1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the parser class for .ll files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "LLParser.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/None.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/AsmParser/SlotMapping.h" 20 #include "llvm/BinaryFormat/Dwarf.h" 21 #include "llvm/IR/Argument.h" 22 #include "llvm/IR/AutoUpgrade.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/CallingConv.h" 25 #include "llvm/IR/Comdat.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DebugInfoMetadata.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/GlobalIFunc.h" 31 #include "llvm/IR/GlobalObject.h" 32 #include "llvm/IR/InlineAsm.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/IR/ValueSymbolTable.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/MathExtras.h" 46 #include "llvm/Support/SaveAndRestore.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <cstring> 51 #include <iterator> 52 #include <vector> 53 54 using namespace llvm; 55 56 static std::string getTypeString(Type *T) { 57 std::string Result; 58 raw_string_ostream Tmp(Result); 59 Tmp << *T; 60 return Tmp.str(); 61 } 62 63 /// Run: module ::= toplevelentity* 64 bool LLParser::Run() { 65 // Prime the lexer. 66 Lex.Lex(); 67 68 if (Context.shouldDiscardValueNames()) 69 return Error( 70 Lex.getLoc(), 71 "Can't read textual IR with a Context that discards named Values"); 72 73 return ParseTopLevelEntities() || ValidateEndOfModule() || 74 ValidateEndOfIndex(); 75 } 76 77 bool LLParser::parseStandaloneConstantValue(Constant *&C, 78 const SlotMapping *Slots) { 79 restoreParsingState(Slots); 80 Lex.Lex(); 81 82 Type *Ty = nullptr; 83 if (ParseType(Ty) || parseConstantValue(Ty, C)) 84 return true; 85 if (Lex.getKind() != lltok::Eof) 86 return Error(Lex.getLoc(), "expected end of string"); 87 return false; 88 } 89 90 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 91 const SlotMapping *Slots) { 92 restoreParsingState(Slots); 93 Lex.Lex(); 94 95 Read = 0; 96 SMLoc Start = Lex.getLoc(); 97 Ty = nullptr; 98 if (ParseType(Ty)) 99 return true; 100 SMLoc End = Lex.getLoc(); 101 Read = End.getPointer() - Start.getPointer(); 102 103 return false; 104 } 105 106 void LLParser::restoreParsingState(const SlotMapping *Slots) { 107 if (!Slots) 108 return; 109 NumberedVals = Slots->GlobalValues; 110 NumberedMetadata = Slots->MetadataNodes; 111 for (const auto &I : Slots->NamedTypes) 112 NamedTypes.insert( 113 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 114 for (const auto &I : Slots->Types) 115 NumberedTypes.insert( 116 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 117 } 118 119 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 120 /// module. 121 bool LLParser::ValidateEndOfModule() { 122 if (!M) 123 return false; 124 // Handle any function attribute group forward references. 125 for (const auto &RAG : ForwardRefAttrGroups) { 126 Value *V = RAG.first; 127 const std::vector<unsigned> &Attrs = RAG.second; 128 AttrBuilder B; 129 130 for (const auto &Attr : Attrs) 131 B.merge(NumberedAttrBuilders[Attr]); 132 133 if (Function *Fn = dyn_cast<Function>(V)) { 134 AttributeList AS = Fn->getAttributes(); 135 AttrBuilder FnAttrs(AS.getFnAttributes()); 136 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 137 138 FnAttrs.merge(B); 139 140 // If the alignment was parsed as an attribute, move to the alignment 141 // field. 142 if (FnAttrs.hasAlignmentAttr()) { 143 Fn->setAlignment(FnAttrs.getAlignment()); 144 FnAttrs.removeAttribute(Attribute::Alignment); 145 } 146 147 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 148 AttributeSet::get(Context, FnAttrs)); 149 Fn->setAttributes(AS); 150 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 151 AttributeList AS = CI->getAttributes(); 152 AttrBuilder FnAttrs(AS.getFnAttributes()); 153 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 154 FnAttrs.merge(B); 155 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 156 AttributeSet::get(Context, FnAttrs)); 157 CI->setAttributes(AS); 158 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 159 AttributeList AS = II->getAttributes(); 160 AttrBuilder FnAttrs(AS.getFnAttributes()); 161 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 162 FnAttrs.merge(B); 163 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 164 AttributeSet::get(Context, FnAttrs)); 165 II->setAttributes(AS); 166 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) { 167 AttributeList AS = CBI->getAttributes(); 168 AttrBuilder FnAttrs(AS.getFnAttributes()); 169 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 170 FnAttrs.merge(B); 171 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 172 AttributeSet::get(Context, FnAttrs)); 173 CBI->setAttributes(AS); 174 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 175 AttrBuilder Attrs(GV->getAttributes()); 176 Attrs.merge(B); 177 GV->setAttributes(AttributeSet::get(Context,Attrs)); 178 } else { 179 llvm_unreachable("invalid object with forward attribute group reference"); 180 } 181 } 182 183 // If there are entries in ForwardRefBlockAddresses at this point, the 184 // function was never defined. 185 if (!ForwardRefBlockAddresses.empty()) 186 return Error(ForwardRefBlockAddresses.begin()->first.Loc, 187 "expected function name in blockaddress"); 188 189 for (const auto &NT : NumberedTypes) 190 if (NT.second.second.isValid()) 191 return Error(NT.second.second, 192 "use of undefined type '%" + Twine(NT.first) + "'"); 193 194 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 195 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 196 if (I->second.second.isValid()) 197 return Error(I->second.second, 198 "use of undefined type named '" + I->getKey() + "'"); 199 200 if (!ForwardRefComdats.empty()) 201 return Error(ForwardRefComdats.begin()->second, 202 "use of undefined comdat '$" + 203 ForwardRefComdats.begin()->first + "'"); 204 205 if (!ForwardRefVals.empty()) 206 return Error(ForwardRefVals.begin()->second.second, 207 "use of undefined value '@" + ForwardRefVals.begin()->first + 208 "'"); 209 210 if (!ForwardRefValIDs.empty()) 211 return Error(ForwardRefValIDs.begin()->second.second, 212 "use of undefined value '@" + 213 Twine(ForwardRefValIDs.begin()->first) + "'"); 214 215 if (!ForwardRefMDNodes.empty()) 216 return Error(ForwardRefMDNodes.begin()->second.second, 217 "use of undefined metadata '!" + 218 Twine(ForwardRefMDNodes.begin()->first) + "'"); 219 220 // Resolve metadata cycles. 221 for (auto &N : NumberedMetadata) { 222 if (N.second && !N.second->isResolved()) 223 N.second->resolveCycles(); 224 } 225 226 for (auto *Inst : InstsWithTBAATag) { 227 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 228 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 229 auto *UpgradedMD = UpgradeTBAANode(*MD); 230 if (MD != UpgradedMD) 231 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 232 } 233 234 // Look for intrinsic functions and CallInst that need to be upgraded 235 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 236 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 237 238 // Some types could be renamed during loading if several modules are 239 // loaded in the same LLVMContext (LTO scenario). In this case we should 240 // remangle intrinsics names as well. 241 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) { 242 Function *F = &*FI++; 243 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 244 F->replaceAllUsesWith(Remangled.getValue()); 245 F->eraseFromParent(); 246 } 247 } 248 249 if (UpgradeDebugInfo) 250 llvm::UpgradeDebugInfo(*M); 251 252 UpgradeModuleFlags(*M); 253 UpgradeSectionAttributes(*M); 254 255 if (!Slots) 256 return false; 257 // Initialize the slot mapping. 258 // Because by this point we've parsed and validated everything, we can "steal" 259 // the mapping from LLParser as it doesn't need it anymore. 260 Slots->GlobalValues = std::move(NumberedVals); 261 Slots->MetadataNodes = std::move(NumberedMetadata); 262 for (const auto &I : NamedTypes) 263 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 264 for (const auto &I : NumberedTypes) 265 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 266 267 return false; 268 } 269 270 /// Do final validity and sanity checks at the end of the index. 271 bool LLParser::ValidateEndOfIndex() { 272 if (!Index) 273 return false; 274 275 if (!ForwardRefValueInfos.empty()) 276 return Error(ForwardRefValueInfos.begin()->second.front().second, 277 "use of undefined summary '^" + 278 Twine(ForwardRefValueInfos.begin()->first) + "'"); 279 280 if (!ForwardRefAliasees.empty()) 281 return Error(ForwardRefAliasees.begin()->second.front().second, 282 "use of undefined summary '^" + 283 Twine(ForwardRefAliasees.begin()->first) + "'"); 284 285 if (!ForwardRefTypeIds.empty()) 286 return Error(ForwardRefTypeIds.begin()->second.front().second, 287 "use of undefined type id summary '^" + 288 Twine(ForwardRefTypeIds.begin()->first) + "'"); 289 290 return false; 291 } 292 293 //===----------------------------------------------------------------------===// 294 // Top-Level Entities 295 //===----------------------------------------------------------------------===// 296 297 bool LLParser::ParseTopLevelEntities() { 298 // If there is no Module, then parse just the summary index entries. 299 if (!M) { 300 while (true) { 301 switch (Lex.getKind()) { 302 case lltok::Eof: 303 return false; 304 case lltok::SummaryID: 305 if (ParseSummaryEntry()) 306 return true; 307 break; 308 case lltok::kw_source_filename: 309 if (ParseSourceFileName()) 310 return true; 311 break; 312 default: 313 // Skip everything else 314 Lex.Lex(); 315 } 316 } 317 } 318 while (true) { 319 switch (Lex.getKind()) { 320 default: return TokError("expected top-level entity"); 321 case lltok::Eof: return false; 322 case lltok::kw_declare: if (ParseDeclare()) return true; break; 323 case lltok::kw_define: if (ParseDefine()) return true; break; 324 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 325 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 326 case lltok::kw_source_filename: 327 if (ParseSourceFileName()) 328 return true; 329 break; 330 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 331 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 332 case lltok::LocalVar: if (ParseNamedType()) return true; break; 333 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 334 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 335 case lltok::ComdatVar: if (parseComdat()) return true; break; 336 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 337 case lltok::SummaryID: 338 if (ParseSummaryEntry()) 339 return true; 340 break; 341 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break; 342 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break; 343 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break; 344 case lltok::kw_uselistorder_bb: 345 if (ParseUseListOrderBB()) 346 return true; 347 break; 348 } 349 } 350 } 351 352 /// toplevelentity 353 /// ::= 'module' 'asm' STRINGCONSTANT 354 bool LLParser::ParseModuleAsm() { 355 assert(Lex.getKind() == lltok::kw_module); 356 Lex.Lex(); 357 358 std::string AsmStr; 359 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 360 ParseStringConstant(AsmStr)) return true; 361 362 M->appendModuleInlineAsm(AsmStr); 363 return false; 364 } 365 366 /// toplevelentity 367 /// ::= 'target' 'triple' '=' STRINGCONSTANT 368 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 369 bool LLParser::ParseTargetDefinition() { 370 assert(Lex.getKind() == lltok::kw_target); 371 std::string Str; 372 switch (Lex.Lex()) { 373 default: return TokError("unknown target property"); 374 case lltok::kw_triple: 375 Lex.Lex(); 376 if (ParseToken(lltok::equal, "expected '=' after target triple") || 377 ParseStringConstant(Str)) 378 return true; 379 M->setTargetTriple(Str); 380 return false; 381 case lltok::kw_datalayout: 382 Lex.Lex(); 383 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 384 ParseStringConstant(Str)) 385 return true; 386 if (DataLayoutStr.empty()) 387 M->setDataLayout(Str); 388 return false; 389 } 390 } 391 392 /// toplevelentity 393 /// ::= 'source_filename' '=' STRINGCONSTANT 394 bool LLParser::ParseSourceFileName() { 395 assert(Lex.getKind() == lltok::kw_source_filename); 396 Lex.Lex(); 397 if (ParseToken(lltok::equal, "expected '=' after source_filename") || 398 ParseStringConstant(SourceFileName)) 399 return true; 400 if (M) 401 M->setSourceFileName(SourceFileName); 402 return false; 403 } 404 405 /// toplevelentity 406 /// ::= 'deplibs' '=' '[' ']' 407 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 408 /// FIXME: Remove in 4.0. Currently parse, but ignore. 409 bool LLParser::ParseDepLibs() { 410 assert(Lex.getKind() == lltok::kw_deplibs); 411 Lex.Lex(); 412 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 413 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 414 return true; 415 416 if (EatIfPresent(lltok::rsquare)) 417 return false; 418 419 do { 420 std::string Str; 421 if (ParseStringConstant(Str)) return true; 422 } while (EatIfPresent(lltok::comma)); 423 424 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 425 } 426 427 /// ParseUnnamedType: 428 /// ::= LocalVarID '=' 'type' type 429 bool LLParser::ParseUnnamedType() { 430 LocTy TypeLoc = Lex.getLoc(); 431 unsigned TypeID = Lex.getUIntVal(); 432 Lex.Lex(); // eat LocalVarID; 433 434 if (ParseToken(lltok::equal, "expected '=' after name") || 435 ParseToken(lltok::kw_type, "expected 'type' after '='")) 436 return true; 437 438 Type *Result = nullptr; 439 if (ParseStructDefinition(TypeLoc, "", 440 NumberedTypes[TypeID], Result)) return true; 441 442 if (!isa<StructType>(Result)) { 443 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 444 if (Entry.first) 445 return Error(TypeLoc, "non-struct types may not be recursive"); 446 Entry.first = Result; 447 Entry.second = SMLoc(); 448 } 449 450 return false; 451 } 452 453 /// toplevelentity 454 /// ::= LocalVar '=' 'type' type 455 bool LLParser::ParseNamedType() { 456 std::string Name = Lex.getStrVal(); 457 LocTy NameLoc = Lex.getLoc(); 458 Lex.Lex(); // eat LocalVar. 459 460 if (ParseToken(lltok::equal, "expected '=' after name") || 461 ParseToken(lltok::kw_type, "expected 'type' after name")) 462 return true; 463 464 Type *Result = nullptr; 465 if (ParseStructDefinition(NameLoc, Name, 466 NamedTypes[Name], Result)) return true; 467 468 if (!isa<StructType>(Result)) { 469 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 470 if (Entry.first) 471 return Error(NameLoc, "non-struct types may not be recursive"); 472 Entry.first = Result; 473 Entry.second = SMLoc(); 474 } 475 476 return false; 477 } 478 479 /// toplevelentity 480 /// ::= 'declare' FunctionHeader 481 bool LLParser::ParseDeclare() { 482 assert(Lex.getKind() == lltok::kw_declare); 483 Lex.Lex(); 484 485 std::vector<std::pair<unsigned, MDNode *>> MDs; 486 while (Lex.getKind() == lltok::MetadataVar) { 487 unsigned MDK; 488 MDNode *N; 489 if (ParseMetadataAttachment(MDK, N)) 490 return true; 491 MDs.push_back({MDK, N}); 492 } 493 494 Function *F; 495 if (ParseFunctionHeader(F, false)) 496 return true; 497 for (auto &MD : MDs) 498 F->addMetadata(MD.first, *MD.second); 499 return false; 500 } 501 502 /// toplevelentity 503 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 504 bool LLParser::ParseDefine() { 505 assert(Lex.getKind() == lltok::kw_define); 506 Lex.Lex(); 507 508 Function *F; 509 return ParseFunctionHeader(F, true) || 510 ParseOptionalFunctionMetadata(*F) || 511 ParseFunctionBody(*F); 512 } 513 514 /// ParseGlobalType 515 /// ::= 'constant' 516 /// ::= 'global' 517 bool LLParser::ParseGlobalType(bool &IsConstant) { 518 if (Lex.getKind() == lltok::kw_constant) 519 IsConstant = true; 520 else if (Lex.getKind() == lltok::kw_global) 521 IsConstant = false; 522 else { 523 IsConstant = false; 524 return TokError("expected 'global' or 'constant'"); 525 } 526 Lex.Lex(); 527 return false; 528 } 529 530 bool LLParser::ParseOptionalUnnamedAddr( 531 GlobalVariable::UnnamedAddr &UnnamedAddr) { 532 if (EatIfPresent(lltok::kw_unnamed_addr)) 533 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 534 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 535 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 536 else 537 UnnamedAddr = GlobalValue::UnnamedAddr::None; 538 return false; 539 } 540 541 /// ParseUnnamedGlobal: 542 /// OptionalVisibility (ALIAS | IFUNC) ... 543 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 544 /// OptionalDLLStorageClass 545 /// ... -> global variable 546 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 547 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 548 /// OptionalDLLStorageClass 549 /// ... -> global variable 550 bool LLParser::ParseUnnamedGlobal() { 551 unsigned VarID = NumberedVals.size(); 552 std::string Name; 553 LocTy NameLoc = Lex.getLoc(); 554 555 // Handle the GlobalID form. 556 if (Lex.getKind() == lltok::GlobalID) { 557 if (Lex.getUIntVal() != VarID) 558 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 559 Twine(VarID) + "'"); 560 Lex.Lex(); // eat GlobalID; 561 562 if (ParseToken(lltok::equal, "expected '=' after name")) 563 return true; 564 } 565 566 bool HasLinkage; 567 unsigned Linkage, Visibility, DLLStorageClass; 568 bool DSOLocal; 569 GlobalVariable::ThreadLocalMode TLM; 570 GlobalVariable::UnnamedAddr UnnamedAddr; 571 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 572 DSOLocal) || 573 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 574 return true; 575 576 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 577 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 578 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 579 580 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 581 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 582 } 583 584 /// ParseNamedGlobal: 585 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 586 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 587 /// OptionalVisibility OptionalDLLStorageClass 588 /// ... -> global variable 589 bool LLParser::ParseNamedGlobal() { 590 assert(Lex.getKind() == lltok::GlobalVar); 591 LocTy NameLoc = Lex.getLoc(); 592 std::string Name = Lex.getStrVal(); 593 Lex.Lex(); 594 595 bool HasLinkage; 596 unsigned Linkage, Visibility, DLLStorageClass; 597 bool DSOLocal; 598 GlobalVariable::ThreadLocalMode TLM; 599 GlobalVariable::UnnamedAddr UnnamedAddr; 600 if (ParseToken(lltok::equal, "expected '=' in global variable") || 601 ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 602 DSOLocal) || 603 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 604 return true; 605 606 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 607 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 608 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 609 610 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 611 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 612 } 613 614 bool LLParser::parseComdat() { 615 assert(Lex.getKind() == lltok::ComdatVar); 616 std::string Name = Lex.getStrVal(); 617 LocTy NameLoc = Lex.getLoc(); 618 Lex.Lex(); 619 620 if (ParseToken(lltok::equal, "expected '=' here")) 621 return true; 622 623 if (ParseToken(lltok::kw_comdat, "expected comdat keyword")) 624 return TokError("expected comdat type"); 625 626 Comdat::SelectionKind SK; 627 switch (Lex.getKind()) { 628 default: 629 return TokError("unknown selection kind"); 630 case lltok::kw_any: 631 SK = Comdat::Any; 632 break; 633 case lltok::kw_exactmatch: 634 SK = Comdat::ExactMatch; 635 break; 636 case lltok::kw_largest: 637 SK = Comdat::Largest; 638 break; 639 case lltok::kw_noduplicates: 640 SK = Comdat::NoDuplicates; 641 break; 642 case lltok::kw_samesize: 643 SK = Comdat::SameSize; 644 break; 645 } 646 Lex.Lex(); 647 648 // See if the comdat was forward referenced, if so, use the comdat. 649 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 650 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 651 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 652 return Error(NameLoc, "redefinition of comdat '$" + Name + "'"); 653 654 Comdat *C; 655 if (I != ComdatSymTab.end()) 656 C = &I->second; 657 else 658 C = M->getOrInsertComdat(Name); 659 C->setSelectionKind(SK); 660 661 return false; 662 } 663 664 // MDString: 665 // ::= '!' STRINGCONSTANT 666 bool LLParser::ParseMDString(MDString *&Result) { 667 std::string Str; 668 if (ParseStringConstant(Str)) return true; 669 Result = MDString::get(Context, Str); 670 return false; 671 } 672 673 // MDNode: 674 // ::= '!' MDNodeNumber 675 bool LLParser::ParseMDNodeID(MDNode *&Result) { 676 // !{ ..., !42, ... } 677 LocTy IDLoc = Lex.getLoc(); 678 unsigned MID = 0; 679 if (ParseUInt32(MID)) 680 return true; 681 682 // If not a forward reference, just return it now. 683 if (NumberedMetadata.count(MID)) { 684 Result = NumberedMetadata[MID]; 685 return false; 686 } 687 688 // Otherwise, create MDNode forward reference. 689 auto &FwdRef = ForwardRefMDNodes[MID]; 690 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 691 692 Result = FwdRef.first.get(); 693 NumberedMetadata[MID].reset(Result); 694 return false; 695 } 696 697 /// ParseNamedMetadata: 698 /// !foo = !{ !1, !2 } 699 bool LLParser::ParseNamedMetadata() { 700 assert(Lex.getKind() == lltok::MetadataVar); 701 std::string Name = Lex.getStrVal(); 702 Lex.Lex(); 703 704 if (ParseToken(lltok::equal, "expected '=' here") || 705 ParseToken(lltok::exclaim, "Expected '!' here") || 706 ParseToken(lltok::lbrace, "Expected '{' here")) 707 return true; 708 709 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 710 if (Lex.getKind() != lltok::rbrace) 711 do { 712 MDNode *N = nullptr; 713 // Parse DIExpressions inline as a special case. They are still MDNodes, 714 // so they can still appear in named metadata. Remove this logic if they 715 // become plain Metadata. 716 if (Lex.getKind() == lltok::MetadataVar && 717 Lex.getStrVal() == "DIExpression") { 718 if (ParseDIExpression(N, /*IsDistinct=*/false)) 719 return true; 720 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 721 ParseMDNodeID(N)) { 722 return true; 723 } 724 NMD->addOperand(N); 725 } while (EatIfPresent(lltok::comma)); 726 727 return ParseToken(lltok::rbrace, "expected end of metadata node"); 728 } 729 730 /// ParseStandaloneMetadata: 731 /// !42 = !{...} 732 bool LLParser::ParseStandaloneMetadata() { 733 assert(Lex.getKind() == lltok::exclaim); 734 Lex.Lex(); 735 unsigned MetadataID = 0; 736 737 MDNode *Init; 738 if (ParseUInt32(MetadataID) || 739 ParseToken(lltok::equal, "expected '=' here")) 740 return true; 741 742 // Detect common error, from old metadata syntax. 743 if (Lex.getKind() == lltok::Type) 744 return TokError("unexpected type in metadata definition"); 745 746 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 747 if (Lex.getKind() == lltok::MetadataVar) { 748 if (ParseSpecializedMDNode(Init, IsDistinct)) 749 return true; 750 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 751 ParseMDTuple(Init, IsDistinct)) 752 return true; 753 754 // See if this was forward referenced, if so, handle it. 755 auto FI = ForwardRefMDNodes.find(MetadataID); 756 if (FI != ForwardRefMDNodes.end()) { 757 FI->second.first->replaceAllUsesWith(Init); 758 ForwardRefMDNodes.erase(FI); 759 760 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 761 } else { 762 if (NumberedMetadata.count(MetadataID)) 763 return TokError("Metadata id is already used"); 764 NumberedMetadata[MetadataID].reset(Init); 765 } 766 767 return false; 768 } 769 770 // Skips a single module summary entry. 771 bool LLParser::SkipModuleSummaryEntry() { 772 // Each module summary entry consists of a tag for the entry 773 // type, followed by a colon, then the fields surrounded by nested sets of 774 // parentheses. The "tag:" looks like a Label. Once parsing support is 775 // in place we will look for the tokens corresponding to the expected tags. 776 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module && 777 Lex.getKind() != lltok::kw_typeid) 778 return TokError( 779 "Expected 'gv', 'module', or 'typeid' at the start of summary entry"); 780 Lex.Lex(); 781 if (ParseToken(lltok::colon, "expected ':' at start of summary entry") || 782 ParseToken(lltok::lparen, "expected '(' at start of summary entry")) 783 return true; 784 // Now walk through the parenthesized entry, until the number of open 785 // parentheses goes back down to 0 (the first '(' was parsed above). 786 unsigned NumOpenParen = 1; 787 do { 788 switch (Lex.getKind()) { 789 case lltok::lparen: 790 NumOpenParen++; 791 break; 792 case lltok::rparen: 793 NumOpenParen--; 794 break; 795 case lltok::Eof: 796 return TokError("found end of file while parsing summary entry"); 797 default: 798 // Skip everything in between parentheses. 799 break; 800 } 801 Lex.Lex(); 802 } while (NumOpenParen > 0); 803 return false; 804 } 805 806 /// SummaryEntry 807 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry 808 bool LLParser::ParseSummaryEntry() { 809 assert(Lex.getKind() == lltok::SummaryID); 810 unsigned SummaryID = Lex.getUIntVal(); 811 812 // For summary entries, colons should be treated as distinct tokens, 813 // not an indication of the end of a label token. 814 Lex.setIgnoreColonInIdentifiers(true); 815 816 Lex.Lex(); 817 if (ParseToken(lltok::equal, "expected '=' here")) 818 return true; 819 820 // If we don't have an index object, skip the summary entry. 821 if (!Index) 822 return SkipModuleSummaryEntry(); 823 824 switch (Lex.getKind()) { 825 case lltok::kw_gv: 826 return ParseGVEntry(SummaryID); 827 case lltok::kw_module: 828 return ParseModuleEntry(SummaryID); 829 case lltok::kw_typeid: 830 return ParseTypeIdEntry(SummaryID); 831 break; 832 default: 833 return Error(Lex.getLoc(), "unexpected summary kind"); 834 } 835 Lex.setIgnoreColonInIdentifiers(false); 836 return false; 837 } 838 839 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 840 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 841 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 842 } 843 844 // If there was an explicit dso_local, update GV. In the absence of an explicit 845 // dso_local we keep the default value. 846 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { 847 if (DSOLocal) 848 GV.setDSOLocal(true); 849 } 850 851 /// parseIndirectSymbol: 852 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 853 /// OptionalVisibility OptionalDLLStorageClass 854 /// OptionalThreadLocal OptionalUnnamedAddr 855 // 'alias|ifunc' IndirectSymbol 856 /// 857 /// IndirectSymbol 858 /// ::= TypeAndValue 859 /// 860 /// Everything through OptionalUnnamedAddr has already been parsed. 861 /// 862 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc, 863 unsigned L, unsigned Visibility, 864 unsigned DLLStorageClass, bool DSOLocal, 865 GlobalVariable::ThreadLocalMode TLM, 866 GlobalVariable::UnnamedAddr UnnamedAddr) { 867 bool IsAlias; 868 if (Lex.getKind() == lltok::kw_alias) 869 IsAlias = true; 870 else if (Lex.getKind() == lltok::kw_ifunc) 871 IsAlias = false; 872 else 873 llvm_unreachable("Not an alias or ifunc!"); 874 Lex.Lex(); 875 876 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 877 878 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 879 return Error(NameLoc, "invalid linkage type for alias"); 880 881 if (!isValidVisibilityForLinkage(Visibility, L)) 882 return Error(NameLoc, 883 "symbol with local linkage must have default visibility"); 884 885 Type *Ty; 886 LocTy ExplicitTypeLoc = Lex.getLoc(); 887 if (ParseType(Ty) || 888 ParseToken(lltok::comma, "expected comma after alias or ifunc's type")) 889 return true; 890 891 Constant *Aliasee; 892 LocTy AliaseeLoc = Lex.getLoc(); 893 if (Lex.getKind() != lltok::kw_bitcast && 894 Lex.getKind() != lltok::kw_getelementptr && 895 Lex.getKind() != lltok::kw_addrspacecast && 896 Lex.getKind() != lltok::kw_inttoptr) { 897 if (ParseGlobalTypeAndValue(Aliasee)) 898 return true; 899 } else { 900 // The bitcast dest type is not present, it is implied by the dest type. 901 ValID ID; 902 if (ParseValID(ID)) 903 return true; 904 if (ID.Kind != ValID::t_Constant) 905 return Error(AliaseeLoc, "invalid aliasee"); 906 Aliasee = ID.ConstantVal; 907 } 908 909 Type *AliaseeType = Aliasee->getType(); 910 auto *PTy = dyn_cast<PointerType>(AliaseeType); 911 if (!PTy) 912 return Error(AliaseeLoc, "An alias or ifunc must have pointer type"); 913 unsigned AddrSpace = PTy->getAddressSpace(); 914 915 if (IsAlias && Ty != PTy->getElementType()) 916 return Error( 917 ExplicitTypeLoc, 918 "explicit pointee type doesn't match operand's pointee type"); 919 920 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) 921 return Error( 922 ExplicitTypeLoc, 923 "explicit pointee type should be a function type"); 924 925 GlobalValue *GVal = nullptr; 926 927 // See if the alias was forward referenced, if so, prepare to replace the 928 // forward reference. 929 if (!Name.empty()) { 930 GVal = M->getNamedValue(Name); 931 if (GVal) { 932 if (!ForwardRefVals.erase(Name)) 933 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 934 } 935 } else { 936 auto I = ForwardRefValIDs.find(NumberedVals.size()); 937 if (I != ForwardRefValIDs.end()) { 938 GVal = I->second.first; 939 ForwardRefValIDs.erase(I); 940 } 941 } 942 943 // Okay, create the alias but do not insert it into the module yet. 944 std::unique_ptr<GlobalIndirectSymbol> GA; 945 if (IsAlias) 946 GA.reset(GlobalAlias::create(Ty, AddrSpace, 947 (GlobalValue::LinkageTypes)Linkage, Name, 948 Aliasee, /*Parent*/ nullptr)); 949 else 950 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 951 (GlobalValue::LinkageTypes)Linkage, Name, 952 Aliasee, /*Parent*/ nullptr)); 953 GA->setThreadLocalMode(TLM); 954 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 955 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 956 GA->setUnnamedAddr(UnnamedAddr); 957 maybeSetDSOLocal(DSOLocal, *GA); 958 959 if (Name.empty()) 960 NumberedVals.push_back(GA.get()); 961 962 if (GVal) { 963 // Verify that types agree. 964 if (GVal->getType() != GA->getType()) 965 return Error( 966 ExplicitTypeLoc, 967 "forward reference and definition of alias have different types"); 968 969 // If they agree, just RAUW the old value with the alias and remove the 970 // forward ref info. 971 GVal->replaceAllUsesWith(GA.get()); 972 GVal->eraseFromParent(); 973 } 974 975 // Insert into the module, we know its name won't collide now. 976 if (IsAlias) 977 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 978 else 979 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 980 assert(GA->getName() == Name && "Should not be a name conflict!"); 981 982 // The module owns this now 983 GA.release(); 984 985 return false; 986 } 987 988 /// ParseGlobal 989 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 990 /// OptionalVisibility OptionalDLLStorageClass 991 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 992 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 993 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 994 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 995 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 996 /// Const OptionalAttrs 997 /// 998 /// Everything up to and including OptionalUnnamedAddr has been parsed 999 /// already. 1000 /// 1001 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 1002 unsigned Linkage, bool HasLinkage, 1003 unsigned Visibility, unsigned DLLStorageClass, 1004 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 1005 GlobalVariable::UnnamedAddr UnnamedAddr) { 1006 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 1007 return Error(NameLoc, 1008 "symbol with local linkage must have default visibility"); 1009 1010 unsigned AddrSpace; 1011 bool IsConstant, IsExternallyInitialized; 1012 LocTy IsExternallyInitializedLoc; 1013 LocTy TyLoc; 1014 1015 Type *Ty = nullptr; 1016 if (ParseOptionalAddrSpace(AddrSpace) || 1017 ParseOptionalToken(lltok::kw_externally_initialized, 1018 IsExternallyInitialized, 1019 &IsExternallyInitializedLoc) || 1020 ParseGlobalType(IsConstant) || 1021 ParseType(Ty, TyLoc)) 1022 return true; 1023 1024 // If the linkage is specified and is external, then no initializer is 1025 // present. 1026 Constant *Init = nullptr; 1027 if (!HasLinkage || 1028 !GlobalValue::isValidDeclarationLinkage( 1029 (GlobalValue::LinkageTypes)Linkage)) { 1030 if (ParseGlobalValue(Ty, Init)) 1031 return true; 1032 } 1033 1034 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 1035 return Error(TyLoc, "invalid type for global variable"); 1036 1037 GlobalValue *GVal = nullptr; 1038 1039 // See if the global was forward referenced, if so, use the global. 1040 if (!Name.empty()) { 1041 GVal = M->getNamedValue(Name); 1042 if (GVal) { 1043 if (!ForwardRefVals.erase(Name)) 1044 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 1045 } 1046 } else { 1047 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1048 if (I != ForwardRefValIDs.end()) { 1049 GVal = I->second.first; 1050 ForwardRefValIDs.erase(I); 1051 } 1052 } 1053 1054 GlobalVariable *GV; 1055 if (!GVal) { 1056 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 1057 Name, nullptr, GlobalVariable::NotThreadLocal, 1058 AddrSpace); 1059 } else { 1060 if (GVal->getValueType() != Ty) 1061 return Error(TyLoc, 1062 "forward reference and definition of global have different types"); 1063 1064 GV = cast<GlobalVariable>(GVal); 1065 1066 // Move the forward-reference to the correct spot in the module. 1067 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 1068 } 1069 1070 if (Name.empty()) 1071 NumberedVals.push_back(GV); 1072 1073 // Set the parsed properties on the global. 1074 if (Init) 1075 GV->setInitializer(Init); 1076 GV->setConstant(IsConstant); 1077 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 1078 maybeSetDSOLocal(DSOLocal, *GV); 1079 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1080 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1081 GV->setExternallyInitialized(IsExternallyInitialized); 1082 GV->setThreadLocalMode(TLM); 1083 GV->setUnnamedAddr(UnnamedAddr); 1084 1085 // Parse attributes on the global. 1086 while (Lex.getKind() == lltok::comma) { 1087 Lex.Lex(); 1088 1089 if (Lex.getKind() == lltok::kw_section) { 1090 Lex.Lex(); 1091 GV->setSection(Lex.getStrVal()); 1092 if (ParseToken(lltok::StringConstant, "expected global section string")) 1093 return true; 1094 } else if (Lex.getKind() == lltok::kw_align) { 1095 unsigned Alignment; 1096 if (ParseOptionalAlignment(Alignment)) return true; 1097 GV->setAlignment(Alignment); 1098 } else if (Lex.getKind() == lltok::MetadataVar) { 1099 if (ParseGlobalObjectMetadataAttachment(*GV)) 1100 return true; 1101 } else { 1102 Comdat *C; 1103 if (parseOptionalComdat(Name, C)) 1104 return true; 1105 if (C) 1106 GV->setComdat(C); 1107 else 1108 return TokError("unknown global variable property!"); 1109 } 1110 } 1111 1112 AttrBuilder Attrs; 1113 LocTy BuiltinLoc; 1114 std::vector<unsigned> FwdRefAttrGrps; 1115 if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 1116 return true; 1117 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 1118 GV->setAttributes(AttributeSet::get(Context, Attrs)); 1119 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 1120 } 1121 1122 return false; 1123 } 1124 1125 /// ParseUnnamedAttrGrp 1126 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 1127 bool LLParser::ParseUnnamedAttrGrp() { 1128 assert(Lex.getKind() == lltok::kw_attributes); 1129 LocTy AttrGrpLoc = Lex.getLoc(); 1130 Lex.Lex(); 1131 1132 if (Lex.getKind() != lltok::AttrGrpID) 1133 return TokError("expected attribute group id"); 1134 1135 unsigned VarID = Lex.getUIntVal(); 1136 std::vector<unsigned> unused; 1137 LocTy BuiltinLoc; 1138 Lex.Lex(); 1139 1140 if (ParseToken(lltok::equal, "expected '=' here") || 1141 ParseToken(lltok::lbrace, "expected '{' here") || 1142 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 1143 BuiltinLoc) || 1144 ParseToken(lltok::rbrace, "expected end of attribute group")) 1145 return true; 1146 1147 if (!NumberedAttrBuilders[VarID].hasAttributes()) 1148 return Error(AttrGrpLoc, "attribute group has no attributes"); 1149 1150 return false; 1151 } 1152 1153 /// ParseFnAttributeValuePairs 1154 /// ::= <attr> | <attr> '=' <value> 1155 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B, 1156 std::vector<unsigned> &FwdRefAttrGrps, 1157 bool inAttrGrp, LocTy &BuiltinLoc) { 1158 bool HaveError = false; 1159 1160 B.clear(); 1161 1162 while (true) { 1163 lltok::Kind Token = Lex.getKind(); 1164 if (Token == lltok::kw_builtin) 1165 BuiltinLoc = Lex.getLoc(); 1166 switch (Token) { 1167 default: 1168 if (!inAttrGrp) return HaveError; 1169 return Error(Lex.getLoc(), "unterminated attribute group"); 1170 case lltok::rbrace: 1171 // Finished. 1172 return false; 1173 1174 case lltok::AttrGrpID: { 1175 // Allow a function to reference an attribute group: 1176 // 1177 // define void @foo() #1 { ... } 1178 if (inAttrGrp) 1179 HaveError |= 1180 Error(Lex.getLoc(), 1181 "cannot have an attribute group reference in an attribute group"); 1182 1183 unsigned AttrGrpNum = Lex.getUIntVal(); 1184 if (inAttrGrp) break; 1185 1186 // Save the reference to the attribute group. We'll fill it in later. 1187 FwdRefAttrGrps.push_back(AttrGrpNum); 1188 break; 1189 } 1190 // Target-dependent attributes: 1191 case lltok::StringConstant: { 1192 if (ParseStringAttribute(B)) 1193 return true; 1194 continue; 1195 } 1196 1197 // Target-independent attributes: 1198 case lltok::kw_align: { 1199 // As a hack, we allow function alignment to be initially parsed as an 1200 // attribute on a function declaration/definition or added to an attribute 1201 // group and later moved to the alignment field. 1202 unsigned Alignment; 1203 if (inAttrGrp) { 1204 Lex.Lex(); 1205 if (ParseToken(lltok::equal, "expected '=' here") || 1206 ParseUInt32(Alignment)) 1207 return true; 1208 } else { 1209 if (ParseOptionalAlignment(Alignment)) 1210 return true; 1211 } 1212 B.addAlignmentAttr(Alignment); 1213 continue; 1214 } 1215 case lltok::kw_alignstack: { 1216 unsigned Alignment; 1217 if (inAttrGrp) { 1218 Lex.Lex(); 1219 if (ParseToken(lltok::equal, "expected '=' here") || 1220 ParseUInt32(Alignment)) 1221 return true; 1222 } else { 1223 if (ParseOptionalStackAlignment(Alignment)) 1224 return true; 1225 } 1226 B.addStackAlignmentAttr(Alignment); 1227 continue; 1228 } 1229 case lltok::kw_allocsize: { 1230 unsigned ElemSizeArg; 1231 Optional<unsigned> NumElemsArg; 1232 // inAttrGrp doesn't matter; we only support allocsize(a[, b]) 1233 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1234 return true; 1235 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1236 continue; 1237 } 1238 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 1239 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 1240 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 1241 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 1242 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 1243 case lltok::kw_inaccessiblememonly: 1244 B.addAttribute(Attribute::InaccessibleMemOnly); break; 1245 case lltok::kw_inaccessiblemem_or_argmemonly: 1246 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break; 1247 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 1248 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 1249 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 1250 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 1251 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 1252 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 1253 case lltok::kw_noimplicitfloat: 1254 B.addAttribute(Attribute::NoImplicitFloat); break; 1255 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1256 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1257 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1258 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1259 case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break; 1260 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1261 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1262 case lltok::kw_optforfuzzing: 1263 B.addAttribute(Attribute::OptForFuzzing); break; 1264 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1265 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1266 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1267 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1268 case lltok::kw_returns_twice: 1269 B.addAttribute(Attribute::ReturnsTwice); break; 1270 case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break; 1271 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1272 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1273 case lltok::kw_sspstrong: 1274 B.addAttribute(Attribute::StackProtectStrong); break; 1275 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1276 case lltok::kw_shadowcallstack: 1277 B.addAttribute(Attribute::ShadowCallStack); break; 1278 case lltok::kw_sanitize_address: 1279 B.addAttribute(Attribute::SanitizeAddress); break; 1280 case lltok::kw_sanitize_hwaddress: 1281 B.addAttribute(Attribute::SanitizeHWAddress); break; 1282 case lltok::kw_sanitize_thread: 1283 B.addAttribute(Attribute::SanitizeThread); break; 1284 case lltok::kw_sanitize_memory: 1285 B.addAttribute(Attribute::SanitizeMemory); break; 1286 case lltok::kw_speculative_load_hardening: 1287 B.addAttribute(Attribute::SpeculativeLoadHardening); 1288 break; 1289 case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break; 1290 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1291 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1292 1293 // Error handling. 1294 case lltok::kw_inreg: 1295 case lltok::kw_signext: 1296 case lltok::kw_zeroext: 1297 HaveError |= 1298 Error(Lex.getLoc(), 1299 "invalid use of attribute on a function"); 1300 break; 1301 case lltok::kw_byval: 1302 case lltok::kw_dereferenceable: 1303 case lltok::kw_dereferenceable_or_null: 1304 case lltok::kw_inalloca: 1305 case lltok::kw_nest: 1306 case lltok::kw_noalias: 1307 case lltok::kw_nocapture: 1308 case lltok::kw_nonnull: 1309 case lltok::kw_returned: 1310 case lltok::kw_sret: 1311 case lltok::kw_swifterror: 1312 case lltok::kw_swiftself: 1313 case lltok::kw_immarg: 1314 HaveError |= 1315 Error(Lex.getLoc(), 1316 "invalid use of parameter-only attribute on a function"); 1317 break; 1318 } 1319 1320 Lex.Lex(); 1321 } 1322 } 1323 1324 //===----------------------------------------------------------------------===// 1325 // GlobalValue Reference/Resolution Routines. 1326 //===----------------------------------------------------------------------===// 1327 1328 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1329 const std::string &Name) { 1330 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1331 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, 1332 PTy->getAddressSpace(), Name, M); 1333 else 1334 return new GlobalVariable(*M, PTy->getElementType(), false, 1335 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1336 nullptr, GlobalVariable::NotThreadLocal, 1337 PTy->getAddressSpace()); 1338 } 1339 1340 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty, 1341 Value *Val, bool IsCall) { 1342 if (Val->getType() == Ty) 1343 return Val; 1344 // For calls we also accept variables in the program address space. 1345 Type *SuggestedTy = Ty; 1346 if (IsCall && isa<PointerType>(Ty)) { 1347 Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo( 1348 M->getDataLayout().getProgramAddressSpace()); 1349 SuggestedTy = TyInProgAS; 1350 if (Val->getType() == TyInProgAS) 1351 return Val; 1352 } 1353 if (Ty->isLabelTy()) 1354 Error(Loc, "'" + Name + "' is not a basic block"); 1355 else 1356 Error(Loc, "'" + Name + "' defined with type '" + 1357 getTypeString(Val->getType()) + "' but expected '" + 1358 getTypeString(SuggestedTy) + "'"); 1359 return nullptr; 1360 } 1361 1362 /// GetGlobalVal - Get a value with the specified name or ID, creating a 1363 /// forward reference record if needed. This can return null if the value 1364 /// exists but does not have the right type. 1365 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 1366 LocTy Loc, bool IsCall) { 1367 PointerType *PTy = dyn_cast<PointerType>(Ty); 1368 if (!PTy) { 1369 Error(Loc, "global variable reference must have pointer type"); 1370 return nullptr; 1371 } 1372 1373 // Look this name up in the normal function symbol table. 1374 GlobalValue *Val = 1375 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1376 1377 // If this is a forward reference for the value, see if we already created a 1378 // forward ref record. 1379 if (!Val) { 1380 auto I = ForwardRefVals.find(Name); 1381 if (I != ForwardRefVals.end()) 1382 Val = I->second.first; 1383 } 1384 1385 // If we have the value in the symbol table or fwd-ref table, return it. 1386 if (Val) 1387 return cast_or_null<GlobalValue>( 1388 checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall)); 1389 1390 // Otherwise, create a new forward reference for this value and remember it. 1391 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1392 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1393 return FwdVal; 1394 } 1395 1396 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc, 1397 bool IsCall) { 1398 PointerType *PTy = dyn_cast<PointerType>(Ty); 1399 if (!PTy) { 1400 Error(Loc, "global variable reference must have pointer type"); 1401 return nullptr; 1402 } 1403 1404 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1405 1406 // If this is a forward reference for the value, see if we already created a 1407 // forward ref record. 1408 if (!Val) { 1409 auto I = ForwardRefValIDs.find(ID); 1410 if (I != ForwardRefValIDs.end()) 1411 Val = I->second.first; 1412 } 1413 1414 // If we have the value in the symbol table or fwd-ref table, return it. 1415 if (Val) 1416 return cast_or_null<GlobalValue>( 1417 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall)); 1418 1419 // Otherwise, create a new forward reference for this value and remember it. 1420 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1421 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1422 return FwdVal; 1423 } 1424 1425 //===----------------------------------------------------------------------===// 1426 // Comdat Reference/Resolution Routines. 1427 //===----------------------------------------------------------------------===// 1428 1429 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1430 // Look this name up in the comdat symbol table. 1431 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1432 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1433 if (I != ComdatSymTab.end()) 1434 return &I->second; 1435 1436 // Otherwise, create a new forward reference for this value and remember it. 1437 Comdat *C = M->getOrInsertComdat(Name); 1438 ForwardRefComdats[Name] = Loc; 1439 return C; 1440 } 1441 1442 //===----------------------------------------------------------------------===// 1443 // Helper Routines. 1444 //===----------------------------------------------------------------------===// 1445 1446 /// ParseToken - If the current token has the specified kind, eat it and return 1447 /// success. Otherwise, emit the specified error and return failure. 1448 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 1449 if (Lex.getKind() != T) 1450 return TokError(ErrMsg); 1451 Lex.Lex(); 1452 return false; 1453 } 1454 1455 /// ParseStringConstant 1456 /// ::= StringConstant 1457 bool LLParser::ParseStringConstant(std::string &Result) { 1458 if (Lex.getKind() != lltok::StringConstant) 1459 return TokError("expected string constant"); 1460 Result = Lex.getStrVal(); 1461 Lex.Lex(); 1462 return false; 1463 } 1464 1465 /// ParseUInt32 1466 /// ::= uint32 1467 bool LLParser::ParseUInt32(uint32_t &Val) { 1468 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1469 return TokError("expected integer"); 1470 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1471 if (Val64 != unsigned(Val64)) 1472 return TokError("expected 32-bit integer (too large)"); 1473 Val = Val64; 1474 Lex.Lex(); 1475 return false; 1476 } 1477 1478 /// ParseUInt64 1479 /// ::= uint64 1480 bool LLParser::ParseUInt64(uint64_t &Val) { 1481 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1482 return TokError("expected integer"); 1483 Val = Lex.getAPSIntVal().getLimitedValue(); 1484 Lex.Lex(); 1485 return false; 1486 } 1487 1488 /// ParseTLSModel 1489 /// := 'localdynamic' 1490 /// := 'initialexec' 1491 /// := 'localexec' 1492 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1493 switch (Lex.getKind()) { 1494 default: 1495 return TokError("expected localdynamic, initialexec or localexec"); 1496 case lltok::kw_localdynamic: 1497 TLM = GlobalVariable::LocalDynamicTLSModel; 1498 break; 1499 case lltok::kw_initialexec: 1500 TLM = GlobalVariable::InitialExecTLSModel; 1501 break; 1502 case lltok::kw_localexec: 1503 TLM = GlobalVariable::LocalExecTLSModel; 1504 break; 1505 } 1506 1507 Lex.Lex(); 1508 return false; 1509 } 1510 1511 /// ParseOptionalThreadLocal 1512 /// := /*empty*/ 1513 /// := 'thread_local' 1514 /// := 'thread_local' '(' tlsmodel ')' 1515 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1516 TLM = GlobalVariable::NotThreadLocal; 1517 if (!EatIfPresent(lltok::kw_thread_local)) 1518 return false; 1519 1520 TLM = GlobalVariable::GeneralDynamicTLSModel; 1521 if (Lex.getKind() == lltok::lparen) { 1522 Lex.Lex(); 1523 return ParseTLSModel(TLM) || 1524 ParseToken(lltok::rparen, "expected ')' after thread local model"); 1525 } 1526 return false; 1527 } 1528 1529 /// ParseOptionalAddrSpace 1530 /// := /*empty*/ 1531 /// := 'addrspace' '(' uint32 ')' 1532 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) { 1533 AddrSpace = DefaultAS; 1534 if (!EatIfPresent(lltok::kw_addrspace)) 1535 return false; 1536 return ParseToken(lltok::lparen, "expected '(' in address space") || 1537 ParseUInt32(AddrSpace) || 1538 ParseToken(lltok::rparen, "expected ')' in address space"); 1539 } 1540 1541 /// ParseStringAttribute 1542 /// := StringConstant 1543 /// := StringConstant '=' StringConstant 1544 bool LLParser::ParseStringAttribute(AttrBuilder &B) { 1545 std::string Attr = Lex.getStrVal(); 1546 Lex.Lex(); 1547 std::string Val; 1548 if (EatIfPresent(lltok::equal) && ParseStringConstant(Val)) 1549 return true; 1550 B.addAttribute(Attr, Val); 1551 return false; 1552 } 1553 1554 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes. 1555 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) { 1556 bool HaveError = false; 1557 1558 B.clear(); 1559 1560 while (true) { 1561 lltok::Kind Token = Lex.getKind(); 1562 switch (Token) { 1563 default: // End of attributes. 1564 return HaveError; 1565 case lltok::StringConstant: { 1566 if (ParseStringAttribute(B)) 1567 return true; 1568 continue; 1569 } 1570 case lltok::kw_align: { 1571 unsigned Alignment; 1572 if (ParseOptionalAlignment(Alignment)) 1573 return true; 1574 B.addAlignmentAttr(Alignment); 1575 continue; 1576 } 1577 case lltok::kw_byval: B.addAttribute(Attribute::ByVal); break; 1578 case lltok::kw_dereferenceable: { 1579 uint64_t Bytes; 1580 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1581 return true; 1582 B.addDereferenceableAttr(Bytes); 1583 continue; 1584 } 1585 case lltok::kw_dereferenceable_or_null: { 1586 uint64_t Bytes; 1587 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1588 return true; 1589 B.addDereferenceableOrNullAttr(Bytes); 1590 continue; 1591 } 1592 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break; 1593 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1594 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1595 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1596 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1597 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1598 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1599 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1600 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1601 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1602 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break; 1603 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break; 1604 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break; 1605 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1606 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1607 case lltok::kw_immarg: B.addAttribute(Attribute::ImmArg); break; 1608 1609 case lltok::kw_alignstack: 1610 case lltok::kw_alwaysinline: 1611 case lltok::kw_argmemonly: 1612 case lltok::kw_builtin: 1613 case lltok::kw_inlinehint: 1614 case lltok::kw_jumptable: 1615 case lltok::kw_minsize: 1616 case lltok::kw_naked: 1617 case lltok::kw_nobuiltin: 1618 case lltok::kw_noduplicate: 1619 case lltok::kw_noimplicitfloat: 1620 case lltok::kw_noinline: 1621 case lltok::kw_nonlazybind: 1622 case lltok::kw_noredzone: 1623 case lltok::kw_noreturn: 1624 case lltok::kw_nocf_check: 1625 case lltok::kw_nounwind: 1626 case lltok::kw_optforfuzzing: 1627 case lltok::kw_optnone: 1628 case lltok::kw_optsize: 1629 case lltok::kw_returns_twice: 1630 case lltok::kw_sanitize_address: 1631 case lltok::kw_sanitize_hwaddress: 1632 case lltok::kw_sanitize_memory: 1633 case lltok::kw_sanitize_thread: 1634 case lltok::kw_speculative_load_hardening: 1635 case lltok::kw_ssp: 1636 case lltok::kw_sspreq: 1637 case lltok::kw_sspstrong: 1638 case lltok::kw_safestack: 1639 case lltok::kw_shadowcallstack: 1640 case lltok::kw_strictfp: 1641 case lltok::kw_uwtable: 1642 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1643 break; 1644 } 1645 1646 Lex.Lex(); 1647 } 1648 } 1649 1650 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes. 1651 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) { 1652 bool HaveError = false; 1653 1654 B.clear(); 1655 1656 while (true) { 1657 lltok::Kind Token = Lex.getKind(); 1658 switch (Token) { 1659 default: // End of attributes. 1660 return HaveError; 1661 case lltok::StringConstant: { 1662 if (ParseStringAttribute(B)) 1663 return true; 1664 continue; 1665 } 1666 case lltok::kw_dereferenceable: { 1667 uint64_t Bytes; 1668 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1669 return true; 1670 B.addDereferenceableAttr(Bytes); 1671 continue; 1672 } 1673 case lltok::kw_dereferenceable_or_null: { 1674 uint64_t Bytes; 1675 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1676 return true; 1677 B.addDereferenceableOrNullAttr(Bytes); 1678 continue; 1679 } 1680 case lltok::kw_align: { 1681 unsigned Alignment; 1682 if (ParseOptionalAlignment(Alignment)) 1683 return true; 1684 B.addAlignmentAttr(Alignment); 1685 continue; 1686 } 1687 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1688 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1689 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1690 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1691 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1692 1693 // Error handling. 1694 case lltok::kw_byval: 1695 case lltok::kw_inalloca: 1696 case lltok::kw_nest: 1697 case lltok::kw_nocapture: 1698 case lltok::kw_returned: 1699 case lltok::kw_sret: 1700 case lltok::kw_swifterror: 1701 case lltok::kw_swiftself: 1702 case lltok::kw_immarg: 1703 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1704 break; 1705 1706 case lltok::kw_alignstack: 1707 case lltok::kw_alwaysinline: 1708 case lltok::kw_argmemonly: 1709 case lltok::kw_builtin: 1710 case lltok::kw_cold: 1711 case lltok::kw_inlinehint: 1712 case lltok::kw_jumptable: 1713 case lltok::kw_minsize: 1714 case lltok::kw_naked: 1715 case lltok::kw_nobuiltin: 1716 case lltok::kw_noduplicate: 1717 case lltok::kw_noimplicitfloat: 1718 case lltok::kw_noinline: 1719 case lltok::kw_nonlazybind: 1720 case lltok::kw_noredzone: 1721 case lltok::kw_noreturn: 1722 case lltok::kw_nocf_check: 1723 case lltok::kw_nounwind: 1724 case lltok::kw_optforfuzzing: 1725 case lltok::kw_optnone: 1726 case lltok::kw_optsize: 1727 case lltok::kw_returns_twice: 1728 case lltok::kw_sanitize_address: 1729 case lltok::kw_sanitize_hwaddress: 1730 case lltok::kw_sanitize_memory: 1731 case lltok::kw_sanitize_thread: 1732 case lltok::kw_speculative_load_hardening: 1733 case lltok::kw_ssp: 1734 case lltok::kw_sspreq: 1735 case lltok::kw_sspstrong: 1736 case lltok::kw_safestack: 1737 case lltok::kw_shadowcallstack: 1738 case lltok::kw_strictfp: 1739 case lltok::kw_uwtable: 1740 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1741 break; 1742 1743 case lltok::kw_readnone: 1744 case lltok::kw_readonly: 1745 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type"); 1746 } 1747 1748 Lex.Lex(); 1749 } 1750 } 1751 1752 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1753 HasLinkage = true; 1754 switch (Kind) { 1755 default: 1756 HasLinkage = false; 1757 return GlobalValue::ExternalLinkage; 1758 case lltok::kw_private: 1759 return GlobalValue::PrivateLinkage; 1760 case lltok::kw_internal: 1761 return GlobalValue::InternalLinkage; 1762 case lltok::kw_weak: 1763 return GlobalValue::WeakAnyLinkage; 1764 case lltok::kw_weak_odr: 1765 return GlobalValue::WeakODRLinkage; 1766 case lltok::kw_linkonce: 1767 return GlobalValue::LinkOnceAnyLinkage; 1768 case lltok::kw_linkonce_odr: 1769 return GlobalValue::LinkOnceODRLinkage; 1770 case lltok::kw_available_externally: 1771 return GlobalValue::AvailableExternallyLinkage; 1772 case lltok::kw_appending: 1773 return GlobalValue::AppendingLinkage; 1774 case lltok::kw_common: 1775 return GlobalValue::CommonLinkage; 1776 case lltok::kw_extern_weak: 1777 return GlobalValue::ExternalWeakLinkage; 1778 case lltok::kw_external: 1779 return GlobalValue::ExternalLinkage; 1780 } 1781 } 1782 1783 /// ParseOptionalLinkage 1784 /// ::= /*empty*/ 1785 /// ::= 'private' 1786 /// ::= 'internal' 1787 /// ::= 'weak' 1788 /// ::= 'weak_odr' 1789 /// ::= 'linkonce' 1790 /// ::= 'linkonce_odr' 1791 /// ::= 'available_externally' 1792 /// ::= 'appending' 1793 /// ::= 'common' 1794 /// ::= 'extern_weak' 1795 /// ::= 'external' 1796 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1797 unsigned &Visibility, 1798 unsigned &DLLStorageClass, 1799 bool &DSOLocal) { 1800 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1801 if (HasLinkage) 1802 Lex.Lex(); 1803 ParseOptionalDSOLocal(DSOLocal); 1804 ParseOptionalVisibility(Visibility); 1805 ParseOptionalDLLStorageClass(DLLStorageClass); 1806 1807 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 1808 return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 1809 } 1810 1811 return false; 1812 } 1813 1814 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) { 1815 switch (Lex.getKind()) { 1816 default: 1817 DSOLocal = false; 1818 break; 1819 case lltok::kw_dso_local: 1820 DSOLocal = true; 1821 Lex.Lex(); 1822 break; 1823 case lltok::kw_dso_preemptable: 1824 DSOLocal = false; 1825 Lex.Lex(); 1826 break; 1827 } 1828 } 1829 1830 /// ParseOptionalVisibility 1831 /// ::= /*empty*/ 1832 /// ::= 'default' 1833 /// ::= 'hidden' 1834 /// ::= 'protected' 1835 /// 1836 void LLParser::ParseOptionalVisibility(unsigned &Res) { 1837 switch (Lex.getKind()) { 1838 default: 1839 Res = GlobalValue::DefaultVisibility; 1840 return; 1841 case lltok::kw_default: 1842 Res = GlobalValue::DefaultVisibility; 1843 break; 1844 case lltok::kw_hidden: 1845 Res = GlobalValue::HiddenVisibility; 1846 break; 1847 case lltok::kw_protected: 1848 Res = GlobalValue::ProtectedVisibility; 1849 break; 1850 } 1851 Lex.Lex(); 1852 } 1853 1854 /// ParseOptionalDLLStorageClass 1855 /// ::= /*empty*/ 1856 /// ::= 'dllimport' 1857 /// ::= 'dllexport' 1858 /// 1859 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) { 1860 switch (Lex.getKind()) { 1861 default: 1862 Res = GlobalValue::DefaultStorageClass; 1863 return; 1864 case lltok::kw_dllimport: 1865 Res = GlobalValue::DLLImportStorageClass; 1866 break; 1867 case lltok::kw_dllexport: 1868 Res = GlobalValue::DLLExportStorageClass; 1869 break; 1870 } 1871 Lex.Lex(); 1872 } 1873 1874 /// ParseOptionalCallingConv 1875 /// ::= /*empty*/ 1876 /// ::= 'ccc' 1877 /// ::= 'fastcc' 1878 /// ::= 'intel_ocl_bicc' 1879 /// ::= 'coldcc' 1880 /// ::= 'x86_stdcallcc' 1881 /// ::= 'x86_fastcallcc' 1882 /// ::= 'x86_thiscallcc' 1883 /// ::= 'x86_vectorcallcc' 1884 /// ::= 'arm_apcscc' 1885 /// ::= 'arm_aapcscc' 1886 /// ::= 'arm_aapcs_vfpcc' 1887 /// ::= 'aarch64_vector_pcs' 1888 /// ::= 'msp430_intrcc' 1889 /// ::= 'avr_intrcc' 1890 /// ::= 'avr_signalcc' 1891 /// ::= 'ptx_kernel' 1892 /// ::= 'ptx_device' 1893 /// ::= 'spir_func' 1894 /// ::= 'spir_kernel' 1895 /// ::= 'x86_64_sysvcc' 1896 /// ::= 'win64cc' 1897 /// ::= 'webkit_jscc' 1898 /// ::= 'anyregcc' 1899 /// ::= 'preserve_mostcc' 1900 /// ::= 'preserve_allcc' 1901 /// ::= 'ghccc' 1902 /// ::= 'swiftcc' 1903 /// ::= 'x86_intrcc' 1904 /// ::= 'hhvmcc' 1905 /// ::= 'hhvm_ccc' 1906 /// ::= 'cxx_fast_tlscc' 1907 /// ::= 'amdgpu_vs' 1908 /// ::= 'amdgpu_ls' 1909 /// ::= 'amdgpu_hs' 1910 /// ::= 'amdgpu_es' 1911 /// ::= 'amdgpu_gs' 1912 /// ::= 'amdgpu_ps' 1913 /// ::= 'amdgpu_cs' 1914 /// ::= 'amdgpu_kernel' 1915 /// ::= 'cc' UINT 1916 /// 1917 bool LLParser::ParseOptionalCallingConv(unsigned &CC) { 1918 switch (Lex.getKind()) { 1919 default: CC = CallingConv::C; return false; 1920 case lltok::kw_ccc: CC = CallingConv::C; break; 1921 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1922 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1923 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1924 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1925 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 1926 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1927 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1928 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1929 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1930 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1931 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break; 1932 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1933 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 1934 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 1935 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1936 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1937 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1938 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1939 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1940 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1941 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 1942 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1943 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1944 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1945 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1946 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1947 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 1948 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 1949 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 1950 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 1951 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 1952 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 1953 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 1954 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 1955 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 1956 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 1957 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 1958 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 1959 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 1960 case lltok::kw_cc: { 1961 Lex.Lex(); 1962 return ParseUInt32(CC); 1963 } 1964 } 1965 1966 Lex.Lex(); 1967 return false; 1968 } 1969 1970 /// ParseMetadataAttachment 1971 /// ::= !dbg !42 1972 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 1973 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 1974 1975 std::string Name = Lex.getStrVal(); 1976 Kind = M->getMDKindID(Name); 1977 Lex.Lex(); 1978 1979 return ParseMDNode(MD); 1980 } 1981 1982 /// ParseInstructionMetadata 1983 /// ::= !dbg !42 (',' !dbg !57)* 1984 bool LLParser::ParseInstructionMetadata(Instruction &Inst) { 1985 do { 1986 if (Lex.getKind() != lltok::MetadataVar) 1987 return TokError("expected metadata after comma"); 1988 1989 unsigned MDK; 1990 MDNode *N; 1991 if (ParseMetadataAttachment(MDK, N)) 1992 return true; 1993 1994 Inst.setMetadata(MDK, N); 1995 if (MDK == LLVMContext::MD_tbaa) 1996 InstsWithTBAATag.push_back(&Inst); 1997 1998 // If this is the end of the list, we're done. 1999 } while (EatIfPresent(lltok::comma)); 2000 return false; 2001 } 2002 2003 /// ParseGlobalObjectMetadataAttachment 2004 /// ::= !dbg !57 2005 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) { 2006 unsigned MDK; 2007 MDNode *N; 2008 if (ParseMetadataAttachment(MDK, N)) 2009 return true; 2010 2011 GO.addMetadata(MDK, *N); 2012 return false; 2013 } 2014 2015 /// ParseOptionalFunctionMetadata 2016 /// ::= (!dbg !57)* 2017 bool LLParser::ParseOptionalFunctionMetadata(Function &F) { 2018 while (Lex.getKind() == lltok::MetadataVar) 2019 if (ParseGlobalObjectMetadataAttachment(F)) 2020 return true; 2021 return false; 2022 } 2023 2024 /// ParseOptionalAlignment 2025 /// ::= /* empty */ 2026 /// ::= 'align' 4 2027 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { 2028 Alignment = 0; 2029 if (!EatIfPresent(lltok::kw_align)) 2030 return false; 2031 LocTy AlignLoc = Lex.getLoc(); 2032 if (ParseUInt32(Alignment)) return true; 2033 if (!isPowerOf2_32(Alignment)) 2034 return Error(AlignLoc, "alignment is not a power of two"); 2035 if (Alignment > Value::MaximumAlignment) 2036 return Error(AlignLoc, "huge alignments are not supported yet"); 2037 return false; 2038 } 2039 2040 /// ParseOptionalDerefAttrBytes 2041 /// ::= /* empty */ 2042 /// ::= AttrKind '(' 4 ')' 2043 /// 2044 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 2045 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind, 2046 uint64_t &Bytes) { 2047 assert((AttrKind == lltok::kw_dereferenceable || 2048 AttrKind == lltok::kw_dereferenceable_or_null) && 2049 "contract!"); 2050 2051 Bytes = 0; 2052 if (!EatIfPresent(AttrKind)) 2053 return false; 2054 LocTy ParenLoc = Lex.getLoc(); 2055 if (!EatIfPresent(lltok::lparen)) 2056 return Error(ParenLoc, "expected '('"); 2057 LocTy DerefLoc = Lex.getLoc(); 2058 if (ParseUInt64(Bytes)) return true; 2059 ParenLoc = Lex.getLoc(); 2060 if (!EatIfPresent(lltok::rparen)) 2061 return Error(ParenLoc, "expected ')'"); 2062 if (!Bytes) 2063 return Error(DerefLoc, "dereferenceable bytes must be non-zero"); 2064 return false; 2065 } 2066 2067 /// ParseOptionalCommaAlign 2068 /// ::= 2069 /// ::= ',' align 4 2070 /// 2071 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2072 /// end. 2073 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, 2074 bool &AteExtraComma) { 2075 AteExtraComma = false; 2076 while (EatIfPresent(lltok::comma)) { 2077 // Metadata at the end is an early exit. 2078 if (Lex.getKind() == lltok::MetadataVar) { 2079 AteExtraComma = true; 2080 return false; 2081 } 2082 2083 if (Lex.getKind() != lltok::kw_align) 2084 return Error(Lex.getLoc(), "expected metadata or 'align'"); 2085 2086 if (ParseOptionalAlignment(Alignment)) return true; 2087 } 2088 2089 return false; 2090 } 2091 2092 /// ParseOptionalCommaAddrSpace 2093 /// ::= 2094 /// ::= ',' addrspace(1) 2095 /// 2096 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2097 /// end. 2098 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace, 2099 LocTy &Loc, 2100 bool &AteExtraComma) { 2101 AteExtraComma = false; 2102 while (EatIfPresent(lltok::comma)) { 2103 // Metadata at the end is an early exit. 2104 if (Lex.getKind() == lltok::MetadataVar) { 2105 AteExtraComma = true; 2106 return false; 2107 } 2108 2109 Loc = Lex.getLoc(); 2110 if (Lex.getKind() != lltok::kw_addrspace) 2111 return Error(Lex.getLoc(), "expected metadata or 'addrspace'"); 2112 2113 if (ParseOptionalAddrSpace(AddrSpace)) 2114 return true; 2115 } 2116 2117 return false; 2118 } 2119 2120 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 2121 Optional<unsigned> &HowManyArg) { 2122 Lex.Lex(); 2123 2124 auto StartParen = Lex.getLoc(); 2125 if (!EatIfPresent(lltok::lparen)) 2126 return Error(StartParen, "expected '('"); 2127 2128 if (ParseUInt32(BaseSizeArg)) 2129 return true; 2130 2131 if (EatIfPresent(lltok::comma)) { 2132 auto HowManyAt = Lex.getLoc(); 2133 unsigned HowMany; 2134 if (ParseUInt32(HowMany)) 2135 return true; 2136 if (HowMany == BaseSizeArg) 2137 return Error(HowManyAt, 2138 "'allocsize' indices can't refer to the same parameter"); 2139 HowManyArg = HowMany; 2140 } else 2141 HowManyArg = None; 2142 2143 auto EndParen = Lex.getLoc(); 2144 if (!EatIfPresent(lltok::rparen)) 2145 return Error(EndParen, "expected ')'"); 2146 return false; 2147 } 2148 2149 /// ParseScopeAndOrdering 2150 /// if isAtomic: ::= SyncScope? AtomicOrdering 2151 /// else: ::= 2152 /// 2153 /// This sets Scope and Ordering to the parsed values. 2154 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID, 2155 AtomicOrdering &Ordering) { 2156 if (!isAtomic) 2157 return false; 2158 2159 return ParseScope(SSID) || ParseOrdering(Ordering); 2160 } 2161 2162 /// ParseScope 2163 /// ::= syncscope("singlethread" | "<target scope>")? 2164 /// 2165 /// This sets synchronization scope ID to the ID of the parsed value. 2166 bool LLParser::ParseScope(SyncScope::ID &SSID) { 2167 SSID = SyncScope::System; 2168 if (EatIfPresent(lltok::kw_syncscope)) { 2169 auto StartParenAt = Lex.getLoc(); 2170 if (!EatIfPresent(lltok::lparen)) 2171 return Error(StartParenAt, "Expected '(' in syncscope"); 2172 2173 std::string SSN; 2174 auto SSNAt = Lex.getLoc(); 2175 if (ParseStringConstant(SSN)) 2176 return Error(SSNAt, "Expected synchronization scope name"); 2177 2178 auto EndParenAt = Lex.getLoc(); 2179 if (!EatIfPresent(lltok::rparen)) 2180 return Error(EndParenAt, "Expected ')' in syncscope"); 2181 2182 SSID = Context.getOrInsertSyncScopeID(SSN); 2183 } 2184 2185 return false; 2186 } 2187 2188 /// ParseOrdering 2189 /// ::= AtomicOrdering 2190 /// 2191 /// This sets Ordering to the parsed value. 2192 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) { 2193 switch (Lex.getKind()) { 2194 default: return TokError("Expected ordering on atomic instruction"); 2195 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2196 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2197 // Not specified yet: 2198 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2199 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2200 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2201 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2202 case lltok::kw_seq_cst: 2203 Ordering = AtomicOrdering::SequentiallyConsistent; 2204 break; 2205 } 2206 Lex.Lex(); 2207 return false; 2208 } 2209 2210 /// ParseOptionalStackAlignment 2211 /// ::= /* empty */ 2212 /// ::= 'alignstack' '(' 4 ')' 2213 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 2214 Alignment = 0; 2215 if (!EatIfPresent(lltok::kw_alignstack)) 2216 return false; 2217 LocTy ParenLoc = Lex.getLoc(); 2218 if (!EatIfPresent(lltok::lparen)) 2219 return Error(ParenLoc, "expected '('"); 2220 LocTy AlignLoc = Lex.getLoc(); 2221 if (ParseUInt32(Alignment)) return true; 2222 ParenLoc = Lex.getLoc(); 2223 if (!EatIfPresent(lltok::rparen)) 2224 return Error(ParenLoc, "expected ')'"); 2225 if (!isPowerOf2_32(Alignment)) 2226 return Error(AlignLoc, "stack alignment is not a power of two"); 2227 return false; 2228 } 2229 2230 /// ParseIndexList - This parses the index list for an insert/extractvalue 2231 /// instruction. This sets AteExtraComma in the case where we eat an extra 2232 /// comma at the end of the line and find that it is followed by metadata. 2233 /// Clients that don't allow metadata can call the version of this function that 2234 /// only takes one argument. 2235 /// 2236 /// ParseIndexList 2237 /// ::= (',' uint32)+ 2238 /// 2239 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 2240 bool &AteExtraComma) { 2241 AteExtraComma = false; 2242 2243 if (Lex.getKind() != lltok::comma) 2244 return TokError("expected ',' as start of index list"); 2245 2246 while (EatIfPresent(lltok::comma)) { 2247 if (Lex.getKind() == lltok::MetadataVar) { 2248 if (Indices.empty()) return TokError("expected index"); 2249 AteExtraComma = true; 2250 return false; 2251 } 2252 unsigned Idx = 0; 2253 if (ParseUInt32(Idx)) return true; 2254 Indices.push_back(Idx); 2255 } 2256 2257 return false; 2258 } 2259 2260 //===----------------------------------------------------------------------===// 2261 // Type Parsing. 2262 //===----------------------------------------------------------------------===// 2263 2264 /// ParseType - Parse a type. 2265 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2266 SMLoc TypeLoc = Lex.getLoc(); 2267 switch (Lex.getKind()) { 2268 default: 2269 return TokError(Msg); 2270 case lltok::Type: 2271 // Type ::= 'float' | 'void' (etc) 2272 Result = Lex.getTyVal(); 2273 Lex.Lex(); 2274 break; 2275 case lltok::lbrace: 2276 // Type ::= StructType 2277 if (ParseAnonStructType(Result, false)) 2278 return true; 2279 break; 2280 case lltok::lsquare: 2281 // Type ::= '[' ... ']' 2282 Lex.Lex(); // eat the lsquare. 2283 if (ParseArrayVectorType(Result, false)) 2284 return true; 2285 break; 2286 case lltok::less: // Either vector or packed struct. 2287 // Type ::= '<' ... '>' 2288 Lex.Lex(); 2289 if (Lex.getKind() == lltok::lbrace) { 2290 if (ParseAnonStructType(Result, true) || 2291 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 2292 return true; 2293 } else if (ParseArrayVectorType(Result, true)) 2294 return true; 2295 break; 2296 case lltok::LocalVar: { 2297 // Type ::= %foo 2298 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2299 2300 // If the type hasn't been defined yet, create a forward definition and 2301 // remember where that forward def'n was seen (in case it never is defined). 2302 if (!Entry.first) { 2303 Entry.first = StructType::create(Context, Lex.getStrVal()); 2304 Entry.second = Lex.getLoc(); 2305 } 2306 Result = Entry.first; 2307 Lex.Lex(); 2308 break; 2309 } 2310 2311 case lltok::LocalVarID: { 2312 // Type ::= %4 2313 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2314 2315 // If the type hasn't been defined yet, create a forward definition and 2316 // remember where that forward def'n was seen (in case it never is defined). 2317 if (!Entry.first) { 2318 Entry.first = StructType::create(Context); 2319 Entry.second = Lex.getLoc(); 2320 } 2321 Result = Entry.first; 2322 Lex.Lex(); 2323 break; 2324 } 2325 } 2326 2327 // Parse the type suffixes. 2328 while (true) { 2329 switch (Lex.getKind()) { 2330 // End of type. 2331 default: 2332 if (!AllowVoid && Result->isVoidTy()) 2333 return Error(TypeLoc, "void type only allowed for function results"); 2334 return false; 2335 2336 // Type ::= Type '*' 2337 case lltok::star: 2338 if (Result->isLabelTy()) 2339 return TokError("basic block pointers are invalid"); 2340 if (Result->isVoidTy()) 2341 return TokError("pointers to void are invalid - use i8* instead"); 2342 if (!PointerType::isValidElementType(Result)) 2343 return TokError("pointer to this type is invalid"); 2344 Result = PointerType::getUnqual(Result); 2345 Lex.Lex(); 2346 break; 2347 2348 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2349 case lltok::kw_addrspace: { 2350 if (Result->isLabelTy()) 2351 return TokError("basic block pointers are invalid"); 2352 if (Result->isVoidTy()) 2353 return TokError("pointers to void are invalid; use i8* instead"); 2354 if (!PointerType::isValidElementType(Result)) 2355 return TokError("pointer to this type is invalid"); 2356 unsigned AddrSpace; 2357 if (ParseOptionalAddrSpace(AddrSpace) || 2358 ParseToken(lltok::star, "expected '*' in address space")) 2359 return true; 2360 2361 Result = PointerType::get(Result, AddrSpace); 2362 break; 2363 } 2364 2365 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2366 case lltok::lparen: 2367 if (ParseFunctionType(Result)) 2368 return true; 2369 break; 2370 } 2371 } 2372 } 2373 2374 /// ParseParameterList 2375 /// ::= '(' ')' 2376 /// ::= '(' Arg (',' Arg)* ')' 2377 /// Arg 2378 /// ::= Type OptionalAttributes Value OptionalAttributes 2379 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2380 PerFunctionState &PFS, bool IsMustTailCall, 2381 bool InVarArgsFunc) { 2382 if (ParseToken(lltok::lparen, "expected '(' in call")) 2383 return true; 2384 2385 while (Lex.getKind() != lltok::rparen) { 2386 // If this isn't the first argument, we need a comma. 2387 if (!ArgList.empty() && 2388 ParseToken(lltok::comma, "expected ',' in argument list")) 2389 return true; 2390 2391 // Parse an ellipsis if this is a musttail call in a variadic function. 2392 if (Lex.getKind() == lltok::dotdotdot) { 2393 const char *Msg = "unexpected ellipsis in argument list for "; 2394 if (!IsMustTailCall) 2395 return TokError(Twine(Msg) + "non-musttail call"); 2396 if (!InVarArgsFunc) 2397 return TokError(Twine(Msg) + "musttail call in non-varargs function"); 2398 Lex.Lex(); // Lex the '...', it is purely for readability. 2399 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2400 } 2401 2402 // Parse the argument. 2403 LocTy ArgLoc; 2404 Type *ArgTy = nullptr; 2405 AttrBuilder ArgAttrs; 2406 Value *V; 2407 if (ParseType(ArgTy, ArgLoc)) 2408 return true; 2409 2410 if (ArgTy->isMetadataTy()) { 2411 if (ParseMetadataAsValue(V, PFS)) 2412 return true; 2413 } else { 2414 // Otherwise, handle normal operands. 2415 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS)) 2416 return true; 2417 } 2418 ArgList.push_back(ParamInfo( 2419 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2420 } 2421 2422 if (IsMustTailCall && InVarArgsFunc) 2423 return TokError("expected '...' at end of argument list for musttail call " 2424 "in varargs function"); 2425 2426 Lex.Lex(); // Lex the ')'. 2427 return false; 2428 } 2429 2430 /// ParseOptionalOperandBundles 2431 /// ::= /*empty*/ 2432 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2433 /// 2434 /// OperandBundle 2435 /// ::= bundle-tag '(' ')' 2436 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2437 /// 2438 /// bundle-tag ::= String Constant 2439 bool LLParser::ParseOptionalOperandBundles( 2440 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2441 LocTy BeginLoc = Lex.getLoc(); 2442 if (!EatIfPresent(lltok::lsquare)) 2443 return false; 2444 2445 while (Lex.getKind() != lltok::rsquare) { 2446 // If this isn't the first operand bundle, we need a comma. 2447 if (!BundleList.empty() && 2448 ParseToken(lltok::comma, "expected ',' in input list")) 2449 return true; 2450 2451 std::string Tag; 2452 if (ParseStringConstant(Tag)) 2453 return true; 2454 2455 if (ParseToken(lltok::lparen, "expected '(' in operand bundle")) 2456 return true; 2457 2458 std::vector<Value *> Inputs; 2459 while (Lex.getKind() != lltok::rparen) { 2460 // If this isn't the first input, we need a comma. 2461 if (!Inputs.empty() && 2462 ParseToken(lltok::comma, "expected ',' in input list")) 2463 return true; 2464 2465 Type *Ty = nullptr; 2466 Value *Input = nullptr; 2467 if (ParseType(Ty) || ParseValue(Ty, Input, PFS)) 2468 return true; 2469 Inputs.push_back(Input); 2470 } 2471 2472 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2473 2474 Lex.Lex(); // Lex the ')'. 2475 } 2476 2477 if (BundleList.empty()) 2478 return Error(BeginLoc, "operand bundle set must not be empty"); 2479 2480 Lex.Lex(); // Lex the ']'. 2481 return false; 2482 } 2483 2484 /// ParseArgumentList - Parse the argument list for a function type or function 2485 /// prototype. 2486 /// ::= '(' ArgTypeListI ')' 2487 /// ArgTypeListI 2488 /// ::= /*empty*/ 2489 /// ::= '...' 2490 /// ::= ArgTypeList ',' '...' 2491 /// ::= ArgType (',' ArgType)* 2492 /// 2493 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2494 bool &isVarArg){ 2495 isVarArg = false; 2496 assert(Lex.getKind() == lltok::lparen); 2497 Lex.Lex(); // eat the (. 2498 2499 if (Lex.getKind() == lltok::rparen) { 2500 // empty 2501 } else if (Lex.getKind() == lltok::dotdotdot) { 2502 isVarArg = true; 2503 Lex.Lex(); 2504 } else { 2505 LocTy TypeLoc = Lex.getLoc(); 2506 Type *ArgTy = nullptr; 2507 AttrBuilder Attrs; 2508 std::string Name; 2509 2510 if (ParseType(ArgTy) || 2511 ParseOptionalParamAttrs(Attrs)) return true; 2512 2513 if (ArgTy->isVoidTy()) 2514 return Error(TypeLoc, "argument can not have void type"); 2515 2516 if (Lex.getKind() == lltok::LocalVar) { 2517 Name = Lex.getStrVal(); 2518 Lex.Lex(); 2519 } 2520 2521 if (!FunctionType::isValidArgumentType(ArgTy)) 2522 return Error(TypeLoc, "invalid type for function argument"); 2523 2524 ArgList.emplace_back(TypeLoc, ArgTy, 2525 AttributeSet::get(ArgTy->getContext(), Attrs), 2526 std::move(Name)); 2527 2528 while (EatIfPresent(lltok::comma)) { 2529 // Handle ... at end of arg list. 2530 if (EatIfPresent(lltok::dotdotdot)) { 2531 isVarArg = true; 2532 break; 2533 } 2534 2535 // Otherwise must be an argument type. 2536 TypeLoc = Lex.getLoc(); 2537 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true; 2538 2539 if (ArgTy->isVoidTy()) 2540 return Error(TypeLoc, "argument can not have void type"); 2541 2542 if (Lex.getKind() == lltok::LocalVar) { 2543 Name = Lex.getStrVal(); 2544 Lex.Lex(); 2545 } else { 2546 Name = ""; 2547 } 2548 2549 if (!ArgTy->isFirstClassType()) 2550 return Error(TypeLoc, "invalid type for function argument"); 2551 2552 ArgList.emplace_back(TypeLoc, ArgTy, 2553 AttributeSet::get(ArgTy->getContext(), Attrs), 2554 std::move(Name)); 2555 } 2556 } 2557 2558 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2559 } 2560 2561 /// ParseFunctionType 2562 /// ::= Type ArgumentList OptionalAttrs 2563 bool LLParser::ParseFunctionType(Type *&Result) { 2564 assert(Lex.getKind() == lltok::lparen); 2565 2566 if (!FunctionType::isValidReturnType(Result)) 2567 return TokError("invalid function return type"); 2568 2569 SmallVector<ArgInfo, 8> ArgList; 2570 bool isVarArg; 2571 if (ParseArgumentList(ArgList, isVarArg)) 2572 return true; 2573 2574 // Reject names on the arguments lists. 2575 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2576 if (!ArgList[i].Name.empty()) 2577 return Error(ArgList[i].Loc, "argument name invalid in function type"); 2578 if (ArgList[i].Attrs.hasAttributes()) 2579 return Error(ArgList[i].Loc, 2580 "argument attributes invalid in function type"); 2581 } 2582 2583 SmallVector<Type*, 16> ArgListTy; 2584 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2585 ArgListTy.push_back(ArgList[i].Ty); 2586 2587 Result = FunctionType::get(Result, ArgListTy, isVarArg); 2588 return false; 2589 } 2590 2591 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 2592 /// other structs. 2593 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 2594 SmallVector<Type*, 8> Elts; 2595 if (ParseStructBody(Elts)) return true; 2596 2597 Result = StructType::get(Context, Elts, Packed); 2598 return false; 2599 } 2600 2601 /// ParseStructDefinition - Parse a struct in a 'type' definition. 2602 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 2603 std::pair<Type*, LocTy> &Entry, 2604 Type *&ResultTy) { 2605 // If the type was already defined, diagnose the redefinition. 2606 if (Entry.first && !Entry.second.isValid()) 2607 return Error(TypeLoc, "redefinition of type"); 2608 2609 // If we have opaque, just return without filling in the definition for the 2610 // struct. This counts as a definition as far as the .ll file goes. 2611 if (EatIfPresent(lltok::kw_opaque)) { 2612 // This type is being defined, so clear the location to indicate this. 2613 Entry.second = SMLoc(); 2614 2615 // If this type number has never been uttered, create it. 2616 if (!Entry.first) 2617 Entry.first = StructType::create(Context, Name); 2618 ResultTy = Entry.first; 2619 return false; 2620 } 2621 2622 // If the type starts with '<', then it is either a packed struct or a vector. 2623 bool isPacked = EatIfPresent(lltok::less); 2624 2625 // If we don't have a struct, then we have a random type alias, which we 2626 // accept for compatibility with old files. These types are not allowed to be 2627 // forward referenced and not allowed to be recursive. 2628 if (Lex.getKind() != lltok::lbrace) { 2629 if (Entry.first) 2630 return Error(TypeLoc, "forward references to non-struct type"); 2631 2632 ResultTy = nullptr; 2633 if (isPacked) 2634 return ParseArrayVectorType(ResultTy, true); 2635 return ParseType(ResultTy); 2636 } 2637 2638 // This type is being defined, so clear the location to indicate this. 2639 Entry.second = SMLoc(); 2640 2641 // If this type number has never been uttered, create it. 2642 if (!Entry.first) 2643 Entry.first = StructType::create(Context, Name); 2644 2645 StructType *STy = cast<StructType>(Entry.first); 2646 2647 SmallVector<Type*, 8> Body; 2648 if (ParseStructBody(Body) || 2649 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 2650 return true; 2651 2652 STy->setBody(Body, isPacked); 2653 ResultTy = STy; 2654 return false; 2655 } 2656 2657 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2658 /// StructType 2659 /// ::= '{' '}' 2660 /// ::= '{' Type (',' Type)* '}' 2661 /// ::= '<' '{' '}' '>' 2662 /// ::= '<' '{' Type (',' Type)* '}' '>' 2663 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 2664 assert(Lex.getKind() == lltok::lbrace); 2665 Lex.Lex(); // Consume the '{' 2666 2667 // Handle the empty struct. 2668 if (EatIfPresent(lltok::rbrace)) 2669 return false; 2670 2671 LocTy EltTyLoc = Lex.getLoc(); 2672 Type *Ty = nullptr; 2673 if (ParseType(Ty)) return true; 2674 Body.push_back(Ty); 2675 2676 if (!StructType::isValidElementType(Ty)) 2677 return Error(EltTyLoc, "invalid element type for struct"); 2678 2679 while (EatIfPresent(lltok::comma)) { 2680 EltTyLoc = Lex.getLoc(); 2681 if (ParseType(Ty)) return true; 2682 2683 if (!StructType::isValidElementType(Ty)) 2684 return Error(EltTyLoc, "invalid element type for struct"); 2685 2686 Body.push_back(Ty); 2687 } 2688 2689 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 2690 } 2691 2692 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 2693 /// token has already been consumed. 2694 /// Type 2695 /// ::= '[' APSINTVAL 'x' Types ']' 2696 /// ::= '<' APSINTVAL 'x' Types '>' 2697 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 2698 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2699 Lex.getAPSIntVal().getBitWidth() > 64) 2700 return TokError("expected number in address space"); 2701 2702 LocTy SizeLoc = Lex.getLoc(); 2703 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2704 Lex.Lex(); 2705 2706 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 2707 return true; 2708 2709 LocTy TypeLoc = Lex.getLoc(); 2710 Type *EltTy = nullptr; 2711 if (ParseType(EltTy)) return true; 2712 2713 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 2714 "expected end of sequential type")) 2715 return true; 2716 2717 if (isVector) { 2718 if (Size == 0) 2719 return Error(SizeLoc, "zero element vector is illegal"); 2720 if ((unsigned)Size != Size) 2721 return Error(SizeLoc, "size too large for vector"); 2722 if (!VectorType::isValidElementType(EltTy)) 2723 return Error(TypeLoc, "invalid vector element type"); 2724 Result = VectorType::get(EltTy, unsigned(Size)); 2725 } else { 2726 if (!ArrayType::isValidElementType(EltTy)) 2727 return Error(TypeLoc, "invalid array element type"); 2728 Result = ArrayType::get(EltTy, Size); 2729 } 2730 return false; 2731 } 2732 2733 //===----------------------------------------------------------------------===// 2734 // Function Semantic Analysis. 2735 //===----------------------------------------------------------------------===// 2736 2737 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2738 int functionNumber) 2739 : P(p), F(f), FunctionNumber(functionNumber) { 2740 2741 // Insert unnamed arguments into the NumberedVals list. 2742 for (Argument &A : F.args()) 2743 if (!A.hasName()) 2744 NumberedVals.push_back(&A); 2745 } 2746 2747 LLParser::PerFunctionState::~PerFunctionState() { 2748 // If there were any forward referenced non-basicblock values, delete them. 2749 2750 for (const auto &P : ForwardRefVals) { 2751 if (isa<BasicBlock>(P.second.first)) 2752 continue; 2753 P.second.first->replaceAllUsesWith( 2754 UndefValue::get(P.second.first->getType())); 2755 P.second.first->deleteValue(); 2756 } 2757 2758 for (const auto &P : ForwardRefValIDs) { 2759 if (isa<BasicBlock>(P.second.first)) 2760 continue; 2761 P.second.first->replaceAllUsesWith( 2762 UndefValue::get(P.second.first->getType())); 2763 P.second.first->deleteValue(); 2764 } 2765 } 2766 2767 bool LLParser::PerFunctionState::FinishFunction() { 2768 if (!ForwardRefVals.empty()) 2769 return P.Error(ForwardRefVals.begin()->second.second, 2770 "use of undefined value '%" + ForwardRefVals.begin()->first + 2771 "'"); 2772 if (!ForwardRefValIDs.empty()) 2773 return P.Error(ForwardRefValIDs.begin()->second.second, 2774 "use of undefined value '%" + 2775 Twine(ForwardRefValIDs.begin()->first) + "'"); 2776 return false; 2777 } 2778 2779 /// GetVal - Get a value with the specified name or ID, creating a 2780 /// forward reference record if needed. This can return null if the value 2781 /// exists but does not have the right type. 2782 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty, 2783 LocTy Loc, bool IsCall) { 2784 // Look this name up in the normal function symbol table. 2785 Value *Val = F.getValueSymbolTable()->lookup(Name); 2786 2787 // If this is a forward reference for the value, see if we already created a 2788 // forward ref record. 2789 if (!Val) { 2790 auto I = ForwardRefVals.find(Name); 2791 if (I != ForwardRefVals.end()) 2792 Val = I->second.first; 2793 } 2794 2795 // If we have the value in the symbol table or fwd-ref table, return it. 2796 if (Val) 2797 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall); 2798 2799 // Don't make placeholders with invalid type. 2800 if (!Ty->isFirstClassType()) { 2801 P.Error(Loc, "invalid use of a non-first-class type"); 2802 return nullptr; 2803 } 2804 2805 // Otherwise, create a new forward reference for this value and remember it. 2806 Value *FwdVal; 2807 if (Ty->isLabelTy()) { 2808 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2809 } else { 2810 FwdVal = new Argument(Ty, Name); 2811 } 2812 2813 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2814 return FwdVal; 2815 } 2816 2817 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc, 2818 bool IsCall) { 2819 // Look this name up in the normal function symbol table. 2820 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2821 2822 // If this is a forward reference for the value, see if we already created a 2823 // forward ref record. 2824 if (!Val) { 2825 auto I = ForwardRefValIDs.find(ID); 2826 if (I != ForwardRefValIDs.end()) 2827 Val = I->second.first; 2828 } 2829 2830 // If we have the value in the symbol table or fwd-ref table, return it. 2831 if (Val) 2832 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall); 2833 2834 if (!Ty->isFirstClassType()) { 2835 P.Error(Loc, "invalid use of a non-first-class type"); 2836 return nullptr; 2837 } 2838 2839 // Otherwise, create a new forward reference for this value and remember it. 2840 Value *FwdVal; 2841 if (Ty->isLabelTy()) { 2842 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2843 } else { 2844 FwdVal = new Argument(Ty); 2845 } 2846 2847 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2848 return FwdVal; 2849 } 2850 2851 /// SetInstName - After an instruction is parsed and inserted into its 2852 /// basic block, this installs its name. 2853 bool LLParser::PerFunctionState::SetInstName(int NameID, 2854 const std::string &NameStr, 2855 LocTy NameLoc, Instruction *Inst) { 2856 // If this instruction has void type, it cannot have a name or ID specified. 2857 if (Inst->getType()->isVoidTy()) { 2858 if (NameID != -1 || !NameStr.empty()) 2859 return P.Error(NameLoc, "instructions returning void cannot have a name"); 2860 return false; 2861 } 2862 2863 // If this was a numbered instruction, verify that the instruction is the 2864 // expected value and resolve any forward references. 2865 if (NameStr.empty()) { 2866 // If neither a name nor an ID was specified, just use the next ID. 2867 if (NameID == -1) 2868 NameID = NumberedVals.size(); 2869 2870 if (unsigned(NameID) != NumberedVals.size()) 2871 return P.Error(NameLoc, "instruction expected to be numbered '%" + 2872 Twine(NumberedVals.size()) + "'"); 2873 2874 auto FI = ForwardRefValIDs.find(NameID); 2875 if (FI != ForwardRefValIDs.end()) { 2876 Value *Sentinel = FI->second.first; 2877 if (Sentinel->getType() != Inst->getType()) 2878 return P.Error(NameLoc, "instruction forward referenced with type '" + 2879 getTypeString(FI->second.first->getType()) + "'"); 2880 2881 Sentinel->replaceAllUsesWith(Inst); 2882 Sentinel->deleteValue(); 2883 ForwardRefValIDs.erase(FI); 2884 } 2885 2886 NumberedVals.push_back(Inst); 2887 return false; 2888 } 2889 2890 // Otherwise, the instruction had a name. Resolve forward refs and set it. 2891 auto FI = ForwardRefVals.find(NameStr); 2892 if (FI != ForwardRefVals.end()) { 2893 Value *Sentinel = FI->second.first; 2894 if (Sentinel->getType() != Inst->getType()) 2895 return P.Error(NameLoc, "instruction forward referenced with type '" + 2896 getTypeString(FI->second.first->getType()) + "'"); 2897 2898 Sentinel->replaceAllUsesWith(Inst); 2899 Sentinel->deleteValue(); 2900 ForwardRefVals.erase(FI); 2901 } 2902 2903 // Set the name on the instruction. 2904 Inst->setName(NameStr); 2905 2906 if (Inst->getName() != NameStr) 2907 return P.Error(NameLoc, "multiple definition of local value named '" + 2908 NameStr + "'"); 2909 return false; 2910 } 2911 2912 /// GetBB - Get a basic block with the specified name or ID, creating a 2913 /// forward reference record if needed. 2914 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 2915 LocTy Loc) { 2916 return dyn_cast_or_null<BasicBlock>( 2917 GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 2918 } 2919 2920 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 2921 return dyn_cast_or_null<BasicBlock>( 2922 GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 2923 } 2924 2925 /// DefineBB - Define the specified basic block, which is either named or 2926 /// unnamed. If there is an error, this returns null otherwise it returns 2927 /// the block being defined. 2928 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 2929 int NameID, LocTy Loc) { 2930 BasicBlock *BB; 2931 if (Name.empty()) { 2932 if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) { 2933 P.Error(Loc, "label expected to be numbered '" + 2934 Twine(NumberedVals.size()) + "'"); 2935 return nullptr; 2936 } 2937 BB = GetBB(NumberedVals.size(), Loc); 2938 if (!BB) { 2939 P.Error(Loc, "unable to create block numbered '" + 2940 Twine(NumberedVals.size()) + "'"); 2941 return nullptr; 2942 } 2943 } else { 2944 BB = GetBB(Name, Loc); 2945 if (!BB) { 2946 P.Error(Loc, "unable to create block named '" + Name + "'"); 2947 return nullptr; 2948 } 2949 } 2950 2951 // Move the block to the end of the function. Forward ref'd blocks are 2952 // inserted wherever they happen to be referenced. 2953 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 2954 2955 // Remove the block from forward ref sets. 2956 if (Name.empty()) { 2957 ForwardRefValIDs.erase(NumberedVals.size()); 2958 NumberedVals.push_back(BB); 2959 } else { 2960 // BB forward references are already in the function symbol table. 2961 ForwardRefVals.erase(Name); 2962 } 2963 2964 return BB; 2965 } 2966 2967 //===----------------------------------------------------------------------===// 2968 // Constants. 2969 //===----------------------------------------------------------------------===// 2970 2971 /// ParseValID - Parse an abstract value that doesn't necessarily have a 2972 /// type implied. For example, if we parse "4" we don't know what integer type 2973 /// it has. The value will later be combined with its type and checked for 2974 /// sanity. PFS is used to convert function-local operands of metadata (since 2975 /// metadata operands are not just parsed here but also converted to values). 2976 /// PFS can be null when we are not parsing metadata values inside a function. 2977 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 2978 ID.Loc = Lex.getLoc(); 2979 switch (Lex.getKind()) { 2980 default: return TokError("expected value token"); 2981 case lltok::GlobalID: // @42 2982 ID.UIntVal = Lex.getUIntVal(); 2983 ID.Kind = ValID::t_GlobalID; 2984 break; 2985 case lltok::GlobalVar: // @foo 2986 ID.StrVal = Lex.getStrVal(); 2987 ID.Kind = ValID::t_GlobalName; 2988 break; 2989 case lltok::LocalVarID: // %42 2990 ID.UIntVal = Lex.getUIntVal(); 2991 ID.Kind = ValID::t_LocalID; 2992 break; 2993 case lltok::LocalVar: // %foo 2994 ID.StrVal = Lex.getStrVal(); 2995 ID.Kind = ValID::t_LocalName; 2996 break; 2997 case lltok::APSInt: 2998 ID.APSIntVal = Lex.getAPSIntVal(); 2999 ID.Kind = ValID::t_APSInt; 3000 break; 3001 case lltok::APFloat: 3002 ID.APFloatVal = Lex.getAPFloatVal(); 3003 ID.Kind = ValID::t_APFloat; 3004 break; 3005 case lltok::kw_true: 3006 ID.ConstantVal = ConstantInt::getTrue(Context); 3007 ID.Kind = ValID::t_Constant; 3008 break; 3009 case lltok::kw_false: 3010 ID.ConstantVal = ConstantInt::getFalse(Context); 3011 ID.Kind = ValID::t_Constant; 3012 break; 3013 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 3014 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 3015 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 3016 case lltok::kw_none: ID.Kind = ValID::t_None; break; 3017 3018 case lltok::lbrace: { 3019 // ValID ::= '{' ConstVector '}' 3020 Lex.Lex(); 3021 SmallVector<Constant*, 16> Elts; 3022 if (ParseGlobalValueVector(Elts) || 3023 ParseToken(lltok::rbrace, "expected end of struct constant")) 3024 return true; 3025 3026 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 3027 ID.UIntVal = Elts.size(); 3028 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3029 Elts.size() * sizeof(Elts[0])); 3030 ID.Kind = ValID::t_ConstantStruct; 3031 return false; 3032 } 3033 case lltok::less: { 3034 // ValID ::= '<' ConstVector '>' --> Vector. 3035 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 3036 Lex.Lex(); 3037 bool isPackedStruct = EatIfPresent(lltok::lbrace); 3038 3039 SmallVector<Constant*, 16> Elts; 3040 LocTy FirstEltLoc = Lex.getLoc(); 3041 if (ParseGlobalValueVector(Elts) || 3042 (isPackedStruct && 3043 ParseToken(lltok::rbrace, "expected end of packed struct")) || 3044 ParseToken(lltok::greater, "expected end of constant")) 3045 return true; 3046 3047 if (isPackedStruct) { 3048 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 3049 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3050 Elts.size() * sizeof(Elts[0])); 3051 ID.UIntVal = Elts.size(); 3052 ID.Kind = ValID::t_PackedConstantStruct; 3053 return false; 3054 } 3055 3056 if (Elts.empty()) 3057 return Error(ID.Loc, "constant vector must not be empty"); 3058 3059 if (!Elts[0]->getType()->isIntegerTy() && 3060 !Elts[0]->getType()->isFloatingPointTy() && 3061 !Elts[0]->getType()->isPointerTy()) 3062 return Error(FirstEltLoc, 3063 "vector elements must have integer, pointer or floating point type"); 3064 3065 // Verify that all the vector elements have the same type. 3066 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 3067 if (Elts[i]->getType() != Elts[0]->getType()) 3068 return Error(FirstEltLoc, 3069 "vector element #" + Twine(i) + 3070 " is not of type '" + getTypeString(Elts[0]->getType())); 3071 3072 ID.ConstantVal = ConstantVector::get(Elts); 3073 ID.Kind = ValID::t_Constant; 3074 return false; 3075 } 3076 case lltok::lsquare: { // Array Constant 3077 Lex.Lex(); 3078 SmallVector<Constant*, 16> Elts; 3079 LocTy FirstEltLoc = Lex.getLoc(); 3080 if (ParseGlobalValueVector(Elts) || 3081 ParseToken(lltok::rsquare, "expected end of array constant")) 3082 return true; 3083 3084 // Handle empty element. 3085 if (Elts.empty()) { 3086 // Use undef instead of an array because it's inconvenient to determine 3087 // the element type at this point, there being no elements to examine. 3088 ID.Kind = ValID::t_EmptyArray; 3089 return false; 3090 } 3091 3092 if (!Elts[0]->getType()->isFirstClassType()) 3093 return Error(FirstEltLoc, "invalid array element type: " + 3094 getTypeString(Elts[0]->getType())); 3095 3096 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 3097 3098 // Verify all elements are correct type! 3099 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 3100 if (Elts[i]->getType() != Elts[0]->getType()) 3101 return Error(FirstEltLoc, 3102 "array element #" + Twine(i) + 3103 " is not of type '" + getTypeString(Elts[0]->getType())); 3104 } 3105 3106 ID.ConstantVal = ConstantArray::get(ATy, Elts); 3107 ID.Kind = ValID::t_Constant; 3108 return false; 3109 } 3110 case lltok::kw_c: // c "foo" 3111 Lex.Lex(); 3112 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 3113 false); 3114 if (ParseToken(lltok::StringConstant, "expected string")) return true; 3115 ID.Kind = ValID::t_Constant; 3116 return false; 3117 3118 case lltok::kw_asm: { 3119 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 3120 // STRINGCONSTANT 3121 bool HasSideEffect, AlignStack, AsmDialect; 3122 Lex.Lex(); 3123 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 3124 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 3125 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 3126 ParseStringConstant(ID.StrVal) || 3127 ParseToken(lltok::comma, "expected comma in inline asm expression") || 3128 ParseToken(lltok::StringConstant, "expected constraint string")) 3129 return true; 3130 ID.StrVal2 = Lex.getStrVal(); 3131 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 3132 (unsigned(AsmDialect)<<2); 3133 ID.Kind = ValID::t_InlineAsm; 3134 return false; 3135 } 3136 3137 case lltok::kw_blockaddress: { 3138 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 3139 Lex.Lex(); 3140 3141 ValID Fn, Label; 3142 3143 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 3144 ParseValID(Fn) || 3145 ParseToken(lltok::comma, "expected comma in block address expression")|| 3146 ParseValID(Label) || 3147 ParseToken(lltok::rparen, "expected ')' in block address expression")) 3148 return true; 3149 3150 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3151 return Error(Fn.Loc, "expected function name in blockaddress"); 3152 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 3153 return Error(Label.Loc, "expected basic block name in blockaddress"); 3154 3155 // Try to find the function (but skip it if it's forward-referenced). 3156 GlobalValue *GV = nullptr; 3157 if (Fn.Kind == ValID::t_GlobalID) { 3158 if (Fn.UIntVal < NumberedVals.size()) 3159 GV = NumberedVals[Fn.UIntVal]; 3160 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3161 GV = M->getNamedValue(Fn.StrVal); 3162 } 3163 Function *F = nullptr; 3164 if (GV) { 3165 // Confirm that it's actually a function with a definition. 3166 if (!isa<Function>(GV)) 3167 return Error(Fn.Loc, "expected function name in blockaddress"); 3168 F = cast<Function>(GV); 3169 if (F->isDeclaration()) 3170 return Error(Fn.Loc, "cannot take blockaddress inside a declaration"); 3171 } 3172 3173 if (!F) { 3174 // Make a global variable as a placeholder for this reference. 3175 GlobalValue *&FwdRef = 3176 ForwardRefBlockAddresses.insert(std::make_pair( 3177 std::move(Fn), 3178 std::map<ValID, GlobalValue *>())) 3179 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 3180 .first->second; 3181 if (!FwdRef) 3182 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 3183 GlobalValue::InternalLinkage, nullptr, ""); 3184 ID.ConstantVal = FwdRef; 3185 ID.Kind = ValID::t_Constant; 3186 return false; 3187 } 3188 3189 // We found the function; now find the basic block. Don't use PFS, since we 3190 // might be inside a constant expression. 3191 BasicBlock *BB; 3192 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 3193 if (Label.Kind == ValID::t_LocalID) 3194 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc); 3195 else 3196 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc); 3197 if (!BB) 3198 return Error(Label.Loc, "referenced value is not a basic block"); 3199 } else { 3200 if (Label.Kind == ValID::t_LocalID) 3201 return Error(Label.Loc, "cannot take address of numeric label after " 3202 "the function is defined"); 3203 BB = dyn_cast_or_null<BasicBlock>( 3204 F->getValueSymbolTable()->lookup(Label.StrVal)); 3205 if (!BB) 3206 return Error(Label.Loc, "referenced value is not a basic block"); 3207 } 3208 3209 ID.ConstantVal = BlockAddress::get(F, BB); 3210 ID.Kind = ValID::t_Constant; 3211 return false; 3212 } 3213 3214 case lltok::kw_trunc: 3215 case lltok::kw_zext: 3216 case lltok::kw_sext: 3217 case lltok::kw_fptrunc: 3218 case lltok::kw_fpext: 3219 case lltok::kw_bitcast: 3220 case lltok::kw_addrspacecast: 3221 case lltok::kw_uitofp: 3222 case lltok::kw_sitofp: 3223 case lltok::kw_fptoui: 3224 case lltok::kw_fptosi: 3225 case lltok::kw_inttoptr: 3226 case lltok::kw_ptrtoint: { 3227 unsigned Opc = Lex.getUIntVal(); 3228 Type *DestTy = nullptr; 3229 Constant *SrcVal; 3230 Lex.Lex(); 3231 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3232 ParseGlobalTypeAndValue(SrcVal) || 3233 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3234 ParseType(DestTy) || 3235 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3236 return true; 3237 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3238 return Error(ID.Loc, "invalid cast opcode for cast from '" + 3239 getTypeString(SrcVal->getType()) + "' to '" + 3240 getTypeString(DestTy) + "'"); 3241 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3242 SrcVal, DestTy); 3243 ID.Kind = ValID::t_Constant; 3244 return false; 3245 } 3246 case lltok::kw_extractvalue: { 3247 Lex.Lex(); 3248 Constant *Val; 3249 SmallVector<unsigned, 4> Indices; 3250 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 3251 ParseGlobalTypeAndValue(Val) || 3252 ParseIndexList(Indices) || 3253 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 3254 return true; 3255 3256 if (!Val->getType()->isAggregateType()) 3257 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 3258 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 3259 return Error(ID.Loc, "invalid indices for extractvalue"); 3260 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 3261 ID.Kind = ValID::t_Constant; 3262 return false; 3263 } 3264 case lltok::kw_insertvalue: { 3265 Lex.Lex(); 3266 Constant *Val0, *Val1; 3267 SmallVector<unsigned, 4> Indices; 3268 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 3269 ParseGlobalTypeAndValue(Val0) || 3270 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 3271 ParseGlobalTypeAndValue(Val1) || 3272 ParseIndexList(Indices) || 3273 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 3274 return true; 3275 if (!Val0->getType()->isAggregateType()) 3276 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 3277 Type *IndexedType = 3278 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3279 if (!IndexedType) 3280 return Error(ID.Loc, "invalid indices for insertvalue"); 3281 if (IndexedType != Val1->getType()) 3282 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3283 getTypeString(Val1->getType()) + 3284 "' instead of '" + getTypeString(IndexedType) + 3285 "'"); 3286 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3287 ID.Kind = ValID::t_Constant; 3288 return false; 3289 } 3290 case lltok::kw_icmp: 3291 case lltok::kw_fcmp: { 3292 unsigned PredVal, Opc = Lex.getUIntVal(); 3293 Constant *Val0, *Val1; 3294 Lex.Lex(); 3295 if (ParseCmpPredicate(PredVal, Opc) || 3296 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3297 ParseGlobalTypeAndValue(Val0) || 3298 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 3299 ParseGlobalTypeAndValue(Val1) || 3300 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3301 return true; 3302 3303 if (Val0->getType() != Val1->getType()) 3304 return Error(ID.Loc, "compare operands must have the same type"); 3305 3306 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3307 3308 if (Opc == Instruction::FCmp) { 3309 if (!Val0->getType()->isFPOrFPVectorTy()) 3310 return Error(ID.Loc, "fcmp requires floating point operands"); 3311 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3312 } else { 3313 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3314 if (!Val0->getType()->isIntOrIntVectorTy() && 3315 !Val0->getType()->isPtrOrPtrVectorTy()) 3316 return Error(ID.Loc, "icmp requires pointer or integer operands"); 3317 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3318 } 3319 ID.Kind = ValID::t_Constant; 3320 return false; 3321 } 3322 3323 // Unary Operators. 3324 case lltok::kw_fneg: { 3325 unsigned Opc = Lex.getUIntVal(); 3326 Constant *Val; 3327 Lex.Lex(); 3328 if (ParseToken(lltok::lparen, "expected '(' in unary constantexpr") || 3329 ParseGlobalTypeAndValue(Val) || 3330 ParseToken(lltok::rparen, "expected ')' in unary constantexpr")) 3331 return true; 3332 3333 // Check that the type is valid for the operator. 3334 switch (Opc) { 3335 case Instruction::FNeg: 3336 if (!Val->getType()->isFPOrFPVectorTy()) 3337 return Error(ID.Loc, "constexpr requires fp operands"); 3338 break; 3339 default: llvm_unreachable("Unknown unary operator!"); 3340 } 3341 unsigned Flags = 0; 3342 Constant *C = ConstantExpr::get(Opc, Val, Flags); 3343 ID.ConstantVal = C; 3344 ID.Kind = ValID::t_Constant; 3345 return false; 3346 } 3347 // Binary Operators. 3348 case lltok::kw_add: 3349 case lltok::kw_fadd: 3350 case lltok::kw_sub: 3351 case lltok::kw_fsub: 3352 case lltok::kw_mul: 3353 case lltok::kw_fmul: 3354 case lltok::kw_udiv: 3355 case lltok::kw_sdiv: 3356 case lltok::kw_fdiv: 3357 case lltok::kw_urem: 3358 case lltok::kw_srem: 3359 case lltok::kw_frem: 3360 case lltok::kw_shl: 3361 case lltok::kw_lshr: 3362 case lltok::kw_ashr: { 3363 bool NUW = false; 3364 bool NSW = false; 3365 bool Exact = false; 3366 unsigned Opc = Lex.getUIntVal(); 3367 Constant *Val0, *Val1; 3368 Lex.Lex(); 3369 LocTy ModifierLoc = Lex.getLoc(); 3370 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3371 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3372 if (EatIfPresent(lltok::kw_nuw)) 3373 NUW = true; 3374 if (EatIfPresent(lltok::kw_nsw)) { 3375 NSW = true; 3376 if (EatIfPresent(lltok::kw_nuw)) 3377 NUW = true; 3378 } 3379 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3380 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3381 if (EatIfPresent(lltok::kw_exact)) 3382 Exact = true; 3383 } 3384 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3385 ParseGlobalTypeAndValue(Val0) || 3386 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 3387 ParseGlobalTypeAndValue(Val1) || 3388 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3389 return true; 3390 if (Val0->getType() != Val1->getType()) 3391 return Error(ID.Loc, "operands of constexpr must have same type"); 3392 if (!Val0->getType()->isIntOrIntVectorTy()) { 3393 if (NUW) 3394 return Error(ModifierLoc, "nuw only applies to integer operations"); 3395 if (NSW) 3396 return Error(ModifierLoc, "nsw only applies to integer operations"); 3397 } 3398 // Check that the type is valid for the operator. 3399 switch (Opc) { 3400 case Instruction::Add: 3401 case Instruction::Sub: 3402 case Instruction::Mul: 3403 case Instruction::UDiv: 3404 case Instruction::SDiv: 3405 case Instruction::URem: 3406 case Instruction::SRem: 3407 case Instruction::Shl: 3408 case Instruction::AShr: 3409 case Instruction::LShr: 3410 if (!Val0->getType()->isIntOrIntVectorTy()) 3411 return Error(ID.Loc, "constexpr requires integer operands"); 3412 break; 3413 case Instruction::FAdd: 3414 case Instruction::FSub: 3415 case Instruction::FMul: 3416 case Instruction::FDiv: 3417 case Instruction::FRem: 3418 if (!Val0->getType()->isFPOrFPVectorTy()) 3419 return Error(ID.Loc, "constexpr requires fp operands"); 3420 break; 3421 default: llvm_unreachable("Unknown binary operator!"); 3422 } 3423 unsigned Flags = 0; 3424 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3425 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3426 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3427 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3428 ID.ConstantVal = C; 3429 ID.Kind = ValID::t_Constant; 3430 return false; 3431 } 3432 3433 // Logical Operations 3434 case lltok::kw_and: 3435 case lltok::kw_or: 3436 case lltok::kw_xor: { 3437 unsigned Opc = Lex.getUIntVal(); 3438 Constant *Val0, *Val1; 3439 Lex.Lex(); 3440 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3441 ParseGlobalTypeAndValue(Val0) || 3442 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 3443 ParseGlobalTypeAndValue(Val1) || 3444 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3445 return true; 3446 if (Val0->getType() != Val1->getType()) 3447 return Error(ID.Loc, "operands of constexpr must have same type"); 3448 if (!Val0->getType()->isIntOrIntVectorTy()) 3449 return Error(ID.Loc, 3450 "constexpr requires integer or integer vector operands"); 3451 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3452 ID.Kind = ValID::t_Constant; 3453 return false; 3454 } 3455 3456 case lltok::kw_getelementptr: 3457 case lltok::kw_shufflevector: 3458 case lltok::kw_insertelement: 3459 case lltok::kw_extractelement: 3460 case lltok::kw_select: { 3461 unsigned Opc = Lex.getUIntVal(); 3462 SmallVector<Constant*, 16> Elts; 3463 bool InBounds = false; 3464 Type *Ty; 3465 Lex.Lex(); 3466 3467 if (Opc == Instruction::GetElementPtr) 3468 InBounds = EatIfPresent(lltok::kw_inbounds); 3469 3470 if (ParseToken(lltok::lparen, "expected '(' in constantexpr")) 3471 return true; 3472 3473 LocTy ExplicitTypeLoc = Lex.getLoc(); 3474 if (Opc == Instruction::GetElementPtr) { 3475 if (ParseType(Ty) || 3476 ParseToken(lltok::comma, "expected comma after getelementptr's type")) 3477 return true; 3478 } 3479 3480 Optional<unsigned> InRangeOp; 3481 if (ParseGlobalValueVector( 3482 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3483 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 3484 return true; 3485 3486 if (Opc == Instruction::GetElementPtr) { 3487 if (Elts.size() == 0 || 3488 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 3489 return Error(ID.Loc, "base of getelementptr must be a pointer"); 3490 3491 Type *BaseType = Elts[0]->getType(); 3492 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3493 if (Ty != BasePointerType->getElementType()) 3494 return Error( 3495 ExplicitTypeLoc, 3496 "explicit pointee type doesn't match operand's pointee type"); 3497 3498 unsigned GEPWidth = 3499 BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0; 3500 3501 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3502 for (Constant *Val : Indices) { 3503 Type *ValTy = Val->getType(); 3504 if (!ValTy->isIntOrIntVectorTy()) 3505 return Error(ID.Loc, "getelementptr index must be an integer"); 3506 if (ValTy->isVectorTy()) { 3507 unsigned ValNumEl = ValTy->getVectorNumElements(); 3508 if (GEPWidth && (ValNumEl != GEPWidth)) 3509 return Error( 3510 ID.Loc, 3511 "getelementptr vector index has a wrong number of elements"); 3512 // GEPWidth may have been unknown because the base is a scalar, 3513 // but it is known now. 3514 GEPWidth = ValNumEl; 3515 } 3516 } 3517 3518 SmallPtrSet<Type*, 4> Visited; 3519 if (!Indices.empty() && !Ty->isSized(&Visited)) 3520 return Error(ID.Loc, "base element of getelementptr must be sized"); 3521 3522 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3523 return Error(ID.Loc, "invalid getelementptr indices"); 3524 3525 if (InRangeOp) { 3526 if (*InRangeOp == 0) 3527 return Error(ID.Loc, 3528 "inrange keyword may not appear on pointer operand"); 3529 --*InRangeOp; 3530 } 3531 3532 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3533 InBounds, InRangeOp); 3534 } else if (Opc == Instruction::Select) { 3535 if (Elts.size() != 3) 3536 return Error(ID.Loc, "expected three operands to select"); 3537 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3538 Elts[2])) 3539 return Error(ID.Loc, Reason); 3540 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3541 } else if (Opc == Instruction::ShuffleVector) { 3542 if (Elts.size() != 3) 3543 return Error(ID.Loc, "expected three operands to shufflevector"); 3544 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3545 return Error(ID.Loc, "invalid operands to shufflevector"); 3546 ID.ConstantVal = 3547 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 3548 } else if (Opc == Instruction::ExtractElement) { 3549 if (Elts.size() != 2) 3550 return Error(ID.Loc, "expected two operands to extractelement"); 3551 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3552 return Error(ID.Loc, "invalid extractelement operands"); 3553 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3554 } else { 3555 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3556 if (Elts.size() != 3) 3557 return Error(ID.Loc, "expected three operands to insertelement"); 3558 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3559 return Error(ID.Loc, "invalid insertelement operands"); 3560 ID.ConstantVal = 3561 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3562 } 3563 3564 ID.Kind = ValID::t_Constant; 3565 return false; 3566 } 3567 } 3568 3569 Lex.Lex(); 3570 return false; 3571 } 3572 3573 /// ParseGlobalValue - Parse a global value with the specified type. 3574 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 3575 C = nullptr; 3576 ValID ID; 3577 Value *V = nullptr; 3578 bool Parsed = ParseValID(ID) || 3579 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false); 3580 if (V && !(C = dyn_cast<Constant>(V))) 3581 return Error(ID.Loc, "global values must be constants"); 3582 return Parsed; 3583 } 3584 3585 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 3586 Type *Ty = nullptr; 3587 return ParseType(Ty) || 3588 ParseGlobalValue(Ty, V); 3589 } 3590 3591 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3592 C = nullptr; 3593 3594 LocTy KwLoc = Lex.getLoc(); 3595 if (!EatIfPresent(lltok::kw_comdat)) 3596 return false; 3597 3598 if (EatIfPresent(lltok::lparen)) { 3599 if (Lex.getKind() != lltok::ComdatVar) 3600 return TokError("expected comdat variable"); 3601 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3602 Lex.Lex(); 3603 if (ParseToken(lltok::rparen, "expected ')' after comdat var")) 3604 return true; 3605 } else { 3606 if (GlobalName.empty()) 3607 return TokError("comdat cannot be unnamed"); 3608 C = getComdat(GlobalName, KwLoc); 3609 } 3610 3611 return false; 3612 } 3613 3614 /// ParseGlobalValueVector 3615 /// ::= /*empty*/ 3616 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 3617 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 3618 Optional<unsigned> *InRangeOp) { 3619 // Empty list. 3620 if (Lex.getKind() == lltok::rbrace || 3621 Lex.getKind() == lltok::rsquare || 3622 Lex.getKind() == lltok::greater || 3623 Lex.getKind() == lltok::rparen) 3624 return false; 3625 3626 do { 3627 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 3628 *InRangeOp = Elts.size(); 3629 3630 Constant *C; 3631 if (ParseGlobalTypeAndValue(C)) return true; 3632 Elts.push_back(C); 3633 } while (EatIfPresent(lltok::comma)); 3634 3635 return false; 3636 } 3637 3638 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) { 3639 SmallVector<Metadata *, 16> Elts; 3640 if (ParseMDNodeVector(Elts)) 3641 return true; 3642 3643 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3644 return false; 3645 } 3646 3647 /// MDNode: 3648 /// ::= !{ ... } 3649 /// ::= !7 3650 /// ::= !DILocation(...) 3651 bool LLParser::ParseMDNode(MDNode *&N) { 3652 if (Lex.getKind() == lltok::MetadataVar) 3653 return ParseSpecializedMDNode(N); 3654 3655 return ParseToken(lltok::exclaim, "expected '!' here") || 3656 ParseMDNodeTail(N); 3657 } 3658 3659 bool LLParser::ParseMDNodeTail(MDNode *&N) { 3660 // !{ ... } 3661 if (Lex.getKind() == lltok::lbrace) 3662 return ParseMDTuple(N); 3663 3664 // !42 3665 return ParseMDNodeID(N); 3666 } 3667 3668 namespace { 3669 3670 /// Structure to represent an optional metadata field. 3671 template <class FieldTy> struct MDFieldImpl { 3672 typedef MDFieldImpl ImplTy; 3673 FieldTy Val; 3674 bool Seen; 3675 3676 void assign(FieldTy Val) { 3677 Seen = true; 3678 this->Val = std::move(Val); 3679 } 3680 3681 explicit MDFieldImpl(FieldTy Default) 3682 : Val(std::move(Default)), Seen(false) {} 3683 }; 3684 3685 /// Structure to represent an optional metadata field that 3686 /// can be of either type (A or B) and encapsulates the 3687 /// MD<typeofA>Field and MD<typeofB>Field structs, so not 3688 /// to reimplement the specifics for representing each Field. 3689 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl { 3690 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy; 3691 FieldTypeA A; 3692 FieldTypeB B; 3693 bool Seen; 3694 3695 enum { 3696 IsInvalid = 0, 3697 IsTypeA = 1, 3698 IsTypeB = 2 3699 } WhatIs; 3700 3701 void assign(FieldTypeA A) { 3702 Seen = true; 3703 this->A = std::move(A); 3704 WhatIs = IsTypeA; 3705 } 3706 3707 void assign(FieldTypeB B) { 3708 Seen = true; 3709 this->B = std::move(B); 3710 WhatIs = IsTypeB; 3711 } 3712 3713 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) 3714 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), 3715 WhatIs(IsInvalid) {} 3716 }; 3717 3718 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3719 uint64_t Max; 3720 3721 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3722 : ImplTy(Default), Max(Max) {} 3723 }; 3724 3725 struct LineField : public MDUnsignedField { 3726 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3727 }; 3728 3729 struct ColumnField : public MDUnsignedField { 3730 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3731 }; 3732 3733 struct DwarfTagField : public MDUnsignedField { 3734 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3735 DwarfTagField(dwarf::Tag DefaultTag) 3736 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3737 }; 3738 3739 struct DwarfMacinfoTypeField : public MDUnsignedField { 3740 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 3741 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 3742 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 3743 }; 3744 3745 struct DwarfAttEncodingField : public MDUnsignedField { 3746 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3747 }; 3748 3749 struct DwarfVirtualityField : public MDUnsignedField { 3750 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3751 }; 3752 3753 struct DwarfLangField : public MDUnsignedField { 3754 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3755 }; 3756 3757 struct DwarfCCField : public MDUnsignedField { 3758 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 3759 }; 3760 3761 struct EmissionKindField : public MDUnsignedField { 3762 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 3763 }; 3764 3765 struct NameTableKindField : public MDUnsignedField { 3766 NameTableKindField() 3767 : MDUnsignedField( 3768 0, (unsigned) 3769 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {} 3770 }; 3771 3772 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 3773 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 3774 }; 3775 3776 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> { 3777 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {} 3778 }; 3779 3780 struct MDSignedField : public MDFieldImpl<int64_t> { 3781 int64_t Min; 3782 int64_t Max; 3783 3784 MDSignedField(int64_t Default = 0) 3785 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3786 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3787 : ImplTy(Default), Min(Min), Max(Max) {} 3788 }; 3789 3790 struct MDBoolField : public MDFieldImpl<bool> { 3791 MDBoolField(bool Default = false) : ImplTy(Default) {} 3792 }; 3793 3794 struct MDField : public MDFieldImpl<Metadata *> { 3795 bool AllowNull; 3796 3797 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3798 }; 3799 3800 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 3801 MDConstant() : ImplTy(nullptr) {} 3802 }; 3803 3804 struct MDStringField : public MDFieldImpl<MDString *> { 3805 bool AllowEmpty; 3806 MDStringField(bool AllowEmpty = true) 3807 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3808 }; 3809 3810 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3811 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3812 }; 3813 3814 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 3815 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 3816 }; 3817 3818 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> { 3819 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) 3820 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} 3821 3822 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, 3823 bool AllowNull = true) 3824 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} 3825 3826 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3827 bool isMDField() const { return WhatIs == IsTypeB; } 3828 int64_t getMDSignedValue() const { 3829 assert(isMDSignedField() && "Wrong field type"); 3830 return A.Val; 3831 } 3832 Metadata *getMDFieldValue() const { 3833 assert(isMDField() && "Wrong field type"); 3834 return B.Val; 3835 } 3836 }; 3837 3838 struct MDSignedOrUnsignedField 3839 : MDEitherFieldImpl<MDSignedField, MDUnsignedField> { 3840 MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {} 3841 3842 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3843 bool isMDUnsignedField() const { return WhatIs == IsTypeB; } 3844 int64_t getMDSignedValue() const { 3845 assert(isMDSignedField() && "Wrong field type"); 3846 return A.Val; 3847 } 3848 uint64_t getMDUnsignedValue() const { 3849 assert(isMDUnsignedField() && "Wrong field type"); 3850 return B.Val; 3851 } 3852 }; 3853 3854 } // end anonymous namespace 3855 3856 namespace llvm { 3857 3858 template <> 3859 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3860 MDUnsignedField &Result) { 3861 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3862 return TokError("expected unsigned integer"); 3863 3864 auto &U = Lex.getAPSIntVal(); 3865 if (U.ugt(Result.Max)) 3866 return TokError("value for '" + Name + "' too large, limit is " + 3867 Twine(Result.Max)); 3868 Result.assign(U.getZExtValue()); 3869 assert(Result.Val <= Result.Max && "Expected value in range"); 3870 Lex.Lex(); 3871 return false; 3872 } 3873 3874 template <> 3875 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) { 3876 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3877 } 3878 template <> 3879 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 3880 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3881 } 3882 3883 template <> 3884 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 3885 if (Lex.getKind() == lltok::APSInt) 3886 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3887 3888 if (Lex.getKind() != lltok::DwarfTag) 3889 return TokError("expected DWARF tag"); 3890 3891 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 3892 if (Tag == dwarf::DW_TAG_invalid) 3893 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 3894 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 3895 3896 Result.assign(Tag); 3897 Lex.Lex(); 3898 return false; 3899 } 3900 3901 template <> 3902 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3903 DwarfMacinfoTypeField &Result) { 3904 if (Lex.getKind() == lltok::APSInt) 3905 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3906 3907 if (Lex.getKind() != lltok::DwarfMacinfo) 3908 return TokError("expected DWARF macinfo type"); 3909 3910 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 3911 if (Macinfo == dwarf::DW_MACINFO_invalid) 3912 return TokError( 3913 "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'"); 3914 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 3915 3916 Result.assign(Macinfo); 3917 Lex.Lex(); 3918 return false; 3919 } 3920 3921 template <> 3922 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3923 DwarfVirtualityField &Result) { 3924 if (Lex.getKind() == lltok::APSInt) 3925 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3926 3927 if (Lex.getKind() != lltok::DwarfVirtuality) 3928 return TokError("expected DWARF virtuality code"); 3929 3930 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 3931 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 3932 return TokError("invalid DWARF virtuality code" + Twine(" '") + 3933 Lex.getStrVal() + "'"); 3934 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 3935 Result.assign(Virtuality); 3936 Lex.Lex(); 3937 return false; 3938 } 3939 3940 template <> 3941 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 3942 if (Lex.getKind() == lltok::APSInt) 3943 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3944 3945 if (Lex.getKind() != lltok::DwarfLang) 3946 return TokError("expected DWARF language"); 3947 3948 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 3949 if (!Lang) 3950 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 3951 "'"); 3952 assert(Lang <= Result.Max && "Expected valid DWARF language"); 3953 Result.assign(Lang); 3954 Lex.Lex(); 3955 return false; 3956 } 3957 3958 template <> 3959 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 3960 if (Lex.getKind() == lltok::APSInt) 3961 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3962 3963 if (Lex.getKind() != lltok::DwarfCC) 3964 return TokError("expected DWARF calling convention"); 3965 3966 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 3967 if (!CC) 3968 return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() + 3969 "'"); 3970 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 3971 Result.assign(CC); 3972 Lex.Lex(); 3973 return false; 3974 } 3975 3976 template <> 3977 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) { 3978 if (Lex.getKind() == lltok::APSInt) 3979 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3980 3981 if (Lex.getKind() != lltok::EmissionKind) 3982 return TokError("expected emission kind"); 3983 3984 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 3985 if (!Kind) 3986 return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 3987 "'"); 3988 assert(*Kind <= Result.Max && "Expected valid emission kind"); 3989 Result.assign(*Kind); 3990 Lex.Lex(); 3991 return false; 3992 } 3993 3994 template <> 3995 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3996 NameTableKindField &Result) { 3997 if (Lex.getKind() == lltok::APSInt) 3998 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3999 4000 if (Lex.getKind() != lltok::NameTableKind) 4001 return TokError("expected nameTable kind"); 4002 4003 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal()); 4004 if (!Kind) 4005 return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() + 4006 "'"); 4007 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind"); 4008 Result.assign((unsigned)*Kind); 4009 Lex.Lex(); 4010 return false; 4011 } 4012 4013 template <> 4014 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4015 DwarfAttEncodingField &Result) { 4016 if (Lex.getKind() == lltok::APSInt) 4017 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4018 4019 if (Lex.getKind() != lltok::DwarfAttEncoding) 4020 return TokError("expected DWARF type attribute encoding"); 4021 4022 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 4023 if (!Encoding) 4024 return TokError("invalid DWARF type attribute encoding" + Twine(" '") + 4025 Lex.getStrVal() + "'"); 4026 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 4027 Result.assign(Encoding); 4028 Lex.Lex(); 4029 return false; 4030 } 4031 4032 /// DIFlagField 4033 /// ::= uint32 4034 /// ::= DIFlagVector 4035 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 4036 template <> 4037 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 4038 4039 // Parser for a single flag. 4040 auto parseFlag = [&](DINode::DIFlags &Val) { 4041 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4042 uint32_t TempVal = static_cast<uint32_t>(Val); 4043 bool Res = ParseUInt32(TempVal); 4044 Val = static_cast<DINode::DIFlags>(TempVal); 4045 return Res; 4046 } 4047 4048 if (Lex.getKind() != lltok::DIFlag) 4049 return TokError("expected debug info flag"); 4050 4051 Val = DINode::getFlag(Lex.getStrVal()); 4052 if (!Val) 4053 return TokError(Twine("invalid debug info flag flag '") + 4054 Lex.getStrVal() + "'"); 4055 Lex.Lex(); 4056 return false; 4057 }; 4058 4059 // Parse the flags and combine them together. 4060 DINode::DIFlags Combined = DINode::FlagZero; 4061 do { 4062 DINode::DIFlags Val; 4063 if (parseFlag(Val)) 4064 return true; 4065 Combined |= Val; 4066 } while (EatIfPresent(lltok::bar)); 4067 4068 Result.assign(Combined); 4069 return false; 4070 } 4071 4072 /// DISPFlagField 4073 /// ::= uint32 4074 /// ::= DISPFlagVector 4075 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32 4076 template <> 4077 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) { 4078 4079 // Parser for a single flag. 4080 auto parseFlag = [&](DISubprogram::DISPFlags &Val) { 4081 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4082 uint32_t TempVal = static_cast<uint32_t>(Val); 4083 bool Res = ParseUInt32(TempVal); 4084 Val = static_cast<DISubprogram::DISPFlags>(TempVal); 4085 return Res; 4086 } 4087 4088 if (Lex.getKind() != lltok::DISPFlag) 4089 return TokError("expected debug info flag"); 4090 4091 Val = DISubprogram::getFlag(Lex.getStrVal()); 4092 if (!Val) 4093 return TokError(Twine("invalid subprogram debug info flag '") + 4094 Lex.getStrVal() + "'"); 4095 Lex.Lex(); 4096 return false; 4097 }; 4098 4099 // Parse the flags and combine them together. 4100 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero; 4101 do { 4102 DISubprogram::DISPFlags Val; 4103 if (parseFlag(Val)) 4104 return true; 4105 Combined |= Val; 4106 } while (EatIfPresent(lltok::bar)); 4107 4108 Result.assign(Combined); 4109 return false; 4110 } 4111 4112 template <> 4113 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4114 MDSignedField &Result) { 4115 if (Lex.getKind() != lltok::APSInt) 4116 return TokError("expected signed integer"); 4117 4118 auto &S = Lex.getAPSIntVal(); 4119 if (S < Result.Min) 4120 return TokError("value for '" + Name + "' too small, limit is " + 4121 Twine(Result.Min)); 4122 if (S > Result.Max) 4123 return TokError("value for '" + Name + "' too large, limit is " + 4124 Twine(Result.Max)); 4125 Result.assign(S.getExtValue()); 4126 assert(Result.Val >= Result.Min && "Expected value in range"); 4127 assert(Result.Val <= Result.Max && "Expected value in range"); 4128 Lex.Lex(); 4129 return false; 4130 } 4131 4132 template <> 4133 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 4134 switch (Lex.getKind()) { 4135 default: 4136 return TokError("expected 'true' or 'false'"); 4137 case lltok::kw_true: 4138 Result.assign(true); 4139 break; 4140 case lltok::kw_false: 4141 Result.assign(false); 4142 break; 4143 } 4144 Lex.Lex(); 4145 return false; 4146 } 4147 4148 template <> 4149 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) { 4150 if (Lex.getKind() == lltok::kw_null) { 4151 if (!Result.AllowNull) 4152 return TokError("'" + Name + "' cannot be null"); 4153 Lex.Lex(); 4154 Result.assign(nullptr); 4155 return false; 4156 } 4157 4158 Metadata *MD; 4159 if (ParseMetadata(MD, nullptr)) 4160 return true; 4161 4162 Result.assign(MD); 4163 return false; 4164 } 4165 4166 template <> 4167 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4168 MDSignedOrMDField &Result) { 4169 // Try to parse a signed int. 4170 if (Lex.getKind() == lltok::APSInt) { 4171 MDSignedField Res = Result.A; 4172 if (!ParseMDField(Loc, Name, Res)) { 4173 Result.assign(Res); 4174 return false; 4175 } 4176 return true; 4177 } 4178 4179 // Otherwise, try to parse as an MDField. 4180 MDField Res = Result.B; 4181 if (!ParseMDField(Loc, Name, Res)) { 4182 Result.assign(Res); 4183 return false; 4184 } 4185 4186 return true; 4187 } 4188 4189 template <> 4190 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4191 MDSignedOrUnsignedField &Result) { 4192 if (Lex.getKind() != lltok::APSInt) 4193 return false; 4194 4195 if (Lex.getAPSIntVal().isSigned()) { 4196 MDSignedField Res = Result.A; 4197 if (ParseMDField(Loc, Name, Res)) 4198 return true; 4199 Result.assign(Res); 4200 return false; 4201 } 4202 4203 MDUnsignedField Res = Result.B; 4204 if (ParseMDField(Loc, Name, Res)) 4205 return true; 4206 Result.assign(Res); 4207 return false; 4208 } 4209 4210 template <> 4211 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 4212 LocTy ValueLoc = Lex.getLoc(); 4213 std::string S; 4214 if (ParseStringConstant(S)) 4215 return true; 4216 4217 if (!Result.AllowEmpty && S.empty()) 4218 return Error(ValueLoc, "'" + Name + "' cannot be empty"); 4219 4220 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 4221 return false; 4222 } 4223 4224 template <> 4225 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 4226 SmallVector<Metadata *, 4> MDs; 4227 if (ParseMDNodeVector(MDs)) 4228 return true; 4229 4230 Result.assign(std::move(MDs)); 4231 return false; 4232 } 4233 4234 template <> 4235 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4236 ChecksumKindField &Result) { 4237 Optional<DIFile::ChecksumKind> CSKind = 4238 DIFile::getChecksumKind(Lex.getStrVal()); 4239 4240 if (Lex.getKind() != lltok::ChecksumKind || !CSKind) 4241 return TokError( 4242 "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'"); 4243 4244 Result.assign(*CSKind); 4245 Lex.Lex(); 4246 return false; 4247 } 4248 4249 } // end namespace llvm 4250 4251 template <class ParserTy> 4252 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) { 4253 do { 4254 if (Lex.getKind() != lltok::LabelStr) 4255 return TokError("expected field label here"); 4256 4257 if (parseField()) 4258 return true; 4259 } while (EatIfPresent(lltok::comma)); 4260 4261 return false; 4262 } 4263 4264 template <class ParserTy> 4265 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) { 4266 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4267 Lex.Lex(); 4268 4269 if (ParseToken(lltok::lparen, "expected '(' here")) 4270 return true; 4271 if (Lex.getKind() != lltok::rparen) 4272 if (ParseMDFieldsImplBody(parseField)) 4273 return true; 4274 4275 ClosingLoc = Lex.getLoc(); 4276 return ParseToken(lltok::rparen, "expected ')' here"); 4277 } 4278 4279 template <class FieldTy> 4280 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) { 4281 if (Result.Seen) 4282 return TokError("field '" + Name + "' cannot be specified more than once"); 4283 4284 LocTy Loc = Lex.getLoc(); 4285 Lex.Lex(); 4286 return ParseMDField(Loc, Name, Result); 4287 } 4288 4289 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 4290 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4291 4292 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 4293 if (Lex.getStrVal() == #CLASS) \ 4294 return Parse##CLASS(N, IsDistinct); 4295 #include "llvm/IR/Metadata.def" 4296 4297 return TokError("expected metadata type"); 4298 } 4299 4300 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 4301 #define NOP_FIELD(NAME, TYPE, INIT) 4302 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 4303 if (!NAME.Seen) \ 4304 return Error(ClosingLoc, "missing required field '" #NAME "'"); 4305 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 4306 if (Lex.getStrVal() == #NAME) \ 4307 return ParseMDField(#NAME, NAME); 4308 #define PARSE_MD_FIELDS() \ 4309 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 4310 do { \ 4311 LocTy ClosingLoc; \ 4312 if (ParseMDFieldsImpl([&]() -> bool { \ 4313 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 4314 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \ 4315 }, ClosingLoc)) \ 4316 return true; \ 4317 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 4318 } while (false) 4319 #define GET_OR_DISTINCT(CLASS, ARGS) \ 4320 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 4321 4322 /// ParseDILocationFields: 4323 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6, 4324 /// isImplicitCode: true) 4325 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) { 4326 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4327 OPTIONAL(line, LineField, ); \ 4328 OPTIONAL(column, ColumnField, ); \ 4329 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4330 OPTIONAL(inlinedAt, MDField, ); \ 4331 OPTIONAL(isImplicitCode, MDBoolField, (false)); 4332 PARSE_MD_FIELDS(); 4333 #undef VISIT_MD_FIELDS 4334 4335 Result = 4336 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val, 4337 inlinedAt.Val, isImplicitCode.Val)); 4338 return false; 4339 } 4340 4341 /// ParseGenericDINode: 4342 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 4343 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) { 4344 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4345 REQUIRED(tag, DwarfTagField, ); \ 4346 OPTIONAL(header, MDStringField, ); \ 4347 OPTIONAL(operands, MDFieldList, ); 4348 PARSE_MD_FIELDS(); 4349 #undef VISIT_MD_FIELDS 4350 4351 Result = GET_OR_DISTINCT(GenericDINode, 4352 (Context, tag.Val, header.Val, operands.Val)); 4353 return false; 4354 } 4355 4356 /// ParseDISubrange: 4357 /// ::= !DISubrange(count: 30, lowerBound: 2) 4358 /// ::= !DISubrange(count: !node, lowerBound: 2) 4359 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) { 4360 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4361 REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ 4362 OPTIONAL(lowerBound, MDSignedField, ); 4363 PARSE_MD_FIELDS(); 4364 #undef VISIT_MD_FIELDS 4365 4366 if (count.isMDSignedField()) 4367 Result = GET_OR_DISTINCT( 4368 DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val)); 4369 else if (count.isMDField()) 4370 Result = GET_OR_DISTINCT( 4371 DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val)); 4372 else 4373 return true; 4374 4375 return false; 4376 } 4377 4378 /// ParseDIEnumerator: 4379 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind") 4380 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) { 4381 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4382 REQUIRED(name, MDStringField, ); \ 4383 REQUIRED(value, MDSignedOrUnsignedField, ); \ 4384 OPTIONAL(isUnsigned, MDBoolField, (false)); 4385 PARSE_MD_FIELDS(); 4386 #undef VISIT_MD_FIELDS 4387 4388 if (isUnsigned.Val && value.isMDSignedField()) 4389 return TokError("unsigned enumerator with negative value"); 4390 4391 int64_t Value = value.isMDSignedField() 4392 ? value.getMDSignedValue() 4393 : static_cast<int64_t>(value.getMDUnsignedValue()); 4394 Result = 4395 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val)); 4396 4397 return false; 4398 } 4399 4400 /// ParseDIBasicType: 4401 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32, 4402 /// encoding: DW_ATE_encoding, flags: 0) 4403 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) { 4404 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4405 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 4406 OPTIONAL(name, MDStringField, ); \ 4407 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4408 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4409 OPTIONAL(encoding, DwarfAttEncodingField, ); \ 4410 OPTIONAL(flags, DIFlagField, ); 4411 PARSE_MD_FIELDS(); 4412 #undef VISIT_MD_FIELDS 4413 4414 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 4415 align.Val, encoding.Val, flags.Val)); 4416 return false; 4417 } 4418 4419 /// ParseDIDerivedType: 4420 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 4421 /// line: 7, scope: !1, baseType: !2, size: 32, 4422 /// align: 32, offset: 0, flags: 0, extraData: !3, 4423 /// dwarfAddressSpace: 3) 4424 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) { 4425 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4426 REQUIRED(tag, DwarfTagField, ); \ 4427 OPTIONAL(name, MDStringField, ); \ 4428 OPTIONAL(file, MDField, ); \ 4429 OPTIONAL(line, LineField, ); \ 4430 OPTIONAL(scope, MDField, ); \ 4431 REQUIRED(baseType, MDField, ); \ 4432 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4433 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4434 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4435 OPTIONAL(flags, DIFlagField, ); \ 4436 OPTIONAL(extraData, MDField, ); \ 4437 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); 4438 PARSE_MD_FIELDS(); 4439 #undef VISIT_MD_FIELDS 4440 4441 Optional<unsigned> DWARFAddressSpace; 4442 if (dwarfAddressSpace.Val != UINT32_MAX) 4443 DWARFAddressSpace = dwarfAddressSpace.Val; 4444 4445 Result = GET_OR_DISTINCT(DIDerivedType, 4446 (Context, tag.Val, name.Val, file.Val, line.Val, 4447 scope.Val, baseType.Val, size.Val, align.Val, 4448 offset.Val, DWARFAddressSpace, flags.Val, 4449 extraData.Val)); 4450 return false; 4451 } 4452 4453 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) { 4454 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4455 REQUIRED(tag, DwarfTagField, ); \ 4456 OPTIONAL(name, MDStringField, ); \ 4457 OPTIONAL(file, MDField, ); \ 4458 OPTIONAL(line, LineField, ); \ 4459 OPTIONAL(scope, MDField, ); \ 4460 OPTIONAL(baseType, MDField, ); \ 4461 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4462 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4463 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4464 OPTIONAL(flags, DIFlagField, ); \ 4465 OPTIONAL(elements, MDField, ); \ 4466 OPTIONAL(runtimeLang, DwarfLangField, ); \ 4467 OPTIONAL(vtableHolder, MDField, ); \ 4468 OPTIONAL(templateParams, MDField, ); \ 4469 OPTIONAL(identifier, MDStringField, ); \ 4470 OPTIONAL(discriminator, MDField, ); 4471 PARSE_MD_FIELDS(); 4472 #undef VISIT_MD_FIELDS 4473 4474 // If this has an identifier try to build an ODR type. 4475 if (identifier.Val) 4476 if (auto *CT = DICompositeType::buildODRType( 4477 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 4478 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 4479 elements.Val, runtimeLang.Val, vtableHolder.Val, 4480 templateParams.Val, discriminator.Val)) { 4481 Result = CT; 4482 return false; 4483 } 4484 4485 // Create a new node, and save it in the context if it belongs in the type 4486 // map. 4487 Result = GET_OR_DISTINCT( 4488 DICompositeType, 4489 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 4490 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 4491 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val, 4492 discriminator.Val)); 4493 return false; 4494 } 4495 4496 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) { 4497 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4498 OPTIONAL(flags, DIFlagField, ); \ 4499 OPTIONAL(cc, DwarfCCField, ); \ 4500 REQUIRED(types, MDField, ); 4501 PARSE_MD_FIELDS(); 4502 #undef VISIT_MD_FIELDS 4503 4504 Result = GET_OR_DISTINCT(DISubroutineType, 4505 (Context, flags.Val, cc.Val, types.Val)); 4506 return false; 4507 } 4508 4509 /// ParseDIFileType: 4510 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir", 4511 /// checksumkind: CSK_MD5, 4512 /// checksum: "000102030405060708090a0b0c0d0e0f", 4513 /// source: "source file contents") 4514 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) { 4515 // The default constructed value for checksumkind is required, but will never 4516 // be used, as the parser checks if the field was actually Seen before using 4517 // the Val. 4518 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4519 REQUIRED(filename, MDStringField, ); \ 4520 REQUIRED(directory, MDStringField, ); \ 4521 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \ 4522 OPTIONAL(checksum, MDStringField, ); \ 4523 OPTIONAL(source, MDStringField, ); 4524 PARSE_MD_FIELDS(); 4525 #undef VISIT_MD_FIELDS 4526 4527 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum; 4528 if (checksumkind.Seen && checksum.Seen) 4529 OptChecksum.emplace(checksumkind.Val, checksum.Val); 4530 else if (checksumkind.Seen || checksum.Seen) 4531 return Lex.Error("'checksumkind' and 'checksum' must be provided together"); 4532 4533 Optional<MDString *> OptSource; 4534 if (source.Seen) 4535 OptSource = source.Val; 4536 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val, 4537 OptChecksum, OptSource)); 4538 return false; 4539 } 4540 4541 /// ParseDICompileUnit: 4542 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 4543 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 4544 /// splitDebugFilename: "abc.debug", 4545 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 4546 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd) 4547 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) { 4548 if (!IsDistinct) 4549 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 4550 4551 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4552 REQUIRED(language, DwarfLangField, ); \ 4553 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 4554 OPTIONAL(producer, MDStringField, ); \ 4555 OPTIONAL(isOptimized, MDBoolField, ); \ 4556 OPTIONAL(flags, MDStringField, ); \ 4557 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 4558 OPTIONAL(splitDebugFilename, MDStringField, ); \ 4559 OPTIONAL(emissionKind, EmissionKindField, ); \ 4560 OPTIONAL(enums, MDField, ); \ 4561 OPTIONAL(retainedTypes, MDField, ); \ 4562 OPTIONAL(globals, MDField, ); \ 4563 OPTIONAL(imports, MDField, ); \ 4564 OPTIONAL(macros, MDField, ); \ 4565 OPTIONAL(dwoId, MDUnsignedField, ); \ 4566 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 4567 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 4568 OPTIONAL(nameTableKind, NameTableKindField, ); \ 4569 OPTIONAL(debugBaseAddress, MDBoolField, = false); 4570 PARSE_MD_FIELDS(); 4571 #undef VISIT_MD_FIELDS 4572 4573 Result = DICompileUnit::getDistinct( 4574 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 4575 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 4576 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 4577 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val, 4578 debugBaseAddress.Val); 4579 return false; 4580 } 4581 4582 /// ParseDISubprogram: 4583 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 4584 /// file: !1, line: 7, type: !2, isLocal: false, 4585 /// isDefinition: true, scopeLine: 8, containingType: !3, 4586 /// virtuality: DW_VIRTUALTIY_pure_virtual, 4587 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 4588 /// spFlags: 10, isOptimized: false, templateParams: !4, 4589 /// declaration: !5, retainedNodes: !6, thrownTypes: !7) 4590 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) { 4591 auto Loc = Lex.getLoc(); 4592 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4593 OPTIONAL(scope, MDField, ); \ 4594 OPTIONAL(name, MDStringField, ); \ 4595 OPTIONAL(linkageName, MDStringField, ); \ 4596 OPTIONAL(file, MDField, ); \ 4597 OPTIONAL(line, LineField, ); \ 4598 OPTIONAL(type, MDField, ); \ 4599 OPTIONAL(isLocal, MDBoolField, ); \ 4600 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4601 OPTIONAL(scopeLine, LineField, ); \ 4602 OPTIONAL(containingType, MDField, ); \ 4603 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 4604 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 4605 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 4606 OPTIONAL(flags, DIFlagField, ); \ 4607 OPTIONAL(spFlags, DISPFlagField, ); \ 4608 OPTIONAL(isOptimized, MDBoolField, ); \ 4609 OPTIONAL(unit, MDField, ); \ 4610 OPTIONAL(templateParams, MDField, ); \ 4611 OPTIONAL(declaration, MDField, ); \ 4612 OPTIONAL(retainedNodes, MDField, ); \ 4613 OPTIONAL(thrownTypes, MDField, ); 4614 PARSE_MD_FIELDS(); 4615 #undef VISIT_MD_FIELDS 4616 4617 // An explicit spFlags field takes precedence over individual fields in 4618 // older IR versions. 4619 DISubprogram::DISPFlags SPFlags = 4620 spFlags.Seen ? spFlags.Val 4621 : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val, 4622 isOptimized.Val, virtuality.Val); 4623 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct) 4624 return Lex.Error( 4625 Loc, 4626 "missing 'distinct', required for !DISubprogram that is a Definition"); 4627 Result = GET_OR_DISTINCT( 4628 DISubprogram, 4629 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 4630 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val, 4631 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val, 4632 declaration.Val, retainedNodes.Val, thrownTypes.Val)); 4633 return false; 4634 } 4635 4636 /// ParseDILexicalBlock: 4637 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 4638 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 4639 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4640 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4641 OPTIONAL(file, MDField, ); \ 4642 OPTIONAL(line, LineField, ); \ 4643 OPTIONAL(column, ColumnField, ); 4644 PARSE_MD_FIELDS(); 4645 #undef VISIT_MD_FIELDS 4646 4647 Result = GET_OR_DISTINCT( 4648 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 4649 return false; 4650 } 4651 4652 /// ParseDILexicalBlockFile: 4653 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 4654 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 4655 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4656 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4657 OPTIONAL(file, MDField, ); \ 4658 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 4659 PARSE_MD_FIELDS(); 4660 #undef VISIT_MD_FIELDS 4661 4662 Result = GET_OR_DISTINCT(DILexicalBlockFile, 4663 (Context, scope.Val, file.Val, discriminator.Val)); 4664 return false; 4665 } 4666 4667 /// ParseDICommonBlock: 4668 /// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9) 4669 bool LLParser::ParseDICommonBlock(MDNode *&Result, bool IsDistinct) { 4670 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4671 REQUIRED(scope, MDField, ); \ 4672 OPTIONAL(declaration, MDField, ); \ 4673 OPTIONAL(name, MDStringField, ); \ 4674 OPTIONAL(file, MDField, ); \ 4675 OPTIONAL(line, LineField, ); 4676 PARSE_MD_FIELDS(); 4677 #undef VISIT_MD_FIELDS 4678 4679 Result = GET_OR_DISTINCT(DICommonBlock, 4680 (Context, scope.Val, declaration.Val, name.Val, 4681 file.Val, line.Val)); 4682 return false; 4683 } 4684 4685 /// ParseDINamespace: 4686 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 4687 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) { 4688 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4689 REQUIRED(scope, MDField, ); \ 4690 OPTIONAL(name, MDStringField, ); \ 4691 OPTIONAL(exportSymbols, MDBoolField, ); 4692 PARSE_MD_FIELDS(); 4693 #undef VISIT_MD_FIELDS 4694 4695 Result = GET_OR_DISTINCT(DINamespace, 4696 (Context, scope.Val, name.Val, exportSymbols.Val)); 4697 return false; 4698 } 4699 4700 /// ParseDIMacro: 4701 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue") 4702 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) { 4703 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4704 REQUIRED(type, DwarfMacinfoTypeField, ); \ 4705 OPTIONAL(line, LineField, ); \ 4706 REQUIRED(name, MDStringField, ); \ 4707 OPTIONAL(value, MDStringField, ); 4708 PARSE_MD_FIELDS(); 4709 #undef VISIT_MD_FIELDS 4710 4711 Result = GET_OR_DISTINCT(DIMacro, 4712 (Context, type.Val, line.Val, name.Val, value.Val)); 4713 return false; 4714 } 4715 4716 /// ParseDIMacroFile: 4717 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 4718 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) { 4719 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4720 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 4721 OPTIONAL(line, LineField, ); \ 4722 REQUIRED(file, MDField, ); \ 4723 OPTIONAL(nodes, MDField, ); 4724 PARSE_MD_FIELDS(); 4725 #undef VISIT_MD_FIELDS 4726 4727 Result = GET_OR_DISTINCT(DIMacroFile, 4728 (Context, type.Val, line.Val, file.Val, nodes.Val)); 4729 return false; 4730 } 4731 4732 /// ParseDIModule: 4733 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG", 4734 /// includePath: "/usr/include", isysroot: "/") 4735 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) { 4736 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4737 REQUIRED(scope, MDField, ); \ 4738 REQUIRED(name, MDStringField, ); \ 4739 OPTIONAL(configMacros, MDStringField, ); \ 4740 OPTIONAL(includePath, MDStringField, ); \ 4741 OPTIONAL(isysroot, MDStringField, ); 4742 PARSE_MD_FIELDS(); 4743 #undef VISIT_MD_FIELDS 4744 4745 Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val, 4746 configMacros.Val, includePath.Val, isysroot.Val)); 4747 return false; 4748 } 4749 4750 /// ParseDITemplateTypeParameter: 4751 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1) 4752 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 4753 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4754 OPTIONAL(name, MDStringField, ); \ 4755 REQUIRED(type, MDField, ); 4756 PARSE_MD_FIELDS(); 4757 #undef VISIT_MD_FIELDS 4758 4759 Result = 4760 GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val)); 4761 return false; 4762 } 4763 4764 /// ParseDITemplateValueParameter: 4765 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 4766 /// name: "V", type: !1, value: i32 7) 4767 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 4768 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4769 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 4770 OPTIONAL(name, MDStringField, ); \ 4771 OPTIONAL(type, MDField, ); \ 4772 REQUIRED(value, MDField, ); 4773 PARSE_MD_FIELDS(); 4774 #undef VISIT_MD_FIELDS 4775 4776 Result = GET_OR_DISTINCT(DITemplateValueParameter, 4777 (Context, tag.Val, name.Val, type.Val, value.Val)); 4778 return false; 4779 } 4780 4781 /// ParseDIGlobalVariable: 4782 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 4783 /// file: !1, line: 7, type: !2, isLocal: false, 4784 /// isDefinition: true, templateParams: !3, 4785 /// declaration: !4, align: 8) 4786 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 4787 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4788 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 4789 OPTIONAL(scope, MDField, ); \ 4790 OPTIONAL(linkageName, MDStringField, ); \ 4791 OPTIONAL(file, MDField, ); \ 4792 OPTIONAL(line, LineField, ); \ 4793 OPTIONAL(type, MDField, ); \ 4794 OPTIONAL(isLocal, MDBoolField, ); \ 4795 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4796 OPTIONAL(templateParams, MDField, ); \ 4797 OPTIONAL(declaration, MDField, ); \ 4798 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4799 PARSE_MD_FIELDS(); 4800 #undef VISIT_MD_FIELDS 4801 4802 Result = 4803 GET_OR_DISTINCT(DIGlobalVariable, 4804 (Context, scope.Val, name.Val, linkageName.Val, file.Val, 4805 line.Val, type.Val, isLocal.Val, isDefinition.Val, 4806 declaration.Val, templateParams.Val, align.Val)); 4807 return false; 4808 } 4809 4810 /// ParseDILocalVariable: 4811 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 4812 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4813 /// align: 8) 4814 /// ::= !DILocalVariable(scope: !0, name: "foo", 4815 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4816 /// align: 8) 4817 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) { 4818 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4819 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4820 OPTIONAL(name, MDStringField, ); \ 4821 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 4822 OPTIONAL(file, MDField, ); \ 4823 OPTIONAL(line, LineField, ); \ 4824 OPTIONAL(type, MDField, ); \ 4825 OPTIONAL(flags, DIFlagField, ); \ 4826 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4827 PARSE_MD_FIELDS(); 4828 #undef VISIT_MD_FIELDS 4829 4830 Result = GET_OR_DISTINCT(DILocalVariable, 4831 (Context, scope.Val, name.Val, file.Val, line.Val, 4832 type.Val, arg.Val, flags.Val, align.Val)); 4833 return false; 4834 } 4835 4836 /// ParseDILabel: 4837 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7) 4838 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) { 4839 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4840 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4841 REQUIRED(name, MDStringField, ); \ 4842 REQUIRED(file, MDField, ); \ 4843 REQUIRED(line, LineField, ); 4844 PARSE_MD_FIELDS(); 4845 #undef VISIT_MD_FIELDS 4846 4847 Result = GET_OR_DISTINCT(DILabel, 4848 (Context, scope.Val, name.Val, file.Val, line.Val)); 4849 return false; 4850 } 4851 4852 /// ParseDIExpression: 4853 /// ::= !DIExpression(0, 7, -1) 4854 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) { 4855 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4856 Lex.Lex(); 4857 4858 if (ParseToken(lltok::lparen, "expected '(' here")) 4859 return true; 4860 4861 SmallVector<uint64_t, 8> Elements; 4862 if (Lex.getKind() != lltok::rparen) 4863 do { 4864 if (Lex.getKind() == lltok::DwarfOp) { 4865 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 4866 Lex.Lex(); 4867 Elements.push_back(Op); 4868 continue; 4869 } 4870 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 4871 } 4872 4873 if (Lex.getKind() == lltok::DwarfAttEncoding) { 4874 if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) { 4875 Lex.Lex(); 4876 Elements.push_back(Op); 4877 continue; 4878 } 4879 return TokError(Twine("invalid DWARF attribute encoding '") + Lex.getStrVal() + "'"); 4880 } 4881 4882 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4883 return TokError("expected unsigned integer"); 4884 4885 auto &U = Lex.getAPSIntVal(); 4886 if (U.ugt(UINT64_MAX)) 4887 return TokError("element too large, limit is " + Twine(UINT64_MAX)); 4888 Elements.push_back(U.getZExtValue()); 4889 Lex.Lex(); 4890 } while (EatIfPresent(lltok::comma)); 4891 4892 if (ParseToken(lltok::rparen, "expected ')' here")) 4893 return true; 4894 4895 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 4896 return false; 4897 } 4898 4899 /// ParseDIGlobalVariableExpression: 4900 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 4901 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result, 4902 bool IsDistinct) { 4903 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4904 REQUIRED(var, MDField, ); \ 4905 REQUIRED(expr, MDField, ); 4906 PARSE_MD_FIELDS(); 4907 #undef VISIT_MD_FIELDS 4908 4909 Result = 4910 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 4911 return false; 4912 } 4913 4914 /// ParseDIObjCProperty: 4915 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 4916 /// getter: "getFoo", attributes: 7, type: !2) 4917 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 4918 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4919 OPTIONAL(name, MDStringField, ); \ 4920 OPTIONAL(file, MDField, ); \ 4921 OPTIONAL(line, LineField, ); \ 4922 OPTIONAL(setter, MDStringField, ); \ 4923 OPTIONAL(getter, MDStringField, ); \ 4924 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 4925 OPTIONAL(type, MDField, ); 4926 PARSE_MD_FIELDS(); 4927 #undef VISIT_MD_FIELDS 4928 4929 Result = GET_OR_DISTINCT(DIObjCProperty, 4930 (Context, name.Val, file.Val, line.Val, setter.Val, 4931 getter.Val, attributes.Val, type.Val)); 4932 return false; 4933 } 4934 4935 /// ParseDIImportedEntity: 4936 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 4937 /// line: 7, name: "foo") 4938 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 4939 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4940 REQUIRED(tag, DwarfTagField, ); \ 4941 REQUIRED(scope, MDField, ); \ 4942 OPTIONAL(entity, MDField, ); \ 4943 OPTIONAL(file, MDField, ); \ 4944 OPTIONAL(line, LineField, ); \ 4945 OPTIONAL(name, MDStringField, ); 4946 PARSE_MD_FIELDS(); 4947 #undef VISIT_MD_FIELDS 4948 4949 Result = GET_OR_DISTINCT( 4950 DIImportedEntity, 4951 (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val)); 4952 return false; 4953 } 4954 4955 #undef PARSE_MD_FIELD 4956 #undef NOP_FIELD 4957 #undef REQUIRE_FIELD 4958 #undef DECLARE_FIELD 4959 4960 /// ParseMetadataAsValue 4961 /// ::= metadata i32 %local 4962 /// ::= metadata i32 @global 4963 /// ::= metadata i32 7 4964 /// ::= metadata !0 4965 /// ::= metadata !{...} 4966 /// ::= metadata !"string" 4967 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 4968 // Note: the type 'metadata' has already been parsed. 4969 Metadata *MD; 4970 if (ParseMetadata(MD, &PFS)) 4971 return true; 4972 4973 V = MetadataAsValue::get(Context, MD); 4974 return false; 4975 } 4976 4977 /// ParseValueAsMetadata 4978 /// ::= i32 %local 4979 /// ::= i32 @global 4980 /// ::= i32 7 4981 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 4982 PerFunctionState *PFS) { 4983 Type *Ty; 4984 LocTy Loc; 4985 if (ParseType(Ty, TypeMsg, Loc)) 4986 return true; 4987 if (Ty->isMetadataTy()) 4988 return Error(Loc, "invalid metadata-value-metadata roundtrip"); 4989 4990 Value *V; 4991 if (ParseValue(Ty, V, PFS)) 4992 return true; 4993 4994 MD = ValueAsMetadata::get(V); 4995 return false; 4996 } 4997 4998 /// ParseMetadata 4999 /// ::= i32 %local 5000 /// ::= i32 @global 5001 /// ::= i32 7 5002 /// ::= !42 5003 /// ::= !{...} 5004 /// ::= !"string" 5005 /// ::= !DILocation(...) 5006 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) { 5007 if (Lex.getKind() == lltok::MetadataVar) { 5008 MDNode *N; 5009 if (ParseSpecializedMDNode(N)) 5010 return true; 5011 MD = N; 5012 return false; 5013 } 5014 5015 // ValueAsMetadata: 5016 // <type> <value> 5017 if (Lex.getKind() != lltok::exclaim) 5018 return ParseValueAsMetadata(MD, "expected metadata operand", PFS); 5019 5020 // '!'. 5021 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 5022 Lex.Lex(); 5023 5024 // MDString: 5025 // ::= '!' STRINGCONSTANT 5026 if (Lex.getKind() == lltok::StringConstant) { 5027 MDString *S; 5028 if (ParseMDString(S)) 5029 return true; 5030 MD = S; 5031 return false; 5032 } 5033 5034 // MDNode: 5035 // !{ ... } 5036 // !7 5037 MDNode *N; 5038 if (ParseMDNodeTail(N)) 5039 return true; 5040 MD = N; 5041 return false; 5042 } 5043 5044 //===----------------------------------------------------------------------===// 5045 // Function Parsing. 5046 //===----------------------------------------------------------------------===// 5047 5048 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 5049 PerFunctionState *PFS, bool IsCall) { 5050 if (Ty->isFunctionTy()) 5051 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 5052 5053 switch (ID.Kind) { 5054 case ValID::t_LocalID: 5055 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 5056 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5057 return V == nullptr; 5058 case ValID::t_LocalName: 5059 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 5060 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall); 5061 return V == nullptr; 5062 case ValID::t_InlineAsm: { 5063 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 5064 return Error(ID.Loc, "invalid type for inline asm constraint string"); 5065 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, 5066 (ID.UIntVal >> 1) & 1, 5067 (InlineAsm::AsmDialect(ID.UIntVal >> 2))); 5068 return false; 5069 } 5070 case ValID::t_GlobalName: 5071 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall); 5072 return V == nullptr; 5073 case ValID::t_GlobalID: 5074 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5075 return V == nullptr; 5076 case ValID::t_APSInt: 5077 if (!Ty->isIntegerTy()) 5078 return Error(ID.Loc, "integer constant must have integer type"); 5079 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 5080 V = ConstantInt::get(Context, ID.APSIntVal); 5081 return false; 5082 case ValID::t_APFloat: 5083 if (!Ty->isFloatingPointTy() || 5084 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 5085 return Error(ID.Loc, "floating point constant invalid for type"); 5086 5087 // The lexer has no type info, so builds all half, float, and double FP 5088 // constants as double. Fix this here. Long double does not need this. 5089 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 5090 bool Ignored; 5091 if (Ty->isHalfTy()) 5092 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 5093 &Ignored); 5094 else if (Ty->isFloatTy()) 5095 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 5096 &Ignored); 5097 } 5098 V = ConstantFP::get(Context, ID.APFloatVal); 5099 5100 if (V->getType() != Ty) 5101 return Error(ID.Loc, "floating point constant does not have type '" + 5102 getTypeString(Ty) + "'"); 5103 5104 return false; 5105 case ValID::t_Null: 5106 if (!Ty->isPointerTy()) 5107 return Error(ID.Loc, "null must be a pointer type"); 5108 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 5109 return false; 5110 case ValID::t_Undef: 5111 // FIXME: LabelTy should not be a first-class type. 5112 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5113 return Error(ID.Loc, "invalid type for undef constant"); 5114 V = UndefValue::get(Ty); 5115 return false; 5116 case ValID::t_EmptyArray: 5117 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 5118 return Error(ID.Loc, "invalid empty array initializer"); 5119 V = UndefValue::get(Ty); 5120 return false; 5121 case ValID::t_Zero: 5122 // FIXME: LabelTy should not be a first-class type. 5123 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5124 return Error(ID.Loc, "invalid type for null constant"); 5125 V = Constant::getNullValue(Ty); 5126 return false; 5127 case ValID::t_None: 5128 if (!Ty->isTokenTy()) 5129 return Error(ID.Loc, "invalid type for none constant"); 5130 V = Constant::getNullValue(Ty); 5131 return false; 5132 case ValID::t_Constant: 5133 if (ID.ConstantVal->getType() != Ty) 5134 return Error(ID.Loc, "constant expression type mismatch"); 5135 5136 V = ID.ConstantVal; 5137 return false; 5138 case ValID::t_ConstantStruct: 5139 case ValID::t_PackedConstantStruct: 5140 if (StructType *ST = dyn_cast<StructType>(Ty)) { 5141 if (ST->getNumElements() != ID.UIntVal) 5142 return Error(ID.Loc, 5143 "initializer with struct type has wrong # elements"); 5144 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 5145 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 5146 5147 // Verify that the elements are compatible with the structtype. 5148 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 5149 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 5150 return Error(ID.Loc, "element " + Twine(i) + 5151 " of struct initializer doesn't match struct element type"); 5152 5153 V = ConstantStruct::get( 5154 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 5155 } else 5156 return Error(ID.Loc, "constant expression type mismatch"); 5157 return false; 5158 } 5159 llvm_unreachable("Invalid ValID"); 5160 } 5161 5162 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 5163 C = nullptr; 5164 ValID ID; 5165 auto Loc = Lex.getLoc(); 5166 if (ParseValID(ID, /*PFS=*/nullptr)) 5167 return true; 5168 switch (ID.Kind) { 5169 case ValID::t_APSInt: 5170 case ValID::t_APFloat: 5171 case ValID::t_Undef: 5172 case ValID::t_Constant: 5173 case ValID::t_ConstantStruct: 5174 case ValID::t_PackedConstantStruct: { 5175 Value *V; 5176 if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false)) 5177 return true; 5178 assert(isa<Constant>(V) && "Expected a constant value"); 5179 C = cast<Constant>(V); 5180 return false; 5181 } 5182 case ValID::t_Null: 5183 C = Constant::getNullValue(Ty); 5184 return false; 5185 default: 5186 return Error(Loc, "expected a constant value"); 5187 } 5188 } 5189 5190 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 5191 V = nullptr; 5192 ValID ID; 5193 return ParseValID(ID, PFS) || 5194 ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false); 5195 } 5196 5197 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 5198 Type *Ty = nullptr; 5199 return ParseType(Ty) || 5200 ParseValue(Ty, V, PFS); 5201 } 5202 5203 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 5204 PerFunctionState &PFS) { 5205 Value *V; 5206 Loc = Lex.getLoc(); 5207 if (ParseTypeAndValue(V, PFS)) return true; 5208 if (!isa<BasicBlock>(V)) 5209 return Error(Loc, "expected a basic block"); 5210 BB = cast<BasicBlock>(V); 5211 return false; 5212 } 5213 5214 /// FunctionHeader 5215 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 5216 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 5217 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign 5218 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 5219 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 5220 // Parse the linkage. 5221 LocTy LinkageLoc = Lex.getLoc(); 5222 unsigned Linkage; 5223 unsigned Visibility; 5224 unsigned DLLStorageClass; 5225 bool DSOLocal; 5226 AttrBuilder RetAttrs; 5227 unsigned CC; 5228 bool HasLinkage; 5229 Type *RetType = nullptr; 5230 LocTy RetTypeLoc = Lex.getLoc(); 5231 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 5232 DSOLocal) || 5233 ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5234 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 5235 return true; 5236 5237 // Verify that the linkage is ok. 5238 switch ((GlobalValue::LinkageTypes)Linkage) { 5239 case GlobalValue::ExternalLinkage: 5240 break; // always ok. 5241 case GlobalValue::ExternalWeakLinkage: 5242 if (isDefine) 5243 return Error(LinkageLoc, "invalid linkage for function definition"); 5244 break; 5245 case GlobalValue::PrivateLinkage: 5246 case GlobalValue::InternalLinkage: 5247 case GlobalValue::AvailableExternallyLinkage: 5248 case GlobalValue::LinkOnceAnyLinkage: 5249 case GlobalValue::LinkOnceODRLinkage: 5250 case GlobalValue::WeakAnyLinkage: 5251 case GlobalValue::WeakODRLinkage: 5252 if (!isDefine) 5253 return Error(LinkageLoc, "invalid linkage for function declaration"); 5254 break; 5255 case GlobalValue::AppendingLinkage: 5256 case GlobalValue::CommonLinkage: 5257 return Error(LinkageLoc, "invalid function linkage type"); 5258 } 5259 5260 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 5261 return Error(LinkageLoc, 5262 "symbol with local linkage must have default visibility"); 5263 5264 if (!FunctionType::isValidReturnType(RetType)) 5265 return Error(RetTypeLoc, "invalid function return type"); 5266 5267 LocTy NameLoc = Lex.getLoc(); 5268 5269 std::string FunctionName; 5270 if (Lex.getKind() == lltok::GlobalVar) { 5271 FunctionName = Lex.getStrVal(); 5272 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 5273 unsigned NameID = Lex.getUIntVal(); 5274 5275 if (NameID != NumberedVals.size()) 5276 return TokError("function expected to be numbered '%" + 5277 Twine(NumberedVals.size()) + "'"); 5278 } else { 5279 return TokError("expected function name"); 5280 } 5281 5282 Lex.Lex(); 5283 5284 if (Lex.getKind() != lltok::lparen) 5285 return TokError("expected '(' in function argument list"); 5286 5287 SmallVector<ArgInfo, 8> ArgList; 5288 bool isVarArg; 5289 AttrBuilder FuncAttrs; 5290 std::vector<unsigned> FwdRefAttrGrps; 5291 LocTy BuiltinLoc; 5292 std::string Section; 5293 unsigned Alignment; 5294 std::string GC; 5295 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 5296 unsigned AddrSpace = 0; 5297 Constant *Prefix = nullptr; 5298 Constant *Prologue = nullptr; 5299 Constant *PersonalityFn = nullptr; 5300 Comdat *C; 5301 5302 if (ParseArgumentList(ArgList, isVarArg) || 5303 ParseOptionalUnnamedAddr(UnnamedAddr) || 5304 ParseOptionalProgramAddrSpace(AddrSpace) || 5305 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 5306 BuiltinLoc) || 5307 (EatIfPresent(lltok::kw_section) && 5308 ParseStringConstant(Section)) || 5309 parseOptionalComdat(FunctionName, C) || 5310 ParseOptionalAlignment(Alignment) || 5311 (EatIfPresent(lltok::kw_gc) && 5312 ParseStringConstant(GC)) || 5313 (EatIfPresent(lltok::kw_prefix) && 5314 ParseGlobalTypeAndValue(Prefix)) || 5315 (EatIfPresent(lltok::kw_prologue) && 5316 ParseGlobalTypeAndValue(Prologue)) || 5317 (EatIfPresent(lltok::kw_personality) && 5318 ParseGlobalTypeAndValue(PersonalityFn))) 5319 return true; 5320 5321 if (FuncAttrs.contains(Attribute::Builtin)) 5322 return Error(BuiltinLoc, "'builtin' attribute not valid on function"); 5323 5324 // If the alignment was parsed as an attribute, move to the alignment field. 5325 if (FuncAttrs.hasAlignmentAttr()) { 5326 Alignment = FuncAttrs.getAlignment(); 5327 FuncAttrs.removeAttribute(Attribute::Alignment); 5328 } 5329 5330 // Okay, if we got here, the function is syntactically valid. Convert types 5331 // and do semantic checks. 5332 std::vector<Type*> ParamTypeList; 5333 SmallVector<AttributeSet, 8> Attrs; 5334 5335 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5336 ParamTypeList.push_back(ArgList[i].Ty); 5337 Attrs.push_back(ArgList[i].Attrs); 5338 } 5339 5340 AttributeList PAL = 5341 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 5342 AttributeSet::get(Context, RetAttrs), Attrs); 5343 5344 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 5345 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 5346 5347 FunctionType *FT = 5348 FunctionType::get(RetType, ParamTypeList, isVarArg); 5349 PointerType *PFT = PointerType::get(FT, AddrSpace); 5350 5351 Fn = nullptr; 5352 if (!FunctionName.empty()) { 5353 // If this was a definition of a forward reference, remove the definition 5354 // from the forward reference table and fill in the forward ref. 5355 auto FRVI = ForwardRefVals.find(FunctionName); 5356 if (FRVI != ForwardRefVals.end()) { 5357 Fn = M->getFunction(FunctionName); 5358 if (!Fn) 5359 return Error(FRVI->second.second, "invalid forward reference to " 5360 "function as global value!"); 5361 if (Fn->getType() != PFT) 5362 return Error(FRVI->second.second, "invalid forward reference to " 5363 "function '" + FunctionName + "' with wrong type: " 5364 "expected '" + getTypeString(PFT) + "' but was '" + 5365 getTypeString(Fn->getType()) + "'"); 5366 ForwardRefVals.erase(FRVI); 5367 } else if ((Fn = M->getFunction(FunctionName))) { 5368 // Reject redefinitions. 5369 return Error(NameLoc, "invalid redefinition of function '" + 5370 FunctionName + "'"); 5371 } else if (M->getNamedValue(FunctionName)) { 5372 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 5373 } 5374 5375 } else { 5376 // If this is a definition of a forward referenced function, make sure the 5377 // types agree. 5378 auto I = ForwardRefValIDs.find(NumberedVals.size()); 5379 if (I != ForwardRefValIDs.end()) { 5380 Fn = cast<Function>(I->second.first); 5381 if (Fn->getType() != PFT) 5382 return Error(NameLoc, "type of definition and forward reference of '@" + 5383 Twine(NumberedVals.size()) + "' disagree: " 5384 "expected '" + getTypeString(PFT) + "' but was '" + 5385 getTypeString(Fn->getType()) + "'"); 5386 ForwardRefValIDs.erase(I); 5387 } 5388 } 5389 5390 if (!Fn) 5391 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace, 5392 FunctionName, M); 5393 else // Move the forward-reference to the correct spot in the module. 5394 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 5395 5396 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS"); 5397 5398 if (FunctionName.empty()) 5399 NumberedVals.push_back(Fn); 5400 5401 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 5402 maybeSetDSOLocal(DSOLocal, *Fn); 5403 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 5404 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 5405 Fn->setCallingConv(CC); 5406 Fn->setAttributes(PAL); 5407 Fn->setUnnamedAddr(UnnamedAddr); 5408 Fn->setAlignment(Alignment); 5409 Fn->setSection(Section); 5410 Fn->setComdat(C); 5411 Fn->setPersonalityFn(PersonalityFn); 5412 if (!GC.empty()) Fn->setGC(GC); 5413 Fn->setPrefixData(Prefix); 5414 Fn->setPrologueData(Prologue); 5415 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 5416 5417 // Add all of the arguments we parsed to the function. 5418 Function::arg_iterator ArgIt = Fn->arg_begin(); 5419 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 5420 // If the argument has a name, insert it into the argument symbol table. 5421 if (ArgList[i].Name.empty()) continue; 5422 5423 // Set the name, if it conflicted, it will be auto-renamed. 5424 ArgIt->setName(ArgList[i].Name); 5425 5426 if (ArgIt->getName() != ArgList[i].Name) 5427 return Error(ArgList[i].Loc, "redefinition of argument '%" + 5428 ArgList[i].Name + "'"); 5429 } 5430 5431 if (isDefine) 5432 return false; 5433 5434 // Check the declaration has no block address forward references. 5435 ValID ID; 5436 if (FunctionName.empty()) { 5437 ID.Kind = ValID::t_GlobalID; 5438 ID.UIntVal = NumberedVals.size() - 1; 5439 } else { 5440 ID.Kind = ValID::t_GlobalName; 5441 ID.StrVal = FunctionName; 5442 } 5443 auto Blocks = ForwardRefBlockAddresses.find(ID); 5444 if (Blocks != ForwardRefBlockAddresses.end()) 5445 return Error(Blocks->first.Loc, 5446 "cannot take blockaddress inside a declaration"); 5447 return false; 5448 } 5449 5450 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 5451 ValID ID; 5452 if (FunctionNumber == -1) { 5453 ID.Kind = ValID::t_GlobalName; 5454 ID.StrVal = F.getName(); 5455 } else { 5456 ID.Kind = ValID::t_GlobalID; 5457 ID.UIntVal = FunctionNumber; 5458 } 5459 5460 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 5461 if (Blocks == P.ForwardRefBlockAddresses.end()) 5462 return false; 5463 5464 for (const auto &I : Blocks->second) { 5465 const ValID &BBID = I.first; 5466 GlobalValue *GV = I.second; 5467 5468 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 5469 "Expected local id or name"); 5470 BasicBlock *BB; 5471 if (BBID.Kind == ValID::t_LocalName) 5472 BB = GetBB(BBID.StrVal, BBID.Loc); 5473 else 5474 BB = GetBB(BBID.UIntVal, BBID.Loc); 5475 if (!BB) 5476 return P.Error(BBID.Loc, "referenced value is not a basic block"); 5477 5478 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 5479 GV->eraseFromParent(); 5480 } 5481 5482 P.ForwardRefBlockAddresses.erase(Blocks); 5483 return false; 5484 } 5485 5486 /// ParseFunctionBody 5487 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 5488 bool LLParser::ParseFunctionBody(Function &Fn) { 5489 if (Lex.getKind() != lltok::lbrace) 5490 return TokError("expected '{' in function body"); 5491 Lex.Lex(); // eat the {. 5492 5493 int FunctionNumber = -1; 5494 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 5495 5496 PerFunctionState PFS(*this, Fn, FunctionNumber); 5497 5498 // Resolve block addresses and allow basic blocks to be forward-declared 5499 // within this function. 5500 if (PFS.resolveForwardRefBlockAddresses()) 5501 return true; 5502 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 5503 5504 // We need at least one basic block. 5505 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 5506 return TokError("function body requires at least one basic block"); 5507 5508 while (Lex.getKind() != lltok::rbrace && 5509 Lex.getKind() != lltok::kw_uselistorder) 5510 if (ParseBasicBlock(PFS)) return true; 5511 5512 while (Lex.getKind() != lltok::rbrace) 5513 if (ParseUseListOrder(&PFS)) 5514 return true; 5515 5516 // Eat the }. 5517 Lex.Lex(); 5518 5519 // Verify function is ok. 5520 return PFS.FinishFunction(); 5521 } 5522 5523 /// ParseBasicBlock 5524 /// ::= (LabelStr|LabelID)? Instruction* 5525 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 5526 // If this basic block starts out with a name, remember it. 5527 std::string Name; 5528 int NameID = -1; 5529 LocTy NameLoc = Lex.getLoc(); 5530 if (Lex.getKind() == lltok::LabelStr) { 5531 Name = Lex.getStrVal(); 5532 Lex.Lex(); 5533 } else if (Lex.getKind() == lltok::LabelID) { 5534 NameID = Lex.getUIntVal(); 5535 Lex.Lex(); 5536 } 5537 5538 BasicBlock *BB = PFS.DefineBB(Name, NameID, NameLoc); 5539 if (!BB) 5540 return true; 5541 5542 std::string NameStr; 5543 5544 // Parse the instructions in this block until we get a terminator. 5545 Instruction *Inst; 5546 do { 5547 // This instruction may have three possibilities for a name: a) none 5548 // specified, b) name specified "%foo =", c) number specified: "%4 =". 5549 LocTy NameLoc = Lex.getLoc(); 5550 int NameID = -1; 5551 NameStr = ""; 5552 5553 if (Lex.getKind() == lltok::LocalVarID) { 5554 NameID = Lex.getUIntVal(); 5555 Lex.Lex(); 5556 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 5557 return true; 5558 } else if (Lex.getKind() == lltok::LocalVar) { 5559 NameStr = Lex.getStrVal(); 5560 Lex.Lex(); 5561 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 5562 return true; 5563 } 5564 5565 switch (ParseInstruction(Inst, BB, PFS)) { 5566 default: llvm_unreachable("Unknown ParseInstruction result!"); 5567 case InstError: return true; 5568 case InstNormal: 5569 BB->getInstList().push_back(Inst); 5570 5571 // With a normal result, we check to see if the instruction is followed by 5572 // a comma and metadata. 5573 if (EatIfPresent(lltok::comma)) 5574 if (ParseInstructionMetadata(*Inst)) 5575 return true; 5576 break; 5577 case InstExtraComma: 5578 BB->getInstList().push_back(Inst); 5579 5580 // If the instruction parser ate an extra comma at the end of it, it 5581 // *must* be followed by metadata. 5582 if (ParseInstructionMetadata(*Inst)) 5583 return true; 5584 break; 5585 } 5586 5587 // Set the name on the instruction. 5588 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 5589 } while (!Inst->isTerminator()); 5590 5591 return false; 5592 } 5593 5594 //===----------------------------------------------------------------------===// 5595 // Instruction Parsing. 5596 //===----------------------------------------------------------------------===// 5597 5598 /// ParseInstruction - Parse one of the many different instructions. 5599 /// 5600 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 5601 PerFunctionState &PFS) { 5602 lltok::Kind Token = Lex.getKind(); 5603 if (Token == lltok::Eof) 5604 return TokError("found end of file when expecting more instructions"); 5605 LocTy Loc = Lex.getLoc(); 5606 unsigned KeywordVal = Lex.getUIntVal(); 5607 Lex.Lex(); // Eat the keyword. 5608 5609 switch (Token) { 5610 default: return Error(Loc, "expected instruction opcode"); 5611 // Terminator Instructions. 5612 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 5613 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 5614 case lltok::kw_br: return ParseBr(Inst, PFS); 5615 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 5616 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 5617 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 5618 case lltok::kw_resume: return ParseResume(Inst, PFS); 5619 case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS); 5620 case lltok::kw_catchret: return ParseCatchRet(Inst, PFS); 5621 case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS); 5622 case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS); 5623 case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS); 5624 case lltok::kw_callbr: return ParseCallBr(Inst, PFS); 5625 // Unary Operators. 5626 case lltok::kw_fneg: { 5627 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5628 int Res = ParseUnaryOp(Inst, PFS, KeywordVal, 2); 5629 if (Res != 0) 5630 return Res; 5631 if (FMF.any()) 5632 Inst->setFastMathFlags(FMF); 5633 return false; 5634 } 5635 // Binary Operators. 5636 case lltok::kw_add: 5637 case lltok::kw_sub: 5638 case lltok::kw_mul: 5639 case lltok::kw_shl: { 5640 bool NUW = EatIfPresent(lltok::kw_nuw); 5641 bool NSW = EatIfPresent(lltok::kw_nsw); 5642 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 5643 5644 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 5645 5646 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 5647 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 5648 return false; 5649 } 5650 case lltok::kw_fadd: 5651 case lltok::kw_fsub: 5652 case lltok::kw_fmul: 5653 case lltok::kw_fdiv: 5654 case lltok::kw_frem: { 5655 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5656 int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2); 5657 if (Res != 0) 5658 return Res; 5659 if (FMF.any()) 5660 Inst->setFastMathFlags(FMF); 5661 return 0; 5662 } 5663 5664 case lltok::kw_sdiv: 5665 case lltok::kw_udiv: 5666 case lltok::kw_lshr: 5667 case lltok::kw_ashr: { 5668 bool Exact = EatIfPresent(lltok::kw_exact); 5669 5670 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 5671 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 5672 return false; 5673 } 5674 5675 case lltok::kw_urem: 5676 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1); 5677 case lltok::kw_and: 5678 case lltok::kw_or: 5679 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 5680 case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal); 5681 case lltok::kw_fcmp: { 5682 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5683 int Res = ParseCompare(Inst, PFS, KeywordVal); 5684 if (Res != 0) 5685 return Res; 5686 if (FMF.any()) 5687 Inst->setFastMathFlags(FMF); 5688 return 0; 5689 } 5690 5691 // Casts. 5692 case lltok::kw_trunc: 5693 case lltok::kw_zext: 5694 case lltok::kw_sext: 5695 case lltok::kw_fptrunc: 5696 case lltok::kw_fpext: 5697 case lltok::kw_bitcast: 5698 case lltok::kw_addrspacecast: 5699 case lltok::kw_uitofp: 5700 case lltok::kw_sitofp: 5701 case lltok::kw_fptoui: 5702 case lltok::kw_fptosi: 5703 case lltok::kw_inttoptr: 5704 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 5705 // Other. 5706 case lltok::kw_select: return ParseSelect(Inst, PFS); 5707 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 5708 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 5709 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 5710 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 5711 case lltok::kw_phi: return ParsePHI(Inst, PFS); 5712 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 5713 // Call. 5714 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None); 5715 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail); 5716 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail); 5717 case lltok::kw_notail: return ParseCall(Inst, PFS, CallInst::TCK_NoTail); 5718 // Memory. 5719 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 5720 case lltok::kw_load: return ParseLoad(Inst, PFS); 5721 case lltok::kw_store: return ParseStore(Inst, PFS); 5722 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 5723 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 5724 case lltok::kw_fence: return ParseFence(Inst, PFS); 5725 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 5726 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 5727 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 5728 } 5729 } 5730 5731 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 5732 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 5733 if (Opc == Instruction::FCmp) { 5734 switch (Lex.getKind()) { 5735 default: return TokError("expected fcmp predicate (e.g. 'oeq')"); 5736 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 5737 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 5738 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 5739 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 5740 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 5741 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 5742 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 5743 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 5744 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 5745 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 5746 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 5747 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 5748 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 5749 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 5750 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 5751 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 5752 } 5753 } else { 5754 switch (Lex.getKind()) { 5755 default: return TokError("expected icmp predicate (e.g. 'eq')"); 5756 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 5757 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 5758 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 5759 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 5760 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 5761 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 5762 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 5763 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 5764 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 5765 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 5766 } 5767 } 5768 Lex.Lex(); 5769 return false; 5770 } 5771 5772 //===----------------------------------------------------------------------===// 5773 // Terminator Instructions. 5774 //===----------------------------------------------------------------------===// 5775 5776 /// ParseRet - Parse a return instruction. 5777 /// ::= 'ret' void (',' !dbg, !1)* 5778 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 5779 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 5780 PerFunctionState &PFS) { 5781 SMLoc TypeLoc = Lex.getLoc(); 5782 Type *Ty = nullptr; 5783 if (ParseType(Ty, true /*void allowed*/)) return true; 5784 5785 Type *ResType = PFS.getFunction().getReturnType(); 5786 5787 if (Ty->isVoidTy()) { 5788 if (!ResType->isVoidTy()) 5789 return Error(TypeLoc, "value doesn't match function result type '" + 5790 getTypeString(ResType) + "'"); 5791 5792 Inst = ReturnInst::Create(Context); 5793 return false; 5794 } 5795 5796 Value *RV; 5797 if (ParseValue(Ty, RV, PFS)) return true; 5798 5799 if (ResType != RV->getType()) 5800 return Error(TypeLoc, "value doesn't match function result type '" + 5801 getTypeString(ResType) + "'"); 5802 5803 Inst = ReturnInst::Create(Context, RV); 5804 return false; 5805 } 5806 5807 /// ParseBr 5808 /// ::= 'br' TypeAndValue 5809 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5810 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 5811 LocTy Loc, Loc2; 5812 Value *Op0; 5813 BasicBlock *Op1, *Op2; 5814 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 5815 5816 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 5817 Inst = BranchInst::Create(BB); 5818 return false; 5819 } 5820 5821 if (Op0->getType() != Type::getInt1Ty(Context)) 5822 return Error(Loc, "branch condition must have 'i1' type"); 5823 5824 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 5825 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 5826 ParseToken(lltok::comma, "expected ',' after true destination") || 5827 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 5828 return true; 5829 5830 Inst = BranchInst::Create(Op1, Op2, Op0); 5831 return false; 5832 } 5833 5834 /// ParseSwitch 5835 /// Instruction 5836 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 5837 /// JumpTable 5838 /// ::= (TypeAndValue ',' TypeAndValue)* 5839 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5840 LocTy CondLoc, BBLoc; 5841 Value *Cond; 5842 BasicBlock *DefaultBB; 5843 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 5844 ParseToken(lltok::comma, "expected ',' after switch condition") || 5845 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 5846 ParseToken(lltok::lsquare, "expected '[' with switch table")) 5847 return true; 5848 5849 if (!Cond->getType()->isIntegerTy()) 5850 return Error(CondLoc, "switch condition must have integer type"); 5851 5852 // Parse the jump table pairs. 5853 SmallPtrSet<Value*, 32> SeenCases; 5854 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 5855 while (Lex.getKind() != lltok::rsquare) { 5856 Value *Constant; 5857 BasicBlock *DestBB; 5858 5859 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 5860 ParseToken(lltok::comma, "expected ',' after case value") || 5861 ParseTypeAndBasicBlock(DestBB, PFS)) 5862 return true; 5863 5864 if (!SeenCases.insert(Constant).second) 5865 return Error(CondLoc, "duplicate case value in switch"); 5866 if (!isa<ConstantInt>(Constant)) 5867 return Error(CondLoc, "case value is not a constant integer"); 5868 5869 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 5870 } 5871 5872 Lex.Lex(); // Eat the ']'. 5873 5874 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 5875 for (unsigned i = 0, e = Table.size(); i != e; ++i) 5876 SI->addCase(Table[i].first, Table[i].second); 5877 Inst = SI; 5878 return false; 5879 } 5880 5881 /// ParseIndirectBr 5882 /// Instruction 5883 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 5884 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 5885 LocTy AddrLoc; 5886 Value *Address; 5887 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 5888 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 5889 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 5890 return true; 5891 5892 if (!Address->getType()->isPointerTy()) 5893 return Error(AddrLoc, "indirectbr address must have pointer type"); 5894 5895 // Parse the destination list. 5896 SmallVector<BasicBlock*, 16> DestList; 5897 5898 if (Lex.getKind() != lltok::rsquare) { 5899 BasicBlock *DestBB; 5900 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5901 return true; 5902 DestList.push_back(DestBB); 5903 5904 while (EatIfPresent(lltok::comma)) { 5905 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5906 return true; 5907 DestList.push_back(DestBB); 5908 } 5909 } 5910 5911 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 5912 return true; 5913 5914 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 5915 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 5916 IBI->addDestination(DestList[i]); 5917 Inst = IBI; 5918 return false; 5919 } 5920 5921 /// ParseInvoke 5922 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 5923 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 5924 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 5925 LocTy CallLoc = Lex.getLoc(); 5926 AttrBuilder RetAttrs, FnAttrs; 5927 std::vector<unsigned> FwdRefAttrGrps; 5928 LocTy NoBuiltinLoc; 5929 unsigned CC; 5930 unsigned InvokeAddrSpace; 5931 Type *RetType = nullptr; 5932 LocTy RetTypeLoc; 5933 ValID CalleeID; 5934 SmallVector<ParamInfo, 16> ArgList; 5935 SmallVector<OperandBundleDef, 2> BundleList; 5936 5937 BasicBlock *NormalBB, *UnwindBB; 5938 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5939 ParseOptionalProgramAddrSpace(InvokeAddrSpace) || 5940 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5941 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 5942 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 5943 NoBuiltinLoc) || 5944 ParseOptionalOperandBundles(BundleList, PFS) || 5945 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 5946 ParseTypeAndBasicBlock(NormalBB, PFS) || 5947 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 5948 ParseTypeAndBasicBlock(UnwindBB, PFS)) 5949 return true; 5950 5951 // If RetType is a non-function pointer type, then this is the short syntax 5952 // for the call, which means that RetType is just the return type. Infer the 5953 // rest of the function argument types from the arguments that are present. 5954 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 5955 if (!Ty) { 5956 // Pull out the types of all of the arguments... 5957 std::vector<Type*> ParamTypes; 5958 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 5959 ParamTypes.push_back(ArgList[i].V->getType()); 5960 5961 if (!FunctionType::isValidReturnType(RetType)) 5962 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 5963 5964 Ty = FunctionType::get(RetType, ParamTypes, false); 5965 } 5966 5967 CalleeID.FTy = Ty; 5968 5969 // Look up the callee. 5970 Value *Callee; 5971 if (ConvertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID, 5972 Callee, &PFS, /*IsCall=*/true)) 5973 return true; 5974 5975 // Set up the Attribute for the function. 5976 SmallVector<Value *, 8> Args; 5977 SmallVector<AttributeSet, 8> ArgAttrs; 5978 5979 // Loop through FunctionType's arguments and ensure they are specified 5980 // correctly. Also, gather any parameter attributes. 5981 FunctionType::param_iterator I = Ty->param_begin(); 5982 FunctionType::param_iterator E = Ty->param_end(); 5983 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5984 Type *ExpectedTy = nullptr; 5985 if (I != E) { 5986 ExpectedTy = *I++; 5987 } else if (!Ty->isVarArg()) { 5988 return Error(ArgList[i].Loc, "too many arguments specified"); 5989 } 5990 5991 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 5992 return Error(ArgList[i].Loc, "argument is not of expected type '" + 5993 getTypeString(ExpectedTy) + "'"); 5994 Args.push_back(ArgList[i].V); 5995 ArgAttrs.push_back(ArgList[i].Attrs); 5996 } 5997 5998 if (I != E) 5999 return Error(CallLoc, "not enough parameters specified for call"); 6000 6001 if (FnAttrs.hasAlignmentAttr()) 6002 return Error(CallLoc, "invoke instructions may not have an alignment"); 6003 6004 // Finish off the Attribute and check them 6005 AttributeList PAL = 6006 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6007 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6008 6009 InvokeInst *II = 6010 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 6011 II->setCallingConv(CC); 6012 II->setAttributes(PAL); 6013 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 6014 Inst = II; 6015 return false; 6016 } 6017 6018 /// ParseResume 6019 /// ::= 'resume' TypeAndValue 6020 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 6021 Value *Exn; LocTy ExnLoc; 6022 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 6023 return true; 6024 6025 ResumeInst *RI = ResumeInst::Create(Exn); 6026 Inst = RI; 6027 return false; 6028 } 6029 6030 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args, 6031 PerFunctionState &PFS) { 6032 if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 6033 return true; 6034 6035 while (Lex.getKind() != lltok::rsquare) { 6036 // If this isn't the first argument, we need a comma. 6037 if (!Args.empty() && 6038 ParseToken(lltok::comma, "expected ',' in argument list")) 6039 return true; 6040 6041 // Parse the argument. 6042 LocTy ArgLoc; 6043 Type *ArgTy = nullptr; 6044 if (ParseType(ArgTy, ArgLoc)) 6045 return true; 6046 6047 Value *V; 6048 if (ArgTy->isMetadataTy()) { 6049 if (ParseMetadataAsValue(V, PFS)) 6050 return true; 6051 } else { 6052 if (ParseValue(ArgTy, V, PFS)) 6053 return true; 6054 } 6055 Args.push_back(V); 6056 } 6057 6058 Lex.Lex(); // Lex the ']'. 6059 return false; 6060 } 6061 6062 /// ParseCleanupRet 6063 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 6064 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 6065 Value *CleanupPad = nullptr; 6066 6067 if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret")) 6068 return true; 6069 6070 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 6071 return true; 6072 6073 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 6074 return true; 6075 6076 BasicBlock *UnwindBB = nullptr; 6077 if (Lex.getKind() == lltok::kw_to) { 6078 Lex.Lex(); 6079 if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 6080 return true; 6081 } else { 6082 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 6083 return true; 6084 } 6085 } 6086 6087 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 6088 return false; 6089 } 6090 6091 /// ParseCatchRet 6092 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 6093 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 6094 Value *CatchPad = nullptr; 6095 6096 if (ParseToken(lltok::kw_from, "expected 'from' after catchret")) 6097 return true; 6098 6099 if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS)) 6100 return true; 6101 6102 BasicBlock *BB; 6103 if (ParseToken(lltok::kw_to, "expected 'to' in catchret") || 6104 ParseTypeAndBasicBlock(BB, PFS)) 6105 return true; 6106 6107 Inst = CatchReturnInst::Create(CatchPad, BB); 6108 return false; 6109 } 6110 6111 /// ParseCatchSwitch 6112 /// ::= 'catchswitch' within Parent 6113 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6114 Value *ParentPad; 6115 6116 if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch")) 6117 return true; 6118 6119 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6120 Lex.getKind() != lltok::LocalVarID) 6121 return TokError("expected scope value for catchswitch"); 6122 6123 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6124 return true; 6125 6126 if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 6127 return true; 6128 6129 SmallVector<BasicBlock *, 32> Table; 6130 do { 6131 BasicBlock *DestBB; 6132 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6133 return true; 6134 Table.push_back(DestBB); 6135 } while (EatIfPresent(lltok::comma)); 6136 6137 if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 6138 return true; 6139 6140 if (ParseToken(lltok::kw_unwind, 6141 "expected 'unwind' after catchswitch scope")) 6142 return true; 6143 6144 BasicBlock *UnwindBB = nullptr; 6145 if (EatIfPresent(lltok::kw_to)) { 6146 if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 6147 return true; 6148 } else { 6149 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) 6150 return true; 6151 } 6152 6153 auto *CatchSwitch = 6154 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 6155 for (BasicBlock *DestBB : Table) 6156 CatchSwitch->addHandler(DestBB); 6157 Inst = CatchSwitch; 6158 return false; 6159 } 6160 6161 /// ParseCatchPad 6162 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 6163 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 6164 Value *CatchSwitch = nullptr; 6165 6166 if (ParseToken(lltok::kw_within, "expected 'within' after catchpad")) 6167 return true; 6168 6169 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 6170 return TokError("expected scope value for catchpad"); 6171 6172 if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 6173 return true; 6174 6175 SmallVector<Value *, 8> Args; 6176 if (ParseExceptionArgs(Args, PFS)) 6177 return true; 6178 6179 Inst = CatchPadInst::Create(CatchSwitch, Args); 6180 return false; 6181 } 6182 6183 /// ParseCleanupPad 6184 /// ::= 'cleanuppad' within Parent ParamList 6185 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 6186 Value *ParentPad = nullptr; 6187 6188 if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 6189 return true; 6190 6191 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6192 Lex.getKind() != lltok::LocalVarID) 6193 return TokError("expected scope value for cleanuppad"); 6194 6195 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6196 return true; 6197 6198 SmallVector<Value *, 8> Args; 6199 if (ParseExceptionArgs(Args, PFS)) 6200 return true; 6201 6202 Inst = CleanupPadInst::Create(ParentPad, Args); 6203 return false; 6204 } 6205 6206 //===----------------------------------------------------------------------===// 6207 // Unary Operators. 6208 //===----------------------------------------------------------------------===// 6209 6210 /// ParseUnaryOp 6211 /// ::= UnaryOp TypeAndValue ',' Value 6212 /// 6213 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, 6214 /// then any integer operand is allowed, if it is 2, any fp operand is allowed. 6215 bool LLParser::ParseUnaryOp(Instruction *&Inst, PerFunctionState &PFS, 6216 unsigned Opc, unsigned OperandType) { 6217 LocTy Loc; Value *LHS; 6218 if (ParseTypeAndValue(LHS, Loc, PFS)) 6219 return true; 6220 6221 bool Valid; 6222 switch (OperandType) { 6223 default: llvm_unreachable("Unknown operand type!"); 6224 case 0: // int or FP. 6225 Valid = LHS->getType()->isIntOrIntVectorTy() || 6226 LHS->getType()->isFPOrFPVectorTy(); 6227 break; 6228 case 1: 6229 Valid = LHS->getType()->isIntOrIntVectorTy(); 6230 break; 6231 case 2: 6232 Valid = LHS->getType()->isFPOrFPVectorTy(); 6233 break; 6234 } 6235 6236 if (!Valid) 6237 return Error(Loc, "invalid operand type for instruction"); 6238 6239 Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 6240 return false; 6241 } 6242 6243 /// ParseCallBr 6244 /// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList 6245 /// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue 6246 /// '[' LabelList ']' 6247 bool LLParser::ParseCallBr(Instruction *&Inst, PerFunctionState &PFS) { 6248 LocTy CallLoc = Lex.getLoc(); 6249 AttrBuilder RetAttrs, FnAttrs; 6250 std::vector<unsigned> FwdRefAttrGrps; 6251 LocTy NoBuiltinLoc; 6252 unsigned CC; 6253 Type *RetType = nullptr; 6254 LocTy RetTypeLoc; 6255 ValID CalleeID; 6256 SmallVector<ParamInfo, 16> ArgList; 6257 SmallVector<OperandBundleDef, 2> BundleList; 6258 6259 BasicBlock *DefaultDest; 6260 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6261 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6262 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 6263 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6264 NoBuiltinLoc) || 6265 ParseOptionalOperandBundles(BundleList, PFS) || 6266 ParseToken(lltok::kw_to, "expected 'to' in callbr") || 6267 ParseTypeAndBasicBlock(DefaultDest, PFS) || 6268 ParseToken(lltok::lsquare, "expected '[' in callbr")) 6269 return true; 6270 6271 // Parse the destination list. 6272 SmallVector<BasicBlock *, 16> IndirectDests; 6273 6274 if (Lex.getKind() != lltok::rsquare) { 6275 BasicBlock *DestBB; 6276 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6277 return true; 6278 IndirectDests.push_back(DestBB); 6279 6280 while (EatIfPresent(lltok::comma)) { 6281 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6282 return true; 6283 IndirectDests.push_back(DestBB); 6284 } 6285 } 6286 6287 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 6288 return true; 6289 6290 // If RetType is a non-function pointer type, then this is the short syntax 6291 // for the call, which means that RetType is just the return type. Infer the 6292 // rest of the function argument types from the arguments that are present. 6293 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6294 if (!Ty) { 6295 // Pull out the types of all of the arguments... 6296 std::vector<Type *> ParamTypes; 6297 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6298 ParamTypes.push_back(ArgList[i].V->getType()); 6299 6300 if (!FunctionType::isValidReturnType(RetType)) 6301 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6302 6303 Ty = FunctionType::get(RetType, ParamTypes, false); 6304 } 6305 6306 CalleeID.FTy = Ty; 6307 6308 // Look up the callee. 6309 Value *Callee; 6310 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS, 6311 /*IsCall=*/true)) 6312 return true; 6313 6314 if (isa<InlineAsm>(Callee) && !Ty->getReturnType()->isVoidTy()) 6315 return Error(RetTypeLoc, "asm-goto outputs not supported"); 6316 6317 // Set up the Attribute for the function. 6318 SmallVector<Value *, 8> Args; 6319 SmallVector<AttributeSet, 8> ArgAttrs; 6320 6321 // Loop through FunctionType's arguments and ensure they are specified 6322 // correctly. Also, gather any parameter attributes. 6323 FunctionType::param_iterator I = Ty->param_begin(); 6324 FunctionType::param_iterator E = Ty->param_end(); 6325 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6326 Type *ExpectedTy = nullptr; 6327 if (I != E) { 6328 ExpectedTy = *I++; 6329 } else if (!Ty->isVarArg()) { 6330 return Error(ArgList[i].Loc, "too many arguments specified"); 6331 } 6332 6333 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6334 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6335 getTypeString(ExpectedTy) + "'"); 6336 Args.push_back(ArgList[i].V); 6337 ArgAttrs.push_back(ArgList[i].Attrs); 6338 } 6339 6340 if (I != E) 6341 return Error(CallLoc, "not enough parameters specified for call"); 6342 6343 if (FnAttrs.hasAlignmentAttr()) 6344 return Error(CallLoc, "callbr instructions may not have an alignment"); 6345 6346 // Finish off the Attribute and check them 6347 AttributeList PAL = 6348 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6349 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6350 6351 CallBrInst *CBI = 6352 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args, 6353 BundleList); 6354 CBI->setCallingConv(CC); 6355 CBI->setAttributes(PAL); 6356 ForwardRefAttrGroups[CBI] = FwdRefAttrGrps; 6357 Inst = CBI; 6358 return false; 6359 } 6360 6361 //===----------------------------------------------------------------------===// 6362 // Binary Operators. 6363 //===----------------------------------------------------------------------===// 6364 6365 /// ParseArithmetic 6366 /// ::= ArithmeticOps TypeAndValue ',' Value 6367 /// 6368 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, 6369 /// then any integer operand is allowed, if it is 2, any fp operand is allowed. 6370 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 6371 unsigned Opc, unsigned OperandType) { 6372 LocTy Loc; Value *LHS, *RHS; 6373 if (ParseTypeAndValue(LHS, Loc, PFS) || 6374 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 6375 ParseValue(LHS->getType(), RHS, PFS)) 6376 return true; 6377 6378 bool Valid; 6379 switch (OperandType) { 6380 default: llvm_unreachable("Unknown operand type!"); 6381 case 0: // int or FP. 6382 Valid = LHS->getType()->isIntOrIntVectorTy() || 6383 LHS->getType()->isFPOrFPVectorTy(); 6384 break; 6385 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break; 6386 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break; 6387 } 6388 6389 if (!Valid) 6390 return Error(Loc, "invalid operand type for instruction"); 6391 6392 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6393 return false; 6394 } 6395 6396 /// ParseLogical 6397 /// ::= ArithmeticOps TypeAndValue ',' Value { 6398 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 6399 unsigned Opc) { 6400 LocTy Loc; Value *LHS, *RHS; 6401 if (ParseTypeAndValue(LHS, Loc, PFS) || 6402 ParseToken(lltok::comma, "expected ',' in logical operation") || 6403 ParseValue(LHS->getType(), RHS, PFS)) 6404 return true; 6405 6406 if (!LHS->getType()->isIntOrIntVectorTy()) 6407 return Error(Loc,"instruction requires integer or integer vector operands"); 6408 6409 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6410 return false; 6411 } 6412 6413 /// ParseCompare 6414 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 6415 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 6416 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 6417 unsigned Opc) { 6418 // Parse the integer/fp comparison predicate. 6419 LocTy Loc; 6420 unsigned Pred; 6421 Value *LHS, *RHS; 6422 if (ParseCmpPredicate(Pred, Opc) || 6423 ParseTypeAndValue(LHS, Loc, PFS) || 6424 ParseToken(lltok::comma, "expected ',' after compare value") || 6425 ParseValue(LHS->getType(), RHS, PFS)) 6426 return true; 6427 6428 if (Opc == Instruction::FCmp) { 6429 if (!LHS->getType()->isFPOrFPVectorTy()) 6430 return Error(Loc, "fcmp requires floating point operands"); 6431 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6432 } else { 6433 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 6434 if (!LHS->getType()->isIntOrIntVectorTy() && 6435 !LHS->getType()->isPtrOrPtrVectorTy()) 6436 return Error(Loc, "icmp requires integer operands"); 6437 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6438 } 6439 return false; 6440 } 6441 6442 //===----------------------------------------------------------------------===// 6443 // Other Instructions. 6444 //===----------------------------------------------------------------------===// 6445 6446 6447 /// ParseCast 6448 /// ::= CastOpc TypeAndValue 'to' Type 6449 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 6450 unsigned Opc) { 6451 LocTy Loc; 6452 Value *Op; 6453 Type *DestTy = nullptr; 6454 if (ParseTypeAndValue(Op, Loc, PFS) || 6455 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 6456 ParseType(DestTy)) 6457 return true; 6458 6459 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 6460 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 6461 return Error(Loc, "invalid cast opcode for cast from '" + 6462 getTypeString(Op->getType()) + "' to '" + 6463 getTypeString(DestTy) + "'"); 6464 } 6465 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 6466 return false; 6467 } 6468 6469 /// ParseSelect 6470 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6471 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 6472 LocTy Loc; 6473 Value *Op0, *Op1, *Op2; 6474 if (ParseTypeAndValue(Op0, Loc, PFS) || 6475 ParseToken(lltok::comma, "expected ',' after select condition") || 6476 ParseTypeAndValue(Op1, PFS) || 6477 ParseToken(lltok::comma, "expected ',' after select value") || 6478 ParseTypeAndValue(Op2, PFS)) 6479 return true; 6480 6481 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 6482 return Error(Loc, Reason); 6483 6484 Inst = SelectInst::Create(Op0, Op1, Op2); 6485 return false; 6486 } 6487 6488 /// ParseVA_Arg 6489 /// ::= 'va_arg' TypeAndValue ',' Type 6490 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 6491 Value *Op; 6492 Type *EltTy = nullptr; 6493 LocTy TypeLoc; 6494 if (ParseTypeAndValue(Op, PFS) || 6495 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 6496 ParseType(EltTy, TypeLoc)) 6497 return true; 6498 6499 if (!EltTy->isFirstClassType()) 6500 return Error(TypeLoc, "va_arg requires operand with first class type"); 6501 6502 Inst = new VAArgInst(Op, EltTy); 6503 return false; 6504 } 6505 6506 /// ParseExtractElement 6507 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 6508 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 6509 LocTy Loc; 6510 Value *Op0, *Op1; 6511 if (ParseTypeAndValue(Op0, Loc, PFS) || 6512 ParseToken(lltok::comma, "expected ',' after extract value") || 6513 ParseTypeAndValue(Op1, PFS)) 6514 return true; 6515 6516 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 6517 return Error(Loc, "invalid extractelement operands"); 6518 6519 Inst = ExtractElementInst::Create(Op0, Op1); 6520 return false; 6521 } 6522 6523 /// ParseInsertElement 6524 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6525 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 6526 LocTy Loc; 6527 Value *Op0, *Op1, *Op2; 6528 if (ParseTypeAndValue(Op0, Loc, PFS) || 6529 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6530 ParseTypeAndValue(Op1, PFS) || 6531 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6532 ParseTypeAndValue(Op2, PFS)) 6533 return true; 6534 6535 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 6536 return Error(Loc, "invalid insertelement operands"); 6537 6538 Inst = InsertElementInst::Create(Op0, Op1, Op2); 6539 return false; 6540 } 6541 6542 /// ParseShuffleVector 6543 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6544 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 6545 LocTy Loc; 6546 Value *Op0, *Op1, *Op2; 6547 if (ParseTypeAndValue(Op0, Loc, PFS) || 6548 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 6549 ParseTypeAndValue(Op1, PFS) || 6550 ParseToken(lltok::comma, "expected ',' after shuffle value") || 6551 ParseTypeAndValue(Op2, PFS)) 6552 return true; 6553 6554 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 6555 return Error(Loc, "invalid shufflevector operands"); 6556 6557 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 6558 return false; 6559 } 6560 6561 /// ParsePHI 6562 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 6563 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 6564 Type *Ty = nullptr; LocTy TypeLoc; 6565 Value *Op0, *Op1; 6566 6567 if (ParseType(Ty, TypeLoc) || 6568 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 6569 ParseValue(Ty, Op0, PFS) || 6570 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6571 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 6572 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 6573 return true; 6574 6575 bool AteExtraComma = false; 6576 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 6577 6578 while (true) { 6579 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 6580 6581 if (!EatIfPresent(lltok::comma)) 6582 break; 6583 6584 if (Lex.getKind() == lltok::MetadataVar) { 6585 AteExtraComma = true; 6586 break; 6587 } 6588 6589 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 6590 ParseValue(Ty, Op0, PFS) || 6591 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6592 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 6593 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 6594 return true; 6595 } 6596 6597 if (!Ty->isFirstClassType()) 6598 return Error(TypeLoc, "phi node must have first class type"); 6599 6600 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 6601 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 6602 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 6603 Inst = PN; 6604 return AteExtraComma ? InstExtraComma : InstNormal; 6605 } 6606 6607 /// ParseLandingPad 6608 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 6609 /// Clause 6610 /// ::= 'catch' TypeAndValue 6611 /// ::= 'filter' 6612 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 6613 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 6614 Type *Ty = nullptr; LocTy TyLoc; 6615 6616 if (ParseType(Ty, TyLoc)) 6617 return true; 6618 6619 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 6620 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 6621 6622 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 6623 LandingPadInst::ClauseType CT; 6624 if (EatIfPresent(lltok::kw_catch)) 6625 CT = LandingPadInst::Catch; 6626 else if (EatIfPresent(lltok::kw_filter)) 6627 CT = LandingPadInst::Filter; 6628 else 6629 return TokError("expected 'catch' or 'filter' clause type"); 6630 6631 Value *V; 6632 LocTy VLoc; 6633 if (ParseTypeAndValue(V, VLoc, PFS)) 6634 return true; 6635 6636 // A 'catch' type expects a non-array constant. A filter clause expects an 6637 // array constant. 6638 if (CT == LandingPadInst::Catch) { 6639 if (isa<ArrayType>(V->getType())) 6640 Error(VLoc, "'catch' clause has an invalid type"); 6641 } else { 6642 if (!isa<ArrayType>(V->getType())) 6643 Error(VLoc, "'filter' clause has an invalid type"); 6644 } 6645 6646 Constant *CV = dyn_cast<Constant>(V); 6647 if (!CV) 6648 return Error(VLoc, "clause argument must be a constant"); 6649 LP->addClause(CV); 6650 } 6651 6652 Inst = LP.release(); 6653 return false; 6654 } 6655 6656 /// ParseCall 6657 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 6658 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6659 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 6660 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6661 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 6662 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6663 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 6664 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6665 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 6666 CallInst::TailCallKind TCK) { 6667 AttrBuilder RetAttrs, FnAttrs; 6668 std::vector<unsigned> FwdRefAttrGrps; 6669 LocTy BuiltinLoc; 6670 unsigned CallAddrSpace; 6671 unsigned CC; 6672 Type *RetType = nullptr; 6673 LocTy RetTypeLoc; 6674 ValID CalleeID; 6675 SmallVector<ParamInfo, 16> ArgList; 6676 SmallVector<OperandBundleDef, 2> BundleList; 6677 LocTy CallLoc = Lex.getLoc(); 6678 6679 if (TCK != CallInst::TCK_None && 6680 ParseToken(lltok::kw_call, 6681 "expected 'tail call', 'musttail call', or 'notail call'")) 6682 return true; 6683 6684 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6685 6686 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6687 ParseOptionalProgramAddrSpace(CallAddrSpace) || 6688 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6689 ParseValID(CalleeID) || 6690 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 6691 PFS.getFunction().isVarArg()) || 6692 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 6693 ParseOptionalOperandBundles(BundleList, PFS)) 6694 return true; 6695 6696 if (FMF.any() && !RetType->isFPOrFPVectorTy()) 6697 return Error(CallLoc, "fast-math-flags specified for call without " 6698 "floating-point scalar or vector return type"); 6699 6700 // If RetType is a non-function pointer type, then this is the short syntax 6701 // for the call, which means that RetType is just the return type. Infer the 6702 // rest of the function argument types from the arguments that are present. 6703 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6704 if (!Ty) { 6705 // Pull out the types of all of the arguments... 6706 std::vector<Type*> ParamTypes; 6707 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6708 ParamTypes.push_back(ArgList[i].V->getType()); 6709 6710 if (!FunctionType::isValidReturnType(RetType)) 6711 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6712 6713 Ty = FunctionType::get(RetType, ParamTypes, false); 6714 } 6715 6716 CalleeID.FTy = Ty; 6717 6718 // Look up the callee. 6719 Value *Callee; 6720 if (ConvertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee, 6721 &PFS, /*IsCall=*/true)) 6722 return true; 6723 6724 // Set up the Attribute for the function. 6725 SmallVector<AttributeSet, 8> Attrs; 6726 6727 SmallVector<Value*, 8> Args; 6728 6729 // Loop through FunctionType's arguments and ensure they are specified 6730 // correctly. Also, gather any parameter attributes. 6731 FunctionType::param_iterator I = Ty->param_begin(); 6732 FunctionType::param_iterator E = Ty->param_end(); 6733 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6734 Type *ExpectedTy = nullptr; 6735 if (I != E) { 6736 ExpectedTy = *I++; 6737 } else if (!Ty->isVarArg()) { 6738 return Error(ArgList[i].Loc, "too many arguments specified"); 6739 } 6740 6741 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6742 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6743 getTypeString(ExpectedTy) + "'"); 6744 Args.push_back(ArgList[i].V); 6745 Attrs.push_back(ArgList[i].Attrs); 6746 } 6747 6748 if (I != E) 6749 return Error(CallLoc, "not enough parameters specified for call"); 6750 6751 if (FnAttrs.hasAlignmentAttr()) 6752 return Error(CallLoc, "call instructions may not have an alignment"); 6753 6754 // Finish off the Attribute and check them 6755 AttributeList PAL = 6756 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6757 AttributeSet::get(Context, RetAttrs), Attrs); 6758 6759 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 6760 CI->setTailCallKind(TCK); 6761 CI->setCallingConv(CC); 6762 if (FMF.any()) 6763 CI->setFastMathFlags(FMF); 6764 CI->setAttributes(PAL); 6765 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 6766 Inst = CI; 6767 return false; 6768 } 6769 6770 //===----------------------------------------------------------------------===// 6771 // Memory Instructions. 6772 //===----------------------------------------------------------------------===// 6773 6774 /// ParseAlloc 6775 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 6776 /// (',' 'align' i32)? (',', 'addrspace(n))? 6777 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 6778 Value *Size = nullptr; 6779 LocTy SizeLoc, TyLoc, ASLoc; 6780 unsigned Alignment = 0; 6781 unsigned AddrSpace = 0; 6782 Type *Ty = nullptr; 6783 6784 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 6785 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 6786 6787 if (ParseType(Ty, TyLoc)) return true; 6788 6789 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 6790 return Error(TyLoc, "invalid type for alloca"); 6791 6792 bool AteExtraComma = false; 6793 if (EatIfPresent(lltok::comma)) { 6794 if (Lex.getKind() == lltok::kw_align) { 6795 if (ParseOptionalAlignment(Alignment)) 6796 return true; 6797 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 6798 return true; 6799 } else if (Lex.getKind() == lltok::kw_addrspace) { 6800 ASLoc = Lex.getLoc(); 6801 if (ParseOptionalAddrSpace(AddrSpace)) 6802 return true; 6803 } else if (Lex.getKind() == lltok::MetadataVar) { 6804 AteExtraComma = true; 6805 } else { 6806 if (ParseTypeAndValue(Size, SizeLoc, PFS)) 6807 return true; 6808 if (EatIfPresent(lltok::comma)) { 6809 if (Lex.getKind() == lltok::kw_align) { 6810 if (ParseOptionalAlignment(Alignment)) 6811 return true; 6812 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 6813 return true; 6814 } else if (Lex.getKind() == lltok::kw_addrspace) { 6815 ASLoc = Lex.getLoc(); 6816 if (ParseOptionalAddrSpace(AddrSpace)) 6817 return true; 6818 } else if (Lex.getKind() == lltok::MetadataVar) { 6819 AteExtraComma = true; 6820 } 6821 } 6822 } 6823 } 6824 6825 if (Size && !Size->getType()->isIntegerTy()) 6826 return Error(SizeLoc, "element count must have integer type"); 6827 6828 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, Alignment); 6829 AI->setUsedWithInAlloca(IsInAlloca); 6830 AI->setSwiftError(IsSwiftError); 6831 Inst = AI; 6832 return AteExtraComma ? InstExtraComma : InstNormal; 6833 } 6834 6835 /// ParseLoad 6836 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 6837 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 6838 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6839 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 6840 Value *Val; LocTy Loc; 6841 unsigned Alignment = 0; 6842 bool AteExtraComma = false; 6843 bool isAtomic = false; 6844 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6845 SyncScope::ID SSID = SyncScope::System; 6846 6847 if (Lex.getKind() == lltok::kw_atomic) { 6848 isAtomic = true; 6849 Lex.Lex(); 6850 } 6851 6852 bool isVolatile = false; 6853 if (Lex.getKind() == lltok::kw_volatile) { 6854 isVolatile = true; 6855 Lex.Lex(); 6856 } 6857 6858 Type *Ty; 6859 LocTy ExplicitTypeLoc = Lex.getLoc(); 6860 if (ParseType(Ty) || 6861 ParseToken(lltok::comma, "expected comma after load's type") || 6862 ParseTypeAndValue(Val, Loc, PFS) || 6863 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 6864 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6865 return true; 6866 6867 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 6868 return Error(Loc, "load operand must be a pointer to a first class type"); 6869 if (isAtomic && !Alignment) 6870 return Error(Loc, "atomic load must have explicit non-zero alignment"); 6871 if (Ordering == AtomicOrdering::Release || 6872 Ordering == AtomicOrdering::AcquireRelease) 6873 return Error(Loc, "atomic load cannot use Release ordering"); 6874 6875 if (Ty != cast<PointerType>(Val->getType())->getElementType()) 6876 return Error(ExplicitTypeLoc, 6877 "explicit pointee type doesn't match operand's pointee type"); 6878 6879 Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID); 6880 return AteExtraComma ? InstExtraComma : InstNormal; 6881 } 6882 6883 /// ParseStore 6884 6885 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 6886 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 6887 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6888 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 6889 Value *Val, *Ptr; LocTy Loc, PtrLoc; 6890 unsigned Alignment = 0; 6891 bool AteExtraComma = false; 6892 bool isAtomic = false; 6893 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6894 SyncScope::ID SSID = SyncScope::System; 6895 6896 if (Lex.getKind() == lltok::kw_atomic) { 6897 isAtomic = true; 6898 Lex.Lex(); 6899 } 6900 6901 bool isVolatile = false; 6902 if (Lex.getKind() == lltok::kw_volatile) { 6903 isVolatile = true; 6904 Lex.Lex(); 6905 } 6906 6907 if (ParseTypeAndValue(Val, Loc, PFS) || 6908 ParseToken(lltok::comma, "expected ',' after store operand") || 6909 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6910 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 6911 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6912 return true; 6913 6914 if (!Ptr->getType()->isPointerTy()) 6915 return Error(PtrLoc, "store operand must be a pointer"); 6916 if (!Val->getType()->isFirstClassType()) 6917 return Error(Loc, "store operand must be a first class value"); 6918 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6919 return Error(Loc, "stored value and pointer type do not match"); 6920 if (isAtomic && !Alignment) 6921 return Error(Loc, "atomic store must have explicit non-zero alignment"); 6922 if (Ordering == AtomicOrdering::Acquire || 6923 Ordering == AtomicOrdering::AcquireRelease) 6924 return Error(Loc, "atomic store cannot use Acquire ordering"); 6925 6926 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID); 6927 return AteExtraComma ? InstExtraComma : InstNormal; 6928 } 6929 6930 /// ParseCmpXchg 6931 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 6932 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering 6933 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 6934 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 6935 bool AteExtraComma = false; 6936 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 6937 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 6938 SyncScope::ID SSID = SyncScope::System; 6939 bool isVolatile = false; 6940 bool isWeak = false; 6941 6942 if (EatIfPresent(lltok::kw_weak)) 6943 isWeak = true; 6944 6945 if (EatIfPresent(lltok::kw_volatile)) 6946 isVolatile = true; 6947 6948 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6949 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 6950 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 6951 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 6952 ParseTypeAndValue(New, NewLoc, PFS) || 6953 ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 6954 ParseOrdering(FailureOrdering)) 6955 return true; 6956 6957 if (SuccessOrdering == AtomicOrdering::Unordered || 6958 FailureOrdering == AtomicOrdering::Unordered) 6959 return TokError("cmpxchg cannot be unordered"); 6960 if (isStrongerThan(FailureOrdering, SuccessOrdering)) 6961 return TokError("cmpxchg failure argument shall be no stronger than the " 6962 "success argument"); 6963 if (FailureOrdering == AtomicOrdering::Release || 6964 FailureOrdering == AtomicOrdering::AcquireRelease) 6965 return TokError( 6966 "cmpxchg failure ordering cannot include release semantics"); 6967 if (!Ptr->getType()->isPointerTy()) 6968 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 6969 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 6970 return Error(CmpLoc, "compare value and pointer type do not match"); 6971 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 6972 return Error(NewLoc, "new value and pointer type do not match"); 6973 if (!New->getType()->isFirstClassType()) 6974 return Error(NewLoc, "cmpxchg operand must be a first class value"); 6975 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 6976 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID); 6977 CXI->setVolatile(isVolatile); 6978 CXI->setWeak(isWeak); 6979 Inst = CXI; 6980 return AteExtraComma ? InstExtraComma : InstNormal; 6981 } 6982 6983 /// ParseAtomicRMW 6984 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 6985 /// 'singlethread'? AtomicOrdering 6986 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 6987 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 6988 bool AteExtraComma = false; 6989 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6990 SyncScope::ID SSID = SyncScope::System; 6991 bool isVolatile = false; 6992 bool IsFP = false; 6993 AtomicRMWInst::BinOp Operation; 6994 6995 if (EatIfPresent(lltok::kw_volatile)) 6996 isVolatile = true; 6997 6998 switch (Lex.getKind()) { 6999 default: return TokError("expected binary operation in atomicrmw"); 7000 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 7001 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 7002 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 7003 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 7004 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 7005 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 7006 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 7007 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 7008 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 7009 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 7010 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 7011 case lltok::kw_fadd: 7012 Operation = AtomicRMWInst::FAdd; 7013 IsFP = true; 7014 break; 7015 case lltok::kw_fsub: 7016 Operation = AtomicRMWInst::FSub; 7017 IsFP = true; 7018 break; 7019 } 7020 Lex.Lex(); // Eat the operation. 7021 7022 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 7023 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 7024 ParseTypeAndValue(Val, ValLoc, PFS) || 7025 ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7026 return true; 7027 7028 if (Ordering == AtomicOrdering::Unordered) 7029 return TokError("atomicrmw cannot be unordered"); 7030 if (!Ptr->getType()->isPointerTy()) 7031 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 7032 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 7033 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 7034 7035 if (Operation == AtomicRMWInst::Xchg) { 7036 if (!Val->getType()->isIntegerTy() && 7037 !Val->getType()->isFloatingPointTy()) { 7038 return Error(ValLoc, "atomicrmw " + 7039 AtomicRMWInst::getOperationName(Operation) + 7040 " operand must be an integer or floating point type"); 7041 } 7042 } else if (IsFP) { 7043 if (!Val->getType()->isFloatingPointTy()) { 7044 return Error(ValLoc, "atomicrmw " + 7045 AtomicRMWInst::getOperationName(Operation) + 7046 " operand must be a floating point type"); 7047 } 7048 } else { 7049 if (!Val->getType()->isIntegerTy()) { 7050 return Error(ValLoc, "atomicrmw " + 7051 AtomicRMWInst::getOperationName(Operation) + 7052 " operand must be an integer"); 7053 } 7054 } 7055 7056 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 7057 if (Size < 8 || (Size & (Size - 1))) 7058 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 7059 " integer"); 7060 7061 AtomicRMWInst *RMWI = 7062 new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 7063 RMWI->setVolatile(isVolatile); 7064 Inst = RMWI; 7065 return AteExtraComma ? InstExtraComma : InstNormal; 7066 } 7067 7068 /// ParseFence 7069 /// ::= 'fence' 'singlethread'? AtomicOrdering 7070 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 7071 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7072 SyncScope::ID SSID = SyncScope::System; 7073 if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7074 return true; 7075 7076 if (Ordering == AtomicOrdering::Unordered) 7077 return TokError("fence cannot be unordered"); 7078 if (Ordering == AtomicOrdering::Monotonic) 7079 return TokError("fence cannot be monotonic"); 7080 7081 Inst = new FenceInst(Context, Ordering, SSID); 7082 return InstNormal; 7083 } 7084 7085 /// ParseGetElementPtr 7086 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 7087 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 7088 Value *Ptr = nullptr; 7089 Value *Val = nullptr; 7090 LocTy Loc, EltLoc; 7091 7092 bool InBounds = EatIfPresent(lltok::kw_inbounds); 7093 7094 Type *Ty = nullptr; 7095 LocTy ExplicitTypeLoc = Lex.getLoc(); 7096 if (ParseType(Ty) || 7097 ParseToken(lltok::comma, "expected comma after getelementptr's type") || 7098 ParseTypeAndValue(Ptr, Loc, PFS)) 7099 return true; 7100 7101 Type *BaseType = Ptr->getType(); 7102 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 7103 if (!BasePointerType) 7104 return Error(Loc, "base of getelementptr must be a pointer"); 7105 7106 if (Ty != BasePointerType->getElementType()) 7107 return Error(ExplicitTypeLoc, 7108 "explicit pointee type doesn't match operand's pointee type"); 7109 7110 SmallVector<Value*, 16> Indices; 7111 bool AteExtraComma = false; 7112 // GEP returns a vector of pointers if at least one of parameters is a vector. 7113 // All vector parameters should have the same vector width. 7114 unsigned GEPWidth = BaseType->isVectorTy() ? 7115 BaseType->getVectorNumElements() : 0; 7116 7117 while (EatIfPresent(lltok::comma)) { 7118 if (Lex.getKind() == lltok::MetadataVar) { 7119 AteExtraComma = true; 7120 break; 7121 } 7122 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 7123 if (!Val->getType()->isIntOrIntVectorTy()) 7124 return Error(EltLoc, "getelementptr index must be an integer"); 7125 7126 if (Val->getType()->isVectorTy()) { 7127 unsigned ValNumEl = Val->getType()->getVectorNumElements(); 7128 if (GEPWidth && GEPWidth != ValNumEl) 7129 return Error(EltLoc, 7130 "getelementptr vector index has a wrong number of elements"); 7131 GEPWidth = ValNumEl; 7132 } 7133 Indices.push_back(Val); 7134 } 7135 7136 SmallPtrSet<Type*, 4> Visited; 7137 if (!Indices.empty() && !Ty->isSized(&Visited)) 7138 return Error(Loc, "base element of getelementptr must be sized"); 7139 7140 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 7141 return Error(Loc, "invalid getelementptr indices"); 7142 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 7143 if (InBounds) 7144 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 7145 return AteExtraComma ? InstExtraComma : InstNormal; 7146 } 7147 7148 /// ParseExtractValue 7149 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 7150 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 7151 Value *Val; LocTy Loc; 7152 SmallVector<unsigned, 4> Indices; 7153 bool AteExtraComma; 7154 if (ParseTypeAndValue(Val, Loc, PFS) || 7155 ParseIndexList(Indices, AteExtraComma)) 7156 return true; 7157 7158 if (!Val->getType()->isAggregateType()) 7159 return Error(Loc, "extractvalue operand must be aggregate type"); 7160 7161 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 7162 return Error(Loc, "invalid indices for extractvalue"); 7163 Inst = ExtractValueInst::Create(Val, Indices); 7164 return AteExtraComma ? InstExtraComma : InstNormal; 7165 } 7166 7167 /// ParseInsertValue 7168 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 7169 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 7170 Value *Val0, *Val1; LocTy Loc0, Loc1; 7171 SmallVector<unsigned, 4> Indices; 7172 bool AteExtraComma; 7173 if (ParseTypeAndValue(Val0, Loc0, PFS) || 7174 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 7175 ParseTypeAndValue(Val1, Loc1, PFS) || 7176 ParseIndexList(Indices, AteExtraComma)) 7177 return true; 7178 7179 if (!Val0->getType()->isAggregateType()) 7180 return Error(Loc0, "insertvalue operand must be aggregate type"); 7181 7182 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 7183 if (!IndexedType) 7184 return Error(Loc0, "invalid indices for insertvalue"); 7185 if (IndexedType != Val1->getType()) 7186 return Error(Loc1, "insertvalue operand and field disagree in type: '" + 7187 getTypeString(Val1->getType()) + "' instead of '" + 7188 getTypeString(IndexedType) + "'"); 7189 Inst = InsertValueInst::Create(Val0, Val1, Indices); 7190 return AteExtraComma ? InstExtraComma : InstNormal; 7191 } 7192 7193 //===----------------------------------------------------------------------===// 7194 // Embedded metadata. 7195 //===----------------------------------------------------------------------===// 7196 7197 /// ParseMDNodeVector 7198 /// ::= { Element (',' Element)* } 7199 /// Element 7200 /// ::= 'null' | TypeAndValue 7201 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 7202 if (ParseToken(lltok::lbrace, "expected '{' here")) 7203 return true; 7204 7205 // Check for an empty list. 7206 if (EatIfPresent(lltok::rbrace)) 7207 return false; 7208 7209 do { 7210 // Null is a special case since it is typeless. 7211 if (EatIfPresent(lltok::kw_null)) { 7212 Elts.push_back(nullptr); 7213 continue; 7214 } 7215 7216 Metadata *MD; 7217 if (ParseMetadata(MD, nullptr)) 7218 return true; 7219 Elts.push_back(MD); 7220 } while (EatIfPresent(lltok::comma)); 7221 7222 return ParseToken(lltok::rbrace, "expected end of metadata node"); 7223 } 7224 7225 //===----------------------------------------------------------------------===// 7226 // Use-list order directives. 7227 //===----------------------------------------------------------------------===// 7228 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 7229 SMLoc Loc) { 7230 if (V->use_empty()) 7231 return Error(Loc, "value has no uses"); 7232 7233 unsigned NumUses = 0; 7234 SmallDenseMap<const Use *, unsigned, 16> Order; 7235 for (const Use &U : V->uses()) { 7236 if (++NumUses > Indexes.size()) 7237 break; 7238 Order[&U] = Indexes[NumUses - 1]; 7239 } 7240 if (NumUses < 2) 7241 return Error(Loc, "value only has one use"); 7242 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 7243 return Error(Loc, 7244 "wrong number of indexes, expected " + Twine(V->getNumUses())); 7245 7246 V->sortUseList([&](const Use &L, const Use &R) { 7247 return Order.lookup(&L) < Order.lookup(&R); 7248 }); 7249 return false; 7250 } 7251 7252 /// ParseUseListOrderIndexes 7253 /// ::= '{' uint32 (',' uint32)+ '}' 7254 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 7255 SMLoc Loc = Lex.getLoc(); 7256 if (ParseToken(lltok::lbrace, "expected '{' here")) 7257 return true; 7258 if (Lex.getKind() == lltok::rbrace) 7259 return Lex.Error("expected non-empty list of uselistorder indexes"); 7260 7261 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 7262 // indexes should be distinct numbers in the range [0, size-1], and should 7263 // not be in order. 7264 unsigned Offset = 0; 7265 unsigned Max = 0; 7266 bool IsOrdered = true; 7267 assert(Indexes.empty() && "Expected empty order vector"); 7268 do { 7269 unsigned Index; 7270 if (ParseUInt32(Index)) 7271 return true; 7272 7273 // Update consistency checks. 7274 Offset += Index - Indexes.size(); 7275 Max = std::max(Max, Index); 7276 IsOrdered &= Index == Indexes.size(); 7277 7278 Indexes.push_back(Index); 7279 } while (EatIfPresent(lltok::comma)); 7280 7281 if (ParseToken(lltok::rbrace, "expected '}' here")) 7282 return true; 7283 7284 if (Indexes.size() < 2) 7285 return Error(Loc, "expected >= 2 uselistorder indexes"); 7286 if (Offset != 0 || Max >= Indexes.size()) 7287 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)"); 7288 if (IsOrdered) 7289 return Error(Loc, "expected uselistorder indexes to change the order"); 7290 7291 return false; 7292 } 7293 7294 /// ParseUseListOrder 7295 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 7296 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) { 7297 SMLoc Loc = Lex.getLoc(); 7298 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 7299 return true; 7300 7301 Value *V; 7302 SmallVector<unsigned, 16> Indexes; 7303 if (ParseTypeAndValue(V, PFS) || 7304 ParseToken(lltok::comma, "expected comma in uselistorder directive") || 7305 ParseUseListOrderIndexes(Indexes)) 7306 return true; 7307 7308 return sortUseListOrder(V, Indexes, Loc); 7309 } 7310 7311 /// ParseUseListOrderBB 7312 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 7313 bool LLParser::ParseUseListOrderBB() { 7314 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 7315 SMLoc Loc = Lex.getLoc(); 7316 Lex.Lex(); 7317 7318 ValID Fn, Label; 7319 SmallVector<unsigned, 16> Indexes; 7320 if (ParseValID(Fn) || 7321 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7322 ParseValID(Label) || 7323 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7324 ParseUseListOrderIndexes(Indexes)) 7325 return true; 7326 7327 // Check the function. 7328 GlobalValue *GV; 7329 if (Fn.Kind == ValID::t_GlobalName) 7330 GV = M->getNamedValue(Fn.StrVal); 7331 else if (Fn.Kind == ValID::t_GlobalID) 7332 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 7333 else 7334 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 7335 if (!GV) 7336 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb"); 7337 auto *F = dyn_cast<Function>(GV); 7338 if (!F) 7339 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 7340 if (F->isDeclaration()) 7341 return Error(Fn.Loc, "invalid declaration in uselistorder_bb"); 7342 7343 // Check the basic block. 7344 if (Label.Kind == ValID::t_LocalID) 7345 return Error(Label.Loc, "invalid numeric label in uselistorder_bb"); 7346 if (Label.Kind != ValID::t_LocalName) 7347 return Error(Label.Loc, "expected basic block name in uselistorder_bb"); 7348 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 7349 if (!V) 7350 return Error(Label.Loc, "invalid basic block in uselistorder_bb"); 7351 if (!isa<BasicBlock>(V)) 7352 return Error(Label.Loc, "expected basic block in uselistorder_bb"); 7353 7354 return sortUseListOrder(V, Indexes, Loc); 7355 } 7356 7357 /// ModuleEntry 7358 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')' 7359 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')' 7360 bool LLParser::ParseModuleEntry(unsigned ID) { 7361 assert(Lex.getKind() == lltok::kw_module); 7362 Lex.Lex(); 7363 7364 std::string Path; 7365 if (ParseToken(lltok::colon, "expected ':' here") || 7366 ParseToken(lltok::lparen, "expected '(' here") || 7367 ParseToken(lltok::kw_path, "expected 'path' here") || 7368 ParseToken(lltok::colon, "expected ':' here") || 7369 ParseStringConstant(Path) || 7370 ParseToken(lltok::comma, "expected ',' here") || 7371 ParseToken(lltok::kw_hash, "expected 'hash' here") || 7372 ParseToken(lltok::colon, "expected ':' here") || 7373 ParseToken(lltok::lparen, "expected '(' here")) 7374 return true; 7375 7376 ModuleHash Hash; 7377 if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") || 7378 ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") || 7379 ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") || 7380 ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") || 7381 ParseUInt32(Hash[4])) 7382 return true; 7383 7384 if (ParseToken(lltok::rparen, "expected ')' here") || 7385 ParseToken(lltok::rparen, "expected ')' here")) 7386 return true; 7387 7388 auto ModuleEntry = Index->addModule(Path, ID, Hash); 7389 ModuleIdMap[ID] = ModuleEntry->first(); 7390 7391 return false; 7392 } 7393 7394 /// TypeIdEntry 7395 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')' 7396 bool LLParser::ParseTypeIdEntry(unsigned ID) { 7397 assert(Lex.getKind() == lltok::kw_typeid); 7398 Lex.Lex(); 7399 7400 std::string Name; 7401 if (ParseToken(lltok::colon, "expected ':' here") || 7402 ParseToken(lltok::lparen, "expected '(' here") || 7403 ParseToken(lltok::kw_name, "expected 'name' here") || 7404 ParseToken(lltok::colon, "expected ':' here") || 7405 ParseStringConstant(Name)) 7406 return true; 7407 7408 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name); 7409 if (ParseToken(lltok::comma, "expected ',' here") || 7410 ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here")) 7411 return true; 7412 7413 // Check if this ID was forward referenced, and if so, update the 7414 // corresponding GUIDs. 7415 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7416 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7417 for (auto TIDRef : FwdRefTIDs->second) { 7418 assert(!*TIDRef.first && 7419 "Forward referenced type id GUID expected to be 0"); 7420 *TIDRef.first = GlobalValue::getGUID(Name); 7421 } 7422 ForwardRefTypeIds.erase(FwdRefTIDs); 7423 } 7424 7425 return false; 7426 } 7427 7428 /// TypeIdSummary 7429 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')' 7430 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) { 7431 if (ParseToken(lltok::kw_summary, "expected 'summary' here") || 7432 ParseToken(lltok::colon, "expected ':' here") || 7433 ParseToken(lltok::lparen, "expected '(' here") || 7434 ParseTypeTestResolution(TIS.TTRes)) 7435 return true; 7436 7437 if (EatIfPresent(lltok::comma)) { 7438 // Expect optional wpdResolutions field 7439 if (ParseOptionalWpdResolutions(TIS.WPDRes)) 7440 return true; 7441 } 7442 7443 if (ParseToken(lltok::rparen, "expected ')' here")) 7444 return true; 7445 7446 return false; 7447 } 7448 7449 /// TypeTestResolution 7450 /// ::= 'typeTestRes' ':' '(' 'kind' ':' 7451 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ',' 7452 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]? 7453 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]? 7454 /// [',' 'inlinesBits' ':' UInt64]? ')' 7455 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) { 7456 if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") || 7457 ParseToken(lltok::colon, "expected ':' here") || 7458 ParseToken(lltok::lparen, "expected '(' here") || 7459 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7460 ParseToken(lltok::colon, "expected ':' here")) 7461 return true; 7462 7463 switch (Lex.getKind()) { 7464 case lltok::kw_unsat: 7465 TTRes.TheKind = TypeTestResolution::Unsat; 7466 break; 7467 case lltok::kw_byteArray: 7468 TTRes.TheKind = TypeTestResolution::ByteArray; 7469 break; 7470 case lltok::kw_inline: 7471 TTRes.TheKind = TypeTestResolution::Inline; 7472 break; 7473 case lltok::kw_single: 7474 TTRes.TheKind = TypeTestResolution::Single; 7475 break; 7476 case lltok::kw_allOnes: 7477 TTRes.TheKind = TypeTestResolution::AllOnes; 7478 break; 7479 default: 7480 return Error(Lex.getLoc(), "unexpected TypeTestResolution kind"); 7481 } 7482 Lex.Lex(); 7483 7484 if (ParseToken(lltok::comma, "expected ',' here") || 7485 ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") || 7486 ParseToken(lltok::colon, "expected ':' here") || 7487 ParseUInt32(TTRes.SizeM1BitWidth)) 7488 return true; 7489 7490 // Parse optional fields 7491 while (EatIfPresent(lltok::comma)) { 7492 switch (Lex.getKind()) { 7493 case lltok::kw_alignLog2: 7494 Lex.Lex(); 7495 if (ParseToken(lltok::colon, "expected ':'") || 7496 ParseUInt64(TTRes.AlignLog2)) 7497 return true; 7498 break; 7499 case lltok::kw_sizeM1: 7500 Lex.Lex(); 7501 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1)) 7502 return true; 7503 break; 7504 case lltok::kw_bitMask: { 7505 unsigned Val; 7506 Lex.Lex(); 7507 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val)) 7508 return true; 7509 assert(Val <= 0xff); 7510 TTRes.BitMask = (uint8_t)Val; 7511 break; 7512 } 7513 case lltok::kw_inlineBits: 7514 Lex.Lex(); 7515 if (ParseToken(lltok::colon, "expected ':'") || 7516 ParseUInt64(TTRes.InlineBits)) 7517 return true; 7518 break; 7519 default: 7520 return Error(Lex.getLoc(), "expected optional TypeTestResolution field"); 7521 } 7522 } 7523 7524 if (ParseToken(lltok::rparen, "expected ')' here")) 7525 return true; 7526 7527 return false; 7528 } 7529 7530 /// OptionalWpdResolutions 7531 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')' 7532 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')' 7533 bool LLParser::ParseOptionalWpdResolutions( 7534 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) { 7535 if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") || 7536 ParseToken(lltok::colon, "expected ':' here") || 7537 ParseToken(lltok::lparen, "expected '(' here")) 7538 return true; 7539 7540 do { 7541 uint64_t Offset; 7542 WholeProgramDevirtResolution WPDRes; 7543 if (ParseToken(lltok::lparen, "expected '(' here") || 7544 ParseToken(lltok::kw_offset, "expected 'offset' here") || 7545 ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) || 7546 ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) || 7547 ParseToken(lltok::rparen, "expected ')' here")) 7548 return true; 7549 WPDResMap[Offset] = WPDRes; 7550 } while (EatIfPresent(lltok::comma)); 7551 7552 if (ParseToken(lltok::rparen, "expected ')' here")) 7553 return true; 7554 7555 return false; 7556 } 7557 7558 /// WpdRes 7559 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir' 7560 /// [',' OptionalResByArg]? ')' 7561 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl' 7562 /// ',' 'singleImplName' ':' STRINGCONSTANT ',' 7563 /// [',' OptionalResByArg]? ')' 7564 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel' 7565 /// [',' OptionalResByArg]? ')' 7566 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) { 7567 if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") || 7568 ParseToken(lltok::colon, "expected ':' here") || 7569 ParseToken(lltok::lparen, "expected '(' here") || 7570 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7571 ParseToken(lltok::colon, "expected ':' here")) 7572 return true; 7573 7574 switch (Lex.getKind()) { 7575 case lltok::kw_indir: 7576 WPDRes.TheKind = WholeProgramDevirtResolution::Indir; 7577 break; 7578 case lltok::kw_singleImpl: 7579 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl; 7580 break; 7581 case lltok::kw_branchFunnel: 7582 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel; 7583 break; 7584 default: 7585 return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind"); 7586 } 7587 Lex.Lex(); 7588 7589 // Parse optional fields 7590 while (EatIfPresent(lltok::comma)) { 7591 switch (Lex.getKind()) { 7592 case lltok::kw_singleImplName: 7593 Lex.Lex(); 7594 if (ParseToken(lltok::colon, "expected ':' here") || 7595 ParseStringConstant(WPDRes.SingleImplName)) 7596 return true; 7597 break; 7598 case lltok::kw_resByArg: 7599 if (ParseOptionalResByArg(WPDRes.ResByArg)) 7600 return true; 7601 break; 7602 default: 7603 return Error(Lex.getLoc(), 7604 "expected optional WholeProgramDevirtResolution field"); 7605 } 7606 } 7607 7608 if (ParseToken(lltok::rparen, "expected ')' here")) 7609 return true; 7610 7611 return false; 7612 } 7613 7614 /// OptionalResByArg 7615 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')' 7616 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':' 7617 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' | 7618 /// 'virtualConstProp' ) 7619 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]? 7620 /// [',' 'bit' ':' UInt32]? ')' 7621 bool LLParser::ParseOptionalResByArg( 7622 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg> 7623 &ResByArg) { 7624 if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") || 7625 ParseToken(lltok::colon, "expected ':' here") || 7626 ParseToken(lltok::lparen, "expected '(' here")) 7627 return true; 7628 7629 do { 7630 std::vector<uint64_t> Args; 7631 if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") || 7632 ParseToken(lltok::kw_byArg, "expected 'byArg here") || 7633 ParseToken(lltok::colon, "expected ':' here") || 7634 ParseToken(lltok::lparen, "expected '(' here") || 7635 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7636 ParseToken(lltok::colon, "expected ':' here")) 7637 return true; 7638 7639 WholeProgramDevirtResolution::ByArg ByArg; 7640 switch (Lex.getKind()) { 7641 case lltok::kw_indir: 7642 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir; 7643 break; 7644 case lltok::kw_uniformRetVal: 7645 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 7646 break; 7647 case lltok::kw_uniqueRetVal: 7648 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 7649 break; 7650 case lltok::kw_virtualConstProp: 7651 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 7652 break; 7653 default: 7654 return Error(Lex.getLoc(), 7655 "unexpected WholeProgramDevirtResolution::ByArg kind"); 7656 } 7657 Lex.Lex(); 7658 7659 // Parse optional fields 7660 while (EatIfPresent(lltok::comma)) { 7661 switch (Lex.getKind()) { 7662 case lltok::kw_info: 7663 Lex.Lex(); 7664 if (ParseToken(lltok::colon, "expected ':' here") || 7665 ParseUInt64(ByArg.Info)) 7666 return true; 7667 break; 7668 case lltok::kw_byte: 7669 Lex.Lex(); 7670 if (ParseToken(lltok::colon, "expected ':' here") || 7671 ParseUInt32(ByArg.Byte)) 7672 return true; 7673 break; 7674 case lltok::kw_bit: 7675 Lex.Lex(); 7676 if (ParseToken(lltok::colon, "expected ':' here") || 7677 ParseUInt32(ByArg.Bit)) 7678 return true; 7679 break; 7680 default: 7681 return Error(Lex.getLoc(), 7682 "expected optional whole program devirt field"); 7683 } 7684 } 7685 7686 if (ParseToken(lltok::rparen, "expected ')' here")) 7687 return true; 7688 7689 ResByArg[Args] = ByArg; 7690 } while (EatIfPresent(lltok::comma)); 7691 7692 if (ParseToken(lltok::rparen, "expected ')' here")) 7693 return true; 7694 7695 return false; 7696 } 7697 7698 /// OptionalResByArg 7699 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')' 7700 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) { 7701 if (ParseToken(lltok::kw_args, "expected 'args' here") || 7702 ParseToken(lltok::colon, "expected ':' here") || 7703 ParseToken(lltok::lparen, "expected '(' here")) 7704 return true; 7705 7706 do { 7707 uint64_t Val; 7708 if (ParseUInt64(Val)) 7709 return true; 7710 Args.push_back(Val); 7711 } while (EatIfPresent(lltok::comma)); 7712 7713 if (ParseToken(lltok::rparen, "expected ')' here")) 7714 return true; 7715 7716 return false; 7717 } 7718 7719 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8; 7720 7721 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) { 7722 bool ReadOnly = Fwd->isReadOnly(); 7723 *Fwd = Resolved; 7724 if (ReadOnly) 7725 Fwd->setReadOnly(); 7726 } 7727 7728 /// Stores the given Name/GUID and associated summary into the Index. 7729 /// Also updates any forward references to the associated entry ID. 7730 void LLParser::AddGlobalValueToIndex( 7731 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage, 7732 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) { 7733 // First create the ValueInfo utilizing the Name or GUID. 7734 ValueInfo VI; 7735 if (GUID != 0) { 7736 assert(Name.empty()); 7737 VI = Index->getOrInsertValueInfo(GUID); 7738 } else { 7739 assert(!Name.empty()); 7740 if (M) { 7741 auto *GV = M->getNamedValue(Name); 7742 assert(GV); 7743 VI = Index->getOrInsertValueInfo(GV); 7744 } else { 7745 assert( 7746 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) && 7747 "Need a source_filename to compute GUID for local"); 7748 GUID = GlobalValue::getGUID( 7749 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName)); 7750 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name)); 7751 } 7752 } 7753 7754 // Resolve forward references from calls/refs 7755 auto FwdRefVIs = ForwardRefValueInfos.find(ID); 7756 if (FwdRefVIs != ForwardRefValueInfos.end()) { 7757 for (auto VIRef : FwdRefVIs->second) { 7758 assert(VIRef.first->getRef() == FwdVIRef && 7759 "Forward referenced ValueInfo expected to be empty"); 7760 resolveFwdRef(VIRef.first, VI); 7761 } 7762 ForwardRefValueInfos.erase(FwdRefVIs); 7763 } 7764 7765 // Resolve forward references from aliases 7766 auto FwdRefAliasees = ForwardRefAliasees.find(ID); 7767 if (FwdRefAliasees != ForwardRefAliasees.end()) { 7768 for (auto AliaseeRef : FwdRefAliasees->second) { 7769 assert(!AliaseeRef.first->hasAliasee() && 7770 "Forward referencing alias already has aliasee"); 7771 assert(Summary && "Aliasee must be a definition"); 7772 AliaseeRef.first->setAliasee(VI, Summary.get()); 7773 } 7774 ForwardRefAliasees.erase(FwdRefAliasees); 7775 } 7776 7777 // Add the summary if one was provided. 7778 if (Summary) 7779 Index->addGlobalValueSummary(VI, std::move(Summary)); 7780 7781 // Save the associated ValueInfo for use in later references by ID. 7782 if (ID == NumberedValueInfos.size()) 7783 NumberedValueInfos.push_back(VI); 7784 else { 7785 // Handle non-continuous numbers (to make test simplification easier). 7786 if (ID > NumberedValueInfos.size()) 7787 NumberedValueInfos.resize(ID + 1); 7788 NumberedValueInfos[ID] = VI; 7789 } 7790 } 7791 7792 /// ParseGVEntry 7793 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64) 7794 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')' 7795 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')' 7796 bool LLParser::ParseGVEntry(unsigned ID) { 7797 assert(Lex.getKind() == lltok::kw_gv); 7798 Lex.Lex(); 7799 7800 if (ParseToken(lltok::colon, "expected ':' here") || 7801 ParseToken(lltok::lparen, "expected '(' here")) 7802 return true; 7803 7804 std::string Name; 7805 GlobalValue::GUID GUID = 0; 7806 switch (Lex.getKind()) { 7807 case lltok::kw_name: 7808 Lex.Lex(); 7809 if (ParseToken(lltok::colon, "expected ':' here") || 7810 ParseStringConstant(Name)) 7811 return true; 7812 // Can't create GUID/ValueInfo until we have the linkage. 7813 break; 7814 case lltok::kw_guid: 7815 Lex.Lex(); 7816 if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID)) 7817 return true; 7818 break; 7819 default: 7820 return Error(Lex.getLoc(), "expected name or guid tag"); 7821 } 7822 7823 if (!EatIfPresent(lltok::comma)) { 7824 // No summaries. Wrap up. 7825 if (ParseToken(lltok::rparen, "expected ')' here")) 7826 return true; 7827 // This was created for a call to an external or indirect target. 7828 // A GUID with no summary came from a VALUE_GUID record, dummy GUID 7829 // created for indirect calls with VP. A Name with no GUID came from 7830 // an external definition. We pass ExternalLinkage since that is only 7831 // used when the GUID must be computed from Name, and in that case 7832 // the symbol must have external linkage. 7833 AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID, 7834 nullptr); 7835 return false; 7836 } 7837 7838 // Have a list of summaries 7839 if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") || 7840 ParseToken(lltok::colon, "expected ':' here")) 7841 return true; 7842 7843 do { 7844 if (ParseToken(lltok::lparen, "expected '(' here")) 7845 return true; 7846 switch (Lex.getKind()) { 7847 case lltok::kw_function: 7848 if (ParseFunctionSummary(Name, GUID, ID)) 7849 return true; 7850 break; 7851 case lltok::kw_variable: 7852 if (ParseVariableSummary(Name, GUID, ID)) 7853 return true; 7854 break; 7855 case lltok::kw_alias: 7856 if (ParseAliasSummary(Name, GUID, ID)) 7857 return true; 7858 break; 7859 default: 7860 return Error(Lex.getLoc(), "expected summary type"); 7861 } 7862 if (ParseToken(lltok::rparen, "expected ')' here")) 7863 return true; 7864 } while (EatIfPresent(lltok::comma)); 7865 7866 if (ParseToken(lltok::rparen, "expected ')' here")) 7867 return true; 7868 7869 return false; 7870 } 7871 7872 /// FunctionSummary 7873 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags 7874 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]? 7875 /// [',' OptionalTypeIdInfo]? [',' OptionalRefs]? ')' 7876 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID, 7877 unsigned ID) { 7878 assert(Lex.getKind() == lltok::kw_function); 7879 Lex.Lex(); 7880 7881 StringRef ModulePath; 7882 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 7883 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 7884 /*Live=*/false, /*IsLocal=*/false); 7885 unsigned InstCount; 7886 std::vector<FunctionSummary::EdgeTy> Calls; 7887 FunctionSummary::TypeIdInfo TypeIdInfo; 7888 std::vector<ValueInfo> Refs; 7889 // Default is all-zeros (conservative values). 7890 FunctionSummary::FFlags FFlags = {}; 7891 if (ParseToken(lltok::colon, "expected ':' here") || 7892 ParseToken(lltok::lparen, "expected '(' here") || 7893 ParseModuleReference(ModulePath) || 7894 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 7895 ParseToken(lltok::comma, "expected ',' here") || 7896 ParseToken(lltok::kw_insts, "expected 'insts' here") || 7897 ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount)) 7898 return true; 7899 7900 // Parse optional fields 7901 while (EatIfPresent(lltok::comma)) { 7902 switch (Lex.getKind()) { 7903 case lltok::kw_funcFlags: 7904 if (ParseOptionalFFlags(FFlags)) 7905 return true; 7906 break; 7907 case lltok::kw_calls: 7908 if (ParseOptionalCalls(Calls)) 7909 return true; 7910 break; 7911 case lltok::kw_typeIdInfo: 7912 if (ParseOptionalTypeIdInfo(TypeIdInfo)) 7913 return true; 7914 break; 7915 case lltok::kw_refs: 7916 if (ParseOptionalRefs(Refs)) 7917 return true; 7918 break; 7919 default: 7920 return Error(Lex.getLoc(), "expected optional function summary field"); 7921 } 7922 } 7923 7924 if (ParseToken(lltok::rparen, "expected ')' here")) 7925 return true; 7926 7927 auto FS = llvm::make_unique<FunctionSummary>( 7928 GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs), 7929 std::move(Calls), std::move(TypeIdInfo.TypeTests), 7930 std::move(TypeIdInfo.TypeTestAssumeVCalls), 7931 std::move(TypeIdInfo.TypeCheckedLoadVCalls), 7932 std::move(TypeIdInfo.TypeTestAssumeConstVCalls), 7933 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls)); 7934 7935 FS->setModulePath(ModulePath); 7936 7937 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 7938 ID, std::move(FS)); 7939 7940 return false; 7941 } 7942 7943 /// VariableSummary 7944 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags 7945 /// [',' OptionalRefs]? ')' 7946 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID, 7947 unsigned ID) { 7948 assert(Lex.getKind() == lltok::kw_variable); 7949 Lex.Lex(); 7950 7951 StringRef ModulePath; 7952 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 7953 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 7954 /*Live=*/false, /*IsLocal=*/false); 7955 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false); 7956 std::vector<ValueInfo> Refs; 7957 if (ParseToken(lltok::colon, "expected ':' here") || 7958 ParseToken(lltok::lparen, "expected '(' here") || 7959 ParseModuleReference(ModulePath) || 7960 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 7961 ParseToken(lltok::comma, "expected ',' here") || 7962 ParseGVarFlags(GVarFlags)) 7963 return true; 7964 7965 // Parse optional refs field 7966 if (EatIfPresent(lltok::comma)) { 7967 if (ParseOptionalRefs(Refs)) 7968 return true; 7969 } 7970 7971 if (ParseToken(lltok::rparen, "expected ')' here")) 7972 return true; 7973 7974 auto GS = 7975 llvm::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs)); 7976 7977 GS->setModulePath(ModulePath); 7978 7979 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 7980 ID, std::move(GS)); 7981 7982 return false; 7983 } 7984 7985 /// AliasSummary 7986 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ',' 7987 /// 'aliasee' ':' GVReference ')' 7988 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID, 7989 unsigned ID) { 7990 assert(Lex.getKind() == lltok::kw_alias); 7991 LocTy Loc = Lex.getLoc(); 7992 Lex.Lex(); 7993 7994 StringRef ModulePath; 7995 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 7996 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 7997 /*Live=*/false, /*IsLocal=*/false); 7998 if (ParseToken(lltok::colon, "expected ':' here") || 7999 ParseToken(lltok::lparen, "expected '(' here") || 8000 ParseModuleReference(ModulePath) || 8001 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 8002 ParseToken(lltok::comma, "expected ',' here") || 8003 ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") || 8004 ParseToken(lltok::colon, "expected ':' here")) 8005 return true; 8006 8007 ValueInfo AliaseeVI; 8008 unsigned GVId; 8009 if (ParseGVReference(AliaseeVI, GVId)) 8010 return true; 8011 8012 if (ParseToken(lltok::rparen, "expected ')' here")) 8013 return true; 8014 8015 auto AS = llvm::make_unique<AliasSummary>(GVFlags); 8016 8017 AS->setModulePath(ModulePath); 8018 8019 // Record forward reference if the aliasee is not parsed yet. 8020 if (AliaseeVI.getRef() == FwdVIRef) { 8021 auto FwdRef = ForwardRefAliasees.insert( 8022 std::make_pair(GVId, std::vector<std::pair<AliasSummary *, LocTy>>())); 8023 FwdRef.first->second.push_back(std::make_pair(AS.get(), Loc)); 8024 } else { 8025 auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath); 8026 assert(Summary && "Aliasee must be a definition"); 8027 AS->setAliasee(AliaseeVI, Summary); 8028 } 8029 8030 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8031 ID, std::move(AS)); 8032 8033 return false; 8034 } 8035 8036 /// Flag 8037 /// ::= [0|1] 8038 bool LLParser::ParseFlag(unsigned &Val) { 8039 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 8040 return TokError("expected integer"); 8041 Val = (unsigned)Lex.getAPSIntVal().getBoolValue(); 8042 Lex.Lex(); 8043 return false; 8044 } 8045 8046 /// OptionalFFlags 8047 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]? 8048 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]? 8049 /// [',' 'returnDoesNotAlias' ':' Flag]? ')' 8050 /// [',' 'noInline' ':' Flag]? ')' 8051 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) { 8052 assert(Lex.getKind() == lltok::kw_funcFlags); 8053 Lex.Lex(); 8054 8055 if (ParseToken(lltok::colon, "expected ':' in funcFlags") | 8056 ParseToken(lltok::lparen, "expected '(' in funcFlags")) 8057 return true; 8058 8059 do { 8060 unsigned Val; 8061 switch (Lex.getKind()) { 8062 case lltok::kw_readNone: 8063 Lex.Lex(); 8064 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8065 return true; 8066 FFlags.ReadNone = Val; 8067 break; 8068 case lltok::kw_readOnly: 8069 Lex.Lex(); 8070 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8071 return true; 8072 FFlags.ReadOnly = Val; 8073 break; 8074 case lltok::kw_noRecurse: 8075 Lex.Lex(); 8076 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8077 return true; 8078 FFlags.NoRecurse = Val; 8079 break; 8080 case lltok::kw_returnDoesNotAlias: 8081 Lex.Lex(); 8082 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8083 return true; 8084 FFlags.ReturnDoesNotAlias = Val; 8085 break; 8086 case lltok::kw_noInline: 8087 Lex.Lex(); 8088 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8089 return true; 8090 FFlags.NoInline = Val; 8091 break; 8092 default: 8093 return Error(Lex.getLoc(), "expected function flag type"); 8094 } 8095 } while (EatIfPresent(lltok::comma)); 8096 8097 if (ParseToken(lltok::rparen, "expected ')' in funcFlags")) 8098 return true; 8099 8100 return false; 8101 } 8102 8103 /// OptionalCalls 8104 /// := 'calls' ':' '(' Call [',' Call]* ')' 8105 /// Call ::= '(' 'callee' ':' GVReference 8106 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')' 8107 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) { 8108 assert(Lex.getKind() == lltok::kw_calls); 8109 Lex.Lex(); 8110 8111 if (ParseToken(lltok::colon, "expected ':' in calls") | 8112 ParseToken(lltok::lparen, "expected '(' in calls")) 8113 return true; 8114 8115 IdToIndexMapType IdToIndexMap; 8116 // Parse each call edge 8117 do { 8118 ValueInfo VI; 8119 if (ParseToken(lltok::lparen, "expected '(' in call") || 8120 ParseToken(lltok::kw_callee, "expected 'callee' in call") || 8121 ParseToken(lltok::colon, "expected ':'")) 8122 return true; 8123 8124 LocTy Loc = Lex.getLoc(); 8125 unsigned GVId; 8126 if (ParseGVReference(VI, GVId)) 8127 return true; 8128 8129 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 8130 unsigned RelBF = 0; 8131 if (EatIfPresent(lltok::comma)) { 8132 // Expect either hotness or relbf 8133 if (EatIfPresent(lltok::kw_hotness)) { 8134 if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness)) 8135 return true; 8136 } else { 8137 if (ParseToken(lltok::kw_relbf, "expected relbf") || 8138 ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF)) 8139 return true; 8140 } 8141 } 8142 // Keep track of the Call array index needing a forward reference. 8143 // We will save the location of the ValueInfo needing an update, but 8144 // can only do so once the std::vector is finalized. 8145 if (VI.getRef() == FwdVIRef) 8146 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc)); 8147 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)}); 8148 8149 if (ParseToken(lltok::rparen, "expected ')' in call")) 8150 return true; 8151 } while (EatIfPresent(lltok::comma)); 8152 8153 // Now that the Calls vector is finalized, it is safe to save the locations 8154 // of any forward GV references that need updating later. 8155 for (auto I : IdToIndexMap) { 8156 for (auto P : I.second) { 8157 assert(Calls[P.first].first.getRef() == FwdVIRef && 8158 "Forward referenced ValueInfo expected to be empty"); 8159 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 8160 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 8161 FwdRef.first->second.push_back( 8162 std::make_pair(&Calls[P.first].first, P.second)); 8163 } 8164 } 8165 8166 if (ParseToken(lltok::rparen, "expected ')' in calls")) 8167 return true; 8168 8169 return false; 8170 } 8171 8172 /// Hotness 8173 /// := ('unknown'|'cold'|'none'|'hot'|'critical') 8174 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) { 8175 switch (Lex.getKind()) { 8176 case lltok::kw_unknown: 8177 Hotness = CalleeInfo::HotnessType::Unknown; 8178 break; 8179 case lltok::kw_cold: 8180 Hotness = CalleeInfo::HotnessType::Cold; 8181 break; 8182 case lltok::kw_none: 8183 Hotness = CalleeInfo::HotnessType::None; 8184 break; 8185 case lltok::kw_hot: 8186 Hotness = CalleeInfo::HotnessType::Hot; 8187 break; 8188 case lltok::kw_critical: 8189 Hotness = CalleeInfo::HotnessType::Critical; 8190 break; 8191 default: 8192 return Error(Lex.getLoc(), "invalid call edge hotness"); 8193 } 8194 Lex.Lex(); 8195 return false; 8196 } 8197 8198 /// OptionalRefs 8199 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')' 8200 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) { 8201 assert(Lex.getKind() == lltok::kw_refs); 8202 Lex.Lex(); 8203 8204 if (ParseToken(lltok::colon, "expected ':' in refs") | 8205 ParseToken(lltok::lparen, "expected '(' in refs")) 8206 return true; 8207 8208 struct ValueContext { 8209 ValueInfo VI; 8210 unsigned GVId; 8211 LocTy Loc; 8212 }; 8213 std::vector<ValueContext> VContexts; 8214 // Parse each ref edge 8215 do { 8216 ValueContext VC; 8217 VC.Loc = Lex.getLoc(); 8218 if (ParseGVReference(VC.VI, VC.GVId)) 8219 return true; 8220 VContexts.push_back(VC); 8221 } while (EatIfPresent(lltok::comma)); 8222 8223 // Sort value contexts so that ones with readonly ValueInfo are at the end 8224 // of VContexts vector. This is needed to match immutableRefCount() behavior. 8225 llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) { 8226 return VC1.VI.isReadOnly() < VC2.VI.isReadOnly(); 8227 }); 8228 8229 IdToIndexMapType IdToIndexMap; 8230 for (auto &VC : VContexts) { 8231 // Keep track of the Refs array index needing a forward reference. 8232 // We will save the location of the ValueInfo needing an update, but 8233 // can only do so once the std::vector is finalized. 8234 if (VC.VI.getRef() == FwdVIRef) 8235 IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc)); 8236 Refs.push_back(VC.VI); 8237 } 8238 8239 // Now that the Refs vector is finalized, it is safe to save the locations 8240 // of any forward GV references that need updating later. 8241 for (auto I : IdToIndexMap) { 8242 for (auto P : I.second) { 8243 assert(Refs[P.first].getRef() == FwdVIRef && 8244 "Forward referenced ValueInfo expected to be empty"); 8245 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 8246 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 8247 FwdRef.first->second.push_back(std::make_pair(&Refs[P.first], P.second)); 8248 } 8249 } 8250 8251 if (ParseToken(lltok::rparen, "expected ')' in refs")) 8252 return true; 8253 8254 return false; 8255 } 8256 8257 /// OptionalTypeIdInfo 8258 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]? 8259 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]? 8260 /// [',' TypeCheckedLoadConstVCalls]? ')' 8261 bool LLParser::ParseOptionalTypeIdInfo( 8262 FunctionSummary::TypeIdInfo &TypeIdInfo) { 8263 assert(Lex.getKind() == lltok::kw_typeIdInfo); 8264 Lex.Lex(); 8265 8266 if (ParseToken(lltok::colon, "expected ':' here") || 8267 ParseToken(lltok::lparen, "expected '(' in typeIdInfo")) 8268 return true; 8269 8270 do { 8271 switch (Lex.getKind()) { 8272 case lltok::kw_typeTests: 8273 if (ParseTypeTests(TypeIdInfo.TypeTests)) 8274 return true; 8275 break; 8276 case lltok::kw_typeTestAssumeVCalls: 8277 if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls, 8278 TypeIdInfo.TypeTestAssumeVCalls)) 8279 return true; 8280 break; 8281 case lltok::kw_typeCheckedLoadVCalls: 8282 if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls, 8283 TypeIdInfo.TypeCheckedLoadVCalls)) 8284 return true; 8285 break; 8286 case lltok::kw_typeTestAssumeConstVCalls: 8287 if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls, 8288 TypeIdInfo.TypeTestAssumeConstVCalls)) 8289 return true; 8290 break; 8291 case lltok::kw_typeCheckedLoadConstVCalls: 8292 if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls, 8293 TypeIdInfo.TypeCheckedLoadConstVCalls)) 8294 return true; 8295 break; 8296 default: 8297 return Error(Lex.getLoc(), "invalid typeIdInfo list type"); 8298 } 8299 } while (EatIfPresent(lltok::comma)); 8300 8301 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo")) 8302 return true; 8303 8304 return false; 8305 } 8306 8307 /// TypeTests 8308 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64) 8309 /// [',' (SummaryID | UInt64)]* ')' 8310 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) { 8311 assert(Lex.getKind() == lltok::kw_typeTests); 8312 Lex.Lex(); 8313 8314 if (ParseToken(lltok::colon, "expected ':' here") || 8315 ParseToken(lltok::lparen, "expected '(' in typeIdInfo")) 8316 return true; 8317 8318 IdToIndexMapType IdToIndexMap; 8319 do { 8320 GlobalValue::GUID GUID = 0; 8321 if (Lex.getKind() == lltok::SummaryID) { 8322 unsigned ID = Lex.getUIntVal(); 8323 LocTy Loc = Lex.getLoc(); 8324 // Keep track of the TypeTests array index needing a forward reference. 8325 // We will save the location of the GUID needing an update, but 8326 // can only do so once the std::vector is finalized. 8327 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc)); 8328 Lex.Lex(); 8329 } else if (ParseUInt64(GUID)) 8330 return true; 8331 TypeTests.push_back(GUID); 8332 } while (EatIfPresent(lltok::comma)); 8333 8334 // Now that the TypeTests vector is finalized, it is safe to save the 8335 // locations of any forward GV references that need updating later. 8336 for (auto I : IdToIndexMap) { 8337 for (auto P : I.second) { 8338 assert(TypeTests[P.first] == 0 && 8339 "Forward referenced type id GUID expected to be 0"); 8340 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8341 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8342 FwdRef.first->second.push_back( 8343 std::make_pair(&TypeTests[P.first], P.second)); 8344 } 8345 } 8346 8347 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo")) 8348 return true; 8349 8350 return false; 8351 } 8352 8353 /// VFuncIdList 8354 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')' 8355 bool LLParser::ParseVFuncIdList( 8356 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) { 8357 assert(Lex.getKind() == Kind); 8358 Lex.Lex(); 8359 8360 if (ParseToken(lltok::colon, "expected ':' here") || 8361 ParseToken(lltok::lparen, "expected '(' here")) 8362 return true; 8363 8364 IdToIndexMapType IdToIndexMap; 8365 do { 8366 FunctionSummary::VFuncId VFuncId; 8367 if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size())) 8368 return true; 8369 VFuncIdList.push_back(VFuncId); 8370 } while (EatIfPresent(lltok::comma)); 8371 8372 if (ParseToken(lltok::rparen, "expected ')' here")) 8373 return true; 8374 8375 // Now that the VFuncIdList vector is finalized, it is safe to save the 8376 // locations of any forward GV references that need updating later. 8377 for (auto I : IdToIndexMap) { 8378 for (auto P : I.second) { 8379 assert(VFuncIdList[P.first].GUID == 0 && 8380 "Forward referenced type id GUID expected to be 0"); 8381 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8382 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8383 FwdRef.first->second.push_back( 8384 std::make_pair(&VFuncIdList[P.first].GUID, P.second)); 8385 } 8386 } 8387 8388 return false; 8389 } 8390 8391 /// ConstVCallList 8392 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')' 8393 bool LLParser::ParseConstVCallList( 8394 lltok::Kind Kind, 8395 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) { 8396 assert(Lex.getKind() == Kind); 8397 Lex.Lex(); 8398 8399 if (ParseToken(lltok::colon, "expected ':' here") || 8400 ParseToken(lltok::lparen, "expected '(' here")) 8401 return true; 8402 8403 IdToIndexMapType IdToIndexMap; 8404 do { 8405 FunctionSummary::ConstVCall ConstVCall; 8406 if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size())) 8407 return true; 8408 ConstVCallList.push_back(ConstVCall); 8409 } while (EatIfPresent(lltok::comma)); 8410 8411 if (ParseToken(lltok::rparen, "expected ')' here")) 8412 return true; 8413 8414 // Now that the ConstVCallList vector is finalized, it is safe to save the 8415 // locations of any forward GV references that need updating later. 8416 for (auto I : IdToIndexMap) { 8417 for (auto P : I.second) { 8418 assert(ConstVCallList[P.first].VFunc.GUID == 0 && 8419 "Forward referenced type id GUID expected to be 0"); 8420 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8421 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8422 FwdRef.first->second.push_back( 8423 std::make_pair(&ConstVCallList[P.first].VFunc.GUID, P.second)); 8424 } 8425 } 8426 8427 return false; 8428 } 8429 8430 /// ConstVCall 8431 /// ::= '(' VFuncId ',' Args ')' 8432 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall, 8433 IdToIndexMapType &IdToIndexMap, unsigned Index) { 8434 if (ParseToken(lltok::lparen, "expected '(' here") || 8435 ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index)) 8436 return true; 8437 8438 if (EatIfPresent(lltok::comma)) 8439 if (ParseArgs(ConstVCall.Args)) 8440 return true; 8441 8442 if (ParseToken(lltok::rparen, "expected ')' here")) 8443 return true; 8444 8445 return false; 8446 } 8447 8448 /// VFuncId 8449 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ',' 8450 /// 'offset' ':' UInt64 ')' 8451 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId, 8452 IdToIndexMapType &IdToIndexMap, unsigned Index) { 8453 assert(Lex.getKind() == lltok::kw_vFuncId); 8454 Lex.Lex(); 8455 8456 if (ParseToken(lltok::colon, "expected ':' here") || 8457 ParseToken(lltok::lparen, "expected '(' here")) 8458 return true; 8459 8460 if (Lex.getKind() == lltok::SummaryID) { 8461 VFuncId.GUID = 0; 8462 unsigned ID = Lex.getUIntVal(); 8463 LocTy Loc = Lex.getLoc(); 8464 // Keep track of the array index needing a forward reference. 8465 // We will save the location of the GUID needing an update, but 8466 // can only do so once the caller's std::vector is finalized. 8467 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc)); 8468 Lex.Lex(); 8469 } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") || 8470 ParseToken(lltok::colon, "expected ':' here") || 8471 ParseUInt64(VFuncId.GUID)) 8472 return true; 8473 8474 if (ParseToken(lltok::comma, "expected ',' here") || 8475 ParseToken(lltok::kw_offset, "expected 'offset' here") || 8476 ParseToken(lltok::colon, "expected ':' here") || 8477 ParseUInt64(VFuncId.Offset) || 8478 ParseToken(lltok::rparen, "expected ')' here")) 8479 return true; 8480 8481 return false; 8482 } 8483 8484 /// GVFlags 8485 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ',' 8486 /// 'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ',' 8487 /// 'dsoLocal' ':' Flag ')' 8488 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) { 8489 assert(Lex.getKind() == lltok::kw_flags); 8490 Lex.Lex(); 8491 8492 bool HasLinkage; 8493 if (ParseToken(lltok::colon, "expected ':' here") || 8494 ParseToken(lltok::lparen, "expected '(' here") || 8495 ParseToken(lltok::kw_linkage, "expected 'linkage' here") || 8496 ParseToken(lltok::colon, "expected ':' here")) 8497 return true; 8498 8499 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 8500 assert(HasLinkage && "Linkage not optional in summary entry"); 8501 Lex.Lex(); 8502 8503 unsigned Flag; 8504 if (ParseToken(lltok::comma, "expected ',' here") || 8505 ParseToken(lltok::kw_notEligibleToImport, 8506 "expected 'notEligibleToImport' here") || 8507 ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag)) 8508 return true; 8509 GVFlags.NotEligibleToImport = Flag; 8510 8511 if (ParseToken(lltok::comma, "expected ',' here") || 8512 ParseToken(lltok::kw_live, "expected 'live' here") || 8513 ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag)) 8514 return true; 8515 GVFlags.Live = Flag; 8516 8517 if (ParseToken(lltok::comma, "expected ',' here") || 8518 ParseToken(lltok::kw_dsoLocal, "expected 'dsoLocal' here") || 8519 ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag)) 8520 return true; 8521 GVFlags.DSOLocal = Flag; 8522 8523 if (ParseToken(lltok::rparen, "expected ')' here")) 8524 return true; 8525 8526 return false; 8527 } 8528 8529 /// GVarFlags 8530 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag ')' 8531 bool LLParser::ParseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) { 8532 assert(Lex.getKind() == lltok::kw_varFlags); 8533 Lex.Lex(); 8534 8535 unsigned Flag; 8536 if (ParseToken(lltok::colon, "expected ':' here") || 8537 ParseToken(lltok::lparen, "expected '(' here") || 8538 ParseToken(lltok::kw_readonly, "expected 'readonly' here") || 8539 ParseToken(lltok::colon, "expected ':' here")) 8540 return true; 8541 8542 ParseFlag(Flag); 8543 GVarFlags.ReadOnly = Flag; 8544 8545 if (ParseToken(lltok::rparen, "expected ')' here")) 8546 return true; 8547 return false; 8548 } 8549 8550 /// ModuleReference 8551 /// ::= 'module' ':' UInt 8552 bool LLParser::ParseModuleReference(StringRef &ModulePath) { 8553 // Parse module id. 8554 if (ParseToken(lltok::kw_module, "expected 'module' here") || 8555 ParseToken(lltok::colon, "expected ':' here") || 8556 ParseToken(lltok::SummaryID, "expected module ID")) 8557 return true; 8558 8559 unsigned ModuleID = Lex.getUIntVal(); 8560 auto I = ModuleIdMap.find(ModuleID); 8561 // We should have already parsed all module IDs 8562 assert(I != ModuleIdMap.end()); 8563 ModulePath = I->second; 8564 return false; 8565 } 8566 8567 /// GVReference 8568 /// ::= SummaryID 8569 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) { 8570 bool ReadOnly = EatIfPresent(lltok::kw_readonly); 8571 if (ParseToken(lltok::SummaryID, "expected GV ID")) 8572 return true; 8573 8574 GVId = Lex.getUIntVal(); 8575 // Check if we already have a VI for this GV 8576 if (GVId < NumberedValueInfos.size()) { 8577 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef); 8578 VI = NumberedValueInfos[GVId]; 8579 } else 8580 // We will create a forward reference to the stored location. 8581 VI = ValueInfo(false, FwdVIRef); 8582 8583 if (ReadOnly) 8584 VI.setReadOnly(); 8585 return false; 8586 } 8587