigned Alignment;
1195       if (inAttrGrp) {
1196         Lex.Lex();
1197         if (ParseToken(lltok::equal, "expected '=' here") ||
1198             ParseUInt32(Alignment))
1199           return true;
1200       } else {
1201         if (ParseOptionalAlignment(Alignment))
1202           return true;
1203       }
1204       B.addAlignmentAttr(Alignment);
1205       continue;
1206     }
1207     case lltok::kw_alignstack: {
1208       unsigned Alignment;
1209       if (inAttrGrp) {
1210         Lex.Lex();
1211         if (ParseToken(lltok::equal, "expected '=' here") ||
1212             ParseUInt32(Alignment))
1213           return true;
1214       } else {
1215         if (ParseOptionalStackAlignment(Alignment))
1216           return true;
1217       }
1218       B.addStackAlignmentAttr(Alignment);
1219       continue;
1220     }
1221     case lltok::kw_allocsize: {
1222       unsigned ElemSizeArg;
1223       Optional<unsigned> NumElemsArg;
1224       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1225       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1226         return true;
1227       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1228       continue;
1229     }
1230     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1231     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1232     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1233     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1234     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1235     case lltok::kw_inaccessiblememonly:
1236       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1237     case lltok::kw_inaccessiblemem_or_argmemonly:
1238       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1239     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1240     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1241     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1242     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1243     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1244     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1245     case lltok::kw_noimplicitfloat:
1246       B.addAttribute(Attribute::NoImplicitFloat); break;
1247     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1248     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1249     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1250     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1251     case lltok::kw_expect_noreturn:
1252       B.addAttribute(Attribute::ExpectNoReturn); break;
1253     case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break;
1254     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1255     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1256     case lltok::kw_optforfuzzing:
1257       B.addAttribute(Attribute::OptForFuzzing); break;
1258     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1259     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1260     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1261     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1262     case lltok::kw_returns_twice:
1263       B.addAttribute(Attribute::ReturnsTwice); break;
1264     case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1265     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1266     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1267     case lltok::kw_sspstrong:
1268       B.addAttribute(Attribute::StackProtectStrong); break;
1269     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1270     case lltok::kw_shadowcallstack:
1271       B.addAttribute(Attribute::ShadowCallStack); break;
1272     case lltok::kw_sanitize_address:
1273       B.addAttribute(Attribute::SanitizeAddress); break;
1274     case lltok::kw_sanitize_hwaddress:
1275       B.addAttribute(Attribute::SanitizeHWAddress); break;
1276     case lltok::kw_sanitize_thread:
1277       B.addAttribute(Attribute::SanitizeThread); break;
1278     case lltok::kw_sanitize_memory:
1279       B.addAttribute(Attribute::SanitizeMemory); break;
1280     case lltok::kw_speculative_load_hardening:
1281       B.addAttribute(Attribute::SpeculativeLoadHardening);
1282       break;
1283     case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1284     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1285     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1286 
1287     // Error handling.
1288     case lltok::kw_inreg:
1289     case lltok::kw_signext:
1290     case lltok::kw_zeroext:
1291       HaveError |=
1292         Error(Lex.getLoc(),
1293               "invalid use of attribute on a function");
1294       break;
1295     case lltok::kw_byval:
1296     case lltok::kw_dereferenceable:
1297     case lltok::kw_dereferenceable_or_null:
1298     case lltok::kw_inalloca:
1299     case lltok::kw_nest:
1300     case lltok::kw_noalias:
1301     case lltok::kw_nocapture:
1302     case lltok::kw_nonnull:
1303     case lltok::kw_returned:
1304     case lltok::kw_sret:
1305     case lltok::kw_swifterror:
1306     case lltok::kw_swiftself:
1307       HaveError |=
1308         Error(Lex.getLoc(),
1309               "invalid use of parameter-only attribute on a function");
1310       break;
1311     }
1312 
1313     Lex.Lex();
1314   }
1315 }
1316 
1317 //===----------------------------------------------------------------------===//
1318 // GlobalValue Reference/Resolution Routines.
1319 //===----------------------------------------------------------------------===//
1320 
1321 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1322                                               const std::string &Name) {
1323   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1324     return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1325                             PTy->getAddressSpace(), Name, M);
1326   else
1327     return new GlobalVariable(*M, PTy->getElementType(), false,
1328                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1329                               nullptr, GlobalVariable::NotThreadLocal,
1330                               PTy->getAddressSpace());
1331 }
1332 
1333 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1334                                         Value *Val, bool IsCall) {
1335   if (Val->getType() == Ty)
1336     return Val;
1337   // For calls we also accept variables in the program address space.
1338   Type *SuggestedTy = Ty;
1339   if (IsCall && isa<PointerType>(Ty)) {
1340     Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo(
1341         M->getDataLayout().getProgramAddressSpace());
1342     SuggestedTy = TyInProgAS;
1343     if (Val->getType() == TyInProgAS)
1344       return Val;
1345   }
1346   if (Ty->isLabelTy())
1347     Error(Loc, "'" + Name + "' is not a basic block");
1348   else
1349     Error(Loc, "'" + Name + "' defined with type '" +
1350                    getTypeString(Val->getType()) + "' but expected '" +
1351                    getTypeString(SuggestedTy) + "'");
1352   return nullptr;
1353 }
1354 
1355 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1356 /// forward reference record if needed.  This can return null if the value
1357 /// exists but does not have the right type.
1358 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1359                                     LocTy Loc, bool IsCall) {
1360   PointerType *PTy = dyn_cast<PointerType>(Ty);
1361   if (!PTy) {
1362     Error(Loc, "global variable reference must have pointer type");
1363     return nullptr;
1364   }
1365 
1366   // Look this name up in the normal function symbol table.
1367   GlobalValue *Val =
1368     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1369 
1370   // If this is a forward reference for the value, see if we already created a
1371   // forward ref record.
1372   if (!Val) {
1373     auto I = ForwardRefVals.find(Name);
1374     if (I != ForwardRefVals.end())
1375       Val = I->second.first;
1376   }
1377 
1378   // If we have the value in the symbol table or fwd-ref table, return it.
1379   if (Val)
1380     return cast_or_null<GlobalValue>(
1381         checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall));
1382 
1383   // Otherwise, create a new forward reference for this value and remember it.
1384   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1385   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1386   return FwdVal;
1387 }
1388 
1389 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc,
1390                                     bool IsCall) {
1391   PointerType *PTy = dyn_cast<PointerType>(Ty);
1392   if (!PTy) {
1393     Error(Loc, "global variable reference must have pointer type");
1394     return nullptr;
1395   }
1396 
1397   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1398 
1399   // If this is a forward reference for the value, see if we already created a
1400   // forward ref record.
1401   if (!Val) {
1402     auto I = ForwardRefValIDs.find(ID);
1403     if (I != ForwardRefValIDs.end())
1404       Val = I->second.first;
1405   }
1406 
1407   // If we have the value in the symbol table or fwd-ref table, return it.
1408   if (Val)
1409     return cast_or_null<GlobalValue>(
1410         checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall));
1411 
1412   // Otherwise, create a new forward reference for this value and remember it.
1413   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1414   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1415   return FwdVal;
1416 }
1417 
1418 //===----------------------------------------------------------------------===//
1419 // Comdat Reference/Resolution Routines.
1420 //===----------------------------------------------------------------------===//
1421 
1422 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1423   // Look this name up in the comdat symbol table.
1424   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1425   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1426   if (I != ComdatSymTab.end())
1427     return &I->second;
1428 
1429   // Otherwise, create a new forward reference for this value and remember it.
1430   Comdat *C = M->getOrInsertComdat(Name);
1431   ForwardRefComdats[Name] = Loc;
1432   return C;
1433 }
1434 
1435 //===----------------------------------------------------------------------===//
1436 // Helper Routines.
1437 //===----------------------------------------------------------------------===//
1438 
1439 /// ParseToken - If the current token has the specified kind, eat it and return
1440 /// success.  Otherwise, emit the specified error and return failure.
1441 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1442   if (Lex.getKind() != T)
1443     return TokError(ErrMsg);
1444   Lex.Lex();
1445   return false;
1446 }
1447 
1448 /// ParseStringConstant
1449 ///   ::= StringConstant
1450 bool LLParser::ParseStringConstant(std::string &Result) {
1451   if (Lex.getKind() != lltok::StringConstant)
1452     return TokError("expected string constant");
1453   Result = Lex.getStrVal();
1454   Lex.Lex();
1455   return false;
1456 }
1457 
1458 /// ParseUInt32
1459 ///   ::= uint32
1460 bool LLParser::ParseUInt32(uint32_t &Val) {
1461   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1462     return TokError("expected integer");
1463   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1464   if (Val64 != unsigned(Val64))
1465     return TokError("expected 32-bit integer (too large)");
1466   Val = Val64;
1467   Lex.Lex();
1468   return false;
1469 }
1470 
1471 /// ParseUInt64
1472 ///   ::= uint64
1473 bool LLParser::ParseUInt64(uint64_t &Val) {
1474   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1475     return TokError("expected integer");
1476   Val = Lex.getAPSIntVal().getLimitedValue();
1477   Lex.Lex();
1478   return false;
1479 }
1480 
1481 /// ParseTLSModel
1482 ///   := 'localdynamic'
1483 ///   := 'initialexec'
1484 ///   := 'localexec'
1485 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1486   switch (Lex.getKind()) {
1487     default:
1488       return TokError("expected localdynamic, initialexec or localexec");
1489     case lltok::kw_localdynamic:
1490       TLM = GlobalVariable::LocalDynamicTLSModel;
1491       break;
1492     case lltok::kw_initialexec:
1493       TLM = GlobalVariable::InitialExecTLSModel;
1494       break;
1495     case lltok::kw_localexec:
1496       TLM = GlobalVariable::LocalExecTLSModel;
1497       break;
1498   }
1499 
1500   Lex.Lex();
1501   return false;
1502 }
1503 
1504 /// ParseOptionalThreadLocal
1505 ///   := /*empty*/
1506 ///   := 'thread_local'
1507 ///   := 'thread_local' '(' tlsmodel ')'
1508 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1509   TLM = GlobalVariable::NotThreadLocal;
1510   if (!EatIfPresent(lltok::kw_thread_local))
1511     return false;
1512 
1513   TLM = GlobalVariable::GeneralDynamicTLSModel;
1514   if (Lex.getKind() == lltok::lparen) {
1515     Lex.Lex();
1516     return ParseTLSModel(TLM) ||
1517       ParseToken(lltok::rparen, "expected ')' after thread local model");
1518   }
1519   return false;
1520 }
1521 
1522 /// ParseOptionalAddrSpace
1523 ///   := /*empty*/
1524 ///   := 'addrspace' '(' uint32 ')'
1525 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1526   AddrSpace = DefaultAS;
1527   if (!EatIfPresent(lltok::kw_addrspace))
1528     return false;
1529   return ParseToken(lltok::lparen, "expected '(' in address space") ||
1530          ParseUInt32(AddrSpace) ||
1531          ParseToken(lltok::rparen, "expected ')' in address space");
1532 }
1533 
1534 /// ParseStringAttribute
1535 ///   := StringConstant
1536 ///   := StringConstant '=' StringConstant
1537 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1538   std::string Attr = Lex.getStrVal();
1539   Lex.Lex();
1540   std::string Val;
1541   if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1542     return true;
1543   B.addAttribute(Attr, Val);
1544   return false;
1545 }
1546 
1547 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1548 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1549   bool HaveError = false;
1550 
1551   B.clear();
1552 
1553   while (true) {
1554     lltok::Kind Token = Lex.getKind();
1555     switch (Token) {
1556     default:  // End of attributes.
1557       return HaveError;
1558     case lltok::StringConstant: {
1559       if (ParseStringAttribute(B))
1560         return true;
1561       continue;
1562     }
1563     case lltok::kw_align: {
1564       unsigned Alignment;
1565       if (ParseOptionalAlignment(Alignment))
1566         return true;
1567       B.addAlignmentAttr(Alignment);
1568       continue;
1569     }
1570     case lltok::kw_byval:           B.addAttribute(Attribute::ByVal); break;
1571     case lltok::kw_dereferenceable: {
1572       uint64_t Bytes;
1573       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1574         return true;
1575       B.addDereferenceableAttr(Bytes);
1576       continue;
1577     }
1578     case lltok::kw_dereferenceable_or_null: {
1579       uint64_t Bytes;
1580       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1581         return true;
1582       B.addDereferenceableOrNullAttr(Bytes);
1583       continue;
1584     }
1585     case lltok::kw_inalloca:        B.addAttribute(Attribute::InAlloca); break;
1586     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1587     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1588     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1589     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1590     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1591     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1592     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1593     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1594     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1595     case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1596     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1597     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1598     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
1599     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1600 
1601     case lltok::kw_alignstack:
1602     case lltok::kw_alwaysinline:
1603     case lltok::kw_argmemonly:
1604     case lltok::kw_builtin:
1605     case lltok::kw_inlinehint:
1606     case lltok::kw_jumptable:
1607     case lltok::kw_minsize:
1608     case lltok::kw_naked:
1609     case lltok::kw_nobuiltin:
1610     case lltok::kw_noduplicate:
1611     case lltok::kw_noimplicitfloat:
1612     case lltok::kw_noinline:
1613     case lltok::kw_nonlazybind:
1614     case lltok::kw_noredzone:
1615     case lltok::kw_noreturn:
1616     case lltok::kw_expect_noreturn:
1617     case lltok::kw_nocf_check:
1618     case lltok::kw_nounwind:
1619     case lltok::kw_optforfuzzing:
1620     case lltok::kw_optnone:
1621     case lltok::kw_optsize:
1622     case lltok::kw_returns_twice:
1623     case lltok::kw_sanitize_address:
1624     case lltok::kw_sanitize_hwaddress:
1625     case lltok::kw_sanitize_memory:
1626     case lltok::kw_sanitize_thread:
1627     case lltok::kw_speculative_load_hardening:
1628     case lltok::kw_ssp:
1629     case lltok::kw_sspreq:
1630     case lltok::kw_sspstrong:
1631     case lltok::kw_safestack:
1632     case lltok::kw_shadowcallstack:
1633     case lltok::kw_strictfp:
1634     case lltok::kw_uwtable:
1635       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1636       break;
1637     }
1638 
1639     Lex.Lex();
1640   }
1641 }
1642 
1643 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1644 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1645   bool HaveError = false;
1646 
1647   B.clear();
1648 
1649   while (true) {
1650     lltok::Kind Token = Lex.getKind();
1651     switch (Token) {
1652     default:  // End of attributes.
1653       return HaveError;
1654     case lltok::StringConstant: {
1655       if (ParseStringAttribute(B))
1656         return true;
1657       continue;
1658     }
1659     case lltok::kw_dereferenceable: {
1660       uint64_t Bytes;
1661       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1662         return true;
1663       B.addDereferenceableAttr(Bytes);
1664       continue;
1665     }
1666     case lltok::kw_dereferenceable_or_null: {
1667       uint64_t Bytes;
1668       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1669         return true;
1670       B.addDereferenceableOrNullAttr(Bytes);
1671       continue;
1672     }
1673     case lltok::kw_align: {
1674       unsigned Alignment;
1675       if (ParseOptionalAlignment(Alignment))
1676         return true;
1677       B.addAlignmentAttr(Alignment);
1678       continue;
1679     }
1680     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1681     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1682     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1683     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1684     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1685 
1686     // Error handling.
1687     case lltok::kw_byval:
1688     case lltok::kw_inalloca:
1689     case lltok::kw_nest:
1690     case lltok::kw_nocapture:
1691     case lltok::kw_returned:
1692     case lltok::kw_sret:
1693     case lltok::kw_swifterror:
1694     case lltok::kw_swiftself:
1695       HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1696       break;
1697 
1698     case lltok::kw_alignstack:
1699     case lltok::kw_alwaysinline:
1700     case lltok::kw_argmemonly:
1701     case lltok::kw_builtin:
1702     case lltok::kw_cold:
1703     case lltok::kw_inlinehint:
1704     case lltok::kw_jumptable:
1705     case lltok::kw_minsize:
1706     case lltok::kw_naked:
1707     case lltok::kw_nobuiltin:
1708     case lltok::kw_noduplicate:
1709     case lltok::kw_noimplicitfloat:
1710     case lltok::kw_noinline:
1711     case lltok::kw_nonlazybind:
1712     case lltok::kw_noredzone:
1713     case lltok::kw_noreturn:
1714     case lltok::kw_expect_noreturn:
1715     case lltok::kw_nocf_check:
1716     case lltok::kw_nounwind:
1717     case lltok::kw_optforfuzzing:
1718     case lltok::kw_optnone:
1719     case lltok::kw_optsize:
1720     case lltok::kw_returns_twice:
1721     case lltok::kw_sanitize_address:
1722     case lltok::kw_sanitize_hwaddress:
1723     case lltok::kw_sanitize_memory:
1724     case lltok::kw_sanitize_thread:
1725     case lltok::kw_speculative_load_hardening:
1726     case lltok::kw_ssp:
1727     case lltok::kw_sspreq:
1728     case lltok::kw_sspstrong:
1729     case lltok::kw_safestack:
1730     case lltok::kw_shadowcallstack:
1731     case lltok::kw_strictfp:
1732     case lltok::kw_uwtable:
1733       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1734       break;
1735 
1736     case lltok::kw_readnone:
1737     case lltok::kw_readonly:
1738       HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1739     }
1740 
1741     Lex.Lex();
1742   }
1743 }
1744 
1745 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1746   HasLinkage = true;
1747   switch (Kind) {
1748   default:
1749     HasLinkage = false;
1750     return GlobalValue::ExternalLinkage;
1751   case lltok::kw_private:
1752     return GlobalValue::PrivateLinkage;
1753   case lltok::kw_internal:
1754     return GlobalValue::InternalLinkage;
1755   case lltok::kw_weak:
1756     return GlobalValue::WeakAnyLinkage;
1757   case lltok::kw_weak_odr:
1758     return GlobalValue::WeakODRLinkage;
1759   case lltok::kw_linkonce:
1760     return GlobalValue::LinkOnceAnyLinkage;
1761   case lltok::kw_linkonce_odr:
1762     return GlobalValue::LinkOnceODRLinkage;
1763   case lltok::kw_available_externally:
1764     return GlobalValue::AvailableExternallyLinkage;
1765   case lltok::kw_appending:
1766     return GlobalValue::AppendingLinkage;
1767   case lltok::kw_common:
1768     return GlobalValue::CommonLinkage;
1769   case lltok::kw_extern_weak:
1770     return GlobalValue::ExternalWeakLinkage;
1771   case lltok::kw_external:
1772     return GlobalValue::ExternalLinkage;
1773   }
1774 }
1775 
1776 /// ParseOptionalLinkage
1777 ///   ::= /*empty*/
1778 ///   ::= 'private'
1779 ///   ::= 'internal'
1780 ///   ::= 'weak'
1781 ///   ::= 'weak_odr'
1782 ///   ::= 'linkonce'
1783 ///   ::= 'linkonce_odr'
1784 ///   ::= 'available_externally'
1785 ///   ::= 'appending'
1786 ///   ::= 'common'
1787 ///   ::= 'extern_weak'
1788 ///   ::= 'external'
1789 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1790                                     unsigned &Visibility,
1791                                     unsigned &DLLStorageClass,
1792                                     bool &DSOLocal) {
1793   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1794   if (HasLinkage)
1795     Lex.Lex();
1796   ParseOptionalDSOLocal(DSOLocal);
1797   ParseOptionalVisibility(Visibility);
1798   ParseOptionalDLLStorageClass(DLLStorageClass);
1799 
1800   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1801     return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1802   }
1803 
1804   return false;
1805 }
1806 
1807 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) {
1808   switch (Lex.getKind()) {
1809   default:
1810     DSOLocal = false;
1811     break;
1812   case lltok::kw_dso_local:
1813     DSOLocal = true;
1814     Lex.Lex();
1815     break;
1816   case lltok::kw_dso_preemptable:
1817     DSOLocal = false;
1818     Lex.Lex();
1819     break;
1820   }
1821 }
1822 
1823 /// ParseOptionalVisibility
1824 ///   ::= /*empty*/
1825 ///   ::= 'default'
1826 ///   ::= 'hidden'
1827 ///   ::= 'protected'
1828 ///
1829 void LLParser::ParseOptionalVisibility(unsigned &Res) {
1830   switch (Lex.getKind()) {
1831   default:
1832     Res = GlobalValue::DefaultVisibility;
1833     return;
1834   case lltok::kw_default:
1835     Res = GlobalValue::DefaultVisibility;
1836     break;
1837   case lltok::kw_hidden:
1838     Res = GlobalValue::HiddenVisibility;
1839     break;
1840   case lltok::kw_protected:
1841     Res = GlobalValue::ProtectedVisibility;
1842     break;
1843   }
1844   Lex.Lex();
1845 }
1846 
1847 /// ParseOptionalDLLStorageClass
1848 ///   ::= /*empty*/
1849 ///   ::= 'dllimport'
1850 ///   ::= 'dllexport'
1851 ///
1852 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1853   switch (Lex.getKind()) {
1854   default:
1855     Res = GlobalValue::DefaultStorageClass;
1856     return;
1857   case lltok::kw_dllimport:
1858     Res = GlobalValue::DLLImportStorageClass;
1859     break;
1860   case lltok::kw_dllexport:
1861     Res = GlobalValue::DLLExportStorageClass;
1862     break;
1863   }
1864   Lex.Lex();
1865 }
1866 
1867 /// ParseOptionalCallingConv
1868 ///   ::= /*empty*/
1869 ///   ::= 'ccc'
1870 ///   ::= 'fastcc'
1871 ///   ::= 'intel_ocl_bicc'
1872 ///   ::= 'coldcc'
1873 ///   ::= 'x86_stdcallcc'
1874 ///   ::= 'x86_fastcallcc'
1875 ///   ::= 'x86_thiscallcc'
1876 ///   ::= 'x86_vectorcallcc'
1877 ///   ::= 'arm_apcscc'
1878 ///   ::= 'arm_aapcscc'
1879 ///   ::= 'arm_aapcs_vfpcc'
1880 ///   ::= 'aarch64_vector_pcs'
1881 ///   ::= 'msp430_intrcc'
1882 ///   ::= 'avr_intrcc'
1883 ///   ::= 'avr_signalcc'
1884 ///   ::= 'ptx_kernel'
1885 ///   ::= 'ptx_device'
1886 ///   ::= 'spir_func'
1887 ///   ::= 'spir_kernel'
1888 ///   ::= 'x86_64_sysvcc'
1889 ///   ::= 'win64cc'
1890 ///   ::= 'webkit_jscc'
1891 ///   ::= 'anyregcc'
1892 ///   ::= 'preserve_mostcc'
1893 ///   ::= 'preserve_allcc'
1894 ///   ::= 'ghccc'
1895 ///   ::= 'swiftcc'
1896 ///   ::= 'x86_intrcc'
1897 ///   ::= 'hhvmcc'
1898 ///   ::= 'hhvm_ccc'
1899 ///   ::= 'cxx_fast_tlscc'
1900 ///   ::= 'amdgpu_vs'
1901 ///   ::= 'amdgpu_ls'
1902 ///   ::= 'amdgpu_hs'
1903 ///   ::= 'amdgpu_es'
1904 ///   ::= 'amdgpu_gs'
1905 ///   ::= 'amdgpu_ps'
1906 ///   ::= 'amdgpu_cs'
1907 ///   ::= 'amdgpu_kernel'
1908 ///   ::= 'cc' UINT
1909 ///
1910 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
1911   switch (Lex.getKind()) {
1912   default:                       CC = CallingConv::C; return false;
1913   case lltok::kw_ccc:            CC = CallingConv::C; break;
1914   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1915   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1916   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1917   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1918   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
1919   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1920   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1921   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1922   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1923   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1924   case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
1925   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1926   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
1927   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
1928   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1929   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1930   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1931   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1932   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1933   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1934   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
1935   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
1936   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
1937   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1938   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1939   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
1940   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
1941   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
1942   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
1943   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
1944   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
1945   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
1946   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
1947   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
1948   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
1949   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
1950   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
1951   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
1952   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
1953   case lltok::kw_cc: {
1954       Lex.Lex();
1955       return ParseUInt32(CC);
1956     }
1957   }
1958 
1959   Lex.Lex();
1960   return false;
1961 }
1962 
1963 /// ParseMetadataAttachment
1964 ///   ::= !dbg !42
1965 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
1966   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
1967 
1968   std::string Name = Lex.getStrVal();
1969   Kind = M->getMDKindID(Name);
1970   Lex.Lex();
1971 
1972   return ParseMDNode(MD);
1973 }
1974 
1975 /// ParseInstructionMetadata
1976 ///   ::= !dbg !42 (',' !dbg !57)*
1977 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
1978   do {
1979     if (Lex.getKind() != lltok::MetadataVar)
1980       return TokError("expected metadata after comma");
1981 
1982     unsigned MDK;
1983     MDNode *N;
1984     if (ParseMetadataAttachment(MDK, N))
1985       return true;
1986 
1987     Inst.setMetadata(MDK, N);
1988     if (MDK == LLVMContext::MD_tbaa)
1989       InstsWithTBAATag.push_back(&Inst);
1990 
1991     // If this is the end of the list, we're done.
1992   } while (EatIfPresent(lltok::comma));
1993   return false;
1994 }
1995 
1996 /// ParseGlobalObjectMetadataAttachment
1997 ///   ::= !dbg !57
1998 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
1999   unsigned MDK;
2000   MDNode *N;
2001   if (ParseMetadataAttachment(MDK, N))
2002     return true;
2003 
2004   GO.addMetadata(MDK, *N);
2005   return false;
2006 }
2007 
2008 /// ParseOptionalFunctionMetadata
2009 ///   ::= (!dbg !57)*
2010 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
2011   while (Lex.getKind() == lltok::MetadataVar)
2012     if (ParseGlobalObjectMetadataAttachment(F))
2013       return true;
2014   return false;
2015 }
2016 
2017 /// ParseOptionalAlignment
2018 ///   ::= /* empty */
2019 ///   ::= 'align' 4
2020 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
2021   Alignment = 0;
2022   if (!EatIfPresent(lltok::kw_align))
2023     return false;
2024   LocTy AlignLoc = Lex.getLoc();
2025   if (ParseUInt32(Alignment)) return true;
2026   if (!isPowerOf2_32(Alignment))
2027     return Error(AlignLoc, "alignment is not a power of two");
2028   if (Alignment > Value::MaximumAlignment)
2029     return Error(AlignLoc, "huge alignments are not supported yet");
2030   return false;
2031 }
2032 
2033 /// ParseOptionalDerefAttrBytes
2034 ///   ::= /* empty */
2035 ///   ::= AttrKind '(' 4 ')'
2036 ///
2037 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2038 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2039                                            uint64_t &Bytes) {
2040   assert((AttrKind == lltok::kw_dereferenceable ||
2041           AttrKind == lltok::kw_dereferenceable_or_null) &&
2042          "contract!");
2043 
2044   Bytes = 0;
2045   if (!EatIfPresent(AttrKind))
2046     return false;
2047   LocTy ParenLoc = Lex.getLoc();
2048   if (!EatIfPresent(lltok::lparen))
2049     return Error(ParenLoc, "expected '('");
2050   LocTy DerefLoc = Lex.getLoc();
2051   if (ParseUInt64(Bytes)) return true;
2052   ParenLoc = Lex.getLoc();
2053   if (!EatIfPresent(lltok::rparen))
2054     return Error(ParenLoc, "expected ')'");
2055   if (!Bytes)
2056     return Error(DerefLoc, "dereferenceable bytes must be non-zero");
2057   return false;
2058 }
2059 
2060 /// ParseOptionalCommaAlign
2061 ///   ::=
2062 ///   ::= ',' align 4
2063 ///
2064 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2065 /// end.
2066 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
2067                                        bool &AteExtraComma) {
2068   AteExtraComma = false;
2069   while (EatIfPresent(lltok::comma)) {
2070     // Metadata at the end is an early exit.
2071     if (Lex.getKind() == lltok::MetadataVar) {
2072       AteExtraComma = true;
2073       return false;
2074     }
2075 
2076     if (Lex.getKind() != lltok::kw_align)
2077       return Error(Lex.getLoc(), "expected metadata or 'align'");
2078 
2079     if (ParseOptionalAlignment(Alignment)) return true;
2080   }
2081 
2082   return false;
2083 }
2084 
2085 /// ParseOptionalCommaAddrSpace
2086 ///   ::=
2087 ///   ::= ',' addrspace(1)
2088 ///
2089 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2090 /// end.
2091 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace,
2092                                            LocTy &Loc,
2093                                            bool &AteExtraComma) {
2094   AteExtraComma = false;
2095   while (EatIfPresent(lltok::comma)) {
2096     // Metadata at the end is an early exit.
2097     if (Lex.getKind() == lltok::MetadataVar) {
2098       AteExtraComma = true;
2099       return false;
2100     }
2101 
2102     Loc = Lex.getLoc();
2103     if (Lex.getKind() != lltok::kw_addrspace)
2104       return Error(Lex.getLoc(), "expected metadata or 'addrspace'");
2105 
2106     if (ParseOptionalAddrSpace(AddrSpace))
2107       return true;
2108   }
2109 
2110   return false;
2111 }
2112 
2113 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2114                                        Optional<unsigned> &HowManyArg) {
2115   Lex.Lex();
2116 
2117   auto StartParen = Lex.getLoc();
2118   if (!EatIfPresent(lltok::lparen))
2119     return Error(StartParen, "expected '('");
2120 
2121   if (ParseUInt32(BaseSizeArg))
2122     return true;
2123 
2124   if (EatIfPresent(lltok::comma)) {
2125     auto HowManyAt = Lex.getLoc();
2126     unsigned HowMany;
2127     if (ParseUInt32(HowMany))
2128       return true;
2129     if (HowMany == BaseSizeArg)
2130       return Error(HowManyAt,
2131                    "'allocsize' indices can't refer to the same parameter");
2132     HowManyArg = HowMany;
2133   } else
2134     HowManyArg = None;
2135 
2136   auto EndParen = Lex.getLoc();
2137   if (!EatIfPresent(lltok::rparen))
2138     return Error(EndParen, "expected ')'");
2139   return false;
2140 }
2141 
2142 /// ParseScopeAndOrdering
2143 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2144 ///   else: ::=
2145 ///
2146 /// This sets Scope and Ordering to the parsed values.
2147 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID,
2148                                      AtomicOrdering &Ordering) {
2149   if (!isAtomic)
2150     return false;
2151 
2152   return ParseScope(SSID) || ParseOrdering(Ordering);
2153 }
2154 
2155 /// ParseScope
2156 ///   ::= syncscope("singlethread" | "<target scope>")?
2157 ///
2158 /// This sets synchronization scope ID to the ID of the parsed value.
2159 bool LLParser::ParseScope(SyncScope::ID &SSID) {
2160   SSID = SyncScope::System;
2161   if (EatIfPresent(lltok::kw_syncscope)) {
2162     auto StartParenAt = Lex.getLoc();
2163     if (!EatIfPresent(lltok::lparen))
2164       return Error(StartParenAt, "Expected '(' in syncscope");
2165 
2166     std::string SSN;
2167     auto SSNAt = Lex.getLoc();
2168     if (ParseStringConstant(SSN))
2169       return Error(SSNAt, "Expected synchronization scope name");
2170 
2171     auto EndParenAt = Lex.getLoc();
2172     if (!EatIfPresent(lltok::rparen))
2173       return Error(EndParenAt, "Expected ')' in syncscope");
2174 
2175     SSID = Context.getOrInsertSyncScopeID(SSN);
2176   }
2177 
2178   return false;
2179 }
2180 
2181 /// ParseOrdering
2182 ///   ::= AtomicOrdering
2183 ///
2184 /// This sets Ordering to the parsed value.
2185 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
2186   switch (Lex.getKind()) {
2187   default: return TokError("Expected ordering on atomic instruction");
2188   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2189   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2190   // Not specified yet:
2191   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2192   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2193   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2194   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2195   case lltok::kw_seq_cst:
2196     Ordering = AtomicOrdering::SequentiallyConsistent;
2197     break;
2198   }
2199   Lex.Lex();
2200   return false;
2201 }
2202 
2203 /// ParseOptionalStackAlignment
2204 ///   ::= /* empty */
2205 ///   ::= 'alignstack' '(' 4 ')'
2206 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
2207   Alignment = 0;
2208   if (!EatIfPresent(lltok::kw_alignstack))
2209     return false;
2210   LocTy ParenLoc = Lex.getLoc();
2211   if (!EatIfPresent(lltok::lparen))
2212     return Error(ParenLoc, "expected '('");
2213   LocTy AlignLoc = Lex.getLoc();
2214   if (ParseUInt32(Alignment)) return true;
2215   ParenLoc = Lex.getLoc();
2216   if (!EatIfPresent(lltok::rparen))
2217     return Error(ParenLoc, "expected ')'");
2218   if (!isPowerOf2_32(Alignment))
2219     return Error(AlignLoc, "stack alignment is not a power of two");
2220   return false;
2221 }
2222 
2223 /// ParseIndexList - This parses the index list for an insert/extractvalue
2224 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2225 /// comma at the end of the line and find that it is followed by metadata.
2226 /// Clients that don't allow metadata can call the version of this function that
2227 /// only takes one argument.
2228 ///
2229 /// ParseIndexList
2230 ///    ::=  (',' uint32)+
2231 ///
2232 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
2233                               bool &AteExtraComma) {
2234   AteExtraComma = false;
2235 
2236   if (Lex.getKind() != lltok::comma)
2237     return TokError("expected ',' as start of index list");
2238 
2239   while (EatIfPresent(lltok::comma)) {
2240     if (Lex.getKind() == lltok::MetadataVar) {
2241       if (Indices.empty()) return TokError("expected index");
2242       AteExtraComma = true;
2243       return false;
2244     }
2245     unsigned Idx = 0;
2246     if (ParseUInt32(Idx)) return true;
2247     Indices.push_back(Idx);
2248   }
2249 
2250   return false;
2251 }
2252 
2253 //===----------------------------------------------------------------------===//
2254 // Type Parsing.
2255 //===----------------------------------------------------------------------===//
2256 
2257 /// ParseType - Parse a type.
2258 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2259   SMLoc TypeLoc = Lex.getLoc();
2260   switch (Lex.getKind()) {
2261   default:
2262     return TokError(Msg);
2263   case lltok::Type:
2264     // Type ::= 'float' | 'void' (etc)
2265     Result = Lex.getTyVal();
2266     Lex.Lex();
2267     break;
2268   case lltok::lbrace:
2269     // Type ::= StructType
2270     if (ParseAnonStructType(Result, false))
2271       return true;
2272     break;
2273   case lltok::lsquare:
2274     // Type ::= '[' ... ']'
2275     Lex.Lex(); // eat the lsquare.
2276     if (ParseArrayVectorType(Result, false))
2277       return true;
2278     break;
2279   case lltok::less: // Either vector or packed struct.
2280     // Type ::= '<' ... '>'
2281     Lex.Lex();
2282     if (Lex.getKind() == lltok::lbrace) {
2283       if (ParseAnonStructType(Result, true) ||
2284           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
2285         return true;
2286     } else if (ParseArrayVectorType(Result, true))
2287       return true;
2288     break;
2289   case lltok::LocalVar: {
2290     // Type ::= %foo
2291     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2292 
2293     // If the type hasn't been defined yet, create a forward definition and
2294     // remember where that forward def'n was seen (in case it never is defined).
2295     if (!Entry.first) {
2296       Entry.first = StructType::create(Context, Lex.getStrVal());
2297       Entry.second = Lex.getLoc();
2298     }
2299     Result = Entry.first;
2300     Lex.Lex();
2301     break;
2302   }
2303 
2304   case lltok::LocalVarID: {
2305     // Type ::= %4
2306     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2307 
2308     // If the type hasn't been defined yet, create a forward definition and
2309     // remember where that forward def'n was seen (in case it never is defined).
2310     if (!Entry.first) {
2311       Entry.first = StructType::create(Context);
2312       Entry.second = Lex.getLoc();
2313     }
2314     Result = Entry.first;
2315     Lex.Lex();
2316     break;
2317   }
2318   }
2319 
2320   // Parse the type suffixes.
2321   while (true) {
2322     switch (Lex.getKind()) {
2323     // End of type.
2324     default:
2325       if (!AllowVoid && Result->isVoidTy())
2326         return Error(TypeLoc, "void type only allowed for function results");
2327       return false;
2328 
2329     // Type ::= Type '*'
2330     case lltok::star:
2331       if (Result->isLabelTy())
2332         return TokError("basic block pointers are invalid");
2333       if (Result->isVoidTy())
2334         return TokError("pointers to void are invalid - use i8* instead");
2335       if (!PointerType::isValidElementType(Result))
2336         return TokError("pointer to this type is invalid");
2337       Result = PointerType::getUnqual(Result);
2338       Lex.Lex();
2339       break;
2340 
2341     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2342     case lltok::kw_addrspace: {
2343       if (Result->isLabelTy())
2344         return TokError("basic block pointers are invalid");
2345       if (Result->isVoidTy())
2346         return TokError("pointers to void are invalid; use i8* instead");
2347       if (!PointerType::isValidElementType(Result))
2348         return TokError("pointer to this type is invalid");
2349       unsigned AddrSpace;
2350       if (ParseOptionalAddrSpace(AddrSpace) ||
2351           ParseToken(lltok::star, "expected '*' in address space"))
2352         return true;
2353 
2354       Result = PointerType::get(Result, AddrSpace);
2355       break;
2356     }
2357 
2358     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2359     case lltok::lparen:
2360       if (ParseFunctionType(Result))
2361         return true;
2362       break;
2363     }
2364   }
2365 }
2366 
2367 /// ParseParameterList
2368 ///    ::= '(' ')'
2369 ///    ::= '(' Arg (',' Arg)* ')'
2370 ///  Arg
2371 ///    ::= Type OptionalAttributes Value OptionalAttributes
2372 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2373                                   PerFunctionState &PFS, bool IsMustTailCall,
2374                                   bool InVarArgsFunc) {
2375   if (ParseToken(lltok::lparen, "expected '(' in call"))
2376     return true;
2377 
2378   while (Lex.getKind() != lltok::rparen) {
2379     // If this isn't the first argument, we need a comma.
2380     if (!ArgList.empty() &&
2381         ParseToken(lltok::comma, "expected ',' in argument list"))
2382       return true;
2383 
2384     // Parse an ellipsis if this is a musttail call in a variadic function.
2385     if (Lex.getKind() == lltok::dotdotdot) {
2386       const char *Msg = "unexpected ellipsis in argument list for ";
2387       if (!IsMustTailCall)
2388         return TokError(Twine(Msg) + "non-musttail call");
2389       if (!InVarArgsFunc)
2390         return TokError(Twine(Msg) + "musttail call in non-varargs function");
2391       Lex.Lex();  // Lex the '...', it is purely for readability.
2392       return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2393     }
2394 
2395     // Parse the argument.
2396     LocTy ArgLoc;
2397     Type *ArgTy = nullptr;
2398     AttrBuilder ArgAttrs;
2399     Value *V;
2400     if (ParseType(ArgTy, ArgLoc))
2401       return true;
2402 
2403     if (ArgTy->isMetadataTy()) {
2404       if (ParseMetadataAsValue(V, PFS))
2405         return true;
2406     } else {
2407       // Otherwise, handle normal operands.
2408       if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2409         return true;
2410     }
2411     ArgList.push_back(ParamInfo(
2412         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2413   }
2414 
2415   if (IsMustTailCall && InVarArgsFunc)
2416     return TokError("expected '...' at end of argument list for musttail call "
2417                     "in varargs function");
2418 
2419   Lex.Lex();  // Lex the ')'.
2420   return false;
2421 }
2422 
2423 /// ParseOptionalOperandBundles
2424 ///    ::= /*empty*/
2425 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2426 ///
2427 /// OperandBundle
2428 ///    ::= bundle-tag '(' ')'
2429 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2430 ///
2431 /// bundle-tag ::= String Constant
2432 bool LLParser::ParseOptionalOperandBundles(
2433     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2434   LocTy BeginLoc = Lex.getLoc();
2435   if (!EatIfPresent(lltok::lsquare))
2436     return false;
2437 
2438   while (Lex.getKind() != lltok::rsquare) {
2439     // If this isn't the first operand bundle, we need a comma.
2440     if (!BundleList.empty() &&
2441         ParseToken(lltok::comma, "expected ',' in input list"))
2442       return true;
2443 
2444     std::string Tag;
2445     if (ParseStringConstant(Tag))
2446       return true;
2447 
2448     if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2449       return true;
2450 
2451     std::vector<Value *> Inputs;
2452     while (Lex.getKind() != lltok::rparen) {
2453       // If this isn't the first input, we need a comma.
2454       if (!Inputs.empty() &&
2455           ParseToken(lltok::comma, "expected ',' in input list"))
2456         return true;
2457 
2458       Type *Ty = nullptr;
2459       Value *Input = nullptr;
2460       if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2461         return true;
2462       Inputs.push_back(Input);
2463     }
2464 
2465     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2466 
2467     Lex.Lex(); // Lex the ')'.
2468   }
2469 
2470   if (BundleList.empty())
2471     return Error(BeginLoc, "operand bundle set must not be empty");
2472 
2473   Lex.Lex(); // Lex the ']'.
2474   return false;
2475 }
2476 
2477 /// ParseArgumentList - Parse the argument list for a function type or function
2478 /// prototype.
2479 ///   ::= '(' ArgTypeListI ')'
2480 /// ArgTypeListI
2481 ///   ::= /*empty*/
2482 ///   ::= '...'
2483 ///   ::= ArgTypeList ',' '...'
2484 ///   ::= ArgType (',' ArgType)*
2485 ///
2486 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2487                                  bool &isVarArg){
2488   isVarArg = false;
2489   assert(Lex.getKind() == lltok::lparen);
2490   Lex.Lex(); // eat the (.
2491 
2492   if (Lex.getKind() == lltok::rparen) {
2493     // empty
2494   } else if (Lex.getKind() == lltok::dotdotdot) {
2495     isVarArg = true;
2496     Lex.Lex();
2497   } else {
2498     LocTy TypeLoc = Lex.getLoc();
2499     Type *ArgTy = nullptr;
2500     AttrBuilder Attrs;
2501     std::string Name;
2502 
2503     if (ParseType(ArgTy) ||
2504         ParseOptionalParamAttrs(Attrs)) return true;
2505 
2506     if (ArgTy->isVoidTy())
2507       return Error(TypeLoc, "argument can not have void type");
2508 
2509     if (Lex.getKind() == lltok::LocalVar) {
2510       Name = Lex.getStrVal();
2511       Lex.Lex();
2512     }
2513 
2514     if (!FunctionType::isValidArgumentType(ArgTy))
2515       return Error(TypeLoc, "invalid type for function argument");
2516 
2517     ArgList.emplace_back(TypeLoc, ArgTy,
2518                          AttributeSet::get(ArgTy->getContext(), Attrs),
2519                          std::move(Name));
2520 
2521     while (EatIfPresent(lltok::comma)) {
2522       // Handle ... at end of arg list.
2523       if (EatIfPresent(lltok::dotdotdot)) {
2524         isVarArg = true;
2525         break;
2526       }
2527 
2528       // Otherwise must be an argument type.
2529       TypeLoc = Lex.getLoc();
2530       if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2531 
2532       if (ArgTy->isVoidTy())
2533         return Error(TypeLoc, "argument can not have void type");
2534 
2535       if (Lex.getKind() == lltok::LocalVar) {
2536         Name = Lex.getStrVal();
2537         Lex.Lex();
2538       } else {
2539         Name = "";
2540       }
2541 
2542       if (!ArgTy->isFirstClassType())
2543         return Error(TypeLoc, "invalid type for function argument");
2544 
2545       ArgList.emplace_back(TypeLoc, ArgTy,
2546                            AttributeSet::get(ArgTy->getContext(), Attrs),
2547                            std::move(Name));
2548     }
2549   }
2550 
2551   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2552 }
2553 
2554 /// ParseFunctionType
2555 ///  ::= Type ArgumentList OptionalAttrs
2556 bool LLParser::ParseFunctionType(Type *&Result) {
2557   assert(Lex.getKind() == lltok::lparen);
2558 
2559   if (!FunctionType::isValidReturnType(Result))
2560     return TokError("invalid function return type");
2561 
2562   SmallVector<ArgInfo, 8> ArgList;
2563   bool isVarArg;
2564   if (ParseArgumentList(ArgList, isVarArg))
2565     return true;
2566 
2567   // Reject names on the arguments lists.
2568   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2569     if (!ArgList[i].Name.empty())
2570       return Error(ArgList[i].Loc, "argument name invalid in function type");
2571     if (ArgList[i].Attrs.hasAttributes())
2572       return Error(ArgList[i].Loc,
2573                    "argument attributes invalid in function type");
2574   }
2575 
2576   SmallVector<Type*, 16> ArgListTy;
2577   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2578     ArgListTy.push_back(ArgList[i].Ty);
2579 
2580   Result = FunctionType::get(Result, ArgListTy, isVarArg);
2581   return false;
2582 }
2583 
2584 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2585 /// other structs.
2586 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2587   SmallVector<Type*, 8> Elts;
2588   if (ParseStructBody(Elts)) return true;
2589 
2590   Result = StructType::get(Context, Elts, Packed);
2591   return false;
2592 }
2593 
2594 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2595 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2596                                      std::pair<Type*, LocTy> &Entry,
2597                                      Type *&ResultTy) {
2598   // If the type was already defined, diagnose the redefinition.
2599   if (Entry.first && !Entry.second.isValid())
2600     return Error(TypeLoc, "redefinition of type");
2601 
2602   // If we have opaque, just return without filling in the definition for the
2603   // struct.  This counts as a definition as far as the .ll file goes.
2604   if (EatIfPresent(lltok::kw_opaque)) {
2605     // This type is being defined, so clear the location to indicate this.
2606     Entry.second = SMLoc();
2607 
2608     // If this type number has never been uttered, create it.
2609     if (!Entry.first)
2610       Entry.first = StructType::create(Context, Name);
2611     ResultTy = Entry.first;
2612     return false;
2613   }
2614 
2615   // If the type starts with '<', then it is either a packed struct or a vector.
2616   bool isPacked = EatIfPresent(lltok::less);
2617 
2618   // If we don't have a struct, then we have a random type alias, which we
2619   // accept for compatibility with old files.  These types are not allowed to be
2620   // forward referenced and not allowed to be recursive.
2621   if (Lex.getKind() != lltok::lbrace) {
2622     if (Entry.first)
2623       return Error(TypeLoc, "forward references to non-struct type");
2624 
2625     ResultTy = nullptr;
2626     if (isPacked)
2627       return ParseArrayVectorType(ResultTy, true);
2628     return ParseType(ResultTy);
2629   }
2630 
2631   // This type is being defined, so clear the location to indicate this.
2632   Entry.second = SMLoc();
2633 
2634   // If this type number has never been uttered, create it.
2635   if (!Entry.first)
2636     Entry.first = StructType::create(Context, Name);
2637 
2638   StructType *STy = cast<StructType>(Entry.first);
2639 
2640   SmallVector<Type*, 8> Body;
2641   if (ParseStructBody(Body) ||
2642       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2643     return true;
2644 
2645   STy->setBody(Body, isPacked);
2646   ResultTy = STy;
2647   return false;
2648 }
2649 
2650 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2651 ///   StructType
2652 ///     ::= '{' '}'
2653 ///     ::= '{' Type (',' Type)* '}'
2654 ///     ::= '<' '{' '}' '>'
2655 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2656 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2657   assert(Lex.getKind() == lltok::lbrace);
2658   Lex.Lex(); // Consume the '{'
2659 
2660   // Handle the empty struct.
2661   if (EatIfPresent(lltok::rbrace))
2662     return false;
2663 
2664   LocTy EltTyLoc = Lex.getLoc();
2665   Type *Ty = nullptr;
2666   if (ParseType(Ty)) return true;
2667   Body.push_back(Ty);
2668 
2669   if (!StructType::isValidElementType(Ty))
2670     return Error(EltTyLoc, "invalid element type for struct");
2671 
2672   while (EatIfPresent(lltok::comma)) {
2673     EltTyLoc = Lex.getLoc();
2674     if (ParseType(Ty)) return true;
2675 
2676     if (!StructType::isValidElementType(Ty))
2677       return Error(EltTyLoc, "invalid element type for struct");
2678 
2679     Body.push_back(Ty);
2680   }
2681 
2682   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2683 }
2684 
2685 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2686 /// token has already been consumed.
2687 ///   Type
2688 ///     ::= '[' APSINTVAL 'x' Types ']'
2689 ///     ::= '<' APSINTVAL 'x' Types '>'
2690 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2691   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2692       Lex.getAPSIntVal().getBitWidth() > 64)
2693     return TokError("expected number in address space");
2694 
2695   LocTy SizeLoc = Lex.getLoc();
2696   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2697   Lex.Lex();
2698 
2699   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2700       return true;
2701 
2702   LocTy TypeLoc = Lex.getLoc();
2703   Type *EltTy = nullptr;
2704   if (ParseType(EltTy)) return true;
2705 
2706   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2707                  "expected end of sequential type"))
2708     return true;
2709 
2710   if (isVector) {
2711     if (Size == 0)
2712       return Error(SizeLoc, "zero element vector is illegal");
2713     if ((unsigned)Size != Size)
2714       return Error(SizeLoc, "size too large for vector");
2715     if (!VectorType::isValidElementType(EltTy))
2716       return Error(TypeLoc, "invalid vector element type");
2717     Result = VectorType::get(EltTy, unsigned(Size));
2718   } else {
2719     if (!ArrayType::isValidElementType(EltTy))
2720       return Error(TypeLoc, "invalid array element type");
2721     Result = ArrayType::get(EltTy, Size);
2722   }
2723   return false;
2724 }
2725 
2726 //===----------------------------------------------------------------------===//
2727 // Function Semantic Analysis.
2728 //===----------------------------------------------------------------------===//
2729 
2730 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2731                                              int functionNumber)
2732   : P(p), F(f), FunctionNumber(functionNumber) {
2733 
2734   // Insert unnamed arguments into the NumberedVals list.
2735   for (Argument &A : F.args())
2736     if (!A.hasName())
2737       NumberedVals.push_back(&A);
2738 }
2739 
2740 LLParser::PerFunctionState::~PerFunctionState() {
2741   // If there were any forward referenced non-basicblock values, delete them.
2742 
2743   for (const auto &P : ForwardRefVals) {
2744     if (isa<BasicBlock>(P.second.first))
2745       continue;
2746     P.second.first->replaceAllUsesWith(
2747         UndefValue::get(P.second.first->getType()));
2748     P.second.first->deleteValue();
2749   }
2750 
2751   for (const auto &P : ForwardRefValIDs) {
2752     if (isa<BasicBlock>(P.second.first))
2753       continue;
2754     P.second.first->replaceAllUsesWith(
2755         UndefValue::get(P.second.first->getType()));
2756     P.second.first->deleteValue();
2757   }
2758 }
2759 
2760 bool LLParser::PerFunctionState::FinishFunction() {
2761   if (!ForwardRefVals.empty())
2762     return P.Error(ForwardRefVals.begin()->second.second,
2763                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2764                    "'");
2765   if (!ForwardRefValIDs.empty())
2766     return P.Error(ForwardRefValIDs.begin()->second.second,
2767                    "use of undefined value '%" +
2768                    Twine(ForwardRefValIDs.begin()->first) + "'");
2769   return false;
2770 }
2771 
2772 /// GetVal - Get a value with the specified name or ID, creating a
2773 /// forward reference record if needed.  This can return null if the value
2774 /// exists but does not have the right type.
2775 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2776                                           LocTy Loc, bool IsCall) {
2777   // Look this name up in the normal function symbol table.
2778   Value *Val = F.getValueSymbolTable()->lookup(Name);
2779 
2780   // If this is a forward reference for the value, see if we already created a
2781   // forward ref record.
2782   if (!Val) {
2783     auto I = ForwardRefVals.find(Name);
2784     if (I != ForwardRefVals.end())
2785       Val = I->second.first;
2786   }
2787 
2788   // If we have the value in the symbol table or fwd-ref table, return it.
2789   if (Val)
2790     return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall);
2791 
2792   // Don't make placeholders with invalid type.
2793   if (!Ty->isFirstClassType()) {
2794     P.Error(Loc, "invalid use of a non-first-class type");
2795     return nullptr;
2796   }
2797 
2798   // Otherwise, create a new forward reference for this value and remember it.
2799   Value *FwdVal;
2800   if (Ty->isLabelTy()) {
2801     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2802   } else {
2803     FwdVal = new Argument(Ty, Name);
2804   }
2805 
2806   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2807   return FwdVal;
2808 }
2809 
2810 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc,
2811                                           bool IsCall) {
2812   // Look this name up in the normal function symbol table.
2813   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2814 
2815   // If this is a forward reference for the value, see if we already created a
2816   // forward ref record.
2817   if (!Val) {
2818     auto I = ForwardRefValIDs.find(ID);
2819     if (I != ForwardRefValIDs.end())
2820       Val = I->second.first;
2821   }
2822 
2823   // If we have the value in the symbol table or fwd-ref table, return it.
2824   if (Val)
2825     return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall);
2826 
2827   if (!Ty->isFirstClassType()) {
2828     P.Error(Loc, "invalid use of a non-first-class type");
2829     return nullptr;
2830   }
2831 
2832   // Otherwise, create a new forward reference for this value and remember it.
2833   Value *FwdVal;
2834   if (Ty->isLabelTy()) {
2835     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2836   } else {
2837     FwdVal = new Argument(Ty);
2838   }
2839 
2840   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2841   return FwdVal;
2842 }
2843 
2844 /// SetInstName - After an instruction is parsed and inserted into its
2845 /// basic block, this installs its name.
2846 bool LLParser::PerFunctionState::SetInstName(int NameID,
2847                                              const std::string &NameStr,
2848                                              LocTy NameLoc, Instruction *Inst) {
2849   // If this instruction has void type, it cannot have a name or ID specified.
2850   if (Inst->getType()->isVoidTy()) {
2851     if (NameID != -1 || !NameStr.empty())
2852       return P.Error(NameLoc, "instructions returning void cannot have a name");
2853     return false;
2854   }
2855 
2856   // If this was a numbered instruction, verify that the instruction is the
2857   // expected value and resolve any forward references.
2858   if (NameStr.empty()) {
2859     // If neither a name nor an ID was specified, just use the next ID.
2860     if (NameID == -1)
2861       NameID = NumberedVals.size();
2862 
2863     if (unsigned(NameID) != NumberedVals.size())
2864       return P.Error(NameLoc, "instruction expected to be numbered '%" +
2865                      Twine(NumberedVals.size()) + "'");
2866 
2867     auto FI = ForwardRefValIDs.find(NameID);
2868     if (FI != ForwardRefValIDs.end()) {
2869       Value *Sentinel = FI->second.first;
2870       if (Sentinel->getType() != Inst->getType())
2871         return P.Error(NameLoc, "instruction forward referenced with type '" +
2872                        getTypeString(FI->second.first->getType()) + "'");
2873 
2874       Sentinel->replaceAllUsesWith(Inst);
2875       Sentinel->deleteValue();
2876       ForwardRefValIDs.erase(FI);
2877     }
2878 
2879     NumberedVals.push_back(Inst);
2880     return false;
2881   }
2882 
2883   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2884   auto FI = ForwardRefVals.find(NameStr);
2885   if (FI != ForwardRefVals.end()) {
2886     Value *Sentinel = FI->second.first;
2887     if (Sentinel->getType() != Inst->getType())
2888       return P.Error(NameLoc, "instruction forward referenced with type '" +
2889                      getTypeString(FI->second.first->getType()) + "'");
2890 
2891     Sentinel->replaceAllUsesWith(Inst);
2892     Sentinel->deleteValue();
2893     ForwardRefVals.erase(FI);
2894   }
2895 
2896   // Set the name on the instruction.
2897   Inst->setName(NameStr);
2898 
2899   if (Inst->getName() != NameStr)
2900     return P.Error(NameLoc, "multiple definition of local value named '" +
2901                    NameStr + "'");
2902   return false;
2903 }
2904 
2905 /// GetBB - Get a basic block with the specified name or ID, creating a
2906 /// forward reference record if needed.
2907 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2908                                               LocTy Loc) {
2909   return dyn_cast_or_null<BasicBlock>(
2910       GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
2911 }
2912 
2913 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
2914   return dyn_cast_or_null<BasicBlock>(
2915       GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
2916 }
2917 
2918 /// DefineBB - Define the specified basic block, which is either named or
2919 /// unnamed.  If there is an error, this returns null otherwise it returns
2920 /// the block being defined.
2921 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
2922                                                  LocTy Loc) {
2923   BasicBlock *BB;
2924   if (Name.empty())
2925     BB = GetBB(NumberedVals.size(), Loc);
2926   else
2927     BB = GetBB(Name, Loc);
2928   if (!BB) return nullptr; // Already diagnosed error.
2929 
2930   // Move the block to the end of the function.  Forward ref'd blocks are
2931   // inserted wherever they happen to be referenced.
2932   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2933 
2934   // Remove the block from forward ref sets.
2935   if (Name.empty()) {
2936     ForwardRefValIDs.erase(NumberedVals.size());
2937     NumberedVals.push_back(BB);
2938   } else {
2939     // BB forward references are already in the function symbol table.
2940     ForwardRefVals.erase(Name);
2941   }
2942 
2943   return BB;
2944 }
2945 
2946 //===----------------------------------------------------------------------===//
2947 // Constants.
2948 //===----------------------------------------------------------------------===//
2949 
2950 /// ParseValID - Parse an abstract value that doesn't necessarily have a
2951 /// type implied.  For example, if we parse "4" we don't know what integer type
2952 /// it has.  The value will later be combined with its type and checked for
2953 /// sanity.  PFS is used to convert function-local operands of metadata (since
2954 /// metadata operands are not just parsed here but also converted to values).
2955 /// PFS can be null when we are not parsing metadata values inside a function.
2956 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
2957   ID.Loc = Lex.getLoc();
2958   switch (Lex.getKind()) {
2959   default: return TokError("expected value token");
2960   case lltok::GlobalID:  // @42
2961     ID.UIntVal = Lex.getUIntVal();
2962     ID.Kind = ValID::t_GlobalID;
2963     break;
2964   case lltok::GlobalVar:  // @foo
2965     ID.StrVal = Lex.getStrVal();
2966     ID.Kind = ValID::t_GlobalName;
2967     break;
2968   case lltok::LocalVarID:  // %42
2969     ID.UIntVal = Lex.getUIntVal();
2970     ID.Kind = ValID::t_LocalID;
2971     break;
2972   case lltok::LocalVar:  // %foo
2973     ID.StrVal = Lex.getStrVal();
2974     ID.Kind = ValID::t_LocalName;
2975     break;
2976   case lltok::APSInt:
2977     ID.APSIntVal = Lex.getAPSIntVal();
2978     ID.Kind = ValID::t_APSInt;
2979     break;
2980   case lltok::APFloat:
2981     ID.APFloatVal = Lex.getAPFloatVal();
2982     ID.Kind = ValID::t_APFloat;
2983     break;
2984   case lltok::kw_true:
2985     ID.ConstantVal = ConstantInt::getTrue(Context);
2986     ID.Kind = ValID::t_Constant;
2987     break;
2988   case lltok::kw_false:
2989     ID.ConstantVal = ConstantInt::getFalse(Context);
2990     ID.Kind = ValID::t_Constant;
2991     break;
2992   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2993   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2994   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2995   case lltok::kw_none: ID.Kind = ValID::t_None; break;
2996 
2997   case lltok::lbrace: {
2998     // ValID ::= '{' ConstVector '}'
2999     Lex.Lex();
3000     SmallVector<Constant*, 16> Elts;
3001     if (ParseGlobalValueVector(Elts) ||
3002         ParseToken(lltok::rbrace, "expected end of struct constant"))
3003       return true;
3004 
3005     ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
3006     ID.UIntVal = Elts.size();
3007     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3008            Elts.size() * sizeof(Elts[0]));
3009     ID.Kind = ValID::t_ConstantStruct;
3010     return false;
3011   }
3012   case lltok::less: {
3013     // ValID ::= '<' ConstVector '>'         --> Vector.
3014     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3015     Lex.Lex();
3016     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3017 
3018     SmallVector<Constant*, 16> Elts;
3019     LocTy FirstEltLoc = Lex.getLoc();
3020     if (ParseGlobalValueVector(Elts) ||
3021         (isPackedStruct &&
3022          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
3023         ParseToken(lltok::greater, "expected end of constant"))
3024       return true;
3025 
3026     if (isPackedStruct) {
3027       ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
3028       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3029              Elts.size() * sizeof(Elts[0]));
3030       ID.UIntVal = Elts.size();
3031       ID.Kind = ValID::t_PackedConstantStruct;
3032       return false;
3033     }
3034 
3035     if (Elts.empty())
3036       return Error(ID.Loc, "constant vector must not be empty");
3037 
3038     if (!Elts[0]->getType()->isIntegerTy() &&
3039         !Elts[0]->getType()->isFloatingPointTy() &&
3040         !Elts[0]->getType()->isPointerTy())
3041       return Error(FirstEltLoc,
3042             "vector elements must have integer, pointer or floating point type");
3043 
3044     // Verify that all the vector elements have the same type.
3045     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3046       if (Elts[i]->getType() != Elts[0]->getType())
3047         return Error(FirstEltLoc,
3048                      "vector element #" + Twine(i) +
3049                     " is not of type '" + getTypeString(Elts[0]->getType()));
3050 
3051     ID.ConstantVal = ConstantVector::get(Elts);
3052     ID.Kind = ValID::t_Constant;
3053     return false;
3054   }
3055   case lltok::lsquare: {   // Array Constant
3056     Lex.Lex();
3057     SmallVector<Constant*, 16> Elts;
3058     LocTy FirstEltLoc = Lex.getLoc();
3059     if (ParseGlobalValueVector(Elts) ||
3060         ParseToken(lltok::rsquare, "expected end of array constant"))
3061       return true;
3062 
3063     // Handle empty element.
3064     if (Elts.empty()) {
3065       // Use undef instead of an array because it's inconvenient to determine
3066       // the element type at this point, there being no elements to examine.
3067       ID.Kind = ValID::t_EmptyArray;
3068       return false;
3069     }
3070 
3071     if (!Elts[0]->getType()->isFirstClassType())
3072       return Error(FirstEltLoc, "invalid array element type: " +
3073                    getTypeString(Elts[0]->getType()));
3074 
3075     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3076 
3077     // Verify all elements are correct type!
3078     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3079       if (Elts[i]->getType() != Elts[0]->getType())
3080         return Error(FirstEltLoc,
3081                      "array element #" + Twine(i) +
3082                      " is not of type '" + getTypeString(Elts[0]->getType()));
3083     }
3084 
3085     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3086     ID.Kind = ValID::t_Constant;
3087     return false;
3088   }
3089   case lltok::kw_c:  // c "foo"
3090     Lex.Lex();
3091     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3092                                                   false);
3093     if (ParseToken(lltok::StringConstant, "expected string")) return true;
3094     ID.Kind = ValID::t_Constant;
3095     return false;
3096 
3097   case lltok::kw_asm: {
3098     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3099     //             STRINGCONSTANT
3100     bool HasSideEffect, AlignStack, AsmDialect;
3101     Lex.Lex();
3102     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3103         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3104         ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3105         ParseStringConstant(ID.StrVal) ||
3106         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
3107         ParseToken(lltok::StringConstant, "expected constraint string"))
3108       return true;
3109     ID.StrVal2 = Lex.getStrVal();
3110     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
3111       (unsigned(AsmDialect)<<2);
3112     ID.Kind = ValID::t_InlineAsm;
3113     return false;
3114   }
3115 
3116   case lltok::kw_blockaddress: {
3117     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3118     Lex.Lex();
3119 
3120     ValID Fn, Label;
3121 
3122     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
3123         ParseValID(Fn) ||
3124         ParseToken(lltok::comma, "expected comma in block address expression")||
3125         ParseValID(Label) ||
3126         ParseToken(lltok::rparen, "expected ')' in block address expression"))
3127       return true;
3128 
3129     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3130       return Error(Fn.Loc, "expected function name in blockaddress");
3131     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3132       return Error(Label.Loc, "expected basic block name in blockaddress");
3133 
3134     // Try to find the function (but skip it if it's forward-referenced).
3135     GlobalValue *GV = nullptr;
3136     if (Fn.Kind == ValID::t_GlobalID) {
3137       if (Fn.UIntVal < NumberedVals.size())
3138         GV = NumberedVals[Fn.UIntVal];
3139     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3140       GV = M->getNamedValue(Fn.StrVal);
3141     }
3142     Function *F = nullptr;
3143     if (GV) {
3144       // Confirm that it's actually a function with a definition.
3145       if (!isa<Function>(GV))
3146         return Error(Fn.Loc, "expected function name in blockaddress");
3147       F = cast<Function>(GV);
3148       if (F->isDeclaration())
3149         return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
3150     }
3151 
3152     if (!F) {
3153       // Make a global variable as a placeholder for this reference.
3154       GlobalValue *&FwdRef =
3155           ForwardRefBlockAddresses.insert(std::make_pair(
3156                                               std::move(Fn),
3157                                               std::map<ValID, GlobalValue *>()))
3158               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3159               .first->second;
3160       if (!FwdRef)
3161         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3162                                     GlobalValue::InternalLinkage, nullptr, "");
3163       ID.ConstantVal = FwdRef;
3164       ID.Kind = ValID::t_Constant;
3165       return false;
3166     }
3167 
3168     // We found the function; now find the basic block.  Don't use PFS, since we
3169     // might be inside a constant expression.
3170     BasicBlock *BB;
3171     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3172       if (Label.Kind == ValID::t_LocalID)
3173         BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
3174       else
3175         BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
3176       if (!BB)
3177         return Error(Label.Loc, "referenced value is not a basic block");
3178     } else {
3179       if (Label.Kind == ValID::t_LocalID)
3180         return Error(Label.Loc, "cannot take address of numeric label after "
3181                                 "the function is defined");
3182       BB = dyn_cast_or_null<BasicBlock>(
3183           F->getValueSymbolTable()->lookup(Label.StrVal));
3184       if (!BB)
3185         return Error(Label.Loc, "referenced value is not a basic block");
3186     }
3187 
3188     ID.ConstantVal = BlockAddress::get(F, BB);
3189     ID.Kind = ValID::t_Constant;
3190     return false;
3191   }
3192 
3193   case lltok::kw_trunc:
3194   case lltok::kw_zext:
3195   case lltok::kw_sext:
3196   case lltok::kw_fptrunc:
3197   case lltok::kw_fpext:
3198   case lltok::kw_bitcast:
3199   case lltok::kw_addrspacecast:
3200   case lltok::kw_uitofp:
3201   case lltok::kw_sitofp:
3202   case lltok::kw_fptoui:
3203   case lltok::kw_fptosi:
3204   case lltok::kw_inttoptr:
3205   case lltok::kw_ptrtoint: {
3206     unsigned Opc = Lex.getUIntVal();
3207     Type *DestTy = nullptr;
3208     Constant *SrcVal;
3209     Lex.Lex();
3210     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3211         ParseGlobalTypeAndValue(SrcVal) ||
3212         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3213         ParseType(DestTy) ||
3214         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3215       return true;
3216     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3217       return Error(ID.Loc, "invalid cast opcode for cast from '" +
3218                    getTypeString(SrcVal->getType()) + "' to '" +
3219                    getTypeString(DestTy) + "'");
3220     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3221                                                  SrcVal, DestTy);
3222     ID.Kind = ValID::t_Constant;
3223     return false;
3224   }
3225   case lltok::kw_extractvalue: {
3226     Lex.Lex();
3227     Constant *Val;
3228     SmallVector<unsigned, 4> Indices;
3229     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
3230         ParseGlobalTypeAndValue(Val) ||
3231         ParseIndexList(Indices) ||
3232         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3233       return true;
3234 
3235     if (!Val->getType()->isAggregateType())
3236       return Error(ID.Loc, "extractvalue operand must be aggregate type");
3237     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3238       return Error(ID.Loc, "invalid indices for extractvalue");
3239     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3240     ID.Kind = ValID::t_Constant;
3241     return false;
3242   }
3243   case lltok::kw_insertvalue: {
3244     Lex.Lex();
3245     Constant *Val0, *Val1;
3246     SmallVector<unsigned, 4> Indices;
3247     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
3248         ParseGlobalTypeAndValue(Val0) ||
3249         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
3250         ParseGlobalTypeAndValue(Val1) ||
3251         ParseIndexList(Indices) ||
3252         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3253       return true;
3254     if (!Val0->getType()->isAggregateType())
3255       return Error(ID.Loc, "insertvalue operand must be aggregate type");
3256     Type *IndexedType =
3257         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3258     if (!IndexedType)
3259       return Error(ID.Loc, "invalid indices for insertvalue");
3260     if (IndexedType != Val1->getType())
3261       return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3262                                getTypeString(Val1->getType()) +
3263                                "' instead of '" + getTypeString(IndexedType) +
3264                                "'");
3265     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3266     ID.Kind = ValID::t_Constant;
3267     return false;
3268   }
3269   case lltok::kw_icmp:
3270   case lltok::kw_fcmp: {
3271     unsigned PredVal, Opc = Lex.getUIntVal();
3272     Constant *Val0, *Val1;
3273     Lex.Lex();
3274     if (ParseCmpPredicate(PredVal, Opc) ||
3275         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3276         ParseGlobalTypeAndValue(Val0) ||
3277         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
3278         ParseGlobalTypeAndValue(Val1) ||
3279         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3280       return true;
3281 
3282     if (Val0->getType() != Val1->getType())
3283       return Error(ID.Loc, "compare operands must have the same type");
3284 
3285     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3286 
3287     if (Opc == Instruction::FCmp) {
3288       if (!Val0->getType()->isFPOrFPVectorTy())
3289         return Error(ID.Loc, "fcmp requires floating point operands");
3290       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3291     } else {
3292       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3293       if (!Val0->getType()->isIntOrIntVectorTy() &&
3294           !Val0->getType()->isPtrOrPtrVectorTy())
3295         return Error(ID.Loc, "icmp requires pointer or integer operands");
3296       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3297     }
3298     ID.Kind = ValID::t_Constant;
3299     return false;
3300   }
3301 
3302   // Unary Operators.
3303   case lltok::kw_fneg: {
3304     unsigned Opc = Lex.getUIntVal();
3305     Constant *Val;
3306     Lex.Lex();
3307     if (ParseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3308         ParseGlobalTypeAndValue(Val) ||
3309         ParseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3310       return true;
3311 
3312     // Check that the type is valid for the operator.
3313     switch (Opc) {
3314     case Instruction::FNeg:
3315       if (!Val->getType()->isFPOrFPVectorTy())
3316         return Error(ID.Loc, "constexpr requires fp operands");
3317       break;
3318     default: llvm_unreachable("Unknown unary operator!");
3319     }
3320     unsigned Flags = 0;
3321     Constant *C = ConstantExpr::get(Opc, Val, Flags);
3322     ID.ConstantVal = C;
3323     ID.Kind = ValID::t_Constant;
3324     return false;
3325   }
3326   // Binary Operators.
3327   case lltok::kw_add:
3328   case lltok::kw_fadd:
3329   case lltok::kw_sub:
3330   case lltok::kw_fsub:
3331   case lltok::kw_mul:
3332   case lltok::kw_fmul:
3333   case lltok::kw_udiv:
3334   case lltok::kw_sdiv:
3335   case lltok::kw_fdiv:
3336   case lltok::kw_urem:
3337   case lltok::kw_srem:
3338   case lltok::kw_frem:
3339   case lltok::kw_shl:
3340   case lltok::kw_lshr:
3341   case lltok::kw_ashr: {
3342     bool NUW = false;
3343     bool NSW = false;
3344     bool Exact = false;
3345     unsigned Opc = Lex.getUIntVal();
3346     Constant *Val0, *Val1;
3347     Lex.Lex();
3348     LocTy ModifierLoc = Lex.getLoc();
3349     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3350         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3351       if (EatIfPresent(lltok::kw_nuw))
3352         NUW = true;
3353       if (EatIfPresent(lltok::kw_nsw)) {
3354         NSW = true;
3355         if (EatIfPresent(lltok::kw_nuw))
3356           NUW = true;
3357       }
3358     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3359                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3360       if (EatIfPresent(lltok::kw_exact))
3361         Exact = true;
3362     }
3363     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3364         ParseGlobalTypeAndValue(Val0) ||
3365         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
3366         ParseGlobalTypeAndValue(Val1) ||
3367         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3368       return true;
3369     if (Val0->getType() != Val1->getType())
3370       return Error(ID.Loc, "operands of constexpr must have same type");
3371     if (!Val0->getType()->isIntOrIntVectorTy()) {
3372       if (NUW)
3373         return Error(ModifierLoc, "nuw only applies to integer operations");
3374       if (NSW)
3375         return Error(ModifierLoc, "nsw only applies to integer operations");
3376     }
3377     // Check that the type is valid for the operator.
3378     switch (Opc) {
3379     case Instruction::Add:
3380     case Instruction::Sub:
3381     case Instruction::Mul:
3382     case Instruction::UDiv:
3383     case Instruction::SDiv:
3384     case Instruction::URem:
3385     case Instruction::SRem:
3386     case Instruction::Shl:
3387     case Instruction::AShr:
3388     case Instruction::LShr:
3389       if (!Val0->getType()->isIntOrIntVectorTy())
3390         return Error(ID.Loc, "constexpr requires integer operands");
3391       break;
3392     case Instruction::FAdd:
3393     case Instruction::FSub:
3394     case Instruction::FMul:
3395     case Instruction::FDiv:
3396     case Instruction::FRem:
3397       if (!Val0->getType()->isFPOrFPVectorTy())
3398         return Error(ID.Loc, "constexpr requires fp operands");
3399       break;
3400     default: llvm_unreachable("Unknown binary operator!");
3401     }
3402     unsigned Flags = 0;
3403     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3404     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3405     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3406     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3407     ID.ConstantVal = C;
3408     ID.Kind = ValID::t_Constant;
3409     return false;
3410   }
3411 
3412   // Logical Operations
3413   case lltok::kw_and:
3414   case lltok::kw_or:
3415   case lltok::kw_xor: {
3416     unsigned Opc = Lex.getUIntVal();
3417     Constant *Val0, *Val1;
3418     Lex.Lex();
3419     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3420         ParseGlobalTypeAndValue(Val0) ||
3421         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3422         ParseGlobalTypeAndValue(Val1) ||
3423         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3424       return true;
3425     if (Val0->getType() != Val1->getType())
3426       return Error(ID.Loc, "operands of constexpr must have same type");
3427     if (!Val0->getType()->isIntOrIntVectorTy())
3428       return Error(ID.Loc,
3429                    "constexpr requires integer or integer vector operands");
3430     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3431     ID.Kind = ValID::t_Constant;
3432     return false;
3433   }
3434 
3435   case lltok::kw_getelementptr:
3436   case lltok::kw_shufflevector:
3437   case lltok::kw_insertelement:
3438   case lltok::kw_extractelement:
3439   case lltok::kw_select: {
3440     unsigned Opc = Lex.getUIntVal();
3441     SmallVector<Constant*, 16> Elts;
3442     bool InBounds = false;
3443     Type *Ty;
3444     Lex.Lex();
3445 
3446     if (Opc == Instruction::GetElementPtr)
3447       InBounds = EatIfPresent(lltok::kw_inbounds);
3448 
3449     if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3450       return true;
3451 
3452     LocTy ExplicitTypeLoc = Lex.getLoc();
3453     if (Opc == Instruction::GetElementPtr) {
3454       if (ParseType(Ty) ||
3455           ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3456         return true;
3457     }
3458 
3459     Optional<unsigned> InRangeOp;
3460     if (ParseGlobalValueVector(
3461             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3462         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3463       return true;
3464 
3465     if (Opc == Instruction::GetElementPtr) {
3466       if (Elts.size() == 0 ||
3467           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3468         return Error(ID.Loc, "base of getelementptr must be a pointer");
3469 
3470       Type *BaseType = Elts[0]->getType();
3471       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3472       if (Ty != BasePointerType->getElementType())
3473         return Error(
3474             ExplicitTypeLoc,
3475             "explicit pointee type doesn't match operand's pointee type");
3476 
3477       unsigned GEPWidth =
3478           BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0;
3479 
3480       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3481       for (Constant *Val : Indices) {
3482         Type *ValTy = Val->getType();
3483         if (!ValTy->isIntOrIntVectorTy())
3484           return Error(ID.Loc, "getelementptr index must be an integer");
3485         if (ValTy->isVectorTy()) {
3486           unsigned ValNumEl = ValTy->getVectorNumElements();
3487           if (GEPWidth && (ValNumEl != GEPWidth))
3488             return Error(
3489                 ID.Loc,
3490                 "getelementptr vector index has a wrong number of elements");
3491           // GEPWidth may have been unknown because the base is a scalar,
3492           // but it is known now.
3493           GEPWidth = ValNumEl;
3494         }
3495       }
3496 
3497       SmallPtrSet<Type*, 4> Visited;
3498       if (!Indices.empty() && !Ty->isSized(&Visited))
3499         return Error(ID.Loc, "base element of getelementptr must be sized");
3500 
3501       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3502         return Error(ID.Loc, "invalid getelementptr indices");
3503 
3504       if (InRangeOp) {
3505         if (*InRangeOp == 0)
3506           return Error(ID.Loc,
3507                        "inrange keyword may not appear on pointer operand");
3508         --*InRangeOp;
3509       }
3510 
3511       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3512                                                       InBounds, InRangeOp);
3513     } else if (Opc == Instruction::Select) {
3514       if (Elts.size() != 3)
3515         return Error(ID.Loc, "expected three operands to select");
3516       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3517                                                               Elts[2]))
3518         return Error(ID.Loc, Reason);
3519       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3520     } else if (Opc == Instruction::ShuffleVector) {
3521       if (Elts.size() != 3)
3522         return Error(ID.Loc, "expected three operands to shufflevector");
3523       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3524         return Error(ID.Loc, "invalid operands to shufflevector");
3525       ID.ConstantVal =
3526                  ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
3527     } else if (Opc == Instruction::ExtractElement) {
3528       if (Elts.size() != 2)
3529         return Error(ID.Loc, "expected two operands to extractelement");
3530       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3531         return Error(ID.Loc, "invalid extractelement operands");
3532       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3533     } else {
3534       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3535       if (Elts.size() != 3)
3536       return Error(ID.Loc, "expected three operands to insertelement");
3537       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3538         return Error(ID.Loc, "invalid insertelement operands");
3539       ID.ConstantVal =
3540                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3541     }
3542 
3543     ID.Kind = ValID::t_Constant;
3544     return false;
3545   }
3546   }
3547 
3548   Lex.Lex();
3549   return false;
3550 }
3551 
3552 /// ParseGlobalValue - Parse a global value with the specified type.
3553 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3554   C = nullptr;
3555   ValID ID;
3556   Value *V = nullptr;
3557   bool Parsed = ParseValID(ID) ||
3558                 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3559   if (V && !(C = dyn_cast<Constant>(V)))
3560     return Error(ID.Loc, "global values must be constants");
3561   return Parsed;
3562 }
3563 
3564 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3565   Type *Ty = nullptr;
3566   return ParseType(Ty) ||
3567          ParseGlobalValue(Ty, V);
3568 }
3569 
3570 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3571   C = nullptr;
3572 
3573   LocTy KwLoc = Lex.getLoc();
3574   if (!EatIfPresent(lltok::kw_comdat))
3575     return false;
3576 
3577   if (EatIfPresent(lltok::lparen)) {
3578     if (Lex.getKind() != lltok::ComdatVar)
3579       return TokError("expected comdat variable");
3580     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3581     Lex.Lex();
3582     if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3583       return true;
3584   } else {
3585     if (GlobalName.empty())
3586       return TokError("comdat cannot be unnamed");
3587     C = getComdat(GlobalName, KwLoc);
3588   }
3589 
3590   return false;
3591 }
3592 
3593 /// ParseGlobalValueVector
3594 ///   ::= /*empty*/
3595 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3596 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3597                                       Optional<unsigned> *InRangeOp) {
3598   // Empty list.
3599   if (Lex.getKind() == lltok::rbrace ||
3600       Lex.getKind() == lltok::rsquare ||
3601       Lex.getKind() == lltok::greater ||
3602       Lex.getKind() == lltok::rparen)
3603     return false;
3604 
3605   do {
3606     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3607       *InRangeOp = Elts.size();
3608 
3609     Constant *C;
3610     if (ParseGlobalTypeAndValue(C)) return true;
3611     Elts.push_back(C);
3612   } while (EatIfPresent(lltok::comma));
3613 
3614   return false;
3615 }
3616 
3617 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3618   SmallVector<Metadata *, 16> Elts;
3619   if (ParseMDNodeVector(Elts))
3620     return true;
3621 
3622   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3623   return false;
3624 }
3625 
3626 /// MDNode:
3627 ///  ::= !{ ... }
3628 ///  ::= !7
3629 ///  ::= !DILocation(...)
3630 bool LLParser::ParseMDNode(MDNode *&N) {
3631   if (Lex.getKind() == lltok::MetadataVar)
3632     return ParseSpecializedMDNode(N);
3633 
3634   return ParseToken(lltok::exclaim, "expected '!' here") ||
3635          ParseMDNodeTail(N);
3636 }
3637 
3638 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3639   // !{ ... }
3640   if (Lex.getKind() == lltok::lbrace)
3641     return ParseMDTuple(N);
3642 
3643   // !42
3644   return ParseMDNodeID(N);
3645 }
3646 
3647 namespace {
3648 
3649 /// Structure to represent an optional metadata field.
3650 template <class FieldTy> struct MDFieldImpl {
3651   typedef MDFieldImpl ImplTy;
3652   FieldTy Val;
3653   bool Seen;
3654 
3655   void assign(FieldTy Val) {
3656     Seen = true;
3657     this->Val = std::move(Val);
3658   }
3659 
3660   explicit MDFieldImpl(FieldTy Default)
3661       : Val(std::move(Default)), Seen(false) {}
3662 };
3663 
3664 /// Structure to represent an optional metadata field that
3665 /// can be of either type (A or B) and encapsulates the
3666 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3667 /// to reimplement the specifics for representing each Field.
3668 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3669   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3670   FieldTypeA A;
3671   FieldTypeB B;
3672   bool Seen;
3673 
3674   enum {
3675     IsInvalid = 0,
3676     IsTypeA = 1,
3677     IsTypeB = 2
3678   } WhatIs;
3679 
3680   void assign(FieldTypeA A) {
3681     Seen = true;
3682     this->A = std::move(A);
3683     WhatIs = IsTypeA;
3684   }
3685 
3686   void assign(FieldTypeB B) {
3687     Seen = true;
3688     this->B = std::move(B);
3689     WhatIs = IsTypeB;
3690   }
3691 
3692   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3693       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3694         WhatIs(IsInvalid) {}
3695 };
3696 
3697 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3698   uint64_t Max;
3699 
3700   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3701       : ImplTy(Default), Max(Max) {}
3702 };
3703 
3704 struct LineField : public MDUnsignedField {
3705   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3706 };
3707 
3708 struct ColumnField : public MDUnsignedField {
3709   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3710 };
3711 
3712 struct DwarfTagField : public MDUnsignedField {
3713   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3714   DwarfTagField(dwarf::Tag DefaultTag)
3715       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3716 };
3717 
3718 struct DwarfMacinfoTypeField : public MDUnsignedField {
3719   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3720   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3721     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3722 };
3723 
3724 struct DwarfAttEncodingField : public MDUnsignedField {
3725   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3726 };
3727 
3728 struct DwarfVirtualityField : public MDUnsignedField {
3729   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3730 };
3731 
3732 struct DwarfLangField : public MDUnsignedField {
3733   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3734 };
3735 
3736 struct DwarfCCField : public MDUnsignedField {
3737   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3738 };
3739 
3740 struct EmissionKindField : public MDUnsignedField {
3741   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3742 };
3743 
3744 struct NameTableKindField : public MDUnsignedField {
3745   NameTableKindField()
3746       : MDUnsignedField(
3747             0, (unsigned)
3748                    DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
3749 };
3750 
3751 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3752   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3753 };
3754 
3755 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
3756   DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
3757 };
3758 
3759 struct MDSignedField : public MDFieldImpl<int64_t> {
3760   int64_t Min;
3761   int64_t Max;
3762 
3763   MDSignedField(int64_t Default = 0)
3764       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3765   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3766       : ImplTy(Default), Min(Min), Max(Max) {}
3767 };
3768 
3769 struct MDBoolField : public MDFieldImpl<bool> {
3770   MDBoolField(bool Default = false) : ImplTy(Default) {}
3771 };
3772 
3773 struct MDField : public MDFieldImpl<Metadata *> {
3774   bool AllowNull;
3775 
3776   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3777 };
3778 
3779 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3780   MDConstant() : ImplTy(nullptr) {}
3781 };
3782 
3783 struct MDStringField : public MDFieldImpl<MDString *> {
3784   bool AllowEmpty;
3785   MDStringField(bool AllowEmpty = true)
3786       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3787 };
3788 
3789 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3790   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3791 };
3792 
3793 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
3794   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3795 };
3796 
3797 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
3798   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
3799       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
3800 
3801   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
3802                     bool AllowNull = true)
3803       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
3804 
3805   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3806   bool isMDField() const { return WhatIs == IsTypeB; }
3807   int64_t getMDSignedValue() const {
3808     assert(isMDSignedField() && "Wrong field type");
3809     return A.Val;
3810   }
3811   Metadata *getMDFieldValue() const {
3812     assert(isMDField() && "Wrong field type");
3813     return B.Val;
3814   }
3815 };
3816 
3817 struct MDSignedOrUnsignedField
3818     : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
3819   MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
3820 
3821   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3822   bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
3823   int64_t getMDSignedValue() const {
3824     assert(isMDSignedField() && "Wrong field type");
3825     return A.Val;
3826   }
3827   uint64_t getMDUnsignedValue() const {
3828     assert(isMDUnsignedField() && "Wrong field type");
3829     return B.Val;
3830   }
3831 };
3832 
3833 } // end anonymous namespace
3834 
3835 namespace llvm {
3836 
3837 template <>
3838 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3839                             MDUnsignedField &Result) {
3840   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3841     return TokError("expected unsigned integer");
3842 
3843   auto &U = Lex.getAPSIntVal();
3844   if (U.ugt(Result.Max))
3845     return TokError("value for '" + Name + "' too large, limit is " +
3846                     Twine(Result.Max));
3847   Result.assign(U.getZExtValue());
3848   assert(Result.Val <= Result.Max && "Expected value in range");
3849   Lex.Lex();
3850   return false;
3851 }
3852 
3853 template <>
3854 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3855   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3856 }
3857 template <>
3858 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3859   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3860 }
3861 
3862 template <>
3863 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3864   if (Lex.getKind() == lltok::APSInt)
3865     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3866 
3867   if (Lex.getKind() != lltok::DwarfTag)
3868     return TokError("expected DWARF tag");
3869 
3870   unsigned Tag = dwarf::getTag(Lex.getStrVal());
3871   if (Tag == dwarf::DW_TAG_invalid)
3872     return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3873   assert(Tag <= Result.Max && "Expected valid DWARF tag");
3874 
3875   Result.assign(Tag);
3876   Lex.Lex();
3877   return false;
3878 }
3879 
3880 template <>
3881 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3882                             DwarfMacinfoTypeField &Result) {
3883   if (Lex.getKind() == lltok::APSInt)
3884     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3885 
3886   if (Lex.getKind() != lltok::DwarfMacinfo)
3887     return TokError("expected DWARF macinfo type");
3888 
3889   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
3890   if (Macinfo == dwarf::DW_MACINFO_invalid)
3891     return TokError(
3892         "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
3893   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
3894 
3895   Result.assign(Macinfo);
3896   Lex.Lex();
3897   return false;
3898 }
3899 
3900 template <>
3901 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3902                             DwarfVirtualityField &Result) {
3903   if (Lex.getKind() == lltok::APSInt)
3904     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3905 
3906   if (Lex.getKind() != lltok::DwarfVirtuality)
3907     return TokError("expected DWARF virtuality code");
3908 
3909   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
3910   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
3911     return TokError("invalid DWARF virtuality code" + Twine(" '") +
3912                     Lex.getStrVal() + "'");
3913   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
3914   Result.assign(Virtuality);
3915   Lex.Lex();
3916   return false;
3917 }
3918 
3919 template <>
3920 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
3921   if (Lex.getKind() == lltok::APSInt)
3922     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3923 
3924   if (Lex.getKind() != lltok::DwarfLang)
3925     return TokError("expected DWARF language");
3926 
3927   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
3928   if (!Lang)
3929     return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
3930                     "'");
3931   assert(Lang <= Result.Max && "Expected valid DWARF language");
3932   Result.assign(Lang);
3933   Lex.Lex();
3934   return false;
3935 }
3936 
3937 template <>
3938 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
3939   if (Lex.getKind() == lltok::APSInt)
3940     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3941 
3942   if (Lex.getKind() != lltok::DwarfCC)
3943     return TokError("expected DWARF calling convention");
3944 
3945   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
3946   if (!CC)
3947     return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() +
3948                     "'");
3949   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
3950   Result.assign(CC);
3951   Lex.Lex();
3952   return false;
3953 }
3954 
3955 template <>
3956 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
3957   if (Lex.getKind() == lltok::APSInt)
3958     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3959 
3960   if (Lex.getKind() != lltok::EmissionKind)
3961     return TokError("expected emission kind");
3962 
3963   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
3964   if (!Kind)
3965     return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
3966                     "'");
3967   assert(*Kind <= Result.Max && "Expected valid emission kind");
3968   Result.assign(*Kind);
3969   Lex.Lex();
3970   return false;
3971 }
3972 
3973 template <>
3974 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3975                             NameTableKindField &Result) {
3976   if (Lex.getKind() == lltok::APSInt)
3977     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3978 
3979   if (Lex.getKind() != lltok::NameTableKind)
3980     return TokError("expected nameTable kind");
3981 
3982   auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
3983   if (!Kind)
3984     return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
3985                     "'");
3986   assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
3987   Result.assign((unsigned)*Kind);
3988   Lex.Lex();
3989   return false;
3990 }
3991 
3992 template <>
3993 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3994                             DwarfAttEncodingField &Result) {
3995   if (Lex.getKind() == lltok::APSInt)
3996     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3997 
3998   if (Lex.getKind() != lltok::DwarfAttEncoding)
3999     return TokError("expected DWARF type attribute encoding");
4000 
4001   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4002   if (!Encoding)
4003     return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
4004                     Lex.getStrVal() + "'");
4005   assert(Encoding <= Result.Max && "Expected valid DWARF language");
4006   Result.assign(Encoding);
4007   Lex.Lex();
4008   return false;
4009 }
4010 
4011 /// DIFlagField
4012 ///  ::= uint32
4013 ///  ::= DIFlagVector
4014 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4015 template <>
4016 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4017 
4018   // Parser for a single flag.
4019   auto parseFlag = [&](DINode::DIFlags &Val) {
4020     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4021       uint32_t TempVal = static_cast<uint32_t>(Val);
4022       bool Res = ParseUInt32(TempVal);
4023       Val = static_cast<DINode::DIFlags>(TempVal);
4024       return Res;
4025     }
4026 
4027     if (Lex.getKind() != lltok::DIFlag)
4028       return TokError("expected debug info flag");
4029 
4030     Val = DINode::getFlag(Lex.getStrVal());
4031     if (!Val)
4032       return TokError(Twine("invalid debug info flag flag '") +
4033                       Lex.getStrVal() + "'");
4034     Lex.Lex();
4035     return false;
4036   };
4037 
4038   // Parse the flags and combine them together.
4039   DINode::DIFlags Combined = DINode::FlagZero;
4040   do {
4041     DINode::DIFlags Val;
4042     if (parseFlag(Val))
4043       return true;
4044     Combined |= Val;
4045   } while (EatIfPresent(lltok::bar));
4046 
4047   Result.assign(Combined);
4048   return false;
4049 }
4050 
4051 /// DISPFlagField
4052 ///  ::= uint32
4053 ///  ::= DISPFlagVector
4054 ///  ::= DISPFlagVector '|' DISPFlag* '|' uint32
4055 template <>
4056 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4057 
4058   // Parser for a single flag.
4059   auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4060     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4061       uint32_t TempVal = static_cast<uint32_t>(Val);
4062       bool Res = ParseUInt32(TempVal);
4063       Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4064       return Res;
4065     }
4066 
4067     if (Lex.getKind() != lltok::DISPFlag)
4068       return TokError("expected debug info flag");
4069 
4070     Val = DISubprogram::getFlag(Lex.getStrVal());
4071     if (!Val)
4072       return TokError(Twine("invalid subprogram debug info flag '") +
4073                       Lex.getStrVal() + "'");
4074     Lex.Lex();
4075     return false;
4076   };
4077 
4078   // Parse the flags and combine them together.
4079   DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4080   do {
4081     DISubprogram::DISPFlags Val;
4082     if (parseFlag(Val))
4083       return true;
4084     Combined |= Val;
4085   } while (EatIfPresent(lltok::bar));
4086 
4087   Result.assign(Combined);
4088   return false;
4089 }
4090 
4091 template <>
4092 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4093                             MDSignedField &Result) {
4094   if (Lex.getKind() != lltok::APSInt)
4095     return TokError("expected signed integer");
4096 
4097   auto &S = Lex.getAPSIntVal();
4098   if (S < Result.Min)
4099     return TokError("value for '" + Name + "' too small, limit is " +
4100                     Twine(Result.Min));
4101   if (S > Result.Max)
4102     return TokError("value for '" + Name + "' too large, limit is " +
4103                     Twine(Result.Max));
4104   Result.assign(S.getExtValue());
4105   assert(Result.Val >= Result.Min && "Expected value in range");
4106   assert(Result.Val <= Result.Max && "Expected value in range");
4107   Lex.Lex();
4108   return false;
4109 }
4110 
4111 template <>
4112 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4113   switch (Lex.getKind()) {
4114   default:
4115     return TokError("expected 'true' or 'false'");
4116   case lltok::kw_true:
4117     Result.assign(true);
4118     break;
4119   case lltok::kw_false:
4120     Result.assign(false);
4121     break;
4122   }
4123   Lex.Lex();
4124   return false;
4125 }
4126 
4127 template <>
4128 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4129   if (Lex.getKind() == lltok::kw_null) {
4130     if (!Result.AllowNull)
4131       return TokError("'" + Name + "' cannot be null");
4132     Lex.Lex();
4133     Result.assign(nullptr);
4134     return false;
4135   }
4136 
4137   Metadata *MD;
4138   if (ParseMetadata(MD, nullptr))
4139     return true;
4140 
4141   Result.assign(MD);
4142   return false;
4143 }
4144 
4145 template <>
4146 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4147                             MDSignedOrMDField &Result) {
4148   // Try to parse a signed int.
4149   if (Lex.getKind() == lltok::APSInt) {
4150     MDSignedField Res = Result.A;
4151     if (!ParseMDField(Loc, Name, Res)) {
4152       Result.assign(Res);
4153       return false;
4154     }
4155     return true;
4156   }
4157 
4158   // Otherwise, try to parse as an MDField.
4159   MDField Res = Result.B;
4160   if (!ParseMDField(Loc, Name, Res)) {
4161     Result.assign(Res);
4162     return false;
4163   }
4164 
4165   return true;
4166 }
4167 
4168 template <>
4169 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4170                             MDSignedOrUnsignedField &Result) {
4171   if (Lex.getKind() != lltok::APSInt)
4172     return false;
4173 
4174   if (Lex.getAPSIntVal().isSigned()) {
4175     MDSignedField Res = Result.A;
4176     if (ParseMDField(Loc, Name, Res))
4177       return true;
4178     Result.assign(Res);
4179     return false;
4180   }
4181 
4182   MDUnsignedField Res = Result.B;
4183   if (ParseMDField(Loc, Name, Res))
4184     return true;
4185   Result.assign(Res);
4186   return false;
4187 }
4188 
4189 template <>
4190 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4191   LocTy ValueLoc = Lex.getLoc();
4192   std::string S;
4193   if (ParseStringConstant(S))
4194     return true;
4195 
4196   if (!Result.AllowEmpty && S.empty())
4197     return Error(ValueLoc, "'" + Name + "' cannot be empty");
4198 
4199   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4200   return false;
4201 }
4202 
4203 template <>
4204 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4205   SmallVector<Metadata *, 4> MDs;
4206   if (ParseMDNodeVector(MDs))
4207     return true;
4208 
4209   Result.assign(std::move(MDs));
4210   return false;
4211 }
4212 
4213 template <>
4214 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4215                             ChecksumKindField &Result) {
4216   Optional<DIFile::ChecksumKind> CSKind =
4217       DIFile::getChecksumKind(Lex.getStrVal());
4218 
4219   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4220     return TokError(
4221         "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'");
4222 
4223   Result.assign(*CSKind);
4224   Lex.Lex();
4225   return false;
4226 }
4227 
4228 } // end namespace llvm
4229 
4230 template <class ParserTy>
4231 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
4232   do {
4233     if (Lex.getKind() != lltok::LabelStr)
4234       return TokError("expected field label here");
4235 
4236     if (parseField())
4237       return true;
4238   } while (EatIfPresent(lltok::comma));
4239 
4240   return false;
4241 }
4242 
4243 template <class ParserTy>
4244 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
4245   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4246   Lex.Lex();
4247 
4248   if (ParseToken(lltok::lparen, "expected '(' here"))
4249     return true;
4250   if (Lex.getKind() != lltok::rparen)
4251     if (ParseMDFieldsImplBody(parseField))
4252       return true;
4253 
4254   ClosingLoc = Lex.getLoc();
4255   return ParseToken(lltok::rparen, "expected ')' here");
4256 }
4257 
4258 template <class FieldTy>
4259 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
4260   if (Result.Seen)
4261     return TokError("field '" + Name + "' cannot be specified more than once");
4262 
4263   LocTy Loc = Lex.getLoc();
4264   Lex.Lex();
4265   return ParseMDField(Loc, Name, Result);
4266 }
4267 
4268 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4269   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4270 
4271 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4272   if (Lex.getStrVal() == #CLASS)                                               \
4273     return Parse##CLASS(N, IsDistinct);
4274 #include "llvm/IR/Metadata.def"
4275 
4276   return TokError("expected metadata type");
4277 }
4278 
4279 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4280 #define NOP_FIELD(NAME, TYPE, INIT)
4281 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4282   if (!NAME.Seen)                                                              \
4283     return Error(ClosingLoc, "missing required field '" #NAME "'");
4284 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4285   if (Lex.getStrVal() == #NAME)                                                \
4286     return ParseMDField(#NAME, NAME);
4287 #define PARSE_MD_FIELDS()                                                      \
4288   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4289   do {                                                                         \
4290     LocTy ClosingLoc;                                                          \
4291     if (ParseMDFieldsImpl([&]() -> bool {                                      \
4292       VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                          \
4293       return TokError(Twine("invalid field '") + Lex.getStrVal() + "'");       \
4294     }, ClosingLoc))                                                            \
4295       return true;                                                             \
4296     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4297   } while (false)
4298 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4299   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4300 
4301 /// ParseDILocationFields:
4302 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4303 ///   isImplicitCode: true)
4304 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
4305 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4306   OPTIONAL(line, LineField, );                                                 \
4307   OPTIONAL(column, ColumnField, );                                             \
4308   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4309   OPTIONAL(inlinedAt, MDField, );                                              \
4310   OPTIONAL(isImplicitCode, MDBoolField, (false));
4311   PARSE_MD_FIELDS();
4312 #undef VISIT_MD_FIELDS
4313 
4314   Result =
4315       GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4316                                    inlinedAt.Val, isImplicitCode.Val));
4317   return false;
4318 }
4319 
4320 /// ParseGenericDINode:
4321 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4322 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
4323 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4324   REQUIRED(tag, DwarfTagField, );                                              \
4325   OPTIONAL(header, MDStringField, );                                           \
4326   OPTIONAL(operands, MDFieldList, );
4327   PARSE_MD_FIELDS();
4328 #undef VISIT_MD_FIELDS
4329 
4330   Result = GET_OR_DISTINCT(GenericDINode,
4331                            (Context, tag.Val, header.Val, operands.Val));
4332   return false;
4333 }
4334 
4335 /// ParseDISubrange:
4336 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4337 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4338 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
4339 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4340   REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4341   OPTIONAL(lowerBound, MDSignedField, );
4342   PARSE_MD_FIELDS();
4343 #undef VISIT_MD_FIELDS
4344 
4345   if (count.isMDSignedField())
4346     Result = GET_OR_DISTINCT(
4347         DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val));
4348   else if (count.isMDField())
4349     Result = GET_OR_DISTINCT(
4350         DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val));
4351   else
4352     return true;
4353 
4354   return false;
4355 }
4356 
4357 /// ParseDIEnumerator:
4358 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4359 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4360 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4361   REQUIRED(name, MDStringField, );                                             \
4362   REQUIRED(value, MDSignedOrUnsignedField, );                                  \
4363   OPTIONAL(isUnsigned, MDBoolField, (false));
4364   PARSE_MD_FIELDS();
4365 #undef VISIT_MD_FIELDS
4366 
4367   if (isUnsigned.Val && value.isMDSignedField())
4368     return TokError("unsigned enumerator with negative value");
4369 
4370   int64_t Value = value.isMDSignedField()
4371                       ? value.getMDSignedValue()
4372                       : static_cast<int64_t>(value.getMDUnsignedValue());
4373   Result =
4374       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4375 
4376   return false;
4377 }
4378 
4379 /// ParseDIBasicType:
4380 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4381 ///                    encoding: DW_ATE_encoding, flags: 0)
4382 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
4383 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4384   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4385   OPTIONAL(name, MDStringField, );                                             \
4386   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4387   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4388   OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
4389   OPTIONAL(flags, DIFlagField, );
4390   PARSE_MD_FIELDS();
4391 #undef VISIT_MD_FIELDS
4392 
4393   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4394                                          align.Val, encoding.Val, flags.Val));
4395   return false;
4396 }
4397 
4398 /// ParseDIDerivedType:
4399 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4400 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4401 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4402 ///                      dwarfAddressSpace: 3)
4403 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4404 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4405   REQUIRED(tag, DwarfTagField, );                                              \
4406   OPTIONAL(name, MDStringField, );                                             \
4407   OPTIONAL(file, MDField, );                                                   \
4408   OPTIONAL(line, LineField, );                                                 \
4409   OPTIONAL(scope, MDField, );                                                  \
4410   REQUIRED(baseType, MDField, );                                               \
4411   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4412   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4413   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4414   OPTIONAL(flags, DIFlagField, );                                              \
4415   OPTIONAL(extraData, MDField, );                                              \
4416   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4417   PARSE_MD_FIELDS();
4418 #undef VISIT_MD_FIELDS
4419 
4420   Optional<unsigned> DWARFAddressSpace;
4421   if (dwarfAddressSpace.Val != UINT32_MAX)
4422     DWARFAddressSpace = dwarfAddressSpace.Val;
4423 
4424   Result = GET_OR_DISTINCT(DIDerivedType,
4425                            (Context, tag.Val, name.Val, file.Val, line.Val,
4426                             scope.Val, baseType.Val, size.Val, align.Val,
4427                             offset.Val, DWARFAddressSpace, flags.Val,
4428                             extraData.Val));
4429   return false;
4430 }
4431 
4432 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
4433 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4434   REQUIRED(tag, DwarfTagField, );                                              \
4435   OPTIONAL(name, MDStringField, );                                             \
4436   OPTIONAL(file, MDField, );                                                   \
4437   OPTIONAL(line, LineField, );                                                 \
4438   OPTIONAL(scope, MDField, );                                                  \
4439   OPTIONAL(baseType, MDField, );                                               \
4440   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4441   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4442   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4443   OPTIONAL(flags, DIFlagField, );                                              \
4444   OPTIONAL(elements, MDField, );                                               \
4445   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4446   OPTIONAL(vtableHolder, MDField, );                                           \
4447   OPTIONAL(templateParams, MDField, );                                         \
4448   OPTIONAL(identifier, MDStringField, );                                       \
4449   OPTIONAL(discriminator, MDField, );
4450   PARSE_MD_FIELDS();
4451 #undef VISIT_MD_FIELDS
4452 
4453   // If this has an identifier try to build an ODR type.
4454   if (identifier.Val)
4455     if (auto *CT = DICompositeType::buildODRType(
4456             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4457             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4458             elements.Val, runtimeLang.Val, vtableHolder.Val,
4459             templateParams.Val, discriminator.Val)) {
4460       Result = CT;
4461       return false;
4462     }
4463 
4464   // Create a new node, and save it in the context if it belongs in the type
4465   // map.
4466   Result = GET_OR_DISTINCT(
4467       DICompositeType,
4468       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4469        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4470        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4471        discriminator.Val));
4472   return false;
4473 }
4474 
4475 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4476 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4477   OPTIONAL(flags, DIFlagField, );                                              \
4478   OPTIONAL(cc, DwarfCCField, );                                                \
4479   REQUIRED(types, MDField, );
4480   PARSE_MD_FIELDS();
4481 #undef VISIT_MD_FIELDS
4482 
4483   Result = GET_OR_DISTINCT(DISubroutineType,
4484                            (Context, flags.Val, cc.Val, types.Val));
4485   return false;
4486 }
4487 
4488 /// ParseDIFileType:
4489 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4490 ///                   checksumkind: CSK_MD5,
4491 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
4492 ///                   source: "source file contents")
4493 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
4494   // The default constructed value for checksumkind is required, but will never
4495   // be used, as the parser checks if the field was actually Seen before using
4496   // the Val.
4497 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4498   REQUIRED(filename, MDStringField, );                                         \
4499   REQUIRED(directory, MDStringField, );                                        \
4500   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
4501   OPTIONAL(checksum, MDStringField, );                                         \
4502   OPTIONAL(source, MDStringField, );
4503   PARSE_MD_FIELDS();
4504 #undef VISIT_MD_FIELDS
4505 
4506   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4507   if (checksumkind.Seen && checksum.Seen)
4508     OptChecksum.emplace(checksumkind.Val, checksum.Val);
4509   else if (checksumkind.Seen || checksum.Seen)
4510     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4511 
4512   Optional<MDString *> OptSource;
4513   if (source.Seen)
4514     OptSource = source.Val;
4515   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4516                                     OptChecksum, OptSource));
4517   return false;
4518 }
4519 
4520 /// ParseDICompileUnit:
4521 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4522 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4523 ///                      splitDebugFilename: "abc.debug",
4524 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4525 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd)
4526 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4527   if (!IsDistinct)
4528     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4529 
4530 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4531   REQUIRED(language, DwarfLangField, );                                        \
4532   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4533   OPTIONAL(producer, MDStringField, );                                         \
4534   OPTIONAL(isOptimized, MDBoolField, );                                        \
4535   OPTIONAL(flags, MDStringField, );                                            \
4536   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4537   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4538   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4539   OPTIONAL(enums, MDField, );                                                  \
4540   OPTIONAL(retainedTypes, MDField, );                                          \
4541   OPTIONAL(globals, MDField, );                                                \
4542   OPTIONAL(imports, MDField, );                                                \
4543   OPTIONAL(macros, MDField, );                                                 \
4544   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4545   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
4546   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
4547   OPTIONAL(nameTableKind, NameTableKindField, );                               \
4548   OPTIONAL(debugBaseAddress, MDBoolField, = false);
4549   PARSE_MD_FIELDS();
4550 #undef VISIT_MD_FIELDS
4551 
4552   Result = DICompileUnit::getDistinct(
4553       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4554       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4555       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4556       splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
4557       debugBaseAddress.Val);
4558   return false;
4559 }
4560 
4561 /// ParseDISubprogram:
4562 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4563 ///                     file: !1, line: 7, type: !2, isLocal: false,
4564 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4565 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4566 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4567 ///                     spFlags: 10, isOptimized: false, templateParams: !4,
4568 ///                     declaration: !5, retainedNodes: !6, thrownTypes: !7)
4569 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
4570   auto Loc = Lex.getLoc();
4571 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4572   OPTIONAL(scope, MDField, );                                                  \
4573   OPTIONAL(name, MDStringField, );                                             \
4574   OPTIONAL(linkageName, MDStringField, );                                      \
4575   OPTIONAL(file, MDField, );                                                   \
4576   OPTIONAL(line, LineField, );                                                 \
4577   OPTIONAL(type, MDField, );                                                   \
4578   OPTIONAL(isLocal, MDBoolField, );                                            \
4579   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4580   OPTIONAL(scopeLine, LineField, );                                            \
4581   OPTIONAL(containingType, MDField, );                                         \
4582   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4583   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4584   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4585   OPTIONAL(flags, DIFlagField, );                                              \
4586   OPTIONAL(spFlags, DISPFlagField, );                                          \
4587   OPTIONAL(isOptimized, MDBoolField, );                                        \
4588   OPTIONAL(unit, MDField, );                                                   \
4589   OPTIONAL(templateParams, MDField, );                                         \
4590   OPTIONAL(declaration, MDField, );                                            \
4591   OPTIONAL(retainedNodes, MDField, );                                          \
4592   OPTIONAL(thrownTypes, MDField, );
4593   PARSE_MD_FIELDS();
4594 #undef VISIT_MD_FIELDS
4595 
4596   // An explicit spFlags field takes precedence over individual fields in
4597   // older IR versions.
4598   DISubprogram::DISPFlags SPFlags =
4599       spFlags.Seen ? spFlags.Val
4600                    : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
4601                                              isOptimized.Val, virtuality.Val);
4602   if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
4603     return Lex.Error(
4604         Loc,
4605         "missing 'distinct', required for !DISubprogram that is a Definition");
4606   Result = GET_OR_DISTINCT(
4607       DISubprogram,
4608       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4609        type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
4610        thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
4611        declaration.Val, retainedNodes.Val, thrownTypes.Val));
4612   return false;
4613 }
4614 
4615 /// ParseDILexicalBlock:
4616 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4617 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4618 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4619   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4620   OPTIONAL(file, MDField, );                                                   \
4621   OPTIONAL(line, LineField, );                                                 \
4622   OPTIONAL(column, ColumnField, );
4623   PARSE_MD_FIELDS();
4624 #undef VISIT_MD_FIELDS
4625 
4626   Result = GET_OR_DISTINCT(
4627       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4628   return false;
4629 }
4630 
4631 /// ParseDILexicalBlockFile:
4632 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4633 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4634 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4635   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4636   OPTIONAL(file, MDField, );                                                   \
4637   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4638   PARSE_MD_FIELDS();
4639 #undef VISIT_MD_FIELDS
4640 
4641   Result = GET_OR_DISTINCT(DILexicalBlockFile,
4642                            (Context, scope.Val, file.Val, discriminator.Val));
4643   return false;
4644 }
4645 
4646 /// ParseDINamespace:
4647 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4648 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
4649 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4650   REQUIRED(scope, MDField, );                                                  \
4651   OPTIONAL(name, MDStringField, );                                             \
4652   OPTIONAL(exportSymbols, MDBoolField, );
4653   PARSE_MD_FIELDS();
4654 #undef VISIT_MD_FIELDS
4655 
4656   Result = GET_OR_DISTINCT(DINamespace,
4657                            (Context, scope.Val, name.Val, exportSymbols.Val));
4658   return false;
4659 }
4660 
4661 /// ParseDIMacro:
4662 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
4663 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
4664 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4665   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
4666   OPTIONAL(line, LineField, );                                                 \
4667   REQUIRED(name, MDStringField, );                                             \
4668   OPTIONAL(value, MDStringField, );
4669   PARSE_MD_FIELDS();
4670 #undef VISIT_MD_FIELDS
4671 
4672   Result = GET_OR_DISTINCT(DIMacro,
4673                            (Context, type.Val, line.Val, name.Val, value.Val));
4674   return false;
4675 }
4676 
4677 /// ParseDIMacroFile:
4678 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4679 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4680 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4681   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
4682   OPTIONAL(line, LineField, );                                                 \
4683   REQUIRED(file, MDField, );                                                   \
4684   OPTIONAL(nodes, MDField, );
4685   PARSE_MD_FIELDS();
4686 #undef VISIT_MD_FIELDS
4687 
4688   Result = GET_OR_DISTINCT(DIMacroFile,
4689                            (Context, type.Val, line.Val, file.Val, nodes.Val));
4690   return false;
4691 }
4692 
4693 /// ParseDIModule:
4694 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
4695 ///                 includePath: "/usr/include", isysroot: "/")
4696 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4697 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4698   REQUIRED(scope, MDField, );                                                  \
4699   REQUIRED(name, MDStringField, );                                             \
4700   OPTIONAL(configMacros, MDStringField, );                                     \
4701   OPTIONAL(includePath, MDStringField, );                                      \
4702   OPTIONAL(isysroot, MDStringField, );
4703   PARSE_MD_FIELDS();
4704 #undef VISIT_MD_FIELDS
4705 
4706   Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val,
4707                            configMacros.Val, includePath.Val, isysroot.Val));
4708   return false;
4709 }
4710 
4711 /// ParseDITemplateTypeParameter:
4712 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1)
4713 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4714 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4715   OPTIONAL(name, MDStringField, );                                             \
4716   REQUIRED(type, MDField, );
4717   PARSE_MD_FIELDS();
4718 #undef VISIT_MD_FIELDS
4719 
4720   Result =
4721       GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val));
4722   return false;
4723 }
4724 
4725 /// ParseDITemplateValueParameter:
4726 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4727 ///                                 name: "V", type: !1, value: i32 7)
4728 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4729 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4730   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
4731   OPTIONAL(name, MDStringField, );                                             \
4732   OPTIONAL(type, MDField, );                                                   \
4733   REQUIRED(value, MDField, );
4734   PARSE_MD_FIELDS();
4735 #undef VISIT_MD_FIELDS
4736 
4737   Result = GET_OR_DISTINCT(DITemplateValueParameter,
4738                            (Context, tag.Val, name.Val, type.Val, value.Val));
4739   return false;
4740 }
4741 
4742 /// ParseDIGlobalVariable:
4743 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4744 ///                         file: !1, line: 7, type: !2, isLocal: false,
4745 ///                         isDefinition: true, templateParams: !3,
4746 ///                         declaration: !4, align: 8)
4747 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4748 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4749   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
4750   OPTIONAL(scope, MDField, );                                                  \
4751   OPTIONAL(linkageName, MDStringField, );                                      \
4752   OPTIONAL(file, MDField, );                                                   \
4753   OPTIONAL(line, LineField, );                                                 \
4754   OPTIONAL(type, MDField, );                                                   \
4755   OPTIONAL(isLocal, MDBoolField, );                                            \
4756   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4757   OPTIONAL(templateParams, MDField, );                                         \
4758   OPTIONAL(declaration, MDField, );                                            \
4759   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4760   PARSE_MD_FIELDS();
4761 #undef VISIT_MD_FIELDS
4762 
4763   Result =
4764       GET_OR_DISTINCT(DIGlobalVariable,
4765                       (Context, scope.Val, name.Val, linkageName.Val, file.Val,
4766                        line.Val, type.Val, isLocal.Val, isDefinition.Val,
4767                        declaration.Val, templateParams.Val, align.Val));
4768   return false;
4769 }
4770 
4771 /// ParseDILocalVariable:
4772 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4773 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4774 ///                        align: 8)
4775 ///   ::= !DILocalVariable(scope: !0, name: "foo",
4776 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4777 ///                        align: 8)
4778 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4779 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4780   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4781   OPTIONAL(name, MDStringField, );                                             \
4782   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
4783   OPTIONAL(file, MDField, );                                                   \
4784   OPTIONAL(line, LineField, );                                                 \
4785   OPTIONAL(type, MDField, );                                                   \
4786   OPTIONAL(flags, DIFlagField, );                                              \
4787   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4788   PARSE_MD_FIELDS();
4789 #undef VISIT_MD_FIELDS
4790 
4791   Result = GET_OR_DISTINCT(DILocalVariable,
4792                            (Context, scope.Val, name.Val, file.Val, line.Val,
4793                             type.Val, arg.Val, flags.Val, align.Val));
4794   return false;
4795 }
4796 
4797 /// ParseDILabel:
4798 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
4799 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) {
4800 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4801   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4802   REQUIRED(name, MDStringField, );                                             \
4803   REQUIRED(file, MDField, );                                                   \
4804   REQUIRED(line, LineField, );
4805   PARSE_MD_FIELDS();
4806 #undef VISIT_MD_FIELDS
4807 
4808   Result = GET_OR_DISTINCT(DILabel,
4809                            (Context, scope.Val, name.Val, file.Val, line.Val));
4810   return false;
4811 }
4812 
4813 /// ParseDIExpression:
4814 ///   ::= !DIExpression(0, 7, -1)
4815 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
4816   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4817   Lex.Lex();
4818 
4819   if (ParseToken(lltok::lparen, "expected '(' here"))
4820     return true;
4821 
4822   SmallVector<uint64_t, 8> Elements;
4823   if (Lex.getKind() != lltok::rparen)
4824     do {
4825       if (Lex.getKind() == lltok::DwarfOp) {
4826         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
4827           Lex.Lex();
4828           Elements.push_back(Op);
4829           continue;
4830         }
4831         return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
4832       }
4833 
4834       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4835         return TokError("expected unsigned integer");
4836 
4837       auto &U = Lex.getAPSIntVal();
4838       if (U.ugt(UINT64_MAX))
4839         return TokError("element too large, limit is " + Twine(UINT64_MAX));
4840       Elements.push_back(U.getZExtValue());
4841       Lex.Lex();
4842     } while (EatIfPresent(lltok::comma));
4843 
4844   if (ParseToken(lltok::rparen, "expected ')' here"))
4845     return true;
4846 
4847   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
4848   return false;
4849 }
4850 
4851 /// ParseDIGlobalVariableExpression:
4852 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
4853 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result,
4854                                                bool IsDistinct) {
4855 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4856   REQUIRED(var, MDField, );                                                    \
4857   REQUIRED(expr, MDField, );
4858   PARSE_MD_FIELDS();
4859 #undef VISIT_MD_FIELDS
4860 
4861   Result =
4862       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
4863   return false;
4864 }
4865 
4866 /// ParseDIObjCProperty:
4867 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
4868 ///                       getter: "getFoo", attributes: 7, type: !2)
4869 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
4870 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4871   OPTIONAL(name, MDStringField, );                                             \
4872   OPTIONAL(file, MDField, );                                                   \
4873   OPTIONAL(line, LineField, );                                                 \
4874   OPTIONAL(setter, MDStringField, );                                           \
4875   OPTIONAL(getter, MDStringField, );                                           \
4876   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
4877   OPTIONAL(type, MDField, );
4878   PARSE_MD_FIELDS();
4879 #undef VISIT_MD_FIELDS
4880 
4881   Result = GET_OR_DISTINCT(DIObjCProperty,
4882                            (Context, name.Val, file.Val, line.Val, setter.Val,
4883                             getter.Val, attributes.Val, type.Val));
4884   return false;
4885 }
4886 
4887 /// ParseDIImportedEntity:
4888 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
4889 ///                         line: 7, name: "foo")
4890 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
4891 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4892   REQUIRED(tag, DwarfTagField, );                                              \
4893   REQUIRED(scope, MDField, );                                                  \
4894   OPTIONAL(entity, MDField, );                                                 \
4895   OPTIONAL(file, MDField, );                                                   \
4896   OPTIONAL(line, LineField, );                                                 \
4897   OPTIONAL(name, MDStringField, );
4898   PARSE_MD_FIELDS();
4899 #undef VISIT_MD_FIELDS
4900 
4901   Result = GET_OR_DISTINCT(
4902       DIImportedEntity,
4903       (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
4904   return false;
4905 }
4906 
4907 #undef PARSE_MD_FIELD
4908 #undef NOP_FIELD
4909 #undef REQUIRE_FIELD
4910 #undef DECLARE_FIELD
4911 
4912 /// ParseMetadataAsValue
4913 ///  ::= metadata i32 %local
4914 ///  ::= metadata i32 @global
4915 ///  ::= metadata i32 7
4916 ///  ::= metadata !0
4917 ///  ::= metadata !{...}
4918 ///  ::= metadata !"string"
4919 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
4920   // Note: the type 'metadata' has already been parsed.
4921   Metadata *MD;
4922   if (ParseMetadata(MD, &PFS))
4923     return true;
4924 
4925   V = MetadataAsValue::get(Context, MD);
4926   return false;
4927 }
4928 
4929 /// ParseValueAsMetadata
4930 ///  ::= i32 %local
4931 ///  ::= i32 @global
4932 ///  ::= i32 7
4933 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
4934                                     PerFunctionState *PFS) {
4935   Type *Ty;
4936   LocTy Loc;
4937   if (ParseType(Ty, TypeMsg, Loc))
4938     return true;
4939   if (Ty->isMetadataTy())
4940     return Error(Loc, "invalid metadata-value-metadata roundtrip");
4941 
4942   Value *V;
4943   if (ParseValue(Ty, V, PFS))
4944     return true;
4945 
4946   MD = ValueAsMetadata::get(V);
4947   return false;
4948 }
4949 
4950 /// ParseMetadata
4951 ///  ::= i32 %local
4952 ///  ::= i32 @global
4953 ///  ::= i32 7
4954 ///  ::= !42
4955 ///  ::= !{...}
4956 ///  ::= !"string"
4957 ///  ::= !DILocation(...)
4958 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
4959   if (Lex.getKind() == lltok::MetadataVar) {
4960     MDNode *N;
4961     if (ParseSpecializedMDNode(N))
4962       return true;
4963     MD = N;
4964     return false;
4965   }
4966 
4967   // ValueAsMetadata:
4968   // <type> <value>
4969   if (Lex.getKind() != lltok::exclaim)
4970     return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
4971 
4972   // '!'.
4973   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
4974   Lex.Lex();
4975 
4976   // MDString:
4977   //   ::= '!' STRINGCONSTANT
4978   if (Lex.getKind() == lltok::StringConstant) {
4979     MDString *S;
4980     if (ParseMDString(S))
4981       return true;
4982     MD = S;
4983     return false;
4984   }
4985 
4986   // MDNode:
4987   // !{ ... }
4988   // !7
4989   MDNode *N;
4990   if (ParseMDNodeTail(N))
4991     return true;
4992   MD = N;
4993   return false;
4994 }
4995 
4996 //===----------------------------------------------------------------------===//
4997 // Function Parsing.
4998 //===----------------------------------------------------------------------===//
4999 
5000 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5001                                    PerFunctionState *PFS, bool IsCall) {
5002   if (Ty->isFunctionTy())
5003     return Error(ID.Loc, "functions are not values, refer to them as pointers");
5004 
5005   switch (ID.Kind) {
5006   case ValID::t_LocalID:
5007     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5008     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5009     return V == nullptr;
5010   case ValID::t_LocalName:
5011     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5012     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall);
5013     return V == nullptr;
5014   case ValID::t_InlineAsm: {
5015     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5016       return Error(ID.Loc, "invalid type for inline asm constraint string");
5017     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
5018                        (ID.UIntVal >> 1) & 1,
5019                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
5020     return false;
5021   }
5022   case ValID::t_GlobalName:
5023     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall);
5024     return V == nullptr;
5025   case ValID::t_GlobalID:
5026     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5027     return V == nullptr;
5028   case ValID::t_APSInt:
5029     if (!Ty->isIntegerTy())
5030       return Error(ID.Loc, "integer constant must have integer type");
5031     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5032     V = ConstantInt::get(Context, ID.APSIntVal);
5033     return false;
5034   case ValID::t_APFloat:
5035     if (!Ty->isFloatingPointTy() ||
5036         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5037       return Error(ID.Loc, "floating point constant invalid for type");
5038 
5039     // The lexer has no type info, so builds all half, float, and double FP
5040     // constants as double.  Fix this here.  Long double does not need this.
5041     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5042       bool Ignored;
5043       if (Ty->isHalfTy())
5044         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5045                               &Ignored);
5046       else if (Ty->isFloatTy())
5047         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5048                               &Ignored);
5049     }
5050     V = ConstantFP::get(Context, ID.APFloatVal);
5051 
5052     if (V->getType() != Ty)
5053       return Error(ID.Loc, "floating point constant does not have type '" +
5054                    getTypeString(Ty) + "'");
5055 
5056     return false;
5057   case ValID::t_Null:
5058     if (!Ty->isPointerTy())
5059       return Error(ID.Loc, "null must be a pointer type");
5060     V = ConstantPointerNull::get(cast<PointerType>(Ty));
5061     return false;
5062   case ValID::t_Undef:
5063     // FIXME: LabelTy should not be a first-class type.
5064     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5065       return Error(ID.Loc, "invalid type for undef constant");
5066     V = UndefValue::get(Ty);
5067     return false;
5068   case ValID::t_EmptyArray:
5069     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5070       return Error(ID.Loc, "invalid empty array initializer");
5071     V = UndefValue::get(Ty);
5072     return false;
5073   case ValID::t_Zero:
5074     // FIXME: LabelTy should not be a first-class type.
5075     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5076       return Error(ID.Loc, "invalid type for null constant");
5077     V = Constant::getNullValue(Ty);
5078     return false;
5079   case ValID::t_None:
5080     if (!Ty->isTokenTy())
5081       return Error(ID.Loc, "invalid type for none constant");
5082     V = Constant::getNullValue(Ty);
5083     return false;
5084   case ValID::t_Constant:
5085     if (ID.ConstantVal->getType() != Ty)
5086       return Error(ID.Loc, "constant expression type mismatch");
5087 
5088     V = ID.ConstantVal;
5089     return false;
5090   case ValID::t_ConstantStruct:
5091   case ValID::t_PackedConstantStruct:
5092     if (StructType *ST = dyn_cast<StructType>(Ty)) {
5093       if (ST->getNumElements() != ID.UIntVal)
5094         return Error(ID.Loc,
5095                      "initializer with struct type has wrong # elements");
5096       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5097         return Error(ID.Loc, "packed'ness of initializer and type don't match");
5098 
5099       // Verify that the elements are compatible with the structtype.
5100       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5101         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5102           return Error(ID.Loc, "element " + Twine(i) +
5103                     " of struct initializer doesn't match struct element type");
5104 
5105       V = ConstantStruct::get(
5106           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5107     } else
5108       return Error(ID.Loc, "constant expression type mismatch");
5109     return false;
5110   }
5111   llvm_unreachable("Invalid ValID");
5112 }
5113 
5114 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5115   C = nullptr;
5116   ValID ID;
5117   auto Loc = Lex.getLoc();
5118   if (ParseValID(ID, /*PFS=*/nullptr))
5119     return true;
5120   switch (ID.Kind) {
5121   case ValID::t_APSInt:
5122   case ValID::t_APFloat:
5123   case ValID::t_Undef:
5124   case ValID::t_Constant:
5125   case ValID::t_ConstantStruct:
5126   case ValID::t_PackedConstantStruct: {
5127     Value *V;
5128     if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
5129       return true;
5130     assert(isa<Constant>(V) && "Expected a constant value");
5131     C = cast<Constant>(V);
5132     return false;
5133   }
5134   case ValID::t_Null:
5135     C = Constant::getNullValue(Ty);
5136     return false;
5137   default:
5138     return Error(Loc, "expected a constant value");
5139   }
5140 }
5141 
5142 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5143   V = nullptr;
5144   ValID ID;
5145   return ParseValID(ID, PFS) ||
5146          ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
5147 }
5148 
5149 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5150   Type *Ty = nullptr;
5151   return ParseType(Ty) ||
5152          ParseValue(Ty, V, PFS);
5153 }
5154 
5155 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5156                                       PerFunctionState &PFS) {
5157   Value *V;
5158   Loc = Lex.getLoc();
5159   if (ParseTypeAndValue(V, PFS)) return true;
5160   if (!isa<BasicBlock>(V))
5161     return Error(Loc, "expected a basic block");
5162   BB = cast<BasicBlock>(V);
5163   return false;
5164 }
5165 
5166 /// FunctionHeader
5167 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5168 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5169 ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5170 ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5171 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
5172   // Parse the linkage.
5173   LocTy LinkageLoc = Lex.getLoc();
5174   unsigned Linkage;
5175   unsigned Visibility;
5176   unsigned DLLStorageClass;
5177   bool DSOLocal;
5178   AttrBuilder RetAttrs;
5179   unsigned CC;
5180   bool HasLinkage;
5181   Type *RetType = nullptr;
5182   LocTy RetTypeLoc = Lex.getLoc();
5183   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5184                            DSOLocal) ||
5185       ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5186       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
5187     return true;
5188 
5189   // Verify that the linkage is ok.
5190   switch ((GlobalValue::LinkageTypes)Linkage) {
5191   case GlobalValue::ExternalLinkage:
5192     break; // always ok.
5193   case GlobalValue::ExternalWeakLinkage:
5194     if (isDefine)
5195       return Error(LinkageLoc, "invalid linkage for function definition");
5196     break;
5197   case GlobalValue::PrivateLinkage:
5198   case GlobalValue::InternalLinkage:
5199   case GlobalValue::AvailableExternallyLinkage:
5200   case GlobalValue::LinkOnceAnyLinkage:
5201   case GlobalValue::LinkOnceODRLinkage:
5202   case GlobalValue::WeakAnyLinkage:
5203   case GlobalValue::WeakODRLinkage:
5204     if (!isDefine)
5205       return Error(LinkageLoc, "invalid linkage for function declaration");
5206     break;
5207   case GlobalValue::AppendingLinkage:
5208   case GlobalValue::CommonLinkage:
5209     return Error(LinkageLoc, "invalid function linkage type");
5210   }
5211 
5212   if (!isValidVisibilityForLinkage(Visibility, Linkage))
5213     return Error(LinkageLoc,
5214                  "symbol with local linkage must have default visibility");
5215 
5216   if (!FunctionType::isValidReturnType(RetType))
5217     return Error(RetTypeLoc, "invalid function return type");
5218 
5219   LocTy NameLoc = Lex.getLoc();
5220 
5221   std::string FunctionName;
5222   if (Lex.getKind() == lltok::GlobalVar) {
5223     FunctionName = Lex.getStrVal();
5224   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
5225     unsigned NameID = Lex.getUIntVal();
5226 
5227     if (NameID != NumberedVals.size())
5228       return TokError("function expected to be numbered '%" +
5229                       Twine(NumberedVals.size()) + "'");
5230   } else {
5231     return TokError("expected function name");
5232   }
5233 
5234   Lex.Lex();
5235 
5236   if (Lex.getKind() != lltok::lparen)
5237     return TokError("expected '(' in function argument list");
5238 
5239   SmallVector<ArgInfo, 8> ArgList;
5240   bool isVarArg;
5241   AttrBuilder FuncAttrs;
5242   std::vector<unsigned> FwdRefAttrGrps;
5243   LocTy BuiltinLoc;
5244   std::string Section;
5245   unsigned Alignment;
5246   std::string GC;
5247   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5248   unsigned AddrSpace = 0;
5249   Constant *Prefix = nullptr;
5250   Constant *Prologue = nullptr;
5251   Constant *PersonalityFn = nullptr;
5252   Comdat *C;
5253 
5254   if (ParseArgumentList(ArgList, isVarArg) ||
5255       ParseOptionalUnnamedAddr(UnnamedAddr) ||
5256       ParseOptionalProgramAddrSpace(AddrSpace) ||
5257       ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5258                                  BuiltinLoc) ||
5259       (EatIfPresent(lltok::kw_section) &&
5260        ParseStringConstant(Section)) ||
5261       parseOptionalComdat(FunctionName, C) ||
5262       ParseOptionalAlignment(Alignment) ||
5263       (EatIfPresent(lltok::kw_gc) &&
5264        ParseStringConstant(GC)) ||
5265       (EatIfPresent(lltok::kw_prefix) &&
5266        ParseGlobalTypeAndValue(Prefix)) ||
5267       (EatIfPresent(lltok::kw_prologue) &&
5268        ParseGlobalTypeAndValue(Prologue)) ||
5269       (EatIfPresent(lltok::kw_personality) &&
5270        ParseGlobalTypeAndValue(PersonalityFn)))
5271     return true;
5272 
5273   if (FuncAttrs.contains(Attribute::Builtin))
5274     return Error(BuiltinLoc, "'builtin' attribute not valid on function");
5275 
5276   // If the alignment was parsed as an attribute, move to the alignment field.
5277   if (FuncAttrs.hasAlignmentAttr()) {
5278     Alignment = FuncAttrs.getAlignment();
5279     FuncAttrs.removeAttribute(Attribute::Alignment);
5280   }
5281 
5282   // Okay, if we got here, the function is syntactically valid.  Convert types
5283   // and do semantic checks.
5284   std::vector<Type*> ParamTypeList;
5285   SmallVector<AttributeSet, 8> Attrs;
5286 
5287   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5288     ParamTypeList.push_back(ArgList[i].Ty);
5289     Attrs.push_back(ArgList[i].Attrs);
5290   }
5291 
5292   AttributeList PAL =
5293       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5294                          AttributeSet::get(Context, RetAttrs), Attrs);
5295 
5296   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
5297     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
5298 
5299   FunctionType *FT =
5300     FunctionType::get(RetType, ParamTypeList, isVarArg);
5301   PointerType *PFT = PointerType::get(FT, AddrSpace);
5302 
5303   Fn = nullptr;
5304   if (!FunctionName.empty()) {
5305     // If this was a definition of a forward reference, remove the definition
5306     // from the forward reference table and fill in the forward ref.
5307     auto FRVI = ForwardRefVals.find(FunctionName);
5308     if (FRVI != ForwardRefVals.end()) {
5309       Fn = M->getFunction(FunctionName);
5310       if (!Fn)
5311         return Error(FRVI->second.second, "invalid forward reference to "
5312                      "function as global value!");
5313       if (Fn->getType() != PFT)
5314         return Error(FRVI->second.second, "invalid forward reference to "
5315                      "function '" + FunctionName + "' with wrong type: "
5316                      "expected '" + getTypeString(PFT) + "' but was '" +
5317                      getTypeString(Fn->getType()) + "'");
5318       ForwardRefVals.erase(FRVI);
5319     } else if ((Fn = M->getFunction(FunctionName))) {
5320       // Reject redefinitions.
5321       return Error(NameLoc, "invalid redefinition of function '" +
5322                    FunctionName + "'");
5323     } else if (M->getNamedValue(FunctionName)) {
5324       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5325     }
5326 
5327   } else {
5328     // If this is a definition of a forward referenced function, make sure the
5329     // types agree.
5330     auto I = ForwardRefValIDs.find(NumberedVals.size());
5331     if (I != ForwardRefValIDs.end()) {
5332       Fn = cast<Function>(I->second.first);
5333       if (Fn->getType() != PFT)
5334         return Error(NameLoc, "type of definition and forward reference of '@" +
5335                      Twine(NumberedVals.size()) + "' disagree: "
5336                      "expected '" + getTypeString(PFT) + "' but was '" +
5337                      getTypeString(Fn->getType()) + "'");
5338       ForwardRefValIDs.erase(I);
5339     }
5340   }
5341 
5342   if (!Fn)
5343     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5344                           FunctionName, M);
5345   else // Move the forward-reference to the correct spot in the module.
5346     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
5347 
5348   assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5349 
5350   if (FunctionName.empty())
5351     NumberedVals.push_back(Fn);
5352 
5353   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5354   maybeSetDSOLocal(DSOLocal, *Fn);
5355   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5356   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5357   Fn->setCallingConv(CC);
5358   Fn->setAttributes(PAL);
5359   Fn->setUnnamedAddr(UnnamedAddr);
5360   Fn->setAlignment(Alignment);
5361   Fn->setSection(Section);
5362   Fn->setComdat(C);
5363   Fn->setPersonalityFn(PersonalityFn);
5364   if (!GC.empty()) Fn->setGC(GC);
5365   Fn->setPrefixData(Prefix);
5366   Fn->setPrologueData(Prologue);
5367   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5368 
5369   // Add all of the arguments we parsed to the function.
5370   Function::arg_iterator ArgIt = Fn->arg_begin();
5371   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5372     // If the argument has a name, insert it into the argument symbol table.
5373     if (ArgList[i].Name.empty()) continue;
5374 
5375     // Set the name, if it conflicted, it will be auto-renamed.
5376     ArgIt->setName(ArgList[i].Name);
5377 
5378     if (ArgIt->getName() != ArgList[i].Name)
5379       return Error(ArgList[i].Loc, "redefinition of argument '%" +
5380                    ArgList[i].Name + "'");
5381   }
5382 
5383   if (isDefine)
5384     return false;
5385 
5386   // Check the declaration has no block address forward references.
5387   ValID ID;
5388   if (FunctionName.empty()) {
5389     ID.Kind = ValID::t_GlobalID;
5390     ID.UIntVal = NumberedVals.size() - 1;
5391   } else {
5392     ID.Kind = ValID::t_GlobalName;
5393     ID.StrVal = FunctionName;
5394   }
5395   auto Blocks = ForwardRefBlockAddresses.find(ID);
5396   if (Blocks != ForwardRefBlockAddresses.end())
5397     return Error(Blocks->first.Loc,
5398                  "cannot take blockaddress inside a declaration");
5399   return false;
5400 }
5401 
5402 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5403   ValID ID;
5404   if (FunctionNumber == -1) {
5405     ID.Kind = ValID::t_GlobalName;
5406     ID.StrVal = F.getName();
5407   } else {
5408     ID.Kind = ValID::t_GlobalID;
5409     ID.UIntVal = FunctionNumber;
5410   }
5411 
5412   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5413   if (Blocks == P.ForwardRefBlockAddresses.end())
5414     return false;
5415 
5416   for (const auto &I : Blocks->second) {
5417     const ValID &BBID = I.first;
5418     GlobalValue *GV = I.second;
5419 
5420     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5421            "Expected local id or name");
5422     BasicBlock *BB;
5423     if (BBID.Kind == ValID::t_LocalName)
5424       BB = GetBB(BBID.StrVal, BBID.Loc);
5425     else
5426       BB = GetBB(BBID.UIntVal, BBID.Loc);
5427     if (!BB)
5428       return P.Error(BBID.Loc, "referenced value is not a basic block");
5429 
5430     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
5431     GV->eraseFromParent();
5432   }
5433 
5434   P.ForwardRefBlockAddresses.erase(Blocks);
5435   return false;
5436 }
5437 
5438 /// ParseFunctionBody
5439 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
5440 bool LLParser::ParseFunctionBody(Function &Fn) {
5441   if (Lex.getKind() != lltok::lbrace)
5442     return TokError("expected '{' in function body");
5443   Lex.Lex();  // eat the {.
5444 
5445   int FunctionNumber = -1;
5446   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5447 
5448   PerFunctionState PFS(*this, Fn, FunctionNumber);
5449 
5450   // Resolve block addresses and allow basic blocks to be forward-declared
5451   // within this function.
5452   if (PFS.resolveForwardRefBlockAddresses())
5453     return true;
5454   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5455 
5456   // We need at least one basic block.
5457   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
5458     return TokError("function body requires at least one basic block");
5459 
5460   while (Lex.getKind() != lltok::rbrace &&
5461          Lex.getKind() != lltok::kw_uselistorder)
5462     if (ParseBasicBlock(PFS)) return true;
5463 
5464   while (Lex.getKind() != lltok::rbrace)
5465     if (ParseUseListOrder(&PFS))
5466       return true;
5467 
5468   // Eat the }.
5469   Lex.Lex();
5470 
5471   // Verify function is ok.
5472   return PFS.FinishFunction();
5473 }
5474 
5475 /// ParseBasicBlock
5476 ///   ::= LabelStr? Instruction*
5477 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
5478   // If this basic block starts out with a name, remember it.
5479   std::string Name;
5480   LocTy NameLoc = Lex.getLoc();
5481   if (Lex.getKind() == lltok::LabelStr) {
5482     Name = Lex.getStrVal();
5483     Lex.Lex();
5484   }
5485 
5486   BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
5487   if (!BB)
5488     return Error(NameLoc,
5489                  "unable to create block named '" + Name + "'");
5490 
5491   std::string NameStr;
5492 
5493   // Parse the instructions in this block until we get a terminator.
5494   Instruction *Inst;
5495   do {
5496     // This instruction may have three possibilities for a name: a) none
5497     // specified, b) name specified "%foo =", c) number specified: "%4 =".
5498     LocTy NameLoc = Lex.getLoc();
5499     int NameID = -1;
5500     NameStr = "";
5501 
5502     if (Lex.getKind() == lltok::LocalVarID) {
5503       NameID = Lex.getUIntVal();
5504       Lex.Lex();
5505       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
5506         return true;
5507     } else if (Lex.getKind() == lltok::LocalVar) {
5508       NameStr = Lex.getStrVal();
5509       Lex.Lex();
5510       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
5511         return true;
5512     }
5513 
5514     switch (ParseInstruction(Inst, BB, PFS)) {
5515     default: llvm_unreachable("Unknown ParseInstruction result!");
5516     case InstError: return true;
5517     case InstNormal:
5518       BB->getInstList().push_back(Inst);
5519 
5520       // With a normal result, we check to see if the instruction is followed by
5521       // a comma and metadata.
5522       if (EatIfPresent(lltok::comma))
5523         if (ParseInstructionMetadata(*Inst))
5524           return true;
5525       break;
5526     case InstExtraComma:
5527       BB->getInstList().push_back(Inst);
5528 
5529       // If the instruction parser ate an extra comma at the end of it, it
5530       // *must* be followed by metadata.
5531       if (ParseInstructionMetadata(*Inst))
5532         return true;
5533       break;
5534     }
5535 
5536     // Set the name on the instruction.
5537     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
5538   } while (!Inst->isTerminator());
5539 
5540   return false;
5541 }
5542 
5543 //===----------------------------------------------------------------------===//
5544 // Instruction Parsing.
5545 //===----------------------------------------------------------------------===//
5546 
5547 /// ParseInstruction - Parse one of the many different instructions.
5548 ///
5549 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
5550                                PerFunctionState &PFS) {
5551   lltok::Kind Token = Lex.getKind();
5552   if (Token == lltok::Eof)
5553     return TokError("found end of file when expecting more instructions");
5554   LocTy Loc = Lex.getLoc();
5555   unsigned KeywordVal = Lex.getUIntVal();
5556   Lex.Lex();  // Eat the keyword.
5557 
5558   switch (Token) {
5559   default:                    return Error(Loc, "expected instruction opcode");
5560   // Terminator Instructions.
5561   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5562   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
5563   case lltok::kw_br:          return ParseBr(Inst, PFS);
5564   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
5565   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
5566   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
5567   case lltok::kw_resume:      return ParseResume(Inst, PFS);
5568   case lltok::kw_cleanupret:  return ParseCleanupRet(Inst, PFS);
5569   case lltok::kw_catchret:    return ParseCatchRet(Inst, PFS);
5570   case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
5571   case lltok::kw_catchpad:    return ParseCatchPad(Inst, PFS);
5572   case lltok::kw_cleanuppad:  return ParseCleanupPad(Inst, PFS);
5573   // Unary Operators.
5574   case lltok::kw_fneg: {
5575     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5576     int Res = ParseUnaryOp(Inst, PFS, KeywordVal, 2);
5577     if (Res != 0)
5578       return Res;
5579     if (FMF.any())
5580       Inst->setFastMathFlags(FMF);
5581     return false;
5582   }
5583   // Binary Operators.
5584   case lltok::kw_add:
5585   case lltok::kw_sub:
5586   case lltok::kw_mul:
5587   case lltok::kw_shl: {
5588     bool NUW = EatIfPresent(lltok::kw_nuw);
5589     bool NSW = EatIfPresent(lltok::kw_nsw);
5590     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5591 
5592     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
5593 
5594     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5595     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5596     return false;
5597   }
5598   case lltok::kw_fadd:
5599   case lltok::kw_fsub:
5600   case lltok::kw_fmul:
5601   case lltok::kw_fdiv:
5602   case lltok::kw_frem: {
5603     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5604     int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2);
5605     if (Res != 0)
5606       return Res;
5607     if (FMF.any())
5608       Inst->setFastMathFlags(FMF);
5609     return 0;
5610   }
5611 
5612   case lltok::kw_sdiv:
5613   case lltok::kw_udiv:
5614   case lltok::kw_lshr:
5615   case lltok::kw_ashr: {
5616     bool Exact = EatIfPresent(lltok::kw_exact);
5617 
5618     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
5619     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5620     return false;
5621   }
5622 
5623   case lltok::kw_urem:
5624   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
5625   case lltok::kw_and:
5626   case lltok::kw_or:
5627   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
5628   case lltok::kw_icmp:   return ParseCompare(Inst, PFS, KeywordVal);
5629   case lltok::kw_fcmp: {
5630     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5631     int Res = ParseCompare(Inst, PFS, KeywordVal);
5632     if (Res != 0)
5633       return Res;
5634     if (FMF.any())
5635       Inst->setFastMathFlags(FMF);
5636     return 0;
5637   }
5638 
5639   // Casts.
5640   case lltok::kw_trunc:
5641   case lltok::kw_zext:
5642   case lltok::kw_sext:
5643   case lltok::kw_fptrunc:
5644   case lltok::kw_fpext:
5645   case lltok::kw_bitcast:
5646   case lltok::kw_addrspacecast:
5647   case lltok::kw_uitofp:
5648   case lltok::kw_sitofp:
5649   case lltok::kw_fptoui:
5650   case lltok::kw_fptosi:
5651   case lltok::kw_inttoptr:
5652   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
5653   // Other.
5654   case lltok::kw_select:         return ParseSelect(Inst, PFS);
5655   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
5656   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
5657   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
5658   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
5659   case lltok::kw_phi:            return ParsePHI(Inst, PFS);
5660   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
5661   // Call.
5662   case lltok::kw_call:     return ParseCall(Inst, PFS, CallInst::TCK_None);
5663   case lltok::kw_tail:     return ParseCall(Inst, PFS, CallInst::TCK_Tail);
5664   case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
5665   case lltok::kw_notail:   return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
5666   // Memory.
5667   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
5668   case lltok::kw_load:           return ParseLoad(Inst, PFS);
5669   case lltok::kw_store:          return ParseStore(Inst, PFS);
5670   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
5671   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
5672   case lltok::kw_fence:          return ParseFence(Inst, PFS);
5673   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
5674   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
5675   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
5676   }
5677 }
5678 
5679 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
5680 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
5681   if (Opc == Instruction::FCmp) {
5682     switch (Lex.getKind()) {
5683     default: return TokError("expected fcmp predicate (e.g. 'oeq')");
5684     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
5685     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
5686     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
5687     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
5688     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
5689     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
5690     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
5691     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
5692     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
5693     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
5694     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
5695     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
5696     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
5697     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
5698     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
5699     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
5700     }
5701   } else {
5702     switch (Lex.getKind()) {
5703     default: return TokError("expected icmp predicate (e.g. 'eq')");
5704     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
5705     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
5706     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
5707     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
5708     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
5709     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
5710     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
5711     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
5712     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
5713     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
5714     }
5715   }
5716   Lex.Lex();
5717   return false;
5718 }
5719 
5720 //===----------------------------------------------------------------------===//
5721 // Terminator Instructions.
5722 //===----------------------------------------------------------------------===//
5723 
5724 /// ParseRet - Parse a return instruction.
5725 ///   ::= 'ret' void (',' !dbg, !1)*
5726 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
5727 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
5728                         PerFunctionState &PFS) {
5729   SMLoc TypeLoc = Lex.getLoc();
5730   Type *Ty = nullptr;
5731   if (ParseType(Ty, true /*void allowed*/)) return true;
5732 
5733   Type *ResType = PFS.getFunction().getReturnType();
5734 
5735   if (Ty->isVoidTy()) {
5736     if (!ResType->isVoidTy())
5737       return Error(TypeLoc, "value doesn't match function result type '" +
5738                    getTypeString(ResType) + "'");
5739 
5740     Inst = ReturnInst::Create(Context);
5741     return false;
5742   }
5743 
5744   Value *RV;
5745   if (ParseValue(Ty, RV, PFS)) return true;
5746 
5747   if (ResType != RV->getType())
5748     return Error(TypeLoc, "value doesn't match function result type '" +
5749                  getTypeString(ResType) + "'");
5750 
5751   Inst = ReturnInst::Create(Context, RV);
5752   return false;
5753 }
5754 
5755 /// ParseBr
5756 ///   ::= 'br' TypeAndValue
5757 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5758 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
5759   LocTy Loc, Loc2;
5760   Value *Op0;
5761   BasicBlock *Op1, *Op2;
5762   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
5763 
5764   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
5765     Inst = BranchInst::Create(BB);
5766     return false;
5767   }
5768 
5769   if (Op0->getType() != Type::getInt1Ty(Context))
5770     return Error(Loc, "branch condition must have 'i1' type");
5771 
5772   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
5773       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
5774       ParseToken(lltok::comma, "expected ',' after true destination") ||
5775       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
5776     return true;
5777 
5778   Inst = BranchInst::Create(Op1, Op2, Op0);
5779   return false;
5780 }
5781 
5782 /// ParseSwitch
5783 ///  Instruction
5784 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
5785 ///  JumpTable
5786 ///    ::= (TypeAndValue ',' TypeAndValue)*
5787 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5788   LocTy CondLoc, BBLoc;
5789   Value *Cond;
5790   BasicBlock *DefaultBB;
5791   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
5792       ParseToken(lltok::comma, "expected ',' after switch condition") ||
5793       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
5794       ParseToken(lltok::lsquare, "expected '[' with switch table"))
5795     return true;
5796 
5797   if (!Cond->getType()->isIntegerTy())
5798     return Error(CondLoc, "switch condition must have integer type");
5799 
5800   // Parse the jump table pairs.
5801   SmallPtrSet<Value*, 32> SeenCases;
5802   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
5803   while (Lex.getKind() != lltok::rsquare) {
5804     Value *Constant;
5805     BasicBlock *DestBB;
5806 
5807     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
5808         ParseToken(lltok::comma, "expected ',' after case value") ||
5809         ParseTypeAndBasicBlock(DestBB, PFS))
5810       return true;
5811 
5812     if (!SeenCases.insert(Constant).second)
5813       return Error(CondLoc, "duplicate case value in switch");
5814     if (!isa<ConstantInt>(Constant))
5815       return Error(CondLoc, "case value is not a constant integer");
5816 
5817     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
5818   }
5819 
5820   Lex.Lex();  // Eat the ']'.
5821 
5822   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
5823   for (unsigned i = 0, e = Table.size(); i != e; ++i)
5824     SI->addCase(Table[i].first, Table[i].second);
5825   Inst = SI;
5826   return false;
5827 }
5828 
5829 /// ParseIndirectBr
5830 ///  Instruction
5831 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
5832 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
5833   LocTy AddrLoc;
5834   Value *Address;
5835   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
5836       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
5837       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
5838     return true;
5839 
5840   if (!Address->getType()->isPointerTy())
5841     return Error(AddrLoc, "indirectbr address must have pointer type");
5842 
5843   // Parse the destination list.
5844   SmallVector<BasicBlock*, 16> DestList;
5845 
5846   if (Lex.getKind() != lltok::rsquare) {
5847     BasicBlock *DestBB;
5848     if (ParseTypeAndBasicBlock(DestBB, PFS))
5849       return true;
5850     DestList.push_back(DestBB);
5851 
5852     while (EatIfPresent(lltok::comma)) {
5853       if (ParseTypeAndBasicBlock(DestBB, PFS))
5854         return true;
5855       DestList.push_back(DestBB);
5856     }
5857   }
5858 
5859   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
5860     return true;
5861 
5862   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
5863   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
5864     IBI->addDestination(DestList[i]);
5865   Inst = IBI;
5866   return false;
5867 }
5868 
5869 /// ParseInvoke
5870 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
5871 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
5872 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
5873   LocTy CallLoc = Lex.getLoc();
5874   AttrBuilder RetAttrs, FnAttrs;
5875   std::vector<unsigned> FwdRefAttrGrps;
5876   LocTy NoBuiltinLoc;
5877   unsigned CC;
5878   unsigned InvokeAddrSpace;
5879   Type *RetType = nullptr;
5880   LocTy RetTypeLoc;
5881   ValID CalleeID;
5882   SmallVector<ParamInfo, 16> ArgList;
5883   SmallVector<OperandBundleDef, 2> BundleList;
5884 
5885   BasicBlock *NormalBB, *UnwindBB;
5886   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5887       ParseOptionalProgramAddrSpace(InvokeAddrSpace) ||
5888       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
5889       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
5890       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
5891                                  NoBuiltinLoc) ||
5892       ParseOptionalOperandBundles(BundleList, PFS) ||
5893       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
5894       ParseTypeAndBasicBlock(NormalBB, PFS) ||
5895       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
5896       ParseTypeAndBasicBlock(UnwindBB, PFS))
5897     return true;
5898 
5899   // If RetType is a non-function pointer type, then this is the short syntax
5900   // for the call, which means that RetType is just the return type.  Infer the
5901   // rest of the function argument types from the arguments that are present.
5902   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
5903   if (!Ty) {
5904     // Pull out the types of all of the arguments...
5905     std::vector<Type*> ParamTypes;
5906     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
5907       ParamTypes.push_back(ArgList[i].V->getType());
5908 
5909     if (!FunctionType::isValidReturnType(RetType))
5910       return Error(RetTypeLoc, "Invalid result type for LLVM function");
5911 
5912     Ty = FunctionType::get(RetType, ParamTypes, false);
5913   }
5914 
5915   CalleeID.FTy = Ty;
5916 
5917   // Look up the callee.
5918   Value *Callee;
5919   if (ConvertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
5920                           Callee, &PFS, /*IsCall=*/true))
5921     return true;
5922 
5923   // Set up the Attribute for the function.
5924   SmallVector<Value *, 8> Args;
5925   SmallVector<AttributeSet, 8> ArgAttrs;
5926 
5927   // Loop through FunctionType's arguments and ensure they are specified
5928   // correctly.  Also, gather any parameter attributes.
5929   FunctionType::param_iterator I = Ty->param_begin();
5930   FunctionType::param_iterator E = Ty->param_end();
5931   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5932     Type *ExpectedTy = nullptr;
5933     if (I != E) {
5934       ExpectedTy = *I++;
5935     } else if (!Ty->isVarArg()) {
5936       return Error(ArgList[i].Loc, "too many arguments specified");
5937     }
5938 
5939     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
5940       return Error(ArgList[i].Loc, "argument is not of expected type '" +
5941                    getTypeString(ExpectedTy) + "'");
5942     Args.push_back(ArgList[i].V);
5943     ArgAttrs.push_back(ArgList[i].Attrs);
5944   }
5945 
5946   if (I != E)
5947     return Error(CallLoc, "not enough parameters specified for call");
5948 
5949   if (FnAttrs.hasAlignmentAttr())
5950     return Error(CallLoc, "invoke instructions may not have an alignment");
5951 
5952   // Finish off the Attribute and check them
5953   AttributeList PAL =
5954       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
5955                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
5956 
5957   InvokeInst *II =
5958       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
5959   II->setCallingConv(CC);
5960   II->setAttributes(PAL);
5961   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
5962   Inst = II;
5963   return false;
5964 }
5965 
5966 /// ParseResume
5967 ///   ::= 'resume' TypeAndValue
5968 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
5969   Value *Exn; LocTy ExnLoc;
5970   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
5971     return true;
5972 
5973   ResumeInst *RI = ResumeInst::Create(Exn);
5974   Inst = RI;
5975   return false;
5976 }
5977 
5978 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
5979                                   PerFunctionState &PFS) {
5980   if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
5981     return true;
5982 
5983   while (Lex.getKind() != lltok::rsquare) {
5984     // If this isn't the first argument, we need a comma.
5985     if (!Args.empty() &&
5986         ParseToken(lltok::comma, "expected ',' in argument list"))
5987       return true;
5988 
5989     // Parse the argument.
5990     LocTy ArgLoc;
5991     Type *ArgTy = nullptr;
5992     if (ParseType(ArgTy, ArgLoc))
5993       return true;
5994 
5995     Value *V;
5996     if (ArgTy->isMetadataTy()) {
5997       if (ParseMetadataAsValue(V, PFS))
5998         return true;
5999     } else {
6000       if (ParseValue(ArgTy, V, PFS))
6001         return true;
6002     }
6003     Args.push_back(V);
6004   }
6005 
6006   Lex.Lex();  // Lex the ']'.
6007   return false;
6008 }
6009 
6010 /// ParseCleanupRet
6011 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6012 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6013   Value *CleanupPad = nullptr;
6014 
6015   if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6016     return true;
6017 
6018   if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6019     return true;
6020 
6021   if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6022     return true;
6023 
6024   BasicBlock *UnwindBB = nullptr;
6025   if (Lex.getKind() == lltok::kw_to) {
6026     Lex.Lex();
6027     if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6028       return true;
6029   } else {
6030     if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
6031       return true;
6032     }
6033   }
6034 
6035   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6036   return false;
6037 }
6038 
6039 /// ParseCatchRet
6040 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
6041 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6042   Value *CatchPad = nullptr;
6043 
6044   if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
6045     return true;
6046 
6047   if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
6048     return true;
6049 
6050   BasicBlock *BB;
6051   if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
6052       ParseTypeAndBasicBlock(BB, PFS))
6053       return true;
6054 
6055   Inst = CatchReturnInst::Create(CatchPad, BB);
6056   return false;
6057 }
6058 
6059 /// ParseCatchSwitch
6060 ///   ::= 'catchswitch' within Parent
6061 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6062   Value *ParentPad;
6063 
6064   if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6065     return true;
6066 
6067   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6068       Lex.getKind() != lltok::LocalVarID)
6069     return TokError("expected scope value for catchswitch");
6070 
6071   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6072     return true;
6073 
6074   if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6075     return true;
6076 
6077   SmallVector<BasicBlock *, 32> Table;
6078   do {
6079     BasicBlock *DestBB;
6080     if (ParseTypeAndBasicBlock(DestBB, PFS))
6081       return true;
6082     Table.push_back(DestBB);
6083   } while (EatIfPresent(lltok::comma));
6084 
6085   if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6086     return true;
6087 
6088   if (ParseToken(lltok::kw_unwind,
6089                  "expected 'unwind' after catchswitch scope"))
6090     return true;
6091 
6092   BasicBlock *UnwindBB = nullptr;
6093   if (EatIfPresent(lltok::kw_to)) {
6094     if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6095       return true;
6096   } else {
6097     if (ParseTypeAndBasicBlock(UnwindBB, PFS))
6098       return true;
6099   }
6100 
6101   auto *CatchSwitch =
6102       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6103   for (BasicBlock *DestBB : Table)
6104     CatchSwitch->addHandler(DestBB);
6105   Inst = CatchSwitch;
6106   return false;
6107 }
6108 
6109 /// ParseCatchPad
6110 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6111 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6112   Value *CatchSwitch = nullptr;
6113 
6114   if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
6115     return true;
6116 
6117   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6118     return TokError("expected scope value for catchpad");
6119 
6120   if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6121     return true;
6122 
6123   SmallVector<Value *, 8> Args;
6124   if (ParseExceptionArgs(Args, PFS))
6125     return true;
6126 
6127   Inst = CatchPadInst::Create(CatchSwitch, Args);
6128   return false;
6129 }
6130 
6131 /// ParseCleanupPad
6132 ///   ::= 'cleanuppad' within Parent ParamList
6133 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6134   Value *ParentPad = nullptr;
6135 
6136   if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6137     return true;
6138 
6139   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6140       Lex.getKind() != lltok::LocalVarID)
6141     return TokError("expected scope value for cleanuppad");
6142 
6143   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6144     return true;
6145 
6146   SmallVector<Value *, 8> Args;
6147   if (ParseExceptionArgs(Args, PFS))
6148     return true;
6149 
6150   Inst = CleanupPadInst::Create(ParentPad, Args);
6151   return false;
6152 }
6153 
6154 //===----------------------------------------------------------------------===//
6155 // Unary Operators.
6156 //===----------------------------------------------------------------------===//
6157 
6158 /// ParseUnaryOp
6159 ///  ::= UnaryOp TypeAndValue ',' Value
6160 ///
6161 /// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
6162 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
6163 bool LLParser::ParseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6164                             unsigned Opc, unsigned OperandType) {
6165   LocTy Loc; Value *LHS;
6166   if (ParseTypeAndValue(LHS, Loc, PFS))
6167     return true;
6168 
6169   bool Valid;
6170   switch (OperandType) {
6171   default: llvm_unreachable("Unknown operand type!");
6172   case 0: // int or FP.
6173     Valid = LHS->getType()->isIntOrIntVectorTy() ||
6174             LHS->getType()->isFPOrFPVectorTy();
6175     break;
6176   case 1:
6177     Valid = LHS->getType()->isIntOrIntVectorTy();
6178     break;
6179   case 2:
6180     Valid = LHS->getType()->isFPOrFPVectorTy();
6181     break;
6182   }
6183 
6184   if (!Valid)
6185     return Error(Loc, "invalid operand type for instruction");
6186 
6187   Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6188   return false;
6189 }
6190 
6191 //===----------------------------------------------------------------------===//
6192 // Binary Operators.
6193 //===----------------------------------------------------------------------===//
6194 
6195 /// ParseArithmetic
6196 ///  ::= ArithmeticOps TypeAndValue ',' Value
6197 ///
6198 /// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
6199 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
6200 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6201                                unsigned Opc, unsigned OperandType) {
6202   LocTy Loc; Value *LHS, *RHS;
6203   if (ParseTypeAndValue(LHS, Loc, PFS) ||
6204       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6205       ParseValue(LHS->getType(), RHS, PFS))
6206     return true;
6207 
6208   bool Valid;
6209   switch (OperandType) {
6210   default: llvm_unreachable("Unknown operand type!");
6211   case 0: // int or FP.
6212     Valid = LHS->getType()->isIntOrIntVectorTy() ||
6213             LHS->getType()->isFPOrFPVectorTy();
6214     break;
6215   case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
6216   case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
6217   }
6218 
6219   if (!Valid)
6220     return Error(Loc, "invalid operand type for instruction");
6221 
6222   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6223   return false;
6224 }
6225 
6226 /// ParseLogical
6227 ///  ::= ArithmeticOps TypeAndValue ',' Value {
6228 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
6229                             unsigned Opc) {
6230   LocTy Loc; Value *LHS, *RHS;
6231   if (ParseTypeAndValue(LHS, Loc, PFS) ||
6232       ParseToken(lltok::comma, "expected ',' in logical operation") ||
6233       ParseValue(LHS->getType(), RHS, PFS))
6234     return true;
6235 
6236   if (!LHS->getType()->isIntOrIntVectorTy())
6237     return Error(Loc,"instruction requires integer or integer vector operands");
6238 
6239   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6240   return false;
6241 }
6242 
6243 /// ParseCompare
6244 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
6245 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
6246 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
6247                             unsigned Opc) {
6248   // Parse the integer/fp comparison predicate.
6249   LocTy Loc;
6250   unsigned Pred;
6251   Value *LHS, *RHS;
6252   if (ParseCmpPredicate(Pred, Opc) ||
6253       ParseTypeAndValue(LHS, Loc, PFS) ||
6254       ParseToken(lltok::comma, "expected ',' after compare value") ||
6255       ParseValue(LHS->getType(), RHS, PFS))
6256     return true;
6257 
6258   if (Opc == Instruction::FCmp) {
6259     if (!LHS->getType()->isFPOrFPVectorTy())
6260       return Error(Loc, "fcmp requires floating point operands");
6261     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6262   } else {
6263     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
6264     if (!LHS->getType()->isIntOrIntVectorTy() &&
6265         !LHS->getType()->isPtrOrPtrVectorTy())
6266       return Error(Loc, "icmp requires integer operands");
6267     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6268   }
6269   return false;
6270 }
6271 
6272 //===----------------------------------------------------------------------===//
6273 // Other Instructions.
6274 //===----------------------------------------------------------------------===//
6275 
6276 
6277 /// ParseCast
6278 ///   ::= CastOpc TypeAndValue 'to' Type
6279 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
6280                          unsigned Opc) {
6281   LocTy Loc;
6282   Value *Op;
6283   Type *DestTy = nullptr;
6284   if (ParseTypeAndValue(Op, Loc, PFS) ||
6285       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
6286       ParseType(DestTy))
6287     return true;
6288 
6289   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
6290     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
6291     return Error(Loc, "invalid cast opcode for cast from '" +
6292                  getTypeString(Op->getType()) + "' to '" +
6293                  getTypeString(DestTy) + "'");
6294   }
6295   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
6296   return false;
6297 }
6298 
6299 /// ParseSelect
6300 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6301 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
6302   LocTy Loc;
6303   Value *Op0, *Op1, *Op2;
6304   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6305       ParseToken(lltok::comma, "expected ',' after select condition") ||
6306       ParseTypeAndValue(Op1, PFS) ||
6307       ParseToken(lltok::comma, "expected ',' after select value") ||
6308       ParseTypeAndValue(Op2, PFS))
6309     return true;
6310 
6311   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
6312     return Error(Loc, Reason);
6313 
6314   Inst = SelectInst::Create(Op0, Op1, Op2);
6315   return false;
6316 }
6317 
6318 /// ParseVA_Arg
6319 ///   ::= 'va_arg' TypeAndValue ',' Type
6320 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
6321   Value *Op;
6322   Type *EltTy = nullptr;
6323   LocTy TypeLoc;
6324   if (ParseTypeAndValue(Op, PFS) ||
6325       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
6326       ParseType(EltTy, TypeLoc))
6327     return true;
6328 
6329   if (!EltTy->isFirstClassType())
6330     return Error(TypeLoc, "va_arg requires operand with first class type");
6331 
6332   Inst = new VAArgInst(Op, EltTy);
6333   return false;
6334 }
6335 
6336 /// ParseExtractElement
6337 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
6338 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
6339   LocTy Loc;
6340   Value *Op0, *Op1;
6341   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6342       ParseToken(lltok::comma, "expected ',' after extract value") ||
6343       ParseTypeAndValue(Op1, PFS))
6344     return true;
6345 
6346   if (!ExtractElementInst::isValidOperands(Op0, Op1))
6347     return Error(Loc, "invalid extractelement operands");
6348 
6349   Inst = ExtractElementInst::Create(Op0, Op1);
6350   return false;
6351 }
6352 
6353 /// ParseInsertElement
6354 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6355 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
6356   LocTy Loc;
6357   Value *Op0, *Op1, *Op2;
6358   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6359       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6360       ParseTypeAndValue(Op1, PFS) ||
6361       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6362       ParseTypeAndValue(Op2, PFS))
6363     return true;
6364 
6365   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
6366     return Error(Loc, "invalid insertelement operands");
6367 
6368   Inst = InsertElementInst::Create(Op0, Op1, Op2);
6369   return false;
6370 }
6371 
6372 /// ParseShuffleVector
6373 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6374 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
6375   LocTy Loc;
6376   Value *Op0, *Op1, *Op2;
6377   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6378       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
6379       ParseTypeAndValue(Op1, PFS) ||
6380       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
6381       ParseTypeAndValue(Op2, PFS))
6382     return true;
6383 
6384   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
6385     return Error(Loc, "invalid shufflevector operands");
6386 
6387   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
6388   return false;
6389 }
6390 
6391 /// ParsePHI
6392 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
6393 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
6394   Type *Ty = nullptr;  LocTy TypeLoc;
6395   Value *Op0, *Op1;
6396 
6397   if (ParseType(Ty, TypeLoc) ||
6398       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6399       ParseValue(Ty, Op0, PFS) ||
6400       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6401       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6402       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6403     return true;
6404 
6405   bool AteExtraComma = false;
6406   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
6407 
6408   while (true) {
6409     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
6410 
6411     if (!EatIfPresent(lltok::comma))
6412       break;
6413 
6414     if (Lex.getKind() == lltok::MetadataVar) {
6415       AteExtraComma = true;
6416       break;
6417     }
6418 
6419     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6420         ParseValue(Ty, Op0, PFS) ||
6421         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6422         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6423         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6424       return true;
6425   }
6426 
6427   if (!Ty->isFirstClassType())
6428     return Error(TypeLoc, "phi node must have first class type");
6429 
6430   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
6431   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
6432     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
6433   Inst = PN;
6434   return AteExtraComma ? InstExtraComma : InstNormal;
6435 }
6436 
6437 /// ParseLandingPad
6438 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
6439 /// Clause
6440 ///   ::= 'catch' TypeAndValue
6441 ///   ::= 'filter'
6442 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
6443 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
6444   Type *Ty = nullptr; LocTy TyLoc;
6445 
6446   if (ParseType(Ty, TyLoc))
6447     return true;
6448 
6449   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
6450   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
6451 
6452   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
6453     LandingPadInst::ClauseType CT;
6454     if (EatIfPresent(lltok::kw_catch))
6455       CT = LandingPadInst::Catch;
6456     else if (EatIfPresent(lltok::kw_filter))
6457       CT = LandingPadInst::Filter;
6458     else
6459       return TokError("expected 'catch' or 'filter' clause type");
6460 
6461     Value *V;
6462     LocTy VLoc;
6463     if (ParseTypeAndValue(V, VLoc, PFS))
6464       return true;
6465 
6466     // A 'catch' type expects a non-array constant. A filter clause expects an
6467     // array constant.
6468     if (CT == LandingPadInst::Catch) {
6469       if (isa<ArrayType>(V->getType()))
6470         Error(VLoc, "'catch' clause has an invalid type");
6471     } else {
6472       if (!isa<ArrayType>(V->getType()))
6473         Error(VLoc, "'filter' clause has an invalid type");
6474     }
6475 
6476     Constant *CV = dyn_cast<Constant>(V);
6477     if (!CV)
6478       return Error(VLoc, "clause argument must be a constant");
6479     LP->addClause(CV);
6480   }
6481 
6482   Inst = LP.release();
6483   return false;
6484 }
6485 
6486 /// ParseCall
6487 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
6488 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6489 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
6490 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6491 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
6492 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6493 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
6494 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6495 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
6496                          CallInst::TailCallKind TCK) {
6497   AttrBuilder RetAttrs, FnAttrs;
6498   std::vector<unsigned> FwdRefAttrGrps;
6499   LocTy BuiltinLoc;
6500   unsigned CallAddrSpace;
6501   unsigned CC;
6502   Type *RetType = nullptr;
6503   LocTy RetTypeLoc;
6504   ValID CalleeID;
6505   SmallVector<ParamInfo, 16> ArgList;
6506   SmallVector<OperandBundleDef, 2> BundleList;
6507   LocTy CallLoc = Lex.getLoc();
6508 
6509   if (TCK != CallInst::TCK_None &&
6510       ParseToken(lltok::kw_call,
6511                  "expected 'tail call', 'musttail call', or 'notail call'"))
6512     return true;
6513 
6514   FastMathFlags FMF = EatFastMathFlagsIfPresent();
6515 
6516   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6517       ParseOptionalProgramAddrSpace(CallAddrSpace) ||
6518       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6519       ParseValID(CalleeID) ||
6520       ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
6521                          PFS.getFunction().isVarArg()) ||
6522       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
6523       ParseOptionalOperandBundles(BundleList, PFS))
6524     return true;
6525 
6526   if (FMF.any() && !RetType->isFPOrFPVectorTy())
6527     return Error(CallLoc, "fast-math-flags specified for call without "
6528                           "floating-point scalar or vector return type");
6529 
6530   // If RetType is a non-function pointer type, then this is the short syntax
6531   // for the call, which means that RetType is just the return type.  Infer the
6532   // rest of the function argument types from the arguments that are present.
6533   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6534   if (!Ty) {
6535     // Pull out the types of all of the arguments...
6536     std::vector<Type*> ParamTypes;
6537     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6538       ParamTypes.push_back(ArgList[i].V->getType());
6539 
6540     if (!FunctionType::isValidReturnType(RetType))
6541       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6542 
6543     Ty = FunctionType::get(RetType, ParamTypes, false);
6544   }
6545 
6546   CalleeID.FTy = Ty;
6547 
6548   // Look up the callee.
6549   Value *Callee;
6550   if (ConvertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
6551                           &PFS, /*IsCall=*/true))
6552     return true;
6553 
6554   // Set up the Attribute for the function.
6555   SmallVector<AttributeSet, 8> Attrs;
6556 
6557   SmallVector<Value*, 8> Args;
6558 
6559   // Loop through FunctionType's arguments and ensure they are specified
6560   // correctly.  Also, gather any parameter attributes.
6561   FunctionType::param_iterator I = Ty->param_begin();
6562   FunctionType::param_iterator E = Ty->param_end();
6563   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6564     Type *ExpectedTy = nullptr;
6565     if (I != E) {
6566       ExpectedTy = *I++;
6567     } else if (!Ty->isVarArg()) {
6568       return Error(ArgList[i].Loc, "too many arguments specified");
6569     }
6570 
6571     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6572       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6573                    getTypeString(ExpectedTy) + "'");
6574     Args.push_back(ArgList[i].V);
6575     Attrs.push_back(ArgList[i].Attrs);
6576   }
6577 
6578   if (I != E)
6579     return Error(CallLoc, "not enough parameters specified for call");
6580 
6581   if (FnAttrs.hasAlignmentAttr())
6582     return Error(CallLoc, "call instructions may not have an alignment");
6583 
6584   // Finish off the Attribute and check them
6585   AttributeList PAL =
6586       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6587                          AttributeSet::get(Context, RetAttrs), Attrs);
6588 
6589   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
6590   CI->setTailCallKind(TCK);
6591   CI->setCallingConv(CC);
6592   if (FMF.any())
6593     CI->setFastMathFlags(FMF);
6594   CI->setAttributes(PAL);
6595   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
6596   Inst = CI;
6597   return false;
6598 }
6599 
6600 //===----------------------------------------------------------------------===//
6601 // Memory Instructions.
6602 //===----------------------------------------------------------------------===//
6603 
6604 /// ParseAlloc
6605 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
6606 ///       (',' 'align' i32)? (',', 'addrspace(n))?
6607 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
6608   Value *Size = nullptr;
6609   LocTy SizeLoc, TyLoc, ASLoc;
6610   unsigned Alignment = 0;
6611   unsigned AddrSpace = 0;
6612   Type *Ty = nullptr;
6613 
6614   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
6615   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
6616 
6617   if (ParseType(Ty, TyLoc)) return true;
6618 
6619   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
6620     return Error(TyLoc, "invalid type for alloca");
6621 
6622   bool AteExtraComma = false;
6623   if (EatIfPresent(lltok::comma)) {
6624     if (Lex.getKind() == lltok::kw_align) {
6625       if (ParseOptionalAlignment(Alignment))
6626         return true;
6627       if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6628         return true;
6629     } else if (Lex.getKind() == lltok::kw_addrspace) {
6630       ASLoc = Lex.getLoc();
6631       if (ParseOptionalAddrSpace(AddrSpace))
6632         return true;
6633     } else if (Lex.getKind() == lltok::MetadataVar) {
6634       AteExtraComma = true;
6635     } else {
6636       if (ParseTypeAndValue(Size, SizeLoc, PFS))
6637         return true;
6638       if (EatIfPresent(lltok::comma)) {
6639         if (Lex.getKind() == lltok::kw_align) {
6640           if (ParseOptionalAlignment(Alignment))
6641             return true;
6642           if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6643             return true;
6644         } else if (Lex.getKind() == lltok::kw_addrspace) {
6645           ASLoc = Lex.getLoc();
6646           if (ParseOptionalAddrSpace(AddrSpace))
6647             return true;
6648         } else if (Lex.getKind() == lltok::MetadataVar) {
6649           AteExtraComma = true;
6650         }
6651       }
6652     }
6653   }
6654 
6655   if (Size && !Size->getType()->isIntegerTy())
6656     return Error(SizeLoc, "element count must have integer type");
6657 
6658   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, Alignment);
6659   AI->setUsedWithInAlloca(IsInAlloca);
6660   AI->setSwiftError(IsSwiftError);
6661   Inst = AI;
6662   return AteExtraComma ? InstExtraComma : InstNormal;
6663 }
6664 
6665 /// ParseLoad
6666 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
6667 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
6668 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6669 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
6670   Value *Val; LocTy Loc;
6671   unsigned Alignment = 0;
6672   bool AteExtraComma = false;
6673   bool isAtomic = false;
6674   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6675   SyncScope::ID SSID = SyncScope::System;
6676 
6677   if (Lex.getKind() == lltok::kw_atomic) {
6678     isAtomic = true;
6679     Lex.Lex();
6680   }
6681 
6682   bool isVolatile = false;
6683   if (Lex.getKind() == lltok::kw_volatile) {
6684     isVolatile = true;
6685     Lex.Lex();
6686   }
6687 
6688   Type *Ty;
6689   LocTy ExplicitTypeLoc = Lex.getLoc();
6690   if (ParseType(Ty) ||
6691       ParseToken(lltok::comma, "expected comma after load's type") ||
6692       ParseTypeAndValue(Val, Loc, PFS) ||
6693       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6694       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6695     return true;
6696 
6697   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
6698     return Error(Loc, "load operand must be a pointer to a first class type");
6699   if (isAtomic && !Alignment)
6700     return Error(Loc, "atomic load must have explicit non-zero alignment");
6701   if (Ordering == AtomicOrdering::Release ||
6702       Ordering == AtomicOrdering::AcquireRelease)
6703     return Error(Loc, "atomic load cannot use Release ordering");
6704 
6705   if (Ty != cast<PointerType>(Val->getType())->getElementType())
6706     return Error(ExplicitTypeLoc,
6707                  "explicit pointee type doesn't match operand's pointee type");
6708 
6709   Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID);
6710   return AteExtraComma ? InstExtraComma : InstNormal;
6711 }
6712 
6713 /// ParseStore
6714 
6715 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
6716 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
6717 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6718 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
6719   Value *Val, *Ptr; LocTy Loc, PtrLoc;
6720   unsigned Alignment = 0;
6721   bool AteExtraComma = false;
6722   bool isAtomic = false;
6723   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6724   SyncScope::ID SSID = SyncScope::System;
6725 
6726   if (Lex.getKind() == lltok::kw_atomic) {
6727     isAtomic = true;
6728     Lex.Lex();
6729   }
6730 
6731   bool isVolatile = false;
6732   if (Lex.getKind() == lltok::kw_volatile) {
6733     isVolatile = true;
6734     Lex.Lex();
6735   }
6736 
6737   if (ParseTypeAndValue(Val, Loc, PFS) ||
6738       ParseToken(lltok::comma, "expected ',' after store operand") ||
6739       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6740       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6741       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6742     return true;
6743 
6744   if (!Ptr->getType()->isPointerTy())
6745     return Error(PtrLoc, "store operand must be a pointer");
6746   if (!Val->getType()->isFirstClassType())
6747     return Error(Loc, "store operand must be a first class value");
6748   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6749     return Error(Loc, "stored value and pointer type do not match");
6750   if (isAtomic && !Alignment)
6751     return Error(Loc, "atomic store must have explicit non-zero alignment");
6752   if (Ordering == AtomicOrdering::Acquire ||
6753       Ordering == AtomicOrdering::AcquireRelease)
6754     return Error(Loc, "atomic store cannot use Acquire ordering");
6755 
6756   Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID);
6757   return AteExtraComma ? InstExtraComma : InstNormal;
6758 }
6759 
6760 /// ParseCmpXchg
6761 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
6762 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
6763 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
6764   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
6765   bool AteExtraComma = false;
6766   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
6767   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
6768   SyncScope::ID SSID = SyncScope::System;
6769   bool isVolatile = false;
6770   bool isWeak = false;
6771 
6772   if (EatIfPresent(lltok::kw_weak))
6773     isWeak = true;
6774 
6775   if (EatIfPresent(lltok::kw_volatile))
6776     isVolatile = true;
6777 
6778   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6779       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
6780       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
6781       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
6782       ParseTypeAndValue(New, NewLoc, PFS) ||
6783       ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
6784       ParseOrdering(FailureOrdering))
6785     return true;
6786 
6787   if (SuccessOrdering == AtomicOrdering::Unordered ||
6788       FailureOrdering == AtomicOrdering::Unordered)
6789     return TokError("cmpxchg cannot be unordered");
6790   if (isStrongerThan(FailureOrdering, SuccessOrdering))
6791     return TokError("cmpxchg failure argument shall be no stronger than the "
6792                     "success argument");
6793   if (FailureOrdering == AtomicOrdering::Release ||
6794       FailureOrdering == AtomicOrdering::AcquireRelease)
6795     return TokError(
6796         "cmpxchg failure ordering cannot include release semantics");
6797   if (!Ptr->getType()->isPointerTy())
6798     return Error(PtrLoc, "cmpxchg operand must be a pointer");
6799   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
6800     return Error(CmpLoc, "compare value and pointer type do not match");
6801   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
6802     return Error(NewLoc, "new value and pointer type do not match");
6803   if (!New->getType()->isFirstClassType())
6804     return Error(NewLoc, "cmpxchg operand must be a first class value");
6805   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
6806       Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID);
6807   CXI->setVolatile(isVolatile);
6808   CXI->setWeak(isWeak);
6809   Inst = CXI;
6810   return AteExtraComma ? InstExtraComma : InstNormal;
6811 }
6812 
6813 /// ParseAtomicRMW
6814 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
6815 ///       'singlethread'? AtomicOrdering
6816 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
6817   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
6818   bool AteExtraComma = false;
6819   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6820   SyncScope::ID SSID = SyncScope::System;
6821   bool isVolatile = false;
6822   bool IsFP = false;
6823   AtomicRMWInst::BinOp Operation;
6824 
6825   if (EatIfPresent(lltok::kw_volatile))
6826     isVolatile = true;
6827 
6828   switch (Lex.getKind()) {
6829   default: return TokError("expected binary operation in atomicrmw");
6830   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
6831   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
6832   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
6833   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
6834   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
6835   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
6836   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
6837   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
6838   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
6839   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
6840   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
6841   case lltok::kw_fadd:
6842     Operation = AtomicRMWInst::FAdd;
6843     IsFP = true;
6844     break;
6845   case lltok::kw_fsub:
6846     Operation = AtomicRMWInst::FSub;
6847     IsFP = true;
6848     break;
6849   }
6850   Lex.Lex();  // Eat the operation.
6851 
6852   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6853       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
6854       ParseTypeAndValue(Val, ValLoc, PFS) ||
6855       ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
6856     return true;
6857 
6858   if (Ordering == AtomicOrdering::Unordered)
6859     return TokError("atomicrmw cannot be unordered");
6860   if (!Ptr->getType()->isPointerTy())
6861     return Error(PtrLoc, "atomicrmw operand must be a pointer");
6862   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6863     return Error(ValLoc, "atomicrmw value and pointer type do not match");
6864 
6865   if (Operation == AtomicRMWInst::Xchg) {
6866     if (!Val->getType()->isIntegerTy() &&
6867         !Val->getType()->isFloatingPointTy()) {
6868       return Error(ValLoc, "atomicrmw " +
6869                    AtomicRMWInst::getOperationName(Operation) +
6870                    " operand must be an integer or floating point type");
6871     }
6872   } else if (IsFP) {
6873     if (!Val->getType()->isFloatingPointTy()) {
6874       return Error(ValLoc, "atomicrmw " +
6875                    AtomicRMWInst::getOperationName(Operation) +
6876                    " operand must be a floating point type");
6877     }
6878   } else {
6879     if (!Val->getType()->isIntegerTy()) {
6880       return Error(ValLoc, "atomicrmw " +
6881                    AtomicRMWInst::getOperationName(Operation) +
6882                    " operand must be an integer");
6883     }
6884   }
6885 
6886   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
6887   if (Size < 8 || (Size & (Size - 1)))
6888     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
6889                          " integer");
6890 
6891   AtomicRMWInst *RMWI =
6892     new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
6893   RMWI->setVolatile(isVolatile);
6894   Inst = RMWI;
6895   return AteExtraComma ? InstExtraComma : InstNormal;
6896 }
6897 
6898 /// ParseFence
6899 ///   ::= 'fence' 'singlethread'? AtomicOrdering
6900 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
6901   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6902   SyncScope::ID SSID = SyncScope::System;
6903   if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
6904     return true;
6905 
6906   if (Ordering == AtomicOrdering::Unordered)
6907     return TokError("fence cannot be unordered");
6908   if (Ordering == AtomicOrdering::Monotonic)
6909     return TokError("fence cannot be monotonic");
6910 
6911   Inst = new FenceInst(Context, Ordering, SSID);
6912   return InstNormal;
6913 }
6914 
6915 /// ParseGetElementPtr
6916 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
6917 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
6918   Value *Ptr = nullptr;
6919   Value *Val = nullptr;
6920   LocTy Loc, EltLoc;
6921 
6922   bool InBounds = EatIfPresent(lltok::kw_inbounds);
6923 
6924   Type *Ty = nullptr;
6925   LocTy ExplicitTypeLoc = Lex.getLoc();
6926   if (ParseType(Ty) ||
6927       ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
6928       ParseTypeAndValue(Ptr, Loc, PFS))
6929     return true;
6930 
6931   Type *BaseType = Ptr->getType();
6932   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
6933   if (!BasePointerType)
6934     return Error(Loc, "base of getelementptr must be a pointer");
6935 
6936   if (Ty != BasePointerType->getElementType())
6937     return Error(ExplicitTypeLoc,
6938                  "explicit pointee type doesn't match operand's pointee type");
6939 
6940   SmallVector<Value*, 16> Indices;
6941   bool AteExtraComma = false;
6942   // GEP returns a vector of pointers if at least one of parameters is a vector.
6943   // All vector parameters should have the same vector width.
6944   unsigned GEPWidth = BaseType->isVectorTy() ?
6945     BaseType->getVectorNumElements() : 0;
6946 
6947   while (EatIfPresent(lltok::comma)) {
6948     if (Lex.getKind() == lltok::MetadataVar) {
6949       AteExtraComma = true;
6950       break;
6951     }
6952     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
6953     if (!Val->getType()->isIntOrIntVectorTy())
6954       return Error(EltLoc, "getelementptr index must be an integer");
6955 
6956     if (Val->getType()->isVectorTy()) {
6957       unsigned ValNumEl = Val->getType()->getVectorNumElements();
6958       if (GEPWidth && GEPWidth != ValNumEl)
6959         return Error(EltLoc,
6960           "getelementptr vector index has a wrong number of elements");
6961       GEPWidth = ValNumEl;
6962     }
6963     Indices.push_back(Val);
6964   }
6965 
6966   SmallPtrSet<Type*, 4> Visited;
6967   if (!Indices.empty() && !Ty->isSized(&Visited))
6968     return Error(Loc, "base element of getelementptr must be sized");
6969 
6970   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
6971     return Error(Loc, "invalid getelementptr indices");
6972   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
6973   if (InBounds)
6974     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
6975   return AteExtraComma ? InstExtraComma : InstNormal;
6976 }
6977 
6978 /// ParseExtractValue
6979 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
6980 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
6981   Value *Val; LocTy Loc;
6982   SmallVector<unsigned, 4> Indices;
6983   bool AteExtraComma;
6984   if (ParseTypeAndValue(Val, Loc, PFS) ||
6985       ParseIndexList(Indices, AteExtraComma))
6986     return true;
6987 
6988   if (!Val->getType()->isAggregateType())
6989     return Error(Loc, "extractvalue operand must be aggregate type");
6990 
6991   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
6992     return Error(Loc, "invalid indices for extractvalue");
6993   Inst = ExtractValueInst::Create(Val, Indices);
6994   return AteExtraComma ? InstExtraComma : InstNormal;
6995 }
6996 
6997 /// ParseInsertValue
6998 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
6999 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7000   Value *Val0, *Val1; LocTy Loc0, Loc1;
7001   SmallVector<unsigned, 4> Indices;
7002   bool AteExtraComma;
7003   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
7004       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
7005       ParseTypeAndValue(Val1, Loc1, PFS) ||
7006       ParseIndexList(Indices, AteExtraComma))
7007     return true;
7008 
7009   if (!Val0->getType()->isAggregateType())
7010     return Error(Loc0, "insertvalue operand must be aggregate type");
7011 
7012   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7013   if (!IndexedType)
7014     return Error(Loc0, "invalid indices for insertvalue");
7015   if (IndexedType != Val1->getType())
7016     return Error(Loc1, "insertvalue operand and field disagree in type: '" +
7017                            getTypeString(Val1->getType()) + "' instead of '" +
7018                            getTypeString(IndexedType) + "'");
7019   Inst = InsertValueInst::Create(Val0, Val1, Indices);
7020   return AteExtraComma ? InstExtraComma : InstNormal;
7021 }
7022 
7023 //===----------------------------------------------------------------------===//
7024 // Embedded metadata.
7025 //===----------------------------------------------------------------------===//
7026 
7027 /// ParseMDNodeVector
7028 ///   ::= { Element (',' Element)* }
7029 /// Element
7030 ///   ::= 'null' | TypeAndValue
7031 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7032   if (ParseToken(lltok::lbrace, "expected '{' here"))
7033     return true;
7034 
7035   // Check for an empty list.
7036   if (EatIfPresent(lltok::rbrace))
7037     return false;
7038 
7039   do {
7040     // Null is a special case since it is typeless.
7041     if (EatIfPresent(lltok::kw_null)) {
7042       Elts.push_back(nullptr);
7043       continue;
7044     }
7045 
7046     Metadata *MD;
7047     if (ParseMetadata(MD, nullptr))
7048       return true;
7049     Elts.push_back(MD);
7050   } while (EatIfPresent(lltok::comma));
7051 
7052   return ParseToken(lltok::rbrace, "expected end of metadata node");
7053 }
7054 
7055 //===----------------------------------------------------------------------===//
7056 // Use-list order directives.
7057 //===----------------------------------------------------------------------===//
7058 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7059                                 SMLoc Loc) {
7060   if (V->use_empty())
7061     return Error(Loc, "value has no uses");
7062 
7063   unsigned NumUses = 0;
7064   SmallDenseMap<const Use *, unsigned, 16> Order;
7065   for (const Use &U : V->uses()) {
7066     if (++NumUses > Indexes.size())
7067       break;
7068     Order[&U] = Indexes[NumUses - 1];
7069   }
7070   if (NumUses < 2)
7071     return Error(Loc, "value only has one use");
7072   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7073     return Error(Loc,
7074                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
7075 
7076   V->sortUseList([&](const Use &L, const Use &R) {
7077     return Order.lookup(&L) < Order.lookup(&R);
7078   });
7079   return false;
7080 }
7081 
7082 /// ParseUseListOrderIndexes
7083 ///   ::= '{' uint32 (',' uint32)+ '}'
7084 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7085   SMLoc Loc = Lex.getLoc();
7086   if (ParseToken(lltok::lbrace, "expected '{' here"))
7087     return true;
7088   if (Lex.getKind() == lltok::rbrace)
7089     return Lex.Error("expected non-empty list of uselistorder indexes");
7090 
7091   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
7092   // indexes should be distinct numbers in the range [0, size-1], and should
7093   // not be in order.
7094   unsigned Offset = 0;
7095   unsigned Max = 0;
7096   bool IsOrdered = true;
7097   assert(Indexes.empty() && "Expected empty order vector");
7098   do {
7099     unsigned Index;
7100     if (ParseUInt32(Index))
7101       return true;
7102 
7103     // Update consistency checks.
7104     Offset += Index - Indexes.size();
7105     Max = std::max(Max, Index);
7106     IsOrdered &= Index == Indexes.size();
7107 
7108     Indexes.push_back(Index);
7109   } while (EatIfPresent(lltok::comma));
7110 
7111   if (ParseToken(lltok::rbrace, "expected '}' here"))
7112     return true;
7113 
7114   if (Indexes.size() < 2)
7115     return Error(Loc, "expected >= 2 uselistorder indexes");
7116   if (Offset != 0 || Max >= Indexes.size())
7117     return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
7118   if (IsOrdered)
7119     return Error(Loc, "expected uselistorder indexes to change the order");
7120 
7121   return false;
7122 }
7123 
7124 /// ParseUseListOrder
7125 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7126 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
7127   SMLoc Loc = Lex.getLoc();
7128   if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7129     return true;
7130 
7131   Value *V;
7132   SmallVector<unsigned, 16> Indexes;
7133   if (ParseTypeAndValue(V, PFS) ||
7134       ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
7135       ParseUseListOrderIndexes(Indexes))
7136     return true;
7137 
7138   return sortUseListOrder(V, Indexes, Loc);
7139 }
7140 
7141 /// ParseUseListOrderBB
7142 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
7143 bool LLParser::ParseUseListOrderBB() {
7144   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7145   SMLoc Loc = Lex.getLoc();
7146   Lex.Lex();
7147 
7148   ValID Fn, Label;
7149   SmallVector<unsigned, 16> Indexes;
7150   if (ParseValID(Fn) ||
7151       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7152       ParseValID(Label) ||
7153       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7154       ParseUseListOrderIndexes(Indexes))
7155     return true;
7156 
7157   // Check the function.
7158   GlobalValue *GV;
7159   if (Fn.Kind == ValID::t_GlobalName)
7160     GV = M->getNamedValue(Fn.StrVal);
7161   else if (Fn.Kind == ValID::t_GlobalID)
7162     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7163   else
7164     return Error(Fn.Loc, "expected function name in uselistorder_bb");
7165   if (!GV)
7166     return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
7167   auto *F = dyn_cast<Function>(GV);
7168   if (!F)
7169     return Error(Fn.Loc, "expected function name in uselistorder_bb");
7170   if (F->isDeclaration())
7171     return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
7172 
7173   // Check the basic block.
7174   if (Label.Kind == ValID::t_LocalID)
7175     return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
7176   if (Label.Kind != ValID::t_LocalName)
7177     return Error(Label.Loc, "expected basic block name in uselistorder_bb");
7178   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7179   if (!V)
7180     return Error(Label.Loc, "invalid basic block in uselistorder_bb");
7181   if (!isa<BasicBlock>(V))
7182     return Error(Label.Loc, "expected basic block in uselistorder_bb");
7183 
7184   return sortUseListOrder(V, Indexes, Loc);
7185 }
7186 
7187 /// ModuleEntry
7188 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
7189 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
7190 bool LLParser::ParseModuleEntry(unsigned ID) {
7191   assert(Lex.getKind() == lltok::kw_module);
7192   Lex.Lex();
7193 
7194   std::string Path;
7195   if (ParseToken(lltok::colon, "expected ':' here") ||
7196       ParseToken(lltok::lparen, "expected '(' here") ||
7197       ParseToken(lltok::kw_path, "expected 'path' here") ||
7198       ParseToken(lltok::colon, "expected ':' here") ||
7199       ParseStringConstant(Path) ||
7200       ParseToken(lltok::comma, "expected ',' here") ||
7201       ParseToken(lltok::kw_hash, "expected 'hash' here") ||
7202       ParseToken(lltok::colon, "expected ':' here") ||
7203       ParseToken(lltok::lparen, "expected '(' here"))
7204     return true;
7205 
7206   ModuleHash Hash;
7207   if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") ||
7208       ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") ||
7209       ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") ||
7210       ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") ||
7211       ParseUInt32(Hash[4]))
7212     return true;
7213 
7214   if (ParseToken(lltok::rparen, "expected ')' here") ||
7215       ParseToken(lltok::rparen, "expected ')' here"))
7216     return true;
7217 
7218   auto ModuleEntry = Index->addModule(Path, ID, Hash);
7219   ModuleIdMap[ID] = ModuleEntry->first();
7220 
7221   return false;
7222 }
7223 
7224 /// TypeIdEntry
7225 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
7226 bool LLParser::ParseTypeIdEntry(unsigned ID) {
7227   assert(Lex.getKind() == lltok::kw_typeid);
7228   Lex.Lex();
7229 
7230   std::string Name;
7231   if (ParseToken(lltok::colon, "expected ':' here") ||
7232       ParseToken(lltok::lparen, "expected '(' here") ||
7233       ParseToken(lltok::kw_name, "expected 'name' here") ||
7234       ParseToken(lltok::colon, "expected ':' here") ||
7235       ParseStringConstant(Name))
7236     return true;
7237 
7238   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
7239   if (ParseToken(lltok::comma, "expected ',' here") ||
7240       ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here"))
7241     return true;
7242 
7243   // Check if this ID was forward referenced, and if so, update the
7244   // corresponding GUIDs.
7245   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7246   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7247     for (auto TIDRef : FwdRefTIDs->second) {
7248       assert(!*TIDRef.first &&
7249              "Forward referenced type id GUID expected to be 0");
7250       *TIDRef.first = GlobalValue::getGUID(Name);
7251     }
7252     ForwardRefTypeIds.erase(FwdRefTIDs);
7253   }
7254 
7255   return false;
7256 }
7257 
7258 /// TypeIdSummary
7259 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
7260 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) {
7261   if (ParseToken(lltok::kw_summary, "expected 'summary' here") ||
7262       ParseToken(lltok::colon, "expected ':' here") ||
7263       ParseToken(lltok::lparen, "expected '(' here") ||
7264       ParseTypeTestResolution(TIS.TTRes))
7265     return true;
7266 
7267   if (EatIfPresent(lltok::comma)) {
7268     // Expect optional wpdResolutions field
7269     if (ParseOptionalWpdResolutions(TIS.WPDRes))
7270       return true;
7271   }
7272 
7273   if (ParseToken(lltok::rparen, "expected ')' here"))
7274     return true;
7275 
7276   return false;
7277 }
7278 
7279 /// TypeTestResolution
7280 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
7281 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
7282 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
7283 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
7284 ///         [',' 'inlinesBits' ':' UInt64]? ')'
7285 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) {
7286   if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
7287       ParseToken(lltok::colon, "expected ':' here") ||
7288       ParseToken(lltok::lparen, "expected '(' here") ||
7289       ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7290       ParseToken(lltok::colon, "expected ':' here"))
7291     return true;
7292 
7293   switch (Lex.getKind()) {
7294   case lltok::kw_unsat:
7295     TTRes.TheKind = TypeTestResolution::Unsat;
7296     break;
7297   case lltok::kw_byteArray:
7298     TTRes.TheKind = TypeTestResolution::ByteArray;
7299     break;
7300   case lltok::kw_inline:
7301     TTRes.TheKind = TypeTestResolution::Inline;
7302     break;
7303   case lltok::kw_single:
7304     TTRes.TheKind = TypeTestResolution::Single;
7305     break;
7306   case lltok::kw_allOnes:
7307     TTRes.TheKind = TypeTestResolution::AllOnes;
7308     break;
7309   default:
7310     return Error(Lex.getLoc(), "unexpected TypeTestResolution kind");
7311   }
7312   Lex.Lex();
7313 
7314   if (ParseToken(lltok::comma, "expected ',' here") ||
7315       ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
7316       ParseToken(lltok::colon, "expected ':' here") ||
7317       ParseUInt32(TTRes.SizeM1BitWidth))
7318     return true;
7319 
7320   // Parse optional fields
7321   while (EatIfPresent(lltok::comma)) {
7322     switch (Lex.getKind()) {
7323     case lltok::kw_alignLog2:
7324       Lex.Lex();
7325       if (ParseToken(lltok::colon, "expected ':'") ||
7326           ParseUInt64(TTRes.AlignLog2))
7327         return true;
7328       break;
7329     case lltok::kw_sizeM1:
7330       Lex.Lex();
7331       if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1))
7332         return true;
7333       break;
7334     case lltok::kw_bitMask: {
7335       unsigned Val;
7336       Lex.Lex();
7337       if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val))
7338         return true;
7339       assert(Val <= 0xff);
7340       TTRes.BitMask = (uint8_t)Val;
7341       break;
7342     }
7343     case lltok::kw_inlineBits:
7344       Lex.Lex();
7345       if (ParseToken(lltok::colon, "expected ':'") ||
7346           ParseUInt64(TTRes.InlineBits))
7347         return true;
7348       break;
7349     default:
7350       return Error(Lex.getLoc(), "expected optional TypeTestResolution field");
7351     }
7352   }
7353 
7354   if (ParseToken(lltok::rparen, "expected ')' here"))
7355     return true;
7356 
7357   return false;
7358 }
7359 
7360 /// OptionalWpdResolutions
7361 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
7362 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
7363 bool LLParser::ParseOptionalWpdResolutions(
7364     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
7365   if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
7366       ParseToken(lltok::colon, "expected ':' here") ||
7367       ParseToken(lltok::lparen, "expected '(' here"))
7368     return true;
7369 
7370   do {
7371     uint64_t Offset;
7372     WholeProgramDevirtResolution WPDRes;
7373     if (ParseToken(lltok::lparen, "expected '(' here") ||
7374         ParseToken(lltok::kw_offset, "expected 'offset' here") ||
7375         ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) ||
7376         ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) ||
7377         ParseToken(lltok::rparen, "expected ')' here"))
7378       return true;
7379     WPDResMap[Offset] = WPDRes;
7380   } while (EatIfPresent(lltok::comma));
7381 
7382   if (ParseToken(lltok::rparen, "expected ')' here"))
7383     return true;
7384 
7385   return false;
7386 }
7387 
7388 /// WpdRes
7389 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
7390 ///         [',' OptionalResByArg]? ')'
7391 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
7392 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
7393 ///         [',' OptionalResByArg]? ')'
7394 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
7395 ///         [',' OptionalResByArg]? ')'
7396 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) {
7397   if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
7398       ParseToken(lltok::colon, "expected ':' here") ||
7399       ParseToken(lltok::lparen, "expected '(' here") ||
7400       ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7401       ParseToken(lltok::colon, "expected ':' here"))
7402     return true;
7403 
7404   switch (Lex.getKind()) {
7405   case lltok::kw_indir:
7406     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
7407     break;
7408   case lltok::kw_singleImpl:
7409     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
7410     break;
7411   case lltok::kw_branchFunnel:
7412     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
7413     break;
7414   default:
7415     return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
7416   }
7417   Lex.Lex();
7418 
7419   // Parse optional fields
7420   while (EatIfPresent(lltok::comma)) {
7421     switch (Lex.getKind()) {
7422     case lltok::kw_singleImplName:
7423       Lex.Lex();
7424       if (ParseToken(lltok::colon, "expected ':' here") ||
7425           ParseStringConstant(WPDRes.SingleImplName))
7426         return true;
7427       break;
7428     case lltok::kw_resByArg:
7429       if (ParseOptionalResByArg(WPDRes.ResByArg))
7430         return true;
7431       break;
7432     default:
7433       return Error(Lex.getLoc(),
7434                    "expected optional WholeProgramDevirtResolution field");
7435     }
7436   }
7437 
7438   if (ParseToken(lltok::rparen, "expected ')' here"))
7439     return true;
7440 
7441   return false;
7442 }
7443 
7444 /// OptionalResByArg
7445 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
7446 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
7447 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
7448 ///                  'virtualConstProp' )
7449 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
7450 ///                [',' 'bit' ':' UInt32]? ')'
7451 bool LLParser::ParseOptionalResByArg(
7452     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
7453         &ResByArg) {
7454   if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
7455       ParseToken(lltok::colon, "expected ':' here") ||
7456       ParseToken(lltok::lparen, "expected '(' here"))
7457     return true;
7458 
7459   do {
7460     std::vector<uint64_t> Args;
7461     if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") ||
7462         ParseToken(lltok::kw_byArg, "expected 'byArg here") ||
7463         ParseToken(lltok::colon, "expected ':' here") ||
7464         ParseToken(lltok::lparen, "expected '(' here") ||
7465         ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7466         ParseToken(lltok::colon, "expected ':' here"))
7467       return true;
7468 
7469     WholeProgramDevirtResolution::ByArg ByArg;
7470     switch (Lex.getKind()) {
7471     case lltok::kw_indir:
7472       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
7473       break;
7474     case lltok::kw_uniformRetVal:
7475       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
7476       break;
7477     case lltok::kw_uniqueRetVal:
7478       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
7479       break;
7480     case lltok::kw_virtualConstProp:
7481       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
7482       break;
7483     default:
7484       return Error(Lex.getLoc(),
7485                    "unexpected WholeProgramDevirtResolution::ByArg kind");
7486     }
7487     Lex.Lex();
7488 
7489     // Parse optional fields
7490     while (EatIfPresent(lltok::comma)) {
7491       switch (Lex.getKind()) {
7492       case lltok::kw_info:
7493         Lex.Lex();
7494         if (ParseToken(lltok::colon, "expected ':' here") ||
7495             ParseUInt64(ByArg.Info))
7496           return true;
7497         break;
7498       case lltok::kw_byte:
7499         Lex.Lex();
7500         if (ParseToken(lltok::colon, "expected ':' here") ||
7501             ParseUInt32(ByArg.Byte))
7502           return true;
7503         break;
7504       case lltok::kw_bit:
7505         Lex.Lex();
7506         if (ParseToken(lltok::colon, "expected ':' here") ||
7507             ParseUInt32(ByArg.Bit))
7508           return true;
7509         break;
7510       default:
7511         return Error(Lex.getLoc(),
7512                      "expected optional whole program devirt field");
7513       }
7514     }
7515 
7516     if (ParseToken(lltok::rparen, "expected ')' here"))
7517       return true;
7518 
7519     ResByArg[Args] = ByArg;
7520   } while (EatIfPresent(lltok::comma));
7521 
7522   if (ParseToken(lltok::rparen, "expected ')' here"))
7523     return true;
7524 
7525   return false;
7526 }
7527 
7528 /// OptionalResByArg
7529 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
7530 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) {
7531   if (ParseToken(lltok::kw_args, "expected 'args' here") ||
7532       ParseToken(lltok::colon, "expected ':' here") ||
7533       ParseToken(lltok::lparen, "expected '(' here"))
7534     return true;
7535 
7536   do {
7537     uint64_t Val;
7538     if (ParseUInt64(Val))
7539       return true;
7540     Args.push_back(Val);
7541   } while (EatIfPresent(lltok::comma));
7542 
7543   if (ParseToken(lltok::rparen, "expected ')' here"))
7544     return true;
7545 
7546   return false;
7547 }
7548 
7549 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
7550 
7551 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
7552   bool ReadOnly = Fwd->isReadOnly();
7553   *Fwd = Resolved;
7554   if (ReadOnly)
7555     Fwd->setReadOnly();
7556 }
7557 
7558 /// Stores the given Name/GUID and associated summary into the Index.
7559 /// Also updates any forward references to the associated entry ID.
7560 void LLParser::AddGlobalValueToIndex(
7561     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
7562     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
7563   // First create the ValueInfo utilizing the Name or GUID.
7564   ValueInfo VI;
7565   if (GUID != 0) {
7566     assert(Name.empty());
7567     VI = Index->getOrInsertValueInfo(GUID);
7568   } else {
7569     assert(!Name.empty());
7570     if (M) {
7571       auto *GV = M->getNamedValue(Name);
7572       assert(GV);
7573       VI = Index->getOrInsertValueInfo(GV);
7574     } else {
7575       assert(
7576           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
7577           "Need a source_filename to compute GUID for local");
7578       GUID = GlobalValue::getGUID(
7579           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
7580       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
7581     }
7582   }
7583 
7584   // Add the summary if one was provided.
7585   if (Summary)
7586     Index->addGlobalValueSummary(VI, std::move(Summary));
7587 
7588   // Resolve forward references from calls/refs
7589   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
7590   if (FwdRefVIs != ForwardRefValueInfos.end()) {
7591     for (auto VIRef : FwdRefVIs->second) {
7592       assert(VIRef.first->getRef() == FwdVIRef &&
7593              "Forward referenced ValueInfo expected to be empty");
7594       resolveFwdRef(VIRef.first, VI);
7595     }
7596     ForwardRefValueInfos.erase(FwdRefVIs);
7597   }
7598 
7599   // Resolve forward references from aliases
7600   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
7601   if (FwdRefAliasees != ForwardRefAliasees.end()) {
7602     for (auto AliaseeRef : FwdRefAliasees->second) {
7603       assert(!AliaseeRef.first->hasAliasee() &&
7604              "Forward referencing alias already has aliasee");
7605       AliaseeRef.first->setAliasee(VI.getSummaryList().front().get());
7606     }
7607     ForwardRefAliasees.erase(FwdRefAliasees);
7608   }
7609 
7610   // Save the associated ValueInfo for use in later references by ID.
7611   if (ID == NumberedValueInfos.size())
7612     NumberedValueInfos.push_back(VI);
7613   else {
7614     // Handle non-continuous numbers (to make test simplification easier).
7615     if (ID > NumberedValueInfos.size())
7616       NumberedValueInfos.resize(ID + 1);
7617     NumberedValueInfos[ID] = VI;
7618   }
7619 }
7620 
7621 /// ParseGVEntry
7622 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
7623 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
7624 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
7625 bool LLParser::ParseGVEntry(unsigned ID) {
7626   assert(Lex.getKind() == lltok::kw_gv);
7627   Lex.Lex();
7628 
7629   if (ParseToken(lltok::colon, "expected ':' here") ||
7630       ParseToken(lltok::lparen, "expected '(' here"))
7631     return true;
7632 
7633   std::string Name;
7634   GlobalValue::GUID GUID = 0;
7635   switch (Lex.getKind()) {
7636   case lltok::kw_name:
7637     Lex.Lex();
7638     if (ParseToken(lltok::colon, "expected ':' here") ||
7639         ParseStringConstant(Name))
7640       return true;
7641     // Can't create GUID/ValueInfo until we have the linkage.
7642     break;
7643   case lltok::kw_guid:
7644     Lex.Lex();
7645     if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID))
7646       return true;
7647     break;
7648   default:
7649     return Error(Lex.getLoc(), "expected name or guid tag");
7650   }
7651 
7652   if (!EatIfPresent(lltok::comma)) {
7653     // No summaries. Wrap up.
7654     if (ParseToken(lltok::rparen, "expected ')' here"))
7655       return true;
7656     // This was created for a call to an external or indirect target.
7657     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
7658     // created for indirect calls with VP. A Name with no GUID came from
7659     // an external definition. We pass ExternalLinkage since that is only
7660     // used when the GUID must be computed from Name, and in that case
7661     // the symbol must have external linkage.
7662     AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
7663                           nullptr);
7664     return false;
7665   }
7666 
7667   // Have a list of summaries
7668   if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") ||
7669       ParseToken(lltok::colon, "expected ':' here"))
7670     return true;
7671 
7672   do {
7673     if (ParseToken(lltok::lparen, "expected '(' here"))
7674       return true;
7675     switch (Lex.getKind()) {
7676     case lltok::kw_function:
7677       if (ParseFunctionSummary(Name, GUID, ID))
7678         return true;
7679       break;
7680     case lltok::kw_variable:
7681       if (ParseVariableSummary(Name, GUID, ID))
7682         return true;
7683       break;
7684     case lltok::kw_alias:
7685       if (ParseAliasSummary(Name, GUID, ID))
7686         return true;
7687       break;
7688     default:
7689       return Error(Lex.getLoc(), "expected summary type");
7690     }
7691     if (ParseToken(lltok::rparen, "expected ')' here"))
7692       return true;
7693   } while (EatIfPresent(lltok::comma));
7694 
7695   if (ParseToken(lltok::rparen, "expected ')' here"))
7696     return true;
7697 
7698   return false;
7699 }
7700 
7701 /// FunctionSummary
7702 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
7703 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
7704 ///         [',' OptionalTypeIdInfo]? [',' OptionalRefs]? ')'
7705 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
7706                                     unsigned ID) {
7707   assert(Lex.getKind() == lltok::kw_function);
7708   Lex.Lex();
7709 
7710   StringRef ModulePath;
7711   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
7712       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
7713       /*Live=*/false, /*IsLocal=*/false);
7714   unsigned InstCount;
7715   std::vector<FunctionSummary::EdgeTy> Calls;
7716   FunctionSummary::TypeIdInfo TypeIdInfo;
7717   std::vector<ValueInfo> Refs;
7718   // Default is all-zeros (conservative values).
7719   FunctionSummary::FFlags FFlags = {};
7720   if (ParseToken(lltok::colon, "expected ':' here") ||
7721       ParseToken(lltok::lparen, "expected '(' here") ||
7722       ParseModuleReference(ModulePath) ||
7723       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
7724       ParseToken(lltok::comma, "expected ',' here") ||
7725       ParseToken(lltok::kw_insts, "expected 'insts' here") ||
7726       ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount))
7727     return true;
7728 
7729   // Parse optional fields
7730   while (EatIfPresent(lltok::comma)) {
7731     switch (Lex.getKind()) {
7732     case lltok::kw_funcFlags:
7733       if (ParseOptionalFFlags(FFlags))
7734         return true;
7735       break;
7736     case lltok::kw_calls:
7737       if (ParseOptionalCalls(Calls))
7738         return true;
7739       break;
7740     case lltok::kw_typeIdInfo:
7741       if (ParseOptionalTypeIdInfo(TypeIdInfo))
7742         return true;
7743       break;
7744     case lltok::kw_refs:
7745       if (ParseOptionalRefs(Refs))
7746         return true;
7747       break;
7748     default:
7749       return Error(Lex.getLoc(), "expected optional function summary field");
7750     }
7751   }
7752 
7753   if (ParseToken(lltok::rparen, "expected ')' here"))
7754     return true;
7755 
7756   auto FS = llvm::make_unique<FunctionSummary>(
7757       GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
7758       std::move(Calls), std::move(TypeIdInfo.TypeTests),
7759       std::move(TypeIdInfo.TypeTestAssumeVCalls),
7760       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
7761       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
7762       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls));
7763 
7764   FS->setModulePath(ModulePath);
7765 
7766   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
7767                         ID, std::move(FS));
7768 
7769   return false;
7770 }
7771 
7772 /// VariableSummary
7773 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
7774 ///         [',' OptionalRefs]? ')'
7775 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID,
7776                                     unsigned ID) {
7777   assert(Lex.getKind() == lltok::kw_variable);
7778   Lex.Lex();
7779 
7780   StringRef ModulePath;
7781   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
7782       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
7783       /*Live=*/false, /*IsLocal=*/false);
7784   GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false);
7785   std::vector<ValueInfo> Refs;
7786   if (ParseToken(lltok::colon, "expected ':' here") ||
7787       ParseToken(lltok::lparen, "expected '(' here") ||
7788       ParseModuleReference(ModulePath) ||
7789       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
7790       ParseToken(lltok::comma, "expected ',' here") ||
7791       ParseGVarFlags(GVarFlags))
7792     return true;
7793 
7794   // Parse optional refs field
7795   if (EatIfPresent(lltok::comma)) {
7796     if (ParseOptionalRefs(Refs))
7797       return true;
7798   }
7799 
7800   if (ParseToken(lltok::rparen, "expected ')' here"))
7801     return true;
7802 
7803   auto GS =
7804       llvm::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
7805 
7806   GS->setModulePath(ModulePath);
7807 
7808   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
7809                         ID, std::move(GS));
7810 
7811   return false;
7812 }
7813 
7814 /// AliasSummary
7815 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
7816 ///         'aliasee' ':' GVReference ')'
7817 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID,
7818                                  unsigned ID) {
7819   assert(Lex.getKind() == lltok::kw_alias);
7820   LocTy Loc = Lex.getLoc();
7821   Lex.Lex();
7822 
7823   StringRef ModulePath;
7824   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
7825       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
7826       /*Live=*/false, /*IsLocal=*/false);
7827   if (ParseToken(lltok::colon, "expected ':' here") ||
7828       ParseToken(lltok::lparen, "expected '(' here") ||
7829       ParseModuleReference(ModulePath) ||
7830       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
7831       ParseToken(lltok::comma, "expected ',' here") ||
7832       ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
7833       ParseToken(lltok::colon, "expected ':' here"))
7834     return true;
7835 
7836   ValueInfo AliaseeVI;
7837   unsigned GVId;
7838   if (ParseGVReference(AliaseeVI, GVId))
7839     return true;
7840 
7841   if (ParseToken(lltok::rparen, "expected ')' here"))
7842     return true;
7843 
7844   auto AS = llvm::make_unique<AliasSummary>(GVFlags);
7845 
7846   AS->setModulePath(ModulePath);
7847 
7848   // Record forward reference if the aliasee is not parsed yet.
7849   if (AliaseeVI.getRef() == FwdVIRef) {
7850     auto FwdRef = ForwardRefAliasees.insert(
7851         std::make_pair(GVId, std::vector<std::pair<AliasSummary *, LocTy>>()));
7852     FwdRef.first->second.push_back(std::make_pair(AS.get(), Loc));
7853   } else
7854     AS->setAliasee(AliaseeVI.getSummaryList().front().get());
7855 
7856   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
7857                         ID, std::move(AS));
7858 
7859   return false;
7860 }
7861 
7862 /// Flag
7863 ///   ::= [0|1]
7864 bool LLParser::ParseFlag(unsigned &Val) {
7865   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
7866     return TokError("expected integer");
7867   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
7868   Lex.Lex();
7869   return false;
7870 }
7871 
7872 /// OptionalFFlags
7873 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
7874 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
7875 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
7876 ///        [',' 'noInline' ':' Flag]? ')'
7877 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
7878   assert(Lex.getKind() == lltok::kw_funcFlags);
7879   Lex.Lex();
7880 
7881   if (ParseToken(lltok::colon, "expected ':' in funcFlags") |
7882       ParseToken(lltok::lparen, "expected '(' in funcFlags"))
7883     return true;
7884 
7885   do {
7886     unsigned Val;
7887     switch (Lex.getKind()) {
7888     case lltok::kw_readNone:
7889       Lex.Lex();
7890       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
7891         return true;
7892       FFlags.ReadNone = Val;
7893       break;
7894     case lltok::kw_readOnly:
7895       Lex.Lex();
7896       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
7897         return true;
7898       FFlags.ReadOnly = Val;
7899       break;
7900     case lltok::kw_noRecurse:
7901       Lex.Lex();
7902       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
7903         return true;
7904       FFlags.NoRecurse = Val;
7905       break;
7906     case lltok::kw_returnDoesNotAlias:
7907       Lex.Lex();
7908       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
7909         return true;
7910       FFlags.ReturnDoesNotAlias = Val;
7911       break;
7912     case lltok::kw_noInline:
7913       Lex.Lex();
7914       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
7915         return true;
7916       FFlags.NoInline = Val;
7917       break;
7918     default:
7919       return Error(Lex.getLoc(), "expected function flag type");
7920     }
7921   } while (EatIfPresent(lltok::comma));
7922 
7923   if (ParseToken(lltok::rparen, "expected ')' in funcFlags"))
7924     return true;
7925 
7926   return false;
7927 }
7928 
7929 /// OptionalCalls
7930 ///   := 'calls' ':' '(' Call [',' Call]* ')'
7931 /// Call ::= '(' 'callee' ':' GVReference
7932 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
7933 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
7934   assert(Lex.getKind() == lltok::kw_calls);
7935   Lex.Lex();
7936 
7937   if (ParseToken(lltok::colon, "expected ':' in calls") |
7938       ParseToken(lltok::lparen, "expected '(' in calls"))
7939     return true;
7940 
7941   IdToIndexMapType IdToIndexMap;
7942   // Parse each call edge
7943   do {
7944     ValueInfo VI;
7945     if (ParseToken(lltok::lparen, "expected '(' in call") ||
7946         ParseToken(lltok::kw_callee, "expected 'callee' in call") ||
7947         ParseToken(lltok::colon, "expected ':'"))
7948       return true;
7949 
7950     LocTy Loc = Lex.getLoc();
7951     unsigned GVId;
7952     if (ParseGVReference(VI, GVId))
7953       return true;
7954 
7955     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
7956     unsigned RelBF = 0;
7957     if (EatIfPresent(lltok::comma)) {
7958       // Expect either hotness or relbf
7959       if (EatIfPresent(lltok::kw_hotness)) {
7960         if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness))
7961           return true;
7962       } else {
7963         if (ParseToken(lltok::kw_relbf, "expected relbf") ||
7964             ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF))
7965           return true;
7966       }
7967     }
7968     // Keep track of the Call array index needing a forward reference.
7969     // We will save the location of the ValueInfo needing an update, but
7970     // can only do so once the std::vector is finalized.
7971     if (VI.getRef() == FwdVIRef)
7972       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
7973     Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
7974 
7975     if (ParseToken(lltok::rparen, "expected ')' in call"))
7976       return true;
7977   } while (EatIfPresent(lltok::comma));
7978 
7979   // Now that the Calls vector is finalized, it is safe to save the locations
7980   // of any forward GV references that need updating later.
7981   for (auto I : IdToIndexMap) {
7982     for (auto P : I.second) {
7983       assert(Calls[P.first].first.getRef() == FwdVIRef &&
7984              "Forward referenced ValueInfo expected to be empty");
7985       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
7986           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
7987       FwdRef.first->second.push_back(
7988           std::make_pair(&Calls[P.first].first, P.second));
7989     }
7990   }
7991 
7992   if (ParseToken(lltok::rparen, "expected ')' in calls"))
7993     return true;
7994 
7995   return false;
7996 }
7997 
7998 /// Hotness
7999 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
8000 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) {
8001   switch (Lex.getKind()) {
8002   case lltok::kw_unknown:
8003     Hotness = CalleeInfo::HotnessType::Unknown;
8004     break;
8005   case lltok::kw_cold:
8006     Hotness = CalleeInfo::HotnessType::Cold;
8007     break;
8008   case lltok::kw_none:
8009     Hotness = CalleeInfo::HotnessType::None;
8010     break;
8011   case lltok::kw_hot:
8012     Hotness = CalleeInfo::HotnessType::Hot;
8013     break;
8014   case lltok::kw_critical:
8015     Hotness = CalleeInfo::HotnessType::Critical;
8016     break;
8017   default:
8018     return Error(Lex.getLoc(), "invalid call edge hotness");
8019   }
8020   Lex.Lex();
8021   return false;
8022 }
8023 
8024 /// OptionalRefs
8025 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
8026 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) {
8027   assert(Lex.getKind() == lltok::kw_refs);
8028   Lex.Lex();
8029 
8030   if (ParseToken(lltok::colon, "expected ':' in refs") |
8031       ParseToken(lltok::lparen, "expected '(' in refs"))
8032     return true;
8033 
8034   struct ValueContext {
8035     ValueInfo VI;
8036     unsigned GVId;
8037     LocTy Loc;
8038   };
8039   std::vector<ValueContext> VContexts;
8040   // Parse each ref edge
8041   do {
8042     ValueContext VC;
8043     VC.Loc = Lex.getLoc();
8044     if (ParseGVReference(VC.VI, VC.GVId))
8045       return true;
8046     VContexts.push_back(VC);
8047   } while (EatIfPresent(lltok::comma));
8048 
8049   // Sort value contexts so that ones with readonly ValueInfo are at the end
8050   // of VContexts vector. This is needed to match immutableRefCount() behavior.
8051   llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
8052     return VC1.VI.isReadOnly() < VC2.VI.isReadOnly();
8053   });
8054 
8055   IdToIndexMapType IdToIndexMap;
8056   for (auto &VC : VContexts) {
8057     // Keep track of the Refs array index needing a forward reference.
8058     // We will save the location of the ValueInfo needing an update, but
8059     // can only do so once the std::vector is finalized.
8060     if (VC.VI.getRef() == FwdVIRef)
8061       IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
8062     Refs.push_back(VC.VI);
8063   }
8064 
8065   // Now that the Refs vector is finalized, it is safe to save the locations
8066   // of any forward GV references that need updating later.
8067   for (auto I : IdToIndexMap) {
8068     for (auto P : I.second) {
8069       assert(Refs[P.first].getRef() == FwdVIRef &&
8070              "Forward referenced ValueInfo expected to be empty");
8071       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8072           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8073       FwdRef.first->second.push_back(std::make_pair(&Refs[P.first], P.second));
8074     }
8075   }
8076 
8077   if (ParseToken(lltok::rparen, "expected ')' in refs"))
8078     return true;
8079 
8080   return false;
8081 }
8082 
8083 /// OptionalTypeIdInfo
8084 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
8085 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
8086 ///         [',' TypeCheckedLoadConstVCalls]? ')'
8087 bool LLParser::ParseOptionalTypeIdInfo(
8088     FunctionSummary::TypeIdInfo &TypeIdInfo) {
8089   assert(Lex.getKind() == lltok::kw_typeIdInfo);
8090   Lex.Lex();
8091 
8092   if (ParseToken(lltok::colon, "expected ':' here") ||
8093       ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8094     return true;
8095 
8096   do {
8097     switch (Lex.getKind()) {
8098     case lltok::kw_typeTests:
8099       if (ParseTypeTests(TypeIdInfo.TypeTests))
8100         return true;
8101       break;
8102     case lltok::kw_typeTestAssumeVCalls:
8103       if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
8104                            TypeIdInfo.TypeTestAssumeVCalls))
8105         return true;
8106       break;
8107     case lltok::kw_typeCheckedLoadVCalls:
8108       if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
8109                            TypeIdInfo.TypeCheckedLoadVCalls))
8110         return true;
8111       break;
8112     case lltok::kw_typeTestAssumeConstVCalls:
8113       if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
8114                               TypeIdInfo.TypeTestAssumeConstVCalls))
8115         return true;
8116       break;
8117     case lltok::kw_typeCheckedLoadConstVCalls:
8118       if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
8119                               TypeIdInfo.TypeCheckedLoadConstVCalls))
8120         return true;
8121       break;
8122     default:
8123       return Error(Lex.getLoc(), "invalid typeIdInfo list type");
8124     }
8125   } while (EatIfPresent(lltok::comma));
8126 
8127   if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8128     return true;
8129 
8130   return false;
8131 }
8132 
8133 /// TypeTests
8134 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
8135 ///         [',' (SummaryID | UInt64)]* ')'
8136 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
8137   assert(Lex.getKind() == lltok::kw_typeTests);
8138   Lex.Lex();
8139 
8140   if (ParseToken(lltok::colon, "expected ':' here") ||
8141       ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8142     return true;
8143 
8144   IdToIndexMapType IdToIndexMap;
8145   do {
8146     GlobalValue::GUID GUID = 0;
8147     if (Lex.getKind() == lltok::SummaryID) {
8148       unsigned ID = Lex.getUIntVal();
8149       LocTy Loc = Lex.getLoc();
8150       // Keep track of the TypeTests array index needing a forward reference.
8151       // We will save the location of the GUID needing an update, but
8152       // can only do so once the std::vector is finalized.
8153       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
8154       Lex.Lex();
8155     } else if (ParseUInt64(GUID))
8156       return true;
8157     TypeTests.push_back(GUID);
8158   } while (EatIfPresent(lltok::comma));
8159 
8160   // Now that the TypeTests vector is finalized, it is safe to save the
8161   // locations of any forward GV references that need updating later.
8162   for (auto I : IdToIndexMap) {
8163     for (auto P : I.second) {
8164       assert(TypeTests[P.first] == 0 &&
8165              "Forward referenced type id GUID expected to be 0");
8166       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8167           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8168       FwdRef.first->second.push_back(
8169           std::make_pair(&TypeTests[P.first], P.second));
8170     }
8171   }
8172 
8173   if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8174     return true;
8175 
8176   return false;
8177 }
8178 
8179 /// VFuncIdList
8180 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
8181 bool LLParser::ParseVFuncIdList(
8182     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
8183   assert(Lex.getKind() == Kind);
8184   Lex.Lex();
8185 
8186   if (ParseToken(lltok::colon, "expected ':' here") ||
8187       ParseToken(lltok::lparen, "expected '(' here"))
8188     return true;
8189 
8190   IdToIndexMapType IdToIndexMap;
8191   do {
8192     FunctionSummary::VFuncId VFuncId;
8193     if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
8194       return true;
8195     VFuncIdList.push_back(VFuncId);
8196   } while (EatIfPresent(lltok::comma));
8197 
8198   if (ParseToken(lltok::rparen, "expected ')' here"))
8199     return true;
8200 
8201   // Now that the VFuncIdList vector is finalized, it is safe to save the
8202   // locations of any forward GV references that need updating later.
8203   for (auto I : IdToIndexMap) {
8204     for (auto P : I.second) {
8205       assert(VFuncIdList[P.first].GUID == 0 &&
8206              "Forward referenced type id GUID expected to be 0");
8207       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8208           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8209       FwdRef.first->second.push_back(
8210           std::make_pair(&VFuncIdList[P.first].GUID, P.second));
8211     }
8212   }
8213 
8214   return false;
8215 }
8216 
8217 /// ConstVCallList
8218 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
8219 bool LLParser::ParseConstVCallList(
8220     lltok::Kind Kind,
8221     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
8222   assert(Lex.getKind() == Kind);
8223   Lex.Lex();
8224 
8225   if (ParseToken(lltok::colon, "expected ':' here") ||
8226       ParseToken(lltok::lparen, "expected '(' here"))
8227     return true;
8228 
8229   IdToIndexMapType IdToIndexMap;
8230   do {
8231     FunctionSummary::ConstVCall ConstVCall;
8232     if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
8233       return true;
8234     ConstVCallList.push_back(ConstVCall);
8235   } while (EatIfPresent(lltok::comma));
8236 
8237   if (ParseToken(lltok::rparen, "expected ')' here"))
8238     return true;
8239 
8240   // Now that the ConstVCallList vector is finalized, it is safe to save the
8241   // locations of any forward GV references that need updating later.
8242   for (auto I : IdToIndexMap) {
8243     for (auto P : I.second) {
8244       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
8245              "Forward referenced type id GUID expected to be 0");
8246       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8247           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8248       FwdRef.first->second.push_back(
8249           std::make_pair(&ConstVCallList[P.first].VFunc.GUID, P.second));
8250     }
8251   }
8252 
8253   return false;
8254 }
8255 
8256 /// ConstVCall
8257 ///   ::= '(' VFuncId ',' Args ')'
8258 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
8259                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
8260   if (ParseToken(lltok::lparen, "expected '(' here") ||
8261       ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
8262     return true;
8263 
8264   if (EatIfPresent(lltok::comma))
8265     if (ParseArgs(ConstVCall.Args))
8266       return true;
8267 
8268   if (ParseToken(lltok::rparen, "expected ')' here"))
8269     return true;
8270 
8271   return false;
8272 }
8273 
8274 /// VFuncId
8275 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
8276 ///         'offset' ':' UInt64 ')'
8277 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId,
8278                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
8279   assert(Lex.getKind() == lltok::kw_vFuncId);
8280   Lex.Lex();
8281 
8282   if (ParseToken(lltok::colon, "expected ':' here") ||
8283       ParseToken(lltok::lparen, "expected '(' here"))
8284     return true;
8285 
8286   if (Lex.getKind() == lltok::SummaryID) {
8287     VFuncId.GUID = 0;
8288     unsigned ID = Lex.getUIntVal();
8289     LocTy Loc = Lex.getLoc();
8290     // Keep track of the array index needing a forward reference.
8291     // We will save the location of the GUID needing an update, but
8292     // can only do so once the caller's std::vector is finalized.
8293     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
8294     Lex.Lex();
8295   } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") ||
8296              ParseToken(lltok::colon, "expected ':' here") ||
8297              ParseUInt64(VFuncId.GUID))
8298     return true;
8299 
8300   if (ParseToken(lltok::comma, "expected ',' here") ||
8301       ParseToken(lltok::kw_offset, "expected 'offset' here") ||
8302       ParseToken(lltok::colon, "expected ':' here") ||
8303       ParseUInt64(VFuncId.Offset) ||
8304       ParseToken(lltok::rparen, "expected ')' here"))
8305     return true;
8306 
8307   return false;
8308 }
8309 
8310 /// GVFlags
8311 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
8312 ///         'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ','
8313 ///         'dsoLocal' ':' Flag ')'
8314 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
8315   assert(Lex.getKind() == lltok::kw_flags);
8316   Lex.Lex();
8317 
8318   bool HasLinkage;
8319   if (ParseToken(lltok::colon, "expected ':' here") ||
8320       ParseToken(lltok::lparen, "expected '(' here") ||
8321       ParseToken(lltok::kw_linkage, "expected 'linkage' here") ||
8322       ParseToken(lltok::colon, "expected ':' here"))
8323     return true;
8324 
8325   GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
8326   assert(HasLinkage && "Linkage not optional in summary entry");
8327   Lex.Lex();
8328 
8329   unsigned Flag;
8330   if (ParseToken(lltok::comma, "expected ',' here") ||
8331       ParseToken(lltok::kw_notEligibleToImport,
8332                  "expected 'notEligibleToImport' here") ||
8333       ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag))
8334     return true;
8335   GVFlags.NotEligibleToImport = Flag;
8336 
8337   if (ParseToken(lltok::comma, "expected ',' here") ||
8338       ParseToken(lltok::kw_live, "expected 'live' here") ||
8339       ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag))
8340     return true;
8341   GVFlags.Live = Flag;
8342 
8343   if (ParseToken(lltok::comma, "expected ',' here") ||
8344       ParseToken(lltok::kw_dsoLocal, "expected 'dsoLocal' here") ||
8345       ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag))
8346     return true;
8347   GVFlags.DSOLocal = Flag;
8348 
8349   if (ParseToken(lltok::rparen, "expected ')' here"))
8350     return true;
8351 
8352   return false;
8353 }
8354 
8355 /// GVarFlags
8356 ///   ::= 'varFlags' ':' '(' 'readonly' ':' Flag ')'
8357 bool LLParser::ParseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
8358   assert(Lex.getKind() == lltok::kw_varFlags);
8359   Lex.Lex();
8360 
8361   unsigned Flag;
8362   if (ParseToken(lltok::colon, "expected ':' here") ||
8363       ParseToken(lltok::lparen, "expected '(' here") ||
8364       ParseToken(lltok::kw_readonly, "expected 'readonly' here") ||
8365       ParseToken(lltok::colon, "expected ':' here"))
8366     return true;
8367 
8368   ParseFlag(Flag);
8369   GVarFlags.ReadOnly = Flag;
8370 
8371   if (ParseToken(lltok::rparen, "expected ')' here"))
8372     return true;
8373   return false;
8374 }
8375 
8376 /// ModuleReference
8377 ///   ::= 'module' ':' UInt
8378 bool LLParser::ParseModuleReference(StringRef &ModulePath) {
8379   // Parse module id.
8380   if (ParseToken(lltok::kw_module, "expected 'module' here") ||
8381       ParseToken(lltok::colon, "expected ':' here") ||
8382       ParseToken(lltok::SummaryID, "expected module ID"))
8383     return true;
8384 
8385   unsigned ModuleID = Lex.getUIntVal();
8386   auto I = ModuleIdMap.find(ModuleID);
8387   // We should have already parsed all module IDs
8388   assert(I != ModuleIdMap.end());
8389   ModulePath = I->second;
8390   return false;
8391 }
8392 
8393 /// GVReference
8394 ///   ::= SummaryID
8395 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) {
8396   bool ReadOnly = EatIfPresent(lltok::kw_readonly);
8397   if (ParseToken(lltok::SummaryID, "expected GV ID"))
8398     return true;
8399 
8400   GVId = Lex.getUIntVal();
8401   // Check if we already have a VI for this GV
8402   if (GVId < NumberedValueInfos.size()) {
8403     assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
8404     VI = NumberedValueInfos[GVId];
8405   } else
8406     // We will create a forward reference to the stored location.
8407     VI = ValueInfo(false, FwdVIRef);
8408 
8409   if (ReadOnly)
8410     VI.setReadOnly();
8411   return false;
8412 }
8413