1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the parser class for .ll files. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LLParser.h" 15 #include "llvm/ADT/SmallPtrSet.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/AsmParser/SlotMapping.h" 18 #include "llvm/IR/AutoUpgrade.h" 19 #include "llvm/IR/CallingConv.h" 20 #include "llvm/IR/Constants.h" 21 #include "llvm/IR/DebugInfo.h" 22 #include "llvm/IR/DebugInfoMetadata.h" 23 #include "llvm/IR/DerivedTypes.h" 24 #include "llvm/IR/InlineAsm.h" 25 #include "llvm/IR/Instructions.h" 26 #include "llvm/IR/LLVMContext.h" 27 #include "llvm/IR/Module.h" 28 #include "llvm/IR/Operator.h" 29 #include "llvm/IR/ValueSymbolTable.h" 30 #include "llvm/Support/Dwarf.h" 31 #include "llvm/Support/ErrorHandling.h" 32 #include "llvm/Support/SaveAndRestore.h" 33 #include "llvm/Support/raw_ostream.h" 34 using namespace llvm; 35 36 static std::string getTypeString(Type *T) { 37 std::string Result; 38 raw_string_ostream Tmp(Result); 39 Tmp << *T; 40 return Tmp.str(); 41 } 42 43 /// Run: module ::= toplevelentity* 44 bool LLParser::Run() { 45 // Prime the lexer. 46 Lex.Lex(); 47 48 return ParseTopLevelEntities() || 49 ValidateEndOfModule(); 50 } 51 52 bool LLParser::parseStandaloneConstantValue(Constant *&C, 53 const SlotMapping *Slots) { 54 restoreParsingState(Slots); 55 Lex.Lex(); 56 57 Type *Ty = nullptr; 58 if (ParseType(Ty) || parseConstantValue(Ty, C)) 59 return true; 60 if (Lex.getKind() != lltok::Eof) 61 return Error(Lex.getLoc(), "expected end of string"); 62 return false; 63 } 64 65 void LLParser::restoreParsingState(const SlotMapping *Slots) { 66 if (!Slots) 67 return; 68 NumberedVals = Slots->GlobalValues; 69 NumberedMetadata = Slots->MetadataNodes; 70 for (const auto &I : Slots->NamedTypes) 71 NamedTypes.insert( 72 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 73 for (const auto &I : Slots->Types) 74 NumberedTypes.insert( 75 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 76 } 77 78 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 79 /// module. 80 bool LLParser::ValidateEndOfModule() { 81 for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++) 82 UpgradeInstWithTBAATag(InstsWithTBAATag[I]); 83 84 // Handle any function attribute group forward references. 85 for (std::map<Value*, std::vector<unsigned> >::iterator 86 I = ForwardRefAttrGroups.begin(), E = ForwardRefAttrGroups.end(); 87 I != E; ++I) { 88 Value *V = I->first; 89 std::vector<unsigned> &Vec = I->second; 90 AttrBuilder B; 91 92 for (std::vector<unsigned>::iterator VI = Vec.begin(), VE = Vec.end(); 93 VI != VE; ++VI) 94 B.merge(NumberedAttrBuilders[*VI]); 95 96 if (Function *Fn = dyn_cast<Function>(V)) { 97 AttributeSet AS = Fn->getAttributes(); 98 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 99 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 100 AS.getFnAttributes()); 101 102 FnAttrs.merge(B); 103 104 // If the alignment was parsed as an attribute, move to the alignment 105 // field. 106 if (FnAttrs.hasAlignmentAttr()) { 107 Fn->setAlignment(FnAttrs.getAlignment()); 108 FnAttrs.removeAttribute(Attribute::Alignment); 109 } 110 111 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 112 AttributeSet::get(Context, 113 AttributeSet::FunctionIndex, 114 FnAttrs)); 115 Fn->setAttributes(AS); 116 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 117 AttributeSet AS = CI->getAttributes(); 118 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 119 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 120 AS.getFnAttributes()); 121 FnAttrs.merge(B); 122 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 123 AttributeSet::get(Context, 124 AttributeSet::FunctionIndex, 125 FnAttrs)); 126 CI->setAttributes(AS); 127 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 128 AttributeSet AS = II->getAttributes(); 129 AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex); 130 AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex, 131 AS.getFnAttributes()); 132 FnAttrs.merge(B); 133 AS = AS.addAttributes(Context, AttributeSet::FunctionIndex, 134 AttributeSet::get(Context, 135 AttributeSet::FunctionIndex, 136 FnAttrs)); 137 II->setAttributes(AS); 138 } else { 139 llvm_unreachable("invalid object with forward attribute group reference"); 140 } 141 } 142 143 // If there are entries in ForwardRefBlockAddresses at this point, the 144 // function was never defined. 145 if (!ForwardRefBlockAddresses.empty()) 146 return Error(ForwardRefBlockAddresses.begin()->first.Loc, 147 "expected function name in blockaddress"); 148 149 for (const auto &NT : NumberedTypes) 150 if (NT.second.second.isValid()) 151 return Error(NT.second.second, 152 "use of undefined type '%" + Twine(NT.first) + "'"); 153 154 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 155 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 156 if (I->second.second.isValid()) 157 return Error(I->second.second, 158 "use of undefined type named '" + I->getKey() + "'"); 159 160 if (!ForwardRefComdats.empty()) 161 return Error(ForwardRefComdats.begin()->second, 162 "use of undefined comdat '$" + 163 ForwardRefComdats.begin()->first + "'"); 164 165 if (!ForwardRefVals.empty()) 166 return Error(ForwardRefVals.begin()->second.second, 167 "use of undefined value '@" + ForwardRefVals.begin()->first + 168 "'"); 169 170 if (!ForwardRefValIDs.empty()) 171 return Error(ForwardRefValIDs.begin()->second.second, 172 "use of undefined value '@" + 173 Twine(ForwardRefValIDs.begin()->first) + "'"); 174 175 if (!ForwardRefMDNodes.empty()) 176 return Error(ForwardRefMDNodes.begin()->second.second, 177 "use of undefined metadata '!" + 178 Twine(ForwardRefMDNodes.begin()->first) + "'"); 179 180 // Resolve metadata cycles. 181 for (auto &N : NumberedMetadata) { 182 if (N.second && !N.second->isResolved()) 183 N.second->resolveCycles(); 184 } 185 186 // Look for intrinsic functions and CallInst that need to be upgraded 187 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 188 UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove 189 190 UpgradeDebugInfo(*M); 191 192 if (!Slots) 193 return false; 194 // Initialize the slot mapping. 195 // Because by this point we've parsed and validated everything, we can "steal" 196 // the mapping from LLParser as it doesn't need it anymore. 197 Slots->GlobalValues = std::move(NumberedVals); 198 Slots->MetadataNodes = std::move(NumberedMetadata); 199 for (const auto &I : NamedTypes) 200 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 201 for (const auto &I : NumberedTypes) 202 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 203 204 return false; 205 } 206 207 //===----------------------------------------------------------------------===// 208 // Top-Level Entities 209 //===----------------------------------------------------------------------===// 210 211 bool LLParser::ParseTopLevelEntities() { 212 while (1) { 213 switch (Lex.getKind()) { 214 default: return TokError("expected top-level entity"); 215 case lltok::Eof: return false; 216 case lltok::kw_declare: if (ParseDeclare()) return true; break; 217 case lltok::kw_define: if (ParseDefine()) return true; break; 218 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 219 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 220 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 221 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 222 case lltok::LocalVar: if (ParseNamedType()) return true; break; 223 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 224 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 225 case lltok::ComdatVar: if (parseComdat()) return true; break; 226 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 227 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break; 228 229 // The Global variable production with no name can have many different 230 // optional leading prefixes, the production is: 231 // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass 232 // OptionalThreadLocal OptionalAddrSpace OptionalUnnamedAddr 233 // ('constant'|'global') ... 234 case lltok::kw_private: // OptionalLinkage 235 case lltok::kw_internal: // OptionalLinkage 236 case lltok::kw_weak: // OptionalLinkage 237 case lltok::kw_weak_odr: // OptionalLinkage 238 case lltok::kw_linkonce: // OptionalLinkage 239 case lltok::kw_linkonce_odr: // OptionalLinkage 240 case lltok::kw_appending: // OptionalLinkage 241 case lltok::kw_common: // OptionalLinkage 242 case lltok::kw_extern_weak: // OptionalLinkage 243 case lltok::kw_external: // OptionalLinkage 244 case lltok::kw_default: // OptionalVisibility 245 case lltok::kw_hidden: // OptionalVisibility 246 case lltok::kw_protected: // OptionalVisibility 247 case lltok::kw_dllimport: // OptionalDLLStorageClass 248 case lltok::kw_dllexport: // OptionalDLLStorageClass 249 case lltok::kw_thread_local: // OptionalThreadLocal 250 case lltok::kw_addrspace: // OptionalAddrSpace 251 case lltok::kw_constant: // GlobalType 252 case lltok::kw_global: { // GlobalType 253 unsigned Linkage, Visibility, DLLStorageClass; 254 bool UnnamedAddr; 255 GlobalVariable::ThreadLocalMode TLM; 256 bool HasLinkage; 257 if (ParseOptionalLinkage(Linkage, HasLinkage) || 258 ParseOptionalVisibility(Visibility) || 259 ParseOptionalDLLStorageClass(DLLStorageClass) || 260 ParseOptionalThreadLocal(TLM) || 261 parseOptionalUnnamedAddr(UnnamedAddr) || 262 ParseGlobal("", SMLoc(), Linkage, HasLinkage, Visibility, 263 DLLStorageClass, TLM, UnnamedAddr)) 264 return true; 265 break; 266 } 267 268 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break; 269 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break; 270 case lltok::kw_uselistorder_bb: 271 if (ParseUseListOrderBB()) return true; break; 272 } 273 } 274 } 275 276 277 /// toplevelentity 278 /// ::= 'module' 'asm' STRINGCONSTANT 279 bool LLParser::ParseModuleAsm() { 280 assert(Lex.getKind() == lltok::kw_module); 281 Lex.Lex(); 282 283 std::string AsmStr; 284 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 285 ParseStringConstant(AsmStr)) return true; 286 287 M->appendModuleInlineAsm(AsmStr); 288 return false; 289 } 290 291 /// toplevelentity 292 /// ::= 'target' 'triple' '=' STRINGCONSTANT 293 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 294 bool LLParser::ParseTargetDefinition() { 295 assert(Lex.getKind() == lltok::kw_target); 296 std::string Str; 297 switch (Lex.Lex()) { 298 default: return TokError("unknown target property"); 299 case lltok::kw_triple: 300 Lex.Lex(); 301 if (ParseToken(lltok::equal, "expected '=' after target triple") || 302 ParseStringConstant(Str)) 303 return true; 304 M->setTargetTriple(Str); 305 return false; 306 case lltok::kw_datalayout: 307 Lex.Lex(); 308 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 309 ParseStringConstant(Str)) 310 return true; 311 M->setDataLayout(Str); 312 return false; 313 } 314 } 315 316 /// toplevelentity 317 /// ::= 'deplibs' '=' '[' ']' 318 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 319 /// FIXME: Remove in 4.0. Currently parse, but ignore. 320 bool LLParser::ParseDepLibs() { 321 assert(Lex.getKind() == lltok::kw_deplibs); 322 Lex.Lex(); 323 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 324 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 325 return true; 326 327 if (EatIfPresent(lltok::rsquare)) 328 return false; 329 330 do { 331 std::string Str; 332 if (ParseStringConstant(Str)) return true; 333 } while (EatIfPresent(lltok::comma)); 334 335 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 336 } 337 338 /// ParseUnnamedType: 339 /// ::= LocalVarID '=' 'type' type 340 bool LLParser::ParseUnnamedType() { 341 LocTy TypeLoc = Lex.getLoc(); 342 unsigned TypeID = Lex.getUIntVal(); 343 Lex.Lex(); // eat LocalVarID; 344 345 if (ParseToken(lltok::equal, "expected '=' after name") || 346 ParseToken(lltok::kw_type, "expected 'type' after '='")) 347 return true; 348 349 Type *Result = nullptr; 350 if (ParseStructDefinition(TypeLoc, "", 351 NumberedTypes[TypeID], Result)) return true; 352 353 if (!isa<StructType>(Result)) { 354 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 355 if (Entry.first) 356 return Error(TypeLoc, "non-struct types may not be recursive"); 357 Entry.first = Result; 358 Entry.second = SMLoc(); 359 } 360 361 return false; 362 } 363 364 365 /// toplevelentity 366 /// ::= LocalVar '=' 'type' type 367 bool LLParser::ParseNamedType() { 368 std::string Name = Lex.getStrVal(); 369 LocTy NameLoc = Lex.getLoc(); 370 Lex.Lex(); // eat LocalVar. 371 372 if (ParseToken(lltok::equal, "expected '=' after name") || 373 ParseToken(lltok::kw_type, "expected 'type' after name")) 374 return true; 375 376 Type *Result = nullptr; 377 if (ParseStructDefinition(NameLoc, Name, 378 NamedTypes[Name], Result)) return true; 379 380 if (!isa<StructType>(Result)) { 381 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 382 if (Entry.first) 383 return Error(NameLoc, "non-struct types may not be recursive"); 384 Entry.first = Result; 385 Entry.second = SMLoc(); 386 } 387 388 return false; 389 } 390 391 392 /// toplevelentity 393 /// ::= 'declare' FunctionHeader 394 bool LLParser::ParseDeclare() { 395 assert(Lex.getKind() == lltok::kw_declare); 396 Lex.Lex(); 397 398 Function *F; 399 return ParseFunctionHeader(F, false); 400 } 401 402 /// toplevelentity 403 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 404 bool LLParser::ParseDefine() { 405 assert(Lex.getKind() == lltok::kw_define); 406 Lex.Lex(); 407 408 Function *F; 409 return ParseFunctionHeader(F, true) || 410 ParseOptionalFunctionMetadata(*F) || 411 ParseFunctionBody(*F); 412 } 413 414 /// ParseGlobalType 415 /// ::= 'constant' 416 /// ::= 'global' 417 bool LLParser::ParseGlobalType(bool &IsConstant) { 418 if (Lex.getKind() == lltok::kw_constant) 419 IsConstant = true; 420 else if (Lex.getKind() == lltok::kw_global) 421 IsConstant = false; 422 else { 423 IsConstant = false; 424 return TokError("expected 'global' or 'constant'"); 425 } 426 Lex.Lex(); 427 return false; 428 } 429 430 /// ParseUnnamedGlobal: 431 /// OptionalVisibility ALIAS ... 432 /// OptionalLinkage OptionalVisibility OptionalDLLStorageClass 433 /// ... -> global variable 434 /// GlobalID '=' OptionalVisibility ALIAS ... 435 /// GlobalID '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 436 /// ... -> global variable 437 bool LLParser::ParseUnnamedGlobal() { 438 unsigned VarID = NumberedVals.size(); 439 std::string Name; 440 LocTy NameLoc = Lex.getLoc(); 441 442 // Handle the GlobalID form. 443 if (Lex.getKind() == lltok::GlobalID) { 444 if (Lex.getUIntVal() != VarID) 445 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 446 Twine(VarID) + "'"); 447 Lex.Lex(); // eat GlobalID; 448 449 if (ParseToken(lltok::equal, "expected '=' after name")) 450 return true; 451 } 452 453 bool HasLinkage; 454 unsigned Linkage, Visibility, DLLStorageClass; 455 GlobalVariable::ThreadLocalMode TLM; 456 bool UnnamedAddr; 457 if (ParseOptionalLinkage(Linkage, HasLinkage) || 458 ParseOptionalVisibility(Visibility) || 459 ParseOptionalDLLStorageClass(DLLStorageClass) || 460 ParseOptionalThreadLocal(TLM) || 461 parseOptionalUnnamedAddr(UnnamedAddr)) 462 return true; 463 464 if (Lex.getKind() != lltok::kw_alias) 465 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 466 DLLStorageClass, TLM, UnnamedAddr); 467 return ParseAlias(Name, NameLoc, Linkage, Visibility, DLLStorageClass, TLM, 468 UnnamedAddr); 469 } 470 471 /// ParseNamedGlobal: 472 /// GlobalVar '=' OptionalVisibility ALIAS ... 473 /// GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 474 /// ... -> global variable 475 bool LLParser::ParseNamedGlobal() { 476 assert(Lex.getKind() == lltok::GlobalVar); 477 LocTy NameLoc = Lex.getLoc(); 478 std::string Name = Lex.getStrVal(); 479 Lex.Lex(); 480 481 bool HasLinkage; 482 unsigned Linkage, Visibility, DLLStorageClass; 483 GlobalVariable::ThreadLocalMode TLM; 484 bool UnnamedAddr; 485 if (ParseToken(lltok::equal, "expected '=' in global variable") || 486 ParseOptionalLinkage(Linkage, HasLinkage) || 487 ParseOptionalVisibility(Visibility) || 488 ParseOptionalDLLStorageClass(DLLStorageClass) || 489 ParseOptionalThreadLocal(TLM) || 490 parseOptionalUnnamedAddr(UnnamedAddr)) 491 return true; 492 493 if (Lex.getKind() != lltok::kw_alias) 494 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 495 DLLStorageClass, TLM, UnnamedAddr); 496 497 return ParseAlias(Name, NameLoc, Linkage, Visibility, DLLStorageClass, TLM, 498 UnnamedAddr); 499 } 500 501 bool LLParser::parseComdat() { 502 assert(Lex.getKind() == lltok::ComdatVar); 503 std::string Name = Lex.getStrVal(); 504 LocTy NameLoc = Lex.getLoc(); 505 Lex.Lex(); 506 507 if (ParseToken(lltok::equal, "expected '=' here")) 508 return true; 509 510 if (ParseToken(lltok::kw_comdat, "expected comdat keyword")) 511 return TokError("expected comdat type"); 512 513 Comdat::SelectionKind SK; 514 switch (Lex.getKind()) { 515 default: 516 return TokError("unknown selection kind"); 517 case lltok::kw_any: 518 SK = Comdat::Any; 519 break; 520 case lltok::kw_exactmatch: 521 SK = Comdat::ExactMatch; 522 break; 523 case lltok::kw_largest: 524 SK = Comdat::Largest; 525 break; 526 case lltok::kw_noduplicates: 527 SK = Comdat::NoDuplicates; 528 break; 529 case lltok::kw_samesize: 530 SK = Comdat::SameSize; 531 break; 532 } 533 Lex.Lex(); 534 535 // See if the comdat was forward referenced, if so, use the comdat. 536 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 537 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 538 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 539 return Error(NameLoc, "redefinition of comdat '$" + Name + "'"); 540 541 Comdat *C; 542 if (I != ComdatSymTab.end()) 543 C = &I->second; 544 else 545 C = M->getOrInsertComdat(Name); 546 C->setSelectionKind(SK); 547 548 return false; 549 } 550 551 // MDString: 552 // ::= '!' STRINGCONSTANT 553 bool LLParser::ParseMDString(MDString *&Result) { 554 std::string Str; 555 if (ParseStringConstant(Str)) return true; 556 llvm::UpgradeMDStringConstant(Str); 557 Result = MDString::get(Context, Str); 558 return false; 559 } 560 561 // MDNode: 562 // ::= '!' MDNodeNumber 563 bool LLParser::ParseMDNodeID(MDNode *&Result) { 564 // !{ ..., !42, ... } 565 unsigned MID = 0; 566 if (ParseUInt32(MID)) 567 return true; 568 569 // If not a forward reference, just return it now. 570 if (NumberedMetadata.count(MID)) { 571 Result = NumberedMetadata[MID]; 572 return false; 573 } 574 575 // Otherwise, create MDNode forward reference. 576 auto &FwdRef = ForwardRefMDNodes[MID]; 577 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), Lex.getLoc()); 578 579 Result = FwdRef.first.get(); 580 NumberedMetadata[MID].reset(Result); 581 return false; 582 } 583 584 /// ParseNamedMetadata: 585 /// !foo = !{ !1, !2 } 586 bool LLParser::ParseNamedMetadata() { 587 assert(Lex.getKind() == lltok::MetadataVar); 588 std::string Name = Lex.getStrVal(); 589 Lex.Lex(); 590 591 if (ParseToken(lltok::equal, "expected '=' here") || 592 ParseToken(lltok::exclaim, "Expected '!' here") || 593 ParseToken(lltok::lbrace, "Expected '{' here")) 594 return true; 595 596 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 597 if (Lex.getKind() != lltok::rbrace) 598 do { 599 if (ParseToken(lltok::exclaim, "Expected '!' here")) 600 return true; 601 602 MDNode *N = nullptr; 603 if (ParseMDNodeID(N)) return true; 604 NMD->addOperand(N); 605 } while (EatIfPresent(lltok::comma)); 606 607 return ParseToken(lltok::rbrace, "expected end of metadata node"); 608 } 609 610 /// ParseStandaloneMetadata: 611 /// !42 = !{...} 612 bool LLParser::ParseStandaloneMetadata() { 613 assert(Lex.getKind() == lltok::exclaim); 614 Lex.Lex(); 615 unsigned MetadataID = 0; 616 617 MDNode *Init; 618 if (ParseUInt32(MetadataID) || 619 ParseToken(lltok::equal, "expected '=' here")) 620 return true; 621 622 // Detect common error, from old metadata syntax. 623 if (Lex.getKind() == lltok::Type) 624 return TokError("unexpected type in metadata definition"); 625 626 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 627 if (Lex.getKind() == lltok::MetadataVar) { 628 if (ParseSpecializedMDNode(Init, IsDistinct)) 629 return true; 630 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 631 ParseMDTuple(Init, IsDistinct)) 632 return true; 633 634 // See if this was forward referenced, if so, handle it. 635 auto FI = ForwardRefMDNodes.find(MetadataID); 636 if (FI != ForwardRefMDNodes.end()) { 637 FI->second.first->replaceAllUsesWith(Init); 638 ForwardRefMDNodes.erase(FI); 639 640 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 641 } else { 642 if (NumberedMetadata.count(MetadataID)) 643 return TokError("Metadata id is already used"); 644 NumberedMetadata[MetadataID].reset(Init); 645 } 646 647 return false; 648 } 649 650 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 651 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 652 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 653 } 654 655 /// ParseAlias: 656 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility 657 /// OptionalDLLStorageClass OptionalThreadLocal 658 /// OptionalUnnamedAddr 'alias' Aliasee 659 /// 660 /// Aliasee 661 /// ::= TypeAndValue 662 /// 663 /// Everything through OptionalUnnamedAddr has already been parsed. 664 /// 665 bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc, unsigned L, 666 unsigned Visibility, unsigned DLLStorageClass, 667 GlobalVariable::ThreadLocalMode TLM, 668 bool UnnamedAddr) { 669 assert(Lex.getKind() == lltok::kw_alias); 670 Lex.Lex(); 671 672 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 673 674 if(!GlobalAlias::isValidLinkage(Linkage)) 675 return Error(NameLoc, "invalid linkage type for alias"); 676 677 if (!isValidVisibilityForLinkage(Visibility, L)) 678 return Error(NameLoc, 679 "symbol with local linkage must have default visibility"); 680 681 Type *Ty; 682 LocTy ExplicitTypeLoc = Lex.getLoc(); 683 if (ParseType(Ty) || 684 ParseToken(lltok::comma, "expected comma after alias's type")) 685 return true; 686 687 Constant *Aliasee; 688 LocTy AliaseeLoc = Lex.getLoc(); 689 if (Lex.getKind() != lltok::kw_bitcast && 690 Lex.getKind() != lltok::kw_getelementptr && 691 Lex.getKind() != lltok::kw_addrspacecast && 692 Lex.getKind() != lltok::kw_inttoptr) { 693 if (ParseGlobalTypeAndValue(Aliasee)) 694 return true; 695 } else { 696 // The bitcast dest type is not present, it is implied by the dest type. 697 ValID ID; 698 if (ParseValID(ID)) 699 return true; 700 if (ID.Kind != ValID::t_Constant) 701 return Error(AliaseeLoc, "invalid aliasee"); 702 Aliasee = ID.ConstantVal; 703 } 704 705 Type *AliaseeType = Aliasee->getType(); 706 auto *PTy = dyn_cast<PointerType>(AliaseeType); 707 if (!PTy) 708 return Error(AliaseeLoc, "An alias must have pointer type"); 709 unsigned AddrSpace = PTy->getAddressSpace(); 710 711 if (Ty != PTy->getElementType()) 712 return Error( 713 ExplicitTypeLoc, 714 "explicit pointee type doesn't match operand's pointee type"); 715 716 // Okay, create the alias but do not insert it into the module yet. 717 std::unique_ptr<GlobalAlias> GA( 718 GlobalAlias::create(Ty, AddrSpace, (GlobalValue::LinkageTypes)Linkage, 719 Name, Aliasee, /*Parent*/ nullptr)); 720 GA->setThreadLocalMode(TLM); 721 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 722 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 723 GA->setUnnamedAddr(UnnamedAddr); 724 725 if (Name.empty()) 726 NumberedVals.push_back(GA.get()); 727 728 // See if this value already exists in the symbol table. If so, it is either 729 // a redefinition or a definition of a forward reference. 730 if (GlobalValue *Val = M->getNamedValue(Name)) { 731 // See if this was a redefinition. If so, there is no entry in 732 // ForwardRefVals. 733 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator 734 I = ForwardRefVals.find(Name); 735 if (I == ForwardRefVals.end()) 736 return Error(NameLoc, "redefinition of global named '@" + Name + "'"); 737 738 // Otherwise, this was a definition of forward ref. Verify that types 739 // agree. 740 if (Val->getType() != GA->getType()) 741 return Error(NameLoc, 742 "forward reference and definition of alias have different types"); 743 744 // If they agree, just RAUW the old value with the alias and remove the 745 // forward ref info. 746 Val->replaceAllUsesWith(GA.get()); 747 Val->eraseFromParent(); 748 ForwardRefVals.erase(I); 749 } 750 751 // Insert into the module, we know its name won't collide now. 752 M->getAliasList().push_back(GA.get()); 753 assert(GA->getName() == Name && "Should not be a name conflict!"); 754 755 // The module owns this now 756 GA.release(); 757 758 return false; 759 } 760 761 /// ParseGlobal 762 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 763 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 764 /// OptionalExternallyInitialized GlobalType Type Const 765 /// ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass 766 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 767 /// OptionalExternallyInitialized GlobalType Type Const 768 /// 769 /// Everything up to and including OptionalUnnamedAddr has been parsed 770 /// already. 771 /// 772 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 773 unsigned Linkage, bool HasLinkage, 774 unsigned Visibility, unsigned DLLStorageClass, 775 GlobalVariable::ThreadLocalMode TLM, 776 bool UnnamedAddr) { 777 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 778 return Error(NameLoc, 779 "symbol with local linkage must have default visibility"); 780 781 unsigned AddrSpace; 782 bool IsConstant, IsExternallyInitialized; 783 LocTy IsExternallyInitializedLoc; 784 LocTy TyLoc; 785 786 Type *Ty = nullptr; 787 if (ParseOptionalAddrSpace(AddrSpace) || 788 ParseOptionalToken(lltok::kw_externally_initialized, 789 IsExternallyInitialized, 790 &IsExternallyInitializedLoc) || 791 ParseGlobalType(IsConstant) || 792 ParseType(Ty, TyLoc)) 793 return true; 794 795 // If the linkage is specified and is external, then no initializer is 796 // present. 797 Constant *Init = nullptr; 798 if (!HasLinkage || (Linkage != GlobalValue::ExternalWeakLinkage && 799 Linkage != GlobalValue::ExternalLinkage)) { 800 if (ParseGlobalValue(Ty, Init)) 801 return true; 802 } 803 804 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 805 return Error(TyLoc, "invalid type for global variable"); 806 807 GlobalValue *GVal = nullptr; 808 809 // See if the global was forward referenced, if so, use the global. 810 if (!Name.empty()) { 811 GVal = M->getNamedValue(Name); 812 if (GVal) { 813 if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal)) 814 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 815 } 816 } else { 817 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator 818 I = ForwardRefValIDs.find(NumberedVals.size()); 819 if (I != ForwardRefValIDs.end()) { 820 GVal = I->second.first; 821 ForwardRefValIDs.erase(I); 822 } 823 } 824 825 GlobalVariable *GV; 826 if (!GVal) { 827 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 828 Name, nullptr, GlobalVariable::NotThreadLocal, 829 AddrSpace); 830 } else { 831 if (GVal->getValueType() != Ty) 832 return Error(TyLoc, 833 "forward reference and definition of global have different types"); 834 835 GV = cast<GlobalVariable>(GVal); 836 837 // Move the forward-reference to the correct spot in the module. 838 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 839 } 840 841 if (Name.empty()) 842 NumberedVals.push_back(GV); 843 844 // Set the parsed properties on the global. 845 if (Init) 846 GV->setInitializer(Init); 847 GV->setConstant(IsConstant); 848 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 849 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 850 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 851 GV->setExternallyInitialized(IsExternallyInitialized); 852 GV->setThreadLocalMode(TLM); 853 GV->setUnnamedAddr(UnnamedAddr); 854 855 // Parse attributes on the global. 856 while (Lex.getKind() == lltok::comma) { 857 Lex.Lex(); 858 859 if (Lex.getKind() == lltok::kw_section) { 860 Lex.Lex(); 861 GV->setSection(Lex.getStrVal()); 862 if (ParseToken(lltok::StringConstant, "expected global section string")) 863 return true; 864 } else if (Lex.getKind() == lltok::kw_align) { 865 unsigned Alignment; 866 if (ParseOptionalAlignment(Alignment)) return true; 867 GV->setAlignment(Alignment); 868 } else { 869 Comdat *C; 870 if (parseOptionalComdat(Name, C)) 871 return true; 872 if (C) 873 GV->setComdat(C); 874 else 875 return TokError("unknown global variable property!"); 876 } 877 } 878 879 return false; 880 } 881 882 /// ParseUnnamedAttrGrp 883 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 884 bool LLParser::ParseUnnamedAttrGrp() { 885 assert(Lex.getKind() == lltok::kw_attributes); 886 LocTy AttrGrpLoc = Lex.getLoc(); 887 Lex.Lex(); 888 889 if (Lex.getKind() != lltok::AttrGrpID) 890 return TokError("expected attribute group id"); 891 892 unsigned VarID = Lex.getUIntVal(); 893 std::vector<unsigned> unused; 894 LocTy BuiltinLoc; 895 Lex.Lex(); 896 897 if (ParseToken(lltok::equal, "expected '=' here") || 898 ParseToken(lltok::lbrace, "expected '{' here") || 899 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 900 BuiltinLoc) || 901 ParseToken(lltok::rbrace, "expected end of attribute group")) 902 return true; 903 904 if (!NumberedAttrBuilders[VarID].hasAttributes()) 905 return Error(AttrGrpLoc, "attribute group has no attributes"); 906 907 return false; 908 } 909 910 /// ParseFnAttributeValuePairs 911 /// ::= <attr> | <attr> '=' <value> 912 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B, 913 std::vector<unsigned> &FwdRefAttrGrps, 914 bool inAttrGrp, LocTy &BuiltinLoc) { 915 bool HaveError = false; 916 917 B.clear(); 918 919 while (true) { 920 lltok::Kind Token = Lex.getKind(); 921 if (Token == lltok::kw_builtin) 922 BuiltinLoc = Lex.getLoc(); 923 switch (Token) { 924 default: 925 if (!inAttrGrp) return HaveError; 926 return Error(Lex.getLoc(), "unterminated attribute group"); 927 case lltok::rbrace: 928 // Finished. 929 return false; 930 931 case lltok::AttrGrpID: { 932 // Allow a function to reference an attribute group: 933 // 934 // define void @foo() #1 { ... } 935 if (inAttrGrp) 936 HaveError |= 937 Error(Lex.getLoc(), 938 "cannot have an attribute group reference in an attribute group"); 939 940 unsigned AttrGrpNum = Lex.getUIntVal(); 941 if (inAttrGrp) break; 942 943 // Save the reference to the attribute group. We'll fill it in later. 944 FwdRefAttrGrps.push_back(AttrGrpNum); 945 break; 946 } 947 // Target-dependent attributes: 948 case lltok::StringConstant: { 949 if (ParseStringAttribute(B)) 950 return true; 951 continue; 952 } 953 954 // Target-independent attributes: 955 case lltok::kw_align: { 956 // As a hack, we allow function alignment to be initially parsed as an 957 // attribute on a function declaration/definition or added to an attribute 958 // group and later moved to the alignment field. 959 unsigned Alignment; 960 if (inAttrGrp) { 961 Lex.Lex(); 962 if (ParseToken(lltok::equal, "expected '=' here") || 963 ParseUInt32(Alignment)) 964 return true; 965 } else { 966 if (ParseOptionalAlignment(Alignment)) 967 return true; 968 } 969 B.addAlignmentAttr(Alignment); 970 continue; 971 } 972 case lltok::kw_alignstack: { 973 unsigned Alignment; 974 if (inAttrGrp) { 975 Lex.Lex(); 976 if (ParseToken(lltok::equal, "expected '=' here") || 977 ParseUInt32(Alignment)) 978 return true; 979 } else { 980 if (ParseOptionalStackAlignment(Alignment)) 981 return true; 982 } 983 B.addStackAlignmentAttr(Alignment); 984 continue; 985 } 986 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 987 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 988 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 989 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 990 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 991 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 992 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 993 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 994 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 995 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 996 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 997 case lltok::kw_noimplicitfloat: 998 B.addAttribute(Attribute::NoImplicitFloat); break; 999 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1000 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1001 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1002 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1003 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1004 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1005 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1006 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1007 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1008 case lltok::kw_returns_twice: 1009 B.addAttribute(Attribute::ReturnsTwice); break; 1010 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1011 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1012 case lltok::kw_sspstrong: 1013 B.addAttribute(Attribute::StackProtectStrong); break; 1014 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1015 case lltok::kw_sanitize_address: 1016 B.addAttribute(Attribute::SanitizeAddress); break; 1017 case lltok::kw_sanitize_thread: 1018 B.addAttribute(Attribute::SanitizeThread); break; 1019 case lltok::kw_sanitize_memory: 1020 B.addAttribute(Attribute::SanitizeMemory); break; 1021 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1022 1023 // Error handling. 1024 case lltok::kw_inreg: 1025 case lltok::kw_signext: 1026 case lltok::kw_zeroext: 1027 HaveError |= 1028 Error(Lex.getLoc(), 1029 "invalid use of attribute on a function"); 1030 break; 1031 case lltok::kw_byval: 1032 case lltok::kw_dereferenceable: 1033 case lltok::kw_dereferenceable_or_null: 1034 case lltok::kw_inalloca: 1035 case lltok::kw_nest: 1036 case lltok::kw_noalias: 1037 case lltok::kw_nocapture: 1038 case lltok::kw_nonnull: 1039 case lltok::kw_returned: 1040 case lltok::kw_sret: 1041 HaveError |= 1042 Error(Lex.getLoc(), 1043 "invalid use of parameter-only attribute on a function"); 1044 break; 1045 } 1046 1047 Lex.Lex(); 1048 } 1049 } 1050 1051 //===----------------------------------------------------------------------===// 1052 // GlobalValue Reference/Resolution Routines. 1053 //===----------------------------------------------------------------------===// 1054 1055 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1056 const std::string &Name) { 1057 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1058 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M); 1059 else 1060 return new GlobalVariable(*M, PTy->getElementType(), false, 1061 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1062 nullptr, GlobalVariable::NotThreadLocal, 1063 PTy->getAddressSpace()); 1064 } 1065 1066 /// GetGlobalVal - Get a value with the specified name or ID, creating a 1067 /// forward reference record if needed. This can return null if the value 1068 /// exists but does not have the right type. 1069 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 1070 LocTy Loc) { 1071 PointerType *PTy = dyn_cast<PointerType>(Ty); 1072 if (!PTy) { 1073 Error(Loc, "global variable reference must have pointer type"); 1074 return nullptr; 1075 } 1076 1077 // Look this name up in the normal function symbol table. 1078 GlobalValue *Val = 1079 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1080 1081 // If this is a forward reference for the value, see if we already created a 1082 // forward ref record. 1083 if (!Val) { 1084 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator 1085 I = ForwardRefVals.find(Name); 1086 if (I != ForwardRefVals.end()) 1087 Val = I->second.first; 1088 } 1089 1090 // If we have the value in the symbol table or fwd-ref table, return it. 1091 if (Val) { 1092 if (Val->getType() == Ty) return Val; 1093 Error(Loc, "'@" + Name + "' defined with type '" + 1094 getTypeString(Val->getType()) + "'"); 1095 return nullptr; 1096 } 1097 1098 // Otherwise, create a new forward reference for this value and remember it. 1099 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1100 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1101 return FwdVal; 1102 } 1103 1104 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { 1105 PointerType *PTy = dyn_cast<PointerType>(Ty); 1106 if (!PTy) { 1107 Error(Loc, "global variable reference must have pointer type"); 1108 return nullptr; 1109 } 1110 1111 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1112 1113 // If this is a forward reference for the value, see if we already created a 1114 // forward ref record. 1115 if (!Val) { 1116 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator 1117 I = ForwardRefValIDs.find(ID); 1118 if (I != ForwardRefValIDs.end()) 1119 Val = I->second.first; 1120 } 1121 1122 // If we have the value in the symbol table or fwd-ref table, return it. 1123 if (Val) { 1124 if (Val->getType() == Ty) return Val; 1125 Error(Loc, "'@" + Twine(ID) + "' defined with type '" + 1126 getTypeString(Val->getType()) + "'"); 1127 return nullptr; 1128 } 1129 1130 // Otherwise, create a new forward reference for this value and remember it. 1131 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1132 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1133 return FwdVal; 1134 } 1135 1136 1137 //===----------------------------------------------------------------------===// 1138 // Comdat Reference/Resolution Routines. 1139 //===----------------------------------------------------------------------===// 1140 1141 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1142 // Look this name up in the comdat symbol table. 1143 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1144 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1145 if (I != ComdatSymTab.end()) 1146 return &I->second; 1147 1148 // Otherwise, create a new forward reference for this value and remember it. 1149 Comdat *C = M->getOrInsertComdat(Name); 1150 ForwardRefComdats[Name] = Loc; 1151 return C; 1152 } 1153 1154 1155 //===----------------------------------------------------------------------===// 1156 // Helper Routines. 1157 //===----------------------------------------------------------------------===// 1158 1159 /// ParseToken - If the current token has the specified kind, eat it and return 1160 /// success. Otherwise, emit the specified error and return failure. 1161 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 1162 if (Lex.getKind() != T) 1163 return TokError(ErrMsg); 1164 Lex.Lex(); 1165 return false; 1166 } 1167 1168 /// ParseStringConstant 1169 /// ::= StringConstant 1170 bool LLParser::ParseStringConstant(std::string &Result) { 1171 if (Lex.getKind() != lltok::StringConstant) 1172 return TokError("expected string constant"); 1173 Result = Lex.getStrVal(); 1174 Lex.Lex(); 1175 return false; 1176 } 1177 1178 /// ParseUInt32 1179 /// ::= uint32 1180 bool LLParser::ParseUInt32(unsigned &Val) { 1181 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1182 return TokError("expected integer"); 1183 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1184 if (Val64 != unsigned(Val64)) 1185 return TokError("expected 32-bit integer (too large)"); 1186 Val = Val64; 1187 Lex.Lex(); 1188 return false; 1189 } 1190 1191 /// ParseUInt64 1192 /// ::= uint64 1193 bool LLParser::ParseUInt64(uint64_t &Val) { 1194 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1195 return TokError("expected integer"); 1196 Val = Lex.getAPSIntVal().getLimitedValue(); 1197 Lex.Lex(); 1198 return false; 1199 } 1200 1201 /// ParseTLSModel 1202 /// := 'localdynamic' 1203 /// := 'initialexec' 1204 /// := 'localexec' 1205 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1206 switch (Lex.getKind()) { 1207 default: 1208 return TokError("expected localdynamic, initialexec or localexec"); 1209 case lltok::kw_localdynamic: 1210 TLM = GlobalVariable::LocalDynamicTLSModel; 1211 break; 1212 case lltok::kw_initialexec: 1213 TLM = GlobalVariable::InitialExecTLSModel; 1214 break; 1215 case lltok::kw_localexec: 1216 TLM = GlobalVariable::LocalExecTLSModel; 1217 break; 1218 } 1219 1220 Lex.Lex(); 1221 return false; 1222 } 1223 1224 /// ParseOptionalThreadLocal 1225 /// := /*empty*/ 1226 /// := 'thread_local' 1227 /// := 'thread_local' '(' tlsmodel ')' 1228 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1229 TLM = GlobalVariable::NotThreadLocal; 1230 if (!EatIfPresent(lltok::kw_thread_local)) 1231 return false; 1232 1233 TLM = GlobalVariable::GeneralDynamicTLSModel; 1234 if (Lex.getKind() == lltok::lparen) { 1235 Lex.Lex(); 1236 return ParseTLSModel(TLM) || 1237 ParseToken(lltok::rparen, "expected ')' after thread local model"); 1238 } 1239 return false; 1240 } 1241 1242 /// ParseOptionalAddrSpace 1243 /// := /*empty*/ 1244 /// := 'addrspace' '(' uint32 ')' 1245 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) { 1246 AddrSpace = 0; 1247 if (!EatIfPresent(lltok::kw_addrspace)) 1248 return false; 1249 return ParseToken(lltok::lparen, "expected '(' in address space") || 1250 ParseUInt32(AddrSpace) || 1251 ParseToken(lltok::rparen, "expected ')' in address space"); 1252 } 1253 1254 /// ParseStringAttribute 1255 /// := StringConstant 1256 /// := StringConstant '=' StringConstant 1257 bool LLParser::ParseStringAttribute(AttrBuilder &B) { 1258 std::string Attr = Lex.getStrVal(); 1259 Lex.Lex(); 1260 std::string Val; 1261 if (EatIfPresent(lltok::equal) && ParseStringConstant(Val)) 1262 return true; 1263 B.addAttribute(Attr, Val); 1264 return false; 1265 } 1266 1267 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes. 1268 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) { 1269 bool HaveError = false; 1270 1271 B.clear(); 1272 1273 while (1) { 1274 lltok::Kind Token = Lex.getKind(); 1275 switch (Token) { 1276 default: // End of attributes. 1277 return HaveError; 1278 case lltok::StringConstant: { 1279 if (ParseStringAttribute(B)) 1280 return true; 1281 continue; 1282 } 1283 case lltok::kw_align: { 1284 unsigned Alignment; 1285 if (ParseOptionalAlignment(Alignment)) 1286 return true; 1287 B.addAlignmentAttr(Alignment); 1288 continue; 1289 } 1290 case lltok::kw_byval: B.addAttribute(Attribute::ByVal); break; 1291 case lltok::kw_dereferenceable: { 1292 uint64_t Bytes; 1293 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1294 return true; 1295 B.addDereferenceableAttr(Bytes); 1296 continue; 1297 } 1298 case lltok::kw_dereferenceable_or_null: { 1299 uint64_t Bytes; 1300 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1301 return true; 1302 B.addDereferenceableOrNullAttr(Bytes); 1303 continue; 1304 } 1305 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break; 1306 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1307 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1308 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1309 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1310 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1311 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1312 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1313 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1314 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1315 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break; 1316 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1317 1318 case lltok::kw_alignstack: 1319 case lltok::kw_alwaysinline: 1320 case lltok::kw_argmemonly: 1321 case lltok::kw_builtin: 1322 case lltok::kw_inlinehint: 1323 case lltok::kw_jumptable: 1324 case lltok::kw_minsize: 1325 case lltok::kw_naked: 1326 case lltok::kw_nobuiltin: 1327 case lltok::kw_noduplicate: 1328 case lltok::kw_noimplicitfloat: 1329 case lltok::kw_noinline: 1330 case lltok::kw_nonlazybind: 1331 case lltok::kw_noredzone: 1332 case lltok::kw_noreturn: 1333 case lltok::kw_nounwind: 1334 case lltok::kw_optnone: 1335 case lltok::kw_optsize: 1336 case lltok::kw_returns_twice: 1337 case lltok::kw_sanitize_address: 1338 case lltok::kw_sanitize_memory: 1339 case lltok::kw_sanitize_thread: 1340 case lltok::kw_ssp: 1341 case lltok::kw_sspreq: 1342 case lltok::kw_sspstrong: 1343 case lltok::kw_safestack: 1344 case lltok::kw_uwtable: 1345 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1346 break; 1347 } 1348 1349 Lex.Lex(); 1350 } 1351 } 1352 1353 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes. 1354 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) { 1355 bool HaveError = false; 1356 1357 B.clear(); 1358 1359 while (1) { 1360 lltok::Kind Token = Lex.getKind(); 1361 switch (Token) { 1362 default: // End of attributes. 1363 return HaveError; 1364 case lltok::StringConstant: { 1365 if (ParseStringAttribute(B)) 1366 return true; 1367 continue; 1368 } 1369 case lltok::kw_dereferenceable: { 1370 uint64_t Bytes; 1371 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1372 return true; 1373 B.addDereferenceableAttr(Bytes); 1374 continue; 1375 } 1376 case lltok::kw_dereferenceable_or_null: { 1377 uint64_t Bytes; 1378 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1379 return true; 1380 B.addDereferenceableOrNullAttr(Bytes); 1381 continue; 1382 } 1383 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1384 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1385 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1386 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1387 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1388 1389 // Error handling. 1390 case lltok::kw_align: 1391 case lltok::kw_byval: 1392 case lltok::kw_inalloca: 1393 case lltok::kw_nest: 1394 case lltok::kw_nocapture: 1395 case lltok::kw_returned: 1396 case lltok::kw_sret: 1397 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1398 break; 1399 1400 case lltok::kw_alignstack: 1401 case lltok::kw_alwaysinline: 1402 case lltok::kw_argmemonly: 1403 case lltok::kw_builtin: 1404 case lltok::kw_cold: 1405 case lltok::kw_inlinehint: 1406 case lltok::kw_jumptable: 1407 case lltok::kw_minsize: 1408 case lltok::kw_naked: 1409 case lltok::kw_nobuiltin: 1410 case lltok::kw_noduplicate: 1411 case lltok::kw_noimplicitfloat: 1412 case lltok::kw_noinline: 1413 case lltok::kw_nonlazybind: 1414 case lltok::kw_noredzone: 1415 case lltok::kw_noreturn: 1416 case lltok::kw_nounwind: 1417 case lltok::kw_optnone: 1418 case lltok::kw_optsize: 1419 case lltok::kw_returns_twice: 1420 case lltok::kw_sanitize_address: 1421 case lltok::kw_sanitize_memory: 1422 case lltok::kw_sanitize_thread: 1423 case lltok::kw_ssp: 1424 case lltok::kw_sspreq: 1425 case lltok::kw_sspstrong: 1426 case lltok::kw_safestack: 1427 case lltok::kw_uwtable: 1428 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1429 break; 1430 1431 case lltok::kw_readnone: 1432 case lltok::kw_readonly: 1433 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type"); 1434 } 1435 1436 Lex.Lex(); 1437 } 1438 } 1439 1440 /// ParseOptionalLinkage 1441 /// ::= /*empty*/ 1442 /// ::= 'private' 1443 /// ::= 'internal' 1444 /// ::= 'weak' 1445 /// ::= 'weak_odr' 1446 /// ::= 'linkonce' 1447 /// ::= 'linkonce_odr' 1448 /// ::= 'available_externally' 1449 /// ::= 'appending' 1450 /// ::= 'common' 1451 /// ::= 'extern_weak' 1452 /// ::= 'external' 1453 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) { 1454 HasLinkage = false; 1455 switch (Lex.getKind()) { 1456 default: Res=GlobalValue::ExternalLinkage; return false; 1457 case lltok::kw_private: Res = GlobalValue::PrivateLinkage; break; 1458 case lltok::kw_internal: Res = GlobalValue::InternalLinkage; break; 1459 case lltok::kw_weak: Res = GlobalValue::WeakAnyLinkage; break; 1460 case lltok::kw_weak_odr: Res = GlobalValue::WeakODRLinkage; break; 1461 case lltok::kw_linkonce: Res = GlobalValue::LinkOnceAnyLinkage; break; 1462 case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break; 1463 case lltok::kw_available_externally: 1464 Res = GlobalValue::AvailableExternallyLinkage; 1465 break; 1466 case lltok::kw_appending: Res = GlobalValue::AppendingLinkage; break; 1467 case lltok::kw_common: Res = GlobalValue::CommonLinkage; break; 1468 case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break; 1469 case lltok::kw_external: Res = GlobalValue::ExternalLinkage; break; 1470 } 1471 Lex.Lex(); 1472 HasLinkage = true; 1473 return false; 1474 } 1475 1476 /// ParseOptionalVisibility 1477 /// ::= /*empty*/ 1478 /// ::= 'default' 1479 /// ::= 'hidden' 1480 /// ::= 'protected' 1481 /// 1482 bool LLParser::ParseOptionalVisibility(unsigned &Res) { 1483 switch (Lex.getKind()) { 1484 default: Res = GlobalValue::DefaultVisibility; return false; 1485 case lltok::kw_default: Res = GlobalValue::DefaultVisibility; break; 1486 case lltok::kw_hidden: Res = GlobalValue::HiddenVisibility; break; 1487 case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break; 1488 } 1489 Lex.Lex(); 1490 return false; 1491 } 1492 1493 /// ParseOptionalDLLStorageClass 1494 /// ::= /*empty*/ 1495 /// ::= 'dllimport' 1496 /// ::= 'dllexport' 1497 /// 1498 bool LLParser::ParseOptionalDLLStorageClass(unsigned &Res) { 1499 switch (Lex.getKind()) { 1500 default: Res = GlobalValue::DefaultStorageClass; return false; 1501 case lltok::kw_dllimport: Res = GlobalValue::DLLImportStorageClass; break; 1502 case lltok::kw_dllexport: Res = GlobalValue::DLLExportStorageClass; break; 1503 } 1504 Lex.Lex(); 1505 return false; 1506 } 1507 1508 /// ParseOptionalCallingConv 1509 /// ::= /*empty*/ 1510 /// ::= 'ccc' 1511 /// ::= 'fastcc' 1512 /// ::= 'intel_ocl_bicc' 1513 /// ::= 'coldcc' 1514 /// ::= 'x86_stdcallcc' 1515 /// ::= 'x86_fastcallcc' 1516 /// ::= 'x86_thiscallcc' 1517 /// ::= 'x86_vectorcallcc' 1518 /// ::= 'arm_apcscc' 1519 /// ::= 'arm_aapcscc' 1520 /// ::= 'arm_aapcs_vfpcc' 1521 /// ::= 'msp430_intrcc' 1522 /// ::= 'ptx_kernel' 1523 /// ::= 'ptx_device' 1524 /// ::= 'spir_func' 1525 /// ::= 'spir_kernel' 1526 /// ::= 'x86_64_sysvcc' 1527 /// ::= 'x86_64_win64cc' 1528 /// ::= 'webkit_jscc' 1529 /// ::= 'anyregcc' 1530 /// ::= 'preserve_mostcc' 1531 /// ::= 'preserve_allcc' 1532 /// ::= 'ghccc' 1533 /// ::= 'cc' UINT 1534 /// 1535 bool LLParser::ParseOptionalCallingConv(unsigned &CC) { 1536 switch (Lex.getKind()) { 1537 default: CC = CallingConv::C; return false; 1538 case lltok::kw_ccc: CC = CallingConv::C; break; 1539 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1540 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1541 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1542 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1543 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1544 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1545 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1546 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1547 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1548 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1549 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1550 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1551 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1552 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1553 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1554 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1555 case lltok::kw_x86_64_win64cc: CC = CallingConv::X86_64_Win64; break; 1556 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1557 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1558 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1559 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1560 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1561 case lltok::kw_cc: { 1562 Lex.Lex(); 1563 return ParseUInt32(CC); 1564 } 1565 } 1566 1567 Lex.Lex(); 1568 return false; 1569 } 1570 1571 /// ParseMetadataAttachment 1572 /// ::= !dbg !42 1573 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 1574 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 1575 1576 std::string Name = Lex.getStrVal(); 1577 Kind = M->getMDKindID(Name); 1578 Lex.Lex(); 1579 1580 return ParseMDNode(MD); 1581 } 1582 1583 /// ParseInstructionMetadata 1584 /// ::= !dbg !42 (',' !dbg !57)* 1585 bool LLParser::ParseInstructionMetadata(Instruction &Inst) { 1586 do { 1587 if (Lex.getKind() != lltok::MetadataVar) 1588 return TokError("expected metadata after comma"); 1589 1590 unsigned MDK; 1591 MDNode *N; 1592 if (ParseMetadataAttachment(MDK, N)) 1593 return true; 1594 1595 Inst.setMetadata(MDK, N); 1596 if (MDK == LLVMContext::MD_tbaa) 1597 InstsWithTBAATag.push_back(&Inst); 1598 1599 // If this is the end of the list, we're done. 1600 } while (EatIfPresent(lltok::comma)); 1601 return false; 1602 } 1603 1604 /// ParseOptionalFunctionMetadata 1605 /// ::= (!dbg !57)* 1606 bool LLParser::ParseOptionalFunctionMetadata(Function &F) { 1607 while (Lex.getKind() == lltok::MetadataVar) { 1608 unsigned MDK; 1609 MDNode *N; 1610 if (ParseMetadataAttachment(MDK, N)) 1611 return true; 1612 1613 F.setMetadata(MDK, N); 1614 } 1615 return false; 1616 } 1617 1618 /// ParseOptionalAlignment 1619 /// ::= /* empty */ 1620 /// ::= 'align' 4 1621 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { 1622 Alignment = 0; 1623 if (!EatIfPresent(lltok::kw_align)) 1624 return false; 1625 LocTy AlignLoc = Lex.getLoc(); 1626 if (ParseUInt32(Alignment)) return true; 1627 if (!isPowerOf2_32(Alignment)) 1628 return Error(AlignLoc, "alignment is not a power of two"); 1629 if (Alignment > Value::MaximumAlignment) 1630 return Error(AlignLoc, "huge alignments are not supported yet"); 1631 return false; 1632 } 1633 1634 /// ParseOptionalDerefAttrBytes 1635 /// ::= /* empty */ 1636 /// ::= AttrKind '(' 4 ')' 1637 /// 1638 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 1639 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind, 1640 uint64_t &Bytes) { 1641 assert((AttrKind == lltok::kw_dereferenceable || 1642 AttrKind == lltok::kw_dereferenceable_or_null) && 1643 "contract!"); 1644 1645 Bytes = 0; 1646 if (!EatIfPresent(AttrKind)) 1647 return false; 1648 LocTy ParenLoc = Lex.getLoc(); 1649 if (!EatIfPresent(lltok::lparen)) 1650 return Error(ParenLoc, "expected '('"); 1651 LocTy DerefLoc = Lex.getLoc(); 1652 if (ParseUInt64(Bytes)) return true; 1653 ParenLoc = Lex.getLoc(); 1654 if (!EatIfPresent(lltok::rparen)) 1655 return Error(ParenLoc, "expected ')'"); 1656 if (!Bytes) 1657 return Error(DerefLoc, "dereferenceable bytes must be non-zero"); 1658 return false; 1659 } 1660 1661 /// ParseOptionalCommaAlign 1662 /// ::= 1663 /// ::= ',' align 4 1664 /// 1665 /// This returns with AteExtraComma set to true if it ate an excess comma at the 1666 /// end. 1667 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, 1668 bool &AteExtraComma) { 1669 AteExtraComma = false; 1670 while (EatIfPresent(lltok::comma)) { 1671 // Metadata at the end is an early exit. 1672 if (Lex.getKind() == lltok::MetadataVar) { 1673 AteExtraComma = true; 1674 return false; 1675 } 1676 1677 if (Lex.getKind() != lltok::kw_align) 1678 return Error(Lex.getLoc(), "expected metadata or 'align'"); 1679 1680 if (ParseOptionalAlignment(Alignment)) return true; 1681 } 1682 1683 return false; 1684 } 1685 1686 /// ParseScopeAndOrdering 1687 /// if isAtomic: ::= 'singlethread'? AtomicOrdering 1688 /// else: ::= 1689 /// 1690 /// This sets Scope and Ordering to the parsed values. 1691 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope, 1692 AtomicOrdering &Ordering) { 1693 if (!isAtomic) 1694 return false; 1695 1696 Scope = CrossThread; 1697 if (EatIfPresent(lltok::kw_singlethread)) 1698 Scope = SingleThread; 1699 1700 return ParseOrdering(Ordering); 1701 } 1702 1703 /// ParseOrdering 1704 /// ::= AtomicOrdering 1705 /// 1706 /// This sets Ordering to the parsed value. 1707 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) { 1708 switch (Lex.getKind()) { 1709 default: return TokError("Expected ordering on atomic instruction"); 1710 case lltok::kw_unordered: Ordering = Unordered; break; 1711 case lltok::kw_monotonic: Ordering = Monotonic; break; 1712 case lltok::kw_acquire: Ordering = Acquire; break; 1713 case lltok::kw_release: Ordering = Release; break; 1714 case lltok::kw_acq_rel: Ordering = AcquireRelease; break; 1715 case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break; 1716 } 1717 Lex.Lex(); 1718 return false; 1719 } 1720 1721 /// ParseOptionalStackAlignment 1722 /// ::= /* empty */ 1723 /// ::= 'alignstack' '(' 4 ')' 1724 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 1725 Alignment = 0; 1726 if (!EatIfPresent(lltok::kw_alignstack)) 1727 return false; 1728 LocTy ParenLoc = Lex.getLoc(); 1729 if (!EatIfPresent(lltok::lparen)) 1730 return Error(ParenLoc, "expected '('"); 1731 LocTy AlignLoc = Lex.getLoc(); 1732 if (ParseUInt32(Alignment)) return true; 1733 ParenLoc = Lex.getLoc(); 1734 if (!EatIfPresent(lltok::rparen)) 1735 return Error(ParenLoc, "expected ')'"); 1736 if (!isPowerOf2_32(Alignment)) 1737 return Error(AlignLoc, "stack alignment is not a power of two"); 1738 return false; 1739 } 1740 1741 /// ParseIndexList - This parses the index list for an insert/extractvalue 1742 /// instruction. This sets AteExtraComma in the case where we eat an extra 1743 /// comma at the end of the line and find that it is followed by metadata. 1744 /// Clients that don't allow metadata can call the version of this function that 1745 /// only takes one argument. 1746 /// 1747 /// ParseIndexList 1748 /// ::= (',' uint32)+ 1749 /// 1750 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 1751 bool &AteExtraComma) { 1752 AteExtraComma = false; 1753 1754 if (Lex.getKind() != lltok::comma) 1755 return TokError("expected ',' as start of index list"); 1756 1757 while (EatIfPresent(lltok::comma)) { 1758 if (Lex.getKind() == lltok::MetadataVar) { 1759 if (Indices.empty()) return TokError("expected index"); 1760 AteExtraComma = true; 1761 return false; 1762 } 1763 unsigned Idx = 0; 1764 if (ParseUInt32(Idx)) return true; 1765 Indices.push_back(Idx); 1766 } 1767 1768 return false; 1769 } 1770 1771 //===----------------------------------------------------------------------===// 1772 // Type Parsing. 1773 //===----------------------------------------------------------------------===// 1774 1775 /// ParseType - Parse a type. 1776 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 1777 SMLoc TypeLoc = Lex.getLoc(); 1778 switch (Lex.getKind()) { 1779 default: 1780 return TokError(Msg); 1781 case lltok::Type: 1782 // Type ::= 'float' | 'void' (etc) 1783 Result = Lex.getTyVal(); 1784 Lex.Lex(); 1785 break; 1786 case lltok::lbrace: 1787 // Type ::= StructType 1788 if (ParseAnonStructType(Result, false)) 1789 return true; 1790 break; 1791 case lltok::lsquare: 1792 // Type ::= '[' ... ']' 1793 Lex.Lex(); // eat the lsquare. 1794 if (ParseArrayVectorType(Result, false)) 1795 return true; 1796 break; 1797 case lltok::less: // Either vector or packed struct. 1798 // Type ::= '<' ... '>' 1799 Lex.Lex(); 1800 if (Lex.getKind() == lltok::lbrace) { 1801 if (ParseAnonStructType(Result, true) || 1802 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 1803 return true; 1804 } else if (ParseArrayVectorType(Result, true)) 1805 return true; 1806 break; 1807 case lltok::LocalVar: { 1808 // Type ::= %foo 1809 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 1810 1811 // If the type hasn't been defined yet, create a forward definition and 1812 // remember where that forward def'n was seen (in case it never is defined). 1813 if (!Entry.first) { 1814 Entry.first = StructType::create(Context, Lex.getStrVal()); 1815 Entry.second = Lex.getLoc(); 1816 } 1817 Result = Entry.first; 1818 Lex.Lex(); 1819 break; 1820 } 1821 1822 case lltok::LocalVarID: { 1823 // Type ::= %4 1824 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 1825 1826 // If the type hasn't been defined yet, create a forward definition and 1827 // remember where that forward def'n was seen (in case it never is defined). 1828 if (!Entry.first) { 1829 Entry.first = StructType::create(Context); 1830 Entry.second = Lex.getLoc(); 1831 } 1832 Result = Entry.first; 1833 Lex.Lex(); 1834 break; 1835 } 1836 } 1837 1838 // Parse the type suffixes. 1839 while (1) { 1840 switch (Lex.getKind()) { 1841 // End of type. 1842 default: 1843 if (!AllowVoid && Result->isVoidTy()) 1844 return Error(TypeLoc, "void type only allowed for function results"); 1845 return false; 1846 1847 // Type ::= Type '*' 1848 case lltok::star: 1849 if (Result->isLabelTy()) 1850 return TokError("basic block pointers are invalid"); 1851 if (Result->isVoidTy()) 1852 return TokError("pointers to void are invalid - use i8* instead"); 1853 if (!PointerType::isValidElementType(Result)) 1854 return TokError("pointer to this type is invalid"); 1855 Result = PointerType::getUnqual(Result); 1856 Lex.Lex(); 1857 break; 1858 1859 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 1860 case lltok::kw_addrspace: { 1861 if (Result->isLabelTy()) 1862 return TokError("basic block pointers are invalid"); 1863 if (Result->isVoidTy()) 1864 return TokError("pointers to void are invalid; use i8* instead"); 1865 if (!PointerType::isValidElementType(Result)) 1866 return TokError("pointer to this type is invalid"); 1867 unsigned AddrSpace; 1868 if (ParseOptionalAddrSpace(AddrSpace) || 1869 ParseToken(lltok::star, "expected '*' in address space")) 1870 return true; 1871 1872 Result = PointerType::get(Result, AddrSpace); 1873 break; 1874 } 1875 1876 /// Types '(' ArgTypeListI ')' OptFuncAttrs 1877 case lltok::lparen: 1878 if (ParseFunctionType(Result)) 1879 return true; 1880 break; 1881 } 1882 } 1883 } 1884 1885 /// ParseParameterList 1886 /// ::= '(' ')' 1887 /// ::= '(' Arg (',' Arg)* ')' 1888 /// Arg 1889 /// ::= Type OptionalAttributes Value OptionalAttributes 1890 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 1891 PerFunctionState &PFS, bool IsMustTailCall, 1892 bool InVarArgsFunc) { 1893 if (ParseToken(lltok::lparen, "expected '(' in call")) 1894 return true; 1895 1896 unsigned AttrIndex = 1; 1897 while (Lex.getKind() != lltok::rparen) { 1898 // If this isn't the first argument, we need a comma. 1899 if (!ArgList.empty() && 1900 ParseToken(lltok::comma, "expected ',' in argument list")) 1901 return true; 1902 1903 // Parse an ellipsis if this is a musttail call in a variadic function. 1904 if (Lex.getKind() == lltok::dotdotdot) { 1905 const char *Msg = "unexpected ellipsis in argument list for "; 1906 if (!IsMustTailCall) 1907 return TokError(Twine(Msg) + "non-musttail call"); 1908 if (!InVarArgsFunc) 1909 return TokError(Twine(Msg) + "musttail call in non-varargs function"); 1910 Lex.Lex(); // Lex the '...', it is purely for readability. 1911 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 1912 } 1913 1914 // Parse the argument. 1915 LocTy ArgLoc; 1916 Type *ArgTy = nullptr; 1917 AttrBuilder ArgAttrs; 1918 Value *V; 1919 if (ParseType(ArgTy, ArgLoc)) 1920 return true; 1921 1922 if (ArgTy->isMetadataTy()) { 1923 if (ParseMetadataAsValue(V, PFS)) 1924 return true; 1925 } else { 1926 // Otherwise, handle normal operands. 1927 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS)) 1928 return true; 1929 } 1930 ArgList.push_back(ParamInfo(ArgLoc, V, AttributeSet::get(V->getContext(), 1931 AttrIndex++, 1932 ArgAttrs))); 1933 } 1934 1935 if (IsMustTailCall && InVarArgsFunc) 1936 return TokError("expected '...' at end of argument list for musttail call " 1937 "in varargs function"); 1938 1939 Lex.Lex(); // Lex the ')'. 1940 return false; 1941 } 1942 1943 1944 1945 /// ParseArgumentList - Parse the argument list for a function type or function 1946 /// prototype. 1947 /// ::= '(' ArgTypeListI ')' 1948 /// ArgTypeListI 1949 /// ::= /*empty*/ 1950 /// ::= '...' 1951 /// ::= ArgTypeList ',' '...' 1952 /// ::= ArgType (',' ArgType)* 1953 /// 1954 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 1955 bool &isVarArg){ 1956 isVarArg = false; 1957 assert(Lex.getKind() == lltok::lparen); 1958 Lex.Lex(); // eat the (. 1959 1960 if (Lex.getKind() == lltok::rparen) { 1961 // empty 1962 } else if (Lex.getKind() == lltok::dotdotdot) { 1963 isVarArg = true; 1964 Lex.Lex(); 1965 } else { 1966 LocTy TypeLoc = Lex.getLoc(); 1967 Type *ArgTy = nullptr; 1968 AttrBuilder Attrs; 1969 std::string Name; 1970 1971 if (ParseType(ArgTy) || 1972 ParseOptionalParamAttrs(Attrs)) return true; 1973 1974 if (ArgTy->isVoidTy()) 1975 return Error(TypeLoc, "argument can not have void type"); 1976 1977 if (Lex.getKind() == lltok::LocalVar) { 1978 Name = Lex.getStrVal(); 1979 Lex.Lex(); 1980 } 1981 1982 if (!FunctionType::isValidArgumentType(ArgTy)) 1983 return Error(TypeLoc, "invalid type for function argument"); 1984 1985 unsigned AttrIndex = 1; 1986 ArgList.emplace_back(TypeLoc, ArgTy, AttributeSet::get(ArgTy->getContext(), 1987 AttrIndex++, Attrs), 1988 std::move(Name)); 1989 1990 while (EatIfPresent(lltok::comma)) { 1991 // Handle ... at end of arg list. 1992 if (EatIfPresent(lltok::dotdotdot)) { 1993 isVarArg = true; 1994 break; 1995 } 1996 1997 // Otherwise must be an argument type. 1998 TypeLoc = Lex.getLoc(); 1999 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true; 2000 2001 if (ArgTy->isVoidTy()) 2002 return Error(TypeLoc, "argument can not have void type"); 2003 2004 if (Lex.getKind() == lltok::LocalVar) { 2005 Name = Lex.getStrVal(); 2006 Lex.Lex(); 2007 } else { 2008 Name = ""; 2009 } 2010 2011 if (!ArgTy->isFirstClassType()) 2012 return Error(TypeLoc, "invalid type for function argument"); 2013 2014 ArgList.emplace_back( 2015 TypeLoc, ArgTy, 2016 AttributeSet::get(ArgTy->getContext(), AttrIndex++, Attrs), 2017 std::move(Name)); 2018 } 2019 } 2020 2021 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2022 } 2023 2024 /// ParseFunctionType 2025 /// ::= Type ArgumentList OptionalAttrs 2026 bool LLParser::ParseFunctionType(Type *&Result) { 2027 assert(Lex.getKind() == lltok::lparen); 2028 2029 if (!FunctionType::isValidReturnType(Result)) 2030 return TokError("invalid function return type"); 2031 2032 SmallVector<ArgInfo, 8> ArgList; 2033 bool isVarArg; 2034 if (ParseArgumentList(ArgList, isVarArg)) 2035 return true; 2036 2037 // Reject names on the arguments lists. 2038 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2039 if (!ArgList[i].Name.empty()) 2040 return Error(ArgList[i].Loc, "argument name invalid in function type"); 2041 if (ArgList[i].Attrs.hasAttributes(i + 1)) 2042 return Error(ArgList[i].Loc, 2043 "argument attributes invalid in function type"); 2044 } 2045 2046 SmallVector<Type*, 16> ArgListTy; 2047 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2048 ArgListTy.push_back(ArgList[i].Ty); 2049 2050 Result = FunctionType::get(Result, ArgListTy, isVarArg); 2051 return false; 2052 } 2053 2054 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 2055 /// other structs. 2056 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 2057 SmallVector<Type*, 8> Elts; 2058 if (ParseStructBody(Elts)) return true; 2059 2060 Result = StructType::get(Context, Elts, Packed); 2061 return false; 2062 } 2063 2064 /// ParseStructDefinition - Parse a struct in a 'type' definition. 2065 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 2066 std::pair<Type*, LocTy> &Entry, 2067 Type *&ResultTy) { 2068 // If the type was already defined, diagnose the redefinition. 2069 if (Entry.first && !Entry.second.isValid()) 2070 return Error(TypeLoc, "redefinition of type"); 2071 2072 // If we have opaque, just return without filling in the definition for the 2073 // struct. This counts as a definition as far as the .ll file goes. 2074 if (EatIfPresent(lltok::kw_opaque)) { 2075 // This type is being defined, so clear the location to indicate this. 2076 Entry.second = SMLoc(); 2077 2078 // If this type number has never been uttered, create it. 2079 if (!Entry.first) 2080 Entry.first = StructType::create(Context, Name); 2081 ResultTy = Entry.first; 2082 return false; 2083 } 2084 2085 // If the type starts with '<', then it is either a packed struct or a vector. 2086 bool isPacked = EatIfPresent(lltok::less); 2087 2088 // If we don't have a struct, then we have a random type alias, which we 2089 // accept for compatibility with old files. These types are not allowed to be 2090 // forward referenced and not allowed to be recursive. 2091 if (Lex.getKind() != lltok::lbrace) { 2092 if (Entry.first) 2093 return Error(TypeLoc, "forward references to non-struct type"); 2094 2095 ResultTy = nullptr; 2096 if (isPacked) 2097 return ParseArrayVectorType(ResultTy, true); 2098 return ParseType(ResultTy); 2099 } 2100 2101 // This type is being defined, so clear the location to indicate this. 2102 Entry.second = SMLoc(); 2103 2104 // If this type number has never been uttered, create it. 2105 if (!Entry.first) 2106 Entry.first = StructType::create(Context, Name); 2107 2108 StructType *STy = cast<StructType>(Entry.first); 2109 2110 SmallVector<Type*, 8> Body; 2111 if (ParseStructBody(Body) || 2112 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 2113 return true; 2114 2115 STy->setBody(Body, isPacked); 2116 ResultTy = STy; 2117 return false; 2118 } 2119 2120 2121 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2122 /// StructType 2123 /// ::= '{' '}' 2124 /// ::= '{' Type (',' Type)* '}' 2125 /// ::= '<' '{' '}' '>' 2126 /// ::= '<' '{' Type (',' Type)* '}' '>' 2127 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 2128 assert(Lex.getKind() == lltok::lbrace); 2129 Lex.Lex(); // Consume the '{' 2130 2131 // Handle the empty struct. 2132 if (EatIfPresent(lltok::rbrace)) 2133 return false; 2134 2135 LocTy EltTyLoc = Lex.getLoc(); 2136 Type *Ty = nullptr; 2137 if (ParseType(Ty)) return true; 2138 Body.push_back(Ty); 2139 2140 if (!StructType::isValidElementType(Ty)) 2141 return Error(EltTyLoc, "invalid element type for struct"); 2142 2143 while (EatIfPresent(lltok::comma)) { 2144 EltTyLoc = Lex.getLoc(); 2145 if (ParseType(Ty)) return true; 2146 2147 if (!StructType::isValidElementType(Ty)) 2148 return Error(EltTyLoc, "invalid element type for struct"); 2149 2150 Body.push_back(Ty); 2151 } 2152 2153 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 2154 } 2155 2156 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 2157 /// token has already been consumed. 2158 /// Type 2159 /// ::= '[' APSINTVAL 'x' Types ']' 2160 /// ::= '<' APSINTVAL 'x' Types '>' 2161 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 2162 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2163 Lex.getAPSIntVal().getBitWidth() > 64) 2164 return TokError("expected number in address space"); 2165 2166 LocTy SizeLoc = Lex.getLoc(); 2167 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2168 Lex.Lex(); 2169 2170 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 2171 return true; 2172 2173 LocTy TypeLoc = Lex.getLoc(); 2174 Type *EltTy = nullptr; 2175 if (ParseType(EltTy)) return true; 2176 2177 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 2178 "expected end of sequential type")) 2179 return true; 2180 2181 if (isVector) { 2182 if (Size == 0) 2183 return Error(SizeLoc, "zero element vector is illegal"); 2184 if ((unsigned)Size != Size) 2185 return Error(SizeLoc, "size too large for vector"); 2186 if (!VectorType::isValidElementType(EltTy)) 2187 return Error(TypeLoc, "invalid vector element type"); 2188 Result = VectorType::get(EltTy, unsigned(Size)); 2189 } else { 2190 if (!ArrayType::isValidElementType(EltTy)) 2191 return Error(TypeLoc, "invalid array element type"); 2192 Result = ArrayType::get(EltTy, Size); 2193 } 2194 return false; 2195 } 2196 2197 //===----------------------------------------------------------------------===// 2198 // Function Semantic Analysis. 2199 //===----------------------------------------------------------------------===// 2200 2201 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2202 int functionNumber) 2203 : P(p), F(f), FunctionNumber(functionNumber) { 2204 2205 // Insert unnamed arguments into the NumberedVals list. 2206 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); 2207 AI != E; ++AI) 2208 if (!AI->hasName()) 2209 NumberedVals.push_back(AI); 2210 } 2211 2212 LLParser::PerFunctionState::~PerFunctionState() { 2213 // If there were any forward referenced non-basicblock values, delete them. 2214 for (std::map<std::string, std::pair<Value*, LocTy> >::iterator 2215 I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I) 2216 if (!isa<BasicBlock>(I->second.first)) { 2217 I->second.first->replaceAllUsesWith( 2218 UndefValue::get(I->second.first->getType())); 2219 delete I->second.first; 2220 I->second.first = nullptr; 2221 } 2222 2223 for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator 2224 I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I) 2225 if (!isa<BasicBlock>(I->second.first)) { 2226 I->second.first->replaceAllUsesWith( 2227 UndefValue::get(I->second.first->getType())); 2228 delete I->second.first; 2229 I->second.first = nullptr; 2230 } 2231 } 2232 2233 bool LLParser::PerFunctionState::FinishFunction() { 2234 if (!ForwardRefVals.empty()) 2235 return P.Error(ForwardRefVals.begin()->second.second, 2236 "use of undefined value '%" + ForwardRefVals.begin()->first + 2237 "'"); 2238 if (!ForwardRefValIDs.empty()) 2239 return P.Error(ForwardRefValIDs.begin()->second.second, 2240 "use of undefined value '%" + 2241 Twine(ForwardRefValIDs.begin()->first) + "'"); 2242 return false; 2243 } 2244 2245 2246 /// GetVal - Get a value with the specified name or ID, creating a 2247 /// forward reference record if needed. This can return null if the value 2248 /// exists but does not have the right type. 2249 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty, 2250 LocTy Loc, OperatorConstraint OC) { 2251 // Look this name up in the normal function symbol table. 2252 Value *Val = F.getValueSymbolTable().lookup(Name); 2253 2254 // If this is a forward reference for the value, see if we already created a 2255 // forward ref record. 2256 if (!Val) { 2257 std::map<std::string, std::pair<Value*, LocTy> >::iterator 2258 I = ForwardRefVals.find(Name); 2259 if (I != ForwardRefVals.end()) 2260 Val = I->second.first; 2261 } 2262 2263 // If we have the value in the symbol table or fwd-ref table, return it. 2264 if (Val) { 2265 // Check operator constraints. 2266 switch (OC) { 2267 case OC_None: 2268 // no constraint 2269 break; 2270 case OC_CatchPad: 2271 if (!isa<CatchPadInst>(Val)) { 2272 P.Error(Loc, "'%" + Name + "' is not a catchpad"); 2273 return nullptr; 2274 } 2275 break; 2276 case OC_CleanupPad: 2277 if (!isa<CleanupPadInst>(Val)) { 2278 P.Error(Loc, "'%" + Name + "' is not a cleanuppad"); 2279 return nullptr; 2280 } 2281 break; 2282 } 2283 if (Val->getType() == Ty) return Val; 2284 if (Ty->isLabelTy()) 2285 P.Error(Loc, "'%" + Name + "' is not a basic block"); 2286 else 2287 P.Error(Loc, "'%" + Name + "' defined with type '" + 2288 getTypeString(Val->getType()) + "'"); 2289 return nullptr; 2290 } 2291 2292 // Don't make placeholders with invalid type. 2293 if (!Ty->isFirstClassType()) { 2294 P.Error(Loc, "invalid use of a non-first-class type"); 2295 return nullptr; 2296 } 2297 2298 // Otherwise, create a new forward reference for this value and remember it. 2299 Value *FwdVal; 2300 if (Ty->isLabelTy()) { 2301 assert(!OC); 2302 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2303 } else if (!OC) { 2304 FwdVal = new Argument(Ty, Name); 2305 } else { 2306 switch (OC) { 2307 case OC_CatchPad: 2308 FwdVal = CatchPadInst::Create(&F.getEntryBlock(), &F.getEntryBlock(), {}, 2309 Name); 2310 break; 2311 case OC_CleanupPad: 2312 FwdVal = CleanupPadInst::Create(F.getContext(), {}, Name); 2313 break; 2314 default: 2315 llvm_unreachable("unexpected constraint"); 2316 } 2317 } 2318 2319 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2320 return FwdVal; 2321 } 2322 2323 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc, 2324 OperatorConstraint OC) { 2325 // Look this name up in the normal function symbol table. 2326 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2327 2328 // If this is a forward reference for the value, see if we already created a 2329 // forward ref record. 2330 if (!Val) { 2331 std::map<unsigned, std::pair<Value*, LocTy> >::iterator 2332 I = ForwardRefValIDs.find(ID); 2333 if (I != ForwardRefValIDs.end()) 2334 Val = I->second.first; 2335 } 2336 2337 // If we have the value in the symbol table or fwd-ref table, return it. 2338 if (Val) { 2339 // Check operator constraint. 2340 switch (OC) { 2341 case OC_None: 2342 // no constraint 2343 break; 2344 case OC_CatchPad: 2345 if (!isa<CatchPadInst>(Val)) { 2346 P.Error(Loc, "'%" + Twine(ID) + "' is not a catchpad"); 2347 return nullptr; 2348 } 2349 break; 2350 case OC_CleanupPad: 2351 if (!isa<CleanupPadInst>(Val)) { 2352 P.Error(Loc, "'%" + Twine(ID) + "' is not a cleanuppad"); 2353 return nullptr; 2354 } 2355 break; 2356 } 2357 if (Val->getType() == Ty) return Val; 2358 if (Ty->isLabelTy()) 2359 P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block"); 2360 else 2361 P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" + 2362 getTypeString(Val->getType()) + "'"); 2363 return nullptr; 2364 } 2365 2366 if (!Ty->isFirstClassType()) { 2367 P.Error(Loc, "invalid use of a non-first-class type"); 2368 return nullptr; 2369 } 2370 2371 // Otherwise, create a new forward reference for this value and remember it. 2372 Value *FwdVal; 2373 if (Ty->isLabelTy()) { 2374 assert(!OC); 2375 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2376 } else if (!OC) { 2377 FwdVal = new Argument(Ty); 2378 } else { 2379 switch (OC) { 2380 case OC_CatchPad: 2381 FwdVal = CatchPadInst::Create(&F.getEntryBlock(), &F.getEntryBlock(), {}); 2382 break; 2383 case OC_CleanupPad: 2384 FwdVal = CleanupPadInst::Create(F.getContext(), {}); 2385 break; 2386 default: 2387 llvm_unreachable("unexpected constraint"); 2388 } 2389 } 2390 2391 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2392 return FwdVal; 2393 } 2394 2395 /// SetInstName - After an instruction is parsed and inserted into its 2396 /// basic block, this installs its name. 2397 bool LLParser::PerFunctionState::SetInstName(int NameID, 2398 const std::string &NameStr, 2399 LocTy NameLoc, Instruction *Inst) { 2400 // If this instruction has void type, it cannot have a name or ID specified. 2401 if (Inst->getType()->isVoidTy()) { 2402 if (NameID != -1 || !NameStr.empty()) 2403 return P.Error(NameLoc, "instructions returning void cannot have a name"); 2404 return false; 2405 } 2406 2407 // If this was a numbered instruction, verify that the instruction is the 2408 // expected value and resolve any forward references. 2409 if (NameStr.empty()) { 2410 // If neither a name nor an ID was specified, just use the next ID. 2411 if (NameID == -1) 2412 NameID = NumberedVals.size(); 2413 2414 if (unsigned(NameID) != NumberedVals.size()) 2415 return P.Error(NameLoc, "instruction expected to be numbered '%" + 2416 Twine(NumberedVals.size()) + "'"); 2417 2418 std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI = 2419 ForwardRefValIDs.find(NameID); 2420 if (FI != ForwardRefValIDs.end()) { 2421 Value *Sentinel = FI->second.first; 2422 if (Sentinel->getType() != Inst->getType()) 2423 return P.Error(NameLoc, "instruction forward referenced with type '" + 2424 getTypeString(FI->second.first->getType()) + "'"); 2425 // Check operator constraints. We only put cleanuppads or catchpads in 2426 // the forward value map if the value is constrained to match. 2427 if (isa<CatchPadInst>(Sentinel)) { 2428 if (!isa<CatchPadInst>(Inst)) 2429 return P.Error(FI->second.second, 2430 "'%" + Twine(NameID) + "' is not a catchpad"); 2431 } else if (isa<CleanupPadInst>(Sentinel)) { 2432 if (!isa<CleanupPadInst>(Inst)) 2433 return P.Error(FI->second.second, 2434 "'%" + Twine(NameID) + "' is not a cleanuppad"); 2435 } 2436 2437 Sentinel->replaceAllUsesWith(Inst); 2438 delete Sentinel; 2439 ForwardRefValIDs.erase(FI); 2440 } 2441 2442 NumberedVals.push_back(Inst); 2443 return false; 2444 } 2445 2446 // Otherwise, the instruction had a name. Resolve forward refs and set it. 2447 std::map<std::string, std::pair<Value*, LocTy> >::iterator 2448 FI = ForwardRefVals.find(NameStr); 2449 if (FI != ForwardRefVals.end()) { 2450 Value *Sentinel = FI->second.first; 2451 if (Sentinel->getType() != Inst->getType()) 2452 return P.Error(NameLoc, "instruction forward referenced with type '" + 2453 getTypeString(FI->second.first->getType()) + "'"); 2454 // Check operator constraints. We only put cleanuppads or catchpads in 2455 // the forward value map if the value is constrained to match. 2456 if (isa<CatchPadInst>(Sentinel)) { 2457 if (!isa<CatchPadInst>(Inst)) 2458 return P.Error(FI->second.second, 2459 "'%" + NameStr + "' is not a catchpad"); 2460 } else if (isa<CleanupPadInst>(Sentinel)) { 2461 if (!isa<CleanupPadInst>(Inst)) 2462 return P.Error(FI->second.second, 2463 "'%" + NameStr + "' is not a cleanuppad"); 2464 } 2465 2466 Sentinel->replaceAllUsesWith(Inst); 2467 delete Sentinel; 2468 ForwardRefVals.erase(FI); 2469 } 2470 2471 // Set the name on the instruction. 2472 Inst->setName(NameStr); 2473 2474 if (Inst->getName() != NameStr) 2475 return P.Error(NameLoc, "multiple definition of local value named '" + 2476 NameStr + "'"); 2477 return false; 2478 } 2479 2480 /// GetBB - Get a basic block with the specified name or ID, creating a 2481 /// forward reference record if needed. 2482 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 2483 LocTy Loc) { 2484 return dyn_cast_or_null<BasicBlock>(GetVal(Name, 2485 Type::getLabelTy(F.getContext()), Loc)); 2486 } 2487 2488 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 2489 return dyn_cast_or_null<BasicBlock>(GetVal(ID, 2490 Type::getLabelTy(F.getContext()), Loc)); 2491 } 2492 2493 /// DefineBB - Define the specified basic block, which is either named or 2494 /// unnamed. If there is an error, this returns null otherwise it returns 2495 /// the block being defined. 2496 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 2497 LocTy Loc) { 2498 BasicBlock *BB; 2499 if (Name.empty()) 2500 BB = GetBB(NumberedVals.size(), Loc); 2501 else 2502 BB = GetBB(Name, Loc); 2503 if (!BB) return nullptr; // Already diagnosed error. 2504 2505 // Move the block to the end of the function. Forward ref'd blocks are 2506 // inserted wherever they happen to be referenced. 2507 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 2508 2509 // Remove the block from forward ref sets. 2510 if (Name.empty()) { 2511 ForwardRefValIDs.erase(NumberedVals.size()); 2512 NumberedVals.push_back(BB); 2513 } else { 2514 // BB forward references are already in the function symbol table. 2515 ForwardRefVals.erase(Name); 2516 } 2517 2518 return BB; 2519 } 2520 2521 //===----------------------------------------------------------------------===// 2522 // Constants. 2523 //===----------------------------------------------------------------------===// 2524 2525 /// ParseValID - Parse an abstract value that doesn't necessarily have a 2526 /// type implied. For example, if we parse "4" we don't know what integer type 2527 /// it has. The value will later be combined with its type and checked for 2528 /// sanity. PFS is used to convert function-local operands of metadata (since 2529 /// metadata operands are not just parsed here but also converted to values). 2530 /// PFS can be null when we are not parsing metadata values inside a function. 2531 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 2532 ID.Loc = Lex.getLoc(); 2533 switch (Lex.getKind()) { 2534 default: return TokError("expected value token"); 2535 case lltok::GlobalID: // @42 2536 ID.UIntVal = Lex.getUIntVal(); 2537 ID.Kind = ValID::t_GlobalID; 2538 break; 2539 case lltok::GlobalVar: // @foo 2540 ID.StrVal = Lex.getStrVal(); 2541 ID.Kind = ValID::t_GlobalName; 2542 break; 2543 case lltok::LocalVarID: // %42 2544 ID.UIntVal = Lex.getUIntVal(); 2545 ID.Kind = ValID::t_LocalID; 2546 break; 2547 case lltok::LocalVar: // %foo 2548 ID.StrVal = Lex.getStrVal(); 2549 ID.Kind = ValID::t_LocalName; 2550 break; 2551 case lltok::APSInt: 2552 ID.APSIntVal = Lex.getAPSIntVal(); 2553 ID.Kind = ValID::t_APSInt; 2554 break; 2555 case lltok::APFloat: 2556 ID.APFloatVal = Lex.getAPFloatVal(); 2557 ID.Kind = ValID::t_APFloat; 2558 break; 2559 case lltok::kw_true: 2560 ID.ConstantVal = ConstantInt::getTrue(Context); 2561 ID.Kind = ValID::t_Constant; 2562 break; 2563 case lltok::kw_false: 2564 ID.ConstantVal = ConstantInt::getFalse(Context); 2565 ID.Kind = ValID::t_Constant; 2566 break; 2567 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 2568 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 2569 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 2570 2571 case lltok::lbrace: { 2572 // ValID ::= '{' ConstVector '}' 2573 Lex.Lex(); 2574 SmallVector<Constant*, 16> Elts; 2575 if (ParseGlobalValueVector(Elts) || 2576 ParseToken(lltok::rbrace, "expected end of struct constant")) 2577 return true; 2578 2579 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 2580 ID.UIntVal = Elts.size(); 2581 memcpy(ID.ConstantStructElts.get(), Elts.data(), 2582 Elts.size() * sizeof(Elts[0])); 2583 ID.Kind = ValID::t_ConstantStruct; 2584 return false; 2585 } 2586 case lltok::less: { 2587 // ValID ::= '<' ConstVector '>' --> Vector. 2588 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 2589 Lex.Lex(); 2590 bool isPackedStruct = EatIfPresent(lltok::lbrace); 2591 2592 SmallVector<Constant*, 16> Elts; 2593 LocTy FirstEltLoc = Lex.getLoc(); 2594 if (ParseGlobalValueVector(Elts) || 2595 (isPackedStruct && 2596 ParseToken(lltok::rbrace, "expected end of packed struct")) || 2597 ParseToken(lltok::greater, "expected end of constant")) 2598 return true; 2599 2600 if (isPackedStruct) { 2601 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 2602 memcpy(ID.ConstantStructElts.get(), Elts.data(), 2603 Elts.size() * sizeof(Elts[0])); 2604 ID.UIntVal = Elts.size(); 2605 ID.Kind = ValID::t_PackedConstantStruct; 2606 return false; 2607 } 2608 2609 if (Elts.empty()) 2610 return Error(ID.Loc, "constant vector must not be empty"); 2611 2612 if (!Elts[0]->getType()->isIntegerTy() && 2613 !Elts[0]->getType()->isFloatingPointTy() && 2614 !Elts[0]->getType()->isPointerTy()) 2615 return Error(FirstEltLoc, 2616 "vector elements must have integer, pointer or floating point type"); 2617 2618 // Verify that all the vector elements have the same type. 2619 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 2620 if (Elts[i]->getType() != Elts[0]->getType()) 2621 return Error(FirstEltLoc, 2622 "vector element #" + Twine(i) + 2623 " is not of type '" + getTypeString(Elts[0]->getType())); 2624 2625 ID.ConstantVal = ConstantVector::get(Elts); 2626 ID.Kind = ValID::t_Constant; 2627 return false; 2628 } 2629 case lltok::lsquare: { // Array Constant 2630 Lex.Lex(); 2631 SmallVector<Constant*, 16> Elts; 2632 LocTy FirstEltLoc = Lex.getLoc(); 2633 if (ParseGlobalValueVector(Elts) || 2634 ParseToken(lltok::rsquare, "expected end of array constant")) 2635 return true; 2636 2637 // Handle empty element. 2638 if (Elts.empty()) { 2639 // Use undef instead of an array because it's inconvenient to determine 2640 // the element type at this point, there being no elements to examine. 2641 ID.Kind = ValID::t_EmptyArray; 2642 return false; 2643 } 2644 2645 if (!Elts[0]->getType()->isFirstClassType()) 2646 return Error(FirstEltLoc, "invalid array element type: " + 2647 getTypeString(Elts[0]->getType())); 2648 2649 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 2650 2651 // Verify all elements are correct type! 2652 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 2653 if (Elts[i]->getType() != Elts[0]->getType()) 2654 return Error(FirstEltLoc, 2655 "array element #" + Twine(i) + 2656 " is not of type '" + getTypeString(Elts[0]->getType())); 2657 } 2658 2659 ID.ConstantVal = ConstantArray::get(ATy, Elts); 2660 ID.Kind = ValID::t_Constant; 2661 return false; 2662 } 2663 case lltok::kw_c: // c "foo" 2664 Lex.Lex(); 2665 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 2666 false); 2667 if (ParseToken(lltok::StringConstant, "expected string")) return true; 2668 ID.Kind = ValID::t_Constant; 2669 return false; 2670 2671 case lltok::kw_asm: { 2672 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 2673 // STRINGCONSTANT 2674 bool HasSideEffect, AlignStack, AsmDialect; 2675 Lex.Lex(); 2676 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 2677 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 2678 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 2679 ParseStringConstant(ID.StrVal) || 2680 ParseToken(lltok::comma, "expected comma in inline asm expression") || 2681 ParseToken(lltok::StringConstant, "expected constraint string")) 2682 return true; 2683 ID.StrVal2 = Lex.getStrVal(); 2684 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 2685 (unsigned(AsmDialect)<<2); 2686 ID.Kind = ValID::t_InlineAsm; 2687 return false; 2688 } 2689 2690 case lltok::kw_blockaddress: { 2691 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 2692 Lex.Lex(); 2693 2694 ValID Fn, Label; 2695 2696 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 2697 ParseValID(Fn) || 2698 ParseToken(lltok::comma, "expected comma in block address expression")|| 2699 ParseValID(Label) || 2700 ParseToken(lltok::rparen, "expected ')' in block address expression")) 2701 return true; 2702 2703 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 2704 return Error(Fn.Loc, "expected function name in blockaddress"); 2705 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 2706 return Error(Label.Loc, "expected basic block name in blockaddress"); 2707 2708 // Try to find the function (but skip it if it's forward-referenced). 2709 GlobalValue *GV = nullptr; 2710 if (Fn.Kind == ValID::t_GlobalID) { 2711 if (Fn.UIntVal < NumberedVals.size()) 2712 GV = NumberedVals[Fn.UIntVal]; 2713 } else if (!ForwardRefVals.count(Fn.StrVal)) { 2714 GV = M->getNamedValue(Fn.StrVal); 2715 } 2716 Function *F = nullptr; 2717 if (GV) { 2718 // Confirm that it's actually a function with a definition. 2719 if (!isa<Function>(GV)) 2720 return Error(Fn.Loc, "expected function name in blockaddress"); 2721 F = cast<Function>(GV); 2722 if (F->isDeclaration()) 2723 return Error(Fn.Loc, "cannot take blockaddress inside a declaration"); 2724 } 2725 2726 if (!F) { 2727 // Make a global variable as a placeholder for this reference. 2728 GlobalValue *&FwdRef = 2729 ForwardRefBlockAddresses.insert(std::make_pair( 2730 std::move(Fn), 2731 std::map<ValID, GlobalValue *>())) 2732 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 2733 .first->second; 2734 if (!FwdRef) 2735 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 2736 GlobalValue::InternalLinkage, nullptr, ""); 2737 ID.ConstantVal = FwdRef; 2738 ID.Kind = ValID::t_Constant; 2739 return false; 2740 } 2741 2742 // We found the function; now find the basic block. Don't use PFS, since we 2743 // might be inside a constant expression. 2744 BasicBlock *BB; 2745 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 2746 if (Label.Kind == ValID::t_LocalID) 2747 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc); 2748 else 2749 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc); 2750 if (!BB) 2751 return Error(Label.Loc, "referenced value is not a basic block"); 2752 } else { 2753 if (Label.Kind == ValID::t_LocalID) 2754 return Error(Label.Loc, "cannot take address of numeric label after " 2755 "the function is defined"); 2756 BB = dyn_cast_or_null<BasicBlock>( 2757 F->getValueSymbolTable().lookup(Label.StrVal)); 2758 if (!BB) 2759 return Error(Label.Loc, "referenced value is not a basic block"); 2760 } 2761 2762 ID.ConstantVal = BlockAddress::get(F, BB); 2763 ID.Kind = ValID::t_Constant; 2764 return false; 2765 } 2766 2767 case lltok::kw_trunc: 2768 case lltok::kw_zext: 2769 case lltok::kw_sext: 2770 case lltok::kw_fptrunc: 2771 case lltok::kw_fpext: 2772 case lltok::kw_bitcast: 2773 case lltok::kw_addrspacecast: 2774 case lltok::kw_uitofp: 2775 case lltok::kw_sitofp: 2776 case lltok::kw_fptoui: 2777 case lltok::kw_fptosi: 2778 case lltok::kw_inttoptr: 2779 case lltok::kw_ptrtoint: { 2780 unsigned Opc = Lex.getUIntVal(); 2781 Type *DestTy = nullptr; 2782 Constant *SrcVal; 2783 Lex.Lex(); 2784 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 2785 ParseGlobalTypeAndValue(SrcVal) || 2786 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 2787 ParseType(DestTy) || 2788 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 2789 return true; 2790 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 2791 return Error(ID.Loc, "invalid cast opcode for cast from '" + 2792 getTypeString(SrcVal->getType()) + "' to '" + 2793 getTypeString(DestTy) + "'"); 2794 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 2795 SrcVal, DestTy); 2796 ID.Kind = ValID::t_Constant; 2797 return false; 2798 } 2799 case lltok::kw_extractvalue: { 2800 Lex.Lex(); 2801 Constant *Val; 2802 SmallVector<unsigned, 4> Indices; 2803 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 2804 ParseGlobalTypeAndValue(Val) || 2805 ParseIndexList(Indices) || 2806 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 2807 return true; 2808 2809 if (!Val->getType()->isAggregateType()) 2810 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 2811 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 2812 return Error(ID.Loc, "invalid indices for extractvalue"); 2813 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 2814 ID.Kind = ValID::t_Constant; 2815 return false; 2816 } 2817 case lltok::kw_insertvalue: { 2818 Lex.Lex(); 2819 Constant *Val0, *Val1; 2820 SmallVector<unsigned, 4> Indices; 2821 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 2822 ParseGlobalTypeAndValue(Val0) || 2823 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 2824 ParseGlobalTypeAndValue(Val1) || 2825 ParseIndexList(Indices) || 2826 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 2827 return true; 2828 if (!Val0->getType()->isAggregateType()) 2829 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 2830 Type *IndexedType = 2831 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 2832 if (!IndexedType) 2833 return Error(ID.Loc, "invalid indices for insertvalue"); 2834 if (IndexedType != Val1->getType()) 2835 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" + 2836 getTypeString(Val1->getType()) + 2837 "' instead of '" + getTypeString(IndexedType) + 2838 "'"); 2839 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 2840 ID.Kind = ValID::t_Constant; 2841 return false; 2842 } 2843 case lltok::kw_icmp: 2844 case lltok::kw_fcmp: { 2845 unsigned PredVal, Opc = Lex.getUIntVal(); 2846 Constant *Val0, *Val1; 2847 Lex.Lex(); 2848 if (ParseCmpPredicate(PredVal, Opc) || 2849 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 2850 ParseGlobalTypeAndValue(Val0) || 2851 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 2852 ParseGlobalTypeAndValue(Val1) || 2853 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 2854 return true; 2855 2856 if (Val0->getType() != Val1->getType()) 2857 return Error(ID.Loc, "compare operands must have the same type"); 2858 2859 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 2860 2861 if (Opc == Instruction::FCmp) { 2862 if (!Val0->getType()->isFPOrFPVectorTy()) 2863 return Error(ID.Loc, "fcmp requires floating point operands"); 2864 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 2865 } else { 2866 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 2867 if (!Val0->getType()->isIntOrIntVectorTy() && 2868 !Val0->getType()->getScalarType()->isPointerTy()) 2869 return Error(ID.Loc, "icmp requires pointer or integer operands"); 2870 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 2871 } 2872 ID.Kind = ValID::t_Constant; 2873 return false; 2874 } 2875 2876 // Binary Operators. 2877 case lltok::kw_add: 2878 case lltok::kw_fadd: 2879 case lltok::kw_sub: 2880 case lltok::kw_fsub: 2881 case lltok::kw_mul: 2882 case lltok::kw_fmul: 2883 case lltok::kw_udiv: 2884 case lltok::kw_sdiv: 2885 case lltok::kw_fdiv: 2886 case lltok::kw_urem: 2887 case lltok::kw_srem: 2888 case lltok::kw_frem: 2889 case lltok::kw_shl: 2890 case lltok::kw_lshr: 2891 case lltok::kw_ashr: { 2892 bool NUW = false; 2893 bool NSW = false; 2894 bool Exact = false; 2895 unsigned Opc = Lex.getUIntVal(); 2896 Constant *Val0, *Val1; 2897 Lex.Lex(); 2898 LocTy ModifierLoc = Lex.getLoc(); 2899 if (Opc == Instruction::Add || Opc == Instruction::Sub || 2900 Opc == Instruction::Mul || Opc == Instruction::Shl) { 2901 if (EatIfPresent(lltok::kw_nuw)) 2902 NUW = true; 2903 if (EatIfPresent(lltok::kw_nsw)) { 2904 NSW = true; 2905 if (EatIfPresent(lltok::kw_nuw)) 2906 NUW = true; 2907 } 2908 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 2909 Opc == Instruction::LShr || Opc == Instruction::AShr) { 2910 if (EatIfPresent(lltok::kw_exact)) 2911 Exact = true; 2912 } 2913 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 2914 ParseGlobalTypeAndValue(Val0) || 2915 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 2916 ParseGlobalTypeAndValue(Val1) || 2917 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 2918 return true; 2919 if (Val0->getType() != Val1->getType()) 2920 return Error(ID.Loc, "operands of constexpr must have same type"); 2921 if (!Val0->getType()->isIntOrIntVectorTy()) { 2922 if (NUW) 2923 return Error(ModifierLoc, "nuw only applies to integer operations"); 2924 if (NSW) 2925 return Error(ModifierLoc, "nsw only applies to integer operations"); 2926 } 2927 // Check that the type is valid for the operator. 2928 switch (Opc) { 2929 case Instruction::Add: 2930 case Instruction::Sub: 2931 case Instruction::Mul: 2932 case Instruction::UDiv: 2933 case Instruction::SDiv: 2934 case Instruction::URem: 2935 case Instruction::SRem: 2936 case Instruction::Shl: 2937 case Instruction::AShr: 2938 case Instruction::LShr: 2939 if (!Val0->getType()->isIntOrIntVectorTy()) 2940 return Error(ID.Loc, "constexpr requires integer operands"); 2941 break; 2942 case Instruction::FAdd: 2943 case Instruction::FSub: 2944 case Instruction::FMul: 2945 case Instruction::FDiv: 2946 case Instruction::FRem: 2947 if (!Val0->getType()->isFPOrFPVectorTy()) 2948 return Error(ID.Loc, "constexpr requires fp operands"); 2949 break; 2950 default: llvm_unreachable("Unknown binary operator!"); 2951 } 2952 unsigned Flags = 0; 2953 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2954 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 2955 if (Exact) Flags |= PossiblyExactOperator::IsExact; 2956 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 2957 ID.ConstantVal = C; 2958 ID.Kind = ValID::t_Constant; 2959 return false; 2960 } 2961 2962 // Logical Operations 2963 case lltok::kw_and: 2964 case lltok::kw_or: 2965 case lltok::kw_xor: { 2966 unsigned Opc = Lex.getUIntVal(); 2967 Constant *Val0, *Val1; 2968 Lex.Lex(); 2969 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 2970 ParseGlobalTypeAndValue(Val0) || 2971 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 2972 ParseGlobalTypeAndValue(Val1) || 2973 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 2974 return true; 2975 if (Val0->getType() != Val1->getType()) 2976 return Error(ID.Loc, "operands of constexpr must have same type"); 2977 if (!Val0->getType()->isIntOrIntVectorTy()) 2978 return Error(ID.Loc, 2979 "constexpr requires integer or integer vector operands"); 2980 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 2981 ID.Kind = ValID::t_Constant; 2982 return false; 2983 } 2984 2985 case lltok::kw_getelementptr: 2986 case lltok::kw_shufflevector: 2987 case lltok::kw_insertelement: 2988 case lltok::kw_extractelement: 2989 case lltok::kw_select: { 2990 unsigned Opc = Lex.getUIntVal(); 2991 SmallVector<Constant*, 16> Elts; 2992 bool InBounds = false; 2993 Type *Ty; 2994 Lex.Lex(); 2995 2996 if (Opc == Instruction::GetElementPtr) 2997 InBounds = EatIfPresent(lltok::kw_inbounds); 2998 2999 if (ParseToken(lltok::lparen, "expected '(' in constantexpr")) 3000 return true; 3001 3002 LocTy ExplicitTypeLoc = Lex.getLoc(); 3003 if (Opc == Instruction::GetElementPtr) { 3004 if (ParseType(Ty) || 3005 ParseToken(lltok::comma, "expected comma after getelementptr's type")) 3006 return true; 3007 } 3008 3009 if (ParseGlobalValueVector(Elts) || 3010 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 3011 return true; 3012 3013 if (Opc == Instruction::GetElementPtr) { 3014 if (Elts.size() == 0 || 3015 !Elts[0]->getType()->getScalarType()->isPointerTy()) 3016 return Error(ID.Loc, "base of getelementptr must be a pointer"); 3017 3018 Type *BaseType = Elts[0]->getType(); 3019 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3020 if (Ty != BasePointerType->getElementType()) 3021 return Error( 3022 ExplicitTypeLoc, 3023 "explicit pointee type doesn't match operand's pointee type"); 3024 3025 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3026 for (Constant *Val : Indices) { 3027 Type *ValTy = Val->getType(); 3028 if (!ValTy->getScalarType()->isIntegerTy()) 3029 return Error(ID.Loc, "getelementptr index must be an integer"); 3030 if (ValTy->isVectorTy() != BaseType->isVectorTy()) 3031 return Error(ID.Loc, "getelementptr index type missmatch"); 3032 if (ValTy->isVectorTy()) { 3033 unsigned ValNumEl = ValTy->getVectorNumElements(); 3034 unsigned PtrNumEl = BaseType->getVectorNumElements(); 3035 if (ValNumEl != PtrNumEl) 3036 return Error( 3037 ID.Loc, 3038 "getelementptr vector index has a wrong number of elements"); 3039 } 3040 } 3041 3042 SmallPtrSet<Type*, 4> Visited; 3043 if (!Indices.empty() && !Ty->isSized(&Visited)) 3044 return Error(ID.Loc, "base element of getelementptr must be sized"); 3045 3046 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3047 return Error(ID.Loc, "invalid getelementptr indices"); 3048 ID.ConstantVal = 3049 ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, InBounds); 3050 } else if (Opc == Instruction::Select) { 3051 if (Elts.size() != 3) 3052 return Error(ID.Loc, "expected three operands to select"); 3053 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3054 Elts[2])) 3055 return Error(ID.Loc, Reason); 3056 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3057 } else if (Opc == Instruction::ShuffleVector) { 3058 if (Elts.size() != 3) 3059 return Error(ID.Loc, "expected three operands to shufflevector"); 3060 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3061 return Error(ID.Loc, "invalid operands to shufflevector"); 3062 ID.ConstantVal = 3063 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 3064 } else if (Opc == Instruction::ExtractElement) { 3065 if (Elts.size() != 2) 3066 return Error(ID.Loc, "expected two operands to extractelement"); 3067 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3068 return Error(ID.Loc, "invalid extractelement operands"); 3069 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3070 } else { 3071 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3072 if (Elts.size() != 3) 3073 return Error(ID.Loc, "expected three operands to insertelement"); 3074 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3075 return Error(ID.Loc, "invalid insertelement operands"); 3076 ID.ConstantVal = 3077 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3078 } 3079 3080 ID.Kind = ValID::t_Constant; 3081 return false; 3082 } 3083 } 3084 3085 Lex.Lex(); 3086 return false; 3087 } 3088 3089 /// ParseGlobalValue - Parse a global value with the specified type. 3090 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 3091 C = nullptr; 3092 ValID ID; 3093 Value *V = nullptr; 3094 bool Parsed = ParseValID(ID) || 3095 ConvertValIDToValue(Ty, ID, V, nullptr); 3096 if (V && !(C = dyn_cast<Constant>(V))) 3097 return Error(ID.Loc, "global values must be constants"); 3098 return Parsed; 3099 } 3100 3101 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 3102 Type *Ty = nullptr; 3103 return ParseType(Ty) || 3104 ParseGlobalValue(Ty, V); 3105 } 3106 3107 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3108 C = nullptr; 3109 3110 LocTy KwLoc = Lex.getLoc(); 3111 if (!EatIfPresent(lltok::kw_comdat)) 3112 return false; 3113 3114 if (EatIfPresent(lltok::lparen)) { 3115 if (Lex.getKind() != lltok::ComdatVar) 3116 return TokError("expected comdat variable"); 3117 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3118 Lex.Lex(); 3119 if (ParseToken(lltok::rparen, "expected ')' after comdat var")) 3120 return true; 3121 } else { 3122 if (GlobalName.empty()) 3123 return TokError("comdat cannot be unnamed"); 3124 C = getComdat(GlobalName, KwLoc); 3125 } 3126 3127 return false; 3128 } 3129 3130 /// ParseGlobalValueVector 3131 /// ::= /*empty*/ 3132 /// ::= TypeAndValue (',' TypeAndValue)* 3133 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts) { 3134 // Empty list. 3135 if (Lex.getKind() == lltok::rbrace || 3136 Lex.getKind() == lltok::rsquare || 3137 Lex.getKind() == lltok::greater || 3138 Lex.getKind() == lltok::rparen) 3139 return false; 3140 3141 Constant *C; 3142 if (ParseGlobalTypeAndValue(C)) return true; 3143 Elts.push_back(C); 3144 3145 while (EatIfPresent(lltok::comma)) { 3146 if (ParseGlobalTypeAndValue(C)) return true; 3147 Elts.push_back(C); 3148 } 3149 3150 return false; 3151 } 3152 3153 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) { 3154 SmallVector<Metadata *, 16> Elts; 3155 if (ParseMDNodeVector(Elts)) 3156 return true; 3157 3158 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3159 return false; 3160 } 3161 3162 /// MDNode: 3163 /// ::= !{ ... } 3164 /// ::= !7 3165 /// ::= !DILocation(...) 3166 bool LLParser::ParseMDNode(MDNode *&N) { 3167 if (Lex.getKind() == lltok::MetadataVar) 3168 return ParseSpecializedMDNode(N); 3169 3170 return ParseToken(lltok::exclaim, "expected '!' here") || 3171 ParseMDNodeTail(N); 3172 } 3173 3174 bool LLParser::ParseMDNodeTail(MDNode *&N) { 3175 // !{ ... } 3176 if (Lex.getKind() == lltok::lbrace) 3177 return ParseMDTuple(N); 3178 3179 // !42 3180 return ParseMDNodeID(N); 3181 } 3182 3183 namespace { 3184 3185 /// Structure to represent an optional metadata field. 3186 template <class FieldTy> struct MDFieldImpl { 3187 typedef MDFieldImpl ImplTy; 3188 FieldTy Val; 3189 bool Seen; 3190 3191 void assign(FieldTy Val) { 3192 Seen = true; 3193 this->Val = std::move(Val); 3194 } 3195 3196 explicit MDFieldImpl(FieldTy Default) 3197 : Val(std::move(Default)), Seen(false) {} 3198 }; 3199 3200 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3201 uint64_t Max; 3202 3203 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3204 : ImplTy(Default), Max(Max) {} 3205 }; 3206 struct LineField : public MDUnsignedField { 3207 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3208 }; 3209 struct ColumnField : public MDUnsignedField { 3210 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3211 }; 3212 struct DwarfTagField : public MDUnsignedField { 3213 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3214 DwarfTagField(dwarf::Tag DefaultTag) 3215 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3216 }; 3217 struct DwarfAttEncodingField : public MDUnsignedField { 3218 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3219 }; 3220 struct DwarfVirtualityField : public MDUnsignedField { 3221 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3222 }; 3223 struct DwarfLangField : public MDUnsignedField { 3224 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3225 }; 3226 3227 struct DIFlagField : public MDUnsignedField { 3228 DIFlagField() : MDUnsignedField(0, UINT32_MAX) {} 3229 }; 3230 3231 struct MDSignedField : public MDFieldImpl<int64_t> { 3232 int64_t Min; 3233 int64_t Max; 3234 3235 MDSignedField(int64_t Default = 0) 3236 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3237 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3238 : ImplTy(Default), Min(Min), Max(Max) {} 3239 }; 3240 3241 struct MDBoolField : public MDFieldImpl<bool> { 3242 MDBoolField(bool Default = false) : ImplTy(Default) {} 3243 }; 3244 struct MDField : public MDFieldImpl<Metadata *> { 3245 bool AllowNull; 3246 3247 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3248 }; 3249 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 3250 MDConstant() : ImplTy(nullptr) {} 3251 }; 3252 struct MDStringField : public MDFieldImpl<MDString *> { 3253 bool AllowEmpty; 3254 MDStringField(bool AllowEmpty = true) 3255 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3256 }; 3257 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3258 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3259 }; 3260 3261 } // end namespace 3262 3263 namespace llvm { 3264 3265 template <> 3266 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3267 MDUnsignedField &Result) { 3268 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3269 return TokError("expected unsigned integer"); 3270 3271 auto &U = Lex.getAPSIntVal(); 3272 if (U.ugt(Result.Max)) 3273 return TokError("value for '" + Name + "' too large, limit is " + 3274 Twine(Result.Max)); 3275 Result.assign(U.getZExtValue()); 3276 assert(Result.Val <= Result.Max && "Expected value in range"); 3277 Lex.Lex(); 3278 return false; 3279 } 3280 3281 template <> 3282 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) { 3283 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3284 } 3285 template <> 3286 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 3287 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3288 } 3289 3290 template <> 3291 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 3292 if (Lex.getKind() == lltok::APSInt) 3293 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3294 3295 if (Lex.getKind() != lltok::DwarfTag) 3296 return TokError("expected DWARF tag"); 3297 3298 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 3299 if (Tag == dwarf::DW_TAG_invalid) 3300 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 3301 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 3302 3303 Result.assign(Tag); 3304 Lex.Lex(); 3305 return false; 3306 } 3307 3308 template <> 3309 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3310 DwarfVirtualityField &Result) { 3311 if (Lex.getKind() == lltok::APSInt) 3312 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3313 3314 if (Lex.getKind() != lltok::DwarfVirtuality) 3315 return TokError("expected DWARF virtuality code"); 3316 3317 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 3318 if (!Virtuality) 3319 return TokError("invalid DWARF virtuality code" + Twine(" '") + 3320 Lex.getStrVal() + "'"); 3321 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 3322 Result.assign(Virtuality); 3323 Lex.Lex(); 3324 return false; 3325 } 3326 3327 template <> 3328 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 3329 if (Lex.getKind() == lltok::APSInt) 3330 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3331 3332 if (Lex.getKind() != lltok::DwarfLang) 3333 return TokError("expected DWARF language"); 3334 3335 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 3336 if (!Lang) 3337 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 3338 "'"); 3339 assert(Lang <= Result.Max && "Expected valid DWARF language"); 3340 Result.assign(Lang); 3341 Lex.Lex(); 3342 return false; 3343 } 3344 3345 template <> 3346 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3347 DwarfAttEncodingField &Result) { 3348 if (Lex.getKind() == lltok::APSInt) 3349 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3350 3351 if (Lex.getKind() != lltok::DwarfAttEncoding) 3352 return TokError("expected DWARF type attribute encoding"); 3353 3354 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 3355 if (!Encoding) 3356 return TokError("invalid DWARF type attribute encoding" + Twine(" '") + 3357 Lex.getStrVal() + "'"); 3358 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 3359 Result.assign(Encoding); 3360 Lex.Lex(); 3361 return false; 3362 } 3363 3364 /// DIFlagField 3365 /// ::= uint32 3366 /// ::= DIFlagVector 3367 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 3368 template <> 3369 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 3370 assert(Result.Max == UINT32_MAX && "Expected only 32-bits"); 3371 3372 // Parser for a single flag. 3373 auto parseFlag = [&](unsigned &Val) { 3374 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) 3375 return ParseUInt32(Val); 3376 3377 if (Lex.getKind() != lltok::DIFlag) 3378 return TokError("expected debug info flag"); 3379 3380 Val = DINode::getFlag(Lex.getStrVal()); 3381 if (!Val) 3382 return TokError(Twine("invalid debug info flag flag '") + 3383 Lex.getStrVal() + "'"); 3384 Lex.Lex(); 3385 return false; 3386 }; 3387 3388 // Parse the flags and combine them together. 3389 unsigned Combined = 0; 3390 do { 3391 unsigned Val; 3392 if (parseFlag(Val)) 3393 return true; 3394 Combined |= Val; 3395 } while (EatIfPresent(lltok::bar)); 3396 3397 Result.assign(Combined); 3398 return false; 3399 } 3400 3401 template <> 3402 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3403 MDSignedField &Result) { 3404 if (Lex.getKind() != lltok::APSInt) 3405 return TokError("expected signed integer"); 3406 3407 auto &S = Lex.getAPSIntVal(); 3408 if (S < Result.Min) 3409 return TokError("value for '" + Name + "' too small, limit is " + 3410 Twine(Result.Min)); 3411 if (S > Result.Max) 3412 return TokError("value for '" + Name + "' too large, limit is " + 3413 Twine(Result.Max)); 3414 Result.assign(S.getExtValue()); 3415 assert(Result.Val >= Result.Min && "Expected value in range"); 3416 assert(Result.Val <= Result.Max && "Expected value in range"); 3417 Lex.Lex(); 3418 return false; 3419 } 3420 3421 template <> 3422 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 3423 switch (Lex.getKind()) { 3424 default: 3425 return TokError("expected 'true' or 'false'"); 3426 case lltok::kw_true: 3427 Result.assign(true); 3428 break; 3429 case lltok::kw_false: 3430 Result.assign(false); 3431 break; 3432 } 3433 Lex.Lex(); 3434 return false; 3435 } 3436 3437 template <> 3438 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) { 3439 if (Lex.getKind() == lltok::kw_null) { 3440 if (!Result.AllowNull) 3441 return TokError("'" + Name + "' cannot be null"); 3442 Lex.Lex(); 3443 Result.assign(nullptr); 3444 return false; 3445 } 3446 3447 Metadata *MD; 3448 if (ParseMetadata(MD, nullptr)) 3449 return true; 3450 3451 Result.assign(MD); 3452 return false; 3453 } 3454 3455 template <> 3456 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDConstant &Result) { 3457 Metadata *MD; 3458 if (ParseValueAsMetadata(MD, "expected constant", nullptr)) 3459 return true; 3460 3461 Result.assign(cast<ConstantAsMetadata>(MD)); 3462 return false; 3463 } 3464 3465 template <> 3466 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 3467 LocTy ValueLoc = Lex.getLoc(); 3468 std::string S; 3469 if (ParseStringConstant(S)) 3470 return true; 3471 3472 if (!Result.AllowEmpty && S.empty()) 3473 return Error(ValueLoc, "'" + Name + "' cannot be empty"); 3474 3475 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 3476 return false; 3477 } 3478 3479 template <> 3480 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 3481 SmallVector<Metadata *, 4> MDs; 3482 if (ParseMDNodeVector(MDs)) 3483 return true; 3484 3485 Result.assign(std::move(MDs)); 3486 return false; 3487 } 3488 3489 } // end namespace llvm 3490 3491 template <class ParserTy> 3492 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) { 3493 do { 3494 if (Lex.getKind() != lltok::LabelStr) 3495 return TokError("expected field label here"); 3496 3497 if (parseField()) 3498 return true; 3499 } while (EatIfPresent(lltok::comma)); 3500 3501 return false; 3502 } 3503 3504 template <class ParserTy> 3505 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) { 3506 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 3507 Lex.Lex(); 3508 3509 if (ParseToken(lltok::lparen, "expected '(' here")) 3510 return true; 3511 if (Lex.getKind() != lltok::rparen) 3512 if (ParseMDFieldsImplBody(parseField)) 3513 return true; 3514 3515 ClosingLoc = Lex.getLoc(); 3516 return ParseToken(lltok::rparen, "expected ')' here"); 3517 } 3518 3519 template <class FieldTy> 3520 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) { 3521 if (Result.Seen) 3522 return TokError("field '" + Name + "' cannot be specified more than once"); 3523 3524 LocTy Loc = Lex.getLoc(); 3525 Lex.Lex(); 3526 return ParseMDField(Loc, Name, Result); 3527 } 3528 3529 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 3530 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 3531 3532 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 3533 if (Lex.getStrVal() == #CLASS) \ 3534 return Parse##CLASS(N, IsDistinct); 3535 #include "llvm/IR/Metadata.def" 3536 3537 return TokError("expected metadata type"); 3538 } 3539 3540 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 3541 #define NOP_FIELD(NAME, TYPE, INIT) 3542 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 3543 if (!NAME.Seen) \ 3544 return Error(ClosingLoc, "missing required field '" #NAME "'"); 3545 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 3546 if (Lex.getStrVal() == #NAME) \ 3547 return ParseMDField(#NAME, NAME); 3548 #define PARSE_MD_FIELDS() \ 3549 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 3550 do { \ 3551 LocTy ClosingLoc; \ 3552 if (ParseMDFieldsImpl([&]() -> bool { \ 3553 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 3554 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \ 3555 }, ClosingLoc)) \ 3556 return true; \ 3557 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 3558 } while (false) 3559 #define GET_OR_DISTINCT(CLASS, ARGS) \ 3560 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 3561 3562 /// ParseDILocationFields: 3563 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6) 3564 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) { 3565 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3566 OPTIONAL(line, LineField, ); \ 3567 OPTIONAL(column, ColumnField, ); \ 3568 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 3569 OPTIONAL(inlinedAt, MDField, ); 3570 PARSE_MD_FIELDS(); 3571 #undef VISIT_MD_FIELDS 3572 3573 Result = GET_OR_DISTINCT( 3574 DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val)); 3575 return false; 3576 } 3577 3578 /// ParseGenericDINode: 3579 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 3580 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) { 3581 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3582 REQUIRED(tag, DwarfTagField, ); \ 3583 OPTIONAL(header, MDStringField, ); \ 3584 OPTIONAL(operands, MDFieldList, ); 3585 PARSE_MD_FIELDS(); 3586 #undef VISIT_MD_FIELDS 3587 3588 Result = GET_OR_DISTINCT(GenericDINode, 3589 (Context, tag.Val, header.Val, operands.Val)); 3590 return false; 3591 } 3592 3593 /// ParseDISubrange: 3594 /// ::= !DISubrange(count: 30, lowerBound: 2) 3595 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) { 3596 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3597 REQUIRED(count, MDSignedField, (-1, -1, INT64_MAX)); \ 3598 OPTIONAL(lowerBound, MDSignedField, ); 3599 PARSE_MD_FIELDS(); 3600 #undef VISIT_MD_FIELDS 3601 3602 Result = GET_OR_DISTINCT(DISubrange, (Context, count.Val, lowerBound.Val)); 3603 return false; 3604 } 3605 3606 /// ParseDIEnumerator: 3607 /// ::= !DIEnumerator(value: 30, name: "SomeKind") 3608 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) { 3609 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3610 REQUIRED(name, MDStringField, ); \ 3611 REQUIRED(value, MDSignedField, ); 3612 PARSE_MD_FIELDS(); 3613 #undef VISIT_MD_FIELDS 3614 3615 Result = GET_OR_DISTINCT(DIEnumerator, (Context, value.Val, name.Val)); 3616 return false; 3617 } 3618 3619 /// ParseDIBasicType: 3620 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32) 3621 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) { 3622 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3623 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 3624 OPTIONAL(name, MDStringField, ); \ 3625 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3626 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \ 3627 OPTIONAL(encoding, DwarfAttEncodingField, ); 3628 PARSE_MD_FIELDS(); 3629 #undef VISIT_MD_FIELDS 3630 3631 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 3632 align.Val, encoding.Val)); 3633 return false; 3634 } 3635 3636 /// ParseDIDerivedType: 3637 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 3638 /// line: 7, scope: !1, baseType: !2, size: 32, 3639 /// align: 32, offset: 0, flags: 0, extraData: !3) 3640 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) { 3641 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3642 REQUIRED(tag, DwarfTagField, ); \ 3643 OPTIONAL(name, MDStringField, ); \ 3644 OPTIONAL(file, MDField, ); \ 3645 OPTIONAL(line, LineField, ); \ 3646 OPTIONAL(scope, MDField, ); \ 3647 REQUIRED(baseType, MDField, ); \ 3648 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3649 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \ 3650 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 3651 OPTIONAL(flags, DIFlagField, ); \ 3652 OPTIONAL(extraData, MDField, ); 3653 PARSE_MD_FIELDS(); 3654 #undef VISIT_MD_FIELDS 3655 3656 Result = GET_OR_DISTINCT(DIDerivedType, 3657 (Context, tag.Val, name.Val, file.Val, line.Val, 3658 scope.Val, baseType.Val, size.Val, align.Val, 3659 offset.Val, flags.Val, extraData.Val)); 3660 return false; 3661 } 3662 3663 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) { 3664 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3665 REQUIRED(tag, DwarfTagField, ); \ 3666 OPTIONAL(name, MDStringField, ); \ 3667 OPTIONAL(file, MDField, ); \ 3668 OPTIONAL(line, LineField, ); \ 3669 OPTIONAL(scope, MDField, ); \ 3670 OPTIONAL(baseType, MDField, ); \ 3671 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3672 OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX)); \ 3673 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 3674 OPTIONAL(flags, DIFlagField, ); \ 3675 OPTIONAL(elements, MDField, ); \ 3676 OPTIONAL(runtimeLang, DwarfLangField, ); \ 3677 OPTIONAL(vtableHolder, MDField, ); \ 3678 OPTIONAL(templateParams, MDField, ); \ 3679 OPTIONAL(identifier, MDStringField, ); 3680 PARSE_MD_FIELDS(); 3681 #undef VISIT_MD_FIELDS 3682 3683 Result = GET_OR_DISTINCT( 3684 DICompositeType, 3685 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 3686 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 3687 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val)); 3688 return false; 3689 } 3690 3691 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) { 3692 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3693 OPTIONAL(flags, DIFlagField, ); \ 3694 REQUIRED(types, MDField, ); 3695 PARSE_MD_FIELDS(); 3696 #undef VISIT_MD_FIELDS 3697 3698 Result = GET_OR_DISTINCT(DISubroutineType, (Context, flags.Val, types.Val)); 3699 return false; 3700 } 3701 3702 /// ParseDIFileType: 3703 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir") 3704 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) { 3705 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3706 REQUIRED(filename, MDStringField, ); \ 3707 REQUIRED(directory, MDStringField, ); 3708 PARSE_MD_FIELDS(); 3709 #undef VISIT_MD_FIELDS 3710 3711 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val)); 3712 return false; 3713 } 3714 3715 /// ParseDICompileUnit: 3716 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 3717 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 3718 /// splitDebugFilename: "abc.debug", emissionKind: 1, 3719 /// enums: !1, retainedTypes: !2, subprograms: !3, 3720 /// globals: !4, imports: !5, dwoId: 0x0abcd) 3721 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) { 3722 if (!IsDistinct) 3723 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 3724 3725 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3726 REQUIRED(language, DwarfLangField, ); \ 3727 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 3728 OPTIONAL(producer, MDStringField, ); \ 3729 OPTIONAL(isOptimized, MDBoolField, ); \ 3730 OPTIONAL(flags, MDStringField, ); \ 3731 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 3732 OPTIONAL(splitDebugFilename, MDStringField, ); \ 3733 OPTIONAL(emissionKind, MDUnsignedField, (0, UINT32_MAX)); \ 3734 OPTIONAL(enums, MDField, ); \ 3735 OPTIONAL(retainedTypes, MDField, ); \ 3736 OPTIONAL(subprograms, MDField, ); \ 3737 OPTIONAL(globals, MDField, ); \ 3738 OPTIONAL(imports, MDField, ); \ 3739 OPTIONAL(dwoId, MDUnsignedField, ); 3740 PARSE_MD_FIELDS(); 3741 #undef VISIT_MD_FIELDS 3742 3743 Result = DICompileUnit::getDistinct( 3744 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 3745 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 3746 retainedTypes.Val, subprograms.Val, globals.Val, imports.Val, dwoId.Val); 3747 return false; 3748 } 3749 3750 /// ParseDISubprogram: 3751 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 3752 /// file: !1, line: 7, type: !2, isLocal: false, 3753 /// isDefinition: true, scopeLine: 8, containingType: !3, 3754 /// virtuality: DW_VIRTUALTIY_pure_virtual, 3755 /// virtualIndex: 10, flags: 11, 3756 /// isOptimized: false, function: void ()* @_Z3foov, 3757 /// templateParams: !4, declaration: !5, variables: !6) 3758 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) { 3759 auto Loc = Lex.getLoc(); 3760 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3761 OPTIONAL(scope, MDField, ); \ 3762 OPTIONAL(name, MDStringField, ); \ 3763 OPTIONAL(linkageName, MDStringField, ); \ 3764 OPTIONAL(file, MDField, ); \ 3765 OPTIONAL(line, LineField, ); \ 3766 OPTIONAL(type, MDField, ); \ 3767 OPTIONAL(isLocal, MDBoolField, ); \ 3768 OPTIONAL(isDefinition, MDBoolField, (true)); \ 3769 OPTIONAL(scopeLine, LineField, ); \ 3770 OPTIONAL(containingType, MDField, ); \ 3771 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 3772 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 3773 OPTIONAL(flags, DIFlagField, ); \ 3774 OPTIONAL(isOptimized, MDBoolField, ); \ 3775 OPTIONAL(function, MDConstant, ); \ 3776 OPTIONAL(templateParams, MDField, ); \ 3777 OPTIONAL(declaration, MDField, ); \ 3778 OPTIONAL(variables, MDField, ); 3779 PARSE_MD_FIELDS(); 3780 #undef VISIT_MD_FIELDS 3781 3782 if (isDefinition.Val && !IsDistinct) 3783 return Lex.Error( 3784 Loc, 3785 "missing 'distinct', required for !DISubprogram when 'isDefinition'"); 3786 3787 Result = GET_OR_DISTINCT( 3788 DISubprogram, (Context, scope.Val, name.Val, linkageName.Val, file.Val, 3789 line.Val, type.Val, isLocal.Val, isDefinition.Val, 3790 scopeLine.Val, containingType.Val, virtuality.Val, 3791 virtualIndex.Val, flags.Val, isOptimized.Val, function.Val, 3792 templateParams.Val, declaration.Val, variables.Val)); 3793 return false; 3794 } 3795 3796 /// ParseDILexicalBlock: 3797 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 3798 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 3799 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3800 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 3801 OPTIONAL(file, MDField, ); \ 3802 OPTIONAL(line, LineField, ); \ 3803 OPTIONAL(column, ColumnField, ); 3804 PARSE_MD_FIELDS(); 3805 #undef VISIT_MD_FIELDS 3806 3807 Result = GET_OR_DISTINCT( 3808 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 3809 return false; 3810 } 3811 3812 /// ParseDILexicalBlockFile: 3813 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 3814 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 3815 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3816 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 3817 OPTIONAL(file, MDField, ); \ 3818 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 3819 PARSE_MD_FIELDS(); 3820 #undef VISIT_MD_FIELDS 3821 3822 Result = GET_OR_DISTINCT(DILexicalBlockFile, 3823 (Context, scope.Val, file.Val, discriminator.Val)); 3824 return false; 3825 } 3826 3827 /// ParseDINamespace: 3828 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 3829 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) { 3830 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3831 REQUIRED(scope, MDField, ); \ 3832 OPTIONAL(file, MDField, ); \ 3833 OPTIONAL(name, MDStringField, ); \ 3834 OPTIONAL(line, LineField, ); 3835 PARSE_MD_FIELDS(); 3836 #undef VISIT_MD_FIELDS 3837 3838 Result = GET_OR_DISTINCT(DINamespace, 3839 (Context, scope.Val, file.Val, name.Val, line.Val)); 3840 return false; 3841 } 3842 3843 /// ParseDIModule: 3844 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG", 3845 /// includePath: "/usr/include", isysroot: "/") 3846 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) { 3847 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3848 REQUIRED(scope, MDField, ); \ 3849 REQUIRED(name, MDStringField, ); \ 3850 OPTIONAL(configMacros, MDStringField, ); \ 3851 OPTIONAL(includePath, MDStringField, ); \ 3852 OPTIONAL(isysroot, MDStringField, ); 3853 PARSE_MD_FIELDS(); 3854 #undef VISIT_MD_FIELDS 3855 3856 Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val, 3857 configMacros.Val, includePath.Val, isysroot.Val)); 3858 return false; 3859 } 3860 3861 /// ParseDITemplateTypeParameter: 3862 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1) 3863 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 3864 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3865 OPTIONAL(name, MDStringField, ); \ 3866 REQUIRED(type, MDField, ); 3867 PARSE_MD_FIELDS(); 3868 #undef VISIT_MD_FIELDS 3869 3870 Result = 3871 GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val)); 3872 return false; 3873 } 3874 3875 /// ParseDITemplateValueParameter: 3876 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 3877 /// name: "V", type: !1, value: i32 7) 3878 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 3879 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3880 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 3881 OPTIONAL(name, MDStringField, ); \ 3882 OPTIONAL(type, MDField, ); \ 3883 REQUIRED(value, MDField, ); 3884 PARSE_MD_FIELDS(); 3885 #undef VISIT_MD_FIELDS 3886 3887 Result = GET_OR_DISTINCT(DITemplateValueParameter, 3888 (Context, tag.Val, name.Val, type.Val, value.Val)); 3889 return false; 3890 } 3891 3892 /// ParseDIGlobalVariable: 3893 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 3894 /// file: !1, line: 7, type: !2, isLocal: false, 3895 /// isDefinition: true, variable: i32* @foo, 3896 /// declaration: !3) 3897 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 3898 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3899 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 3900 OPTIONAL(scope, MDField, ); \ 3901 OPTIONAL(linkageName, MDStringField, ); \ 3902 OPTIONAL(file, MDField, ); \ 3903 OPTIONAL(line, LineField, ); \ 3904 OPTIONAL(type, MDField, ); \ 3905 OPTIONAL(isLocal, MDBoolField, ); \ 3906 OPTIONAL(isDefinition, MDBoolField, (true)); \ 3907 OPTIONAL(variable, MDConstant, ); \ 3908 OPTIONAL(declaration, MDField, ); 3909 PARSE_MD_FIELDS(); 3910 #undef VISIT_MD_FIELDS 3911 3912 Result = GET_OR_DISTINCT(DIGlobalVariable, 3913 (Context, scope.Val, name.Val, linkageName.Val, 3914 file.Val, line.Val, type.Val, isLocal.Val, 3915 isDefinition.Val, variable.Val, declaration.Val)); 3916 return false; 3917 } 3918 3919 /// ParseDILocalVariable: 3920 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 3921 /// file: !1, line: 7, type: !2, arg: 2, flags: 7) 3922 /// ::= !DILocalVariable(scope: !0, name: "foo", 3923 /// file: !1, line: 7, type: !2, arg: 2, flags: 7) 3924 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) { 3925 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3926 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 3927 OPTIONAL(name, MDStringField, ); \ 3928 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 3929 OPTIONAL(file, MDField, ); \ 3930 OPTIONAL(line, LineField, ); \ 3931 OPTIONAL(type, MDField, ); \ 3932 OPTIONAL(flags, DIFlagField, ); 3933 PARSE_MD_FIELDS(); 3934 #undef VISIT_MD_FIELDS 3935 3936 Result = GET_OR_DISTINCT(DILocalVariable, 3937 (Context, scope.Val, name.Val, file.Val, line.Val, 3938 type.Val, arg.Val, flags.Val)); 3939 return false; 3940 } 3941 3942 /// ParseDIExpression: 3943 /// ::= !DIExpression(0, 7, -1) 3944 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) { 3945 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 3946 Lex.Lex(); 3947 3948 if (ParseToken(lltok::lparen, "expected '(' here")) 3949 return true; 3950 3951 SmallVector<uint64_t, 8> Elements; 3952 if (Lex.getKind() != lltok::rparen) 3953 do { 3954 if (Lex.getKind() == lltok::DwarfOp) { 3955 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 3956 Lex.Lex(); 3957 Elements.push_back(Op); 3958 continue; 3959 } 3960 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 3961 } 3962 3963 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3964 return TokError("expected unsigned integer"); 3965 3966 auto &U = Lex.getAPSIntVal(); 3967 if (U.ugt(UINT64_MAX)) 3968 return TokError("element too large, limit is " + Twine(UINT64_MAX)); 3969 Elements.push_back(U.getZExtValue()); 3970 Lex.Lex(); 3971 } while (EatIfPresent(lltok::comma)); 3972 3973 if (ParseToken(lltok::rparen, "expected ')' here")) 3974 return true; 3975 3976 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 3977 return false; 3978 } 3979 3980 /// ParseDIObjCProperty: 3981 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 3982 /// getter: "getFoo", attributes: 7, type: !2) 3983 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 3984 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3985 OPTIONAL(name, MDStringField, ); \ 3986 OPTIONAL(file, MDField, ); \ 3987 OPTIONAL(line, LineField, ); \ 3988 OPTIONAL(setter, MDStringField, ); \ 3989 OPTIONAL(getter, MDStringField, ); \ 3990 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 3991 OPTIONAL(type, MDField, ); 3992 PARSE_MD_FIELDS(); 3993 #undef VISIT_MD_FIELDS 3994 3995 Result = GET_OR_DISTINCT(DIObjCProperty, 3996 (Context, name.Val, file.Val, line.Val, setter.Val, 3997 getter.Val, attributes.Val, type.Val)); 3998 return false; 3999 } 4000 4001 /// ParseDIImportedEntity: 4002 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 4003 /// line: 7, name: "foo") 4004 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 4005 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4006 REQUIRED(tag, DwarfTagField, ); \ 4007 REQUIRED(scope, MDField, ); \ 4008 OPTIONAL(entity, MDField, ); \ 4009 OPTIONAL(line, LineField, ); \ 4010 OPTIONAL(name, MDStringField, ); 4011 PARSE_MD_FIELDS(); 4012 #undef VISIT_MD_FIELDS 4013 4014 Result = GET_OR_DISTINCT(DIImportedEntity, (Context, tag.Val, scope.Val, 4015 entity.Val, line.Val, name.Val)); 4016 return false; 4017 } 4018 4019 #undef PARSE_MD_FIELD 4020 #undef NOP_FIELD 4021 #undef REQUIRE_FIELD 4022 #undef DECLARE_FIELD 4023 4024 /// ParseMetadataAsValue 4025 /// ::= metadata i32 %local 4026 /// ::= metadata i32 @global 4027 /// ::= metadata i32 7 4028 /// ::= metadata !0 4029 /// ::= metadata !{...} 4030 /// ::= metadata !"string" 4031 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 4032 // Note: the type 'metadata' has already been parsed. 4033 Metadata *MD; 4034 if (ParseMetadata(MD, &PFS)) 4035 return true; 4036 4037 V = MetadataAsValue::get(Context, MD); 4038 return false; 4039 } 4040 4041 /// ParseValueAsMetadata 4042 /// ::= i32 %local 4043 /// ::= i32 @global 4044 /// ::= i32 7 4045 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 4046 PerFunctionState *PFS) { 4047 Type *Ty; 4048 LocTy Loc; 4049 if (ParseType(Ty, TypeMsg, Loc)) 4050 return true; 4051 if (Ty->isMetadataTy()) 4052 return Error(Loc, "invalid metadata-value-metadata roundtrip"); 4053 4054 Value *V; 4055 if (ParseValue(Ty, V, PFS)) 4056 return true; 4057 4058 MD = ValueAsMetadata::get(V); 4059 return false; 4060 } 4061 4062 /// ParseMetadata 4063 /// ::= i32 %local 4064 /// ::= i32 @global 4065 /// ::= i32 7 4066 /// ::= !42 4067 /// ::= !{...} 4068 /// ::= !"string" 4069 /// ::= !DILocation(...) 4070 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) { 4071 if (Lex.getKind() == lltok::MetadataVar) { 4072 MDNode *N; 4073 if (ParseSpecializedMDNode(N)) 4074 return true; 4075 MD = N; 4076 return false; 4077 } 4078 4079 // ValueAsMetadata: 4080 // <type> <value> 4081 if (Lex.getKind() != lltok::exclaim) 4082 return ParseValueAsMetadata(MD, "expected metadata operand", PFS); 4083 4084 // '!'. 4085 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 4086 Lex.Lex(); 4087 4088 // MDString: 4089 // ::= '!' STRINGCONSTANT 4090 if (Lex.getKind() == lltok::StringConstant) { 4091 MDString *S; 4092 if (ParseMDString(S)) 4093 return true; 4094 MD = S; 4095 return false; 4096 } 4097 4098 // MDNode: 4099 // !{ ... } 4100 // !7 4101 MDNode *N; 4102 if (ParseMDNodeTail(N)) 4103 return true; 4104 MD = N; 4105 return false; 4106 } 4107 4108 4109 //===----------------------------------------------------------------------===// 4110 // Function Parsing. 4111 //===----------------------------------------------------------------------===// 4112 4113 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 4114 PerFunctionState *PFS, 4115 OperatorConstraint OC) { 4116 if (Ty->isFunctionTy()) 4117 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 4118 4119 if (OC && ID.Kind != ValID::t_LocalID && ID.Kind != ValID::t_LocalName) { 4120 switch (OC) { 4121 case OC_CatchPad: 4122 return Error(ID.Loc, "Catchpad value required in this position"); 4123 case OC_CleanupPad: 4124 return Error(ID.Loc, "Cleanuppad value required in this position"); 4125 default: 4126 llvm_unreachable("Unexpected constraint kind"); 4127 } 4128 } 4129 4130 switch (ID.Kind) { 4131 case ValID::t_LocalID: 4132 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4133 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, OC); 4134 return V == nullptr; 4135 case ValID::t_LocalName: 4136 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4137 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, OC); 4138 return V == nullptr; 4139 case ValID::t_InlineAsm: { 4140 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 4141 return Error(ID.Loc, "invalid type for inline asm constraint string"); 4142 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, 4143 (ID.UIntVal >> 1) & 1, 4144 (InlineAsm::AsmDialect(ID.UIntVal >> 2))); 4145 return false; 4146 } 4147 case ValID::t_GlobalName: 4148 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc); 4149 return V == nullptr; 4150 case ValID::t_GlobalID: 4151 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc); 4152 return V == nullptr; 4153 case ValID::t_APSInt: 4154 if (!Ty->isIntegerTy()) 4155 return Error(ID.Loc, "integer constant must have integer type"); 4156 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 4157 V = ConstantInt::get(Context, ID.APSIntVal); 4158 return false; 4159 case ValID::t_APFloat: 4160 if (!Ty->isFloatingPointTy() || 4161 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 4162 return Error(ID.Loc, "floating point constant invalid for type"); 4163 4164 // The lexer has no type info, so builds all half, float, and double FP 4165 // constants as double. Fix this here. Long double does not need this. 4166 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) { 4167 bool Ignored; 4168 if (Ty->isHalfTy()) 4169 ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, 4170 &Ignored); 4171 else if (Ty->isFloatTy()) 4172 ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, 4173 &Ignored); 4174 } 4175 V = ConstantFP::get(Context, ID.APFloatVal); 4176 4177 if (V->getType() != Ty) 4178 return Error(ID.Loc, "floating point constant does not have type '" + 4179 getTypeString(Ty) + "'"); 4180 4181 return false; 4182 case ValID::t_Null: 4183 if (!Ty->isPointerTy()) 4184 return Error(ID.Loc, "null must be a pointer type"); 4185 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 4186 return false; 4187 case ValID::t_Undef: 4188 // FIXME: LabelTy should not be a first-class type. 4189 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4190 return Error(ID.Loc, "invalid type for undef constant"); 4191 V = UndefValue::get(Ty); 4192 return false; 4193 case ValID::t_EmptyArray: 4194 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 4195 return Error(ID.Loc, "invalid empty array initializer"); 4196 V = UndefValue::get(Ty); 4197 return false; 4198 case ValID::t_Zero: 4199 // FIXME: LabelTy should not be a first-class type. 4200 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4201 return Error(ID.Loc, "invalid type for null constant"); 4202 V = Constant::getNullValue(Ty); 4203 return false; 4204 case ValID::t_Constant: 4205 if (ID.ConstantVal->getType() != Ty) 4206 return Error(ID.Loc, "constant expression type mismatch"); 4207 4208 V = ID.ConstantVal; 4209 return false; 4210 case ValID::t_ConstantStruct: 4211 case ValID::t_PackedConstantStruct: 4212 if (StructType *ST = dyn_cast<StructType>(Ty)) { 4213 if (ST->getNumElements() != ID.UIntVal) 4214 return Error(ID.Loc, 4215 "initializer with struct type has wrong # elements"); 4216 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 4217 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 4218 4219 // Verify that the elements are compatible with the structtype. 4220 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 4221 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 4222 return Error(ID.Loc, "element " + Twine(i) + 4223 " of struct initializer doesn't match struct element type"); 4224 4225 V = ConstantStruct::get( 4226 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 4227 } else 4228 return Error(ID.Loc, "constant expression type mismatch"); 4229 return false; 4230 } 4231 llvm_unreachable("Invalid ValID"); 4232 } 4233 4234 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 4235 C = nullptr; 4236 ValID ID; 4237 auto Loc = Lex.getLoc(); 4238 if (ParseValID(ID, /*PFS=*/nullptr)) 4239 return true; 4240 switch (ID.Kind) { 4241 case ValID::t_APSInt: 4242 case ValID::t_APFloat: 4243 case ValID::t_Undef: 4244 case ValID::t_Constant: 4245 case ValID::t_ConstantStruct: 4246 case ValID::t_PackedConstantStruct: { 4247 Value *V; 4248 if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr)) 4249 return true; 4250 assert(isa<Constant>(V) && "Expected a constant value"); 4251 C = cast<Constant>(V); 4252 return false; 4253 } 4254 default: 4255 return Error(Loc, "expected a constant value"); 4256 } 4257 } 4258 4259 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS, 4260 OperatorConstraint OC) { 4261 V = nullptr; 4262 ValID ID; 4263 return ParseValID(ID, PFS) || ConvertValIDToValue(Ty, ID, V, PFS, OC); 4264 } 4265 4266 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 4267 Type *Ty = nullptr; 4268 return ParseType(Ty) || 4269 ParseValue(Ty, V, PFS); 4270 } 4271 4272 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 4273 PerFunctionState &PFS) { 4274 Value *V; 4275 Loc = Lex.getLoc(); 4276 if (ParseTypeAndValue(V, PFS)) return true; 4277 if (!isa<BasicBlock>(V)) 4278 return Error(Loc, "expected a basic block"); 4279 BB = cast<BasicBlock>(V); 4280 return false; 4281 } 4282 4283 4284 /// FunctionHeader 4285 /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs 4286 /// OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection 4287 /// OptionalAlign OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 4288 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 4289 // Parse the linkage. 4290 LocTy LinkageLoc = Lex.getLoc(); 4291 unsigned Linkage; 4292 4293 unsigned Visibility; 4294 unsigned DLLStorageClass; 4295 AttrBuilder RetAttrs; 4296 unsigned CC; 4297 Type *RetType = nullptr; 4298 LocTy RetTypeLoc = Lex.getLoc(); 4299 if (ParseOptionalLinkage(Linkage) || 4300 ParseOptionalVisibility(Visibility) || 4301 ParseOptionalDLLStorageClass(DLLStorageClass) || 4302 ParseOptionalCallingConv(CC) || 4303 ParseOptionalReturnAttrs(RetAttrs) || 4304 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 4305 return true; 4306 4307 // Verify that the linkage is ok. 4308 switch ((GlobalValue::LinkageTypes)Linkage) { 4309 case GlobalValue::ExternalLinkage: 4310 break; // always ok. 4311 case GlobalValue::ExternalWeakLinkage: 4312 if (isDefine) 4313 return Error(LinkageLoc, "invalid linkage for function definition"); 4314 break; 4315 case GlobalValue::PrivateLinkage: 4316 case GlobalValue::InternalLinkage: 4317 case GlobalValue::AvailableExternallyLinkage: 4318 case GlobalValue::LinkOnceAnyLinkage: 4319 case GlobalValue::LinkOnceODRLinkage: 4320 case GlobalValue::WeakAnyLinkage: 4321 case GlobalValue::WeakODRLinkage: 4322 if (!isDefine) 4323 return Error(LinkageLoc, "invalid linkage for function declaration"); 4324 break; 4325 case GlobalValue::AppendingLinkage: 4326 case GlobalValue::CommonLinkage: 4327 return Error(LinkageLoc, "invalid function linkage type"); 4328 } 4329 4330 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 4331 return Error(LinkageLoc, 4332 "symbol with local linkage must have default visibility"); 4333 4334 if (!FunctionType::isValidReturnType(RetType)) 4335 return Error(RetTypeLoc, "invalid function return type"); 4336 4337 LocTy NameLoc = Lex.getLoc(); 4338 4339 std::string FunctionName; 4340 if (Lex.getKind() == lltok::GlobalVar) { 4341 FunctionName = Lex.getStrVal(); 4342 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 4343 unsigned NameID = Lex.getUIntVal(); 4344 4345 if (NameID != NumberedVals.size()) 4346 return TokError("function expected to be numbered '%" + 4347 Twine(NumberedVals.size()) + "'"); 4348 } else { 4349 return TokError("expected function name"); 4350 } 4351 4352 Lex.Lex(); 4353 4354 if (Lex.getKind() != lltok::lparen) 4355 return TokError("expected '(' in function argument list"); 4356 4357 SmallVector<ArgInfo, 8> ArgList; 4358 bool isVarArg; 4359 AttrBuilder FuncAttrs; 4360 std::vector<unsigned> FwdRefAttrGrps; 4361 LocTy BuiltinLoc; 4362 std::string Section; 4363 unsigned Alignment; 4364 std::string GC; 4365 bool UnnamedAddr; 4366 LocTy UnnamedAddrLoc; 4367 Constant *Prefix = nullptr; 4368 Constant *Prologue = nullptr; 4369 Constant *PersonalityFn = nullptr; 4370 Comdat *C; 4371 4372 if (ParseArgumentList(ArgList, isVarArg) || 4373 ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr, 4374 &UnnamedAddrLoc) || 4375 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 4376 BuiltinLoc) || 4377 (EatIfPresent(lltok::kw_section) && 4378 ParseStringConstant(Section)) || 4379 parseOptionalComdat(FunctionName, C) || 4380 ParseOptionalAlignment(Alignment) || 4381 (EatIfPresent(lltok::kw_gc) && 4382 ParseStringConstant(GC)) || 4383 (EatIfPresent(lltok::kw_prefix) && 4384 ParseGlobalTypeAndValue(Prefix)) || 4385 (EatIfPresent(lltok::kw_prologue) && 4386 ParseGlobalTypeAndValue(Prologue)) || 4387 (EatIfPresent(lltok::kw_personality) && 4388 ParseGlobalTypeAndValue(PersonalityFn))) 4389 return true; 4390 4391 if (FuncAttrs.contains(Attribute::Builtin)) 4392 return Error(BuiltinLoc, "'builtin' attribute not valid on function"); 4393 4394 // If the alignment was parsed as an attribute, move to the alignment field. 4395 if (FuncAttrs.hasAlignmentAttr()) { 4396 Alignment = FuncAttrs.getAlignment(); 4397 FuncAttrs.removeAttribute(Attribute::Alignment); 4398 } 4399 4400 // Okay, if we got here, the function is syntactically valid. Convert types 4401 // and do semantic checks. 4402 std::vector<Type*> ParamTypeList; 4403 SmallVector<AttributeSet, 8> Attrs; 4404 4405 if (RetAttrs.hasAttributes()) 4406 Attrs.push_back(AttributeSet::get(RetType->getContext(), 4407 AttributeSet::ReturnIndex, 4408 RetAttrs)); 4409 4410 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 4411 ParamTypeList.push_back(ArgList[i].Ty); 4412 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 4413 AttrBuilder B(ArgList[i].Attrs, i + 1); 4414 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 4415 } 4416 } 4417 4418 if (FuncAttrs.hasAttributes()) 4419 Attrs.push_back(AttributeSet::get(RetType->getContext(), 4420 AttributeSet::FunctionIndex, 4421 FuncAttrs)); 4422 4423 AttributeSet PAL = AttributeSet::get(Context, Attrs); 4424 4425 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 4426 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 4427 4428 FunctionType *FT = 4429 FunctionType::get(RetType, ParamTypeList, isVarArg); 4430 PointerType *PFT = PointerType::getUnqual(FT); 4431 4432 Fn = nullptr; 4433 if (!FunctionName.empty()) { 4434 // If this was a definition of a forward reference, remove the definition 4435 // from the forward reference table and fill in the forward ref. 4436 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI = 4437 ForwardRefVals.find(FunctionName); 4438 if (FRVI != ForwardRefVals.end()) { 4439 Fn = M->getFunction(FunctionName); 4440 if (!Fn) 4441 return Error(FRVI->second.second, "invalid forward reference to " 4442 "function as global value!"); 4443 if (Fn->getType() != PFT) 4444 return Error(FRVI->second.second, "invalid forward reference to " 4445 "function '" + FunctionName + "' with wrong type!"); 4446 4447 ForwardRefVals.erase(FRVI); 4448 } else if ((Fn = M->getFunction(FunctionName))) { 4449 // Reject redefinitions. 4450 return Error(NameLoc, "invalid redefinition of function '" + 4451 FunctionName + "'"); 4452 } else if (M->getNamedValue(FunctionName)) { 4453 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 4454 } 4455 4456 } else { 4457 // If this is a definition of a forward referenced function, make sure the 4458 // types agree. 4459 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I 4460 = ForwardRefValIDs.find(NumberedVals.size()); 4461 if (I != ForwardRefValIDs.end()) { 4462 Fn = cast<Function>(I->second.first); 4463 if (Fn->getType() != PFT) 4464 return Error(NameLoc, "type of definition and forward reference of '@" + 4465 Twine(NumberedVals.size()) + "' disagree"); 4466 ForwardRefValIDs.erase(I); 4467 } 4468 } 4469 4470 if (!Fn) 4471 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M); 4472 else // Move the forward-reference to the correct spot in the module. 4473 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 4474 4475 if (FunctionName.empty()) 4476 NumberedVals.push_back(Fn); 4477 4478 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 4479 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 4480 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 4481 Fn->setCallingConv(CC); 4482 Fn->setAttributes(PAL); 4483 Fn->setUnnamedAddr(UnnamedAddr); 4484 Fn->setAlignment(Alignment); 4485 Fn->setSection(Section); 4486 Fn->setComdat(C); 4487 Fn->setPersonalityFn(PersonalityFn); 4488 if (!GC.empty()) Fn->setGC(GC.c_str()); 4489 Fn->setPrefixData(Prefix); 4490 Fn->setPrologueData(Prologue); 4491 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 4492 4493 // Add all of the arguments we parsed to the function. 4494 Function::arg_iterator ArgIt = Fn->arg_begin(); 4495 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 4496 // If the argument has a name, insert it into the argument symbol table. 4497 if (ArgList[i].Name.empty()) continue; 4498 4499 // Set the name, if it conflicted, it will be auto-renamed. 4500 ArgIt->setName(ArgList[i].Name); 4501 4502 if (ArgIt->getName() != ArgList[i].Name) 4503 return Error(ArgList[i].Loc, "redefinition of argument '%" + 4504 ArgList[i].Name + "'"); 4505 } 4506 4507 if (isDefine) 4508 return false; 4509 4510 // Check the declaration has no block address forward references. 4511 ValID ID; 4512 if (FunctionName.empty()) { 4513 ID.Kind = ValID::t_GlobalID; 4514 ID.UIntVal = NumberedVals.size() - 1; 4515 } else { 4516 ID.Kind = ValID::t_GlobalName; 4517 ID.StrVal = FunctionName; 4518 } 4519 auto Blocks = ForwardRefBlockAddresses.find(ID); 4520 if (Blocks != ForwardRefBlockAddresses.end()) 4521 return Error(Blocks->first.Loc, 4522 "cannot take blockaddress inside a declaration"); 4523 return false; 4524 } 4525 4526 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 4527 ValID ID; 4528 if (FunctionNumber == -1) { 4529 ID.Kind = ValID::t_GlobalName; 4530 ID.StrVal = F.getName(); 4531 } else { 4532 ID.Kind = ValID::t_GlobalID; 4533 ID.UIntVal = FunctionNumber; 4534 } 4535 4536 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 4537 if (Blocks == P.ForwardRefBlockAddresses.end()) 4538 return false; 4539 4540 for (const auto &I : Blocks->second) { 4541 const ValID &BBID = I.first; 4542 GlobalValue *GV = I.second; 4543 4544 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 4545 "Expected local id or name"); 4546 BasicBlock *BB; 4547 if (BBID.Kind == ValID::t_LocalName) 4548 BB = GetBB(BBID.StrVal, BBID.Loc); 4549 else 4550 BB = GetBB(BBID.UIntVal, BBID.Loc); 4551 if (!BB) 4552 return P.Error(BBID.Loc, "referenced value is not a basic block"); 4553 4554 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 4555 GV->eraseFromParent(); 4556 } 4557 4558 P.ForwardRefBlockAddresses.erase(Blocks); 4559 return false; 4560 } 4561 4562 /// ParseFunctionBody 4563 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 4564 bool LLParser::ParseFunctionBody(Function &Fn) { 4565 if (Lex.getKind() != lltok::lbrace) 4566 return TokError("expected '{' in function body"); 4567 Lex.Lex(); // eat the {. 4568 4569 int FunctionNumber = -1; 4570 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 4571 4572 PerFunctionState PFS(*this, Fn, FunctionNumber); 4573 4574 // Resolve block addresses and allow basic blocks to be forward-declared 4575 // within this function. 4576 if (PFS.resolveForwardRefBlockAddresses()) 4577 return true; 4578 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 4579 4580 // We need at least one basic block. 4581 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 4582 return TokError("function body requires at least one basic block"); 4583 4584 while (Lex.getKind() != lltok::rbrace && 4585 Lex.getKind() != lltok::kw_uselistorder) 4586 if (ParseBasicBlock(PFS)) return true; 4587 4588 while (Lex.getKind() != lltok::rbrace) 4589 if (ParseUseListOrder(&PFS)) 4590 return true; 4591 4592 // Eat the }. 4593 Lex.Lex(); 4594 4595 // Verify function is ok. 4596 return PFS.FinishFunction(); 4597 } 4598 4599 /// ParseBasicBlock 4600 /// ::= LabelStr? Instruction* 4601 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 4602 // If this basic block starts out with a name, remember it. 4603 std::string Name; 4604 LocTy NameLoc = Lex.getLoc(); 4605 if (Lex.getKind() == lltok::LabelStr) { 4606 Name = Lex.getStrVal(); 4607 Lex.Lex(); 4608 } 4609 4610 BasicBlock *BB = PFS.DefineBB(Name, NameLoc); 4611 if (!BB) 4612 return Error(NameLoc, 4613 "unable to create block named '" + Name + "'"); 4614 4615 std::string NameStr; 4616 4617 // Parse the instructions in this block until we get a terminator. 4618 Instruction *Inst; 4619 do { 4620 // This instruction may have three possibilities for a name: a) none 4621 // specified, b) name specified "%foo =", c) number specified: "%4 =". 4622 LocTy NameLoc = Lex.getLoc(); 4623 int NameID = -1; 4624 NameStr = ""; 4625 4626 if (Lex.getKind() == lltok::LocalVarID) { 4627 NameID = Lex.getUIntVal(); 4628 Lex.Lex(); 4629 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 4630 return true; 4631 } else if (Lex.getKind() == lltok::LocalVar) { 4632 NameStr = Lex.getStrVal(); 4633 Lex.Lex(); 4634 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 4635 return true; 4636 } 4637 4638 switch (ParseInstruction(Inst, BB, PFS)) { 4639 default: llvm_unreachable("Unknown ParseInstruction result!"); 4640 case InstError: return true; 4641 case InstNormal: 4642 BB->getInstList().push_back(Inst); 4643 4644 // With a normal result, we check to see if the instruction is followed by 4645 // a comma and metadata. 4646 if (EatIfPresent(lltok::comma)) 4647 if (ParseInstructionMetadata(*Inst)) 4648 return true; 4649 break; 4650 case InstExtraComma: 4651 BB->getInstList().push_back(Inst); 4652 4653 // If the instruction parser ate an extra comma at the end of it, it 4654 // *must* be followed by metadata. 4655 if (ParseInstructionMetadata(*Inst)) 4656 return true; 4657 break; 4658 } 4659 4660 // Set the name on the instruction. 4661 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 4662 } while (!isa<TerminatorInst>(Inst)); 4663 4664 return false; 4665 } 4666 4667 //===----------------------------------------------------------------------===// 4668 // Instruction Parsing. 4669 //===----------------------------------------------------------------------===// 4670 4671 /// ParseInstruction - Parse one of the many different instructions. 4672 /// 4673 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 4674 PerFunctionState &PFS) { 4675 lltok::Kind Token = Lex.getKind(); 4676 if (Token == lltok::Eof) 4677 return TokError("found end of file when expecting more instructions"); 4678 LocTy Loc = Lex.getLoc(); 4679 unsigned KeywordVal = Lex.getUIntVal(); 4680 Lex.Lex(); // Eat the keyword. 4681 4682 switch (Token) { 4683 default: return Error(Loc, "expected instruction opcode"); 4684 // Terminator Instructions. 4685 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 4686 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 4687 case lltok::kw_br: return ParseBr(Inst, PFS); 4688 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 4689 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 4690 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 4691 case lltok::kw_resume: return ParseResume(Inst, PFS); 4692 case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS); 4693 case lltok::kw_catchret: return ParseCatchRet(Inst, PFS); 4694 case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS); 4695 case lltok::kw_terminatepad: return ParseTerminatePad(Inst, PFS); 4696 case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS); 4697 case lltok::kw_catchendpad: return ParseCatchEndPad(Inst, PFS); 4698 case lltok::kw_cleanupendpad: return ParseCleanupEndPad(Inst, PFS); 4699 // Binary Operators. 4700 case lltok::kw_add: 4701 case lltok::kw_sub: 4702 case lltok::kw_mul: 4703 case lltok::kw_shl: { 4704 bool NUW = EatIfPresent(lltok::kw_nuw); 4705 bool NSW = EatIfPresent(lltok::kw_nsw); 4706 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 4707 4708 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 4709 4710 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 4711 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 4712 return false; 4713 } 4714 case lltok::kw_fadd: 4715 case lltok::kw_fsub: 4716 case lltok::kw_fmul: 4717 case lltok::kw_fdiv: 4718 case lltok::kw_frem: { 4719 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 4720 int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2); 4721 if (Res != 0) 4722 return Res; 4723 if (FMF.any()) 4724 Inst->setFastMathFlags(FMF); 4725 return 0; 4726 } 4727 4728 case lltok::kw_sdiv: 4729 case lltok::kw_udiv: 4730 case lltok::kw_lshr: 4731 case lltok::kw_ashr: { 4732 bool Exact = EatIfPresent(lltok::kw_exact); 4733 4734 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 4735 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 4736 return false; 4737 } 4738 4739 case lltok::kw_urem: 4740 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1); 4741 case lltok::kw_and: 4742 case lltok::kw_or: 4743 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 4744 case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal); 4745 case lltok::kw_fcmp: { 4746 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 4747 int Res = ParseCompare(Inst, PFS, KeywordVal); 4748 if (Res != 0) 4749 return Res; 4750 if (FMF.any()) 4751 Inst->setFastMathFlags(FMF); 4752 return 0; 4753 } 4754 4755 // Casts. 4756 case lltok::kw_trunc: 4757 case lltok::kw_zext: 4758 case lltok::kw_sext: 4759 case lltok::kw_fptrunc: 4760 case lltok::kw_fpext: 4761 case lltok::kw_bitcast: 4762 case lltok::kw_addrspacecast: 4763 case lltok::kw_uitofp: 4764 case lltok::kw_sitofp: 4765 case lltok::kw_fptoui: 4766 case lltok::kw_fptosi: 4767 case lltok::kw_inttoptr: 4768 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 4769 // Other. 4770 case lltok::kw_select: return ParseSelect(Inst, PFS); 4771 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 4772 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 4773 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 4774 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 4775 case lltok::kw_phi: return ParsePHI(Inst, PFS); 4776 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 4777 // Call. 4778 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None); 4779 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail); 4780 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail); 4781 // Memory. 4782 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 4783 case lltok::kw_load: return ParseLoad(Inst, PFS); 4784 case lltok::kw_store: return ParseStore(Inst, PFS); 4785 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 4786 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 4787 case lltok::kw_fence: return ParseFence(Inst, PFS); 4788 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 4789 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 4790 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 4791 } 4792 } 4793 4794 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 4795 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 4796 if (Opc == Instruction::FCmp) { 4797 switch (Lex.getKind()) { 4798 default: return TokError("expected fcmp predicate (e.g. 'oeq')"); 4799 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 4800 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 4801 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 4802 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 4803 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 4804 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 4805 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 4806 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 4807 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 4808 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 4809 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 4810 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 4811 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 4812 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 4813 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 4814 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 4815 } 4816 } else { 4817 switch (Lex.getKind()) { 4818 default: return TokError("expected icmp predicate (e.g. 'eq')"); 4819 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 4820 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 4821 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 4822 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 4823 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 4824 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 4825 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 4826 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 4827 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 4828 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 4829 } 4830 } 4831 Lex.Lex(); 4832 return false; 4833 } 4834 4835 //===----------------------------------------------------------------------===// 4836 // Terminator Instructions. 4837 //===----------------------------------------------------------------------===// 4838 4839 /// ParseRet - Parse a return instruction. 4840 /// ::= 'ret' void (',' !dbg, !1)* 4841 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 4842 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 4843 PerFunctionState &PFS) { 4844 SMLoc TypeLoc = Lex.getLoc(); 4845 Type *Ty = nullptr; 4846 if (ParseType(Ty, true /*void allowed*/)) return true; 4847 4848 Type *ResType = PFS.getFunction().getReturnType(); 4849 4850 if (Ty->isVoidTy()) { 4851 if (!ResType->isVoidTy()) 4852 return Error(TypeLoc, "value doesn't match function result type '" + 4853 getTypeString(ResType) + "'"); 4854 4855 Inst = ReturnInst::Create(Context); 4856 return false; 4857 } 4858 4859 Value *RV; 4860 if (ParseValue(Ty, RV, PFS)) return true; 4861 4862 if (ResType != RV->getType()) 4863 return Error(TypeLoc, "value doesn't match function result type '" + 4864 getTypeString(ResType) + "'"); 4865 4866 Inst = ReturnInst::Create(Context, RV); 4867 return false; 4868 } 4869 4870 4871 /// ParseBr 4872 /// ::= 'br' TypeAndValue 4873 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 4874 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 4875 LocTy Loc, Loc2; 4876 Value *Op0; 4877 BasicBlock *Op1, *Op2; 4878 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 4879 4880 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 4881 Inst = BranchInst::Create(BB); 4882 return false; 4883 } 4884 4885 if (Op0->getType() != Type::getInt1Ty(Context)) 4886 return Error(Loc, "branch condition must have 'i1' type"); 4887 4888 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 4889 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 4890 ParseToken(lltok::comma, "expected ',' after true destination") || 4891 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 4892 return true; 4893 4894 Inst = BranchInst::Create(Op1, Op2, Op0); 4895 return false; 4896 } 4897 4898 /// ParseSwitch 4899 /// Instruction 4900 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 4901 /// JumpTable 4902 /// ::= (TypeAndValue ',' TypeAndValue)* 4903 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 4904 LocTy CondLoc, BBLoc; 4905 Value *Cond; 4906 BasicBlock *DefaultBB; 4907 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 4908 ParseToken(lltok::comma, "expected ',' after switch condition") || 4909 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 4910 ParseToken(lltok::lsquare, "expected '[' with switch table")) 4911 return true; 4912 4913 if (!Cond->getType()->isIntegerTy()) 4914 return Error(CondLoc, "switch condition must have integer type"); 4915 4916 // Parse the jump table pairs. 4917 SmallPtrSet<Value*, 32> SeenCases; 4918 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 4919 while (Lex.getKind() != lltok::rsquare) { 4920 Value *Constant; 4921 BasicBlock *DestBB; 4922 4923 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 4924 ParseToken(lltok::comma, "expected ',' after case value") || 4925 ParseTypeAndBasicBlock(DestBB, PFS)) 4926 return true; 4927 4928 if (!SeenCases.insert(Constant).second) 4929 return Error(CondLoc, "duplicate case value in switch"); 4930 if (!isa<ConstantInt>(Constant)) 4931 return Error(CondLoc, "case value is not a constant integer"); 4932 4933 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 4934 } 4935 4936 Lex.Lex(); // Eat the ']'. 4937 4938 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 4939 for (unsigned i = 0, e = Table.size(); i != e; ++i) 4940 SI->addCase(Table[i].first, Table[i].second); 4941 Inst = SI; 4942 return false; 4943 } 4944 4945 /// ParseIndirectBr 4946 /// Instruction 4947 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 4948 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 4949 LocTy AddrLoc; 4950 Value *Address; 4951 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 4952 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 4953 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 4954 return true; 4955 4956 if (!Address->getType()->isPointerTy()) 4957 return Error(AddrLoc, "indirectbr address must have pointer type"); 4958 4959 // Parse the destination list. 4960 SmallVector<BasicBlock*, 16> DestList; 4961 4962 if (Lex.getKind() != lltok::rsquare) { 4963 BasicBlock *DestBB; 4964 if (ParseTypeAndBasicBlock(DestBB, PFS)) 4965 return true; 4966 DestList.push_back(DestBB); 4967 4968 while (EatIfPresent(lltok::comma)) { 4969 if (ParseTypeAndBasicBlock(DestBB, PFS)) 4970 return true; 4971 DestList.push_back(DestBB); 4972 } 4973 } 4974 4975 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 4976 return true; 4977 4978 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 4979 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 4980 IBI->addDestination(DestList[i]); 4981 Inst = IBI; 4982 return false; 4983 } 4984 4985 4986 /// ParseInvoke 4987 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 4988 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 4989 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 4990 LocTy CallLoc = Lex.getLoc(); 4991 AttrBuilder RetAttrs, FnAttrs; 4992 std::vector<unsigned> FwdRefAttrGrps; 4993 LocTy NoBuiltinLoc; 4994 unsigned CC; 4995 Type *RetType = nullptr; 4996 LocTy RetTypeLoc; 4997 ValID CalleeID; 4998 SmallVector<ParamInfo, 16> ArgList; 4999 5000 BasicBlock *NormalBB, *UnwindBB; 5001 if (ParseOptionalCallingConv(CC) || 5002 ParseOptionalReturnAttrs(RetAttrs) || 5003 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5004 ParseValID(CalleeID) || 5005 ParseParameterList(ArgList, PFS) || 5006 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 5007 NoBuiltinLoc) || 5008 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 5009 ParseTypeAndBasicBlock(NormalBB, PFS) || 5010 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 5011 ParseTypeAndBasicBlock(UnwindBB, PFS)) 5012 return true; 5013 5014 // If RetType is a non-function pointer type, then this is the short syntax 5015 // for the call, which means that RetType is just the return type. Infer the 5016 // rest of the function argument types from the arguments that are present. 5017 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 5018 if (!Ty) { 5019 // Pull out the types of all of the arguments... 5020 std::vector<Type*> ParamTypes; 5021 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 5022 ParamTypes.push_back(ArgList[i].V->getType()); 5023 5024 if (!FunctionType::isValidReturnType(RetType)) 5025 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 5026 5027 Ty = FunctionType::get(RetType, ParamTypes, false); 5028 } 5029 5030 CalleeID.FTy = Ty; 5031 5032 // Look up the callee. 5033 Value *Callee; 5034 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 5035 return true; 5036 5037 // Set up the Attribute for the function. 5038 SmallVector<AttributeSet, 8> Attrs; 5039 if (RetAttrs.hasAttributes()) 5040 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5041 AttributeSet::ReturnIndex, 5042 RetAttrs)); 5043 5044 SmallVector<Value*, 8> Args; 5045 5046 // Loop through FunctionType's arguments and ensure they are specified 5047 // correctly. Also, gather any parameter attributes. 5048 FunctionType::param_iterator I = Ty->param_begin(); 5049 FunctionType::param_iterator E = Ty->param_end(); 5050 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5051 Type *ExpectedTy = nullptr; 5052 if (I != E) { 5053 ExpectedTy = *I++; 5054 } else if (!Ty->isVarArg()) { 5055 return Error(ArgList[i].Loc, "too many arguments specified"); 5056 } 5057 5058 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 5059 return Error(ArgList[i].Loc, "argument is not of expected type '" + 5060 getTypeString(ExpectedTy) + "'"); 5061 Args.push_back(ArgList[i].V); 5062 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 5063 AttrBuilder B(ArgList[i].Attrs, i + 1); 5064 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 5065 } 5066 } 5067 5068 if (I != E) 5069 return Error(CallLoc, "not enough parameters specified for call"); 5070 5071 if (FnAttrs.hasAttributes()) { 5072 if (FnAttrs.hasAlignmentAttr()) 5073 return Error(CallLoc, "invoke instructions may not have an alignment"); 5074 5075 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5076 AttributeSet::FunctionIndex, 5077 FnAttrs)); 5078 } 5079 5080 // Finish off the Attribute and check them 5081 AttributeSet PAL = AttributeSet::get(Context, Attrs); 5082 5083 InvokeInst *II = InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args); 5084 II->setCallingConv(CC); 5085 II->setAttributes(PAL); 5086 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 5087 Inst = II; 5088 return false; 5089 } 5090 5091 /// ParseResume 5092 /// ::= 'resume' TypeAndValue 5093 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 5094 Value *Exn; LocTy ExnLoc; 5095 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 5096 return true; 5097 5098 ResumeInst *RI = ResumeInst::Create(Exn); 5099 Inst = RI; 5100 return false; 5101 } 5102 5103 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args, 5104 PerFunctionState &PFS) { 5105 if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 5106 return true; 5107 5108 while (Lex.getKind() != lltok::rsquare) { 5109 // If this isn't the first argument, we need a comma. 5110 if (!Args.empty() && 5111 ParseToken(lltok::comma, "expected ',' in argument list")) 5112 return true; 5113 5114 // Parse the argument. 5115 LocTy ArgLoc; 5116 Type *ArgTy = nullptr; 5117 if (ParseType(ArgTy, ArgLoc)) 5118 return true; 5119 5120 Value *V; 5121 if (ArgTy->isMetadataTy()) { 5122 if (ParseMetadataAsValue(V, PFS)) 5123 return true; 5124 } else { 5125 if (ParseValue(ArgTy, V, PFS)) 5126 return true; 5127 } 5128 Args.push_back(V); 5129 } 5130 5131 Lex.Lex(); // Lex the ']'. 5132 return false; 5133 } 5134 5135 /// ParseCleanupRet 5136 /// ::= 'cleanupret' Value unwind ('to' 'caller' | TypeAndValue) 5137 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 5138 Value *CleanupPad = nullptr; 5139 5140 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS, OC_CleanupPad)) 5141 return true; 5142 5143 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 5144 return true; 5145 5146 BasicBlock *UnwindBB = nullptr; 5147 if (Lex.getKind() == lltok::kw_to) { 5148 Lex.Lex(); 5149 if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 5150 return true; 5151 } else { 5152 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 5153 return true; 5154 } 5155 } 5156 5157 Inst = CleanupReturnInst::Create(cast<CleanupPadInst>(CleanupPad), UnwindBB); 5158 return false; 5159 } 5160 5161 /// ParseCatchRet 5162 /// ::= 'catchret' Value 'to' TypeAndValue 5163 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 5164 Value *CatchPad = nullptr; 5165 5166 if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS, OC_CatchPad)) 5167 return true; 5168 5169 BasicBlock *BB; 5170 if (ParseToken(lltok::kw_to, "expected 'to' in catchret") || 5171 ParseTypeAndBasicBlock(BB, PFS)) 5172 return true; 5173 5174 Inst = CatchReturnInst::Create(cast<CatchPadInst>(CatchPad), BB); 5175 return false; 5176 } 5177 5178 /// ParseCatchPad 5179 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 5180 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 5181 SmallVector<Value *, 8> Args; 5182 if (ParseExceptionArgs(Args, PFS)) 5183 return true; 5184 5185 BasicBlock *NormalBB, *UnwindBB; 5186 if (ParseToken(lltok::kw_to, "expected 'to' in catchpad") || 5187 ParseTypeAndBasicBlock(NormalBB, PFS) || 5188 ParseToken(lltok::kw_unwind, "expected 'unwind' in catchpad") || 5189 ParseTypeAndBasicBlock(UnwindBB, PFS)) 5190 return true; 5191 5192 Inst = CatchPadInst::Create(NormalBB, UnwindBB, Args); 5193 return false; 5194 } 5195 5196 /// ParseTerminatePad 5197 /// ::= 'terminatepad' ParamList 'to' TypeAndValue 5198 bool LLParser::ParseTerminatePad(Instruction *&Inst, PerFunctionState &PFS) { 5199 SmallVector<Value *, 8> Args; 5200 if (ParseExceptionArgs(Args, PFS)) 5201 return true; 5202 5203 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in terminatepad")) 5204 return true; 5205 5206 BasicBlock *UnwindBB = nullptr; 5207 if (Lex.getKind() == lltok::kw_to) { 5208 Lex.Lex(); 5209 if (ParseToken(lltok::kw_caller, "expected 'caller' in terminatepad")) 5210 return true; 5211 } else { 5212 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 5213 return true; 5214 } 5215 } 5216 5217 Inst = TerminatePadInst::Create(Context, UnwindBB, Args); 5218 return false; 5219 } 5220 5221 /// ParseCleanupPad 5222 /// ::= 'cleanuppad' ParamList 5223 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 5224 SmallVector<Value *, 8> Args; 5225 if (ParseExceptionArgs(Args, PFS)) 5226 return true; 5227 5228 Inst = CleanupPadInst::Create(Context, Args); 5229 return false; 5230 } 5231 5232 /// ParseCatchEndPad 5233 /// ::= 'catchendpad' unwind ('to' 'caller' | TypeAndValue) 5234 bool LLParser::ParseCatchEndPad(Instruction *&Inst, PerFunctionState &PFS) { 5235 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in catchendpad")) 5236 return true; 5237 5238 BasicBlock *UnwindBB = nullptr; 5239 if (Lex.getKind() == lltok::kw_to) { 5240 Lex.Lex(); 5241 if (Lex.getKind() == lltok::kw_caller) { 5242 Lex.Lex(); 5243 } else { 5244 return true; 5245 } 5246 } else { 5247 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 5248 return true; 5249 } 5250 } 5251 5252 Inst = CatchEndPadInst::Create(Context, UnwindBB); 5253 return false; 5254 } 5255 5256 /// ParseCatchEndPad 5257 /// ::= 'cleanupendpad' Value unwind ('to' 'caller' | TypeAndValue) 5258 bool LLParser::ParseCleanupEndPad(Instruction *&Inst, PerFunctionState &PFS) { 5259 Value *CleanupPad = nullptr; 5260 5261 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS, OC_CleanupPad)) 5262 return true; 5263 5264 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in catchendpad")) 5265 return true; 5266 5267 BasicBlock *UnwindBB = nullptr; 5268 if (Lex.getKind() == lltok::kw_to) { 5269 Lex.Lex(); 5270 if (Lex.getKind() == lltok::kw_caller) { 5271 Lex.Lex(); 5272 } else { 5273 return true; 5274 } 5275 } else { 5276 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 5277 return true; 5278 } 5279 } 5280 5281 Inst = CleanupEndPadInst::Create(cast<CleanupPadInst>(CleanupPad), UnwindBB); 5282 return false; 5283 } 5284 5285 //===----------------------------------------------------------------------===// 5286 // Binary Operators. 5287 //===----------------------------------------------------------------------===// 5288 5289 /// ParseArithmetic 5290 /// ::= ArithmeticOps TypeAndValue ',' Value 5291 /// 5292 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, 5293 /// then any integer operand is allowed, if it is 2, any fp operand is allowed. 5294 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 5295 unsigned Opc, unsigned OperandType) { 5296 LocTy Loc; Value *LHS, *RHS; 5297 if (ParseTypeAndValue(LHS, Loc, PFS) || 5298 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 5299 ParseValue(LHS->getType(), RHS, PFS)) 5300 return true; 5301 5302 bool Valid; 5303 switch (OperandType) { 5304 default: llvm_unreachable("Unknown operand type!"); 5305 case 0: // int or FP. 5306 Valid = LHS->getType()->isIntOrIntVectorTy() || 5307 LHS->getType()->isFPOrFPVectorTy(); 5308 break; 5309 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break; 5310 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break; 5311 } 5312 5313 if (!Valid) 5314 return Error(Loc, "invalid operand type for instruction"); 5315 5316 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5317 return false; 5318 } 5319 5320 /// ParseLogical 5321 /// ::= ArithmeticOps TypeAndValue ',' Value { 5322 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 5323 unsigned Opc) { 5324 LocTy Loc; Value *LHS, *RHS; 5325 if (ParseTypeAndValue(LHS, Loc, PFS) || 5326 ParseToken(lltok::comma, "expected ',' in logical operation") || 5327 ParseValue(LHS->getType(), RHS, PFS)) 5328 return true; 5329 5330 if (!LHS->getType()->isIntOrIntVectorTy()) 5331 return Error(Loc,"instruction requires integer or integer vector operands"); 5332 5333 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5334 return false; 5335 } 5336 5337 5338 /// ParseCompare 5339 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 5340 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 5341 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 5342 unsigned Opc) { 5343 // Parse the integer/fp comparison predicate. 5344 LocTy Loc; 5345 unsigned Pred; 5346 Value *LHS, *RHS; 5347 if (ParseCmpPredicate(Pred, Opc) || 5348 ParseTypeAndValue(LHS, Loc, PFS) || 5349 ParseToken(lltok::comma, "expected ',' after compare value") || 5350 ParseValue(LHS->getType(), RHS, PFS)) 5351 return true; 5352 5353 if (Opc == Instruction::FCmp) { 5354 if (!LHS->getType()->isFPOrFPVectorTy()) 5355 return Error(Loc, "fcmp requires floating point operands"); 5356 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 5357 } else { 5358 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 5359 if (!LHS->getType()->isIntOrIntVectorTy() && 5360 !LHS->getType()->getScalarType()->isPointerTy()) 5361 return Error(Loc, "icmp requires integer operands"); 5362 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 5363 } 5364 return false; 5365 } 5366 5367 //===----------------------------------------------------------------------===// 5368 // Other Instructions. 5369 //===----------------------------------------------------------------------===// 5370 5371 5372 /// ParseCast 5373 /// ::= CastOpc TypeAndValue 'to' Type 5374 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 5375 unsigned Opc) { 5376 LocTy Loc; 5377 Value *Op; 5378 Type *DestTy = nullptr; 5379 if (ParseTypeAndValue(Op, Loc, PFS) || 5380 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 5381 ParseType(DestTy)) 5382 return true; 5383 5384 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 5385 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 5386 return Error(Loc, "invalid cast opcode for cast from '" + 5387 getTypeString(Op->getType()) + "' to '" + 5388 getTypeString(DestTy) + "'"); 5389 } 5390 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 5391 return false; 5392 } 5393 5394 /// ParseSelect 5395 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5396 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 5397 LocTy Loc; 5398 Value *Op0, *Op1, *Op2; 5399 if (ParseTypeAndValue(Op0, Loc, PFS) || 5400 ParseToken(lltok::comma, "expected ',' after select condition") || 5401 ParseTypeAndValue(Op1, PFS) || 5402 ParseToken(lltok::comma, "expected ',' after select value") || 5403 ParseTypeAndValue(Op2, PFS)) 5404 return true; 5405 5406 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 5407 return Error(Loc, Reason); 5408 5409 Inst = SelectInst::Create(Op0, Op1, Op2); 5410 return false; 5411 } 5412 5413 /// ParseVA_Arg 5414 /// ::= 'va_arg' TypeAndValue ',' Type 5415 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 5416 Value *Op; 5417 Type *EltTy = nullptr; 5418 LocTy TypeLoc; 5419 if (ParseTypeAndValue(Op, PFS) || 5420 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 5421 ParseType(EltTy, TypeLoc)) 5422 return true; 5423 5424 if (!EltTy->isFirstClassType()) 5425 return Error(TypeLoc, "va_arg requires operand with first class type"); 5426 5427 Inst = new VAArgInst(Op, EltTy); 5428 return false; 5429 } 5430 5431 /// ParseExtractElement 5432 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 5433 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 5434 LocTy Loc; 5435 Value *Op0, *Op1; 5436 if (ParseTypeAndValue(Op0, Loc, PFS) || 5437 ParseToken(lltok::comma, "expected ',' after extract value") || 5438 ParseTypeAndValue(Op1, PFS)) 5439 return true; 5440 5441 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 5442 return Error(Loc, "invalid extractelement operands"); 5443 5444 Inst = ExtractElementInst::Create(Op0, Op1); 5445 return false; 5446 } 5447 5448 /// ParseInsertElement 5449 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5450 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 5451 LocTy Loc; 5452 Value *Op0, *Op1, *Op2; 5453 if (ParseTypeAndValue(Op0, Loc, PFS) || 5454 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5455 ParseTypeAndValue(Op1, PFS) || 5456 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5457 ParseTypeAndValue(Op2, PFS)) 5458 return true; 5459 5460 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 5461 return Error(Loc, "invalid insertelement operands"); 5462 5463 Inst = InsertElementInst::Create(Op0, Op1, Op2); 5464 return false; 5465 } 5466 5467 /// ParseShuffleVector 5468 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5469 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 5470 LocTy Loc; 5471 Value *Op0, *Op1, *Op2; 5472 if (ParseTypeAndValue(Op0, Loc, PFS) || 5473 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 5474 ParseTypeAndValue(Op1, PFS) || 5475 ParseToken(lltok::comma, "expected ',' after shuffle value") || 5476 ParseTypeAndValue(Op2, PFS)) 5477 return true; 5478 5479 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 5480 return Error(Loc, "invalid shufflevector operands"); 5481 5482 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 5483 return false; 5484 } 5485 5486 /// ParsePHI 5487 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 5488 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 5489 Type *Ty = nullptr; LocTy TypeLoc; 5490 Value *Op0, *Op1; 5491 5492 if (ParseType(Ty, TypeLoc) || 5493 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 5494 ParseValue(Ty, Op0, PFS) || 5495 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5496 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 5497 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 5498 return true; 5499 5500 bool AteExtraComma = false; 5501 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 5502 while (1) { 5503 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 5504 5505 if (!EatIfPresent(lltok::comma)) 5506 break; 5507 5508 if (Lex.getKind() == lltok::MetadataVar) { 5509 AteExtraComma = true; 5510 break; 5511 } 5512 5513 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 5514 ParseValue(Ty, Op0, PFS) || 5515 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5516 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 5517 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 5518 return true; 5519 } 5520 5521 if (!Ty->isFirstClassType()) 5522 return Error(TypeLoc, "phi node must have first class type"); 5523 5524 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 5525 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 5526 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 5527 Inst = PN; 5528 return AteExtraComma ? InstExtraComma : InstNormal; 5529 } 5530 5531 /// ParseLandingPad 5532 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 5533 /// Clause 5534 /// ::= 'catch' TypeAndValue 5535 /// ::= 'filter' 5536 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 5537 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 5538 Type *Ty = nullptr; LocTy TyLoc; 5539 5540 if (ParseType(Ty, TyLoc)) 5541 return true; 5542 5543 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 5544 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 5545 5546 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 5547 LandingPadInst::ClauseType CT; 5548 if (EatIfPresent(lltok::kw_catch)) 5549 CT = LandingPadInst::Catch; 5550 else if (EatIfPresent(lltok::kw_filter)) 5551 CT = LandingPadInst::Filter; 5552 else 5553 return TokError("expected 'catch' or 'filter' clause type"); 5554 5555 Value *V; 5556 LocTy VLoc; 5557 if (ParseTypeAndValue(V, VLoc, PFS)) 5558 return true; 5559 5560 // A 'catch' type expects a non-array constant. A filter clause expects an 5561 // array constant. 5562 if (CT == LandingPadInst::Catch) { 5563 if (isa<ArrayType>(V->getType())) 5564 Error(VLoc, "'catch' clause has an invalid type"); 5565 } else { 5566 if (!isa<ArrayType>(V->getType())) 5567 Error(VLoc, "'filter' clause has an invalid type"); 5568 } 5569 5570 Constant *CV = dyn_cast<Constant>(V); 5571 if (!CV) 5572 return Error(VLoc, "clause argument must be a constant"); 5573 LP->addClause(CV); 5574 } 5575 5576 Inst = LP.release(); 5577 return false; 5578 } 5579 5580 /// ParseCall 5581 /// ::= 'call' OptionalCallingConv OptionalAttrs Type Value 5582 /// ParameterList OptionalAttrs 5583 /// ::= 'tail' 'call' OptionalCallingConv OptionalAttrs Type Value 5584 /// ParameterList OptionalAttrs 5585 /// ::= 'musttail' 'call' OptionalCallingConv OptionalAttrs Type Value 5586 /// ParameterList OptionalAttrs 5587 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 5588 CallInst::TailCallKind TCK) { 5589 AttrBuilder RetAttrs, FnAttrs; 5590 std::vector<unsigned> FwdRefAttrGrps; 5591 LocTy BuiltinLoc; 5592 unsigned CC; 5593 Type *RetType = nullptr; 5594 LocTy RetTypeLoc; 5595 ValID CalleeID; 5596 SmallVector<ParamInfo, 16> ArgList; 5597 LocTy CallLoc = Lex.getLoc(); 5598 5599 if ((TCK != CallInst::TCK_None && 5600 ParseToken(lltok::kw_call, "expected 'tail call'")) || 5601 ParseOptionalCallingConv(CC) || 5602 ParseOptionalReturnAttrs(RetAttrs) || 5603 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5604 ParseValID(CalleeID) || 5605 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 5606 PFS.getFunction().isVarArg()) || 5607 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 5608 BuiltinLoc)) 5609 return true; 5610 5611 // If RetType is a non-function pointer type, then this is the short syntax 5612 // for the call, which means that RetType is just the return type. Infer the 5613 // rest of the function argument types from the arguments that are present. 5614 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 5615 if (!Ty) { 5616 // Pull out the types of all of the arguments... 5617 std::vector<Type*> ParamTypes; 5618 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 5619 ParamTypes.push_back(ArgList[i].V->getType()); 5620 5621 if (!FunctionType::isValidReturnType(RetType)) 5622 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 5623 5624 Ty = FunctionType::get(RetType, ParamTypes, false); 5625 } 5626 5627 CalleeID.FTy = Ty; 5628 5629 // Look up the callee. 5630 Value *Callee; 5631 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 5632 return true; 5633 5634 // Set up the Attribute for the function. 5635 SmallVector<AttributeSet, 8> Attrs; 5636 if (RetAttrs.hasAttributes()) 5637 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5638 AttributeSet::ReturnIndex, 5639 RetAttrs)); 5640 5641 SmallVector<Value*, 8> Args; 5642 5643 // Loop through FunctionType's arguments and ensure they are specified 5644 // correctly. Also, gather any parameter attributes. 5645 FunctionType::param_iterator I = Ty->param_begin(); 5646 FunctionType::param_iterator E = Ty->param_end(); 5647 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5648 Type *ExpectedTy = nullptr; 5649 if (I != E) { 5650 ExpectedTy = *I++; 5651 } else if (!Ty->isVarArg()) { 5652 return Error(ArgList[i].Loc, "too many arguments specified"); 5653 } 5654 5655 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 5656 return Error(ArgList[i].Loc, "argument is not of expected type '" + 5657 getTypeString(ExpectedTy) + "'"); 5658 Args.push_back(ArgList[i].V); 5659 if (ArgList[i].Attrs.hasAttributes(i + 1)) { 5660 AttrBuilder B(ArgList[i].Attrs, i + 1); 5661 Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B)); 5662 } 5663 } 5664 5665 if (I != E) 5666 return Error(CallLoc, "not enough parameters specified for call"); 5667 5668 if (FnAttrs.hasAttributes()) { 5669 if (FnAttrs.hasAlignmentAttr()) 5670 return Error(CallLoc, "call instructions may not have an alignment"); 5671 5672 Attrs.push_back(AttributeSet::get(RetType->getContext(), 5673 AttributeSet::FunctionIndex, 5674 FnAttrs)); 5675 } 5676 5677 // Finish off the Attribute and check them 5678 AttributeSet PAL = AttributeSet::get(Context, Attrs); 5679 5680 CallInst *CI = CallInst::Create(Ty, Callee, Args); 5681 CI->setTailCallKind(TCK); 5682 CI->setCallingConv(CC); 5683 CI->setAttributes(PAL); 5684 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 5685 Inst = CI; 5686 return false; 5687 } 5688 5689 //===----------------------------------------------------------------------===// 5690 // Memory Instructions. 5691 //===----------------------------------------------------------------------===// 5692 5693 /// ParseAlloc 5694 /// ::= 'alloca' 'inalloca'? Type (',' TypeAndValue)? (',' 'align' i32)? 5695 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 5696 Value *Size = nullptr; 5697 LocTy SizeLoc, TyLoc; 5698 unsigned Alignment = 0; 5699 Type *Ty = nullptr; 5700 5701 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 5702 5703 if (ParseType(Ty, TyLoc)) return true; 5704 5705 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 5706 return Error(TyLoc, "invalid type for alloca"); 5707 5708 bool AteExtraComma = false; 5709 if (EatIfPresent(lltok::comma)) { 5710 if (Lex.getKind() == lltok::kw_align) { 5711 if (ParseOptionalAlignment(Alignment)) return true; 5712 } else if (Lex.getKind() == lltok::MetadataVar) { 5713 AteExtraComma = true; 5714 } else { 5715 if (ParseTypeAndValue(Size, SizeLoc, PFS) || 5716 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 5717 return true; 5718 } 5719 } 5720 5721 if (Size && !Size->getType()->isIntegerTy()) 5722 return Error(SizeLoc, "element count must have integer type"); 5723 5724 AllocaInst *AI = new AllocaInst(Ty, Size, Alignment); 5725 AI->setUsedWithInAlloca(IsInAlloca); 5726 Inst = AI; 5727 return AteExtraComma ? InstExtraComma : InstNormal; 5728 } 5729 5730 /// ParseLoad 5731 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 5732 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 5733 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 5734 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 5735 Value *Val; LocTy Loc; 5736 unsigned Alignment = 0; 5737 bool AteExtraComma = false; 5738 bool isAtomic = false; 5739 AtomicOrdering Ordering = NotAtomic; 5740 SynchronizationScope Scope = CrossThread; 5741 5742 if (Lex.getKind() == lltok::kw_atomic) { 5743 isAtomic = true; 5744 Lex.Lex(); 5745 } 5746 5747 bool isVolatile = false; 5748 if (Lex.getKind() == lltok::kw_volatile) { 5749 isVolatile = true; 5750 Lex.Lex(); 5751 } 5752 5753 Type *Ty; 5754 LocTy ExplicitTypeLoc = Lex.getLoc(); 5755 if (ParseType(Ty) || 5756 ParseToken(lltok::comma, "expected comma after load's type") || 5757 ParseTypeAndValue(Val, Loc, PFS) || 5758 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 5759 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 5760 return true; 5761 5762 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 5763 return Error(Loc, "load operand must be a pointer to a first class type"); 5764 if (isAtomic && !Alignment) 5765 return Error(Loc, "atomic load must have explicit non-zero alignment"); 5766 if (Ordering == Release || Ordering == AcquireRelease) 5767 return Error(Loc, "atomic load cannot use Release ordering"); 5768 5769 if (Ty != cast<PointerType>(Val->getType())->getElementType()) 5770 return Error(ExplicitTypeLoc, 5771 "explicit pointee type doesn't match operand's pointee type"); 5772 5773 Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, Scope); 5774 return AteExtraComma ? InstExtraComma : InstNormal; 5775 } 5776 5777 /// ParseStore 5778 5779 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 5780 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 5781 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 5782 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 5783 Value *Val, *Ptr; LocTy Loc, PtrLoc; 5784 unsigned Alignment = 0; 5785 bool AteExtraComma = false; 5786 bool isAtomic = false; 5787 AtomicOrdering Ordering = NotAtomic; 5788 SynchronizationScope Scope = CrossThread; 5789 5790 if (Lex.getKind() == lltok::kw_atomic) { 5791 isAtomic = true; 5792 Lex.Lex(); 5793 } 5794 5795 bool isVolatile = false; 5796 if (Lex.getKind() == lltok::kw_volatile) { 5797 isVolatile = true; 5798 Lex.Lex(); 5799 } 5800 5801 if (ParseTypeAndValue(Val, Loc, PFS) || 5802 ParseToken(lltok::comma, "expected ',' after store operand") || 5803 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 5804 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 5805 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 5806 return true; 5807 5808 if (!Ptr->getType()->isPointerTy()) 5809 return Error(PtrLoc, "store operand must be a pointer"); 5810 if (!Val->getType()->isFirstClassType()) 5811 return Error(Loc, "store operand must be a first class value"); 5812 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 5813 return Error(Loc, "stored value and pointer type do not match"); 5814 if (isAtomic && !Alignment) 5815 return Error(Loc, "atomic store must have explicit non-zero alignment"); 5816 if (Ordering == Acquire || Ordering == AcquireRelease) 5817 return Error(Loc, "atomic store cannot use Acquire ordering"); 5818 5819 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope); 5820 return AteExtraComma ? InstExtraComma : InstNormal; 5821 } 5822 5823 /// ParseCmpXchg 5824 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 5825 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering 5826 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 5827 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 5828 bool AteExtraComma = false; 5829 AtomicOrdering SuccessOrdering = NotAtomic; 5830 AtomicOrdering FailureOrdering = NotAtomic; 5831 SynchronizationScope Scope = CrossThread; 5832 bool isVolatile = false; 5833 bool isWeak = false; 5834 5835 if (EatIfPresent(lltok::kw_weak)) 5836 isWeak = true; 5837 5838 if (EatIfPresent(lltok::kw_volatile)) 5839 isVolatile = true; 5840 5841 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 5842 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 5843 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 5844 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 5845 ParseTypeAndValue(New, NewLoc, PFS) || 5846 ParseScopeAndOrdering(true /*Always atomic*/, Scope, SuccessOrdering) || 5847 ParseOrdering(FailureOrdering)) 5848 return true; 5849 5850 if (SuccessOrdering == Unordered || FailureOrdering == Unordered) 5851 return TokError("cmpxchg cannot be unordered"); 5852 if (SuccessOrdering < FailureOrdering) 5853 return TokError("cmpxchg must be at least as ordered on success as failure"); 5854 if (FailureOrdering == Release || FailureOrdering == AcquireRelease) 5855 return TokError("cmpxchg failure ordering cannot include release semantics"); 5856 if (!Ptr->getType()->isPointerTy()) 5857 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 5858 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 5859 return Error(CmpLoc, "compare value and pointer type do not match"); 5860 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 5861 return Error(NewLoc, "new value and pointer type do not match"); 5862 if (!New->getType()->isIntegerTy()) 5863 return Error(NewLoc, "cmpxchg operand must be an integer"); 5864 unsigned Size = New->getType()->getPrimitiveSizeInBits(); 5865 if (Size < 8 || (Size & (Size - 1))) 5866 return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized" 5867 " integer"); 5868 5869 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 5870 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, Scope); 5871 CXI->setVolatile(isVolatile); 5872 CXI->setWeak(isWeak); 5873 Inst = CXI; 5874 return AteExtraComma ? InstExtraComma : InstNormal; 5875 } 5876 5877 /// ParseAtomicRMW 5878 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 5879 /// 'singlethread'? AtomicOrdering 5880 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 5881 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 5882 bool AteExtraComma = false; 5883 AtomicOrdering Ordering = NotAtomic; 5884 SynchronizationScope Scope = CrossThread; 5885 bool isVolatile = false; 5886 AtomicRMWInst::BinOp Operation; 5887 5888 if (EatIfPresent(lltok::kw_volatile)) 5889 isVolatile = true; 5890 5891 switch (Lex.getKind()) { 5892 default: return TokError("expected binary operation in atomicrmw"); 5893 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 5894 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 5895 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 5896 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 5897 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 5898 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 5899 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 5900 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 5901 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 5902 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 5903 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 5904 } 5905 Lex.Lex(); // Eat the operation. 5906 5907 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 5908 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 5909 ParseTypeAndValue(Val, ValLoc, PFS) || 5910 ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 5911 return true; 5912 5913 if (Ordering == Unordered) 5914 return TokError("atomicrmw cannot be unordered"); 5915 if (!Ptr->getType()->isPointerTy()) 5916 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 5917 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 5918 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 5919 if (!Val->getType()->isIntegerTy()) 5920 return Error(ValLoc, "atomicrmw operand must be an integer"); 5921 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 5922 if (Size < 8 || (Size & (Size - 1))) 5923 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 5924 " integer"); 5925 5926 AtomicRMWInst *RMWI = 5927 new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope); 5928 RMWI->setVolatile(isVolatile); 5929 Inst = RMWI; 5930 return AteExtraComma ? InstExtraComma : InstNormal; 5931 } 5932 5933 /// ParseFence 5934 /// ::= 'fence' 'singlethread'? AtomicOrdering 5935 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 5936 AtomicOrdering Ordering = NotAtomic; 5937 SynchronizationScope Scope = CrossThread; 5938 if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 5939 return true; 5940 5941 if (Ordering == Unordered) 5942 return TokError("fence cannot be unordered"); 5943 if (Ordering == Monotonic) 5944 return TokError("fence cannot be monotonic"); 5945 5946 Inst = new FenceInst(Context, Ordering, Scope); 5947 return InstNormal; 5948 } 5949 5950 /// ParseGetElementPtr 5951 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 5952 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 5953 Value *Ptr = nullptr; 5954 Value *Val = nullptr; 5955 LocTy Loc, EltLoc; 5956 5957 bool InBounds = EatIfPresent(lltok::kw_inbounds); 5958 5959 Type *Ty = nullptr; 5960 LocTy ExplicitTypeLoc = Lex.getLoc(); 5961 if (ParseType(Ty) || 5962 ParseToken(lltok::comma, "expected comma after getelementptr's type") || 5963 ParseTypeAndValue(Ptr, Loc, PFS)) 5964 return true; 5965 5966 Type *BaseType = Ptr->getType(); 5967 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 5968 if (!BasePointerType) 5969 return Error(Loc, "base of getelementptr must be a pointer"); 5970 5971 if (Ty != BasePointerType->getElementType()) 5972 return Error(ExplicitTypeLoc, 5973 "explicit pointee type doesn't match operand's pointee type"); 5974 5975 SmallVector<Value*, 16> Indices; 5976 bool AteExtraComma = false; 5977 // GEP returns a vector of pointers if at least one of parameters is a vector. 5978 // All vector parameters should have the same vector width. 5979 unsigned GEPWidth = BaseType->isVectorTy() ? 5980 BaseType->getVectorNumElements() : 0; 5981 5982 while (EatIfPresent(lltok::comma)) { 5983 if (Lex.getKind() == lltok::MetadataVar) { 5984 AteExtraComma = true; 5985 break; 5986 } 5987 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 5988 if (!Val->getType()->getScalarType()->isIntegerTy()) 5989 return Error(EltLoc, "getelementptr index must be an integer"); 5990 5991 if (Val->getType()->isVectorTy()) { 5992 unsigned ValNumEl = Val->getType()->getVectorNumElements(); 5993 if (GEPWidth && GEPWidth != ValNumEl) 5994 return Error(EltLoc, 5995 "getelementptr vector index has a wrong number of elements"); 5996 GEPWidth = ValNumEl; 5997 } 5998 Indices.push_back(Val); 5999 } 6000 6001 SmallPtrSet<Type*, 4> Visited; 6002 if (!Indices.empty() && !Ty->isSized(&Visited)) 6003 return Error(Loc, "base element of getelementptr must be sized"); 6004 6005 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 6006 return Error(Loc, "invalid getelementptr indices"); 6007 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 6008 if (InBounds) 6009 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 6010 return AteExtraComma ? InstExtraComma : InstNormal; 6011 } 6012 6013 /// ParseExtractValue 6014 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 6015 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 6016 Value *Val; LocTy Loc; 6017 SmallVector<unsigned, 4> Indices; 6018 bool AteExtraComma; 6019 if (ParseTypeAndValue(Val, Loc, PFS) || 6020 ParseIndexList(Indices, AteExtraComma)) 6021 return true; 6022 6023 if (!Val->getType()->isAggregateType()) 6024 return Error(Loc, "extractvalue operand must be aggregate type"); 6025 6026 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 6027 return Error(Loc, "invalid indices for extractvalue"); 6028 Inst = ExtractValueInst::Create(Val, Indices); 6029 return AteExtraComma ? InstExtraComma : InstNormal; 6030 } 6031 6032 /// ParseInsertValue 6033 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 6034 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 6035 Value *Val0, *Val1; LocTy Loc0, Loc1; 6036 SmallVector<unsigned, 4> Indices; 6037 bool AteExtraComma; 6038 if (ParseTypeAndValue(Val0, Loc0, PFS) || 6039 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 6040 ParseTypeAndValue(Val1, Loc1, PFS) || 6041 ParseIndexList(Indices, AteExtraComma)) 6042 return true; 6043 6044 if (!Val0->getType()->isAggregateType()) 6045 return Error(Loc0, "insertvalue operand must be aggregate type"); 6046 6047 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 6048 if (!IndexedType) 6049 return Error(Loc0, "invalid indices for insertvalue"); 6050 if (IndexedType != Val1->getType()) 6051 return Error(Loc1, "insertvalue operand and field disagree in type: '" + 6052 getTypeString(Val1->getType()) + "' instead of '" + 6053 getTypeString(IndexedType) + "'"); 6054 Inst = InsertValueInst::Create(Val0, Val1, Indices); 6055 return AteExtraComma ? InstExtraComma : InstNormal; 6056 } 6057 6058 //===----------------------------------------------------------------------===// 6059 // Embedded metadata. 6060 //===----------------------------------------------------------------------===// 6061 6062 /// ParseMDNodeVector 6063 /// ::= { Element (',' Element)* } 6064 /// Element 6065 /// ::= 'null' | TypeAndValue 6066 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 6067 if (ParseToken(lltok::lbrace, "expected '{' here")) 6068 return true; 6069 6070 // Check for an empty list. 6071 if (EatIfPresent(lltok::rbrace)) 6072 return false; 6073 6074 do { 6075 // Null is a special case since it is typeless. 6076 if (EatIfPresent(lltok::kw_null)) { 6077 Elts.push_back(nullptr); 6078 continue; 6079 } 6080 6081 Metadata *MD; 6082 if (ParseMetadata(MD, nullptr)) 6083 return true; 6084 Elts.push_back(MD); 6085 } while (EatIfPresent(lltok::comma)); 6086 6087 return ParseToken(lltok::rbrace, "expected end of metadata node"); 6088 } 6089 6090 //===----------------------------------------------------------------------===// 6091 // Use-list order directives. 6092 //===----------------------------------------------------------------------===// 6093 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 6094 SMLoc Loc) { 6095 if (V->use_empty()) 6096 return Error(Loc, "value has no uses"); 6097 6098 unsigned NumUses = 0; 6099 SmallDenseMap<const Use *, unsigned, 16> Order; 6100 for (const Use &U : V->uses()) { 6101 if (++NumUses > Indexes.size()) 6102 break; 6103 Order[&U] = Indexes[NumUses - 1]; 6104 } 6105 if (NumUses < 2) 6106 return Error(Loc, "value only has one use"); 6107 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 6108 return Error(Loc, "wrong number of indexes, expected " + 6109 Twine(std::distance(V->use_begin(), V->use_end()))); 6110 6111 V->sortUseList([&](const Use &L, const Use &R) { 6112 return Order.lookup(&L) < Order.lookup(&R); 6113 }); 6114 return false; 6115 } 6116 6117 /// ParseUseListOrderIndexes 6118 /// ::= '{' uint32 (',' uint32)+ '}' 6119 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 6120 SMLoc Loc = Lex.getLoc(); 6121 if (ParseToken(lltok::lbrace, "expected '{' here")) 6122 return true; 6123 if (Lex.getKind() == lltok::rbrace) 6124 return Lex.Error("expected non-empty list of uselistorder indexes"); 6125 6126 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 6127 // indexes should be distinct numbers in the range [0, size-1], and should 6128 // not be in order. 6129 unsigned Offset = 0; 6130 unsigned Max = 0; 6131 bool IsOrdered = true; 6132 assert(Indexes.empty() && "Expected empty order vector"); 6133 do { 6134 unsigned Index; 6135 if (ParseUInt32(Index)) 6136 return true; 6137 6138 // Update consistency checks. 6139 Offset += Index - Indexes.size(); 6140 Max = std::max(Max, Index); 6141 IsOrdered &= Index == Indexes.size(); 6142 6143 Indexes.push_back(Index); 6144 } while (EatIfPresent(lltok::comma)); 6145 6146 if (ParseToken(lltok::rbrace, "expected '}' here")) 6147 return true; 6148 6149 if (Indexes.size() < 2) 6150 return Error(Loc, "expected >= 2 uselistorder indexes"); 6151 if (Offset != 0 || Max >= Indexes.size()) 6152 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)"); 6153 if (IsOrdered) 6154 return Error(Loc, "expected uselistorder indexes to change the order"); 6155 6156 return false; 6157 } 6158 6159 /// ParseUseListOrder 6160 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 6161 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) { 6162 SMLoc Loc = Lex.getLoc(); 6163 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 6164 return true; 6165 6166 Value *V; 6167 SmallVector<unsigned, 16> Indexes; 6168 if (ParseTypeAndValue(V, PFS) || 6169 ParseToken(lltok::comma, "expected comma in uselistorder directive") || 6170 ParseUseListOrderIndexes(Indexes)) 6171 return true; 6172 6173 return sortUseListOrder(V, Indexes, Loc); 6174 } 6175 6176 /// ParseUseListOrderBB 6177 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 6178 bool LLParser::ParseUseListOrderBB() { 6179 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 6180 SMLoc Loc = Lex.getLoc(); 6181 Lex.Lex(); 6182 6183 ValID Fn, Label; 6184 SmallVector<unsigned, 16> Indexes; 6185 if (ParseValID(Fn) || 6186 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6187 ParseValID(Label) || 6188 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6189 ParseUseListOrderIndexes(Indexes)) 6190 return true; 6191 6192 // Check the function. 6193 GlobalValue *GV; 6194 if (Fn.Kind == ValID::t_GlobalName) 6195 GV = M->getNamedValue(Fn.StrVal); 6196 else if (Fn.Kind == ValID::t_GlobalID) 6197 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 6198 else 6199 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 6200 if (!GV) 6201 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb"); 6202 auto *F = dyn_cast<Function>(GV); 6203 if (!F) 6204 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 6205 if (F->isDeclaration()) 6206 return Error(Fn.Loc, "invalid declaration in uselistorder_bb"); 6207 6208 // Check the basic block. 6209 if (Label.Kind == ValID::t_LocalID) 6210 return Error(Label.Loc, "invalid numeric label in uselistorder_bb"); 6211 if (Label.Kind != ValID::t_LocalName) 6212 return Error(Label.Loc, "expected basic block name in uselistorder_bb"); 6213 Value *V = F->getValueSymbolTable().lookup(Label.StrVal); 6214 if (!V) 6215 return Error(Label.Loc, "invalid basic block in uselistorder_bb"); 6216 if (!isa<BasicBlock>(V)) 6217 return Error(Label.Loc, "expected basic block in uselistorder_bb"); 6218 6219 return sortUseListOrder(V, Indexes, Loc); 6220 } 6221