1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "LLParser.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/AsmParser/SlotMapping.h"
20 #include "llvm/BinaryFormat/Dwarf.h"
21 #include "llvm/IR/Argument.h"
22 #include "llvm/IR/AutoUpgrade.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/CallingConv.h"
25 #include "llvm/IR/Comdat.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugInfoMetadata.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalIFunc.h"
31 #include "llvm/IR/GlobalObject.h"
32 #include "llvm/IR/InlineAsm.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/IR/ValueSymbolTable.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/MathExtras.h"
46 #include "llvm/Support/SaveAndRestore.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstring>
51 #include <iterator>
52 #include <vector>
53 
54 using namespace llvm;
55 
56 static std::string getTypeString(Type *T) {
57   std::string Result;
58   raw_string_ostream Tmp(Result);
59   Tmp << *T;
60   return Tmp.str();
61 }
62 
63 /// Run: module ::= toplevelentity*
64 bool LLParser::Run() {
65   // Prime the lexer.
66   Lex.Lex();
67 
68   if (Context.shouldDiscardValueNames())
69     return Error(
70         Lex.getLoc(),
71         "Can't read textual IR with a Context that discards named Values");
72 
73   return ParseTopLevelEntities() || ValidateEndOfModule() ||
74          ValidateEndOfIndex();
75 }
76 
77 bool LLParser::parseStandaloneConstantValue(Constant *&C,
78                                             const SlotMapping *Slots) {
79   restoreParsingState(Slots);
80   Lex.Lex();
81 
82   Type *Ty = nullptr;
83   if (ParseType(Ty) || parseConstantValue(Ty, C))
84     return true;
85   if (Lex.getKind() != lltok::Eof)
86     return Error(Lex.getLoc(), "expected end of string");
87   return false;
88 }
89 
90 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
91                                     const SlotMapping *Slots) {
92   restoreParsingState(Slots);
93   Lex.Lex();
94 
95   Read = 0;
96   SMLoc Start = Lex.getLoc();
97   Ty = nullptr;
98   if (ParseType(Ty))
99     return true;
100   SMLoc End = Lex.getLoc();
101   Read = End.getPointer() - Start.getPointer();
102 
103   return false;
104 }
105 
106 void LLParser::restoreParsingState(const SlotMapping *Slots) {
107   if (!Slots)
108     return;
109   NumberedVals = Slots->GlobalValues;
110   NumberedMetadata = Slots->MetadataNodes;
111   for (const auto &I : Slots->NamedTypes)
112     NamedTypes.insert(
113         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
114   for (const auto &I : Slots->Types)
115     NumberedTypes.insert(
116         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
117 }
118 
119 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
120 /// module.
121 bool LLParser::ValidateEndOfModule() {
122   if (!M)
123     return false;
124   // Handle any function attribute group forward references.
125   for (const auto &RAG : ForwardRefAttrGroups) {
126     Value *V = RAG.first;
127     const std::vector<unsigned> &Attrs = RAG.second;
128     AttrBuilder B;
129 
130     for (const auto &Attr : Attrs)
131       B.merge(NumberedAttrBuilders[Attr]);
132 
133     if (Function *Fn = dyn_cast<Function>(V)) {
134       AttributeList AS = Fn->getAttributes();
135       AttrBuilder FnAttrs(AS.getFnAttributes());
136       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
137 
138       FnAttrs.merge(B);
139 
140       // If the alignment was parsed as an attribute, move to the alignment
141       // field.
142       if (FnAttrs.hasAlignmentAttr()) {
143         Fn->setAlignment(FnAttrs.getAlignment());
144         FnAttrs.removeAttribute(Attribute::Alignment);
145       }
146 
147       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
148                             AttributeSet::get(Context, FnAttrs));
149       Fn->setAttributes(AS);
150     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
151       AttributeList AS = CI->getAttributes();
152       AttrBuilder FnAttrs(AS.getFnAttributes());
153       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
154       FnAttrs.merge(B);
155       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
156                             AttributeSet::get(Context, FnAttrs));
157       CI->setAttributes(AS);
158     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
159       AttributeList AS = II->getAttributes();
160       AttrBuilder FnAttrs(AS.getFnAttributes());
161       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
162       FnAttrs.merge(B);
163       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
164                             AttributeSet::get(Context, FnAttrs));
165       II->setAttributes(AS);
166     } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
167       AttributeList AS = CBI->getAttributes();
168       AttrBuilder FnAttrs(AS.getFnAttributes());
169       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
170       FnAttrs.merge(B);
171       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
172                             AttributeSet::get(Context, FnAttrs));
173       CBI->setAttributes(AS);
174     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
175       AttrBuilder Attrs(GV->getAttributes());
176       Attrs.merge(B);
177       GV->setAttributes(AttributeSet::get(Context,Attrs));
178     } else {
179       llvm_unreachable("invalid object with forward attribute group reference");
180     }
181   }
182 
183   // If there are entries in ForwardRefBlockAddresses at this point, the
184   // function was never defined.
185   if (!ForwardRefBlockAddresses.empty())
186     return Error(ForwardRefBlockAddresses.begin()->first.Loc,
187                  "expected function name in blockaddress");
188 
189   for (const auto &NT : NumberedTypes)
190     if (NT.second.second.isValid())
191       return Error(NT.second.second,
192                    "use of undefined type '%" + Twine(NT.first) + "'");
193 
194   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
195        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
196     if (I->second.second.isValid())
197       return Error(I->second.second,
198                    "use of undefined type named '" + I->getKey() + "'");
199 
200   if (!ForwardRefComdats.empty())
201     return Error(ForwardRefComdats.begin()->second,
202                  "use of undefined comdat '$" +
203                      ForwardRefComdats.begin()->first + "'");
204 
205   if (!ForwardRefVals.empty())
206     return Error(ForwardRefVals.begin()->second.second,
207                  "use of undefined value '@" + ForwardRefVals.begin()->first +
208                  "'");
209 
210   if (!ForwardRefValIDs.empty())
211     return Error(ForwardRefValIDs.begin()->second.second,
212                  "use of undefined value '@" +
213                  Twine(ForwardRefValIDs.begin()->first) + "'");
214 
215   if (!ForwardRefMDNodes.empty())
216     return Error(ForwardRefMDNodes.begin()->second.second,
217                  "use of undefined metadata '!" +
218                  Twine(ForwardRefMDNodes.begin()->first) + "'");
219 
220   // Resolve metadata cycles.
221   for (auto &N : NumberedMetadata) {
222     if (N.second && !N.second->isResolved())
223       N.second->resolveCycles();
224   }
225 
226   for (auto *Inst : InstsWithTBAATag) {
227     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
228     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
229     auto *UpgradedMD = UpgradeTBAANode(*MD);
230     if (MD != UpgradedMD)
231       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
232   }
233 
234   // Look for intrinsic functions and CallInst that need to be upgraded
235   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
236     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
237 
238   // Some types could be renamed during loading if several modules are
239   // loaded in the same LLVMContext (LTO scenario). In this case we should
240   // remangle intrinsics names as well.
241   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
242     Function *F = &*FI++;
243     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
244       F->replaceAllUsesWith(Remangled.getValue());
245       F->eraseFromParent();
246     }
247   }
248 
249   if (UpgradeDebugInfo)
250     llvm::UpgradeDebugInfo(*M);
251 
252   UpgradeModuleFlags(*M);
253   UpgradeSectionAttributes(*M);
254 
255   if (!Slots)
256     return false;
257   // Initialize the slot mapping.
258   // Because by this point we've parsed and validated everything, we can "steal"
259   // the mapping from LLParser as it doesn't need it anymore.
260   Slots->GlobalValues = std::move(NumberedVals);
261   Slots->MetadataNodes = std::move(NumberedMetadata);
262   for (const auto &I : NamedTypes)
263     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
264   for (const auto &I : NumberedTypes)
265     Slots->Types.insert(std::make_pair(I.first, I.second.first));
266 
267   return false;
268 }
269 
270 /// Do final validity and sanity checks at the end of the index.
271 bool LLParser::ValidateEndOfIndex() {
272   if (!Index)
273     return false;
274 
275   if (!ForwardRefValueInfos.empty())
276     return Error(ForwardRefValueInfos.begin()->second.front().second,
277                  "use of undefined summary '^" +
278                      Twine(ForwardRefValueInfos.begin()->first) + "'");
279 
280   if (!ForwardRefAliasees.empty())
281     return Error(ForwardRefAliasees.begin()->second.front().second,
282                  "use of undefined summary '^" +
283                      Twine(ForwardRefAliasees.begin()->first) + "'");
284 
285   if (!ForwardRefTypeIds.empty())
286     return Error(ForwardRefTypeIds.begin()->second.front().second,
287                  "use of undefined type id summary '^" +
288                      Twine(ForwardRefTypeIds.begin()->first) + "'");
289 
290   return false;
291 }
292 
293 //===----------------------------------------------------------------------===//
294 // Top-Level Entities
295 //===----------------------------------------------------------------------===//
296 
297 bool LLParser::ParseTopLevelEntities() {
298   // If there is no Module, then parse just the summary index entries.
299   if (!M) {
300     while (true) {
301       switch (Lex.getKind()) {
302       case lltok::Eof:
303         return false;
304       case lltok::SummaryID:
305         if (ParseSummaryEntry())
306           return true;
307         break;
308       case lltok::kw_source_filename:
309         if (ParseSourceFileName())
310           return true;
311         break;
312       default:
313         // Skip everything else
314         Lex.Lex();
315       }
316     }
317   }
318   while (true) {
319     switch (Lex.getKind()) {
320     default:         return TokError("expected top-level entity");
321     case lltok::Eof: return false;
322     case lltok::kw_declare: if (ParseDeclare()) return true; break;
323     case lltok::kw_define:  if (ParseDefine()) return true; break;
324     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
325     case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
326     case lltok::kw_source_filename:
327       if (ParseSourceFileName())
328         return true;
329       break;
330     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
331     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
332     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
333     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
334     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
335     case lltok::ComdatVar:  if (parseComdat()) return true; break;
336     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
337     case lltok::SummaryID:
338       if (ParseSummaryEntry())
339         return true;
340       break;
341     case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
342     case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
343     case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
344     case lltok::kw_uselistorder_bb:
345       if (ParseUseListOrderBB())
346         return true;
347       break;
348     }
349   }
350 }
351 
352 /// toplevelentity
353 ///   ::= 'module' 'asm' STRINGCONSTANT
354 bool LLParser::ParseModuleAsm() {
355   assert(Lex.getKind() == lltok::kw_module);
356   Lex.Lex();
357 
358   std::string AsmStr;
359   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
360       ParseStringConstant(AsmStr)) return true;
361 
362   M->appendModuleInlineAsm(AsmStr);
363   return false;
364 }
365 
366 /// toplevelentity
367 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
368 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
369 bool LLParser::ParseTargetDefinition() {
370   assert(Lex.getKind() == lltok::kw_target);
371   std::string Str;
372   switch (Lex.Lex()) {
373   default: return TokError("unknown target property");
374   case lltok::kw_triple:
375     Lex.Lex();
376     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
377         ParseStringConstant(Str))
378       return true;
379     M->setTargetTriple(Str);
380     return false;
381   case lltok::kw_datalayout:
382     Lex.Lex();
383     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
384         ParseStringConstant(Str))
385       return true;
386     if (DataLayoutStr.empty())
387       M->setDataLayout(Str);
388     return false;
389   }
390 }
391 
392 /// toplevelentity
393 ///   ::= 'source_filename' '=' STRINGCONSTANT
394 bool LLParser::ParseSourceFileName() {
395   assert(Lex.getKind() == lltok::kw_source_filename);
396   Lex.Lex();
397   if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
398       ParseStringConstant(SourceFileName))
399     return true;
400   if (M)
401     M->setSourceFileName(SourceFileName);
402   return false;
403 }
404 
405 /// toplevelentity
406 ///   ::= 'deplibs' '=' '[' ']'
407 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
408 /// FIXME: Remove in 4.0. Currently parse, but ignore.
409 bool LLParser::ParseDepLibs() {
410   assert(Lex.getKind() == lltok::kw_deplibs);
411   Lex.Lex();
412   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
413       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
414     return true;
415 
416   if (EatIfPresent(lltok::rsquare))
417     return false;
418 
419   do {
420     std::string Str;
421     if (ParseStringConstant(Str)) return true;
422   } while (EatIfPresent(lltok::comma));
423 
424   return ParseToken(lltok::rsquare, "expected ']' at end of list");
425 }
426 
427 /// ParseUnnamedType:
428 ///   ::= LocalVarID '=' 'type' type
429 bool LLParser::ParseUnnamedType() {
430   LocTy TypeLoc = Lex.getLoc();
431   unsigned TypeID = Lex.getUIntVal();
432   Lex.Lex(); // eat LocalVarID;
433 
434   if (ParseToken(lltok::equal, "expected '=' after name") ||
435       ParseToken(lltok::kw_type, "expected 'type' after '='"))
436     return true;
437 
438   Type *Result = nullptr;
439   if (ParseStructDefinition(TypeLoc, "",
440                             NumberedTypes[TypeID], Result)) return true;
441 
442   if (!isa<StructType>(Result)) {
443     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
444     if (Entry.first)
445       return Error(TypeLoc, "non-struct types may not be recursive");
446     Entry.first = Result;
447     Entry.second = SMLoc();
448   }
449 
450   return false;
451 }
452 
453 /// toplevelentity
454 ///   ::= LocalVar '=' 'type' type
455 bool LLParser::ParseNamedType() {
456   std::string Name = Lex.getStrVal();
457   LocTy NameLoc = Lex.getLoc();
458   Lex.Lex();  // eat LocalVar.
459 
460   if (ParseToken(lltok::equal, "expected '=' after name") ||
461       ParseToken(lltok::kw_type, "expected 'type' after name"))
462     return true;
463 
464   Type *Result = nullptr;
465   if (ParseStructDefinition(NameLoc, Name,
466                             NamedTypes[Name], Result)) return true;
467 
468   if (!isa<StructType>(Result)) {
469     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
470     if (Entry.first)
471       return Error(NameLoc, "non-struct types may not be recursive");
472     Entry.first = Result;
473     Entry.second = SMLoc();
474   }
475 
476   return false;
477 }
478 
479 /// toplevelentity
480 ///   ::= 'declare' FunctionHeader
481 bool LLParser::ParseDeclare() {
482   assert(Lex.getKind() == lltok::kw_declare);
483   Lex.Lex();
484 
485   std::vector<std::pair<unsigned, MDNode *>> MDs;
486   while (Lex.getKind() == lltok::MetadataVar) {
487     unsigned MDK;
488     MDNode *N;
489     if (ParseMetadataAttachment(MDK, N))
490       return true;
491     MDs.push_back({MDK, N});
492   }
493 
494   Function *F;
495   if (ParseFunctionHeader(F, false))
496     return true;
497   for (auto &MD : MDs)
498     F->addMetadata(MD.first, *MD.second);
499   return false;
500 }
501 
502 /// toplevelentity
503 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
504 bool LLParser::ParseDefine() {
505   assert(Lex.getKind() == lltok::kw_define);
506   Lex.Lex();
507 
508   Function *F;
509   return ParseFunctionHeader(F, true) ||
510          ParseOptionalFunctionMetadata(*F) ||
511          ParseFunctionBody(*F);
512 }
513 
514 /// ParseGlobalType
515 ///   ::= 'constant'
516 ///   ::= 'global'
517 bool LLParser::ParseGlobalType(bool &IsConstant) {
518   if (Lex.getKind() == lltok::kw_constant)
519     IsConstant = true;
520   else if (Lex.getKind() == lltok::kw_global)
521     IsConstant = false;
522   else {
523     IsConstant = false;
524     return TokError("expected 'global' or 'constant'");
525   }
526   Lex.Lex();
527   return false;
528 }
529 
530 bool LLParser::ParseOptionalUnnamedAddr(
531     GlobalVariable::UnnamedAddr &UnnamedAddr) {
532   if (EatIfPresent(lltok::kw_unnamed_addr))
533     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
534   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
535     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
536   else
537     UnnamedAddr = GlobalValue::UnnamedAddr::None;
538   return false;
539 }
540 
541 /// ParseUnnamedGlobal:
542 ///   OptionalVisibility (ALIAS | IFUNC) ...
543 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
544 ///   OptionalDLLStorageClass
545 ///                                                     ...   -> global variable
546 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
547 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
548 ///                OptionalDLLStorageClass
549 ///                                                     ...   -> global variable
550 bool LLParser::ParseUnnamedGlobal() {
551   unsigned VarID = NumberedVals.size();
552   std::string Name;
553   LocTy NameLoc = Lex.getLoc();
554 
555   // Handle the GlobalID form.
556   if (Lex.getKind() == lltok::GlobalID) {
557     if (Lex.getUIntVal() != VarID)
558       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
559                    Twine(VarID) + "'");
560     Lex.Lex(); // eat GlobalID;
561 
562     if (ParseToken(lltok::equal, "expected '=' after name"))
563       return true;
564   }
565 
566   bool HasLinkage;
567   unsigned Linkage, Visibility, DLLStorageClass;
568   bool DSOLocal;
569   GlobalVariable::ThreadLocalMode TLM;
570   GlobalVariable::UnnamedAddr UnnamedAddr;
571   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
572                            DSOLocal) ||
573       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
574     return true;
575 
576   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
577     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
578                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
579 
580   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
581                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
582 }
583 
584 /// ParseNamedGlobal:
585 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
586 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
587 ///                 OptionalVisibility OptionalDLLStorageClass
588 ///                                                     ...   -> global variable
589 bool LLParser::ParseNamedGlobal() {
590   assert(Lex.getKind() == lltok::GlobalVar);
591   LocTy NameLoc = Lex.getLoc();
592   std::string Name = Lex.getStrVal();
593   Lex.Lex();
594 
595   bool HasLinkage;
596   unsigned Linkage, Visibility, DLLStorageClass;
597   bool DSOLocal;
598   GlobalVariable::ThreadLocalMode TLM;
599   GlobalVariable::UnnamedAddr UnnamedAddr;
600   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
601       ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
602                            DSOLocal) ||
603       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
604     return true;
605 
606   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
607     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
608                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
609 
610   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
611                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
612 }
613 
614 bool LLParser::parseComdat() {
615   assert(Lex.getKind() == lltok::ComdatVar);
616   std::string Name = Lex.getStrVal();
617   LocTy NameLoc = Lex.getLoc();
618   Lex.Lex();
619 
620   if (ParseToken(lltok::equal, "expected '=' here"))
621     return true;
622 
623   if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
624     return TokError("expected comdat type");
625 
626   Comdat::SelectionKind SK;
627   switch (Lex.getKind()) {
628   default:
629     return TokError("unknown selection kind");
630   case lltok::kw_any:
631     SK = Comdat::Any;
632     break;
633   case lltok::kw_exactmatch:
634     SK = Comdat::ExactMatch;
635     break;
636   case lltok::kw_largest:
637     SK = Comdat::Largest;
638     break;
639   case lltok::kw_noduplicates:
640     SK = Comdat::NoDuplicates;
641     break;
642   case lltok::kw_samesize:
643     SK = Comdat::SameSize;
644     break;
645   }
646   Lex.Lex();
647 
648   // See if the comdat was forward referenced, if so, use the comdat.
649   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
650   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
651   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
652     return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
653 
654   Comdat *C;
655   if (I != ComdatSymTab.end())
656     C = &I->second;
657   else
658     C = M->getOrInsertComdat(Name);
659   C->setSelectionKind(SK);
660 
661   return false;
662 }
663 
664 // MDString:
665 //   ::= '!' STRINGCONSTANT
666 bool LLParser::ParseMDString(MDString *&Result) {
667   std::string Str;
668   if (ParseStringConstant(Str)) return true;
669   Result = MDString::get(Context, Str);
670   return false;
671 }
672 
673 // MDNode:
674 //   ::= '!' MDNodeNumber
675 bool LLParser::ParseMDNodeID(MDNode *&Result) {
676   // !{ ..., !42, ... }
677   LocTy IDLoc = Lex.getLoc();
678   unsigned MID = 0;
679   if (ParseUInt32(MID))
680     return true;
681 
682   // If not a forward reference, just return it now.
683   if (NumberedMetadata.count(MID)) {
684     Result = NumberedMetadata[MID];
685     return false;
686   }
687 
688   // Otherwise, create MDNode forward reference.
689   auto &FwdRef = ForwardRefMDNodes[MID];
690   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
691 
692   Result = FwdRef.first.get();
693   NumberedMetadata[MID].reset(Result);
694   return false;
695 }
696 
697 /// ParseNamedMetadata:
698 ///   !foo = !{ !1, !2 }
699 bool LLParser::ParseNamedMetadata() {
700   assert(Lex.getKind() == lltok::MetadataVar);
701   std::string Name = Lex.getStrVal();
702   Lex.Lex();
703 
704   if (ParseToken(lltok::equal, "expected '=' here") ||
705       ParseToken(lltok::exclaim, "Expected '!' here") ||
706       ParseToken(lltok::lbrace, "Expected '{' here"))
707     return true;
708 
709   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
710   if (Lex.getKind() != lltok::rbrace)
711     do {
712       MDNode *N = nullptr;
713       // Parse DIExpressions inline as a special case. They are still MDNodes,
714       // so they can still appear in named metadata. Remove this logic if they
715       // become plain Metadata.
716       if (Lex.getKind() == lltok::MetadataVar &&
717           Lex.getStrVal() == "DIExpression") {
718         if (ParseDIExpression(N, /*IsDistinct=*/false))
719           return true;
720       } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
721                  ParseMDNodeID(N)) {
722         return true;
723       }
724       NMD->addOperand(N);
725     } while (EatIfPresent(lltok::comma));
726 
727   return ParseToken(lltok::rbrace, "expected end of metadata node");
728 }
729 
730 /// ParseStandaloneMetadata:
731 ///   !42 = !{...}
732 bool LLParser::ParseStandaloneMetadata() {
733   assert(Lex.getKind() == lltok::exclaim);
734   Lex.Lex();
735   unsigned MetadataID = 0;
736 
737   MDNode *Init;
738   if (ParseUInt32(MetadataID) ||
739       ParseToken(lltok::equal, "expected '=' here"))
740     return true;
741 
742   // Detect common error, from old metadata syntax.
743   if (Lex.getKind() == lltok::Type)
744     return TokError("unexpected type in metadata definition");
745 
746   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
747   if (Lex.getKind() == lltok::MetadataVar) {
748     if (ParseSpecializedMDNode(Init, IsDistinct))
749       return true;
750   } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
751              ParseMDTuple(Init, IsDistinct))
752     return true;
753 
754   // See if this was forward referenced, if so, handle it.
755   auto FI = ForwardRefMDNodes.find(MetadataID);
756   if (FI != ForwardRefMDNodes.end()) {
757     FI->second.first->replaceAllUsesWith(Init);
758     ForwardRefMDNodes.erase(FI);
759 
760     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
761   } else {
762     if (NumberedMetadata.count(MetadataID))
763       return TokError("Metadata id is already used");
764     NumberedMetadata[MetadataID].reset(Init);
765   }
766 
767   return false;
768 }
769 
770 // Skips a single module summary entry.
771 bool LLParser::SkipModuleSummaryEntry() {
772   // Each module summary entry consists of a tag for the entry
773   // type, followed by a colon, then the fields surrounded by nested sets of
774   // parentheses. The "tag:" looks like a Label. Once parsing support is
775   // in place we will look for the tokens corresponding to the expected tags.
776   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
777       Lex.getKind() != lltok::kw_typeid)
778     return TokError(
779         "Expected 'gv', 'module', or 'typeid' at the start of summary entry");
780   Lex.Lex();
781   if (ParseToken(lltok::colon, "expected ':' at start of summary entry") ||
782       ParseToken(lltok::lparen, "expected '(' at start of summary entry"))
783     return true;
784   // Now walk through the parenthesized entry, until the number of open
785   // parentheses goes back down to 0 (the first '(' was parsed above).
786   unsigned NumOpenParen = 1;
787   do {
788     switch (Lex.getKind()) {
789     case lltok::lparen:
790       NumOpenParen++;
791       break;
792     case lltok::rparen:
793       NumOpenParen--;
794       break;
795     case lltok::Eof:
796       return TokError("found end of file while parsing summary entry");
797     default:
798       // Skip everything in between parentheses.
799       break;
800     }
801     Lex.Lex();
802   } while (NumOpenParen > 0);
803   return false;
804 }
805 
806 /// SummaryEntry
807 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
808 bool LLParser::ParseSummaryEntry() {
809   assert(Lex.getKind() == lltok::SummaryID);
810   unsigned SummaryID = Lex.getUIntVal();
811 
812   // For summary entries, colons should be treated as distinct tokens,
813   // not an indication of the end of a label token.
814   Lex.setIgnoreColonInIdentifiers(true);
815 
816   Lex.Lex();
817   if (ParseToken(lltok::equal, "expected '=' here"))
818     return true;
819 
820   // If we don't have an index object, skip the summary entry.
821   if (!Index)
822     return SkipModuleSummaryEntry();
823 
824   switch (Lex.getKind()) {
825   case lltok::kw_gv:
826     return ParseGVEntry(SummaryID);
827   case lltok::kw_module:
828     return ParseModuleEntry(SummaryID);
829   case lltok::kw_typeid:
830     return ParseTypeIdEntry(SummaryID);
831     break;
832   default:
833     return Error(Lex.getLoc(), "unexpected summary kind");
834   }
835   Lex.setIgnoreColonInIdentifiers(false);
836   return false;
837 }
838 
839 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
840   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
841          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
842 }
843 
844 // If there was an explicit dso_local, update GV. In the absence of an explicit
845 // dso_local we keep the default value.
846 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
847   if (DSOLocal)
848     GV.setDSOLocal(true);
849 }
850 
851 /// parseIndirectSymbol:
852 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
853 ///                     OptionalVisibility OptionalDLLStorageClass
854 ///                     OptionalThreadLocal OptionalUnnamedAddr
855 //                      'alias|ifunc' IndirectSymbol
856 ///
857 /// IndirectSymbol
858 ///   ::= TypeAndValue
859 ///
860 /// Everything through OptionalUnnamedAddr has already been parsed.
861 ///
862 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
863                                    unsigned L, unsigned Visibility,
864                                    unsigned DLLStorageClass, bool DSOLocal,
865                                    GlobalVariable::ThreadLocalMode TLM,
866                                    GlobalVariable::UnnamedAddr UnnamedAddr) {
867   bool IsAlias;
868   if (Lex.getKind() == lltok::kw_alias)
869     IsAlias = true;
870   else if (Lex.getKind() == lltok::kw_ifunc)
871     IsAlias = false;
872   else
873     llvm_unreachable("Not an alias or ifunc!");
874   Lex.Lex();
875 
876   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
877 
878   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
879     return Error(NameLoc, "invalid linkage type for alias");
880 
881   if (!isValidVisibilityForLinkage(Visibility, L))
882     return Error(NameLoc,
883                  "symbol with local linkage must have default visibility");
884 
885   Type *Ty;
886   LocTy ExplicitTypeLoc = Lex.getLoc();
887   if (ParseType(Ty) ||
888       ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
889     return true;
890 
891   Constant *Aliasee;
892   LocTy AliaseeLoc = Lex.getLoc();
893   if (Lex.getKind() != lltok::kw_bitcast &&
894       Lex.getKind() != lltok::kw_getelementptr &&
895       Lex.getKind() != lltok::kw_addrspacecast &&
896       Lex.getKind() != lltok::kw_inttoptr) {
897     if (ParseGlobalTypeAndValue(Aliasee))
898       return true;
899   } else {
900     // The bitcast dest type is not present, it is implied by the dest type.
901     ValID ID;
902     if (ParseValID(ID))
903       return true;
904     if (ID.Kind != ValID::t_Constant)
905       return Error(AliaseeLoc, "invalid aliasee");
906     Aliasee = ID.ConstantVal;
907   }
908 
909   Type *AliaseeType = Aliasee->getType();
910   auto *PTy = dyn_cast<PointerType>(AliaseeType);
911   if (!PTy)
912     return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
913   unsigned AddrSpace = PTy->getAddressSpace();
914 
915   if (IsAlias && Ty != PTy->getElementType())
916     return Error(
917         ExplicitTypeLoc,
918         "explicit pointee type doesn't match operand's pointee type");
919 
920   if (!IsAlias && !PTy->getElementType()->isFunctionTy())
921     return Error(
922         ExplicitTypeLoc,
923         "explicit pointee type should be a function type");
924 
925   GlobalValue *GVal = nullptr;
926 
927   // See if the alias was forward referenced, if so, prepare to replace the
928   // forward reference.
929   if (!Name.empty()) {
930     GVal = M->getNamedValue(Name);
931     if (GVal) {
932       if (!ForwardRefVals.erase(Name))
933         return Error(NameLoc, "redefinition of global '@" + Name + "'");
934     }
935   } else {
936     auto I = ForwardRefValIDs.find(NumberedVals.size());
937     if (I != ForwardRefValIDs.end()) {
938       GVal = I->second.first;
939       ForwardRefValIDs.erase(I);
940     }
941   }
942 
943   // Okay, create the alias but do not insert it into the module yet.
944   std::unique_ptr<GlobalIndirectSymbol> GA;
945   if (IsAlias)
946     GA.reset(GlobalAlias::create(Ty, AddrSpace,
947                                  (GlobalValue::LinkageTypes)Linkage, Name,
948                                  Aliasee, /*Parent*/ nullptr));
949   else
950     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
951                                  (GlobalValue::LinkageTypes)Linkage, Name,
952                                  Aliasee, /*Parent*/ nullptr));
953   GA->setThreadLocalMode(TLM);
954   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
955   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
956   GA->setUnnamedAddr(UnnamedAddr);
957   maybeSetDSOLocal(DSOLocal, *GA);
958 
959   if (Name.empty())
960     NumberedVals.push_back(GA.get());
961 
962   if (GVal) {
963     // Verify that types agree.
964     if (GVal->getType() != GA->getType())
965       return Error(
966           ExplicitTypeLoc,
967           "forward reference and definition of alias have different types");
968 
969     // If they agree, just RAUW the old value with the alias and remove the
970     // forward ref info.
971     GVal->replaceAllUsesWith(GA.get());
972     GVal->eraseFromParent();
973   }
974 
975   // Insert into the module, we know its name won't collide now.
976   if (IsAlias)
977     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
978   else
979     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
980   assert(GA->getName() == Name && "Should not be a name conflict!");
981 
982   // The module owns this now
983   GA.release();
984 
985   return false;
986 }
987 
988 /// ParseGlobal
989 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
990 ///       OptionalVisibility OptionalDLLStorageClass
991 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
992 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
993 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
994 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
995 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
996 ///       Const OptionalAttrs
997 ///
998 /// Everything up to and including OptionalUnnamedAddr has been parsed
999 /// already.
1000 ///
1001 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
1002                            unsigned Linkage, bool HasLinkage,
1003                            unsigned Visibility, unsigned DLLStorageClass,
1004                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1005                            GlobalVariable::UnnamedAddr UnnamedAddr) {
1006   if (!isValidVisibilityForLinkage(Visibility, Linkage))
1007     return Error(NameLoc,
1008                  "symbol with local linkage must have default visibility");
1009 
1010   unsigned AddrSpace;
1011   bool IsConstant, IsExternallyInitialized;
1012   LocTy IsExternallyInitializedLoc;
1013   LocTy TyLoc;
1014 
1015   Type *Ty = nullptr;
1016   if (ParseOptionalAddrSpace(AddrSpace) ||
1017       ParseOptionalToken(lltok::kw_externally_initialized,
1018                          IsExternallyInitialized,
1019                          &IsExternallyInitializedLoc) ||
1020       ParseGlobalType(IsConstant) ||
1021       ParseType(Ty, TyLoc))
1022     return true;
1023 
1024   // If the linkage is specified and is external, then no initializer is
1025   // present.
1026   Constant *Init = nullptr;
1027   if (!HasLinkage ||
1028       !GlobalValue::isValidDeclarationLinkage(
1029           (GlobalValue::LinkageTypes)Linkage)) {
1030     if (ParseGlobalValue(Ty, Init))
1031       return true;
1032   }
1033 
1034   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1035     return Error(TyLoc, "invalid type for global variable");
1036 
1037   GlobalValue *GVal = nullptr;
1038 
1039   // See if the global was forward referenced, if so, use the global.
1040   if (!Name.empty()) {
1041     GVal = M->getNamedValue(Name);
1042     if (GVal) {
1043       if (!ForwardRefVals.erase(Name))
1044         return Error(NameLoc, "redefinition of global '@" + Name + "'");
1045     }
1046   } else {
1047     auto I = ForwardRefValIDs.find(NumberedVals.size());
1048     if (I != ForwardRefValIDs.end()) {
1049       GVal = I->second.first;
1050       ForwardRefValIDs.erase(I);
1051     }
1052   }
1053 
1054   GlobalVariable *GV;
1055   if (!GVal) {
1056     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
1057                             Name, nullptr, GlobalVariable::NotThreadLocal,
1058                             AddrSpace);
1059   } else {
1060     if (GVal->getValueType() != Ty)
1061       return Error(TyLoc,
1062             "forward reference and definition of global have different types");
1063 
1064     GV = cast<GlobalVariable>(GVal);
1065 
1066     // Move the forward-reference to the correct spot in the module.
1067     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
1068   }
1069 
1070   if (Name.empty())
1071     NumberedVals.push_back(GV);
1072 
1073   // Set the parsed properties on the global.
1074   if (Init)
1075     GV->setInitializer(Init);
1076   GV->setConstant(IsConstant);
1077   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1078   maybeSetDSOLocal(DSOLocal, *GV);
1079   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1080   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1081   GV->setExternallyInitialized(IsExternallyInitialized);
1082   GV->setThreadLocalMode(TLM);
1083   GV->setUnnamedAddr(UnnamedAddr);
1084 
1085   // Parse attributes on the global.
1086   while (Lex.getKind() == lltok::comma) {
1087     Lex.Lex();
1088 
1089     if (Lex.getKind() == lltok::kw_section) {
1090       Lex.Lex();
1091       GV->setSection(Lex.getStrVal());
1092       if (ParseToken(lltok::StringConstant, "expected global section string"))
1093         return true;
1094     } else if (Lex.getKind() == lltok::kw_align) {
1095       unsigned Alignment;
1096       if (ParseOptionalAlignment(Alignment)) return true;
1097       GV->setAlignment(Alignment);
1098     } else if (Lex.getKind() == lltok::MetadataVar) {
1099       if (ParseGlobalObjectMetadataAttachment(*GV))
1100         return true;
1101     } else {
1102       Comdat *C;
1103       if (parseOptionalComdat(Name, C))
1104         return true;
1105       if (C)
1106         GV->setComdat(C);
1107       else
1108         return TokError("unknown global variable property!");
1109     }
1110   }
1111 
1112   AttrBuilder Attrs;
1113   LocTy BuiltinLoc;
1114   std::vector<unsigned> FwdRefAttrGrps;
1115   if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1116     return true;
1117   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1118     GV->setAttributes(AttributeSet::get(Context, Attrs));
1119     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1120   }
1121 
1122   return false;
1123 }
1124 
1125 /// ParseUnnamedAttrGrp
1126 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1127 bool LLParser::ParseUnnamedAttrGrp() {
1128   assert(Lex.getKind() == lltok::kw_attributes);
1129   LocTy AttrGrpLoc = Lex.getLoc();
1130   Lex.Lex();
1131 
1132   if (Lex.getKind() != lltok::AttrGrpID)
1133     return TokError("expected attribute group id");
1134 
1135   unsigned VarID = Lex.getUIntVal();
1136   std::vector<unsigned> unused;
1137   LocTy BuiltinLoc;
1138   Lex.Lex();
1139 
1140   if (ParseToken(lltok::equal, "expected '=' here") ||
1141       ParseToken(lltok::lbrace, "expected '{' here") ||
1142       ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1143                                  BuiltinLoc) ||
1144       ParseToken(lltok::rbrace, "expected end of attribute group"))
1145     return true;
1146 
1147   if (!NumberedAttrBuilders[VarID].hasAttributes())
1148     return Error(AttrGrpLoc, "attribute group has no attributes");
1149 
1150   return false;
1151 }
1152 
1153 /// ParseFnAttributeValuePairs
1154 ///   ::= <attr> | <attr> '=' <value>
1155 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
1156                                           std::vector<unsigned> &FwdRefAttrGrps,
1157                                           bool inAttrGrp, LocTy &BuiltinLoc) {
1158   bool HaveError = false;
1159 
1160   B.clear();
1161 
1162   while (true) {
1163     lltok::Kind Token = Lex.getKind();
1164     if (Token == lltok::kw_builtin)
1165       BuiltinLoc = Lex.getLoc();
1166     switch (Token) {
1167     default:
1168       if (!inAttrGrp) return HaveError;
1169       return Error(Lex.getLoc(), "unterminated attribute group");
1170     case lltok::rbrace:
1171       // Finished.
1172       return false;
1173 
1174     case lltok::AttrGrpID: {
1175       // Allow a function to reference an attribute group:
1176       //
1177       //   define void @foo() #1 { ... }
1178       if (inAttrGrp)
1179         HaveError |=
1180           Error(Lex.getLoc(),
1181               "cannot have an attribute group reference in an attribute group");
1182 
1183       unsigned AttrGrpNum = Lex.getUIntVal();
1184       if (inAttrGrp) break;
1185 
1186       // Save the reference to the attribute group. We'll fill it in later.
1187       FwdRefAttrGrps.push_back(AttrGrpNum);
1188       break;
1189     }
1190     // Target-dependent attributes:
1191     case lltok::StringConstant: {
1192       if (ParseStringAttribute(B))
1193         return true;
1194       continue;
1195     }
1196 
1197     // Target-independent attributes:
1198     case lltok::kw_align: {
1199       // As a hack, we allow function alignment to be initially parsed as an
1200       // attribute on a function declaration/definition or added to an attribute
1201       // group and later moved to the alignment field.
1202       unsigned Alignment;
1203       if (inAttrGrp) {
1204         Lex.Lex();
1205         if (ParseToken(lltok::equal, "expected '=' here") ||
1206             ParseUInt32(Alignment))
1207           return true;
1208       } else {
1209         if (ParseOptionalAlignment(Alignment))
1210           return true;
1211       }
1212       B.addAlignmentAttr(Alignment);
1213       continue;
1214     }
1215     case lltok::kw_alignstack: {
1216       unsigned Alignment;
1217       if (inAttrGrp) {
1218         Lex.Lex();
1219         if (ParseToken(lltok::equal, "expected '=' here") ||
1220             ParseUInt32(Alignment))
1221           return true;
1222       } else {
1223         if (ParseOptionalStackAlignment(Alignment))
1224           return true;
1225       }
1226       B.addStackAlignmentAttr(Alignment);
1227       continue;
1228     }
1229     case lltok::kw_allocsize: {
1230       unsigned ElemSizeArg;
1231       Optional<unsigned> NumElemsArg;
1232       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1233       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1234         return true;
1235       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1236       continue;
1237     }
1238     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1239     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1240     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1241     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1242     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1243     case lltok::kw_inaccessiblememonly:
1244       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1245     case lltok::kw_inaccessiblemem_or_argmemonly:
1246       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1247     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1248     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1249     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1250     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1251     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1252     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1253     case lltok::kw_noimplicitfloat:
1254       B.addAttribute(Attribute::NoImplicitFloat); break;
1255     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1256     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1257     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1258     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1259     case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break;
1260     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1261     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1262     case lltok::kw_optforfuzzing:
1263       B.addAttribute(Attribute::OptForFuzzing); break;
1264     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1265     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1266     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1267     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1268     case lltok::kw_returns_twice:
1269       B.addAttribute(Attribute::ReturnsTwice); break;
1270     case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1271     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1272     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1273     case lltok::kw_sspstrong:
1274       B.addAttribute(Attribute::StackProtectStrong); break;
1275     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1276     case lltok::kw_shadowcallstack:
1277       B.addAttribute(Attribute::ShadowCallStack); break;
1278     case lltok::kw_sanitize_address:
1279       B.addAttribute(Attribute::SanitizeAddress); break;
1280     case lltok::kw_sanitize_hwaddress:
1281       B.addAttribute(Attribute::SanitizeHWAddress); break;
1282     case lltok::kw_sanitize_thread:
1283       B.addAttribute(Attribute::SanitizeThread); break;
1284     case lltok::kw_sanitize_memory:
1285       B.addAttribute(Attribute::SanitizeMemory); break;
1286     case lltok::kw_speculative_load_hardening:
1287       B.addAttribute(Attribute::SpeculativeLoadHardening);
1288       break;
1289     case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1290     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1291     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1292 
1293     // Error handling.
1294     case lltok::kw_inreg:
1295     case lltok::kw_signext:
1296     case lltok::kw_zeroext:
1297       HaveError |=
1298         Error(Lex.getLoc(),
1299               "invalid use of attribute on a function");
1300       break;
1301     case lltok::kw_byval:
1302     case lltok::kw_dereferenceable:
1303     case lltok::kw_dereferenceable_or_null:
1304     case lltok::kw_inalloca:
1305     case lltok::kw_nest:
1306     case lltok::kw_noalias:
1307     case lltok::kw_nocapture:
1308     case lltok::kw_nonnull:
1309     case lltok::kw_returned:
1310     case lltok::kw_sret:
1311     case lltok::kw_swifterror:
1312     case lltok::kw_swiftself:
1313     case lltok::kw_immarg:
1314       HaveError |=
1315         Error(Lex.getLoc(),
1316               "invalid use of parameter-only attribute on a function");
1317       break;
1318     }
1319 
1320     Lex.Lex();
1321   }
1322 }
1323 
1324 //===----------------------------------------------------------------------===//
1325 // GlobalValue Reference/Resolution Routines.
1326 //===----------------------------------------------------------------------===//
1327 
1328 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1329                                               const std::string &Name) {
1330   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1331     return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1332                             PTy->getAddressSpace(), Name, M);
1333   else
1334     return new GlobalVariable(*M, PTy->getElementType(), false,
1335                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1336                               nullptr, GlobalVariable::NotThreadLocal,
1337                               PTy->getAddressSpace());
1338 }
1339 
1340 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1341                                         Value *Val, bool IsCall) {
1342   if (Val->getType() == Ty)
1343     return Val;
1344   // For calls we also accept variables in the program address space.
1345   Type *SuggestedTy = Ty;
1346   if (IsCall && isa<PointerType>(Ty)) {
1347     Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo(
1348         M->getDataLayout().getProgramAddressSpace());
1349     SuggestedTy = TyInProgAS;
1350     if (Val->getType() == TyInProgAS)
1351       return Val;
1352   }
1353   if (Ty->isLabelTy())
1354     Error(Loc, "'" + Name + "' is not a basic block");
1355   else
1356     Error(Loc, "'" + Name + "' defined with type '" +
1357                    getTypeString(Val->getType()) + "' but expected '" +
1358                    getTypeString(SuggestedTy) + "'");
1359   return nullptr;
1360 }
1361 
1362 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1363 /// forward reference record if needed.  This can return null if the value
1364 /// exists but does not have the right type.
1365 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1366                                     LocTy Loc, bool IsCall) {
1367   PointerType *PTy = dyn_cast<PointerType>(Ty);
1368   if (!PTy) {
1369     Error(Loc, "global variable reference must have pointer type");
1370     return nullptr;
1371   }
1372 
1373   // Look this name up in the normal function symbol table.
1374   GlobalValue *Val =
1375     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1376 
1377   // If this is a forward reference for the value, see if we already created a
1378   // forward ref record.
1379   if (!Val) {
1380     auto I = ForwardRefVals.find(Name);
1381     if (I != ForwardRefVals.end())
1382       Val = I->second.first;
1383   }
1384 
1385   // If we have the value in the symbol table or fwd-ref table, return it.
1386   if (Val)
1387     return cast_or_null<GlobalValue>(
1388         checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall));
1389 
1390   // Otherwise, create a new forward reference for this value and remember it.
1391   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1392   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1393   return FwdVal;
1394 }
1395 
1396 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc,
1397                                     bool IsCall) {
1398   PointerType *PTy = dyn_cast<PointerType>(Ty);
1399   if (!PTy) {
1400     Error(Loc, "global variable reference must have pointer type");
1401     return nullptr;
1402   }
1403 
1404   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1405 
1406   // If this is a forward reference for the value, see if we already created a
1407   // forward ref record.
1408   if (!Val) {
1409     auto I = ForwardRefValIDs.find(ID);
1410     if (I != ForwardRefValIDs.end())
1411       Val = I->second.first;
1412   }
1413 
1414   // If we have the value in the symbol table or fwd-ref table, return it.
1415   if (Val)
1416     return cast_or_null<GlobalValue>(
1417         checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall));
1418 
1419   // Otherwise, create a new forward reference for this value and remember it.
1420   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1421   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1422   return FwdVal;
1423 }
1424 
1425 //===----------------------------------------------------------------------===//
1426 // Comdat Reference/Resolution Routines.
1427 //===----------------------------------------------------------------------===//
1428 
1429 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1430   // Look this name up in the comdat symbol table.
1431   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1432   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1433   if (I != ComdatSymTab.end())
1434     return &I->second;
1435 
1436   // Otherwise, create a new forward reference for this value and remember it.
1437   Comdat *C = M->getOrInsertComdat(Name);
1438   ForwardRefComdats[Name] = Loc;
1439   return C;
1440 }
1441 
1442 //===----------------------------------------------------------------------===//
1443 // Helper Routines.
1444 //===----------------------------------------------------------------------===//
1445 
1446 /// ParseToken - If the current token has the specified kind, eat it and return
1447 /// success.  Otherwise, emit the specified error and return failure.
1448 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1449   if (Lex.getKind() != T)
1450     return TokError(ErrMsg);
1451   Lex.Lex();
1452   return false;
1453 }
1454 
1455 /// ParseStringConstant
1456 ///   ::= StringConstant
1457 bool LLParser::ParseStringConstant(std::string &Result) {
1458   if (Lex.getKind() != lltok::StringConstant)
1459     return TokError("expected string constant");
1460   Result = Lex.getStrVal();
1461   Lex.Lex();
1462   return false;
1463 }
1464 
1465 /// ParseUInt32
1466 ///   ::= uint32
1467 bool LLParser::ParseUInt32(uint32_t &Val) {
1468   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1469     return TokError("expected integer");
1470   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1471   if (Val64 != unsigned(Val64))
1472     return TokError("expected 32-bit integer (too large)");
1473   Val = Val64;
1474   Lex.Lex();
1475   return false;
1476 }
1477 
1478 /// ParseUInt64
1479 ///   ::= uint64
1480 bool LLParser::ParseUInt64(uint64_t &Val) {
1481   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1482     return TokError("expected integer");
1483   Val = Lex.getAPSIntVal().getLimitedValue();
1484   Lex.Lex();
1485   return false;
1486 }
1487 
1488 /// ParseTLSModel
1489 ///   := 'localdynamic'
1490 ///   := 'initialexec'
1491 ///   := 'localexec'
1492 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1493   switch (Lex.getKind()) {
1494     default:
1495       return TokError("expected localdynamic, initialexec or localexec");
1496     case lltok::kw_localdynamic:
1497       TLM = GlobalVariable::LocalDynamicTLSModel;
1498       break;
1499     case lltok::kw_initialexec:
1500       TLM = GlobalVariable::InitialExecTLSModel;
1501       break;
1502     case lltok::kw_localexec:
1503       TLM = GlobalVariable::LocalExecTLSModel;
1504       break;
1505   }
1506 
1507   Lex.Lex();
1508   return false;
1509 }
1510 
1511 /// ParseOptionalThreadLocal
1512 ///   := /*empty*/
1513 ///   := 'thread_local'
1514 ///   := 'thread_local' '(' tlsmodel ')'
1515 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1516   TLM = GlobalVariable::NotThreadLocal;
1517   if (!EatIfPresent(lltok::kw_thread_local))
1518     return false;
1519 
1520   TLM = GlobalVariable::GeneralDynamicTLSModel;
1521   if (Lex.getKind() == lltok::lparen) {
1522     Lex.Lex();
1523     return ParseTLSModel(TLM) ||
1524       ParseToken(lltok::rparen, "expected ')' after thread local model");
1525   }
1526   return false;
1527 }
1528 
1529 /// ParseOptionalAddrSpace
1530 ///   := /*empty*/
1531 ///   := 'addrspace' '(' uint32 ')'
1532 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1533   AddrSpace = DefaultAS;
1534   if (!EatIfPresent(lltok::kw_addrspace))
1535     return false;
1536   return ParseToken(lltok::lparen, "expected '(' in address space") ||
1537          ParseUInt32(AddrSpace) ||
1538          ParseToken(lltok::rparen, "expected ')' in address space");
1539 }
1540 
1541 /// ParseStringAttribute
1542 ///   := StringConstant
1543 ///   := StringConstant '=' StringConstant
1544 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1545   std::string Attr = Lex.getStrVal();
1546   Lex.Lex();
1547   std::string Val;
1548   if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1549     return true;
1550   B.addAttribute(Attr, Val);
1551   return false;
1552 }
1553 
1554 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1555 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1556   bool HaveError = false;
1557 
1558   B.clear();
1559 
1560   while (true) {
1561     lltok::Kind Token = Lex.getKind();
1562     switch (Token) {
1563     default:  // End of attributes.
1564       return HaveError;
1565     case lltok::StringConstant: {
1566       if (ParseStringAttribute(B))
1567         return true;
1568       continue;
1569     }
1570     case lltok::kw_align: {
1571       unsigned Alignment;
1572       if (ParseOptionalAlignment(Alignment))
1573         return true;
1574       B.addAlignmentAttr(Alignment);
1575       continue;
1576     }
1577     case lltok::kw_byval:           B.addAttribute(Attribute::ByVal); break;
1578     case lltok::kw_dereferenceable: {
1579       uint64_t Bytes;
1580       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1581         return true;
1582       B.addDereferenceableAttr(Bytes);
1583       continue;
1584     }
1585     case lltok::kw_dereferenceable_or_null: {
1586       uint64_t Bytes;
1587       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1588         return true;
1589       B.addDereferenceableOrNullAttr(Bytes);
1590       continue;
1591     }
1592     case lltok::kw_inalloca:        B.addAttribute(Attribute::InAlloca); break;
1593     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1594     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1595     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1596     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1597     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1598     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1599     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1600     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1601     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1602     case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1603     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1604     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1605     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
1606     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1607     case lltok::kw_immarg:          B.addAttribute(Attribute::ImmArg); break;
1608 
1609     case lltok::kw_alignstack:
1610     case lltok::kw_alwaysinline:
1611     case lltok::kw_argmemonly:
1612     case lltok::kw_builtin:
1613     case lltok::kw_inlinehint:
1614     case lltok::kw_jumptable:
1615     case lltok::kw_minsize:
1616     case lltok::kw_naked:
1617     case lltok::kw_nobuiltin:
1618     case lltok::kw_noduplicate:
1619     case lltok::kw_noimplicitfloat:
1620     case lltok::kw_noinline:
1621     case lltok::kw_nonlazybind:
1622     case lltok::kw_noredzone:
1623     case lltok::kw_noreturn:
1624     case lltok::kw_nocf_check:
1625     case lltok::kw_nounwind:
1626     case lltok::kw_optforfuzzing:
1627     case lltok::kw_optnone:
1628     case lltok::kw_optsize:
1629     case lltok::kw_returns_twice:
1630     case lltok::kw_sanitize_address:
1631     case lltok::kw_sanitize_hwaddress:
1632     case lltok::kw_sanitize_memory:
1633     case lltok::kw_sanitize_thread:
1634     case lltok::kw_speculative_load_hardening:
1635     case lltok::kw_ssp:
1636     case lltok::kw_sspreq:
1637     case lltok::kw_sspstrong:
1638     case lltok::kw_safestack:
1639     case lltok::kw_shadowcallstack:
1640     case lltok::kw_strictfp:
1641     case lltok::kw_uwtable:
1642       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1643       break;
1644     }
1645 
1646     Lex.Lex();
1647   }
1648 }
1649 
1650 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1651 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1652   bool HaveError = false;
1653 
1654   B.clear();
1655 
1656   while (true) {
1657     lltok::Kind Token = Lex.getKind();
1658     switch (Token) {
1659     default:  // End of attributes.
1660       return HaveError;
1661     case lltok::StringConstant: {
1662       if (ParseStringAttribute(B))
1663         return true;
1664       continue;
1665     }
1666     case lltok::kw_dereferenceable: {
1667       uint64_t Bytes;
1668       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1669         return true;
1670       B.addDereferenceableAttr(Bytes);
1671       continue;
1672     }
1673     case lltok::kw_dereferenceable_or_null: {
1674       uint64_t Bytes;
1675       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1676         return true;
1677       B.addDereferenceableOrNullAttr(Bytes);
1678       continue;
1679     }
1680     case lltok::kw_align: {
1681       unsigned Alignment;
1682       if (ParseOptionalAlignment(Alignment))
1683         return true;
1684       B.addAlignmentAttr(Alignment);
1685       continue;
1686     }
1687     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1688     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1689     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1690     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1691     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1692 
1693     // Error handling.
1694     case lltok::kw_byval:
1695     case lltok::kw_inalloca:
1696     case lltok::kw_nest:
1697     case lltok::kw_nocapture:
1698     case lltok::kw_returned:
1699     case lltok::kw_sret:
1700     case lltok::kw_swifterror:
1701     case lltok::kw_swiftself:
1702     case lltok::kw_immarg:
1703       HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1704       break;
1705 
1706     case lltok::kw_alignstack:
1707     case lltok::kw_alwaysinline:
1708     case lltok::kw_argmemonly:
1709     case lltok::kw_builtin:
1710     case lltok::kw_cold:
1711     case lltok::kw_inlinehint:
1712     case lltok::kw_jumptable:
1713     case lltok::kw_minsize:
1714     case lltok::kw_naked:
1715     case lltok::kw_nobuiltin:
1716     case lltok::kw_noduplicate:
1717     case lltok::kw_noimplicitfloat:
1718     case lltok::kw_noinline:
1719     case lltok::kw_nonlazybind:
1720     case lltok::kw_noredzone:
1721     case lltok::kw_noreturn:
1722     case lltok::kw_nocf_check:
1723     case lltok::kw_nounwind:
1724     case lltok::kw_optforfuzzing:
1725     case lltok::kw_optnone:
1726     case lltok::kw_optsize:
1727     case lltok::kw_returns_twice:
1728     case lltok::kw_sanitize_address:
1729     case lltok::kw_sanitize_hwaddress:
1730     case lltok::kw_sanitize_memory:
1731     case lltok::kw_sanitize_thread:
1732     case lltok::kw_speculative_load_hardening:
1733     case lltok::kw_ssp:
1734     case lltok::kw_sspreq:
1735     case lltok::kw_sspstrong:
1736     case lltok::kw_safestack:
1737     case lltok::kw_shadowcallstack:
1738     case lltok::kw_strictfp:
1739     case lltok::kw_uwtable:
1740       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1741       break;
1742 
1743     case lltok::kw_readnone:
1744     case lltok::kw_readonly:
1745       HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1746     }
1747 
1748     Lex.Lex();
1749   }
1750 }
1751 
1752 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1753   HasLinkage = true;
1754   switch (Kind) {
1755   default:
1756     HasLinkage = false;
1757     return GlobalValue::ExternalLinkage;
1758   case lltok::kw_private:
1759     return GlobalValue::PrivateLinkage;
1760   case lltok::kw_internal:
1761     return GlobalValue::InternalLinkage;
1762   case lltok::kw_weak:
1763     return GlobalValue::WeakAnyLinkage;
1764   case lltok::kw_weak_odr:
1765     return GlobalValue::WeakODRLinkage;
1766   case lltok::kw_linkonce:
1767     return GlobalValue::LinkOnceAnyLinkage;
1768   case lltok::kw_linkonce_odr:
1769     return GlobalValue::LinkOnceODRLinkage;
1770   case lltok::kw_available_externally:
1771     return GlobalValue::AvailableExternallyLinkage;
1772   case lltok::kw_appending:
1773     return GlobalValue::AppendingLinkage;
1774   case lltok::kw_common:
1775     return GlobalValue::CommonLinkage;
1776   case lltok::kw_extern_weak:
1777     return GlobalValue::ExternalWeakLinkage;
1778   case lltok::kw_external:
1779     return GlobalValue::ExternalLinkage;
1780   }
1781 }
1782 
1783 /// ParseOptionalLinkage
1784 ///   ::= /*empty*/
1785 ///   ::= 'private'
1786 ///   ::= 'internal'
1787 ///   ::= 'weak'
1788 ///   ::= 'weak_odr'
1789 ///   ::= 'linkonce'
1790 ///   ::= 'linkonce_odr'
1791 ///   ::= 'available_externally'
1792 ///   ::= 'appending'
1793 ///   ::= 'common'
1794 ///   ::= 'extern_weak'
1795 ///   ::= 'external'
1796 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1797                                     unsigned &Visibility,
1798                                     unsigned &DLLStorageClass,
1799                                     bool &DSOLocal) {
1800   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1801   if (HasLinkage)
1802     Lex.Lex();
1803   ParseOptionalDSOLocal(DSOLocal);
1804   ParseOptionalVisibility(Visibility);
1805   ParseOptionalDLLStorageClass(DLLStorageClass);
1806 
1807   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1808     return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1809   }
1810 
1811   return false;
1812 }
1813 
1814 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) {
1815   switch (Lex.getKind()) {
1816   default:
1817     DSOLocal = false;
1818     break;
1819   case lltok::kw_dso_local:
1820     DSOLocal = true;
1821     Lex.Lex();
1822     break;
1823   case lltok::kw_dso_preemptable:
1824     DSOLocal = false;
1825     Lex.Lex();
1826     break;
1827   }
1828 }
1829 
1830 /// ParseOptionalVisibility
1831 ///   ::= /*empty*/
1832 ///   ::= 'default'
1833 ///   ::= 'hidden'
1834 ///   ::= 'protected'
1835 ///
1836 void LLParser::ParseOptionalVisibility(unsigned &Res) {
1837   switch (Lex.getKind()) {
1838   default:
1839     Res = GlobalValue::DefaultVisibility;
1840     return;
1841   case lltok::kw_default:
1842     Res = GlobalValue::DefaultVisibility;
1843     break;
1844   case lltok::kw_hidden:
1845     Res = GlobalValue::HiddenVisibility;
1846     break;
1847   case lltok::kw_protected:
1848     Res = GlobalValue::ProtectedVisibility;
1849     break;
1850   }
1851   Lex.Lex();
1852 }
1853 
1854 /// ParseOptionalDLLStorageClass
1855 ///   ::= /*empty*/
1856 ///   ::= 'dllimport'
1857 ///   ::= 'dllexport'
1858 ///
1859 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1860   switch (Lex.getKind()) {
1861   default:
1862     Res = GlobalValue::DefaultStorageClass;
1863     return;
1864   case lltok::kw_dllimport:
1865     Res = GlobalValue::DLLImportStorageClass;
1866     break;
1867   case lltok::kw_dllexport:
1868     Res = GlobalValue::DLLExportStorageClass;
1869     break;
1870   }
1871   Lex.Lex();
1872 }
1873 
1874 /// ParseOptionalCallingConv
1875 ///   ::= /*empty*/
1876 ///   ::= 'ccc'
1877 ///   ::= 'fastcc'
1878 ///   ::= 'intel_ocl_bicc'
1879 ///   ::= 'coldcc'
1880 ///   ::= 'x86_stdcallcc'
1881 ///   ::= 'x86_fastcallcc'
1882 ///   ::= 'x86_thiscallcc'
1883 ///   ::= 'x86_vectorcallcc'
1884 ///   ::= 'arm_apcscc'
1885 ///   ::= 'arm_aapcscc'
1886 ///   ::= 'arm_aapcs_vfpcc'
1887 ///   ::= 'aarch64_vector_pcs'
1888 ///   ::= 'msp430_intrcc'
1889 ///   ::= 'avr_intrcc'
1890 ///   ::= 'avr_signalcc'
1891 ///   ::= 'ptx_kernel'
1892 ///   ::= 'ptx_device'
1893 ///   ::= 'spir_func'
1894 ///   ::= 'spir_kernel'
1895 ///   ::= 'x86_64_sysvcc'
1896 ///   ::= 'win64cc'
1897 ///   ::= 'webkit_jscc'
1898 ///   ::= 'anyregcc'
1899 ///   ::= 'preserve_mostcc'
1900 ///   ::= 'preserve_allcc'
1901 ///   ::= 'ghccc'
1902 ///   ::= 'swiftcc'
1903 ///   ::= 'x86_intrcc'
1904 ///   ::= 'hhvmcc'
1905 ///   ::= 'hhvm_ccc'
1906 ///   ::= 'cxx_fast_tlscc'
1907 ///   ::= 'amdgpu_vs'
1908 ///   ::= 'amdgpu_ls'
1909 ///   ::= 'amdgpu_hs'
1910 ///   ::= 'amdgpu_es'
1911 ///   ::= 'amdgpu_gs'
1912 ///   ::= 'amdgpu_ps'
1913 ///   ::= 'amdgpu_cs'
1914 ///   ::= 'amdgpu_kernel'
1915 ///   ::= 'cc' UINT
1916 ///
1917 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
1918   switch (Lex.getKind()) {
1919   default:                       CC = CallingConv::C; return false;
1920   case lltok::kw_ccc:            CC = CallingConv::C; break;
1921   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1922   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1923   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1924   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1925   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
1926   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1927   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1928   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1929   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1930   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1931   case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
1932   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1933   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
1934   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
1935   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1936   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1937   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1938   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1939   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1940   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1941   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
1942   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
1943   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
1944   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1945   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1946   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
1947   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
1948   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
1949   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
1950   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
1951   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
1952   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
1953   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
1954   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
1955   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
1956   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
1957   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
1958   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
1959   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
1960   case lltok::kw_cc: {
1961       Lex.Lex();
1962       return ParseUInt32(CC);
1963     }
1964   }
1965 
1966   Lex.Lex();
1967   return false;
1968 }
1969 
1970 /// ParseMetadataAttachment
1971 ///   ::= !dbg !42
1972 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
1973   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
1974 
1975   std::string Name = Lex.getStrVal();
1976   Kind = M->getMDKindID(Name);
1977   Lex.Lex();
1978 
1979   return ParseMDNode(MD);
1980 }
1981 
1982 /// ParseInstructionMetadata
1983 ///   ::= !dbg !42 (',' !dbg !57)*
1984 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
1985   do {
1986     if (Lex.getKind() != lltok::MetadataVar)
1987       return TokError("expected metadata after comma");
1988 
1989     unsigned MDK;
1990     MDNode *N;
1991     if (ParseMetadataAttachment(MDK, N))
1992       return true;
1993 
1994     Inst.setMetadata(MDK, N);
1995     if (MDK == LLVMContext::MD_tbaa)
1996       InstsWithTBAATag.push_back(&Inst);
1997 
1998     // If this is the end of the list, we're done.
1999   } while (EatIfPresent(lltok::comma));
2000   return false;
2001 }
2002 
2003 /// ParseGlobalObjectMetadataAttachment
2004 ///   ::= !dbg !57
2005 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
2006   unsigned MDK;
2007   MDNode *N;
2008   if (ParseMetadataAttachment(MDK, N))
2009     return true;
2010 
2011   GO.addMetadata(MDK, *N);
2012   return false;
2013 }
2014 
2015 /// ParseOptionalFunctionMetadata
2016 ///   ::= (!dbg !57)*
2017 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
2018   while (Lex.getKind() == lltok::MetadataVar)
2019     if (ParseGlobalObjectMetadataAttachment(F))
2020       return true;
2021   return false;
2022 }
2023 
2024 /// ParseOptionalAlignment
2025 ///   ::= /* empty */
2026 ///   ::= 'align' 4
2027 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
2028   Alignment = 0;
2029   if (!EatIfPresent(lltok::kw_align))
2030     return false;
2031   LocTy AlignLoc = Lex.getLoc();
2032   if (ParseUInt32(Alignment)) return true;
2033   if (!isPowerOf2_32(Alignment))
2034     return Error(AlignLoc, "alignment is not a power of two");
2035   if (Alignment > Value::MaximumAlignment)
2036     return Error(AlignLoc, "huge alignments are not supported yet");
2037   return false;
2038 }
2039 
2040 /// ParseOptionalDerefAttrBytes
2041 ///   ::= /* empty */
2042 ///   ::= AttrKind '(' 4 ')'
2043 ///
2044 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2045 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2046                                            uint64_t &Bytes) {
2047   assert((AttrKind == lltok::kw_dereferenceable ||
2048           AttrKind == lltok::kw_dereferenceable_or_null) &&
2049          "contract!");
2050 
2051   Bytes = 0;
2052   if (!EatIfPresent(AttrKind))
2053     return false;
2054   LocTy ParenLoc = Lex.getLoc();
2055   if (!EatIfPresent(lltok::lparen))
2056     return Error(ParenLoc, "expected '('");
2057   LocTy DerefLoc = Lex.getLoc();
2058   if (ParseUInt64(Bytes)) return true;
2059   ParenLoc = Lex.getLoc();
2060   if (!EatIfPresent(lltok::rparen))
2061     return Error(ParenLoc, "expected ')'");
2062   if (!Bytes)
2063     return Error(DerefLoc, "dereferenceable bytes must be non-zero");
2064   return false;
2065 }
2066 
2067 /// ParseOptionalCommaAlign
2068 ///   ::=
2069 ///   ::= ',' align 4
2070 ///
2071 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2072 /// end.
2073 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
2074                                        bool &AteExtraComma) {
2075   AteExtraComma = false;
2076   while (EatIfPresent(lltok::comma)) {
2077     // Metadata at the end is an early exit.
2078     if (Lex.getKind() == lltok::MetadataVar) {
2079       AteExtraComma = true;
2080       return false;
2081     }
2082 
2083     if (Lex.getKind() != lltok::kw_align)
2084       return Error(Lex.getLoc(), "expected metadata or 'align'");
2085 
2086     if (ParseOptionalAlignment(Alignment)) return true;
2087   }
2088 
2089   return false;
2090 }
2091 
2092 /// ParseOptionalCommaAddrSpace
2093 ///   ::=
2094 ///   ::= ',' addrspace(1)
2095 ///
2096 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2097 /// end.
2098 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace,
2099                                            LocTy &Loc,
2100                                            bool &AteExtraComma) {
2101   AteExtraComma = false;
2102   while (EatIfPresent(lltok::comma)) {
2103     // Metadata at the end is an early exit.
2104     if (Lex.getKind() == lltok::MetadataVar) {
2105       AteExtraComma = true;
2106       return false;
2107     }
2108 
2109     Loc = Lex.getLoc();
2110     if (Lex.getKind() != lltok::kw_addrspace)
2111       return Error(Lex.getLoc(), "expected metadata or 'addrspace'");
2112 
2113     if (ParseOptionalAddrSpace(AddrSpace))
2114       return true;
2115   }
2116 
2117   return false;
2118 }
2119 
2120 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2121                                        Optional<unsigned> &HowManyArg) {
2122   Lex.Lex();
2123 
2124   auto StartParen = Lex.getLoc();
2125   if (!EatIfPresent(lltok::lparen))
2126     return Error(StartParen, "expected '('");
2127 
2128   if (ParseUInt32(BaseSizeArg))
2129     return true;
2130 
2131   if (EatIfPresent(lltok::comma)) {
2132     auto HowManyAt = Lex.getLoc();
2133     unsigned HowMany;
2134     if (ParseUInt32(HowMany))
2135       return true;
2136     if (HowMany == BaseSizeArg)
2137       return Error(HowManyAt,
2138                    "'allocsize' indices can't refer to the same parameter");
2139     HowManyArg = HowMany;
2140   } else
2141     HowManyArg = None;
2142 
2143   auto EndParen = Lex.getLoc();
2144   if (!EatIfPresent(lltok::rparen))
2145     return Error(EndParen, "expected ')'");
2146   return false;
2147 }
2148 
2149 /// ParseScopeAndOrdering
2150 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2151 ///   else: ::=
2152 ///
2153 /// This sets Scope and Ordering to the parsed values.
2154 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID,
2155                                      AtomicOrdering &Ordering) {
2156   if (!isAtomic)
2157     return false;
2158 
2159   return ParseScope(SSID) || ParseOrdering(Ordering);
2160 }
2161 
2162 /// ParseScope
2163 ///   ::= syncscope("singlethread" | "<target scope>")?
2164 ///
2165 /// This sets synchronization scope ID to the ID of the parsed value.
2166 bool LLParser::ParseScope(SyncScope::ID &SSID) {
2167   SSID = SyncScope::System;
2168   if (EatIfPresent(lltok::kw_syncscope)) {
2169     auto StartParenAt = Lex.getLoc();
2170     if (!EatIfPresent(lltok::lparen))
2171       return Error(StartParenAt, "Expected '(' in syncscope");
2172 
2173     std::string SSN;
2174     auto SSNAt = Lex.getLoc();
2175     if (ParseStringConstant(SSN))
2176       return Error(SSNAt, "Expected synchronization scope name");
2177 
2178     auto EndParenAt = Lex.getLoc();
2179     if (!EatIfPresent(lltok::rparen))
2180       return Error(EndParenAt, "Expected ')' in syncscope");
2181 
2182     SSID = Context.getOrInsertSyncScopeID(SSN);
2183   }
2184 
2185   return false;
2186 }
2187 
2188 /// ParseOrdering
2189 ///   ::= AtomicOrdering
2190 ///
2191 /// This sets Ordering to the parsed value.
2192 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
2193   switch (Lex.getKind()) {
2194   default: return TokError("Expected ordering on atomic instruction");
2195   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2196   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2197   // Not specified yet:
2198   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2199   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2200   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2201   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2202   case lltok::kw_seq_cst:
2203     Ordering = AtomicOrdering::SequentiallyConsistent;
2204     break;
2205   }
2206   Lex.Lex();
2207   return false;
2208 }
2209 
2210 /// ParseOptionalStackAlignment
2211 ///   ::= /* empty */
2212 ///   ::= 'alignstack' '(' 4 ')'
2213 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
2214   Alignment = 0;
2215   if (!EatIfPresent(lltok::kw_alignstack))
2216     return false;
2217   LocTy ParenLoc = Lex.getLoc();
2218   if (!EatIfPresent(lltok::lparen))
2219     return Error(ParenLoc, "expected '('");
2220   LocTy AlignLoc = Lex.getLoc();
2221   if (ParseUInt32(Alignment)) return true;
2222   ParenLoc = Lex.getLoc();
2223   if (!EatIfPresent(lltok::rparen))
2224     return Error(ParenLoc, "expected ')'");
2225   if (!isPowerOf2_32(Alignment))
2226     return Error(AlignLoc, "stack alignment is not a power of two");
2227   return false;
2228 }
2229 
2230 /// ParseIndexList - This parses the index list for an insert/extractvalue
2231 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2232 /// comma at the end of the line and find that it is followed by metadata.
2233 /// Clients that don't allow metadata can call the version of this function that
2234 /// only takes one argument.
2235 ///
2236 /// ParseIndexList
2237 ///    ::=  (',' uint32)+
2238 ///
2239 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
2240                               bool &AteExtraComma) {
2241   AteExtraComma = false;
2242 
2243   if (Lex.getKind() != lltok::comma)
2244     return TokError("expected ',' as start of index list");
2245 
2246   while (EatIfPresent(lltok::comma)) {
2247     if (Lex.getKind() == lltok::MetadataVar) {
2248       if (Indices.empty()) return TokError("expected index");
2249       AteExtraComma = true;
2250       return false;
2251     }
2252     unsigned Idx = 0;
2253     if (ParseUInt32(Idx)) return true;
2254     Indices.push_back(Idx);
2255   }
2256 
2257   return false;
2258 }
2259 
2260 //===----------------------------------------------------------------------===//
2261 // Type Parsing.
2262 //===----------------------------------------------------------------------===//
2263 
2264 /// ParseType - Parse a type.
2265 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2266   SMLoc TypeLoc = Lex.getLoc();
2267   switch (Lex.getKind()) {
2268   default:
2269     return TokError(Msg);
2270   case lltok::Type:
2271     // Type ::= 'float' | 'void' (etc)
2272     Result = Lex.getTyVal();
2273     Lex.Lex();
2274     break;
2275   case lltok::lbrace:
2276     // Type ::= StructType
2277     if (ParseAnonStructType(Result, false))
2278       return true;
2279     break;
2280   case lltok::lsquare:
2281     // Type ::= '[' ... ']'
2282     Lex.Lex(); // eat the lsquare.
2283     if (ParseArrayVectorType(Result, false))
2284       return true;
2285     break;
2286   case lltok::less: // Either vector or packed struct.
2287     // Type ::= '<' ... '>'
2288     Lex.Lex();
2289     if (Lex.getKind() == lltok::lbrace) {
2290       if (ParseAnonStructType(Result, true) ||
2291           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
2292         return true;
2293     } else if (ParseArrayVectorType(Result, true))
2294       return true;
2295     break;
2296   case lltok::LocalVar: {
2297     // Type ::= %foo
2298     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2299 
2300     // If the type hasn't been defined yet, create a forward definition and
2301     // remember where that forward def'n was seen (in case it never is defined).
2302     if (!Entry.first) {
2303       Entry.first = StructType::create(Context, Lex.getStrVal());
2304       Entry.second = Lex.getLoc();
2305     }
2306     Result = Entry.first;
2307     Lex.Lex();
2308     break;
2309   }
2310 
2311   case lltok::LocalVarID: {
2312     // Type ::= %4
2313     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2314 
2315     // If the type hasn't been defined yet, create a forward definition and
2316     // remember where that forward def'n was seen (in case it never is defined).
2317     if (!Entry.first) {
2318       Entry.first = StructType::create(Context);
2319       Entry.second = Lex.getLoc();
2320     }
2321     Result = Entry.first;
2322     Lex.Lex();
2323     break;
2324   }
2325   }
2326 
2327   // Parse the type suffixes.
2328   while (true) {
2329     switch (Lex.getKind()) {
2330     // End of type.
2331     default:
2332       if (!AllowVoid && Result->isVoidTy())
2333         return Error(TypeLoc, "void type only allowed for function results");
2334       return false;
2335 
2336     // Type ::= Type '*'
2337     case lltok::star:
2338       if (Result->isLabelTy())
2339         return TokError("basic block pointers are invalid");
2340       if (Result->isVoidTy())
2341         return TokError("pointers to void are invalid - use i8* instead");
2342       if (!PointerType::isValidElementType(Result))
2343         return TokError("pointer to this type is invalid");
2344       Result = PointerType::getUnqual(Result);
2345       Lex.Lex();
2346       break;
2347 
2348     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2349     case lltok::kw_addrspace: {
2350       if (Result->isLabelTy())
2351         return TokError("basic block pointers are invalid");
2352       if (Result->isVoidTy())
2353         return TokError("pointers to void are invalid; use i8* instead");
2354       if (!PointerType::isValidElementType(Result))
2355         return TokError("pointer to this type is invalid");
2356       unsigned AddrSpace;
2357       if (ParseOptionalAddrSpace(AddrSpace) ||
2358           ParseToken(lltok::star, "expected '*' in address space"))
2359         return true;
2360 
2361       Result = PointerType::get(Result, AddrSpace);
2362       break;
2363     }
2364 
2365     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2366     case lltok::lparen:
2367       if (ParseFunctionType(Result))
2368         return true;
2369       break;
2370     }
2371   }
2372 }
2373 
2374 /// ParseParameterList
2375 ///    ::= '(' ')'
2376 ///    ::= '(' Arg (',' Arg)* ')'
2377 ///  Arg
2378 ///    ::= Type OptionalAttributes Value OptionalAttributes
2379 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2380                                   PerFunctionState &PFS, bool IsMustTailCall,
2381                                   bool InVarArgsFunc) {
2382   if (ParseToken(lltok::lparen, "expected '(' in call"))
2383     return true;
2384 
2385   while (Lex.getKind() != lltok::rparen) {
2386     // If this isn't the first argument, we need a comma.
2387     if (!ArgList.empty() &&
2388         ParseToken(lltok::comma, "expected ',' in argument list"))
2389       return true;
2390 
2391     // Parse an ellipsis if this is a musttail call in a variadic function.
2392     if (Lex.getKind() == lltok::dotdotdot) {
2393       const char *Msg = "unexpected ellipsis in argument list for ";
2394       if (!IsMustTailCall)
2395         return TokError(Twine(Msg) + "non-musttail call");
2396       if (!InVarArgsFunc)
2397         return TokError(Twine(Msg) + "musttail call in non-varargs function");
2398       Lex.Lex();  // Lex the '...', it is purely for readability.
2399       return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2400     }
2401 
2402     // Parse the argument.
2403     LocTy ArgLoc;
2404     Type *ArgTy = nullptr;
2405     AttrBuilder ArgAttrs;
2406     Value *V;
2407     if (ParseType(ArgTy, ArgLoc))
2408       return true;
2409 
2410     if (ArgTy->isMetadataTy()) {
2411       if (ParseMetadataAsValue(V, PFS))
2412         return true;
2413     } else {
2414       // Otherwise, handle normal operands.
2415       if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2416         return true;
2417     }
2418     ArgList.push_back(ParamInfo(
2419         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2420   }
2421 
2422   if (IsMustTailCall && InVarArgsFunc)
2423     return TokError("expected '...' at end of argument list for musttail call "
2424                     "in varargs function");
2425 
2426   Lex.Lex();  // Lex the ')'.
2427   return false;
2428 }
2429 
2430 /// ParseOptionalOperandBundles
2431 ///    ::= /*empty*/
2432 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2433 ///
2434 /// OperandBundle
2435 ///    ::= bundle-tag '(' ')'
2436 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2437 ///
2438 /// bundle-tag ::= String Constant
2439 bool LLParser::ParseOptionalOperandBundles(
2440     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2441   LocTy BeginLoc = Lex.getLoc();
2442   if (!EatIfPresent(lltok::lsquare))
2443     return false;
2444 
2445   while (Lex.getKind() != lltok::rsquare) {
2446     // If this isn't the first operand bundle, we need a comma.
2447     if (!BundleList.empty() &&
2448         ParseToken(lltok::comma, "expected ',' in input list"))
2449       return true;
2450 
2451     std::string Tag;
2452     if (ParseStringConstant(Tag))
2453       return true;
2454 
2455     if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2456       return true;
2457 
2458     std::vector<Value *> Inputs;
2459     while (Lex.getKind() != lltok::rparen) {
2460       // If this isn't the first input, we need a comma.
2461       if (!Inputs.empty() &&
2462           ParseToken(lltok::comma, "expected ',' in input list"))
2463         return true;
2464 
2465       Type *Ty = nullptr;
2466       Value *Input = nullptr;
2467       if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2468         return true;
2469       Inputs.push_back(Input);
2470     }
2471 
2472     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2473 
2474     Lex.Lex(); // Lex the ')'.
2475   }
2476 
2477   if (BundleList.empty())
2478     return Error(BeginLoc, "operand bundle set must not be empty");
2479 
2480   Lex.Lex(); // Lex the ']'.
2481   return false;
2482 }
2483 
2484 /// ParseArgumentList - Parse the argument list for a function type or function
2485 /// prototype.
2486 ///   ::= '(' ArgTypeListI ')'
2487 /// ArgTypeListI
2488 ///   ::= /*empty*/
2489 ///   ::= '...'
2490 ///   ::= ArgTypeList ',' '...'
2491 ///   ::= ArgType (',' ArgType)*
2492 ///
2493 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2494                                  bool &isVarArg){
2495   isVarArg = false;
2496   assert(Lex.getKind() == lltok::lparen);
2497   Lex.Lex(); // eat the (.
2498 
2499   if (Lex.getKind() == lltok::rparen) {
2500     // empty
2501   } else if (Lex.getKind() == lltok::dotdotdot) {
2502     isVarArg = true;
2503     Lex.Lex();
2504   } else {
2505     LocTy TypeLoc = Lex.getLoc();
2506     Type *ArgTy = nullptr;
2507     AttrBuilder Attrs;
2508     std::string Name;
2509 
2510     if (ParseType(ArgTy) ||
2511         ParseOptionalParamAttrs(Attrs)) return true;
2512 
2513     if (ArgTy->isVoidTy())
2514       return Error(TypeLoc, "argument can not have void type");
2515 
2516     if (Lex.getKind() == lltok::LocalVar) {
2517       Name = Lex.getStrVal();
2518       Lex.Lex();
2519     }
2520 
2521     if (!FunctionType::isValidArgumentType(ArgTy))
2522       return Error(TypeLoc, "invalid type for function argument");
2523 
2524     ArgList.emplace_back(TypeLoc, ArgTy,
2525                          AttributeSet::get(ArgTy->getContext(), Attrs),
2526                          std::move(Name));
2527 
2528     while (EatIfPresent(lltok::comma)) {
2529       // Handle ... at end of arg list.
2530       if (EatIfPresent(lltok::dotdotdot)) {
2531         isVarArg = true;
2532         break;
2533       }
2534 
2535       // Otherwise must be an argument type.
2536       TypeLoc = Lex.getLoc();
2537       if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2538 
2539       if (ArgTy->isVoidTy())
2540         return Error(TypeLoc, "argument can not have void type");
2541 
2542       if (Lex.getKind() == lltok::LocalVar) {
2543         Name = Lex.getStrVal();
2544         Lex.Lex();
2545       } else {
2546         Name = "";
2547       }
2548 
2549       if (!ArgTy->isFirstClassType())
2550         return Error(TypeLoc, "invalid type for function argument");
2551 
2552       ArgList.emplace_back(TypeLoc, ArgTy,
2553                            AttributeSet::get(ArgTy->getContext(), Attrs),
2554                            std::move(Name));
2555     }
2556   }
2557 
2558   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2559 }
2560 
2561 /// ParseFunctionType
2562 ///  ::= Type ArgumentList OptionalAttrs
2563 bool LLParser::ParseFunctionType(Type *&Result) {
2564   assert(Lex.getKind() == lltok::lparen);
2565 
2566   if (!FunctionType::isValidReturnType(Result))
2567     return TokError("invalid function return type");
2568 
2569   SmallVector<ArgInfo, 8> ArgList;
2570   bool isVarArg;
2571   if (ParseArgumentList(ArgList, isVarArg))
2572     return true;
2573 
2574   // Reject names on the arguments lists.
2575   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2576     if (!ArgList[i].Name.empty())
2577       return Error(ArgList[i].Loc, "argument name invalid in function type");
2578     if (ArgList[i].Attrs.hasAttributes())
2579       return Error(ArgList[i].Loc,
2580                    "argument attributes invalid in function type");
2581   }
2582 
2583   SmallVector<Type*, 16> ArgListTy;
2584   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2585     ArgListTy.push_back(ArgList[i].Ty);
2586 
2587   Result = FunctionType::get(Result, ArgListTy, isVarArg);
2588   return false;
2589 }
2590 
2591 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2592 /// other structs.
2593 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2594   SmallVector<Type*, 8> Elts;
2595   if (ParseStructBody(Elts)) return true;
2596 
2597   Result = StructType::get(Context, Elts, Packed);
2598   return false;
2599 }
2600 
2601 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2602 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2603                                      std::pair<Type*, LocTy> &Entry,
2604                                      Type *&ResultTy) {
2605   // If the type was already defined, diagnose the redefinition.
2606   if (Entry.first && !Entry.second.isValid())
2607     return Error(TypeLoc, "redefinition of type");
2608 
2609   // If we have opaque, just return without filling in the definition for the
2610   // struct.  This counts as a definition as far as the .ll file goes.
2611   if (EatIfPresent(lltok::kw_opaque)) {
2612     // This type is being defined, so clear the location to indicate this.
2613     Entry.second = SMLoc();
2614 
2615     // If this type number has never been uttered, create it.
2616     if (!Entry.first)
2617       Entry.first = StructType::create(Context, Name);
2618     ResultTy = Entry.first;
2619     return false;
2620   }
2621 
2622   // If the type starts with '<', then it is either a packed struct or a vector.
2623   bool isPacked = EatIfPresent(lltok::less);
2624 
2625   // If we don't have a struct, then we have a random type alias, which we
2626   // accept for compatibility with old files.  These types are not allowed to be
2627   // forward referenced and not allowed to be recursive.
2628   if (Lex.getKind() != lltok::lbrace) {
2629     if (Entry.first)
2630       return Error(TypeLoc, "forward references to non-struct type");
2631 
2632     ResultTy = nullptr;
2633     if (isPacked)
2634       return ParseArrayVectorType(ResultTy, true);
2635     return ParseType(ResultTy);
2636   }
2637 
2638   // This type is being defined, so clear the location to indicate this.
2639   Entry.second = SMLoc();
2640 
2641   // If this type number has never been uttered, create it.
2642   if (!Entry.first)
2643     Entry.first = StructType::create(Context, Name);
2644 
2645   StructType *STy = cast<StructType>(Entry.first);
2646 
2647   SmallVector<Type*, 8> Body;
2648   if (ParseStructBody(Body) ||
2649       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2650     return true;
2651 
2652   STy->setBody(Body, isPacked);
2653   ResultTy = STy;
2654   return false;
2655 }
2656 
2657 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2658 ///   StructType
2659 ///     ::= '{' '}'
2660 ///     ::= '{' Type (',' Type)* '}'
2661 ///     ::= '<' '{' '}' '>'
2662 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2663 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2664   assert(Lex.getKind() == lltok::lbrace);
2665   Lex.Lex(); // Consume the '{'
2666 
2667   // Handle the empty struct.
2668   if (EatIfPresent(lltok::rbrace))
2669     return false;
2670 
2671   LocTy EltTyLoc = Lex.getLoc();
2672   Type *Ty = nullptr;
2673   if (ParseType(Ty)) return true;
2674   Body.push_back(Ty);
2675 
2676   if (!StructType::isValidElementType(Ty))
2677     return Error(EltTyLoc, "invalid element type for struct");
2678 
2679   while (EatIfPresent(lltok::comma)) {
2680     EltTyLoc = Lex.getLoc();
2681     if (ParseType(Ty)) return true;
2682 
2683     if (!StructType::isValidElementType(Ty))
2684       return Error(EltTyLoc, "invalid element type for struct");
2685 
2686     Body.push_back(Ty);
2687   }
2688 
2689   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2690 }
2691 
2692 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2693 /// token has already been consumed.
2694 ///   Type
2695 ///     ::= '[' APSINTVAL 'x' Types ']'
2696 ///     ::= '<' APSINTVAL 'x' Types '>'
2697 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2698   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2699       Lex.getAPSIntVal().getBitWidth() > 64)
2700     return TokError("expected number in address space");
2701 
2702   LocTy SizeLoc = Lex.getLoc();
2703   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2704   Lex.Lex();
2705 
2706   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2707       return true;
2708 
2709   LocTy TypeLoc = Lex.getLoc();
2710   Type *EltTy = nullptr;
2711   if (ParseType(EltTy)) return true;
2712 
2713   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2714                  "expected end of sequential type"))
2715     return true;
2716 
2717   if (isVector) {
2718     if (Size == 0)
2719       return Error(SizeLoc, "zero element vector is illegal");
2720     if ((unsigned)Size != Size)
2721       return Error(SizeLoc, "size too large for vector");
2722     if (!VectorType::isValidElementType(EltTy))
2723       return Error(TypeLoc, "invalid vector element type");
2724     Result = VectorType::get(EltTy, unsigned(Size));
2725   } else {
2726     if (!ArrayType::isValidElementType(EltTy))
2727       return Error(TypeLoc, "invalid array element type");
2728     Result = ArrayType::get(EltTy, Size);
2729   }
2730   return false;
2731 }
2732 
2733 //===----------------------------------------------------------------------===//
2734 // Function Semantic Analysis.
2735 //===----------------------------------------------------------------------===//
2736 
2737 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2738                                              int functionNumber)
2739   : P(p), F(f), FunctionNumber(functionNumber) {
2740 
2741   // Insert unnamed arguments into the NumberedVals list.
2742   for (Argument &A : F.args())
2743     if (!A.hasName())
2744       NumberedVals.push_back(&A);
2745 }
2746 
2747 LLParser::PerFunctionState::~PerFunctionState() {
2748   // If there were any forward referenced non-basicblock values, delete them.
2749 
2750   for (const auto &P : ForwardRefVals) {
2751     if (isa<BasicBlock>(P.second.first))
2752       continue;
2753     P.second.first->replaceAllUsesWith(
2754         UndefValue::get(P.second.first->getType()));
2755     P.second.first->deleteValue();
2756   }
2757 
2758   for (const auto &P : ForwardRefValIDs) {
2759     if (isa<BasicBlock>(P.second.first))
2760       continue;
2761     P.second.first->replaceAllUsesWith(
2762         UndefValue::get(P.second.first->getType()));
2763     P.second.first->deleteValue();
2764   }
2765 }
2766 
2767 bool LLParser::PerFunctionState::FinishFunction() {
2768   if (!ForwardRefVals.empty())
2769     return P.Error(ForwardRefVals.begin()->second.second,
2770                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2771                    "'");
2772   if (!ForwardRefValIDs.empty())
2773     return P.Error(ForwardRefValIDs.begin()->second.second,
2774                    "use of undefined value '%" +
2775                    Twine(ForwardRefValIDs.begin()->first) + "'");
2776   return false;
2777 }
2778 
2779 /// GetVal - Get a value with the specified name or ID, creating a
2780 /// forward reference record if needed.  This can return null if the value
2781 /// exists but does not have the right type.
2782 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2783                                           LocTy Loc, bool IsCall) {
2784   // Look this name up in the normal function symbol table.
2785   Value *Val = F.getValueSymbolTable()->lookup(Name);
2786 
2787   // If this is a forward reference for the value, see if we already created a
2788   // forward ref record.
2789   if (!Val) {
2790     auto I = ForwardRefVals.find(Name);
2791     if (I != ForwardRefVals.end())
2792       Val = I->second.first;
2793   }
2794 
2795   // If we have the value in the symbol table or fwd-ref table, return it.
2796   if (Val)
2797     return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall);
2798 
2799   // Don't make placeholders with invalid type.
2800   if (!Ty->isFirstClassType()) {
2801     P.Error(Loc, "invalid use of a non-first-class type");
2802     return nullptr;
2803   }
2804 
2805   // Otherwise, create a new forward reference for this value and remember it.
2806   Value *FwdVal;
2807   if (Ty->isLabelTy()) {
2808     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2809   } else {
2810     FwdVal = new Argument(Ty, Name);
2811   }
2812 
2813   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2814   return FwdVal;
2815 }
2816 
2817 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc,
2818                                           bool IsCall) {
2819   // Look this name up in the normal function symbol table.
2820   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2821 
2822   // If this is a forward reference for the value, see if we already created a
2823   // forward ref record.
2824   if (!Val) {
2825     auto I = ForwardRefValIDs.find(ID);
2826     if (I != ForwardRefValIDs.end())
2827       Val = I->second.first;
2828   }
2829 
2830   // If we have the value in the symbol table or fwd-ref table, return it.
2831   if (Val)
2832     return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall);
2833 
2834   if (!Ty->isFirstClassType()) {
2835     P.Error(Loc, "invalid use of a non-first-class type");
2836     return nullptr;
2837   }
2838 
2839   // Otherwise, create a new forward reference for this value and remember it.
2840   Value *FwdVal;
2841   if (Ty->isLabelTy()) {
2842     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2843   } else {
2844     FwdVal = new Argument(Ty);
2845   }
2846 
2847   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2848   return FwdVal;
2849 }
2850 
2851 /// SetInstName - After an instruction is parsed and inserted into its
2852 /// basic block, this installs its name.
2853 bool LLParser::PerFunctionState::SetInstName(int NameID,
2854                                              const std::string &NameStr,
2855                                              LocTy NameLoc, Instruction *Inst) {
2856   // If this instruction has void type, it cannot have a name or ID specified.
2857   if (Inst->getType()->isVoidTy()) {
2858     if (NameID != -1 || !NameStr.empty())
2859       return P.Error(NameLoc, "instructions returning void cannot have a name");
2860     return false;
2861   }
2862 
2863   // If this was a numbered instruction, verify that the instruction is the
2864   // expected value and resolve any forward references.
2865   if (NameStr.empty()) {
2866     // If neither a name nor an ID was specified, just use the next ID.
2867     if (NameID == -1)
2868       NameID = NumberedVals.size();
2869 
2870     if (unsigned(NameID) != NumberedVals.size())
2871       return P.Error(NameLoc, "instruction expected to be numbered '%" +
2872                      Twine(NumberedVals.size()) + "'");
2873 
2874     auto FI = ForwardRefValIDs.find(NameID);
2875     if (FI != ForwardRefValIDs.end()) {
2876       Value *Sentinel = FI->second.first;
2877       if (Sentinel->getType() != Inst->getType())
2878         return P.Error(NameLoc, "instruction forward referenced with type '" +
2879                        getTypeString(FI->second.first->getType()) + "'");
2880 
2881       Sentinel->replaceAllUsesWith(Inst);
2882       Sentinel->deleteValue();
2883       ForwardRefValIDs.erase(FI);
2884     }
2885 
2886     NumberedVals.push_back(Inst);
2887     return false;
2888   }
2889 
2890   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2891   auto FI = ForwardRefVals.find(NameStr);
2892   if (FI != ForwardRefVals.end()) {
2893     Value *Sentinel = FI->second.first;
2894     if (Sentinel->getType() != Inst->getType())
2895       return P.Error(NameLoc, "instruction forward referenced with type '" +
2896                      getTypeString(FI->second.first->getType()) + "'");
2897 
2898     Sentinel->replaceAllUsesWith(Inst);
2899     Sentinel->deleteValue();
2900     ForwardRefVals.erase(FI);
2901   }
2902 
2903   // Set the name on the instruction.
2904   Inst->setName(NameStr);
2905 
2906   if (Inst->getName() != NameStr)
2907     return P.Error(NameLoc, "multiple definition of local value named '" +
2908                    NameStr + "'");
2909   return false;
2910 }
2911 
2912 /// GetBB - Get a basic block with the specified name or ID, creating a
2913 /// forward reference record if needed.
2914 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2915                                               LocTy Loc) {
2916   return dyn_cast_or_null<BasicBlock>(
2917       GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
2918 }
2919 
2920 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
2921   return dyn_cast_or_null<BasicBlock>(
2922       GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
2923 }
2924 
2925 /// DefineBB - Define the specified basic block, which is either named or
2926 /// unnamed.  If there is an error, this returns null otherwise it returns
2927 /// the block being defined.
2928 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
2929                                                  int NameID, LocTy Loc) {
2930   BasicBlock *BB;
2931   if (Name.empty()) {
2932     if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
2933       P.Error(Loc, "label expected to be numbered '" +
2934                        Twine(NumberedVals.size()) + "'");
2935       return nullptr;
2936     }
2937     BB = GetBB(NumberedVals.size(), Loc);
2938     if (!BB) {
2939       P.Error(Loc, "unable to create block numbered '" +
2940                        Twine(NumberedVals.size()) + "'");
2941       return nullptr;
2942     }
2943   } else {
2944     BB = GetBB(Name, Loc);
2945     if (!BB) {
2946       P.Error(Loc, "unable to create block named '" + Name + "'");
2947       return nullptr;
2948     }
2949   }
2950 
2951   // Move the block to the end of the function.  Forward ref'd blocks are
2952   // inserted wherever they happen to be referenced.
2953   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2954 
2955   // Remove the block from forward ref sets.
2956   if (Name.empty()) {
2957     ForwardRefValIDs.erase(NumberedVals.size());
2958     NumberedVals.push_back(BB);
2959   } else {
2960     // BB forward references are already in the function symbol table.
2961     ForwardRefVals.erase(Name);
2962   }
2963 
2964   return BB;
2965 }
2966 
2967 //===----------------------------------------------------------------------===//
2968 // Constants.
2969 //===----------------------------------------------------------------------===//
2970 
2971 /// ParseValID - Parse an abstract value that doesn't necessarily have a
2972 /// type implied.  For example, if we parse "4" we don't know what integer type
2973 /// it has.  The value will later be combined with its type and checked for
2974 /// sanity.  PFS is used to convert function-local operands of metadata (since
2975 /// metadata operands are not just parsed here but also converted to values).
2976 /// PFS can be null when we are not parsing metadata values inside a function.
2977 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
2978   ID.Loc = Lex.getLoc();
2979   switch (Lex.getKind()) {
2980   default: return TokError("expected value token");
2981   case lltok::GlobalID:  // @42
2982     ID.UIntVal = Lex.getUIntVal();
2983     ID.Kind = ValID::t_GlobalID;
2984     break;
2985   case lltok::GlobalVar:  // @foo
2986     ID.StrVal = Lex.getStrVal();
2987     ID.Kind = ValID::t_GlobalName;
2988     break;
2989   case lltok::LocalVarID:  // %42
2990     ID.UIntVal = Lex.getUIntVal();
2991     ID.Kind = ValID::t_LocalID;
2992     break;
2993   case lltok::LocalVar:  // %foo
2994     ID.StrVal = Lex.getStrVal();
2995     ID.Kind = ValID::t_LocalName;
2996     break;
2997   case lltok::APSInt:
2998     ID.APSIntVal = Lex.getAPSIntVal();
2999     ID.Kind = ValID::t_APSInt;
3000     break;
3001   case lltok::APFloat:
3002     ID.APFloatVal = Lex.getAPFloatVal();
3003     ID.Kind = ValID::t_APFloat;
3004     break;
3005   case lltok::kw_true:
3006     ID.ConstantVal = ConstantInt::getTrue(Context);
3007     ID.Kind = ValID::t_Constant;
3008     break;
3009   case lltok::kw_false:
3010     ID.ConstantVal = ConstantInt::getFalse(Context);
3011     ID.Kind = ValID::t_Constant;
3012     break;
3013   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3014   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3015   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3016   case lltok::kw_none: ID.Kind = ValID::t_None; break;
3017 
3018   case lltok::lbrace: {
3019     // ValID ::= '{' ConstVector '}'
3020     Lex.Lex();
3021     SmallVector<Constant*, 16> Elts;
3022     if (ParseGlobalValueVector(Elts) ||
3023         ParseToken(lltok::rbrace, "expected end of struct constant"))
3024       return true;
3025 
3026     ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
3027     ID.UIntVal = Elts.size();
3028     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3029            Elts.size() * sizeof(Elts[0]));
3030     ID.Kind = ValID::t_ConstantStruct;
3031     return false;
3032   }
3033   case lltok::less: {
3034     // ValID ::= '<' ConstVector '>'         --> Vector.
3035     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3036     Lex.Lex();
3037     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3038 
3039     SmallVector<Constant*, 16> Elts;
3040     LocTy FirstEltLoc = Lex.getLoc();
3041     if (ParseGlobalValueVector(Elts) ||
3042         (isPackedStruct &&
3043          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
3044         ParseToken(lltok::greater, "expected end of constant"))
3045       return true;
3046 
3047     if (isPackedStruct) {
3048       ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
3049       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3050              Elts.size() * sizeof(Elts[0]));
3051       ID.UIntVal = Elts.size();
3052       ID.Kind = ValID::t_PackedConstantStruct;
3053       return false;
3054     }
3055 
3056     if (Elts.empty())
3057       return Error(ID.Loc, "constant vector must not be empty");
3058 
3059     if (!Elts[0]->getType()->isIntegerTy() &&
3060         !Elts[0]->getType()->isFloatingPointTy() &&
3061         !Elts[0]->getType()->isPointerTy())
3062       return Error(FirstEltLoc,
3063             "vector elements must have integer, pointer or floating point type");
3064 
3065     // Verify that all the vector elements have the same type.
3066     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3067       if (Elts[i]->getType() != Elts[0]->getType())
3068         return Error(FirstEltLoc,
3069                      "vector element #" + Twine(i) +
3070                     " is not of type '" + getTypeString(Elts[0]->getType()));
3071 
3072     ID.ConstantVal = ConstantVector::get(Elts);
3073     ID.Kind = ValID::t_Constant;
3074     return false;
3075   }
3076   case lltok::lsquare: {   // Array Constant
3077     Lex.Lex();
3078     SmallVector<Constant*, 16> Elts;
3079     LocTy FirstEltLoc = Lex.getLoc();
3080     if (ParseGlobalValueVector(Elts) ||
3081         ParseToken(lltok::rsquare, "expected end of array constant"))
3082       return true;
3083 
3084     // Handle empty element.
3085     if (Elts.empty()) {
3086       // Use undef instead of an array because it's inconvenient to determine
3087       // the element type at this point, there being no elements to examine.
3088       ID.Kind = ValID::t_EmptyArray;
3089       return false;
3090     }
3091 
3092     if (!Elts[0]->getType()->isFirstClassType())
3093       return Error(FirstEltLoc, "invalid array element type: " +
3094                    getTypeString(Elts[0]->getType()));
3095 
3096     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3097 
3098     // Verify all elements are correct type!
3099     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3100       if (Elts[i]->getType() != Elts[0]->getType())
3101         return Error(FirstEltLoc,
3102                      "array element #" + Twine(i) +
3103                      " is not of type '" + getTypeString(Elts[0]->getType()));
3104     }
3105 
3106     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3107     ID.Kind = ValID::t_Constant;
3108     return false;
3109   }
3110   case lltok::kw_c:  // c "foo"
3111     Lex.Lex();
3112     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3113                                                   false);
3114     if (ParseToken(lltok::StringConstant, "expected string")) return true;
3115     ID.Kind = ValID::t_Constant;
3116     return false;
3117 
3118   case lltok::kw_asm: {
3119     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3120     //             STRINGCONSTANT
3121     bool HasSideEffect, AlignStack, AsmDialect;
3122     Lex.Lex();
3123     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3124         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3125         ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3126         ParseStringConstant(ID.StrVal) ||
3127         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
3128         ParseToken(lltok::StringConstant, "expected constraint string"))
3129       return true;
3130     ID.StrVal2 = Lex.getStrVal();
3131     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
3132       (unsigned(AsmDialect)<<2);
3133     ID.Kind = ValID::t_InlineAsm;
3134     return false;
3135   }
3136 
3137   case lltok::kw_blockaddress: {
3138     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3139     Lex.Lex();
3140 
3141     ValID Fn, Label;
3142 
3143     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
3144         ParseValID(Fn) ||
3145         ParseToken(lltok::comma, "expected comma in block address expression")||
3146         ParseValID(Label) ||
3147         ParseToken(lltok::rparen, "expected ')' in block address expression"))
3148       return true;
3149 
3150     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3151       return Error(Fn.Loc, "expected function name in blockaddress");
3152     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3153       return Error(Label.Loc, "expected basic block name in blockaddress");
3154 
3155     // Try to find the function (but skip it if it's forward-referenced).
3156     GlobalValue *GV = nullptr;
3157     if (Fn.Kind == ValID::t_GlobalID) {
3158       if (Fn.UIntVal < NumberedVals.size())
3159         GV = NumberedVals[Fn.UIntVal];
3160     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3161       GV = M->getNamedValue(Fn.StrVal);
3162     }
3163     Function *F = nullptr;
3164     if (GV) {
3165       // Confirm that it's actually a function with a definition.
3166       if (!isa<Function>(GV))
3167         return Error(Fn.Loc, "expected function name in blockaddress");
3168       F = cast<Function>(GV);
3169       if (F->isDeclaration())
3170         return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
3171     }
3172 
3173     if (!F) {
3174       // Make a global variable as a placeholder for this reference.
3175       GlobalValue *&FwdRef =
3176           ForwardRefBlockAddresses.insert(std::make_pair(
3177                                               std::move(Fn),
3178                                               std::map<ValID, GlobalValue *>()))
3179               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3180               .first->second;
3181       if (!FwdRef)
3182         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3183                                     GlobalValue::InternalLinkage, nullptr, "");
3184       ID.ConstantVal = FwdRef;
3185       ID.Kind = ValID::t_Constant;
3186       return false;
3187     }
3188 
3189     // We found the function; now find the basic block.  Don't use PFS, since we
3190     // might be inside a constant expression.
3191     BasicBlock *BB;
3192     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3193       if (Label.Kind == ValID::t_LocalID)
3194         BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
3195       else
3196         BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
3197       if (!BB)
3198         return Error(Label.Loc, "referenced value is not a basic block");
3199     } else {
3200       if (Label.Kind == ValID::t_LocalID)
3201         return Error(Label.Loc, "cannot take address of numeric label after "
3202                                 "the function is defined");
3203       BB = dyn_cast_or_null<BasicBlock>(
3204           F->getValueSymbolTable()->lookup(Label.StrVal));
3205       if (!BB)
3206         return Error(Label.Loc, "referenced value is not a basic block");
3207     }
3208 
3209     ID.ConstantVal = BlockAddress::get(F, BB);
3210     ID.Kind = ValID::t_Constant;
3211     return false;
3212   }
3213 
3214   case lltok::kw_trunc:
3215   case lltok::kw_zext:
3216   case lltok::kw_sext:
3217   case lltok::kw_fptrunc:
3218   case lltok::kw_fpext:
3219   case lltok::kw_bitcast:
3220   case lltok::kw_addrspacecast:
3221   case lltok::kw_uitofp:
3222   case lltok::kw_sitofp:
3223   case lltok::kw_fptoui:
3224   case lltok::kw_fptosi:
3225   case lltok::kw_inttoptr:
3226   case lltok::kw_ptrtoint: {
3227     unsigned Opc = Lex.getUIntVal();
3228     Type *DestTy = nullptr;
3229     Constant *SrcVal;
3230     Lex.Lex();
3231     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3232         ParseGlobalTypeAndValue(SrcVal) ||
3233         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3234         ParseType(DestTy) ||
3235         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3236       return true;
3237     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3238       return Error(ID.Loc, "invalid cast opcode for cast from '" +
3239                    getTypeString(SrcVal->getType()) + "' to '" +
3240                    getTypeString(DestTy) + "'");
3241     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3242                                                  SrcVal, DestTy);
3243     ID.Kind = ValID::t_Constant;
3244     return false;
3245   }
3246   case lltok::kw_extractvalue: {
3247     Lex.Lex();
3248     Constant *Val;
3249     SmallVector<unsigned, 4> Indices;
3250     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
3251         ParseGlobalTypeAndValue(Val) ||
3252         ParseIndexList(Indices) ||
3253         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3254       return true;
3255 
3256     if (!Val->getType()->isAggregateType())
3257       return Error(ID.Loc, "extractvalue operand must be aggregate type");
3258     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3259       return Error(ID.Loc, "invalid indices for extractvalue");
3260     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3261     ID.Kind = ValID::t_Constant;
3262     return false;
3263   }
3264   case lltok::kw_insertvalue: {
3265     Lex.Lex();
3266     Constant *Val0, *Val1;
3267     SmallVector<unsigned, 4> Indices;
3268     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
3269         ParseGlobalTypeAndValue(Val0) ||
3270         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
3271         ParseGlobalTypeAndValue(Val1) ||
3272         ParseIndexList(Indices) ||
3273         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3274       return true;
3275     if (!Val0->getType()->isAggregateType())
3276       return Error(ID.Loc, "insertvalue operand must be aggregate type");
3277     Type *IndexedType =
3278         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3279     if (!IndexedType)
3280       return Error(ID.Loc, "invalid indices for insertvalue");
3281     if (IndexedType != Val1->getType())
3282       return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3283                                getTypeString(Val1->getType()) +
3284                                "' instead of '" + getTypeString(IndexedType) +
3285                                "'");
3286     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3287     ID.Kind = ValID::t_Constant;
3288     return false;
3289   }
3290   case lltok::kw_icmp:
3291   case lltok::kw_fcmp: {
3292     unsigned PredVal, Opc = Lex.getUIntVal();
3293     Constant *Val0, *Val1;
3294     Lex.Lex();
3295     if (ParseCmpPredicate(PredVal, Opc) ||
3296         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3297         ParseGlobalTypeAndValue(Val0) ||
3298         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
3299         ParseGlobalTypeAndValue(Val1) ||
3300         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3301       return true;
3302 
3303     if (Val0->getType() != Val1->getType())
3304       return Error(ID.Loc, "compare operands must have the same type");
3305 
3306     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3307 
3308     if (Opc == Instruction::FCmp) {
3309       if (!Val0->getType()->isFPOrFPVectorTy())
3310         return Error(ID.Loc, "fcmp requires floating point operands");
3311       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3312     } else {
3313       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3314       if (!Val0->getType()->isIntOrIntVectorTy() &&
3315           !Val0->getType()->isPtrOrPtrVectorTy())
3316         return Error(ID.Loc, "icmp requires pointer or integer operands");
3317       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3318     }
3319     ID.Kind = ValID::t_Constant;
3320     return false;
3321   }
3322 
3323   // Unary Operators.
3324   case lltok::kw_fneg: {
3325     unsigned Opc = Lex.getUIntVal();
3326     Constant *Val;
3327     Lex.Lex();
3328     if (ParseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3329         ParseGlobalTypeAndValue(Val) ||
3330         ParseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3331       return true;
3332 
3333     // Check that the type is valid for the operator.
3334     switch (Opc) {
3335     case Instruction::FNeg:
3336       if (!Val->getType()->isFPOrFPVectorTy())
3337         return Error(ID.Loc, "constexpr requires fp operands");
3338       break;
3339     default: llvm_unreachable("Unknown unary operator!");
3340     }
3341     unsigned Flags = 0;
3342     Constant *C = ConstantExpr::get(Opc, Val, Flags);
3343     ID.ConstantVal = C;
3344     ID.Kind = ValID::t_Constant;
3345     return false;
3346   }
3347   // Binary Operators.
3348   case lltok::kw_add:
3349   case lltok::kw_fadd:
3350   case lltok::kw_sub:
3351   case lltok::kw_fsub:
3352   case lltok::kw_mul:
3353   case lltok::kw_fmul:
3354   case lltok::kw_udiv:
3355   case lltok::kw_sdiv:
3356   case lltok::kw_fdiv:
3357   case lltok::kw_urem:
3358   case lltok::kw_srem:
3359   case lltok::kw_frem:
3360   case lltok::kw_shl:
3361   case lltok::kw_lshr:
3362   case lltok::kw_ashr: {
3363     bool NUW = false;
3364     bool NSW = false;
3365     bool Exact = false;
3366     unsigned Opc = Lex.getUIntVal();
3367     Constant *Val0, *Val1;
3368     Lex.Lex();
3369     LocTy ModifierLoc = Lex.getLoc();
3370     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3371         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3372       if (EatIfPresent(lltok::kw_nuw))
3373         NUW = true;
3374       if (EatIfPresent(lltok::kw_nsw)) {
3375         NSW = true;
3376         if (EatIfPresent(lltok::kw_nuw))
3377           NUW = true;
3378       }
3379     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3380                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3381       if (EatIfPresent(lltok::kw_exact))
3382         Exact = true;
3383     }
3384     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3385         ParseGlobalTypeAndValue(Val0) ||
3386         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
3387         ParseGlobalTypeAndValue(Val1) ||
3388         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3389       return true;
3390     if (Val0->getType() != Val1->getType())
3391       return Error(ID.Loc, "operands of constexpr must have same type");
3392     if (!Val0->getType()->isIntOrIntVectorTy()) {
3393       if (NUW)
3394         return Error(ModifierLoc, "nuw only applies to integer operations");
3395       if (NSW)
3396         return Error(ModifierLoc, "nsw only applies to integer operations");
3397     }
3398     // Check that the type is valid for the operator.
3399     switch (Opc) {
3400     case Instruction::Add:
3401     case Instruction::Sub:
3402     case Instruction::Mul:
3403     case Instruction::UDiv:
3404     case Instruction::SDiv:
3405     case Instruction::URem:
3406     case Instruction::SRem:
3407     case Instruction::Shl:
3408     case Instruction::AShr:
3409     case Instruction::LShr:
3410       if (!Val0->getType()->isIntOrIntVectorTy())
3411         return Error(ID.Loc, "constexpr requires integer operands");
3412       break;
3413     case Instruction::FAdd:
3414     case Instruction::FSub:
3415     case Instruction::FMul:
3416     case Instruction::FDiv:
3417     case Instruction::FRem:
3418       if (!Val0->getType()->isFPOrFPVectorTy())
3419         return Error(ID.Loc, "constexpr requires fp operands");
3420       break;
3421     default: llvm_unreachable("Unknown binary operator!");
3422     }
3423     unsigned Flags = 0;
3424     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3425     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3426     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3427     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3428     ID.ConstantVal = C;
3429     ID.Kind = ValID::t_Constant;
3430     return false;
3431   }
3432 
3433   // Logical Operations
3434   case lltok::kw_and:
3435   case lltok::kw_or:
3436   case lltok::kw_xor: {
3437     unsigned Opc = Lex.getUIntVal();
3438     Constant *Val0, *Val1;
3439     Lex.Lex();
3440     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3441         ParseGlobalTypeAndValue(Val0) ||
3442         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3443         ParseGlobalTypeAndValue(Val1) ||
3444         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3445       return true;
3446     if (Val0->getType() != Val1->getType())
3447       return Error(ID.Loc, "operands of constexpr must have same type");
3448     if (!Val0->getType()->isIntOrIntVectorTy())
3449       return Error(ID.Loc,
3450                    "constexpr requires integer or integer vector operands");
3451     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3452     ID.Kind = ValID::t_Constant;
3453     return false;
3454   }
3455 
3456   case lltok::kw_getelementptr:
3457   case lltok::kw_shufflevector:
3458   case lltok::kw_insertelement:
3459   case lltok::kw_extractelement:
3460   case lltok::kw_select: {
3461     unsigned Opc = Lex.getUIntVal();
3462     SmallVector<Constant*, 16> Elts;
3463     bool InBounds = false;
3464     Type *Ty;
3465     Lex.Lex();
3466 
3467     if (Opc == Instruction::GetElementPtr)
3468       InBounds = EatIfPresent(lltok::kw_inbounds);
3469 
3470     if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3471       return true;
3472 
3473     LocTy ExplicitTypeLoc = Lex.getLoc();
3474     if (Opc == Instruction::GetElementPtr) {
3475       if (ParseType(Ty) ||
3476           ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3477         return true;
3478     }
3479 
3480     Optional<unsigned> InRangeOp;
3481     if (ParseGlobalValueVector(
3482             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3483         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3484       return true;
3485 
3486     if (Opc == Instruction::GetElementPtr) {
3487       if (Elts.size() == 0 ||
3488           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3489         return Error(ID.Loc, "base of getelementptr must be a pointer");
3490 
3491       Type *BaseType = Elts[0]->getType();
3492       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3493       if (Ty != BasePointerType->getElementType())
3494         return Error(
3495             ExplicitTypeLoc,
3496             "explicit pointee type doesn't match operand's pointee type");
3497 
3498       unsigned GEPWidth =
3499           BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0;
3500 
3501       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3502       for (Constant *Val : Indices) {
3503         Type *ValTy = Val->getType();
3504         if (!ValTy->isIntOrIntVectorTy())
3505           return Error(ID.Loc, "getelementptr index must be an integer");
3506         if (ValTy->isVectorTy()) {
3507           unsigned ValNumEl = ValTy->getVectorNumElements();
3508           if (GEPWidth && (ValNumEl != GEPWidth))
3509             return Error(
3510                 ID.Loc,
3511                 "getelementptr vector index has a wrong number of elements");
3512           // GEPWidth may have been unknown because the base is a scalar,
3513           // but it is known now.
3514           GEPWidth = ValNumEl;
3515         }
3516       }
3517 
3518       SmallPtrSet<Type*, 4> Visited;
3519       if (!Indices.empty() && !Ty->isSized(&Visited))
3520         return Error(ID.Loc, "base element of getelementptr must be sized");
3521 
3522       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3523         return Error(ID.Loc, "invalid getelementptr indices");
3524 
3525       if (InRangeOp) {
3526         if (*InRangeOp == 0)
3527           return Error(ID.Loc,
3528                        "inrange keyword may not appear on pointer operand");
3529         --*InRangeOp;
3530       }
3531 
3532       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3533                                                       InBounds, InRangeOp);
3534     } else if (Opc == Instruction::Select) {
3535       if (Elts.size() != 3)
3536         return Error(ID.Loc, "expected three operands to select");
3537       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3538                                                               Elts[2]))
3539         return Error(ID.Loc, Reason);
3540       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3541     } else if (Opc == Instruction::ShuffleVector) {
3542       if (Elts.size() != 3)
3543         return Error(ID.Loc, "expected three operands to shufflevector");
3544       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3545         return Error(ID.Loc, "invalid operands to shufflevector");
3546       ID.ConstantVal =
3547                  ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
3548     } else if (Opc == Instruction::ExtractElement) {
3549       if (Elts.size() != 2)
3550         return Error(ID.Loc, "expected two operands to extractelement");
3551       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3552         return Error(ID.Loc, "invalid extractelement operands");
3553       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3554     } else {
3555       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3556       if (Elts.size() != 3)
3557       return Error(ID.Loc, "expected three operands to insertelement");
3558       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3559         return Error(ID.Loc, "invalid insertelement operands");
3560       ID.ConstantVal =
3561                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3562     }
3563 
3564     ID.Kind = ValID::t_Constant;
3565     return false;
3566   }
3567   }
3568 
3569   Lex.Lex();
3570   return false;
3571 }
3572 
3573 /// ParseGlobalValue - Parse a global value with the specified type.
3574 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3575   C = nullptr;
3576   ValID ID;
3577   Value *V = nullptr;
3578   bool Parsed = ParseValID(ID) ||
3579                 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3580   if (V && !(C = dyn_cast<Constant>(V)))
3581     return Error(ID.Loc, "global values must be constants");
3582   return Parsed;
3583 }
3584 
3585 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3586   Type *Ty = nullptr;
3587   return ParseType(Ty) ||
3588          ParseGlobalValue(Ty, V);
3589 }
3590 
3591 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3592   C = nullptr;
3593 
3594   LocTy KwLoc = Lex.getLoc();
3595   if (!EatIfPresent(lltok::kw_comdat))
3596     return false;
3597 
3598   if (EatIfPresent(lltok::lparen)) {
3599     if (Lex.getKind() != lltok::ComdatVar)
3600       return TokError("expected comdat variable");
3601     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3602     Lex.Lex();
3603     if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3604       return true;
3605   } else {
3606     if (GlobalName.empty())
3607       return TokError("comdat cannot be unnamed");
3608     C = getComdat(GlobalName, KwLoc);
3609   }
3610 
3611   return false;
3612 }
3613 
3614 /// ParseGlobalValueVector
3615 ///   ::= /*empty*/
3616 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3617 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3618                                       Optional<unsigned> *InRangeOp) {
3619   // Empty list.
3620   if (Lex.getKind() == lltok::rbrace ||
3621       Lex.getKind() == lltok::rsquare ||
3622       Lex.getKind() == lltok::greater ||
3623       Lex.getKind() == lltok::rparen)
3624     return false;
3625 
3626   do {
3627     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3628       *InRangeOp = Elts.size();
3629 
3630     Constant *C;
3631     if (ParseGlobalTypeAndValue(C)) return true;
3632     Elts.push_back(C);
3633   } while (EatIfPresent(lltok::comma));
3634 
3635   return false;
3636 }
3637 
3638 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3639   SmallVector<Metadata *, 16> Elts;
3640   if (ParseMDNodeVector(Elts))
3641     return true;
3642 
3643   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3644   return false;
3645 }
3646 
3647 /// MDNode:
3648 ///  ::= !{ ... }
3649 ///  ::= !7
3650 ///  ::= !DILocation(...)
3651 bool LLParser::ParseMDNode(MDNode *&N) {
3652   if (Lex.getKind() == lltok::MetadataVar)
3653     return ParseSpecializedMDNode(N);
3654 
3655   return ParseToken(lltok::exclaim, "expected '!' here") ||
3656          ParseMDNodeTail(N);
3657 }
3658 
3659 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3660   // !{ ... }
3661   if (Lex.getKind() == lltok::lbrace)
3662     return ParseMDTuple(N);
3663 
3664   // !42
3665   return ParseMDNodeID(N);
3666 }
3667 
3668 namespace {
3669 
3670 /// Structure to represent an optional metadata field.
3671 template <class FieldTy> struct MDFieldImpl {
3672   typedef MDFieldImpl ImplTy;
3673   FieldTy Val;
3674   bool Seen;
3675 
3676   void assign(FieldTy Val) {
3677     Seen = true;
3678     this->Val = std::move(Val);
3679   }
3680 
3681   explicit MDFieldImpl(FieldTy Default)
3682       : Val(std::move(Default)), Seen(false) {}
3683 };
3684 
3685 /// Structure to represent an optional metadata field that
3686 /// can be of either type (A or B) and encapsulates the
3687 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3688 /// to reimplement the specifics for representing each Field.
3689 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3690   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3691   FieldTypeA A;
3692   FieldTypeB B;
3693   bool Seen;
3694 
3695   enum {
3696     IsInvalid = 0,
3697     IsTypeA = 1,
3698     IsTypeB = 2
3699   } WhatIs;
3700 
3701   void assign(FieldTypeA A) {
3702     Seen = true;
3703     this->A = std::move(A);
3704     WhatIs = IsTypeA;
3705   }
3706 
3707   void assign(FieldTypeB B) {
3708     Seen = true;
3709     this->B = std::move(B);
3710     WhatIs = IsTypeB;
3711   }
3712 
3713   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3714       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3715         WhatIs(IsInvalid) {}
3716 };
3717 
3718 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3719   uint64_t Max;
3720 
3721   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3722       : ImplTy(Default), Max(Max) {}
3723 };
3724 
3725 struct LineField : public MDUnsignedField {
3726   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3727 };
3728 
3729 struct ColumnField : public MDUnsignedField {
3730   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3731 };
3732 
3733 struct DwarfTagField : public MDUnsignedField {
3734   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3735   DwarfTagField(dwarf::Tag DefaultTag)
3736       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3737 };
3738 
3739 struct DwarfMacinfoTypeField : public MDUnsignedField {
3740   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3741   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3742     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3743 };
3744 
3745 struct DwarfAttEncodingField : public MDUnsignedField {
3746   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3747 };
3748 
3749 struct DwarfVirtualityField : public MDUnsignedField {
3750   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3751 };
3752 
3753 struct DwarfLangField : public MDUnsignedField {
3754   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3755 };
3756 
3757 struct DwarfCCField : public MDUnsignedField {
3758   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3759 };
3760 
3761 struct EmissionKindField : public MDUnsignedField {
3762   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3763 };
3764 
3765 struct NameTableKindField : public MDUnsignedField {
3766   NameTableKindField()
3767       : MDUnsignedField(
3768             0, (unsigned)
3769                    DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
3770 };
3771 
3772 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3773   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3774 };
3775 
3776 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
3777   DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
3778 };
3779 
3780 struct MDSignedField : public MDFieldImpl<int64_t> {
3781   int64_t Min;
3782   int64_t Max;
3783 
3784   MDSignedField(int64_t Default = 0)
3785       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3786   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3787       : ImplTy(Default), Min(Min), Max(Max) {}
3788 };
3789 
3790 struct MDBoolField : public MDFieldImpl<bool> {
3791   MDBoolField(bool Default = false) : ImplTy(Default) {}
3792 };
3793 
3794 struct MDField : public MDFieldImpl<Metadata *> {
3795   bool AllowNull;
3796 
3797   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3798 };
3799 
3800 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3801   MDConstant() : ImplTy(nullptr) {}
3802 };
3803 
3804 struct MDStringField : public MDFieldImpl<MDString *> {
3805   bool AllowEmpty;
3806   MDStringField(bool AllowEmpty = true)
3807       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3808 };
3809 
3810 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3811   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3812 };
3813 
3814 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
3815   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3816 };
3817 
3818 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
3819   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
3820       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
3821 
3822   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
3823                     bool AllowNull = true)
3824       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
3825 
3826   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3827   bool isMDField() const { return WhatIs == IsTypeB; }
3828   int64_t getMDSignedValue() const {
3829     assert(isMDSignedField() && "Wrong field type");
3830     return A.Val;
3831   }
3832   Metadata *getMDFieldValue() const {
3833     assert(isMDField() && "Wrong field type");
3834     return B.Val;
3835   }
3836 };
3837 
3838 struct MDSignedOrUnsignedField
3839     : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
3840   MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
3841 
3842   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3843   bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
3844   int64_t getMDSignedValue() const {
3845     assert(isMDSignedField() && "Wrong field type");
3846     return A.Val;
3847   }
3848   uint64_t getMDUnsignedValue() const {
3849     assert(isMDUnsignedField() && "Wrong field type");
3850     return B.Val;
3851   }
3852 };
3853 
3854 } // end anonymous namespace
3855 
3856 namespace llvm {
3857 
3858 template <>
3859 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3860                             MDUnsignedField &Result) {
3861   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3862     return TokError("expected unsigned integer");
3863 
3864   auto &U = Lex.getAPSIntVal();
3865   if (U.ugt(Result.Max))
3866     return TokError("value for '" + Name + "' too large, limit is " +
3867                     Twine(Result.Max));
3868   Result.assign(U.getZExtValue());
3869   assert(Result.Val <= Result.Max && "Expected value in range");
3870   Lex.Lex();
3871   return false;
3872 }
3873 
3874 template <>
3875 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3876   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3877 }
3878 template <>
3879 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3880   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3881 }
3882 
3883 template <>
3884 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3885   if (Lex.getKind() == lltok::APSInt)
3886     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3887 
3888   if (Lex.getKind() != lltok::DwarfTag)
3889     return TokError("expected DWARF tag");
3890 
3891   unsigned Tag = dwarf::getTag(Lex.getStrVal());
3892   if (Tag == dwarf::DW_TAG_invalid)
3893     return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3894   assert(Tag <= Result.Max && "Expected valid DWARF tag");
3895 
3896   Result.assign(Tag);
3897   Lex.Lex();
3898   return false;
3899 }
3900 
3901 template <>
3902 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3903                             DwarfMacinfoTypeField &Result) {
3904   if (Lex.getKind() == lltok::APSInt)
3905     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3906 
3907   if (Lex.getKind() != lltok::DwarfMacinfo)
3908     return TokError("expected DWARF macinfo type");
3909 
3910   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
3911   if (Macinfo == dwarf::DW_MACINFO_invalid)
3912     return TokError(
3913         "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
3914   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
3915 
3916   Result.assign(Macinfo);
3917   Lex.Lex();
3918   return false;
3919 }
3920 
3921 template <>
3922 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3923                             DwarfVirtualityField &Result) {
3924   if (Lex.getKind() == lltok::APSInt)
3925     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3926 
3927   if (Lex.getKind() != lltok::DwarfVirtuality)
3928     return TokError("expected DWARF virtuality code");
3929 
3930   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
3931   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
3932     return TokError("invalid DWARF virtuality code" + Twine(" '") +
3933                     Lex.getStrVal() + "'");
3934   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
3935   Result.assign(Virtuality);
3936   Lex.Lex();
3937   return false;
3938 }
3939 
3940 template <>
3941 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
3942   if (Lex.getKind() == lltok::APSInt)
3943     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3944 
3945   if (Lex.getKind() != lltok::DwarfLang)
3946     return TokError("expected DWARF language");
3947 
3948   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
3949   if (!Lang)
3950     return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
3951                     "'");
3952   assert(Lang <= Result.Max && "Expected valid DWARF language");
3953   Result.assign(Lang);
3954   Lex.Lex();
3955   return false;
3956 }
3957 
3958 template <>
3959 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
3960   if (Lex.getKind() == lltok::APSInt)
3961     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3962 
3963   if (Lex.getKind() != lltok::DwarfCC)
3964     return TokError("expected DWARF calling convention");
3965 
3966   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
3967   if (!CC)
3968     return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() +
3969                     "'");
3970   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
3971   Result.assign(CC);
3972   Lex.Lex();
3973   return false;
3974 }
3975 
3976 template <>
3977 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
3978   if (Lex.getKind() == lltok::APSInt)
3979     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3980 
3981   if (Lex.getKind() != lltok::EmissionKind)
3982     return TokError("expected emission kind");
3983 
3984   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
3985   if (!Kind)
3986     return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
3987                     "'");
3988   assert(*Kind <= Result.Max && "Expected valid emission kind");
3989   Result.assign(*Kind);
3990   Lex.Lex();
3991   return false;
3992 }
3993 
3994 template <>
3995 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3996                             NameTableKindField &Result) {
3997   if (Lex.getKind() == lltok::APSInt)
3998     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3999 
4000   if (Lex.getKind() != lltok::NameTableKind)
4001     return TokError("expected nameTable kind");
4002 
4003   auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4004   if (!Kind)
4005     return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4006                     "'");
4007   assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4008   Result.assign((unsigned)*Kind);
4009   Lex.Lex();
4010   return false;
4011 }
4012 
4013 template <>
4014 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4015                             DwarfAttEncodingField &Result) {
4016   if (Lex.getKind() == lltok::APSInt)
4017     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4018 
4019   if (Lex.getKind() != lltok::DwarfAttEncoding)
4020     return TokError("expected DWARF type attribute encoding");
4021 
4022   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4023   if (!Encoding)
4024     return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
4025                     Lex.getStrVal() + "'");
4026   assert(Encoding <= Result.Max && "Expected valid DWARF language");
4027   Result.assign(Encoding);
4028   Lex.Lex();
4029   return false;
4030 }
4031 
4032 /// DIFlagField
4033 ///  ::= uint32
4034 ///  ::= DIFlagVector
4035 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4036 template <>
4037 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4038 
4039   // Parser for a single flag.
4040   auto parseFlag = [&](DINode::DIFlags &Val) {
4041     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4042       uint32_t TempVal = static_cast<uint32_t>(Val);
4043       bool Res = ParseUInt32(TempVal);
4044       Val = static_cast<DINode::DIFlags>(TempVal);
4045       return Res;
4046     }
4047 
4048     if (Lex.getKind() != lltok::DIFlag)
4049       return TokError("expected debug info flag");
4050 
4051     Val = DINode::getFlag(Lex.getStrVal());
4052     if (!Val)
4053       return TokError(Twine("invalid debug info flag flag '") +
4054                       Lex.getStrVal() + "'");
4055     Lex.Lex();
4056     return false;
4057   };
4058 
4059   // Parse the flags and combine them together.
4060   DINode::DIFlags Combined = DINode::FlagZero;
4061   do {
4062     DINode::DIFlags Val;
4063     if (parseFlag(Val))
4064       return true;
4065     Combined |= Val;
4066   } while (EatIfPresent(lltok::bar));
4067 
4068   Result.assign(Combined);
4069   return false;
4070 }
4071 
4072 /// DISPFlagField
4073 ///  ::= uint32
4074 ///  ::= DISPFlagVector
4075 ///  ::= DISPFlagVector '|' DISPFlag* '|' uint32
4076 template <>
4077 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4078 
4079   // Parser for a single flag.
4080   auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4081     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4082       uint32_t TempVal = static_cast<uint32_t>(Val);
4083       bool Res = ParseUInt32(TempVal);
4084       Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4085       return Res;
4086     }
4087 
4088     if (Lex.getKind() != lltok::DISPFlag)
4089       return TokError("expected debug info flag");
4090 
4091     Val = DISubprogram::getFlag(Lex.getStrVal());
4092     if (!Val)
4093       return TokError(Twine("invalid subprogram debug info flag '") +
4094                       Lex.getStrVal() + "'");
4095     Lex.Lex();
4096     return false;
4097   };
4098 
4099   // Parse the flags and combine them together.
4100   DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4101   do {
4102     DISubprogram::DISPFlags Val;
4103     if (parseFlag(Val))
4104       return true;
4105     Combined |= Val;
4106   } while (EatIfPresent(lltok::bar));
4107 
4108   Result.assign(Combined);
4109   return false;
4110 }
4111 
4112 template <>
4113 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4114                             MDSignedField &Result) {
4115   if (Lex.getKind() != lltok::APSInt)
4116     return TokError("expected signed integer");
4117 
4118   auto &S = Lex.getAPSIntVal();
4119   if (S < Result.Min)
4120     return TokError("value for '" + Name + "' too small, limit is " +
4121                     Twine(Result.Min));
4122   if (S > Result.Max)
4123     return TokError("value for '" + Name + "' too large, limit is " +
4124                     Twine(Result.Max));
4125   Result.assign(S.getExtValue());
4126   assert(Result.Val >= Result.Min && "Expected value in range");
4127   assert(Result.Val <= Result.Max && "Expected value in range");
4128   Lex.Lex();
4129   return false;
4130 }
4131 
4132 template <>
4133 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4134   switch (Lex.getKind()) {
4135   default:
4136     return TokError("expected 'true' or 'false'");
4137   case lltok::kw_true:
4138     Result.assign(true);
4139     break;
4140   case lltok::kw_false:
4141     Result.assign(false);
4142     break;
4143   }
4144   Lex.Lex();
4145   return false;
4146 }
4147 
4148 template <>
4149 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4150   if (Lex.getKind() == lltok::kw_null) {
4151     if (!Result.AllowNull)
4152       return TokError("'" + Name + "' cannot be null");
4153     Lex.Lex();
4154     Result.assign(nullptr);
4155     return false;
4156   }
4157 
4158   Metadata *MD;
4159   if (ParseMetadata(MD, nullptr))
4160     return true;
4161 
4162   Result.assign(MD);
4163   return false;
4164 }
4165 
4166 template <>
4167 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4168                             MDSignedOrMDField &Result) {
4169   // Try to parse a signed int.
4170   if (Lex.getKind() == lltok::APSInt) {
4171     MDSignedField Res = Result.A;
4172     if (!ParseMDField(Loc, Name, Res)) {
4173       Result.assign(Res);
4174       return false;
4175     }
4176     return true;
4177   }
4178 
4179   // Otherwise, try to parse as an MDField.
4180   MDField Res = Result.B;
4181   if (!ParseMDField(Loc, Name, Res)) {
4182     Result.assign(Res);
4183     return false;
4184   }
4185 
4186   return true;
4187 }
4188 
4189 template <>
4190 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4191                             MDSignedOrUnsignedField &Result) {
4192   if (Lex.getKind() != lltok::APSInt)
4193     return false;
4194 
4195   if (Lex.getAPSIntVal().isSigned()) {
4196     MDSignedField Res = Result.A;
4197     if (ParseMDField(Loc, Name, Res))
4198       return true;
4199     Result.assign(Res);
4200     return false;
4201   }
4202 
4203   MDUnsignedField Res = Result.B;
4204   if (ParseMDField(Loc, Name, Res))
4205     return true;
4206   Result.assign(Res);
4207   return false;
4208 }
4209 
4210 template <>
4211 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4212   LocTy ValueLoc = Lex.getLoc();
4213   std::string S;
4214   if (ParseStringConstant(S))
4215     return true;
4216 
4217   if (!Result.AllowEmpty && S.empty())
4218     return Error(ValueLoc, "'" + Name + "' cannot be empty");
4219 
4220   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4221   return false;
4222 }
4223 
4224 template <>
4225 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4226   SmallVector<Metadata *, 4> MDs;
4227   if (ParseMDNodeVector(MDs))
4228     return true;
4229 
4230   Result.assign(std::move(MDs));
4231   return false;
4232 }
4233 
4234 template <>
4235 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4236                             ChecksumKindField &Result) {
4237   Optional<DIFile::ChecksumKind> CSKind =
4238       DIFile::getChecksumKind(Lex.getStrVal());
4239 
4240   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4241     return TokError(
4242         "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'");
4243 
4244   Result.assign(*CSKind);
4245   Lex.Lex();
4246   return false;
4247 }
4248 
4249 } // end namespace llvm
4250 
4251 template <class ParserTy>
4252 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
4253   do {
4254     if (Lex.getKind() != lltok::LabelStr)
4255       return TokError("expected field label here");
4256 
4257     if (parseField())
4258       return true;
4259   } while (EatIfPresent(lltok::comma));
4260 
4261   return false;
4262 }
4263 
4264 template <class ParserTy>
4265 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
4266   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4267   Lex.Lex();
4268 
4269   if (ParseToken(lltok::lparen, "expected '(' here"))
4270     return true;
4271   if (Lex.getKind() != lltok::rparen)
4272     if (ParseMDFieldsImplBody(parseField))
4273       return true;
4274 
4275   ClosingLoc = Lex.getLoc();
4276   return ParseToken(lltok::rparen, "expected ')' here");
4277 }
4278 
4279 template <class FieldTy>
4280 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
4281   if (Result.Seen)
4282     return TokError("field '" + Name + "' cannot be specified more than once");
4283 
4284   LocTy Loc = Lex.getLoc();
4285   Lex.Lex();
4286   return ParseMDField(Loc, Name, Result);
4287 }
4288 
4289 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4290   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4291 
4292 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4293   if (Lex.getStrVal() == #CLASS)                                               \
4294     return Parse##CLASS(N, IsDistinct);
4295 #include "llvm/IR/Metadata.def"
4296 
4297   return TokError("expected metadata type");
4298 }
4299 
4300 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4301 #define NOP_FIELD(NAME, TYPE, INIT)
4302 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4303   if (!NAME.Seen)                                                              \
4304     return Error(ClosingLoc, "missing required field '" #NAME "'");
4305 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4306   if (Lex.getStrVal() == #NAME)                                                \
4307     return ParseMDField(#NAME, NAME);
4308 #define PARSE_MD_FIELDS()                                                      \
4309   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4310   do {                                                                         \
4311     LocTy ClosingLoc;                                                          \
4312     if (ParseMDFieldsImpl([&]() -> bool {                                      \
4313       VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                          \
4314       return TokError(Twine("invalid field '") + Lex.getStrVal() + "'");       \
4315     }, ClosingLoc))                                                            \
4316       return true;                                                             \
4317     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4318   } while (false)
4319 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4320   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4321 
4322 /// ParseDILocationFields:
4323 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4324 ///   isImplicitCode: true)
4325 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
4326 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4327   OPTIONAL(line, LineField, );                                                 \
4328   OPTIONAL(column, ColumnField, );                                             \
4329   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4330   OPTIONAL(inlinedAt, MDField, );                                              \
4331   OPTIONAL(isImplicitCode, MDBoolField, (false));
4332   PARSE_MD_FIELDS();
4333 #undef VISIT_MD_FIELDS
4334 
4335   Result =
4336       GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4337                                    inlinedAt.Val, isImplicitCode.Val));
4338   return false;
4339 }
4340 
4341 /// ParseGenericDINode:
4342 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4343 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
4344 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4345   REQUIRED(tag, DwarfTagField, );                                              \
4346   OPTIONAL(header, MDStringField, );                                           \
4347   OPTIONAL(operands, MDFieldList, );
4348   PARSE_MD_FIELDS();
4349 #undef VISIT_MD_FIELDS
4350 
4351   Result = GET_OR_DISTINCT(GenericDINode,
4352                            (Context, tag.Val, header.Val, operands.Val));
4353   return false;
4354 }
4355 
4356 /// ParseDISubrange:
4357 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4358 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4359 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
4360 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4361   REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4362   OPTIONAL(lowerBound, MDSignedField, );
4363   PARSE_MD_FIELDS();
4364 #undef VISIT_MD_FIELDS
4365 
4366   if (count.isMDSignedField())
4367     Result = GET_OR_DISTINCT(
4368         DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val));
4369   else if (count.isMDField())
4370     Result = GET_OR_DISTINCT(
4371         DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val));
4372   else
4373     return true;
4374 
4375   return false;
4376 }
4377 
4378 /// ParseDIEnumerator:
4379 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4380 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4381 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4382   REQUIRED(name, MDStringField, );                                             \
4383   REQUIRED(value, MDSignedOrUnsignedField, );                                  \
4384   OPTIONAL(isUnsigned, MDBoolField, (false));
4385   PARSE_MD_FIELDS();
4386 #undef VISIT_MD_FIELDS
4387 
4388   if (isUnsigned.Val && value.isMDSignedField())
4389     return TokError("unsigned enumerator with negative value");
4390 
4391   int64_t Value = value.isMDSignedField()
4392                       ? value.getMDSignedValue()
4393                       : static_cast<int64_t>(value.getMDUnsignedValue());
4394   Result =
4395       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4396 
4397   return false;
4398 }
4399 
4400 /// ParseDIBasicType:
4401 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4402 ///                    encoding: DW_ATE_encoding, flags: 0)
4403 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
4404 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4405   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4406   OPTIONAL(name, MDStringField, );                                             \
4407   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4408   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4409   OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
4410   OPTIONAL(flags, DIFlagField, );
4411   PARSE_MD_FIELDS();
4412 #undef VISIT_MD_FIELDS
4413 
4414   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4415                                          align.Val, encoding.Val, flags.Val));
4416   return false;
4417 }
4418 
4419 /// ParseDIDerivedType:
4420 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4421 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4422 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4423 ///                      dwarfAddressSpace: 3)
4424 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4425 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4426   REQUIRED(tag, DwarfTagField, );                                              \
4427   OPTIONAL(name, MDStringField, );                                             \
4428   OPTIONAL(file, MDField, );                                                   \
4429   OPTIONAL(line, LineField, );                                                 \
4430   OPTIONAL(scope, MDField, );                                                  \
4431   REQUIRED(baseType, MDField, );                                               \
4432   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4433   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4434   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4435   OPTIONAL(flags, DIFlagField, );                                              \
4436   OPTIONAL(extraData, MDField, );                                              \
4437   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4438   PARSE_MD_FIELDS();
4439 #undef VISIT_MD_FIELDS
4440 
4441   Optional<unsigned> DWARFAddressSpace;
4442   if (dwarfAddressSpace.Val != UINT32_MAX)
4443     DWARFAddressSpace = dwarfAddressSpace.Val;
4444 
4445   Result = GET_OR_DISTINCT(DIDerivedType,
4446                            (Context, tag.Val, name.Val, file.Val, line.Val,
4447                             scope.Val, baseType.Val, size.Val, align.Val,
4448                             offset.Val, DWARFAddressSpace, flags.Val,
4449                             extraData.Val));
4450   return false;
4451 }
4452 
4453 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
4454 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4455   REQUIRED(tag, DwarfTagField, );                                              \
4456   OPTIONAL(name, MDStringField, );                                             \
4457   OPTIONAL(file, MDField, );                                                   \
4458   OPTIONAL(line, LineField, );                                                 \
4459   OPTIONAL(scope, MDField, );                                                  \
4460   OPTIONAL(baseType, MDField, );                                               \
4461   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4462   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4463   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4464   OPTIONAL(flags, DIFlagField, );                                              \
4465   OPTIONAL(elements, MDField, );                                               \
4466   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4467   OPTIONAL(vtableHolder, MDField, );                                           \
4468   OPTIONAL(templateParams, MDField, );                                         \
4469   OPTIONAL(identifier, MDStringField, );                                       \
4470   OPTIONAL(discriminator, MDField, );
4471   PARSE_MD_FIELDS();
4472 #undef VISIT_MD_FIELDS
4473 
4474   // If this has an identifier try to build an ODR type.
4475   if (identifier.Val)
4476     if (auto *CT = DICompositeType::buildODRType(
4477             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4478             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4479             elements.Val, runtimeLang.Val, vtableHolder.Val,
4480             templateParams.Val, discriminator.Val)) {
4481       Result = CT;
4482       return false;
4483     }
4484 
4485   // Create a new node, and save it in the context if it belongs in the type
4486   // map.
4487   Result = GET_OR_DISTINCT(
4488       DICompositeType,
4489       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4490        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4491        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4492        discriminator.Val));
4493   return false;
4494 }
4495 
4496 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4497 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4498   OPTIONAL(flags, DIFlagField, );                                              \
4499   OPTIONAL(cc, DwarfCCField, );                                                \
4500   REQUIRED(types, MDField, );
4501   PARSE_MD_FIELDS();
4502 #undef VISIT_MD_FIELDS
4503 
4504   Result = GET_OR_DISTINCT(DISubroutineType,
4505                            (Context, flags.Val, cc.Val, types.Val));
4506   return false;
4507 }
4508 
4509 /// ParseDIFileType:
4510 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4511 ///                   checksumkind: CSK_MD5,
4512 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
4513 ///                   source: "source file contents")
4514 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
4515   // The default constructed value for checksumkind is required, but will never
4516   // be used, as the parser checks if the field was actually Seen before using
4517   // the Val.
4518 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4519   REQUIRED(filename, MDStringField, );                                         \
4520   REQUIRED(directory, MDStringField, );                                        \
4521   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
4522   OPTIONAL(checksum, MDStringField, );                                         \
4523   OPTIONAL(source, MDStringField, );
4524   PARSE_MD_FIELDS();
4525 #undef VISIT_MD_FIELDS
4526 
4527   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4528   if (checksumkind.Seen && checksum.Seen)
4529     OptChecksum.emplace(checksumkind.Val, checksum.Val);
4530   else if (checksumkind.Seen || checksum.Seen)
4531     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4532 
4533   Optional<MDString *> OptSource;
4534   if (source.Seen)
4535     OptSource = source.Val;
4536   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4537                                     OptChecksum, OptSource));
4538   return false;
4539 }
4540 
4541 /// ParseDICompileUnit:
4542 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4543 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4544 ///                      splitDebugFilename: "abc.debug",
4545 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4546 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd)
4547 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4548   if (!IsDistinct)
4549     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4550 
4551 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4552   REQUIRED(language, DwarfLangField, );                                        \
4553   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4554   OPTIONAL(producer, MDStringField, );                                         \
4555   OPTIONAL(isOptimized, MDBoolField, );                                        \
4556   OPTIONAL(flags, MDStringField, );                                            \
4557   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4558   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4559   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4560   OPTIONAL(enums, MDField, );                                                  \
4561   OPTIONAL(retainedTypes, MDField, );                                          \
4562   OPTIONAL(globals, MDField, );                                                \
4563   OPTIONAL(imports, MDField, );                                                \
4564   OPTIONAL(macros, MDField, );                                                 \
4565   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4566   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
4567   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
4568   OPTIONAL(nameTableKind, NameTableKindField, );                               \
4569   OPTIONAL(debugBaseAddress, MDBoolField, = false);
4570   PARSE_MD_FIELDS();
4571 #undef VISIT_MD_FIELDS
4572 
4573   Result = DICompileUnit::getDistinct(
4574       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4575       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4576       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4577       splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
4578       debugBaseAddress.Val);
4579   return false;
4580 }
4581 
4582 /// ParseDISubprogram:
4583 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4584 ///                     file: !1, line: 7, type: !2, isLocal: false,
4585 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4586 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4587 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4588 ///                     spFlags: 10, isOptimized: false, templateParams: !4,
4589 ///                     declaration: !5, retainedNodes: !6, thrownTypes: !7)
4590 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
4591   auto Loc = Lex.getLoc();
4592 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4593   OPTIONAL(scope, MDField, );                                                  \
4594   OPTIONAL(name, MDStringField, );                                             \
4595   OPTIONAL(linkageName, MDStringField, );                                      \
4596   OPTIONAL(file, MDField, );                                                   \
4597   OPTIONAL(line, LineField, );                                                 \
4598   OPTIONAL(type, MDField, );                                                   \
4599   OPTIONAL(isLocal, MDBoolField, );                                            \
4600   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4601   OPTIONAL(scopeLine, LineField, );                                            \
4602   OPTIONAL(containingType, MDField, );                                         \
4603   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4604   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4605   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4606   OPTIONAL(flags, DIFlagField, );                                              \
4607   OPTIONAL(spFlags, DISPFlagField, );                                          \
4608   OPTIONAL(isOptimized, MDBoolField, );                                        \
4609   OPTIONAL(unit, MDField, );                                                   \
4610   OPTIONAL(templateParams, MDField, );                                         \
4611   OPTIONAL(declaration, MDField, );                                            \
4612   OPTIONAL(retainedNodes, MDField, );                                          \
4613   OPTIONAL(thrownTypes, MDField, );
4614   PARSE_MD_FIELDS();
4615 #undef VISIT_MD_FIELDS
4616 
4617   // An explicit spFlags field takes precedence over individual fields in
4618   // older IR versions.
4619   DISubprogram::DISPFlags SPFlags =
4620       spFlags.Seen ? spFlags.Val
4621                    : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
4622                                              isOptimized.Val, virtuality.Val);
4623   if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
4624     return Lex.Error(
4625         Loc,
4626         "missing 'distinct', required for !DISubprogram that is a Definition");
4627   Result = GET_OR_DISTINCT(
4628       DISubprogram,
4629       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4630        type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
4631        thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
4632        declaration.Val, retainedNodes.Val, thrownTypes.Val));
4633   return false;
4634 }
4635 
4636 /// ParseDILexicalBlock:
4637 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4638 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4639 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4640   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4641   OPTIONAL(file, MDField, );                                                   \
4642   OPTIONAL(line, LineField, );                                                 \
4643   OPTIONAL(column, ColumnField, );
4644   PARSE_MD_FIELDS();
4645 #undef VISIT_MD_FIELDS
4646 
4647   Result = GET_OR_DISTINCT(
4648       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4649   return false;
4650 }
4651 
4652 /// ParseDILexicalBlockFile:
4653 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4654 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4655 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4656   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4657   OPTIONAL(file, MDField, );                                                   \
4658   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4659   PARSE_MD_FIELDS();
4660 #undef VISIT_MD_FIELDS
4661 
4662   Result = GET_OR_DISTINCT(DILexicalBlockFile,
4663                            (Context, scope.Val, file.Val, discriminator.Val));
4664   return false;
4665 }
4666 
4667 /// ParseDICommonBlock:
4668 ///   ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
4669 bool LLParser::ParseDICommonBlock(MDNode *&Result, bool IsDistinct) {
4670 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4671   REQUIRED(scope, MDField, );                                                  \
4672   OPTIONAL(declaration, MDField, );                                            \
4673   OPTIONAL(name, MDStringField, );                                             \
4674   OPTIONAL(file, MDField, );                                                   \
4675   OPTIONAL(line, LineField, );
4676   PARSE_MD_FIELDS();
4677 #undef VISIT_MD_FIELDS
4678 
4679   Result = GET_OR_DISTINCT(DICommonBlock,
4680                            (Context, scope.Val, declaration.Val, name.Val,
4681                             file.Val, line.Val));
4682   return false;
4683 }
4684 
4685 /// ParseDINamespace:
4686 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4687 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
4688 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4689   REQUIRED(scope, MDField, );                                                  \
4690   OPTIONAL(name, MDStringField, );                                             \
4691   OPTIONAL(exportSymbols, MDBoolField, );
4692   PARSE_MD_FIELDS();
4693 #undef VISIT_MD_FIELDS
4694 
4695   Result = GET_OR_DISTINCT(DINamespace,
4696                            (Context, scope.Val, name.Val, exportSymbols.Val));
4697   return false;
4698 }
4699 
4700 /// ParseDIMacro:
4701 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
4702 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
4703 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4704   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
4705   OPTIONAL(line, LineField, );                                                 \
4706   REQUIRED(name, MDStringField, );                                             \
4707   OPTIONAL(value, MDStringField, );
4708   PARSE_MD_FIELDS();
4709 #undef VISIT_MD_FIELDS
4710 
4711   Result = GET_OR_DISTINCT(DIMacro,
4712                            (Context, type.Val, line.Val, name.Val, value.Val));
4713   return false;
4714 }
4715 
4716 /// ParseDIMacroFile:
4717 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4718 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4719 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4720   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
4721   OPTIONAL(line, LineField, );                                                 \
4722   REQUIRED(file, MDField, );                                                   \
4723   OPTIONAL(nodes, MDField, );
4724   PARSE_MD_FIELDS();
4725 #undef VISIT_MD_FIELDS
4726 
4727   Result = GET_OR_DISTINCT(DIMacroFile,
4728                            (Context, type.Val, line.Val, file.Val, nodes.Val));
4729   return false;
4730 }
4731 
4732 /// ParseDIModule:
4733 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
4734 ///                 includePath: "/usr/include", isysroot: "/")
4735 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4736 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4737   REQUIRED(scope, MDField, );                                                  \
4738   REQUIRED(name, MDStringField, );                                             \
4739   OPTIONAL(configMacros, MDStringField, );                                     \
4740   OPTIONAL(includePath, MDStringField, );                                      \
4741   OPTIONAL(isysroot, MDStringField, );
4742   PARSE_MD_FIELDS();
4743 #undef VISIT_MD_FIELDS
4744 
4745   Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val,
4746                            configMacros.Val, includePath.Val, isysroot.Val));
4747   return false;
4748 }
4749 
4750 /// ParseDITemplateTypeParameter:
4751 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1)
4752 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4753 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4754   OPTIONAL(name, MDStringField, );                                             \
4755   REQUIRED(type, MDField, );
4756   PARSE_MD_FIELDS();
4757 #undef VISIT_MD_FIELDS
4758 
4759   Result =
4760       GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val));
4761   return false;
4762 }
4763 
4764 /// ParseDITemplateValueParameter:
4765 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4766 ///                                 name: "V", type: !1, value: i32 7)
4767 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4768 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4769   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
4770   OPTIONAL(name, MDStringField, );                                             \
4771   OPTIONAL(type, MDField, );                                                   \
4772   REQUIRED(value, MDField, );
4773   PARSE_MD_FIELDS();
4774 #undef VISIT_MD_FIELDS
4775 
4776   Result = GET_OR_DISTINCT(DITemplateValueParameter,
4777                            (Context, tag.Val, name.Val, type.Val, value.Val));
4778   return false;
4779 }
4780 
4781 /// ParseDIGlobalVariable:
4782 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4783 ///                         file: !1, line: 7, type: !2, isLocal: false,
4784 ///                         isDefinition: true, templateParams: !3,
4785 ///                         declaration: !4, align: 8)
4786 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4787 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4788   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
4789   OPTIONAL(scope, MDField, );                                                  \
4790   OPTIONAL(linkageName, MDStringField, );                                      \
4791   OPTIONAL(file, MDField, );                                                   \
4792   OPTIONAL(line, LineField, );                                                 \
4793   OPTIONAL(type, MDField, );                                                   \
4794   OPTIONAL(isLocal, MDBoolField, );                                            \
4795   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4796   OPTIONAL(templateParams, MDField, );                                         \
4797   OPTIONAL(declaration, MDField, );                                            \
4798   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4799   PARSE_MD_FIELDS();
4800 #undef VISIT_MD_FIELDS
4801 
4802   Result =
4803       GET_OR_DISTINCT(DIGlobalVariable,
4804                       (Context, scope.Val, name.Val, linkageName.Val, file.Val,
4805                        line.Val, type.Val, isLocal.Val, isDefinition.Val,
4806                        declaration.Val, templateParams.Val, align.Val));
4807   return false;
4808 }
4809 
4810 /// ParseDILocalVariable:
4811 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4812 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4813 ///                        align: 8)
4814 ///   ::= !DILocalVariable(scope: !0, name: "foo",
4815 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4816 ///                        align: 8)
4817 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4818 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4819   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4820   OPTIONAL(name, MDStringField, );                                             \
4821   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
4822   OPTIONAL(file, MDField, );                                                   \
4823   OPTIONAL(line, LineField, );                                                 \
4824   OPTIONAL(type, MDField, );                                                   \
4825   OPTIONAL(flags, DIFlagField, );                                              \
4826   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4827   PARSE_MD_FIELDS();
4828 #undef VISIT_MD_FIELDS
4829 
4830   Result = GET_OR_DISTINCT(DILocalVariable,
4831                            (Context, scope.Val, name.Val, file.Val, line.Val,
4832                             type.Val, arg.Val, flags.Val, align.Val));
4833   return false;
4834 }
4835 
4836 /// ParseDILabel:
4837 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
4838 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) {
4839 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4840   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4841   REQUIRED(name, MDStringField, );                                             \
4842   REQUIRED(file, MDField, );                                                   \
4843   REQUIRED(line, LineField, );
4844   PARSE_MD_FIELDS();
4845 #undef VISIT_MD_FIELDS
4846 
4847   Result = GET_OR_DISTINCT(DILabel,
4848                            (Context, scope.Val, name.Val, file.Val, line.Val));
4849   return false;
4850 }
4851 
4852 /// ParseDIExpression:
4853 ///   ::= !DIExpression(0, 7, -1)
4854 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
4855   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4856   Lex.Lex();
4857 
4858   if (ParseToken(lltok::lparen, "expected '(' here"))
4859     return true;
4860 
4861   SmallVector<uint64_t, 8> Elements;
4862   if (Lex.getKind() != lltok::rparen)
4863     do {
4864       if (Lex.getKind() == lltok::DwarfOp) {
4865         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
4866           Lex.Lex();
4867           Elements.push_back(Op);
4868           continue;
4869         }
4870         return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
4871       }
4872 
4873       if (Lex.getKind() == lltok::DwarfAttEncoding) {
4874         if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
4875           Lex.Lex();
4876           Elements.push_back(Op);
4877           continue;
4878         }
4879         return TokError(Twine("invalid DWARF attribute encoding '") + Lex.getStrVal() + "'");
4880       }
4881 
4882       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4883         return TokError("expected unsigned integer");
4884 
4885       auto &U = Lex.getAPSIntVal();
4886       if (U.ugt(UINT64_MAX))
4887         return TokError("element too large, limit is " + Twine(UINT64_MAX));
4888       Elements.push_back(U.getZExtValue());
4889       Lex.Lex();
4890     } while (EatIfPresent(lltok::comma));
4891 
4892   if (ParseToken(lltok::rparen, "expected ')' here"))
4893     return true;
4894 
4895   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
4896   return false;
4897 }
4898 
4899 /// ParseDIGlobalVariableExpression:
4900 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
4901 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result,
4902                                                bool IsDistinct) {
4903 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4904   REQUIRED(var, MDField, );                                                    \
4905   REQUIRED(expr, MDField, );
4906   PARSE_MD_FIELDS();
4907 #undef VISIT_MD_FIELDS
4908 
4909   Result =
4910       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
4911   return false;
4912 }
4913 
4914 /// ParseDIObjCProperty:
4915 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
4916 ///                       getter: "getFoo", attributes: 7, type: !2)
4917 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
4918 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4919   OPTIONAL(name, MDStringField, );                                             \
4920   OPTIONAL(file, MDField, );                                                   \
4921   OPTIONAL(line, LineField, );                                                 \
4922   OPTIONAL(setter, MDStringField, );                                           \
4923   OPTIONAL(getter, MDStringField, );                                           \
4924   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
4925   OPTIONAL(type, MDField, );
4926   PARSE_MD_FIELDS();
4927 #undef VISIT_MD_FIELDS
4928 
4929   Result = GET_OR_DISTINCT(DIObjCProperty,
4930                            (Context, name.Val, file.Val, line.Val, setter.Val,
4931                             getter.Val, attributes.Val, type.Val));
4932   return false;
4933 }
4934 
4935 /// ParseDIImportedEntity:
4936 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
4937 ///                         line: 7, name: "foo")
4938 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
4939 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4940   REQUIRED(tag, DwarfTagField, );                                              \
4941   REQUIRED(scope, MDField, );                                                  \
4942   OPTIONAL(entity, MDField, );                                                 \
4943   OPTIONAL(file, MDField, );                                                   \
4944   OPTIONAL(line, LineField, );                                                 \
4945   OPTIONAL(name, MDStringField, );
4946   PARSE_MD_FIELDS();
4947 #undef VISIT_MD_FIELDS
4948 
4949   Result = GET_OR_DISTINCT(
4950       DIImportedEntity,
4951       (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
4952   return false;
4953 }
4954 
4955 #undef PARSE_MD_FIELD
4956 #undef NOP_FIELD
4957 #undef REQUIRE_FIELD
4958 #undef DECLARE_FIELD
4959 
4960 /// ParseMetadataAsValue
4961 ///  ::= metadata i32 %local
4962 ///  ::= metadata i32 @global
4963 ///  ::= metadata i32 7
4964 ///  ::= metadata !0
4965 ///  ::= metadata !{...}
4966 ///  ::= metadata !"string"
4967 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
4968   // Note: the type 'metadata' has already been parsed.
4969   Metadata *MD;
4970   if (ParseMetadata(MD, &PFS))
4971     return true;
4972 
4973   V = MetadataAsValue::get(Context, MD);
4974   return false;
4975 }
4976 
4977 /// ParseValueAsMetadata
4978 ///  ::= i32 %local
4979 ///  ::= i32 @global
4980 ///  ::= i32 7
4981 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
4982                                     PerFunctionState *PFS) {
4983   Type *Ty;
4984   LocTy Loc;
4985   if (ParseType(Ty, TypeMsg, Loc))
4986     return true;
4987   if (Ty->isMetadataTy())
4988     return Error(Loc, "invalid metadata-value-metadata roundtrip");
4989 
4990   Value *V;
4991   if (ParseValue(Ty, V, PFS))
4992     return true;
4993 
4994   MD = ValueAsMetadata::get(V);
4995   return false;
4996 }
4997 
4998 /// ParseMetadata
4999 ///  ::= i32 %local
5000 ///  ::= i32 @global
5001 ///  ::= i32 7
5002 ///  ::= !42
5003 ///  ::= !{...}
5004 ///  ::= !"string"
5005 ///  ::= !DILocation(...)
5006 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
5007   if (Lex.getKind() == lltok::MetadataVar) {
5008     MDNode *N;
5009     if (ParseSpecializedMDNode(N))
5010       return true;
5011     MD = N;
5012     return false;
5013   }
5014 
5015   // ValueAsMetadata:
5016   // <type> <value>
5017   if (Lex.getKind() != lltok::exclaim)
5018     return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
5019 
5020   // '!'.
5021   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5022   Lex.Lex();
5023 
5024   // MDString:
5025   //   ::= '!' STRINGCONSTANT
5026   if (Lex.getKind() == lltok::StringConstant) {
5027     MDString *S;
5028     if (ParseMDString(S))
5029       return true;
5030     MD = S;
5031     return false;
5032   }
5033 
5034   // MDNode:
5035   // !{ ... }
5036   // !7
5037   MDNode *N;
5038   if (ParseMDNodeTail(N))
5039     return true;
5040   MD = N;
5041   return false;
5042 }
5043 
5044 //===----------------------------------------------------------------------===//
5045 // Function Parsing.
5046 //===----------------------------------------------------------------------===//
5047 
5048 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5049                                    PerFunctionState *PFS, bool IsCall) {
5050   if (Ty->isFunctionTy())
5051     return Error(ID.Loc, "functions are not values, refer to them as pointers");
5052 
5053   switch (ID.Kind) {
5054   case ValID::t_LocalID:
5055     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5056     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5057     return V == nullptr;
5058   case ValID::t_LocalName:
5059     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5060     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall);
5061     return V == nullptr;
5062   case ValID::t_InlineAsm: {
5063     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5064       return Error(ID.Loc, "invalid type for inline asm constraint string");
5065     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
5066                        (ID.UIntVal >> 1) & 1,
5067                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
5068     return false;
5069   }
5070   case ValID::t_GlobalName:
5071     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall);
5072     return V == nullptr;
5073   case ValID::t_GlobalID:
5074     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5075     return V == nullptr;
5076   case ValID::t_APSInt:
5077     if (!Ty->isIntegerTy())
5078       return Error(ID.Loc, "integer constant must have integer type");
5079     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5080     V = ConstantInt::get(Context, ID.APSIntVal);
5081     return false;
5082   case ValID::t_APFloat:
5083     if (!Ty->isFloatingPointTy() ||
5084         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5085       return Error(ID.Loc, "floating point constant invalid for type");
5086 
5087     // The lexer has no type info, so builds all half, float, and double FP
5088     // constants as double.  Fix this here.  Long double does not need this.
5089     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5090       bool Ignored;
5091       if (Ty->isHalfTy())
5092         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5093                               &Ignored);
5094       else if (Ty->isFloatTy())
5095         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5096                               &Ignored);
5097     }
5098     V = ConstantFP::get(Context, ID.APFloatVal);
5099 
5100     if (V->getType() != Ty)
5101       return Error(ID.Loc, "floating point constant does not have type '" +
5102                    getTypeString(Ty) + "'");
5103 
5104     return false;
5105   case ValID::t_Null:
5106     if (!Ty->isPointerTy())
5107       return Error(ID.Loc, "null must be a pointer type");
5108     V = ConstantPointerNull::get(cast<PointerType>(Ty));
5109     return false;
5110   case ValID::t_Undef:
5111     // FIXME: LabelTy should not be a first-class type.
5112     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5113       return Error(ID.Loc, "invalid type for undef constant");
5114     V = UndefValue::get(Ty);
5115     return false;
5116   case ValID::t_EmptyArray:
5117     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5118       return Error(ID.Loc, "invalid empty array initializer");
5119     V = UndefValue::get(Ty);
5120     return false;
5121   case ValID::t_Zero:
5122     // FIXME: LabelTy should not be a first-class type.
5123     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5124       return Error(ID.Loc, "invalid type for null constant");
5125     V = Constant::getNullValue(Ty);
5126     return false;
5127   case ValID::t_None:
5128     if (!Ty->isTokenTy())
5129       return Error(ID.Loc, "invalid type for none constant");
5130     V = Constant::getNullValue(Ty);
5131     return false;
5132   case ValID::t_Constant:
5133     if (ID.ConstantVal->getType() != Ty)
5134       return Error(ID.Loc, "constant expression type mismatch");
5135 
5136     V = ID.ConstantVal;
5137     return false;
5138   case ValID::t_ConstantStruct:
5139   case ValID::t_PackedConstantStruct:
5140     if (StructType *ST = dyn_cast<StructType>(Ty)) {
5141       if (ST->getNumElements() != ID.UIntVal)
5142         return Error(ID.Loc,
5143                      "initializer with struct type has wrong # elements");
5144       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5145         return Error(ID.Loc, "packed'ness of initializer and type don't match");
5146 
5147       // Verify that the elements are compatible with the structtype.
5148       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5149         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5150           return Error(ID.Loc, "element " + Twine(i) +
5151                     " of struct initializer doesn't match struct element type");
5152 
5153       V = ConstantStruct::get(
5154           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5155     } else
5156       return Error(ID.Loc, "constant expression type mismatch");
5157     return false;
5158   }
5159   llvm_unreachable("Invalid ValID");
5160 }
5161 
5162 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5163   C = nullptr;
5164   ValID ID;
5165   auto Loc = Lex.getLoc();
5166   if (ParseValID(ID, /*PFS=*/nullptr))
5167     return true;
5168   switch (ID.Kind) {
5169   case ValID::t_APSInt:
5170   case ValID::t_APFloat:
5171   case ValID::t_Undef:
5172   case ValID::t_Constant:
5173   case ValID::t_ConstantStruct:
5174   case ValID::t_PackedConstantStruct: {
5175     Value *V;
5176     if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
5177       return true;
5178     assert(isa<Constant>(V) && "Expected a constant value");
5179     C = cast<Constant>(V);
5180     return false;
5181   }
5182   case ValID::t_Null:
5183     C = Constant::getNullValue(Ty);
5184     return false;
5185   default:
5186     return Error(Loc, "expected a constant value");
5187   }
5188 }
5189 
5190 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5191   V = nullptr;
5192   ValID ID;
5193   return ParseValID(ID, PFS) ||
5194          ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
5195 }
5196 
5197 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5198   Type *Ty = nullptr;
5199   return ParseType(Ty) ||
5200          ParseValue(Ty, V, PFS);
5201 }
5202 
5203 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5204                                       PerFunctionState &PFS) {
5205   Value *V;
5206   Loc = Lex.getLoc();
5207   if (ParseTypeAndValue(V, PFS)) return true;
5208   if (!isa<BasicBlock>(V))
5209     return Error(Loc, "expected a basic block");
5210   BB = cast<BasicBlock>(V);
5211   return false;
5212 }
5213 
5214 /// FunctionHeader
5215 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5216 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5217 ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5218 ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5219 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
5220   // Parse the linkage.
5221   LocTy LinkageLoc = Lex.getLoc();
5222   unsigned Linkage;
5223   unsigned Visibility;
5224   unsigned DLLStorageClass;
5225   bool DSOLocal;
5226   AttrBuilder RetAttrs;
5227   unsigned CC;
5228   bool HasLinkage;
5229   Type *RetType = nullptr;
5230   LocTy RetTypeLoc = Lex.getLoc();
5231   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5232                            DSOLocal) ||
5233       ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5234       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
5235     return true;
5236 
5237   // Verify that the linkage is ok.
5238   switch ((GlobalValue::LinkageTypes)Linkage) {
5239   case GlobalValue::ExternalLinkage:
5240     break; // always ok.
5241   case GlobalValue::ExternalWeakLinkage:
5242     if (isDefine)
5243       return Error(LinkageLoc, "invalid linkage for function definition");
5244     break;
5245   case GlobalValue::PrivateLinkage:
5246   case GlobalValue::InternalLinkage:
5247   case GlobalValue::AvailableExternallyLinkage:
5248   case GlobalValue::LinkOnceAnyLinkage:
5249   case GlobalValue::LinkOnceODRLinkage:
5250   case GlobalValue::WeakAnyLinkage:
5251   case GlobalValue::WeakODRLinkage:
5252     if (!isDefine)
5253       return Error(LinkageLoc, "invalid linkage for function declaration");
5254     break;
5255   case GlobalValue::AppendingLinkage:
5256   case GlobalValue::CommonLinkage:
5257     return Error(LinkageLoc, "invalid function linkage type");
5258   }
5259 
5260   if (!isValidVisibilityForLinkage(Visibility, Linkage))
5261     return Error(LinkageLoc,
5262                  "symbol with local linkage must have default visibility");
5263 
5264   if (!FunctionType::isValidReturnType(RetType))
5265     return Error(RetTypeLoc, "invalid function return type");
5266 
5267   LocTy NameLoc = Lex.getLoc();
5268 
5269   std::string FunctionName;
5270   if (Lex.getKind() == lltok::GlobalVar) {
5271     FunctionName = Lex.getStrVal();
5272   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
5273     unsigned NameID = Lex.getUIntVal();
5274 
5275     if (NameID != NumberedVals.size())
5276       return TokError("function expected to be numbered '%" +
5277                       Twine(NumberedVals.size()) + "'");
5278   } else {
5279     return TokError("expected function name");
5280   }
5281 
5282   Lex.Lex();
5283 
5284   if (Lex.getKind() != lltok::lparen)
5285     return TokError("expected '(' in function argument list");
5286 
5287   SmallVector<ArgInfo, 8> ArgList;
5288   bool isVarArg;
5289   AttrBuilder FuncAttrs;
5290   std::vector<unsigned> FwdRefAttrGrps;
5291   LocTy BuiltinLoc;
5292   std::string Section;
5293   unsigned Alignment;
5294   std::string GC;
5295   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5296   unsigned AddrSpace = 0;
5297   Constant *Prefix = nullptr;
5298   Constant *Prologue = nullptr;
5299   Constant *PersonalityFn = nullptr;
5300   Comdat *C;
5301 
5302   if (ParseArgumentList(ArgList, isVarArg) ||
5303       ParseOptionalUnnamedAddr(UnnamedAddr) ||
5304       ParseOptionalProgramAddrSpace(AddrSpace) ||
5305       ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5306                                  BuiltinLoc) ||
5307       (EatIfPresent(lltok::kw_section) &&
5308        ParseStringConstant(Section)) ||
5309       parseOptionalComdat(FunctionName, C) ||
5310       ParseOptionalAlignment(Alignment) ||
5311       (EatIfPresent(lltok::kw_gc) &&
5312        ParseStringConstant(GC)) ||
5313       (EatIfPresent(lltok::kw_prefix) &&
5314        ParseGlobalTypeAndValue(Prefix)) ||
5315       (EatIfPresent(lltok::kw_prologue) &&
5316        ParseGlobalTypeAndValue(Prologue)) ||
5317       (EatIfPresent(lltok::kw_personality) &&
5318        ParseGlobalTypeAndValue(PersonalityFn)))
5319     return true;
5320 
5321   if (FuncAttrs.contains(Attribute::Builtin))
5322     return Error(BuiltinLoc, "'builtin' attribute not valid on function");
5323 
5324   // If the alignment was parsed as an attribute, move to the alignment field.
5325   if (FuncAttrs.hasAlignmentAttr()) {
5326     Alignment = FuncAttrs.getAlignment();
5327     FuncAttrs.removeAttribute(Attribute::Alignment);
5328   }
5329 
5330   // Okay, if we got here, the function is syntactically valid.  Convert types
5331   // and do semantic checks.
5332   std::vector<Type*> ParamTypeList;
5333   SmallVector<AttributeSet, 8> Attrs;
5334 
5335   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5336     ParamTypeList.push_back(ArgList[i].Ty);
5337     Attrs.push_back(ArgList[i].Attrs);
5338   }
5339 
5340   AttributeList PAL =
5341       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5342                          AttributeSet::get(Context, RetAttrs), Attrs);
5343 
5344   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
5345     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
5346 
5347   FunctionType *FT =
5348     FunctionType::get(RetType, ParamTypeList, isVarArg);
5349   PointerType *PFT = PointerType::get(FT, AddrSpace);
5350 
5351   Fn = nullptr;
5352   if (!FunctionName.empty()) {
5353     // If this was a definition of a forward reference, remove the definition
5354     // from the forward reference table and fill in the forward ref.
5355     auto FRVI = ForwardRefVals.find(FunctionName);
5356     if (FRVI != ForwardRefVals.end()) {
5357       Fn = M->getFunction(FunctionName);
5358       if (!Fn)
5359         return Error(FRVI->second.second, "invalid forward reference to "
5360                      "function as global value!");
5361       if (Fn->getType() != PFT)
5362         return Error(FRVI->second.second, "invalid forward reference to "
5363                      "function '" + FunctionName + "' with wrong type: "
5364                      "expected '" + getTypeString(PFT) + "' but was '" +
5365                      getTypeString(Fn->getType()) + "'");
5366       ForwardRefVals.erase(FRVI);
5367     } else if ((Fn = M->getFunction(FunctionName))) {
5368       // Reject redefinitions.
5369       return Error(NameLoc, "invalid redefinition of function '" +
5370                    FunctionName + "'");
5371     } else if (M->getNamedValue(FunctionName)) {
5372       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5373     }
5374 
5375   } else {
5376     // If this is a definition of a forward referenced function, make sure the
5377     // types agree.
5378     auto I = ForwardRefValIDs.find(NumberedVals.size());
5379     if (I != ForwardRefValIDs.end()) {
5380       Fn = cast<Function>(I->second.first);
5381       if (Fn->getType() != PFT)
5382         return Error(NameLoc, "type of definition and forward reference of '@" +
5383                      Twine(NumberedVals.size()) + "' disagree: "
5384                      "expected '" + getTypeString(PFT) + "' but was '" +
5385                      getTypeString(Fn->getType()) + "'");
5386       ForwardRefValIDs.erase(I);
5387     }
5388   }
5389 
5390   if (!Fn)
5391     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5392                           FunctionName, M);
5393   else // Move the forward-reference to the correct spot in the module.
5394     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
5395 
5396   assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5397 
5398   if (FunctionName.empty())
5399     NumberedVals.push_back(Fn);
5400 
5401   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5402   maybeSetDSOLocal(DSOLocal, *Fn);
5403   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5404   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5405   Fn->setCallingConv(CC);
5406   Fn->setAttributes(PAL);
5407   Fn->setUnnamedAddr(UnnamedAddr);
5408   Fn->setAlignment(Alignment);
5409   Fn->setSection(Section);
5410   Fn->setComdat(C);
5411   Fn->setPersonalityFn(PersonalityFn);
5412   if (!GC.empty()) Fn->setGC(GC);
5413   Fn->setPrefixData(Prefix);
5414   Fn->setPrologueData(Prologue);
5415   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5416 
5417   // Add all of the arguments we parsed to the function.
5418   Function::arg_iterator ArgIt = Fn->arg_begin();
5419   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5420     // If the argument has a name, insert it into the argument symbol table.
5421     if (ArgList[i].Name.empty()) continue;
5422 
5423     // Set the name, if it conflicted, it will be auto-renamed.
5424     ArgIt->setName(ArgList[i].Name);
5425 
5426     if (ArgIt->getName() != ArgList[i].Name)
5427       return Error(ArgList[i].Loc, "redefinition of argument '%" +
5428                    ArgList[i].Name + "'");
5429   }
5430 
5431   if (isDefine)
5432     return false;
5433 
5434   // Check the declaration has no block address forward references.
5435   ValID ID;
5436   if (FunctionName.empty()) {
5437     ID.Kind = ValID::t_GlobalID;
5438     ID.UIntVal = NumberedVals.size() - 1;
5439   } else {
5440     ID.Kind = ValID::t_GlobalName;
5441     ID.StrVal = FunctionName;
5442   }
5443   auto Blocks = ForwardRefBlockAddresses.find(ID);
5444   if (Blocks != ForwardRefBlockAddresses.end())
5445     return Error(Blocks->first.Loc,
5446                  "cannot take blockaddress inside a declaration");
5447   return false;
5448 }
5449 
5450 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5451   ValID ID;
5452   if (FunctionNumber == -1) {
5453     ID.Kind = ValID::t_GlobalName;
5454     ID.StrVal = F.getName();
5455   } else {
5456     ID.Kind = ValID::t_GlobalID;
5457     ID.UIntVal = FunctionNumber;
5458   }
5459 
5460   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5461   if (Blocks == P.ForwardRefBlockAddresses.end())
5462     return false;
5463 
5464   for (const auto &I : Blocks->second) {
5465     const ValID &BBID = I.first;
5466     GlobalValue *GV = I.second;
5467 
5468     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5469            "Expected local id or name");
5470     BasicBlock *BB;
5471     if (BBID.Kind == ValID::t_LocalName)
5472       BB = GetBB(BBID.StrVal, BBID.Loc);
5473     else
5474       BB = GetBB(BBID.UIntVal, BBID.Loc);
5475     if (!BB)
5476       return P.Error(BBID.Loc, "referenced value is not a basic block");
5477 
5478     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
5479     GV->eraseFromParent();
5480   }
5481 
5482   P.ForwardRefBlockAddresses.erase(Blocks);
5483   return false;
5484 }
5485 
5486 /// ParseFunctionBody
5487 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
5488 bool LLParser::ParseFunctionBody(Function &Fn) {
5489   if (Lex.getKind() != lltok::lbrace)
5490     return TokError("expected '{' in function body");
5491   Lex.Lex();  // eat the {.
5492 
5493   int FunctionNumber = -1;
5494   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5495 
5496   PerFunctionState PFS(*this, Fn, FunctionNumber);
5497 
5498   // Resolve block addresses and allow basic blocks to be forward-declared
5499   // within this function.
5500   if (PFS.resolveForwardRefBlockAddresses())
5501     return true;
5502   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5503 
5504   // We need at least one basic block.
5505   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
5506     return TokError("function body requires at least one basic block");
5507 
5508   while (Lex.getKind() != lltok::rbrace &&
5509          Lex.getKind() != lltok::kw_uselistorder)
5510     if (ParseBasicBlock(PFS)) return true;
5511 
5512   while (Lex.getKind() != lltok::rbrace)
5513     if (ParseUseListOrder(&PFS))
5514       return true;
5515 
5516   // Eat the }.
5517   Lex.Lex();
5518 
5519   // Verify function is ok.
5520   return PFS.FinishFunction();
5521 }
5522 
5523 /// ParseBasicBlock
5524 ///   ::= (LabelStr|LabelID)? Instruction*
5525 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
5526   // If this basic block starts out with a name, remember it.
5527   std::string Name;
5528   int NameID = -1;
5529   LocTy NameLoc = Lex.getLoc();
5530   if (Lex.getKind() == lltok::LabelStr) {
5531     Name = Lex.getStrVal();
5532     Lex.Lex();
5533   } else if (Lex.getKind() == lltok::LabelID) {
5534     NameID = Lex.getUIntVal();
5535     Lex.Lex();
5536   }
5537 
5538   BasicBlock *BB = PFS.DefineBB(Name, NameID, NameLoc);
5539   if (!BB)
5540     return true;
5541 
5542   std::string NameStr;
5543 
5544   // Parse the instructions in this block until we get a terminator.
5545   Instruction *Inst;
5546   do {
5547     // This instruction may have three possibilities for a name: a) none
5548     // specified, b) name specified "%foo =", c) number specified: "%4 =".
5549     LocTy NameLoc = Lex.getLoc();
5550     int NameID = -1;
5551     NameStr = "";
5552 
5553     if (Lex.getKind() == lltok::LocalVarID) {
5554       NameID = Lex.getUIntVal();
5555       Lex.Lex();
5556       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
5557         return true;
5558     } else if (Lex.getKind() == lltok::LocalVar) {
5559       NameStr = Lex.getStrVal();
5560       Lex.Lex();
5561       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
5562         return true;
5563     }
5564 
5565     switch (ParseInstruction(Inst, BB, PFS)) {
5566     default: llvm_unreachable("Unknown ParseInstruction result!");
5567     case InstError: return true;
5568     case InstNormal:
5569       BB->getInstList().push_back(Inst);
5570 
5571       // With a normal result, we check to see if the instruction is followed by
5572       // a comma and metadata.
5573       if (EatIfPresent(lltok::comma))
5574         if (ParseInstructionMetadata(*Inst))
5575           return true;
5576       break;
5577     case InstExtraComma:
5578       BB->getInstList().push_back(Inst);
5579 
5580       // If the instruction parser ate an extra comma at the end of it, it
5581       // *must* be followed by metadata.
5582       if (ParseInstructionMetadata(*Inst))
5583         return true;
5584       break;
5585     }
5586 
5587     // Set the name on the instruction.
5588     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
5589   } while (!Inst->isTerminator());
5590 
5591   return false;
5592 }
5593 
5594 //===----------------------------------------------------------------------===//
5595 // Instruction Parsing.
5596 //===----------------------------------------------------------------------===//
5597 
5598 /// ParseInstruction - Parse one of the many different instructions.
5599 ///
5600 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
5601                                PerFunctionState &PFS) {
5602   lltok::Kind Token = Lex.getKind();
5603   if (Token == lltok::Eof)
5604     return TokError("found end of file when expecting more instructions");
5605   LocTy Loc = Lex.getLoc();
5606   unsigned KeywordVal = Lex.getUIntVal();
5607   Lex.Lex();  // Eat the keyword.
5608 
5609   switch (Token) {
5610   default:                    return Error(Loc, "expected instruction opcode");
5611   // Terminator Instructions.
5612   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5613   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
5614   case lltok::kw_br:          return ParseBr(Inst, PFS);
5615   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
5616   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
5617   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
5618   case lltok::kw_resume:      return ParseResume(Inst, PFS);
5619   case lltok::kw_cleanupret:  return ParseCleanupRet(Inst, PFS);
5620   case lltok::kw_catchret:    return ParseCatchRet(Inst, PFS);
5621   case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
5622   case lltok::kw_catchpad:    return ParseCatchPad(Inst, PFS);
5623   case lltok::kw_cleanuppad:  return ParseCleanupPad(Inst, PFS);
5624   case lltok::kw_callbr:      return ParseCallBr(Inst, PFS);
5625   // Unary Operators.
5626   case lltok::kw_fneg: {
5627     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5628     int Res = ParseUnaryOp(Inst, PFS, KeywordVal, 2);
5629     if (Res != 0)
5630       return Res;
5631     if (FMF.any())
5632       Inst->setFastMathFlags(FMF);
5633     return false;
5634   }
5635   // Binary Operators.
5636   case lltok::kw_add:
5637   case lltok::kw_sub:
5638   case lltok::kw_mul:
5639   case lltok::kw_shl: {
5640     bool NUW = EatIfPresent(lltok::kw_nuw);
5641     bool NSW = EatIfPresent(lltok::kw_nsw);
5642     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5643 
5644     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
5645 
5646     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5647     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5648     return false;
5649   }
5650   case lltok::kw_fadd:
5651   case lltok::kw_fsub:
5652   case lltok::kw_fmul:
5653   case lltok::kw_fdiv:
5654   case lltok::kw_frem: {
5655     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5656     int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2);
5657     if (Res != 0)
5658       return Res;
5659     if (FMF.any())
5660       Inst->setFastMathFlags(FMF);
5661     return 0;
5662   }
5663 
5664   case lltok::kw_sdiv:
5665   case lltok::kw_udiv:
5666   case lltok::kw_lshr:
5667   case lltok::kw_ashr: {
5668     bool Exact = EatIfPresent(lltok::kw_exact);
5669 
5670     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
5671     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5672     return false;
5673   }
5674 
5675   case lltok::kw_urem:
5676   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
5677   case lltok::kw_and:
5678   case lltok::kw_or:
5679   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
5680   case lltok::kw_icmp:   return ParseCompare(Inst, PFS, KeywordVal);
5681   case lltok::kw_fcmp: {
5682     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5683     int Res = ParseCompare(Inst, PFS, KeywordVal);
5684     if (Res != 0)
5685       return Res;
5686     if (FMF.any())
5687       Inst->setFastMathFlags(FMF);
5688     return 0;
5689   }
5690 
5691   // Casts.
5692   case lltok::kw_trunc:
5693   case lltok::kw_zext:
5694   case lltok::kw_sext:
5695   case lltok::kw_fptrunc:
5696   case lltok::kw_fpext:
5697   case lltok::kw_bitcast:
5698   case lltok::kw_addrspacecast:
5699   case lltok::kw_uitofp:
5700   case lltok::kw_sitofp:
5701   case lltok::kw_fptoui:
5702   case lltok::kw_fptosi:
5703   case lltok::kw_inttoptr:
5704   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
5705   // Other.
5706   case lltok::kw_select:         return ParseSelect(Inst, PFS);
5707   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
5708   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
5709   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
5710   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
5711   case lltok::kw_phi:            return ParsePHI(Inst, PFS);
5712   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
5713   // Call.
5714   case lltok::kw_call:     return ParseCall(Inst, PFS, CallInst::TCK_None);
5715   case lltok::kw_tail:     return ParseCall(Inst, PFS, CallInst::TCK_Tail);
5716   case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
5717   case lltok::kw_notail:   return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
5718   // Memory.
5719   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
5720   case lltok::kw_load:           return ParseLoad(Inst, PFS);
5721   case lltok::kw_store:          return ParseStore(Inst, PFS);
5722   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
5723   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
5724   case lltok::kw_fence:          return ParseFence(Inst, PFS);
5725   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
5726   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
5727   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
5728   }
5729 }
5730 
5731 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
5732 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
5733   if (Opc == Instruction::FCmp) {
5734     switch (Lex.getKind()) {
5735     default: return TokError("expected fcmp predicate (e.g. 'oeq')");
5736     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
5737     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
5738     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
5739     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
5740     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
5741     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
5742     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
5743     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
5744     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
5745     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
5746     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
5747     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
5748     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
5749     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
5750     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
5751     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
5752     }
5753   } else {
5754     switch (Lex.getKind()) {
5755     default: return TokError("expected icmp predicate (e.g. 'eq')");
5756     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
5757     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
5758     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
5759     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
5760     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
5761     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
5762     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
5763     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
5764     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
5765     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
5766     }
5767   }
5768   Lex.Lex();
5769   return false;
5770 }
5771 
5772 //===----------------------------------------------------------------------===//
5773 // Terminator Instructions.
5774 //===----------------------------------------------------------------------===//
5775 
5776 /// ParseRet - Parse a return instruction.
5777 ///   ::= 'ret' void (',' !dbg, !1)*
5778 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
5779 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
5780                         PerFunctionState &PFS) {
5781   SMLoc TypeLoc = Lex.getLoc();
5782   Type *Ty = nullptr;
5783   if (ParseType(Ty, true /*void allowed*/)) return true;
5784 
5785   Type *ResType = PFS.getFunction().getReturnType();
5786 
5787   if (Ty->isVoidTy()) {
5788     if (!ResType->isVoidTy())
5789       return Error(TypeLoc, "value doesn't match function result type '" +
5790                    getTypeString(ResType) + "'");
5791 
5792     Inst = ReturnInst::Create(Context);
5793     return false;
5794   }
5795 
5796   Value *RV;
5797   if (ParseValue(Ty, RV, PFS)) return true;
5798 
5799   if (ResType != RV->getType())
5800     return Error(TypeLoc, "value doesn't match function result type '" +
5801                  getTypeString(ResType) + "'");
5802 
5803   Inst = ReturnInst::Create(Context, RV);
5804   return false;
5805 }
5806 
5807 /// ParseBr
5808 ///   ::= 'br' TypeAndValue
5809 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5810 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
5811   LocTy Loc, Loc2;
5812   Value *Op0;
5813   BasicBlock *Op1, *Op2;
5814   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
5815 
5816   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
5817     Inst = BranchInst::Create(BB);
5818     return false;
5819   }
5820 
5821   if (Op0->getType() != Type::getInt1Ty(Context))
5822     return Error(Loc, "branch condition must have 'i1' type");
5823 
5824   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
5825       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
5826       ParseToken(lltok::comma, "expected ',' after true destination") ||
5827       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
5828     return true;
5829 
5830   Inst = BranchInst::Create(Op1, Op2, Op0);
5831   return false;
5832 }
5833 
5834 /// ParseSwitch
5835 ///  Instruction
5836 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
5837 ///  JumpTable
5838 ///    ::= (TypeAndValue ',' TypeAndValue)*
5839 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5840   LocTy CondLoc, BBLoc;
5841   Value *Cond;
5842   BasicBlock *DefaultBB;
5843   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
5844       ParseToken(lltok::comma, "expected ',' after switch condition") ||
5845       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
5846       ParseToken(lltok::lsquare, "expected '[' with switch table"))
5847     return true;
5848 
5849   if (!Cond->getType()->isIntegerTy())
5850     return Error(CondLoc, "switch condition must have integer type");
5851 
5852   // Parse the jump table pairs.
5853   SmallPtrSet<Value*, 32> SeenCases;
5854   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
5855   while (Lex.getKind() != lltok::rsquare) {
5856     Value *Constant;
5857     BasicBlock *DestBB;
5858 
5859     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
5860         ParseToken(lltok::comma, "expected ',' after case value") ||
5861         ParseTypeAndBasicBlock(DestBB, PFS))
5862       return true;
5863 
5864     if (!SeenCases.insert(Constant).second)
5865       return Error(CondLoc, "duplicate case value in switch");
5866     if (!isa<ConstantInt>(Constant))
5867       return Error(CondLoc, "case value is not a constant integer");
5868 
5869     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
5870   }
5871 
5872   Lex.Lex();  // Eat the ']'.
5873 
5874   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
5875   for (unsigned i = 0, e = Table.size(); i != e; ++i)
5876     SI->addCase(Table[i].first, Table[i].second);
5877   Inst = SI;
5878   return false;
5879 }
5880 
5881 /// ParseIndirectBr
5882 ///  Instruction
5883 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
5884 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
5885   LocTy AddrLoc;
5886   Value *Address;
5887   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
5888       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
5889       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
5890     return true;
5891 
5892   if (!Address->getType()->isPointerTy())
5893     return Error(AddrLoc, "indirectbr address must have pointer type");
5894 
5895   // Parse the destination list.
5896   SmallVector<BasicBlock*, 16> DestList;
5897 
5898   if (Lex.getKind() != lltok::rsquare) {
5899     BasicBlock *DestBB;
5900     if (ParseTypeAndBasicBlock(DestBB, PFS))
5901       return true;
5902     DestList.push_back(DestBB);
5903 
5904     while (EatIfPresent(lltok::comma)) {
5905       if (ParseTypeAndBasicBlock(DestBB, PFS))
5906         return true;
5907       DestList.push_back(DestBB);
5908     }
5909   }
5910 
5911   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
5912     return true;
5913 
5914   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
5915   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
5916     IBI->addDestination(DestList[i]);
5917   Inst = IBI;
5918   return false;
5919 }
5920 
5921 /// ParseInvoke
5922 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
5923 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
5924 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
5925   LocTy CallLoc = Lex.getLoc();
5926   AttrBuilder RetAttrs, FnAttrs;
5927   std::vector<unsigned> FwdRefAttrGrps;
5928   LocTy NoBuiltinLoc;
5929   unsigned CC;
5930   unsigned InvokeAddrSpace;
5931   Type *RetType = nullptr;
5932   LocTy RetTypeLoc;
5933   ValID CalleeID;
5934   SmallVector<ParamInfo, 16> ArgList;
5935   SmallVector<OperandBundleDef, 2> BundleList;
5936 
5937   BasicBlock *NormalBB, *UnwindBB;
5938   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5939       ParseOptionalProgramAddrSpace(InvokeAddrSpace) ||
5940       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
5941       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
5942       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
5943                                  NoBuiltinLoc) ||
5944       ParseOptionalOperandBundles(BundleList, PFS) ||
5945       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
5946       ParseTypeAndBasicBlock(NormalBB, PFS) ||
5947       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
5948       ParseTypeAndBasicBlock(UnwindBB, PFS))
5949     return true;
5950 
5951   // If RetType is a non-function pointer type, then this is the short syntax
5952   // for the call, which means that RetType is just the return type.  Infer the
5953   // rest of the function argument types from the arguments that are present.
5954   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
5955   if (!Ty) {
5956     // Pull out the types of all of the arguments...
5957     std::vector<Type*> ParamTypes;
5958     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
5959       ParamTypes.push_back(ArgList[i].V->getType());
5960 
5961     if (!FunctionType::isValidReturnType(RetType))
5962       return Error(RetTypeLoc, "Invalid result type for LLVM function");
5963 
5964     Ty = FunctionType::get(RetType, ParamTypes, false);
5965   }
5966 
5967   CalleeID.FTy = Ty;
5968 
5969   // Look up the callee.
5970   Value *Callee;
5971   if (ConvertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
5972                           Callee, &PFS, /*IsCall=*/true))
5973     return true;
5974 
5975   // Set up the Attribute for the function.
5976   SmallVector<Value *, 8> Args;
5977   SmallVector<AttributeSet, 8> ArgAttrs;
5978 
5979   // Loop through FunctionType's arguments and ensure they are specified
5980   // correctly.  Also, gather any parameter attributes.
5981   FunctionType::param_iterator I = Ty->param_begin();
5982   FunctionType::param_iterator E = Ty->param_end();
5983   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5984     Type *ExpectedTy = nullptr;
5985     if (I != E) {
5986       ExpectedTy = *I++;
5987     } else if (!Ty->isVarArg()) {
5988       return Error(ArgList[i].Loc, "too many arguments specified");
5989     }
5990 
5991     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
5992       return Error(ArgList[i].Loc, "argument is not of expected type '" +
5993                    getTypeString(ExpectedTy) + "'");
5994     Args.push_back(ArgList[i].V);
5995     ArgAttrs.push_back(ArgList[i].Attrs);
5996   }
5997 
5998   if (I != E)
5999     return Error(CallLoc, "not enough parameters specified for call");
6000 
6001   if (FnAttrs.hasAlignmentAttr())
6002     return Error(CallLoc, "invoke instructions may not have an alignment");
6003 
6004   // Finish off the Attribute and check them
6005   AttributeList PAL =
6006       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6007                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6008 
6009   InvokeInst *II =
6010       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
6011   II->setCallingConv(CC);
6012   II->setAttributes(PAL);
6013   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
6014   Inst = II;
6015   return false;
6016 }
6017 
6018 /// ParseResume
6019 ///   ::= 'resume' TypeAndValue
6020 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
6021   Value *Exn; LocTy ExnLoc;
6022   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
6023     return true;
6024 
6025   ResumeInst *RI = ResumeInst::Create(Exn);
6026   Inst = RI;
6027   return false;
6028 }
6029 
6030 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
6031                                   PerFunctionState &PFS) {
6032   if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
6033     return true;
6034 
6035   while (Lex.getKind() != lltok::rsquare) {
6036     // If this isn't the first argument, we need a comma.
6037     if (!Args.empty() &&
6038         ParseToken(lltok::comma, "expected ',' in argument list"))
6039       return true;
6040 
6041     // Parse the argument.
6042     LocTy ArgLoc;
6043     Type *ArgTy = nullptr;
6044     if (ParseType(ArgTy, ArgLoc))
6045       return true;
6046 
6047     Value *V;
6048     if (ArgTy->isMetadataTy()) {
6049       if (ParseMetadataAsValue(V, PFS))
6050         return true;
6051     } else {
6052       if (ParseValue(ArgTy, V, PFS))
6053         return true;
6054     }
6055     Args.push_back(V);
6056   }
6057 
6058   Lex.Lex();  // Lex the ']'.
6059   return false;
6060 }
6061 
6062 /// ParseCleanupRet
6063 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6064 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6065   Value *CleanupPad = nullptr;
6066 
6067   if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6068     return true;
6069 
6070   if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6071     return true;
6072 
6073   if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6074     return true;
6075 
6076   BasicBlock *UnwindBB = nullptr;
6077   if (Lex.getKind() == lltok::kw_to) {
6078     Lex.Lex();
6079     if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6080       return true;
6081   } else {
6082     if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
6083       return true;
6084     }
6085   }
6086 
6087   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6088   return false;
6089 }
6090 
6091 /// ParseCatchRet
6092 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
6093 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6094   Value *CatchPad = nullptr;
6095 
6096   if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
6097     return true;
6098 
6099   if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
6100     return true;
6101 
6102   BasicBlock *BB;
6103   if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
6104       ParseTypeAndBasicBlock(BB, PFS))
6105       return true;
6106 
6107   Inst = CatchReturnInst::Create(CatchPad, BB);
6108   return false;
6109 }
6110 
6111 /// ParseCatchSwitch
6112 ///   ::= 'catchswitch' within Parent
6113 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6114   Value *ParentPad;
6115 
6116   if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6117     return true;
6118 
6119   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6120       Lex.getKind() != lltok::LocalVarID)
6121     return TokError("expected scope value for catchswitch");
6122 
6123   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6124     return true;
6125 
6126   if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6127     return true;
6128 
6129   SmallVector<BasicBlock *, 32> Table;
6130   do {
6131     BasicBlock *DestBB;
6132     if (ParseTypeAndBasicBlock(DestBB, PFS))
6133       return true;
6134     Table.push_back(DestBB);
6135   } while (EatIfPresent(lltok::comma));
6136 
6137   if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6138     return true;
6139 
6140   if (ParseToken(lltok::kw_unwind,
6141                  "expected 'unwind' after catchswitch scope"))
6142     return true;
6143 
6144   BasicBlock *UnwindBB = nullptr;
6145   if (EatIfPresent(lltok::kw_to)) {
6146     if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6147       return true;
6148   } else {
6149     if (ParseTypeAndBasicBlock(UnwindBB, PFS))
6150       return true;
6151   }
6152 
6153   auto *CatchSwitch =
6154       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6155   for (BasicBlock *DestBB : Table)
6156     CatchSwitch->addHandler(DestBB);
6157   Inst = CatchSwitch;
6158   return false;
6159 }
6160 
6161 /// ParseCatchPad
6162 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6163 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6164   Value *CatchSwitch = nullptr;
6165 
6166   if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
6167     return true;
6168 
6169   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6170     return TokError("expected scope value for catchpad");
6171 
6172   if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6173     return true;
6174 
6175   SmallVector<Value *, 8> Args;
6176   if (ParseExceptionArgs(Args, PFS))
6177     return true;
6178 
6179   Inst = CatchPadInst::Create(CatchSwitch, Args);
6180   return false;
6181 }
6182 
6183 /// ParseCleanupPad
6184 ///   ::= 'cleanuppad' within Parent ParamList
6185 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6186   Value *ParentPad = nullptr;
6187 
6188   if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6189     return true;
6190 
6191   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6192       Lex.getKind() != lltok::LocalVarID)
6193     return TokError("expected scope value for cleanuppad");
6194 
6195   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6196     return true;
6197 
6198   SmallVector<Value *, 8> Args;
6199   if (ParseExceptionArgs(Args, PFS))
6200     return true;
6201 
6202   Inst = CleanupPadInst::Create(ParentPad, Args);
6203   return false;
6204 }
6205 
6206 //===----------------------------------------------------------------------===//
6207 // Unary Operators.
6208 //===----------------------------------------------------------------------===//
6209 
6210 /// ParseUnaryOp
6211 ///  ::= UnaryOp TypeAndValue ',' Value
6212 ///
6213 /// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
6214 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
6215 bool LLParser::ParseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6216                             unsigned Opc, unsigned OperandType) {
6217   LocTy Loc; Value *LHS;
6218   if (ParseTypeAndValue(LHS, Loc, PFS))
6219     return true;
6220 
6221   bool Valid;
6222   switch (OperandType) {
6223   default: llvm_unreachable("Unknown operand type!");
6224   case 0: // int or FP.
6225     Valid = LHS->getType()->isIntOrIntVectorTy() ||
6226             LHS->getType()->isFPOrFPVectorTy();
6227     break;
6228   case 1:
6229     Valid = LHS->getType()->isIntOrIntVectorTy();
6230     break;
6231   case 2:
6232     Valid = LHS->getType()->isFPOrFPVectorTy();
6233     break;
6234   }
6235 
6236   if (!Valid)
6237     return Error(Loc, "invalid operand type for instruction");
6238 
6239   Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6240   return false;
6241 }
6242 
6243 /// ParseCallBr
6244 ///   ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6245 ///       OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6246 ///       '[' LabelList ']'
6247 bool LLParser::ParseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6248   LocTy CallLoc = Lex.getLoc();
6249   AttrBuilder RetAttrs, FnAttrs;
6250   std::vector<unsigned> FwdRefAttrGrps;
6251   LocTy NoBuiltinLoc;
6252   unsigned CC;
6253   Type *RetType = nullptr;
6254   LocTy RetTypeLoc;
6255   ValID CalleeID;
6256   SmallVector<ParamInfo, 16> ArgList;
6257   SmallVector<OperandBundleDef, 2> BundleList;
6258 
6259   BasicBlock *DefaultDest;
6260   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6261       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6262       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
6263       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6264                                  NoBuiltinLoc) ||
6265       ParseOptionalOperandBundles(BundleList, PFS) ||
6266       ParseToken(lltok::kw_to, "expected 'to' in callbr") ||
6267       ParseTypeAndBasicBlock(DefaultDest, PFS) ||
6268       ParseToken(lltok::lsquare, "expected '[' in callbr"))
6269     return true;
6270 
6271   // Parse the destination list.
6272   SmallVector<BasicBlock *, 16> IndirectDests;
6273 
6274   if (Lex.getKind() != lltok::rsquare) {
6275     BasicBlock *DestBB;
6276     if (ParseTypeAndBasicBlock(DestBB, PFS))
6277       return true;
6278     IndirectDests.push_back(DestBB);
6279 
6280     while (EatIfPresent(lltok::comma)) {
6281       if (ParseTypeAndBasicBlock(DestBB, PFS))
6282         return true;
6283       IndirectDests.push_back(DestBB);
6284     }
6285   }
6286 
6287   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
6288     return true;
6289 
6290   // If RetType is a non-function pointer type, then this is the short syntax
6291   // for the call, which means that RetType is just the return type.  Infer the
6292   // rest of the function argument types from the arguments that are present.
6293   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6294   if (!Ty) {
6295     // Pull out the types of all of the arguments...
6296     std::vector<Type *> ParamTypes;
6297     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6298       ParamTypes.push_back(ArgList[i].V->getType());
6299 
6300     if (!FunctionType::isValidReturnType(RetType))
6301       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6302 
6303     Ty = FunctionType::get(RetType, ParamTypes, false);
6304   }
6305 
6306   CalleeID.FTy = Ty;
6307 
6308   // Look up the callee.
6309   Value *Callee;
6310   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
6311                           /*IsCall=*/true))
6312     return true;
6313 
6314   if (isa<InlineAsm>(Callee) && !Ty->getReturnType()->isVoidTy())
6315     return Error(RetTypeLoc, "asm-goto outputs not supported");
6316 
6317   // Set up the Attribute for the function.
6318   SmallVector<Value *, 8> Args;
6319   SmallVector<AttributeSet, 8> ArgAttrs;
6320 
6321   // Loop through FunctionType's arguments and ensure they are specified
6322   // correctly.  Also, gather any parameter attributes.
6323   FunctionType::param_iterator I = Ty->param_begin();
6324   FunctionType::param_iterator E = Ty->param_end();
6325   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6326     Type *ExpectedTy = nullptr;
6327     if (I != E) {
6328       ExpectedTy = *I++;
6329     } else if (!Ty->isVarArg()) {
6330       return Error(ArgList[i].Loc, "too many arguments specified");
6331     }
6332 
6333     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6334       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6335                                        getTypeString(ExpectedTy) + "'");
6336     Args.push_back(ArgList[i].V);
6337     ArgAttrs.push_back(ArgList[i].Attrs);
6338   }
6339 
6340   if (I != E)
6341     return Error(CallLoc, "not enough parameters specified for call");
6342 
6343   if (FnAttrs.hasAlignmentAttr())
6344     return Error(CallLoc, "callbr instructions may not have an alignment");
6345 
6346   // Finish off the Attribute and check them
6347   AttributeList PAL =
6348       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6349                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6350 
6351   CallBrInst *CBI =
6352       CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
6353                          BundleList);
6354   CBI->setCallingConv(CC);
6355   CBI->setAttributes(PAL);
6356   ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
6357   Inst = CBI;
6358   return false;
6359 }
6360 
6361 //===----------------------------------------------------------------------===//
6362 // Binary Operators.
6363 //===----------------------------------------------------------------------===//
6364 
6365 /// ParseArithmetic
6366 ///  ::= ArithmeticOps TypeAndValue ',' Value
6367 ///
6368 /// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
6369 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
6370 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6371                                unsigned Opc, unsigned OperandType) {
6372   LocTy Loc; Value *LHS, *RHS;
6373   if (ParseTypeAndValue(LHS, Loc, PFS) ||
6374       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6375       ParseValue(LHS->getType(), RHS, PFS))
6376     return true;
6377 
6378   bool Valid;
6379   switch (OperandType) {
6380   default: llvm_unreachable("Unknown operand type!");
6381   case 0: // int or FP.
6382     Valid = LHS->getType()->isIntOrIntVectorTy() ||
6383             LHS->getType()->isFPOrFPVectorTy();
6384     break;
6385   case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
6386   case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
6387   }
6388 
6389   if (!Valid)
6390     return Error(Loc, "invalid operand type for instruction");
6391 
6392   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6393   return false;
6394 }
6395 
6396 /// ParseLogical
6397 ///  ::= ArithmeticOps TypeAndValue ',' Value {
6398 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
6399                             unsigned Opc) {
6400   LocTy Loc; Value *LHS, *RHS;
6401   if (ParseTypeAndValue(LHS, Loc, PFS) ||
6402       ParseToken(lltok::comma, "expected ',' in logical operation") ||
6403       ParseValue(LHS->getType(), RHS, PFS))
6404     return true;
6405 
6406   if (!LHS->getType()->isIntOrIntVectorTy())
6407     return Error(Loc,"instruction requires integer or integer vector operands");
6408 
6409   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6410   return false;
6411 }
6412 
6413 /// ParseCompare
6414 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
6415 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
6416 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
6417                             unsigned Opc) {
6418   // Parse the integer/fp comparison predicate.
6419   LocTy Loc;
6420   unsigned Pred;
6421   Value *LHS, *RHS;
6422   if (ParseCmpPredicate(Pred, Opc) ||
6423       ParseTypeAndValue(LHS, Loc, PFS) ||
6424       ParseToken(lltok::comma, "expected ',' after compare value") ||
6425       ParseValue(LHS->getType(), RHS, PFS))
6426     return true;
6427 
6428   if (Opc == Instruction::FCmp) {
6429     if (!LHS->getType()->isFPOrFPVectorTy())
6430       return Error(Loc, "fcmp requires floating point operands");
6431     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6432   } else {
6433     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
6434     if (!LHS->getType()->isIntOrIntVectorTy() &&
6435         !LHS->getType()->isPtrOrPtrVectorTy())
6436       return Error(Loc, "icmp requires integer operands");
6437     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6438   }
6439   return false;
6440 }
6441 
6442 //===----------------------------------------------------------------------===//
6443 // Other Instructions.
6444 //===----------------------------------------------------------------------===//
6445 
6446 
6447 /// ParseCast
6448 ///   ::= CastOpc TypeAndValue 'to' Type
6449 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
6450                          unsigned Opc) {
6451   LocTy Loc;
6452   Value *Op;
6453   Type *DestTy = nullptr;
6454   if (ParseTypeAndValue(Op, Loc, PFS) ||
6455       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
6456       ParseType(DestTy))
6457     return true;
6458 
6459   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
6460     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
6461     return Error(Loc, "invalid cast opcode for cast from '" +
6462                  getTypeString(Op->getType()) + "' to '" +
6463                  getTypeString(DestTy) + "'");
6464   }
6465   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
6466   return false;
6467 }
6468 
6469 /// ParseSelect
6470 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6471 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
6472   LocTy Loc;
6473   Value *Op0, *Op1, *Op2;
6474   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6475       ParseToken(lltok::comma, "expected ',' after select condition") ||
6476       ParseTypeAndValue(Op1, PFS) ||
6477       ParseToken(lltok::comma, "expected ',' after select value") ||
6478       ParseTypeAndValue(Op2, PFS))
6479     return true;
6480 
6481   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
6482     return Error(Loc, Reason);
6483 
6484   Inst = SelectInst::Create(Op0, Op1, Op2);
6485   return false;
6486 }
6487 
6488 /// ParseVA_Arg
6489 ///   ::= 'va_arg' TypeAndValue ',' Type
6490 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
6491   Value *Op;
6492   Type *EltTy = nullptr;
6493   LocTy TypeLoc;
6494   if (ParseTypeAndValue(Op, PFS) ||
6495       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
6496       ParseType(EltTy, TypeLoc))
6497     return true;
6498 
6499   if (!EltTy->isFirstClassType())
6500     return Error(TypeLoc, "va_arg requires operand with first class type");
6501 
6502   Inst = new VAArgInst(Op, EltTy);
6503   return false;
6504 }
6505 
6506 /// ParseExtractElement
6507 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
6508 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
6509   LocTy Loc;
6510   Value *Op0, *Op1;
6511   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6512       ParseToken(lltok::comma, "expected ',' after extract value") ||
6513       ParseTypeAndValue(Op1, PFS))
6514     return true;
6515 
6516   if (!ExtractElementInst::isValidOperands(Op0, Op1))
6517     return Error(Loc, "invalid extractelement operands");
6518 
6519   Inst = ExtractElementInst::Create(Op0, Op1);
6520   return false;
6521 }
6522 
6523 /// ParseInsertElement
6524 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6525 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
6526   LocTy Loc;
6527   Value *Op0, *Op1, *Op2;
6528   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6529       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6530       ParseTypeAndValue(Op1, PFS) ||
6531       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6532       ParseTypeAndValue(Op2, PFS))
6533     return true;
6534 
6535   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
6536     return Error(Loc, "invalid insertelement operands");
6537 
6538   Inst = InsertElementInst::Create(Op0, Op1, Op2);
6539   return false;
6540 }
6541 
6542 /// ParseShuffleVector
6543 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6544 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
6545   LocTy Loc;
6546   Value *Op0, *Op1, *Op2;
6547   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6548       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
6549       ParseTypeAndValue(Op1, PFS) ||
6550       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
6551       ParseTypeAndValue(Op2, PFS))
6552     return true;
6553 
6554   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
6555     return Error(Loc, "invalid shufflevector operands");
6556 
6557   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
6558   return false;
6559 }
6560 
6561 /// ParsePHI
6562 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
6563 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
6564   Type *Ty = nullptr;  LocTy TypeLoc;
6565   Value *Op0, *Op1;
6566 
6567   if (ParseType(Ty, TypeLoc) ||
6568       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6569       ParseValue(Ty, Op0, PFS) ||
6570       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6571       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6572       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6573     return true;
6574 
6575   bool AteExtraComma = false;
6576   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
6577 
6578   while (true) {
6579     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
6580 
6581     if (!EatIfPresent(lltok::comma))
6582       break;
6583 
6584     if (Lex.getKind() == lltok::MetadataVar) {
6585       AteExtraComma = true;
6586       break;
6587     }
6588 
6589     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6590         ParseValue(Ty, Op0, PFS) ||
6591         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6592         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6593         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6594       return true;
6595   }
6596 
6597   if (!Ty->isFirstClassType())
6598     return Error(TypeLoc, "phi node must have first class type");
6599 
6600   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
6601   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
6602     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
6603   Inst = PN;
6604   return AteExtraComma ? InstExtraComma : InstNormal;
6605 }
6606 
6607 /// ParseLandingPad
6608 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
6609 /// Clause
6610 ///   ::= 'catch' TypeAndValue
6611 ///   ::= 'filter'
6612 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
6613 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
6614   Type *Ty = nullptr; LocTy TyLoc;
6615 
6616   if (ParseType(Ty, TyLoc))
6617     return true;
6618 
6619   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
6620   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
6621 
6622   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
6623     LandingPadInst::ClauseType CT;
6624     if (EatIfPresent(lltok::kw_catch))
6625       CT = LandingPadInst::Catch;
6626     else if (EatIfPresent(lltok::kw_filter))
6627       CT = LandingPadInst::Filter;
6628     else
6629       return TokError("expected 'catch' or 'filter' clause type");
6630 
6631     Value *V;
6632     LocTy VLoc;
6633     if (ParseTypeAndValue(V, VLoc, PFS))
6634       return true;
6635 
6636     // A 'catch' type expects a non-array constant. A filter clause expects an
6637     // array constant.
6638     if (CT == LandingPadInst::Catch) {
6639       if (isa<ArrayType>(V->getType()))
6640         Error(VLoc, "'catch' clause has an invalid type");
6641     } else {
6642       if (!isa<ArrayType>(V->getType()))
6643         Error(VLoc, "'filter' clause has an invalid type");
6644     }
6645 
6646     Constant *CV = dyn_cast<Constant>(V);
6647     if (!CV)
6648       return Error(VLoc, "clause argument must be a constant");
6649     LP->addClause(CV);
6650   }
6651 
6652   Inst = LP.release();
6653   return false;
6654 }
6655 
6656 /// ParseCall
6657 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
6658 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6659 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
6660 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6661 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
6662 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6663 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
6664 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6665 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
6666                          CallInst::TailCallKind TCK) {
6667   AttrBuilder RetAttrs, FnAttrs;
6668   std::vector<unsigned> FwdRefAttrGrps;
6669   LocTy BuiltinLoc;
6670   unsigned CallAddrSpace;
6671   unsigned CC;
6672   Type *RetType = nullptr;
6673   LocTy RetTypeLoc;
6674   ValID CalleeID;
6675   SmallVector<ParamInfo, 16> ArgList;
6676   SmallVector<OperandBundleDef, 2> BundleList;
6677   LocTy CallLoc = Lex.getLoc();
6678 
6679   if (TCK != CallInst::TCK_None &&
6680       ParseToken(lltok::kw_call,
6681                  "expected 'tail call', 'musttail call', or 'notail call'"))
6682     return true;
6683 
6684   FastMathFlags FMF = EatFastMathFlagsIfPresent();
6685 
6686   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6687       ParseOptionalProgramAddrSpace(CallAddrSpace) ||
6688       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6689       ParseValID(CalleeID) ||
6690       ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
6691                          PFS.getFunction().isVarArg()) ||
6692       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
6693       ParseOptionalOperandBundles(BundleList, PFS))
6694     return true;
6695 
6696   if (FMF.any() && !RetType->isFPOrFPVectorTy())
6697     return Error(CallLoc, "fast-math-flags specified for call without "
6698                           "floating-point scalar or vector return type");
6699 
6700   // If RetType is a non-function pointer type, then this is the short syntax
6701   // for the call, which means that RetType is just the return type.  Infer the
6702   // rest of the function argument types from the arguments that are present.
6703   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6704   if (!Ty) {
6705     // Pull out the types of all of the arguments...
6706     std::vector<Type*> ParamTypes;
6707     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6708       ParamTypes.push_back(ArgList[i].V->getType());
6709 
6710     if (!FunctionType::isValidReturnType(RetType))
6711       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6712 
6713     Ty = FunctionType::get(RetType, ParamTypes, false);
6714   }
6715 
6716   CalleeID.FTy = Ty;
6717 
6718   // Look up the callee.
6719   Value *Callee;
6720   if (ConvertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
6721                           &PFS, /*IsCall=*/true))
6722     return true;
6723 
6724   // Set up the Attribute for the function.
6725   SmallVector<AttributeSet, 8> Attrs;
6726 
6727   SmallVector<Value*, 8> Args;
6728 
6729   // Loop through FunctionType's arguments and ensure they are specified
6730   // correctly.  Also, gather any parameter attributes.
6731   FunctionType::param_iterator I = Ty->param_begin();
6732   FunctionType::param_iterator E = Ty->param_end();
6733   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6734     Type *ExpectedTy = nullptr;
6735     if (I != E) {
6736       ExpectedTy = *I++;
6737     } else if (!Ty->isVarArg()) {
6738       return Error(ArgList[i].Loc, "too many arguments specified");
6739     }
6740 
6741     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6742       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6743                    getTypeString(ExpectedTy) + "'");
6744     Args.push_back(ArgList[i].V);
6745     Attrs.push_back(ArgList[i].Attrs);
6746   }
6747 
6748   if (I != E)
6749     return Error(CallLoc, "not enough parameters specified for call");
6750 
6751   if (FnAttrs.hasAlignmentAttr())
6752     return Error(CallLoc, "call instructions may not have an alignment");
6753 
6754   // Finish off the Attribute and check them
6755   AttributeList PAL =
6756       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6757                          AttributeSet::get(Context, RetAttrs), Attrs);
6758 
6759   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
6760   CI->setTailCallKind(TCK);
6761   CI->setCallingConv(CC);
6762   if (FMF.any())
6763     CI->setFastMathFlags(FMF);
6764   CI->setAttributes(PAL);
6765   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
6766   Inst = CI;
6767   return false;
6768 }
6769 
6770 //===----------------------------------------------------------------------===//
6771 // Memory Instructions.
6772 //===----------------------------------------------------------------------===//
6773 
6774 /// ParseAlloc
6775 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
6776 ///       (',' 'align' i32)? (',', 'addrspace(n))?
6777 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
6778   Value *Size = nullptr;
6779   LocTy SizeLoc, TyLoc, ASLoc;
6780   unsigned Alignment = 0;
6781   unsigned AddrSpace = 0;
6782   Type *Ty = nullptr;
6783 
6784   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
6785   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
6786 
6787   if (ParseType(Ty, TyLoc)) return true;
6788 
6789   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
6790     return Error(TyLoc, "invalid type for alloca");
6791 
6792   bool AteExtraComma = false;
6793   if (EatIfPresent(lltok::comma)) {
6794     if (Lex.getKind() == lltok::kw_align) {
6795       if (ParseOptionalAlignment(Alignment))
6796         return true;
6797       if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6798         return true;
6799     } else if (Lex.getKind() == lltok::kw_addrspace) {
6800       ASLoc = Lex.getLoc();
6801       if (ParseOptionalAddrSpace(AddrSpace))
6802         return true;
6803     } else if (Lex.getKind() == lltok::MetadataVar) {
6804       AteExtraComma = true;
6805     } else {
6806       if (ParseTypeAndValue(Size, SizeLoc, PFS))
6807         return true;
6808       if (EatIfPresent(lltok::comma)) {
6809         if (Lex.getKind() == lltok::kw_align) {
6810           if (ParseOptionalAlignment(Alignment))
6811             return true;
6812           if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6813             return true;
6814         } else if (Lex.getKind() == lltok::kw_addrspace) {
6815           ASLoc = Lex.getLoc();
6816           if (ParseOptionalAddrSpace(AddrSpace))
6817             return true;
6818         } else if (Lex.getKind() == lltok::MetadataVar) {
6819           AteExtraComma = true;
6820         }
6821       }
6822     }
6823   }
6824 
6825   if (Size && !Size->getType()->isIntegerTy())
6826     return Error(SizeLoc, "element count must have integer type");
6827 
6828   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, Alignment);
6829   AI->setUsedWithInAlloca(IsInAlloca);
6830   AI->setSwiftError(IsSwiftError);
6831   Inst = AI;
6832   return AteExtraComma ? InstExtraComma : InstNormal;
6833 }
6834 
6835 /// ParseLoad
6836 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
6837 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
6838 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6839 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
6840   Value *Val; LocTy Loc;
6841   unsigned Alignment = 0;
6842   bool AteExtraComma = false;
6843   bool isAtomic = false;
6844   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6845   SyncScope::ID SSID = SyncScope::System;
6846 
6847   if (Lex.getKind() == lltok::kw_atomic) {
6848     isAtomic = true;
6849     Lex.Lex();
6850   }
6851 
6852   bool isVolatile = false;
6853   if (Lex.getKind() == lltok::kw_volatile) {
6854     isVolatile = true;
6855     Lex.Lex();
6856   }
6857 
6858   Type *Ty;
6859   LocTy ExplicitTypeLoc = Lex.getLoc();
6860   if (ParseType(Ty) ||
6861       ParseToken(lltok::comma, "expected comma after load's type") ||
6862       ParseTypeAndValue(Val, Loc, PFS) ||
6863       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6864       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6865     return true;
6866 
6867   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
6868     return Error(Loc, "load operand must be a pointer to a first class type");
6869   if (isAtomic && !Alignment)
6870     return Error(Loc, "atomic load must have explicit non-zero alignment");
6871   if (Ordering == AtomicOrdering::Release ||
6872       Ordering == AtomicOrdering::AcquireRelease)
6873     return Error(Loc, "atomic load cannot use Release ordering");
6874 
6875   if (Ty != cast<PointerType>(Val->getType())->getElementType())
6876     return Error(ExplicitTypeLoc,
6877                  "explicit pointee type doesn't match operand's pointee type");
6878 
6879   Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID);
6880   return AteExtraComma ? InstExtraComma : InstNormal;
6881 }
6882 
6883 /// ParseStore
6884 
6885 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
6886 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
6887 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6888 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
6889   Value *Val, *Ptr; LocTy Loc, PtrLoc;
6890   unsigned Alignment = 0;
6891   bool AteExtraComma = false;
6892   bool isAtomic = false;
6893   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6894   SyncScope::ID SSID = SyncScope::System;
6895 
6896   if (Lex.getKind() == lltok::kw_atomic) {
6897     isAtomic = true;
6898     Lex.Lex();
6899   }
6900 
6901   bool isVolatile = false;
6902   if (Lex.getKind() == lltok::kw_volatile) {
6903     isVolatile = true;
6904     Lex.Lex();
6905   }
6906 
6907   if (ParseTypeAndValue(Val, Loc, PFS) ||
6908       ParseToken(lltok::comma, "expected ',' after store operand") ||
6909       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6910       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6911       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6912     return true;
6913 
6914   if (!Ptr->getType()->isPointerTy())
6915     return Error(PtrLoc, "store operand must be a pointer");
6916   if (!Val->getType()->isFirstClassType())
6917     return Error(Loc, "store operand must be a first class value");
6918   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6919     return Error(Loc, "stored value and pointer type do not match");
6920   if (isAtomic && !Alignment)
6921     return Error(Loc, "atomic store must have explicit non-zero alignment");
6922   if (Ordering == AtomicOrdering::Acquire ||
6923       Ordering == AtomicOrdering::AcquireRelease)
6924     return Error(Loc, "atomic store cannot use Acquire ordering");
6925 
6926   Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID);
6927   return AteExtraComma ? InstExtraComma : InstNormal;
6928 }
6929 
6930 /// ParseCmpXchg
6931 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
6932 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
6933 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
6934   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
6935   bool AteExtraComma = false;
6936   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
6937   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
6938   SyncScope::ID SSID = SyncScope::System;
6939   bool isVolatile = false;
6940   bool isWeak = false;
6941 
6942   if (EatIfPresent(lltok::kw_weak))
6943     isWeak = true;
6944 
6945   if (EatIfPresent(lltok::kw_volatile))
6946     isVolatile = true;
6947 
6948   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6949       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
6950       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
6951       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
6952       ParseTypeAndValue(New, NewLoc, PFS) ||
6953       ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
6954       ParseOrdering(FailureOrdering))
6955     return true;
6956 
6957   if (SuccessOrdering == AtomicOrdering::Unordered ||
6958       FailureOrdering == AtomicOrdering::Unordered)
6959     return TokError("cmpxchg cannot be unordered");
6960   if (isStrongerThan(FailureOrdering, SuccessOrdering))
6961     return TokError("cmpxchg failure argument shall be no stronger than the "
6962                     "success argument");
6963   if (FailureOrdering == AtomicOrdering::Release ||
6964       FailureOrdering == AtomicOrdering::AcquireRelease)
6965     return TokError(
6966         "cmpxchg failure ordering cannot include release semantics");
6967   if (!Ptr->getType()->isPointerTy())
6968     return Error(PtrLoc, "cmpxchg operand must be a pointer");
6969   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
6970     return Error(CmpLoc, "compare value and pointer type do not match");
6971   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
6972     return Error(NewLoc, "new value and pointer type do not match");
6973   if (!New->getType()->isFirstClassType())
6974     return Error(NewLoc, "cmpxchg operand must be a first class value");
6975   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
6976       Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID);
6977   CXI->setVolatile(isVolatile);
6978   CXI->setWeak(isWeak);
6979   Inst = CXI;
6980   return AteExtraComma ? InstExtraComma : InstNormal;
6981 }
6982 
6983 /// ParseAtomicRMW
6984 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
6985 ///       'singlethread'? AtomicOrdering
6986 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
6987   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
6988   bool AteExtraComma = false;
6989   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6990   SyncScope::ID SSID = SyncScope::System;
6991   bool isVolatile = false;
6992   bool IsFP = false;
6993   AtomicRMWInst::BinOp Operation;
6994 
6995   if (EatIfPresent(lltok::kw_volatile))
6996     isVolatile = true;
6997 
6998   switch (Lex.getKind()) {
6999   default: return TokError("expected binary operation in atomicrmw");
7000   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
7001   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
7002   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
7003   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
7004   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
7005   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
7006   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
7007   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
7008   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
7009   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
7010   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
7011   case lltok::kw_fadd:
7012     Operation = AtomicRMWInst::FAdd;
7013     IsFP = true;
7014     break;
7015   case lltok::kw_fsub:
7016     Operation = AtomicRMWInst::FSub;
7017     IsFP = true;
7018     break;
7019   }
7020   Lex.Lex();  // Eat the operation.
7021 
7022   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7023       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
7024       ParseTypeAndValue(Val, ValLoc, PFS) ||
7025       ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7026     return true;
7027 
7028   if (Ordering == AtomicOrdering::Unordered)
7029     return TokError("atomicrmw cannot be unordered");
7030   if (!Ptr->getType()->isPointerTy())
7031     return Error(PtrLoc, "atomicrmw operand must be a pointer");
7032   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
7033     return Error(ValLoc, "atomicrmw value and pointer type do not match");
7034 
7035   if (Operation == AtomicRMWInst::Xchg) {
7036     if (!Val->getType()->isIntegerTy() &&
7037         !Val->getType()->isFloatingPointTy()) {
7038       return Error(ValLoc, "atomicrmw " +
7039                    AtomicRMWInst::getOperationName(Operation) +
7040                    " operand must be an integer or floating point type");
7041     }
7042   } else if (IsFP) {
7043     if (!Val->getType()->isFloatingPointTy()) {
7044       return Error(ValLoc, "atomicrmw " +
7045                    AtomicRMWInst::getOperationName(Operation) +
7046                    " operand must be a floating point type");
7047     }
7048   } else {
7049     if (!Val->getType()->isIntegerTy()) {
7050       return Error(ValLoc, "atomicrmw " +
7051                    AtomicRMWInst::getOperationName(Operation) +
7052                    " operand must be an integer");
7053     }
7054   }
7055 
7056   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
7057   if (Size < 8 || (Size & (Size - 1)))
7058     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7059                          " integer");
7060 
7061   AtomicRMWInst *RMWI =
7062     new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
7063   RMWI->setVolatile(isVolatile);
7064   Inst = RMWI;
7065   return AteExtraComma ? InstExtraComma : InstNormal;
7066 }
7067 
7068 /// ParseFence
7069 ///   ::= 'fence' 'singlethread'? AtomicOrdering
7070 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
7071   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7072   SyncScope::ID SSID = SyncScope::System;
7073   if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7074     return true;
7075 
7076   if (Ordering == AtomicOrdering::Unordered)
7077     return TokError("fence cannot be unordered");
7078   if (Ordering == AtomicOrdering::Monotonic)
7079     return TokError("fence cannot be monotonic");
7080 
7081   Inst = new FenceInst(Context, Ordering, SSID);
7082   return InstNormal;
7083 }
7084 
7085 /// ParseGetElementPtr
7086 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7087 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7088   Value *Ptr = nullptr;
7089   Value *Val = nullptr;
7090   LocTy Loc, EltLoc;
7091 
7092   bool InBounds = EatIfPresent(lltok::kw_inbounds);
7093 
7094   Type *Ty = nullptr;
7095   LocTy ExplicitTypeLoc = Lex.getLoc();
7096   if (ParseType(Ty) ||
7097       ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
7098       ParseTypeAndValue(Ptr, Loc, PFS))
7099     return true;
7100 
7101   Type *BaseType = Ptr->getType();
7102   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7103   if (!BasePointerType)
7104     return Error(Loc, "base of getelementptr must be a pointer");
7105 
7106   if (Ty != BasePointerType->getElementType())
7107     return Error(ExplicitTypeLoc,
7108                  "explicit pointee type doesn't match operand's pointee type");
7109 
7110   SmallVector<Value*, 16> Indices;
7111   bool AteExtraComma = false;
7112   // GEP returns a vector of pointers if at least one of parameters is a vector.
7113   // All vector parameters should have the same vector width.
7114   unsigned GEPWidth = BaseType->isVectorTy() ?
7115     BaseType->getVectorNumElements() : 0;
7116 
7117   while (EatIfPresent(lltok::comma)) {
7118     if (Lex.getKind() == lltok::MetadataVar) {
7119       AteExtraComma = true;
7120       break;
7121     }
7122     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
7123     if (!Val->getType()->isIntOrIntVectorTy())
7124       return Error(EltLoc, "getelementptr index must be an integer");
7125 
7126     if (Val->getType()->isVectorTy()) {
7127       unsigned ValNumEl = Val->getType()->getVectorNumElements();
7128       if (GEPWidth && GEPWidth != ValNumEl)
7129         return Error(EltLoc,
7130           "getelementptr vector index has a wrong number of elements");
7131       GEPWidth = ValNumEl;
7132     }
7133     Indices.push_back(Val);
7134   }
7135 
7136   SmallPtrSet<Type*, 4> Visited;
7137   if (!Indices.empty() && !Ty->isSized(&Visited))
7138     return Error(Loc, "base element of getelementptr must be sized");
7139 
7140   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7141     return Error(Loc, "invalid getelementptr indices");
7142   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7143   if (InBounds)
7144     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7145   return AteExtraComma ? InstExtraComma : InstNormal;
7146 }
7147 
7148 /// ParseExtractValue
7149 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
7150 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7151   Value *Val; LocTy Loc;
7152   SmallVector<unsigned, 4> Indices;
7153   bool AteExtraComma;
7154   if (ParseTypeAndValue(Val, Loc, PFS) ||
7155       ParseIndexList(Indices, AteExtraComma))
7156     return true;
7157 
7158   if (!Val->getType()->isAggregateType())
7159     return Error(Loc, "extractvalue operand must be aggregate type");
7160 
7161   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7162     return Error(Loc, "invalid indices for extractvalue");
7163   Inst = ExtractValueInst::Create(Val, Indices);
7164   return AteExtraComma ? InstExtraComma : InstNormal;
7165 }
7166 
7167 /// ParseInsertValue
7168 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7169 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7170   Value *Val0, *Val1; LocTy Loc0, Loc1;
7171   SmallVector<unsigned, 4> Indices;
7172   bool AteExtraComma;
7173   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
7174       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
7175       ParseTypeAndValue(Val1, Loc1, PFS) ||
7176       ParseIndexList(Indices, AteExtraComma))
7177     return true;
7178 
7179   if (!Val0->getType()->isAggregateType())
7180     return Error(Loc0, "insertvalue operand must be aggregate type");
7181 
7182   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7183   if (!IndexedType)
7184     return Error(Loc0, "invalid indices for insertvalue");
7185   if (IndexedType != Val1->getType())
7186     return Error(Loc1, "insertvalue operand and field disagree in type: '" +
7187                            getTypeString(Val1->getType()) + "' instead of '" +
7188                            getTypeString(IndexedType) + "'");
7189   Inst = InsertValueInst::Create(Val0, Val1, Indices);
7190   return AteExtraComma ? InstExtraComma : InstNormal;
7191 }
7192 
7193 //===----------------------------------------------------------------------===//
7194 // Embedded metadata.
7195 //===----------------------------------------------------------------------===//
7196 
7197 /// ParseMDNodeVector
7198 ///   ::= { Element (',' Element)* }
7199 /// Element
7200 ///   ::= 'null' | TypeAndValue
7201 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7202   if (ParseToken(lltok::lbrace, "expected '{' here"))
7203     return true;
7204 
7205   // Check for an empty list.
7206   if (EatIfPresent(lltok::rbrace))
7207     return false;
7208 
7209   do {
7210     // Null is a special case since it is typeless.
7211     if (EatIfPresent(lltok::kw_null)) {
7212       Elts.push_back(nullptr);
7213       continue;
7214     }
7215 
7216     Metadata *MD;
7217     if (ParseMetadata(MD, nullptr))
7218       return true;
7219     Elts.push_back(MD);
7220   } while (EatIfPresent(lltok::comma));
7221 
7222   return ParseToken(lltok::rbrace, "expected end of metadata node");
7223 }
7224 
7225 //===----------------------------------------------------------------------===//
7226 // Use-list order directives.
7227 //===----------------------------------------------------------------------===//
7228 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7229                                 SMLoc Loc) {
7230   if (V->use_empty())
7231     return Error(Loc, "value has no uses");
7232 
7233   unsigned NumUses = 0;
7234   SmallDenseMap<const Use *, unsigned, 16> Order;
7235   for (const Use &U : V->uses()) {
7236     if (++NumUses > Indexes.size())
7237       break;
7238     Order[&U] = Indexes[NumUses - 1];
7239   }
7240   if (NumUses < 2)
7241     return Error(Loc, "value only has one use");
7242   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7243     return Error(Loc,
7244                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
7245 
7246   V->sortUseList([&](const Use &L, const Use &R) {
7247     return Order.lookup(&L) < Order.lookup(&R);
7248   });
7249   return false;
7250 }
7251 
7252 /// ParseUseListOrderIndexes
7253 ///   ::= '{' uint32 (',' uint32)+ '}'
7254 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7255   SMLoc Loc = Lex.getLoc();
7256   if (ParseToken(lltok::lbrace, "expected '{' here"))
7257     return true;
7258   if (Lex.getKind() == lltok::rbrace)
7259     return Lex.Error("expected non-empty list of uselistorder indexes");
7260 
7261   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
7262   // indexes should be distinct numbers in the range [0, size-1], and should
7263   // not be in order.
7264   unsigned Offset = 0;
7265   unsigned Max = 0;
7266   bool IsOrdered = true;
7267   assert(Indexes.empty() && "Expected empty order vector");
7268   do {
7269     unsigned Index;
7270     if (ParseUInt32(Index))
7271       return true;
7272 
7273     // Update consistency checks.
7274     Offset += Index - Indexes.size();
7275     Max = std::max(Max, Index);
7276     IsOrdered &= Index == Indexes.size();
7277 
7278     Indexes.push_back(Index);
7279   } while (EatIfPresent(lltok::comma));
7280 
7281   if (ParseToken(lltok::rbrace, "expected '}' here"))
7282     return true;
7283 
7284   if (Indexes.size() < 2)
7285     return Error(Loc, "expected >= 2 uselistorder indexes");
7286   if (Offset != 0 || Max >= Indexes.size())
7287     return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
7288   if (IsOrdered)
7289     return Error(Loc, "expected uselistorder indexes to change the order");
7290 
7291   return false;
7292 }
7293 
7294 /// ParseUseListOrder
7295 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7296 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
7297   SMLoc Loc = Lex.getLoc();
7298   if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7299     return true;
7300 
7301   Value *V;
7302   SmallVector<unsigned, 16> Indexes;
7303   if (ParseTypeAndValue(V, PFS) ||
7304       ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
7305       ParseUseListOrderIndexes(Indexes))
7306     return true;
7307 
7308   return sortUseListOrder(V, Indexes, Loc);
7309 }
7310 
7311 /// ParseUseListOrderBB
7312 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
7313 bool LLParser::ParseUseListOrderBB() {
7314   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7315   SMLoc Loc = Lex.getLoc();
7316   Lex.Lex();
7317 
7318   ValID Fn, Label;
7319   SmallVector<unsigned, 16> Indexes;
7320   if (ParseValID(Fn) ||
7321       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7322       ParseValID(Label) ||
7323       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7324       ParseUseListOrderIndexes(Indexes))
7325     return true;
7326 
7327   // Check the function.
7328   GlobalValue *GV;
7329   if (Fn.Kind == ValID::t_GlobalName)
7330     GV = M->getNamedValue(Fn.StrVal);
7331   else if (Fn.Kind == ValID::t_GlobalID)
7332     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7333   else
7334     return Error(Fn.Loc, "expected function name in uselistorder_bb");
7335   if (!GV)
7336     return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
7337   auto *F = dyn_cast<Function>(GV);
7338   if (!F)
7339     return Error(Fn.Loc, "expected function name in uselistorder_bb");
7340   if (F->isDeclaration())
7341     return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
7342 
7343   // Check the basic block.
7344   if (Label.Kind == ValID::t_LocalID)
7345     return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
7346   if (Label.Kind != ValID::t_LocalName)
7347     return Error(Label.Loc, "expected basic block name in uselistorder_bb");
7348   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7349   if (!V)
7350     return Error(Label.Loc, "invalid basic block in uselistorder_bb");
7351   if (!isa<BasicBlock>(V))
7352     return Error(Label.Loc, "expected basic block in uselistorder_bb");
7353 
7354   return sortUseListOrder(V, Indexes, Loc);
7355 }
7356 
7357 /// ModuleEntry
7358 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
7359 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
7360 bool LLParser::ParseModuleEntry(unsigned ID) {
7361   assert(Lex.getKind() == lltok::kw_module);
7362   Lex.Lex();
7363 
7364   std::string Path;
7365   if (ParseToken(lltok::colon, "expected ':' here") ||
7366       ParseToken(lltok::lparen, "expected '(' here") ||
7367       ParseToken(lltok::kw_path, "expected 'path' here") ||
7368       ParseToken(lltok::colon, "expected ':' here") ||
7369       ParseStringConstant(Path) ||
7370       ParseToken(lltok::comma, "expected ',' here") ||
7371       ParseToken(lltok::kw_hash, "expected 'hash' here") ||
7372       ParseToken(lltok::colon, "expected ':' here") ||
7373       ParseToken(lltok::lparen, "expected '(' here"))
7374     return true;
7375 
7376   ModuleHash Hash;
7377   if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") ||
7378       ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") ||
7379       ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") ||
7380       ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") ||
7381       ParseUInt32(Hash[4]))
7382     return true;
7383 
7384   if (ParseToken(lltok::rparen, "expected ')' here") ||
7385       ParseToken(lltok::rparen, "expected ')' here"))
7386     return true;
7387 
7388   auto ModuleEntry = Index->addModule(Path, ID, Hash);
7389   ModuleIdMap[ID] = ModuleEntry->first();
7390 
7391   return false;
7392 }
7393 
7394 /// TypeIdEntry
7395 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
7396 bool LLParser::ParseTypeIdEntry(unsigned ID) {
7397   assert(Lex.getKind() == lltok::kw_typeid);
7398   Lex.Lex();
7399 
7400   std::string Name;
7401   if (ParseToken(lltok::colon, "expected ':' here") ||
7402       ParseToken(lltok::lparen, "expected '(' here") ||
7403       ParseToken(lltok::kw_name, "expected 'name' here") ||
7404       ParseToken(lltok::colon, "expected ':' here") ||
7405       ParseStringConstant(Name))
7406     return true;
7407 
7408   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
7409   if (ParseToken(lltok::comma, "expected ',' here") ||
7410       ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here"))
7411     return true;
7412 
7413   // Check if this ID was forward referenced, and if so, update the
7414   // corresponding GUIDs.
7415   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7416   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7417     for (auto TIDRef : FwdRefTIDs->second) {
7418       assert(!*TIDRef.first &&
7419              "Forward referenced type id GUID expected to be 0");
7420       *TIDRef.first = GlobalValue::getGUID(Name);
7421     }
7422     ForwardRefTypeIds.erase(FwdRefTIDs);
7423   }
7424 
7425   return false;
7426 }
7427 
7428 /// TypeIdSummary
7429 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
7430 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) {
7431   if (ParseToken(lltok::kw_summary, "expected 'summary' here") ||
7432       ParseToken(lltok::colon, "expected ':' here") ||
7433       ParseToken(lltok::lparen, "expected '(' here") ||
7434       ParseTypeTestResolution(TIS.TTRes))
7435     return true;
7436 
7437   if (EatIfPresent(lltok::comma)) {
7438     // Expect optional wpdResolutions field
7439     if (ParseOptionalWpdResolutions(TIS.WPDRes))
7440       return true;
7441   }
7442 
7443   if (ParseToken(lltok::rparen, "expected ')' here"))
7444     return true;
7445 
7446   return false;
7447 }
7448 
7449 /// TypeTestResolution
7450 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
7451 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
7452 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
7453 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
7454 ///         [',' 'inlinesBits' ':' UInt64]? ')'
7455 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) {
7456   if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
7457       ParseToken(lltok::colon, "expected ':' here") ||
7458       ParseToken(lltok::lparen, "expected '(' here") ||
7459       ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7460       ParseToken(lltok::colon, "expected ':' here"))
7461     return true;
7462 
7463   switch (Lex.getKind()) {
7464   case lltok::kw_unsat:
7465     TTRes.TheKind = TypeTestResolution::Unsat;
7466     break;
7467   case lltok::kw_byteArray:
7468     TTRes.TheKind = TypeTestResolution::ByteArray;
7469     break;
7470   case lltok::kw_inline:
7471     TTRes.TheKind = TypeTestResolution::Inline;
7472     break;
7473   case lltok::kw_single:
7474     TTRes.TheKind = TypeTestResolution::Single;
7475     break;
7476   case lltok::kw_allOnes:
7477     TTRes.TheKind = TypeTestResolution::AllOnes;
7478     break;
7479   default:
7480     return Error(Lex.getLoc(), "unexpected TypeTestResolution kind");
7481   }
7482   Lex.Lex();
7483 
7484   if (ParseToken(lltok::comma, "expected ',' here") ||
7485       ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
7486       ParseToken(lltok::colon, "expected ':' here") ||
7487       ParseUInt32(TTRes.SizeM1BitWidth))
7488     return true;
7489 
7490   // Parse optional fields
7491   while (EatIfPresent(lltok::comma)) {
7492     switch (Lex.getKind()) {
7493     case lltok::kw_alignLog2:
7494       Lex.Lex();
7495       if (ParseToken(lltok::colon, "expected ':'") ||
7496           ParseUInt64(TTRes.AlignLog2))
7497         return true;
7498       break;
7499     case lltok::kw_sizeM1:
7500       Lex.Lex();
7501       if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1))
7502         return true;
7503       break;
7504     case lltok::kw_bitMask: {
7505       unsigned Val;
7506       Lex.Lex();
7507       if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val))
7508         return true;
7509       assert(Val <= 0xff);
7510       TTRes.BitMask = (uint8_t)Val;
7511       break;
7512     }
7513     case lltok::kw_inlineBits:
7514       Lex.Lex();
7515       if (ParseToken(lltok::colon, "expected ':'") ||
7516           ParseUInt64(TTRes.InlineBits))
7517         return true;
7518       break;
7519     default:
7520       return Error(Lex.getLoc(), "expected optional TypeTestResolution field");
7521     }
7522   }
7523 
7524   if (ParseToken(lltok::rparen, "expected ')' here"))
7525     return true;
7526 
7527   return false;
7528 }
7529 
7530 /// OptionalWpdResolutions
7531 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
7532 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
7533 bool LLParser::ParseOptionalWpdResolutions(
7534     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
7535   if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
7536       ParseToken(lltok::colon, "expected ':' here") ||
7537       ParseToken(lltok::lparen, "expected '(' here"))
7538     return true;
7539 
7540   do {
7541     uint64_t Offset;
7542     WholeProgramDevirtResolution WPDRes;
7543     if (ParseToken(lltok::lparen, "expected '(' here") ||
7544         ParseToken(lltok::kw_offset, "expected 'offset' here") ||
7545         ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) ||
7546         ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) ||
7547         ParseToken(lltok::rparen, "expected ')' here"))
7548       return true;
7549     WPDResMap[Offset] = WPDRes;
7550   } while (EatIfPresent(lltok::comma));
7551 
7552   if (ParseToken(lltok::rparen, "expected ')' here"))
7553     return true;
7554 
7555   return false;
7556 }
7557 
7558 /// WpdRes
7559 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
7560 ///         [',' OptionalResByArg]? ')'
7561 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
7562 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
7563 ///         [',' OptionalResByArg]? ')'
7564 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
7565 ///         [',' OptionalResByArg]? ')'
7566 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) {
7567   if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
7568       ParseToken(lltok::colon, "expected ':' here") ||
7569       ParseToken(lltok::lparen, "expected '(' here") ||
7570       ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7571       ParseToken(lltok::colon, "expected ':' here"))
7572     return true;
7573 
7574   switch (Lex.getKind()) {
7575   case lltok::kw_indir:
7576     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
7577     break;
7578   case lltok::kw_singleImpl:
7579     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
7580     break;
7581   case lltok::kw_branchFunnel:
7582     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
7583     break;
7584   default:
7585     return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
7586   }
7587   Lex.Lex();
7588 
7589   // Parse optional fields
7590   while (EatIfPresent(lltok::comma)) {
7591     switch (Lex.getKind()) {
7592     case lltok::kw_singleImplName:
7593       Lex.Lex();
7594       if (ParseToken(lltok::colon, "expected ':' here") ||
7595           ParseStringConstant(WPDRes.SingleImplName))
7596         return true;
7597       break;
7598     case lltok::kw_resByArg:
7599       if (ParseOptionalResByArg(WPDRes.ResByArg))
7600         return true;
7601       break;
7602     default:
7603       return Error(Lex.getLoc(),
7604                    "expected optional WholeProgramDevirtResolution field");
7605     }
7606   }
7607 
7608   if (ParseToken(lltok::rparen, "expected ')' here"))
7609     return true;
7610 
7611   return false;
7612 }
7613 
7614 /// OptionalResByArg
7615 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
7616 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
7617 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
7618 ///                  'virtualConstProp' )
7619 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
7620 ///                [',' 'bit' ':' UInt32]? ')'
7621 bool LLParser::ParseOptionalResByArg(
7622     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
7623         &ResByArg) {
7624   if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
7625       ParseToken(lltok::colon, "expected ':' here") ||
7626       ParseToken(lltok::lparen, "expected '(' here"))
7627     return true;
7628 
7629   do {
7630     std::vector<uint64_t> Args;
7631     if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") ||
7632         ParseToken(lltok::kw_byArg, "expected 'byArg here") ||
7633         ParseToken(lltok::colon, "expected ':' here") ||
7634         ParseToken(lltok::lparen, "expected '(' here") ||
7635         ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7636         ParseToken(lltok::colon, "expected ':' here"))
7637       return true;
7638 
7639     WholeProgramDevirtResolution::ByArg ByArg;
7640     switch (Lex.getKind()) {
7641     case lltok::kw_indir:
7642       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
7643       break;
7644     case lltok::kw_uniformRetVal:
7645       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
7646       break;
7647     case lltok::kw_uniqueRetVal:
7648       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
7649       break;
7650     case lltok::kw_virtualConstProp:
7651       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
7652       break;
7653     default:
7654       return Error(Lex.getLoc(),
7655                    "unexpected WholeProgramDevirtResolution::ByArg kind");
7656     }
7657     Lex.Lex();
7658 
7659     // Parse optional fields
7660     while (EatIfPresent(lltok::comma)) {
7661       switch (Lex.getKind()) {
7662       case lltok::kw_info:
7663         Lex.Lex();
7664         if (ParseToken(lltok::colon, "expected ':' here") ||
7665             ParseUInt64(ByArg.Info))
7666           return true;
7667         break;
7668       case lltok::kw_byte:
7669         Lex.Lex();
7670         if (ParseToken(lltok::colon, "expected ':' here") ||
7671             ParseUInt32(ByArg.Byte))
7672           return true;
7673         break;
7674       case lltok::kw_bit:
7675         Lex.Lex();
7676         if (ParseToken(lltok::colon, "expected ':' here") ||
7677             ParseUInt32(ByArg.Bit))
7678           return true;
7679         break;
7680       default:
7681         return Error(Lex.getLoc(),
7682                      "expected optional whole program devirt field");
7683       }
7684     }
7685 
7686     if (ParseToken(lltok::rparen, "expected ')' here"))
7687       return true;
7688 
7689     ResByArg[Args] = ByArg;
7690   } while (EatIfPresent(lltok::comma));
7691 
7692   if (ParseToken(lltok::rparen, "expected ')' here"))
7693     return true;
7694 
7695   return false;
7696 }
7697 
7698 /// OptionalResByArg
7699 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
7700 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) {
7701   if (ParseToken(lltok::kw_args, "expected 'args' here") ||
7702       ParseToken(lltok::colon, "expected ':' here") ||
7703       ParseToken(lltok::lparen, "expected '(' here"))
7704     return true;
7705 
7706   do {
7707     uint64_t Val;
7708     if (ParseUInt64(Val))
7709       return true;
7710     Args.push_back(Val);
7711   } while (EatIfPresent(lltok::comma));
7712 
7713   if (ParseToken(lltok::rparen, "expected ')' here"))
7714     return true;
7715 
7716   return false;
7717 }
7718 
7719 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
7720 
7721 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
7722   bool ReadOnly = Fwd->isReadOnly();
7723   *Fwd = Resolved;
7724   if (ReadOnly)
7725     Fwd->setReadOnly();
7726 }
7727 
7728 /// Stores the given Name/GUID and associated summary into the Index.
7729 /// Also updates any forward references to the associated entry ID.
7730 void LLParser::AddGlobalValueToIndex(
7731     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
7732     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
7733   // First create the ValueInfo utilizing the Name or GUID.
7734   ValueInfo VI;
7735   if (GUID != 0) {
7736     assert(Name.empty());
7737     VI = Index->getOrInsertValueInfo(GUID);
7738   } else {
7739     assert(!Name.empty());
7740     if (M) {
7741       auto *GV = M->getNamedValue(Name);
7742       assert(GV);
7743       VI = Index->getOrInsertValueInfo(GV);
7744     } else {
7745       assert(
7746           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
7747           "Need a source_filename to compute GUID for local");
7748       GUID = GlobalValue::getGUID(
7749           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
7750       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
7751     }
7752   }
7753 
7754   // Resolve forward references from calls/refs
7755   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
7756   if (FwdRefVIs != ForwardRefValueInfos.end()) {
7757     for (auto VIRef : FwdRefVIs->second) {
7758       assert(VIRef.first->getRef() == FwdVIRef &&
7759              "Forward referenced ValueInfo expected to be empty");
7760       resolveFwdRef(VIRef.first, VI);
7761     }
7762     ForwardRefValueInfos.erase(FwdRefVIs);
7763   }
7764 
7765   // Resolve forward references from aliases
7766   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
7767   if (FwdRefAliasees != ForwardRefAliasees.end()) {
7768     for (auto AliaseeRef : FwdRefAliasees->second) {
7769       assert(!AliaseeRef.first->hasAliasee() &&
7770              "Forward referencing alias already has aliasee");
7771       assert(Summary && "Aliasee must be a definition");
7772       AliaseeRef.first->setAliasee(VI, Summary.get());
7773     }
7774     ForwardRefAliasees.erase(FwdRefAliasees);
7775   }
7776 
7777   // Add the summary if one was provided.
7778   if (Summary)
7779     Index->addGlobalValueSummary(VI, std::move(Summary));
7780 
7781   // Save the associated ValueInfo for use in later references by ID.
7782   if (ID == NumberedValueInfos.size())
7783     NumberedValueInfos.push_back(VI);
7784   else {
7785     // Handle non-continuous numbers (to make test simplification easier).
7786     if (ID > NumberedValueInfos.size())
7787       NumberedValueInfos.resize(ID + 1);
7788     NumberedValueInfos[ID] = VI;
7789   }
7790 }
7791 
7792 /// ParseGVEntry
7793 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
7794 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
7795 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
7796 bool LLParser::ParseGVEntry(unsigned ID) {
7797   assert(Lex.getKind() == lltok::kw_gv);
7798   Lex.Lex();
7799 
7800   if (ParseToken(lltok::colon, "expected ':' here") ||
7801       ParseToken(lltok::lparen, "expected '(' here"))
7802     return true;
7803 
7804   std::string Name;
7805   GlobalValue::GUID GUID = 0;
7806   switch (Lex.getKind()) {
7807   case lltok::kw_name:
7808     Lex.Lex();
7809     if (ParseToken(lltok::colon, "expected ':' here") ||
7810         ParseStringConstant(Name))
7811       return true;
7812     // Can't create GUID/ValueInfo until we have the linkage.
7813     break;
7814   case lltok::kw_guid:
7815     Lex.Lex();
7816     if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID))
7817       return true;
7818     break;
7819   default:
7820     return Error(Lex.getLoc(), "expected name or guid tag");
7821   }
7822 
7823   if (!EatIfPresent(lltok::comma)) {
7824     // No summaries. Wrap up.
7825     if (ParseToken(lltok::rparen, "expected ')' here"))
7826       return true;
7827     // This was created for a call to an external or indirect target.
7828     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
7829     // created for indirect calls with VP. A Name with no GUID came from
7830     // an external definition. We pass ExternalLinkage since that is only
7831     // used when the GUID must be computed from Name, and in that case
7832     // the symbol must have external linkage.
7833     AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
7834                           nullptr);
7835     return false;
7836   }
7837 
7838   // Have a list of summaries
7839   if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") ||
7840       ParseToken(lltok::colon, "expected ':' here"))
7841     return true;
7842 
7843   do {
7844     if (ParseToken(lltok::lparen, "expected '(' here"))
7845       return true;
7846     switch (Lex.getKind()) {
7847     case lltok::kw_function:
7848       if (ParseFunctionSummary(Name, GUID, ID))
7849         return true;
7850       break;
7851     case lltok::kw_variable:
7852       if (ParseVariableSummary(Name, GUID, ID))
7853         return true;
7854       break;
7855     case lltok::kw_alias:
7856       if (ParseAliasSummary(Name, GUID, ID))
7857         return true;
7858       break;
7859     default:
7860       return Error(Lex.getLoc(), "expected summary type");
7861     }
7862     if (ParseToken(lltok::rparen, "expected ')' here"))
7863       return true;
7864   } while (EatIfPresent(lltok::comma));
7865 
7866   if (ParseToken(lltok::rparen, "expected ')' here"))
7867     return true;
7868 
7869   return false;
7870 }
7871 
7872 /// FunctionSummary
7873 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
7874 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
7875 ///         [',' OptionalTypeIdInfo]? [',' OptionalRefs]? ')'
7876 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
7877                                     unsigned ID) {
7878   assert(Lex.getKind() == lltok::kw_function);
7879   Lex.Lex();
7880 
7881   StringRef ModulePath;
7882   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
7883       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
7884       /*Live=*/false, /*IsLocal=*/false);
7885   unsigned InstCount;
7886   std::vector<FunctionSummary::EdgeTy> Calls;
7887   FunctionSummary::TypeIdInfo TypeIdInfo;
7888   std::vector<ValueInfo> Refs;
7889   // Default is all-zeros (conservative values).
7890   FunctionSummary::FFlags FFlags = {};
7891   if (ParseToken(lltok::colon, "expected ':' here") ||
7892       ParseToken(lltok::lparen, "expected '(' here") ||
7893       ParseModuleReference(ModulePath) ||
7894       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
7895       ParseToken(lltok::comma, "expected ',' here") ||
7896       ParseToken(lltok::kw_insts, "expected 'insts' here") ||
7897       ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount))
7898     return true;
7899 
7900   // Parse optional fields
7901   while (EatIfPresent(lltok::comma)) {
7902     switch (Lex.getKind()) {
7903     case lltok::kw_funcFlags:
7904       if (ParseOptionalFFlags(FFlags))
7905         return true;
7906       break;
7907     case lltok::kw_calls:
7908       if (ParseOptionalCalls(Calls))
7909         return true;
7910       break;
7911     case lltok::kw_typeIdInfo:
7912       if (ParseOptionalTypeIdInfo(TypeIdInfo))
7913         return true;
7914       break;
7915     case lltok::kw_refs:
7916       if (ParseOptionalRefs(Refs))
7917         return true;
7918       break;
7919     default:
7920       return Error(Lex.getLoc(), "expected optional function summary field");
7921     }
7922   }
7923 
7924   if (ParseToken(lltok::rparen, "expected ')' here"))
7925     return true;
7926 
7927   auto FS = llvm::make_unique<FunctionSummary>(
7928       GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
7929       std::move(Calls), std::move(TypeIdInfo.TypeTests),
7930       std::move(TypeIdInfo.TypeTestAssumeVCalls),
7931       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
7932       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
7933       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls));
7934 
7935   FS->setModulePath(ModulePath);
7936 
7937   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
7938                         ID, std::move(FS));
7939 
7940   return false;
7941 }
7942 
7943 /// VariableSummary
7944 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
7945 ///         [',' OptionalRefs]? ')'
7946 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID,
7947                                     unsigned ID) {
7948   assert(Lex.getKind() == lltok::kw_variable);
7949   Lex.Lex();
7950 
7951   StringRef ModulePath;
7952   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
7953       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
7954       /*Live=*/false, /*IsLocal=*/false);
7955   GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false);
7956   std::vector<ValueInfo> Refs;
7957   if (ParseToken(lltok::colon, "expected ':' here") ||
7958       ParseToken(lltok::lparen, "expected '(' here") ||
7959       ParseModuleReference(ModulePath) ||
7960       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
7961       ParseToken(lltok::comma, "expected ',' here") ||
7962       ParseGVarFlags(GVarFlags))
7963     return true;
7964 
7965   // Parse optional refs field
7966   if (EatIfPresent(lltok::comma)) {
7967     if (ParseOptionalRefs(Refs))
7968       return true;
7969   }
7970 
7971   if (ParseToken(lltok::rparen, "expected ')' here"))
7972     return true;
7973 
7974   auto GS =
7975       llvm::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
7976 
7977   GS->setModulePath(ModulePath);
7978 
7979   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
7980                         ID, std::move(GS));
7981 
7982   return false;
7983 }
7984 
7985 /// AliasSummary
7986 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
7987 ///         'aliasee' ':' GVReference ')'
7988 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID,
7989                                  unsigned ID) {
7990   assert(Lex.getKind() == lltok::kw_alias);
7991   LocTy Loc = Lex.getLoc();
7992   Lex.Lex();
7993 
7994   StringRef ModulePath;
7995   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
7996       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
7997       /*Live=*/false, /*IsLocal=*/false);
7998   if (ParseToken(lltok::colon, "expected ':' here") ||
7999       ParseToken(lltok::lparen, "expected '(' here") ||
8000       ParseModuleReference(ModulePath) ||
8001       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8002       ParseToken(lltok::comma, "expected ',' here") ||
8003       ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
8004       ParseToken(lltok::colon, "expected ':' here"))
8005     return true;
8006 
8007   ValueInfo AliaseeVI;
8008   unsigned GVId;
8009   if (ParseGVReference(AliaseeVI, GVId))
8010     return true;
8011 
8012   if (ParseToken(lltok::rparen, "expected ')' here"))
8013     return true;
8014 
8015   auto AS = llvm::make_unique<AliasSummary>(GVFlags);
8016 
8017   AS->setModulePath(ModulePath);
8018 
8019   // Record forward reference if the aliasee is not parsed yet.
8020   if (AliaseeVI.getRef() == FwdVIRef) {
8021     auto FwdRef = ForwardRefAliasees.insert(
8022         std::make_pair(GVId, std::vector<std::pair<AliasSummary *, LocTy>>()));
8023     FwdRef.first->second.push_back(std::make_pair(AS.get(), Loc));
8024   } else {
8025     auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
8026     assert(Summary && "Aliasee must be a definition");
8027     AS->setAliasee(AliaseeVI, Summary);
8028   }
8029 
8030   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8031                         ID, std::move(AS));
8032 
8033   return false;
8034 }
8035 
8036 /// Flag
8037 ///   ::= [0|1]
8038 bool LLParser::ParseFlag(unsigned &Val) {
8039   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
8040     return TokError("expected integer");
8041   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
8042   Lex.Lex();
8043   return false;
8044 }
8045 
8046 /// OptionalFFlags
8047 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8048 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8049 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
8050 ///        [',' 'noInline' ':' Flag]? ')'
8051 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8052   assert(Lex.getKind() == lltok::kw_funcFlags);
8053   Lex.Lex();
8054 
8055   if (ParseToken(lltok::colon, "expected ':' in funcFlags") |
8056       ParseToken(lltok::lparen, "expected '(' in funcFlags"))
8057     return true;
8058 
8059   do {
8060     unsigned Val;
8061     switch (Lex.getKind()) {
8062     case lltok::kw_readNone:
8063       Lex.Lex();
8064       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8065         return true;
8066       FFlags.ReadNone = Val;
8067       break;
8068     case lltok::kw_readOnly:
8069       Lex.Lex();
8070       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8071         return true;
8072       FFlags.ReadOnly = Val;
8073       break;
8074     case lltok::kw_noRecurse:
8075       Lex.Lex();
8076       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8077         return true;
8078       FFlags.NoRecurse = Val;
8079       break;
8080     case lltok::kw_returnDoesNotAlias:
8081       Lex.Lex();
8082       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8083         return true;
8084       FFlags.ReturnDoesNotAlias = Val;
8085       break;
8086     case lltok::kw_noInline:
8087       Lex.Lex();
8088       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8089         return true;
8090       FFlags.NoInline = Val;
8091       break;
8092     default:
8093       return Error(Lex.getLoc(), "expected function flag type");
8094     }
8095   } while (EatIfPresent(lltok::comma));
8096 
8097   if (ParseToken(lltok::rparen, "expected ')' in funcFlags"))
8098     return true;
8099 
8100   return false;
8101 }
8102 
8103 /// OptionalCalls
8104 ///   := 'calls' ':' '(' Call [',' Call]* ')'
8105 /// Call ::= '(' 'callee' ':' GVReference
8106 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
8107 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
8108   assert(Lex.getKind() == lltok::kw_calls);
8109   Lex.Lex();
8110 
8111   if (ParseToken(lltok::colon, "expected ':' in calls") |
8112       ParseToken(lltok::lparen, "expected '(' in calls"))
8113     return true;
8114 
8115   IdToIndexMapType IdToIndexMap;
8116   // Parse each call edge
8117   do {
8118     ValueInfo VI;
8119     if (ParseToken(lltok::lparen, "expected '(' in call") ||
8120         ParseToken(lltok::kw_callee, "expected 'callee' in call") ||
8121         ParseToken(lltok::colon, "expected ':'"))
8122       return true;
8123 
8124     LocTy Loc = Lex.getLoc();
8125     unsigned GVId;
8126     if (ParseGVReference(VI, GVId))
8127       return true;
8128 
8129     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
8130     unsigned RelBF = 0;
8131     if (EatIfPresent(lltok::comma)) {
8132       // Expect either hotness or relbf
8133       if (EatIfPresent(lltok::kw_hotness)) {
8134         if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness))
8135           return true;
8136       } else {
8137         if (ParseToken(lltok::kw_relbf, "expected relbf") ||
8138             ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF))
8139           return true;
8140       }
8141     }
8142     // Keep track of the Call array index needing a forward reference.
8143     // We will save the location of the ValueInfo needing an update, but
8144     // can only do so once the std::vector is finalized.
8145     if (VI.getRef() == FwdVIRef)
8146       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
8147     Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
8148 
8149     if (ParseToken(lltok::rparen, "expected ')' in call"))
8150       return true;
8151   } while (EatIfPresent(lltok::comma));
8152 
8153   // Now that the Calls vector is finalized, it is safe to save the locations
8154   // of any forward GV references that need updating later.
8155   for (auto I : IdToIndexMap) {
8156     for (auto P : I.second) {
8157       assert(Calls[P.first].first.getRef() == FwdVIRef &&
8158              "Forward referenced ValueInfo expected to be empty");
8159       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8160           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8161       FwdRef.first->second.push_back(
8162           std::make_pair(&Calls[P.first].first, P.second));
8163     }
8164   }
8165 
8166   if (ParseToken(lltok::rparen, "expected ')' in calls"))
8167     return true;
8168 
8169   return false;
8170 }
8171 
8172 /// Hotness
8173 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
8174 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) {
8175   switch (Lex.getKind()) {
8176   case lltok::kw_unknown:
8177     Hotness = CalleeInfo::HotnessType::Unknown;
8178     break;
8179   case lltok::kw_cold:
8180     Hotness = CalleeInfo::HotnessType::Cold;
8181     break;
8182   case lltok::kw_none:
8183     Hotness = CalleeInfo::HotnessType::None;
8184     break;
8185   case lltok::kw_hot:
8186     Hotness = CalleeInfo::HotnessType::Hot;
8187     break;
8188   case lltok::kw_critical:
8189     Hotness = CalleeInfo::HotnessType::Critical;
8190     break;
8191   default:
8192     return Error(Lex.getLoc(), "invalid call edge hotness");
8193   }
8194   Lex.Lex();
8195   return false;
8196 }
8197 
8198 /// OptionalRefs
8199 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
8200 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) {
8201   assert(Lex.getKind() == lltok::kw_refs);
8202   Lex.Lex();
8203 
8204   if (ParseToken(lltok::colon, "expected ':' in refs") |
8205       ParseToken(lltok::lparen, "expected '(' in refs"))
8206     return true;
8207 
8208   struct ValueContext {
8209     ValueInfo VI;
8210     unsigned GVId;
8211     LocTy Loc;
8212   };
8213   std::vector<ValueContext> VContexts;
8214   // Parse each ref edge
8215   do {
8216     ValueContext VC;
8217     VC.Loc = Lex.getLoc();
8218     if (ParseGVReference(VC.VI, VC.GVId))
8219       return true;
8220     VContexts.push_back(VC);
8221   } while (EatIfPresent(lltok::comma));
8222 
8223   // Sort value contexts so that ones with readonly ValueInfo are at the end
8224   // of VContexts vector. This is needed to match immutableRefCount() behavior.
8225   llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
8226     return VC1.VI.isReadOnly() < VC2.VI.isReadOnly();
8227   });
8228 
8229   IdToIndexMapType IdToIndexMap;
8230   for (auto &VC : VContexts) {
8231     // Keep track of the Refs array index needing a forward reference.
8232     // We will save the location of the ValueInfo needing an update, but
8233     // can only do so once the std::vector is finalized.
8234     if (VC.VI.getRef() == FwdVIRef)
8235       IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
8236     Refs.push_back(VC.VI);
8237   }
8238 
8239   // Now that the Refs vector is finalized, it is safe to save the locations
8240   // of any forward GV references that need updating later.
8241   for (auto I : IdToIndexMap) {
8242     for (auto P : I.second) {
8243       assert(Refs[P.first].getRef() == FwdVIRef &&
8244              "Forward referenced ValueInfo expected to be empty");
8245       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8246           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8247       FwdRef.first->second.push_back(std::make_pair(&Refs[P.first], P.second));
8248     }
8249   }
8250 
8251   if (ParseToken(lltok::rparen, "expected ')' in refs"))
8252     return true;
8253 
8254   return false;
8255 }
8256 
8257 /// OptionalTypeIdInfo
8258 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
8259 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
8260 ///         [',' TypeCheckedLoadConstVCalls]? ')'
8261 bool LLParser::ParseOptionalTypeIdInfo(
8262     FunctionSummary::TypeIdInfo &TypeIdInfo) {
8263   assert(Lex.getKind() == lltok::kw_typeIdInfo);
8264   Lex.Lex();
8265 
8266   if (ParseToken(lltok::colon, "expected ':' here") ||
8267       ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8268     return true;
8269 
8270   do {
8271     switch (Lex.getKind()) {
8272     case lltok::kw_typeTests:
8273       if (ParseTypeTests(TypeIdInfo.TypeTests))
8274         return true;
8275       break;
8276     case lltok::kw_typeTestAssumeVCalls:
8277       if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
8278                            TypeIdInfo.TypeTestAssumeVCalls))
8279         return true;
8280       break;
8281     case lltok::kw_typeCheckedLoadVCalls:
8282       if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
8283                            TypeIdInfo.TypeCheckedLoadVCalls))
8284         return true;
8285       break;
8286     case lltok::kw_typeTestAssumeConstVCalls:
8287       if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
8288                               TypeIdInfo.TypeTestAssumeConstVCalls))
8289         return true;
8290       break;
8291     case lltok::kw_typeCheckedLoadConstVCalls:
8292       if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
8293                               TypeIdInfo.TypeCheckedLoadConstVCalls))
8294         return true;
8295       break;
8296     default:
8297       return Error(Lex.getLoc(), "invalid typeIdInfo list type");
8298     }
8299   } while (EatIfPresent(lltok::comma));
8300 
8301   if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8302     return true;
8303 
8304   return false;
8305 }
8306 
8307 /// TypeTests
8308 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
8309 ///         [',' (SummaryID | UInt64)]* ')'
8310 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
8311   assert(Lex.getKind() == lltok::kw_typeTests);
8312   Lex.Lex();
8313 
8314   if (ParseToken(lltok::colon, "expected ':' here") ||
8315       ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8316     return true;
8317 
8318   IdToIndexMapType IdToIndexMap;
8319   do {
8320     GlobalValue::GUID GUID = 0;
8321     if (Lex.getKind() == lltok::SummaryID) {
8322       unsigned ID = Lex.getUIntVal();
8323       LocTy Loc = Lex.getLoc();
8324       // Keep track of the TypeTests array index needing a forward reference.
8325       // We will save the location of the GUID needing an update, but
8326       // can only do so once the std::vector is finalized.
8327       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
8328       Lex.Lex();
8329     } else if (ParseUInt64(GUID))
8330       return true;
8331     TypeTests.push_back(GUID);
8332   } while (EatIfPresent(lltok::comma));
8333 
8334   // Now that the TypeTests vector is finalized, it is safe to save the
8335   // locations of any forward GV references that need updating later.
8336   for (auto I : IdToIndexMap) {
8337     for (auto P : I.second) {
8338       assert(TypeTests[P.first] == 0 &&
8339              "Forward referenced type id GUID expected to be 0");
8340       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8341           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8342       FwdRef.first->second.push_back(
8343           std::make_pair(&TypeTests[P.first], P.second));
8344     }
8345   }
8346 
8347   if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8348     return true;
8349 
8350   return false;
8351 }
8352 
8353 /// VFuncIdList
8354 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
8355 bool LLParser::ParseVFuncIdList(
8356     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
8357   assert(Lex.getKind() == Kind);
8358   Lex.Lex();
8359 
8360   if (ParseToken(lltok::colon, "expected ':' here") ||
8361       ParseToken(lltok::lparen, "expected '(' here"))
8362     return true;
8363 
8364   IdToIndexMapType IdToIndexMap;
8365   do {
8366     FunctionSummary::VFuncId VFuncId;
8367     if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
8368       return true;
8369     VFuncIdList.push_back(VFuncId);
8370   } while (EatIfPresent(lltok::comma));
8371 
8372   if (ParseToken(lltok::rparen, "expected ')' here"))
8373     return true;
8374 
8375   // Now that the VFuncIdList vector is finalized, it is safe to save the
8376   // locations of any forward GV references that need updating later.
8377   for (auto I : IdToIndexMap) {
8378     for (auto P : I.second) {
8379       assert(VFuncIdList[P.first].GUID == 0 &&
8380              "Forward referenced type id GUID expected to be 0");
8381       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8382           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8383       FwdRef.first->second.push_back(
8384           std::make_pair(&VFuncIdList[P.first].GUID, P.second));
8385     }
8386   }
8387 
8388   return false;
8389 }
8390 
8391 /// ConstVCallList
8392 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
8393 bool LLParser::ParseConstVCallList(
8394     lltok::Kind Kind,
8395     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
8396   assert(Lex.getKind() == Kind);
8397   Lex.Lex();
8398 
8399   if (ParseToken(lltok::colon, "expected ':' here") ||
8400       ParseToken(lltok::lparen, "expected '(' here"))
8401     return true;
8402 
8403   IdToIndexMapType IdToIndexMap;
8404   do {
8405     FunctionSummary::ConstVCall ConstVCall;
8406     if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
8407       return true;
8408     ConstVCallList.push_back(ConstVCall);
8409   } while (EatIfPresent(lltok::comma));
8410 
8411   if (ParseToken(lltok::rparen, "expected ')' here"))
8412     return true;
8413 
8414   // Now that the ConstVCallList vector is finalized, it is safe to save the
8415   // locations of any forward GV references that need updating later.
8416   for (auto I : IdToIndexMap) {
8417     for (auto P : I.second) {
8418       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
8419              "Forward referenced type id GUID expected to be 0");
8420       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8421           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8422       FwdRef.first->second.push_back(
8423           std::make_pair(&ConstVCallList[P.first].VFunc.GUID, P.second));
8424     }
8425   }
8426 
8427   return false;
8428 }
8429 
8430 /// ConstVCall
8431 ///   ::= '(' VFuncId ',' Args ')'
8432 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
8433                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
8434   if (ParseToken(lltok::lparen, "expected '(' here") ||
8435       ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
8436     return true;
8437 
8438   if (EatIfPresent(lltok::comma))
8439     if (ParseArgs(ConstVCall.Args))
8440       return true;
8441 
8442   if (ParseToken(lltok::rparen, "expected ')' here"))
8443     return true;
8444 
8445   return false;
8446 }
8447 
8448 /// VFuncId
8449 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
8450 ///         'offset' ':' UInt64 ')'
8451 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId,
8452                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
8453   assert(Lex.getKind() == lltok::kw_vFuncId);
8454   Lex.Lex();
8455 
8456   if (ParseToken(lltok::colon, "expected ':' here") ||
8457       ParseToken(lltok::lparen, "expected '(' here"))
8458     return true;
8459 
8460   if (Lex.getKind() == lltok::SummaryID) {
8461     VFuncId.GUID = 0;
8462     unsigned ID = Lex.getUIntVal();
8463     LocTy Loc = Lex.getLoc();
8464     // Keep track of the array index needing a forward reference.
8465     // We will save the location of the GUID needing an update, but
8466     // can only do so once the caller's std::vector is finalized.
8467     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
8468     Lex.Lex();
8469   } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") ||
8470              ParseToken(lltok::colon, "expected ':' here") ||
8471              ParseUInt64(VFuncId.GUID))
8472     return true;
8473 
8474   if (ParseToken(lltok::comma, "expected ',' here") ||
8475       ParseToken(lltok::kw_offset, "expected 'offset' here") ||
8476       ParseToken(lltok::colon, "expected ':' here") ||
8477       ParseUInt64(VFuncId.Offset) ||
8478       ParseToken(lltok::rparen, "expected ')' here"))
8479     return true;
8480 
8481   return false;
8482 }
8483 
8484 /// GVFlags
8485 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
8486 ///         'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ','
8487 ///         'dsoLocal' ':' Flag ')'
8488 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
8489   assert(Lex.getKind() == lltok::kw_flags);
8490   Lex.Lex();
8491 
8492   bool HasLinkage;
8493   if (ParseToken(lltok::colon, "expected ':' here") ||
8494       ParseToken(lltok::lparen, "expected '(' here") ||
8495       ParseToken(lltok::kw_linkage, "expected 'linkage' here") ||
8496       ParseToken(lltok::colon, "expected ':' here"))
8497     return true;
8498 
8499   GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
8500   assert(HasLinkage && "Linkage not optional in summary entry");
8501   Lex.Lex();
8502 
8503   unsigned Flag;
8504   if (ParseToken(lltok::comma, "expected ',' here") ||
8505       ParseToken(lltok::kw_notEligibleToImport,
8506                  "expected 'notEligibleToImport' here") ||
8507       ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag))
8508     return true;
8509   GVFlags.NotEligibleToImport = Flag;
8510 
8511   if (ParseToken(lltok::comma, "expected ',' here") ||
8512       ParseToken(lltok::kw_live, "expected 'live' here") ||
8513       ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag))
8514     return true;
8515   GVFlags.Live = Flag;
8516 
8517   if (ParseToken(lltok::comma, "expected ',' here") ||
8518       ParseToken(lltok::kw_dsoLocal, "expected 'dsoLocal' here") ||
8519       ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag))
8520     return true;
8521   GVFlags.DSOLocal = Flag;
8522 
8523   if (ParseToken(lltok::rparen, "expected ')' here"))
8524     return true;
8525 
8526   return false;
8527 }
8528 
8529 /// GVarFlags
8530 ///   ::= 'varFlags' ':' '(' 'readonly' ':' Flag ')'
8531 bool LLParser::ParseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
8532   assert(Lex.getKind() == lltok::kw_varFlags);
8533   Lex.Lex();
8534 
8535   unsigned Flag;
8536   if (ParseToken(lltok::colon, "expected ':' here") ||
8537       ParseToken(lltok::lparen, "expected '(' here") ||
8538       ParseToken(lltok::kw_readonly, "expected 'readonly' here") ||
8539       ParseToken(lltok::colon, "expected ':' here"))
8540     return true;
8541 
8542   ParseFlag(Flag);
8543   GVarFlags.ReadOnly = Flag;
8544 
8545   if (ParseToken(lltok::rparen, "expected ')' here"))
8546     return true;
8547   return false;
8548 }
8549 
8550 /// ModuleReference
8551 ///   ::= 'module' ':' UInt
8552 bool LLParser::ParseModuleReference(StringRef &ModulePath) {
8553   // Parse module id.
8554   if (ParseToken(lltok::kw_module, "expected 'module' here") ||
8555       ParseToken(lltok::colon, "expected ':' here") ||
8556       ParseToken(lltok::SummaryID, "expected module ID"))
8557     return true;
8558 
8559   unsigned ModuleID = Lex.getUIntVal();
8560   auto I = ModuleIdMap.find(ModuleID);
8561   // We should have already parsed all module IDs
8562   assert(I != ModuleIdMap.end());
8563   ModulePath = I->second;
8564   return false;
8565 }
8566 
8567 /// GVReference
8568 ///   ::= SummaryID
8569 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) {
8570   bool ReadOnly = EatIfPresent(lltok::kw_readonly);
8571   if (ParseToken(lltok::SummaryID, "expected GV ID"))
8572     return true;
8573 
8574   GVId = Lex.getUIntVal();
8575   // Check if we already have a VI for this GV
8576   if (GVId < NumberedValueInfos.size()) {
8577     assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
8578     VI = NumberedValueInfos[GVId];
8579   } else
8580     // We will create a forward reference to the stored location.
8581     VI = ValueInfo(false, FwdVIRef);
8582 
8583   if (ReadOnly)
8584     VI.setReadOnly();
8585   return false;
8586 }
8587