1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the parser class for .ll files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "LLParser.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/None.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/AsmParser/SlotMapping.h" 20 #include "llvm/BinaryFormat/Dwarf.h" 21 #include "llvm/IR/Argument.h" 22 #include "llvm/IR/AutoUpgrade.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/CallingConv.h" 25 #include "llvm/IR/Comdat.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DebugInfoMetadata.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/GlobalIFunc.h" 31 #include "llvm/IR/GlobalObject.h" 32 #include "llvm/IR/InlineAsm.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/IR/ValueSymbolTable.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/MathExtras.h" 46 #include "llvm/Support/SaveAndRestore.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <cstring> 51 #include <iterator> 52 #include <vector> 53 54 using namespace llvm; 55 56 static std::string getTypeString(Type *T) { 57 std::string Result; 58 raw_string_ostream Tmp(Result); 59 Tmp << *T; 60 return Tmp.str(); 61 } 62 63 /// Run: module ::= toplevelentity* 64 bool LLParser::Run() { 65 // Prime the lexer. 66 Lex.Lex(); 67 68 if (Context.shouldDiscardValueNames()) 69 return Error( 70 Lex.getLoc(), 71 "Can't read textual IR with a Context that discards named Values"); 72 73 return ParseTopLevelEntities() || ValidateEndOfModule() || 74 ValidateEndOfIndex(); 75 } 76 77 bool LLParser::parseStandaloneConstantValue(Constant *&C, 78 const SlotMapping *Slots) { 79 restoreParsingState(Slots); 80 Lex.Lex(); 81 82 Type *Ty = nullptr; 83 if (ParseType(Ty) || parseConstantValue(Ty, C)) 84 return true; 85 if (Lex.getKind() != lltok::Eof) 86 return Error(Lex.getLoc(), "expected end of string"); 87 return false; 88 } 89 90 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 91 const SlotMapping *Slots) { 92 restoreParsingState(Slots); 93 Lex.Lex(); 94 95 Read = 0; 96 SMLoc Start = Lex.getLoc(); 97 Ty = nullptr; 98 if (ParseType(Ty)) 99 return true; 100 SMLoc End = Lex.getLoc(); 101 Read = End.getPointer() - Start.getPointer(); 102 103 return false; 104 } 105 106 void LLParser::restoreParsingState(const SlotMapping *Slots) { 107 if (!Slots) 108 return; 109 NumberedVals = Slots->GlobalValues; 110 NumberedMetadata = Slots->MetadataNodes; 111 for (const auto &I : Slots->NamedTypes) 112 NamedTypes.insert( 113 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 114 for (const auto &I : Slots->Types) 115 NumberedTypes.insert( 116 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 117 } 118 119 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 120 /// module. 121 bool LLParser::ValidateEndOfModule() { 122 if (!M) 123 return false; 124 // Handle any function attribute group forward references. 125 for (const auto &RAG : ForwardRefAttrGroups) { 126 Value *V = RAG.first; 127 const std::vector<unsigned> &Attrs = RAG.second; 128 AttrBuilder B; 129 130 for (const auto &Attr : Attrs) 131 B.merge(NumberedAttrBuilders[Attr]); 132 133 if (Function *Fn = dyn_cast<Function>(V)) { 134 AttributeList AS = Fn->getAttributes(); 135 AttrBuilder FnAttrs(AS.getFnAttributes()); 136 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 137 138 FnAttrs.merge(B); 139 140 // If the alignment was parsed as an attribute, move to the alignment 141 // field. 142 if (FnAttrs.hasAlignmentAttr()) { 143 Fn->setAlignment(FnAttrs.getAlignment()); 144 FnAttrs.removeAttribute(Attribute::Alignment); 145 } 146 147 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 148 AttributeSet::get(Context, FnAttrs)); 149 Fn->setAttributes(AS); 150 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 151 AttributeList AS = CI->getAttributes(); 152 AttrBuilder FnAttrs(AS.getFnAttributes()); 153 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 154 FnAttrs.merge(B); 155 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 156 AttributeSet::get(Context, FnAttrs)); 157 CI->setAttributes(AS); 158 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 159 AttributeList AS = II->getAttributes(); 160 AttrBuilder FnAttrs(AS.getFnAttributes()); 161 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 162 FnAttrs.merge(B); 163 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 164 AttributeSet::get(Context, FnAttrs)); 165 II->setAttributes(AS); 166 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) { 167 AttributeList AS = CBI->getAttributes(); 168 AttrBuilder FnAttrs(AS.getFnAttributes()); 169 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 170 FnAttrs.merge(B); 171 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 172 AttributeSet::get(Context, FnAttrs)); 173 CBI->setAttributes(AS); 174 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 175 AttrBuilder Attrs(GV->getAttributes()); 176 Attrs.merge(B); 177 GV->setAttributes(AttributeSet::get(Context,Attrs)); 178 } else { 179 llvm_unreachable("invalid object with forward attribute group reference"); 180 } 181 } 182 183 // If there are entries in ForwardRefBlockAddresses at this point, the 184 // function was never defined. 185 if (!ForwardRefBlockAddresses.empty()) 186 return Error(ForwardRefBlockAddresses.begin()->first.Loc, 187 "expected function name in blockaddress"); 188 189 for (const auto &NT : NumberedTypes) 190 if (NT.second.second.isValid()) 191 return Error(NT.second.second, 192 "use of undefined type '%" + Twine(NT.first) + "'"); 193 194 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 195 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 196 if (I->second.second.isValid()) 197 return Error(I->second.second, 198 "use of undefined type named '" + I->getKey() + "'"); 199 200 if (!ForwardRefComdats.empty()) 201 return Error(ForwardRefComdats.begin()->second, 202 "use of undefined comdat '$" + 203 ForwardRefComdats.begin()->first + "'"); 204 205 if (!ForwardRefVals.empty()) 206 return Error(ForwardRefVals.begin()->second.second, 207 "use of undefined value '@" + ForwardRefVals.begin()->first + 208 "'"); 209 210 if (!ForwardRefValIDs.empty()) 211 return Error(ForwardRefValIDs.begin()->second.second, 212 "use of undefined value '@" + 213 Twine(ForwardRefValIDs.begin()->first) + "'"); 214 215 if (!ForwardRefMDNodes.empty()) 216 return Error(ForwardRefMDNodes.begin()->second.second, 217 "use of undefined metadata '!" + 218 Twine(ForwardRefMDNodes.begin()->first) + "'"); 219 220 // Resolve metadata cycles. 221 for (auto &N : NumberedMetadata) { 222 if (N.second && !N.second->isResolved()) 223 N.second->resolveCycles(); 224 } 225 226 for (auto *Inst : InstsWithTBAATag) { 227 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 228 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 229 auto *UpgradedMD = UpgradeTBAANode(*MD); 230 if (MD != UpgradedMD) 231 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 232 } 233 234 // Look for intrinsic functions and CallInst that need to be upgraded 235 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 236 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 237 238 // Some types could be renamed during loading if several modules are 239 // loaded in the same LLVMContext (LTO scenario). In this case we should 240 // remangle intrinsics names as well. 241 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) { 242 Function *F = &*FI++; 243 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 244 F->replaceAllUsesWith(Remangled.getValue()); 245 F->eraseFromParent(); 246 } 247 } 248 249 if (UpgradeDebugInfo) 250 llvm::UpgradeDebugInfo(*M); 251 252 UpgradeModuleFlags(*M); 253 UpgradeSectionAttributes(*M); 254 255 if (!Slots) 256 return false; 257 // Initialize the slot mapping. 258 // Because by this point we've parsed and validated everything, we can "steal" 259 // the mapping from LLParser as it doesn't need it anymore. 260 Slots->GlobalValues = std::move(NumberedVals); 261 Slots->MetadataNodes = std::move(NumberedMetadata); 262 for (const auto &I : NamedTypes) 263 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 264 for (const auto &I : NumberedTypes) 265 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 266 267 return false; 268 } 269 270 /// Do final validity and sanity checks at the end of the index. 271 bool LLParser::ValidateEndOfIndex() { 272 if (!Index) 273 return false; 274 275 if (!ForwardRefValueInfos.empty()) 276 return Error(ForwardRefValueInfos.begin()->second.front().second, 277 "use of undefined summary '^" + 278 Twine(ForwardRefValueInfos.begin()->first) + "'"); 279 280 if (!ForwardRefAliasees.empty()) 281 return Error(ForwardRefAliasees.begin()->second.front().second, 282 "use of undefined summary '^" + 283 Twine(ForwardRefAliasees.begin()->first) + "'"); 284 285 if (!ForwardRefTypeIds.empty()) 286 return Error(ForwardRefTypeIds.begin()->second.front().second, 287 "use of undefined type id summary '^" + 288 Twine(ForwardRefTypeIds.begin()->first) + "'"); 289 290 return false; 291 } 292 293 //===----------------------------------------------------------------------===// 294 // Top-Level Entities 295 //===----------------------------------------------------------------------===// 296 297 bool LLParser::ParseTopLevelEntities() { 298 // If there is no Module, then parse just the summary index entries. 299 if (!M) { 300 while (true) { 301 switch (Lex.getKind()) { 302 case lltok::Eof: 303 return false; 304 case lltok::SummaryID: 305 if (ParseSummaryEntry()) 306 return true; 307 break; 308 case lltok::kw_source_filename: 309 if (ParseSourceFileName()) 310 return true; 311 break; 312 default: 313 // Skip everything else 314 Lex.Lex(); 315 } 316 } 317 } 318 while (true) { 319 switch (Lex.getKind()) { 320 default: return TokError("expected top-level entity"); 321 case lltok::Eof: return false; 322 case lltok::kw_declare: if (ParseDeclare()) return true; break; 323 case lltok::kw_define: if (ParseDefine()) return true; break; 324 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 325 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 326 case lltok::kw_source_filename: 327 if (ParseSourceFileName()) 328 return true; 329 break; 330 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 331 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 332 case lltok::LocalVar: if (ParseNamedType()) return true; break; 333 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 334 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 335 case lltok::ComdatVar: if (parseComdat()) return true; break; 336 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 337 case lltok::SummaryID: 338 if (ParseSummaryEntry()) 339 return true; 340 break; 341 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break; 342 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break; 343 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break; 344 case lltok::kw_uselistorder_bb: 345 if (ParseUseListOrderBB()) 346 return true; 347 break; 348 } 349 } 350 } 351 352 /// toplevelentity 353 /// ::= 'module' 'asm' STRINGCONSTANT 354 bool LLParser::ParseModuleAsm() { 355 assert(Lex.getKind() == lltok::kw_module); 356 Lex.Lex(); 357 358 std::string AsmStr; 359 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 360 ParseStringConstant(AsmStr)) return true; 361 362 M->appendModuleInlineAsm(AsmStr); 363 return false; 364 } 365 366 /// toplevelentity 367 /// ::= 'target' 'triple' '=' STRINGCONSTANT 368 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 369 bool LLParser::ParseTargetDefinition() { 370 assert(Lex.getKind() == lltok::kw_target); 371 std::string Str; 372 switch (Lex.Lex()) { 373 default: return TokError("unknown target property"); 374 case lltok::kw_triple: 375 Lex.Lex(); 376 if (ParseToken(lltok::equal, "expected '=' after target triple") || 377 ParseStringConstant(Str)) 378 return true; 379 M->setTargetTriple(Str); 380 return false; 381 case lltok::kw_datalayout: 382 Lex.Lex(); 383 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 384 ParseStringConstant(Str)) 385 return true; 386 if (DataLayoutStr.empty()) 387 M->setDataLayout(Str); 388 return false; 389 } 390 } 391 392 /// toplevelentity 393 /// ::= 'source_filename' '=' STRINGCONSTANT 394 bool LLParser::ParseSourceFileName() { 395 assert(Lex.getKind() == lltok::kw_source_filename); 396 Lex.Lex(); 397 if (ParseToken(lltok::equal, "expected '=' after source_filename") || 398 ParseStringConstant(SourceFileName)) 399 return true; 400 if (M) 401 M->setSourceFileName(SourceFileName); 402 return false; 403 } 404 405 /// toplevelentity 406 /// ::= 'deplibs' '=' '[' ']' 407 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 408 /// FIXME: Remove in 4.0. Currently parse, but ignore. 409 bool LLParser::ParseDepLibs() { 410 assert(Lex.getKind() == lltok::kw_deplibs); 411 Lex.Lex(); 412 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 413 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 414 return true; 415 416 if (EatIfPresent(lltok::rsquare)) 417 return false; 418 419 do { 420 std::string Str; 421 if (ParseStringConstant(Str)) return true; 422 } while (EatIfPresent(lltok::comma)); 423 424 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 425 } 426 427 /// ParseUnnamedType: 428 /// ::= LocalVarID '=' 'type' type 429 bool LLParser::ParseUnnamedType() { 430 LocTy TypeLoc = Lex.getLoc(); 431 unsigned TypeID = Lex.getUIntVal(); 432 Lex.Lex(); // eat LocalVarID; 433 434 if (ParseToken(lltok::equal, "expected '=' after name") || 435 ParseToken(lltok::kw_type, "expected 'type' after '='")) 436 return true; 437 438 Type *Result = nullptr; 439 if (ParseStructDefinition(TypeLoc, "", 440 NumberedTypes[TypeID], Result)) return true; 441 442 if (!isa<StructType>(Result)) { 443 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 444 if (Entry.first) 445 return Error(TypeLoc, "non-struct types may not be recursive"); 446 Entry.first = Result; 447 Entry.second = SMLoc(); 448 } 449 450 return false; 451 } 452 453 /// toplevelentity 454 /// ::= LocalVar '=' 'type' type 455 bool LLParser::ParseNamedType() { 456 std::string Name = Lex.getStrVal(); 457 LocTy NameLoc = Lex.getLoc(); 458 Lex.Lex(); // eat LocalVar. 459 460 if (ParseToken(lltok::equal, "expected '=' after name") || 461 ParseToken(lltok::kw_type, "expected 'type' after name")) 462 return true; 463 464 Type *Result = nullptr; 465 if (ParseStructDefinition(NameLoc, Name, 466 NamedTypes[Name], Result)) return true; 467 468 if (!isa<StructType>(Result)) { 469 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 470 if (Entry.first) 471 return Error(NameLoc, "non-struct types may not be recursive"); 472 Entry.first = Result; 473 Entry.second = SMLoc(); 474 } 475 476 return false; 477 } 478 479 /// toplevelentity 480 /// ::= 'declare' FunctionHeader 481 bool LLParser::ParseDeclare() { 482 assert(Lex.getKind() == lltok::kw_declare); 483 Lex.Lex(); 484 485 std::vector<std::pair<unsigned, MDNode *>> MDs; 486 while (Lex.getKind() == lltok::MetadataVar) { 487 unsigned MDK; 488 MDNode *N; 489 if (ParseMetadataAttachment(MDK, N)) 490 return true; 491 MDs.push_back({MDK, N}); 492 } 493 494 Function *F; 495 if (ParseFunctionHeader(F, false)) 496 return true; 497 for (auto &MD : MDs) 498 F->addMetadata(MD.first, *MD.second); 499 return false; 500 } 501 502 /// toplevelentity 503 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 504 bool LLParser::ParseDefine() { 505 assert(Lex.getKind() == lltok::kw_define); 506 Lex.Lex(); 507 508 Function *F; 509 return ParseFunctionHeader(F, true) || 510 ParseOptionalFunctionMetadata(*F) || 511 ParseFunctionBody(*F); 512 } 513 514 /// ParseGlobalType 515 /// ::= 'constant' 516 /// ::= 'global' 517 bool LLParser::ParseGlobalType(bool &IsConstant) { 518 if (Lex.getKind() == lltok::kw_constant) 519 IsConstant = true; 520 else if (Lex.getKind() == lltok::kw_global) 521 IsConstant = false; 522 else { 523 IsConstant = false; 524 return TokError("expected 'global' or 'constant'"); 525 } 526 Lex.Lex(); 527 return false; 528 } 529 530 bool LLParser::ParseOptionalUnnamedAddr( 531 GlobalVariable::UnnamedAddr &UnnamedAddr) { 532 if (EatIfPresent(lltok::kw_unnamed_addr)) 533 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 534 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 535 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 536 else 537 UnnamedAddr = GlobalValue::UnnamedAddr::None; 538 return false; 539 } 540 541 /// ParseUnnamedGlobal: 542 /// OptionalVisibility (ALIAS | IFUNC) ... 543 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 544 /// OptionalDLLStorageClass 545 /// ... -> global variable 546 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 547 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 548 /// OptionalDLLStorageClass 549 /// ... -> global variable 550 bool LLParser::ParseUnnamedGlobal() { 551 unsigned VarID = NumberedVals.size(); 552 std::string Name; 553 LocTy NameLoc = Lex.getLoc(); 554 555 // Handle the GlobalID form. 556 if (Lex.getKind() == lltok::GlobalID) { 557 if (Lex.getUIntVal() != VarID) 558 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 559 Twine(VarID) + "'"); 560 Lex.Lex(); // eat GlobalID; 561 562 if (ParseToken(lltok::equal, "expected '=' after name")) 563 return true; 564 } 565 566 bool HasLinkage; 567 unsigned Linkage, Visibility, DLLStorageClass; 568 bool DSOLocal; 569 GlobalVariable::ThreadLocalMode TLM; 570 GlobalVariable::UnnamedAddr UnnamedAddr; 571 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 572 DSOLocal) || 573 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 574 return true; 575 576 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 577 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 578 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 579 580 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 581 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 582 } 583 584 /// ParseNamedGlobal: 585 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 586 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 587 /// OptionalVisibility OptionalDLLStorageClass 588 /// ... -> global variable 589 bool LLParser::ParseNamedGlobal() { 590 assert(Lex.getKind() == lltok::GlobalVar); 591 LocTy NameLoc = Lex.getLoc(); 592 std::string Name = Lex.getStrVal(); 593 Lex.Lex(); 594 595 bool HasLinkage; 596 unsigned Linkage, Visibility, DLLStorageClass; 597 bool DSOLocal; 598 GlobalVariable::ThreadLocalMode TLM; 599 GlobalVariable::UnnamedAddr UnnamedAddr; 600 if (ParseToken(lltok::equal, "expected '=' in global variable") || 601 ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 602 DSOLocal) || 603 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 604 return true; 605 606 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 607 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 608 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 609 610 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 611 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 612 } 613 614 bool LLParser::parseComdat() { 615 assert(Lex.getKind() == lltok::ComdatVar); 616 std::string Name = Lex.getStrVal(); 617 LocTy NameLoc = Lex.getLoc(); 618 Lex.Lex(); 619 620 if (ParseToken(lltok::equal, "expected '=' here")) 621 return true; 622 623 if (ParseToken(lltok::kw_comdat, "expected comdat keyword")) 624 return TokError("expected comdat type"); 625 626 Comdat::SelectionKind SK; 627 switch (Lex.getKind()) { 628 default: 629 return TokError("unknown selection kind"); 630 case lltok::kw_any: 631 SK = Comdat::Any; 632 break; 633 case lltok::kw_exactmatch: 634 SK = Comdat::ExactMatch; 635 break; 636 case lltok::kw_largest: 637 SK = Comdat::Largest; 638 break; 639 case lltok::kw_noduplicates: 640 SK = Comdat::NoDuplicates; 641 break; 642 case lltok::kw_samesize: 643 SK = Comdat::SameSize; 644 break; 645 } 646 Lex.Lex(); 647 648 // See if the comdat was forward referenced, if so, use the comdat. 649 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 650 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 651 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 652 return Error(NameLoc, "redefinition of comdat '$" + Name + "'"); 653 654 Comdat *C; 655 if (I != ComdatSymTab.end()) 656 C = &I->second; 657 else 658 C = M->getOrInsertComdat(Name); 659 C->setSelectionKind(SK); 660 661 return false; 662 } 663 664 // MDString: 665 // ::= '!' STRINGCONSTANT 666 bool LLParser::ParseMDString(MDString *&Result) { 667 std::string Str; 668 if (ParseStringConstant(Str)) return true; 669 Result = MDString::get(Context, Str); 670 return false; 671 } 672 673 // MDNode: 674 // ::= '!' MDNodeNumber 675 bool LLParser::ParseMDNodeID(MDNode *&Result) { 676 // !{ ..., !42, ... } 677 LocTy IDLoc = Lex.getLoc(); 678 unsigned MID = 0; 679 if (ParseUInt32(MID)) 680 return true; 681 682 // If not a forward reference, just return it now. 683 if (NumberedMetadata.count(MID)) { 684 Result = NumberedMetadata[MID]; 685 return false; 686 } 687 688 // Otherwise, create MDNode forward reference. 689 auto &FwdRef = ForwardRefMDNodes[MID]; 690 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 691 692 Result = FwdRef.first.get(); 693 NumberedMetadata[MID].reset(Result); 694 return false; 695 } 696 697 /// ParseNamedMetadata: 698 /// !foo = !{ !1, !2 } 699 bool LLParser::ParseNamedMetadata() { 700 assert(Lex.getKind() == lltok::MetadataVar); 701 std::string Name = Lex.getStrVal(); 702 Lex.Lex(); 703 704 if (ParseToken(lltok::equal, "expected '=' here") || 705 ParseToken(lltok::exclaim, "Expected '!' here") || 706 ParseToken(lltok::lbrace, "Expected '{' here")) 707 return true; 708 709 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 710 if (Lex.getKind() != lltok::rbrace) 711 do { 712 MDNode *N = nullptr; 713 // Parse DIExpressions inline as a special case. They are still MDNodes, 714 // so they can still appear in named metadata. Remove this logic if they 715 // become plain Metadata. 716 if (Lex.getKind() == lltok::MetadataVar && 717 Lex.getStrVal() == "DIExpression") { 718 if (ParseDIExpression(N, /*IsDistinct=*/false)) 719 return true; 720 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 721 ParseMDNodeID(N)) { 722 return true; 723 } 724 NMD->addOperand(N); 725 } while (EatIfPresent(lltok::comma)); 726 727 return ParseToken(lltok::rbrace, "expected end of metadata node"); 728 } 729 730 /// ParseStandaloneMetadata: 731 /// !42 = !{...} 732 bool LLParser::ParseStandaloneMetadata() { 733 assert(Lex.getKind() == lltok::exclaim); 734 Lex.Lex(); 735 unsigned MetadataID = 0; 736 737 MDNode *Init; 738 if (ParseUInt32(MetadataID) || 739 ParseToken(lltok::equal, "expected '=' here")) 740 return true; 741 742 // Detect common error, from old metadata syntax. 743 if (Lex.getKind() == lltok::Type) 744 return TokError("unexpected type in metadata definition"); 745 746 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 747 if (Lex.getKind() == lltok::MetadataVar) { 748 if (ParseSpecializedMDNode(Init, IsDistinct)) 749 return true; 750 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 751 ParseMDTuple(Init, IsDistinct)) 752 return true; 753 754 // See if this was forward referenced, if so, handle it. 755 auto FI = ForwardRefMDNodes.find(MetadataID); 756 if (FI != ForwardRefMDNodes.end()) { 757 FI->second.first->replaceAllUsesWith(Init); 758 ForwardRefMDNodes.erase(FI); 759 760 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 761 } else { 762 if (NumberedMetadata.count(MetadataID)) 763 return TokError("Metadata id is already used"); 764 NumberedMetadata[MetadataID].reset(Init); 765 } 766 767 return false; 768 } 769 770 // Skips a single module summary entry. 771 bool LLParser::SkipModuleSummaryEntry() { 772 // Each module summary entry consists of a tag for the entry 773 // type, followed by a colon, then the fields surrounded by nested sets of 774 // parentheses. The "tag:" looks like a Label. Once parsing support is 775 // in place we will look for the tokens corresponding to the expected tags. 776 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module && 777 Lex.getKind() != lltok::kw_typeid) 778 return TokError( 779 "Expected 'gv', 'module', or 'typeid' at the start of summary entry"); 780 Lex.Lex(); 781 if (ParseToken(lltok::colon, "expected ':' at start of summary entry") || 782 ParseToken(lltok::lparen, "expected '(' at start of summary entry")) 783 return true; 784 // Now walk through the parenthesized entry, until the number of open 785 // parentheses goes back down to 0 (the first '(' was parsed above). 786 unsigned NumOpenParen = 1; 787 do { 788 switch (Lex.getKind()) { 789 case lltok::lparen: 790 NumOpenParen++; 791 break; 792 case lltok::rparen: 793 NumOpenParen--; 794 break; 795 case lltok::Eof: 796 return TokError("found end of file while parsing summary entry"); 797 default: 798 // Skip everything in between parentheses. 799 break; 800 } 801 Lex.Lex(); 802 } while (NumOpenParen > 0); 803 return false; 804 } 805 806 /// SummaryEntry 807 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry 808 bool LLParser::ParseSummaryEntry() { 809 assert(Lex.getKind() == lltok::SummaryID); 810 unsigned SummaryID = Lex.getUIntVal(); 811 812 // For summary entries, colons should be treated as distinct tokens, 813 // not an indication of the end of a label token. 814 Lex.setIgnoreColonInIdentifiers(true); 815 816 Lex.Lex(); 817 if (ParseToken(lltok::equal, "expected '=' here")) 818 return true; 819 820 // If we don't have an index object, skip the summary entry. 821 if (!Index) 822 return SkipModuleSummaryEntry(); 823 824 bool result = false; 825 switch (Lex.getKind()) { 826 case lltok::kw_gv: 827 result = ParseGVEntry(SummaryID); 828 break; 829 case lltok::kw_module: 830 result = ParseModuleEntry(SummaryID); 831 break; 832 case lltok::kw_typeid: 833 result = ParseTypeIdEntry(SummaryID); 834 break; 835 case lltok::kw_typeidCompatibleVTable: 836 result = ParseTypeIdCompatibleVtableEntry(SummaryID); 837 break; 838 default: 839 result = Error(Lex.getLoc(), "unexpected summary kind"); 840 break; 841 } 842 Lex.setIgnoreColonInIdentifiers(false); 843 return result; 844 } 845 846 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 847 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 848 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 849 } 850 851 // If there was an explicit dso_local, update GV. In the absence of an explicit 852 // dso_local we keep the default value. 853 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { 854 if (DSOLocal) 855 GV.setDSOLocal(true); 856 } 857 858 /// parseIndirectSymbol: 859 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 860 /// OptionalVisibility OptionalDLLStorageClass 861 /// OptionalThreadLocal OptionalUnnamedAddr 862 /// 'alias|ifunc' IndirectSymbol IndirectSymbolAttr* 863 /// 864 /// IndirectSymbol 865 /// ::= TypeAndValue 866 /// 867 /// IndirectSymbolAttr 868 /// ::= ',' 'partition' StringConstant 869 /// 870 /// Everything through OptionalUnnamedAddr has already been parsed. 871 /// 872 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc, 873 unsigned L, unsigned Visibility, 874 unsigned DLLStorageClass, bool DSOLocal, 875 GlobalVariable::ThreadLocalMode TLM, 876 GlobalVariable::UnnamedAddr UnnamedAddr) { 877 bool IsAlias; 878 if (Lex.getKind() == lltok::kw_alias) 879 IsAlias = true; 880 else if (Lex.getKind() == lltok::kw_ifunc) 881 IsAlias = false; 882 else 883 llvm_unreachable("Not an alias or ifunc!"); 884 Lex.Lex(); 885 886 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 887 888 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 889 return Error(NameLoc, "invalid linkage type for alias"); 890 891 if (!isValidVisibilityForLinkage(Visibility, L)) 892 return Error(NameLoc, 893 "symbol with local linkage must have default visibility"); 894 895 Type *Ty; 896 LocTy ExplicitTypeLoc = Lex.getLoc(); 897 if (ParseType(Ty) || 898 ParseToken(lltok::comma, "expected comma after alias or ifunc's type")) 899 return true; 900 901 Constant *Aliasee; 902 LocTy AliaseeLoc = Lex.getLoc(); 903 if (Lex.getKind() != lltok::kw_bitcast && 904 Lex.getKind() != lltok::kw_getelementptr && 905 Lex.getKind() != lltok::kw_addrspacecast && 906 Lex.getKind() != lltok::kw_inttoptr) { 907 if (ParseGlobalTypeAndValue(Aliasee)) 908 return true; 909 } else { 910 // The bitcast dest type is not present, it is implied by the dest type. 911 ValID ID; 912 if (ParseValID(ID)) 913 return true; 914 if (ID.Kind != ValID::t_Constant) 915 return Error(AliaseeLoc, "invalid aliasee"); 916 Aliasee = ID.ConstantVal; 917 } 918 919 Type *AliaseeType = Aliasee->getType(); 920 auto *PTy = dyn_cast<PointerType>(AliaseeType); 921 if (!PTy) 922 return Error(AliaseeLoc, "An alias or ifunc must have pointer type"); 923 unsigned AddrSpace = PTy->getAddressSpace(); 924 925 if (IsAlias && Ty != PTy->getElementType()) 926 return Error( 927 ExplicitTypeLoc, 928 "explicit pointee type doesn't match operand's pointee type"); 929 930 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) 931 return Error( 932 ExplicitTypeLoc, 933 "explicit pointee type should be a function type"); 934 935 GlobalValue *GVal = nullptr; 936 937 // See if the alias was forward referenced, if so, prepare to replace the 938 // forward reference. 939 if (!Name.empty()) { 940 GVal = M->getNamedValue(Name); 941 if (GVal) { 942 if (!ForwardRefVals.erase(Name)) 943 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 944 } 945 } else { 946 auto I = ForwardRefValIDs.find(NumberedVals.size()); 947 if (I != ForwardRefValIDs.end()) { 948 GVal = I->second.first; 949 ForwardRefValIDs.erase(I); 950 } 951 } 952 953 // Okay, create the alias but do not insert it into the module yet. 954 std::unique_ptr<GlobalIndirectSymbol> GA; 955 if (IsAlias) 956 GA.reset(GlobalAlias::create(Ty, AddrSpace, 957 (GlobalValue::LinkageTypes)Linkage, Name, 958 Aliasee, /*Parent*/ nullptr)); 959 else 960 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 961 (GlobalValue::LinkageTypes)Linkage, Name, 962 Aliasee, /*Parent*/ nullptr)); 963 GA->setThreadLocalMode(TLM); 964 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 965 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 966 GA->setUnnamedAddr(UnnamedAddr); 967 maybeSetDSOLocal(DSOLocal, *GA); 968 969 // At this point we've parsed everything except for the IndirectSymbolAttrs. 970 // Now parse them if there are any. 971 while (Lex.getKind() == lltok::comma) { 972 Lex.Lex(); 973 974 if (Lex.getKind() == lltok::kw_partition) { 975 Lex.Lex(); 976 GA->setPartition(Lex.getStrVal()); 977 if (ParseToken(lltok::StringConstant, "expected partition string")) 978 return true; 979 } else { 980 return TokError("unknown alias or ifunc property!"); 981 } 982 } 983 984 if (Name.empty()) 985 NumberedVals.push_back(GA.get()); 986 987 if (GVal) { 988 // Verify that types agree. 989 if (GVal->getType() != GA->getType()) 990 return Error( 991 ExplicitTypeLoc, 992 "forward reference and definition of alias have different types"); 993 994 // If they agree, just RAUW the old value with the alias and remove the 995 // forward ref info. 996 GVal->replaceAllUsesWith(GA.get()); 997 GVal->eraseFromParent(); 998 } 999 1000 // Insert into the module, we know its name won't collide now. 1001 if (IsAlias) 1002 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 1003 else 1004 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 1005 assert(GA->getName() == Name && "Should not be a name conflict!"); 1006 1007 // The module owns this now 1008 GA.release(); 1009 1010 return false; 1011 } 1012 1013 /// ParseGlobal 1014 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 1015 /// OptionalVisibility OptionalDLLStorageClass 1016 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 1017 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 1018 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 1019 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 1020 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 1021 /// Const OptionalAttrs 1022 /// 1023 /// Everything up to and including OptionalUnnamedAddr has been parsed 1024 /// already. 1025 /// 1026 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 1027 unsigned Linkage, bool HasLinkage, 1028 unsigned Visibility, unsigned DLLStorageClass, 1029 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 1030 GlobalVariable::UnnamedAddr UnnamedAddr) { 1031 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 1032 return Error(NameLoc, 1033 "symbol with local linkage must have default visibility"); 1034 1035 unsigned AddrSpace; 1036 bool IsConstant, IsExternallyInitialized; 1037 LocTy IsExternallyInitializedLoc; 1038 LocTy TyLoc; 1039 1040 Type *Ty = nullptr; 1041 if (ParseOptionalAddrSpace(AddrSpace) || 1042 ParseOptionalToken(lltok::kw_externally_initialized, 1043 IsExternallyInitialized, 1044 &IsExternallyInitializedLoc) || 1045 ParseGlobalType(IsConstant) || 1046 ParseType(Ty, TyLoc)) 1047 return true; 1048 1049 // If the linkage is specified and is external, then no initializer is 1050 // present. 1051 Constant *Init = nullptr; 1052 if (!HasLinkage || 1053 !GlobalValue::isValidDeclarationLinkage( 1054 (GlobalValue::LinkageTypes)Linkage)) { 1055 if (ParseGlobalValue(Ty, Init)) 1056 return true; 1057 } 1058 1059 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 1060 return Error(TyLoc, "invalid type for global variable"); 1061 1062 GlobalValue *GVal = nullptr; 1063 1064 // See if the global was forward referenced, if so, use the global. 1065 if (!Name.empty()) { 1066 GVal = M->getNamedValue(Name); 1067 if (GVal) { 1068 if (!ForwardRefVals.erase(Name)) 1069 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 1070 } 1071 } else { 1072 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1073 if (I != ForwardRefValIDs.end()) { 1074 GVal = I->second.first; 1075 ForwardRefValIDs.erase(I); 1076 } 1077 } 1078 1079 GlobalVariable *GV; 1080 if (!GVal) { 1081 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 1082 Name, nullptr, GlobalVariable::NotThreadLocal, 1083 AddrSpace); 1084 } else { 1085 if (GVal->getValueType() != Ty) 1086 return Error(TyLoc, 1087 "forward reference and definition of global have different types"); 1088 1089 GV = cast<GlobalVariable>(GVal); 1090 1091 // Move the forward-reference to the correct spot in the module. 1092 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 1093 } 1094 1095 if (Name.empty()) 1096 NumberedVals.push_back(GV); 1097 1098 // Set the parsed properties on the global. 1099 if (Init) 1100 GV->setInitializer(Init); 1101 GV->setConstant(IsConstant); 1102 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 1103 maybeSetDSOLocal(DSOLocal, *GV); 1104 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1105 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1106 GV->setExternallyInitialized(IsExternallyInitialized); 1107 GV->setThreadLocalMode(TLM); 1108 GV->setUnnamedAddr(UnnamedAddr); 1109 1110 // Parse attributes on the global. 1111 while (Lex.getKind() == lltok::comma) { 1112 Lex.Lex(); 1113 1114 if (Lex.getKind() == lltok::kw_section) { 1115 Lex.Lex(); 1116 GV->setSection(Lex.getStrVal()); 1117 if (ParseToken(lltok::StringConstant, "expected global section string")) 1118 return true; 1119 } else if (Lex.getKind() == lltok::kw_partition) { 1120 Lex.Lex(); 1121 GV->setPartition(Lex.getStrVal()); 1122 if (ParseToken(lltok::StringConstant, "expected partition string")) 1123 return true; 1124 } else if (Lex.getKind() == lltok::kw_align) { 1125 MaybeAlign Alignment; 1126 if (ParseOptionalAlignment(Alignment)) return true; 1127 GV->setAlignment(Alignment); 1128 } else if (Lex.getKind() == lltok::MetadataVar) { 1129 if (ParseGlobalObjectMetadataAttachment(*GV)) 1130 return true; 1131 } else { 1132 Comdat *C; 1133 if (parseOptionalComdat(Name, C)) 1134 return true; 1135 if (C) 1136 GV->setComdat(C); 1137 else 1138 return TokError("unknown global variable property!"); 1139 } 1140 } 1141 1142 AttrBuilder Attrs; 1143 LocTy BuiltinLoc; 1144 std::vector<unsigned> FwdRefAttrGrps; 1145 if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 1146 return true; 1147 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 1148 GV->setAttributes(AttributeSet::get(Context, Attrs)); 1149 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 1150 } 1151 1152 return false; 1153 } 1154 1155 /// ParseUnnamedAttrGrp 1156 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 1157 bool LLParser::ParseUnnamedAttrGrp() { 1158 assert(Lex.getKind() == lltok::kw_attributes); 1159 LocTy AttrGrpLoc = Lex.getLoc(); 1160 Lex.Lex(); 1161 1162 if (Lex.getKind() != lltok::AttrGrpID) 1163 return TokError("expected attribute group id"); 1164 1165 unsigned VarID = Lex.getUIntVal(); 1166 std::vector<unsigned> unused; 1167 LocTy BuiltinLoc; 1168 Lex.Lex(); 1169 1170 if (ParseToken(lltok::equal, "expected '=' here") || 1171 ParseToken(lltok::lbrace, "expected '{' here") || 1172 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 1173 BuiltinLoc) || 1174 ParseToken(lltok::rbrace, "expected end of attribute group")) 1175 return true; 1176 1177 if (!NumberedAttrBuilders[VarID].hasAttributes()) 1178 return Error(AttrGrpLoc, "attribute group has no attributes"); 1179 1180 return false; 1181 } 1182 1183 /// ParseFnAttributeValuePairs 1184 /// ::= <attr> | <attr> '=' <value> 1185 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B, 1186 std::vector<unsigned> &FwdRefAttrGrps, 1187 bool inAttrGrp, LocTy &BuiltinLoc) { 1188 bool HaveError = false; 1189 1190 B.clear(); 1191 1192 while (true) { 1193 lltok::Kind Token = Lex.getKind(); 1194 if (Token == lltok::kw_builtin) 1195 BuiltinLoc = Lex.getLoc(); 1196 switch (Token) { 1197 default: 1198 if (!inAttrGrp) return HaveError; 1199 return Error(Lex.getLoc(), "unterminated attribute group"); 1200 case lltok::rbrace: 1201 // Finished. 1202 return false; 1203 1204 case lltok::AttrGrpID: { 1205 // Allow a function to reference an attribute group: 1206 // 1207 // define void @foo() #1 { ... } 1208 if (inAttrGrp) 1209 HaveError |= 1210 Error(Lex.getLoc(), 1211 "cannot have an attribute group reference in an attribute group"); 1212 1213 unsigned AttrGrpNum = Lex.getUIntVal(); 1214 if (inAttrGrp) break; 1215 1216 // Save the reference to the attribute group. We'll fill it in later. 1217 FwdRefAttrGrps.push_back(AttrGrpNum); 1218 break; 1219 } 1220 // Target-dependent attributes: 1221 case lltok::StringConstant: { 1222 if (ParseStringAttribute(B)) 1223 return true; 1224 continue; 1225 } 1226 1227 // Target-independent attributes: 1228 case lltok::kw_align: { 1229 // As a hack, we allow function alignment to be initially parsed as an 1230 // attribute on a function declaration/definition or added to an attribute 1231 // group and later moved to the alignment field. 1232 MaybeAlign Alignment; 1233 if (inAttrGrp) { 1234 Lex.Lex(); 1235 uint32_t Value = 0; 1236 if (ParseToken(lltok::equal, "expected '=' here") || ParseUInt32(Value)) 1237 return true; 1238 Alignment = Align(Value); 1239 } else { 1240 if (ParseOptionalAlignment(Alignment)) 1241 return true; 1242 } 1243 B.addAlignmentAttr(Alignment); 1244 continue; 1245 } 1246 case lltok::kw_alignstack: { 1247 unsigned Alignment; 1248 if (inAttrGrp) { 1249 Lex.Lex(); 1250 if (ParseToken(lltok::equal, "expected '=' here") || 1251 ParseUInt32(Alignment)) 1252 return true; 1253 } else { 1254 if (ParseOptionalStackAlignment(Alignment)) 1255 return true; 1256 } 1257 B.addStackAlignmentAttr(Alignment); 1258 continue; 1259 } 1260 case lltok::kw_allocsize: { 1261 unsigned ElemSizeArg; 1262 Optional<unsigned> NumElemsArg; 1263 // inAttrGrp doesn't matter; we only support allocsize(a[, b]) 1264 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1265 return true; 1266 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1267 continue; 1268 } 1269 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 1270 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 1271 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 1272 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 1273 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 1274 case lltok::kw_inaccessiblememonly: 1275 B.addAttribute(Attribute::InaccessibleMemOnly); break; 1276 case lltok::kw_inaccessiblemem_or_argmemonly: 1277 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break; 1278 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 1279 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 1280 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 1281 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 1282 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 1283 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 1284 case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break; 1285 case lltok::kw_noimplicitfloat: 1286 B.addAttribute(Attribute::NoImplicitFloat); break; 1287 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1288 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1289 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1290 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1291 case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break; 1292 case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break; 1293 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1294 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1295 case lltok::kw_optforfuzzing: 1296 B.addAttribute(Attribute::OptForFuzzing); break; 1297 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1298 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1299 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1300 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1301 case lltok::kw_returns_twice: 1302 B.addAttribute(Attribute::ReturnsTwice); break; 1303 case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break; 1304 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1305 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1306 case lltok::kw_sspstrong: 1307 B.addAttribute(Attribute::StackProtectStrong); break; 1308 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1309 case lltok::kw_shadowcallstack: 1310 B.addAttribute(Attribute::ShadowCallStack); break; 1311 case lltok::kw_sanitize_address: 1312 B.addAttribute(Attribute::SanitizeAddress); break; 1313 case lltok::kw_sanitize_hwaddress: 1314 B.addAttribute(Attribute::SanitizeHWAddress); break; 1315 case lltok::kw_sanitize_memtag: 1316 B.addAttribute(Attribute::SanitizeMemTag); break; 1317 case lltok::kw_sanitize_thread: 1318 B.addAttribute(Attribute::SanitizeThread); break; 1319 case lltok::kw_sanitize_memory: 1320 B.addAttribute(Attribute::SanitizeMemory); break; 1321 case lltok::kw_speculative_load_hardening: 1322 B.addAttribute(Attribute::SpeculativeLoadHardening); 1323 break; 1324 case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break; 1325 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1326 case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break; 1327 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1328 1329 // Error handling. 1330 case lltok::kw_inreg: 1331 case lltok::kw_signext: 1332 case lltok::kw_zeroext: 1333 HaveError |= 1334 Error(Lex.getLoc(), 1335 "invalid use of attribute on a function"); 1336 break; 1337 case lltok::kw_byval: 1338 case lltok::kw_dereferenceable: 1339 case lltok::kw_dereferenceable_or_null: 1340 case lltok::kw_inalloca: 1341 case lltok::kw_nest: 1342 case lltok::kw_noalias: 1343 case lltok::kw_nocapture: 1344 case lltok::kw_nonnull: 1345 case lltok::kw_returned: 1346 case lltok::kw_sret: 1347 case lltok::kw_swifterror: 1348 case lltok::kw_swiftself: 1349 case lltok::kw_immarg: 1350 HaveError |= 1351 Error(Lex.getLoc(), 1352 "invalid use of parameter-only attribute on a function"); 1353 break; 1354 } 1355 1356 Lex.Lex(); 1357 } 1358 } 1359 1360 //===----------------------------------------------------------------------===// 1361 // GlobalValue Reference/Resolution Routines. 1362 //===----------------------------------------------------------------------===// 1363 1364 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1365 const std::string &Name) { 1366 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1367 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, 1368 PTy->getAddressSpace(), Name, M); 1369 else 1370 return new GlobalVariable(*M, PTy->getElementType(), false, 1371 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1372 nullptr, GlobalVariable::NotThreadLocal, 1373 PTy->getAddressSpace()); 1374 } 1375 1376 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty, 1377 Value *Val, bool IsCall) { 1378 if (Val->getType() == Ty) 1379 return Val; 1380 // For calls we also accept variables in the program address space. 1381 Type *SuggestedTy = Ty; 1382 if (IsCall && isa<PointerType>(Ty)) { 1383 Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo( 1384 M->getDataLayout().getProgramAddressSpace()); 1385 SuggestedTy = TyInProgAS; 1386 if (Val->getType() == TyInProgAS) 1387 return Val; 1388 } 1389 if (Ty->isLabelTy()) 1390 Error(Loc, "'" + Name + "' is not a basic block"); 1391 else 1392 Error(Loc, "'" + Name + "' defined with type '" + 1393 getTypeString(Val->getType()) + "' but expected '" + 1394 getTypeString(SuggestedTy) + "'"); 1395 return nullptr; 1396 } 1397 1398 /// GetGlobalVal - Get a value with the specified name or ID, creating a 1399 /// forward reference record if needed. This can return null if the value 1400 /// exists but does not have the right type. 1401 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 1402 LocTy Loc, bool IsCall) { 1403 PointerType *PTy = dyn_cast<PointerType>(Ty); 1404 if (!PTy) { 1405 Error(Loc, "global variable reference must have pointer type"); 1406 return nullptr; 1407 } 1408 1409 // Look this name up in the normal function symbol table. 1410 GlobalValue *Val = 1411 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1412 1413 // If this is a forward reference for the value, see if we already created a 1414 // forward ref record. 1415 if (!Val) { 1416 auto I = ForwardRefVals.find(Name); 1417 if (I != ForwardRefVals.end()) 1418 Val = I->second.first; 1419 } 1420 1421 // If we have the value in the symbol table or fwd-ref table, return it. 1422 if (Val) 1423 return cast_or_null<GlobalValue>( 1424 checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall)); 1425 1426 // Otherwise, create a new forward reference for this value and remember it. 1427 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1428 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1429 return FwdVal; 1430 } 1431 1432 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc, 1433 bool IsCall) { 1434 PointerType *PTy = dyn_cast<PointerType>(Ty); 1435 if (!PTy) { 1436 Error(Loc, "global variable reference must have pointer type"); 1437 return nullptr; 1438 } 1439 1440 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1441 1442 // If this is a forward reference for the value, see if we already created a 1443 // forward ref record. 1444 if (!Val) { 1445 auto I = ForwardRefValIDs.find(ID); 1446 if (I != ForwardRefValIDs.end()) 1447 Val = I->second.first; 1448 } 1449 1450 // If we have the value in the symbol table or fwd-ref table, return it. 1451 if (Val) 1452 return cast_or_null<GlobalValue>( 1453 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall)); 1454 1455 // Otherwise, create a new forward reference for this value and remember it. 1456 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1457 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1458 return FwdVal; 1459 } 1460 1461 //===----------------------------------------------------------------------===// 1462 // Comdat Reference/Resolution Routines. 1463 //===----------------------------------------------------------------------===// 1464 1465 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1466 // Look this name up in the comdat symbol table. 1467 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1468 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1469 if (I != ComdatSymTab.end()) 1470 return &I->second; 1471 1472 // Otherwise, create a new forward reference for this value and remember it. 1473 Comdat *C = M->getOrInsertComdat(Name); 1474 ForwardRefComdats[Name] = Loc; 1475 return C; 1476 } 1477 1478 //===----------------------------------------------------------------------===// 1479 // Helper Routines. 1480 //===----------------------------------------------------------------------===// 1481 1482 /// ParseToken - If the current token has the specified kind, eat it and return 1483 /// success. Otherwise, emit the specified error and return failure. 1484 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 1485 if (Lex.getKind() != T) 1486 return TokError(ErrMsg); 1487 Lex.Lex(); 1488 return false; 1489 } 1490 1491 /// ParseStringConstant 1492 /// ::= StringConstant 1493 bool LLParser::ParseStringConstant(std::string &Result) { 1494 if (Lex.getKind() != lltok::StringConstant) 1495 return TokError("expected string constant"); 1496 Result = Lex.getStrVal(); 1497 Lex.Lex(); 1498 return false; 1499 } 1500 1501 /// ParseUInt32 1502 /// ::= uint32 1503 bool LLParser::ParseUInt32(uint32_t &Val) { 1504 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1505 return TokError("expected integer"); 1506 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1507 if (Val64 != unsigned(Val64)) 1508 return TokError("expected 32-bit integer (too large)"); 1509 Val = Val64; 1510 Lex.Lex(); 1511 return false; 1512 } 1513 1514 /// ParseUInt64 1515 /// ::= uint64 1516 bool LLParser::ParseUInt64(uint64_t &Val) { 1517 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1518 return TokError("expected integer"); 1519 Val = Lex.getAPSIntVal().getLimitedValue(); 1520 Lex.Lex(); 1521 return false; 1522 } 1523 1524 /// ParseTLSModel 1525 /// := 'localdynamic' 1526 /// := 'initialexec' 1527 /// := 'localexec' 1528 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1529 switch (Lex.getKind()) { 1530 default: 1531 return TokError("expected localdynamic, initialexec or localexec"); 1532 case lltok::kw_localdynamic: 1533 TLM = GlobalVariable::LocalDynamicTLSModel; 1534 break; 1535 case lltok::kw_initialexec: 1536 TLM = GlobalVariable::InitialExecTLSModel; 1537 break; 1538 case lltok::kw_localexec: 1539 TLM = GlobalVariable::LocalExecTLSModel; 1540 break; 1541 } 1542 1543 Lex.Lex(); 1544 return false; 1545 } 1546 1547 /// ParseOptionalThreadLocal 1548 /// := /*empty*/ 1549 /// := 'thread_local' 1550 /// := 'thread_local' '(' tlsmodel ')' 1551 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1552 TLM = GlobalVariable::NotThreadLocal; 1553 if (!EatIfPresent(lltok::kw_thread_local)) 1554 return false; 1555 1556 TLM = GlobalVariable::GeneralDynamicTLSModel; 1557 if (Lex.getKind() == lltok::lparen) { 1558 Lex.Lex(); 1559 return ParseTLSModel(TLM) || 1560 ParseToken(lltok::rparen, "expected ')' after thread local model"); 1561 } 1562 return false; 1563 } 1564 1565 /// ParseOptionalAddrSpace 1566 /// := /*empty*/ 1567 /// := 'addrspace' '(' uint32 ')' 1568 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) { 1569 AddrSpace = DefaultAS; 1570 if (!EatIfPresent(lltok::kw_addrspace)) 1571 return false; 1572 return ParseToken(lltok::lparen, "expected '(' in address space") || 1573 ParseUInt32(AddrSpace) || 1574 ParseToken(lltok::rparen, "expected ')' in address space"); 1575 } 1576 1577 /// ParseStringAttribute 1578 /// := StringConstant 1579 /// := StringConstant '=' StringConstant 1580 bool LLParser::ParseStringAttribute(AttrBuilder &B) { 1581 std::string Attr = Lex.getStrVal(); 1582 Lex.Lex(); 1583 std::string Val; 1584 if (EatIfPresent(lltok::equal) && ParseStringConstant(Val)) 1585 return true; 1586 B.addAttribute(Attr, Val); 1587 return false; 1588 } 1589 1590 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes. 1591 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) { 1592 bool HaveError = false; 1593 1594 B.clear(); 1595 1596 while (true) { 1597 lltok::Kind Token = Lex.getKind(); 1598 switch (Token) { 1599 default: // End of attributes. 1600 return HaveError; 1601 case lltok::StringConstant: { 1602 if (ParseStringAttribute(B)) 1603 return true; 1604 continue; 1605 } 1606 case lltok::kw_align: { 1607 MaybeAlign Alignment; 1608 if (ParseOptionalAlignment(Alignment)) 1609 return true; 1610 B.addAlignmentAttr(Alignment); 1611 continue; 1612 } 1613 case lltok::kw_byval: { 1614 Type *Ty; 1615 if (ParseByValWithOptionalType(Ty)) 1616 return true; 1617 B.addByValAttr(Ty); 1618 continue; 1619 } 1620 case lltok::kw_dereferenceable: { 1621 uint64_t Bytes; 1622 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1623 return true; 1624 B.addDereferenceableAttr(Bytes); 1625 continue; 1626 } 1627 case lltok::kw_dereferenceable_or_null: { 1628 uint64_t Bytes; 1629 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1630 return true; 1631 B.addDereferenceableOrNullAttr(Bytes); 1632 continue; 1633 } 1634 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break; 1635 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1636 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1637 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1638 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1639 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1640 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1641 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1642 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1643 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1644 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break; 1645 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break; 1646 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break; 1647 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1648 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1649 case lltok::kw_immarg: B.addAttribute(Attribute::ImmArg); break; 1650 1651 case lltok::kw_alignstack: 1652 case lltok::kw_alwaysinline: 1653 case lltok::kw_argmemonly: 1654 case lltok::kw_builtin: 1655 case lltok::kw_inlinehint: 1656 case lltok::kw_jumptable: 1657 case lltok::kw_minsize: 1658 case lltok::kw_naked: 1659 case lltok::kw_nobuiltin: 1660 case lltok::kw_noduplicate: 1661 case lltok::kw_noimplicitfloat: 1662 case lltok::kw_noinline: 1663 case lltok::kw_nonlazybind: 1664 case lltok::kw_noredzone: 1665 case lltok::kw_noreturn: 1666 case lltok::kw_nocf_check: 1667 case lltok::kw_nounwind: 1668 case lltok::kw_optforfuzzing: 1669 case lltok::kw_optnone: 1670 case lltok::kw_optsize: 1671 case lltok::kw_returns_twice: 1672 case lltok::kw_sanitize_address: 1673 case lltok::kw_sanitize_hwaddress: 1674 case lltok::kw_sanitize_memtag: 1675 case lltok::kw_sanitize_memory: 1676 case lltok::kw_sanitize_thread: 1677 case lltok::kw_speculative_load_hardening: 1678 case lltok::kw_ssp: 1679 case lltok::kw_sspreq: 1680 case lltok::kw_sspstrong: 1681 case lltok::kw_safestack: 1682 case lltok::kw_shadowcallstack: 1683 case lltok::kw_strictfp: 1684 case lltok::kw_uwtable: 1685 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1686 break; 1687 } 1688 1689 Lex.Lex(); 1690 } 1691 } 1692 1693 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes. 1694 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) { 1695 bool HaveError = false; 1696 1697 B.clear(); 1698 1699 while (true) { 1700 lltok::Kind Token = Lex.getKind(); 1701 switch (Token) { 1702 default: // End of attributes. 1703 return HaveError; 1704 case lltok::StringConstant: { 1705 if (ParseStringAttribute(B)) 1706 return true; 1707 continue; 1708 } 1709 case lltok::kw_dereferenceable: { 1710 uint64_t Bytes; 1711 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1712 return true; 1713 B.addDereferenceableAttr(Bytes); 1714 continue; 1715 } 1716 case lltok::kw_dereferenceable_or_null: { 1717 uint64_t Bytes; 1718 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1719 return true; 1720 B.addDereferenceableOrNullAttr(Bytes); 1721 continue; 1722 } 1723 case lltok::kw_align: { 1724 MaybeAlign Alignment; 1725 if (ParseOptionalAlignment(Alignment)) 1726 return true; 1727 B.addAlignmentAttr(Alignment); 1728 continue; 1729 } 1730 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1731 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1732 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1733 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1734 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1735 1736 // Error handling. 1737 case lltok::kw_byval: 1738 case lltok::kw_inalloca: 1739 case lltok::kw_nest: 1740 case lltok::kw_nocapture: 1741 case lltok::kw_returned: 1742 case lltok::kw_sret: 1743 case lltok::kw_swifterror: 1744 case lltok::kw_swiftself: 1745 case lltok::kw_immarg: 1746 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1747 break; 1748 1749 case lltok::kw_alignstack: 1750 case lltok::kw_alwaysinline: 1751 case lltok::kw_argmemonly: 1752 case lltok::kw_builtin: 1753 case lltok::kw_cold: 1754 case lltok::kw_inlinehint: 1755 case lltok::kw_jumptable: 1756 case lltok::kw_minsize: 1757 case lltok::kw_naked: 1758 case lltok::kw_nobuiltin: 1759 case lltok::kw_noduplicate: 1760 case lltok::kw_noimplicitfloat: 1761 case lltok::kw_noinline: 1762 case lltok::kw_nonlazybind: 1763 case lltok::kw_noredzone: 1764 case lltok::kw_noreturn: 1765 case lltok::kw_nocf_check: 1766 case lltok::kw_nounwind: 1767 case lltok::kw_optforfuzzing: 1768 case lltok::kw_optnone: 1769 case lltok::kw_optsize: 1770 case lltok::kw_returns_twice: 1771 case lltok::kw_sanitize_address: 1772 case lltok::kw_sanitize_hwaddress: 1773 case lltok::kw_sanitize_memtag: 1774 case lltok::kw_sanitize_memory: 1775 case lltok::kw_sanitize_thread: 1776 case lltok::kw_speculative_load_hardening: 1777 case lltok::kw_ssp: 1778 case lltok::kw_sspreq: 1779 case lltok::kw_sspstrong: 1780 case lltok::kw_safestack: 1781 case lltok::kw_shadowcallstack: 1782 case lltok::kw_strictfp: 1783 case lltok::kw_uwtable: 1784 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1785 break; 1786 1787 case lltok::kw_readnone: 1788 case lltok::kw_readonly: 1789 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type"); 1790 } 1791 1792 Lex.Lex(); 1793 } 1794 } 1795 1796 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1797 HasLinkage = true; 1798 switch (Kind) { 1799 default: 1800 HasLinkage = false; 1801 return GlobalValue::ExternalLinkage; 1802 case lltok::kw_private: 1803 return GlobalValue::PrivateLinkage; 1804 case lltok::kw_internal: 1805 return GlobalValue::InternalLinkage; 1806 case lltok::kw_weak: 1807 return GlobalValue::WeakAnyLinkage; 1808 case lltok::kw_weak_odr: 1809 return GlobalValue::WeakODRLinkage; 1810 case lltok::kw_linkonce: 1811 return GlobalValue::LinkOnceAnyLinkage; 1812 case lltok::kw_linkonce_odr: 1813 return GlobalValue::LinkOnceODRLinkage; 1814 case lltok::kw_available_externally: 1815 return GlobalValue::AvailableExternallyLinkage; 1816 case lltok::kw_appending: 1817 return GlobalValue::AppendingLinkage; 1818 case lltok::kw_common: 1819 return GlobalValue::CommonLinkage; 1820 case lltok::kw_extern_weak: 1821 return GlobalValue::ExternalWeakLinkage; 1822 case lltok::kw_external: 1823 return GlobalValue::ExternalLinkage; 1824 } 1825 } 1826 1827 /// ParseOptionalLinkage 1828 /// ::= /*empty*/ 1829 /// ::= 'private' 1830 /// ::= 'internal' 1831 /// ::= 'weak' 1832 /// ::= 'weak_odr' 1833 /// ::= 'linkonce' 1834 /// ::= 'linkonce_odr' 1835 /// ::= 'available_externally' 1836 /// ::= 'appending' 1837 /// ::= 'common' 1838 /// ::= 'extern_weak' 1839 /// ::= 'external' 1840 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1841 unsigned &Visibility, 1842 unsigned &DLLStorageClass, 1843 bool &DSOLocal) { 1844 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1845 if (HasLinkage) 1846 Lex.Lex(); 1847 ParseOptionalDSOLocal(DSOLocal); 1848 ParseOptionalVisibility(Visibility); 1849 ParseOptionalDLLStorageClass(DLLStorageClass); 1850 1851 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 1852 return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 1853 } 1854 1855 return false; 1856 } 1857 1858 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) { 1859 switch (Lex.getKind()) { 1860 default: 1861 DSOLocal = false; 1862 break; 1863 case lltok::kw_dso_local: 1864 DSOLocal = true; 1865 Lex.Lex(); 1866 break; 1867 case lltok::kw_dso_preemptable: 1868 DSOLocal = false; 1869 Lex.Lex(); 1870 break; 1871 } 1872 } 1873 1874 /// ParseOptionalVisibility 1875 /// ::= /*empty*/ 1876 /// ::= 'default' 1877 /// ::= 'hidden' 1878 /// ::= 'protected' 1879 /// 1880 void LLParser::ParseOptionalVisibility(unsigned &Res) { 1881 switch (Lex.getKind()) { 1882 default: 1883 Res = GlobalValue::DefaultVisibility; 1884 return; 1885 case lltok::kw_default: 1886 Res = GlobalValue::DefaultVisibility; 1887 break; 1888 case lltok::kw_hidden: 1889 Res = GlobalValue::HiddenVisibility; 1890 break; 1891 case lltok::kw_protected: 1892 Res = GlobalValue::ProtectedVisibility; 1893 break; 1894 } 1895 Lex.Lex(); 1896 } 1897 1898 /// ParseOptionalDLLStorageClass 1899 /// ::= /*empty*/ 1900 /// ::= 'dllimport' 1901 /// ::= 'dllexport' 1902 /// 1903 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) { 1904 switch (Lex.getKind()) { 1905 default: 1906 Res = GlobalValue::DefaultStorageClass; 1907 return; 1908 case lltok::kw_dllimport: 1909 Res = GlobalValue::DLLImportStorageClass; 1910 break; 1911 case lltok::kw_dllexport: 1912 Res = GlobalValue::DLLExportStorageClass; 1913 break; 1914 } 1915 Lex.Lex(); 1916 } 1917 1918 /// ParseOptionalCallingConv 1919 /// ::= /*empty*/ 1920 /// ::= 'ccc' 1921 /// ::= 'fastcc' 1922 /// ::= 'intel_ocl_bicc' 1923 /// ::= 'coldcc' 1924 /// ::= 'cfguard_checkcc' 1925 /// ::= 'x86_stdcallcc' 1926 /// ::= 'x86_fastcallcc' 1927 /// ::= 'x86_thiscallcc' 1928 /// ::= 'x86_vectorcallcc' 1929 /// ::= 'arm_apcscc' 1930 /// ::= 'arm_aapcscc' 1931 /// ::= 'arm_aapcs_vfpcc' 1932 /// ::= 'aarch64_vector_pcs' 1933 /// ::= 'msp430_intrcc' 1934 /// ::= 'avr_intrcc' 1935 /// ::= 'avr_signalcc' 1936 /// ::= 'ptx_kernel' 1937 /// ::= 'ptx_device' 1938 /// ::= 'spir_func' 1939 /// ::= 'spir_kernel' 1940 /// ::= 'x86_64_sysvcc' 1941 /// ::= 'win64cc' 1942 /// ::= 'webkit_jscc' 1943 /// ::= 'anyregcc' 1944 /// ::= 'preserve_mostcc' 1945 /// ::= 'preserve_allcc' 1946 /// ::= 'ghccc' 1947 /// ::= 'swiftcc' 1948 /// ::= 'x86_intrcc' 1949 /// ::= 'hhvmcc' 1950 /// ::= 'hhvm_ccc' 1951 /// ::= 'cxx_fast_tlscc' 1952 /// ::= 'amdgpu_vs' 1953 /// ::= 'amdgpu_ls' 1954 /// ::= 'amdgpu_hs' 1955 /// ::= 'amdgpu_es' 1956 /// ::= 'amdgpu_gs' 1957 /// ::= 'amdgpu_ps' 1958 /// ::= 'amdgpu_cs' 1959 /// ::= 'amdgpu_kernel' 1960 /// ::= 'tailcc' 1961 /// ::= 'cc' UINT 1962 /// 1963 bool LLParser::ParseOptionalCallingConv(unsigned &CC) { 1964 switch (Lex.getKind()) { 1965 default: CC = CallingConv::C; return false; 1966 case lltok::kw_ccc: CC = CallingConv::C; break; 1967 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1968 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1969 case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break; 1970 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1971 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1972 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 1973 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1974 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1975 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1976 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1977 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1978 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break; 1979 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1980 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 1981 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 1982 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1983 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1984 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1985 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1986 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1987 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1988 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 1989 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1990 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1991 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1992 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1993 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1994 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 1995 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 1996 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 1997 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 1998 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 1999 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 2000 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 2001 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 2002 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 2003 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 2004 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 2005 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 2006 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 2007 case lltok::kw_tailcc: CC = CallingConv::Tail; break; 2008 case lltok::kw_cc: { 2009 Lex.Lex(); 2010 return ParseUInt32(CC); 2011 } 2012 } 2013 2014 Lex.Lex(); 2015 return false; 2016 } 2017 2018 /// ParseMetadataAttachment 2019 /// ::= !dbg !42 2020 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 2021 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 2022 2023 std::string Name = Lex.getStrVal(); 2024 Kind = M->getMDKindID(Name); 2025 Lex.Lex(); 2026 2027 return ParseMDNode(MD); 2028 } 2029 2030 /// ParseInstructionMetadata 2031 /// ::= !dbg !42 (',' !dbg !57)* 2032 bool LLParser::ParseInstructionMetadata(Instruction &Inst) { 2033 do { 2034 if (Lex.getKind() != lltok::MetadataVar) 2035 return TokError("expected metadata after comma"); 2036 2037 unsigned MDK; 2038 MDNode *N; 2039 if (ParseMetadataAttachment(MDK, N)) 2040 return true; 2041 2042 Inst.setMetadata(MDK, N); 2043 if (MDK == LLVMContext::MD_tbaa) 2044 InstsWithTBAATag.push_back(&Inst); 2045 2046 // If this is the end of the list, we're done. 2047 } while (EatIfPresent(lltok::comma)); 2048 return false; 2049 } 2050 2051 /// ParseGlobalObjectMetadataAttachment 2052 /// ::= !dbg !57 2053 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) { 2054 unsigned MDK; 2055 MDNode *N; 2056 if (ParseMetadataAttachment(MDK, N)) 2057 return true; 2058 2059 GO.addMetadata(MDK, *N); 2060 return false; 2061 } 2062 2063 /// ParseOptionalFunctionMetadata 2064 /// ::= (!dbg !57)* 2065 bool LLParser::ParseOptionalFunctionMetadata(Function &F) { 2066 while (Lex.getKind() == lltok::MetadataVar) 2067 if (ParseGlobalObjectMetadataAttachment(F)) 2068 return true; 2069 return false; 2070 } 2071 2072 /// ParseOptionalAlignment 2073 /// ::= /* empty */ 2074 /// ::= 'align' 4 2075 bool LLParser::ParseOptionalAlignment(MaybeAlign &Alignment) { 2076 Alignment = None; 2077 if (!EatIfPresent(lltok::kw_align)) 2078 return false; 2079 LocTy AlignLoc = Lex.getLoc(); 2080 uint32_t Value = 0; 2081 if (ParseUInt32(Value)) 2082 return true; 2083 if (!isPowerOf2_32(Value)) 2084 return Error(AlignLoc, "alignment is not a power of two"); 2085 if (Value > Value::MaximumAlignment) 2086 return Error(AlignLoc, "huge alignments are not supported yet"); 2087 Alignment = Align(Value); 2088 return false; 2089 } 2090 2091 /// ParseOptionalDerefAttrBytes 2092 /// ::= /* empty */ 2093 /// ::= AttrKind '(' 4 ')' 2094 /// 2095 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 2096 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind, 2097 uint64_t &Bytes) { 2098 assert((AttrKind == lltok::kw_dereferenceable || 2099 AttrKind == lltok::kw_dereferenceable_or_null) && 2100 "contract!"); 2101 2102 Bytes = 0; 2103 if (!EatIfPresent(AttrKind)) 2104 return false; 2105 LocTy ParenLoc = Lex.getLoc(); 2106 if (!EatIfPresent(lltok::lparen)) 2107 return Error(ParenLoc, "expected '('"); 2108 LocTy DerefLoc = Lex.getLoc(); 2109 if (ParseUInt64(Bytes)) return true; 2110 ParenLoc = Lex.getLoc(); 2111 if (!EatIfPresent(lltok::rparen)) 2112 return Error(ParenLoc, "expected ')'"); 2113 if (!Bytes) 2114 return Error(DerefLoc, "dereferenceable bytes must be non-zero"); 2115 return false; 2116 } 2117 2118 /// ParseOptionalCommaAlign 2119 /// ::= 2120 /// ::= ',' align 4 2121 /// 2122 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2123 /// end. 2124 bool LLParser::ParseOptionalCommaAlign(MaybeAlign &Alignment, 2125 bool &AteExtraComma) { 2126 AteExtraComma = false; 2127 while (EatIfPresent(lltok::comma)) { 2128 // Metadata at the end is an early exit. 2129 if (Lex.getKind() == lltok::MetadataVar) { 2130 AteExtraComma = true; 2131 return false; 2132 } 2133 2134 if (Lex.getKind() != lltok::kw_align) 2135 return Error(Lex.getLoc(), "expected metadata or 'align'"); 2136 2137 if (ParseOptionalAlignment(Alignment)) return true; 2138 } 2139 2140 return false; 2141 } 2142 2143 /// ParseOptionalCommaAddrSpace 2144 /// ::= 2145 /// ::= ',' addrspace(1) 2146 /// 2147 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2148 /// end. 2149 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace, 2150 LocTy &Loc, 2151 bool &AteExtraComma) { 2152 AteExtraComma = false; 2153 while (EatIfPresent(lltok::comma)) { 2154 // Metadata at the end is an early exit. 2155 if (Lex.getKind() == lltok::MetadataVar) { 2156 AteExtraComma = true; 2157 return false; 2158 } 2159 2160 Loc = Lex.getLoc(); 2161 if (Lex.getKind() != lltok::kw_addrspace) 2162 return Error(Lex.getLoc(), "expected metadata or 'addrspace'"); 2163 2164 if (ParseOptionalAddrSpace(AddrSpace)) 2165 return true; 2166 } 2167 2168 return false; 2169 } 2170 2171 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 2172 Optional<unsigned> &HowManyArg) { 2173 Lex.Lex(); 2174 2175 auto StartParen = Lex.getLoc(); 2176 if (!EatIfPresent(lltok::lparen)) 2177 return Error(StartParen, "expected '('"); 2178 2179 if (ParseUInt32(BaseSizeArg)) 2180 return true; 2181 2182 if (EatIfPresent(lltok::comma)) { 2183 auto HowManyAt = Lex.getLoc(); 2184 unsigned HowMany; 2185 if (ParseUInt32(HowMany)) 2186 return true; 2187 if (HowMany == BaseSizeArg) 2188 return Error(HowManyAt, 2189 "'allocsize' indices can't refer to the same parameter"); 2190 HowManyArg = HowMany; 2191 } else 2192 HowManyArg = None; 2193 2194 auto EndParen = Lex.getLoc(); 2195 if (!EatIfPresent(lltok::rparen)) 2196 return Error(EndParen, "expected ')'"); 2197 return false; 2198 } 2199 2200 /// ParseScopeAndOrdering 2201 /// if isAtomic: ::= SyncScope? AtomicOrdering 2202 /// else: ::= 2203 /// 2204 /// This sets Scope and Ordering to the parsed values. 2205 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID, 2206 AtomicOrdering &Ordering) { 2207 if (!isAtomic) 2208 return false; 2209 2210 return ParseScope(SSID) || ParseOrdering(Ordering); 2211 } 2212 2213 /// ParseScope 2214 /// ::= syncscope("singlethread" | "<target scope>")? 2215 /// 2216 /// This sets synchronization scope ID to the ID of the parsed value. 2217 bool LLParser::ParseScope(SyncScope::ID &SSID) { 2218 SSID = SyncScope::System; 2219 if (EatIfPresent(lltok::kw_syncscope)) { 2220 auto StartParenAt = Lex.getLoc(); 2221 if (!EatIfPresent(lltok::lparen)) 2222 return Error(StartParenAt, "Expected '(' in syncscope"); 2223 2224 std::string SSN; 2225 auto SSNAt = Lex.getLoc(); 2226 if (ParseStringConstant(SSN)) 2227 return Error(SSNAt, "Expected synchronization scope name"); 2228 2229 auto EndParenAt = Lex.getLoc(); 2230 if (!EatIfPresent(lltok::rparen)) 2231 return Error(EndParenAt, "Expected ')' in syncscope"); 2232 2233 SSID = Context.getOrInsertSyncScopeID(SSN); 2234 } 2235 2236 return false; 2237 } 2238 2239 /// ParseOrdering 2240 /// ::= AtomicOrdering 2241 /// 2242 /// This sets Ordering to the parsed value. 2243 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) { 2244 switch (Lex.getKind()) { 2245 default: return TokError("Expected ordering on atomic instruction"); 2246 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2247 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2248 // Not specified yet: 2249 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2250 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2251 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2252 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2253 case lltok::kw_seq_cst: 2254 Ordering = AtomicOrdering::SequentiallyConsistent; 2255 break; 2256 } 2257 Lex.Lex(); 2258 return false; 2259 } 2260 2261 /// ParseOptionalStackAlignment 2262 /// ::= /* empty */ 2263 /// ::= 'alignstack' '(' 4 ')' 2264 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 2265 Alignment = 0; 2266 if (!EatIfPresent(lltok::kw_alignstack)) 2267 return false; 2268 LocTy ParenLoc = Lex.getLoc(); 2269 if (!EatIfPresent(lltok::lparen)) 2270 return Error(ParenLoc, "expected '('"); 2271 LocTy AlignLoc = Lex.getLoc(); 2272 if (ParseUInt32(Alignment)) return true; 2273 ParenLoc = Lex.getLoc(); 2274 if (!EatIfPresent(lltok::rparen)) 2275 return Error(ParenLoc, "expected ')'"); 2276 if (!isPowerOf2_32(Alignment)) 2277 return Error(AlignLoc, "stack alignment is not a power of two"); 2278 return false; 2279 } 2280 2281 /// ParseIndexList - This parses the index list for an insert/extractvalue 2282 /// instruction. This sets AteExtraComma in the case where we eat an extra 2283 /// comma at the end of the line and find that it is followed by metadata. 2284 /// Clients that don't allow metadata can call the version of this function that 2285 /// only takes one argument. 2286 /// 2287 /// ParseIndexList 2288 /// ::= (',' uint32)+ 2289 /// 2290 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 2291 bool &AteExtraComma) { 2292 AteExtraComma = false; 2293 2294 if (Lex.getKind() != lltok::comma) 2295 return TokError("expected ',' as start of index list"); 2296 2297 while (EatIfPresent(lltok::comma)) { 2298 if (Lex.getKind() == lltok::MetadataVar) { 2299 if (Indices.empty()) return TokError("expected index"); 2300 AteExtraComma = true; 2301 return false; 2302 } 2303 unsigned Idx = 0; 2304 if (ParseUInt32(Idx)) return true; 2305 Indices.push_back(Idx); 2306 } 2307 2308 return false; 2309 } 2310 2311 //===----------------------------------------------------------------------===// 2312 // Type Parsing. 2313 //===----------------------------------------------------------------------===// 2314 2315 /// ParseType - Parse a type. 2316 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2317 SMLoc TypeLoc = Lex.getLoc(); 2318 switch (Lex.getKind()) { 2319 default: 2320 return TokError(Msg); 2321 case lltok::Type: 2322 // Type ::= 'float' | 'void' (etc) 2323 Result = Lex.getTyVal(); 2324 Lex.Lex(); 2325 break; 2326 case lltok::lbrace: 2327 // Type ::= StructType 2328 if (ParseAnonStructType(Result, false)) 2329 return true; 2330 break; 2331 case lltok::lsquare: 2332 // Type ::= '[' ... ']' 2333 Lex.Lex(); // eat the lsquare. 2334 if (ParseArrayVectorType(Result, false)) 2335 return true; 2336 break; 2337 case lltok::less: // Either vector or packed struct. 2338 // Type ::= '<' ... '>' 2339 Lex.Lex(); 2340 if (Lex.getKind() == lltok::lbrace) { 2341 if (ParseAnonStructType(Result, true) || 2342 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 2343 return true; 2344 } else if (ParseArrayVectorType(Result, true)) 2345 return true; 2346 break; 2347 case lltok::LocalVar: { 2348 // Type ::= %foo 2349 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2350 2351 // If the type hasn't been defined yet, create a forward definition and 2352 // remember where that forward def'n was seen (in case it never is defined). 2353 if (!Entry.first) { 2354 Entry.first = StructType::create(Context, Lex.getStrVal()); 2355 Entry.second = Lex.getLoc(); 2356 } 2357 Result = Entry.first; 2358 Lex.Lex(); 2359 break; 2360 } 2361 2362 case lltok::LocalVarID: { 2363 // Type ::= %4 2364 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2365 2366 // If the type hasn't been defined yet, create a forward definition and 2367 // remember where that forward def'n was seen (in case it never is defined). 2368 if (!Entry.first) { 2369 Entry.first = StructType::create(Context); 2370 Entry.second = Lex.getLoc(); 2371 } 2372 Result = Entry.first; 2373 Lex.Lex(); 2374 break; 2375 } 2376 } 2377 2378 // Parse the type suffixes. 2379 while (true) { 2380 switch (Lex.getKind()) { 2381 // End of type. 2382 default: 2383 if (!AllowVoid && Result->isVoidTy()) 2384 return Error(TypeLoc, "void type only allowed for function results"); 2385 return false; 2386 2387 // Type ::= Type '*' 2388 case lltok::star: 2389 if (Result->isLabelTy()) 2390 return TokError("basic block pointers are invalid"); 2391 if (Result->isVoidTy()) 2392 return TokError("pointers to void are invalid - use i8* instead"); 2393 if (!PointerType::isValidElementType(Result)) 2394 return TokError("pointer to this type is invalid"); 2395 Result = PointerType::getUnqual(Result); 2396 Lex.Lex(); 2397 break; 2398 2399 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2400 case lltok::kw_addrspace: { 2401 if (Result->isLabelTy()) 2402 return TokError("basic block pointers are invalid"); 2403 if (Result->isVoidTy()) 2404 return TokError("pointers to void are invalid; use i8* instead"); 2405 if (!PointerType::isValidElementType(Result)) 2406 return TokError("pointer to this type is invalid"); 2407 unsigned AddrSpace; 2408 if (ParseOptionalAddrSpace(AddrSpace) || 2409 ParseToken(lltok::star, "expected '*' in address space")) 2410 return true; 2411 2412 Result = PointerType::get(Result, AddrSpace); 2413 break; 2414 } 2415 2416 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2417 case lltok::lparen: 2418 if (ParseFunctionType(Result)) 2419 return true; 2420 break; 2421 } 2422 } 2423 } 2424 2425 /// ParseParameterList 2426 /// ::= '(' ')' 2427 /// ::= '(' Arg (',' Arg)* ')' 2428 /// Arg 2429 /// ::= Type OptionalAttributes Value OptionalAttributes 2430 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2431 PerFunctionState &PFS, bool IsMustTailCall, 2432 bool InVarArgsFunc) { 2433 if (ParseToken(lltok::lparen, "expected '(' in call")) 2434 return true; 2435 2436 while (Lex.getKind() != lltok::rparen) { 2437 // If this isn't the first argument, we need a comma. 2438 if (!ArgList.empty() && 2439 ParseToken(lltok::comma, "expected ',' in argument list")) 2440 return true; 2441 2442 // Parse an ellipsis if this is a musttail call in a variadic function. 2443 if (Lex.getKind() == lltok::dotdotdot) { 2444 const char *Msg = "unexpected ellipsis in argument list for "; 2445 if (!IsMustTailCall) 2446 return TokError(Twine(Msg) + "non-musttail call"); 2447 if (!InVarArgsFunc) 2448 return TokError(Twine(Msg) + "musttail call in non-varargs function"); 2449 Lex.Lex(); // Lex the '...', it is purely for readability. 2450 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2451 } 2452 2453 // Parse the argument. 2454 LocTy ArgLoc; 2455 Type *ArgTy = nullptr; 2456 AttrBuilder ArgAttrs; 2457 Value *V; 2458 if (ParseType(ArgTy, ArgLoc)) 2459 return true; 2460 2461 if (ArgTy->isMetadataTy()) { 2462 if (ParseMetadataAsValue(V, PFS)) 2463 return true; 2464 } else { 2465 // Otherwise, handle normal operands. 2466 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS)) 2467 return true; 2468 } 2469 ArgList.push_back(ParamInfo( 2470 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2471 } 2472 2473 if (IsMustTailCall && InVarArgsFunc) 2474 return TokError("expected '...' at end of argument list for musttail call " 2475 "in varargs function"); 2476 2477 Lex.Lex(); // Lex the ')'. 2478 return false; 2479 } 2480 2481 /// ParseByValWithOptionalType 2482 /// ::= byval 2483 /// ::= byval(<ty>) 2484 bool LLParser::ParseByValWithOptionalType(Type *&Result) { 2485 Result = nullptr; 2486 if (!EatIfPresent(lltok::kw_byval)) 2487 return true; 2488 if (!EatIfPresent(lltok::lparen)) 2489 return false; 2490 if (ParseType(Result)) 2491 return true; 2492 if (!EatIfPresent(lltok::rparen)) 2493 return Error(Lex.getLoc(), "expected ')'"); 2494 return false; 2495 } 2496 2497 /// ParseOptionalOperandBundles 2498 /// ::= /*empty*/ 2499 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2500 /// 2501 /// OperandBundle 2502 /// ::= bundle-tag '(' ')' 2503 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2504 /// 2505 /// bundle-tag ::= String Constant 2506 bool LLParser::ParseOptionalOperandBundles( 2507 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2508 LocTy BeginLoc = Lex.getLoc(); 2509 if (!EatIfPresent(lltok::lsquare)) 2510 return false; 2511 2512 while (Lex.getKind() != lltok::rsquare) { 2513 // If this isn't the first operand bundle, we need a comma. 2514 if (!BundleList.empty() && 2515 ParseToken(lltok::comma, "expected ',' in input list")) 2516 return true; 2517 2518 std::string Tag; 2519 if (ParseStringConstant(Tag)) 2520 return true; 2521 2522 if (ParseToken(lltok::lparen, "expected '(' in operand bundle")) 2523 return true; 2524 2525 std::vector<Value *> Inputs; 2526 while (Lex.getKind() != lltok::rparen) { 2527 // If this isn't the first input, we need a comma. 2528 if (!Inputs.empty() && 2529 ParseToken(lltok::comma, "expected ',' in input list")) 2530 return true; 2531 2532 Type *Ty = nullptr; 2533 Value *Input = nullptr; 2534 if (ParseType(Ty) || ParseValue(Ty, Input, PFS)) 2535 return true; 2536 Inputs.push_back(Input); 2537 } 2538 2539 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2540 2541 Lex.Lex(); // Lex the ')'. 2542 } 2543 2544 if (BundleList.empty()) 2545 return Error(BeginLoc, "operand bundle set must not be empty"); 2546 2547 Lex.Lex(); // Lex the ']'. 2548 return false; 2549 } 2550 2551 /// ParseArgumentList - Parse the argument list for a function type or function 2552 /// prototype. 2553 /// ::= '(' ArgTypeListI ')' 2554 /// ArgTypeListI 2555 /// ::= /*empty*/ 2556 /// ::= '...' 2557 /// ::= ArgTypeList ',' '...' 2558 /// ::= ArgType (',' ArgType)* 2559 /// 2560 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2561 bool &isVarArg){ 2562 unsigned CurValID = 0; 2563 isVarArg = false; 2564 assert(Lex.getKind() == lltok::lparen); 2565 Lex.Lex(); // eat the (. 2566 2567 if (Lex.getKind() == lltok::rparen) { 2568 // empty 2569 } else if (Lex.getKind() == lltok::dotdotdot) { 2570 isVarArg = true; 2571 Lex.Lex(); 2572 } else { 2573 LocTy TypeLoc = Lex.getLoc(); 2574 Type *ArgTy = nullptr; 2575 AttrBuilder Attrs; 2576 std::string Name; 2577 2578 if (ParseType(ArgTy) || 2579 ParseOptionalParamAttrs(Attrs)) return true; 2580 2581 if (ArgTy->isVoidTy()) 2582 return Error(TypeLoc, "argument can not have void type"); 2583 2584 if (Lex.getKind() == lltok::LocalVar) { 2585 Name = Lex.getStrVal(); 2586 Lex.Lex(); 2587 } else if (Lex.getKind() == lltok::LocalVarID) { 2588 if (Lex.getUIntVal() != CurValID) 2589 return Error(TypeLoc, "argument expected to be numbered '%" + 2590 Twine(CurValID) + "'"); 2591 ++CurValID; 2592 Lex.Lex(); 2593 } 2594 2595 if (!FunctionType::isValidArgumentType(ArgTy)) 2596 return Error(TypeLoc, "invalid type for function argument"); 2597 2598 ArgList.emplace_back(TypeLoc, ArgTy, 2599 AttributeSet::get(ArgTy->getContext(), Attrs), 2600 std::move(Name)); 2601 2602 while (EatIfPresent(lltok::comma)) { 2603 // Handle ... at end of arg list. 2604 if (EatIfPresent(lltok::dotdotdot)) { 2605 isVarArg = true; 2606 break; 2607 } 2608 2609 // Otherwise must be an argument type. 2610 TypeLoc = Lex.getLoc(); 2611 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true; 2612 2613 if (ArgTy->isVoidTy()) 2614 return Error(TypeLoc, "argument can not have void type"); 2615 2616 if (Lex.getKind() == lltok::LocalVar) { 2617 Name = Lex.getStrVal(); 2618 Lex.Lex(); 2619 } else { 2620 if (Lex.getKind() == lltok::LocalVarID) { 2621 if (Lex.getUIntVal() != CurValID) 2622 return Error(TypeLoc, "argument expected to be numbered '%" + 2623 Twine(CurValID) + "'"); 2624 Lex.Lex(); 2625 } 2626 ++CurValID; 2627 Name = ""; 2628 } 2629 2630 if (!ArgTy->isFirstClassType()) 2631 return Error(TypeLoc, "invalid type for function argument"); 2632 2633 ArgList.emplace_back(TypeLoc, ArgTy, 2634 AttributeSet::get(ArgTy->getContext(), Attrs), 2635 std::move(Name)); 2636 } 2637 } 2638 2639 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2640 } 2641 2642 /// ParseFunctionType 2643 /// ::= Type ArgumentList OptionalAttrs 2644 bool LLParser::ParseFunctionType(Type *&Result) { 2645 assert(Lex.getKind() == lltok::lparen); 2646 2647 if (!FunctionType::isValidReturnType(Result)) 2648 return TokError("invalid function return type"); 2649 2650 SmallVector<ArgInfo, 8> ArgList; 2651 bool isVarArg; 2652 if (ParseArgumentList(ArgList, isVarArg)) 2653 return true; 2654 2655 // Reject names on the arguments lists. 2656 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2657 if (!ArgList[i].Name.empty()) 2658 return Error(ArgList[i].Loc, "argument name invalid in function type"); 2659 if (ArgList[i].Attrs.hasAttributes()) 2660 return Error(ArgList[i].Loc, 2661 "argument attributes invalid in function type"); 2662 } 2663 2664 SmallVector<Type*, 16> ArgListTy; 2665 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2666 ArgListTy.push_back(ArgList[i].Ty); 2667 2668 Result = FunctionType::get(Result, ArgListTy, isVarArg); 2669 return false; 2670 } 2671 2672 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 2673 /// other structs. 2674 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 2675 SmallVector<Type*, 8> Elts; 2676 if (ParseStructBody(Elts)) return true; 2677 2678 Result = StructType::get(Context, Elts, Packed); 2679 return false; 2680 } 2681 2682 /// ParseStructDefinition - Parse a struct in a 'type' definition. 2683 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 2684 std::pair<Type*, LocTy> &Entry, 2685 Type *&ResultTy) { 2686 // If the type was already defined, diagnose the redefinition. 2687 if (Entry.first && !Entry.second.isValid()) 2688 return Error(TypeLoc, "redefinition of type"); 2689 2690 // If we have opaque, just return without filling in the definition for the 2691 // struct. This counts as a definition as far as the .ll file goes. 2692 if (EatIfPresent(lltok::kw_opaque)) { 2693 // This type is being defined, so clear the location to indicate this. 2694 Entry.second = SMLoc(); 2695 2696 // If this type number has never been uttered, create it. 2697 if (!Entry.first) 2698 Entry.first = StructType::create(Context, Name); 2699 ResultTy = Entry.first; 2700 return false; 2701 } 2702 2703 // If the type starts with '<', then it is either a packed struct or a vector. 2704 bool isPacked = EatIfPresent(lltok::less); 2705 2706 // If we don't have a struct, then we have a random type alias, which we 2707 // accept for compatibility with old files. These types are not allowed to be 2708 // forward referenced and not allowed to be recursive. 2709 if (Lex.getKind() != lltok::lbrace) { 2710 if (Entry.first) 2711 return Error(TypeLoc, "forward references to non-struct type"); 2712 2713 ResultTy = nullptr; 2714 if (isPacked) 2715 return ParseArrayVectorType(ResultTy, true); 2716 return ParseType(ResultTy); 2717 } 2718 2719 // This type is being defined, so clear the location to indicate this. 2720 Entry.second = SMLoc(); 2721 2722 // If this type number has never been uttered, create it. 2723 if (!Entry.first) 2724 Entry.first = StructType::create(Context, Name); 2725 2726 StructType *STy = cast<StructType>(Entry.first); 2727 2728 SmallVector<Type*, 8> Body; 2729 if (ParseStructBody(Body) || 2730 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 2731 return true; 2732 2733 STy->setBody(Body, isPacked); 2734 ResultTy = STy; 2735 return false; 2736 } 2737 2738 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2739 /// StructType 2740 /// ::= '{' '}' 2741 /// ::= '{' Type (',' Type)* '}' 2742 /// ::= '<' '{' '}' '>' 2743 /// ::= '<' '{' Type (',' Type)* '}' '>' 2744 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 2745 assert(Lex.getKind() == lltok::lbrace); 2746 Lex.Lex(); // Consume the '{' 2747 2748 // Handle the empty struct. 2749 if (EatIfPresent(lltok::rbrace)) 2750 return false; 2751 2752 LocTy EltTyLoc = Lex.getLoc(); 2753 Type *Ty = nullptr; 2754 if (ParseType(Ty)) return true; 2755 Body.push_back(Ty); 2756 2757 if (!StructType::isValidElementType(Ty)) 2758 return Error(EltTyLoc, "invalid element type for struct"); 2759 2760 while (EatIfPresent(lltok::comma)) { 2761 EltTyLoc = Lex.getLoc(); 2762 if (ParseType(Ty)) return true; 2763 2764 if (!StructType::isValidElementType(Ty)) 2765 return Error(EltTyLoc, "invalid element type for struct"); 2766 2767 Body.push_back(Ty); 2768 } 2769 2770 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 2771 } 2772 2773 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 2774 /// token has already been consumed. 2775 /// Type 2776 /// ::= '[' APSINTVAL 'x' Types ']' 2777 /// ::= '<' APSINTVAL 'x' Types '>' 2778 /// ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>' 2779 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 2780 bool Scalable = false; 2781 2782 if (isVector && Lex.getKind() == lltok::kw_vscale) { 2783 Lex.Lex(); // consume the 'vscale' 2784 if (ParseToken(lltok::kw_x, "expected 'x' after vscale")) 2785 return true; 2786 2787 Scalable = true; 2788 } 2789 2790 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2791 Lex.getAPSIntVal().getBitWidth() > 64) 2792 return TokError("expected number in address space"); 2793 2794 LocTy SizeLoc = Lex.getLoc(); 2795 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2796 Lex.Lex(); 2797 2798 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 2799 return true; 2800 2801 LocTy TypeLoc = Lex.getLoc(); 2802 Type *EltTy = nullptr; 2803 if (ParseType(EltTy)) return true; 2804 2805 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 2806 "expected end of sequential type")) 2807 return true; 2808 2809 if (isVector) { 2810 if (Size == 0) 2811 return Error(SizeLoc, "zero element vector is illegal"); 2812 if ((unsigned)Size != Size) 2813 return Error(SizeLoc, "size too large for vector"); 2814 if (!VectorType::isValidElementType(EltTy)) 2815 return Error(TypeLoc, "invalid vector element type"); 2816 Result = VectorType::get(EltTy, unsigned(Size), Scalable); 2817 } else { 2818 if (!ArrayType::isValidElementType(EltTy)) 2819 return Error(TypeLoc, "invalid array element type"); 2820 Result = ArrayType::get(EltTy, Size); 2821 } 2822 return false; 2823 } 2824 2825 //===----------------------------------------------------------------------===// 2826 // Function Semantic Analysis. 2827 //===----------------------------------------------------------------------===// 2828 2829 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2830 int functionNumber) 2831 : P(p), F(f), FunctionNumber(functionNumber) { 2832 2833 // Insert unnamed arguments into the NumberedVals list. 2834 for (Argument &A : F.args()) 2835 if (!A.hasName()) 2836 NumberedVals.push_back(&A); 2837 } 2838 2839 LLParser::PerFunctionState::~PerFunctionState() { 2840 // If there were any forward referenced non-basicblock values, delete them. 2841 2842 for (const auto &P : ForwardRefVals) { 2843 if (isa<BasicBlock>(P.second.first)) 2844 continue; 2845 P.second.first->replaceAllUsesWith( 2846 UndefValue::get(P.second.first->getType())); 2847 P.second.first->deleteValue(); 2848 } 2849 2850 for (const auto &P : ForwardRefValIDs) { 2851 if (isa<BasicBlock>(P.second.first)) 2852 continue; 2853 P.second.first->replaceAllUsesWith( 2854 UndefValue::get(P.second.first->getType())); 2855 P.second.first->deleteValue(); 2856 } 2857 } 2858 2859 bool LLParser::PerFunctionState::FinishFunction() { 2860 if (!ForwardRefVals.empty()) 2861 return P.Error(ForwardRefVals.begin()->second.second, 2862 "use of undefined value '%" + ForwardRefVals.begin()->first + 2863 "'"); 2864 if (!ForwardRefValIDs.empty()) 2865 return P.Error(ForwardRefValIDs.begin()->second.second, 2866 "use of undefined value '%" + 2867 Twine(ForwardRefValIDs.begin()->first) + "'"); 2868 return false; 2869 } 2870 2871 /// GetVal - Get a value with the specified name or ID, creating a 2872 /// forward reference record if needed. This can return null if the value 2873 /// exists but does not have the right type. 2874 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty, 2875 LocTy Loc, bool IsCall) { 2876 // Look this name up in the normal function symbol table. 2877 Value *Val = F.getValueSymbolTable()->lookup(Name); 2878 2879 // If this is a forward reference for the value, see if we already created a 2880 // forward ref record. 2881 if (!Val) { 2882 auto I = ForwardRefVals.find(Name); 2883 if (I != ForwardRefVals.end()) 2884 Val = I->second.first; 2885 } 2886 2887 // If we have the value in the symbol table or fwd-ref table, return it. 2888 if (Val) 2889 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall); 2890 2891 // Don't make placeholders with invalid type. 2892 if (!Ty->isFirstClassType()) { 2893 P.Error(Loc, "invalid use of a non-first-class type"); 2894 return nullptr; 2895 } 2896 2897 // Otherwise, create a new forward reference for this value and remember it. 2898 Value *FwdVal; 2899 if (Ty->isLabelTy()) { 2900 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2901 } else { 2902 FwdVal = new Argument(Ty, Name); 2903 } 2904 2905 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2906 return FwdVal; 2907 } 2908 2909 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc, 2910 bool IsCall) { 2911 // Look this name up in the normal function symbol table. 2912 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2913 2914 // If this is a forward reference for the value, see if we already created a 2915 // forward ref record. 2916 if (!Val) { 2917 auto I = ForwardRefValIDs.find(ID); 2918 if (I != ForwardRefValIDs.end()) 2919 Val = I->second.first; 2920 } 2921 2922 // If we have the value in the symbol table or fwd-ref table, return it. 2923 if (Val) 2924 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall); 2925 2926 if (!Ty->isFirstClassType()) { 2927 P.Error(Loc, "invalid use of a non-first-class type"); 2928 return nullptr; 2929 } 2930 2931 // Otherwise, create a new forward reference for this value and remember it. 2932 Value *FwdVal; 2933 if (Ty->isLabelTy()) { 2934 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2935 } else { 2936 FwdVal = new Argument(Ty); 2937 } 2938 2939 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2940 return FwdVal; 2941 } 2942 2943 /// SetInstName - After an instruction is parsed and inserted into its 2944 /// basic block, this installs its name. 2945 bool LLParser::PerFunctionState::SetInstName(int NameID, 2946 const std::string &NameStr, 2947 LocTy NameLoc, Instruction *Inst) { 2948 // If this instruction has void type, it cannot have a name or ID specified. 2949 if (Inst->getType()->isVoidTy()) { 2950 if (NameID != -1 || !NameStr.empty()) 2951 return P.Error(NameLoc, "instructions returning void cannot have a name"); 2952 return false; 2953 } 2954 2955 // If this was a numbered instruction, verify that the instruction is the 2956 // expected value and resolve any forward references. 2957 if (NameStr.empty()) { 2958 // If neither a name nor an ID was specified, just use the next ID. 2959 if (NameID == -1) 2960 NameID = NumberedVals.size(); 2961 2962 if (unsigned(NameID) != NumberedVals.size()) 2963 return P.Error(NameLoc, "instruction expected to be numbered '%" + 2964 Twine(NumberedVals.size()) + "'"); 2965 2966 auto FI = ForwardRefValIDs.find(NameID); 2967 if (FI != ForwardRefValIDs.end()) { 2968 Value *Sentinel = FI->second.first; 2969 if (Sentinel->getType() != Inst->getType()) 2970 return P.Error(NameLoc, "instruction forward referenced with type '" + 2971 getTypeString(FI->second.first->getType()) + "'"); 2972 2973 Sentinel->replaceAllUsesWith(Inst); 2974 Sentinel->deleteValue(); 2975 ForwardRefValIDs.erase(FI); 2976 } 2977 2978 NumberedVals.push_back(Inst); 2979 return false; 2980 } 2981 2982 // Otherwise, the instruction had a name. Resolve forward refs and set it. 2983 auto FI = ForwardRefVals.find(NameStr); 2984 if (FI != ForwardRefVals.end()) { 2985 Value *Sentinel = FI->second.first; 2986 if (Sentinel->getType() != Inst->getType()) 2987 return P.Error(NameLoc, "instruction forward referenced with type '" + 2988 getTypeString(FI->second.first->getType()) + "'"); 2989 2990 Sentinel->replaceAllUsesWith(Inst); 2991 Sentinel->deleteValue(); 2992 ForwardRefVals.erase(FI); 2993 } 2994 2995 // Set the name on the instruction. 2996 Inst->setName(NameStr); 2997 2998 if (Inst->getName() != NameStr) 2999 return P.Error(NameLoc, "multiple definition of local value named '" + 3000 NameStr + "'"); 3001 return false; 3002 } 3003 3004 /// GetBB - Get a basic block with the specified name or ID, creating a 3005 /// forward reference record if needed. 3006 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 3007 LocTy Loc) { 3008 return dyn_cast_or_null<BasicBlock>( 3009 GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 3010 } 3011 3012 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 3013 return dyn_cast_or_null<BasicBlock>( 3014 GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 3015 } 3016 3017 /// DefineBB - Define the specified basic block, which is either named or 3018 /// unnamed. If there is an error, this returns null otherwise it returns 3019 /// the block being defined. 3020 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 3021 int NameID, LocTy Loc) { 3022 BasicBlock *BB; 3023 if (Name.empty()) { 3024 if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) { 3025 P.Error(Loc, "label expected to be numbered '" + 3026 Twine(NumberedVals.size()) + "'"); 3027 return nullptr; 3028 } 3029 BB = GetBB(NumberedVals.size(), Loc); 3030 if (!BB) { 3031 P.Error(Loc, "unable to create block numbered '" + 3032 Twine(NumberedVals.size()) + "'"); 3033 return nullptr; 3034 } 3035 } else { 3036 BB = GetBB(Name, Loc); 3037 if (!BB) { 3038 P.Error(Loc, "unable to create block named '" + Name + "'"); 3039 return nullptr; 3040 } 3041 } 3042 3043 // Move the block to the end of the function. Forward ref'd blocks are 3044 // inserted wherever they happen to be referenced. 3045 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 3046 3047 // Remove the block from forward ref sets. 3048 if (Name.empty()) { 3049 ForwardRefValIDs.erase(NumberedVals.size()); 3050 NumberedVals.push_back(BB); 3051 } else { 3052 // BB forward references are already in the function symbol table. 3053 ForwardRefVals.erase(Name); 3054 } 3055 3056 return BB; 3057 } 3058 3059 //===----------------------------------------------------------------------===// 3060 // Constants. 3061 //===----------------------------------------------------------------------===// 3062 3063 /// ParseValID - Parse an abstract value that doesn't necessarily have a 3064 /// type implied. For example, if we parse "4" we don't know what integer type 3065 /// it has. The value will later be combined with its type and checked for 3066 /// sanity. PFS is used to convert function-local operands of metadata (since 3067 /// metadata operands are not just parsed here but also converted to values). 3068 /// PFS can be null when we are not parsing metadata values inside a function. 3069 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 3070 ID.Loc = Lex.getLoc(); 3071 switch (Lex.getKind()) { 3072 default: return TokError("expected value token"); 3073 case lltok::GlobalID: // @42 3074 ID.UIntVal = Lex.getUIntVal(); 3075 ID.Kind = ValID::t_GlobalID; 3076 break; 3077 case lltok::GlobalVar: // @foo 3078 ID.StrVal = Lex.getStrVal(); 3079 ID.Kind = ValID::t_GlobalName; 3080 break; 3081 case lltok::LocalVarID: // %42 3082 ID.UIntVal = Lex.getUIntVal(); 3083 ID.Kind = ValID::t_LocalID; 3084 break; 3085 case lltok::LocalVar: // %foo 3086 ID.StrVal = Lex.getStrVal(); 3087 ID.Kind = ValID::t_LocalName; 3088 break; 3089 case lltok::APSInt: 3090 ID.APSIntVal = Lex.getAPSIntVal(); 3091 ID.Kind = ValID::t_APSInt; 3092 break; 3093 case lltok::APFloat: 3094 ID.APFloatVal = Lex.getAPFloatVal(); 3095 ID.Kind = ValID::t_APFloat; 3096 break; 3097 case lltok::kw_true: 3098 ID.ConstantVal = ConstantInt::getTrue(Context); 3099 ID.Kind = ValID::t_Constant; 3100 break; 3101 case lltok::kw_false: 3102 ID.ConstantVal = ConstantInt::getFalse(Context); 3103 ID.Kind = ValID::t_Constant; 3104 break; 3105 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 3106 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 3107 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 3108 case lltok::kw_none: ID.Kind = ValID::t_None; break; 3109 3110 case lltok::lbrace: { 3111 // ValID ::= '{' ConstVector '}' 3112 Lex.Lex(); 3113 SmallVector<Constant*, 16> Elts; 3114 if (ParseGlobalValueVector(Elts) || 3115 ParseToken(lltok::rbrace, "expected end of struct constant")) 3116 return true; 3117 3118 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3119 ID.UIntVal = Elts.size(); 3120 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3121 Elts.size() * sizeof(Elts[0])); 3122 ID.Kind = ValID::t_ConstantStruct; 3123 return false; 3124 } 3125 case lltok::less: { 3126 // ValID ::= '<' ConstVector '>' --> Vector. 3127 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 3128 Lex.Lex(); 3129 bool isPackedStruct = EatIfPresent(lltok::lbrace); 3130 3131 SmallVector<Constant*, 16> Elts; 3132 LocTy FirstEltLoc = Lex.getLoc(); 3133 if (ParseGlobalValueVector(Elts) || 3134 (isPackedStruct && 3135 ParseToken(lltok::rbrace, "expected end of packed struct")) || 3136 ParseToken(lltok::greater, "expected end of constant")) 3137 return true; 3138 3139 if (isPackedStruct) { 3140 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3141 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3142 Elts.size() * sizeof(Elts[0])); 3143 ID.UIntVal = Elts.size(); 3144 ID.Kind = ValID::t_PackedConstantStruct; 3145 return false; 3146 } 3147 3148 if (Elts.empty()) 3149 return Error(ID.Loc, "constant vector must not be empty"); 3150 3151 if (!Elts[0]->getType()->isIntegerTy() && 3152 !Elts[0]->getType()->isFloatingPointTy() && 3153 !Elts[0]->getType()->isPointerTy()) 3154 return Error(FirstEltLoc, 3155 "vector elements must have integer, pointer or floating point type"); 3156 3157 // Verify that all the vector elements have the same type. 3158 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 3159 if (Elts[i]->getType() != Elts[0]->getType()) 3160 return Error(FirstEltLoc, 3161 "vector element #" + Twine(i) + 3162 " is not of type '" + getTypeString(Elts[0]->getType())); 3163 3164 ID.ConstantVal = ConstantVector::get(Elts); 3165 ID.Kind = ValID::t_Constant; 3166 return false; 3167 } 3168 case lltok::lsquare: { // Array Constant 3169 Lex.Lex(); 3170 SmallVector<Constant*, 16> Elts; 3171 LocTy FirstEltLoc = Lex.getLoc(); 3172 if (ParseGlobalValueVector(Elts) || 3173 ParseToken(lltok::rsquare, "expected end of array constant")) 3174 return true; 3175 3176 // Handle empty element. 3177 if (Elts.empty()) { 3178 // Use undef instead of an array because it's inconvenient to determine 3179 // the element type at this point, there being no elements to examine. 3180 ID.Kind = ValID::t_EmptyArray; 3181 return false; 3182 } 3183 3184 if (!Elts[0]->getType()->isFirstClassType()) 3185 return Error(FirstEltLoc, "invalid array element type: " + 3186 getTypeString(Elts[0]->getType())); 3187 3188 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 3189 3190 // Verify all elements are correct type! 3191 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 3192 if (Elts[i]->getType() != Elts[0]->getType()) 3193 return Error(FirstEltLoc, 3194 "array element #" + Twine(i) + 3195 " is not of type '" + getTypeString(Elts[0]->getType())); 3196 } 3197 3198 ID.ConstantVal = ConstantArray::get(ATy, Elts); 3199 ID.Kind = ValID::t_Constant; 3200 return false; 3201 } 3202 case lltok::kw_c: // c "foo" 3203 Lex.Lex(); 3204 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 3205 false); 3206 if (ParseToken(lltok::StringConstant, "expected string")) return true; 3207 ID.Kind = ValID::t_Constant; 3208 return false; 3209 3210 case lltok::kw_asm: { 3211 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 3212 // STRINGCONSTANT 3213 bool HasSideEffect, AlignStack, AsmDialect; 3214 Lex.Lex(); 3215 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 3216 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 3217 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 3218 ParseStringConstant(ID.StrVal) || 3219 ParseToken(lltok::comma, "expected comma in inline asm expression") || 3220 ParseToken(lltok::StringConstant, "expected constraint string")) 3221 return true; 3222 ID.StrVal2 = Lex.getStrVal(); 3223 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 3224 (unsigned(AsmDialect)<<2); 3225 ID.Kind = ValID::t_InlineAsm; 3226 return false; 3227 } 3228 3229 case lltok::kw_blockaddress: { 3230 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 3231 Lex.Lex(); 3232 3233 ValID Fn, Label; 3234 3235 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 3236 ParseValID(Fn) || 3237 ParseToken(lltok::comma, "expected comma in block address expression")|| 3238 ParseValID(Label) || 3239 ParseToken(lltok::rparen, "expected ')' in block address expression")) 3240 return true; 3241 3242 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3243 return Error(Fn.Loc, "expected function name in blockaddress"); 3244 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 3245 return Error(Label.Loc, "expected basic block name in blockaddress"); 3246 3247 // Try to find the function (but skip it if it's forward-referenced). 3248 GlobalValue *GV = nullptr; 3249 if (Fn.Kind == ValID::t_GlobalID) { 3250 if (Fn.UIntVal < NumberedVals.size()) 3251 GV = NumberedVals[Fn.UIntVal]; 3252 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3253 GV = M->getNamedValue(Fn.StrVal); 3254 } 3255 Function *F = nullptr; 3256 if (GV) { 3257 // Confirm that it's actually a function with a definition. 3258 if (!isa<Function>(GV)) 3259 return Error(Fn.Loc, "expected function name in blockaddress"); 3260 F = cast<Function>(GV); 3261 if (F->isDeclaration()) 3262 return Error(Fn.Loc, "cannot take blockaddress inside a declaration"); 3263 } 3264 3265 if (!F) { 3266 // Make a global variable as a placeholder for this reference. 3267 GlobalValue *&FwdRef = 3268 ForwardRefBlockAddresses.insert(std::make_pair( 3269 std::move(Fn), 3270 std::map<ValID, GlobalValue *>())) 3271 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 3272 .first->second; 3273 if (!FwdRef) 3274 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 3275 GlobalValue::InternalLinkage, nullptr, ""); 3276 ID.ConstantVal = FwdRef; 3277 ID.Kind = ValID::t_Constant; 3278 return false; 3279 } 3280 3281 // We found the function; now find the basic block. Don't use PFS, since we 3282 // might be inside a constant expression. 3283 BasicBlock *BB; 3284 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 3285 if (Label.Kind == ValID::t_LocalID) 3286 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc); 3287 else 3288 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc); 3289 if (!BB) 3290 return Error(Label.Loc, "referenced value is not a basic block"); 3291 } else { 3292 if (Label.Kind == ValID::t_LocalID) 3293 return Error(Label.Loc, "cannot take address of numeric label after " 3294 "the function is defined"); 3295 BB = dyn_cast_or_null<BasicBlock>( 3296 F->getValueSymbolTable()->lookup(Label.StrVal)); 3297 if (!BB) 3298 return Error(Label.Loc, "referenced value is not a basic block"); 3299 } 3300 3301 ID.ConstantVal = BlockAddress::get(F, BB); 3302 ID.Kind = ValID::t_Constant; 3303 return false; 3304 } 3305 3306 case lltok::kw_trunc: 3307 case lltok::kw_zext: 3308 case lltok::kw_sext: 3309 case lltok::kw_fptrunc: 3310 case lltok::kw_fpext: 3311 case lltok::kw_bitcast: 3312 case lltok::kw_addrspacecast: 3313 case lltok::kw_uitofp: 3314 case lltok::kw_sitofp: 3315 case lltok::kw_fptoui: 3316 case lltok::kw_fptosi: 3317 case lltok::kw_inttoptr: 3318 case lltok::kw_ptrtoint: { 3319 unsigned Opc = Lex.getUIntVal(); 3320 Type *DestTy = nullptr; 3321 Constant *SrcVal; 3322 Lex.Lex(); 3323 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3324 ParseGlobalTypeAndValue(SrcVal) || 3325 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3326 ParseType(DestTy) || 3327 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3328 return true; 3329 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3330 return Error(ID.Loc, "invalid cast opcode for cast from '" + 3331 getTypeString(SrcVal->getType()) + "' to '" + 3332 getTypeString(DestTy) + "'"); 3333 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3334 SrcVal, DestTy); 3335 ID.Kind = ValID::t_Constant; 3336 return false; 3337 } 3338 case lltok::kw_extractvalue: { 3339 Lex.Lex(); 3340 Constant *Val; 3341 SmallVector<unsigned, 4> Indices; 3342 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 3343 ParseGlobalTypeAndValue(Val) || 3344 ParseIndexList(Indices) || 3345 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 3346 return true; 3347 3348 if (!Val->getType()->isAggregateType()) 3349 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 3350 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 3351 return Error(ID.Loc, "invalid indices for extractvalue"); 3352 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 3353 ID.Kind = ValID::t_Constant; 3354 return false; 3355 } 3356 case lltok::kw_insertvalue: { 3357 Lex.Lex(); 3358 Constant *Val0, *Val1; 3359 SmallVector<unsigned, 4> Indices; 3360 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 3361 ParseGlobalTypeAndValue(Val0) || 3362 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 3363 ParseGlobalTypeAndValue(Val1) || 3364 ParseIndexList(Indices) || 3365 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 3366 return true; 3367 if (!Val0->getType()->isAggregateType()) 3368 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 3369 Type *IndexedType = 3370 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3371 if (!IndexedType) 3372 return Error(ID.Loc, "invalid indices for insertvalue"); 3373 if (IndexedType != Val1->getType()) 3374 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3375 getTypeString(Val1->getType()) + 3376 "' instead of '" + getTypeString(IndexedType) + 3377 "'"); 3378 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3379 ID.Kind = ValID::t_Constant; 3380 return false; 3381 } 3382 case lltok::kw_icmp: 3383 case lltok::kw_fcmp: { 3384 unsigned PredVal, Opc = Lex.getUIntVal(); 3385 Constant *Val0, *Val1; 3386 Lex.Lex(); 3387 if (ParseCmpPredicate(PredVal, Opc) || 3388 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3389 ParseGlobalTypeAndValue(Val0) || 3390 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 3391 ParseGlobalTypeAndValue(Val1) || 3392 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3393 return true; 3394 3395 if (Val0->getType() != Val1->getType()) 3396 return Error(ID.Loc, "compare operands must have the same type"); 3397 3398 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3399 3400 if (Opc == Instruction::FCmp) { 3401 if (!Val0->getType()->isFPOrFPVectorTy()) 3402 return Error(ID.Loc, "fcmp requires floating point operands"); 3403 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3404 } else { 3405 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3406 if (!Val0->getType()->isIntOrIntVectorTy() && 3407 !Val0->getType()->isPtrOrPtrVectorTy()) 3408 return Error(ID.Loc, "icmp requires pointer or integer operands"); 3409 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3410 } 3411 ID.Kind = ValID::t_Constant; 3412 return false; 3413 } 3414 3415 // Unary Operators. 3416 case lltok::kw_fneg: { 3417 unsigned Opc = Lex.getUIntVal(); 3418 Constant *Val; 3419 Lex.Lex(); 3420 if (ParseToken(lltok::lparen, "expected '(' in unary constantexpr") || 3421 ParseGlobalTypeAndValue(Val) || 3422 ParseToken(lltok::rparen, "expected ')' in unary constantexpr")) 3423 return true; 3424 3425 // Check that the type is valid for the operator. 3426 switch (Opc) { 3427 case Instruction::FNeg: 3428 if (!Val->getType()->isFPOrFPVectorTy()) 3429 return Error(ID.Loc, "constexpr requires fp operands"); 3430 break; 3431 default: llvm_unreachable("Unknown unary operator!"); 3432 } 3433 unsigned Flags = 0; 3434 Constant *C = ConstantExpr::get(Opc, Val, Flags); 3435 ID.ConstantVal = C; 3436 ID.Kind = ValID::t_Constant; 3437 return false; 3438 } 3439 // Binary Operators. 3440 case lltok::kw_add: 3441 case lltok::kw_fadd: 3442 case lltok::kw_sub: 3443 case lltok::kw_fsub: 3444 case lltok::kw_mul: 3445 case lltok::kw_fmul: 3446 case lltok::kw_udiv: 3447 case lltok::kw_sdiv: 3448 case lltok::kw_fdiv: 3449 case lltok::kw_urem: 3450 case lltok::kw_srem: 3451 case lltok::kw_frem: 3452 case lltok::kw_shl: 3453 case lltok::kw_lshr: 3454 case lltok::kw_ashr: { 3455 bool NUW = false; 3456 bool NSW = false; 3457 bool Exact = false; 3458 unsigned Opc = Lex.getUIntVal(); 3459 Constant *Val0, *Val1; 3460 Lex.Lex(); 3461 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3462 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3463 if (EatIfPresent(lltok::kw_nuw)) 3464 NUW = true; 3465 if (EatIfPresent(lltok::kw_nsw)) { 3466 NSW = true; 3467 if (EatIfPresent(lltok::kw_nuw)) 3468 NUW = true; 3469 } 3470 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3471 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3472 if (EatIfPresent(lltok::kw_exact)) 3473 Exact = true; 3474 } 3475 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3476 ParseGlobalTypeAndValue(Val0) || 3477 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 3478 ParseGlobalTypeAndValue(Val1) || 3479 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3480 return true; 3481 if (Val0->getType() != Val1->getType()) 3482 return Error(ID.Loc, "operands of constexpr must have same type"); 3483 // Check that the type is valid for the operator. 3484 switch (Opc) { 3485 case Instruction::Add: 3486 case Instruction::Sub: 3487 case Instruction::Mul: 3488 case Instruction::UDiv: 3489 case Instruction::SDiv: 3490 case Instruction::URem: 3491 case Instruction::SRem: 3492 case Instruction::Shl: 3493 case Instruction::AShr: 3494 case Instruction::LShr: 3495 if (!Val0->getType()->isIntOrIntVectorTy()) 3496 return Error(ID.Loc, "constexpr requires integer operands"); 3497 break; 3498 case Instruction::FAdd: 3499 case Instruction::FSub: 3500 case Instruction::FMul: 3501 case Instruction::FDiv: 3502 case Instruction::FRem: 3503 if (!Val0->getType()->isFPOrFPVectorTy()) 3504 return Error(ID.Loc, "constexpr requires fp operands"); 3505 break; 3506 default: llvm_unreachable("Unknown binary operator!"); 3507 } 3508 unsigned Flags = 0; 3509 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3510 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3511 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3512 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3513 ID.ConstantVal = C; 3514 ID.Kind = ValID::t_Constant; 3515 return false; 3516 } 3517 3518 // Logical Operations 3519 case lltok::kw_and: 3520 case lltok::kw_or: 3521 case lltok::kw_xor: { 3522 unsigned Opc = Lex.getUIntVal(); 3523 Constant *Val0, *Val1; 3524 Lex.Lex(); 3525 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3526 ParseGlobalTypeAndValue(Val0) || 3527 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 3528 ParseGlobalTypeAndValue(Val1) || 3529 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3530 return true; 3531 if (Val0->getType() != Val1->getType()) 3532 return Error(ID.Loc, "operands of constexpr must have same type"); 3533 if (!Val0->getType()->isIntOrIntVectorTy()) 3534 return Error(ID.Loc, 3535 "constexpr requires integer or integer vector operands"); 3536 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3537 ID.Kind = ValID::t_Constant; 3538 return false; 3539 } 3540 3541 case lltok::kw_getelementptr: 3542 case lltok::kw_shufflevector: 3543 case lltok::kw_insertelement: 3544 case lltok::kw_extractelement: 3545 case lltok::kw_select: { 3546 unsigned Opc = Lex.getUIntVal(); 3547 SmallVector<Constant*, 16> Elts; 3548 bool InBounds = false; 3549 Type *Ty; 3550 Lex.Lex(); 3551 3552 if (Opc == Instruction::GetElementPtr) 3553 InBounds = EatIfPresent(lltok::kw_inbounds); 3554 3555 if (ParseToken(lltok::lparen, "expected '(' in constantexpr")) 3556 return true; 3557 3558 LocTy ExplicitTypeLoc = Lex.getLoc(); 3559 if (Opc == Instruction::GetElementPtr) { 3560 if (ParseType(Ty) || 3561 ParseToken(lltok::comma, "expected comma after getelementptr's type")) 3562 return true; 3563 } 3564 3565 Optional<unsigned> InRangeOp; 3566 if (ParseGlobalValueVector( 3567 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3568 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 3569 return true; 3570 3571 if (Opc == Instruction::GetElementPtr) { 3572 if (Elts.size() == 0 || 3573 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 3574 return Error(ID.Loc, "base of getelementptr must be a pointer"); 3575 3576 Type *BaseType = Elts[0]->getType(); 3577 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3578 if (Ty != BasePointerType->getElementType()) 3579 return Error( 3580 ExplicitTypeLoc, 3581 "explicit pointee type doesn't match operand's pointee type"); 3582 3583 unsigned GEPWidth = 3584 BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0; 3585 3586 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3587 for (Constant *Val : Indices) { 3588 Type *ValTy = Val->getType(); 3589 if (!ValTy->isIntOrIntVectorTy()) 3590 return Error(ID.Loc, "getelementptr index must be an integer"); 3591 if (ValTy->isVectorTy()) { 3592 unsigned ValNumEl = ValTy->getVectorNumElements(); 3593 if (GEPWidth && (ValNumEl != GEPWidth)) 3594 return Error( 3595 ID.Loc, 3596 "getelementptr vector index has a wrong number of elements"); 3597 // GEPWidth may have been unknown because the base is a scalar, 3598 // but it is known now. 3599 GEPWidth = ValNumEl; 3600 } 3601 } 3602 3603 SmallPtrSet<Type*, 4> Visited; 3604 if (!Indices.empty() && !Ty->isSized(&Visited)) 3605 return Error(ID.Loc, "base element of getelementptr must be sized"); 3606 3607 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3608 return Error(ID.Loc, "invalid getelementptr indices"); 3609 3610 if (InRangeOp) { 3611 if (*InRangeOp == 0) 3612 return Error(ID.Loc, 3613 "inrange keyword may not appear on pointer operand"); 3614 --*InRangeOp; 3615 } 3616 3617 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3618 InBounds, InRangeOp); 3619 } else if (Opc == Instruction::Select) { 3620 if (Elts.size() != 3) 3621 return Error(ID.Loc, "expected three operands to select"); 3622 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3623 Elts[2])) 3624 return Error(ID.Loc, Reason); 3625 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3626 } else if (Opc == Instruction::ShuffleVector) { 3627 if (Elts.size() != 3) 3628 return Error(ID.Loc, "expected three operands to shufflevector"); 3629 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3630 return Error(ID.Loc, "invalid operands to shufflevector"); 3631 ID.ConstantVal = 3632 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 3633 } else if (Opc == Instruction::ExtractElement) { 3634 if (Elts.size() != 2) 3635 return Error(ID.Loc, "expected two operands to extractelement"); 3636 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3637 return Error(ID.Loc, "invalid extractelement operands"); 3638 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3639 } else { 3640 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3641 if (Elts.size() != 3) 3642 return Error(ID.Loc, "expected three operands to insertelement"); 3643 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3644 return Error(ID.Loc, "invalid insertelement operands"); 3645 ID.ConstantVal = 3646 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3647 } 3648 3649 ID.Kind = ValID::t_Constant; 3650 return false; 3651 } 3652 } 3653 3654 Lex.Lex(); 3655 return false; 3656 } 3657 3658 /// ParseGlobalValue - Parse a global value with the specified type. 3659 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 3660 C = nullptr; 3661 ValID ID; 3662 Value *V = nullptr; 3663 bool Parsed = ParseValID(ID) || 3664 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false); 3665 if (V && !(C = dyn_cast<Constant>(V))) 3666 return Error(ID.Loc, "global values must be constants"); 3667 return Parsed; 3668 } 3669 3670 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 3671 Type *Ty = nullptr; 3672 return ParseType(Ty) || 3673 ParseGlobalValue(Ty, V); 3674 } 3675 3676 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3677 C = nullptr; 3678 3679 LocTy KwLoc = Lex.getLoc(); 3680 if (!EatIfPresent(lltok::kw_comdat)) 3681 return false; 3682 3683 if (EatIfPresent(lltok::lparen)) { 3684 if (Lex.getKind() != lltok::ComdatVar) 3685 return TokError("expected comdat variable"); 3686 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3687 Lex.Lex(); 3688 if (ParseToken(lltok::rparen, "expected ')' after comdat var")) 3689 return true; 3690 } else { 3691 if (GlobalName.empty()) 3692 return TokError("comdat cannot be unnamed"); 3693 C = getComdat(GlobalName, KwLoc); 3694 } 3695 3696 return false; 3697 } 3698 3699 /// ParseGlobalValueVector 3700 /// ::= /*empty*/ 3701 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 3702 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 3703 Optional<unsigned> *InRangeOp) { 3704 // Empty list. 3705 if (Lex.getKind() == lltok::rbrace || 3706 Lex.getKind() == lltok::rsquare || 3707 Lex.getKind() == lltok::greater || 3708 Lex.getKind() == lltok::rparen) 3709 return false; 3710 3711 do { 3712 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 3713 *InRangeOp = Elts.size(); 3714 3715 Constant *C; 3716 if (ParseGlobalTypeAndValue(C)) return true; 3717 Elts.push_back(C); 3718 } while (EatIfPresent(lltok::comma)); 3719 3720 return false; 3721 } 3722 3723 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) { 3724 SmallVector<Metadata *, 16> Elts; 3725 if (ParseMDNodeVector(Elts)) 3726 return true; 3727 3728 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3729 return false; 3730 } 3731 3732 /// MDNode: 3733 /// ::= !{ ... } 3734 /// ::= !7 3735 /// ::= !DILocation(...) 3736 bool LLParser::ParseMDNode(MDNode *&N) { 3737 if (Lex.getKind() == lltok::MetadataVar) 3738 return ParseSpecializedMDNode(N); 3739 3740 return ParseToken(lltok::exclaim, "expected '!' here") || 3741 ParseMDNodeTail(N); 3742 } 3743 3744 bool LLParser::ParseMDNodeTail(MDNode *&N) { 3745 // !{ ... } 3746 if (Lex.getKind() == lltok::lbrace) 3747 return ParseMDTuple(N); 3748 3749 // !42 3750 return ParseMDNodeID(N); 3751 } 3752 3753 namespace { 3754 3755 /// Structure to represent an optional metadata field. 3756 template <class FieldTy> struct MDFieldImpl { 3757 typedef MDFieldImpl ImplTy; 3758 FieldTy Val; 3759 bool Seen; 3760 3761 void assign(FieldTy Val) { 3762 Seen = true; 3763 this->Val = std::move(Val); 3764 } 3765 3766 explicit MDFieldImpl(FieldTy Default) 3767 : Val(std::move(Default)), Seen(false) {} 3768 }; 3769 3770 /// Structure to represent an optional metadata field that 3771 /// can be of either type (A or B) and encapsulates the 3772 /// MD<typeofA>Field and MD<typeofB>Field structs, so not 3773 /// to reimplement the specifics for representing each Field. 3774 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl { 3775 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy; 3776 FieldTypeA A; 3777 FieldTypeB B; 3778 bool Seen; 3779 3780 enum { 3781 IsInvalid = 0, 3782 IsTypeA = 1, 3783 IsTypeB = 2 3784 } WhatIs; 3785 3786 void assign(FieldTypeA A) { 3787 Seen = true; 3788 this->A = std::move(A); 3789 WhatIs = IsTypeA; 3790 } 3791 3792 void assign(FieldTypeB B) { 3793 Seen = true; 3794 this->B = std::move(B); 3795 WhatIs = IsTypeB; 3796 } 3797 3798 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) 3799 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), 3800 WhatIs(IsInvalid) {} 3801 }; 3802 3803 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3804 uint64_t Max; 3805 3806 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3807 : ImplTy(Default), Max(Max) {} 3808 }; 3809 3810 struct LineField : public MDUnsignedField { 3811 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3812 }; 3813 3814 struct ColumnField : public MDUnsignedField { 3815 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3816 }; 3817 3818 struct DwarfTagField : public MDUnsignedField { 3819 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3820 DwarfTagField(dwarf::Tag DefaultTag) 3821 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3822 }; 3823 3824 struct DwarfMacinfoTypeField : public MDUnsignedField { 3825 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 3826 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 3827 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 3828 }; 3829 3830 struct DwarfAttEncodingField : public MDUnsignedField { 3831 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3832 }; 3833 3834 struct DwarfVirtualityField : public MDUnsignedField { 3835 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3836 }; 3837 3838 struct DwarfLangField : public MDUnsignedField { 3839 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3840 }; 3841 3842 struct DwarfCCField : public MDUnsignedField { 3843 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 3844 }; 3845 3846 struct EmissionKindField : public MDUnsignedField { 3847 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 3848 }; 3849 3850 struct NameTableKindField : public MDUnsignedField { 3851 NameTableKindField() 3852 : MDUnsignedField( 3853 0, (unsigned) 3854 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {} 3855 }; 3856 3857 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 3858 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 3859 }; 3860 3861 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> { 3862 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {} 3863 }; 3864 3865 struct MDSignedField : public MDFieldImpl<int64_t> { 3866 int64_t Min; 3867 int64_t Max; 3868 3869 MDSignedField(int64_t Default = 0) 3870 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3871 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3872 : ImplTy(Default), Min(Min), Max(Max) {} 3873 }; 3874 3875 struct MDBoolField : public MDFieldImpl<bool> { 3876 MDBoolField(bool Default = false) : ImplTy(Default) {} 3877 }; 3878 3879 struct MDField : public MDFieldImpl<Metadata *> { 3880 bool AllowNull; 3881 3882 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3883 }; 3884 3885 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 3886 MDConstant() : ImplTy(nullptr) {} 3887 }; 3888 3889 struct MDStringField : public MDFieldImpl<MDString *> { 3890 bool AllowEmpty; 3891 MDStringField(bool AllowEmpty = true) 3892 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3893 }; 3894 3895 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3896 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3897 }; 3898 3899 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 3900 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 3901 }; 3902 3903 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> { 3904 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) 3905 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} 3906 3907 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, 3908 bool AllowNull = true) 3909 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} 3910 3911 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3912 bool isMDField() const { return WhatIs == IsTypeB; } 3913 int64_t getMDSignedValue() const { 3914 assert(isMDSignedField() && "Wrong field type"); 3915 return A.Val; 3916 } 3917 Metadata *getMDFieldValue() const { 3918 assert(isMDField() && "Wrong field type"); 3919 return B.Val; 3920 } 3921 }; 3922 3923 struct MDSignedOrUnsignedField 3924 : MDEitherFieldImpl<MDSignedField, MDUnsignedField> { 3925 MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {} 3926 3927 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3928 bool isMDUnsignedField() const { return WhatIs == IsTypeB; } 3929 int64_t getMDSignedValue() const { 3930 assert(isMDSignedField() && "Wrong field type"); 3931 return A.Val; 3932 } 3933 uint64_t getMDUnsignedValue() const { 3934 assert(isMDUnsignedField() && "Wrong field type"); 3935 return B.Val; 3936 } 3937 }; 3938 3939 } // end anonymous namespace 3940 3941 namespace llvm { 3942 3943 template <> 3944 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3945 MDUnsignedField &Result) { 3946 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3947 return TokError("expected unsigned integer"); 3948 3949 auto &U = Lex.getAPSIntVal(); 3950 if (U.ugt(Result.Max)) 3951 return TokError("value for '" + Name + "' too large, limit is " + 3952 Twine(Result.Max)); 3953 Result.assign(U.getZExtValue()); 3954 assert(Result.Val <= Result.Max && "Expected value in range"); 3955 Lex.Lex(); 3956 return false; 3957 } 3958 3959 template <> 3960 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) { 3961 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3962 } 3963 template <> 3964 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 3965 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3966 } 3967 3968 template <> 3969 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 3970 if (Lex.getKind() == lltok::APSInt) 3971 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3972 3973 if (Lex.getKind() != lltok::DwarfTag) 3974 return TokError("expected DWARF tag"); 3975 3976 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 3977 if (Tag == dwarf::DW_TAG_invalid) 3978 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 3979 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 3980 3981 Result.assign(Tag); 3982 Lex.Lex(); 3983 return false; 3984 } 3985 3986 template <> 3987 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3988 DwarfMacinfoTypeField &Result) { 3989 if (Lex.getKind() == lltok::APSInt) 3990 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3991 3992 if (Lex.getKind() != lltok::DwarfMacinfo) 3993 return TokError("expected DWARF macinfo type"); 3994 3995 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 3996 if (Macinfo == dwarf::DW_MACINFO_invalid) 3997 return TokError( 3998 "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'"); 3999 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 4000 4001 Result.assign(Macinfo); 4002 Lex.Lex(); 4003 return false; 4004 } 4005 4006 template <> 4007 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4008 DwarfVirtualityField &Result) { 4009 if (Lex.getKind() == lltok::APSInt) 4010 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4011 4012 if (Lex.getKind() != lltok::DwarfVirtuality) 4013 return TokError("expected DWARF virtuality code"); 4014 4015 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 4016 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 4017 return TokError("invalid DWARF virtuality code" + Twine(" '") + 4018 Lex.getStrVal() + "'"); 4019 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 4020 Result.assign(Virtuality); 4021 Lex.Lex(); 4022 return false; 4023 } 4024 4025 template <> 4026 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 4027 if (Lex.getKind() == lltok::APSInt) 4028 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4029 4030 if (Lex.getKind() != lltok::DwarfLang) 4031 return TokError("expected DWARF language"); 4032 4033 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 4034 if (!Lang) 4035 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 4036 "'"); 4037 assert(Lang <= Result.Max && "Expected valid DWARF language"); 4038 Result.assign(Lang); 4039 Lex.Lex(); 4040 return false; 4041 } 4042 4043 template <> 4044 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 4045 if (Lex.getKind() == lltok::APSInt) 4046 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4047 4048 if (Lex.getKind() != lltok::DwarfCC) 4049 return TokError("expected DWARF calling convention"); 4050 4051 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 4052 if (!CC) 4053 return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() + 4054 "'"); 4055 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 4056 Result.assign(CC); 4057 Lex.Lex(); 4058 return false; 4059 } 4060 4061 template <> 4062 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) { 4063 if (Lex.getKind() == lltok::APSInt) 4064 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4065 4066 if (Lex.getKind() != lltok::EmissionKind) 4067 return TokError("expected emission kind"); 4068 4069 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 4070 if (!Kind) 4071 return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 4072 "'"); 4073 assert(*Kind <= Result.Max && "Expected valid emission kind"); 4074 Result.assign(*Kind); 4075 Lex.Lex(); 4076 return false; 4077 } 4078 4079 template <> 4080 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4081 NameTableKindField &Result) { 4082 if (Lex.getKind() == lltok::APSInt) 4083 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4084 4085 if (Lex.getKind() != lltok::NameTableKind) 4086 return TokError("expected nameTable kind"); 4087 4088 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal()); 4089 if (!Kind) 4090 return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() + 4091 "'"); 4092 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind"); 4093 Result.assign((unsigned)*Kind); 4094 Lex.Lex(); 4095 return false; 4096 } 4097 4098 template <> 4099 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4100 DwarfAttEncodingField &Result) { 4101 if (Lex.getKind() == lltok::APSInt) 4102 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4103 4104 if (Lex.getKind() != lltok::DwarfAttEncoding) 4105 return TokError("expected DWARF type attribute encoding"); 4106 4107 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 4108 if (!Encoding) 4109 return TokError("invalid DWARF type attribute encoding" + Twine(" '") + 4110 Lex.getStrVal() + "'"); 4111 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 4112 Result.assign(Encoding); 4113 Lex.Lex(); 4114 return false; 4115 } 4116 4117 /// DIFlagField 4118 /// ::= uint32 4119 /// ::= DIFlagVector 4120 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 4121 template <> 4122 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 4123 4124 // Parser for a single flag. 4125 auto parseFlag = [&](DINode::DIFlags &Val) { 4126 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4127 uint32_t TempVal = static_cast<uint32_t>(Val); 4128 bool Res = ParseUInt32(TempVal); 4129 Val = static_cast<DINode::DIFlags>(TempVal); 4130 return Res; 4131 } 4132 4133 if (Lex.getKind() != lltok::DIFlag) 4134 return TokError("expected debug info flag"); 4135 4136 Val = DINode::getFlag(Lex.getStrVal()); 4137 if (!Val) 4138 return TokError(Twine("invalid debug info flag flag '") + 4139 Lex.getStrVal() + "'"); 4140 Lex.Lex(); 4141 return false; 4142 }; 4143 4144 // Parse the flags and combine them together. 4145 DINode::DIFlags Combined = DINode::FlagZero; 4146 do { 4147 DINode::DIFlags Val; 4148 if (parseFlag(Val)) 4149 return true; 4150 Combined |= Val; 4151 } while (EatIfPresent(lltok::bar)); 4152 4153 Result.assign(Combined); 4154 return false; 4155 } 4156 4157 /// DISPFlagField 4158 /// ::= uint32 4159 /// ::= DISPFlagVector 4160 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32 4161 template <> 4162 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) { 4163 4164 // Parser for a single flag. 4165 auto parseFlag = [&](DISubprogram::DISPFlags &Val) { 4166 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4167 uint32_t TempVal = static_cast<uint32_t>(Val); 4168 bool Res = ParseUInt32(TempVal); 4169 Val = static_cast<DISubprogram::DISPFlags>(TempVal); 4170 return Res; 4171 } 4172 4173 if (Lex.getKind() != lltok::DISPFlag) 4174 return TokError("expected debug info flag"); 4175 4176 Val = DISubprogram::getFlag(Lex.getStrVal()); 4177 if (!Val) 4178 return TokError(Twine("invalid subprogram debug info flag '") + 4179 Lex.getStrVal() + "'"); 4180 Lex.Lex(); 4181 return false; 4182 }; 4183 4184 // Parse the flags and combine them together. 4185 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero; 4186 do { 4187 DISubprogram::DISPFlags Val; 4188 if (parseFlag(Val)) 4189 return true; 4190 Combined |= Val; 4191 } while (EatIfPresent(lltok::bar)); 4192 4193 Result.assign(Combined); 4194 return false; 4195 } 4196 4197 template <> 4198 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4199 MDSignedField &Result) { 4200 if (Lex.getKind() != lltok::APSInt) 4201 return TokError("expected signed integer"); 4202 4203 auto &S = Lex.getAPSIntVal(); 4204 if (S < Result.Min) 4205 return TokError("value for '" + Name + "' too small, limit is " + 4206 Twine(Result.Min)); 4207 if (S > Result.Max) 4208 return TokError("value for '" + Name + "' too large, limit is " + 4209 Twine(Result.Max)); 4210 Result.assign(S.getExtValue()); 4211 assert(Result.Val >= Result.Min && "Expected value in range"); 4212 assert(Result.Val <= Result.Max && "Expected value in range"); 4213 Lex.Lex(); 4214 return false; 4215 } 4216 4217 template <> 4218 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 4219 switch (Lex.getKind()) { 4220 default: 4221 return TokError("expected 'true' or 'false'"); 4222 case lltok::kw_true: 4223 Result.assign(true); 4224 break; 4225 case lltok::kw_false: 4226 Result.assign(false); 4227 break; 4228 } 4229 Lex.Lex(); 4230 return false; 4231 } 4232 4233 template <> 4234 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) { 4235 if (Lex.getKind() == lltok::kw_null) { 4236 if (!Result.AllowNull) 4237 return TokError("'" + Name + "' cannot be null"); 4238 Lex.Lex(); 4239 Result.assign(nullptr); 4240 return false; 4241 } 4242 4243 Metadata *MD; 4244 if (ParseMetadata(MD, nullptr)) 4245 return true; 4246 4247 Result.assign(MD); 4248 return false; 4249 } 4250 4251 template <> 4252 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4253 MDSignedOrMDField &Result) { 4254 // Try to parse a signed int. 4255 if (Lex.getKind() == lltok::APSInt) { 4256 MDSignedField Res = Result.A; 4257 if (!ParseMDField(Loc, Name, Res)) { 4258 Result.assign(Res); 4259 return false; 4260 } 4261 return true; 4262 } 4263 4264 // Otherwise, try to parse as an MDField. 4265 MDField Res = Result.B; 4266 if (!ParseMDField(Loc, Name, Res)) { 4267 Result.assign(Res); 4268 return false; 4269 } 4270 4271 return true; 4272 } 4273 4274 template <> 4275 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4276 MDSignedOrUnsignedField &Result) { 4277 if (Lex.getKind() != lltok::APSInt) 4278 return false; 4279 4280 if (Lex.getAPSIntVal().isSigned()) { 4281 MDSignedField Res = Result.A; 4282 if (ParseMDField(Loc, Name, Res)) 4283 return true; 4284 Result.assign(Res); 4285 return false; 4286 } 4287 4288 MDUnsignedField Res = Result.B; 4289 if (ParseMDField(Loc, Name, Res)) 4290 return true; 4291 Result.assign(Res); 4292 return false; 4293 } 4294 4295 template <> 4296 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 4297 LocTy ValueLoc = Lex.getLoc(); 4298 std::string S; 4299 if (ParseStringConstant(S)) 4300 return true; 4301 4302 if (!Result.AllowEmpty && S.empty()) 4303 return Error(ValueLoc, "'" + Name + "' cannot be empty"); 4304 4305 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 4306 return false; 4307 } 4308 4309 template <> 4310 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 4311 SmallVector<Metadata *, 4> MDs; 4312 if (ParseMDNodeVector(MDs)) 4313 return true; 4314 4315 Result.assign(std::move(MDs)); 4316 return false; 4317 } 4318 4319 template <> 4320 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4321 ChecksumKindField &Result) { 4322 Optional<DIFile::ChecksumKind> CSKind = 4323 DIFile::getChecksumKind(Lex.getStrVal()); 4324 4325 if (Lex.getKind() != lltok::ChecksumKind || !CSKind) 4326 return TokError( 4327 "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'"); 4328 4329 Result.assign(*CSKind); 4330 Lex.Lex(); 4331 return false; 4332 } 4333 4334 } // end namespace llvm 4335 4336 template <class ParserTy> 4337 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) { 4338 do { 4339 if (Lex.getKind() != lltok::LabelStr) 4340 return TokError("expected field label here"); 4341 4342 if (parseField()) 4343 return true; 4344 } while (EatIfPresent(lltok::comma)); 4345 4346 return false; 4347 } 4348 4349 template <class ParserTy> 4350 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) { 4351 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4352 Lex.Lex(); 4353 4354 if (ParseToken(lltok::lparen, "expected '(' here")) 4355 return true; 4356 if (Lex.getKind() != lltok::rparen) 4357 if (ParseMDFieldsImplBody(parseField)) 4358 return true; 4359 4360 ClosingLoc = Lex.getLoc(); 4361 return ParseToken(lltok::rparen, "expected ')' here"); 4362 } 4363 4364 template <class FieldTy> 4365 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) { 4366 if (Result.Seen) 4367 return TokError("field '" + Name + "' cannot be specified more than once"); 4368 4369 LocTy Loc = Lex.getLoc(); 4370 Lex.Lex(); 4371 return ParseMDField(Loc, Name, Result); 4372 } 4373 4374 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 4375 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4376 4377 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 4378 if (Lex.getStrVal() == #CLASS) \ 4379 return Parse##CLASS(N, IsDistinct); 4380 #include "llvm/IR/Metadata.def" 4381 4382 return TokError("expected metadata type"); 4383 } 4384 4385 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 4386 #define NOP_FIELD(NAME, TYPE, INIT) 4387 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 4388 if (!NAME.Seen) \ 4389 return Error(ClosingLoc, "missing required field '" #NAME "'"); 4390 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 4391 if (Lex.getStrVal() == #NAME) \ 4392 return ParseMDField(#NAME, NAME); 4393 #define PARSE_MD_FIELDS() \ 4394 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 4395 do { \ 4396 LocTy ClosingLoc; \ 4397 if (ParseMDFieldsImpl([&]() -> bool { \ 4398 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 4399 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \ 4400 }, ClosingLoc)) \ 4401 return true; \ 4402 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 4403 } while (false) 4404 #define GET_OR_DISTINCT(CLASS, ARGS) \ 4405 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 4406 4407 /// ParseDILocationFields: 4408 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6, 4409 /// isImplicitCode: true) 4410 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) { 4411 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4412 OPTIONAL(line, LineField, ); \ 4413 OPTIONAL(column, ColumnField, ); \ 4414 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4415 OPTIONAL(inlinedAt, MDField, ); \ 4416 OPTIONAL(isImplicitCode, MDBoolField, (false)); 4417 PARSE_MD_FIELDS(); 4418 #undef VISIT_MD_FIELDS 4419 4420 Result = 4421 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val, 4422 inlinedAt.Val, isImplicitCode.Val)); 4423 return false; 4424 } 4425 4426 /// ParseGenericDINode: 4427 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 4428 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) { 4429 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4430 REQUIRED(tag, DwarfTagField, ); \ 4431 OPTIONAL(header, MDStringField, ); \ 4432 OPTIONAL(operands, MDFieldList, ); 4433 PARSE_MD_FIELDS(); 4434 #undef VISIT_MD_FIELDS 4435 4436 Result = GET_OR_DISTINCT(GenericDINode, 4437 (Context, tag.Val, header.Val, operands.Val)); 4438 return false; 4439 } 4440 4441 /// ParseDISubrange: 4442 /// ::= !DISubrange(count: 30, lowerBound: 2) 4443 /// ::= !DISubrange(count: !node, lowerBound: 2) 4444 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) { 4445 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4446 REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ 4447 OPTIONAL(lowerBound, MDSignedField, ); 4448 PARSE_MD_FIELDS(); 4449 #undef VISIT_MD_FIELDS 4450 4451 if (count.isMDSignedField()) 4452 Result = GET_OR_DISTINCT( 4453 DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val)); 4454 else if (count.isMDField()) 4455 Result = GET_OR_DISTINCT( 4456 DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val)); 4457 else 4458 return true; 4459 4460 return false; 4461 } 4462 4463 /// ParseDIEnumerator: 4464 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind") 4465 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) { 4466 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4467 REQUIRED(name, MDStringField, ); \ 4468 REQUIRED(value, MDSignedOrUnsignedField, ); \ 4469 OPTIONAL(isUnsigned, MDBoolField, (false)); 4470 PARSE_MD_FIELDS(); 4471 #undef VISIT_MD_FIELDS 4472 4473 if (isUnsigned.Val && value.isMDSignedField()) 4474 return TokError("unsigned enumerator with negative value"); 4475 4476 int64_t Value = value.isMDSignedField() 4477 ? value.getMDSignedValue() 4478 : static_cast<int64_t>(value.getMDUnsignedValue()); 4479 Result = 4480 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val)); 4481 4482 return false; 4483 } 4484 4485 /// ParseDIBasicType: 4486 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32, 4487 /// encoding: DW_ATE_encoding, flags: 0) 4488 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) { 4489 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4490 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 4491 OPTIONAL(name, MDStringField, ); \ 4492 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4493 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4494 OPTIONAL(encoding, DwarfAttEncodingField, ); \ 4495 OPTIONAL(flags, DIFlagField, ); 4496 PARSE_MD_FIELDS(); 4497 #undef VISIT_MD_FIELDS 4498 4499 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 4500 align.Val, encoding.Val, flags.Val)); 4501 return false; 4502 } 4503 4504 /// ParseDIDerivedType: 4505 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 4506 /// line: 7, scope: !1, baseType: !2, size: 32, 4507 /// align: 32, offset: 0, flags: 0, extraData: !3, 4508 /// dwarfAddressSpace: 3) 4509 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) { 4510 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4511 REQUIRED(tag, DwarfTagField, ); \ 4512 OPTIONAL(name, MDStringField, ); \ 4513 OPTIONAL(file, MDField, ); \ 4514 OPTIONAL(line, LineField, ); \ 4515 OPTIONAL(scope, MDField, ); \ 4516 REQUIRED(baseType, MDField, ); \ 4517 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4518 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4519 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4520 OPTIONAL(flags, DIFlagField, ); \ 4521 OPTIONAL(extraData, MDField, ); \ 4522 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); 4523 PARSE_MD_FIELDS(); 4524 #undef VISIT_MD_FIELDS 4525 4526 Optional<unsigned> DWARFAddressSpace; 4527 if (dwarfAddressSpace.Val != UINT32_MAX) 4528 DWARFAddressSpace = dwarfAddressSpace.Val; 4529 4530 Result = GET_OR_DISTINCT(DIDerivedType, 4531 (Context, tag.Val, name.Val, file.Val, line.Val, 4532 scope.Val, baseType.Val, size.Val, align.Val, 4533 offset.Val, DWARFAddressSpace, flags.Val, 4534 extraData.Val)); 4535 return false; 4536 } 4537 4538 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) { 4539 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4540 REQUIRED(tag, DwarfTagField, ); \ 4541 OPTIONAL(name, MDStringField, ); \ 4542 OPTIONAL(file, MDField, ); \ 4543 OPTIONAL(line, LineField, ); \ 4544 OPTIONAL(scope, MDField, ); \ 4545 OPTIONAL(baseType, MDField, ); \ 4546 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4547 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4548 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4549 OPTIONAL(flags, DIFlagField, ); \ 4550 OPTIONAL(elements, MDField, ); \ 4551 OPTIONAL(runtimeLang, DwarfLangField, ); \ 4552 OPTIONAL(vtableHolder, MDField, ); \ 4553 OPTIONAL(templateParams, MDField, ); \ 4554 OPTIONAL(identifier, MDStringField, ); \ 4555 OPTIONAL(discriminator, MDField, ); 4556 PARSE_MD_FIELDS(); 4557 #undef VISIT_MD_FIELDS 4558 4559 // If this has an identifier try to build an ODR type. 4560 if (identifier.Val) 4561 if (auto *CT = DICompositeType::buildODRType( 4562 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 4563 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 4564 elements.Val, runtimeLang.Val, vtableHolder.Val, 4565 templateParams.Val, discriminator.Val)) { 4566 Result = CT; 4567 return false; 4568 } 4569 4570 // Create a new node, and save it in the context if it belongs in the type 4571 // map. 4572 Result = GET_OR_DISTINCT( 4573 DICompositeType, 4574 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 4575 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 4576 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val, 4577 discriminator.Val)); 4578 return false; 4579 } 4580 4581 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) { 4582 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4583 OPTIONAL(flags, DIFlagField, ); \ 4584 OPTIONAL(cc, DwarfCCField, ); \ 4585 REQUIRED(types, MDField, ); 4586 PARSE_MD_FIELDS(); 4587 #undef VISIT_MD_FIELDS 4588 4589 Result = GET_OR_DISTINCT(DISubroutineType, 4590 (Context, flags.Val, cc.Val, types.Val)); 4591 return false; 4592 } 4593 4594 /// ParseDIFileType: 4595 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir", 4596 /// checksumkind: CSK_MD5, 4597 /// checksum: "000102030405060708090a0b0c0d0e0f", 4598 /// source: "source file contents") 4599 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) { 4600 // The default constructed value for checksumkind is required, but will never 4601 // be used, as the parser checks if the field was actually Seen before using 4602 // the Val. 4603 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4604 REQUIRED(filename, MDStringField, ); \ 4605 REQUIRED(directory, MDStringField, ); \ 4606 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \ 4607 OPTIONAL(checksum, MDStringField, ); \ 4608 OPTIONAL(source, MDStringField, ); 4609 PARSE_MD_FIELDS(); 4610 #undef VISIT_MD_FIELDS 4611 4612 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum; 4613 if (checksumkind.Seen && checksum.Seen) 4614 OptChecksum.emplace(checksumkind.Val, checksum.Val); 4615 else if (checksumkind.Seen || checksum.Seen) 4616 return Lex.Error("'checksumkind' and 'checksum' must be provided together"); 4617 4618 Optional<MDString *> OptSource; 4619 if (source.Seen) 4620 OptSource = source.Val; 4621 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val, 4622 OptChecksum, OptSource)); 4623 return false; 4624 } 4625 4626 /// ParseDICompileUnit: 4627 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 4628 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 4629 /// splitDebugFilename: "abc.debug", 4630 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 4631 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd) 4632 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) { 4633 if (!IsDistinct) 4634 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 4635 4636 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4637 REQUIRED(language, DwarfLangField, ); \ 4638 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 4639 OPTIONAL(producer, MDStringField, ); \ 4640 OPTIONAL(isOptimized, MDBoolField, ); \ 4641 OPTIONAL(flags, MDStringField, ); \ 4642 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 4643 OPTIONAL(splitDebugFilename, MDStringField, ); \ 4644 OPTIONAL(emissionKind, EmissionKindField, ); \ 4645 OPTIONAL(enums, MDField, ); \ 4646 OPTIONAL(retainedTypes, MDField, ); \ 4647 OPTIONAL(globals, MDField, ); \ 4648 OPTIONAL(imports, MDField, ); \ 4649 OPTIONAL(macros, MDField, ); \ 4650 OPTIONAL(dwoId, MDUnsignedField, ); \ 4651 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 4652 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 4653 OPTIONAL(nameTableKind, NameTableKindField, ); \ 4654 OPTIONAL(debugBaseAddress, MDBoolField, = false); 4655 PARSE_MD_FIELDS(); 4656 #undef VISIT_MD_FIELDS 4657 4658 Result = DICompileUnit::getDistinct( 4659 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 4660 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 4661 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 4662 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val, 4663 debugBaseAddress.Val); 4664 return false; 4665 } 4666 4667 /// ParseDISubprogram: 4668 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 4669 /// file: !1, line: 7, type: !2, isLocal: false, 4670 /// isDefinition: true, scopeLine: 8, containingType: !3, 4671 /// virtuality: DW_VIRTUALTIY_pure_virtual, 4672 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 4673 /// spFlags: 10, isOptimized: false, templateParams: !4, 4674 /// declaration: !5, retainedNodes: !6, thrownTypes: !7) 4675 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) { 4676 auto Loc = Lex.getLoc(); 4677 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4678 OPTIONAL(scope, MDField, ); \ 4679 OPTIONAL(name, MDStringField, ); \ 4680 OPTIONAL(linkageName, MDStringField, ); \ 4681 OPTIONAL(file, MDField, ); \ 4682 OPTIONAL(line, LineField, ); \ 4683 OPTIONAL(type, MDField, ); \ 4684 OPTIONAL(isLocal, MDBoolField, ); \ 4685 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4686 OPTIONAL(scopeLine, LineField, ); \ 4687 OPTIONAL(containingType, MDField, ); \ 4688 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 4689 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 4690 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 4691 OPTIONAL(flags, DIFlagField, ); \ 4692 OPTIONAL(spFlags, DISPFlagField, ); \ 4693 OPTIONAL(isOptimized, MDBoolField, ); \ 4694 OPTIONAL(unit, MDField, ); \ 4695 OPTIONAL(templateParams, MDField, ); \ 4696 OPTIONAL(declaration, MDField, ); \ 4697 OPTIONAL(retainedNodes, MDField, ); \ 4698 OPTIONAL(thrownTypes, MDField, ); 4699 PARSE_MD_FIELDS(); 4700 #undef VISIT_MD_FIELDS 4701 4702 // An explicit spFlags field takes precedence over individual fields in 4703 // older IR versions. 4704 DISubprogram::DISPFlags SPFlags = 4705 spFlags.Seen ? spFlags.Val 4706 : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val, 4707 isOptimized.Val, virtuality.Val); 4708 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct) 4709 return Lex.Error( 4710 Loc, 4711 "missing 'distinct', required for !DISubprogram that is a Definition"); 4712 Result = GET_OR_DISTINCT( 4713 DISubprogram, 4714 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 4715 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val, 4716 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val, 4717 declaration.Val, retainedNodes.Val, thrownTypes.Val)); 4718 return false; 4719 } 4720 4721 /// ParseDILexicalBlock: 4722 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 4723 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 4724 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4725 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4726 OPTIONAL(file, MDField, ); \ 4727 OPTIONAL(line, LineField, ); \ 4728 OPTIONAL(column, ColumnField, ); 4729 PARSE_MD_FIELDS(); 4730 #undef VISIT_MD_FIELDS 4731 4732 Result = GET_OR_DISTINCT( 4733 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 4734 return false; 4735 } 4736 4737 /// ParseDILexicalBlockFile: 4738 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 4739 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 4740 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4741 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4742 OPTIONAL(file, MDField, ); \ 4743 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 4744 PARSE_MD_FIELDS(); 4745 #undef VISIT_MD_FIELDS 4746 4747 Result = GET_OR_DISTINCT(DILexicalBlockFile, 4748 (Context, scope.Val, file.Val, discriminator.Val)); 4749 return false; 4750 } 4751 4752 /// ParseDICommonBlock: 4753 /// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9) 4754 bool LLParser::ParseDICommonBlock(MDNode *&Result, bool IsDistinct) { 4755 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4756 REQUIRED(scope, MDField, ); \ 4757 OPTIONAL(declaration, MDField, ); \ 4758 OPTIONAL(name, MDStringField, ); \ 4759 OPTIONAL(file, MDField, ); \ 4760 OPTIONAL(line, LineField, ); 4761 PARSE_MD_FIELDS(); 4762 #undef VISIT_MD_FIELDS 4763 4764 Result = GET_OR_DISTINCT(DICommonBlock, 4765 (Context, scope.Val, declaration.Val, name.Val, 4766 file.Val, line.Val)); 4767 return false; 4768 } 4769 4770 /// ParseDINamespace: 4771 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 4772 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) { 4773 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4774 REQUIRED(scope, MDField, ); \ 4775 OPTIONAL(name, MDStringField, ); \ 4776 OPTIONAL(exportSymbols, MDBoolField, ); 4777 PARSE_MD_FIELDS(); 4778 #undef VISIT_MD_FIELDS 4779 4780 Result = GET_OR_DISTINCT(DINamespace, 4781 (Context, scope.Val, name.Val, exportSymbols.Val)); 4782 return false; 4783 } 4784 4785 /// ParseDIMacro: 4786 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue") 4787 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) { 4788 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4789 REQUIRED(type, DwarfMacinfoTypeField, ); \ 4790 OPTIONAL(line, LineField, ); \ 4791 REQUIRED(name, MDStringField, ); \ 4792 OPTIONAL(value, MDStringField, ); 4793 PARSE_MD_FIELDS(); 4794 #undef VISIT_MD_FIELDS 4795 4796 Result = GET_OR_DISTINCT(DIMacro, 4797 (Context, type.Val, line.Val, name.Val, value.Val)); 4798 return false; 4799 } 4800 4801 /// ParseDIMacroFile: 4802 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 4803 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) { 4804 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4805 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 4806 OPTIONAL(line, LineField, ); \ 4807 REQUIRED(file, MDField, ); \ 4808 OPTIONAL(nodes, MDField, ); 4809 PARSE_MD_FIELDS(); 4810 #undef VISIT_MD_FIELDS 4811 4812 Result = GET_OR_DISTINCT(DIMacroFile, 4813 (Context, type.Val, line.Val, file.Val, nodes.Val)); 4814 return false; 4815 } 4816 4817 /// ParseDIModule: 4818 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG", 4819 /// includePath: "/usr/include", isysroot: "/") 4820 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) { 4821 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4822 REQUIRED(scope, MDField, ); \ 4823 REQUIRED(name, MDStringField, ); \ 4824 OPTIONAL(configMacros, MDStringField, ); \ 4825 OPTIONAL(includePath, MDStringField, ); \ 4826 OPTIONAL(isysroot, MDStringField, ); 4827 PARSE_MD_FIELDS(); 4828 #undef VISIT_MD_FIELDS 4829 4830 Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val, 4831 configMacros.Val, includePath.Val, isysroot.Val)); 4832 return false; 4833 } 4834 4835 /// ParseDITemplateTypeParameter: 4836 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1) 4837 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 4838 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4839 OPTIONAL(name, MDStringField, ); \ 4840 REQUIRED(type, MDField, ); 4841 PARSE_MD_FIELDS(); 4842 #undef VISIT_MD_FIELDS 4843 4844 Result = 4845 GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val)); 4846 return false; 4847 } 4848 4849 /// ParseDITemplateValueParameter: 4850 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 4851 /// name: "V", type: !1, value: i32 7) 4852 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 4853 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4854 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 4855 OPTIONAL(name, MDStringField, ); \ 4856 OPTIONAL(type, MDField, ); \ 4857 REQUIRED(value, MDField, ); 4858 PARSE_MD_FIELDS(); 4859 #undef VISIT_MD_FIELDS 4860 4861 Result = GET_OR_DISTINCT(DITemplateValueParameter, 4862 (Context, tag.Val, name.Val, type.Val, value.Val)); 4863 return false; 4864 } 4865 4866 /// ParseDIGlobalVariable: 4867 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 4868 /// file: !1, line: 7, type: !2, isLocal: false, 4869 /// isDefinition: true, templateParams: !3, 4870 /// declaration: !4, align: 8) 4871 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 4872 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4873 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 4874 OPTIONAL(scope, MDField, ); \ 4875 OPTIONAL(linkageName, MDStringField, ); \ 4876 OPTIONAL(file, MDField, ); \ 4877 OPTIONAL(line, LineField, ); \ 4878 OPTIONAL(type, MDField, ); \ 4879 OPTIONAL(isLocal, MDBoolField, ); \ 4880 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4881 OPTIONAL(templateParams, MDField, ); \ 4882 OPTIONAL(declaration, MDField, ); \ 4883 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4884 PARSE_MD_FIELDS(); 4885 #undef VISIT_MD_FIELDS 4886 4887 Result = 4888 GET_OR_DISTINCT(DIGlobalVariable, 4889 (Context, scope.Val, name.Val, linkageName.Val, file.Val, 4890 line.Val, type.Val, isLocal.Val, isDefinition.Val, 4891 declaration.Val, templateParams.Val, align.Val)); 4892 return false; 4893 } 4894 4895 /// ParseDILocalVariable: 4896 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 4897 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4898 /// align: 8) 4899 /// ::= !DILocalVariable(scope: !0, name: "foo", 4900 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4901 /// align: 8) 4902 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) { 4903 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4904 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4905 OPTIONAL(name, MDStringField, ); \ 4906 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 4907 OPTIONAL(file, MDField, ); \ 4908 OPTIONAL(line, LineField, ); \ 4909 OPTIONAL(type, MDField, ); \ 4910 OPTIONAL(flags, DIFlagField, ); \ 4911 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4912 PARSE_MD_FIELDS(); 4913 #undef VISIT_MD_FIELDS 4914 4915 Result = GET_OR_DISTINCT(DILocalVariable, 4916 (Context, scope.Val, name.Val, file.Val, line.Val, 4917 type.Val, arg.Val, flags.Val, align.Val)); 4918 return false; 4919 } 4920 4921 /// ParseDILabel: 4922 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7) 4923 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) { 4924 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4925 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4926 REQUIRED(name, MDStringField, ); \ 4927 REQUIRED(file, MDField, ); \ 4928 REQUIRED(line, LineField, ); 4929 PARSE_MD_FIELDS(); 4930 #undef VISIT_MD_FIELDS 4931 4932 Result = GET_OR_DISTINCT(DILabel, 4933 (Context, scope.Val, name.Val, file.Val, line.Val)); 4934 return false; 4935 } 4936 4937 /// ParseDIExpression: 4938 /// ::= !DIExpression(0, 7, -1) 4939 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) { 4940 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4941 Lex.Lex(); 4942 4943 if (ParseToken(lltok::lparen, "expected '(' here")) 4944 return true; 4945 4946 SmallVector<uint64_t, 8> Elements; 4947 if (Lex.getKind() != lltok::rparen) 4948 do { 4949 if (Lex.getKind() == lltok::DwarfOp) { 4950 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 4951 Lex.Lex(); 4952 Elements.push_back(Op); 4953 continue; 4954 } 4955 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 4956 } 4957 4958 if (Lex.getKind() == lltok::DwarfAttEncoding) { 4959 if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) { 4960 Lex.Lex(); 4961 Elements.push_back(Op); 4962 continue; 4963 } 4964 return TokError(Twine("invalid DWARF attribute encoding '") + Lex.getStrVal() + "'"); 4965 } 4966 4967 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4968 return TokError("expected unsigned integer"); 4969 4970 auto &U = Lex.getAPSIntVal(); 4971 if (U.ugt(UINT64_MAX)) 4972 return TokError("element too large, limit is " + Twine(UINT64_MAX)); 4973 Elements.push_back(U.getZExtValue()); 4974 Lex.Lex(); 4975 } while (EatIfPresent(lltok::comma)); 4976 4977 if (ParseToken(lltok::rparen, "expected ')' here")) 4978 return true; 4979 4980 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 4981 return false; 4982 } 4983 4984 /// ParseDIGlobalVariableExpression: 4985 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 4986 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result, 4987 bool IsDistinct) { 4988 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4989 REQUIRED(var, MDField, ); \ 4990 REQUIRED(expr, MDField, ); 4991 PARSE_MD_FIELDS(); 4992 #undef VISIT_MD_FIELDS 4993 4994 Result = 4995 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 4996 return false; 4997 } 4998 4999 /// ParseDIObjCProperty: 5000 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 5001 /// getter: "getFoo", attributes: 7, type: !2) 5002 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 5003 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5004 OPTIONAL(name, MDStringField, ); \ 5005 OPTIONAL(file, MDField, ); \ 5006 OPTIONAL(line, LineField, ); \ 5007 OPTIONAL(setter, MDStringField, ); \ 5008 OPTIONAL(getter, MDStringField, ); \ 5009 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 5010 OPTIONAL(type, MDField, ); 5011 PARSE_MD_FIELDS(); 5012 #undef VISIT_MD_FIELDS 5013 5014 Result = GET_OR_DISTINCT(DIObjCProperty, 5015 (Context, name.Val, file.Val, line.Val, setter.Val, 5016 getter.Val, attributes.Val, type.Val)); 5017 return false; 5018 } 5019 5020 /// ParseDIImportedEntity: 5021 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 5022 /// line: 7, name: "foo") 5023 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 5024 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5025 REQUIRED(tag, DwarfTagField, ); \ 5026 REQUIRED(scope, MDField, ); \ 5027 OPTIONAL(entity, MDField, ); \ 5028 OPTIONAL(file, MDField, ); \ 5029 OPTIONAL(line, LineField, ); \ 5030 OPTIONAL(name, MDStringField, ); 5031 PARSE_MD_FIELDS(); 5032 #undef VISIT_MD_FIELDS 5033 5034 Result = GET_OR_DISTINCT( 5035 DIImportedEntity, 5036 (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val)); 5037 return false; 5038 } 5039 5040 #undef PARSE_MD_FIELD 5041 #undef NOP_FIELD 5042 #undef REQUIRE_FIELD 5043 #undef DECLARE_FIELD 5044 5045 /// ParseMetadataAsValue 5046 /// ::= metadata i32 %local 5047 /// ::= metadata i32 @global 5048 /// ::= metadata i32 7 5049 /// ::= metadata !0 5050 /// ::= metadata !{...} 5051 /// ::= metadata !"string" 5052 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 5053 // Note: the type 'metadata' has already been parsed. 5054 Metadata *MD; 5055 if (ParseMetadata(MD, &PFS)) 5056 return true; 5057 5058 V = MetadataAsValue::get(Context, MD); 5059 return false; 5060 } 5061 5062 /// ParseValueAsMetadata 5063 /// ::= i32 %local 5064 /// ::= i32 @global 5065 /// ::= i32 7 5066 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 5067 PerFunctionState *PFS) { 5068 Type *Ty; 5069 LocTy Loc; 5070 if (ParseType(Ty, TypeMsg, Loc)) 5071 return true; 5072 if (Ty->isMetadataTy()) 5073 return Error(Loc, "invalid metadata-value-metadata roundtrip"); 5074 5075 Value *V; 5076 if (ParseValue(Ty, V, PFS)) 5077 return true; 5078 5079 MD = ValueAsMetadata::get(V); 5080 return false; 5081 } 5082 5083 /// ParseMetadata 5084 /// ::= i32 %local 5085 /// ::= i32 @global 5086 /// ::= i32 7 5087 /// ::= !42 5088 /// ::= !{...} 5089 /// ::= !"string" 5090 /// ::= !DILocation(...) 5091 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) { 5092 if (Lex.getKind() == lltok::MetadataVar) { 5093 MDNode *N; 5094 if (ParseSpecializedMDNode(N)) 5095 return true; 5096 MD = N; 5097 return false; 5098 } 5099 5100 // ValueAsMetadata: 5101 // <type> <value> 5102 if (Lex.getKind() != lltok::exclaim) 5103 return ParseValueAsMetadata(MD, "expected metadata operand", PFS); 5104 5105 // '!'. 5106 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 5107 Lex.Lex(); 5108 5109 // MDString: 5110 // ::= '!' STRINGCONSTANT 5111 if (Lex.getKind() == lltok::StringConstant) { 5112 MDString *S; 5113 if (ParseMDString(S)) 5114 return true; 5115 MD = S; 5116 return false; 5117 } 5118 5119 // MDNode: 5120 // !{ ... } 5121 // !7 5122 MDNode *N; 5123 if (ParseMDNodeTail(N)) 5124 return true; 5125 MD = N; 5126 return false; 5127 } 5128 5129 //===----------------------------------------------------------------------===// 5130 // Function Parsing. 5131 //===----------------------------------------------------------------------===// 5132 5133 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 5134 PerFunctionState *PFS, bool IsCall) { 5135 if (Ty->isFunctionTy()) 5136 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 5137 5138 switch (ID.Kind) { 5139 case ValID::t_LocalID: 5140 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 5141 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5142 return V == nullptr; 5143 case ValID::t_LocalName: 5144 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 5145 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall); 5146 return V == nullptr; 5147 case ValID::t_InlineAsm: { 5148 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 5149 return Error(ID.Loc, "invalid type for inline asm constraint string"); 5150 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, 5151 (ID.UIntVal >> 1) & 1, 5152 (InlineAsm::AsmDialect(ID.UIntVal >> 2))); 5153 return false; 5154 } 5155 case ValID::t_GlobalName: 5156 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall); 5157 return V == nullptr; 5158 case ValID::t_GlobalID: 5159 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5160 return V == nullptr; 5161 case ValID::t_APSInt: 5162 if (!Ty->isIntegerTy()) 5163 return Error(ID.Loc, "integer constant must have integer type"); 5164 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 5165 V = ConstantInt::get(Context, ID.APSIntVal); 5166 return false; 5167 case ValID::t_APFloat: 5168 if (!Ty->isFloatingPointTy() || 5169 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 5170 return Error(ID.Loc, "floating point constant invalid for type"); 5171 5172 // The lexer has no type info, so builds all half, float, and double FP 5173 // constants as double. Fix this here. Long double does not need this. 5174 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 5175 bool Ignored; 5176 if (Ty->isHalfTy()) 5177 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 5178 &Ignored); 5179 else if (Ty->isFloatTy()) 5180 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 5181 &Ignored); 5182 } 5183 V = ConstantFP::get(Context, ID.APFloatVal); 5184 5185 if (V->getType() != Ty) 5186 return Error(ID.Loc, "floating point constant does not have type '" + 5187 getTypeString(Ty) + "'"); 5188 5189 return false; 5190 case ValID::t_Null: 5191 if (!Ty->isPointerTy()) 5192 return Error(ID.Loc, "null must be a pointer type"); 5193 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 5194 return false; 5195 case ValID::t_Undef: 5196 // FIXME: LabelTy should not be a first-class type. 5197 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5198 return Error(ID.Loc, "invalid type for undef constant"); 5199 V = UndefValue::get(Ty); 5200 return false; 5201 case ValID::t_EmptyArray: 5202 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 5203 return Error(ID.Loc, "invalid empty array initializer"); 5204 V = UndefValue::get(Ty); 5205 return false; 5206 case ValID::t_Zero: 5207 // FIXME: LabelTy should not be a first-class type. 5208 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5209 return Error(ID.Loc, "invalid type for null constant"); 5210 V = Constant::getNullValue(Ty); 5211 return false; 5212 case ValID::t_None: 5213 if (!Ty->isTokenTy()) 5214 return Error(ID.Loc, "invalid type for none constant"); 5215 V = Constant::getNullValue(Ty); 5216 return false; 5217 case ValID::t_Constant: 5218 if (ID.ConstantVal->getType() != Ty) 5219 return Error(ID.Loc, "constant expression type mismatch"); 5220 5221 V = ID.ConstantVal; 5222 return false; 5223 case ValID::t_ConstantStruct: 5224 case ValID::t_PackedConstantStruct: 5225 if (StructType *ST = dyn_cast<StructType>(Ty)) { 5226 if (ST->getNumElements() != ID.UIntVal) 5227 return Error(ID.Loc, 5228 "initializer with struct type has wrong # elements"); 5229 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 5230 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 5231 5232 // Verify that the elements are compatible with the structtype. 5233 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 5234 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 5235 return Error(ID.Loc, "element " + Twine(i) + 5236 " of struct initializer doesn't match struct element type"); 5237 5238 V = ConstantStruct::get( 5239 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 5240 } else 5241 return Error(ID.Loc, "constant expression type mismatch"); 5242 return false; 5243 } 5244 llvm_unreachable("Invalid ValID"); 5245 } 5246 5247 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 5248 C = nullptr; 5249 ValID ID; 5250 auto Loc = Lex.getLoc(); 5251 if (ParseValID(ID, /*PFS=*/nullptr)) 5252 return true; 5253 switch (ID.Kind) { 5254 case ValID::t_APSInt: 5255 case ValID::t_APFloat: 5256 case ValID::t_Undef: 5257 case ValID::t_Constant: 5258 case ValID::t_ConstantStruct: 5259 case ValID::t_PackedConstantStruct: { 5260 Value *V; 5261 if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false)) 5262 return true; 5263 assert(isa<Constant>(V) && "Expected a constant value"); 5264 C = cast<Constant>(V); 5265 return false; 5266 } 5267 case ValID::t_Null: 5268 C = Constant::getNullValue(Ty); 5269 return false; 5270 default: 5271 return Error(Loc, "expected a constant value"); 5272 } 5273 } 5274 5275 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 5276 V = nullptr; 5277 ValID ID; 5278 return ParseValID(ID, PFS) || 5279 ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false); 5280 } 5281 5282 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 5283 Type *Ty = nullptr; 5284 return ParseType(Ty) || 5285 ParseValue(Ty, V, PFS); 5286 } 5287 5288 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 5289 PerFunctionState &PFS) { 5290 Value *V; 5291 Loc = Lex.getLoc(); 5292 if (ParseTypeAndValue(V, PFS)) return true; 5293 if (!isa<BasicBlock>(V)) 5294 return Error(Loc, "expected a basic block"); 5295 BB = cast<BasicBlock>(V); 5296 return false; 5297 } 5298 5299 /// FunctionHeader 5300 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 5301 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 5302 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign 5303 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 5304 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 5305 // Parse the linkage. 5306 LocTy LinkageLoc = Lex.getLoc(); 5307 unsigned Linkage; 5308 unsigned Visibility; 5309 unsigned DLLStorageClass; 5310 bool DSOLocal; 5311 AttrBuilder RetAttrs; 5312 unsigned CC; 5313 bool HasLinkage; 5314 Type *RetType = nullptr; 5315 LocTy RetTypeLoc = Lex.getLoc(); 5316 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 5317 DSOLocal) || 5318 ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5319 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 5320 return true; 5321 5322 // Verify that the linkage is ok. 5323 switch ((GlobalValue::LinkageTypes)Linkage) { 5324 case GlobalValue::ExternalLinkage: 5325 break; // always ok. 5326 case GlobalValue::ExternalWeakLinkage: 5327 if (isDefine) 5328 return Error(LinkageLoc, "invalid linkage for function definition"); 5329 break; 5330 case GlobalValue::PrivateLinkage: 5331 case GlobalValue::InternalLinkage: 5332 case GlobalValue::AvailableExternallyLinkage: 5333 case GlobalValue::LinkOnceAnyLinkage: 5334 case GlobalValue::LinkOnceODRLinkage: 5335 case GlobalValue::WeakAnyLinkage: 5336 case GlobalValue::WeakODRLinkage: 5337 if (!isDefine) 5338 return Error(LinkageLoc, "invalid linkage for function declaration"); 5339 break; 5340 case GlobalValue::AppendingLinkage: 5341 case GlobalValue::CommonLinkage: 5342 return Error(LinkageLoc, "invalid function linkage type"); 5343 } 5344 5345 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 5346 return Error(LinkageLoc, 5347 "symbol with local linkage must have default visibility"); 5348 5349 if (!FunctionType::isValidReturnType(RetType)) 5350 return Error(RetTypeLoc, "invalid function return type"); 5351 5352 LocTy NameLoc = Lex.getLoc(); 5353 5354 std::string FunctionName; 5355 if (Lex.getKind() == lltok::GlobalVar) { 5356 FunctionName = Lex.getStrVal(); 5357 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 5358 unsigned NameID = Lex.getUIntVal(); 5359 5360 if (NameID != NumberedVals.size()) 5361 return TokError("function expected to be numbered '%" + 5362 Twine(NumberedVals.size()) + "'"); 5363 } else { 5364 return TokError("expected function name"); 5365 } 5366 5367 Lex.Lex(); 5368 5369 if (Lex.getKind() != lltok::lparen) 5370 return TokError("expected '(' in function argument list"); 5371 5372 SmallVector<ArgInfo, 8> ArgList; 5373 bool isVarArg; 5374 AttrBuilder FuncAttrs; 5375 std::vector<unsigned> FwdRefAttrGrps; 5376 LocTy BuiltinLoc; 5377 std::string Section; 5378 std::string Partition; 5379 MaybeAlign Alignment; 5380 std::string GC; 5381 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 5382 unsigned AddrSpace = 0; 5383 Constant *Prefix = nullptr; 5384 Constant *Prologue = nullptr; 5385 Constant *PersonalityFn = nullptr; 5386 Comdat *C; 5387 5388 if (ParseArgumentList(ArgList, isVarArg) || 5389 ParseOptionalUnnamedAddr(UnnamedAddr) || 5390 ParseOptionalProgramAddrSpace(AddrSpace) || 5391 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 5392 BuiltinLoc) || 5393 (EatIfPresent(lltok::kw_section) && 5394 ParseStringConstant(Section)) || 5395 (EatIfPresent(lltok::kw_partition) && 5396 ParseStringConstant(Partition)) || 5397 parseOptionalComdat(FunctionName, C) || 5398 ParseOptionalAlignment(Alignment) || 5399 (EatIfPresent(lltok::kw_gc) && 5400 ParseStringConstant(GC)) || 5401 (EatIfPresent(lltok::kw_prefix) && 5402 ParseGlobalTypeAndValue(Prefix)) || 5403 (EatIfPresent(lltok::kw_prologue) && 5404 ParseGlobalTypeAndValue(Prologue)) || 5405 (EatIfPresent(lltok::kw_personality) && 5406 ParseGlobalTypeAndValue(PersonalityFn))) 5407 return true; 5408 5409 if (FuncAttrs.contains(Attribute::Builtin)) 5410 return Error(BuiltinLoc, "'builtin' attribute not valid on function"); 5411 5412 // If the alignment was parsed as an attribute, move to the alignment field. 5413 if (FuncAttrs.hasAlignmentAttr()) { 5414 Alignment = FuncAttrs.getAlignment(); 5415 FuncAttrs.removeAttribute(Attribute::Alignment); 5416 } 5417 5418 // Okay, if we got here, the function is syntactically valid. Convert types 5419 // and do semantic checks. 5420 std::vector<Type*> ParamTypeList; 5421 SmallVector<AttributeSet, 8> Attrs; 5422 5423 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5424 ParamTypeList.push_back(ArgList[i].Ty); 5425 Attrs.push_back(ArgList[i].Attrs); 5426 } 5427 5428 AttributeList PAL = 5429 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 5430 AttributeSet::get(Context, RetAttrs), Attrs); 5431 5432 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 5433 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 5434 5435 FunctionType *FT = 5436 FunctionType::get(RetType, ParamTypeList, isVarArg); 5437 PointerType *PFT = PointerType::get(FT, AddrSpace); 5438 5439 Fn = nullptr; 5440 if (!FunctionName.empty()) { 5441 // If this was a definition of a forward reference, remove the definition 5442 // from the forward reference table and fill in the forward ref. 5443 auto FRVI = ForwardRefVals.find(FunctionName); 5444 if (FRVI != ForwardRefVals.end()) { 5445 Fn = M->getFunction(FunctionName); 5446 if (!Fn) 5447 return Error(FRVI->second.second, "invalid forward reference to " 5448 "function as global value!"); 5449 if (Fn->getType() != PFT) 5450 return Error(FRVI->second.second, "invalid forward reference to " 5451 "function '" + FunctionName + "' with wrong type: " 5452 "expected '" + getTypeString(PFT) + "' but was '" + 5453 getTypeString(Fn->getType()) + "'"); 5454 ForwardRefVals.erase(FRVI); 5455 } else if ((Fn = M->getFunction(FunctionName))) { 5456 // Reject redefinitions. 5457 return Error(NameLoc, "invalid redefinition of function '" + 5458 FunctionName + "'"); 5459 } else if (M->getNamedValue(FunctionName)) { 5460 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 5461 } 5462 5463 } else { 5464 // If this is a definition of a forward referenced function, make sure the 5465 // types agree. 5466 auto I = ForwardRefValIDs.find(NumberedVals.size()); 5467 if (I != ForwardRefValIDs.end()) { 5468 Fn = cast<Function>(I->second.first); 5469 if (Fn->getType() != PFT) 5470 return Error(NameLoc, "type of definition and forward reference of '@" + 5471 Twine(NumberedVals.size()) + "' disagree: " 5472 "expected '" + getTypeString(PFT) + "' but was '" + 5473 getTypeString(Fn->getType()) + "'"); 5474 ForwardRefValIDs.erase(I); 5475 } 5476 } 5477 5478 if (!Fn) 5479 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace, 5480 FunctionName, M); 5481 else // Move the forward-reference to the correct spot in the module. 5482 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 5483 5484 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS"); 5485 5486 if (FunctionName.empty()) 5487 NumberedVals.push_back(Fn); 5488 5489 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 5490 maybeSetDSOLocal(DSOLocal, *Fn); 5491 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 5492 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 5493 Fn->setCallingConv(CC); 5494 Fn->setAttributes(PAL); 5495 Fn->setUnnamedAddr(UnnamedAddr); 5496 Fn->setAlignment(MaybeAlign(Alignment)); 5497 Fn->setSection(Section); 5498 Fn->setPartition(Partition); 5499 Fn->setComdat(C); 5500 Fn->setPersonalityFn(PersonalityFn); 5501 if (!GC.empty()) Fn->setGC(GC); 5502 Fn->setPrefixData(Prefix); 5503 Fn->setPrologueData(Prologue); 5504 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 5505 5506 // Add all of the arguments we parsed to the function. 5507 Function::arg_iterator ArgIt = Fn->arg_begin(); 5508 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 5509 // If the argument has a name, insert it into the argument symbol table. 5510 if (ArgList[i].Name.empty()) continue; 5511 5512 // Set the name, if it conflicted, it will be auto-renamed. 5513 ArgIt->setName(ArgList[i].Name); 5514 5515 if (ArgIt->getName() != ArgList[i].Name) 5516 return Error(ArgList[i].Loc, "redefinition of argument '%" + 5517 ArgList[i].Name + "'"); 5518 } 5519 5520 if (isDefine) 5521 return false; 5522 5523 // Check the declaration has no block address forward references. 5524 ValID ID; 5525 if (FunctionName.empty()) { 5526 ID.Kind = ValID::t_GlobalID; 5527 ID.UIntVal = NumberedVals.size() - 1; 5528 } else { 5529 ID.Kind = ValID::t_GlobalName; 5530 ID.StrVal = FunctionName; 5531 } 5532 auto Blocks = ForwardRefBlockAddresses.find(ID); 5533 if (Blocks != ForwardRefBlockAddresses.end()) 5534 return Error(Blocks->first.Loc, 5535 "cannot take blockaddress inside a declaration"); 5536 return false; 5537 } 5538 5539 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 5540 ValID ID; 5541 if (FunctionNumber == -1) { 5542 ID.Kind = ValID::t_GlobalName; 5543 ID.StrVal = F.getName(); 5544 } else { 5545 ID.Kind = ValID::t_GlobalID; 5546 ID.UIntVal = FunctionNumber; 5547 } 5548 5549 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 5550 if (Blocks == P.ForwardRefBlockAddresses.end()) 5551 return false; 5552 5553 for (const auto &I : Blocks->second) { 5554 const ValID &BBID = I.first; 5555 GlobalValue *GV = I.second; 5556 5557 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 5558 "Expected local id or name"); 5559 BasicBlock *BB; 5560 if (BBID.Kind == ValID::t_LocalName) 5561 BB = GetBB(BBID.StrVal, BBID.Loc); 5562 else 5563 BB = GetBB(BBID.UIntVal, BBID.Loc); 5564 if (!BB) 5565 return P.Error(BBID.Loc, "referenced value is not a basic block"); 5566 5567 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 5568 GV->eraseFromParent(); 5569 } 5570 5571 P.ForwardRefBlockAddresses.erase(Blocks); 5572 return false; 5573 } 5574 5575 /// ParseFunctionBody 5576 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 5577 bool LLParser::ParseFunctionBody(Function &Fn) { 5578 if (Lex.getKind() != lltok::lbrace) 5579 return TokError("expected '{' in function body"); 5580 Lex.Lex(); // eat the {. 5581 5582 int FunctionNumber = -1; 5583 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 5584 5585 PerFunctionState PFS(*this, Fn, FunctionNumber); 5586 5587 // Resolve block addresses and allow basic blocks to be forward-declared 5588 // within this function. 5589 if (PFS.resolveForwardRefBlockAddresses()) 5590 return true; 5591 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 5592 5593 // We need at least one basic block. 5594 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 5595 return TokError("function body requires at least one basic block"); 5596 5597 while (Lex.getKind() != lltok::rbrace && 5598 Lex.getKind() != lltok::kw_uselistorder) 5599 if (ParseBasicBlock(PFS)) return true; 5600 5601 while (Lex.getKind() != lltok::rbrace) 5602 if (ParseUseListOrder(&PFS)) 5603 return true; 5604 5605 // Eat the }. 5606 Lex.Lex(); 5607 5608 // Verify function is ok. 5609 return PFS.FinishFunction(); 5610 } 5611 5612 /// ParseBasicBlock 5613 /// ::= (LabelStr|LabelID)? Instruction* 5614 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 5615 // If this basic block starts out with a name, remember it. 5616 std::string Name; 5617 int NameID = -1; 5618 LocTy NameLoc = Lex.getLoc(); 5619 if (Lex.getKind() == lltok::LabelStr) { 5620 Name = Lex.getStrVal(); 5621 Lex.Lex(); 5622 } else if (Lex.getKind() == lltok::LabelID) { 5623 NameID = Lex.getUIntVal(); 5624 Lex.Lex(); 5625 } 5626 5627 BasicBlock *BB = PFS.DefineBB(Name, NameID, NameLoc); 5628 if (!BB) 5629 return true; 5630 5631 std::string NameStr; 5632 5633 // Parse the instructions in this block until we get a terminator. 5634 Instruction *Inst; 5635 do { 5636 // This instruction may have three possibilities for a name: a) none 5637 // specified, b) name specified "%foo =", c) number specified: "%4 =". 5638 LocTy NameLoc = Lex.getLoc(); 5639 int NameID = -1; 5640 NameStr = ""; 5641 5642 if (Lex.getKind() == lltok::LocalVarID) { 5643 NameID = Lex.getUIntVal(); 5644 Lex.Lex(); 5645 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 5646 return true; 5647 } else if (Lex.getKind() == lltok::LocalVar) { 5648 NameStr = Lex.getStrVal(); 5649 Lex.Lex(); 5650 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 5651 return true; 5652 } 5653 5654 switch (ParseInstruction(Inst, BB, PFS)) { 5655 default: llvm_unreachable("Unknown ParseInstruction result!"); 5656 case InstError: return true; 5657 case InstNormal: 5658 BB->getInstList().push_back(Inst); 5659 5660 // With a normal result, we check to see if the instruction is followed by 5661 // a comma and metadata. 5662 if (EatIfPresent(lltok::comma)) 5663 if (ParseInstructionMetadata(*Inst)) 5664 return true; 5665 break; 5666 case InstExtraComma: 5667 BB->getInstList().push_back(Inst); 5668 5669 // If the instruction parser ate an extra comma at the end of it, it 5670 // *must* be followed by metadata. 5671 if (ParseInstructionMetadata(*Inst)) 5672 return true; 5673 break; 5674 } 5675 5676 // Set the name on the instruction. 5677 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 5678 } while (!Inst->isTerminator()); 5679 5680 return false; 5681 } 5682 5683 //===----------------------------------------------------------------------===// 5684 // Instruction Parsing. 5685 //===----------------------------------------------------------------------===// 5686 5687 /// ParseInstruction - Parse one of the many different instructions. 5688 /// 5689 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 5690 PerFunctionState &PFS) { 5691 lltok::Kind Token = Lex.getKind(); 5692 if (Token == lltok::Eof) 5693 return TokError("found end of file when expecting more instructions"); 5694 LocTy Loc = Lex.getLoc(); 5695 unsigned KeywordVal = Lex.getUIntVal(); 5696 Lex.Lex(); // Eat the keyword. 5697 5698 switch (Token) { 5699 default: return Error(Loc, "expected instruction opcode"); 5700 // Terminator Instructions. 5701 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 5702 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 5703 case lltok::kw_br: return ParseBr(Inst, PFS); 5704 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 5705 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 5706 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 5707 case lltok::kw_resume: return ParseResume(Inst, PFS); 5708 case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS); 5709 case lltok::kw_catchret: return ParseCatchRet(Inst, PFS); 5710 case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS); 5711 case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS); 5712 case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS); 5713 case lltok::kw_callbr: return ParseCallBr(Inst, PFS); 5714 // Unary Operators. 5715 case lltok::kw_fneg: { 5716 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5717 int Res = ParseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/true); 5718 if (Res != 0) 5719 return Res; 5720 if (FMF.any()) 5721 Inst->setFastMathFlags(FMF); 5722 return false; 5723 } 5724 // Binary Operators. 5725 case lltok::kw_add: 5726 case lltok::kw_sub: 5727 case lltok::kw_mul: 5728 case lltok::kw_shl: { 5729 bool NUW = EatIfPresent(lltok::kw_nuw); 5730 bool NSW = EatIfPresent(lltok::kw_nsw); 5731 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 5732 5733 if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true; 5734 5735 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 5736 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 5737 return false; 5738 } 5739 case lltok::kw_fadd: 5740 case lltok::kw_fsub: 5741 case lltok::kw_fmul: 5742 case lltok::kw_fdiv: 5743 case lltok::kw_frem: { 5744 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5745 int Res = ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/true); 5746 if (Res != 0) 5747 return Res; 5748 if (FMF.any()) 5749 Inst->setFastMathFlags(FMF); 5750 return 0; 5751 } 5752 5753 case lltok::kw_sdiv: 5754 case lltok::kw_udiv: 5755 case lltok::kw_lshr: 5756 case lltok::kw_ashr: { 5757 bool Exact = EatIfPresent(lltok::kw_exact); 5758 5759 if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true; 5760 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 5761 return false; 5762 } 5763 5764 case lltok::kw_urem: 5765 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 5766 /*IsFP*/false); 5767 case lltok::kw_and: 5768 case lltok::kw_or: 5769 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 5770 case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal); 5771 case lltok::kw_fcmp: { 5772 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5773 int Res = ParseCompare(Inst, PFS, KeywordVal); 5774 if (Res != 0) 5775 return Res; 5776 if (FMF.any()) 5777 Inst->setFastMathFlags(FMF); 5778 return 0; 5779 } 5780 5781 // Casts. 5782 case lltok::kw_trunc: 5783 case lltok::kw_zext: 5784 case lltok::kw_sext: 5785 case lltok::kw_fptrunc: 5786 case lltok::kw_fpext: 5787 case lltok::kw_bitcast: 5788 case lltok::kw_addrspacecast: 5789 case lltok::kw_uitofp: 5790 case lltok::kw_sitofp: 5791 case lltok::kw_fptoui: 5792 case lltok::kw_fptosi: 5793 case lltok::kw_inttoptr: 5794 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 5795 // Other. 5796 case lltok::kw_select: { 5797 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5798 int Res = ParseSelect(Inst, PFS); 5799 if (Res != 0) 5800 return Res; 5801 if (FMF.any()) { 5802 if (!isa<FPMathOperator>(Inst)) 5803 return Error(Loc, "fast-math-flags specified for select without " 5804 "floating-point scalar or vector return type"); 5805 Inst->setFastMathFlags(FMF); 5806 } 5807 return 0; 5808 } 5809 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 5810 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 5811 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 5812 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 5813 case lltok::kw_phi: { 5814 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5815 int Res = ParsePHI(Inst, PFS); 5816 if (Res != 0) 5817 return Res; 5818 if (FMF.any()) { 5819 if (!isa<FPMathOperator>(Inst)) 5820 return Error(Loc, "fast-math-flags specified for phi without " 5821 "floating-point scalar or vector return type"); 5822 Inst->setFastMathFlags(FMF); 5823 } 5824 return 0; 5825 } 5826 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 5827 // Call. 5828 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None); 5829 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail); 5830 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail); 5831 case lltok::kw_notail: return ParseCall(Inst, PFS, CallInst::TCK_NoTail); 5832 // Memory. 5833 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 5834 case lltok::kw_load: return ParseLoad(Inst, PFS); 5835 case lltok::kw_store: return ParseStore(Inst, PFS); 5836 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 5837 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 5838 case lltok::kw_fence: return ParseFence(Inst, PFS); 5839 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 5840 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 5841 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 5842 } 5843 } 5844 5845 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 5846 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 5847 if (Opc == Instruction::FCmp) { 5848 switch (Lex.getKind()) { 5849 default: return TokError("expected fcmp predicate (e.g. 'oeq')"); 5850 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 5851 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 5852 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 5853 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 5854 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 5855 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 5856 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 5857 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 5858 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 5859 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 5860 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 5861 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 5862 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 5863 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 5864 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 5865 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 5866 } 5867 } else { 5868 switch (Lex.getKind()) { 5869 default: return TokError("expected icmp predicate (e.g. 'eq')"); 5870 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 5871 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 5872 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 5873 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 5874 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 5875 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 5876 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 5877 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 5878 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 5879 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 5880 } 5881 } 5882 Lex.Lex(); 5883 return false; 5884 } 5885 5886 //===----------------------------------------------------------------------===// 5887 // Terminator Instructions. 5888 //===----------------------------------------------------------------------===// 5889 5890 /// ParseRet - Parse a return instruction. 5891 /// ::= 'ret' void (',' !dbg, !1)* 5892 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 5893 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 5894 PerFunctionState &PFS) { 5895 SMLoc TypeLoc = Lex.getLoc(); 5896 Type *Ty = nullptr; 5897 if (ParseType(Ty, true /*void allowed*/)) return true; 5898 5899 Type *ResType = PFS.getFunction().getReturnType(); 5900 5901 if (Ty->isVoidTy()) { 5902 if (!ResType->isVoidTy()) 5903 return Error(TypeLoc, "value doesn't match function result type '" + 5904 getTypeString(ResType) + "'"); 5905 5906 Inst = ReturnInst::Create(Context); 5907 return false; 5908 } 5909 5910 Value *RV; 5911 if (ParseValue(Ty, RV, PFS)) return true; 5912 5913 if (ResType != RV->getType()) 5914 return Error(TypeLoc, "value doesn't match function result type '" + 5915 getTypeString(ResType) + "'"); 5916 5917 Inst = ReturnInst::Create(Context, RV); 5918 return false; 5919 } 5920 5921 /// ParseBr 5922 /// ::= 'br' TypeAndValue 5923 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5924 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 5925 LocTy Loc, Loc2; 5926 Value *Op0; 5927 BasicBlock *Op1, *Op2; 5928 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 5929 5930 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 5931 Inst = BranchInst::Create(BB); 5932 return false; 5933 } 5934 5935 if (Op0->getType() != Type::getInt1Ty(Context)) 5936 return Error(Loc, "branch condition must have 'i1' type"); 5937 5938 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 5939 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 5940 ParseToken(lltok::comma, "expected ',' after true destination") || 5941 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 5942 return true; 5943 5944 Inst = BranchInst::Create(Op1, Op2, Op0); 5945 return false; 5946 } 5947 5948 /// ParseSwitch 5949 /// Instruction 5950 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 5951 /// JumpTable 5952 /// ::= (TypeAndValue ',' TypeAndValue)* 5953 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5954 LocTy CondLoc, BBLoc; 5955 Value *Cond; 5956 BasicBlock *DefaultBB; 5957 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 5958 ParseToken(lltok::comma, "expected ',' after switch condition") || 5959 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 5960 ParseToken(lltok::lsquare, "expected '[' with switch table")) 5961 return true; 5962 5963 if (!Cond->getType()->isIntegerTy()) 5964 return Error(CondLoc, "switch condition must have integer type"); 5965 5966 // Parse the jump table pairs. 5967 SmallPtrSet<Value*, 32> SeenCases; 5968 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 5969 while (Lex.getKind() != lltok::rsquare) { 5970 Value *Constant; 5971 BasicBlock *DestBB; 5972 5973 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 5974 ParseToken(lltok::comma, "expected ',' after case value") || 5975 ParseTypeAndBasicBlock(DestBB, PFS)) 5976 return true; 5977 5978 if (!SeenCases.insert(Constant).second) 5979 return Error(CondLoc, "duplicate case value in switch"); 5980 if (!isa<ConstantInt>(Constant)) 5981 return Error(CondLoc, "case value is not a constant integer"); 5982 5983 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 5984 } 5985 5986 Lex.Lex(); // Eat the ']'. 5987 5988 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 5989 for (unsigned i = 0, e = Table.size(); i != e; ++i) 5990 SI->addCase(Table[i].first, Table[i].second); 5991 Inst = SI; 5992 return false; 5993 } 5994 5995 /// ParseIndirectBr 5996 /// Instruction 5997 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 5998 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 5999 LocTy AddrLoc; 6000 Value *Address; 6001 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 6002 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 6003 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 6004 return true; 6005 6006 if (!Address->getType()->isPointerTy()) 6007 return Error(AddrLoc, "indirectbr address must have pointer type"); 6008 6009 // Parse the destination list. 6010 SmallVector<BasicBlock*, 16> DestList; 6011 6012 if (Lex.getKind() != lltok::rsquare) { 6013 BasicBlock *DestBB; 6014 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6015 return true; 6016 DestList.push_back(DestBB); 6017 6018 while (EatIfPresent(lltok::comma)) { 6019 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6020 return true; 6021 DestList.push_back(DestBB); 6022 } 6023 } 6024 6025 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 6026 return true; 6027 6028 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 6029 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 6030 IBI->addDestination(DestList[i]); 6031 Inst = IBI; 6032 return false; 6033 } 6034 6035 /// ParseInvoke 6036 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 6037 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 6038 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 6039 LocTy CallLoc = Lex.getLoc(); 6040 AttrBuilder RetAttrs, FnAttrs; 6041 std::vector<unsigned> FwdRefAttrGrps; 6042 LocTy NoBuiltinLoc; 6043 unsigned CC; 6044 unsigned InvokeAddrSpace; 6045 Type *RetType = nullptr; 6046 LocTy RetTypeLoc; 6047 ValID CalleeID; 6048 SmallVector<ParamInfo, 16> ArgList; 6049 SmallVector<OperandBundleDef, 2> BundleList; 6050 6051 BasicBlock *NormalBB, *UnwindBB; 6052 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6053 ParseOptionalProgramAddrSpace(InvokeAddrSpace) || 6054 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6055 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 6056 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6057 NoBuiltinLoc) || 6058 ParseOptionalOperandBundles(BundleList, PFS) || 6059 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 6060 ParseTypeAndBasicBlock(NormalBB, PFS) || 6061 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 6062 ParseTypeAndBasicBlock(UnwindBB, PFS)) 6063 return true; 6064 6065 // If RetType is a non-function pointer type, then this is the short syntax 6066 // for the call, which means that RetType is just the return type. Infer the 6067 // rest of the function argument types from the arguments that are present. 6068 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6069 if (!Ty) { 6070 // Pull out the types of all of the arguments... 6071 std::vector<Type*> ParamTypes; 6072 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6073 ParamTypes.push_back(ArgList[i].V->getType()); 6074 6075 if (!FunctionType::isValidReturnType(RetType)) 6076 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6077 6078 Ty = FunctionType::get(RetType, ParamTypes, false); 6079 } 6080 6081 CalleeID.FTy = Ty; 6082 6083 // Look up the callee. 6084 Value *Callee; 6085 if (ConvertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID, 6086 Callee, &PFS, /*IsCall=*/true)) 6087 return true; 6088 6089 // Set up the Attribute for the function. 6090 SmallVector<Value *, 8> Args; 6091 SmallVector<AttributeSet, 8> ArgAttrs; 6092 6093 // Loop through FunctionType's arguments and ensure they are specified 6094 // correctly. Also, gather any parameter attributes. 6095 FunctionType::param_iterator I = Ty->param_begin(); 6096 FunctionType::param_iterator E = Ty->param_end(); 6097 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6098 Type *ExpectedTy = nullptr; 6099 if (I != E) { 6100 ExpectedTy = *I++; 6101 } else if (!Ty->isVarArg()) { 6102 return Error(ArgList[i].Loc, "too many arguments specified"); 6103 } 6104 6105 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6106 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6107 getTypeString(ExpectedTy) + "'"); 6108 Args.push_back(ArgList[i].V); 6109 ArgAttrs.push_back(ArgList[i].Attrs); 6110 } 6111 6112 if (I != E) 6113 return Error(CallLoc, "not enough parameters specified for call"); 6114 6115 if (FnAttrs.hasAlignmentAttr()) 6116 return Error(CallLoc, "invoke instructions may not have an alignment"); 6117 6118 // Finish off the Attribute and check them 6119 AttributeList PAL = 6120 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6121 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6122 6123 InvokeInst *II = 6124 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 6125 II->setCallingConv(CC); 6126 II->setAttributes(PAL); 6127 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 6128 Inst = II; 6129 return false; 6130 } 6131 6132 /// ParseResume 6133 /// ::= 'resume' TypeAndValue 6134 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 6135 Value *Exn; LocTy ExnLoc; 6136 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 6137 return true; 6138 6139 ResumeInst *RI = ResumeInst::Create(Exn); 6140 Inst = RI; 6141 return false; 6142 } 6143 6144 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args, 6145 PerFunctionState &PFS) { 6146 if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 6147 return true; 6148 6149 while (Lex.getKind() != lltok::rsquare) { 6150 // If this isn't the first argument, we need a comma. 6151 if (!Args.empty() && 6152 ParseToken(lltok::comma, "expected ',' in argument list")) 6153 return true; 6154 6155 // Parse the argument. 6156 LocTy ArgLoc; 6157 Type *ArgTy = nullptr; 6158 if (ParseType(ArgTy, ArgLoc)) 6159 return true; 6160 6161 Value *V; 6162 if (ArgTy->isMetadataTy()) { 6163 if (ParseMetadataAsValue(V, PFS)) 6164 return true; 6165 } else { 6166 if (ParseValue(ArgTy, V, PFS)) 6167 return true; 6168 } 6169 Args.push_back(V); 6170 } 6171 6172 Lex.Lex(); // Lex the ']'. 6173 return false; 6174 } 6175 6176 /// ParseCleanupRet 6177 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 6178 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 6179 Value *CleanupPad = nullptr; 6180 6181 if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret")) 6182 return true; 6183 6184 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 6185 return true; 6186 6187 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 6188 return true; 6189 6190 BasicBlock *UnwindBB = nullptr; 6191 if (Lex.getKind() == lltok::kw_to) { 6192 Lex.Lex(); 6193 if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 6194 return true; 6195 } else { 6196 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 6197 return true; 6198 } 6199 } 6200 6201 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 6202 return false; 6203 } 6204 6205 /// ParseCatchRet 6206 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 6207 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 6208 Value *CatchPad = nullptr; 6209 6210 if (ParseToken(lltok::kw_from, "expected 'from' after catchret")) 6211 return true; 6212 6213 if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS)) 6214 return true; 6215 6216 BasicBlock *BB; 6217 if (ParseToken(lltok::kw_to, "expected 'to' in catchret") || 6218 ParseTypeAndBasicBlock(BB, PFS)) 6219 return true; 6220 6221 Inst = CatchReturnInst::Create(CatchPad, BB); 6222 return false; 6223 } 6224 6225 /// ParseCatchSwitch 6226 /// ::= 'catchswitch' within Parent 6227 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6228 Value *ParentPad; 6229 6230 if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch")) 6231 return true; 6232 6233 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6234 Lex.getKind() != lltok::LocalVarID) 6235 return TokError("expected scope value for catchswitch"); 6236 6237 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6238 return true; 6239 6240 if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 6241 return true; 6242 6243 SmallVector<BasicBlock *, 32> Table; 6244 do { 6245 BasicBlock *DestBB; 6246 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6247 return true; 6248 Table.push_back(DestBB); 6249 } while (EatIfPresent(lltok::comma)); 6250 6251 if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 6252 return true; 6253 6254 if (ParseToken(lltok::kw_unwind, 6255 "expected 'unwind' after catchswitch scope")) 6256 return true; 6257 6258 BasicBlock *UnwindBB = nullptr; 6259 if (EatIfPresent(lltok::kw_to)) { 6260 if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 6261 return true; 6262 } else { 6263 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) 6264 return true; 6265 } 6266 6267 auto *CatchSwitch = 6268 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 6269 for (BasicBlock *DestBB : Table) 6270 CatchSwitch->addHandler(DestBB); 6271 Inst = CatchSwitch; 6272 return false; 6273 } 6274 6275 /// ParseCatchPad 6276 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 6277 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 6278 Value *CatchSwitch = nullptr; 6279 6280 if (ParseToken(lltok::kw_within, "expected 'within' after catchpad")) 6281 return true; 6282 6283 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 6284 return TokError("expected scope value for catchpad"); 6285 6286 if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 6287 return true; 6288 6289 SmallVector<Value *, 8> Args; 6290 if (ParseExceptionArgs(Args, PFS)) 6291 return true; 6292 6293 Inst = CatchPadInst::Create(CatchSwitch, Args); 6294 return false; 6295 } 6296 6297 /// ParseCleanupPad 6298 /// ::= 'cleanuppad' within Parent ParamList 6299 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 6300 Value *ParentPad = nullptr; 6301 6302 if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 6303 return true; 6304 6305 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6306 Lex.getKind() != lltok::LocalVarID) 6307 return TokError("expected scope value for cleanuppad"); 6308 6309 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6310 return true; 6311 6312 SmallVector<Value *, 8> Args; 6313 if (ParseExceptionArgs(Args, PFS)) 6314 return true; 6315 6316 Inst = CleanupPadInst::Create(ParentPad, Args); 6317 return false; 6318 } 6319 6320 //===----------------------------------------------------------------------===// 6321 // Unary Operators. 6322 //===----------------------------------------------------------------------===// 6323 6324 /// ParseUnaryOp 6325 /// ::= UnaryOp TypeAndValue ',' Value 6326 /// 6327 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6328 /// operand is allowed. 6329 bool LLParser::ParseUnaryOp(Instruction *&Inst, PerFunctionState &PFS, 6330 unsigned Opc, bool IsFP) { 6331 LocTy Loc; Value *LHS; 6332 if (ParseTypeAndValue(LHS, Loc, PFS)) 6333 return true; 6334 6335 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6336 : LHS->getType()->isIntOrIntVectorTy(); 6337 6338 if (!Valid) 6339 return Error(Loc, "invalid operand type for instruction"); 6340 6341 Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 6342 return false; 6343 } 6344 6345 /// ParseCallBr 6346 /// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList 6347 /// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue 6348 /// '[' LabelList ']' 6349 bool LLParser::ParseCallBr(Instruction *&Inst, PerFunctionState &PFS) { 6350 LocTy CallLoc = Lex.getLoc(); 6351 AttrBuilder RetAttrs, FnAttrs; 6352 std::vector<unsigned> FwdRefAttrGrps; 6353 LocTy NoBuiltinLoc; 6354 unsigned CC; 6355 Type *RetType = nullptr; 6356 LocTy RetTypeLoc; 6357 ValID CalleeID; 6358 SmallVector<ParamInfo, 16> ArgList; 6359 SmallVector<OperandBundleDef, 2> BundleList; 6360 6361 BasicBlock *DefaultDest; 6362 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6363 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6364 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 6365 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6366 NoBuiltinLoc) || 6367 ParseOptionalOperandBundles(BundleList, PFS) || 6368 ParseToken(lltok::kw_to, "expected 'to' in callbr") || 6369 ParseTypeAndBasicBlock(DefaultDest, PFS) || 6370 ParseToken(lltok::lsquare, "expected '[' in callbr")) 6371 return true; 6372 6373 // Parse the destination list. 6374 SmallVector<BasicBlock *, 16> IndirectDests; 6375 6376 if (Lex.getKind() != lltok::rsquare) { 6377 BasicBlock *DestBB; 6378 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6379 return true; 6380 IndirectDests.push_back(DestBB); 6381 6382 while (EatIfPresent(lltok::comma)) { 6383 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6384 return true; 6385 IndirectDests.push_back(DestBB); 6386 } 6387 } 6388 6389 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 6390 return true; 6391 6392 // If RetType is a non-function pointer type, then this is the short syntax 6393 // for the call, which means that RetType is just the return type. Infer the 6394 // rest of the function argument types from the arguments that are present. 6395 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6396 if (!Ty) { 6397 // Pull out the types of all of the arguments... 6398 std::vector<Type *> ParamTypes; 6399 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6400 ParamTypes.push_back(ArgList[i].V->getType()); 6401 6402 if (!FunctionType::isValidReturnType(RetType)) 6403 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6404 6405 Ty = FunctionType::get(RetType, ParamTypes, false); 6406 } 6407 6408 CalleeID.FTy = Ty; 6409 6410 // Look up the callee. 6411 Value *Callee; 6412 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS, 6413 /*IsCall=*/true)) 6414 return true; 6415 6416 if (isa<InlineAsm>(Callee) && !Ty->getReturnType()->isVoidTy()) 6417 return Error(RetTypeLoc, "asm-goto outputs not supported"); 6418 6419 // Set up the Attribute for the function. 6420 SmallVector<Value *, 8> Args; 6421 SmallVector<AttributeSet, 8> ArgAttrs; 6422 6423 // Loop through FunctionType's arguments and ensure they are specified 6424 // correctly. Also, gather any parameter attributes. 6425 FunctionType::param_iterator I = Ty->param_begin(); 6426 FunctionType::param_iterator E = Ty->param_end(); 6427 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6428 Type *ExpectedTy = nullptr; 6429 if (I != E) { 6430 ExpectedTy = *I++; 6431 } else if (!Ty->isVarArg()) { 6432 return Error(ArgList[i].Loc, "too many arguments specified"); 6433 } 6434 6435 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6436 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6437 getTypeString(ExpectedTy) + "'"); 6438 Args.push_back(ArgList[i].V); 6439 ArgAttrs.push_back(ArgList[i].Attrs); 6440 } 6441 6442 if (I != E) 6443 return Error(CallLoc, "not enough parameters specified for call"); 6444 6445 if (FnAttrs.hasAlignmentAttr()) 6446 return Error(CallLoc, "callbr instructions may not have an alignment"); 6447 6448 // Finish off the Attribute and check them 6449 AttributeList PAL = 6450 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6451 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6452 6453 CallBrInst *CBI = 6454 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args, 6455 BundleList); 6456 CBI->setCallingConv(CC); 6457 CBI->setAttributes(PAL); 6458 ForwardRefAttrGroups[CBI] = FwdRefAttrGrps; 6459 Inst = CBI; 6460 return false; 6461 } 6462 6463 //===----------------------------------------------------------------------===// 6464 // Binary Operators. 6465 //===----------------------------------------------------------------------===// 6466 6467 /// ParseArithmetic 6468 /// ::= ArithmeticOps TypeAndValue ',' Value 6469 /// 6470 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6471 /// operand is allowed. 6472 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 6473 unsigned Opc, bool IsFP) { 6474 LocTy Loc; Value *LHS, *RHS; 6475 if (ParseTypeAndValue(LHS, Loc, PFS) || 6476 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 6477 ParseValue(LHS->getType(), RHS, PFS)) 6478 return true; 6479 6480 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6481 : LHS->getType()->isIntOrIntVectorTy(); 6482 6483 if (!Valid) 6484 return Error(Loc, "invalid operand type for instruction"); 6485 6486 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6487 return false; 6488 } 6489 6490 /// ParseLogical 6491 /// ::= ArithmeticOps TypeAndValue ',' Value { 6492 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 6493 unsigned Opc) { 6494 LocTy Loc; Value *LHS, *RHS; 6495 if (ParseTypeAndValue(LHS, Loc, PFS) || 6496 ParseToken(lltok::comma, "expected ',' in logical operation") || 6497 ParseValue(LHS->getType(), RHS, PFS)) 6498 return true; 6499 6500 if (!LHS->getType()->isIntOrIntVectorTy()) 6501 return Error(Loc,"instruction requires integer or integer vector operands"); 6502 6503 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6504 return false; 6505 } 6506 6507 /// ParseCompare 6508 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 6509 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 6510 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 6511 unsigned Opc) { 6512 // Parse the integer/fp comparison predicate. 6513 LocTy Loc; 6514 unsigned Pred; 6515 Value *LHS, *RHS; 6516 if (ParseCmpPredicate(Pred, Opc) || 6517 ParseTypeAndValue(LHS, Loc, PFS) || 6518 ParseToken(lltok::comma, "expected ',' after compare value") || 6519 ParseValue(LHS->getType(), RHS, PFS)) 6520 return true; 6521 6522 if (Opc == Instruction::FCmp) { 6523 if (!LHS->getType()->isFPOrFPVectorTy()) 6524 return Error(Loc, "fcmp requires floating point operands"); 6525 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6526 } else { 6527 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 6528 if (!LHS->getType()->isIntOrIntVectorTy() && 6529 !LHS->getType()->isPtrOrPtrVectorTy()) 6530 return Error(Loc, "icmp requires integer operands"); 6531 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6532 } 6533 return false; 6534 } 6535 6536 //===----------------------------------------------------------------------===// 6537 // Other Instructions. 6538 //===----------------------------------------------------------------------===// 6539 6540 6541 /// ParseCast 6542 /// ::= CastOpc TypeAndValue 'to' Type 6543 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 6544 unsigned Opc) { 6545 LocTy Loc; 6546 Value *Op; 6547 Type *DestTy = nullptr; 6548 if (ParseTypeAndValue(Op, Loc, PFS) || 6549 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 6550 ParseType(DestTy)) 6551 return true; 6552 6553 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 6554 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 6555 return Error(Loc, "invalid cast opcode for cast from '" + 6556 getTypeString(Op->getType()) + "' to '" + 6557 getTypeString(DestTy) + "'"); 6558 } 6559 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 6560 return false; 6561 } 6562 6563 /// ParseSelect 6564 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6565 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 6566 LocTy Loc; 6567 Value *Op0, *Op1, *Op2; 6568 if (ParseTypeAndValue(Op0, Loc, PFS) || 6569 ParseToken(lltok::comma, "expected ',' after select condition") || 6570 ParseTypeAndValue(Op1, PFS) || 6571 ParseToken(lltok::comma, "expected ',' after select value") || 6572 ParseTypeAndValue(Op2, PFS)) 6573 return true; 6574 6575 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 6576 return Error(Loc, Reason); 6577 6578 Inst = SelectInst::Create(Op0, Op1, Op2); 6579 return false; 6580 } 6581 6582 /// ParseVA_Arg 6583 /// ::= 'va_arg' TypeAndValue ',' Type 6584 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 6585 Value *Op; 6586 Type *EltTy = nullptr; 6587 LocTy TypeLoc; 6588 if (ParseTypeAndValue(Op, PFS) || 6589 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 6590 ParseType(EltTy, TypeLoc)) 6591 return true; 6592 6593 if (!EltTy->isFirstClassType()) 6594 return Error(TypeLoc, "va_arg requires operand with first class type"); 6595 6596 Inst = new VAArgInst(Op, EltTy); 6597 return false; 6598 } 6599 6600 /// ParseExtractElement 6601 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 6602 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 6603 LocTy Loc; 6604 Value *Op0, *Op1; 6605 if (ParseTypeAndValue(Op0, Loc, PFS) || 6606 ParseToken(lltok::comma, "expected ',' after extract value") || 6607 ParseTypeAndValue(Op1, PFS)) 6608 return true; 6609 6610 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 6611 return Error(Loc, "invalid extractelement operands"); 6612 6613 Inst = ExtractElementInst::Create(Op0, Op1); 6614 return false; 6615 } 6616 6617 /// ParseInsertElement 6618 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6619 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 6620 LocTy Loc; 6621 Value *Op0, *Op1, *Op2; 6622 if (ParseTypeAndValue(Op0, Loc, PFS) || 6623 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6624 ParseTypeAndValue(Op1, PFS) || 6625 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6626 ParseTypeAndValue(Op2, PFS)) 6627 return true; 6628 6629 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 6630 return Error(Loc, "invalid insertelement operands"); 6631 6632 Inst = InsertElementInst::Create(Op0, Op1, Op2); 6633 return false; 6634 } 6635 6636 /// ParseShuffleVector 6637 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6638 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 6639 LocTy Loc; 6640 Value *Op0, *Op1, *Op2; 6641 if (ParseTypeAndValue(Op0, Loc, PFS) || 6642 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 6643 ParseTypeAndValue(Op1, PFS) || 6644 ParseToken(lltok::comma, "expected ',' after shuffle value") || 6645 ParseTypeAndValue(Op2, PFS)) 6646 return true; 6647 6648 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 6649 return Error(Loc, "invalid shufflevector operands"); 6650 6651 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 6652 return false; 6653 } 6654 6655 /// ParsePHI 6656 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 6657 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 6658 Type *Ty = nullptr; LocTy TypeLoc; 6659 Value *Op0, *Op1; 6660 6661 if (ParseType(Ty, TypeLoc) || 6662 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 6663 ParseValue(Ty, Op0, PFS) || 6664 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6665 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 6666 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 6667 return true; 6668 6669 bool AteExtraComma = false; 6670 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 6671 6672 while (true) { 6673 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 6674 6675 if (!EatIfPresent(lltok::comma)) 6676 break; 6677 6678 if (Lex.getKind() == lltok::MetadataVar) { 6679 AteExtraComma = true; 6680 break; 6681 } 6682 6683 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 6684 ParseValue(Ty, Op0, PFS) || 6685 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6686 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 6687 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 6688 return true; 6689 } 6690 6691 if (!Ty->isFirstClassType()) 6692 return Error(TypeLoc, "phi node must have first class type"); 6693 6694 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 6695 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 6696 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 6697 Inst = PN; 6698 return AteExtraComma ? InstExtraComma : InstNormal; 6699 } 6700 6701 /// ParseLandingPad 6702 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 6703 /// Clause 6704 /// ::= 'catch' TypeAndValue 6705 /// ::= 'filter' 6706 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 6707 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 6708 Type *Ty = nullptr; LocTy TyLoc; 6709 6710 if (ParseType(Ty, TyLoc)) 6711 return true; 6712 6713 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 6714 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 6715 6716 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 6717 LandingPadInst::ClauseType CT; 6718 if (EatIfPresent(lltok::kw_catch)) 6719 CT = LandingPadInst::Catch; 6720 else if (EatIfPresent(lltok::kw_filter)) 6721 CT = LandingPadInst::Filter; 6722 else 6723 return TokError("expected 'catch' or 'filter' clause type"); 6724 6725 Value *V; 6726 LocTy VLoc; 6727 if (ParseTypeAndValue(V, VLoc, PFS)) 6728 return true; 6729 6730 // A 'catch' type expects a non-array constant. A filter clause expects an 6731 // array constant. 6732 if (CT == LandingPadInst::Catch) { 6733 if (isa<ArrayType>(V->getType())) 6734 Error(VLoc, "'catch' clause has an invalid type"); 6735 } else { 6736 if (!isa<ArrayType>(V->getType())) 6737 Error(VLoc, "'filter' clause has an invalid type"); 6738 } 6739 6740 Constant *CV = dyn_cast<Constant>(V); 6741 if (!CV) 6742 return Error(VLoc, "clause argument must be a constant"); 6743 LP->addClause(CV); 6744 } 6745 6746 Inst = LP.release(); 6747 return false; 6748 } 6749 6750 /// ParseCall 6751 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 6752 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6753 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 6754 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6755 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 6756 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6757 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 6758 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6759 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 6760 CallInst::TailCallKind TCK) { 6761 AttrBuilder RetAttrs, FnAttrs; 6762 std::vector<unsigned> FwdRefAttrGrps; 6763 LocTy BuiltinLoc; 6764 unsigned CallAddrSpace; 6765 unsigned CC; 6766 Type *RetType = nullptr; 6767 LocTy RetTypeLoc; 6768 ValID CalleeID; 6769 SmallVector<ParamInfo, 16> ArgList; 6770 SmallVector<OperandBundleDef, 2> BundleList; 6771 LocTy CallLoc = Lex.getLoc(); 6772 6773 if (TCK != CallInst::TCK_None && 6774 ParseToken(lltok::kw_call, 6775 "expected 'tail call', 'musttail call', or 'notail call'")) 6776 return true; 6777 6778 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6779 6780 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6781 ParseOptionalProgramAddrSpace(CallAddrSpace) || 6782 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6783 ParseValID(CalleeID) || 6784 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 6785 PFS.getFunction().isVarArg()) || 6786 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 6787 ParseOptionalOperandBundles(BundleList, PFS)) 6788 return true; 6789 6790 // If RetType is a non-function pointer type, then this is the short syntax 6791 // for the call, which means that RetType is just the return type. Infer the 6792 // rest of the function argument types from the arguments that are present. 6793 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6794 if (!Ty) { 6795 // Pull out the types of all of the arguments... 6796 std::vector<Type*> ParamTypes; 6797 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6798 ParamTypes.push_back(ArgList[i].V->getType()); 6799 6800 if (!FunctionType::isValidReturnType(RetType)) 6801 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6802 6803 Ty = FunctionType::get(RetType, ParamTypes, false); 6804 } 6805 6806 CalleeID.FTy = Ty; 6807 6808 // Look up the callee. 6809 Value *Callee; 6810 if (ConvertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee, 6811 &PFS, /*IsCall=*/true)) 6812 return true; 6813 6814 // Set up the Attribute for the function. 6815 SmallVector<AttributeSet, 8> Attrs; 6816 6817 SmallVector<Value*, 8> Args; 6818 6819 // Loop through FunctionType's arguments and ensure they are specified 6820 // correctly. Also, gather any parameter attributes. 6821 FunctionType::param_iterator I = Ty->param_begin(); 6822 FunctionType::param_iterator E = Ty->param_end(); 6823 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6824 Type *ExpectedTy = nullptr; 6825 if (I != E) { 6826 ExpectedTy = *I++; 6827 } else if (!Ty->isVarArg()) { 6828 return Error(ArgList[i].Loc, "too many arguments specified"); 6829 } 6830 6831 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6832 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6833 getTypeString(ExpectedTy) + "'"); 6834 Args.push_back(ArgList[i].V); 6835 Attrs.push_back(ArgList[i].Attrs); 6836 } 6837 6838 if (I != E) 6839 return Error(CallLoc, "not enough parameters specified for call"); 6840 6841 if (FnAttrs.hasAlignmentAttr()) 6842 return Error(CallLoc, "call instructions may not have an alignment"); 6843 6844 // Finish off the Attribute and check them 6845 AttributeList PAL = 6846 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6847 AttributeSet::get(Context, RetAttrs), Attrs); 6848 6849 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 6850 CI->setTailCallKind(TCK); 6851 CI->setCallingConv(CC); 6852 if (FMF.any()) { 6853 if (!isa<FPMathOperator>(CI)) 6854 return Error(CallLoc, "fast-math-flags specified for call without " 6855 "floating-point scalar or vector return type"); 6856 CI->setFastMathFlags(FMF); 6857 } 6858 CI->setAttributes(PAL); 6859 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 6860 Inst = CI; 6861 return false; 6862 } 6863 6864 //===----------------------------------------------------------------------===// 6865 // Memory Instructions. 6866 //===----------------------------------------------------------------------===// 6867 6868 /// ParseAlloc 6869 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 6870 /// (',' 'align' i32)? (',', 'addrspace(n))? 6871 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 6872 Value *Size = nullptr; 6873 LocTy SizeLoc, TyLoc, ASLoc; 6874 MaybeAlign Alignment; 6875 unsigned AddrSpace = 0; 6876 Type *Ty = nullptr; 6877 6878 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 6879 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 6880 6881 if (ParseType(Ty, TyLoc)) return true; 6882 6883 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 6884 return Error(TyLoc, "invalid type for alloca"); 6885 6886 bool AteExtraComma = false; 6887 if (EatIfPresent(lltok::comma)) { 6888 if (Lex.getKind() == lltok::kw_align) { 6889 if (ParseOptionalAlignment(Alignment)) 6890 return true; 6891 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 6892 return true; 6893 } else if (Lex.getKind() == lltok::kw_addrspace) { 6894 ASLoc = Lex.getLoc(); 6895 if (ParseOptionalAddrSpace(AddrSpace)) 6896 return true; 6897 } else if (Lex.getKind() == lltok::MetadataVar) { 6898 AteExtraComma = true; 6899 } else { 6900 if (ParseTypeAndValue(Size, SizeLoc, PFS)) 6901 return true; 6902 if (EatIfPresent(lltok::comma)) { 6903 if (Lex.getKind() == lltok::kw_align) { 6904 if (ParseOptionalAlignment(Alignment)) 6905 return true; 6906 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 6907 return true; 6908 } else if (Lex.getKind() == lltok::kw_addrspace) { 6909 ASLoc = Lex.getLoc(); 6910 if (ParseOptionalAddrSpace(AddrSpace)) 6911 return true; 6912 } else if (Lex.getKind() == lltok::MetadataVar) { 6913 AteExtraComma = true; 6914 } 6915 } 6916 } 6917 } 6918 6919 if (Size && !Size->getType()->isIntegerTy()) 6920 return Error(SizeLoc, "element count must have integer type"); 6921 6922 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, Alignment); 6923 AI->setUsedWithInAlloca(IsInAlloca); 6924 AI->setSwiftError(IsSwiftError); 6925 Inst = AI; 6926 return AteExtraComma ? InstExtraComma : InstNormal; 6927 } 6928 6929 /// ParseLoad 6930 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 6931 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 6932 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6933 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 6934 Value *Val; LocTy Loc; 6935 MaybeAlign Alignment; 6936 bool AteExtraComma = false; 6937 bool isAtomic = false; 6938 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6939 SyncScope::ID SSID = SyncScope::System; 6940 6941 if (Lex.getKind() == lltok::kw_atomic) { 6942 isAtomic = true; 6943 Lex.Lex(); 6944 } 6945 6946 bool isVolatile = false; 6947 if (Lex.getKind() == lltok::kw_volatile) { 6948 isVolatile = true; 6949 Lex.Lex(); 6950 } 6951 6952 Type *Ty; 6953 LocTy ExplicitTypeLoc = Lex.getLoc(); 6954 if (ParseType(Ty) || 6955 ParseToken(lltok::comma, "expected comma after load's type") || 6956 ParseTypeAndValue(Val, Loc, PFS) || 6957 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 6958 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6959 return true; 6960 6961 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 6962 return Error(Loc, "load operand must be a pointer to a first class type"); 6963 if (isAtomic && !Alignment) 6964 return Error(Loc, "atomic load must have explicit non-zero alignment"); 6965 if (Ordering == AtomicOrdering::Release || 6966 Ordering == AtomicOrdering::AcquireRelease) 6967 return Error(Loc, "atomic load cannot use Release ordering"); 6968 6969 if (Ty != cast<PointerType>(Val->getType())->getElementType()) 6970 return Error(ExplicitTypeLoc, 6971 "explicit pointee type doesn't match operand's pointee type"); 6972 6973 Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID); 6974 return AteExtraComma ? InstExtraComma : InstNormal; 6975 } 6976 6977 /// ParseStore 6978 6979 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 6980 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 6981 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6982 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 6983 Value *Val, *Ptr; LocTy Loc, PtrLoc; 6984 MaybeAlign Alignment; 6985 bool AteExtraComma = false; 6986 bool isAtomic = false; 6987 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6988 SyncScope::ID SSID = SyncScope::System; 6989 6990 if (Lex.getKind() == lltok::kw_atomic) { 6991 isAtomic = true; 6992 Lex.Lex(); 6993 } 6994 6995 bool isVolatile = false; 6996 if (Lex.getKind() == lltok::kw_volatile) { 6997 isVolatile = true; 6998 Lex.Lex(); 6999 } 7000 7001 if (ParseTypeAndValue(Val, Loc, PFS) || 7002 ParseToken(lltok::comma, "expected ',' after store operand") || 7003 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 7004 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 7005 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 7006 return true; 7007 7008 if (!Ptr->getType()->isPointerTy()) 7009 return Error(PtrLoc, "store operand must be a pointer"); 7010 if (!Val->getType()->isFirstClassType()) 7011 return Error(Loc, "store operand must be a first class value"); 7012 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 7013 return Error(Loc, "stored value and pointer type do not match"); 7014 if (isAtomic && !Alignment) 7015 return Error(Loc, "atomic store must have explicit non-zero alignment"); 7016 if (Ordering == AtomicOrdering::Acquire || 7017 Ordering == AtomicOrdering::AcquireRelease) 7018 return Error(Loc, "atomic store cannot use Acquire ordering"); 7019 7020 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID); 7021 return AteExtraComma ? InstExtraComma : InstNormal; 7022 } 7023 7024 /// ParseCmpXchg 7025 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 7026 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering 7027 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 7028 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 7029 bool AteExtraComma = false; 7030 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 7031 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 7032 SyncScope::ID SSID = SyncScope::System; 7033 bool isVolatile = false; 7034 bool isWeak = false; 7035 7036 if (EatIfPresent(lltok::kw_weak)) 7037 isWeak = true; 7038 7039 if (EatIfPresent(lltok::kw_volatile)) 7040 isVolatile = true; 7041 7042 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 7043 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 7044 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 7045 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 7046 ParseTypeAndValue(New, NewLoc, PFS) || 7047 ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 7048 ParseOrdering(FailureOrdering)) 7049 return true; 7050 7051 if (SuccessOrdering == AtomicOrdering::Unordered || 7052 FailureOrdering == AtomicOrdering::Unordered) 7053 return TokError("cmpxchg cannot be unordered"); 7054 if (isStrongerThan(FailureOrdering, SuccessOrdering)) 7055 return TokError("cmpxchg failure argument shall be no stronger than the " 7056 "success argument"); 7057 if (FailureOrdering == AtomicOrdering::Release || 7058 FailureOrdering == AtomicOrdering::AcquireRelease) 7059 return TokError( 7060 "cmpxchg failure ordering cannot include release semantics"); 7061 if (!Ptr->getType()->isPointerTy()) 7062 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 7063 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 7064 return Error(CmpLoc, "compare value and pointer type do not match"); 7065 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 7066 return Error(NewLoc, "new value and pointer type do not match"); 7067 if (!New->getType()->isFirstClassType()) 7068 return Error(NewLoc, "cmpxchg operand must be a first class value"); 7069 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 7070 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID); 7071 CXI->setVolatile(isVolatile); 7072 CXI->setWeak(isWeak); 7073 Inst = CXI; 7074 return AteExtraComma ? InstExtraComma : InstNormal; 7075 } 7076 7077 /// ParseAtomicRMW 7078 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 7079 /// 'singlethread'? AtomicOrdering 7080 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 7081 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 7082 bool AteExtraComma = false; 7083 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7084 SyncScope::ID SSID = SyncScope::System; 7085 bool isVolatile = false; 7086 bool IsFP = false; 7087 AtomicRMWInst::BinOp Operation; 7088 7089 if (EatIfPresent(lltok::kw_volatile)) 7090 isVolatile = true; 7091 7092 switch (Lex.getKind()) { 7093 default: return TokError("expected binary operation in atomicrmw"); 7094 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 7095 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 7096 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 7097 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 7098 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 7099 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 7100 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 7101 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 7102 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 7103 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 7104 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 7105 case lltok::kw_fadd: 7106 Operation = AtomicRMWInst::FAdd; 7107 IsFP = true; 7108 break; 7109 case lltok::kw_fsub: 7110 Operation = AtomicRMWInst::FSub; 7111 IsFP = true; 7112 break; 7113 } 7114 Lex.Lex(); // Eat the operation. 7115 7116 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 7117 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 7118 ParseTypeAndValue(Val, ValLoc, PFS) || 7119 ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7120 return true; 7121 7122 if (Ordering == AtomicOrdering::Unordered) 7123 return TokError("atomicrmw cannot be unordered"); 7124 if (!Ptr->getType()->isPointerTy()) 7125 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 7126 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 7127 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 7128 7129 if (Operation == AtomicRMWInst::Xchg) { 7130 if (!Val->getType()->isIntegerTy() && 7131 !Val->getType()->isFloatingPointTy()) { 7132 return Error(ValLoc, "atomicrmw " + 7133 AtomicRMWInst::getOperationName(Operation) + 7134 " operand must be an integer or floating point type"); 7135 } 7136 } else if (IsFP) { 7137 if (!Val->getType()->isFloatingPointTy()) { 7138 return Error(ValLoc, "atomicrmw " + 7139 AtomicRMWInst::getOperationName(Operation) + 7140 " operand must be a floating point type"); 7141 } 7142 } else { 7143 if (!Val->getType()->isIntegerTy()) { 7144 return Error(ValLoc, "atomicrmw " + 7145 AtomicRMWInst::getOperationName(Operation) + 7146 " operand must be an integer"); 7147 } 7148 } 7149 7150 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 7151 if (Size < 8 || (Size & (Size - 1))) 7152 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 7153 " integer"); 7154 7155 AtomicRMWInst *RMWI = 7156 new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 7157 RMWI->setVolatile(isVolatile); 7158 Inst = RMWI; 7159 return AteExtraComma ? InstExtraComma : InstNormal; 7160 } 7161 7162 /// ParseFence 7163 /// ::= 'fence' 'singlethread'? AtomicOrdering 7164 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 7165 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7166 SyncScope::ID SSID = SyncScope::System; 7167 if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7168 return true; 7169 7170 if (Ordering == AtomicOrdering::Unordered) 7171 return TokError("fence cannot be unordered"); 7172 if (Ordering == AtomicOrdering::Monotonic) 7173 return TokError("fence cannot be monotonic"); 7174 7175 Inst = new FenceInst(Context, Ordering, SSID); 7176 return InstNormal; 7177 } 7178 7179 /// ParseGetElementPtr 7180 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 7181 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 7182 Value *Ptr = nullptr; 7183 Value *Val = nullptr; 7184 LocTy Loc, EltLoc; 7185 7186 bool InBounds = EatIfPresent(lltok::kw_inbounds); 7187 7188 Type *Ty = nullptr; 7189 LocTy ExplicitTypeLoc = Lex.getLoc(); 7190 if (ParseType(Ty) || 7191 ParseToken(lltok::comma, "expected comma after getelementptr's type") || 7192 ParseTypeAndValue(Ptr, Loc, PFS)) 7193 return true; 7194 7195 Type *BaseType = Ptr->getType(); 7196 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 7197 if (!BasePointerType) 7198 return Error(Loc, "base of getelementptr must be a pointer"); 7199 7200 if (Ty != BasePointerType->getElementType()) 7201 return Error(ExplicitTypeLoc, 7202 "explicit pointee type doesn't match operand's pointee type"); 7203 7204 SmallVector<Value*, 16> Indices; 7205 bool AteExtraComma = false; 7206 // GEP returns a vector of pointers if at least one of parameters is a vector. 7207 // All vector parameters should have the same vector width. 7208 unsigned GEPWidth = BaseType->isVectorTy() ? 7209 BaseType->getVectorNumElements() : 0; 7210 7211 while (EatIfPresent(lltok::comma)) { 7212 if (Lex.getKind() == lltok::MetadataVar) { 7213 AteExtraComma = true; 7214 break; 7215 } 7216 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 7217 if (!Val->getType()->isIntOrIntVectorTy()) 7218 return Error(EltLoc, "getelementptr index must be an integer"); 7219 7220 if (Val->getType()->isVectorTy()) { 7221 unsigned ValNumEl = Val->getType()->getVectorNumElements(); 7222 if (GEPWidth && GEPWidth != ValNumEl) 7223 return Error(EltLoc, 7224 "getelementptr vector index has a wrong number of elements"); 7225 GEPWidth = ValNumEl; 7226 } 7227 Indices.push_back(Val); 7228 } 7229 7230 SmallPtrSet<Type*, 4> Visited; 7231 if (!Indices.empty() && !Ty->isSized(&Visited)) 7232 return Error(Loc, "base element of getelementptr must be sized"); 7233 7234 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 7235 return Error(Loc, "invalid getelementptr indices"); 7236 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 7237 if (InBounds) 7238 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 7239 return AteExtraComma ? InstExtraComma : InstNormal; 7240 } 7241 7242 /// ParseExtractValue 7243 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 7244 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 7245 Value *Val; LocTy Loc; 7246 SmallVector<unsigned, 4> Indices; 7247 bool AteExtraComma; 7248 if (ParseTypeAndValue(Val, Loc, PFS) || 7249 ParseIndexList(Indices, AteExtraComma)) 7250 return true; 7251 7252 if (!Val->getType()->isAggregateType()) 7253 return Error(Loc, "extractvalue operand must be aggregate type"); 7254 7255 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 7256 return Error(Loc, "invalid indices for extractvalue"); 7257 Inst = ExtractValueInst::Create(Val, Indices); 7258 return AteExtraComma ? InstExtraComma : InstNormal; 7259 } 7260 7261 /// ParseInsertValue 7262 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 7263 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 7264 Value *Val0, *Val1; LocTy Loc0, Loc1; 7265 SmallVector<unsigned, 4> Indices; 7266 bool AteExtraComma; 7267 if (ParseTypeAndValue(Val0, Loc0, PFS) || 7268 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 7269 ParseTypeAndValue(Val1, Loc1, PFS) || 7270 ParseIndexList(Indices, AteExtraComma)) 7271 return true; 7272 7273 if (!Val0->getType()->isAggregateType()) 7274 return Error(Loc0, "insertvalue operand must be aggregate type"); 7275 7276 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 7277 if (!IndexedType) 7278 return Error(Loc0, "invalid indices for insertvalue"); 7279 if (IndexedType != Val1->getType()) 7280 return Error(Loc1, "insertvalue operand and field disagree in type: '" + 7281 getTypeString(Val1->getType()) + "' instead of '" + 7282 getTypeString(IndexedType) + "'"); 7283 Inst = InsertValueInst::Create(Val0, Val1, Indices); 7284 return AteExtraComma ? InstExtraComma : InstNormal; 7285 } 7286 7287 //===----------------------------------------------------------------------===// 7288 // Embedded metadata. 7289 //===----------------------------------------------------------------------===// 7290 7291 /// ParseMDNodeVector 7292 /// ::= { Element (',' Element)* } 7293 /// Element 7294 /// ::= 'null' | TypeAndValue 7295 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 7296 if (ParseToken(lltok::lbrace, "expected '{' here")) 7297 return true; 7298 7299 // Check for an empty list. 7300 if (EatIfPresent(lltok::rbrace)) 7301 return false; 7302 7303 do { 7304 // Null is a special case since it is typeless. 7305 if (EatIfPresent(lltok::kw_null)) { 7306 Elts.push_back(nullptr); 7307 continue; 7308 } 7309 7310 Metadata *MD; 7311 if (ParseMetadata(MD, nullptr)) 7312 return true; 7313 Elts.push_back(MD); 7314 } while (EatIfPresent(lltok::comma)); 7315 7316 return ParseToken(lltok::rbrace, "expected end of metadata node"); 7317 } 7318 7319 //===----------------------------------------------------------------------===// 7320 // Use-list order directives. 7321 //===----------------------------------------------------------------------===// 7322 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 7323 SMLoc Loc) { 7324 if (V->use_empty()) 7325 return Error(Loc, "value has no uses"); 7326 7327 unsigned NumUses = 0; 7328 SmallDenseMap<const Use *, unsigned, 16> Order; 7329 for (const Use &U : V->uses()) { 7330 if (++NumUses > Indexes.size()) 7331 break; 7332 Order[&U] = Indexes[NumUses - 1]; 7333 } 7334 if (NumUses < 2) 7335 return Error(Loc, "value only has one use"); 7336 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 7337 return Error(Loc, 7338 "wrong number of indexes, expected " + Twine(V->getNumUses())); 7339 7340 V->sortUseList([&](const Use &L, const Use &R) { 7341 return Order.lookup(&L) < Order.lookup(&R); 7342 }); 7343 return false; 7344 } 7345 7346 /// ParseUseListOrderIndexes 7347 /// ::= '{' uint32 (',' uint32)+ '}' 7348 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 7349 SMLoc Loc = Lex.getLoc(); 7350 if (ParseToken(lltok::lbrace, "expected '{' here")) 7351 return true; 7352 if (Lex.getKind() == lltok::rbrace) 7353 return Lex.Error("expected non-empty list of uselistorder indexes"); 7354 7355 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 7356 // indexes should be distinct numbers in the range [0, size-1], and should 7357 // not be in order. 7358 unsigned Offset = 0; 7359 unsigned Max = 0; 7360 bool IsOrdered = true; 7361 assert(Indexes.empty() && "Expected empty order vector"); 7362 do { 7363 unsigned Index; 7364 if (ParseUInt32(Index)) 7365 return true; 7366 7367 // Update consistency checks. 7368 Offset += Index - Indexes.size(); 7369 Max = std::max(Max, Index); 7370 IsOrdered &= Index == Indexes.size(); 7371 7372 Indexes.push_back(Index); 7373 } while (EatIfPresent(lltok::comma)); 7374 7375 if (ParseToken(lltok::rbrace, "expected '}' here")) 7376 return true; 7377 7378 if (Indexes.size() < 2) 7379 return Error(Loc, "expected >= 2 uselistorder indexes"); 7380 if (Offset != 0 || Max >= Indexes.size()) 7381 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)"); 7382 if (IsOrdered) 7383 return Error(Loc, "expected uselistorder indexes to change the order"); 7384 7385 return false; 7386 } 7387 7388 /// ParseUseListOrder 7389 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 7390 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) { 7391 SMLoc Loc = Lex.getLoc(); 7392 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 7393 return true; 7394 7395 Value *V; 7396 SmallVector<unsigned, 16> Indexes; 7397 if (ParseTypeAndValue(V, PFS) || 7398 ParseToken(lltok::comma, "expected comma in uselistorder directive") || 7399 ParseUseListOrderIndexes(Indexes)) 7400 return true; 7401 7402 return sortUseListOrder(V, Indexes, Loc); 7403 } 7404 7405 /// ParseUseListOrderBB 7406 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 7407 bool LLParser::ParseUseListOrderBB() { 7408 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 7409 SMLoc Loc = Lex.getLoc(); 7410 Lex.Lex(); 7411 7412 ValID Fn, Label; 7413 SmallVector<unsigned, 16> Indexes; 7414 if (ParseValID(Fn) || 7415 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7416 ParseValID(Label) || 7417 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7418 ParseUseListOrderIndexes(Indexes)) 7419 return true; 7420 7421 // Check the function. 7422 GlobalValue *GV; 7423 if (Fn.Kind == ValID::t_GlobalName) 7424 GV = M->getNamedValue(Fn.StrVal); 7425 else if (Fn.Kind == ValID::t_GlobalID) 7426 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 7427 else 7428 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 7429 if (!GV) 7430 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb"); 7431 auto *F = dyn_cast<Function>(GV); 7432 if (!F) 7433 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 7434 if (F->isDeclaration()) 7435 return Error(Fn.Loc, "invalid declaration in uselistorder_bb"); 7436 7437 // Check the basic block. 7438 if (Label.Kind == ValID::t_LocalID) 7439 return Error(Label.Loc, "invalid numeric label in uselistorder_bb"); 7440 if (Label.Kind != ValID::t_LocalName) 7441 return Error(Label.Loc, "expected basic block name in uselistorder_bb"); 7442 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 7443 if (!V) 7444 return Error(Label.Loc, "invalid basic block in uselistorder_bb"); 7445 if (!isa<BasicBlock>(V)) 7446 return Error(Label.Loc, "expected basic block in uselistorder_bb"); 7447 7448 return sortUseListOrder(V, Indexes, Loc); 7449 } 7450 7451 /// ModuleEntry 7452 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')' 7453 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')' 7454 bool LLParser::ParseModuleEntry(unsigned ID) { 7455 assert(Lex.getKind() == lltok::kw_module); 7456 Lex.Lex(); 7457 7458 std::string Path; 7459 if (ParseToken(lltok::colon, "expected ':' here") || 7460 ParseToken(lltok::lparen, "expected '(' here") || 7461 ParseToken(lltok::kw_path, "expected 'path' here") || 7462 ParseToken(lltok::colon, "expected ':' here") || 7463 ParseStringConstant(Path) || 7464 ParseToken(lltok::comma, "expected ',' here") || 7465 ParseToken(lltok::kw_hash, "expected 'hash' here") || 7466 ParseToken(lltok::colon, "expected ':' here") || 7467 ParseToken(lltok::lparen, "expected '(' here")) 7468 return true; 7469 7470 ModuleHash Hash; 7471 if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") || 7472 ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") || 7473 ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") || 7474 ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") || 7475 ParseUInt32(Hash[4])) 7476 return true; 7477 7478 if (ParseToken(lltok::rparen, "expected ')' here") || 7479 ParseToken(lltok::rparen, "expected ')' here")) 7480 return true; 7481 7482 auto ModuleEntry = Index->addModule(Path, ID, Hash); 7483 ModuleIdMap[ID] = ModuleEntry->first(); 7484 7485 return false; 7486 } 7487 7488 /// TypeIdEntry 7489 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')' 7490 bool LLParser::ParseTypeIdEntry(unsigned ID) { 7491 assert(Lex.getKind() == lltok::kw_typeid); 7492 Lex.Lex(); 7493 7494 std::string Name; 7495 if (ParseToken(lltok::colon, "expected ':' here") || 7496 ParseToken(lltok::lparen, "expected '(' here") || 7497 ParseToken(lltok::kw_name, "expected 'name' here") || 7498 ParseToken(lltok::colon, "expected ':' here") || 7499 ParseStringConstant(Name)) 7500 return true; 7501 7502 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name); 7503 if (ParseToken(lltok::comma, "expected ',' here") || 7504 ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here")) 7505 return true; 7506 7507 // Check if this ID was forward referenced, and if so, update the 7508 // corresponding GUIDs. 7509 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7510 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7511 for (auto TIDRef : FwdRefTIDs->second) { 7512 assert(!*TIDRef.first && 7513 "Forward referenced type id GUID expected to be 0"); 7514 *TIDRef.first = GlobalValue::getGUID(Name); 7515 } 7516 ForwardRefTypeIds.erase(FwdRefTIDs); 7517 } 7518 7519 return false; 7520 } 7521 7522 /// TypeIdSummary 7523 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')' 7524 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) { 7525 if (ParseToken(lltok::kw_summary, "expected 'summary' here") || 7526 ParseToken(lltok::colon, "expected ':' here") || 7527 ParseToken(lltok::lparen, "expected '(' here") || 7528 ParseTypeTestResolution(TIS.TTRes)) 7529 return true; 7530 7531 if (EatIfPresent(lltok::comma)) { 7532 // Expect optional wpdResolutions field 7533 if (ParseOptionalWpdResolutions(TIS.WPDRes)) 7534 return true; 7535 } 7536 7537 if (ParseToken(lltok::rparen, "expected ')' here")) 7538 return true; 7539 7540 return false; 7541 } 7542 7543 static ValueInfo EmptyVI = 7544 ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8); 7545 7546 /// TypeIdCompatibleVtableEntry 7547 /// ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ',' 7548 /// TypeIdCompatibleVtableInfo 7549 /// ')' 7550 bool LLParser::ParseTypeIdCompatibleVtableEntry(unsigned ID) { 7551 assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable); 7552 Lex.Lex(); 7553 7554 std::string Name; 7555 if (ParseToken(lltok::colon, "expected ':' here") || 7556 ParseToken(lltok::lparen, "expected '(' here") || 7557 ParseToken(lltok::kw_name, "expected 'name' here") || 7558 ParseToken(lltok::colon, "expected ':' here") || 7559 ParseStringConstant(Name)) 7560 return true; 7561 7562 TypeIdCompatibleVtableInfo &TI = 7563 Index->getOrInsertTypeIdCompatibleVtableSummary(Name); 7564 if (ParseToken(lltok::comma, "expected ',' here") || 7565 ParseToken(lltok::kw_summary, "expected 'summary' here") || 7566 ParseToken(lltok::colon, "expected ':' here") || 7567 ParseToken(lltok::lparen, "expected '(' here")) 7568 return true; 7569 7570 IdToIndexMapType IdToIndexMap; 7571 // Parse each call edge 7572 do { 7573 uint64_t Offset; 7574 if (ParseToken(lltok::lparen, "expected '(' here") || 7575 ParseToken(lltok::kw_offset, "expected 'offset' here") || 7576 ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) || 7577 ParseToken(lltok::comma, "expected ',' here")) 7578 return true; 7579 7580 LocTy Loc = Lex.getLoc(); 7581 unsigned GVId; 7582 ValueInfo VI; 7583 if (ParseGVReference(VI, GVId)) 7584 return true; 7585 7586 // Keep track of the TypeIdCompatibleVtableInfo array index needing a 7587 // forward reference. We will save the location of the ValueInfo needing an 7588 // update, but can only do so once the std::vector is finalized. 7589 if (VI == EmptyVI) 7590 IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc)); 7591 TI.push_back({Offset, VI}); 7592 7593 if (ParseToken(lltok::rparen, "expected ')' in call")) 7594 return true; 7595 } while (EatIfPresent(lltok::comma)); 7596 7597 // Now that the TI vector is finalized, it is safe to save the locations 7598 // of any forward GV references that need updating later. 7599 for (auto I : IdToIndexMap) { 7600 for (auto P : I.second) { 7601 assert(TI[P.first].VTableVI == EmptyVI && 7602 "Forward referenced ValueInfo expected to be empty"); 7603 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 7604 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 7605 FwdRef.first->second.push_back( 7606 std::make_pair(&TI[P.first].VTableVI, P.second)); 7607 } 7608 } 7609 7610 if (ParseToken(lltok::rparen, "expected ')' here") || 7611 ParseToken(lltok::rparen, "expected ')' here")) 7612 return true; 7613 7614 // Check if this ID was forward referenced, and if so, update the 7615 // corresponding GUIDs. 7616 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7617 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7618 for (auto TIDRef : FwdRefTIDs->second) { 7619 assert(!*TIDRef.first && 7620 "Forward referenced type id GUID expected to be 0"); 7621 *TIDRef.first = GlobalValue::getGUID(Name); 7622 } 7623 ForwardRefTypeIds.erase(FwdRefTIDs); 7624 } 7625 7626 return false; 7627 } 7628 7629 /// TypeTestResolution 7630 /// ::= 'typeTestRes' ':' '(' 'kind' ':' 7631 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ',' 7632 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]? 7633 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]? 7634 /// [',' 'inlinesBits' ':' UInt64]? ')' 7635 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) { 7636 if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") || 7637 ParseToken(lltok::colon, "expected ':' here") || 7638 ParseToken(lltok::lparen, "expected '(' here") || 7639 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7640 ParseToken(lltok::colon, "expected ':' here")) 7641 return true; 7642 7643 switch (Lex.getKind()) { 7644 case lltok::kw_unsat: 7645 TTRes.TheKind = TypeTestResolution::Unsat; 7646 break; 7647 case lltok::kw_byteArray: 7648 TTRes.TheKind = TypeTestResolution::ByteArray; 7649 break; 7650 case lltok::kw_inline: 7651 TTRes.TheKind = TypeTestResolution::Inline; 7652 break; 7653 case lltok::kw_single: 7654 TTRes.TheKind = TypeTestResolution::Single; 7655 break; 7656 case lltok::kw_allOnes: 7657 TTRes.TheKind = TypeTestResolution::AllOnes; 7658 break; 7659 default: 7660 return Error(Lex.getLoc(), "unexpected TypeTestResolution kind"); 7661 } 7662 Lex.Lex(); 7663 7664 if (ParseToken(lltok::comma, "expected ',' here") || 7665 ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") || 7666 ParseToken(lltok::colon, "expected ':' here") || 7667 ParseUInt32(TTRes.SizeM1BitWidth)) 7668 return true; 7669 7670 // Parse optional fields 7671 while (EatIfPresent(lltok::comma)) { 7672 switch (Lex.getKind()) { 7673 case lltok::kw_alignLog2: 7674 Lex.Lex(); 7675 if (ParseToken(lltok::colon, "expected ':'") || 7676 ParseUInt64(TTRes.AlignLog2)) 7677 return true; 7678 break; 7679 case lltok::kw_sizeM1: 7680 Lex.Lex(); 7681 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1)) 7682 return true; 7683 break; 7684 case lltok::kw_bitMask: { 7685 unsigned Val; 7686 Lex.Lex(); 7687 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val)) 7688 return true; 7689 assert(Val <= 0xff); 7690 TTRes.BitMask = (uint8_t)Val; 7691 break; 7692 } 7693 case lltok::kw_inlineBits: 7694 Lex.Lex(); 7695 if (ParseToken(lltok::colon, "expected ':'") || 7696 ParseUInt64(TTRes.InlineBits)) 7697 return true; 7698 break; 7699 default: 7700 return Error(Lex.getLoc(), "expected optional TypeTestResolution field"); 7701 } 7702 } 7703 7704 if (ParseToken(lltok::rparen, "expected ')' here")) 7705 return true; 7706 7707 return false; 7708 } 7709 7710 /// OptionalWpdResolutions 7711 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')' 7712 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')' 7713 bool LLParser::ParseOptionalWpdResolutions( 7714 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) { 7715 if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") || 7716 ParseToken(lltok::colon, "expected ':' here") || 7717 ParseToken(lltok::lparen, "expected '(' here")) 7718 return true; 7719 7720 do { 7721 uint64_t Offset; 7722 WholeProgramDevirtResolution WPDRes; 7723 if (ParseToken(lltok::lparen, "expected '(' here") || 7724 ParseToken(lltok::kw_offset, "expected 'offset' here") || 7725 ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) || 7726 ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) || 7727 ParseToken(lltok::rparen, "expected ')' here")) 7728 return true; 7729 WPDResMap[Offset] = WPDRes; 7730 } while (EatIfPresent(lltok::comma)); 7731 7732 if (ParseToken(lltok::rparen, "expected ')' here")) 7733 return true; 7734 7735 return false; 7736 } 7737 7738 /// WpdRes 7739 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir' 7740 /// [',' OptionalResByArg]? ')' 7741 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl' 7742 /// ',' 'singleImplName' ':' STRINGCONSTANT ',' 7743 /// [',' OptionalResByArg]? ')' 7744 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel' 7745 /// [',' OptionalResByArg]? ')' 7746 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) { 7747 if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") || 7748 ParseToken(lltok::colon, "expected ':' here") || 7749 ParseToken(lltok::lparen, "expected '(' here") || 7750 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7751 ParseToken(lltok::colon, "expected ':' here")) 7752 return true; 7753 7754 switch (Lex.getKind()) { 7755 case lltok::kw_indir: 7756 WPDRes.TheKind = WholeProgramDevirtResolution::Indir; 7757 break; 7758 case lltok::kw_singleImpl: 7759 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl; 7760 break; 7761 case lltok::kw_branchFunnel: 7762 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel; 7763 break; 7764 default: 7765 return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind"); 7766 } 7767 Lex.Lex(); 7768 7769 // Parse optional fields 7770 while (EatIfPresent(lltok::comma)) { 7771 switch (Lex.getKind()) { 7772 case lltok::kw_singleImplName: 7773 Lex.Lex(); 7774 if (ParseToken(lltok::colon, "expected ':' here") || 7775 ParseStringConstant(WPDRes.SingleImplName)) 7776 return true; 7777 break; 7778 case lltok::kw_resByArg: 7779 if (ParseOptionalResByArg(WPDRes.ResByArg)) 7780 return true; 7781 break; 7782 default: 7783 return Error(Lex.getLoc(), 7784 "expected optional WholeProgramDevirtResolution field"); 7785 } 7786 } 7787 7788 if (ParseToken(lltok::rparen, "expected ')' here")) 7789 return true; 7790 7791 return false; 7792 } 7793 7794 /// OptionalResByArg 7795 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')' 7796 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':' 7797 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' | 7798 /// 'virtualConstProp' ) 7799 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]? 7800 /// [',' 'bit' ':' UInt32]? ')' 7801 bool LLParser::ParseOptionalResByArg( 7802 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg> 7803 &ResByArg) { 7804 if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") || 7805 ParseToken(lltok::colon, "expected ':' here") || 7806 ParseToken(lltok::lparen, "expected '(' here")) 7807 return true; 7808 7809 do { 7810 std::vector<uint64_t> Args; 7811 if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") || 7812 ParseToken(lltok::kw_byArg, "expected 'byArg here") || 7813 ParseToken(lltok::colon, "expected ':' here") || 7814 ParseToken(lltok::lparen, "expected '(' here") || 7815 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7816 ParseToken(lltok::colon, "expected ':' here")) 7817 return true; 7818 7819 WholeProgramDevirtResolution::ByArg ByArg; 7820 switch (Lex.getKind()) { 7821 case lltok::kw_indir: 7822 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir; 7823 break; 7824 case lltok::kw_uniformRetVal: 7825 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 7826 break; 7827 case lltok::kw_uniqueRetVal: 7828 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 7829 break; 7830 case lltok::kw_virtualConstProp: 7831 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 7832 break; 7833 default: 7834 return Error(Lex.getLoc(), 7835 "unexpected WholeProgramDevirtResolution::ByArg kind"); 7836 } 7837 Lex.Lex(); 7838 7839 // Parse optional fields 7840 while (EatIfPresent(lltok::comma)) { 7841 switch (Lex.getKind()) { 7842 case lltok::kw_info: 7843 Lex.Lex(); 7844 if (ParseToken(lltok::colon, "expected ':' here") || 7845 ParseUInt64(ByArg.Info)) 7846 return true; 7847 break; 7848 case lltok::kw_byte: 7849 Lex.Lex(); 7850 if (ParseToken(lltok::colon, "expected ':' here") || 7851 ParseUInt32(ByArg.Byte)) 7852 return true; 7853 break; 7854 case lltok::kw_bit: 7855 Lex.Lex(); 7856 if (ParseToken(lltok::colon, "expected ':' here") || 7857 ParseUInt32(ByArg.Bit)) 7858 return true; 7859 break; 7860 default: 7861 return Error(Lex.getLoc(), 7862 "expected optional whole program devirt field"); 7863 } 7864 } 7865 7866 if (ParseToken(lltok::rparen, "expected ')' here")) 7867 return true; 7868 7869 ResByArg[Args] = ByArg; 7870 } while (EatIfPresent(lltok::comma)); 7871 7872 if (ParseToken(lltok::rparen, "expected ')' here")) 7873 return true; 7874 7875 return false; 7876 } 7877 7878 /// OptionalResByArg 7879 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')' 7880 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) { 7881 if (ParseToken(lltok::kw_args, "expected 'args' here") || 7882 ParseToken(lltok::colon, "expected ':' here") || 7883 ParseToken(lltok::lparen, "expected '(' here")) 7884 return true; 7885 7886 do { 7887 uint64_t Val; 7888 if (ParseUInt64(Val)) 7889 return true; 7890 Args.push_back(Val); 7891 } while (EatIfPresent(lltok::comma)); 7892 7893 if (ParseToken(lltok::rparen, "expected ')' here")) 7894 return true; 7895 7896 return false; 7897 } 7898 7899 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8; 7900 7901 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) { 7902 bool ReadOnly = Fwd->isReadOnly(); 7903 bool WriteOnly = Fwd->isWriteOnly(); 7904 assert(!(ReadOnly && WriteOnly)); 7905 *Fwd = Resolved; 7906 if (ReadOnly) 7907 Fwd->setReadOnly(); 7908 if (WriteOnly) 7909 Fwd->setWriteOnly(); 7910 } 7911 7912 /// Stores the given Name/GUID and associated summary into the Index. 7913 /// Also updates any forward references to the associated entry ID. 7914 void LLParser::AddGlobalValueToIndex( 7915 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage, 7916 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) { 7917 // First create the ValueInfo utilizing the Name or GUID. 7918 ValueInfo VI; 7919 if (GUID != 0) { 7920 assert(Name.empty()); 7921 VI = Index->getOrInsertValueInfo(GUID); 7922 } else { 7923 assert(!Name.empty()); 7924 if (M) { 7925 auto *GV = M->getNamedValue(Name); 7926 assert(GV); 7927 VI = Index->getOrInsertValueInfo(GV); 7928 } else { 7929 assert( 7930 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) && 7931 "Need a source_filename to compute GUID for local"); 7932 GUID = GlobalValue::getGUID( 7933 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName)); 7934 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name)); 7935 } 7936 } 7937 7938 // Resolve forward references from calls/refs 7939 auto FwdRefVIs = ForwardRefValueInfos.find(ID); 7940 if (FwdRefVIs != ForwardRefValueInfos.end()) { 7941 for (auto VIRef : FwdRefVIs->second) { 7942 assert(VIRef.first->getRef() == FwdVIRef && 7943 "Forward referenced ValueInfo expected to be empty"); 7944 resolveFwdRef(VIRef.first, VI); 7945 } 7946 ForwardRefValueInfos.erase(FwdRefVIs); 7947 } 7948 7949 // Resolve forward references from aliases 7950 auto FwdRefAliasees = ForwardRefAliasees.find(ID); 7951 if (FwdRefAliasees != ForwardRefAliasees.end()) { 7952 for (auto AliaseeRef : FwdRefAliasees->second) { 7953 assert(!AliaseeRef.first->hasAliasee() && 7954 "Forward referencing alias already has aliasee"); 7955 assert(Summary && "Aliasee must be a definition"); 7956 AliaseeRef.first->setAliasee(VI, Summary.get()); 7957 } 7958 ForwardRefAliasees.erase(FwdRefAliasees); 7959 } 7960 7961 // Add the summary if one was provided. 7962 if (Summary) 7963 Index->addGlobalValueSummary(VI, std::move(Summary)); 7964 7965 // Save the associated ValueInfo for use in later references by ID. 7966 if (ID == NumberedValueInfos.size()) 7967 NumberedValueInfos.push_back(VI); 7968 else { 7969 // Handle non-continuous numbers (to make test simplification easier). 7970 if (ID > NumberedValueInfos.size()) 7971 NumberedValueInfos.resize(ID + 1); 7972 NumberedValueInfos[ID] = VI; 7973 } 7974 } 7975 7976 /// ParseGVEntry 7977 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64) 7978 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')' 7979 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')' 7980 bool LLParser::ParseGVEntry(unsigned ID) { 7981 assert(Lex.getKind() == lltok::kw_gv); 7982 Lex.Lex(); 7983 7984 if (ParseToken(lltok::colon, "expected ':' here") || 7985 ParseToken(lltok::lparen, "expected '(' here")) 7986 return true; 7987 7988 std::string Name; 7989 GlobalValue::GUID GUID = 0; 7990 switch (Lex.getKind()) { 7991 case lltok::kw_name: 7992 Lex.Lex(); 7993 if (ParseToken(lltok::colon, "expected ':' here") || 7994 ParseStringConstant(Name)) 7995 return true; 7996 // Can't create GUID/ValueInfo until we have the linkage. 7997 break; 7998 case lltok::kw_guid: 7999 Lex.Lex(); 8000 if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID)) 8001 return true; 8002 break; 8003 default: 8004 return Error(Lex.getLoc(), "expected name or guid tag"); 8005 } 8006 8007 if (!EatIfPresent(lltok::comma)) { 8008 // No summaries. Wrap up. 8009 if (ParseToken(lltok::rparen, "expected ')' here")) 8010 return true; 8011 // This was created for a call to an external or indirect target. 8012 // A GUID with no summary came from a VALUE_GUID record, dummy GUID 8013 // created for indirect calls with VP. A Name with no GUID came from 8014 // an external definition. We pass ExternalLinkage since that is only 8015 // used when the GUID must be computed from Name, and in that case 8016 // the symbol must have external linkage. 8017 AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID, 8018 nullptr); 8019 return false; 8020 } 8021 8022 // Have a list of summaries 8023 if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") || 8024 ParseToken(lltok::colon, "expected ':' here")) 8025 return true; 8026 8027 do { 8028 if (ParseToken(lltok::lparen, "expected '(' here")) 8029 return true; 8030 switch (Lex.getKind()) { 8031 case lltok::kw_function: 8032 if (ParseFunctionSummary(Name, GUID, ID)) 8033 return true; 8034 break; 8035 case lltok::kw_variable: 8036 if (ParseVariableSummary(Name, GUID, ID)) 8037 return true; 8038 break; 8039 case lltok::kw_alias: 8040 if (ParseAliasSummary(Name, GUID, ID)) 8041 return true; 8042 break; 8043 default: 8044 return Error(Lex.getLoc(), "expected summary type"); 8045 } 8046 if (ParseToken(lltok::rparen, "expected ')' here")) 8047 return true; 8048 } while (EatIfPresent(lltok::comma)); 8049 8050 if (ParseToken(lltok::rparen, "expected ')' here")) 8051 return true; 8052 8053 return false; 8054 } 8055 8056 /// FunctionSummary 8057 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8058 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]? 8059 /// [',' OptionalTypeIdInfo]? [',' OptionalRefs]? ')' 8060 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID, 8061 unsigned ID) { 8062 assert(Lex.getKind() == lltok::kw_function); 8063 Lex.Lex(); 8064 8065 StringRef ModulePath; 8066 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8067 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 8068 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8069 unsigned InstCount; 8070 std::vector<FunctionSummary::EdgeTy> Calls; 8071 FunctionSummary::TypeIdInfo TypeIdInfo; 8072 std::vector<ValueInfo> Refs; 8073 // Default is all-zeros (conservative values). 8074 FunctionSummary::FFlags FFlags = {}; 8075 if (ParseToken(lltok::colon, "expected ':' here") || 8076 ParseToken(lltok::lparen, "expected '(' here") || 8077 ParseModuleReference(ModulePath) || 8078 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 8079 ParseToken(lltok::comma, "expected ',' here") || 8080 ParseToken(lltok::kw_insts, "expected 'insts' here") || 8081 ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount)) 8082 return true; 8083 8084 // Parse optional fields 8085 while (EatIfPresent(lltok::comma)) { 8086 switch (Lex.getKind()) { 8087 case lltok::kw_funcFlags: 8088 if (ParseOptionalFFlags(FFlags)) 8089 return true; 8090 break; 8091 case lltok::kw_calls: 8092 if (ParseOptionalCalls(Calls)) 8093 return true; 8094 break; 8095 case lltok::kw_typeIdInfo: 8096 if (ParseOptionalTypeIdInfo(TypeIdInfo)) 8097 return true; 8098 break; 8099 case lltok::kw_refs: 8100 if (ParseOptionalRefs(Refs)) 8101 return true; 8102 break; 8103 default: 8104 return Error(Lex.getLoc(), "expected optional function summary field"); 8105 } 8106 } 8107 8108 if (ParseToken(lltok::rparen, "expected ')' here")) 8109 return true; 8110 8111 auto FS = std::make_unique<FunctionSummary>( 8112 GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs), 8113 std::move(Calls), std::move(TypeIdInfo.TypeTests), 8114 std::move(TypeIdInfo.TypeTestAssumeVCalls), 8115 std::move(TypeIdInfo.TypeCheckedLoadVCalls), 8116 std::move(TypeIdInfo.TypeTestAssumeConstVCalls), 8117 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls)); 8118 8119 FS->setModulePath(ModulePath); 8120 8121 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8122 ID, std::move(FS)); 8123 8124 return false; 8125 } 8126 8127 /// VariableSummary 8128 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8129 /// [',' OptionalRefs]? ')' 8130 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID, 8131 unsigned ID) { 8132 assert(Lex.getKind() == lltok::kw_variable); 8133 Lex.Lex(); 8134 8135 StringRef ModulePath; 8136 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8137 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 8138 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8139 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false, 8140 /* WriteOnly */ false); 8141 std::vector<ValueInfo> Refs; 8142 VTableFuncList VTableFuncs; 8143 if (ParseToken(lltok::colon, "expected ':' here") || 8144 ParseToken(lltok::lparen, "expected '(' here") || 8145 ParseModuleReference(ModulePath) || 8146 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 8147 ParseToken(lltok::comma, "expected ',' here") || 8148 ParseGVarFlags(GVarFlags)) 8149 return true; 8150 8151 // Parse optional fields 8152 while (EatIfPresent(lltok::comma)) { 8153 switch (Lex.getKind()) { 8154 case lltok::kw_vTableFuncs: 8155 if (ParseOptionalVTableFuncs(VTableFuncs)) 8156 return true; 8157 break; 8158 case lltok::kw_refs: 8159 if (ParseOptionalRefs(Refs)) 8160 return true; 8161 break; 8162 default: 8163 return Error(Lex.getLoc(), "expected optional variable summary field"); 8164 } 8165 } 8166 8167 if (ParseToken(lltok::rparen, "expected ')' here")) 8168 return true; 8169 8170 auto GS = 8171 std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs)); 8172 8173 GS->setModulePath(ModulePath); 8174 GS->setVTableFuncs(std::move(VTableFuncs)); 8175 8176 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8177 ID, std::move(GS)); 8178 8179 return false; 8180 } 8181 8182 /// AliasSummary 8183 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ',' 8184 /// 'aliasee' ':' GVReference ')' 8185 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID, 8186 unsigned ID) { 8187 assert(Lex.getKind() == lltok::kw_alias); 8188 LocTy Loc = Lex.getLoc(); 8189 Lex.Lex(); 8190 8191 StringRef ModulePath; 8192 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8193 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 8194 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8195 if (ParseToken(lltok::colon, "expected ':' here") || 8196 ParseToken(lltok::lparen, "expected '(' here") || 8197 ParseModuleReference(ModulePath) || 8198 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 8199 ParseToken(lltok::comma, "expected ',' here") || 8200 ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") || 8201 ParseToken(lltok::colon, "expected ':' here")) 8202 return true; 8203 8204 ValueInfo AliaseeVI; 8205 unsigned GVId; 8206 if (ParseGVReference(AliaseeVI, GVId)) 8207 return true; 8208 8209 if (ParseToken(lltok::rparen, "expected ')' here")) 8210 return true; 8211 8212 auto AS = std::make_unique<AliasSummary>(GVFlags); 8213 8214 AS->setModulePath(ModulePath); 8215 8216 // Record forward reference if the aliasee is not parsed yet. 8217 if (AliaseeVI.getRef() == FwdVIRef) { 8218 auto FwdRef = ForwardRefAliasees.insert( 8219 std::make_pair(GVId, std::vector<std::pair<AliasSummary *, LocTy>>())); 8220 FwdRef.first->second.push_back(std::make_pair(AS.get(), Loc)); 8221 } else { 8222 auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath); 8223 assert(Summary && "Aliasee must be a definition"); 8224 AS->setAliasee(AliaseeVI, Summary); 8225 } 8226 8227 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8228 ID, std::move(AS)); 8229 8230 return false; 8231 } 8232 8233 /// Flag 8234 /// ::= [0|1] 8235 bool LLParser::ParseFlag(unsigned &Val) { 8236 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 8237 return TokError("expected integer"); 8238 Val = (unsigned)Lex.getAPSIntVal().getBoolValue(); 8239 Lex.Lex(); 8240 return false; 8241 } 8242 8243 /// OptionalFFlags 8244 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]? 8245 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]? 8246 /// [',' 'returnDoesNotAlias' ':' Flag]? ')' 8247 /// [',' 'noInline' ':' Flag]? ')' 8248 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) { 8249 assert(Lex.getKind() == lltok::kw_funcFlags); 8250 Lex.Lex(); 8251 8252 if (ParseToken(lltok::colon, "expected ':' in funcFlags") | 8253 ParseToken(lltok::lparen, "expected '(' in funcFlags")) 8254 return true; 8255 8256 do { 8257 unsigned Val = 0; 8258 switch (Lex.getKind()) { 8259 case lltok::kw_readNone: 8260 Lex.Lex(); 8261 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8262 return true; 8263 FFlags.ReadNone = Val; 8264 break; 8265 case lltok::kw_readOnly: 8266 Lex.Lex(); 8267 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8268 return true; 8269 FFlags.ReadOnly = Val; 8270 break; 8271 case lltok::kw_noRecurse: 8272 Lex.Lex(); 8273 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8274 return true; 8275 FFlags.NoRecurse = Val; 8276 break; 8277 case lltok::kw_returnDoesNotAlias: 8278 Lex.Lex(); 8279 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8280 return true; 8281 FFlags.ReturnDoesNotAlias = Val; 8282 break; 8283 case lltok::kw_noInline: 8284 Lex.Lex(); 8285 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8286 return true; 8287 FFlags.NoInline = Val; 8288 break; 8289 default: 8290 return Error(Lex.getLoc(), "expected function flag type"); 8291 } 8292 } while (EatIfPresent(lltok::comma)); 8293 8294 if (ParseToken(lltok::rparen, "expected ')' in funcFlags")) 8295 return true; 8296 8297 return false; 8298 } 8299 8300 /// OptionalCalls 8301 /// := 'calls' ':' '(' Call [',' Call]* ')' 8302 /// Call ::= '(' 'callee' ':' GVReference 8303 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')' 8304 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) { 8305 assert(Lex.getKind() == lltok::kw_calls); 8306 Lex.Lex(); 8307 8308 if (ParseToken(lltok::colon, "expected ':' in calls") | 8309 ParseToken(lltok::lparen, "expected '(' in calls")) 8310 return true; 8311 8312 IdToIndexMapType IdToIndexMap; 8313 // Parse each call edge 8314 do { 8315 ValueInfo VI; 8316 if (ParseToken(lltok::lparen, "expected '(' in call") || 8317 ParseToken(lltok::kw_callee, "expected 'callee' in call") || 8318 ParseToken(lltok::colon, "expected ':'")) 8319 return true; 8320 8321 LocTy Loc = Lex.getLoc(); 8322 unsigned GVId; 8323 if (ParseGVReference(VI, GVId)) 8324 return true; 8325 8326 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 8327 unsigned RelBF = 0; 8328 if (EatIfPresent(lltok::comma)) { 8329 // Expect either hotness or relbf 8330 if (EatIfPresent(lltok::kw_hotness)) { 8331 if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness)) 8332 return true; 8333 } else { 8334 if (ParseToken(lltok::kw_relbf, "expected relbf") || 8335 ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF)) 8336 return true; 8337 } 8338 } 8339 // Keep track of the Call array index needing a forward reference. 8340 // We will save the location of the ValueInfo needing an update, but 8341 // can only do so once the std::vector is finalized. 8342 if (VI.getRef() == FwdVIRef) 8343 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc)); 8344 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)}); 8345 8346 if (ParseToken(lltok::rparen, "expected ')' in call")) 8347 return true; 8348 } while (EatIfPresent(lltok::comma)); 8349 8350 // Now that the Calls vector is finalized, it is safe to save the locations 8351 // of any forward GV references that need updating later. 8352 for (auto I : IdToIndexMap) { 8353 for (auto P : I.second) { 8354 assert(Calls[P.first].first.getRef() == FwdVIRef && 8355 "Forward referenced ValueInfo expected to be empty"); 8356 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 8357 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 8358 FwdRef.first->second.push_back( 8359 std::make_pair(&Calls[P.first].first, P.second)); 8360 } 8361 } 8362 8363 if (ParseToken(lltok::rparen, "expected ')' in calls")) 8364 return true; 8365 8366 return false; 8367 } 8368 8369 /// Hotness 8370 /// := ('unknown'|'cold'|'none'|'hot'|'critical') 8371 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) { 8372 switch (Lex.getKind()) { 8373 case lltok::kw_unknown: 8374 Hotness = CalleeInfo::HotnessType::Unknown; 8375 break; 8376 case lltok::kw_cold: 8377 Hotness = CalleeInfo::HotnessType::Cold; 8378 break; 8379 case lltok::kw_none: 8380 Hotness = CalleeInfo::HotnessType::None; 8381 break; 8382 case lltok::kw_hot: 8383 Hotness = CalleeInfo::HotnessType::Hot; 8384 break; 8385 case lltok::kw_critical: 8386 Hotness = CalleeInfo::HotnessType::Critical; 8387 break; 8388 default: 8389 return Error(Lex.getLoc(), "invalid call edge hotness"); 8390 } 8391 Lex.Lex(); 8392 return false; 8393 } 8394 8395 /// OptionalVTableFuncs 8396 /// := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')' 8397 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')' 8398 bool LLParser::ParseOptionalVTableFuncs(VTableFuncList &VTableFuncs) { 8399 assert(Lex.getKind() == lltok::kw_vTableFuncs); 8400 Lex.Lex(); 8401 8402 if (ParseToken(lltok::colon, "expected ':' in vTableFuncs") | 8403 ParseToken(lltok::lparen, "expected '(' in vTableFuncs")) 8404 return true; 8405 8406 IdToIndexMapType IdToIndexMap; 8407 // Parse each virtual function pair 8408 do { 8409 ValueInfo VI; 8410 if (ParseToken(lltok::lparen, "expected '(' in vTableFunc") || 8411 ParseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") || 8412 ParseToken(lltok::colon, "expected ':'")) 8413 return true; 8414 8415 LocTy Loc = Lex.getLoc(); 8416 unsigned GVId; 8417 if (ParseGVReference(VI, GVId)) 8418 return true; 8419 8420 uint64_t Offset; 8421 if (ParseToken(lltok::comma, "expected comma") || 8422 ParseToken(lltok::kw_offset, "expected offset") || 8423 ParseToken(lltok::colon, "expected ':'") || ParseUInt64(Offset)) 8424 return true; 8425 8426 // Keep track of the VTableFuncs array index needing a forward reference. 8427 // We will save the location of the ValueInfo needing an update, but 8428 // can only do so once the std::vector is finalized. 8429 if (VI == EmptyVI) 8430 IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc)); 8431 VTableFuncs.push_back({VI, Offset}); 8432 8433 if (ParseToken(lltok::rparen, "expected ')' in vTableFunc")) 8434 return true; 8435 } while (EatIfPresent(lltok::comma)); 8436 8437 // Now that the VTableFuncs vector is finalized, it is safe to save the 8438 // locations of any forward GV references that need updating later. 8439 for (auto I : IdToIndexMap) { 8440 for (auto P : I.second) { 8441 assert(VTableFuncs[P.first].FuncVI == EmptyVI && 8442 "Forward referenced ValueInfo expected to be empty"); 8443 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 8444 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 8445 FwdRef.first->second.push_back( 8446 std::make_pair(&VTableFuncs[P.first].FuncVI, P.second)); 8447 } 8448 } 8449 8450 if (ParseToken(lltok::rparen, "expected ')' in vTableFuncs")) 8451 return true; 8452 8453 return false; 8454 } 8455 8456 /// OptionalRefs 8457 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')' 8458 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) { 8459 assert(Lex.getKind() == lltok::kw_refs); 8460 Lex.Lex(); 8461 8462 if (ParseToken(lltok::colon, "expected ':' in refs") | 8463 ParseToken(lltok::lparen, "expected '(' in refs")) 8464 return true; 8465 8466 struct ValueContext { 8467 ValueInfo VI; 8468 unsigned GVId; 8469 LocTy Loc; 8470 }; 8471 std::vector<ValueContext> VContexts; 8472 // Parse each ref edge 8473 do { 8474 ValueContext VC; 8475 VC.Loc = Lex.getLoc(); 8476 if (ParseGVReference(VC.VI, VC.GVId)) 8477 return true; 8478 VContexts.push_back(VC); 8479 } while (EatIfPresent(lltok::comma)); 8480 8481 // Sort value contexts so that ones with writeonly 8482 // and readonly ValueInfo are at the end of VContexts vector. 8483 // See FunctionSummary::specialRefCounts() 8484 llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) { 8485 return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier(); 8486 }); 8487 8488 IdToIndexMapType IdToIndexMap; 8489 for (auto &VC : VContexts) { 8490 // Keep track of the Refs array index needing a forward reference. 8491 // We will save the location of the ValueInfo needing an update, but 8492 // can only do so once the std::vector is finalized. 8493 if (VC.VI.getRef() == FwdVIRef) 8494 IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc)); 8495 Refs.push_back(VC.VI); 8496 } 8497 8498 // Now that the Refs vector is finalized, it is safe to save the locations 8499 // of any forward GV references that need updating later. 8500 for (auto I : IdToIndexMap) { 8501 for (auto P : I.second) { 8502 assert(Refs[P.first].getRef() == FwdVIRef && 8503 "Forward referenced ValueInfo expected to be empty"); 8504 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 8505 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 8506 FwdRef.first->second.push_back(std::make_pair(&Refs[P.first], P.second)); 8507 } 8508 } 8509 8510 if (ParseToken(lltok::rparen, "expected ')' in refs")) 8511 return true; 8512 8513 return false; 8514 } 8515 8516 /// OptionalTypeIdInfo 8517 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]? 8518 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]? 8519 /// [',' TypeCheckedLoadConstVCalls]? ')' 8520 bool LLParser::ParseOptionalTypeIdInfo( 8521 FunctionSummary::TypeIdInfo &TypeIdInfo) { 8522 assert(Lex.getKind() == lltok::kw_typeIdInfo); 8523 Lex.Lex(); 8524 8525 if (ParseToken(lltok::colon, "expected ':' here") || 8526 ParseToken(lltok::lparen, "expected '(' in typeIdInfo")) 8527 return true; 8528 8529 do { 8530 switch (Lex.getKind()) { 8531 case lltok::kw_typeTests: 8532 if (ParseTypeTests(TypeIdInfo.TypeTests)) 8533 return true; 8534 break; 8535 case lltok::kw_typeTestAssumeVCalls: 8536 if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls, 8537 TypeIdInfo.TypeTestAssumeVCalls)) 8538 return true; 8539 break; 8540 case lltok::kw_typeCheckedLoadVCalls: 8541 if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls, 8542 TypeIdInfo.TypeCheckedLoadVCalls)) 8543 return true; 8544 break; 8545 case lltok::kw_typeTestAssumeConstVCalls: 8546 if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls, 8547 TypeIdInfo.TypeTestAssumeConstVCalls)) 8548 return true; 8549 break; 8550 case lltok::kw_typeCheckedLoadConstVCalls: 8551 if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls, 8552 TypeIdInfo.TypeCheckedLoadConstVCalls)) 8553 return true; 8554 break; 8555 default: 8556 return Error(Lex.getLoc(), "invalid typeIdInfo list type"); 8557 } 8558 } while (EatIfPresent(lltok::comma)); 8559 8560 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo")) 8561 return true; 8562 8563 return false; 8564 } 8565 8566 /// TypeTests 8567 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64) 8568 /// [',' (SummaryID | UInt64)]* ')' 8569 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) { 8570 assert(Lex.getKind() == lltok::kw_typeTests); 8571 Lex.Lex(); 8572 8573 if (ParseToken(lltok::colon, "expected ':' here") || 8574 ParseToken(lltok::lparen, "expected '(' in typeIdInfo")) 8575 return true; 8576 8577 IdToIndexMapType IdToIndexMap; 8578 do { 8579 GlobalValue::GUID GUID = 0; 8580 if (Lex.getKind() == lltok::SummaryID) { 8581 unsigned ID = Lex.getUIntVal(); 8582 LocTy Loc = Lex.getLoc(); 8583 // Keep track of the TypeTests array index needing a forward reference. 8584 // We will save the location of the GUID needing an update, but 8585 // can only do so once the std::vector is finalized. 8586 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc)); 8587 Lex.Lex(); 8588 } else if (ParseUInt64(GUID)) 8589 return true; 8590 TypeTests.push_back(GUID); 8591 } while (EatIfPresent(lltok::comma)); 8592 8593 // Now that the TypeTests vector is finalized, it is safe to save the 8594 // locations of any forward GV references that need updating later. 8595 for (auto I : IdToIndexMap) { 8596 for (auto P : I.second) { 8597 assert(TypeTests[P.first] == 0 && 8598 "Forward referenced type id GUID expected to be 0"); 8599 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8600 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8601 FwdRef.first->second.push_back( 8602 std::make_pair(&TypeTests[P.first], P.second)); 8603 } 8604 } 8605 8606 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo")) 8607 return true; 8608 8609 return false; 8610 } 8611 8612 /// VFuncIdList 8613 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')' 8614 bool LLParser::ParseVFuncIdList( 8615 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) { 8616 assert(Lex.getKind() == Kind); 8617 Lex.Lex(); 8618 8619 if (ParseToken(lltok::colon, "expected ':' here") || 8620 ParseToken(lltok::lparen, "expected '(' here")) 8621 return true; 8622 8623 IdToIndexMapType IdToIndexMap; 8624 do { 8625 FunctionSummary::VFuncId VFuncId; 8626 if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size())) 8627 return true; 8628 VFuncIdList.push_back(VFuncId); 8629 } while (EatIfPresent(lltok::comma)); 8630 8631 if (ParseToken(lltok::rparen, "expected ')' here")) 8632 return true; 8633 8634 // Now that the VFuncIdList vector is finalized, it is safe to save the 8635 // locations of any forward GV references that need updating later. 8636 for (auto I : IdToIndexMap) { 8637 for (auto P : I.second) { 8638 assert(VFuncIdList[P.first].GUID == 0 && 8639 "Forward referenced type id GUID expected to be 0"); 8640 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8641 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8642 FwdRef.first->second.push_back( 8643 std::make_pair(&VFuncIdList[P.first].GUID, P.second)); 8644 } 8645 } 8646 8647 return false; 8648 } 8649 8650 /// ConstVCallList 8651 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')' 8652 bool LLParser::ParseConstVCallList( 8653 lltok::Kind Kind, 8654 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) { 8655 assert(Lex.getKind() == Kind); 8656 Lex.Lex(); 8657 8658 if (ParseToken(lltok::colon, "expected ':' here") || 8659 ParseToken(lltok::lparen, "expected '(' here")) 8660 return true; 8661 8662 IdToIndexMapType IdToIndexMap; 8663 do { 8664 FunctionSummary::ConstVCall ConstVCall; 8665 if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size())) 8666 return true; 8667 ConstVCallList.push_back(ConstVCall); 8668 } while (EatIfPresent(lltok::comma)); 8669 8670 if (ParseToken(lltok::rparen, "expected ')' here")) 8671 return true; 8672 8673 // Now that the ConstVCallList vector is finalized, it is safe to save the 8674 // locations of any forward GV references that need updating later. 8675 for (auto I : IdToIndexMap) { 8676 for (auto P : I.second) { 8677 assert(ConstVCallList[P.first].VFunc.GUID == 0 && 8678 "Forward referenced type id GUID expected to be 0"); 8679 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8680 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8681 FwdRef.first->second.push_back( 8682 std::make_pair(&ConstVCallList[P.first].VFunc.GUID, P.second)); 8683 } 8684 } 8685 8686 return false; 8687 } 8688 8689 /// ConstVCall 8690 /// ::= '(' VFuncId ',' Args ')' 8691 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall, 8692 IdToIndexMapType &IdToIndexMap, unsigned Index) { 8693 if (ParseToken(lltok::lparen, "expected '(' here") || 8694 ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index)) 8695 return true; 8696 8697 if (EatIfPresent(lltok::comma)) 8698 if (ParseArgs(ConstVCall.Args)) 8699 return true; 8700 8701 if (ParseToken(lltok::rparen, "expected ')' here")) 8702 return true; 8703 8704 return false; 8705 } 8706 8707 /// VFuncId 8708 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ',' 8709 /// 'offset' ':' UInt64 ')' 8710 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId, 8711 IdToIndexMapType &IdToIndexMap, unsigned Index) { 8712 assert(Lex.getKind() == lltok::kw_vFuncId); 8713 Lex.Lex(); 8714 8715 if (ParseToken(lltok::colon, "expected ':' here") || 8716 ParseToken(lltok::lparen, "expected '(' here")) 8717 return true; 8718 8719 if (Lex.getKind() == lltok::SummaryID) { 8720 VFuncId.GUID = 0; 8721 unsigned ID = Lex.getUIntVal(); 8722 LocTy Loc = Lex.getLoc(); 8723 // Keep track of the array index needing a forward reference. 8724 // We will save the location of the GUID needing an update, but 8725 // can only do so once the caller's std::vector is finalized. 8726 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc)); 8727 Lex.Lex(); 8728 } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") || 8729 ParseToken(lltok::colon, "expected ':' here") || 8730 ParseUInt64(VFuncId.GUID)) 8731 return true; 8732 8733 if (ParseToken(lltok::comma, "expected ',' here") || 8734 ParseToken(lltok::kw_offset, "expected 'offset' here") || 8735 ParseToken(lltok::colon, "expected ':' here") || 8736 ParseUInt64(VFuncId.Offset) || 8737 ParseToken(lltok::rparen, "expected ')' here")) 8738 return true; 8739 8740 return false; 8741 } 8742 8743 /// GVFlags 8744 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ',' 8745 /// 'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ',' 8746 /// 'dsoLocal' ':' Flag ',' 'canAutoHide' ':' Flag ')' 8747 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) { 8748 assert(Lex.getKind() == lltok::kw_flags); 8749 Lex.Lex(); 8750 8751 if (ParseToken(lltok::colon, "expected ':' here") || 8752 ParseToken(lltok::lparen, "expected '(' here")) 8753 return true; 8754 8755 do { 8756 unsigned Flag = 0; 8757 switch (Lex.getKind()) { 8758 case lltok::kw_linkage: 8759 Lex.Lex(); 8760 if (ParseToken(lltok::colon, "expected ':'")) 8761 return true; 8762 bool HasLinkage; 8763 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 8764 assert(HasLinkage && "Linkage not optional in summary entry"); 8765 Lex.Lex(); 8766 break; 8767 case lltok::kw_notEligibleToImport: 8768 Lex.Lex(); 8769 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag)) 8770 return true; 8771 GVFlags.NotEligibleToImport = Flag; 8772 break; 8773 case lltok::kw_live: 8774 Lex.Lex(); 8775 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag)) 8776 return true; 8777 GVFlags.Live = Flag; 8778 break; 8779 case lltok::kw_dsoLocal: 8780 Lex.Lex(); 8781 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag)) 8782 return true; 8783 GVFlags.DSOLocal = Flag; 8784 break; 8785 case lltok::kw_canAutoHide: 8786 Lex.Lex(); 8787 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag)) 8788 return true; 8789 GVFlags.CanAutoHide = Flag; 8790 break; 8791 default: 8792 return Error(Lex.getLoc(), "expected gv flag type"); 8793 } 8794 } while (EatIfPresent(lltok::comma)); 8795 8796 if (ParseToken(lltok::rparen, "expected ')' here")) 8797 return true; 8798 8799 return false; 8800 } 8801 8802 /// GVarFlags 8803 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag 8804 /// ',' 'writeonly' ':' Flag ')' 8805 bool LLParser::ParseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) { 8806 assert(Lex.getKind() == lltok::kw_varFlags); 8807 Lex.Lex(); 8808 8809 if (ParseToken(lltok::colon, "expected ':' here") || 8810 ParseToken(lltok::lparen, "expected '(' here")) 8811 return true; 8812 8813 auto ParseRest = [this](unsigned int &Val) { 8814 Lex.Lex(); 8815 if (ParseToken(lltok::colon, "expected ':'")) 8816 return true; 8817 return ParseFlag(Val); 8818 }; 8819 8820 do { 8821 unsigned Flag = 0; 8822 switch (Lex.getKind()) { 8823 case lltok::kw_readonly: 8824 if (ParseRest(Flag)) 8825 return true; 8826 GVarFlags.MaybeReadOnly = Flag; 8827 break; 8828 case lltok::kw_writeonly: 8829 if (ParseRest(Flag)) 8830 return true; 8831 GVarFlags.MaybeWriteOnly = Flag; 8832 break; 8833 default: 8834 return Error(Lex.getLoc(), "expected gvar flag type"); 8835 } 8836 } while (EatIfPresent(lltok::comma)); 8837 return ParseToken(lltok::rparen, "expected ')' here"); 8838 } 8839 8840 /// ModuleReference 8841 /// ::= 'module' ':' UInt 8842 bool LLParser::ParseModuleReference(StringRef &ModulePath) { 8843 // Parse module id. 8844 if (ParseToken(lltok::kw_module, "expected 'module' here") || 8845 ParseToken(lltok::colon, "expected ':' here") || 8846 ParseToken(lltok::SummaryID, "expected module ID")) 8847 return true; 8848 8849 unsigned ModuleID = Lex.getUIntVal(); 8850 auto I = ModuleIdMap.find(ModuleID); 8851 // We should have already parsed all module IDs 8852 assert(I != ModuleIdMap.end()); 8853 ModulePath = I->second; 8854 return false; 8855 } 8856 8857 /// GVReference 8858 /// ::= SummaryID 8859 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) { 8860 bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly); 8861 if (!ReadOnly) 8862 WriteOnly = EatIfPresent(lltok::kw_writeonly); 8863 if (ParseToken(lltok::SummaryID, "expected GV ID")) 8864 return true; 8865 8866 GVId = Lex.getUIntVal(); 8867 // Check if we already have a VI for this GV 8868 if (GVId < NumberedValueInfos.size()) { 8869 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef); 8870 VI = NumberedValueInfos[GVId]; 8871 } else 8872 // We will create a forward reference to the stored location. 8873 VI = ValueInfo(false, FwdVIRef); 8874 8875 if (ReadOnly) 8876 VI.setReadOnly(); 8877 if (WriteOnly) 8878 VI.setWriteOnly(); 8879 return false; 8880 } 8881