1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the parser class for .ll files. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LLParser.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/AsmParser/SlotMapping.h" 21 #include "llvm/BinaryFormat/Dwarf.h" 22 #include "llvm/IR/Argument.h" 23 #include "llvm/IR/AutoUpgrade.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallingConv.h" 26 #include "llvm/IR/Comdat.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DebugInfoMetadata.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/GlobalIFunc.h" 32 #include "llvm/IR/GlobalObject.h" 33 #include "llvm/IR/InlineAsm.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/LLVMContext.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/Operator.h" 41 #include "llvm/IR/Type.h" 42 #include "llvm/IR/Value.h" 43 #include "llvm/IR/ValueSymbolTable.h" 44 #include "llvm/Support/Casting.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/MathExtras.h" 47 #include "llvm/Support/SaveAndRestore.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <cstring> 52 #include <iterator> 53 #include <vector> 54 55 using namespace llvm; 56 57 static std::string getTypeString(Type *T) { 58 std::string Result; 59 raw_string_ostream Tmp(Result); 60 Tmp << *T; 61 return Tmp.str(); 62 } 63 64 /// Run: module ::= toplevelentity* 65 bool LLParser::Run() { 66 // Prime the lexer. 67 Lex.Lex(); 68 69 if (Context.shouldDiscardValueNames()) 70 return Error( 71 Lex.getLoc(), 72 "Can't read textual IR with a Context that discards named Values"); 73 74 return ParseTopLevelEntities() || 75 ValidateEndOfModule(); 76 } 77 78 bool LLParser::parseStandaloneConstantValue(Constant *&C, 79 const SlotMapping *Slots) { 80 restoreParsingState(Slots); 81 Lex.Lex(); 82 83 Type *Ty = nullptr; 84 if (ParseType(Ty) || parseConstantValue(Ty, C)) 85 return true; 86 if (Lex.getKind() != lltok::Eof) 87 return Error(Lex.getLoc(), "expected end of string"); 88 return false; 89 } 90 91 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 92 const SlotMapping *Slots) { 93 restoreParsingState(Slots); 94 Lex.Lex(); 95 96 Read = 0; 97 SMLoc Start = Lex.getLoc(); 98 Ty = nullptr; 99 if (ParseType(Ty)) 100 return true; 101 SMLoc End = Lex.getLoc(); 102 Read = End.getPointer() - Start.getPointer(); 103 104 return false; 105 } 106 107 void LLParser::restoreParsingState(const SlotMapping *Slots) { 108 if (!Slots) 109 return; 110 NumberedVals = Slots->GlobalValues; 111 NumberedMetadata = Slots->MetadataNodes; 112 for (const auto &I : Slots->NamedTypes) 113 NamedTypes.insert( 114 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 115 for (const auto &I : Slots->Types) 116 NumberedTypes.insert( 117 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 118 } 119 120 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 121 /// module. 122 bool LLParser::ValidateEndOfModule() { 123 // Handle any function attribute group forward references. 124 for (const auto &RAG : ForwardRefAttrGroups) { 125 Value *V = RAG.first; 126 const std::vector<unsigned> &Attrs = RAG.second; 127 AttrBuilder B; 128 129 for (const auto &Attr : Attrs) 130 B.merge(NumberedAttrBuilders[Attr]); 131 132 if (Function *Fn = dyn_cast<Function>(V)) { 133 AttributeList AS = Fn->getAttributes(); 134 AttrBuilder FnAttrs(AS.getFnAttributes()); 135 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 136 137 FnAttrs.merge(B); 138 139 // If the alignment was parsed as an attribute, move to the alignment 140 // field. 141 if (FnAttrs.hasAlignmentAttr()) { 142 Fn->setAlignment(FnAttrs.getAlignment()); 143 FnAttrs.removeAttribute(Attribute::Alignment); 144 } 145 146 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 147 AttributeSet::get(Context, FnAttrs)); 148 Fn->setAttributes(AS); 149 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 150 AttributeList AS = CI->getAttributes(); 151 AttrBuilder FnAttrs(AS.getFnAttributes()); 152 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 153 FnAttrs.merge(B); 154 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 155 AttributeSet::get(Context, FnAttrs)); 156 CI->setAttributes(AS); 157 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 158 AttributeList AS = II->getAttributes(); 159 AttrBuilder FnAttrs(AS.getFnAttributes()); 160 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 161 FnAttrs.merge(B); 162 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 163 AttributeSet::get(Context, FnAttrs)); 164 II->setAttributes(AS); 165 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 166 AttrBuilder Attrs(GV->getAttributes()); 167 Attrs.merge(B); 168 GV->setAttributes(AttributeSet::get(Context,Attrs)); 169 } else { 170 llvm_unreachable("invalid object with forward attribute group reference"); 171 } 172 } 173 174 // If there are entries in ForwardRefBlockAddresses at this point, the 175 // function was never defined. 176 if (!ForwardRefBlockAddresses.empty()) 177 return Error(ForwardRefBlockAddresses.begin()->first.Loc, 178 "expected function name in blockaddress"); 179 180 for (const auto &NT : NumberedTypes) 181 if (NT.second.second.isValid()) 182 return Error(NT.second.second, 183 "use of undefined type '%" + Twine(NT.first) + "'"); 184 185 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 186 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 187 if (I->second.second.isValid()) 188 return Error(I->second.second, 189 "use of undefined type named '" + I->getKey() + "'"); 190 191 if (!ForwardRefComdats.empty()) 192 return Error(ForwardRefComdats.begin()->second, 193 "use of undefined comdat '$" + 194 ForwardRefComdats.begin()->first + "'"); 195 196 if (!ForwardRefVals.empty()) 197 return Error(ForwardRefVals.begin()->second.second, 198 "use of undefined value '@" + ForwardRefVals.begin()->first + 199 "'"); 200 201 if (!ForwardRefValIDs.empty()) 202 return Error(ForwardRefValIDs.begin()->second.second, 203 "use of undefined value '@" + 204 Twine(ForwardRefValIDs.begin()->first) + "'"); 205 206 if (!ForwardRefMDNodes.empty()) 207 return Error(ForwardRefMDNodes.begin()->second.second, 208 "use of undefined metadata '!" + 209 Twine(ForwardRefMDNodes.begin()->first) + "'"); 210 211 // Resolve metadata cycles. 212 for (auto &N : NumberedMetadata) { 213 if (N.second && !N.second->isResolved()) 214 N.second->resolveCycles(); 215 } 216 217 for (auto *Inst : InstsWithTBAATag) { 218 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 219 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 220 auto *UpgradedMD = UpgradeTBAANode(*MD); 221 if (MD != UpgradedMD) 222 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 223 } 224 225 // Look for intrinsic functions and CallInst that need to be upgraded 226 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 227 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 228 229 // Some types could be renamed during loading if several modules are 230 // loaded in the same LLVMContext (LTO scenario). In this case we should 231 // remangle intrinsics names as well. 232 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) { 233 Function *F = &*FI++; 234 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 235 F->replaceAllUsesWith(Remangled.getValue()); 236 F->eraseFromParent(); 237 } 238 } 239 240 UpgradeDebugInfo(*M); 241 242 UpgradeModuleFlags(*M); 243 244 if (!Slots) 245 return false; 246 // Initialize the slot mapping. 247 // Because by this point we've parsed and validated everything, we can "steal" 248 // the mapping from LLParser as it doesn't need it anymore. 249 Slots->GlobalValues = std::move(NumberedVals); 250 Slots->MetadataNodes = std::move(NumberedMetadata); 251 for (const auto &I : NamedTypes) 252 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 253 for (const auto &I : NumberedTypes) 254 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 255 256 return false; 257 } 258 259 //===----------------------------------------------------------------------===// 260 // Top-Level Entities 261 //===----------------------------------------------------------------------===// 262 263 bool LLParser::ParseTopLevelEntities() { 264 while (true) { 265 switch (Lex.getKind()) { 266 default: return TokError("expected top-level entity"); 267 case lltok::Eof: return false; 268 case lltok::kw_declare: if (ParseDeclare()) return true; break; 269 case lltok::kw_define: if (ParseDefine()) return true; break; 270 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 271 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 272 case lltok::kw_source_filename: 273 if (ParseSourceFileName()) 274 return true; 275 break; 276 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 277 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 278 case lltok::LocalVar: if (ParseNamedType()) return true; break; 279 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 280 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 281 case lltok::ComdatVar: if (parseComdat()) return true; break; 282 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 283 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break; 284 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break; 285 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break; 286 case lltok::kw_uselistorder_bb: 287 if (ParseUseListOrderBB()) 288 return true; 289 break; 290 } 291 } 292 } 293 294 /// toplevelentity 295 /// ::= 'module' 'asm' STRINGCONSTANT 296 bool LLParser::ParseModuleAsm() { 297 assert(Lex.getKind() == lltok::kw_module); 298 Lex.Lex(); 299 300 std::string AsmStr; 301 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 302 ParseStringConstant(AsmStr)) return true; 303 304 M->appendModuleInlineAsm(AsmStr); 305 return false; 306 } 307 308 /// toplevelentity 309 /// ::= 'target' 'triple' '=' STRINGCONSTANT 310 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 311 bool LLParser::ParseTargetDefinition() { 312 assert(Lex.getKind() == lltok::kw_target); 313 std::string Str; 314 switch (Lex.Lex()) { 315 default: return TokError("unknown target property"); 316 case lltok::kw_triple: 317 Lex.Lex(); 318 if (ParseToken(lltok::equal, "expected '=' after target triple") || 319 ParseStringConstant(Str)) 320 return true; 321 M->setTargetTriple(Str); 322 return false; 323 case lltok::kw_datalayout: 324 Lex.Lex(); 325 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 326 ParseStringConstant(Str)) 327 return true; 328 M->setDataLayout(Str); 329 return false; 330 } 331 } 332 333 /// toplevelentity 334 /// ::= 'source_filename' '=' STRINGCONSTANT 335 bool LLParser::ParseSourceFileName() { 336 assert(Lex.getKind() == lltok::kw_source_filename); 337 std::string Str; 338 Lex.Lex(); 339 if (ParseToken(lltok::equal, "expected '=' after source_filename") || 340 ParseStringConstant(Str)) 341 return true; 342 M->setSourceFileName(Str); 343 return false; 344 } 345 346 /// toplevelentity 347 /// ::= 'deplibs' '=' '[' ']' 348 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 349 /// FIXME: Remove in 4.0. Currently parse, but ignore. 350 bool LLParser::ParseDepLibs() { 351 assert(Lex.getKind() == lltok::kw_deplibs); 352 Lex.Lex(); 353 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 354 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 355 return true; 356 357 if (EatIfPresent(lltok::rsquare)) 358 return false; 359 360 do { 361 std::string Str; 362 if (ParseStringConstant(Str)) return true; 363 } while (EatIfPresent(lltok::comma)); 364 365 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 366 } 367 368 /// ParseUnnamedType: 369 /// ::= LocalVarID '=' 'type' type 370 bool LLParser::ParseUnnamedType() { 371 LocTy TypeLoc = Lex.getLoc(); 372 unsigned TypeID = Lex.getUIntVal(); 373 Lex.Lex(); // eat LocalVarID; 374 375 if (ParseToken(lltok::equal, "expected '=' after name") || 376 ParseToken(lltok::kw_type, "expected 'type' after '='")) 377 return true; 378 379 Type *Result = nullptr; 380 if (ParseStructDefinition(TypeLoc, "", 381 NumberedTypes[TypeID], Result)) return true; 382 383 if (!isa<StructType>(Result)) { 384 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 385 if (Entry.first) 386 return Error(TypeLoc, "non-struct types may not be recursive"); 387 Entry.first = Result; 388 Entry.second = SMLoc(); 389 } 390 391 return false; 392 } 393 394 /// toplevelentity 395 /// ::= LocalVar '=' 'type' type 396 bool LLParser::ParseNamedType() { 397 std::string Name = Lex.getStrVal(); 398 LocTy NameLoc = Lex.getLoc(); 399 Lex.Lex(); // eat LocalVar. 400 401 if (ParseToken(lltok::equal, "expected '=' after name") || 402 ParseToken(lltok::kw_type, "expected 'type' after name")) 403 return true; 404 405 Type *Result = nullptr; 406 if (ParseStructDefinition(NameLoc, Name, 407 NamedTypes[Name], Result)) return true; 408 409 if (!isa<StructType>(Result)) { 410 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 411 if (Entry.first) 412 return Error(NameLoc, "non-struct types may not be recursive"); 413 Entry.first = Result; 414 Entry.second = SMLoc(); 415 } 416 417 return false; 418 } 419 420 /// toplevelentity 421 /// ::= 'declare' FunctionHeader 422 bool LLParser::ParseDeclare() { 423 assert(Lex.getKind() == lltok::kw_declare); 424 Lex.Lex(); 425 426 std::vector<std::pair<unsigned, MDNode *>> MDs; 427 while (Lex.getKind() == lltok::MetadataVar) { 428 unsigned MDK; 429 MDNode *N; 430 if (ParseMetadataAttachment(MDK, N)) 431 return true; 432 MDs.push_back({MDK, N}); 433 } 434 435 Function *F; 436 if (ParseFunctionHeader(F, false)) 437 return true; 438 for (auto &MD : MDs) 439 F->addMetadata(MD.first, *MD.second); 440 return false; 441 } 442 443 /// toplevelentity 444 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 445 bool LLParser::ParseDefine() { 446 assert(Lex.getKind() == lltok::kw_define); 447 Lex.Lex(); 448 449 Function *F; 450 return ParseFunctionHeader(F, true) || 451 ParseOptionalFunctionMetadata(*F) || 452 ParseFunctionBody(*F); 453 } 454 455 /// ParseGlobalType 456 /// ::= 'constant' 457 /// ::= 'global' 458 bool LLParser::ParseGlobalType(bool &IsConstant) { 459 if (Lex.getKind() == lltok::kw_constant) 460 IsConstant = true; 461 else if (Lex.getKind() == lltok::kw_global) 462 IsConstant = false; 463 else { 464 IsConstant = false; 465 return TokError("expected 'global' or 'constant'"); 466 } 467 Lex.Lex(); 468 return false; 469 } 470 471 bool LLParser::ParseOptionalUnnamedAddr( 472 GlobalVariable::UnnamedAddr &UnnamedAddr) { 473 if (EatIfPresent(lltok::kw_unnamed_addr)) 474 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 475 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 476 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 477 else 478 UnnamedAddr = GlobalValue::UnnamedAddr::None; 479 return false; 480 } 481 482 /// ParseUnnamedGlobal: 483 /// OptionalVisibility (ALIAS | IFUNC) ... 484 /// OptionalLinkage OptionalVisibility OptionalDLLStorageClass 485 /// ... -> global variable 486 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 487 /// GlobalID '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 488 /// ... -> global variable 489 bool LLParser::ParseUnnamedGlobal() { 490 unsigned VarID = NumberedVals.size(); 491 std::string Name; 492 LocTy NameLoc = Lex.getLoc(); 493 494 // Handle the GlobalID form. 495 if (Lex.getKind() == lltok::GlobalID) { 496 if (Lex.getUIntVal() != VarID) 497 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 498 Twine(VarID) + "'"); 499 Lex.Lex(); // eat GlobalID; 500 501 if (ParseToken(lltok::equal, "expected '=' after name")) 502 return true; 503 } 504 505 bool HasLinkage; 506 unsigned Linkage, Visibility, DLLStorageClass; 507 GlobalVariable::ThreadLocalMode TLM; 508 GlobalVariable::UnnamedAddr UnnamedAddr; 509 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) || 510 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 511 return true; 512 513 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 514 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 515 DLLStorageClass, TLM, UnnamedAddr); 516 517 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 518 DLLStorageClass, TLM, UnnamedAddr); 519 } 520 521 /// ParseNamedGlobal: 522 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 523 /// GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 524 /// ... -> global variable 525 bool LLParser::ParseNamedGlobal() { 526 assert(Lex.getKind() == lltok::GlobalVar); 527 LocTy NameLoc = Lex.getLoc(); 528 std::string Name = Lex.getStrVal(); 529 Lex.Lex(); 530 531 bool HasLinkage; 532 unsigned Linkage, Visibility, DLLStorageClass; 533 GlobalVariable::ThreadLocalMode TLM; 534 GlobalVariable::UnnamedAddr UnnamedAddr; 535 if (ParseToken(lltok::equal, "expected '=' in global variable") || 536 ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) || 537 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 538 return true; 539 540 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 541 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 542 DLLStorageClass, TLM, UnnamedAddr); 543 544 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 545 DLLStorageClass, TLM, UnnamedAddr); 546 } 547 548 bool LLParser::parseComdat() { 549 assert(Lex.getKind() == lltok::ComdatVar); 550 std::string Name = Lex.getStrVal(); 551 LocTy NameLoc = Lex.getLoc(); 552 Lex.Lex(); 553 554 if (ParseToken(lltok::equal, "expected '=' here")) 555 return true; 556 557 if (ParseToken(lltok::kw_comdat, "expected comdat keyword")) 558 return TokError("expected comdat type"); 559 560 Comdat::SelectionKind SK; 561 switch (Lex.getKind()) { 562 default: 563 return TokError("unknown selection kind"); 564 case lltok::kw_any: 565 SK = Comdat::Any; 566 break; 567 case lltok::kw_exactmatch: 568 SK = Comdat::ExactMatch; 569 break; 570 case lltok::kw_largest: 571 SK = Comdat::Largest; 572 break; 573 case lltok::kw_noduplicates: 574 SK = Comdat::NoDuplicates; 575 break; 576 case lltok::kw_samesize: 577 SK = Comdat::SameSize; 578 break; 579 } 580 Lex.Lex(); 581 582 // See if the comdat was forward referenced, if so, use the comdat. 583 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 584 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 585 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 586 return Error(NameLoc, "redefinition of comdat '$" + Name + "'"); 587 588 Comdat *C; 589 if (I != ComdatSymTab.end()) 590 C = &I->second; 591 else 592 C = M->getOrInsertComdat(Name); 593 C->setSelectionKind(SK); 594 595 return false; 596 } 597 598 // MDString: 599 // ::= '!' STRINGCONSTANT 600 bool LLParser::ParseMDString(MDString *&Result) { 601 std::string Str; 602 if (ParseStringConstant(Str)) return true; 603 Result = MDString::get(Context, Str); 604 return false; 605 } 606 607 // MDNode: 608 // ::= '!' MDNodeNumber 609 bool LLParser::ParseMDNodeID(MDNode *&Result) { 610 // !{ ..., !42, ... } 611 LocTy IDLoc = Lex.getLoc(); 612 unsigned MID = 0; 613 if (ParseUInt32(MID)) 614 return true; 615 616 // If not a forward reference, just return it now. 617 if (NumberedMetadata.count(MID)) { 618 Result = NumberedMetadata[MID]; 619 return false; 620 } 621 622 // Otherwise, create MDNode forward reference. 623 auto &FwdRef = ForwardRefMDNodes[MID]; 624 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 625 626 Result = FwdRef.first.get(); 627 NumberedMetadata[MID].reset(Result); 628 return false; 629 } 630 631 /// ParseNamedMetadata: 632 /// !foo = !{ !1, !2 } 633 bool LLParser::ParseNamedMetadata() { 634 assert(Lex.getKind() == lltok::MetadataVar); 635 std::string Name = Lex.getStrVal(); 636 Lex.Lex(); 637 638 if (ParseToken(lltok::equal, "expected '=' here") || 639 ParseToken(lltok::exclaim, "Expected '!' here") || 640 ParseToken(lltok::lbrace, "Expected '{' here")) 641 return true; 642 643 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 644 if (Lex.getKind() != lltok::rbrace) 645 do { 646 if (ParseToken(lltok::exclaim, "Expected '!' here")) 647 return true; 648 649 MDNode *N = nullptr; 650 if (ParseMDNodeID(N)) return true; 651 NMD->addOperand(N); 652 } while (EatIfPresent(lltok::comma)); 653 654 return ParseToken(lltok::rbrace, "expected end of metadata node"); 655 } 656 657 /// ParseStandaloneMetadata: 658 /// !42 = !{...} 659 bool LLParser::ParseStandaloneMetadata() { 660 assert(Lex.getKind() == lltok::exclaim); 661 Lex.Lex(); 662 unsigned MetadataID = 0; 663 664 MDNode *Init; 665 if (ParseUInt32(MetadataID) || 666 ParseToken(lltok::equal, "expected '=' here")) 667 return true; 668 669 // Detect common error, from old metadata syntax. 670 if (Lex.getKind() == lltok::Type) 671 return TokError("unexpected type in metadata definition"); 672 673 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 674 if (Lex.getKind() == lltok::MetadataVar) { 675 if (ParseSpecializedMDNode(Init, IsDistinct)) 676 return true; 677 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 678 ParseMDTuple(Init, IsDistinct)) 679 return true; 680 681 // See if this was forward referenced, if so, handle it. 682 auto FI = ForwardRefMDNodes.find(MetadataID); 683 if (FI != ForwardRefMDNodes.end()) { 684 FI->second.first->replaceAllUsesWith(Init); 685 ForwardRefMDNodes.erase(FI); 686 687 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 688 } else { 689 if (NumberedMetadata.count(MetadataID)) 690 return TokError("Metadata id is already used"); 691 NumberedMetadata[MetadataID].reset(Init); 692 } 693 694 return false; 695 } 696 697 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 698 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 699 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 700 } 701 702 /// parseIndirectSymbol: 703 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility 704 /// OptionalDLLStorageClass OptionalThreadLocal 705 /// OptionalUnnamedAddr 'alias|ifunc' IndirectSymbol 706 /// 707 /// IndirectSymbol 708 /// ::= TypeAndValue 709 /// 710 /// Everything through OptionalUnnamedAddr has already been parsed. 711 /// 712 bool LLParser::parseIndirectSymbol( 713 const std::string &Name, LocTy NameLoc, unsigned L, unsigned Visibility, 714 unsigned DLLStorageClass, GlobalVariable::ThreadLocalMode TLM, 715 GlobalVariable::UnnamedAddr UnnamedAddr) { 716 bool IsAlias; 717 if (Lex.getKind() == lltok::kw_alias) 718 IsAlias = true; 719 else if (Lex.getKind() == lltok::kw_ifunc) 720 IsAlias = false; 721 else 722 llvm_unreachable("Not an alias or ifunc!"); 723 Lex.Lex(); 724 725 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 726 727 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 728 return Error(NameLoc, "invalid linkage type for alias"); 729 730 if (!isValidVisibilityForLinkage(Visibility, L)) 731 return Error(NameLoc, 732 "symbol with local linkage must have default visibility"); 733 734 Type *Ty; 735 LocTy ExplicitTypeLoc = Lex.getLoc(); 736 if (ParseType(Ty) || 737 ParseToken(lltok::comma, "expected comma after alias or ifunc's type")) 738 return true; 739 740 Constant *Aliasee; 741 LocTy AliaseeLoc = Lex.getLoc(); 742 if (Lex.getKind() != lltok::kw_bitcast && 743 Lex.getKind() != lltok::kw_getelementptr && 744 Lex.getKind() != lltok::kw_addrspacecast && 745 Lex.getKind() != lltok::kw_inttoptr) { 746 if (ParseGlobalTypeAndValue(Aliasee)) 747 return true; 748 } else { 749 // The bitcast dest type is not present, it is implied by the dest type. 750 ValID ID; 751 if (ParseValID(ID)) 752 return true; 753 if (ID.Kind != ValID::t_Constant) 754 return Error(AliaseeLoc, "invalid aliasee"); 755 Aliasee = ID.ConstantVal; 756 } 757 758 Type *AliaseeType = Aliasee->getType(); 759 auto *PTy = dyn_cast<PointerType>(AliaseeType); 760 if (!PTy) 761 return Error(AliaseeLoc, "An alias or ifunc must have pointer type"); 762 unsigned AddrSpace = PTy->getAddressSpace(); 763 764 if (IsAlias && Ty != PTy->getElementType()) 765 return Error( 766 ExplicitTypeLoc, 767 "explicit pointee type doesn't match operand's pointee type"); 768 769 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) 770 return Error( 771 ExplicitTypeLoc, 772 "explicit pointee type should be a function type"); 773 774 GlobalValue *GVal = nullptr; 775 776 // See if the alias was forward referenced, if so, prepare to replace the 777 // forward reference. 778 if (!Name.empty()) { 779 GVal = M->getNamedValue(Name); 780 if (GVal) { 781 if (!ForwardRefVals.erase(Name)) 782 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 783 } 784 } else { 785 auto I = ForwardRefValIDs.find(NumberedVals.size()); 786 if (I != ForwardRefValIDs.end()) { 787 GVal = I->second.first; 788 ForwardRefValIDs.erase(I); 789 } 790 } 791 792 // Okay, create the alias but do not insert it into the module yet. 793 std::unique_ptr<GlobalIndirectSymbol> GA; 794 if (IsAlias) 795 GA.reset(GlobalAlias::create(Ty, AddrSpace, 796 (GlobalValue::LinkageTypes)Linkage, Name, 797 Aliasee, /*Parent*/ nullptr)); 798 else 799 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 800 (GlobalValue::LinkageTypes)Linkage, Name, 801 Aliasee, /*Parent*/ nullptr)); 802 GA->setThreadLocalMode(TLM); 803 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 804 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 805 GA->setUnnamedAddr(UnnamedAddr); 806 807 if (Name.empty()) 808 NumberedVals.push_back(GA.get()); 809 810 if (GVal) { 811 // Verify that types agree. 812 if (GVal->getType() != GA->getType()) 813 return Error( 814 ExplicitTypeLoc, 815 "forward reference and definition of alias have different types"); 816 817 // If they agree, just RAUW the old value with the alias and remove the 818 // forward ref info. 819 GVal->replaceAllUsesWith(GA.get()); 820 GVal->eraseFromParent(); 821 } 822 823 // Insert into the module, we know its name won't collide now. 824 if (IsAlias) 825 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 826 else 827 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 828 assert(GA->getName() == Name && "Should not be a name conflict!"); 829 830 // The module owns this now 831 GA.release(); 832 833 return false; 834 } 835 836 /// ParseGlobal 837 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass 838 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 839 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 840 /// ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass 841 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 842 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 843 /// 844 /// Everything up to and including OptionalUnnamedAddr has been parsed 845 /// already. 846 /// 847 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 848 unsigned Linkage, bool HasLinkage, 849 unsigned Visibility, unsigned DLLStorageClass, 850 GlobalVariable::ThreadLocalMode TLM, 851 GlobalVariable::UnnamedAddr UnnamedAddr) { 852 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 853 return Error(NameLoc, 854 "symbol with local linkage must have default visibility"); 855 856 unsigned AddrSpace; 857 bool IsConstant, IsExternallyInitialized; 858 LocTy IsExternallyInitializedLoc; 859 LocTy TyLoc; 860 861 Type *Ty = nullptr; 862 if (ParseOptionalAddrSpace(AddrSpace) || 863 ParseOptionalToken(lltok::kw_externally_initialized, 864 IsExternallyInitialized, 865 &IsExternallyInitializedLoc) || 866 ParseGlobalType(IsConstant) || 867 ParseType(Ty, TyLoc)) 868 return true; 869 870 // If the linkage is specified and is external, then no initializer is 871 // present. 872 Constant *Init = nullptr; 873 if (!HasLinkage || 874 !GlobalValue::isValidDeclarationLinkage( 875 (GlobalValue::LinkageTypes)Linkage)) { 876 if (ParseGlobalValue(Ty, Init)) 877 return true; 878 } 879 880 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 881 return Error(TyLoc, "invalid type for global variable"); 882 883 GlobalValue *GVal = nullptr; 884 885 // See if the global was forward referenced, if so, use the global. 886 if (!Name.empty()) { 887 GVal = M->getNamedValue(Name); 888 if (GVal) { 889 if (!ForwardRefVals.erase(Name)) 890 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 891 } 892 } else { 893 auto I = ForwardRefValIDs.find(NumberedVals.size()); 894 if (I != ForwardRefValIDs.end()) { 895 GVal = I->second.first; 896 ForwardRefValIDs.erase(I); 897 } 898 } 899 900 GlobalVariable *GV; 901 if (!GVal) { 902 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 903 Name, nullptr, GlobalVariable::NotThreadLocal, 904 AddrSpace); 905 } else { 906 if (GVal->getValueType() != Ty) 907 return Error(TyLoc, 908 "forward reference and definition of global have different types"); 909 910 GV = cast<GlobalVariable>(GVal); 911 912 // Move the forward-reference to the correct spot in the module. 913 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 914 } 915 916 if (Name.empty()) 917 NumberedVals.push_back(GV); 918 919 // Set the parsed properties on the global. 920 if (Init) 921 GV->setInitializer(Init); 922 GV->setConstant(IsConstant); 923 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 924 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 925 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 926 GV->setExternallyInitialized(IsExternallyInitialized); 927 GV->setThreadLocalMode(TLM); 928 GV->setUnnamedAddr(UnnamedAddr); 929 930 // Parse attributes on the global. 931 while (Lex.getKind() == lltok::comma) { 932 Lex.Lex(); 933 934 if (Lex.getKind() == lltok::kw_section) { 935 Lex.Lex(); 936 GV->setSection(Lex.getStrVal()); 937 if (ParseToken(lltok::StringConstant, "expected global section string")) 938 return true; 939 } else if (Lex.getKind() == lltok::kw_align) { 940 unsigned Alignment; 941 if (ParseOptionalAlignment(Alignment)) return true; 942 GV->setAlignment(Alignment); 943 } else if (Lex.getKind() == lltok::MetadataVar) { 944 if (ParseGlobalObjectMetadataAttachment(*GV)) 945 return true; 946 } else { 947 Comdat *C; 948 if (parseOptionalComdat(Name, C)) 949 return true; 950 if (C) 951 GV->setComdat(C); 952 else 953 return TokError("unknown global variable property!"); 954 } 955 } 956 957 AttrBuilder Attrs; 958 LocTy BuiltinLoc; 959 std::vector<unsigned> FwdRefAttrGrps; 960 if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 961 return true; 962 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 963 GV->setAttributes(AttributeSet::get(Context, Attrs)); 964 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 965 } 966 967 return false; 968 } 969 970 /// ParseUnnamedAttrGrp 971 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 972 bool LLParser::ParseUnnamedAttrGrp() { 973 assert(Lex.getKind() == lltok::kw_attributes); 974 LocTy AttrGrpLoc = Lex.getLoc(); 975 Lex.Lex(); 976 977 if (Lex.getKind() != lltok::AttrGrpID) 978 return TokError("expected attribute group id"); 979 980 unsigned VarID = Lex.getUIntVal(); 981 std::vector<unsigned> unused; 982 LocTy BuiltinLoc; 983 Lex.Lex(); 984 985 if (ParseToken(lltok::equal, "expected '=' here") || 986 ParseToken(lltok::lbrace, "expected '{' here") || 987 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 988 BuiltinLoc) || 989 ParseToken(lltok::rbrace, "expected end of attribute group")) 990 return true; 991 992 if (!NumberedAttrBuilders[VarID].hasAttributes()) 993 return Error(AttrGrpLoc, "attribute group has no attributes"); 994 995 return false; 996 } 997 998 /// ParseFnAttributeValuePairs 999 /// ::= <attr> | <attr> '=' <value> 1000 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B, 1001 std::vector<unsigned> &FwdRefAttrGrps, 1002 bool inAttrGrp, LocTy &BuiltinLoc) { 1003 bool HaveError = false; 1004 1005 B.clear(); 1006 1007 while (true) { 1008 lltok::Kind Token = Lex.getKind(); 1009 if (Token == lltok::kw_builtin) 1010 BuiltinLoc = Lex.getLoc(); 1011 switch (Token) { 1012 default: 1013 if (!inAttrGrp) return HaveError; 1014 return Error(Lex.getLoc(), "unterminated attribute group"); 1015 case lltok::rbrace: 1016 // Finished. 1017 return false; 1018 1019 case lltok::AttrGrpID: { 1020 // Allow a function to reference an attribute group: 1021 // 1022 // define void @foo() #1 { ... } 1023 if (inAttrGrp) 1024 HaveError |= 1025 Error(Lex.getLoc(), 1026 "cannot have an attribute group reference in an attribute group"); 1027 1028 unsigned AttrGrpNum = Lex.getUIntVal(); 1029 if (inAttrGrp) break; 1030 1031 // Save the reference to the attribute group. We'll fill it in later. 1032 FwdRefAttrGrps.push_back(AttrGrpNum); 1033 break; 1034 } 1035 // Target-dependent attributes: 1036 case lltok::StringConstant: { 1037 if (ParseStringAttribute(B)) 1038 return true; 1039 continue; 1040 } 1041 1042 // Target-independent attributes: 1043 case lltok::kw_align: { 1044 // As a hack, we allow function alignment to be initially parsed as an 1045 // attribute on a function declaration/definition or added to an attribute 1046 // group and later moved to the alignment field. 1047 unsigned Alignment; 1048 if (inAttrGrp) { 1049 Lex.Lex(); 1050 if (ParseToken(lltok::equal, "expected '=' here") || 1051 ParseUInt32(Alignment)) 1052 return true; 1053 } else { 1054 if (ParseOptionalAlignment(Alignment)) 1055 return true; 1056 } 1057 B.addAlignmentAttr(Alignment); 1058 continue; 1059 } 1060 case lltok::kw_alignstack: { 1061 unsigned Alignment; 1062 if (inAttrGrp) { 1063 Lex.Lex(); 1064 if (ParseToken(lltok::equal, "expected '=' here") || 1065 ParseUInt32(Alignment)) 1066 return true; 1067 } else { 1068 if (ParseOptionalStackAlignment(Alignment)) 1069 return true; 1070 } 1071 B.addStackAlignmentAttr(Alignment); 1072 continue; 1073 } 1074 case lltok::kw_allocsize: { 1075 unsigned ElemSizeArg; 1076 Optional<unsigned> NumElemsArg; 1077 // inAttrGrp doesn't matter; we only support allocsize(a[, b]) 1078 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1079 return true; 1080 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1081 continue; 1082 } 1083 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 1084 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 1085 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 1086 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 1087 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 1088 case lltok::kw_inaccessiblememonly: 1089 B.addAttribute(Attribute::InaccessibleMemOnly); break; 1090 case lltok::kw_inaccessiblemem_or_argmemonly: 1091 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break; 1092 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 1093 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 1094 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 1095 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 1096 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 1097 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 1098 case lltok::kw_noimplicitfloat: 1099 B.addAttribute(Attribute::NoImplicitFloat); break; 1100 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1101 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1102 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1103 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1104 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1105 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1106 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1107 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1108 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1109 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1110 case lltok::kw_returns_twice: 1111 B.addAttribute(Attribute::ReturnsTwice); break; 1112 case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break; 1113 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1114 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1115 case lltok::kw_sspstrong: 1116 B.addAttribute(Attribute::StackProtectStrong); break; 1117 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1118 case lltok::kw_sanitize_address: 1119 B.addAttribute(Attribute::SanitizeAddress); break; 1120 case lltok::kw_sanitize_thread: 1121 B.addAttribute(Attribute::SanitizeThread); break; 1122 case lltok::kw_sanitize_memory: 1123 B.addAttribute(Attribute::SanitizeMemory); break; 1124 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1125 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1126 1127 // Error handling. 1128 case lltok::kw_inreg: 1129 case lltok::kw_signext: 1130 case lltok::kw_zeroext: 1131 HaveError |= 1132 Error(Lex.getLoc(), 1133 "invalid use of attribute on a function"); 1134 break; 1135 case lltok::kw_byval: 1136 case lltok::kw_dereferenceable: 1137 case lltok::kw_dereferenceable_or_null: 1138 case lltok::kw_inalloca: 1139 case lltok::kw_nest: 1140 case lltok::kw_noalias: 1141 case lltok::kw_nocapture: 1142 case lltok::kw_nonnull: 1143 case lltok::kw_returned: 1144 case lltok::kw_sret: 1145 case lltok::kw_swifterror: 1146 case lltok::kw_swiftself: 1147 HaveError |= 1148 Error(Lex.getLoc(), 1149 "invalid use of parameter-only attribute on a function"); 1150 break; 1151 } 1152 1153 Lex.Lex(); 1154 } 1155 } 1156 1157 //===----------------------------------------------------------------------===// 1158 // GlobalValue Reference/Resolution Routines. 1159 //===----------------------------------------------------------------------===// 1160 1161 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1162 const std::string &Name) { 1163 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1164 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M); 1165 else 1166 return new GlobalVariable(*M, PTy->getElementType(), false, 1167 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1168 nullptr, GlobalVariable::NotThreadLocal, 1169 PTy->getAddressSpace()); 1170 } 1171 1172 /// GetGlobalVal - Get a value with the specified name or ID, creating a 1173 /// forward reference record if needed. This can return null if the value 1174 /// exists but does not have the right type. 1175 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 1176 LocTy Loc) { 1177 PointerType *PTy = dyn_cast<PointerType>(Ty); 1178 if (!PTy) { 1179 Error(Loc, "global variable reference must have pointer type"); 1180 return nullptr; 1181 } 1182 1183 // Look this name up in the normal function symbol table. 1184 GlobalValue *Val = 1185 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1186 1187 // If this is a forward reference for the value, see if we already created a 1188 // forward ref record. 1189 if (!Val) { 1190 auto I = ForwardRefVals.find(Name); 1191 if (I != ForwardRefVals.end()) 1192 Val = I->second.first; 1193 } 1194 1195 // If we have the value in the symbol table or fwd-ref table, return it. 1196 if (Val) { 1197 if (Val->getType() == Ty) return Val; 1198 Error(Loc, "'@" + Name + "' defined with type '" + 1199 getTypeString(Val->getType()) + "'"); 1200 return nullptr; 1201 } 1202 1203 // Otherwise, create a new forward reference for this value and remember it. 1204 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1205 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1206 return FwdVal; 1207 } 1208 1209 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { 1210 PointerType *PTy = dyn_cast<PointerType>(Ty); 1211 if (!PTy) { 1212 Error(Loc, "global variable reference must have pointer type"); 1213 return nullptr; 1214 } 1215 1216 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1217 1218 // If this is a forward reference for the value, see if we already created a 1219 // forward ref record. 1220 if (!Val) { 1221 auto I = ForwardRefValIDs.find(ID); 1222 if (I != ForwardRefValIDs.end()) 1223 Val = I->second.first; 1224 } 1225 1226 // If we have the value in the symbol table or fwd-ref table, return it. 1227 if (Val) { 1228 if (Val->getType() == Ty) return Val; 1229 Error(Loc, "'@" + Twine(ID) + "' defined with type '" + 1230 getTypeString(Val->getType()) + "'"); 1231 return nullptr; 1232 } 1233 1234 // Otherwise, create a new forward reference for this value and remember it. 1235 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1236 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1237 return FwdVal; 1238 } 1239 1240 //===----------------------------------------------------------------------===// 1241 // Comdat Reference/Resolution Routines. 1242 //===----------------------------------------------------------------------===// 1243 1244 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1245 // Look this name up in the comdat symbol table. 1246 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1247 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1248 if (I != ComdatSymTab.end()) 1249 return &I->second; 1250 1251 // Otherwise, create a new forward reference for this value and remember it. 1252 Comdat *C = M->getOrInsertComdat(Name); 1253 ForwardRefComdats[Name] = Loc; 1254 return C; 1255 } 1256 1257 //===----------------------------------------------------------------------===// 1258 // Helper Routines. 1259 //===----------------------------------------------------------------------===// 1260 1261 /// ParseToken - If the current token has the specified kind, eat it and return 1262 /// success. Otherwise, emit the specified error and return failure. 1263 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 1264 if (Lex.getKind() != T) 1265 return TokError(ErrMsg); 1266 Lex.Lex(); 1267 return false; 1268 } 1269 1270 /// ParseStringConstant 1271 /// ::= StringConstant 1272 bool LLParser::ParseStringConstant(std::string &Result) { 1273 if (Lex.getKind() != lltok::StringConstant) 1274 return TokError("expected string constant"); 1275 Result = Lex.getStrVal(); 1276 Lex.Lex(); 1277 return false; 1278 } 1279 1280 /// ParseUInt32 1281 /// ::= uint32 1282 bool LLParser::ParseUInt32(uint32_t &Val) { 1283 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1284 return TokError("expected integer"); 1285 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1286 if (Val64 != unsigned(Val64)) 1287 return TokError("expected 32-bit integer (too large)"); 1288 Val = Val64; 1289 Lex.Lex(); 1290 return false; 1291 } 1292 1293 /// ParseUInt64 1294 /// ::= uint64 1295 bool LLParser::ParseUInt64(uint64_t &Val) { 1296 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1297 return TokError("expected integer"); 1298 Val = Lex.getAPSIntVal().getLimitedValue(); 1299 Lex.Lex(); 1300 return false; 1301 } 1302 1303 /// ParseTLSModel 1304 /// := 'localdynamic' 1305 /// := 'initialexec' 1306 /// := 'localexec' 1307 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1308 switch (Lex.getKind()) { 1309 default: 1310 return TokError("expected localdynamic, initialexec or localexec"); 1311 case lltok::kw_localdynamic: 1312 TLM = GlobalVariable::LocalDynamicTLSModel; 1313 break; 1314 case lltok::kw_initialexec: 1315 TLM = GlobalVariable::InitialExecTLSModel; 1316 break; 1317 case lltok::kw_localexec: 1318 TLM = GlobalVariable::LocalExecTLSModel; 1319 break; 1320 } 1321 1322 Lex.Lex(); 1323 return false; 1324 } 1325 1326 /// ParseOptionalThreadLocal 1327 /// := /*empty*/ 1328 /// := 'thread_local' 1329 /// := 'thread_local' '(' tlsmodel ')' 1330 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1331 TLM = GlobalVariable::NotThreadLocal; 1332 if (!EatIfPresent(lltok::kw_thread_local)) 1333 return false; 1334 1335 TLM = GlobalVariable::GeneralDynamicTLSModel; 1336 if (Lex.getKind() == lltok::lparen) { 1337 Lex.Lex(); 1338 return ParseTLSModel(TLM) || 1339 ParseToken(lltok::rparen, "expected ')' after thread local model"); 1340 } 1341 return false; 1342 } 1343 1344 /// ParseOptionalAddrSpace 1345 /// := /*empty*/ 1346 /// := 'addrspace' '(' uint32 ')' 1347 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) { 1348 AddrSpace = 0; 1349 if (!EatIfPresent(lltok::kw_addrspace)) 1350 return false; 1351 return ParseToken(lltok::lparen, "expected '(' in address space") || 1352 ParseUInt32(AddrSpace) || 1353 ParseToken(lltok::rparen, "expected ')' in address space"); 1354 } 1355 1356 /// ParseStringAttribute 1357 /// := StringConstant 1358 /// := StringConstant '=' StringConstant 1359 bool LLParser::ParseStringAttribute(AttrBuilder &B) { 1360 std::string Attr = Lex.getStrVal(); 1361 Lex.Lex(); 1362 std::string Val; 1363 if (EatIfPresent(lltok::equal) && ParseStringConstant(Val)) 1364 return true; 1365 B.addAttribute(Attr, Val); 1366 return false; 1367 } 1368 1369 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes. 1370 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) { 1371 bool HaveError = false; 1372 1373 B.clear(); 1374 1375 while (true) { 1376 lltok::Kind Token = Lex.getKind(); 1377 switch (Token) { 1378 default: // End of attributes. 1379 return HaveError; 1380 case lltok::StringConstant: { 1381 if (ParseStringAttribute(B)) 1382 return true; 1383 continue; 1384 } 1385 case lltok::kw_align: { 1386 unsigned Alignment; 1387 if (ParseOptionalAlignment(Alignment)) 1388 return true; 1389 B.addAlignmentAttr(Alignment); 1390 continue; 1391 } 1392 case lltok::kw_byval: B.addAttribute(Attribute::ByVal); break; 1393 case lltok::kw_dereferenceable: { 1394 uint64_t Bytes; 1395 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1396 return true; 1397 B.addDereferenceableAttr(Bytes); 1398 continue; 1399 } 1400 case lltok::kw_dereferenceable_or_null: { 1401 uint64_t Bytes; 1402 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1403 return true; 1404 B.addDereferenceableOrNullAttr(Bytes); 1405 continue; 1406 } 1407 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break; 1408 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1409 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1410 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1411 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1412 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1413 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1414 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1415 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1416 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1417 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break; 1418 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break; 1419 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break; 1420 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1421 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1422 1423 case lltok::kw_alignstack: 1424 case lltok::kw_alwaysinline: 1425 case lltok::kw_argmemonly: 1426 case lltok::kw_builtin: 1427 case lltok::kw_inlinehint: 1428 case lltok::kw_jumptable: 1429 case lltok::kw_minsize: 1430 case lltok::kw_naked: 1431 case lltok::kw_nobuiltin: 1432 case lltok::kw_noduplicate: 1433 case lltok::kw_noimplicitfloat: 1434 case lltok::kw_noinline: 1435 case lltok::kw_nonlazybind: 1436 case lltok::kw_noredzone: 1437 case lltok::kw_noreturn: 1438 case lltok::kw_nounwind: 1439 case lltok::kw_optnone: 1440 case lltok::kw_optsize: 1441 case lltok::kw_returns_twice: 1442 case lltok::kw_sanitize_address: 1443 case lltok::kw_sanitize_memory: 1444 case lltok::kw_sanitize_thread: 1445 case lltok::kw_ssp: 1446 case lltok::kw_sspreq: 1447 case lltok::kw_sspstrong: 1448 case lltok::kw_safestack: 1449 case lltok::kw_uwtable: 1450 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1451 break; 1452 } 1453 1454 Lex.Lex(); 1455 } 1456 } 1457 1458 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes. 1459 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) { 1460 bool HaveError = false; 1461 1462 B.clear(); 1463 1464 while (true) { 1465 lltok::Kind Token = Lex.getKind(); 1466 switch (Token) { 1467 default: // End of attributes. 1468 return HaveError; 1469 case lltok::StringConstant: { 1470 if (ParseStringAttribute(B)) 1471 return true; 1472 continue; 1473 } 1474 case lltok::kw_dereferenceable: { 1475 uint64_t Bytes; 1476 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1477 return true; 1478 B.addDereferenceableAttr(Bytes); 1479 continue; 1480 } 1481 case lltok::kw_dereferenceable_or_null: { 1482 uint64_t Bytes; 1483 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1484 return true; 1485 B.addDereferenceableOrNullAttr(Bytes); 1486 continue; 1487 } 1488 case lltok::kw_align: { 1489 unsigned Alignment; 1490 if (ParseOptionalAlignment(Alignment)) 1491 return true; 1492 B.addAlignmentAttr(Alignment); 1493 continue; 1494 } 1495 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1496 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1497 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1498 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1499 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1500 1501 // Error handling. 1502 case lltok::kw_byval: 1503 case lltok::kw_inalloca: 1504 case lltok::kw_nest: 1505 case lltok::kw_nocapture: 1506 case lltok::kw_returned: 1507 case lltok::kw_sret: 1508 case lltok::kw_swifterror: 1509 case lltok::kw_swiftself: 1510 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1511 break; 1512 1513 case lltok::kw_alignstack: 1514 case lltok::kw_alwaysinline: 1515 case lltok::kw_argmemonly: 1516 case lltok::kw_builtin: 1517 case lltok::kw_cold: 1518 case lltok::kw_inlinehint: 1519 case lltok::kw_jumptable: 1520 case lltok::kw_minsize: 1521 case lltok::kw_naked: 1522 case lltok::kw_nobuiltin: 1523 case lltok::kw_noduplicate: 1524 case lltok::kw_noimplicitfloat: 1525 case lltok::kw_noinline: 1526 case lltok::kw_nonlazybind: 1527 case lltok::kw_noredzone: 1528 case lltok::kw_noreturn: 1529 case lltok::kw_nounwind: 1530 case lltok::kw_optnone: 1531 case lltok::kw_optsize: 1532 case lltok::kw_returns_twice: 1533 case lltok::kw_sanitize_address: 1534 case lltok::kw_sanitize_memory: 1535 case lltok::kw_sanitize_thread: 1536 case lltok::kw_ssp: 1537 case lltok::kw_sspreq: 1538 case lltok::kw_sspstrong: 1539 case lltok::kw_safestack: 1540 case lltok::kw_uwtable: 1541 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1542 break; 1543 1544 case lltok::kw_readnone: 1545 case lltok::kw_readonly: 1546 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type"); 1547 } 1548 1549 Lex.Lex(); 1550 } 1551 } 1552 1553 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1554 HasLinkage = true; 1555 switch (Kind) { 1556 default: 1557 HasLinkage = false; 1558 return GlobalValue::ExternalLinkage; 1559 case lltok::kw_private: 1560 return GlobalValue::PrivateLinkage; 1561 case lltok::kw_internal: 1562 return GlobalValue::InternalLinkage; 1563 case lltok::kw_weak: 1564 return GlobalValue::WeakAnyLinkage; 1565 case lltok::kw_weak_odr: 1566 return GlobalValue::WeakODRLinkage; 1567 case lltok::kw_linkonce: 1568 return GlobalValue::LinkOnceAnyLinkage; 1569 case lltok::kw_linkonce_odr: 1570 return GlobalValue::LinkOnceODRLinkage; 1571 case lltok::kw_available_externally: 1572 return GlobalValue::AvailableExternallyLinkage; 1573 case lltok::kw_appending: 1574 return GlobalValue::AppendingLinkage; 1575 case lltok::kw_common: 1576 return GlobalValue::CommonLinkage; 1577 case lltok::kw_extern_weak: 1578 return GlobalValue::ExternalWeakLinkage; 1579 case lltok::kw_external: 1580 return GlobalValue::ExternalLinkage; 1581 } 1582 } 1583 1584 /// ParseOptionalLinkage 1585 /// ::= /*empty*/ 1586 /// ::= 'private' 1587 /// ::= 'internal' 1588 /// ::= 'weak' 1589 /// ::= 'weak_odr' 1590 /// ::= 'linkonce' 1591 /// ::= 'linkonce_odr' 1592 /// ::= 'available_externally' 1593 /// ::= 'appending' 1594 /// ::= 'common' 1595 /// ::= 'extern_weak' 1596 /// ::= 'external' 1597 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1598 unsigned &Visibility, 1599 unsigned &DLLStorageClass) { 1600 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1601 if (HasLinkage) 1602 Lex.Lex(); 1603 ParseOptionalVisibility(Visibility); 1604 ParseOptionalDLLStorageClass(DLLStorageClass); 1605 return false; 1606 } 1607 1608 /// ParseOptionalVisibility 1609 /// ::= /*empty*/ 1610 /// ::= 'default' 1611 /// ::= 'hidden' 1612 /// ::= 'protected' 1613 /// 1614 void LLParser::ParseOptionalVisibility(unsigned &Res) { 1615 switch (Lex.getKind()) { 1616 default: 1617 Res = GlobalValue::DefaultVisibility; 1618 return; 1619 case lltok::kw_default: 1620 Res = GlobalValue::DefaultVisibility; 1621 break; 1622 case lltok::kw_hidden: 1623 Res = GlobalValue::HiddenVisibility; 1624 break; 1625 case lltok::kw_protected: 1626 Res = GlobalValue::ProtectedVisibility; 1627 break; 1628 } 1629 Lex.Lex(); 1630 } 1631 1632 /// ParseOptionalDLLStorageClass 1633 /// ::= /*empty*/ 1634 /// ::= 'dllimport' 1635 /// ::= 'dllexport' 1636 /// 1637 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) { 1638 switch (Lex.getKind()) { 1639 default: 1640 Res = GlobalValue::DefaultStorageClass; 1641 return; 1642 case lltok::kw_dllimport: 1643 Res = GlobalValue::DLLImportStorageClass; 1644 break; 1645 case lltok::kw_dllexport: 1646 Res = GlobalValue::DLLExportStorageClass; 1647 break; 1648 } 1649 Lex.Lex(); 1650 } 1651 1652 /// ParseOptionalCallingConv 1653 /// ::= /*empty*/ 1654 /// ::= 'ccc' 1655 /// ::= 'fastcc' 1656 /// ::= 'intel_ocl_bicc' 1657 /// ::= 'coldcc' 1658 /// ::= 'x86_stdcallcc' 1659 /// ::= 'x86_fastcallcc' 1660 /// ::= 'x86_thiscallcc' 1661 /// ::= 'x86_vectorcallcc' 1662 /// ::= 'arm_apcscc' 1663 /// ::= 'arm_aapcscc' 1664 /// ::= 'arm_aapcs_vfpcc' 1665 /// ::= 'msp430_intrcc' 1666 /// ::= 'avr_intrcc' 1667 /// ::= 'avr_signalcc' 1668 /// ::= 'ptx_kernel' 1669 /// ::= 'ptx_device' 1670 /// ::= 'spir_func' 1671 /// ::= 'spir_kernel' 1672 /// ::= 'x86_64_sysvcc' 1673 /// ::= 'win64cc' 1674 /// ::= 'webkit_jscc' 1675 /// ::= 'anyregcc' 1676 /// ::= 'preserve_mostcc' 1677 /// ::= 'preserve_allcc' 1678 /// ::= 'ghccc' 1679 /// ::= 'swiftcc' 1680 /// ::= 'x86_intrcc' 1681 /// ::= 'hhvmcc' 1682 /// ::= 'hhvm_ccc' 1683 /// ::= 'cxx_fast_tlscc' 1684 /// ::= 'amdgpu_vs' 1685 /// ::= 'amdgpu_hs' 1686 /// ::= 'amdgpu_gs' 1687 /// ::= 'amdgpu_ps' 1688 /// ::= 'amdgpu_cs' 1689 /// ::= 'amdgpu_kernel' 1690 /// ::= 'cc' UINT 1691 /// 1692 bool LLParser::ParseOptionalCallingConv(unsigned &CC) { 1693 switch (Lex.getKind()) { 1694 default: CC = CallingConv::C; return false; 1695 case lltok::kw_ccc: CC = CallingConv::C; break; 1696 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1697 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1698 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1699 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1700 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 1701 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1702 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1703 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1704 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1705 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1706 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1707 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 1708 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 1709 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1710 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1711 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1712 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1713 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1714 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1715 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 1716 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1717 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1718 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1719 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1720 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1721 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 1722 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 1723 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 1724 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 1725 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 1726 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 1727 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 1728 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 1729 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 1730 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 1731 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 1732 case lltok::kw_cc: { 1733 Lex.Lex(); 1734 return ParseUInt32(CC); 1735 } 1736 } 1737 1738 Lex.Lex(); 1739 return false; 1740 } 1741 1742 /// ParseMetadataAttachment 1743 /// ::= !dbg !42 1744 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 1745 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 1746 1747 std::string Name = Lex.getStrVal(); 1748 Kind = M->getMDKindID(Name); 1749 Lex.Lex(); 1750 1751 return ParseMDNode(MD); 1752 } 1753 1754 /// ParseInstructionMetadata 1755 /// ::= !dbg !42 (',' !dbg !57)* 1756 bool LLParser::ParseInstructionMetadata(Instruction &Inst) { 1757 do { 1758 if (Lex.getKind() != lltok::MetadataVar) 1759 return TokError("expected metadata after comma"); 1760 1761 unsigned MDK; 1762 MDNode *N; 1763 if (ParseMetadataAttachment(MDK, N)) 1764 return true; 1765 1766 Inst.setMetadata(MDK, N); 1767 if (MDK == LLVMContext::MD_tbaa) 1768 InstsWithTBAATag.push_back(&Inst); 1769 1770 // If this is the end of the list, we're done. 1771 } while (EatIfPresent(lltok::comma)); 1772 return false; 1773 } 1774 1775 /// ParseGlobalObjectMetadataAttachment 1776 /// ::= !dbg !57 1777 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) { 1778 unsigned MDK; 1779 MDNode *N; 1780 if (ParseMetadataAttachment(MDK, N)) 1781 return true; 1782 1783 GO.addMetadata(MDK, *N); 1784 return false; 1785 } 1786 1787 /// ParseOptionalFunctionMetadata 1788 /// ::= (!dbg !57)* 1789 bool LLParser::ParseOptionalFunctionMetadata(Function &F) { 1790 while (Lex.getKind() == lltok::MetadataVar) 1791 if (ParseGlobalObjectMetadataAttachment(F)) 1792 return true; 1793 return false; 1794 } 1795 1796 /// ParseOptionalAlignment 1797 /// ::= /* empty */ 1798 /// ::= 'align' 4 1799 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { 1800 Alignment = 0; 1801 if (!EatIfPresent(lltok::kw_align)) 1802 return false; 1803 LocTy AlignLoc = Lex.getLoc(); 1804 if (ParseUInt32(Alignment)) return true; 1805 if (!isPowerOf2_32(Alignment)) 1806 return Error(AlignLoc, "alignment is not a power of two"); 1807 if (Alignment > Value::MaximumAlignment) 1808 return Error(AlignLoc, "huge alignments are not supported yet"); 1809 return false; 1810 } 1811 1812 /// ParseOptionalDerefAttrBytes 1813 /// ::= /* empty */ 1814 /// ::= AttrKind '(' 4 ')' 1815 /// 1816 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 1817 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind, 1818 uint64_t &Bytes) { 1819 assert((AttrKind == lltok::kw_dereferenceable || 1820 AttrKind == lltok::kw_dereferenceable_or_null) && 1821 "contract!"); 1822 1823 Bytes = 0; 1824 if (!EatIfPresent(AttrKind)) 1825 return false; 1826 LocTy ParenLoc = Lex.getLoc(); 1827 if (!EatIfPresent(lltok::lparen)) 1828 return Error(ParenLoc, "expected '('"); 1829 LocTy DerefLoc = Lex.getLoc(); 1830 if (ParseUInt64(Bytes)) return true; 1831 ParenLoc = Lex.getLoc(); 1832 if (!EatIfPresent(lltok::rparen)) 1833 return Error(ParenLoc, "expected ')'"); 1834 if (!Bytes) 1835 return Error(DerefLoc, "dereferenceable bytes must be non-zero"); 1836 return false; 1837 } 1838 1839 /// ParseOptionalCommaAlign 1840 /// ::= 1841 /// ::= ',' align 4 1842 /// 1843 /// This returns with AteExtraComma set to true if it ate an excess comma at the 1844 /// end. 1845 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, 1846 bool &AteExtraComma) { 1847 AteExtraComma = false; 1848 while (EatIfPresent(lltok::comma)) { 1849 // Metadata at the end is an early exit. 1850 if (Lex.getKind() == lltok::MetadataVar) { 1851 AteExtraComma = true; 1852 return false; 1853 } 1854 1855 if (Lex.getKind() != lltok::kw_align) 1856 return Error(Lex.getLoc(), "expected metadata or 'align'"); 1857 1858 if (ParseOptionalAlignment(Alignment)) return true; 1859 } 1860 1861 return false; 1862 } 1863 1864 /// ParseOptionalCommaAddrSpace 1865 /// ::= 1866 /// ::= ',' addrspace(1) 1867 /// 1868 /// This returns with AteExtraComma set to true if it ate an excess comma at the 1869 /// end. 1870 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace, 1871 LocTy &Loc, 1872 bool &AteExtraComma) { 1873 AteExtraComma = false; 1874 while (EatIfPresent(lltok::comma)) { 1875 // Metadata at the end is an early exit. 1876 if (Lex.getKind() == lltok::MetadataVar) { 1877 AteExtraComma = true; 1878 return false; 1879 } 1880 1881 Loc = Lex.getLoc(); 1882 if (Lex.getKind() != lltok::kw_addrspace) 1883 return Error(Lex.getLoc(), "expected metadata or 'addrspace'"); 1884 1885 if (ParseOptionalAddrSpace(AddrSpace)) 1886 return true; 1887 } 1888 1889 return false; 1890 } 1891 1892 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 1893 Optional<unsigned> &HowManyArg) { 1894 Lex.Lex(); 1895 1896 auto StartParen = Lex.getLoc(); 1897 if (!EatIfPresent(lltok::lparen)) 1898 return Error(StartParen, "expected '('"); 1899 1900 if (ParseUInt32(BaseSizeArg)) 1901 return true; 1902 1903 if (EatIfPresent(lltok::comma)) { 1904 auto HowManyAt = Lex.getLoc(); 1905 unsigned HowMany; 1906 if (ParseUInt32(HowMany)) 1907 return true; 1908 if (HowMany == BaseSizeArg) 1909 return Error(HowManyAt, 1910 "'allocsize' indices can't refer to the same parameter"); 1911 HowManyArg = HowMany; 1912 } else 1913 HowManyArg = None; 1914 1915 auto EndParen = Lex.getLoc(); 1916 if (!EatIfPresent(lltok::rparen)) 1917 return Error(EndParen, "expected ')'"); 1918 return false; 1919 } 1920 1921 /// ParseScopeAndOrdering 1922 /// if isAtomic: ::= SyncScope? AtomicOrdering 1923 /// else: ::= 1924 /// 1925 /// This sets Scope and Ordering to the parsed values. 1926 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID, 1927 AtomicOrdering &Ordering) { 1928 if (!isAtomic) 1929 return false; 1930 1931 return ParseScope(SSID) || ParseOrdering(Ordering); 1932 } 1933 1934 /// ParseScope 1935 /// ::= syncscope("singlethread" | "<target scope>")? 1936 /// 1937 /// This sets synchronization scope ID to the ID of the parsed value. 1938 bool LLParser::ParseScope(SyncScope::ID &SSID) { 1939 SSID = SyncScope::System; 1940 if (EatIfPresent(lltok::kw_syncscope)) { 1941 auto StartParenAt = Lex.getLoc(); 1942 if (!EatIfPresent(lltok::lparen)) 1943 return Error(StartParenAt, "Expected '(' in syncscope"); 1944 1945 std::string SSN; 1946 auto SSNAt = Lex.getLoc(); 1947 if (ParseStringConstant(SSN)) 1948 return Error(SSNAt, "Expected synchronization scope name"); 1949 1950 auto EndParenAt = Lex.getLoc(); 1951 if (!EatIfPresent(lltok::rparen)) 1952 return Error(EndParenAt, "Expected ')' in syncscope"); 1953 1954 SSID = Context.getOrInsertSyncScopeID(SSN); 1955 } 1956 1957 return false; 1958 } 1959 1960 /// ParseOrdering 1961 /// ::= AtomicOrdering 1962 /// 1963 /// This sets Ordering to the parsed value. 1964 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) { 1965 switch (Lex.getKind()) { 1966 default: return TokError("Expected ordering on atomic instruction"); 1967 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 1968 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 1969 // Not specified yet: 1970 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 1971 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 1972 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 1973 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 1974 case lltok::kw_seq_cst: 1975 Ordering = AtomicOrdering::SequentiallyConsistent; 1976 break; 1977 } 1978 Lex.Lex(); 1979 return false; 1980 } 1981 1982 /// ParseOptionalStackAlignment 1983 /// ::= /* empty */ 1984 /// ::= 'alignstack' '(' 4 ')' 1985 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 1986 Alignment = 0; 1987 if (!EatIfPresent(lltok::kw_alignstack)) 1988 return false; 1989 LocTy ParenLoc = Lex.getLoc(); 1990 if (!EatIfPresent(lltok::lparen)) 1991 return Error(ParenLoc, "expected '('"); 1992 LocTy AlignLoc = Lex.getLoc(); 1993 if (ParseUInt32(Alignment)) return true; 1994 ParenLoc = Lex.getLoc(); 1995 if (!EatIfPresent(lltok::rparen)) 1996 return Error(ParenLoc, "expected ')'"); 1997 if (!isPowerOf2_32(Alignment)) 1998 return Error(AlignLoc, "stack alignment is not a power of two"); 1999 return false; 2000 } 2001 2002 /// ParseIndexList - This parses the index list for an insert/extractvalue 2003 /// instruction. This sets AteExtraComma in the case where we eat an extra 2004 /// comma at the end of the line and find that it is followed by metadata. 2005 /// Clients that don't allow metadata can call the version of this function that 2006 /// only takes one argument. 2007 /// 2008 /// ParseIndexList 2009 /// ::= (',' uint32)+ 2010 /// 2011 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 2012 bool &AteExtraComma) { 2013 AteExtraComma = false; 2014 2015 if (Lex.getKind() != lltok::comma) 2016 return TokError("expected ',' as start of index list"); 2017 2018 while (EatIfPresent(lltok::comma)) { 2019 if (Lex.getKind() == lltok::MetadataVar) { 2020 if (Indices.empty()) return TokError("expected index"); 2021 AteExtraComma = true; 2022 return false; 2023 } 2024 unsigned Idx = 0; 2025 if (ParseUInt32(Idx)) return true; 2026 Indices.push_back(Idx); 2027 } 2028 2029 return false; 2030 } 2031 2032 //===----------------------------------------------------------------------===// 2033 // Type Parsing. 2034 //===----------------------------------------------------------------------===// 2035 2036 /// ParseType - Parse a type. 2037 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2038 SMLoc TypeLoc = Lex.getLoc(); 2039 switch (Lex.getKind()) { 2040 default: 2041 return TokError(Msg); 2042 case lltok::Type: 2043 // Type ::= 'float' | 'void' (etc) 2044 Result = Lex.getTyVal(); 2045 Lex.Lex(); 2046 break; 2047 case lltok::lbrace: 2048 // Type ::= StructType 2049 if (ParseAnonStructType(Result, false)) 2050 return true; 2051 break; 2052 case lltok::lsquare: 2053 // Type ::= '[' ... ']' 2054 Lex.Lex(); // eat the lsquare. 2055 if (ParseArrayVectorType(Result, false)) 2056 return true; 2057 break; 2058 case lltok::less: // Either vector or packed struct. 2059 // Type ::= '<' ... '>' 2060 Lex.Lex(); 2061 if (Lex.getKind() == lltok::lbrace) { 2062 if (ParseAnonStructType(Result, true) || 2063 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 2064 return true; 2065 } else if (ParseArrayVectorType(Result, true)) 2066 return true; 2067 break; 2068 case lltok::LocalVar: { 2069 // Type ::= %foo 2070 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2071 2072 // If the type hasn't been defined yet, create a forward definition and 2073 // remember where that forward def'n was seen (in case it never is defined). 2074 if (!Entry.first) { 2075 Entry.first = StructType::create(Context, Lex.getStrVal()); 2076 Entry.second = Lex.getLoc(); 2077 } 2078 Result = Entry.first; 2079 Lex.Lex(); 2080 break; 2081 } 2082 2083 case lltok::LocalVarID: { 2084 // Type ::= %4 2085 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2086 2087 // If the type hasn't been defined yet, create a forward definition and 2088 // remember where that forward def'n was seen (in case it never is defined). 2089 if (!Entry.first) { 2090 Entry.first = StructType::create(Context); 2091 Entry.second = Lex.getLoc(); 2092 } 2093 Result = Entry.first; 2094 Lex.Lex(); 2095 break; 2096 } 2097 } 2098 2099 // Parse the type suffixes. 2100 while (true) { 2101 switch (Lex.getKind()) { 2102 // End of type. 2103 default: 2104 if (!AllowVoid && Result->isVoidTy()) 2105 return Error(TypeLoc, "void type only allowed for function results"); 2106 return false; 2107 2108 // Type ::= Type '*' 2109 case lltok::star: 2110 if (Result->isLabelTy()) 2111 return TokError("basic block pointers are invalid"); 2112 if (Result->isVoidTy()) 2113 return TokError("pointers to void are invalid - use i8* instead"); 2114 if (!PointerType::isValidElementType(Result)) 2115 return TokError("pointer to this type is invalid"); 2116 Result = PointerType::getUnqual(Result); 2117 Lex.Lex(); 2118 break; 2119 2120 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2121 case lltok::kw_addrspace: { 2122 if (Result->isLabelTy()) 2123 return TokError("basic block pointers are invalid"); 2124 if (Result->isVoidTy()) 2125 return TokError("pointers to void are invalid; use i8* instead"); 2126 if (!PointerType::isValidElementType(Result)) 2127 return TokError("pointer to this type is invalid"); 2128 unsigned AddrSpace; 2129 if (ParseOptionalAddrSpace(AddrSpace) || 2130 ParseToken(lltok::star, "expected '*' in address space")) 2131 return true; 2132 2133 Result = PointerType::get(Result, AddrSpace); 2134 break; 2135 } 2136 2137 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2138 case lltok::lparen: 2139 if (ParseFunctionType(Result)) 2140 return true; 2141 break; 2142 } 2143 } 2144 } 2145 2146 /// ParseParameterList 2147 /// ::= '(' ')' 2148 /// ::= '(' Arg (',' Arg)* ')' 2149 /// Arg 2150 /// ::= Type OptionalAttributes Value OptionalAttributes 2151 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2152 PerFunctionState &PFS, bool IsMustTailCall, 2153 bool InVarArgsFunc) { 2154 if (ParseToken(lltok::lparen, "expected '(' in call")) 2155 return true; 2156 2157 while (Lex.getKind() != lltok::rparen) { 2158 // If this isn't the first argument, we need a comma. 2159 if (!ArgList.empty() && 2160 ParseToken(lltok::comma, "expected ',' in argument list")) 2161 return true; 2162 2163 // Parse an ellipsis if this is a musttail call in a variadic function. 2164 if (Lex.getKind() == lltok::dotdotdot) { 2165 const char *Msg = "unexpected ellipsis in argument list for "; 2166 if (!IsMustTailCall) 2167 return TokError(Twine(Msg) + "non-musttail call"); 2168 if (!InVarArgsFunc) 2169 return TokError(Twine(Msg) + "musttail call in non-varargs function"); 2170 Lex.Lex(); // Lex the '...', it is purely for readability. 2171 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2172 } 2173 2174 // Parse the argument. 2175 LocTy ArgLoc; 2176 Type *ArgTy = nullptr; 2177 AttrBuilder ArgAttrs; 2178 Value *V; 2179 if (ParseType(ArgTy, ArgLoc)) 2180 return true; 2181 2182 if (ArgTy->isMetadataTy()) { 2183 if (ParseMetadataAsValue(V, PFS)) 2184 return true; 2185 } else { 2186 // Otherwise, handle normal operands. 2187 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS)) 2188 return true; 2189 } 2190 ArgList.push_back(ParamInfo( 2191 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2192 } 2193 2194 if (IsMustTailCall && InVarArgsFunc) 2195 return TokError("expected '...' at end of argument list for musttail call " 2196 "in varargs function"); 2197 2198 Lex.Lex(); // Lex the ')'. 2199 return false; 2200 } 2201 2202 /// ParseOptionalOperandBundles 2203 /// ::= /*empty*/ 2204 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2205 /// 2206 /// OperandBundle 2207 /// ::= bundle-tag '(' ')' 2208 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2209 /// 2210 /// bundle-tag ::= String Constant 2211 bool LLParser::ParseOptionalOperandBundles( 2212 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2213 LocTy BeginLoc = Lex.getLoc(); 2214 if (!EatIfPresent(lltok::lsquare)) 2215 return false; 2216 2217 while (Lex.getKind() != lltok::rsquare) { 2218 // If this isn't the first operand bundle, we need a comma. 2219 if (!BundleList.empty() && 2220 ParseToken(lltok::comma, "expected ',' in input list")) 2221 return true; 2222 2223 std::string Tag; 2224 if (ParseStringConstant(Tag)) 2225 return true; 2226 2227 if (ParseToken(lltok::lparen, "expected '(' in operand bundle")) 2228 return true; 2229 2230 std::vector<Value *> Inputs; 2231 while (Lex.getKind() != lltok::rparen) { 2232 // If this isn't the first input, we need a comma. 2233 if (!Inputs.empty() && 2234 ParseToken(lltok::comma, "expected ',' in input list")) 2235 return true; 2236 2237 Type *Ty = nullptr; 2238 Value *Input = nullptr; 2239 if (ParseType(Ty) || ParseValue(Ty, Input, PFS)) 2240 return true; 2241 Inputs.push_back(Input); 2242 } 2243 2244 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2245 2246 Lex.Lex(); // Lex the ')'. 2247 } 2248 2249 if (BundleList.empty()) 2250 return Error(BeginLoc, "operand bundle set must not be empty"); 2251 2252 Lex.Lex(); // Lex the ']'. 2253 return false; 2254 } 2255 2256 /// ParseArgumentList - Parse the argument list for a function type or function 2257 /// prototype. 2258 /// ::= '(' ArgTypeListI ')' 2259 /// ArgTypeListI 2260 /// ::= /*empty*/ 2261 /// ::= '...' 2262 /// ::= ArgTypeList ',' '...' 2263 /// ::= ArgType (',' ArgType)* 2264 /// 2265 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2266 bool &isVarArg){ 2267 isVarArg = false; 2268 assert(Lex.getKind() == lltok::lparen); 2269 Lex.Lex(); // eat the (. 2270 2271 if (Lex.getKind() == lltok::rparen) { 2272 // empty 2273 } else if (Lex.getKind() == lltok::dotdotdot) { 2274 isVarArg = true; 2275 Lex.Lex(); 2276 } else { 2277 LocTy TypeLoc = Lex.getLoc(); 2278 Type *ArgTy = nullptr; 2279 AttrBuilder Attrs; 2280 std::string Name; 2281 2282 if (ParseType(ArgTy) || 2283 ParseOptionalParamAttrs(Attrs)) return true; 2284 2285 if (ArgTy->isVoidTy()) 2286 return Error(TypeLoc, "argument can not have void type"); 2287 2288 if (Lex.getKind() == lltok::LocalVar) { 2289 Name = Lex.getStrVal(); 2290 Lex.Lex(); 2291 } 2292 2293 if (!FunctionType::isValidArgumentType(ArgTy)) 2294 return Error(TypeLoc, "invalid type for function argument"); 2295 2296 ArgList.emplace_back(TypeLoc, ArgTy, 2297 AttributeSet::get(ArgTy->getContext(), Attrs), 2298 std::move(Name)); 2299 2300 while (EatIfPresent(lltok::comma)) { 2301 // Handle ... at end of arg list. 2302 if (EatIfPresent(lltok::dotdotdot)) { 2303 isVarArg = true; 2304 break; 2305 } 2306 2307 // Otherwise must be an argument type. 2308 TypeLoc = Lex.getLoc(); 2309 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true; 2310 2311 if (ArgTy->isVoidTy()) 2312 return Error(TypeLoc, "argument can not have void type"); 2313 2314 if (Lex.getKind() == lltok::LocalVar) { 2315 Name = Lex.getStrVal(); 2316 Lex.Lex(); 2317 } else { 2318 Name = ""; 2319 } 2320 2321 if (!ArgTy->isFirstClassType()) 2322 return Error(TypeLoc, "invalid type for function argument"); 2323 2324 ArgList.emplace_back(TypeLoc, ArgTy, 2325 AttributeSet::get(ArgTy->getContext(), Attrs), 2326 std::move(Name)); 2327 } 2328 } 2329 2330 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2331 } 2332 2333 /// ParseFunctionType 2334 /// ::= Type ArgumentList OptionalAttrs 2335 bool LLParser::ParseFunctionType(Type *&Result) { 2336 assert(Lex.getKind() == lltok::lparen); 2337 2338 if (!FunctionType::isValidReturnType(Result)) 2339 return TokError("invalid function return type"); 2340 2341 SmallVector<ArgInfo, 8> ArgList; 2342 bool isVarArg; 2343 if (ParseArgumentList(ArgList, isVarArg)) 2344 return true; 2345 2346 // Reject names on the arguments lists. 2347 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2348 if (!ArgList[i].Name.empty()) 2349 return Error(ArgList[i].Loc, "argument name invalid in function type"); 2350 if (ArgList[i].Attrs.hasAttributes()) 2351 return Error(ArgList[i].Loc, 2352 "argument attributes invalid in function type"); 2353 } 2354 2355 SmallVector<Type*, 16> ArgListTy; 2356 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2357 ArgListTy.push_back(ArgList[i].Ty); 2358 2359 Result = FunctionType::get(Result, ArgListTy, isVarArg); 2360 return false; 2361 } 2362 2363 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 2364 /// other structs. 2365 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 2366 SmallVector<Type*, 8> Elts; 2367 if (ParseStructBody(Elts)) return true; 2368 2369 Result = StructType::get(Context, Elts, Packed); 2370 return false; 2371 } 2372 2373 /// ParseStructDefinition - Parse a struct in a 'type' definition. 2374 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 2375 std::pair<Type*, LocTy> &Entry, 2376 Type *&ResultTy) { 2377 // If the type was already defined, diagnose the redefinition. 2378 if (Entry.first && !Entry.second.isValid()) 2379 return Error(TypeLoc, "redefinition of type"); 2380 2381 // If we have opaque, just return without filling in the definition for the 2382 // struct. This counts as a definition as far as the .ll file goes. 2383 if (EatIfPresent(lltok::kw_opaque)) { 2384 // This type is being defined, so clear the location to indicate this. 2385 Entry.second = SMLoc(); 2386 2387 // If this type number has never been uttered, create it. 2388 if (!Entry.first) 2389 Entry.first = StructType::create(Context, Name); 2390 ResultTy = Entry.first; 2391 return false; 2392 } 2393 2394 // If the type starts with '<', then it is either a packed struct or a vector. 2395 bool isPacked = EatIfPresent(lltok::less); 2396 2397 // If we don't have a struct, then we have a random type alias, which we 2398 // accept for compatibility with old files. These types are not allowed to be 2399 // forward referenced and not allowed to be recursive. 2400 if (Lex.getKind() != lltok::lbrace) { 2401 if (Entry.first) 2402 return Error(TypeLoc, "forward references to non-struct type"); 2403 2404 ResultTy = nullptr; 2405 if (isPacked) 2406 return ParseArrayVectorType(ResultTy, true); 2407 return ParseType(ResultTy); 2408 } 2409 2410 // This type is being defined, so clear the location to indicate this. 2411 Entry.second = SMLoc(); 2412 2413 // If this type number has never been uttered, create it. 2414 if (!Entry.first) 2415 Entry.first = StructType::create(Context, Name); 2416 2417 StructType *STy = cast<StructType>(Entry.first); 2418 2419 SmallVector<Type*, 8> Body; 2420 if (ParseStructBody(Body) || 2421 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 2422 return true; 2423 2424 STy->setBody(Body, isPacked); 2425 ResultTy = STy; 2426 return false; 2427 } 2428 2429 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2430 /// StructType 2431 /// ::= '{' '}' 2432 /// ::= '{' Type (',' Type)* '}' 2433 /// ::= '<' '{' '}' '>' 2434 /// ::= '<' '{' Type (',' Type)* '}' '>' 2435 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 2436 assert(Lex.getKind() == lltok::lbrace); 2437 Lex.Lex(); // Consume the '{' 2438 2439 // Handle the empty struct. 2440 if (EatIfPresent(lltok::rbrace)) 2441 return false; 2442 2443 LocTy EltTyLoc = Lex.getLoc(); 2444 Type *Ty = nullptr; 2445 if (ParseType(Ty)) return true; 2446 Body.push_back(Ty); 2447 2448 if (!StructType::isValidElementType(Ty)) 2449 return Error(EltTyLoc, "invalid element type for struct"); 2450 2451 while (EatIfPresent(lltok::comma)) { 2452 EltTyLoc = Lex.getLoc(); 2453 if (ParseType(Ty)) return true; 2454 2455 if (!StructType::isValidElementType(Ty)) 2456 return Error(EltTyLoc, "invalid element type for struct"); 2457 2458 Body.push_back(Ty); 2459 } 2460 2461 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 2462 } 2463 2464 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 2465 /// token has already been consumed. 2466 /// Type 2467 /// ::= '[' APSINTVAL 'x' Types ']' 2468 /// ::= '<' APSINTVAL 'x' Types '>' 2469 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 2470 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2471 Lex.getAPSIntVal().getBitWidth() > 64) 2472 return TokError("expected number in address space"); 2473 2474 LocTy SizeLoc = Lex.getLoc(); 2475 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2476 Lex.Lex(); 2477 2478 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 2479 return true; 2480 2481 LocTy TypeLoc = Lex.getLoc(); 2482 Type *EltTy = nullptr; 2483 if (ParseType(EltTy)) return true; 2484 2485 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 2486 "expected end of sequential type")) 2487 return true; 2488 2489 if (isVector) { 2490 if (Size == 0) 2491 return Error(SizeLoc, "zero element vector is illegal"); 2492 if ((unsigned)Size != Size) 2493 return Error(SizeLoc, "size too large for vector"); 2494 if (!VectorType::isValidElementType(EltTy)) 2495 return Error(TypeLoc, "invalid vector element type"); 2496 Result = VectorType::get(EltTy, unsigned(Size)); 2497 } else { 2498 if (!ArrayType::isValidElementType(EltTy)) 2499 return Error(TypeLoc, "invalid array element type"); 2500 Result = ArrayType::get(EltTy, Size); 2501 } 2502 return false; 2503 } 2504 2505 //===----------------------------------------------------------------------===// 2506 // Function Semantic Analysis. 2507 //===----------------------------------------------------------------------===// 2508 2509 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2510 int functionNumber) 2511 : P(p), F(f), FunctionNumber(functionNumber) { 2512 2513 // Insert unnamed arguments into the NumberedVals list. 2514 for (Argument &A : F.args()) 2515 if (!A.hasName()) 2516 NumberedVals.push_back(&A); 2517 } 2518 2519 LLParser::PerFunctionState::~PerFunctionState() { 2520 // If there were any forward referenced non-basicblock values, delete them. 2521 2522 for (const auto &P : ForwardRefVals) { 2523 if (isa<BasicBlock>(P.second.first)) 2524 continue; 2525 P.second.first->replaceAllUsesWith( 2526 UndefValue::get(P.second.first->getType())); 2527 P.second.first->deleteValue(); 2528 } 2529 2530 for (const auto &P : ForwardRefValIDs) { 2531 if (isa<BasicBlock>(P.second.first)) 2532 continue; 2533 P.second.first->replaceAllUsesWith( 2534 UndefValue::get(P.second.first->getType())); 2535 P.second.first->deleteValue(); 2536 } 2537 } 2538 2539 bool LLParser::PerFunctionState::FinishFunction() { 2540 if (!ForwardRefVals.empty()) 2541 return P.Error(ForwardRefVals.begin()->second.second, 2542 "use of undefined value '%" + ForwardRefVals.begin()->first + 2543 "'"); 2544 if (!ForwardRefValIDs.empty()) 2545 return P.Error(ForwardRefValIDs.begin()->second.second, 2546 "use of undefined value '%" + 2547 Twine(ForwardRefValIDs.begin()->first) + "'"); 2548 return false; 2549 } 2550 2551 /// GetVal - Get a value with the specified name or ID, creating a 2552 /// forward reference record if needed. This can return null if the value 2553 /// exists but does not have the right type. 2554 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty, 2555 LocTy Loc) { 2556 // Look this name up in the normal function symbol table. 2557 Value *Val = F.getValueSymbolTable()->lookup(Name); 2558 2559 // If this is a forward reference for the value, see if we already created a 2560 // forward ref record. 2561 if (!Val) { 2562 auto I = ForwardRefVals.find(Name); 2563 if (I != ForwardRefVals.end()) 2564 Val = I->second.first; 2565 } 2566 2567 // If we have the value in the symbol table or fwd-ref table, return it. 2568 if (Val) { 2569 if (Val->getType() == Ty) return Val; 2570 if (Ty->isLabelTy()) 2571 P.Error(Loc, "'%" + Name + "' is not a basic block"); 2572 else 2573 P.Error(Loc, "'%" + Name + "' defined with type '" + 2574 getTypeString(Val->getType()) + "'"); 2575 return nullptr; 2576 } 2577 2578 // Don't make placeholders with invalid type. 2579 if (!Ty->isFirstClassType()) { 2580 P.Error(Loc, "invalid use of a non-first-class type"); 2581 return nullptr; 2582 } 2583 2584 // Otherwise, create a new forward reference for this value and remember it. 2585 Value *FwdVal; 2586 if (Ty->isLabelTy()) { 2587 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2588 } else { 2589 FwdVal = new Argument(Ty, Name); 2590 } 2591 2592 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2593 return FwdVal; 2594 } 2595 2596 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc) { 2597 // Look this name up in the normal function symbol table. 2598 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2599 2600 // If this is a forward reference for the value, see if we already created a 2601 // forward ref record. 2602 if (!Val) { 2603 auto I = ForwardRefValIDs.find(ID); 2604 if (I != ForwardRefValIDs.end()) 2605 Val = I->second.first; 2606 } 2607 2608 // If we have the value in the symbol table or fwd-ref table, return it. 2609 if (Val) { 2610 if (Val->getType() == Ty) return Val; 2611 if (Ty->isLabelTy()) 2612 P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block"); 2613 else 2614 P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" + 2615 getTypeString(Val->getType()) + "'"); 2616 return nullptr; 2617 } 2618 2619 if (!Ty->isFirstClassType()) { 2620 P.Error(Loc, "invalid use of a non-first-class type"); 2621 return nullptr; 2622 } 2623 2624 // Otherwise, create a new forward reference for this value and remember it. 2625 Value *FwdVal; 2626 if (Ty->isLabelTy()) { 2627 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2628 } else { 2629 FwdVal = new Argument(Ty); 2630 } 2631 2632 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2633 return FwdVal; 2634 } 2635 2636 /// SetInstName - After an instruction is parsed and inserted into its 2637 /// basic block, this installs its name. 2638 bool LLParser::PerFunctionState::SetInstName(int NameID, 2639 const std::string &NameStr, 2640 LocTy NameLoc, Instruction *Inst) { 2641 // If this instruction has void type, it cannot have a name or ID specified. 2642 if (Inst->getType()->isVoidTy()) { 2643 if (NameID != -1 || !NameStr.empty()) 2644 return P.Error(NameLoc, "instructions returning void cannot have a name"); 2645 return false; 2646 } 2647 2648 // If this was a numbered instruction, verify that the instruction is the 2649 // expected value and resolve any forward references. 2650 if (NameStr.empty()) { 2651 // If neither a name nor an ID was specified, just use the next ID. 2652 if (NameID == -1) 2653 NameID = NumberedVals.size(); 2654 2655 if (unsigned(NameID) != NumberedVals.size()) 2656 return P.Error(NameLoc, "instruction expected to be numbered '%" + 2657 Twine(NumberedVals.size()) + "'"); 2658 2659 auto FI = ForwardRefValIDs.find(NameID); 2660 if (FI != ForwardRefValIDs.end()) { 2661 Value *Sentinel = FI->second.first; 2662 if (Sentinel->getType() != Inst->getType()) 2663 return P.Error(NameLoc, "instruction forward referenced with type '" + 2664 getTypeString(FI->second.first->getType()) + "'"); 2665 2666 Sentinel->replaceAllUsesWith(Inst); 2667 Sentinel->deleteValue(); 2668 ForwardRefValIDs.erase(FI); 2669 } 2670 2671 NumberedVals.push_back(Inst); 2672 return false; 2673 } 2674 2675 // Otherwise, the instruction had a name. Resolve forward refs and set it. 2676 auto FI = ForwardRefVals.find(NameStr); 2677 if (FI != ForwardRefVals.end()) { 2678 Value *Sentinel = FI->second.first; 2679 if (Sentinel->getType() != Inst->getType()) 2680 return P.Error(NameLoc, "instruction forward referenced with type '" + 2681 getTypeString(FI->second.first->getType()) + "'"); 2682 2683 Sentinel->replaceAllUsesWith(Inst); 2684 Sentinel->deleteValue(); 2685 ForwardRefVals.erase(FI); 2686 } 2687 2688 // Set the name on the instruction. 2689 Inst->setName(NameStr); 2690 2691 if (Inst->getName() != NameStr) 2692 return P.Error(NameLoc, "multiple definition of local value named '" + 2693 NameStr + "'"); 2694 return false; 2695 } 2696 2697 /// GetBB - Get a basic block with the specified name or ID, creating a 2698 /// forward reference record if needed. 2699 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 2700 LocTy Loc) { 2701 return dyn_cast_or_null<BasicBlock>(GetVal(Name, 2702 Type::getLabelTy(F.getContext()), Loc)); 2703 } 2704 2705 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 2706 return dyn_cast_or_null<BasicBlock>(GetVal(ID, 2707 Type::getLabelTy(F.getContext()), Loc)); 2708 } 2709 2710 /// DefineBB - Define the specified basic block, which is either named or 2711 /// unnamed. If there is an error, this returns null otherwise it returns 2712 /// the block being defined. 2713 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 2714 LocTy Loc) { 2715 BasicBlock *BB; 2716 if (Name.empty()) 2717 BB = GetBB(NumberedVals.size(), Loc); 2718 else 2719 BB = GetBB(Name, Loc); 2720 if (!BB) return nullptr; // Already diagnosed error. 2721 2722 // Move the block to the end of the function. Forward ref'd blocks are 2723 // inserted wherever they happen to be referenced. 2724 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 2725 2726 // Remove the block from forward ref sets. 2727 if (Name.empty()) { 2728 ForwardRefValIDs.erase(NumberedVals.size()); 2729 NumberedVals.push_back(BB); 2730 } else { 2731 // BB forward references are already in the function symbol table. 2732 ForwardRefVals.erase(Name); 2733 } 2734 2735 return BB; 2736 } 2737 2738 //===----------------------------------------------------------------------===// 2739 // Constants. 2740 //===----------------------------------------------------------------------===// 2741 2742 /// ParseValID - Parse an abstract value that doesn't necessarily have a 2743 /// type implied. For example, if we parse "4" we don't know what integer type 2744 /// it has. The value will later be combined with its type and checked for 2745 /// sanity. PFS is used to convert function-local operands of metadata (since 2746 /// metadata operands are not just parsed here but also converted to values). 2747 /// PFS can be null when we are not parsing metadata values inside a function. 2748 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 2749 ID.Loc = Lex.getLoc(); 2750 switch (Lex.getKind()) { 2751 default: return TokError("expected value token"); 2752 case lltok::GlobalID: // @42 2753 ID.UIntVal = Lex.getUIntVal(); 2754 ID.Kind = ValID::t_GlobalID; 2755 break; 2756 case lltok::GlobalVar: // @foo 2757 ID.StrVal = Lex.getStrVal(); 2758 ID.Kind = ValID::t_GlobalName; 2759 break; 2760 case lltok::LocalVarID: // %42 2761 ID.UIntVal = Lex.getUIntVal(); 2762 ID.Kind = ValID::t_LocalID; 2763 break; 2764 case lltok::LocalVar: // %foo 2765 ID.StrVal = Lex.getStrVal(); 2766 ID.Kind = ValID::t_LocalName; 2767 break; 2768 case lltok::APSInt: 2769 ID.APSIntVal = Lex.getAPSIntVal(); 2770 ID.Kind = ValID::t_APSInt; 2771 break; 2772 case lltok::APFloat: 2773 ID.APFloatVal = Lex.getAPFloatVal(); 2774 ID.Kind = ValID::t_APFloat; 2775 break; 2776 case lltok::kw_true: 2777 ID.ConstantVal = ConstantInt::getTrue(Context); 2778 ID.Kind = ValID::t_Constant; 2779 break; 2780 case lltok::kw_false: 2781 ID.ConstantVal = ConstantInt::getFalse(Context); 2782 ID.Kind = ValID::t_Constant; 2783 break; 2784 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 2785 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 2786 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 2787 case lltok::kw_none: ID.Kind = ValID::t_None; break; 2788 2789 case lltok::lbrace: { 2790 // ValID ::= '{' ConstVector '}' 2791 Lex.Lex(); 2792 SmallVector<Constant*, 16> Elts; 2793 if (ParseGlobalValueVector(Elts) || 2794 ParseToken(lltok::rbrace, "expected end of struct constant")) 2795 return true; 2796 2797 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 2798 ID.UIntVal = Elts.size(); 2799 memcpy(ID.ConstantStructElts.get(), Elts.data(), 2800 Elts.size() * sizeof(Elts[0])); 2801 ID.Kind = ValID::t_ConstantStruct; 2802 return false; 2803 } 2804 case lltok::less: { 2805 // ValID ::= '<' ConstVector '>' --> Vector. 2806 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 2807 Lex.Lex(); 2808 bool isPackedStruct = EatIfPresent(lltok::lbrace); 2809 2810 SmallVector<Constant*, 16> Elts; 2811 LocTy FirstEltLoc = Lex.getLoc(); 2812 if (ParseGlobalValueVector(Elts) || 2813 (isPackedStruct && 2814 ParseToken(lltok::rbrace, "expected end of packed struct")) || 2815 ParseToken(lltok::greater, "expected end of constant")) 2816 return true; 2817 2818 if (isPackedStruct) { 2819 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 2820 memcpy(ID.ConstantStructElts.get(), Elts.data(), 2821 Elts.size() * sizeof(Elts[0])); 2822 ID.UIntVal = Elts.size(); 2823 ID.Kind = ValID::t_PackedConstantStruct; 2824 return false; 2825 } 2826 2827 if (Elts.empty()) 2828 return Error(ID.Loc, "constant vector must not be empty"); 2829 2830 if (!Elts[0]->getType()->isIntegerTy() && 2831 !Elts[0]->getType()->isFloatingPointTy() && 2832 !Elts[0]->getType()->isPointerTy()) 2833 return Error(FirstEltLoc, 2834 "vector elements must have integer, pointer or floating point type"); 2835 2836 // Verify that all the vector elements have the same type. 2837 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 2838 if (Elts[i]->getType() != Elts[0]->getType()) 2839 return Error(FirstEltLoc, 2840 "vector element #" + Twine(i) + 2841 " is not of type '" + getTypeString(Elts[0]->getType())); 2842 2843 ID.ConstantVal = ConstantVector::get(Elts); 2844 ID.Kind = ValID::t_Constant; 2845 return false; 2846 } 2847 case lltok::lsquare: { // Array Constant 2848 Lex.Lex(); 2849 SmallVector<Constant*, 16> Elts; 2850 LocTy FirstEltLoc = Lex.getLoc(); 2851 if (ParseGlobalValueVector(Elts) || 2852 ParseToken(lltok::rsquare, "expected end of array constant")) 2853 return true; 2854 2855 // Handle empty element. 2856 if (Elts.empty()) { 2857 // Use undef instead of an array because it's inconvenient to determine 2858 // the element type at this point, there being no elements to examine. 2859 ID.Kind = ValID::t_EmptyArray; 2860 return false; 2861 } 2862 2863 if (!Elts[0]->getType()->isFirstClassType()) 2864 return Error(FirstEltLoc, "invalid array element type: " + 2865 getTypeString(Elts[0]->getType())); 2866 2867 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 2868 2869 // Verify all elements are correct type! 2870 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 2871 if (Elts[i]->getType() != Elts[0]->getType()) 2872 return Error(FirstEltLoc, 2873 "array element #" + Twine(i) + 2874 " is not of type '" + getTypeString(Elts[0]->getType())); 2875 } 2876 2877 ID.ConstantVal = ConstantArray::get(ATy, Elts); 2878 ID.Kind = ValID::t_Constant; 2879 return false; 2880 } 2881 case lltok::kw_c: // c "foo" 2882 Lex.Lex(); 2883 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 2884 false); 2885 if (ParseToken(lltok::StringConstant, "expected string")) return true; 2886 ID.Kind = ValID::t_Constant; 2887 return false; 2888 2889 case lltok::kw_asm: { 2890 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 2891 // STRINGCONSTANT 2892 bool HasSideEffect, AlignStack, AsmDialect; 2893 Lex.Lex(); 2894 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 2895 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 2896 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 2897 ParseStringConstant(ID.StrVal) || 2898 ParseToken(lltok::comma, "expected comma in inline asm expression") || 2899 ParseToken(lltok::StringConstant, "expected constraint string")) 2900 return true; 2901 ID.StrVal2 = Lex.getStrVal(); 2902 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 2903 (unsigned(AsmDialect)<<2); 2904 ID.Kind = ValID::t_InlineAsm; 2905 return false; 2906 } 2907 2908 case lltok::kw_blockaddress: { 2909 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 2910 Lex.Lex(); 2911 2912 ValID Fn, Label; 2913 2914 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 2915 ParseValID(Fn) || 2916 ParseToken(lltok::comma, "expected comma in block address expression")|| 2917 ParseValID(Label) || 2918 ParseToken(lltok::rparen, "expected ')' in block address expression")) 2919 return true; 2920 2921 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 2922 return Error(Fn.Loc, "expected function name in blockaddress"); 2923 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 2924 return Error(Label.Loc, "expected basic block name in blockaddress"); 2925 2926 // Try to find the function (but skip it if it's forward-referenced). 2927 GlobalValue *GV = nullptr; 2928 if (Fn.Kind == ValID::t_GlobalID) { 2929 if (Fn.UIntVal < NumberedVals.size()) 2930 GV = NumberedVals[Fn.UIntVal]; 2931 } else if (!ForwardRefVals.count(Fn.StrVal)) { 2932 GV = M->getNamedValue(Fn.StrVal); 2933 } 2934 Function *F = nullptr; 2935 if (GV) { 2936 // Confirm that it's actually a function with a definition. 2937 if (!isa<Function>(GV)) 2938 return Error(Fn.Loc, "expected function name in blockaddress"); 2939 F = cast<Function>(GV); 2940 if (F->isDeclaration()) 2941 return Error(Fn.Loc, "cannot take blockaddress inside a declaration"); 2942 } 2943 2944 if (!F) { 2945 // Make a global variable as a placeholder for this reference. 2946 GlobalValue *&FwdRef = 2947 ForwardRefBlockAddresses.insert(std::make_pair( 2948 std::move(Fn), 2949 std::map<ValID, GlobalValue *>())) 2950 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 2951 .first->second; 2952 if (!FwdRef) 2953 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 2954 GlobalValue::InternalLinkage, nullptr, ""); 2955 ID.ConstantVal = FwdRef; 2956 ID.Kind = ValID::t_Constant; 2957 return false; 2958 } 2959 2960 // We found the function; now find the basic block. Don't use PFS, since we 2961 // might be inside a constant expression. 2962 BasicBlock *BB; 2963 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 2964 if (Label.Kind == ValID::t_LocalID) 2965 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc); 2966 else 2967 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc); 2968 if (!BB) 2969 return Error(Label.Loc, "referenced value is not a basic block"); 2970 } else { 2971 if (Label.Kind == ValID::t_LocalID) 2972 return Error(Label.Loc, "cannot take address of numeric label after " 2973 "the function is defined"); 2974 BB = dyn_cast_or_null<BasicBlock>( 2975 F->getValueSymbolTable()->lookup(Label.StrVal)); 2976 if (!BB) 2977 return Error(Label.Loc, "referenced value is not a basic block"); 2978 } 2979 2980 ID.ConstantVal = BlockAddress::get(F, BB); 2981 ID.Kind = ValID::t_Constant; 2982 return false; 2983 } 2984 2985 case lltok::kw_trunc: 2986 case lltok::kw_zext: 2987 case lltok::kw_sext: 2988 case lltok::kw_fptrunc: 2989 case lltok::kw_fpext: 2990 case lltok::kw_bitcast: 2991 case lltok::kw_addrspacecast: 2992 case lltok::kw_uitofp: 2993 case lltok::kw_sitofp: 2994 case lltok::kw_fptoui: 2995 case lltok::kw_fptosi: 2996 case lltok::kw_inttoptr: 2997 case lltok::kw_ptrtoint: { 2998 unsigned Opc = Lex.getUIntVal(); 2999 Type *DestTy = nullptr; 3000 Constant *SrcVal; 3001 Lex.Lex(); 3002 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3003 ParseGlobalTypeAndValue(SrcVal) || 3004 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3005 ParseType(DestTy) || 3006 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3007 return true; 3008 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3009 return Error(ID.Loc, "invalid cast opcode for cast from '" + 3010 getTypeString(SrcVal->getType()) + "' to '" + 3011 getTypeString(DestTy) + "'"); 3012 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3013 SrcVal, DestTy); 3014 ID.Kind = ValID::t_Constant; 3015 return false; 3016 } 3017 case lltok::kw_extractvalue: { 3018 Lex.Lex(); 3019 Constant *Val; 3020 SmallVector<unsigned, 4> Indices; 3021 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 3022 ParseGlobalTypeAndValue(Val) || 3023 ParseIndexList(Indices) || 3024 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 3025 return true; 3026 3027 if (!Val->getType()->isAggregateType()) 3028 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 3029 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 3030 return Error(ID.Loc, "invalid indices for extractvalue"); 3031 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 3032 ID.Kind = ValID::t_Constant; 3033 return false; 3034 } 3035 case lltok::kw_insertvalue: { 3036 Lex.Lex(); 3037 Constant *Val0, *Val1; 3038 SmallVector<unsigned, 4> Indices; 3039 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 3040 ParseGlobalTypeAndValue(Val0) || 3041 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 3042 ParseGlobalTypeAndValue(Val1) || 3043 ParseIndexList(Indices) || 3044 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 3045 return true; 3046 if (!Val0->getType()->isAggregateType()) 3047 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 3048 Type *IndexedType = 3049 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3050 if (!IndexedType) 3051 return Error(ID.Loc, "invalid indices for insertvalue"); 3052 if (IndexedType != Val1->getType()) 3053 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3054 getTypeString(Val1->getType()) + 3055 "' instead of '" + getTypeString(IndexedType) + 3056 "'"); 3057 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3058 ID.Kind = ValID::t_Constant; 3059 return false; 3060 } 3061 case lltok::kw_icmp: 3062 case lltok::kw_fcmp: { 3063 unsigned PredVal, Opc = Lex.getUIntVal(); 3064 Constant *Val0, *Val1; 3065 Lex.Lex(); 3066 if (ParseCmpPredicate(PredVal, Opc) || 3067 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3068 ParseGlobalTypeAndValue(Val0) || 3069 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 3070 ParseGlobalTypeAndValue(Val1) || 3071 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3072 return true; 3073 3074 if (Val0->getType() != Val1->getType()) 3075 return Error(ID.Loc, "compare operands must have the same type"); 3076 3077 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3078 3079 if (Opc == Instruction::FCmp) { 3080 if (!Val0->getType()->isFPOrFPVectorTy()) 3081 return Error(ID.Loc, "fcmp requires floating point operands"); 3082 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3083 } else { 3084 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3085 if (!Val0->getType()->isIntOrIntVectorTy() && 3086 !Val0->getType()->isPtrOrPtrVectorTy()) 3087 return Error(ID.Loc, "icmp requires pointer or integer operands"); 3088 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3089 } 3090 ID.Kind = ValID::t_Constant; 3091 return false; 3092 } 3093 3094 // Binary Operators. 3095 case lltok::kw_add: 3096 case lltok::kw_fadd: 3097 case lltok::kw_sub: 3098 case lltok::kw_fsub: 3099 case lltok::kw_mul: 3100 case lltok::kw_fmul: 3101 case lltok::kw_udiv: 3102 case lltok::kw_sdiv: 3103 case lltok::kw_fdiv: 3104 case lltok::kw_urem: 3105 case lltok::kw_srem: 3106 case lltok::kw_frem: 3107 case lltok::kw_shl: 3108 case lltok::kw_lshr: 3109 case lltok::kw_ashr: { 3110 bool NUW = false; 3111 bool NSW = false; 3112 bool Exact = false; 3113 unsigned Opc = Lex.getUIntVal(); 3114 Constant *Val0, *Val1; 3115 Lex.Lex(); 3116 LocTy ModifierLoc = Lex.getLoc(); 3117 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3118 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3119 if (EatIfPresent(lltok::kw_nuw)) 3120 NUW = true; 3121 if (EatIfPresent(lltok::kw_nsw)) { 3122 NSW = true; 3123 if (EatIfPresent(lltok::kw_nuw)) 3124 NUW = true; 3125 } 3126 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3127 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3128 if (EatIfPresent(lltok::kw_exact)) 3129 Exact = true; 3130 } 3131 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3132 ParseGlobalTypeAndValue(Val0) || 3133 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 3134 ParseGlobalTypeAndValue(Val1) || 3135 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3136 return true; 3137 if (Val0->getType() != Val1->getType()) 3138 return Error(ID.Loc, "operands of constexpr must have same type"); 3139 if (!Val0->getType()->isIntOrIntVectorTy()) { 3140 if (NUW) 3141 return Error(ModifierLoc, "nuw only applies to integer operations"); 3142 if (NSW) 3143 return Error(ModifierLoc, "nsw only applies to integer operations"); 3144 } 3145 // Check that the type is valid for the operator. 3146 switch (Opc) { 3147 case Instruction::Add: 3148 case Instruction::Sub: 3149 case Instruction::Mul: 3150 case Instruction::UDiv: 3151 case Instruction::SDiv: 3152 case Instruction::URem: 3153 case Instruction::SRem: 3154 case Instruction::Shl: 3155 case Instruction::AShr: 3156 case Instruction::LShr: 3157 if (!Val0->getType()->isIntOrIntVectorTy()) 3158 return Error(ID.Loc, "constexpr requires integer operands"); 3159 break; 3160 case Instruction::FAdd: 3161 case Instruction::FSub: 3162 case Instruction::FMul: 3163 case Instruction::FDiv: 3164 case Instruction::FRem: 3165 if (!Val0->getType()->isFPOrFPVectorTy()) 3166 return Error(ID.Loc, "constexpr requires fp operands"); 3167 break; 3168 default: llvm_unreachable("Unknown binary operator!"); 3169 } 3170 unsigned Flags = 0; 3171 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3172 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3173 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3174 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3175 ID.ConstantVal = C; 3176 ID.Kind = ValID::t_Constant; 3177 return false; 3178 } 3179 3180 // Logical Operations 3181 case lltok::kw_and: 3182 case lltok::kw_or: 3183 case lltok::kw_xor: { 3184 unsigned Opc = Lex.getUIntVal(); 3185 Constant *Val0, *Val1; 3186 Lex.Lex(); 3187 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3188 ParseGlobalTypeAndValue(Val0) || 3189 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 3190 ParseGlobalTypeAndValue(Val1) || 3191 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3192 return true; 3193 if (Val0->getType() != Val1->getType()) 3194 return Error(ID.Loc, "operands of constexpr must have same type"); 3195 if (!Val0->getType()->isIntOrIntVectorTy()) 3196 return Error(ID.Loc, 3197 "constexpr requires integer or integer vector operands"); 3198 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3199 ID.Kind = ValID::t_Constant; 3200 return false; 3201 } 3202 3203 case lltok::kw_getelementptr: 3204 case lltok::kw_shufflevector: 3205 case lltok::kw_insertelement: 3206 case lltok::kw_extractelement: 3207 case lltok::kw_select: { 3208 unsigned Opc = Lex.getUIntVal(); 3209 SmallVector<Constant*, 16> Elts; 3210 bool InBounds = false; 3211 Type *Ty; 3212 Lex.Lex(); 3213 3214 if (Opc == Instruction::GetElementPtr) 3215 InBounds = EatIfPresent(lltok::kw_inbounds); 3216 3217 if (ParseToken(lltok::lparen, "expected '(' in constantexpr")) 3218 return true; 3219 3220 LocTy ExplicitTypeLoc = Lex.getLoc(); 3221 if (Opc == Instruction::GetElementPtr) { 3222 if (ParseType(Ty) || 3223 ParseToken(lltok::comma, "expected comma after getelementptr's type")) 3224 return true; 3225 } 3226 3227 Optional<unsigned> InRangeOp; 3228 if (ParseGlobalValueVector( 3229 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3230 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 3231 return true; 3232 3233 if (Opc == Instruction::GetElementPtr) { 3234 if (Elts.size() == 0 || 3235 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 3236 return Error(ID.Loc, "base of getelementptr must be a pointer"); 3237 3238 Type *BaseType = Elts[0]->getType(); 3239 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3240 if (Ty != BasePointerType->getElementType()) 3241 return Error( 3242 ExplicitTypeLoc, 3243 "explicit pointee type doesn't match operand's pointee type"); 3244 3245 unsigned GEPWidth = 3246 BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0; 3247 3248 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3249 for (Constant *Val : Indices) { 3250 Type *ValTy = Val->getType(); 3251 if (!ValTy->isIntOrIntVectorTy()) 3252 return Error(ID.Loc, "getelementptr index must be an integer"); 3253 if (ValTy->isVectorTy()) { 3254 unsigned ValNumEl = ValTy->getVectorNumElements(); 3255 if (GEPWidth && (ValNumEl != GEPWidth)) 3256 return Error( 3257 ID.Loc, 3258 "getelementptr vector index has a wrong number of elements"); 3259 // GEPWidth may have been unknown because the base is a scalar, 3260 // but it is known now. 3261 GEPWidth = ValNumEl; 3262 } 3263 } 3264 3265 SmallPtrSet<Type*, 4> Visited; 3266 if (!Indices.empty() && !Ty->isSized(&Visited)) 3267 return Error(ID.Loc, "base element of getelementptr must be sized"); 3268 3269 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3270 return Error(ID.Loc, "invalid getelementptr indices"); 3271 3272 if (InRangeOp) { 3273 if (*InRangeOp == 0) 3274 return Error(ID.Loc, 3275 "inrange keyword may not appear on pointer operand"); 3276 --*InRangeOp; 3277 } 3278 3279 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3280 InBounds, InRangeOp); 3281 } else if (Opc == Instruction::Select) { 3282 if (Elts.size() != 3) 3283 return Error(ID.Loc, "expected three operands to select"); 3284 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3285 Elts[2])) 3286 return Error(ID.Loc, Reason); 3287 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3288 } else if (Opc == Instruction::ShuffleVector) { 3289 if (Elts.size() != 3) 3290 return Error(ID.Loc, "expected three operands to shufflevector"); 3291 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3292 return Error(ID.Loc, "invalid operands to shufflevector"); 3293 ID.ConstantVal = 3294 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 3295 } else if (Opc == Instruction::ExtractElement) { 3296 if (Elts.size() != 2) 3297 return Error(ID.Loc, "expected two operands to extractelement"); 3298 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3299 return Error(ID.Loc, "invalid extractelement operands"); 3300 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3301 } else { 3302 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3303 if (Elts.size() != 3) 3304 return Error(ID.Loc, "expected three operands to insertelement"); 3305 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3306 return Error(ID.Loc, "invalid insertelement operands"); 3307 ID.ConstantVal = 3308 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3309 } 3310 3311 ID.Kind = ValID::t_Constant; 3312 return false; 3313 } 3314 } 3315 3316 Lex.Lex(); 3317 return false; 3318 } 3319 3320 /// ParseGlobalValue - Parse a global value with the specified type. 3321 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 3322 C = nullptr; 3323 ValID ID; 3324 Value *V = nullptr; 3325 bool Parsed = ParseValID(ID) || 3326 ConvertValIDToValue(Ty, ID, V, nullptr); 3327 if (V && !(C = dyn_cast<Constant>(V))) 3328 return Error(ID.Loc, "global values must be constants"); 3329 return Parsed; 3330 } 3331 3332 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 3333 Type *Ty = nullptr; 3334 return ParseType(Ty) || 3335 ParseGlobalValue(Ty, V); 3336 } 3337 3338 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3339 C = nullptr; 3340 3341 LocTy KwLoc = Lex.getLoc(); 3342 if (!EatIfPresent(lltok::kw_comdat)) 3343 return false; 3344 3345 if (EatIfPresent(lltok::lparen)) { 3346 if (Lex.getKind() != lltok::ComdatVar) 3347 return TokError("expected comdat variable"); 3348 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3349 Lex.Lex(); 3350 if (ParseToken(lltok::rparen, "expected ')' after comdat var")) 3351 return true; 3352 } else { 3353 if (GlobalName.empty()) 3354 return TokError("comdat cannot be unnamed"); 3355 C = getComdat(GlobalName, KwLoc); 3356 } 3357 3358 return false; 3359 } 3360 3361 /// ParseGlobalValueVector 3362 /// ::= /*empty*/ 3363 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 3364 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 3365 Optional<unsigned> *InRangeOp) { 3366 // Empty list. 3367 if (Lex.getKind() == lltok::rbrace || 3368 Lex.getKind() == lltok::rsquare || 3369 Lex.getKind() == lltok::greater || 3370 Lex.getKind() == lltok::rparen) 3371 return false; 3372 3373 do { 3374 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 3375 *InRangeOp = Elts.size(); 3376 3377 Constant *C; 3378 if (ParseGlobalTypeAndValue(C)) return true; 3379 Elts.push_back(C); 3380 } while (EatIfPresent(lltok::comma)); 3381 3382 return false; 3383 } 3384 3385 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) { 3386 SmallVector<Metadata *, 16> Elts; 3387 if (ParseMDNodeVector(Elts)) 3388 return true; 3389 3390 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3391 return false; 3392 } 3393 3394 /// MDNode: 3395 /// ::= !{ ... } 3396 /// ::= !7 3397 /// ::= !DILocation(...) 3398 bool LLParser::ParseMDNode(MDNode *&N) { 3399 if (Lex.getKind() == lltok::MetadataVar) 3400 return ParseSpecializedMDNode(N); 3401 3402 return ParseToken(lltok::exclaim, "expected '!' here") || 3403 ParseMDNodeTail(N); 3404 } 3405 3406 bool LLParser::ParseMDNodeTail(MDNode *&N) { 3407 // !{ ... } 3408 if (Lex.getKind() == lltok::lbrace) 3409 return ParseMDTuple(N); 3410 3411 // !42 3412 return ParseMDNodeID(N); 3413 } 3414 3415 namespace { 3416 3417 /// Structure to represent an optional metadata field. 3418 template <class FieldTy> struct MDFieldImpl { 3419 typedef MDFieldImpl ImplTy; 3420 FieldTy Val; 3421 bool Seen; 3422 3423 void assign(FieldTy Val) { 3424 Seen = true; 3425 this->Val = std::move(Val); 3426 } 3427 3428 explicit MDFieldImpl(FieldTy Default) 3429 : Val(std::move(Default)), Seen(false) {} 3430 }; 3431 3432 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3433 uint64_t Max; 3434 3435 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3436 : ImplTy(Default), Max(Max) {} 3437 }; 3438 3439 struct LineField : public MDUnsignedField { 3440 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3441 }; 3442 3443 struct ColumnField : public MDUnsignedField { 3444 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3445 }; 3446 3447 struct DwarfTagField : public MDUnsignedField { 3448 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3449 DwarfTagField(dwarf::Tag DefaultTag) 3450 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3451 }; 3452 3453 struct DwarfMacinfoTypeField : public MDUnsignedField { 3454 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 3455 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 3456 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 3457 }; 3458 3459 struct DwarfAttEncodingField : public MDUnsignedField { 3460 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3461 }; 3462 3463 struct DwarfVirtualityField : public MDUnsignedField { 3464 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3465 }; 3466 3467 struct DwarfLangField : public MDUnsignedField { 3468 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3469 }; 3470 3471 struct DwarfCCField : public MDUnsignedField { 3472 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 3473 }; 3474 3475 struct EmissionKindField : public MDUnsignedField { 3476 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 3477 }; 3478 3479 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 3480 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 3481 }; 3482 3483 struct MDSignedField : public MDFieldImpl<int64_t> { 3484 int64_t Min; 3485 int64_t Max; 3486 3487 MDSignedField(int64_t Default = 0) 3488 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3489 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3490 : ImplTy(Default), Min(Min), Max(Max) {} 3491 }; 3492 3493 struct MDBoolField : public MDFieldImpl<bool> { 3494 MDBoolField(bool Default = false) : ImplTy(Default) {} 3495 }; 3496 3497 struct MDField : public MDFieldImpl<Metadata *> { 3498 bool AllowNull; 3499 3500 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3501 }; 3502 3503 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 3504 MDConstant() : ImplTy(nullptr) {} 3505 }; 3506 3507 struct MDStringField : public MDFieldImpl<MDString *> { 3508 bool AllowEmpty; 3509 MDStringField(bool AllowEmpty = true) 3510 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3511 }; 3512 3513 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3514 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3515 }; 3516 3517 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 3518 ChecksumKindField() : ImplTy(DIFile::CSK_None) {} 3519 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 3520 }; 3521 3522 } // end anonymous namespace 3523 3524 namespace llvm { 3525 3526 template <> 3527 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3528 MDUnsignedField &Result) { 3529 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3530 return TokError("expected unsigned integer"); 3531 3532 auto &U = Lex.getAPSIntVal(); 3533 if (U.ugt(Result.Max)) 3534 return TokError("value for '" + Name + "' too large, limit is " + 3535 Twine(Result.Max)); 3536 Result.assign(U.getZExtValue()); 3537 assert(Result.Val <= Result.Max && "Expected value in range"); 3538 Lex.Lex(); 3539 return false; 3540 } 3541 3542 template <> 3543 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) { 3544 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3545 } 3546 template <> 3547 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 3548 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3549 } 3550 3551 template <> 3552 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 3553 if (Lex.getKind() == lltok::APSInt) 3554 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3555 3556 if (Lex.getKind() != lltok::DwarfTag) 3557 return TokError("expected DWARF tag"); 3558 3559 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 3560 if (Tag == dwarf::DW_TAG_invalid) 3561 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 3562 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 3563 3564 Result.assign(Tag); 3565 Lex.Lex(); 3566 return false; 3567 } 3568 3569 template <> 3570 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3571 DwarfMacinfoTypeField &Result) { 3572 if (Lex.getKind() == lltok::APSInt) 3573 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3574 3575 if (Lex.getKind() != lltok::DwarfMacinfo) 3576 return TokError("expected DWARF macinfo type"); 3577 3578 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 3579 if (Macinfo == dwarf::DW_MACINFO_invalid) 3580 return TokError( 3581 "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'"); 3582 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 3583 3584 Result.assign(Macinfo); 3585 Lex.Lex(); 3586 return false; 3587 } 3588 3589 template <> 3590 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3591 DwarfVirtualityField &Result) { 3592 if (Lex.getKind() == lltok::APSInt) 3593 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3594 3595 if (Lex.getKind() != lltok::DwarfVirtuality) 3596 return TokError("expected DWARF virtuality code"); 3597 3598 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 3599 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 3600 return TokError("invalid DWARF virtuality code" + Twine(" '") + 3601 Lex.getStrVal() + "'"); 3602 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 3603 Result.assign(Virtuality); 3604 Lex.Lex(); 3605 return false; 3606 } 3607 3608 template <> 3609 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 3610 if (Lex.getKind() == lltok::APSInt) 3611 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3612 3613 if (Lex.getKind() != lltok::DwarfLang) 3614 return TokError("expected DWARF language"); 3615 3616 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 3617 if (!Lang) 3618 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 3619 "'"); 3620 assert(Lang <= Result.Max && "Expected valid DWARF language"); 3621 Result.assign(Lang); 3622 Lex.Lex(); 3623 return false; 3624 } 3625 3626 template <> 3627 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 3628 if (Lex.getKind() == lltok::APSInt) 3629 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3630 3631 if (Lex.getKind() != lltok::DwarfCC) 3632 return TokError("expected DWARF calling convention"); 3633 3634 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 3635 if (!CC) 3636 return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() + 3637 "'"); 3638 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 3639 Result.assign(CC); 3640 Lex.Lex(); 3641 return false; 3642 } 3643 3644 template <> 3645 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) { 3646 if (Lex.getKind() == lltok::APSInt) 3647 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3648 3649 if (Lex.getKind() != lltok::EmissionKind) 3650 return TokError("expected emission kind"); 3651 3652 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 3653 if (!Kind) 3654 return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 3655 "'"); 3656 assert(*Kind <= Result.Max && "Expected valid emission kind"); 3657 Result.assign(*Kind); 3658 Lex.Lex(); 3659 return false; 3660 } 3661 3662 template <> 3663 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3664 DwarfAttEncodingField &Result) { 3665 if (Lex.getKind() == lltok::APSInt) 3666 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3667 3668 if (Lex.getKind() != lltok::DwarfAttEncoding) 3669 return TokError("expected DWARF type attribute encoding"); 3670 3671 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 3672 if (!Encoding) 3673 return TokError("invalid DWARF type attribute encoding" + Twine(" '") + 3674 Lex.getStrVal() + "'"); 3675 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 3676 Result.assign(Encoding); 3677 Lex.Lex(); 3678 return false; 3679 } 3680 3681 /// DIFlagField 3682 /// ::= uint32 3683 /// ::= DIFlagVector 3684 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 3685 template <> 3686 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 3687 3688 // Parser for a single flag. 3689 auto parseFlag = [&](DINode::DIFlags &Val) { 3690 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 3691 uint32_t TempVal = static_cast<uint32_t>(Val); 3692 bool Res = ParseUInt32(TempVal); 3693 Val = static_cast<DINode::DIFlags>(TempVal); 3694 return Res; 3695 } 3696 3697 if (Lex.getKind() != lltok::DIFlag) 3698 return TokError("expected debug info flag"); 3699 3700 Val = DINode::getFlag(Lex.getStrVal()); 3701 if (!Val) 3702 return TokError(Twine("invalid debug info flag flag '") + 3703 Lex.getStrVal() + "'"); 3704 Lex.Lex(); 3705 return false; 3706 }; 3707 3708 // Parse the flags and combine them together. 3709 DINode::DIFlags Combined = DINode::FlagZero; 3710 do { 3711 DINode::DIFlags Val; 3712 if (parseFlag(Val)) 3713 return true; 3714 Combined |= Val; 3715 } while (EatIfPresent(lltok::bar)); 3716 3717 Result.assign(Combined); 3718 return false; 3719 } 3720 3721 template <> 3722 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3723 MDSignedField &Result) { 3724 if (Lex.getKind() != lltok::APSInt) 3725 return TokError("expected signed integer"); 3726 3727 auto &S = Lex.getAPSIntVal(); 3728 if (S < Result.Min) 3729 return TokError("value for '" + Name + "' too small, limit is " + 3730 Twine(Result.Min)); 3731 if (S > Result.Max) 3732 return TokError("value for '" + Name + "' too large, limit is " + 3733 Twine(Result.Max)); 3734 Result.assign(S.getExtValue()); 3735 assert(Result.Val >= Result.Min && "Expected value in range"); 3736 assert(Result.Val <= Result.Max && "Expected value in range"); 3737 Lex.Lex(); 3738 return false; 3739 } 3740 3741 template <> 3742 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 3743 switch (Lex.getKind()) { 3744 default: 3745 return TokError("expected 'true' or 'false'"); 3746 case lltok::kw_true: 3747 Result.assign(true); 3748 break; 3749 case lltok::kw_false: 3750 Result.assign(false); 3751 break; 3752 } 3753 Lex.Lex(); 3754 return false; 3755 } 3756 3757 template <> 3758 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) { 3759 if (Lex.getKind() == lltok::kw_null) { 3760 if (!Result.AllowNull) 3761 return TokError("'" + Name + "' cannot be null"); 3762 Lex.Lex(); 3763 Result.assign(nullptr); 3764 return false; 3765 } 3766 3767 Metadata *MD; 3768 if (ParseMetadata(MD, nullptr)) 3769 return true; 3770 3771 Result.assign(MD); 3772 return false; 3773 } 3774 3775 template <> 3776 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 3777 LocTy ValueLoc = Lex.getLoc(); 3778 std::string S; 3779 if (ParseStringConstant(S)) 3780 return true; 3781 3782 if (!Result.AllowEmpty && S.empty()) 3783 return Error(ValueLoc, "'" + Name + "' cannot be empty"); 3784 3785 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 3786 return false; 3787 } 3788 3789 template <> 3790 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 3791 SmallVector<Metadata *, 4> MDs; 3792 if (ParseMDNodeVector(MDs)) 3793 return true; 3794 3795 Result.assign(std::move(MDs)); 3796 return false; 3797 } 3798 3799 template <> 3800 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3801 ChecksumKindField &Result) { 3802 if (Lex.getKind() != lltok::ChecksumKind) 3803 return TokError( 3804 "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'"); 3805 3806 DIFile::ChecksumKind CSKind = DIFile::getChecksumKind(Lex.getStrVal()); 3807 3808 Result.assign(CSKind); 3809 Lex.Lex(); 3810 return false; 3811 } 3812 3813 } // end namespace llvm 3814 3815 template <class ParserTy> 3816 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) { 3817 do { 3818 if (Lex.getKind() != lltok::LabelStr) 3819 return TokError("expected field label here"); 3820 3821 if (parseField()) 3822 return true; 3823 } while (EatIfPresent(lltok::comma)); 3824 3825 return false; 3826 } 3827 3828 template <class ParserTy> 3829 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) { 3830 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 3831 Lex.Lex(); 3832 3833 if (ParseToken(lltok::lparen, "expected '(' here")) 3834 return true; 3835 if (Lex.getKind() != lltok::rparen) 3836 if (ParseMDFieldsImplBody(parseField)) 3837 return true; 3838 3839 ClosingLoc = Lex.getLoc(); 3840 return ParseToken(lltok::rparen, "expected ')' here"); 3841 } 3842 3843 template <class FieldTy> 3844 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) { 3845 if (Result.Seen) 3846 return TokError("field '" + Name + "' cannot be specified more than once"); 3847 3848 LocTy Loc = Lex.getLoc(); 3849 Lex.Lex(); 3850 return ParseMDField(Loc, Name, Result); 3851 } 3852 3853 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 3854 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 3855 3856 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 3857 if (Lex.getStrVal() == #CLASS) \ 3858 return Parse##CLASS(N, IsDistinct); 3859 #include "llvm/IR/Metadata.def" 3860 3861 return TokError("expected metadata type"); 3862 } 3863 3864 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 3865 #define NOP_FIELD(NAME, TYPE, INIT) 3866 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 3867 if (!NAME.Seen) \ 3868 return Error(ClosingLoc, "missing required field '" #NAME "'"); 3869 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 3870 if (Lex.getStrVal() == #NAME) \ 3871 return ParseMDField(#NAME, NAME); 3872 #define PARSE_MD_FIELDS() \ 3873 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 3874 do { \ 3875 LocTy ClosingLoc; \ 3876 if (ParseMDFieldsImpl([&]() -> bool { \ 3877 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 3878 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \ 3879 }, ClosingLoc)) \ 3880 return true; \ 3881 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 3882 } while (false) 3883 #define GET_OR_DISTINCT(CLASS, ARGS) \ 3884 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 3885 3886 /// ParseDILocationFields: 3887 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6) 3888 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) { 3889 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3890 OPTIONAL(line, LineField, ); \ 3891 OPTIONAL(column, ColumnField, ); \ 3892 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 3893 OPTIONAL(inlinedAt, MDField, ); 3894 PARSE_MD_FIELDS(); 3895 #undef VISIT_MD_FIELDS 3896 3897 Result = GET_OR_DISTINCT( 3898 DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val)); 3899 return false; 3900 } 3901 3902 /// ParseGenericDINode: 3903 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 3904 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) { 3905 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3906 REQUIRED(tag, DwarfTagField, ); \ 3907 OPTIONAL(header, MDStringField, ); \ 3908 OPTIONAL(operands, MDFieldList, ); 3909 PARSE_MD_FIELDS(); 3910 #undef VISIT_MD_FIELDS 3911 3912 Result = GET_OR_DISTINCT(GenericDINode, 3913 (Context, tag.Val, header.Val, operands.Val)); 3914 return false; 3915 } 3916 3917 /// ParseDISubrange: 3918 /// ::= !DISubrange(count: 30, lowerBound: 2) 3919 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) { 3920 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3921 REQUIRED(count, MDSignedField, (-1, -1, INT64_MAX)); \ 3922 OPTIONAL(lowerBound, MDSignedField, ); 3923 PARSE_MD_FIELDS(); 3924 #undef VISIT_MD_FIELDS 3925 3926 Result = GET_OR_DISTINCT(DISubrange, (Context, count.Val, lowerBound.Val)); 3927 return false; 3928 } 3929 3930 /// ParseDIEnumerator: 3931 /// ::= !DIEnumerator(value: 30, name: "SomeKind") 3932 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) { 3933 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3934 REQUIRED(name, MDStringField, ); \ 3935 REQUIRED(value, MDSignedField, ); 3936 PARSE_MD_FIELDS(); 3937 #undef VISIT_MD_FIELDS 3938 3939 Result = GET_OR_DISTINCT(DIEnumerator, (Context, value.Val, name.Val)); 3940 return false; 3941 } 3942 3943 /// ParseDIBasicType: 3944 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32) 3945 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) { 3946 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3947 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 3948 OPTIONAL(name, MDStringField, ); \ 3949 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3950 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 3951 OPTIONAL(encoding, DwarfAttEncodingField, ); 3952 PARSE_MD_FIELDS(); 3953 #undef VISIT_MD_FIELDS 3954 3955 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 3956 align.Val, encoding.Val)); 3957 return false; 3958 } 3959 3960 /// ParseDIDerivedType: 3961 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 3962 /// line: 7, scope: !1, baseType: !2, size: 32, 3963 /// align: 32, offset: 0, flags: 0, extraData: !3, 3964 /// dwarfAddressSpace: 3) 3965 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) { 3966 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3967 REQUIRED(tag, DwarfTagField, ); \ 3968 OPTIONAL(name, MDStringField, ); \ 3969 OPTIONAL(file, MDField, ); \ 3970 OPTIONAL(line, LineField, ); \ 3971 OPTIONAL(scope, MDField, ); \ 3972 REQUIRED(baseType, MDField, ); \ 3973 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 3974 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 3975 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 3976 OPTIONAL(flags, DIFlagField, ); \ 3977 OPTIONAL(extraData, MDField, ); \ 3978 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); 3979 PARSE_MD_FIELDS(); 3980 #undef VISIT_MD_FIELDS 3981 3982 Optional<unsigned> DWARFAddressSpace; 3983 if (dwarfAddressSpace.Val != UINT32_MAX) 3984 DWARFAddressSpace = dwarfAddressSpace.Val; 3985 3986 Result = GET_OR_DISTINCT(DIDerivedType, 3987 (Context, tag.Val, name.Val, file.Val, line.Val, 3988 scope.Val, baseType.Val, size.Val, align.Val, 3989 offset.Val, DWARFAddressSpace, flags.Val, 3990 extraData.Val)); 3991 return false; 3992 } 3993 3994 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) { 3995 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 3996 REQUIRED(tag, DwarfTagField, ); \ 3997 OPTIONAL(name, MDStringField, ); \ 3998 OPTIONAL(file, MDField, ); \ 3999 OPTIONAL(line, LineField, ); \ 4000 OPTIONAL(scope, MDField, ); \ 4001 OPTIONAL(baseType, MDField, ); \ 4002 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4003 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4004 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4005 OPTIONAL(flags, DIFlagField, ); \ 4006 OPTIONAL(elements, MDField, ); \ 4007 OPTIONAL(runtimeLang, DwarfLangField, ); \ 4008 OPTIONAL(vtableHolder, MDField, ); \ 4009 OPTIONAL(templateParams, MDField, ); \ 4010 OPTIONAL(identifier, MDStringField, ); 4011 PARSE_MD_FIELDS(); 4012 #undef VISIT_MD_FIELDS 4013 4014 // If this has an identifier try to build an ODR type. 4015 if (identifier.Val) 4016 if (auto *CT = DICompositeType::buildODRType( 4017 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 4018 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 4019 elements.Val, runtimeLang.Val, vtableHolder.Val, 4020 templateParams.Val)) { 4021 Result = CT; 4022 return false; 4023 } 4024 4025 // Create a new node, and save it in the context if it belongs in the type 4026 // map. 4027 Result = GET_OR_DISTINCT( 4028 DICompositeType, 4029 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 4030 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 4031 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val)); 4032 return false; 4033 } 4034 4035 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) { 4036 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4037 OPTIONAL(flags, DIFlagField, ); \ 4038 OPTIONAL(cc, DwarfCCField, ); \ 4039 REQUIRED(types, MDField, ); 4040 PARSE_MD_FIELDS(); 4041 #undef VISIT_MD_FIELDS 4042 4043 Result = GET_OR_DISTINCT(DISubroutineType, 4044 (Context, flags.Val, cc.Val, types.Val)); 4045 return false; 4046 } 4047 4048 /// ParseDIFileType: 4049 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir" 4050 /// checksumkind: CSK_MD5, 4051 /// checksum: "000102030405060708090a0b0c0d0e0f") 4052 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) { 4053 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4054 REQUIRED(filename, MDStringField, ); \ 4055 REQUIRED(directory, MDStringField, ); \ 4056 OPTIONAL(checksumkind, ChecksumKindField, ); \ 4057 OPTIONAL(checksum, MDStringField, ); 4058 PARSE_MD_FIELDS(); 4059 #undef VISIT_MD_FIELDS 4060 4061 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val, 4062 checksumkind.Val, checksum.Val)); 4063 return false; 4064 } 4065 4066 /// ParseDICompileUnit: 4067 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 4068 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 4069 /// splitDebugFilename: "abc.debug", 4070 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 4071 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd) 4072 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) { 4073 if (!IsDistinct) 4074 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 4075 4076 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4077 REQUIRED(language, DwarfLangField, ); \ 4078 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 4079 OPTIONAL(producer, MDStringField, ); \ 4080 OPTIONAL(isOptimized, MDBoolField, ); \ 4081 OPTIONAL(flags, MDStringField, ); \ 4082 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 4083 OPTIONAL(splitDebugFilename, MDStringField, ); \ 4084 OPTIONAL(emissionKind, EmissionKindField, ); \ 4085 OPTIONAL(enums, MDField, ); \ 4086 OPTIONAL(retainedTypes, MDField, ); \ 4087 OPTIONAL(globals, MDField, ); \ 4088 OPTIONAL(imports, MDField, ); \ 4089 OPTIONAL(macros, MDField, ); \ 4090 OPTIONAL(dwoId, MDUnsignedField, ); \ 4091 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 4092 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); 4093 PARSE_MD_FIELDS(); 4094 #undef VISIT_MD_FIELDS 4095 4096 Result = DICompileUnit::getDistinct( 4097 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 4098 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 4099 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 4100 splitDebugInlining.Val, debugInfoForProfiling.Val); 4101 return false; 4102 } 4103 4104 /// ParseDISubprogram: 4105 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 4106 /// file: !1, line: 7, type: !2, isLocal: false, 4107 /// isDefinition: true, scopeLine: 8, containingType: !3, 4108 /// virtuality: DW_VIRTUALTIY_pure_virtual, 4109 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 4110 /// isOptimized: false, templateParams: !4, declaration: !5, 4111 /// variables: !6, thrownTypes: !7) 4112 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) { 4113 auto Loc = Lex.getLoc(); 4114 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4115 OPTIONAL(scope, MDField, ); \ 4116 OPTIONAL(name, MDStringField, ); \ 4117 OPTIONAL(linkageName, MDStringField, ); \ 4118 OPTIONAL(file, MDField, ); \ 4119 OPTIONAL(line, LineField, ); \ 4120 OPTIONAL(type, MDField, ); \ 4121 OPTIONAL(isLocal, MDBoolField, ); \ 4122 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4123 OPTIONAL(scopeLine, LineField, ); \ 4124 OPTIONAL(containingType, MDField, ); \ 4125 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 4126 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 4127 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 4128 OPTIONAL(flags, DIFlagField, ); \ 4129 OPTIONAL(isOptimized, MDBoolField, ); \ 4130 OPTIONAL(unit, MDField, ); \ 4131 OPTIONAL(templateParams, MDField, ); \ 4132 OPTIONAL(declaration, MDField, ); \ 4133 OPTIONAL(variables, MDField, ); \ 4134 OPTIONAL(thrownTypes, MDField, ); 4135 PARSE_MD_FIELDS(); 4136 #undef VISIT_MD_FIELDS 4137 4138 if (isDefinition.Val && !IsDistinct) 4139 return Lex.Error( 4140 Loc, 4141 "missing 'distinct', required for !DISubprogram when 'isDefinition'"); 4142 4143 Result = GET_OR_DISTINCT( 4144 DISubprogram, 4145 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 4146 type.Val, isLocal.Val, isDefinition.Val, scopeLine.Val, 4147 containingType.Val, virtuality.Val, virtualIndex.Val, thisAdjustment.Val, 4148 flags.Val, isOptimized.Val, unit.Val, templateParams.Val, 4149 declaration.Val, variables.Val, thrownTypes.Val)); 4150 return false; 4151 } 4152 4153 /// ParseDILexicalBlock: 4154 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 4155 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 4156 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4157 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4158 OPTIONAL(file, MDField, ); \ 4159 OPTIONAL(line, LineField, ); \ 4160 OPTIONAL(column, ColumnField, ); 4161 PARSE_MD_FIELDS(); 4162 #undef VISIT_MD_FIELDS 4163 4164 Result = GET_OR_DISTINCT( 4165 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 4166 return false; 4167 } 4168 4169 /// ParseDILexicalBlockFile: 4170 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 4171 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 4172 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4173 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4174 OPTIONAL(file, MDField, ); \ 4175 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 4176 PARSE_MD_FIELDS(); 4177 #undef VISIT_MD_FIELDS 4178 4179 Result = GET_OR_DISTINCT(DILexicalBlockFile, 4180 (Context, scope.Val, file.Val, discriminator.Val)); 4181 return false; 4182 } 4183 4184 /// ParseDINamespace: 4185 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 4186 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) { 4187 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4188 REQUIRED(scope, MDField, ); \ 4189 OPTIONAL(name, MDStringField, ); \ 4190 OPTIONAL(exportSymbols, MDBoolField, ); 4191 PARSE_MD_FIELDS(); 4192 #undef VISIT_MD_FIELDS 4193 4194 Result = GET_OR_DISTINCT(DINamespace, 4195 (Context, scope.Val, name.Val, exportSymbols.Val)); 4196 return false; 4197 } 4198 4199 /// ParseDIMacro: 4200 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue") 4201 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) { 4202 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4203 REQUIRED(type, DwarfMacinfoTypeField, ); \ 4204 OPTIONAL(line, LineField, ); \ 4205 REQUIRED(name, MDStringField, ); \ 4206 OPTIONAL(value, MDStringField, ); 4207 PARSE_MD_FIELDS(); 4208 #undef VISIT_MD_FIELDS 4209 4210 Result = GET_OR_DISTINCT(DIMacro, 4211 (Context, type.Val, line.Val, name.Val, value.Val)); 4212 return false; 4213 } 4214 4215 /// ParseDIMacroFile: 4216 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 4217 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) { 4218 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4219 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 4220 OPTIONAL(line, LineField, ); \ 4221 REQUIRED(file, MDField, ); \ 4222 OPTIONAL(nodes, MDField, ); 4223 PARSE_MD_FIELDS(); 4224 #undef VISIT_MD_FIELDS 4225 4226 Result = GET_OR_DISTINCT(DIMacroFile, 4227 (Context, type.Val, line.Val, file.Val, nodes.Val)); 4228 return false; 4229 } 4230 4231 /// ParseDIModule: 4232 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG", 4233 /// includePath: "/usr/include", isysroot: "/") 4234 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) { 4235 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4236 REQUIRED(scope, MDField, ); \ 4237 REQUIRED(name, MDStringField, ); \ 4238 OPTIONAL(configMacros, MDStringField, ); \ 4239 OPTIONAL(includePath, MDStringField, ); \ 4240 OPTIONAL(isysroot, MDStringField, ); 4241 PARSE_MD_FIELDS(); 4242 #undef VISIT_MD_FIELDS 4243 4244 Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val, 4245 configMacros.Val, includePath.Val, isysroot.Val)); 4246 return false; 4247 } 4248 4249 /// ParseDITemplateTypeParameter: 4250 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1) 4251 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 4252 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4253 OPTIONAL(name, MDStringField, ); \ 4254 REQUIRED(type, MDField, ); 4255 PARSE_MD_FIELDS(); 4256 #undef VISIT_MD_FIELDS 4257 4258 Result = 4259 GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val)); 4260 return false; 4261 } 4262 4263 /// ParseDITemplateValueParameter: 4264 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 4265 /// name: "V", type: !1, value: i32 7) 4266 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 4267 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4268 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 4269 OPTIONAL(name, MDStringField, ); \ 4270 OPTIONAL(type, MDField, ); \ 4271 REQUIRED(value, MDField, ); 4272 PARSE_MD_FIELDS(); 4273 #undef VISIT_MD_FIELDS 4274 4275 Result = GET_OR_DISTINCT(DITemplateValueParameter, 4276 (Context, tag.Val, name.Val, type.Val, value.Val)); 4277 return false; 4278 } 4279 4280 /// ParseDIGlobalVariable: 4281 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 4282 /// file: !1, line: 7, type: !2, isLocal: false, 4283 /// isDefinition: true, declaration: !3, align: 8) 4284 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 4285 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4286 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 4287 OPTIONAL(scope, MDField, ); \ 4288 OPTIONAL(linkageName, MDStringField, ); \ 4289 OPTIONAL(file, MDField, ); \ 4290 OPTIONAL(line, LineField, ); \ 4291 OPTIONAL(type, MDField, ); \ 4292 OPTIONAL(isLocal, MDBoolField, ); \ 4293 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4294 OPTIONAL(declaration, MDField, ); \ 4295 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4296 PARSE_MD_FIELDS(); 4297 #undef VISIT_MD_FIELDS 4298 4299 Result = GET_OR_DISTINCT(DIGlobalVariable, 4300 (Context, scope.Val, name.Val, linkageName.Val, 4301 file.Val, line.Val, type.Val, isLocal.Val, 4302 isDefinition.Val, declaration.Val, align.Val)); 4303 return false; 4304 } 4305 4306 /// ParseDILocalVariable: 4307 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 4308 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4309 /// align: 8) 4310 /// ::= !DILocalVariable(scope: !0, name: "foo", 4311 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4312 /// align: 8) 4313 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) { 4314 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4315 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4316 OPTIONAL(name, MDStringField, ); \ 4317 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 4318 OPTIONAL(file, MDField, ); \ 4319 OPTIONAL(line, LineField, ); \ 4320 OPTIONAL(type, MDField, ); \ 4321 OPTIONAL(flags, DIFlagField, ); \ 4322 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4323 PARSE_MD_FIELDS(); 4324 #undef VISIT_MD_FIELDS 4325 4326 Result = GET_OR_DISTINCT(DILocalVariable, 4327 (Context, scope.Val, name.Val, file.Val, line.Val, 4328 type.Val, arg.Val, flags.Val, align.Val)); 4329 return false; 4330 } 4331 4332 /// ParseDIExpression: 4333 /// ::= !DIExpression(0, 7, -1) 4334 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) { 4335 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4336 Lex.Lex(); 4337 4338 if (ParseToken(lltok::lparen, "expected '(' here")) 4339 return true; 4340 4341 SmallVector<uint64_t, 8> Elements; 4342 if (Lex.getKind() != lltok::rparen) 4343 do { 4344 if (Lex.getKind() == lltok::DwarfOp) { 4345 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 4346 Lex.Lex(); 4347 Elements.push_back(Op); 4348 continue; 4349 } 4350 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 4351 } 4352 4353 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4354 return TokError("expected unsigned integer"); 4355 4356 auto &U = Lex.getAPSIntVal(); 4357 if (U.ugt(UINT64_MAX)) 4358 return TokError("element too large, limit is " + Twine(UINT64_MAX)); 4359 Elements.push_back(U.getZExtValue()); 4360 Lex.Lex(); 4361 } while (EatIfPresent(lltok::comma)); 4362 4363 if (ParseToken(lltok::rparen, "expected ')' here")) 4364 return true; 4365 4366 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 4367 return false; 4368 } 4369 4370 /// ParseDIGlobalVariableExpression: 4371 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 4372 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result, 4373 bool IsDistinct) { 4374 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4375 REQUIRED(var, MDField, ); \ 4376 OPTIONAL(expr, MDField, ); 4377 PARSE_MD_FIELDS(); 4378 #undef VISIT_MD_FIELDS 4379 4380 Result = 4381 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 4382 return false; 4383 } 4384 4385 /// ParseDIObjCProperty: 4386 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 4387 /// getter: "getFoo", attributes: 7, type: !2) 4388 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 4389 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4390 OPTIONAL(name, MDStringField, ); \ 4391 OPTIONAL(file, MDField, ); \ 4392 OPTIONAL(line, LineField, ); \ 4393 OPTIONAL(setter, MDStringField, ); \ 4394 OPTIONAL(getter, MDStringField, ); \ 4395 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 4396 OPTIONAL(type, MDField, ); 4397 PARSE_MD_FIELDS(); 4398 #undef VISIT_MD_FIELDS 4399 4400 Result = GET_OR_DISTINCT(DIObjCProperty, 4401 (Context, name.Val, file.Val, line.Val, setter.Val, 4402 getter.Val, attributes.Val, type.Val)); 4403 return false; 4404 } 4405 4406 /// ParseDIImportedEntity: 4407 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 4408 /// line: 7, name: "foo") 4409 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 4410 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4411 REQUIRED(tag, DwarfTagField, ); \ 4412 REQUIRED(scope, MDField, ); \ 4413 OPTIONAL(entity, MDField, ); \ 4414 OPTIONAL(file, MDField, ); \ 4415 OPTIONAL(line, LineField, ); \ 4416 OPTIONAL(name, MDStringField, ); 4417 PARSE_MD_FIELDS(); 4418 #undef VISIT_MD_FIELDS 4419 4420 Result = GET_OR_DISTINCT( 4421 DIImportedEntity, 4422 (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val)); 4423 return false; 4424 } 4425 4426 #undef PARSE_MD_FIELD 4427 #undef NOP_FIELD 4428 #undef REQUIRE_FIELD 4429 #undef DECLARE_FIELD 4430 4431 /// ParseMetadataAsValue 4432 /// ::= metadata i32 %local 4433 /// ::= metadata i32 @global 4434 /// ::= metadata i32 7 4435 /// ::= metadata !0 4436 /// ::= metadata !{...} 4437 /// ::= metadata !"string" 4438 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 4439 // Note: the type 'metadata' has already been parsed. 4440 Metadata *MD; 4441 if (ParseMetadata(MD, &PFS)) 4442 return true; 4443 4444 V = MetadataAsValue::get(Context, MD); 4445 return false; 4446 } 4447 4448 /// ParseValueAsMetadata 4449 /// ::= i32 %local 4450 /// ::= i32 @global 4451 /// ::= i32 7 4452 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 4453 PerFunctionState *PFS) { 4454 Type *Ty; 4455 LocTy Loc; 4456 if (ParseType(Ty, TypeMsg, Loc)) 4457 return true; 4458 if (Ty->isMetadataTy()) 4459 return Error(Loc, "invalid metadata-value-metadata roundtrip"); 4460 4461 Value *V; 4462 if (ParseValue(Ty, V, PFS)) 4463 return true; 4464 4465 MD = ValueAsMetadata::get(V); 4466 return false; 4467 } 4468 4469 /// ParseMetadata 4470 /// ::= i32 %local 4471 /// ::= i32 @global 4472 /// ::= i32 7 4473 /// ::= !42 4474 /// ::= !{...} 4475 /// ::= !"string" 4476 /// ::= !DILocation(...) 4477 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) { 4478 if (Lex.getKind() == lltok::MetadataVar) { 4479 MDNode *N; 4480 if (ParseSpecializedMDNode(N)) 4481 return true; 4482 MD = N; 4483 return false; 4484 } 4485 4486 // ValueAsMetadata: 4487 // <type> <value> 4488 if (Lex.getKind() != lltok::exclaim) 4489 return ParseValueAsMetadata(MD, "expected metadata operand", PFS); 4490 4491 // '!'. 4492 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 4493 Lex.Lex(); 4494 4495 // MDString: 4496 // ::= '!' STRINGCONSTANT 4497 if (Lex.getKind() == lltok::StringConstant) { 4498 MDString *S; 4499 if (ParseMDString(S)) 4500 return true; 4501 MD = S; 4502 return false; 4503 } 4504 4505 // MDNode: 4506 // !{ ... } 4507 // !7 4508 MDNode *N; 4509 if (ParseMDNodeTail(N)) 4510 return true; 4511 MD = N; 4512 return false; 4513 } 4514 4515 //===----------------------------------------------------------------------===// 4516 // Function Parsing. 4517 //===----------------------------------------------------------------------===// 4518 4519 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 4520 PerFunctionState *PFS) { 4521 if (Ty->isFunctionTy()) 4522 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 4523 4524 switch (ID.Kind) { 4525 case ValID::t_LocalID: 4526 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4527 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc); 4528 return V == nullptr; 4529 case ValID::t_LocalName: 4530 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4531 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc); 4532 return V == nullptr; 4533 case ValID::t_InlineAsm: { 4534 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 4535 return Error(ID.Loc, "invalid type for inline asm constraint string"); 4536 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, 4537 (ID.UIntVal >> 1) & 1, 4538 (InlineAsm::AsmDialect(ID.UIntVal >> 2))); 4539 return false; 4540 } 4541 case ValID::t_GlobalName: 4542 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc); 4543 return V == nullptr; 4544 case ValID::t_GlobalID: 4545 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc); 4546 return V == nullptr; 4547 case ValID::t_APSInt: 4548 if (!Ty->isIntegerTy()) 4549 return Error(ID.Loc, "integer constant must have integer type"); 4550 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 4551 V = ConstantInt::get(Context, ID.APSIntVal); 4552 return false; 4553 case ValID::t_APFloat: 4554 if (!Ty->isFloatingPointTy() || 4555 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 4556 return Error(ID.Loc, "floating point constant invalid for type"); 4557 4558 // The lexer has no type info, so builds all half, float, and double FP 4559 // constants as double. Fix this here. Long double does not need this. 4560 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 4561 bool Ignored; 4562 if (Ty->isHalfTy()) 4563 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 4564 &Ignored); 4565 else if (Ty->isFloatTy()) 4566 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 4567 &Ignored); 4568 } 4569 V = ConstantFP::get(Context, ID.APFloatVal); 4570 4571 if (V->getType() != Ty) 4572 return Error(ID.Loc, "floating point constant does not have type '" + 4573 getTypeString(Ty) + "'"); 4574 4575 return false; 4576 case ValID::t_Null: 4577 if (!Ty->isPointerTy()) 4578 return Error(ID.Loc, "null must be a pointer type"); 4579 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 4580 return false; 4581 case ValID::t_Undef: 4582 // FIXME: LabelTy should not be a first-class type. 4583 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4584 return Error(ID.Loc, "invalid type for undef constant"); 4585 V = UndefValue::get(Ty); 4586 return false; 4587 case ValID::t_EmptyArray: 4588 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 4589 return Error(ID.Loc, "invalid empty array initializer"); 4590 V = UndefValue::get(Ty); 4591 return false; 4592 case ValID::t_Zero: 4593 // FIXME: LabelTy should not be a first-class type. 4594 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4595 return Error(ID.Loc, "invalid type for null constant"); 4596 V = Constant::getNullValue(Ty); 4597 return false; 4598 case ValID::t_None: 4599 if (!Ty->isTokenTy()) 4600 return Error(ID.Loc, "invalid type for none constant"); 4601 V = Constant::getNullValue(Ty); 4602 return false; 4603 case ValID::t_Constant: 4604 if (ID.ConstantVal->getType() != Ty) 4605 return Error(ID.Loc, "constant expression type mismatch"); 4606 4607 V = ID.ConstantVal; 4608 return false; 4609 case ValID::t_ConstantStruct: 4610 case ValID::t_PackedConstantStruct: 4611 if (StructType *ST = dyn_cast<StructType>(Ty)) { 4612 if (ST->getNumElements() != ID.UIntVal) 4613 return Error(ID.Loc, 4614 "initializer with struct type has wrong # elements"); 4615 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 4616 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 4617 4618 // Verify that the elements are compatible with the structtype. 4619 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 4620 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 4621 return Error(ID.Loc, "element " + Twine(i) + 4622 " of struct initializer doesn't match struct element type"); 4623 4624 V = ConstantStruct::get( 4625 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 4626 } else 4627 return Error(ID.Loc, "constant expression type mismatch"); 4628 return false; 4629 } 4630 llvm_unreachable("Invalid ValID"); 4631 } 4632 4633 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 4634 C = nullptr; 4635 ValID ID; 4636 auto Loc = Lex.getLoc(); 4637 if (ParseValID(ID, /*PFS=*/nullptr)) 4638 return true; 4639 switch (ID.Kind) { 4640 case ValID::t_APSInt: 4641 case ValID::t_APFloat: 4642 case ValID::t_Undef: 4643 case ValID::t_Constant: 4644 case ValID::t_ConstantStruct: 4645 case ValID::t_PackedConstantStruct: { 4646 Value *V; 4647 if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr)) 4648 return true; 4649 assert(isa<Constant>(V) && "Expected a constant value"); 4650 C = cast<Constant>(V); 4651 return false; 4652 } 4653 case ValID::t_Null: 4654 C = Constant::getNullValue(Ty); 4655 return false; 4656 default: 4657 return Error(Loc, "expected a constant value"); 4658 } 4659 } 4660 4661 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 4662 V = nullptr; 4663 ValID ID; 4664 return ParseValID(ID, PFS) || ConvertValIDToValue(Ty, ID, V, PFS); 4665 } 4666 4667 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 4668 Type *Ty = nullptr; 4669 return ParseType(Ty) || 4670 ParseValue(Ty, V, PFS); 4671 } 4672 4673 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 4674 PerFunctionState &PFS) { 4675 Value *V; 4676 Loc = Lex.getLoc(); 4677 if (ParseTypeAndValue(V, PFS)) return true; 4678 if (!isa<BasicBlock>(V)) 4679 return Error(Loc, "expected a basic block"); 4680 BB = cast<BasicBlock>(V); 4681 return false; 4682 } 4683 4684 /// FunctionHeader 4685 /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs 4686 /// OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection 4687 /// OptionalAlign OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 4688 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 4689 // Parse the linkage. 4690 LocTy LinkageLoc = Lex.getLoc(); 4691 unsigned Linkage; 4692 4693 unsigned Visibility; 4694 unsigned DLLStorageClass; 4695 AttrBuilder RetAttrs; 4696 unsigned CC; 4697 bool HasLinkage; 4698 Type *RetType = nullptr; 4699 LocTy RetTypeLoc = Lex.getLoc(); 4700 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) || 4701 ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 4702 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 4703 return true; 4704 4705 // Verify that the linkage is ok. 4706 switch ((GlobalValue::LinkageTypes)Linkage) { 4707 case GlobalValue::ExternalLinkage: 4708 break; // always ok. 4709 case GlobalValue::ExternalWeakLinkage: 4710 if (isDefine) 4711 return Error(LinkageLoc, "invalid linkage for function definition"); 4712 break; 4713 case GlobalValue::PrivateLinkage: 4714 case GlobalValue::InternalLinkage: 4715 case GlobalValue::AvailableExternallyLinkage: 4716 case GlobalValue::LinkOnceAnyLinkage: 4717 case GlobalValue::LinkOnceODRLinkage: 4718 case GlobalValue::WeakAnyLinkage: 4719 case GlobalValue::WeakODRLinkage: 4720 if (!isDefine) 4721 return Error(LinkageLoc, "invalid linkage for function declaration"); 4722 break; 4723 case GlobalValue::AppendingLinkage: 4724 case GlobalValue::CommonLinkage: 4725 return Error(LinkageLoc, "invalid function linkage type"); 4726 } 4727 4728 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 4729 return Error(LinkageLoc, 4730 "symbol with local linkage must have default visibility"); 4731 4732 if (!FunctionType::isValidReturnType(RetType)) 4733 return Error(RetTypeLoc, "invalid function return type"); 4734 4735 LocTy NameLoc = Lex.getLoc(); 4736 4737 std::string FunctionName; 4738 if (Lex.getKind() == lltok::GlobalVar) { 4739 FunctionName = Lex.getStrVal(); 4740 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 4741 unsigned NameID = Lex.getUIntVal(); 4742 4743 if (NameID != NumberedVals.size()) 4744 return TokError("function expected to be numbered '%" + 4745 Twine(NumberedVals.size()) + "'"); 4746 } else { 4747 return TokError("expected function name"); 4748 } 4749 4750 Lex.Lex(); 4751 4752 if (Lex.getKind() != lltok::lparen) 4753 return TokError("expected '(' in function argument list"); 4754 4755 SmallVector<ArgInfo, 8> ArgList; 4756 bool isVarArg; 4757 AttrBuilder FuncAttrs; 4758 std::vector<unsigned> FwdRefAttrGrps; 4759 LocTy BuiltinLoc; 4760 std::string Section; 4761 unsigned Alignment; 4762 std::string GC; 4763 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4764 LocTy UnnamedAddrLoc; 4765 Constant *Prefix = nullptr; 4766 Constant *Prologue = nullptr; 4767 Constant *PersonalityFn = nullptr; 4768 Comdat *C; 4769 4770 if (ParseArgumentList(ArgList, isVarArg) || 4771 ParseOptionalUnnamedAddr(UnnamedAddr) || 4772 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 4773 BuiltinLoc) || 4774 (EatIfPresent(lltok::kw_section) && 4775 ParseStringConstant(Section)) || 4776 parseOptionalComdat(FunctionName, C) || 4777 ParseOptionalAlignment(Alignment) || 4778 (EatIfPresent(lltok::kw_gc) && 4779 ParseStringConstant(GC)) || 4780 (EatIfPresent(lltok::kw_prefix) && 4781 ParseGlobalTypeAndValue(Prefix)) || 4782 (EatIfPresent(lltok::kw_prologue) && 4783 ParseGlobalTypeAndValue(Prologue)) || 4784 (EatIfPresent(lltok::kw_personality) && 4785 ParseGlobalTypeAndValue(PersonalityFn))) 4786 return true; 4787 4788 if (FuncAttrs.contains(Attribute::Builtin)) 4789 return Error(BuiltinLoc, "'builtin' attribute not valid on function"); 4790 4791 // If the alignment was parsed as an attribute, move to the alignment field. 4792 if (FuncAttrs.hasAlignmentAttr()) { 4793 Alignment = FuncAttrs.getAlignment(); 4794 FuncAttrs.removeAttribute(Attribute::Alignment); 4795 } 4796 4797 // Okay, if we got here, the function is syntactically valid. Convert types 4798 // and do semantic checks. 4799 std::vector<Type*> ParamTypeList; 4800 SmallVector<AttributeSet, 8> Attrs; 4801 4802 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 4803 ParamTypeList.push_back(ArgList[i].Ty); 4804 Attrs.push_back(ArgList[i].Attrs); 4805 } 4806 4807 AttributeList PAL = 4808 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 4809 AttributeSet::get(Context, RetAttrs), Attrs); 4810 4811 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 4812 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 4813 4814 FunctionType *FT = 4815 FunctionType::get(RetType, ParamTypeList, isVarArg); 4816 PointerType *PFT = PointerType::getUnqual(FT); 4817 4818 Fn = nullptr; 4819 if (!FunctionName.empty()) { 4820 // If this was a definition of a forward reference, remove the definition 4821 // from the forward reference table and fill in the forward ref. 4822 auto FRVI = ForwardRefVals.find(FunctionName); 4823 if (FRVI != ForwardRefVals.end()) { 4824 Fn = M->getFunction(FunctionName); 4825 if (!Fn) 4826 return Error(FRVI->second.second, "invalid forward reference to " 4827 "function as global value!"); 4828 if (Fn->getType() != PFT) 4829 return Error(FRVI->second.second, "invalid forward reference to " 4830 "function '" + FunctionName + "' with wrong type!"); 4831 4832 ForwardRefVals.erase(FRVI); 4833 } else if ((Fn = M->getFunction(FunctionName))) { 4834 // Reject redefinitions. 4835 return Error(NameLoc, "invalid redefinition of function '" + 4836 FunctionName + "'"); 4837 } else if (M->getNamedValue(FunctionName)) { 4838 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 4839 } 4840 4841 } else { 4842 // If this is a definition of a forward referenced function, make sure the 4843 // types agree. 4844 auto I = ForwardRefValIDs.find(NumberedVals.size()); 4845 if (I != ForwardRefValIDs.end()) { 4846 Fn = cast<Function>(I->second.first); 4847 if (Fn->getType() != PFT) 4848 return Error(NameLoc, "type of definition and forward reference of '@" + 4849 Twine(NumberedVals.size()) + "' disagree"); 4850 ForwardRefValIDs.erase(I); 4851 } 4852 } 4853 4854 if (!Fn) 4855 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M); 4856 else // Move the forward-reference to the correct spot in the module. 4857 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 4858 4859 if (FunctionName.empty()) 4860 NumberedVals.push_back(Fn); 4861 4862 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 4863 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 4864 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 4865 Fn->setCallingConv(CC); 4866 Fn->setAttributes(PAL); 4867 Fn->setUnnamedAddr(UnnamedAddr); 4868 Fn->setAlignment(Alignment); 4869 Fn->setSection(Section); 4870 Fn->setComdat(C); 4871 Fn->setPersonalityFn(PersonalityFn); 4872 if (!GC.empty()) Fn->setGC(GC); 4873 Fn->setPrefixData(Prefix); 4874 Fn->setPrologueData(Prologue); 4875 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 4876 4877 // Add all of the arguments we parsed to the function. 4878 Function::arg_iterator ArgIt = Fn->arg_begin(); 4879 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 4880 // If the argument has a name, insert it into the argument symbol table. 4881 if (ArgList[i].Name.empty()) continue; 4882 4883 // Set the name, if it conflicted, it will be auto-renamed. 4884 ArgIt->setName(ArgList[i].Name); 4885 4886 if (ArgIt->getName() != ArgList[i].Name) 4887 return Error(ArgList[i].Loc, "redefinition of argument '%" + 4888 ArgList[i].Name + "'"); 4889 } 4890 4891 if (isDefine) 4892 return false; 4893 4894 // Check the declaration has no block address forward references. 4895 ValID ID; 4896 if (FunctionName.empty()) { 4897 ID.Kind = ValID::t_GlobalID; 4898 ID.UIntVal = NumberedVals.size() - 1; 4899 } else { 4900 ID.Kind = ValID::t_GlobalName; 4901 ID.StrVal = FunctionName; 4902 } 4903 auto Blocks = ForwardRefBlockAddresses.find(ID); 4904 if (Blocks != ForwardRefBlockAddresses.end()) 4905 return Error(Blocks->first.Loc, 4906 "cannot take blockaddress inside a declaration"); 4907 return false; 4908 } 4909 4910 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 4911 ValID ID; 4912 if (FunctionNumber == -1) { 4913 ID.Kind = ValID::t_GlobalName; 4914 ID.StrVal = F.getName(); 4915 } else { 4916 ID.Kind = ValID::t_GlobalID; 4917 ID.UIntVal = FunctionNumber; 4918 } 4919 4920 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 4921 if (Blocks == P.ForwardRefBlockAddresses.end()) 4922 return false; 4923 4924 for (const auto &I : Blocks->second) { 4925 const ValID &BBID = I.first; 4926 GlobalValue *GV = I.second; 4927 4928 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 4929 "Expected local id or name"); 4930 BasicBlock *BB; 4931 if (BBID.Kind == ValID::t_LocalName) 4932 BB = GetBB(BBID.StrVal, BBID.Loc); 4933 else 4934 BB = GetBB(BBID.UIntVal, BBID.Loc); 4935 if (!BB) 4936 return P.Error(BBID.Loc, "referenced value is not a basic block"); 4937 4938 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 4939 GV->eraseFromParent(); 4940 } 4941 4942 P.ForwardRefBlockAddresses.erase(Blocks); 4943 return false; 4944 } 4945 4946 /// ParseFunctionBody 4947 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 4948 bool LLParser::ParseFunctionBody(Function &Fn) { 4949 if (Lex.getKind() != lltok::lbrace) 4950 return TokError("expected '{' in function body"); 4951 Lex.Lex(); // eat the {. 4952 4953 int FunctionNumber = -1; 4954 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 4955 4956 PerFunctionState PFS(*this, Fn, FunctionNumber); 4957 4958 // Resolve block addresses and allow basic blocks to be forward-declared 4959 // within this function. 4960 if (PFS.resolveForwardRefBlockAddresses()) 4961 return true; 4962 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 4963 4964 // We need at least one basic block. 4965 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 4966 return TokError("function body requires at least one basic block"); 4967 4968 while (Lex.getKind() != lltok::rbrace && 4969 Lex.getKind() != lltok::kw_uselistorder) 4970 if (ParseBasicBlock(PFS)) return true; 4971 4972 while (Lex.getKind() != lltok::rbrace) 4973 if (ParseUseListOrder(&PFS)) 4974 return true; 4975 4976 // Eat the }. 4977 Lex.Lex(); 4978 4979 // Verify function is ok. 4980 return PFS.FinishFunction(); 4981 } 4982 4983 /// ParseBasicBlock 4984 /// ::= LabelStr? Instruction* 4985 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 4986 // If this basic block starts out with a name, remember it. 4987 std::string Name; 4988 LocTy NameLoc = Lex.getLoc(); 4989 if (Lex.getKind() == lltok::LabelStr) { 4990 Name = Lex.getStrVal(); 4991 Lex.Lex(); 4992 } 4993 4994 BasicBlock *BB = PFS.DefineBB(Name, NameLoc); 4995 if (!BB) 4996 return Error(NameLoc, 4997 "unable to create block named '" + Name + "'"); 4998 4999 std::string NameStr; 5000 5001 // Parse the instructions in this block until we get a terminator. 5002 Instruction *Inst; 5003 do { 5004 // This instruction may have three possibilities for a name: a) none 5005 // specified, b) name specified "%foo =", c) number specified: "%4 =". 5006 LocTy NameLoc = Lex.getLoc(); 5007 int NameID = -1; 5008 NameStr = ""; 5009 5010 if (Lex.getKind() == lltok::LocalVarID) { 5011 NameID = Lex.getUIntVal(); 5012 Lex.Lex(); 5013 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 5014 return true; 5015 } else if (Lex.getKind() == lltok::LocalVar) { 5016 NameStr = Lex.getStrVal(); 5017 Lex.Lex(); 5018 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 5019 return true; 5020 } 5021 5022 switch (ParseInstruction(Inst, BB, PFS)) { 5023 default: llvm_unreachable("Unknown ParseInstruction result!"); 5024 case InstError: return true; 5025 case InstNormal: 5026 BB->getInstList().push_back(Inst); 5027 5028 // With a normal result, we check to see if the instruction is followed by 5029 // a comma and metadata. 5030 if (EatIfPresent(lltok::comma)) 5031 if (ParseInstructionMetadata(*Inst)) 5032 return true; 5033 break; 5034 case InstExtraComma: 5035 BB->getInstList().push_back(Inst); 5036 5037 // If the instruction parser ate an extra comma at the end of it, it 5038 // *must* be followed by metadata. 5039 if (ParseInstructionMetadata(*Inst)) 5040 return true; 5041 break; 5042 } 5043 5044 // Set the name on the instruction. 5045 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 5046 } while (!isa<TerminatorInst>(Inst)); 5047 5048 return false; 5049 } 5050 5051 //===----------------------------------------------------------------------===// 5052 // Instruction Parsing. 5053 //===----------------------------------------------------------------------===// 5054 5055 /// ParseInstruction - Parse one of the many different instructions. 5056 /// 5057 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 5058 PerFunctionState &PFS) { 5059 lltok::Kind Token = Lex.getKind(); 5060 if (Token == lltok::Eof) 5061 return TokError("found end of file when expecting more instructions"); 5062 LocTy Loc = Lex.getLoc(); 5063 unsigned KeywordVal = Lex.getUIntVal(); 5064 Lex.Lex(); // Eat the keyword. 5065 5066 switch (Token) { 5067 default: return Error(Loc, "expected instruction opcode"); 5068 // Terminator Instructions. 5069 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 5070 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 5071 case lltok::kw_br: return ParseBr(Inst, PFS); 5072 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 5073 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 5074 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 5075 case lltok::kw_resume: return ParseResume(Inst, PFS); 5076 case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS); 5077 case lltok::kw_catchret: return ParseCatchRet(Inst, PFS); 5078 case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS); 5079 case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS); 5080 case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS); 5081 // Binary Operators. 5082 case lltok::kw_add: 5083 case lltok::kw_sub: 5084 case lltok::kw_mul: 5085 case lltok::kw_shl: { 5086 bool NUW = EatIfPresent(lltok::kw_nuw); 5087 bool NSW = EatIfPresent(lltok::kw_nsw); 5088 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 5089 5090 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 5091 5092 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 5093 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 5094 return false; 5095 } 5096 case lltok::kw_fadd: 5097 case lltok::kw_fsub: 5098 case lltok::kw_fmul: 5099 case lltok::kw_fdiv: 5100 case lltok::kw_frem: { 5101 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5102 int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2); 5103 if (Res != 0) 5104 return Res; 5105 if (FMF.any()) 5106 Inst->setFastMathFlags(FMF); 5107 return 0; 5108 } 5109 5110 case lltok::kw_sdiv: 5111 case lltok::kw_udiv: 5112 case lltok::kw_lshr: 5113 case lltok::kw_ashr: { 5114 bool Exact = EatIfPresent(lltok::kw_exact); 5115 5116 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 5117 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 5118 return false; 5119 } 5120 5121 case lltok::kw_urem: 5122 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1); 5123 case lltok::kw_and: 5124 case lltok::kw_or: 5125 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 5126 case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal); 5127 case lltok::kw_fcmp: { 5128 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5129 int Res = ParseCompare(Inst, PFS, KeywordVal); 5130 if (Res != 0) 5131 return Res; 5132 if (FMF.any()) 5133 Inst->setFastMathFlags(FMF); 5134 return 0; 5135 } 5136 5137 // Casts. 5138 case lltok::kw_trunc: 5139 case lltok::kw_zext: 5140 case lltok::kw_sext: 5141 case lltok::kw_fptrunc: 5142 case lltok::kw_fpext: 5143 case lltok::kw_bitcast: 5144 case lltok::kw_addrspacecast: 5145 case lltok::kw_uitofp: 5146 case lltok::kw_sitofp: 5147 case lltok::kw_fptoui: 5148 case lltok::kw_fptosi: 5149 case lltok::kw_inttoptr: 5150 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 5151 // Other. 5152 case lltok::kw_select: return ParseSelect(Inst, PFS); 5153 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 5154 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 5155 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 5156 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 5157 case lltok::kw_phi: return ParsePHI(Inst, PFS); 5158 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 5159 // Call. 5160 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None); 5161 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail); 5162 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail); 5163 case lltok::kw_notail: return ParseCall(Inst, PFS, CallInst::TCK_NoTail); 5164 // Memory. 5165 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 5166 case lltok::kw_load: return ParseLoad(Inst, PFS); 5167 case lltok::kw_store: return ParseStore(Inst, PFS); 5168 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 5169 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 5170 case lltok::kw_fence: return ParseFence(Inst, PFS); 5171 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 5172 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 5173 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 5174 } 5175 } 5176 5177 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 5178 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 5179 if (Opc == Instruction::FCmp) { 5180 switch (Lex.getKind()) { 5181 default: return TokError("expected fcmp predicate (e.g. 'oeq')"); 5182 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 5183 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 5184 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 5185 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 5186 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 5187 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 5188 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 5189 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 5190 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 5191 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 5192 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 5193 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 5194 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 5195 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 5196 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 5197 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 5198 } 5199 } else { 5200 switch (Lex.getKind()) { 5201 default: return TokError("expected icmp predicate (e.g. 'eq')"); 5202 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 5203 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 5204 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 5205 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 5206 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 5207 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 5208 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 5209 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 5210 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 5211 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 5212 } 5213 } 5214 Lex.Lex(); 5215 return false; 5216 } 5217 5218 //===----------------------------------------------------------------------===// 5219 // Terminator Instructions. 5220 //===----------------------------------------------------------------------===// 5221 5222 /// ParseRet - Parse a return instruction. 5223 /// ::= 'ret' void (',' !dbg, !1)* 5224 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 5225 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 5226 PerFunctionState &PFS) { 5227 SMLoc TypeLoc = Lex.getLoc(); 5228 Type *Ty = nullptr; 5229 if (ParseType(Ty, true /*void allowed*/)) return true; 5230 5231 Type *ResType = PFS.getFunction().getReturnType(); 5232 5233 if (Ty->isVoidTy()) { 5234 if (!ResType->isVoidTy()) 5235 return Error(TypeLoc, "value doesn't match function result type '" + 5236 getTypeString(ResType) + "'"); 5237 5238 Inst = ReturnInst::Create(Context); 5239 return false; 5240 } 5241 5242 Value *RV; 5243 if (ParseValue(Ty, RV, PFS)) return true; 5244 5245 if (ResType != RV->getType()) 5246 return Error(TypeLoc, "value doesn't match function result type '" + 5247 getTypeString(ResType) + "'"); 5248 5249 Inst = ReturnInst::Create(Context, RV); 5250 return false; 5251 } 5252 5253 /// ParseBr 5254 /// ::= 'br' TypeAndValue 5255 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5256 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 5257 LocTy Loc, Loc2; 5258 Value *Op0; 5259 BasicBlock *Op1, *Op2; 5260 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 5261 5262 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 5263 Inst = BranchInst::Create(BB); 5264 return false; 5265 } 5266 5267 if (Op0->getType() != Type::getInt1Ty(Context)) 5268 return Error(Loc, "branch condition must have 'i1' type"); 5269 5270 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 5271 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 5272 ParseToken(lltok::comma, "expected ',' after true destination") || 5273 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 5274 return true; 5275 5276 Inst = BranchInst::Create(Op1, Op2, Op0); 5277 return false; 5278 } 5279 5280 /// ParseSwitch 5281 /// Instruction 5282 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 5283 /// JumpTable 5284 /// ::= (TypeAndValue ',' TypeAndValue)* 5285 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5286 LocTy CondLoc, BBLoc; 5287 Value *Cond; 5288 BasicBlock *DefaultBB; 5289 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 5290 ParseToken(lltok::comma, "expected ',' after switch condition") || 5291 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 5292 ParseToken(lltok::lsquare, "expected '[' with switch table")) 5293 return true; 5294 5295 if (!Cond->getType()->isIntegerTy()) 5296 return Error(CondLoc, "switch condition must have integer type"); 5297 5298 // Parse the jump table pairs. 5299 SmallPtrSet<Value*, 32> SeenCases; 5300 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 5301 while (Lex.getKind() != lltok::rsquare) { 5302 Value *Constant; 5303 BasicBlock *DestBB; 5304 5305 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 5306 ParseToken(lltok::comma, "expected ',' after case value") || 5307 ParseTypeAndBasicBlock(DestBB, PFS)) 5308 return true; 5309 5310 if (!SeenCases.insert(Constant).second) 5311 return Error(CondLoc, "duplicate case value in switch"); 5312 if (!isa<ConstantInt>(Constant)) 5313 return Error(CondLoc, "case value is not a constant integer"); 5314 5315 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 5316 } 5317 5318 Lex.Lex(); // Eat the ']'. 5319 5320 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 5321 for (unsigned i = 0, e = Table.size(); i != e; ++i) 5322 SI->addCase(Table[i].first, Table[i].second); 5323 Inst = SI; 5324 return false; 5325 } 5326 5327 /// ParseIndirectBr 5328 /// Instruction 5329 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 5330 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 5331 LocTy AddrLoc; 5332 Value *Address; 5333 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 5334 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 5335 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 5336 return true; 5337 5338 if (!Address->getType()->isPointerTy()) 5339 return Error(AddrLoc, "indirectbr address must have pointer type"); 5340 5341 // Parse the destination list. 5342 SmallVector<BasicBlock*, 16> DestList; 5343 5344 if (Lex.getKind() != lltok::rsquare) { 5345 BasicBlock *DestBB; 5346 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5347 return true; 5348 DestList.push_back(DestBB); 5349 5350 while (EatIfPresent(lltok::comma)) { 5351 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5352 return true; 5353 DestList.push_back(DestBB); 5354 } 5355 } 5356 5357 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 5358 return true; 5359 5360 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 5361 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 5362 IBI->addDestination(DestList[i]); 5363 Inst = IBI; 5364 return false; 5365 } 5366 5367 /// ParseInvoke 5368 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 5369 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 5370 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 5371 LocTy CallLoc = Lex.getLoc(); 5372 AttrBuilder RetAttrs, FnAttrs; 5373 std::vector<unsigned> FwdRefAttrGrps; 5374 LocTy NoBuiltinLoc; 5375 unsigned CC; 5376 Type *RetType = nullptr; 5377 LocTy RetTypeLoc; 5378 ValID CalleeID; 5379 SmallVector<ParamInfo, 16> ArgList; 5380 SmallVector<OperandBundleDef, 2> BundleList; 5381 5382 BasicBlock *NormalBB, *UnwindBB; 5383 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5384 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5385 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 5386 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 5387 NoBuiltinLoc) || 5388 ParseOptionalOperandBundles(BundleList, PFS) || 5389 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 5390 ParseTypeAndBasicBlock(NormalBB, PFS) || 5391 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 5392 ParseTypeAndBasicBlock(UnwindBB, PFS)) 5393 return true; 5394 5395 // If RetType is a non-function pointer type, then this is the short syntax 5396 // for the call, which means that RetType is just the return type. Infer the 5397 // rest of the function argument types from the arguments that are present. 5398 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 5399 if (!Ty) { 5400 // Pull out the types of all of the arguments... 5401 std::vector<Type*> ParamTypes; 5402 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 5403 ParamTypes.push_back(ArgList[i].V->getType()); 5404 5405 if (!FunctionType::isValidReturnType(RetType)) 5406 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 5407 5408 Ty = FunctionType::get(RetType, ParamTypes, false); 5409 } 5410 5411 CalleeID.FTy = Ty; 5412 5413 // Look up the callee. 5414 Value *Callee; 5415 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 5416 return true; 5417 5418 // Set up the Attribute for the function. 5419 SmallVector<Value *, 8> Args; 5420 SmallVector<AttributeSet, 8> ArgAttrs; 5421 5422 // Loop through FunctionType's arguments and ensure they are specified 5423 // correctly. Also, gather any parameter attributes. 5424 FunctionType::param_iterator I = Ty->param_begin(); 5425 FunctionType::param_iterator E = Ty->param_end(); 5426 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5427 Type *ExpectedTy = nullptr; 5428 if (I != E) { 5429 ExpectedTy = *I++; 5430 } else if (!Ty->isVarArg()) { 5431 return Error(ArgList[i].Loc, "too many arguments specified"); 5432 } 5433 5434 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 5435 return Error(ArgList[i].Loc, "argument is not of expected type '" + 5436 getTypeString(ExpectedTy) + "'"); 5437 Args.push_back(ArgList[i].V); 5438 ArgAttrs.push_back(ArgList[i].Attrs); 5439 } 5440 5441 if (I != E) 5442 return Error(CallLoc, "not enough parameters specified for call"); 5443 5444 if (FnAttrs.hasAlignmentAttr()) 5445 return Error(CallLoc, "invoke instructions may not have an alignment"); 5446 5447 // Finish off the Attribute and check them 5448 AttributeList PAL = 5449 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 5450 AttributeSet::get(Context, RetAttrs), ArgAttrs); 5451 5452 InvokeInst *II = 5453 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 5454 II->setCallingConv(CC); 5455 II->setAttributes(PAL); 5456 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 5457 Inst = II; 5458 return false; 5459 } 5460 5461 /// ParseResume 5462 /// ::= 'resume' TypeAndValue 5463 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 5464 Value *Exn; LocTy ExnLoc; 5465 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 5466 return true; 5467 5468 ResumeInst *RI = ResumeInst::Create(Exn); 5469 Inst = RI; 5470 return false; 5471 } 5472 5473 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args, 5474 PerFunctionState &PFS) { 5475 if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 5476 return true; 5477 5478 while (Lex.getKind() != lltok::rsquare) { 5479 // If this isn't the first argument, we need a comma. 5480 if (!Args.empty() && 5481 ParseToken(lltok::comma, "expected ',' in argument list")) 5482 return true; 5483 5484 // Parse the argument. 5485 LocTy ArgLoc; 5486 Type *ArgTy = nullptr; 5487 if (ParseType(ArgTy, ArgLoc)) 5488 return true; 5489 5490 Value *V; 5491 if (ArgTy->isMetadataTy()) { 5492 if (ParseMetadataAsValue(V, PFS)) 5493 return true; 5494 } else { 5495 if (ParseValue(ArgTy, V, PFS)) 5496 return true; 5497 } 5498 Args.push_back(V); 5499 } 5500 5501 Lex.Lex(); // Lex the ']'. 5502 return false; 5503 } 5504 5505 /// ParseCleanupRet 5506 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 5507 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 5508 Value *CleanupPad = nullptr; 5509 5510 if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret")) 5511 return true; 5512 5513 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 5514 return true; 5515 5516 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 5517 return true; 5518 5519 BasicBlock *UnwindBB = nullptr; 5520 if (Lex.getKind() == lltok::kw_to) { 5521 Lex.Lex(); 5522 if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 5523 return true; 5524 } else { 5525 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 5526 return true; 5527 } 5528 } 5529 5530 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 5531 return false; 5532 } 5533 5534 /// ParseCatchRet 5535 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 5536 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 5537 Value *CatchPad = nullptr; 5538 5539 if (ParseToken(lltok::kw_from, "expected 'from' after catchret")) 5540 return true; 5541 5542 if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS)) 5543 return true; 5544 5545 BasicBlock *BB; 5546 if (ParseToken(lltok::kw_to, "expected 'to' in catchret") || 5547 ParseTypeAndBasicBlock(BB, PFS)) 5548 return true; 5549 5550 Inst = CatchReturnInst::Create(CatchPad, BB); 5551 return false; 5552 } 5553 5554 /// ParseCatchSwitch 5555 /// ::= 'catchswitch' within Parent 5556 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5557 Value *ParentPad; 5558 LocTy BBLoc; 5559 5560 if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch")) 5561 return true; 5562 5563 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 5564 Lex.getKind() != lltok::LocalVarID) 5565 return TokError("expected scope value for catchswitch"); 5566 5567 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 5568 return true; 5569 5570 if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 5571 return true; 5572 5573 SmallVector<BasicBlock *, 32> Table; 5574 do { 5575 BasicBlock *DestBB; 5576 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5577 return true; 5578 Table.push_back(DestBB); 5579 } while (EatIfPresent(lltok::comma)); 5580 5581 if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 5582 return true; 5583 5584 if (ParseToken(lltok::kw_unwind, 5585 "expected 'unwind' after catchswitch scope")) 5586 return true; 5587 5588 BasicBlock *UnwindBB = nullptr; 5589 if (EatIfPresent(lltok::kw_to)) { 5590 if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 5591 return true; 5592 } else { 5593 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) 5594 return true; 5595 } 5596 5597 auto *CatchSwitch = 5598 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 5599 for (BasicBlock *DestBB : Table) 5600 CatchSwitch->addHandler(DestBB); 5601 Inst = CatchSwitch; 5602 return false; 5603 } 5604 5605 /// ParseCatchPad 5606 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 5607 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 5608 Value *CatchSwitch = nullptr; 5609 5610 if (ParseToken(lltok::kw_within, "expected 'within' after catchpad")) 5611 return true; 5612 5613 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 5614 return TokError("expected scope value for catchpad"); 5615 5616 if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 5617 return true; 5618 5619 SmallVector<Value *, 8> Args; 5620 if (ParseExceptionArgs(Args, PFS)) 5621 return true; 5622 5623 Inst = CatchPadInst::Create(CatchSwitch, Args); 5624 return false; 5625 } 5626 5627 /// ParseCleanupPad 5628 /// ::= 'cleanuppad' within Parent ParamList 5629 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 5630 Value *ParentPad = nullptr; 5631 5632 if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 5633 return true; 5634 5635 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 5636 Lex.getKind() != lltok::LocalVarID) 5637 return TokError("expected scope value for cleanuppad"); 5638 5639 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 5640 return true; 5641 5642 SmallVector<Value *, 8> Args; 5643 if (ParseExceptionArgs(Args, PFS)) 5644 return true; 5645 5646 Inst = CleanupPadInst::Create(ParentPad, Args); 5647 return false; 5648 } 5649 5650 //===----------------------------------------------------------------------===// 5651 // Binary Operators. 5652 //===----------------------------------------------------------------------===// 5653 5654 /// ParseArithmetic 5655 /// ::= ArithmeticOps TypeAndValue ',' Value 5656 /// 5657 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, 5658 /// then any integer operand is allowed, if it is 2, any fp operand is allowed. 5659 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 5660 unsigned Opc, unsigned OperandType) { 5661 LocTy Loc; Value *LHS, *RHS; 5662 if (ParseTypeAndValue(LHS, Loc, PFS) || 5663 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 5664 ParseValue(LHS->getType(), RHS, PFS)) 5665 return true; 5666 5667 bool Valid; 5668 switch (OperandType) { 5669 default: llvm_unreachable("Unknown operand type!"); 5670 case 0: // int or FP. 5671 Valid = LHS->getType()->isIntOrIntVectorTy() || 5672 LHS->getType()->isFPOrFPVectorTy(); 5673 break; 5674 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break; 5675 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break; 5676 } 5677 5678 if (!Valid) 5679 return Error(Loc, "invalid operand type for instruction"); 5680 5681 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5682 return false; 5683 } 5684 5685 /// ParseLogical 5686 /// ::= ArithmeticOps TypeAndValue ',' Value { 5687 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 5688 unsigned Opc) { 5689 LocTy Loc; Value *LHS, *RHS; 5690 if (ParseTypeAndValue(LHS, Loc, PFS) || 5691 ParseToken(lltok::comma, "expected ',' in logical operation") || 5692 ParseValue(LHS->getType(), RHS, PFS)) 5693 return true; 5694 5695 if (!LHS->getType()->isIntOrIntVectorTy()) 5696 return Error(Loc,"instruction requires integer or integer vector operands"); 5697 5698 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5699 return false; 5700 } 5701 5702 /// ParseCompare 5703 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 5704 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 5705 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 5706 unsigned Opc) { 5707 // Parse the integer/fp comparison predicate. 5708 LocTy Loc; 5709 unsigned Pred; 5710 Value *LHS, *RHS; 5711 if (ParseCmpPredicate(Pred, Opc) || 5712 ParseTypeAndValue(LHS, Loc, PFS) || 5713 ParseToken(lltok::comma, "expected ',' after compare value") || 5714 ParseValue(LHS->getType(), RHS, PFS)) 5715 return true; 5716 5717 if (Opc == Instruction::FCmp) { 5718 if (!LHS->getType()->isFPOrFPVectorTy()) 5719 return Error(Loc, "fcmp requires floating point operands"); 5720 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 5721 } else { 5722 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 5723 if (!LHS->getType()->isIntOrIntVectorTy() && 5724 !LHS->getType()->isPtrOrPtrVectorTy()) 5725 return Error(Loc, "icmp requires integer operands"); 5726 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 5727 } 5728 return false; 5729 } 5730 5731 //===----------------------------------------------------------------------===// 5732 // Other Instructions. 5733 //===----------------------------------------------------------------------===// 5734 5735 5736 /// ParseCast 5737 /// ::= CastOpc TypeAndValue 'to' Type 5738 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 5739 unsigned Opc) { 5740 LocTy Loc; 5741 Value *Op; 5742 Type *DestTy = nullptr; 5743 if (ParseTypeAndValue(Op, Loc, PFS) || 5744 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 5745 ParseType(DestTy)) 5746 return true; 5747 5748 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 5749 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 5750 return Error(Loc, "invalid cast opcode for cast from '" + 5751 getTypeString(Op->getType()) + "' to '" + 5752 getTypeString(DestTy) + "'"); 5753 } 5754 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 5755 return false; 5756 } 5757 5758 /// ParseSelect 5759 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5760 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 5761 LocTy Loc; 5762 Value *Op0, *Op1, *Op2; 5763 if (ParseTypeAndValue(Op0, Loc, PFS) || 5764 ParseToken(lltok::comma, "expected ',' after select condition") || 5765 ParseTypeAndValue(Op1, PFS) || 5766 ParseToken(lltok::comma, "expected ',' after select value") || 5767 ParseTypeAndValue(Op2, PFS)) 5768 return true; 5769 5770 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 5771 return Error(Loc, Reason); 5772 5773 Inst = SelectInst::Create(Op0, Op1, Op2); 5774 return false; 5775 } 5776 5777 /// ParseVA_Arg 5778 /// ::= 'va_arg' TypeAndValue ',' Type 5779 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 5780 Value *Op; 5781 Type *EltTy = nullptr; 5782 LocTy TypeLoc; 5783 if (ParseTypeAndValue(Op, PFS) || 5784 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 5785 ParseType(EltTy, TypeLoc)) 5786 return true; 5787 5788 if (!EltTy->isFirstClassType()) 5789 return Error(TypeLoc, "va_arg requires operand with first class type"); 5790 5791 Inst = new VAArgInst(Op, EltTy); 5792 return false; 5793 } 5794 5795 /// ParseExtractElement 5796 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 5797 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 5798 LocTy Loc; 5799 Value *Op0, *Op1; 5800 if (ParseTypeAndValue(Op0, Loc, PFS) || 5801 ParseToken(lltok::comma, "expected ',' after extract value") || 5802 ParseTypeAndValue(Op1, PFS)) 5803 return true; 5804 5805 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 5806 return Error(Loc, "invalid extractelement operands"); 5807 5808 Inst = ExtractElementInst::Create(Op0, Op1); 5809 return false; 5810 } 5811 5812 /// ParseInsertElement 5813 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5814 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 5815 LocTy Loc; 5816 Value *Op0, *Op1, *Op2; 5817 if (ParseTypeAndValue(Op0, Loc, PFS) || 5818 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5819 ParseTypeAndValue(Op1, PFS) || 5820 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5821 ParseTypeAndValue(Op2, PFS)) 5822 return true; 5823 5824 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 5825 return Error(Loc, "invalid insertelement operands"); 5826 5827 Inst = InsertElementInst::Create(Op0, Op1, Op2); 5828 return false; 5829 } 5830 5831 /// ParseShuffleVector 5832 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5833 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 5834 LocTy Loc; 5835 Value *Op0, *Op1, *Op2; 5836 if (ParseTypeAndValue(Op0, Loc, PFS) || 5837 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 5838 ParseTypeAndValue(Op1, PFS) || 5839 ParseToken(lltok::comma, "expected ',' after shuffle value") || 5840 ParseTypeAndValue(Op2, PFS)) 5841 return true; 5842 5843 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 5844 return Error(Loc, "invalid shufflevector operands"); 5845 5846 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 5847 return false; 5848 } 5849 5850 /// ParsePHI 5851 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 5852 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 5853 Type *Ty = nullptr; LocTy TypeLoc; 5854 Value *Op0, *Op1; 5855 5856 if (ParseType(Ty, TypeLoc) || 5857 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 5858 ParseValue(Ty, Op0, PFS) || 5859 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5860 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 5861 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 5862 return true; 5863 5864 bool AteExtraComma = false; 5865 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 5866 5867 while (true) { 5868 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 5869 5870 if (!EatIfPresent(lltok::comma)) 5871 break; 5872 5873 if (Lex.getKind() == lltok::MetadataVar) { 5874 AteExtraComma = true; 5875 break; 5876 } 5877 5878 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 5879 ParseValue(Ty, Op0, PFS) || 5880 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5881 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 5882 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 5883 return true; 5884 } 5885 5886 if (!Ty->isFirstClassType()) 5887 return Error(TypeLoc, "phi node must have first class type"); 5888 5889 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 5890 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 5891 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 5892 Inst = PN; 5893 return AteExtraComma ? InstExtraComma : InstNormal; 5894 } 5895 5896 /// ParseLandingPad 5897 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 5898 /// Clause 5899 /// ::= 'catch' TypeAndValue 5900 /// ::= 'filter' 5901 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 5902 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 5903 Type *Ty = nullptr; LocTy TyLoc; 5904 5905 if (ParseType(Ty, TyLoc)) 5906 return true; 5907 5908 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 5909 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 5910 5911 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 5912 LandingPadInst::ClauseType CT; 5913 if (EatIfPresent(lltok::kw_catch)) 5914 CT = LandingPadInst::Catch; 5915 else if (EatIfPresent(lltok::kw_filter)) 5916 CT = LandingPadInst::Filter; 5917 else 5918 return TokError("expected 'catch' or 'filter' clause type"); 5919 5920 Value *V; 5921 LocTy VLoc; 5922 if (ParseTypeAndValue(V, VLoc, PFS)) 5923 return true; 5924 5925 // A 'catch' type expects a non-array constant. A filter clause expects an 5926 // array constant. 5927 if (CT == LandingPadInst::Catch) { 5928 if (isa<ArrayType>(V->getType())) 5929 Error(VLoc, "'catch' clause has an invalid type"); 5930 } else { 5931 if (!isa<ArrayType>(V->getType())) 5932 Error(VLoc, "'filter' clause has an invalid type"); 5933 } 5934 5935 Constant *CV = dyn_cast<Constant>(V); 5936 if (!CV) 5937 return Error(VLoc, "clause argument must be a constant"); 5938 LP->addClause(CV); 5939 } 5940 5941 Inst = LP.release(); 5942 return false; 5943 } 5944 5945 /// ParseCall 5946 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 5947 /// OptionalAttrs Type Value ParameterList OptionalAttrs 5948 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 5949 /// OptionalAttrs Type Value ParameterList OptionalAttrs 5950 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 5951 /// OptionalAttrs Type Value ParameterList OptionalAttrs 5952 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 5953 /// OptionalAttrs Type Value ParameterList OptionalAttrs 5954 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 5955 CallInst::TailCallKind TCK) { 5956 AttrBuilder RetAttrs, FnAttrs; 5957 std::vector<unsigned> FwdRefAttrGrps; 5958 LocTy BuiltinLoc; 5959 unsigned CC; 5960 Type *RetType = nullptr; 5961 LocTy RetTypeLoc; 5962 ValID CalleeID; 5963 SmallVector<ParamInfo, 16> ArgList; 5964 SmallVector<OperandBundleDef, 2> BundleList; 5965 LocTy CallLoc = Lex.getLoc(); 5966 5967 if (TCK != CallInst::TCK_None && 5968 ParseToken(lltok::kw_call, 5969 "expected 'tail call', 'musttail call', or 'notail call'")) 5970 return true; 5971 5972 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5973 5974 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5975 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5976 ParseValID(CalleeID) || 5977 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 5978 PFS.getFunction().isVarArg()) || 5979 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 5980 ParseOptionalOperandBundles(BundleList, PFS)) 5981 return true; 5982 5983 if (FMF.any() && !RetType->isFPOrFPVectorTy()) 5984 return Error(CallLoc, "fast-math-flags specified for call without " 5985 "floating-point scalar or vector return type"); 5986 5987 // If RetType is a non-function pointer type, then this is the short syntax 5988 // for the call, which means that RetType is just the return type. Infer the 5989 // rest of the function argument types from the arguments that are present. 5990 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 5991 if (!Ty) { 5992 // Pull out the types of all of the arguments... 5993 std::vector<Type*> ParamTypes; 5994 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 5995 ParamTypes.push_back(ArgList[i].V->getType()); 5996 5997 if (!FunctionType::isValidReturnType(RetType)) 5998 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 5999 6000 Ty = FunctionType::get(RetType, ParamTypes, false); 6001 } 6002 6003 CalleeID.FTy = Ty; 6004 6005 // Look up the callee. 6006 Value *Callee; 6007 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 6008 return true; 6009 6010 // Set up the Attribute for the function. 6011 SmallVector<AttributeSet, 8> Attrs; 6012 6013 SmallVector<Value*, 8> Args; 6014 6015 // Loop through FunctionType's arguments and ensure they are specified 6016 // correctly. Also, gather any parameter attributes. 6017 FunctionType::param_iterator I = Ty->param_begin(); 6018 FunctionType::param_iterator E = Ty->param_end(); 6019 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6020 Type *ExpectedTy = nullptr; 6021 if (I != E) { 6022 ExpectedTy = *I++; 6023 } else if (!Ty->isVarArg()) { 6024 return Error(ArgList[i].Loc, "too many arguments specified"); 6025 } 6026 6027 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6028 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6029 getTypeString(ExpectedTy) + "'"); 6030 Args.push_back(ArgList[i].V); 6031 Attrs.push_back(ArgList[i].Attrs); 6032 } 6033 6034 if (I != E) 6035 return Error(CallLoc, "not enough parameters specified for call"); 6036 6037 if (FnAttrs.hasAlignmentAttr()) 6038 return Error(CallLoc, "call instructions may not have an alignment"); 6039 6040 // Finish off the Attribute and check them 6041 AttributeList PAL = 6042 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6043 AttributeSet::get(Context, RetAttrs), Attrs); 6044 6045 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 6046 CI->setTailCallKind(TCK); 6047 CI->setCallingConv(CC); 6048 if (FMF.any()) 6049 CI->setFastMathFlags(FMF); 6050 CI->setAttributes(PAL); 6051 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 6052 Inst = CI; 6053 return false; 6054 } 6055 6056 //===----------------------------------------------------------------------===// 6057 // Memory Instructions. 6058 //===----------------------------------------------------------------------===// 6059 6060 /// ParseAlloc 6061 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 6062 /// (',' 'align' i32)? 6063 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 6064 Value *Size = nullptr; 6065 LocTy SizeLoc, TyLoc, ASLoc; 6066 unsigned Alignment = 0; 6067 unsigned AddrSpace = 0; 6068 Type *Ty = nullptr; 6069 6070 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 6071 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 6072 6073 if (ParseType(Ty, TyLoc)) return true; 6074 6075 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 6076 return Error(TyLoc, "invalid type for alloca"); 6077 6078 bool AteExtraComma = false; 6079 if (EatIfPresent(lltok::comma)) { 6080 if (Lex.getKind() == lltok::kw_align) { 6081 if (ParseOptionalAlignment(Alignment)) 6082 return true; 6083 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 6084 return true; 6085 } else if (Lex.getKind() == lltok::kw_addrspace) { 6086 ASLoc = Lex.getLoc(); 6087 if (ParseOptionalAddrSpace(AddrSpace)) 6088 return true; 6089 } else if (Lex.getKind() == lltok::MetadataVar) { 6090 AteExtraComma = true; 6091 } else { 6092 if (ParseTypeAndValue(Size, SizeLoc, PFS) || 6093 ParseOptionalCommaAlign(Alignment, AteExtraComma) || 6094 (!AteExtraComma && 6095 ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))) 6096 return true; 6097 } 6098 } 6099 6100 if (Size && !Size->getType()->isIntegerTy()) 6101 return Error(SizeLoc, "element count must have integer type"); 6102 6103 const DataLayout &DL = M->getDataLayout(); 6104 unsigned AS = DL.getAllocaAddrSpace(); 6105 if (AS != AddrSpace) { 6106 // TODO: In the future it should be possible to specify addrspace per-alloca. 6107 return Error(ASLoc, "address space must match datalayout"); 6108 } 6109 6110 AllocaInst *AI = new AllocaInst(Ty, AS, Size, Alignment); 6111 AI->setUsedWithInAlloca(IsInAlloca); 6112 AI->setSwiftError(IsSwiftError); 6113 Inst = AI; 6114 return AteExtraComma ? InstExtraComma : InstNormal; 6115 } 6116 6117 /// ParseLoad 6118 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 6119 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 6120 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6121 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 6122 Value *Val; LocTy Loc; 6123 unsigned Alignment = 0; 6124 bool AteExtraComma = false; 6125 bool isAtomic = false; 6126 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6127 SyncScope::ID SSID = SyncScope::System; 6128 6129 if (Lex.getKind() == lltok::kw_atomic) { 6130 isAtomic = true; 6131 Lex.Lex(); 6132 } 6133 6134 bool isVolatile = false; 6135 if (Lex.getKind() == lltok::kw_volatile) { 6136 isVolatile = true; 6137 Lex.Lex(); 6138 } 6139 6140 Type *Ty; 6141 LocTy ExplicitTypeLoc = Lex.getLoc(); 6142 if (ParseType(Ty) || 6143 ParseToken(lltok::comma, "expected comma after load's type") || 6144 ParseTypeAndValue(Val, Loc, PFS) || 6145 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 6146 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6147 return true; 6148 6149 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 6150 return Error(Loc, "load operand must be a pointer to a first class type"); 6151 if (isAtomic && !Alignment) 6152 return Error(Loc, "atomic load must have explicit non-zero alignment"); 6153 if (Ordering == AtomicOrdering::Release || 6154 Ordering == AtomicOrdering::AcquireRelease) 6155 return Error(Loc, "atomic load cannot use Release ordering"); 6156 6157 if (Ty != cast<PointerType>(Val->getType())->getElementType()) 6158 return Error(ExplicitTypeLoc, 6159 "explicit pointee type doesn't match operand's pointee type"); 6160 6161 Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID); 6162 return AteExtraComma ? InstExtraComma : InstNormal; 6163 } 6164 6165 /// ParseStore 6166 6167 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 6168 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 6169 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6170 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 6171 Value *Val, *Ptr; LocTy Loc, PtrLoc; 6172 unsigned Alignment = 0; 6173 bool AteExtraComma = false; 6174 bool isAtomic = false; 6175 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6176 SyncScope::ID SSID = SyncScope::System; 6177 6178 if (Lex.getKind() == lltok::kw_atomic) { 6179 isAtomic = true; 6180 Lex.Lex(); 6181 } 6182 6183 bool isVolatile = false; 6184 if (Lex.getKind() == lltok::kw_volatile) { 6185 isVolatile = true; 6186 Lex.Lex(); 6187 } 6188 6189 if (ParseTypeAndValue(Val, Loc, PFS) || 6190 ParseToken(lltok::comma, "expected ',' after store operand") || 6191 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6192 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 6193 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6194 return true; 6195 6196 if (!Ptr->getType()->isPointerTy()) 6197 return Error(PtrLoc, "store operand must be a pointer"); 6198 if (!Val->getType()->isFirstClassType()) 6199 return Error(Loc, "store operand must be a first class value"); 6200 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6201 return Error(Loc, "stored value and pointer type do not match"); 6202 if (isAtomic && !Alignment) 6203 return Error(Loc, "atomic store must have explicit non-zero alignment"); 6204 if (Ordering == AtomicOrdering::Acquire || 6205 Ordering == AtomicOrdering::AcquireRelease) 6206 return Error(Loc, "atomic store cannot use Acquire ordering"); 6207 6208 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID); 6209 return AteExtraComma ? InstExtraComma : InstNormal; 6210 } 6211 6212 /// ParseCmpXchg 6213 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 6214 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering 6215 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 6216 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 6217 bool AteExtraComma = false; 6218 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 6219 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 6220 SyncScope::ID SSID = SyncScope::System; 6221 bool isVolatile = false; 6222 bool isWeak = false; 6223 6224 if (EatIfPresent(lltok::kw_weak)) 6225 isWeak = true; 6226 6227 if (EatIfPresent(lltok::kw_volatile)) 6228 isVolatile = true; 6229 6230 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6231 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 6232 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 6233 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 6234 ParseTypeAndValue(New, NewLoc, PFS) || 6235 ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 6236 ParseOrdering(FailureOrdering)) 6237 return true; 6238 6239 if (SuccessOrdering == AtomicOrdering::Unordered || 6240 FailureOrdering == AtomicOrdering::Unordered) 6241 return TokError("cmpxchg cannot be unordered"); 6242 if (isStrongerThan(FailureOrdering, SuccessOrdering)) 6243 return TokError("cmpxchg failure argument shall be no stronger than the " 6244 "success argument"); 6245 if (FailureOrdering == AtomicOrdering::Release || 6246 FailureOrdering == AtomicOrdering::AcquireRelease) 6247 return TokError( 6248 "cmpxchg failure ordering cannot include release semantics"); 6249 if (!Ptr->getType()->isPointerTy()) 6250 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 6251 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 6252 return Error(CmpLoc, "compare value and pointer type do not match"); 6253 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 6254 return Error(NewLoc, "new value and pointer type do not match"); 6255 if (!New->getType()->isFirstClassType()) 6256 return Error(NewLoc, "cmpxchg operand must be a first class value"); 6257 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 6258 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID); 6259 CXI->setVolatile(isVolatile); 6260 CXI->setWeak(isWeak); 6261 Inst = CXI; 6262 return AteExtraComma ? InstExtraComma : InstNormal; 6263 } 6264 6265 /// ParseAtomicRMW 6266 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 6267 /// 'singlethread'? AtomicOrdering 6268 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 6269 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 6270 bool AteExtraComma = false; 6271 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6272 SyncScope::ID SSID = SyncScope::System; 6273 bool isVolatile = false; 6274 AtomicRMWInst::BinOp Operation; 6275 6276 if (EatIfPresent(lltok::kw_volatile)) 6277 isVolatile = true; 6278 6279 switch (Lex.getKind()) { 6280 default: return TokError("expected binary operation in atomicrmw"); 6281 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 6282 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 6283 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 6284 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 6285 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 6286 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 6287 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 6288 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 6289 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 6290 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 6291 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 6292 } 6293 Lex.Lex(); // Eat the operation. 6294 6295 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6296 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 6297 ParseTypeAndValue(Val, ValLoc, PFS) || 6298 ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 6299 return true; 6300 6301 if (Ordering == AtomicOrdering::Unordered) 6302 return TokError("atomicrmw cannot be unordered"); 6303 if (!Ptr->getType()->isPointerTy()) 6304 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 6305 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6306 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 6307 if (!Val->getType()->isIntegerTy()) 6308 return Error(ValLoc, "atomicrmw operand must be an integer"); 6309 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 6310 if (Size < 8 || (Size & (Size - 1))) 6311 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 6312 " integer"); 6313 6314 AtomicRMWInst *RMWI = 6315 new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 6316 RMWI->setVolatile(isVolatile); 6317 Inst = RMWI; 6318 return AteExtraComma ? InstExtraComma : InstNormal; 6319 } 6320 6321 /// ParseFence 6322 /// ::= 'fence' 'singlethread'? AtomicOrdering 6323 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 6324 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6325 SyncScope::ID SSID = SyncScope::System; 6326 if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 6327 return true; 6328 6329 if (Ordering == AtomicOrdering::Unordered) 6330 return TokError("fence cannot be unordered"); 6331 if (Ordering == AtomicOrdering::Monotonic) 6332 return TokError("fence cannot be monotonic"); 6333 6334 Inst = new FenceInst(Context, Ordering, SSID); 6335 return InstNormal; 6336 } 6337 6338 /// ParseGetElementPtr 6339 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 6340 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 6341 Value *Ptr = nullptr; 6342 Value *Val = nullptr; 6343 LocTy Loc, EltLoc; 6344 6345 bool InBounds = EatIfPresent(lltok::kw_inbounds); 6346 6347 Type *Ty = nullptr; 6348 LocTy ExplicitTypeLoc = Lex.getLoc(); 6349 if (ParseType(Ty) || 6350 ParseToken(lltok::comma, "expected comma after getelementptr's type") || 6351 ParseTypeAndValue(Ptr, Loc, PFS)) 6352 return true; 6353 6354 Type *BaseType = Ptr->getType(); 6355 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 6356 if (!BasePointerType) 6357 return Error(Loc, "base of getelementptr must be a pointer"); 6358 6359 if (Ty != BasePointerType->getElementType()) 6360 return Error(ExplicitTypeLoc, 6361 "explicit pointee type doesn't match operand's pointee type"); 6362 6363 SmallVector<Value*, 16> Indices; 6364 bool AteExtraComma = false; 6365 // GEP returns a vector of pointers if at least one of parameters is a vector. 6366 // All vector parameters should have the same vector width. 6367 unsigned GEPWidth = BaseType->isVectorTy() ? 6368 BaseType->getVectorNumElements() : 0; 6369 6370 while (EatIfPresent(lltok::comma)) { 6371 if (Lex.getKind() == lltok::MetadataVar) { 6372 AteExtraComma = true; 6373 break; 6374 } 6375 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 6376 if (!Val->getType()->isIntOrIntVectorTy()) 6377 return Error(EltLoc, "getelementptr index must be an integer"); 6378 6379 if (Val->getType()->isVectorTy()) { 6380 unsigned ValNumEl = Val->getType()->getVectorNumElements(); 6381 if (GEPWidth && GEPWidth != ValNumEl) 6382 return Error(EltLoc, 6383 "getelementptr vector index has a wrong number of elements"); 6384 GEPWidth = ValNumEl; 6385 } 6386 Indices.push_back(Val); 6387 } 6388 6389 SmallPtrSet<Type*, 4> Visited; 6390 if (!Indices.empty() && !Ty->isSized(&Visited)) 6391 return Error(Loc, "base element of getelementptr must be sized"); 6392 6393 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 6394 return Error(Loc, "invalid getelementptr indices"); 6395 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 6396 if (InBounds) 6397 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 6398 return AteExtraComma ? InstExtraComma : InstNormal; 6399 } 6400 6401 /// ParseExtractValue 6402 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 6403 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 6404 Value *Val; LocTy Loc; 6405 SmallVector<unsigned, 4> Indices; 6406 bool AteExtraComma; 6407 if (ParseTypeAndValue(Val, Loc, PFS) || 6408 ParseIndexList(Indices, AteExtraComma)) 6409 return true; 6410 6411 if (!Val->getType()->isAggregateType()) 6412 return Error(Loc, "extractvalue operand must be aggregate type"); 6413 6414 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 6415 return Error(Loc, "invalid indices for extractvalue"); 6416 Inst = ExtractValueInst::Create(Val, Indices); 6417 return AteExtraComma ? InstExtraComma : InstNormal; 6418 } 6419 6420 /// ParseInsertValue 6421 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 6422 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 6423 Value *Val0, *Val1; LocTy Loc0, Loc1; 6424 SmallVector<unsigned, 4> Indices; 6425 bool AteExtraComma; 6426 if (ParseTypeAndValue(Val0, Loc0, PFS) || 6427 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 6428 ParseTypeAndValue(Val1, Loc1, PFS) || 6429 ParseIndexList(Indices, AteExtraComma)) 6430 return true; 6431 6432 if (!Val0->getType()->isAggregateType()) 6433 return Error(Loc0, "insertvalue operand must be aggregate type"); 6434 6435 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 6436 if (!IndexedType) 6437 return Error(Loc0, "invalid indices for insertvalue"); 6438 if (IndexedType != Val1->getType()) 6439 return Error(Loc1, "insertvalue operand and field disagree in type: '" + 6440 getTypeString(Val1->getType()) + "' instead of '" + 6441 getTypeString(IndexedType) + "'"); 6442 Inst = InsertValueInst::Create(Val0, Val1, Indices); 6443 return AteExtraComma ? InstExtraComma : InstNormal; 6444 } 6445 6446 //===----------------------------------------------------------------------===// 6447 // Embedded metadata. 6448 //===----------------------------------------------------------------------===// 6449 6450 /// ParseMDNodeVector 6451 /// ::= { Element (',' Element)* } 6452 /// Element 6453 /// ::= 'null' | TypeAndValue 6454 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 6455 if (ParseToken(lltok::lbrace, "expected '{' here")) 6456 return true; 6457 6458 // Check for an empty list. 6459 if (EatIfPresent(lltok::rbrace)) 6460 return false; 6461 6462 do { 6463 // Null is a special case since it is typeless. 6464 if (EatIfPresent(lltok::kw_null)) { 6465 Elts.push_back(nullptr); 6466 continue; 6467 } 6468 6469 Metadata *MD; 6470 if (ParseMetadata(MD, nullptr)) 6471 return true; 6472 Elts.push_back(MD); 6473 } while (EatIfPresent(lltok::comma)); 6474 6475 return ParseToken(lltok::rbrace, "expected end of metadata node"); 6476 } 6477 6478 //===----------------------------------------------------------------------===// 6479 // Use-list order directives. 6480 //===----------------------------------------------------------------------===// 6481 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 6482 SMLoc Loc) { 6483 if (V->use_empty()) 6484 return Error(Loc, "value has no uses"); 6485 6486 unsigned NumUses = 0; 6487 SmallDenseMap<const Use *, unsigned, 16> Order; 6488 for (const Use &U : V->uses()) { 6489 if (++NumUses > Indexes.size()) 6490 break; 6491 Order[&U] = Indexes[NumUses - 1]; 6492 } 6493 if (NumUses < 2) 6494 return Error(Loc, "value only has one use"); 6495 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 6496 return Error(Loc, "wrong number of indexes, expected " + 6497 Twine(std::distance(V->use_begin(), V->use_end()))); 6498 6499 V->sortUseList([&](const Use &L, const Use &R) { 6500 return Order.lookup(&L) < Order.lookup(&R); 6501 }); 6502 return false; 6503 } 6504 6505 /// ParseUseListOrderIndexes 6506 /// ::= '{' uint32 (',' uint32)+ '}' 6507 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 6508 SMLoc Loc = Lex.getLoc(); 6509 if (ParseToken(lltok::lbrace, "expected '{' here")) 6510 return true; 6511 if (Lex.getKind() == lltok::rbrace) 6512 return Lex.Error("expected non-empty list of uselistorder indexes"); 6513 6514 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 6515 // indexes should be distinct numbers in the range [0, size-1], and should 6516 // not be in order. 6517 unsigned Offset = 0; 6518 unsigned Max = 0; 6519 bool IsOrdered = true; 6520 assert(Indexes.empty() && "Expected empty order vector"); 6521 do { 6522 unsigned Index; 6523 if (ParseUInt32(Index)) 6524 return true; 6525 6526 // Update consistency checks. 6527 Offset += Index - Indexes.size(); 6528 Max = std::max(Max, Index); 6529 IsOrdered &= Index == Indexes.size(); 6530 6531 Indexes.push_back(Index); 6532 } while (EatIfPresent(lltok::comma)); 6533 6534 if (ParseToken(lltok::rbrace, "expected '}' here")) 6535 return true; 6536 6537 if (Indexes.size() < 2) 6538 return Error(Loc, "expected >= 2 uselistorder indexes"); 6539 if (Offset != 0 || Max >= Indexes.size()) 6540 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)"); 6541 if (IsOrdered) 6542 return Error(Loc, "expected uselistorder indexes to change the order"); 6543 6544 return false; 6545 } 6546 6547 /// ParseUseListOrder 6548 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 6549 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) { 6550 SMLoc Loc = Lex.getLoc(); 6551 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 6552 return true; 6553 6554 Value *V; 6555 SmallVector<unsigned, 16> Indexes; 6556 if (ParseTypeAndValue(V, PFS) || 6557 ParseToken(lltok::comma, "expected comma in uselistorder directive") || 6558 ParseUseListOrderIndexes(Indexes)) 6559 return true; 6560 6561 return sortUseListOrder(V, Indexes, Loc); 6562 } 6563 6564 /// ParseUseListOrderBB 6565 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 6566 bool LLParser::ParseUseListOrderBB() { 6567 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 6568 SMLoc Loc = Lex.getLoc(); 6569 Lex.Lex(); 6570 6571 ValID Fn, Label; 6572 SmallVector<unsigned, 16> Indexes; 6573 if (ParseValID(Fn) || 6574 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6575 ParseValID(Label) || 6576 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6577 ParseUseListOrderIndexes(Indexes)) 6578 return true; 6579 6580 // Check the function. 6581 GlobalValue *GV; 6582 if (Fn.Kind == ValID::t_GlobalName) 6583 GV = M->getNamedValue(Fn.StrVal); 6584 else if (Fn.Kind == ValID::t_GlobalID) 6585 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 6586 else 6587 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 6588 if (!GV) 6589 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb"); 6590 auto *F = dyn_cast<Function>(GV); 6591 if (!F) 6592 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 6593 if (F->isDeclaration()) 6594 return Error(Fn.Loc, "invalid declaration in uselistorder_bb"); 6595 6596 // Check the basic block. 6597 if (Label.Kind == ValID::t_LocalID) 6598 return Error(Label.Loc, "invalid numeric label in uselistorder_bb"); 6599 if (Label.Kind != ValID::t_LocalName) 6600 return Error(Label.Loc, "expected basic block name in uselistorder_bb"); 6601 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 6602 if (!V) 6603 return Error(Label.Loc, "invalid basic block in uselistorder_bb"); 6604 if (!isa<BasicBlock>(V)) 6605 return Error(Label.Loc, "expected basic block in uselistorder_bb"); 6606 6607 return sortUseListOrder(V, Indexes, Loc); 6608 } 6609