1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines the parser class for .ll files.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "LLParser.h"
15 #include "llvm/ADT/SmallPtrSet.h"
16 #include "llvm/ADT/STLExtras.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/AsmParser/SlotMapping.h"
19 #include "llvm/IR/AutoUpgrade.h"
20 #include "llvm/IR/CallingConv.h"
21 #include "llvm/IR/Constants.h"
22 #include "llvm/IR/DebugInfo.h"
23 #include "llvm/IR/DebugInfoMetadata.h"
24 #include "llvm/IR/DerivedTypes.h"
25 #include "llvm/IR/InlineAsm.h"
26 #include "llvm/IR/Instructions.h"
27 #include "llvm/IR/LLVMContext.h"
28 #include "llvm/IR/Module.h"
29 #include "llvm/IR/Operator.h"
30 #include "llvm/IR/ValueSymbolTable.h"
31 #include "llvm/Support/Debug.h"
32 #include "llvm/Support/Dwarf.h"
33 #include "llvm/Support/ErrorHandling.h"
34 #include "llvm/Support/SaveAndRestore.h"
35 #include "llvm/Support/raw_ostream.h"
36 using namespace llvm;
37 
38 static std::string getTypeString(Type *T) {
39   std::string Result;
40   raw_string_ostream Tmp(Result);
41   Tmp << *T;
42   return Tmp.str();
43 }
44 
45 /// Run: module ::= toplevelentity*
46 bool LLParser::Run() {
47   // Prime the lexer.
48   Lex.Lex();
49 
50   if (Context.shouldDiscardValueNames())
51     return Error(
52         Lex.getLoc(),
53         "Can't read textual IR with a Context that discards named Values");
54 
55   return ParseTopLevelEntities() ||
56          ValidateEndOfModule();
57 }
58 
59 bool LLParser::parseStandaloneConstantValue(Constant *&C,
60                                             const SlotMapping *Slots) {
61   restoreParsingState(Slots);
62   Lex.Lex();
63 
64   Type *Ty = nullptr;
65   if (ParseType(Ty) || parseConstantValue(Ty, C))
66     return true;
67   if (Lex.getKind() != lltok::Eof)
68     return Error(Lex.getLoc(), "expected end of string");
69   return false;
70 }
71 
72 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
73                                     const SlotMapping *Slots) {
74   restoreParsingState(Slots);
75   Lex.Lex();
76 
77   Read = 0;
78   SMLoc Start = Lex.getLoc();
79   Ty = nullptr;
80   if (ParseType(Ty))
81     return true;
82   SMLoc End = Lex.getLoc();
83   Read = End.getPointer() - Start.getPointer();
84 
85   return false;
86 }
87 
88 void LLParser::restoreParsingState(const SlotMapping *Slots) {
89   if (!Slots)
90     return;
91   NumberedVals = Slots->GlobalValues;
92   NumberedMetadata = Slots->MetadataNodes;
93   for (const auto &I : Slots->NamedTypes)
94     NamedTypes.insert(
95         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
96   for (const auto &I : Slots->Types)
97     NumberedTypes.insert(
98         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
99 }
100 
101 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
102 /// module.
103 bool LLParser::ValidateEndOfModule() {
104   // Handle any function attribute group forward references.
105   for (std::map<Value*, std::vector<unsigned> >::iterator
106          I = ForwardRefAttrGroups.begin(), E = ForwardRefAttrGroups.end();
107          I != E; ++I) {
108     Value *V = I->first;
109     std::vector<unsigned> &Vec = I->second;
110     AttrBuilder B;
111 
112     for (std::vector<unsigned>::iterator VI = Vec.begin(), VE = Vec.end();
113          VI != VE; ++VI)
114       B.merge(NumberedAttrBuilders[*VI]);
115 
116     if (Function *Fn = dyn_cast<Function>(V)) {
117       AttributeSet AS = Fn->getAttributes();
118       AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
119       AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
120                                AS.getFnAttributes());
121 
122       FnAttrs.merge(B);
123 
124       // If the alignment was parsed as an attribute, move to the alignment
125       // field.
126       if (FnAttrs.hasAlignmentAttr()) {
127         Fn->setAlignment(FnAttrs.getAlignment());
128         FnAttrs.removeAttribute(Attribute::Alignment);
129       }
130 
131       AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
132                             AttributeSet::get(Context,
133                                               AttributeSet::FunctionIndex,
134                                               FnAttrs));
135       Fn->setAttributes(AS);
136     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
137       AttributeSet AS = CI->getAttributes();
138       AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
139       AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
140                                AS.getFnAttributes());
141       FnAttrs.merge(B);
142       AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
143                             AttributeSet::get(Context,
144                                               AttributeSet::FunctionIndex,
145                                               FnAttrs));
146       CI->setAttributes(AS);
147     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
148       AttributeSet AS = II->getAttributes();
149       AttrBuilder FnAttrs(AS.getFnAttributes(), AttributeSet::FunctionIndex);
150       AS = AS.removeAttributes(Context, AttributeSet::FunctionIndex,
151                                AS.getFnAttributes());
152       FnAttrs.merge(B);
153       AS = AS.addAttributes(Context, AttributeSet::FunctionIndex,
154                             AttributeSet::get(Context,
155                                               AttributeSet::FunctionIndex,
156                                               FnAttrs));
157       II->setAttributes(AS);
158     } else {
159       llvm_unreachable("invalid object with forward attribute group reference");
160     }
161   }
162 
163   // If there are entries in ForwardRefBlockAddresses at this point, the
164   // function was never defined.
165   if (!ForwardRefBlockAddresses.empty())
166     return Error(ForwardRefBlockAddresses.begin()->first.Loc,
167                  "expected function name in blockaddress");
168 
169   for (const auto &NT : NumberedTypes)
170     if (NT.second.second.isValid())
171       return Error(NT.second.second,
172                    "use of undefined type '%" + Twine(NT.first) + "'");
173 
174   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
175        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
176     if (I->second.second.isValid())
177       return Error(I->second.second,
178                    "use of undefined type named '" + I->getKey() + "'");
179 
180   if (!ForwardRefComdats.empty())
181     return Error(ForwardRefComdats.begin()->second,
182                  "use of undefined comdat '$" +
183                      ForwardRefComdats.begin()->first + "'");
184 
185   if (!ForwardRefVals.empty())
186     return Error(ForwardRefVals.begin()->second.second,
187                  "use of undefined value '@" + ForwardRefVals.begin()->first +
188                  "'");
189 
190   if (!ForwardRefValIDs.empty())
191     return Error(ForwardRefValIDs.begin()->second.second,
192                  "use of undefined value '@" +
193                  Twine(ForwardRefValIDs.begin()->first) + "'");
194 
195   if (!ForwardRefMDNodes.empty())
196     return Error(ForwardRefMDNodes.begin()->second.second,
197                  "use of undefined metadata '!" +
198                  Twine(ForwardRefMDNodes.begin()->first) + "'");
199 
200   // Resolve metadata cycles.
201   for (auto &N : NumberedMetadata) {
202     if (N.second && !N.second->isResolved())
203       N.second->resolveCycles();
204   }
205 
206   for (unsigned I = 0, E = InstsWithTBAATag.size(); I < E; I++)
207     UpgradeInstWithTBAATag(InstsWithTBAATag[I]);
208 
209   // Look for intrinsic functions and CallInst that need to be upgraded
210   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
211     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
212 
213   UpgradeDebugInfo(*M);
214 
215   UpgradeModuleFlags(*M);
216 
217   if (!Slots)
218     return false;
219   // Initialize the slot mapping.
220   // Because by this point we've parsed and validated everything, we can "steal"
221   // the mapping from LLParser as it doesn't need it anymore.
222   Slots->GlobalValues = std::move(NumberedVals);
223   Slots->MetadataNodes = std::move(NumberedMetadata);
224   for (const auto &I : NamedTypes)
225     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
226   for (const auto &I : NumberedTypes)
227     Slots->Types.insert(std::make_pair(I.first, I.second.first));
228 
229   return false;
230 }
231 
232 //===----------------------------------------------------------------------===//
233 // Top-Level Entities
234 //===----------------------------------------------------------------------===//
235 
236 bool LLParser::ParseTopLevelEntities() {
237   while (1) {
238     switch (Lex.getKind()) {
239     default:         return TokError("expected top-level entity");
240     case lltok::Eof: return false;
241     case lltok::kw_declare: if (ParseDeclare()) return true; break;
242     case lltok::kw_define:  if (ParseDefine()) return true; break;
243     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
244     case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
245     case lltok::kw_source_filename:
246       if (ParseSourceFileName())
247         return true;
248       break;
249     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
250     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
251     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
252     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
253     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
254     case lltok::ComdatVar:  if (parseComdat()) return true; break;
255     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
256     case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
257     case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
258     case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
259     case lltok::kw_uselistorder_bb:
260                                  if (ParseUseListOrderBB()) return true; break;
261     }
262   }
263 }
264 
265 
266 /// toplevelentity
267 ///   ::= 'module' 'asm' STRINGCONSTANT
268 bool LLParser::ParseModuleAsm() {
269   assert(Lex.getKind() == lltok::kw_module);
270   Lex.Lex();
271 
272   std::string AsmStr;
273   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
274       ParseStringConstant(AsmStr)) return true;
275 
276   M->appendModuleInlineAsm(AsmStr);
277   return false;
278 }
279 
280 /// toplevelentity
281 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
282 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
283 bool LLParser::ParseTargetDefinition() {
284   assert(Lex.getKind() == lltok::kw_target);
285   std::string Str;
286   switch (Lex.Lex()) {
287   default: return TokError("unknown target property");
288   case lltok::kw_triple:
289     Lex.Lex();
290     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
291         ParseStringConstant(Str))
292       return true;
293     M->setTargetTriple(Str);
294     return false;
295   case lltok::kw_datalayout:
296     Lex.Lex();
297     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
298         ParseStringConstant(Str))
299       return true;
300     M->setDataLayout(Str);
301     return false;
302   }
303 }
304 
305 /// toplevelentity
306 ///   ::= 'source_filename' '=' STRINGCONSTANT
307 bool LLParser::ParseSourceFileName() {
308   assert(Lex.getKind() == lltok::kw_source_filename);
309   std::string Str;
310   Lex.Lex();
311   if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
312       ParseStringConstant(Str))
313     return true;
314   M->setSourceFileName(Str);
315   return false;
316 }
317 
318 /// toplevelentity
319 ///   ::= 'deplibs' '=' '[' ']'
320 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
321 /// FIXME: Remove in 4.0. Currently parse, but ignore.
322 bool LLParser::ParseDepLibs() {
323   assert(Lex.getKind() == lltok::kw_deplibs);
324   Lex.Lex();
325   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
326       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
327     return true;
328 
329   if (EatIfPresent(lltok::rsquare))
330     return false;
331 
332   do {
333     std::string Str;
334     if (ParseStringConstant(Str)) return true;
335   } while (EatIfPresent(lltok::comma));
336 
337   return ParseToken(lltok::rsquare, "expected ']' at end of list");
338 }
339 
340 /// ParseUnnamedType:
341 ///   ::= LocalVarID '=' 'type' type
342 bool LLParser::ParseUnnamedType() {
343   LocTy TypeLoc = Lex.getLoc();
344   unsigned TypeID = Lex.getUIntVal();
345   Lex.Lex(); // eat LocalVarID;
346 
347   if (ParseToken(lltok::equal, "expected '=' after name") ||
348       ParseToken(lltok::kw_type, "expected 'type' after '='"))
349     return true;
350 
351   Type *Result = nullptr;
352   if (ParseStructDefinition(TypeLoc, "",
353                             NumberedTypes[TypeID], Result)) return true;
354 
355   if (!isa<StructType>(Result)) {
356     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
357     if (Entry.first)
358       return Error(TypeLoc, "non-struct types may not be recursive");
359     Entry.first = Result;
360     Entry.second = SMLoc();
361   }
362 
363   return false;
364 }
365 
366 
367 /// toplevelentity
368 ///   ::= LocalVar '=' 'type' type
369 bool LLParser::ParseNamedType() {
370   std::string Name = Lex.getStrVal();
371   LocTy NameLoc = Lex.getLoc();
372   Lex.Lex();  // eat LocalVar.
373 
374   if (ParseToken(lltok::equal, "expected '=' after name") ||
375       ParseToken(lltok::kw_type, "expected 'type' after name"))
376     return true;
377 
378   Type *Result = nullptr;
379   if (ParseStructDefinition(NameLoc, Name,
380                             NamedTypes[Name], Result)) return true;
381 
382   if (!isa<StructType>(Result)) {
383     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
384     if (Entry.first)
385       return Error(NameLoc, "non-struct types may not be recursive");
386     Entry.first = Result;
387     Entry.second = SMLoc();
388   }
389 
390   return false;
391 }
392 
393 
394 /// toplevelentity
395 ///   ::= 'declare' FunctionHeader
396 bool LLParser::ParseDeclare() {
397   assert(Lex.getKind() == lltok::kw_declare);
398   Lex.Lex();
399 
400   Function *F;
401   return ParseFunctionHeader(F, false);
402 }
403 
404 /// toplevelentity
405 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
406 bool LLParser::ParseDefine() {
407   assert(Lex.getKind() == lltok::kw_define);
408   Lex.Lex();
409 
410   Function *F;
411   return ParseFunctionHeader(F, true) ||
412          ParseOptionalFunctionMetadata(*F) ||
413          ParseFunctionBody(*F);
414 }
415 
416 /// ParseGlobalType
417 ///   ::= 'constant'
418 ///   ::= 'global'
419 bool LLParser::ParseGlobalType(bool &IsConstant) {
420   if (Lex.getKind() == lltok::kw_constant)
421     IsConstant = true;
422   else if (Lex.getKind() == lltok::kw_global)
423     IsConstant = false;
424   else {
425     IsConstant = false;
426     return TokError("expected 'global' or 'constant'");
427   }
428   Lex.Lex();
429   return false;
430 }
431 
432 /// ParseUnnamedGlobal:
433 ///   OptionalVisibility (ALIAS | IFUNC) ...
434 ///   OptionalLinkage OptionalVisibility OptionalDLLStorageClass
435 ///                                                     ...   -> global variable
436 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
437 ///   GlobalID '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
438 ///                                                     ...   -> global variable
439 bool LLParser::ParseUnnamedGlobal() {
440   unsigned VarID = NumberedVals.size();
441   std::string Name;
442   LocTy NameLoc = Lex.getLoc();
443 
444   // Handle the GlobalID form.
445   if (Lex.getKind() == lltok::GlobalID) {
446     if (Lex.getUIntVal() != VarID)
447       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
448                    Twine(VarID) + "'");
449     Lex.Lex(); // eat GlobalID;
450 
451     if (ParseToken(lltok::equal, "expected '=' after name"))
452       return true;
453   }
454 
455   bool HasLinkage;
456   unsigned Linkage, Visibility, DLLStorageClass;
457   GlobalVariable::ThreadLocalMode TLM;
458   bool UnnamedAddr;
459   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) ||
460       ParseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
461     return true;
462 
463   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
464     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
465                        DLLStorageClass, TLM, UnnamedAddr);
466 
467   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
468                              DLLStorageClass, TLM, UnnamedAddr);
469 }
470 
471 /// ParseNamedGlobal:
472 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
473 ///   GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
474 ///                                                     ...   -> global variable
475 bool LLParser::ParseNamedGlobal() {
476   assert(Lex.getKind() == lltok::GlobalVar);
477   LocTy NameLoc = Lex.getLoc();
478   std::string Name = Lex.getStrVal();
479   Lex.Lex();
480 
481   bool HasLinkage;
482   unsigned Linkage, Visibility, DLLStorageClass;
483   GlobalVariable::ThreadLocalMode TLM;
484   bool UnnamedAddr;
485   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
486       ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) ||
487       ParseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
488     return true;
489 
490   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
491     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
492                        DLLStorageClass, TLM, UnnamedAddr);
493 
494   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
495                              DLLStorageClass, TLM, UnnamedAddr);
496 }
497 
498 bool LLParser::parseComdat() {
499   assert(Lex.getKind() == lltok::ComdatVar);
500   std::string Name = Lex.getStrVal();
501   LocTy NameLoc = Lex.getLoc();
502   Lex.Lex();
503 
504   if (ParseToken(lltok::equal, "expected '=' here"))
505     return true;
506 
507   if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
508     return TokError("expected comdat type");
509 
510   Comdat::SelectionKind SK;
511   switch (Lex.getKind()) {
512   default:
513     return TokError("unknown selection kind");
514   case lltok::kw_any:
515     SK = Comdat::Any;
516     break;
517   case lltok::kw_exactmatch:
518     SK = Comdat::ExactMatch;
519     break;
520   case lltok::kw_largest:
521     SK = Comdat::Largest;
522     break;
523   case lltok::kw_noduplicates:
524     SK = Comdat::NoDuplicates;
525     break;
526   case lltok::kw_samesize:
527     SK = Comdat::SameSize;
528     break;
529   }
530   Lex.Lex();
531 
532   // See if the comdat was forward referenced, if so, use the comdat.
533   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
534   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
535   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
536     return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
537 
538   Comdat *C;
539   if (I != ComdatSymTab.end())
540     C = &I->second;
541   else
542     C = M->getOrInsertComdat(Name);
543   C->setSelectionKind(SK);
544 
545   return false;
546 }
547 
548 // MDString:
549 //   ::= '!' STRINGCONSTANT
550 bool LLParser::ParseMDString(MDString *&Result) {
551   std::string Str;
552   if (ParseStringConstant(Str)) return true;
553   Result = MDString::get(Context, Str);
554   return false;
555 }
556 
557 // MDNode:
558 //   ::= '!' MDNodeNumber
559 bool LLParser::ParseMDNodeID(MDNode *&Result) {
560   // !{ ..., !42, ... }
561   LocTy IDLoc = Lex.getLoc();
562   unsigned MID = 0;
563   if (ParseUInt32(MID))
564     return true;
565 
566   // If not a forward reference, just return it now.
567   if (NumberedMetadata.count(MID)) {
568     Result = NumberedMetadata[MID];
569     return false;
570   }
571 
572   // Otherwise, create MDNode forward reference.
573   auto &FwdRef = ForwardRefMDNodes[MID];
574   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
575 
576   Result = FwdRef.first.get();
577   NumberedMetadata[MID].reset(Result);
578   return false;
579 }
580 
581 /// ParseNamedMetadata:
582 ///   !foo = !{ !1, !2 }
583 bool LLParser::ParseNamedMetadata() {
584   assert(Lex.getKind() == lltok::MetadataVar);
585   std::string Name = Lex.getStrVal();
586   Lex.Lex();
587 
588   if (ParseToken(lltok::equal, "expected '=' here") ||
589       ParseToken(lltok::exclaim, "Expected '!' here") ||
590       ParseToken(lltok::lbrace, "Expected '{' here"))
591     return true;
592 
593   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
594   if (Lex.getKind() != lltok::rbrace)
595     do {
596       if (ParseToken(lltok::exclaim, "Expected '!' here"))
597         return true;
598 
599       MDNode *N = nullptr;
600       if (ParseMDNodeID(N)) return true;
601       NMD->addOperand(N);
602     } while (EatIfPresent(lltok::comma));
603 
604   return ParseToken(lltok::rbrace, "expected end of metadata node");
605 }
606 
607 /// ParseStandaloneMetadata:
608 ///   !42 = !{...}
609 bool LLParser::ParseStandaloneMetadata() {
610   assert(Lex.getKind() == lltok::exclaim);
611   Lex.Lex();
612   unsigned MetadataID = 0;
613 
614   MDNode *Init;
615   if (ParseUInt32(MetadataID) ||
616       ParseToken(lltok::equal, "expected '=' here"))
617     return true;
618 
619   // Detect common error, from old metadata syntax.
620   if (Lex.getKind() == lltok::Type)
621     return TokError("unexpected type in metadata definition");
622 
623   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
624   if (Lex.getKind() == lltok::MetadataVar) {
625     if (ParseSpecializedMDNode(Init, IsDistinct))
626       return true;
627   } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
628              ParseMDTuple(Init, IsDistinct))
629     return true;
630 
631   // See if this was forward referenced, if so, handle it.
632   auto FI = ForwardRefMDNodes.find(MetadataID);
633   if (FI != ForwardRefMDNodes.end()) {
634     FI->second.first->replaceAllUsesWith(Init);
635     ForwardRefMDNodes.erase(FI);
636 
637     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
638   } else {
639     if (NumberedMetadata.count(MetadataID))
640       return TokError("Metadata id is already used");
641     NumberedMetadata[MetadataID].reset(Init);
642   }
643 
644   return false;
645 }
646 
647 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
648   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
649          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
650 }
651 
652 /// parseIndirectSymbol:
653 ///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility
654 ///                     OptionalDLLStorageClass OptionalThreadLocal
655 ///                     OptionalUnnamedAddr 'alias|ifunc' IndirectSymbol
656 ///
657 /// IndirectSymbol
658 ///   ::= TypeAndValue
659 ///
660 /// Everything through OptionalUnnamedAddr has already been parsed.
661 ///
662 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
663                                    unsigned L, unsigned Visibility,
664                                    unsigned DLLStorageClass,
665                                    GlobalVariable::ThreadLocalMode TLM,
666                                    bool UnnamedAddr) {
667   bool IsAlias;
668   if (Lex.getKind() == lltok::kw_alias)
669     IsAlias = true;
670   else if (Lex.getKind() == lltok::kw_ifunc)
671     IsAlias = false;
672   else
673     llvm_unreachable("Not an alias or ifunc!");
674   Lex.Lex();
675 
676   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
677 
678   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
679     return Error(NameLoc, "invalid linkage type for alias");
680 
681   if (!isValidVisibilityForLinkage(Visibility, L))
682     return Error(NameLoc,
683                  "symbol with local linkage must have default visibility");
684 
685   Type *Ty;
686   LocTy ExplicitTypeLoc = Lex.getLoc();
687   if (ParseType(Ty) ||
688       ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
689     return true;
690 
691   Constant *Aliasee;
692   LocTy AliaseeLoc = Lex.getLoc();
693   if (Lex.getKind() != lltok::kw_bitcast &&
694       Lex.getKind() != lltok::kw_getelementptr &&
695       Lex.getKind() != lltok::kw_addrspacecast &&
696       Lex.getKind() != lltok::kw_inttoptr) {
697     if (ParseGlobalTypeAndValue(Aliasee))
698       return true;
699   } else {
700     // The bitcast dest type is not present, it is implied by the dest type.
701     ValID ID;
702     if (ParseValID(ID))
703       return true;
704     if (ID.Kind != ValID::t_Constant)
705       return Error(AliaseeLoc, "invalid aliasee");
706     Aliasee = ID.ConstantVal;
707   }
708 
709   Type *AliaseeType = Aliasee->getType();
710   auto *PTy = dyn_cast<PointerType>(AliaseeType);
711   if (!PTy)
712     return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
713   unsigned AddrSpace = PTy->getAddressSpace();
714 
715   if (IsAlias && Ty != PTy->getElementType())
716     return Error(
717         ExplicitTypeLoc,
718         "explicit pointee type doesn't match operand's pointee type");
719 
720   if (!IsAlias && !PTy->getElementType()->isFunctionTy())
721     return Error(
722         ExplicitTypeLoc,
723         "explicit pointee type should be a function type");
724 
725   GlobalValue *GVal = nullptr;
726 
727   // See if the alias was forward referenced, if so, prepare to replace the
728   // forward reference.
729   if (!Name.empty()) {
730     GVal = M->getNamedValue(Name);
731     if (GVal) {
732       if (!ForwardRefVals.erase(Name))
733         return Error(NameLoc, "redefinition of global '@" + Name + "'");
734     }
735   } else {
736     auto I = ForwardRefValIDs.find(NumberedVals.size());
737     if (I != ForwardRefValIDs.end()) {
738       GVal = I->second.first;
739       ForwardRefValIDs.erase(I);
740     }
741   }
742 
743   // Okay, create the alias but do not insert it into the module yet.
744   std::unique_ptr<GlobalIndirectSymbol> GA;
745   if (IsAlias)
746     GA.reset(GlobalAlias::create(Ty, AddrSpace,
747                                  (GlobalValue::LinkageTypes)Linkage, Name,
748                                  Aliasee, /*Parent*/ nullptr));
749   else
750     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
751                                  (GlobalValue::LinkageTypes)Linkage, Name,
752                                  Aliasee, /*Parent*/ nullptr));
753   GA->setThreadLocalMode(TLM);
754   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
755   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
756   GA->setUnnamedAddr(UnnamedAddr);
757 
758   if (Name.empty())
759     NumberedVals.push_back(GA.get());
760 
761   if (GVal) {
762     // Verify that types agree.
763     if (GVal->getType() != GA->getType())
764       return Error(
765           ExplicitTypeLoc,
766           "forward reference and definition of alias have different types");
767 
768     // If they agree, just RAUW the old value with the alias and remove the
769     // forward ref info.
770     GVal->replaceAllUsesWith(GA.get());
771     GVal->eraseFromParent();
772   }
773 
774   // Insert into the module, we know its name won't collide now.
775   if (IsAlias)
776     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
777   else
778     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
779   assert(GA->getName() == Name && "Should not be a name conflict!");
780 
781   // The module owns this now
782   GA.release();
783 
784   return false;
785 }
786 
787 /// ParseGlobal
788 ///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
789 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
790 ///       OptionalExternallyInitialized GlobalType Type Const
791 ///   ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass
792 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
793 ///       OptionalExternallyInitialized GlobalType Type Const
794 ///
795 /// Everything up to and including OptionalUnnamedAddr has been parsed
796 /// already.
797 ///
798 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
799                            unsigned Linkage, bool HasLinkage,
800                            unsigned Visibility, unsigned DLLStorageClass,
801                            GlobalVariable::ThreadLocalMode TLM,
802                            bool UnnamedAddr) {
803   if (!isValidVisibilityForLinkage(Visibility, Linkage))
804     return Error(NameLoc,
805                  "symbol with local linkage must have default visibility");
806 
807   unsigned AddrSpace;
808   bool IsConstant, IsExternallyInitialized;
809   LocTy IsExternallyInitializedLoc;
810   LocTy TyLoc;
811 
812   Type *Ty = nullptr;
813   if (ParseOptionalAddrSpace(AddrSpace) ||
814       ParseOptionalToken(lltok::kw_externally_initialized,
815                          IsExternallyInitialized,
816                          &IsExternallyInitializedLoc) ||
817       ParseGlobalType(IsConstant) ||
818       ParseType(Ty, TyLoc))
819     return true;
820 
821   // If the linkage is specified and is external, then no initializer is
822   // present.
823   Constant *Init = nullptr;
824   if (!HasLinkage ||
825       !GlobalValue::isValidDeclarationLinkage(
826           (GlobalValue::LinkageTypes)Linkage)) {
827     if (ParseGlobalValue(Ty, Init))
828       return true;
829   }
830 
831   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
832     return Error(TyLoc, "invalid type for global variable");
833 
834   GlobalValue *GVal = nullptr;
835 
836   // See if the global was forward referenced, if so, use the global.
837   if (!Name.empty()) {
838     GVal = M->getNamedValue(Name);
839     if (GVal) {
840       if (!ForwardRefVals.erase(Name))
841         return Error(NameLoc, "redefinition of global '@" + Name + "'");
842     }
843   } else {
844     auto I = ForwardRefValIDs.find(NumberedVals.size());
845     if (I != ForwardRefValIDs.end()) {
846       GVal = I->second.first;
847       ForwardRefValIDs.erase(I);
848     }
849   }
850 
851   GlobalVariable *GV;
852   if (!GVal) {
853     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
854                             Name, nullptr, GlobalVariable::NotThreadLocal,
855                             AddrSpace);
856   } else {
857     if (GVal->getValueType() != Ty)
858       return Error(TyLoc,
859             "forward reference and definition of global have different types");
860 
861     GV = cast<GlobalVariable>(GVal);
862 
863     // Move the forward-reference to the correct spot in the module.
864     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
865   }
866 
867   if (Name.empty())
868     NumberedVals.push_back(GV);
869 
870   // Set the parsed properties on the global.
871   if (Init)
872     GV->setInitializer(Init);
873   GV->setConstant(IsConstant);
874   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
875   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
876   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
877   GV->setExternallyInitialized(IsExternallyInitialized);
878   GV->setThreadLocalMode(TLM);
879   GV->setUnnamedAddr(UnnamedAddr);
880 
881   // Parse attributes on the global.
882   while (Lex.getKind() == lltok::comma) {
883     Lex.Lex();
884 
885     if (Lex.getKind() == lltok::kw_section) {
886       Lex.Lex();
887       GV->setSection(Lex.getStrVal());
888       if (ParseToken(lltok::StringConstant, "expected global section string"))
889         return true;
890     } else if (Lex.getKind() == lltok::kw_align) {
891       unsigned Alignment;
892       if (ParseOptionalAlignment(Alignment)) return true;
893       GV->setAlignment(Alignment);
894     } else {
895       Comdat *C;
896       if (parseOptionalComdat(Name, C))
897         return true;
898       if (C)
899         GV->setComdat(C);
900       else
901         return TokError("unknown global variable property!");
902     }
903   }
904 
905   return false;
906 }
907 
908 /// ParseUnnamedAttrGrp
909 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
910 bool LLParser::ParseUnnamedAttrGrp() {
911   assert(Lex.getKind() == lltok::kw_attributes);
912   LocTy AttrGrpLoc = Lex.getLoc();
913   Lex.Lex();
914 
915   if (Lex.getKind() != lltok::AttrGrpID)
916     return TokError("expected attribute group id");
917 
918   unsigned VarID = Lex.getUIntVal();
919   std::vector<unsigned> unused;
920   LocTy BuiltinLoc;
921   Lex.Lex();
922 
923   if (ParseToken(lltok::equal, "expected '=' here") ||
924       ParseToken(lltok::lbrace, "expected '{' here") ||
925       ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
926                                  BuiltinLoc) ||
927       ParseToken(lltok::rbrace, "expected end of attribute group"))
928     return true;
929 
930   if (!NumberedAttrBuilders[VarID].hasAttributes())
931     return Error(AttrGrpLoc, "attribute group has no attributes");
932 
933   return false;
934 }
935 
936 /// ParseFnAttributeValuePairs
937 ///   ::= <attr> | <attr> '=' <value>
938 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
939                                           std::vector<unsigned> &FwdRefAttrGrps,
940                                           bool inAttrGrp, LocTy &BuiltinLoc) {
941   bool HaveError = false;
942 
943   B.clear();
944 
945   while (true) {
946     lltok::Kind Token = Lex.getKind();
947     if (Token == lltok::kw_builtin)
948       BuiltinLoc = Lex.getLoc();
949     switch (Token) {
950     default:
951       if (!inAttrGrp) return HaveError;
952       return Error(Lex.getLoc(), "unterminated attribute group");
953     case lltok::rbrace:
954       // Finished.
955       return false;
956 
957     case lltok::AttrGrpID: {
958       // Allow a function to reference an attribute group:
959       //
960       //   define void @foo() #1 { ... }
961       if (inAttrGrp)
962         HaveError |=
963           Error(Lex.getLoc(),
964               "cannot have an attribute group reference in an attribute group");
965 
966       unsigned AttrGrpNum = Lex.getUIntVal();
967       if (inAttrGrp) break;
968 
969       // Save the reference to the attribute group. We'll fill it in later.
970       FwdRefAttrGrps.push_back(AttrGrpNum);
971       break;
972     }
973     // Target-dependent attributes:
974     case lltok::StringConstant: {
975       if (ParseStringAttribute(B))
976         return true;
977       continue;
978     }
979 
980     // Target-independent attributes:
981     case lltok::kw_align: {
982       // As a hack, we allow function alignment to be initially parsed as an
983       // attribute on a function declaration/definition or added to an attribute
984       // group and later moved to the alignment field.
985       unsigned Alignment;
986       if (inAttrGrp) {
987         Lex.Lex();
988         if (ParseToken(lltok::equal, "expected '=' here") ||
989             ParseUInt32(Alignment))
990           return true;
991       } else {
992         if (ParseOptionalAlignment(Alignment))
993           return true;
994       }
995       B.addAlignmentAttr(Alignment);
996       continue;
997     }
998     case lltok::kw_alignstack: {
999       unsigned Alignment;
1000       if (inAttrGrp) {
1001         Lex.Lex();
1002         if (ParseToken(lltok::equal, "expected '=' here") ||
1003             ParseUInt32(Alignment))
1004           return true;
1005       } else {
1006         if (ParseOptionalStackAlignment(Alignment))
1007           return true;
1008       }
1009       B.addStackAlignmentAttr(Alignment);
1010       continue;
1011     }
1012     case lltok::kw_allocsize: {
1013       unsigned ElemSizeArg;
1014       Optional<unsigned> NumElemsArg;
1015       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1016       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1017         return true;
1018       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1019       continue;
1020     }
1021     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1022     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1023     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1024     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1025     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1026     case lltok::kw_inaccessiblememonly:
1027       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1028     case lltok::kw_inaccessiblemem_or_argmemonly:
1029       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1030     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1031     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1032     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1033     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1034     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1035     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1036     case lltok::kw_noimplicitfloat:
1037       B.addAttribute(Attribute::NoImplicitFloat); break;
1038     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1039     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1040     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1041     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1042     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1043     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1044     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1045     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1046     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1047     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1048     case lltok::kw_returns_twice:
1049       B.addAttribute(Attribute::ReturnsTwice); break;
1050     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1051     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1052     case lltok::kw_sspstrong:
1053       B.addAttribute(Attribute::StackProtectStrong); break;
1054     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1055     case lltok::kw_sanitize_address:
1056       B.addAttribute(Attribute::SanitizeAddress); break;
1057     case lltok::kw_sanitize_thread:
1058       B.addAttribute(Attribute::SanitizeThread); break;
1059     case lltok::kw_sanitize_memory:
1060       B.addAttribute(Attribute::SanitizeMemory); break;
1061     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1062 
1063     // Error handling.
1064     case lltok::kw_inreg:
1065     case lltok::kw_signext:
1066     case lltok::kw_zeroext:
1067       HaveError |=
1068         Error(Lex.getLoc(),
1069               "invalid use of attribute on a function");
1070       break;
1071     case lltok::kw_byval:
1072     case lltok::kw_dereferenceable:
1073     case lltok::kw_dereferenceable_or_null:
1074     case lltok::kw_inalloca:
1075     case lltok::kw_nest:
1076     case lltok::kw_noalias:
1077     case lltok::kw_nocapture:
1078     case lltok::kw_nonnull:
1079     case lltok::kw_returned:
1080     case lltok::kw_sret:
1081     case lltok::kw_swifterror:
1082     case lltok::kw_swiftself:
1083       HaveError |=
1084         Error(Lex.getLoc(),
1085               "invalid use of parameter-only attribute on a function");
1086       break;
1087     }
1088 
1089     Lex.Lex();
1090   }
1091 }
1092 
1093 //===----------------------------------------------------------------------===//
1094 // GlobalValue Reference/Resolution Routines.
1095 //===----------------------------------------------------------------------===//
1096 
1097 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1098                                               const std::string &Name) {
1099   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1100     return Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
1101   else
1102     return new GlobalVariable(*M, PTy->getElementType(), false,
1103                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1104                               nullptr, GlobalVariable::NotThreadLocal,
1105                               PTy->getAddressSpace());
1106 }
1107 
1108 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1109 /// forward reference record if needed.  This can return null if the value
1110 /// exists but does not have the right type.
1111 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1112                                     LocTy Loc) {
1113   PointerType *PTy = dyn_cast<PointerType>(Ty);
1114   if (!PTy) {
1115     Error(Loc, "global variable reference must have pointer type");
1116     return nullptr;
1117   }
1118 
1119   // Look this name up in the normal function symbol table.
1120   GlobalValue *Val =
1121     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1122 
1123   // If this is a forward reference for the value, see if we already created a
1124   // forward ref record.
1125   if (!Val) {
1126     auto I = ForwardRefVals.find(Name);
1127     if (I != ForwardRefVals.end())
1128       Val = I->second.first;
1129   }
1130 
1131   // If we have the value in the symbol table or fwd-ref table, return it.
1132   if (Val) {
1133     if (Val->getType() == Ty) return Val;
1134     Error(Loc, "'@" + Name + "' defined with type '" +
1135           getTypeString(Val->getType()) + "'");
1136     return nullptr;
1137   }
1138 
1139   // Otherwise, create a new forward reference for this value and remember it.
1140   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1141   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1142   return FwdVal;
1143 }
1144 
1145 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1146   PointerType *PTy = dyn_cast<PointerType>(Ty);
1147   if (!PTy) {
1148     Error(Loc, "global variable reference must have pointer type");
1149     return nullptr;
1150   }
1151 
1152   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1153 
1154   // If this is a forward reference for the value, see if we already created a
1155   // forward ref record.
1156   if (!Val) {
1157     auto I = ForwardRefValIDs.find(ID);
1158     if (I != ForwardRefValIDs.end())
1159       Val = I->second.first;
1160   }
1161 
1162   // If we have the value in the symbol table or fwd-ref table, return it.
1163   if (Val) {
1164     if (Val->getType() == Ty) return Val;
1165     Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
1166           getTypeString(Val->getType()) + "'");
1167     return nullptr;
1168   }
1169 
1170   // Otherwise, create a new forward reference for this value and remember it.
1171   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1172   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1173   return FwdVal;
1174 }
1175 
1176 
1177 //===----------------------------------------------------------------------===//
1178 // Comdat Reference/Resolution Routines.
1179 //===----------------------------------------------------------------------===//
1180 
1181 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1182   // Look this name up in the comdat symbol table.
1183   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1184   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1185   if (I != ComdatSymTab.end())
1186     return &I->second;
1187 
1188   // Otherwise, create a new forward reference for this value and remember it.
1189   Comdat *C = M->getOrInsertComdat(Name);
1190   ForwardRefComdats[Name] = Loc;
1191   return C;
1192 }
1193 
1194 
1195 //===----------------------------------------------------------------------===//
1196 // Helper Routines.
1197 //===----------------------------------------------------------------------===//
1198 
1199 /// ParseToken - If the current token has the specified kind, eat it and return
1200 /// success.  Otherwise, emit the specified error and return failure.
1201 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1202   if (Lex.getKind() != T)
1203     return TokError(ErrMsg);
1204   Lex.Lex();
1205   return false;
1206 }
1207 
1208 /// ParseStringConstant
1209 ///   ::= StringConstant
1210 bool LLParser::ParseStringConstant(std::string &Result) {
1211   if (Lex.getKind() != lltok::StringConstant)
1212     return TokError("expected string constant");
1213   Result = Lex.getStrVal();
1214   Lex.Lex();
1215   return false;
1216 }
1217 
1218 /// ParseUInt32
1219 ///   ::= uint32
1220 bool LLParser::ParseUInt32(unsigned &Val) {
1221   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1222     return TokError("expected integer");
1223   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1224   if (Val64 != unsigned(Val64))
1225     return TokError("expected 32-bit integer (too large)");
1226   Val = Val64;
1227   Lex.Lex();
1228   return false;
1229 }
1230 
1231 /// ParseUInt64
1232 ///   ::= uint64
1233 bool LLParser::ParseUInt64(uint64_t &Val) {
1234   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1235     return TokError("expected integer");
1236   Val = Lex.getAPSIntVal().getLimitedValue();
1237   Lex.Lex();
1238   return false;
1239 }
1240 
1241 /// ParseTLSModel
1242 ///   := 'localdynamic'
1243 ///   := 'initialexec'
1244 ///   := 'localexec'
1245 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1246   switch (Lex.getKind()) {
1247     default:
1248       return TokError("expected localdynamic, initialexec or localexec");
1249     case lltok::kw_localdynamic:
1250       TLM = GlobalVariable::LocalDynamicTLSModel;
1251       break;
1252     case lltok::kw_initialexec:
1253       TLM = GlobalVariable::InitialExecTLSModel;
1254       break;
1255     case lltok::kw_localexec:
1256       TLM = GlobalVariable::LocalExecTLSModel;
1257       break;
1258   }
1259 
1260   Lex.Lex();
1261   return false;
1262 }
1263 
1264 /// ParseOptionalThreadLocal
1265 ///   := /*empty*/
1266 ///   := 'thread_local'
1267 ///   := 'thread_local' '(' tlsmodel ')'
1268 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1269   TLM = GlobalVariable::NotThreadLocal;
1270   if (!EatIfPresent(lltok::kw_thread_local))
1271     return false;
1272 
1273   TLM = GlobalVariable::GeneralDynamicTLSModel;
1274   if (Lex.getKind() == lltok::lparen) {
1275     Lex.Lex();
1276     return ParseTLSModel(TLM) ||
1277       ParseToken(lltok::rparen, "expected ')' after thread local model");
1278   }
1279   return false;
1280 }
1281 
1282 /// ParseOptionalAddrSpace
1283 ///   := /*empty*/
1284 ///   := 'addrspace' '(' uint32 ')'
1285 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
1286   AddrSpace = 0;
1287   if (!EatIfPresent(lltok::kw_addrspace))
1288     return false;
1289   return ParseToken(lltok::lparen, "expected '(' in address space") ||
1290          ParseUInt32(AddrSpace) ||
1291          ParseToken(lltok::rparen, "expected ')' in address space");
1292 }
1293 
1294 /// ParseStringAttribute
1295 ///   := StringConstant
1296 ///   := StringConstant '=' StringConstant
1297 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1298   std::string Attr = Lex.getStrVal();
1299   Lex.Lex();
1300   std::string Val;
1301   if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1302     return true;
1303   B.addAttribute(Attr, Val);
1304   return false;
1305 }
1306 
1307 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1308 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1309   bool HaveError = false;
1310 
1311   B.clear();
1312 
1313   while (1) {
1314     lltok::Kind Token = Lex.getKind();
1315     switch (Token) {
1316     default:  // End of attributes.
1317       return HaveError;
1318     case lltok::StringConstant: {
1319       if (ParseStringAttribute(B))
1320         return true;
1321       continue;
1322     }
1323     case lltok::kw_align: {
1324       unsigned Alignment;
1325       if (ParseOptionalAlignment(Alignment))
1326         return true;
1327       B.addAlignmentAttr(Alignment);
1328       continue;
1329     }
1330     case lltok::kw_byval:           B.addAttribute(Attribute::ByVal); break;
1331     case lltok::kw_dereferenceable: {
1332       uint64_t Bytes;
1333       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1334         return true;
1335       B.addDereferenceableAttr(Bytes);
1336       continue;
1337     }
1338     case lltok::kw_dereferenceable_or_null: {
1339       uint64_t Bytes;
1340       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1341         return true;
1342       B.addDereferenceableOrNullAttr(Bytes);
1343       continue;
1344     }
1345     case lltok::kw_inalloca:        B.addAttribute(Attribute::InAlloca); break;
1346     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1347     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1348     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1349     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1350     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1351     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1352     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1353     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1354     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1355     case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1356     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1357     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1358     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1359 
1360     case lltok::kw_alignstack:
1361     case lltok::kw_alwaysinline:
1362     case lltok::kw_argmemonly:
1363     case lltok::kw_builtin:
1364     case lltok::kw_inlinehint:
1365     case lltok::kw_jumptable:
1366     case lltok::kw_minsize:
1367     case lltok::kw_naked:
1368     case lltok::kw_nobuiltin:
1369     case lltok::kw_noduplicate:
1370     case lltok::kw_noimplicitfloat:
1371     case lltok::kw_noinline:
1372     case lltok::kw_nonlazybind:
1373     case lltok::kw_noredzone:
1374     case lltok::kw_noreturn:
1375     case lltok::kw_nounwind:
1376     case lltok::kw_optnone:
1377     case lltok::kw_optsize:
1378     case lltok::kw_returns_twice:
1379     case lltok::kw_sanitize_address:
1380     case lltok::kw_sanitize_memory:
1381     case lltok::kw_sanitize_thread:
1382     case lltok::kw_ssp:
1383     case lltok::kw_sspreq:
1384     case lltok::kw_sspstrong:
1385     case lltok::kw_safestack:
1386     case lltok::kw_uwtable:
1387       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1388       break;
1389     }
1390 
1391     Lex.Lex();
1392   }
1393 }
1394 
1395 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1396 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1397   bool HaveError = false;
1398 
1399   B.clear();
1400 
1401   while (1) {
1402     lltok::Kind Token = Lex.getKind();
1403     switch (Token) {
1404     default:  // End of attributes.
1405       return HaveError;
1406     case lltok::StringConstant: {
1407       if (ParseStringAttribute(B))
1408         return true;
1409       continue;
1410     }
1411     case lltok::kw_dereferenceable: {
1412       uint64_t Bytes;
1413       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1414         return true;
1415       B.addDereferenceableAttr(Bytes);
1416       continue;
1417     }
1418     case lltok::kw_dereferenceable_or_null: {
1419       uint64_t Bytes;
1420       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1421         return true;
1422       B.addDereferenceableOrNullAttr(Bytes);
1423       continue;
1424     }
1425     case lltok::kw_align: {
1426       unsigned Alignment;
1427       if (ParseOptionalAlignment(Alignment))
1428         return true;
1429       B.addAlignmentAttr(Alignment);
1430       continue;
1431     }
1432     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1433     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1434     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1435     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1436     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1437 
1438     // Error handling.
1439     case lltok::kw_byval:
1440     case lltok::kw_inalloca:
1441     case lltok::kw_nest:
1442     case lltok::kw_nocapture:
1443     case lltok::kw_returned:
1444     case lltok::kw_sret:
1445     case lltok::kw_swifterror:
1446     case lltok::kw_swiftself:
1447       HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1448       break;
1449 
1450     case lltok::kw_alignstack:
1451     case lltok::kw_alwaysinline:
1452     case lltok::kw_argmemonly:
1453     case lltok::kw_builtin:
1454     case lltok::kw_cold:
1455     case lltok::kw_inlinehint:
1456     case lltok::kw_jumptable:
1457     case lltok::kw_minsize:
1458     case lltok::kw_naked:
1459     case lltok::kw_nobuiltin:
1460     case lltok::kw_noduplicate:
1461     case lltok::kw_noimplicitfloat:
1462     case lltok::kw_noinline:
1463     case lltok::kw_nonlazybind:
1464     case lltok::kw_noredzone:
1465     case lltok::kw_noreturn:
1466     case lltok::kw_nounwind:
1467     case lltok::kw_optnone:
1468     case lltok::kw_optsize:
1469     case lltok::kw_returns_twice:
1470     case lltok::kw_sanitize_address:
1471     case lltok::kw_sanitize_memory:
1472     case lltok::kw_sanitize_thread:
1473     case lltok::kw_ssp:
1474     case lltok::kw_sspreq:
1475     case lltok::kw_sspstrong:
1476     case lltok::kw_safestack:
1477     case lltok::kw_uwtable:
1478       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1479       break;
1480 
1481     case lltok::kw_readnone:
1482     case lltok::kw_readonly:
1483       HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1484     }
1485 
1486     Lex.Lex();
1487   }
1488 }
1489 
1490 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1491   HasLinkage = true;
1492   switch (Kind) {
1493   default:
1494     HasLinkage = false;
1495     return GlobalValue::ExternalLinkage;
1496   case lltok::kw_private:
1497     return GlobalValue::PrivateLinkage;
1498   case lltok::kw_internal:
1499     return GlobalValue::InternalLinkage;
1500   case lltok::kw_weak:
1501     return GlobalValue::WeakAnyLinkage;
1502   case lltok::kw_weak_odr:
1503     return GlobalValue::WeakODRLinkage;
1504   case lltok::kw_linkonce:
1505     return GlobalValue::LinkOnceAnyLinkage;
1506   case lltok::kw_linkonce_odr:
1507     return GlobalValue::LinkOnceODRLinkage;
1508   case lltok::kw_available_externally:
1509     return GlobalValue::AvailableExternallyLinkage;
1510   case lltok::kw_appending:
1511     return GlobalValue::AppendingLinkage;
1512   case lltok::kw_common:
1513     return GlobalValue::CommonLinkage;
1514   case lltok::kw_extern_weak:
1515     return GlobalValue::ExternalWeakLinkage;
1516   case lltok::kw_external:
1517     return GlobalValue::ExternalLinkage;
1518   }
1519 }
1520 
1521 /// ParseOptionalLinkage
1522 ///   ::= /*empty*/
1523 ///   ::= 'private'
1524 ///   ::= 'internal'
1525 ///   ::= 'weak'
1526 ///   ::= 'weak_odr'
1527 ///   ::= 'linkonce'
1528 ///   ::= 'linkonce_odr'
1529 ///   ::= 'available_externally'
1530 ///   ::= 'appending'
1531 ///   ::= 'common'
1532 ///   ::= 'extern_weak'
1533 ///   ::= 'external'
1534 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1535                                     unsigned &Visibility,
1536                                     unsigned &DLLStorageClass) {
1537   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1538   if (HasLinkage)
1539     Lex.Lex();
1540   ParseOptionalVisibility(Visibility);
1541   ParseOptionalDLLStorageClass(DLLStorageClass);
1542   return false;
1543 }
1544 
1545 /// ParseOptionalVisibility
1546 ///   ::= /*empty*/
1547 ///   ::= 'default'
1548 ///   ::= 'hidden'
1549 ///   ::= 'protected'
1550 ///
1551 void LLParser::ParseOptionalVisibility(unsigned &Res) {
1552   switch (Lex.getKind()) {
1553   default:
1554     Res = GlobalValue::DefaultVisibility;
1555     return;
1556   case lltok::kw_default:
1557     Res = GlobalValue::DefaultVisibility;
1558     break;
1559   case lltok::kw_hidden:
1560     Res = GlobalValue::HiddenVisibility;
1561     break;
1562   case lltok::kw_protected:
1563     Res = GlobalValue::ProtectedVisibility;
1564     break;
1565   }
1566   Lex.Lex();
1567 }
1568 
1569 /// ParseOptionalDLLStorageClass
1570 ///   ::= /*empty*/
1571 ///   ::= 'dllimport'
1572 ///   ::= 'dllexport'
1573 ///
1574 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1575   switch (Lex.getKind()) {
1576   default:
1577     Res = GlobalValue::DefaultStorageClass;
1578     return;
1579   case lltok::kw_dllimport:
1580     Res = GlobalValue::DLLImportStorageClass;
1581     break;
1582   case lltok::kw_dllexport:
1583     Res = GlobalValue::DLLExportStorageClass;
1584     break;
1585   }
1586   Lex.Lex();
1587 }
1588 
1589 /// ParseOptionalCallingConv
1590 ///   ::= /*empty*/
1591 ///   ::= 'ccc'
1592 ///   ::= 'fastcc'
1593 ///   ::= 'intel_ocl_bicc'
1594 ///   ::= 'coldcc'
1595 ///   ::= 'x86_stdcallcc'
1596 ///   ::= 'x86_fastcallcc'
1597 ///   ::= 'x86_thiscallcc'
1598 ///   ::= 'x86_vectorcallcc'
1599 ///   ::= 'arm_apcscc'
1600 ///   ::= 'arm_aapcscc'
1601 ///   ::= 'arm_aapcs_vfpcc'
1602 ///   ::= 'msp430_intrcc'
1603 ///   ::= 'avr_intrcc'
1604 ///   ::= 'avr_signalcc'
1605 ///   ::= 'ptx_kernel'
1606 ///   ::= 'ptx_device'
1607 ///   ::= 'spir_func'
1608 ///   ::= 'spir_kernel'
1609 ///   ::= 'x86_64_sysvcc'
1610 ///   ::= 'x86_64_win64cc'
1611 ///   ::= 'webkit_jscc'
1612 ///   ::= 'anyregcc'
1613 ///   ::= 'preserve_mostcc'
1614 ///   ::= 'preserve_allcc'
1615 ///   ::= 'ghccc'
1616 ///   ::= 'swiftcc'
1617 ///   ::= 'x86_intrcc'
1618 ///   ::= 'hhvmcc'
1619 ///   ::= 'hhvm_ccc'
1620 ///   ::= 'cxx_fast_tlscc'
1621 ///   ::= 'amdgpu_vs'
1622 ///   ::= 'amdgpu_tcs'
1623 ///   ::= 'amdgpu_tes'
1624 ///   ::= 'amdgpu_gs'
1625 ///   ::= 'amdgpu_ps'
1626 ///   ::= 'amdgpu_cs'
1627 ///   ::= 'amdgpu_kernel'
1628 ///   ::= 'cc' UINT
1629 ///
1630 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
1631   switch (Lex.getKind()) {
1632   default:                       CC = CallingConv::C; return false;
1633   case lltok::kw_ccc:            CC = CallingConv::C; break;
1634   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1635   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1636   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1637   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1638   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1639   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1640   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1641   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1642   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1643   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1644   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
1645   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
1646   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1647   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1648   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1649   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1650   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1651   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1652   case lltok::kw_x86_64_win64cc: CC = CallingConv::X86_64_Win64; break;
1653   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
1654   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
1655   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1656   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1657   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
1658   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
1659   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
1660   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
1661   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
1662   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
1663   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
1664   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
1665   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
1666   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
1667   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
1668   case lltok::kw_cc: {
1669       Lex.Lex();
1670       return ParseUInt32(CC);
1671     }
1672   }
1673 
1674   Lex.Lex();
1675   return false;
1676 }
1677 
1678 /// ParseMetadataAttachment
1679 ///   ::= !dbg !42
1680 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
1681   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
1682 
1683   std::string Name = Lex.getStrVal();
1684   Kind = M->getMDKindID(Name);
1685   Lex.Lex();
1686 
1687   return ParseMDNode(MD);
1688 }
1689 
1690 /// ParseInstructionMetadata
1691 ///   ::= !dbg !42 (',' !dbg !57)*
1692 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
1693   do {
1694     if (Lex.getKind() != lltok::MetadataVar)
1695       return TokError("expected metadata after comma");
1696 
1697     unsigned MDK;
1698     MDNode *N;
1699     if (ParseMetadataAttachment(MDK, N))
1700       return true;
1701 
1702     Inst.setMetadata(MDK, N);
1703     if (MDK == LLVMContext::MD_tbaa)
1704       InstsWithTBAATag.push_back(&Inst);
1705 
1706     // If this is the end of the list, we're done.
1707   } while (EatIfPresent(lltok::comma));
1708   return false;
1709 }
1710 
1711 /// ParseOptionalFunctionMetadata
1712 ///   ::= (!dbg !57)*
1713 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
1714   while (Lex.getKind() == lltok::MetadataVar) {
1715     unsigned MDK;
1716     MDNode *N;
1717     if (ParseMetadataAttachment(MDK, N))
1718       return true;
1719 
1720     F.setMetadata(MDK, N);
1721   }
1722   return false;
1723 }
1724 
1725 /// ParseOptionalAlignment
1726 ///   ::= /* empty */
1727 ///   ::= 'align' 4
1728 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1729   Alignment = 0;
1730   if (!EatIfPresent(lltok::kw_align))
1731     return false;
1732   LocTy AlignLoc = Lex.getLoc();
1733   if (ParseUInt32(Alignment)) return true;
1734   if (!isPowerOf2_32(Alignment))
1735     return Error(AlignLoc, "alignment is not a power of two");
1736   if (Alignment > Value::MaximumAlignment)
1737     return Error(AlignLoc, "huge alignments are not supported yet");
1738   return false;
1739 }
1740 
1741 /// ParseOptionalDerefAttrBytes
1742 ///   ::= /* empty */
1743 ///   ::= AttrKind '(' 4 ')'
1744 ///
1745 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
1746 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
1747                                            uint64_t &Bytes) {
1748   assert((AttrKind == lltok::kw_dereferenceable ||
1749           AttrKind == lltok::kw_dereferenceable_or_null) &&
1750          "contract!");
1751 
1752   Bytes = 0;
1753   if (!EatIfPresent(AttrKind))
1754     return false;
1755   LocTy ParenLoc = Lex.getLoc();
1756   if (!EatIfPresent(lltok::lparen))
1757     return Error(ParenLoc, "expected '('");
1758   LocTy DerefLoc = Lex.getLoc();
1759   if (ParseUInt64(Bytes)) return true;
1760   ParenLoc = Lex.getLoc();
1761   if (!EatIfPresent(lltok::rparen))
1762     return Error(ParenLoc, "expected ')'");
1763   if (!Bytes)
1764     return Error(DerefLoc, "dereferenceable bytes must be non-zero");
1765   return false;
1766 }
1767 
1768 /// ParseOptionalCommaAlign
1769 ///   ::=
1770 ///   ::= ',' align 4
1771 ///
1772 /// This returns with AteExtraComma set to true if it ate an excess comma at the
1773 /// end.
1774 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1775                                        bool &AteExtraComma) {
1776   AteExtraComma = false;
1777   while (EatIfPresent(lltok::comma)) {
1778     // Metadata at the end is an early exit.
1779     if (Lex.getKind() == lltok::MetadataVar) {
1780       AteExtraComma = true;
1781       return false;
1782     }
1783 
1784     if (Lex.getKind() != lltok::kw_align)
1785       return Error(Lex.getLoc(), "expected metadata or 'align'");
1786 
1787     if (ParseOptionalAlignment(Alignment)) return true;
1788   }
1789 
1790   return false;
1791 }
1792 
1793 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
1794                                        Optional<unsigned> &HowManyArg) {
1795   Lex.Lex();
1796 
1797   auto StartParen = Lex.getLoc();
1798   if (!EatIfPresent(lltok::lparen))
1799     return Error(StartParen, "expected '('");
1800 
1801   if (ParseUInt32(BaseSizeArg))
1802     return true;
1803 
1804   if (EatIfPresent(lltok::comma)) {
1805     auto HowManyAt = Lex.getLoc();
1806     unsigned HowMany;
1807     if (ParseUInt32(HowMany))
1808       return true;
1809     if (HowMany == BaseSizeArg)
1810       return Error(HowManyAt,
1811                    "'allocsize' indices can't refer to the same parameter");
1812     HowManyArg = HowMany;
1813   } else
1814     HowManyArg = None;
1815 
1816   auto EndParen = Lex.getLoc();
1817   if (!EatIfPresent(lltok::rparen))
1818     return Error(EndParen, "expected ')'");
1819   return false;
1820 }
1821 
1822 /// ParseScopeAndOrdering
1823 ///   if isAtomic: ::= 'singlethread'? AtomicOrdering
1824 ///   else: ::=
1825 ///
1826 /// This sets Scope and Ordering to the parsed values.
1827 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope,
1828                                      AtomicOrdering &Ordering) {
1829   if (!isAtomic)
1830     return false;
1831 
1832   Scope = CrossThread;
1833   if (EatIfPresent(lltok::kw_singlethread))
1834     Scope = SingleThread;
1835 
1836   return ParseOrdering(Ordering);
1837 }
1838 
1839 /// ParseOrdering
1840 ///   ::= AtomicOrdering
1841 ///
1842 /// This sets Ordering to the parsed value.
1843 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
1844   switch (Lex.getKind()) {
1845   default: return TokError("Expected ordering on atomic instruction");
1846   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
1847   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
1848   // Not specified yet:
1849   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
1850   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
1851   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
1852   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
1853   case lltok::kw_seq_cst:
1854     Ordering = AtomicOrdering::SequentiallyConsistent;
1855     break;
1856   }
1857   Lex.Lex();
1858   return false;
1859 }
1860 
1861 /// ParseOptionalStackAlignment
1862 ///   ::= /* empty */
1863 ///   ::= 'alignstack' '(' 4 ')'
1864 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
1865   Alignment = 0;
1866   if (!EatIfPresent(lltok::kw_alignstack))
1867     return false;
1868   LocTy ParenLoc = Lex.getLoc();
1869   if (!EatIfPresent(lltok::lparen))
1870     return Error(ParenLoc, "expected '('");
1871   LocTy AlignLoc = Lex.getLoc();
1872   if (ParseUInt32(Alignment)) return true;
1873   ParenLoc = Lex.getLoc();
1874   if (!EatIfPresent(lltok::rparen))
1875     return Error(ParenLoc, "expected ')'");
1876   if (!isPowerOf2_32(Alignment))
1877     return Error(AlignLoc, "stack alignment is not a power of two");
1878   return false;
1879 }
1880 
1881 /// ParseIndexList - This parses the index list for an insert/extractvalue
1882 /// instruction.  This sets AteExtraComma in the case where we eat an extra
1883 /// comma at the end of the line and find that it is followed by metadata.
1884 /// Clients that don't allow metadata can call the version of this function that
1885 /// only takes one argument.
1886 ///
1887 /// ParseIndexList
1888 ///    ::=  (',' uint32)+
1889 ///
1890 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
1891                               bool &AteExtraComma) {
1892   AteExtraComma = false;
1893 
1894   if (Lex.getKind() != lltok::comma)
1895     return TokError("expected ',' as start of index list");
1896 
1897   while (EatIfPresent(lltok::comma)) {
1898     if (Lex.getKind() == lltok::MetadataVar) {
1899       if (Indices.empty()) return TokError("expected index");
1900       AteExtraComma = true;
1901       return false;
1902     }
1903     unsigned Idx = 0;
1904     if (ParseUInt32(Idx)) return true;
1905     Indices.push_back(Idx);
1906   }
1907 
1908   return false;
1909 }
1910 
1911 //===----------------------------------------------------------------------===//
1912 // Type Parsing.
1913 //===----------------------------------------------------------------------===//
1914 
1915 /// ParseType - Parse a type.
1916 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
1917   SMLoc TypeLoc = Lex.getLoc();
1918   switch (Lex.getKind()) {
1919   default:
1920     return TokError(Msg);
1921   case lltok::Type:
1922     // Type ::= 'float' | 'void' (etc)
1923     Result = Lex.getTyVal();
1924     Lex.Lex();
1925     break;
1926   case lltok::lbrace:
1927     // Type ::= StructType
1928     if (ParseAnonStructType(Result, false))
1929       return true;
1930     break;
1931   case lltok::lsquare:
1932     // Type ::= '[' ... ']'
1933     Lex.Lex(); // eat the lsquare.
1934     if (ParseArrayVectorType(Result, false))
1935       return true;
1936     break;
1937   case lltok::less: // Either vector or packed struct.
1938     // Type ::= '<' ... '>'
1939     Lex.Lex();
1940     if (Lex.getKind() == lltok::lbrace) {
1941       if (ParseAnonStructType(Result, true) ||
1942           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
1943         return true;
1944     } else if (ParseArrayVectorType(Result, true))
1945       return true;
1946     break;
1947   case lltok::LocalVar: {
1948     // Type ::= %foo
1949     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
1950 
1951     // If the type hasn't been defined yet, create a forward definition and
1952     // remember where that forward def'n was seen (in case it never is defined).
1953     if (!Entry.first) {
1954       Entry.first = StructType::create(Context, Lex.getStrVal());
1955       Entry.second = Lex.getLoc();
1956     }
1957     Result = Entry.first;
1958     Lex.Lex();
1959     break;
1960   }
1961 
1962   case lltok::LocalVarID: {
1963     // Type ::= %4
1964     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
1965 
1966     // If the type hasn't been defined yet, create a forward definition and
1967     // remember where that forward def'n was seen (in case it never is defined).
1968     if (!Entry.first) {
1969       Entry.first = StructType::create(Context);
1970       Entry.second = Lex.getLoc();
1971     }
1972     Result = Entry.first;
1973     Lex.Lex();
1974     break;
1975   }
1976   }
1977 
1978   // Parse the type suffixes.
1979   while (1) {
1980     switch (Lex.getKind()) {
1981     // End of type.
1982     default:
1983       if (!AllowVoid && Result->isVoidTy())
1984         return Error(TypeLoc, "void type only allowed for function results");
1985       return false;
1986 
1987     // Type ::= Type '*'
1988     case lltok::star:
1989       if (Result->isLabelTy())
1990         return TokError("basic block pointers are invalid");
1991       if (Result->isVoidTy())
1992         return TokError("pointers to void are invalid - use i8* instead");
1993       if (!PointerType::isValidElementType(Result))
1994         return TokError("pointer to this type is invalid");
1995       Result = PointerType::getUnqual(Result);
1996       Lex.Lex();
1997       break;
1998 
1999     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2000     case lltok::kw_addrspace: {
2001       if (Result->isLabelTy())
2002         return TokError("basic block pointers are invalid");
2003       if (Result->isVoidTy())
2004         return TokError("pointers to void are invalid; use i8* instead");
2005       if (!PointerType::isValidElementType(Result))
2006         return TokError("pointer to this type is invalid");
2007       unsigned AddrSpace;
2008       if (ParseOptionalAddrSpace(AddrSpace) ||
2009           ParseToken(lltok::star, "expected '*' in address space"))
2010         return true;
2011 
2012       Result = PointerType::get(Result, AddrSpace);
2013       break;
2014     }
2015 
2016     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2017     case lltok::lparen:
2018       if (ParseFunctionType(Result))
2019         return true;
2020       break;
2021     }
2022   }
2023 }
2024 
2025 /// ParseParameterList
2026 ///    ::= '(' ')'
2027 ///    ::= '(' Arg (',' Arg)* ')'
2028 ///  Arg
2029 ///    ::= Type OptionalAttributes Value OptionalAttributes
2030 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2031                                   PerFunctionState &PFS, bool IsMustTailCall,
2032                                   bool InVarArgsFunc) {
2033   if (ParseToken(lltok::lparen, "expected '(' in call"))
2034     return true;
2035 
2036   unsigned AttrIndex = 1;
2037   while (Lex.getKind() != lltok::rparen) {
2038     // If this isn't the first argument, we need a comma.
2039     if (!ArgList.empty() &&
2040         ParseToken(lltok::comma, "expected ',' in argument list"))
2041       return true;
2042 
2043     // Parse an ellipsis if this is a musttail call in a variadic function.
2044     if (Lex.getKind() == lltok::dotdotdot) {
2045       const char *Msg = "unexpected ellipsis in argument list for ";
2046       if (!IsMustTailCall)
2047         return TokError(Twine(Msg) + "non-musttail call");
2048       if (!InVarArgsFunc)
2049         return TokError(Twine(Msg) + "musttail call in non-varargs function");
2050       Lex.Lex();  // Lex the '...', it is purely for readability.
2051       return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2052     }
2053 
2054     // Parse the argument.
2055     LocTy ArgLoc;
2056     Type *ArgTy = nullptr;
2057     AttrBuilder ArgAttrs;
2058     Value *V;
2059     if (ParseType(ArgTy, ArgLoc))
2060       return true;
2061 
2062     if (ArgTy->isMetadataTy()) {
2063       if (ParseMetadataAsValue(V, PFS))
2064         return true;
2065     } else {
2066       // Otherwise, handle normal operands.
2067       if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2068         return true;
2069     }
2070     ArgList.push_back(ParamInfo(ArgLoc, V, AttributeSet::get(V->getContext(),
2071                                                              AttrIndex++,
2072                                                              ArgAttrs)));
2073   }
2074 
2075   if (IsMustTailCall && InVarArgsFunc)
2076     return TokError("expected '...' at end of argument list for musttail call "
2077                     "in varargs function");
2078 
2079   Lex.Lex();  // Lex the ')'.
2080   return false;
2081 }
2082 
2083 /// ParseOptionalOperandBundles
2084 ///    ::= /*empty*/
2085 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2086 ///
2087 /// OperandBundle
2088 ///    ::= bundle-tag '(' ')'
2089 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2090 ///
2091 /// bundle-tag ::= String Constant
2092 bool LLParser::ParseOptionalOperandBundles(
2093     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2094   LocTy BeginLoc = Lex.getLoc();
2095   if (!EatIfPresent(lltok::lsquare))
2096     return false;
2097 
2098   while (Lex.getKind() != lltok::rsquare) {
2099     // If this isn't the first operand bundle, we need a comma.
2100     if (!BundleList.empty() &&
2101         ParseToken(lltok::comma, "expected ',' in input list"))
2102       return true;
2103 
2104     std::string Tag;
2105     if (ParseStringConstant(Tag))
2106       return true;
2107 
2108     if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2109       return true;
2110 
2111     std::vector<Value *> Inputs;
2112     while (Lex.getKind() != lltok::rparen) {
2113       // If this isn't the first input, we need a comma.
2114       if (!Inputs.empty() &&
2115           ParseToken(lltok::comma, "expected ',' in input list"))
2116         return true;
2117 
2118       Type *Ty = nullptr;
2119       Value *Input = nullptr;
2120       if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2121         return true;
2122       Inputs.push_back(Input);
2123     }
2124 
2125     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2126 
2127     Lex.Lex(); // Lex the ')'.
2128   }
2129 
2130   if (BundleList.empty())
2131     return Error(BeginLoc, "operand bundle set must not be empty");
2132 
2133   Lex.Lex(); // Lex the ']'.
2134   return false;
2135 }
2136 
2137 /// ParseArgumentList - Parse the argument list for a function type or function
2138 /// prototype.
2139 ///   ::= '(' ArgTypeListI ')'
2140 /// ArgTypeListI
2141 ///   ::= /*empty*/
2142 ///   ::= '...'
2143 ///   ::= ArgTypeList ',' '...'
2144 ///   ::= ArgType (',' ArgType)*
2145 ///
2146 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2147                                  bool &isVarArg){
2148   isVarArg = false;
2149   assert(Lex.getKind() == lltok::lparen);
2150   Lex.Lex(); // eat the (.
2151 
2152   if (Lex.getKind() == lltok::rparen) {
2153     // empty
2154   } else if (Lex.getKind() == lltok::dotdotdot) {
2155     isVarArg = true;
2156     Lex.Lex();
2157   } else {
2158     LocTy TypeLoc = Lex.getLoc();
2159     Type *ArgTy = nullptr;
2160     AttrBuilder Attrs;
2161     std::string Name;
2162 
2163     if (ParseType(ArgTy) ||
2164         ParseOptionalParamAttrs(Attrs)) return true;
2165 
2166     if (ArgTy->isVoidTy())
2167       return Error(TypeLoc, "argument can not have void type");
2168 
2169     if (Lex.getKind() == lltok::LocalVar) {
2170       Name = Lex.getStrVal();
2171       Lex.Lex();
2172     }
2173 
2174     if (!FunctionType::isValidArgumentType(ArgTy))
2175       return Error(TypeLoc, "invalid type for function argument");
2176 
2177     unsigned AttrIndex = 1;
2178     ArgList.emplace_back(TypeLoc, ArgTy, AttributeSet::get(ArgTy->getContext(),
2179                                                            AttrIndex++, Attrs),
2180                          std::move(Name));
2181 
2182     while (EatIfPresent(lltok::comma)) {
2183       // Handle ... at end of arg list.
2184       if (EatIfPresent(lltok::dotdotdot)) {
2185         isVarArg = true;
2186         break;
2187       }
2188 
2189       // Otherwise must be an argument type.
2190       TypeLoc = Lex.getLoc();
2191       if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2192 
2193       if (ArgTy->isVoidTy())
2194         return Error(TypeLoc, "argument can not have void type");
2195 
2196       if (Lex.getKind() == lltok::LocalVar) {
2197         Name = Lex.getStrVal();
2198         Lex.Lex();
2199       } else {
2200         Name = "";
2201       }
2202 
2203       if (!ArgTy->isFirstClassType())
2204         return Error(TypeLoc, "invalid type for function argument");
2205 
2206       ArgList.emplace_back(
2207           TypeLoc, ArgTy,
2208           AttributeSet::get(ArgTy->getContext(), AttrIndex++, Attrs),
2209           std::move(Name));
2210     }
2211   }
2212 
2213   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2214 }
2215 
2216 /// ParseFunctionType
2217 ///  ::= Type ArgumentList OptionalAttrs
2218 bool LLParser::ParseFunctionType(Type *&Result) {
2219   assert(Lex.getKind() == lltok::lparen);
2220 
2221   if (!FunctionType::isValidReturnType(Result))
2222     return TokError("invalid function return type");
2223 
2224   SmallVector<ArgInfo, 8> ArgList;
2225   bool isVarArg;
2226   if (ParseArgumentList(ArgList, isVarArg))
2227     return true;
2228 
2229   // Reject names on the arguments lists.
2230   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2231     if (!ArgList[i].Name.empty())
2232       return Error(ArgList[i].Loc, "argument name invalid in function type");
2233     if (ArgList[i].Attrs.hasAttributes(i + 1))
2234       return Error(ArgList[i].Loc,
2235                    "argument attributes invalid in function type");
2236   }
2237 
2238   SmallVector<Type*, 16> ArgListTy;
2239   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2240     ArgListTy.push_back(ArgList[i].Ty);
2241 
2242   Result = FunctionType::get(Result, ArgListTy, isVarArg);
2243   return false;
2244 }
2245 
2246 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2247 /// other structs.
2248 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2249   SmallVector<Type*, 8> Elts;
2250   if (ParseStructBody(Elts)) return true;
2251 
2252   Result = StructType::get(Context, Elts, Packed);
2253   return false;
2254 }
2255 
2256 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2257 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2258                                      std::pair<Type*, LocTy> &Entry,
2259                                      Type *&ResultTy) {
2260   // If the type was already defined, diagnose the redefinition.
2261   if (Entry.first && !Entry.second.isValid())
2262     return Error(TypeLoc, "redefinition of type");
2263 
2264   // If we have opaque, just return without filling in the definition for the
2265   // struct.  This counts as a definition as far as the .ll file goes.
2266   if (EatIfPresent(lltok::kw_opaque)) {
2267     // This type is being defined, so clear the location to indicate this.
2268     Entry.second = SMLoc();
2269 
2270     // If this type number has never been uttered, create it.
2271     if (!Entry.first)
2272       Entry.first = StructType::create(Context, Name);
2273     ResultTy = Entry.first;
2274     return false;
2275   }
2276 
2277   // If the type starts with '<', then it is either a packed struct or a vector.
2278   bool isPacked = EatIfPresent(lltok::less);
2279 
2280   // If we don't have a struct, then we have a random type alias, which we
2281   // accept for compatibility with old files.  These types are not allowed to be
2282   // forward referenced and not allowed to be recursive.
2283   if (Lex.getKind() != lltok::lbrace) {
2284     if (Entry.first)
2285       return Error(TypeLoc, "forward references to non-struct type");
2286 
2287     ResultTy = nullptr;
2288     if (isPacked)
2289       return ParseArrayVectorType(ResultTy, true);
2290     return ParseType(ResultTy);
2291   }
2292 
2293   // This type is being defined, so clear the location to indicate this.
2294   Entry.second = SMLoc();
2295 
2296   // If this type number has never been uttered, create it.
2297   if (!Entry.first)
2298     Entry.first = StructType::create(Context, Name);
2299 
2300   StructType *STy = cast<StructType>(Entry.first);
2301 
2302   SmallVector<Type*, 8> Body;
2303   if (ParseStructBody(Body) ||
2304       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2305     return true;
2306 
2307   STy->setBody(Body, isPacked);
2308   ResultTy = STy;
2309   return false;
2310 }
2311 
2312 
2313 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2314 ///   StructType
2315 ///     ::= '{' '}'
2316 ///     ::= '{' Type (',' Type)* '}'
2317 ///     ::= '<' '{' '}' '>'
2318 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2319 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2320   assert(Lex.getKind() == lltok::lbrace);
2321   Lex.Lex(); // Consume the '{'
2322 
2323   // Handle the empty struct.
2324   if (EatIfPresent(lltok::rbrace))
2325     return false;
2326 
2327   LocTy EltTyLoc = Lex.getLoc();
2328   Type *Ty = nullptr;
2329   if (ParseType(Ty)) return true;
2330   Body.push_back(Ty);
2331 
2332   if (!StructType::isValidElementType(Ty))
2333     return Error(EltTyLoc, "invalid element type for struct");
2334 
2335   while (EatIfPresent(lltok::comma)) {
2336     EltTyLoc = Lex.getLoc();
2337     if (ParseType(Ty)) return true;
2338 
2339     if (!StructType::isValidElementType(Ty))
2340       return Error(EltTyLoc, "invalid element type for struct");
2341 
2342     Body.push_back(Ty);
2343   }
2344 
2345   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2346 }
2347 
2348 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2349 /// token has already been consumed.
2350 ///   Type
2351 ///     ::= '[' APSINTVAL 'x' Types ']'
2352 ///     ::= '<' APSINTVAL 'x' Types '>'
2353 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2354   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2355       Lex.getAPSIntVal().getBitWidth() > 64)
2356     return TokError("expected number in address space");
2357 
2358   LocTy SizeLoc = Lex.getLoc();
2359   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2360   Lex.Lex();
2361 
2362   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2363       return true;
2364 
2365   LocTy TypeLoc = Lex.getLoc();
2366   Type *EltTy = nullptr;
2367   if (ParseType(EltTy)) return true;
2368 
2369   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2370                  "expected end of sequential type"))
2371     return true;
2372 
2373   if (isVector) {
2374     if (Size == 0)
2375       return Error(SizeLoc, "zero element vector is illegal");
2376     if ((unsigned)Size != Size)
2377       return Error(SizeLoc, "size too large for vector");
2378     if (!VectorType::isValidElementType(EltTy))
2379       return Error(TypeLoc, "invalid vector element type");
2380     Result = VectorType::get(EltTy, unsigned(Size));
2381   } else {
2382     if (!ArrayType::isValidElementType(EltTy))
2383       return Error(TypeLoc, "invalid array element type");
2384     Result = ArrayType::get(EltTy, Size);
2385   }
2386   return false;
2387 }
2388 
2389 //===----------------------------------------------------------------------===//
2390 // Function Semantic Analysis.
2391 //===----------------------------------------------------------------------===//
2392 
2393 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2394                                              int functionNumber)
2395   : P(p), F(f), FunctionNumber(functionNumber) {
2396 
2397   // Insert unnamed arguments into the NumberedVals list.
2398   for (Argument &A : F.args())
2399     if (!A.hasName())
2400       NumberedVals.push_back(&A);
2401 }
2402 
2403 LLParser::PerFunctionState::~PerFunctionState() {
2404   // If there were any forward referenced non-basicblock values, delete them.
2405 
2406   for (const auto &P : ForwardRefVals) {
2407     if (isa<BasicBlock>(P.second.first))
2408       continue;
2409     P.second.first->replaceAllUsesWith(
2410         UndefValue::get(P.second.first->getType()));
2411     delete P.second.first;
2412   }
2413 
2414   for (const auto &P : ForwardRefValIDs) {
2415     if (isa<BasicBlock>(P.second.first))
2416       continue;
2417     P.second.first->replaceAllUsesWith(
2418         UndefValue::get(P.second.first->getType()));
2419     delete P.second.first;
2420   }
2421 }
2422 
2423 bool LLParser::PerFunctionState::FinishFunction() {
2424   if (!ForwardRefVals.empty())
2425     return P.Error(ForwardRefVals.begin()->second.second,
2426                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2427                    "'");
2428   if (!ForwardRefValIDs.empty())
2429     return P.Error(ForwardRefValIDs.begin()->second.second,
2430                    "use of undefined value '%" +
2431                    Twine(ForwardRefValIDs.begin()->first) + "'");
2432   return false;
2433 }
2434 
2435 
2436 /// GetVal - Get a value with the specified name or ID, creating a
2437 /// forward reference record if needed.  This can return null if the value
2438 /// exists but does not have the right type.
2439 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2440                                           LocTy Loc) {
2441   // Look this name up in the normal function symbol table.
2442   Value *Val = F.getValueSymbolTable().lookup(Name);
2443 
2444   // If this is a forward reference for the value, see if we already created a
2445   // forward ref record.
2446   if (!Val) {
2447     auto I = ForwardRefVals.find(Name);
2448     if (I != ForwardRefVals.end())
2449       Val = I->second.first;
2450   }
2451 
2452   // If we have the value in the symbol table or fwd-ref table, return it.
2453   if (Val) {
2454     if (Val->getType() == Ty) return Val;
2455     if (Ty->isLabelTy())
2456       P.Error(Loc, "'%" + Name + "' is not a basic block");
2457     else
2458       P.Error(Loc, "'%" + Name + "' defined with type '" +
2459               getTypeString(Val->getType()) + "'");
2460     return nullptr;
2461   }
2462 
2463   // Don't make placeholders with invalid type.
2464   if (!Ty->isFirstClassType()) {
2465     P.Error(Loc, "invalid use of a non-first-class type");
2466     return nullptr;
2467   }
2468 
2469   // Otherwise, create a new forward reference for this value and remember it.
2470   Value *FwdVal;
2471   if (Ty->isLabelTy()) {
2472     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2473   } else {
2474     FwdVal = new Argument(Ty, Name);
2475   }
2476 
2477   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2478   return FwdVal;
2479 }
2480 
2481 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc) {
2482   // Look this name up in the normal function symbol table.
2483   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2484 
2485   // If this is a forward reference for the value, see if we already created a
2486   // forward ref record.
2487   if (!Val) {
2488     auto I = ForwardRefValIDs.find(ID);
2489     if (I != ForwardRefValIDs.end())
2490       Val = I->second.first;
2491   }
2492 
2493   // If we have the value in the symbol table or fwd-ref table, return it.
2494   if (Val) {
2495     if (Val->getType() == Ty) return Val;
2496     if (Ty->isLabelTy())
2497       P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
2498     else
2499       P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
2500               getTypeString(Val->getType()) + "'");
2501     return nullptr;
2502   }
2503 
2504   if (!Ty->isFirstClassType()) {
2505     P.Error(Loc, "invalid use of a non-first-class type");
2506     return nullptr;
2507   }
2508 
2509   // Otherwise, create a new forward reference for this value and remember it.
2510   Value *FwdVal;
2511   if (Ty->isLabelTy()) {
2512     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2513   } else {
2514     FwdVal = new Argument(Ty);
2515   }
2516 
2517   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2518   return FwdVal;
2519 }
2520 
2521 /// SetInstName - After an instruction is parsed and inserted into its
2522 /// basic block, this installs its name.
2523 bool LLParser::PerFunctionState::SetInstName(int NameID,
2524                                              const std::string &NameStr,
2525                                              LocTy NameLoc, Instruction *Inst) {
2526   // If this instruction has void type, it cannot have a name or ID specified.
2527   if (Inst->getType()->isVoidTy()) {
2528     if (NameID != -1 || !NameStr.empty())
2529       return P.Error(NameLoc, "instructions returning void cannot have a name");
2530     return false;
2531   }
2532 
2533   // If this was a numbered instruction, verify that the instruction is the
2534   // expected value and resolve any forward references.
2535   if (NameStr.empty()) {
2536     // If neither a name nor an ID was specified, just use the next ID.
2537     if (NameID == -1)
2538       NameID = NumberedVals.size();
2539 
2540     if (unsigned(NameID) != NumberedVals.size())
2541       return P.Error(NameLoc, "instruction expected to be numbered '%" +
2542                      Twine(NumberedVals.size()) + "'");
2543 
2544     auto FI = ForwardRefValIDs.find(NameID);
2545     if (FI != ForwardRefValIDs.end()) {
2546       Value *Sentinel = FI->second.first;
2547       if (Sentinel->getType() != Inst->getType())
2548         return P.Error(NameLoc, "instruction forward referenced with type '" +
2549                        getTypeString(FI->second.first->getType()) + "'");
2550 
2551       Sentinel->replaceAllUsesWith(Inst);
2552       delete Sentinel;
2553       ForwardRefValIDs.erase(FI);
2554     }
2555 
2556     NumberedVals.push_back(Inst);
2557     return false;
2558   }
2559 
2560   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2561   auto FI = ForwardRefVals.find(NameStr);
2562   if (FI != ForwardRefVals.end()) {
2563     Value *Sentinel = FI->second.first;
2564     if (Sentinel->getType() != Inst->getType())
2565       return P.Error(NameLoc, "instruction forward referenced with type '" +
2566                      getTypeString(FI->second.first->getType()) + "'");
2567 
2568     Sentinel->replaceAllUsesWith(Inst);
2569     delete Sentinel;
2570     ForwardRefVals.erase(FI);
2571   }
2572 
2573   // Set the name on the instruction.
2574   Inst->setName(NameStr);
2575 
2576   if (Inst->getName() != NameStr)
2577     return P.Error(NameLoc, "multiple definition of local value named '" +
2578                    NameStr + "'");
2579   return false;
2580 }
2581 
2582 /// GetBB - Get a basic block with the specified name or ID, creating a
2583 /// forward reference record if needed.
2584 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2585                                               LocTy Loc) {
2586   return dyn_cast_or_null<BasicBlock>(GetVal(Name,
2587                                       Type::getLabelTy(F.getContext()), Loc));
2588 }
2589 
2590 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
2591   return dyn_cast_or_null<BasicBlock>(GetVal(ID,
2592                                       Type::getLabelTy(F.getContext()), Loc));
2593 }
2594 
2595 /// DefineBB - Define the specified basic block, which is either named or
2596 /// unnamed.  If there is an error, this returns null otherwise it returns
2597 /// the block being defined.
2598 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
2599                                                  LocTy Loc) {
2600   BasicBlock *BB;
2601   if (Name.empty())
2602     BB = GetBB(NumberedVals.size(), Loc);
2603   else
2604     BB = GetBB(Name, Loc);
2605   if (!BB) return nullptr; // Already diagnosed error.
2606 
2607   // Move the block to the end of the function.  Forward ref'd blocks are
2608   // inserted wherever they happen to be referenced.
2609   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2610 
2611   // Remove the block from forward ref sets.
2612   if (Name.empty()) {
2613     ForwardRefValIDs.erase(NumberedVals.size());
2614     NumberedVals.push_back(BB);
2615   } else {
2616     // BB forward references are already in the function symbol table.
2617     ForwardRefVals.erase(Name);
2618   }
2619 
2620   return BB;
2621 }
2622 
2623 //===----------------------------------------------------------------------===//
2624 // Constants.
2625 //===----------------------------------------------------------------------===//
2626 
2627 /// ParseValID - Parse an abstract value that doesn't necessarily have a
2628 /// type implied.  For example, if we parse "4" we don't know what integer type
2629 /// it has.  The value will later be combined with its type and checked for
2630 /// sanity.  PFS is used to convert function-local operands of metadata (since
2631 /// metadata operands are not just parsed here but also converted to values).
2632 /// PFS can be null when we are not parsing metadata values inside a function.
2633 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
2634   ID.Loc = Lex.getLoc();
2635   switch (Lex.getKind()) {
2636   default: return TokError("expected value token");
2637   case lltok::GlobalID:  // @42
2638     ID.UIntVal = Lex.getUIntVal();
2639     ID.Kind = ValID::t_GlobalID;
2640     break;
2641   case lltok::GlobalVar:  // @foo
2642     ID.StrVal = Lex.getStrVal();
2643     ID.Kind = ValID::t_GlobalName;
2644     break;
2645   case lltok::LocalVarID:  // %42
2646     ID.UIntVal = Lex.getUIntVal();
2647     ID.Kind = ValID::t_LocalID;
2648     break;
2649   case lltok::LocalVar:  // %foo
2650     ID.StrVal = Lex.getStrVal();
2651     ID.Kind = ValID::t_LocalName;
2652     break;
2653   case lltok::APSInt:
2654     ID.APSIntVal = Lex.getAPSIntVal();
2655     ID.Kind = ValID::t_APSInt;
2656     break;
2657   case lltok::APFloat:
2658     ID.APFloatVal = Lex.getAPFloatVal();
2659     ID.Kind = ValID::t_APFloat;
2660     break;
2661   case lltok::kw_true:
2662     ID.ConstantVal = ConstantInt::getTrue(Context);
2663     ID.Kind = ValID::t_Constant;
2664     break;
2665   case lltok::kw_false:
2666     ID.ConstantVal = ConstantInt::getFalse(Context);
2667     ID.Kind = ValID::t_Constant;
2668     break;
2669   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2670   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2671   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2672   case lltok::kw_none: ID.Kind = ValID::t_None; break;
2673 
2674   case lltok::lbrace: {
2675     // ValID ::= '{' ConstVector '}'
2676     Lex.Lex();
2677     SmallVector<Constant*, 16> Elts;
2678     if (ParseGlobalValueVector(Elts) ||
2679         ParseToken(lltok::rbrace, "expected end of struct constant"))
2680       return true;
2681 
2682     ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
2683     ID.UIntVal = Elts.size();
2684     memcpy(ID.ConstantStructElts.get(), Elts.data(),
2685            Elts.size() * sizeof(Elts[0]));
2686     ID.Kind = ValID::t_ConstantStruct;
2687     return false;
2688   }
2689   case lltok::less: {
2690     // ValID ::= '<' ConstVector '>'         --> Vector.
2691     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
2692     Lex.Lex();
2693     bool isPackedStruct = EatIfPresent(lltok::lbrace);
2694 
2695     SmallVector<Constant*, 16> Elts;
2696     LocTy FirstEltLoc = Lex.getLoc();
2697     if (ParseGlobalValueVector(Elts) ||
2698         (isPackedStruct &&
2699          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
2700         ParseToken(lltok::greater, "expected end of constant"))
2701       return true;
2702 
2703     if (isPackedStruct) {
2704       ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
2705       memcpy(ID.ConstantStructElts.get(), Elts.data(),
2706              Elts.size() * sizeof(Elts[0]));
2707       ID.UIntVal = Elts.size();
2708       ID.Kind = ValID::t_PackedConstantStruct;
2709       return false;
2710     }
2711 
2712     if (Elts.empty())
2713       return Error(ID.Loc, "constant vector must not be empty");
2714 
2715     if (!Elts[0]->getType()->isIntegerTy() &&
2716         !Elts[0]->getType()->isFloatingPointTy() &&
2717         !Elts[0]->getType()->isPointerTy())
2718       return Error(FirstEltLoc,
2719             "vector elements must have integer, pointer or floating point type");
2720 
2721     // Verify that all the vector elements have the same type.
2722     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2723       if (Elts[i]->getType() != Elts[0]->getType())
2724         return Error(FirstEltLoc,
2725                      "vector element #" + Twine(i) +
2726                     " is not of type '" + getTypeString(Elts[0]->getType()));
2727 
2728     ID.ConstantVal = ConstantVector::get(Elts);
2729     ID.Kind = ValID::t_Constant;
2730     return false;
2731   }
2732   case lltok::lsquare: {   // Array Constant
2733     Lex.Lex();
2734     SmallVector<Constant*, 16> Elts;
2735     LocTy FirstEltLoc = Lex.getLoc();
2736     if (ParseGlobalValueVector(Elts) ||
2737         ParseToken(lltok::rsquare, "expected end of array constant"))
2738       return true;
2739 
2740     // Handle empty element.
2741     if (Elts.empty()) {
2742       // Use undef instead of an array because it's inconvenient to determine
2743       // the element type at this point, there being no elements to examine.
2744       ID.Kind = ValID::t_EmptyArray;
2745       return false;
2746     }
2747 
2748     if (!Elts[0]->getType()->isFirstClassType())
2749       return Error(FirstEltLoc, "invalid array element type: " +
2750                    getTypeString(Elts[0]->getType()));
2751 
2752     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2753 
2754     // Verify all elements are correct type!
2755     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2756       if (Elts[i]->getType() != Elts[0]->getType())
2757         return Error(FirstEltLoc,
2758                      "array element #" + Twine(i) +
2759                      " is not of type '" + getTypeString(Elts[0]->getType()));
2760     }
2761 
2762     ID.ConstantVal = ConstantArray::get(ATy, Elts);
2763     ID.Kind = ValID::t_Constant;
2764     return false;
2765   }
2766   case lltok::kw_c:  // c "foo"
2767     Lex.Lex();
2768     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
2769                                                   false);
2770     if (ParseToken(lltok::StringConstant, "expected string")) return true;
2771     ID.Kind = ValID::t_Constant;
2772     return false;
2773 
2774   case lltok::kw_asm: {
2775     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
2776     //             STRINGCONSTANT
2777     bool HasSideEffect, AlignStack, AsmDialect;
2778     Lex.Lex();
2779     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2780         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2781         ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
2782         ParseStringConstant(ID.StrVal) ||
2783         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2784         ParseToken(lltok::StringConstant, "expected constraint string"))
2785       return true;
2786     ID.StrVal2 = Lex.getStrVal();
2787     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
2788       (unsigned(AsmDialect)<<2);
2789     ID.Kind = ValID::t_InlineAsm;
2790     return false;
2791   }
2792 
2793   case lltok::kw_blockaddress: {
2794     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2795     Lex.Lex();
2796 
2797     ValID Fn, Label;
2798 
2799     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2800         ParseValID(Fn) ||
2801         ParseToken(lltok::comma, "expected comma in block address expression")||
2802         ParseValID(Label) ||
2803         ParseToken(lltok::rparen, "expected ')' in block address expression"))
2804       return true;
2805 
2806     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2807       return Error(Fn.Loc, "expected function name in blockaddress");
2808     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2809       return Error(Label.Loc, "expected basic block name in blockaddress");
2810 
2811     // Try to find the function (but skip it if it's forward-referenced).
2812     GlobalValue *GV = nullptr;
2813     if (Fn.Kind == ValID::t_GlobalID) {
2814       if (Fn.UIntVal < NumberedVals.size())
2815         GV = NumberedVals[Fn.UIntVal];
2816     } else if (!ForwardRefVals.count(Fn.StrVal)) {
2817       GV = M->getNamedValue(Fn.StrVal);
2818     }
2819     Function *F = nullptr;
2820     if (GV) {
2821       // Confirm that it's actually a function with a definition.
2822       if (!isa<Function>(GV))
2823         return Error(Fn.Loc, "expected function name in blockaddress");
2824       F = cast<Function>(GV);
2825       if (F->isDeclaration())
2826         return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
2827     }
2828 
2829     if (!F) {
2830       // Make a global variable as a placeholder for this reference.
2831       GlobalValue *&FwdRef =
2832           ForwardRefBlockAddresses.insert(std::make_pair(
2833                                               std::move(Fn),
2834                                               std::map<ValID, GlobalValue *>()))
2835               .first->second.insert(std::make_pair(std::move(Label), nullptr))
2836               .first->second;
2837       if (!FwdRef)
2838         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
2839                                     GlobalValue::InternalLinkage, nullptr, "");
2840       ID.ConstantVal = FwdRef;
2841       ID.Kind = ValID::t_Constant;
2842       return false;
2843     }
2844 
2845     // We found the function; now find the basic block.  Don't use PFS, since we
2846     // might be inside a constant expression.
2847     BasicBlock *BB;
2848     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
2849       if (Label.Kind == ValID::t_LocalID)
2850         BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
2851       else
2852         BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
2853       if (!BB)
2854         return Error(Label.Loc, "referenced value is not a basic block");
2855     } else {
2856       if (Label.Kind == ValID::t_LocalID)
2857         return Error(Label.Loc, "cannot take address of numeric label after "
2858                                 "the function is defined");
2859       BB = dyn_cast_or_null<BasicBlock>(
2860           F->getValueSymbolTable().lookup(Label.StrVal));
2861       if (!BB)
2862         return Error(Label.Loc, "referenced value is not a basic block");
2863     }
2864 
2865     ID.ConstantVal = BlockAddress::get(F, BB);
2866     ID.Kind = ValID::t_Constant;
2867     return false;
2868   }
2869 
2870   case lltok::kw_trunc:
2871   case lltok::kw_zext:
2872   case lltok::kw_sext:
2873   case lltok::kw_fptrunc:
2874   case lltok::kw_fpext:
2875   case lltok::kw_bitcast:
2876   case lltok::kw_addrspacecast:
2877   case lltok::kw_uitofp:
2878   case lltok::kw_sitofp:
2879   case lltok::kw_fptoui:
2880   case lltok::kw_fptosi:
2881   case lltok::kw_inttoptr:
2882   case lltok::kw_ptrtoint: {
2883     unsigned Opc = Lex.getUIntVal();
2884     Type *DestTy = nullptr;
2885     Constant *SrcVal;
2886     Lex.Lex();
2887     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2888         ParseGlobalTypeAndValue(SrcVal) ||
2889         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2890         ParseType(DestTy) ||
2891         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2892       return true;
2893     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2894       return Error(ID.Loc, "invalid cast opcode for cast from '" +
2895                    getTypeString(SrcVal->getType()) + "' to '" +
2896                    getTypeString(DestTy) + "'");
2897     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2898                                                  SrcVal, DestTy);
2899     ID.Kind = ValID::t_Constant;
2900     return false;
2901   }
2902   case lltok::kw_extractvalue: {
2903     Lex.Lex();
2904     Constant *Val;
2905     SmallVector<unsigned, 4> Indices;
2906     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
2907         ParseGlobalTypeAndValue(Val) ||
2908         ParseIndexList(Indices) ||
2909         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
2910       return true;
2911 
2912     if (!Val->getType()->isAggregateType())
2913       return Error(ID.Loc, "extractvalue operand must be aggregate type");
2914     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
2915       return Error(ID.Loc, "invalid indices for extractvalue");
2916     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
2917     ID.Kind = ValID::t_Constant;
2918     return false;
2919   }
2920   case lltok::kw_insertvalue: {
2921     Lex.Lex();
2922     Constant *Val0, *Val1;
2923     SmallVector<unsigned, 4> Indices;
2924     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
2925         ParseGlobalTypeAndValue(Val0) ||
2926         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
2927         ParseGlobalTypeAndValue(Val1) ||
2928         ParseIndexList(Indices) ||
2929         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
2930       return true;
2931     if (!Val0->getType()->isAggregateType())
2932       return Error(ID.Loc, "insertvalue operand must be aggregate type");
2933     Type *IndexedType =
2934         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
2935     if (!IndexedType)
2936       return Error(ID.Loc, "invalid indices for insertvalue");
2937     if (IndexedType != Val1->getType())
2938       return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
2939                                getTypeString(Val1->getType()) +
2940                                "' instead of '" + getTypeString(IndexedType) +
2941                                "'");
2942     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
2943     ID.Kind = ValID::t_Constant;
2944     return false;
2945   }
2946   case lltok::kw_icmp:
2947   case lltok::kw_fcmp: {
2948     unsigned PredVal, Opc = Lex.getUIntVal();
2949     Constant *Val0, *Val1;
2950     Lex.Lex();
2951     if (ParseCmpPredicate(PredVal, Opc) ||
2952         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
2953         ParseGlobalTypeAndValue(Val0) ||
2954         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
2955         ParseGlobalTypeAndValue(Val1) ||
2956         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
2957       return true;
2958 
2959     if (Val0->getType() != Val1->getType())
2960       return Error(ID.Loc, "compare operands must have the same type");
2961 
2962     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
2963 
2964     if (Opc == Instruction::FCmp) {
2965       if (!Val0->getType()->isFPOrFPVectorTy())
2966         return Error(ID.Loc, "fcmp requires floating point operands");
2967       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
2968     } else {
2969       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
2970       if (!Val0->getType()->isIntOrIntVectorTy() &&
2971           !Val0->getType()->getScalarType()->isPointerTy())
2972         return Error(ID.Loc, "icmp requires pointer or integer operands");
2973       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
2974     }
2975     ID.Kind = ValID::t_Constant;
2976     return false;
2977   }
2978 
2979   // Binary Operators.
2980   case lltok::kw_add:
2981   case lltok::kw_fadd:
2982   case lltok::kw_sub:
2983   case lltok::kw_fsub:
2984   case lltok::kw_mul:
2985   case lltok::kw_fmul:
2986   case lltok::kw_udiv:
2987   case lltok::kw_sdiv:
2988   case lltok::kw_fdiv:
2989   case lltok::kw_urem:
2990   case lltok::kw_srem:
2991   case lltok::kw_frem:
2992   case lltok::kw_shl:
2993   case lltok::kw_lshr:
2994   case lltok::kw_ashr: {
2995     bool NUW = false;
2996     bool NSW = false;
2997     bool Exact = false;
2998     unsigned Opc = Lex.getUIntVal();
2999     Constant *Val0, *Val1;
3000     Lex.Lex();
3001     LocTy ModifierLoc = Lex.getLoc();
3002     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3003         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3004       if (EatIfPresent(lltok::kw_nuw))
3005         NUW = true;
3006       if (EatIfPresent(lltok::kw_nsw)) {
3007         NSW = true;
3008         if (EatIfPresent(lltok::kw_nuw))
3009           NUW = true;
3010       }
3011     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3012                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3013       if (EatIfPresent(lltok::kw_exact))
3014         Exact = true;
3015     }
3016     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3017         ParseGlobalTypeAndValue(Val0) ||
3018         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
3019         ParseGlobalTypeAndValue(Val1) ||
3020         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3021       return true;
3022     if (Val0->getType() != Val1->getType())
3023       return Error(ID.Loc, "operands of constexpr must have same type");
3024     if (!Val0->getType()->isIntOrIntVectorTy()) {
3025       if (NUW)
3026         return Error(ModifierLoc, "nuw only applies to integer operations");
3027       if (NSW)
3028         return Error(ModifierLoc, "nsw only applies to integer operations");
3029     }
3030     // Check that the type is valid for the operator.
3031     switch (Opc) {
3032     case Instruction::Add:
3033     case Instruction::Sub:
3034     case Instruction::Mul:
3035     case Instruction::UDiv:
3036     case Instruction::SDiv:
3037     case Instruction::URem:
3038     case Instruction::SRem:
3039     case Instruction::Shl:
3040     case Instruction::AShr:
3041     case Instruction::LShr:
3042       if (!Val0->getType()->isIntOrIntVectorTy())
3043         return Error(ID.Loc, "constexpr requires integer operands");
3044       break;
3045     case Instruction::FAdd:
3046     case Instruction::FSub:
3047     case Instruction::FMul:
3048     case Instruction::FDiv:
3049     case Instruction::FRem:
3050       if (!Val0->getType()->isFPOrFPVectorTy())
3051         return Error(ID.Loc, "constexpr requires fp operands");
3052       break;
3053     default: llvm_unreachable("Unknown binary operator!");
3054     }
3055     unsigned Flags = 0;
3056     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3057     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3058     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3059     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3060     ID.ConstantVal = C;
3061     ID.Kind = ValID::t_Constant;
3062     return false;
3063   }
3064 
3065   // Logical Operations
3066   case lltok::kw_and:
3067   case lltok::kw_or:
3068   case lltok::kw_xor: {
3069     unsigned Opc = Lex.getUIntVal();
3070     Constant *Val0, *Val1;
3071     Lex.Lex();
3072     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3073         ParseGlobalTypeAndValue(Val0) ||
3074         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3075         ParseGlobalTypeAndValue(Val1) ||
3076         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3077       return true;
3078     if (Val0->getType() != Val1->getType())
3079       return Error(ID.Loc, "operands of constexpr must have same type");
3080     if (!Val0->getType()->isIntOrIntVectorTy())
3081       return Error(ID.Loc,
3082                    "constexpr requires integer or integer vector operands");
3083     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3084     ID.Kind = ValID::t_Constant;
3085     return false;
3086   }
3087 
3088   case lltok::kw_getelementptr:
3089   case lltok::kw_shufflevector:
3090   case lltok::kw_insertelement:
3091   case lltok::kw_extractelement:
3092   case lltok::kw_select: {
3093     unsigned Opc = Lex.getUIntVal();
3094     SmallVector<Constant*, 16> Elts;
3095     bool InBounds = false;
3096     Type *Ty;
3097     Lex.Lex();
3098 
3099     if (Opc == Instruction::GetElementPtr)
3100       InBounds = EatIfPresent(lltok::kw_inbounds);
3101 
3102     if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3103       return true;
3104 
3105     LocTy ExplicitTypeLoc = Lex.getLoc();
3106     if (Opc == Instruction::GetElementPtr) {
3107       if (ParseType(Ty) ||
3108           ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3109         return true;
3110     }
3111 
3112     if (ParseGlobalValueVector(Elts) ||
3113         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3114       return true;
3115 
3116     if (Opc == Instruction::GetElementPtr) {
3117       if (Elts.size() == 0 ||
3118           !Elts[0]->getType()->getScalarType()->isPointerTy())
3119         return Error(ID.Loc, "base of getelementptr must be a pointer");
3120 
3121       Type *BaseType = Elts[0]->getType();
3122       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3123       if (Ty != BasePointerType->getElementType())
3124         return Error(
3125             ExplicitTypeLoc,
3126             "explicit pointee type doesn't match operand's pointee type");
3127 
3128       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3129       for (Constant *Val : Indices) {
3130         Type *ValTy = Val->getType();
3131         if (!ValTy->getScalarType()->isIntegerTy())
3132           return Error(ID.Loc, "getelementptr index must be an integer");
3133         if (ValTy->isVectorTy() != BaseType->isVectorTy())
3134           return Error(ID.Loc, "getelementptr index type missmatch");
3135         if (ValTy->isVectorTy()) {
3136           unsigned ValNumEl = ValTy->getVectorNumElements();
3137           unsigned PtrNumEl = BaseType->getVectorNumElements();
3138           if (ValNumEl != PtrNumEl)
3139             return Error(
3140                 ID.Loc,
3141                 "getelementptr vector index has a wrong number of elements");
3142         }
3143       }
3144 
3145       SmallPtrSet<Type*, 4> Visited;
3146       if (!Indices.empty() && !Ty->isSized(&Visited))
3147         return Error(ID.Loc, "base element of getelementptr must be sized");
3148 
3149       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3150         return Error(ID.Loc, "invalid getelementptr indices");
3151       ID.ConstantVal =
3152           ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, InBounds);
3153     } else if (Opc == Instruction::Select) {
3154       if (Elts.size() != 3)
3155         return Error(ID.Loc, "expected three operands to select");
3156       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3157                                                               Elts[2]))
3158         return Error(ID.Loc, Reason);
3159       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3160     } else if (Opc == Instruction::ShuffleVector) {
3161       if (Elts.size() != 3)
3162         return Error(ID.Loc, "expected three operands to shufflevector");
3163       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3164         return Error(ID.Loc, "invalid operands to shufflevector");
3165       ID.ConstantVal =
3166                  ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
3167     } else if (Opc == Instruction::ExtractElement) {
3168       if (Elts.size() != 2)
3169         return Error(ID.Loc, "expected two operands to extractelement");
3170       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3171         return Error(ID.Loc, "invalid extractelement operands");
3172       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3173     } else {
3174       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3175       if (Elts.size() != 3)
3176       return Error(ID.Loc, "expected three operands to insertelement");
3177       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3178         return Error(ID.Loc, "invalid insertelement operands");
3179       ID.ConstantVal =
3180                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3181     }
3182 
3183     ID.Kind = ValID::t_Constant;
3184     return false;
3185   }
3186   }
3187 
3188   Lex.Lex();
3189   return false;
3190 }
3191 
3192 /// ParseGlobalValue - Parse a global value with the specified type.
3193 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3194   C = nullptr;
3195   ValID ID;
3196   Value *V = nullptr;
3197   bool Parsed = ParseValID(ID) ||
3198                 ConvertValIDToValue(Ty, ID, V, nullptr);
3199   if (V && !(C = dyn_cast<Constant>(V)))
3200     return Error(ID.Loc, "global values must be constants");
3201   return Parsed;
3202 }
3203 
3204 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3205   Type *Ty = nullptr;
3206   return ParseType(Ty) ||
3207          ParseGlobalValue(Ty, V);
3208 }
3209 
3210 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3211   C = nullptr;
3212 
3213   LocTy KwLoc = Lex.getLoc();
3214   if (!EatIfPresent(lltok::kw_comdat))
3215     return false;
3216 
3217   if (EatIfPresent(lltok::lparen)) {
3218     if (Lex.getKind() != lltok::ComdatVar)
3219       return TokError("expected comdat variable");
3220     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3221     Lex.Lex();
3222     if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3223       return true;
3224   } else {
3225     if (GlobalName.empty())
3226       return TokError("comdat cannot be unnamed");
3227     C = getComdat(GlobalName, KwLoc);
3228   }
3229 
3230   return false;
3231 }
3232 
3233 /// ParseGlobalValueVector
3234 ///   ::= /*empty*/
3235 ///   ::= TypeAndValue (',' TypeAndValue)*
3236 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts) {
3237   // Empty list.
3238   if (Lex.getKind() == lltok::rbrace ||
3239       Lex.getKind() == lltok::rsquare ||
3240       Lex.getKind() == lltok::greater ||
3241       Lex.getKind() == lltok::rparen)
3242     return false;
3243 
3244   Constant *C;
3245   if (ParseGlobalTypeAndValue(C)) return true;
3246   Elts.push_back(C);
3247 
3248   while (EatIfPresent(lltok::comma)) {
3249     if (ParseGlobalTypeAndValue(C)) return true;
3250     Elts.push_back(C);
3251   }
3252 
3253   return false;
3254 }
3255 
3256 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3257   SmallVector<Metadata *, 16> Elts;
3258   if (ParseMDNodeVector(Elts))
3259     return true;
3260 
3261   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3262   return false;
3263 }
3264 
3265 /// MDNode:
3266 ///  ::= !{ ... }
3267 ///  ::= !7
3268 ///  ::= !DILocation(...)
3269 bool LLParser::ParseMDNode(MDNode *&N) {
3270   if (Lex.getKind() == lltok::MetadataVar)
3271     return ParseSpecializedMDNode(N);
3272 
3273   return ParseToken(lltok::exclaim, "expected '!' here") ||
3274          ParseMDNodeTail(N);
3275 }
3276 
3277 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3278   // !{ ... }
3279   if (Lex.getKind() == lltok::lbrace)
3280     return ParseMDTuple(N);
3281 
3282   // !42
3283   return ParseMDNodeID(N);
3284 }
3285 
3286 namespace {
3287 
3288 /// Structure to represent an optional metadata field.
3289 template <class FieldTy> struct MDFieldImpl {
3290   typedef MDFieldImpl ImplTy;
3291   FieldTy Val;
3292   bool Seen;
3293 
3294   void assign(FieldTy Val) {
3295     Seen = true;
3296     this->Val = std::move(Val);
3297   }
3298 
3299   explicit MDFieldImpl(FieldTy Default)
3300       : Val(std::move(Default)), Seen(false) {}
3301 };
3302 
3303 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3304   uint64_t Max;
3305 
3306   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3307       : ImplTy(Default), Max(Max) {}
3308 };
3309 struct LineField : public MDUnsignedField {
3310   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3311 };
3312 struct ColumnField : public MDUnsignedField {
3313   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3314 };
3315 struct DwarfTagField : public MDUnsignedField {
3316   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3317   DwarfTagField(dwarf::Tag DefaultTag)
3318       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3319 };
3320 struct DwarfMacinfoTypeField : public MDUnsignedField {
3321   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3322   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3323     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3324 };
3325 struct DwarfAttEncodingField : public MDUnsignedField {
3326   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3327 };
3328 struct DwarfVirtualityField : public MDUnsignedField {
3329   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3330 };
3331 struct DwarfLangField : public MDUnsignedField {
3332   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3333 };
3334 struct EmissionKindField : public MDUnsignedField {
3335   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3336 };
3337 
3338 struct DIFlagField : public MDUnsignedField {
3339   DIFlagField() : MDUnsignedField(0, UINT32_MAX) {}
3340 };
3341 
3342 struct MDSignedField : public MDFieldImpl<int64_t> {
3343   int64_t Min;
3344   int64_t Max;
3345 
3346   MDSignedField(int64_t Default = 0)
3347       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3348   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3349       : ImplTy(Default), Min(Min), Max(Max) {}
3350 };
3351 
3352 struct MDBoolField : public MDFieldImpl<bool> {
3353   MDBoolField(bool Default = false) : ImplTy(Default) {}
3354 };
3355 struct MDField : public MDFieldImpl<Metadata *> {
3356   bool AllowNull;
3357 
3358   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3359 };
3360 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3361   MDConstant() : ImplTy(nullptr) {}
3362 };
3363 struct MDStringField : public MDFieldImpl<MDString *> {
3364   bool AllowEmpty;
3365   MDStringField(bool AllowEmpty = true)
3366       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3367 };
3368 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3369   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3370 };
3371 
3372 } // end namespace
3373 
3374 namespace llvm {
3375 
3376 template <>
3377 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3378                             MDUnsignedField &Result) {
3379   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3380     return TokError("expected unsigned integer");
3381 
3382   auto &U = Lex.getAPSIntVal();
3383   if (U.ugt(Result.Max))
3384     return TokError("value for '" + Name + "' too large, limit is " +
3385                     Twine(Result.Max));
3386   Result.assign(U.getZExtValue());
3387   assert(Result.Val <= Result.Max && "Expected value in range");
3388   Lex.Lex();
3389   return false;
3390 }
3391 
3392 template <>
3393 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3394   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3395 }
3396 template <>
3397 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3398   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3399 }
3400 
3401 template <>
3402 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3403   if (Lex.getKind() == lltok::APSInt)
3404     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3405 
3406   if (Lex.getKind() != lltok::DwarfTag)
3407     return TokError("expected DWARF tag");
3408 
3409   unsigned Tag = dwarf::getTag(Lex.getStrVal());
3410   if (Tag == dwarf::DW_TAG_invalid)
3411     return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3412   assert(Tag <= Result.Max && "Expected valid DWARF tag");
3413 
3414   Result.assign(Tag);
3415   Lex.Lex();
3416   return false;
3417 }
3418 
3419 template <>
3420 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3421                             DwarfMacinfoTypeField &Result) {
3422   if (Lex.getKind() == lltok::APSInt)
3423     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3424 
3425   if (Lex.getKind() != lltok::DwarfMacinfo)
3426     return TokError("expected DWARF macinfo type");
3427 
3428   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
3429   if (Macinfo == dwarf::DW_MACINFO_invalid)
3430     return TokError(
3431         "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
3432   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
3433 
3434   Result.assign(Macinfo);
3435   Lex.Lex();
3436   return false;
3437 }
3438 
3439 template <>
3440 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3441                             DwarfVirtualityField &Result) {
3442   if (Lex.getKind() == lltok::APSInt)
3443     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3444 
3445   if (Lex.getKind() != lltok::DwarfVirtuality)
3446     return TokError("expected DWARF virtuality code");
3447 
3448   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
3449   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
3450     return TokError("invalid DWARF virtuality code" + Twine(" '") +
3451                     Lex.getStrVal() + "'");
3452   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
3453   Result.assign(Virtuality);
3454   Lex.Lex();
3455   return false;
3456 }
3457 
3458 template <>
3459 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
3460   if (Lex.getKind() == lltok::APSInt)
3461     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3462 
3463   if (Lex.getKind() != lltok::DwarfLang)
3464     return TokError("expected DWARF language");
3465 
3466   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
3467   if (!Lang)
3468     return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
3469                     "'");
3470   assert(Lang <= Result.Max && "Expected valid DWARF language");
3471   Result.assign(Lang);
3472   Lex.Lex();
3473   return false;
3474 }
3475 
3476 template <>
3477 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
3478   if (Lex.getKind() == lltok::APSInt)
3479     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3480 
3481   if (Lex.getKind() != lltok::EmissionKind)
3482     return TokError("expected emission kind");
3483 
3484   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
3485   if (!Kind)
3486     return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
3487                     "'");
3488   assert(*Kind <= Result.Max && "Expected valid emission kind");
3489   Result.assign(*Kind);
3490   Lex.Lex();
3491   return false;
3492 }
3493 
3494 template <>
3495 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3496                             DwarfAttEncodingField &Result) {
3497   if (Lex.getKind() == lltok::APSInt)
3498     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3499 
3500   if (Lex.getKind() != lltok::DwarfAttEncoding)
3501     return TokError("expected DWARF type attribute encoding");
3502 
3503   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
3504   if (!Encoding)
3505     return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
3506                     Lex.getStrVal() + "'");
3507   assert(Encoding <= Result.Max && "Expected valid DWARF language");
3508   Result.assign(Encoding);
3509   Lex.Lex();
3510   return false;
3511 }
3512 
3513 /// DIFlagField
3514 ///  ::= uint32
3515 ///  ::= DIFlagVector
3516 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
3517 template <>
3518 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
3519   assert(Result.Max == UINT32_MAX && "Expected only 32-bits");
3520 
3521   // Parser for a single flag.
3522   auto parseFlag = [&](unsigned &Val) {
3523     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned())
3524       return ParseUInt32(Val);
3525 
3526     if (Lex.getKind() != lltok::DIFlag)
3527       return TokError("expected debug info flag");
3528 
3529     Val = DINode::getFlag(Lex.getStrVal());
3530     if (!Val)
3531       return TokError(Twine("invalid debug info flag flag '") +
3532                       Lex.getStrVal() + "'");
3533     Lex.Lex();
3534     return false;
3535   };
3536 
3537   // Parse the flags and combine them together.
3538   unsigned Combined = 0;
3539   do {
3540     unsigned Val;
3541     if (parseFlag(Val))
3542       return true;
3543     Combined |= Val;
3544   } while (EatIfPresent(lltok::bar));
3545 
3546   Result.assign(Combined);
3547   return false;
3548 }
3549 
3550 template <>
3551 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3552                             MDSignedField &Result) {
3553   if (Lex.getKind() != lltok::APSInt)
3554     return TokError("expected signed integer");
3555 
3556   auto &S = Lex.getAPSIntVal();
3557   if (S < Result.Min)
3558     return TokError("value for '" + Name + "' too small, limit is " +
3559                     Twine(Result.Min));
3560   if (S > Result.Max)
3561     return TokError("value for '" + Name + "' too large, limit is " +
3562                     Twine(Result.Max));
3563   Result.assign(S.getExtValue());
3564   assert(Result.Val >= Result.Min && "Expected value in range");
3565   assert(Result.Val <= Result.Max && "Expected value in range");
3566   Lex.Lex();
3567   return false;
3568 }
3569 
3570 template <>
3571 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
3572   switch (Lex.getKind()) {
3573   default:
3574     return TokError("expected 'true' or 'false'");
3575   case lltok::kw_true:
3576     Result.assign(true);
3577     break;
3578   case lltok::kw_false:
3579     Result.assign(false);
3580     break;
3581   }
3582   Lex.Lex();
3583   return false;
3584 }
3585 
3586 template <>
3587 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
3588   if (Lex.getKind() == lltok::kw_null) {
3589     if (!Result.AllowNull)
3590       return TokError("'" + Name + "' cannot be null");
3591     Lex.Lex();
3592     Result.assign(nullptr);
3593     return false;
3594   }
3595 
3596   Metadata *MD;
3597   if (ParseMetadata(MD, nullptr))
3598     return true;
3599 
3600   Result.assign(MD);
3601   return false;
3602 }
3603 
3604 template <>
3605 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDConstant &Result) {
3606   Metadata *MD;
3607   if (ParseValueAsMetadata(MD, "expected constant", nullptr))
3608     return true;
3609 
3610   Result.assign(cast<ConstantAsMetadata>(MD));
3611   return false;
3612 }
3613 
3614 template <>
3615 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
3616   LocTy ValueLoc = Lex.getLoc();
3617   std::string S;
3618   if (ParseStringConstant(S))
3619     return true;
3620 
3621   if (!Result.AllowEmpty && S.empty())
3622     return Error(ValueLoc, "'" + Name + "' cannot be empty");
3623 
3624   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
3625   return false;
3626 }
3627 
3628 template <>
3629 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
3630   SmallVector<Metadata *, 4> MDs;
3631   if (ParseMDNodeVector(MDs))
3632     return true;
3633 
3634   Result.assign(std::move(MDs));
3635   return false;
3636 }
3637 
3638 } // end namespace llvm
3639 
3640 template <class ParserTy>
3641 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
3642   do {
3643     if (Lex.getKind() != lltok::LabelStr)
3644       return TokError("expected field label here");
3645 
3646     if (parseField())
3647       return true;
3648   } while (EatIfPresent(lltok::comma));
3649 
3650   return false;
3651 }
3652 
3653 template <class ParserTy>
3654 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
3655   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
3656   Lex.Lex();
3657 
3658   if (ParseToken(lltok::lparen, "expected '(' here"))
3659     return true;
3660   if (Lex.getKind() != lltok::rparen)
3661     if (ParseMDFieldsImplBody(parseField))
3662       return true;
3663 
3664   ClosingLoc = Lex.getLoc();
3665   return ParseToken(lltok::rparen, "expected ')' here");
3666 }
3667 
3668 template <class FieldTy>
3669 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
3670   if (Result.Seen)
3671     return TokError("field '" + Name + "' cannot be specified more than once");
3672 
3673   LocTy Loc = Lex.getLoc();
3674   Lex.Lex();
3675   return ParseMDField(Loc, Name, Result);
3676 }
3677 
3678 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
3679   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
3680 
3681 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
3682   if (Lex.getStrVal() == #CLASS)                                               \
3683     return Parse##CLASS(N, IsDistinct);
3684 #include "llvm/IR/Metadata.def"
3685 
3686   return TokError("expected metadata type");
3687 }
3688 
3689 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
3690 #define NOP_FIELD(NAME, TYPE, INIT)
3691 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
3692   if (!NAME.Seen)                                                              \
3693     return Error(ClosingLoc, "missing required field '" #NAME "'");
3694 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
3695   if (Lex.getStrVal() == #NAME)                                                \
3696     return ParseMDField(#NAME, NAME);
3697 #define PARSE_MD_FIELDS()                                                      \
3698   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
3699   do {                                                                         \
3700     LocTy ClosingLoc;                                                          \
3701     if (ParseMDFieldsImpl([&]() -> bool {                                      \
3702       VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                          \
3703       return TokError(Twine("invalid field '") + Lex.getStrVal() + "'");       \
3704     }, ClosingLoc))                                                            \
3705       return true;                                                             \
3706     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
3707   } while (false)
3708 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
3709   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
3710 
3711 /// ParseDILocationFields:
3712 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6)
3713 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
3714 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3715   OPTIONAL(line, LineField, );                                                 \
3716   OPTIONAL(column, ColumnField, );                                             \
3717   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
3718   OPTIONAL(inlinedAt, MDField, );
3719   PARSE_MD_FIELDS();
3720 #undef VISIT_MD_FIELDS
3721 
3722   Result = GET_OR_DISTINCT(
3723       DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val));
3724   return false;
3725 }
3726 
3727 /// ParseGenericDINode:
3728 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
3729 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
3730 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3731   REQUIRED(tag, DwarfTagField, );                                              \
3732   OPTIONAL(header, MDStringField, );                                           \
3733   OPTIONAL(operands, MDFieldList, );
3734   PARSE_MD_FIELDS();
3735 #undef VISIT_MD_FIELDS
3736 
3737   Result = GET_OR_DISTINCT(GenericDINode,
3738                            (Context, tag.Val, header.Val, operands.Val));
3739   return false;
3740 }
3741 
3742 /// ParseDISubrange:
3743 ///   ::= !DISubrange(count: 30, lowerBound: 2)
3744 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
3745 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3746   REQUIRED(count, MDSignedField, (-1, -1, INT64_MAX));                         \
3747   OPTIONAL(lowerBound, MDSignedField, );
3748   PARSE_MD_FIELDS();
3749 #undef VISIT_MD_FIELDS
3750 
3751   Result = GET_OR_DISTINCT(DISubrange, (Context, count.Val, lowerBound.Val));
3752   return false;
3753 }
3754 
3755 /// ParseDIEnumerator:
3756 ///   ::= !DIEnumerator(value: 30, name: "SomeKind")
3757 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
3758 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3759   REQUIRED(name, MDStringField, );                                             \
3760   REQUIRED(value, MDSignedField, );
3761   PARSE_MD_FIELDS();
3762 #undef VISIT_MD_FIELDS
3763 
3764   Result = GET_OR_DISTINCT(DIEnumerator, (Context, value.Val, name.Val));
3765   return false;
3766 }
3767 
3768 /// ParseDIBasicType:
3769 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32)
3770 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
3771 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3772   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
3773   OPTIONAL(name, MDStringField, );                                             \
3774   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
3775   OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX));                           \
3776   OPTIONAL(encoding, DwarfAttEncodingField, );
3777   PARSE_MD_FIELDS();
3778 #undef VISIT_MD_FIELDS
3779 
3780   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
3781                                          align.Val, encoding.Val));
3782   return false;
3783 }
3784 
3785 /// ParseDIDerivedType:
3786 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
3787 ///                      line: 7, scope: !1, baseType: !2, size: 32,
3788 ///                      align: 32, offset: 0, flags: 0, extraData: !3)
3789 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
3790 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3791   REQUIRED(tag, DwarfTagField, );                                              \
3792   OPTIONAL(name, MDStringField, );                                             \
3793   OPTIONAL(file, MDField, );                                                   \
3794   OPTIONAL(line, LineField, );                                                 \
3795   OPTIONAL(scope, MDField, );                                                  \
3796   REQUIRED(baseType, MDField, );                                               \
3797   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
3798   OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX));                           \
3799   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
3800   OPTIONAL(flags, DIFlagField, );                                              \
3801   OPTIONAL(extraData, MDField, );
3802   PARSE_MD_FIELDS();
3803 #undef VISIT_MD_FIELDS
3804 
3805   Result = GET_OR_DISTINCT(DIDerivedType,
3806                            (Context, tag.Val, name.Val, file.Val, line.Val,
3807                             scope.Val, baseType.Val, size.Val, align.Val,
3808                             offset.Val, flags.Val, extraData.Val));
3809   return false;
3810 }
3811 
3812 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
3813 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3814   REQUIRED(tag, DwarfTagField, );                                              \
3815   OPTIONAL(name, MDStringField, );                                             \
3816   OPTIONAL(file, MDField, );                                                   \
3817   OPTIONAL(line, LineField, );                                                 \
3818   OPTIONAL(scope, MDField, );                                                  \
3819   OPTIONAL(baseType, MDField, );                                               \
3820   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
3821   OPTIONAL(align, MDUnsignedField, (0, UINT64_MAX));                           \
3822   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
3823   OPTIONAL(flags, DIFlagField, );                                              \
3824   OPTIONAL(elements, MDField, );                                               \
3825   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
3826   OPTIONAL(vtableHolder, MDField, );                                           \
3827   OPTIONAL(templateParams, MDField, );                                         \
3828   OPTIONAL(identifier, MDStringField, );
3829   PARSE_MD_FIELDS();
3830 #undef VISIT_MD_FIELDS
3831 
3832   // If this has an identifier try to build an ODR type.
3833   if (identifier.Val)
3834     if (auto *CT = DICompositeType::buildODRType(
3835             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
3836             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
3837             elements.Val, runtimeLang.Val, vtableHolder.Val,
3838             templateParams.Val)) {
3839       Result = CT;
3840       return false;
3841     }
3842 
3843   // Create a new node, and save it in the context if it belongs in the type
3844   // map.
3845   Result = GET_OR_DISTINCT(
3846       DICompositeType,
3847       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
3848        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
3849        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val));
3850   return false;
3851 }
3852 
3853 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
3854 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3855   OPTIONAL(flags, DIFlagField, );                                              \
3856   REQUIRED(types, MDField, );
3857   PARSE_MD_FIELDS();
3858 #undef VISIT_MD_FIELDS
3859 
3860   Result = GET_OR_DISTINCT(DISubroutineType, (Context, flags.Val, types.Val));
3861   return false;
3862 }
3863 
3864 /// ParseDIFileType:
3865 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir")
3866 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
3867 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3868   REQUIRED(filename, MDStringField, );                                         \
3869   REQUIRED(directory, MDStringField, );
3870   PARSE_MD_FIELDS();
3871 #undef VISIT_MD_FIELDS
3872 
3873   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val));
3874   return false;
3875 }
3876 
3877 /// ParseDICompileUnit:
3878 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
3879 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
3880 ///                      splitDebugFilename: "abc.debug",
3881 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
3882 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd)
3883 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
3884   if (!IsDistinct)
3885     return Lex.Error("missing 'distinct', required for !DICompileUnit");
3886 
3887 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3888   REQUIRED(language, DwarfLangField, );                                        \
3889   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
3890   OPTIONAL(producer, MDStringField, );                                         \
3891   OPTIONAL(isOptimized, MDBoolField, );                                        \
3892   OPTIONAL(flags, MDStringField, );                                            \
3893   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
3894   OPTIONAL(splitDebugFilename, MDStringField, );                               \
3895   OPTIONAL(emissionKind, EmissionKindField, );                                 \
3896   OPTIONAL(enums, MDField, );                                                  \
3897   OPTIONAL(retainedTypes, MDField, );                                          \
3898   OPTIONAL(globals, MDField, );                                                \
3899   OPTIONAL(imports, MDField, );                                                \
3900   OPTIONAL(macros, MDField, );                                                 \
3901   OPTIONAL(dwoId, MDUnsignedField, );
3902   PARSE_MD_FIELDS();
3903 #undef VISIT_MD_FIELDS
3904 
3905   Result = DICompileUnit::getDistinct(
3906       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
3907       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
3908       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val);
3909   return false;
3910 }
3911 
3912 /// ParseDISubprogram:
3913 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
3914 ///                     file: !1, line: 7, type: !2, isLocal: false,
3915 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
3916 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
3917 ///                     virtualIndex: 10, flags: 11,
3918 ///                     isOptimized: false, templateParams: !4, declaration: !5,
3919 ///                     variables: !6)
3920 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
3921   auto Loc = Lex.getLoc();
3922 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3923   OPTIONAL(scope, MDField, );                                                  \
3924   OPTIONAL(name, MDStringField, );                                             \
3925   OPTIONAL(linkageName, MDStringField, );                                      \
3926   OPTIONAL(file, MDField, );                                                   \
3927   OPTIONAL(line, LineField, );                                                 \
3928   OPTIONAL(type, MDField, );                                                   \
3929   OPTIONAL(isLocal, MDBoolField, );                                            \
3930   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
3931   OPTIONAL(scopeLine, LineField, );                                            \
3932   OPTIONAL(containingType, MDField, );                                         \
3933   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
3934   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
3935   OPTIONAL(flags, DIFlagField, );                                              \
3936   OPTIONAL(isOptimized, MDBoolField, );                                        \
3937   OPTIONAL(unit, MDField, );                                                   \
3938   OPTIONAL(templateParams, MDField, );                                         \
3939   OPTIONAL(declaration, MDField, );                                            \
3940   OPTIONAL(variables, MDField, );
3941   PARSE_MD_FIELDS();
3942 #undef VISIT_MD_FIELDS
3943 
3944   if (isDefinition.Val && !IsDistinct)
3945     return Lex.Error(
3946         Loc,
3947         "missing 'distinct', required for !DISubprogram when 'isDefinition'");
3948 
3949   Result = GET_OR_DISTINCT(
3950       DISubprogram, (Context, scope.Val, name.Val, linkageName.Val, file.Val,
3951                      line.Val, type.Val, isLocal.Val, isDefinition.Val,
3952                      scopeLine.Val, containingType.Val, virtuality.Val,
3953                      virtualIndex.Val, flags.Val, isOptimized.Val, unit.Val,
3954                      templateParams.Val, declaration.Val, variables.Val));
3955   return false;
3956 }
3957 
3958 /// ParseDILexicalBlock:
3959 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
3960 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
3961 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3962   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
3963   OPTIONAL(file, MDField, );                                                   \
3964   OPTIONAL(line, LineField, );                                                 \
3965   OPTIONAL(column, ColumnField, );
3966   PARSE_MD_FIELDS();
3967 #undef VISIT_MD_FIELDS
3968 
3969   Result = GET_OR_DISTINCT(
3970       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
3971   return false;
3972 }
3973 
3974 /// ParseDILexicalBlockFile:
3975 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
3976 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
3977 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3978   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
3979   OPTIONAL(file, MDField, );                                                   \
3980   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
3981   PARSE_MD_FIELDS();
3982 #undef VISIT_MD_FIELDS
3983 
3984   Result = GET_OR_DISTINCT(DILexicalBlockFile,
3985                            (Context, scope.Val, file.Val, discriminator.Val));
3986   return false;
3987 }
3988 
3989 /// ParseDINamespace:
3990 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
3991 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
3992 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3993   REQUIRED(scope, MDField, );                                                  \
3994   OPTIONAL(file, MDField, );                                                   \
3995   OPTIONAL(name, MDStringField, );                                             \
3996   OPTIONAL(line, LineField, );
3997   PARSE_MD_FIELDS();
3998 #undef VISIT_MD_FIELDS
3999 
4000   Result = GET_OR_DISTINCT(DINamespace,
4001                            (Context, scope.Val, file.Val, name.Val, line.Val));
4002   return false;
4003 }
4004 
4005 /// ParseDIMacro:
4006 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
4007 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
4008 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4009   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
4010   REQUIRED(line, LineField, );                                                 \
4011   REQUIRED(name, MDStringField, );                                             \
4012   OPTIONAL(value, MDStringField, );
4013   PARSE_MD_FIELDS();
4014 #undef VISIT_MD_FIELDS
4015 
4016   Result = GET_OR_DISTINCT(DIMacro,
4017                            (Context, type.Val, line.Val, name.Val, value.Val));
4018   return false;
4019 }
4020 
4021 /// ParseDIMacroFile:
4022 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4023 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4024 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4025   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
4026   REQUIRED(line, LineField, );                                                 \
4027   REQUIRED(file, MDField, );                                                   \
4028   OPTIONAL(nodes, MDField, );
4029   PARSE_MD_FIELDS();
4030 #undef VISIT_MD_FIELDS
4031 
4032   Result = GET_OR_DISTINCT(DIMacroFile,
4033                            (Context, type.Val, line.Val, file.Val, nodes.Val));
4034   return false;
4035 }
4036 
4037 
4038 /// ParseDIModule:
4039 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
4040 ///                 includePath: "/usr/include", isysroot: "/")
4041 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4042 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4043   REQUIRED(scope, MDField, );                                                  \
4044   REQUIRED(name, MDStringField, );                                             \
4045   OPTIONAL(configMacros, MDStringField, );                                     \
4046   OPTIONAL(includePath, MDStringField, );                                      \
4047   OPTIONAL(isysroot, MDStringField, );
4048   PARSE_MD_FIELDS();
4049 #undef VISIT_MD_FIELDS
4050 
4051   Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val,
4052                            configMacros.Val, includePath.Val, isysroot.Val));
4053   return false;
4054 }
4055 
4056 /// ParseDITemplateTypeParameter:
4057 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1)
4058 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4059 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4060   OPTIONAL(name, MDStringField, );                                             \
4061   REQUIRED(type, MDField, );
4062   PARSE_MD_FIELDS();
4063 #undef VISIT_MD_FIELDS
4064 
4065   Result =
4066       GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val));
4067   return false;
4068 }
4069 
4070 /// ParseDITemplateValueParameter:
4071 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4072 ///                                 name: "V", type: !1, value: i32 7)
4073 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4074 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4075   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
4076   OPTIONAL(name, MDStringField, );                                             \
4077   OPTIONAL(type, MDField, );                                                   \
4078   REQUIRED(value, MDField, );
4079   PARSE_MD_FIELDS();
4080 #undef VISIT_MD_FIELDS
4081 
4082   Result = GET_OR_DISTINCT(DITemplateValueParameter,
4083                            (Context, tag.Val, name.Val, type.Val, value.Val));
4084   return false;
4085 }
4086 
4087 /// ParseDIGlobalVariable:
4088 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4089 ///                         file: !1, line: 7, type: !2, isLocal: false,
4090 ///                         isDefinition: true, variable: i32* @foo,
4091 ///                         declaration: !3)
4092 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4093 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4094   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
4095   OPTIONAL(scope, MDField, );                                                  \
4096   OPTIONAL(linkageName, MDStringField, );                                      \
4097   OPTIONAL(file, MDField, );                                                   \
4098   OPTIONAL(line, LineField, );                                                 \
4099   OPTIONAL(type, MDField, );                                                   \
4100   OPTIONAL(isLocal, MDBoolField, );                                            \
4101   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4102   OPTIONAL(variable, MDConstant, );                                            \
4103   OPTIONAL(declaration, MDField, );
4104   PARSE_MD_FIELDS();
4105 #undef VISIT_MD_FIELDS
4106 
4107   Result = GET_OR_DISTINCT(DIGlobalVariable,
4108                            (Context, scope.Val, name.Val, linkageName.Val,
4109                             file.Val, line.Val, type.Val, isLocal.Val,
4110                             isDefinition.Val, variable.Val, declaration.Val));
4111   return false;
4112 }
4113 
4114 /// ParseDILocalVariable:
4115 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4116 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7)
4117 ///   ::= !DILocalVariable(scope: !0, name: "foo",
4118 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7)
4119 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4120 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4121   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4122   OPTIONAL(name, MDStringField, );                                             \
4123   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
4124   OPTIONAL(file, MDField, );                                                   \
4125   OPTIONAL(line, LineField, );                                                 \
4126   OPTIONAL(type, MDField, );                                                   \
4127   OPTIONAL(flags, DIFlagField, );
4128   PARSE_MD_FIELDS();
4129 #undef VISIT_MD_FIELDS
4130 
4131   Result = GET_OR_DISTINCT(DILocalVariable,
4132                            (Context, scope.Val, name.Val, file.Val, line.Val,
4133                             type.Val, arg.Val, flags.Val));
4134   return false;
4135 }
4136 
4137 /// ParseDIExpression:
4138 ///   ::= !DIExpression(0, 7, -1)
4139 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
4140   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4141   Lex.Lex();
4142 
4143   if (ParseToken(lltok::lparen, "expected '(' here"))
4144     return true;
4145 
4146   SmallVector<uint64_t, 8> Elements;
4147   if (Lex.getKind() != lltok::rparen)
4148     do {
4149       if (Lex.getKind() == lltok::DwarfOp) {
4150         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
4151           Lex.Lex();
4152           Elements.push_back(Op);
4153           continue;
4154         }
4155         return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
4156       }
4157 
4158       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4159         return TokError("expected unsigned integer");
4160 
4161       auto &U = Lex.getAPSIntVal();
4162       if (U.ugt(UINT64_MAX))
4163         return TokError("element too large, limit is " + Twine(UINT64_MAX));
4164       Elements.push_back(U.getZExtValue());
4165       Lex.Lex();
4166     } while (EatIfPresent(lltok::comma));
4167 
4168   if (ParseToken(lltok::rparen, "expected ')' here"))
4169     return true;
4170 
4171   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
4172   return false;
4173 }
4174 
4175 /// ParseDIObjCProperty:
4176 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
4177 ///                       getter: "getFoo", attributes: 7, type: !2)
4178 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
4179 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4180   OPTIONAL(name, MDStringField, );                                             \
4181   OPTIONAL(file, MDField, );                                                   \
4182   OPTIONAL(line, LineField, );                                                 \
4183   OPTIONAL(setter, MDStringField, );                                           \
4184   OPTIONAL(getter, MDStringField, );                                           \
4185   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
4186   OPTIONAL(type, MDField, );
4187   PARSE_MD_FIELDS();
4188 #undef VISIT_MD_FIELDS
4189 
4190   Result = GET_OR_DISTINCT(DIObjCProperty,
4191                            (Context, name.Val, file.Val, line.Val, setter.Val,
4192                             getter.Val, attributes.Val, type.Val));
4193   return false;
4194 }
4195 
4196 /// ParseDIImportedEntity:
4197 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
4198 ///                         line: 7, name: "foo")
4199 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
4200 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4201   REQUIRED(tag, DwarfTagField, );                                              \
4202   REQUIRED(scope, MDField, );                                                  \
4203   OPTIONAL(entity, MDField, );                                                 \
4204   OPTIONAL(line, LineField, );                                                 \
4205   OPTIONAL(name, MDStringField, );
4206   PARSE_MD_FIELDS();
4207 #undef VISIT_MD_FIELDS
4208 
4209   Result = GET_OR_DISTINCT(DIImportedEntity, (Context, tag.Val, scope.Val,
4210                                               entity.Val, line.Val, name.Val));
4211   return false;
4212 }
4213 
4214 #undef PARSE_MD_FIELD
4215 #undef NOP_FIELD
4216 #undef REQUIRE_FIELD
4217 #undef DECLARE_FIELD
4218 
4219 /// ParseMetadataAsValue
4220 ///  ::= metadata i32 %local
4221 ///  ::= metadata i32 @global
4222 ///  ::= metadata i32 7
4223 ///  ::= metadata !0
4224 ///  ::= metadata !{...}
4225 ///  ::= metadata !"string"
4226 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
4227   // Note: the type 'metadata' has already been parsed.
4228   Metadata *MD;
4229   if (ParseMetadata(MD, &PFS))
4230     return true;
4231 
4232   V = MetadataAsValue::get(Context, MD);
4233   return false;
4234 }
4235 
4236 /// ParseValueAsMetadata
4237 ///  ::= i32 %local
4238 ///  ::= i32 @global
4239 ///  ::= i32 7
4240 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
4241                                     PerFunctionState *PFS) {
4242   Type *Ty;
4243   LocTy Loc;
4244   if (ParseType(Ty, TypeMsg, Loc))
4245     return true;
4246   if (Ty->isMetadataTy())
4247     return Error(Loc, "invalid metadata-value-metadata roundtrip");
4248 
4249   Value *V;
4250   if (ParseValue(Ty, V, PFS))
4251     return true;
4252 
4253   MD = ValueAsMetadata::get(V);
4254   return false;
4255 }
4256 
4257 /// ParseMetadata
4258 ///  ::= i32 %local
4259 ///  ::= i32 @global
4260 ///  ::= i32 7
4261 ///  ::= !42
4262 ///  ::= !{...}
4263 ///  ::= !"string"
4264 ///  ::= !DILocation(...)
4265 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
4266   if (Lex.getKind() == lltok::MetadataVar) {
4267     MDNode *N;
4268     if (ParseSpecializedMDNode(N))
4269       return true;
4270     MD = N;
4271     return false;
4272   }
4273 
4274   // ValueAsMetadata:
4275   // <type> <value>
4276   if (Lex.getKind() != lltok::exclaim)
4277     return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
4278 
4279   // '!'.
4280   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
4281   Lex.Lex();
4282 
4283   // MDString:
4284   //   ::= '!' STRINGCONSTANT
4285   if (Lex.getKind() == lltok::StringConstant) {
4286     MDString *S;
4287     if (ParseMDString(S))
4288       return true;
4289     MD = S;
4290     return false;
4291   }
4292 
4293   // MDNode:
4294   // !{ ... }
4295   // !7
4296   MDNode *N;
4297   if (ParseMDNodeTail(N))
4298     return true;
4299   MD = N;
4300   return false;
4301 }
4302 
4303 
4304 //===----------------------------------------------------------------------===//
4305 // Function Parsing.
4306 //===----------------------------------------------------------------------===//
4307 
4308 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
4309                                    PerFunctionState *PFS) {
4310   if (Ty->isFunctionTy())
4311     return Error(ID.Loc, "functions are not values, refer to them as pointers");
4312 
4313   switch (ID.Kind) {
4314   case ValID::t_LocalID:
4315     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
4316     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
4317     return V == nullptr;
4318   case ValID::t_LocalName:
4319     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
4320     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
4321     return V == nullptr;
4322   case ValID::t_InlineAsm: {
4323     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
4324       return Error(ID.Loc, "invalid type for inline asm constraint string");
4325     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
4326                        (ID.UIntVal >> 1) & 1,
4327                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
4328     return false;
4329   }
4330   case ValID::t_GlobalName:
4331     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
4332     return V == nullptr;
4333   case ValID::t_GlobalID:
4334     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
4335     return V == nullptr;
4336   case ValID::t_APSInt:
4337     if (!Ty->isIntegerTy())
4338       return Error(ID.Loc, "integer constant must have integer type");
4339     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
4340     V = ConstantInt::get(Context, ID.APSIntVal);
4341     return false;
4342   case ValID::t_APFloat:
4343     if (!Ty->isFloatingPointTy() ||
4344         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
4345       return Error(ID.Loc, "floating point constant invalid for type");
4346 
4347     // The lexer has no type info, so builds all half, float, and double FP
4348     // constants as double.  Fix this here.  Long double does not need this.
4349     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) {
4350       bool Ignored;
4351       if (Ty->isHalfTy())
4352         ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven,
4353                               &Ignored);
4354       else if (Ty->isFloatTy())
4355         ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven,
4356                               &Ignored);
4357     }
4358     V = ConstantFP::get(Context, ID.APFloatVal);
4359 
4360     if (V->getType() != Ty)
4361       return Error(ID.Loc, "floating point constant does not have type '" +
4362                    getTypeString(Ty) + "'");
4363 
4364     return false;
4365   case ValID::t_Null:
4366     if (!Ty->isPointerTy())
4367       return Error(ID.Loc, "null must be a pointer type");
4368     V = ConstantPointerNull::get(cast<PointerType>(Ty));
4369     return false;
4370   case ValID::t_Undef:
4371     // FIXME: LabelTy should not be a first-class type.
4372     if (!Ty->isFirstClassType() || Ty->isLabelTy())
4373       return Error(ID.Loc, "invalid type for undef constant");
4374     V = UndefValue::get(Ty);
4375     return false;
4376   case ValID::t_EmptyArray:
4377     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
4378       return Error(ID.Loc, "invalid empty array initializer");
4379     V = UndefValue::get(Ty);
4380     return false;
4381   case ValID::t_Zero:
4382     // FIXME: LabelTy should not be a first-class type.
4383     if (!Ty->isFirstClassType() || Ty->isLabelTy())
4384       return Error(ID.Loc, "invalid type for null constant");
4385     V = Constant::getNullValue(Ty);
4386     return false;
4387   case ValID::t_None:
4388     if (!Ty->isTokenTy())
4389       return Error(ID.Loc, "invalid type for none constant");
4390     V = Constant::getNullValue(Ty);
4391     return false;
4392   case ValID::t_Constant:
4393     if (ID.ConstantVal->getType() != Ty)
4394       return Error(ID.Loc, "constant expression type mismatch");
4395 
4396     V = ID.ConstantVal;
4397     return false;
4398   case ValID::t_ConstantStruct:
4399   case ValID::t_PackedConstantStruct:
4400     if (StructType *ST = dyn_cast<StructType>(Ty)) {
4401       if (ST->getNumElements() != ID.UIntVal)
4402         return Error(ID.Loc,
4403                      "initializer with struct type has wrong # elements");
4404       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
4405         return Error(ID.Loc, "packed'ness of initializer and type don't match");
4406 
4407       // Verify that the elements are compatible with the structtype.
4408       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
4409         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
4410           return Error(ID.Loc, "element " + Twine(i) +
4411                     " of struct initializer doesn't match struct element type");
4412 
4413       V = ConstantStruct::get(
4414           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
4415     } else
4416       return Error(ID.Loc, "constant expression type mismatch");
4417     return false;
4418   }
4419   llvm_unreachable("Invalid ValID");
4420 }
4421 
4422 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
4423   C = nullptr;
4424   ValID ID;
4425   auto Loc = Lex.getLoc();
4426   if (ParseValID(ID, /*PFS=*/nullptr))
4427     return true;
4428   switch (ID.Kind) {
4429   case ValID::t_APSInt:
4430   case ValID::t_APFloat:
4431   case ValID::t_Undef:
4432   case ValID::t_Constant:
4433   case ValID::t_ConstantStruct:
4434   case ValID::t_PackedConstantStruct: {
4435     Value *V;
4436     if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr))
4437       return true;
4438     assert(isa<Constant>(V) && "Expected a constant value");
4439     C = cast<Constant>(V);
4440     return false;
4441   }
4442   default:
4443     return Error(Loc, "expected a constant value");
4444   }
4445 }
4446 
4447 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
4448   V = nullptr;
4449   ValID ID;
4450   return ParseValID(ID, PFS) || ConvertValIDToValue(Ty, ID, V, PFS);
4451 }
4452 
4453 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
4454   Type *Ty = nullptr;
4455   return ParseType(Ty) ||
4456          ParseValue(Ty, V, PFS);
4457 }
4458 
4459 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
4460                                       PerFunctionState &PFS) {
4461   Value *V;
4462   Loc = Lex.getLoc();
4463   if (ParseTypeAndValue(V, PFS)) return true;
4464   if (!isa<BasicBlock>(V))
4465     return Error(Loc, "expected a basic block");
4466   BB = cast<BasicBlock>(V);
4467   return false;
4468 }
4469 
4470 
4471 /// FunctionHeader
4472 ///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
4473 ///       OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
4474 ///       OptionalAlign OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
4475 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
4476   // Parse the linkage.
4477   LocTy LinkageLoc = Lex.getLoc();
4478   unsigned Linkage;
4479 
4480   unsigned Visibility;
4481   unsigned DLLStorageClass;
4482   AttrBuilder RetAttrs;
4483   unsigned CC;
4484   bool HasLinkage;
4485   Type *RetType = nullptr;
4486   LocTy RetTypeLoc = Lex.getLoc();
4487   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) ||
4488       ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
4489       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
4490     return true;
4491 
4492   // Verify that the linkage is ok.
4493   switch ((GlobalValue::LinkageTypes)Linkage) {
4494   case GlobalValue::ExternalLinkage:
4495     break; // always ok.
4496   case GlobalValue::ExternalWeakLinkage:
4497     if (isDefine)
4498       return Error(LinkageLoc, "invalid linkage for function definition");
4499     break;
4500   case GlobalValue::PrivateLinkage:
4501   case GlobalValue::InternalLinkage:
4502   case GlobalValue::AvailableExternallyLinkage:
4503   case GlobalValue::LinkOnceAnyLinkage:
4504   case GlobalValue::LinkOnceODRLinkage:
4505   case GlobalValue::WeakAnyLinkage:
4506   case GlobalValue::WeakODRLinkage:
4507     if (!isDefine)
4508       return Error(LinkageLoc, "invalid linkage for function declaration");
4509     break;
4510   case GlobalValue::AppendingLinkage:
4511   case GlobalValue::CommonLinkage:
4512     return Error(LinkageLoc, "invalid function linkage type");
4513   }
4514 
4515   if (!isValidVisibilityForLinkage(Visibility, Linkage))
4516     return Error(LinkageLoc,
4517                  "symbol with local linkage must have default visibility");
4518 
4519   if (!FunctionType::isValidReturnType(RetType))
4520     return Error(RetTypeLoc, "invalid function return type");
4521 
4522   LocTy NameLoc = Lex.getLoc();
4523 
4524   std::string FunctionName;
4525   if (Lex.getKind() == lltok::GlobalVar) {
4526     FunctionName = Lex.getStrVal();
4527   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
4528     unsigned NameID = Lex.getUIntVal();
4529 
4530     if (NameID != NumberedVals.size())
4531       return TokError("function expected to be numbered '%" +
4532                       Twine(NumberedVals.size()) + "'");
4533   } else {
4534     return TokError("expected function name");
4535   }
4536 
4537   Lex.Lex();
4538 
4539   if (Lex.getKind() != lltok::lparen)
4540     return TokError("expected '(' in function argument list");
4541 
4542   SmallVector<ArgInfo, 8> ArgList;
4543   bool isVarArg;
4544   AttrBuilder FuncAttrs;
4545   std::vector<unsigned> FwdRefAttrGrps;
4546   LocTy BuiltinLoc;
4547   std::string Section;
4548   unsigned Alignment;
4549   std::string GC;
4550   bool UnnamedAddr;
4551   LocTy UnnamedAddrLoc;
4552   Constant *Prefix = nullptr;
4553   Constant *Prologue = nullptr;
4554   Constant *PersonalityFn = nullptr;
4555   Comdat *C;
4556 
4557   if (ParseArgumentList(ArgList, isVarArg) ||
4558       ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr,
4559                          &UnnamedAddrLoc) ||
4560       ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
4561                                  BuiltinLoc) ||
4562       (EatIfPresent(lltok::kw_section) &&
4563        ParseStringConstant(Section)) ||
4564       parseOptionalComdat(FunctionName, C) ||
4565       ParseOptionalAlignment(Alignment) ||
4566       (EatIfPresent(lltok::kw_gc) &&
4567        ParseStringConstant(GC)) ||
4568       (EatIfPresent(lltok::kw_prefix) &&
4569        ParseGlobalTypeAndValue(Prefix)) ||
4570       (EatIfPresent(lltok::kw_prologue) &&
4571        ParseGlobalTypeAndValue(Prologue)) ||
4572       (EatIfPresent(lltok::kw_personality) &&
4573        ParseGlobalTypeAndValue(PersonalityFn)))
4574     return true;
4575 
4576   if (FuncAttrs.contains(Attribute::Builtin))
4577     return Error(BuiltinLoc, "'builtin' attribute not valid on function");
4578 
4579   // If the alignment was parsed as an attribute, move to the alignment field.
4580   if (FuncAttrs.hasAlignmentAttr()) {
4581     Alignment = FuncAttrs.getAlignment();
4582     FuncAttrs.removeAttribute(Attribute::Alignment);
4583   }
4584 
4585   // Okay, if we got here, the function is syntactically valid.  Convert types
4586   // and do semantic checks.
4587   std::vector<Type*> ParamTypeList;
4588   SmallVector<AttributeSet, 8> Attrs;
4589 
4590   if (RetAttrs.hasAttributes())
4591     Attrs.push_back(AttributeSet::get(RetType->getContext(),
4592                                       AttributeSet::ReturnIndex,
4593                                       RetAttrs));
4594 
4595   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
4596     ParamTypeList.push_back(ArgList[i].Ty);
4597     if (ArgList[i].Attrs.hasAttributes(i + 1)) {
4598       AttrBuilder B(ArgList[i].Attrs, i + 1);
4599       Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
4600     }
4601   }
4602 
4603   if (FuncAttrs.hasAttributes())
4604     Attrs.push_back(AttributeSet::get(RetType->getContext(),
4605                                       AttributeSet::FunctionIndex,
4606                                       FuncAttrs));
4607 
4608   AttributeSet PAL = AttributeSet::get(Context, Attrs);
4609 
4610   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
4611     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
4612 
4613   FunctionType *FT =
4614     FunctionType::get(RetType, ParamTypeList, isVarArg);
4615   PointerType *PFT = PointerType::getUnqual(FT);
4616 
4617   Fn = nullptr;
4618   if (!FunctionName.empty()) {
4619     // If this was a definition of a forward reference, remove the definition
4620     // from the forward reference table and fill in the forward ref.
4621     auto FRVI = ForwardRefVals.find(FunctionName);
4622     if (FRVI != ForwardRefVals.end()) {
4623       Fn = M->getFunction(FunctionName);
4624       if (!Fn)
4625         return Error(FRVI->second.second, "invalid forward reference to "
4626                      "function as global value!");
4627       if (Fn->getType() != PFT)
4628         return Error(FRVI->second.second, "invalid forward reference to "
4629                      "function '" + FunctionName + "' with wrong type!");
4630 
4631       ForwardRefVals.erase(FRVI);
4632     } else if ((Fn = M->getFunction(FunctionName))) {
4633       // Reject redefinitions.
4634       return Error(NameLoc, "invalid redefinition of function '" +
4635                    FunctionName + "'");
4636     } else if (M->getNamedValue(FunctionName)) {
4637       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
4638     }
4639 
4640   } else {
4641     // If this is a definition of a forward referenced function, make sure the
4642     // types agree.
4643     auto I = ForwardRefValIDs.find(NumberedVals.size());
4644     if (I != ForwardRefValIDs.end()) {
4645       Fn = cast<Function>(I->second.first);
4646       if (Fn->getType() != PFT)
4647         return Error(NameLoc, "type of definition and forward reference of '@" +
4648                      Twine(NumberedVals.size()) + "' disagree");
4649       ForwardRefValIDs.erase(I);
4650     }
4651   }
4652 
4653   if (!Fn)
4654     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
4655   else // Move the forward-reference to the correct spot in the module.
4656     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
4657 
4658   if (FunctionName.empty())
4659     NumberedVals.push_back(Fn);
4660 
4661   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
4662   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
4663   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
4664   Fn->setCallingConv(CC);
4665   Fn->setAttributes(PAL);
4666   Fn->setUnnamedAddr(UnnamedAddr);
4667   Fn->setAlignment(Alignment);
4668   Fn->setSection(Section);
4669   Fn->setComdat(C);
4670   Fn->setPersonalityFn(PersonalityFn);
4671   if (!GC.empty()) Fn->setGC(GC);
4672   Fn->setPrefixData(Prefix);
4673   Fn->setPrologueData(Prologue);
4674   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
4675 
4676   // Add all of the arguments we parsed to the function.
4677   Function::arg_iterator ArgIt = Fn->arg_begin();
4678   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
4679     // If the argument has a name, insert it into the argument symbol table.
4680     if (ArgList[i].Name.empty()) continue;
4681 
4682     // Set the name, if it conflicted, it will be auto-renamed.
4683     ArgIt->setName(ArgList[i].Name);
4684 
4685     if (ArgIt->getName() != ArgList[i].Name)
4686       return Error(ArgList[i].Loc, "redefinition of argument '%" +
4687                    ArgList[i].Name + "'");
4688   }
4689 
4690   if (isDefine)
4691     return false;
4692 
4693   // Check the declaration has no block address forward references.
4694   ValID ID;
4695   if (FunctionName.empty()) {
4696     ID.Kind = ValID::t_GlobalID;
4697     ID.UIntVal = NumberedVals.size() - 1;
4698   } else {
4699     ID.Kind = ValID::t_GlobalName;
4700     ID.StrVal = FunctionName;
4701   }
4702   auto Blocks = ForwardRefBlockAddresses.find(ID);
4703   if (Blocks != ForwardRefBlockAddresses.end())
4704     return Error(Blocks->first.Loc,
4705                  "cannot take blockaddress inside a declaration");
4706   return false;
4707 }
4708 
4709 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
4710   ValID ID;
4711   if (FunctionNumber == -1) {
4712     ID.Kind = ValID::t_GlobalName;
4713     ID.StrVal = F.getName();
4714   } else {
4715     ID.Kind = ValID::t_GlobalID;
4716     ID.UIntVal = FunctionNumber;
4717   }
4718 
4719   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
4720   if (Blocks == P.ForwardRefBlockAddresses.end())
4721     return false;
4722 
4723   for (const auto &I : Blocks->second) {
4724     const ValID &BBID = I.first;
4725     GlobalValue *GV = I.second;
4726 
4727     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
4728            "Expected local id or name");
4729     BasicBlock *BB;
4730     if (BBID.Kind == ValID::t_LocalName)
4731       BB = GetBB(BBID.StrVal, BBID.Loc);
4732     else
4733       BB = GetBB(BBID.UIntVal, BBID.Loc);
4734     if (!BB)
4735       return P.Error(BBID.Loc, "referenced value is not a basic block");
4736 
4737     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
4738     GV->eraseFromParent();
4739   }
4740 
4741   P.ForwardRefBlockAddresses.erase(Blocks);
4742   return false;
4743 }
4744 
4745 /// ParseFunctionBody
4746 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
4747 bool LLParser::ParseFunctionBody(Function &Fn) {
4748   if (Lex.getKind() != lltok::lbrace)
4749     return TokError("expected '{' in function body");
4750   Lex.Lex();  // eat the {.
4751 
4752   int FunctionNumber = -1;
4753   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
4754 
4755   PerFunctionState PFS(*this, Fn, FunctionNumber);
4756 
4757   // Resolve block addresses and allow basic blocks to be forward-declared
4758   // within this function.
4759   if (PFS.resolveForwardRefBlockAddresses())
4760     return true;
4761   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
4762 
4763   // We need at least one basic block.
4764   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
4765     return TokError("function body requires at least one basic block");
4766 
4767   while (Lex.getKind() != lltok::rbrace &&
4768          Lex.getKind() != lltok::kw_uselistorder)
4769     if (ParseBasicBlock(PFS)) return true;
4770 
4771   while (Lex.getKind() != lltok::rbrace)
4772     if (ParseUseListOrder(&PFS))
4773       return true;
4774 
4775   // Eat the }.
4776   Lex.Lex();
4777 
4778   // Verify function is ok.
4779   return PFS.FinishFunction();
4780 }
4781 
4782 /// ParseBasicBlock
4783 ///   ::= LabelStr? Instruction*
4784 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
4785   // If this basic block starts out with a name, remember it.
4786   std::string Name;
4787   LocTy NameLoc = Lex.getLoc();
4788   if (Lex.getKind() == lltok::LabelStr) {
4789     Name = Lex.getStrVal();
4790     Lex.Lex();
4791   }
4792 
4793   BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
4794   if (!BB)
4795     return Error(NameLoc,
4796                  "unable to create block named '" + Name + "'");
4797 
4798   std::string NameStr;
4799 
4800   // Parse the instructions in this block until we get a terminator.
4801   Instruction *Inst;
4802   do {
4803     // This instruction may have three possibilities for a name: a) none
4804     // specified, b) name specified "%foo =", c) number specified: "%4 =".
4805     LocTy NameLoc = Lex.getLoc();
4806     int NameID = -1;
4807     NameStr = "";
4808 
4809     if (Lex.getKind() == lltok::LocalVarID) {
4810       NameID = Lex.getUIntVal();
4811       Lex.Lex();
4812       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
4813         return true;
4814     } else if (Lex.getKind() == lltok::LocalVar) {
4815       NameStr = Lex.getStrVal();
4816       Lex.Lex();
4817       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
4818         return true;
4819     }
4820 
4821     switch (ParseInstruction(Inst, BB, PFS)) {
4822     default: llvm_unreachable("Unknown ParseInstruction result!");
4823     case InstError: return true;
4824     case InstNormal:
4825       BB->getInstList().push_back(Inst);
4826 
4827       // With a normal result, we check to see if the instruction is followed by
4828       // a comma and metadata.
4829       if (EatIfPresent(lltok::comma))
4830         if (ParseInstructionMetadata(*Inst))
4831           return true;
4832       break;
4833     case InstExtraComma:
4834       BB->getInstList().push_back(Inst);
4835 
4836       // If the instruction parser ate an extra comma at the end of it, it
4837       // *must* be followed by metadata.
4838       if (ParseInstructionMetadata(*Inst))
4839         return true;
4840       break;
4841     }
4842 
4843     // Set the name on the instruction.
4844     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
4845   } while (!isa<TerminatorInst>(Inst));
4846 
4847   return false;
4848 }
4849 
4850 //===----------------------------------------------------------------------===//
4851 // Instruction Parsing.
4852 //===----------------------------------------------------------------------===//
4853 
4854 /// ParseInstruction - Parse one of the many different instructions.
4855 ///
4856 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
4857                                PerFunctionState &PFS) {
4858   lltok::Kind Token = Lex.getKind();
4859   if (Token == lltok::Eof)
4860     return TokError("found end of file when expecting more instructions");
4861   LocTy Loc = Lex.getLoc();
4862   unsigned KeywordVal = Lex.getUIntVal();
4863   Lex.Lex();  // Eat the keyword.
4864 
4865   switch (Token) {
4866   default:                    return Error(Loc, "expected instruction opcode");
4867   // Terminator Instructions.
4868   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
4869   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
4870   case lltok::kw_br:          return ParseBr(Inst, PFS);
4871   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
4872   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
4873   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
4874   case lltok::kw_resume:      return ParseResume(Inst, PFS);
4875   case lltok::kw_cleanupret:  return ParseCleanupRet(Inst, PFS);
4876   case lltok::kw_catchret:    return ParseCatchRet(Inst, PFS);
4877   case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
4878   case lltok::kw_catchpad:    return ParseCatchPad(Inst, PFS);
4879   case lltok::kw_cleanuppad:  return ParseCleanupPad(Inst, PFS);
4880   // Binary Operators.
4881   case lltok::kw_add:
4882   case lltok::kw_sub:
4883   case lltok::kw_mul:
4884   case lltok::kw_shl: {
4885     bool NUW = EatIfPresent(lltok::kw_nuw);
4886     bool NSW = EatIfPresent(lltok::kw_nsw);
4887     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
4888 
4889     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
4890 
4891     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
4892     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
4893     return false;
4894   }
4895   case lltok::kw_fadd:
4896   case lltok::kw_fsub:
4897   case lltok::kw_fmul:
4898   case lltok::kw_fdiv:
4899   case lltok::kw_frem: {
4900     FastMathFlags FMF = EatFastMathFlagsIfPresent();
4901     int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2);
4902     if (Res != 0)
4903       return Res;
4904     if (FMF.any())
4905       Inst->setFastMathFlags(FMF);
4906     return 0;
4907   }
4908 
4909   case lltok::kw_sdiv:
4910   case lltok::kw_udiv:
4911   case lltok::kw_lshr:
4912   case lltok::kw_ashr: {
4913     bool Exact = EatIfPresent(lltok::kw_exact);
4914 
4915     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
4916     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
4917     return false;
4918   }
4919 
4920   case lltok::kw_urem:
4921   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
4922   case lltok::kw_and:
4923   case lltok::kw_or:
4924   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
4925   case lltok::kw_icmp:   return ParseCompare(Inst, PFS, KeywordVal);
4926   case lltok::kw_fcmp: {
4927     FastMathFlags FMF = EatFastMathFlagsIfPresent();
4928     int Res = ParseCompare(Inst, PFS, KeywordVal);
4929     if (Res != 0)
4930       return Res;
4931     if (FMF.any())
4932       Inst->setFastMathFlags(FMF);
4933     return 0;
4934   }
4935 
4936   // Casts.
4937   case lltok::kw_trunc:
4938   case lltok::kw_zext:
4939   case lltok::kw_sext:
4940   case lltok::kw_fptrunc:
4941   case lltok::kw_fpext:
4942   case lltok::kw_bitcast:
4943   case lltok::kw_addrspacecast:
4944   case lltok::kw_uitofp:
4945   case lltok::kw_sitofp:
4946   case lltok::kw_fptoui:
4947   case lltok::kw_fptosi:
4948   case lltok::kw_inttoptr:
4949   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
4950   // Other.
4951   case lltok::kw_select:         return ParseSelect(Inst, PFS);
4952   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
4953   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
4954   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
4955   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
4956   case lltok::kw_phi:            return ParsePHI(Inst, PFS);
4957   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
4958   // Call.
4959   case lltok::kw_call:     return ParseCall(Inst, PFS, CallInst::TCK_None);
4960   case lltok::kw_tail:     return ParseCall(Inst, PFS, CallInst::TCK_Tail);
4961   case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
4962   case lltok::kw_notail:   return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
4963   // Memory.
4964   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
4965   case lltok::kw_load:           return ParseLoad(Inst, PFS);
4966   case lltok::kw_store:          return ParseStore(Inst, PFS);
4967   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
4968   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
4969   case lltok::kw_fence:          return ParseFence(Inst, PFS);
4970   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
4971   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
4972   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
4973   }
4974 }
4975 
4976 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
4977 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
4978   if (Opc == Instruction::FCmp) {
4979     switch (Lex.getKind()) {
4980     default: return TokError("expected fcmp predicate (e.g. 'oeq')");
4981     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
4982     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
4983     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
4984     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
4985     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
4986     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
4987     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
4988     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
4989     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
4990     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
4991     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
4992     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
4993     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
4994     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
4995     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
4996     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
4997     }
4998   } else {
4999     switch (Lex.getKind()) {
5000     default: return TokError("expected icmp predicate (e.g. 'eq')");
5001     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
5002     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
5003     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
5004     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
5005     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
5006     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
5007     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
5008     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
5009     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
5010     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
5011     }
5012   }
5013   Lex.Lex();
5014   return false;
5015 }
5016 
5017 //===----------------------------------------------------------------------===//
5018 // Terminator Instructions.
5019 //===----------------------------------------------------------------------===//
5020 
5021 /// ParseRet - Parse a return instruction.
5022 ///   ::= 'ret' void (',' !dbg, !1)*
5023 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
5024 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
5025                         PerFunctionState &PFS) {
5026   SMLoc TypeLoc = Lex.getLoc();
5027   Type *Ty = nullptr;
5028   if (ParseType(Ty, true /*void allowed*/)) return true;
5029 
5030   Type *ResType = PFS.getFunction().getReturnType();
5031 
5032   if (Ty->isVoidTy()) {
5033     if (!ResType->isVoidTy())
5034       return Error(TypeLoc, "value doesn't match function result type '" +
5035                    getTypeString(ResType) + "'");
5036 
5037     Inst = ReturnInst::Create(Context);
5038     return false;
5039   }
5040 
5041   Value *RV;
5042   if (ParseValue(Ty, RV, PFS)) return true;
5043 
5044   if (ResType != RV->getType())
5045     return Error(TypeLoc, "value doesn't match function result type '" +
5046                  getTypeString(ResType) + "'");
5047 
5048   Inst = ReturnInst::Create(Context, RV);
5049   return false;
5050 }
5051 
5052 
5053 /// ParseBr
5054 ///   ::= 'br' TypeAndValue
5055 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5056 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
5057   LocTy Loc, Loc2;
5058   Value *Op0;
5059   BasicBlock *Op1, *Op2;
5060   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
5061 
5062   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
5063     Inst = BranchInst::Create(BB);
5064     return false;
5065   }
5066 
5067   if (Op0->getType() != Type::getInt1Ty(Context))
5068     return Error(Loc, "branch condition must have 'i1' type");
5069 
5070   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
5071       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
5072       ParseToken(lltok::comma, "expected ',' after true destination") ||
5073       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
5074     return true;
5075 
5076   Inst = BranchInst::Create(Op1, Op2, Op0);
5077   return false;
5078 }
5079 
5080 /// ParseSwitch
5081 ///  Instruction
5082 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
5083 ///  JumpTable
5084 ///    ::= (TypeAndValue ',' TypeAndValue)*
5085 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5086   LocTy CondLoc, BBLoc;
5087   Value *Cond;
5088   BasicBlock *DefaultBB;
5089   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
5090       ParseToken(lltok::comma, "expected ',' after switch condition") ||
5091       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
5092       ParseToken(lltok::lsquare, "expected '[' with switch table"))
5093     return true;
5094 
5095   if (!Cond->getType()->isIntegerTy())
5096     return Error(CondLoc, "switch condition must have integer type");
5097 
5098   // Parse the jump table pairs.
5099   SmallPtrSet<Value*, 32> SeenCases;
5100   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
5101   while (Lex.getKind() != lltok::rsquare) {
5102     Value *Constant;
5103     BasicBlock *DestBB;
5104 
5105     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
5106         ParseToken(lltok::comma, "expected ',' after case value") ||
5107         ParseTypeAndBasicBlock(DestBB, PFS))
5108       return true;
5109 
5110     if (!SeenCases.insert(Constant).second)
5111       return Error(CondLoc, "duplicate case value in switch");
5112     if (!isa<ConstantInt>(Constant))
5113       return Error(CondLoc, "case value is not a constant integer");
5114 
5115     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
5116   }
5117 
5118   Lex.Lex();  // Eat the ']'.
5119 
5120   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
5121   for (unsigned i = 0, e = Table.size(); i != e; ++i)
5122     SI->addCase(Table[i].first, Table[i].second);
5123   Inst = SI;
5124   return false;
5125 }
5126 
5127 /// ParseIndirectBr
5128 ///  Instruction
5129 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
5130 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
5131   LocTy AddrLoc;
5132   Value *Address;
5133   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
5134       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
5135       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
5136     return true;
5137 
5138   if (!Address->getType()->isPointerTy())
5139     return Error(AddrLoc, "indirectbr address must have pointer type");
5140 
5141   // Parse the destination list.
5142   SmallVector<BasicBlock*, 16> DestList;
5143 
5144   if (Lex.getKind() != lltok::rsquare) {
5145     BasicBlock *DestBB;
5146     if (ParseTypeAndBasicBlock(DestBB, PFS))
5147       return true;
5148     DestList.push_back(DestBB);
5149 
5150     while (EatIfPresent(lltok::comma)) {
5151       if (ParseTypeAndBasicBlock(DestBB, PFS))
5152         return true;
5153       DestList.push_back(DestBB);
5154     }
5155   }
5156 
5157   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
5158     return true;
5159 
5160   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
5161   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
5162     IBI->addDestination(DestList[i]);
5163   Inst = IBI;
5164   return false;
5165 }
5166 
5167 
5168 /// ParseInvoke
5169 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
5170 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
5171 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
5172   LocTy CallLoc = Lex.getLoc();
5173   AttrBuilder RetAttrs, FnAttrs;
5174   std::vector<unsigned> FwdRefAttrGrps;
5175   LocTy NoBuiltinLoc;
5176   unsigned CC;
5177   Type *RetType = nullptr;
5178   LocTy RetTypeLoc;
5179   ValID CalleeID;
5180   SmallVector<ParamInfo, 16> ArgList;
5181   SmallVector<OperandBundleDef, 2> BundleList;
5182 
5183   BasicBlock *NormalBB, *UnwindBB;
5184   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5185       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
5186       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
5187       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
5188                                  NoBuiltinLoc) ||
5189       ParseOptionalOperandBundles(BundleList, PFS) ||
5190       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
5191       ParseTypeAndBasicBlock(NormalBB, PFS) ||
5192       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
5193       ParseTypeAndBasicBlock(UnwindBB, PFS))
5194     return true;
5195 
5196   // If RetType is a non-function pointer type, then this is the short syntax
5197   // for the call, which means that RetType is just the return type.  Infer the
5198   // rest of the function argument types from the arguments that are present.
5199   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
5200   if (!Ty) {
5201     // Pull out the types of all of the arguments...
5202     std::vector<Type*> ParamTypes;
5203     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
5204       ParamTypes.push_back(ArgList[i].V->getType());
5205 
5206     if (!FunctionType::isValidReturnType(RetType))
5207       return Error(RetTypeLoc, "Invalid result type for LLVM function");
5208 
5209     Ty = FunctionType::get(RetType, ParamTypes, false);
5210   }
5211 
5212   CalleeID.FTy = Ty;
5213 
5214   // Look up the callee.
5215   Value *Callee;
5216   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
5217     return true;
5218 
5219   // Set up the Attribute for the function.
5220   SmallVector<AttributeSet, 8> Attrs;
5221   if (RetAttrs.hasAttributes())
5222     Attrs.push_back(AttributeSet::get(RetType->getContext(),
5223                                       AttributeSet::ReturnIndex,
5224                                       RetAttrs));
5225 
5226   SmallVector<Value*, 8> Args;
5227 
5228   // Loop through FunctionType's arguments and ensure they are specified
5229   // correctly.  Also, gather any parameter attributes.
5230   FunctionType::param_iterator I = Ty->param_begin();
5231   FunctionType::param_iterator E = Ty->param_end();
5232   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5233     Type *ExpectedTy = nullptr;
5234     if (I != E) {
5235       ExpectedTy = *I++;
5236     } else if (!Ty->isVarArg()) {
5237       return Error(ArgList[i].Loc, "too many arguments specified");
5238     }
5239 
5240     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
5241       return Error(ArgList[i].Loc, "argument is not of expected type '" +
5242                    getTypeString(ExpectedTy) + "'");
5243     Args.push_back(ArgList[i].V);
5244     if (ArgList[i].Attrs.hasAttributes(i + 1)) {
5245       AttrBuilder B(ArgList[i].Attrs, i + 1);
5246       Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
5247     }
5248   }
5249 
5250   if (I != E)
5251     return Error(CallLoc, "not enough parameters specified for call");
5252 
5253   if (FnAttrs.hasAttributes()) {
5254     if (FnAttrs.hasAlignmentAttr())
5255       return Error(CallLoc, "invoke instructions may not have an alignment");
5256 
5257     Attrs.push_back(AttributeSet::get(RetType->getContext(),
5258                                       AttributeSet::FunctionIndex,
5259                                       FnAttrs));
5260   }
5261 
5262   // Finish off the Attribute and check them
5263   AttributeSet PAL = AttributeSet::get(Context, Attrs);
5264 
5265   InvokeInst *II =
5266       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
5267   II->setCallingConv(CC);
5268   II->setAttributes(PAL);
5269   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
5270   Inst = II;
5271   return false;
5272 }
5273 
5274 /// ParseResume
5275 ///   ::= 'resume' TypeAndValue
5276 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
5277   Value *Exn; LocTy ExnLoc;
5278   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
5279     return true;
5280 
5281   ResumeInst *RI = ResumeInst::Create(Exn);
5282   Inst = RI;
5283   return false;
5284 }
5285 
5286 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
5287                                   PerFunctionState &PFS) {
5288   if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
5289     return true;
5290 
5291   while (Lex.getKind() != lltok::rsquare) {
5292     // If this isn't the first argument, we need a comma.
5293     if (!Args.empty() &&
5294         ParseToken(lltok::comma, "expected ',' in argument list"))
5295       return true;
5296 
5297     // Parse the argument.
5298     LocTy ArgLoc;
5299     Type *ArgTy = nullptr;
5300     if (ParseType(ArgTy, ArgLoc))
5301       return true;
5302 
5303     Value *V;
5304     if (ArgTy->isMetadataTy()) {
5305       if (ParseMetadataAsValue(V, PFS))
5306         return true;
5307     } else {
5308       if (ParseValue(ArgTy, V, PFS))
5309         return true;
5310     }
5311     Args.push_back(V);
5312   }
5313 
5314   Lex.Lex();  // Lex the ']'.
5315   return false;
5316 }
5317 
5318 /// ParseCleanupRet
5319 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
5320 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
5321   Value *CleanupPad = nullptr;
5322 
5323   if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
5324     return true;
5325 
5326   if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
5327     return true;
5328 
5329   if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
5330     return true;
5331 
5332   BasicBlock *UnwindBB = nullptr;
5333   if (Lex.getKind() == lltok::kw_to) {
5334     Lex.Lex();
5335     if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
5336       return true;
5337   } else {
5338     if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
5339       return true;
5340     }
5341   }
5342 
5343   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
5344   return false;
5345 }
5346 
5347 /// ParseCatchRet
5348 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
5349 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
5350   Value *CatchPad = nullptr;
5351 
5352   if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
5353     return true;
5354 
5355   if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
5356     return true;
5357 
5358   BasicBlock *BB;
5359   if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
5360       ParseTypeAndBasicBlock(BB, PFS))
5361       return true;
5362 
5363   Inst = CatchReturnInst::Create(CatchPad, BB);
5364   return false;
5365 }
5366 
5367 /// ParseCatchSwitch
5368 ///   ::= 'catchswitch' within Parent
5369 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5370   Value *ParentPad;
5371   LocTy BBLoc;
5372 
5373   if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
5374     return true;
5375 
5376   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
5377       Lex.getKind() != lltok::LocalVarID)
5378     return TokError("expected scope value for catchswitch");
5379 
5380   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
5381     return true;
5382 
5383   if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
5384     return true;
5385 
5386   SmallVector<BasicBlock *, 32> Table;
5387   do {
5388     BasicBlock *DestBB;
5389     if (ParseTypeAndBasicBlock(DestBB, PFS))
5390       return true;
5391     Table.push_back(DestBB);
5392   } while (EatIfPresent(lltok::comma));
5393 
5394   if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
5395     return true;
5396 
5397   if (ParseToken(lltok::kw_unwind,
5398                  "expected 'unwind' after catchswitch scope"))
5399     return true;
5400 
5401   BasicBlock *UnwindBB = nullptr;
5402   if (EatIfPresent(lltok::kw_to)) {
5403     if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
5404       return true;
5405   } else {
5406     if (ParseTypeAndBasicBlock(UnwindBB, PFS))
5407       return true;
5408   }
5409 
5410   auto *CatchSwitch =
5411       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
5412   for (BasicBlock *DestBB : Table)
5413     CatchSwitch->addHandler(DestBB);
5414   Inst = CatchSwitch;
5415   return false;
5416 }
5417 
5418 /// ParseCatchPad
5419 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
5420 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
5421   Value *CatchSwitch = nullptr;
5422 
5423   if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
5424     return true;
5425 
5426   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
5427     return TokError("expected scope value for catchpad");
5428 
5429   if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
5430     return true;
5431 
5432   SmallVector<Value *, 8> Args;
5433   if (ParseExceptionArgs(Args, PFS))
5434     return true;
5435 
5436   Inst = CatchPadInst::Create(CatchSwitch, Args);
5437   return false;
5438 }
5439 
5440 /// ParseCleanupPad
5441 ///   ::= 'cleanuppad' within Parent ParamList
5442 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
5443   Value *ParentPad = nullptr;
5444 
5445   if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
5446     return true;
5447 
5448   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
5449       Lex.getKind() != lltok::LocalVarID)
5450     return TokError("expected scope value for cleanuppad");
5451 
5452   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
5453     return true;
5454 
5455   SmallVector<Value *, 8> Args;
5456   if (ParseExceptionArgs(Args, PFS))
5457     return true;
5458 
5459   Inst = CleanupPadInst::Create(ParentPad, Args);
5460   return false;
5461 }
5462 
5463 //===----------------------------------------------------------------------===//
5464 // Binary Operators.
5465 //===----------------------------------------------------------------------===//
5466 
5467 /// ParseArithmetic
5468 ///  ::= ArithmeticOps TypeAndValue ',' Value
5469 ///
5470 /// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
5471 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
5472 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
5473                                unsigned Opc, unsigned OperandType) {
5474   LocTy Loc; Value *LHS, *RHS;
5475   if (ParseTypeAndValue(LHS, Loc, PFS) ||
5476       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
5477       ParseValue(LHS->getType(), RHS, PFS))
5478     return true;
5479 
5480   bool Valid;
5481   switch (OperandType) {
5482   default: llvm_unreachable("Unknown operand type!");
5483   case 0: // int or FP.
5484     Valid = LHS->getType()->isIntOrIntVectorTy() ||
5485             LHS->getType()->isFPOrFPVectorTy();
5486     break;
5487   case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
5488   case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
5489   }
5490 
5491   if (!Valid)
5492     return Error(Loc, "invalid operand type for instruction");
5493 
5494   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5495   return false;
5496 }
5497 
5498 /// ParseLogical
5499 ///  ::= ArithmeticOps TypeAndValue ',' Value {
5500 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
5501                             unsigned Opc) {
5502   LocTy Loc; Value *LHS, *RHS;
5503   if (ParseTypeAndValue(LHS, Loc, PFS) ||
5504       ParseToken(lltok::comma, "expected ',' in logical operation") ||
5505       ParseValue(LHS->getType(), RHS, PFS))
5506     return true;
5507 
5508   if (!LHS->getType()->isIntOrIntVectorTy())
5509     return Error(Loc,"instruction requires integer or integer vector operands");
5510 
5511   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5512   return false;
5513 }
5514 
5515 
5516 /// ParseCompare
5517 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
5518 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
5519 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
5520                             unsigned Opc) {
5521   // Parse the integer/fp comparison predicate.
5522   LocTy Loc;
5523   unsigned Pred;
5524   Value *LHS, *RHS;
5525   if (ParseCmpPredicate(Pred, Opc) ||
5526       ParseTypeAndValue(LHS, Loc, PFS) ||
5527       ParseToken(lltok::comma, "expected ',' after compare value") ||
5528       ParseValue(LHS->getType(), RHS, PFS))
5529     return true;
5530 
5531   if (Opc == Instruction::FCmp) {
5532     if (!LHS->getType()->isFPOrFPVectorTy())
5533       return Error(Loc, "fcmp requires floating point operands");
5534     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
5535   } else {
5536     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
5537     if (!LHS->getType()->isIntOrIntVectorTy() &&
5538         !LHS->getType()->getScalarType()->isPointerTy())
5539       return Error(Loc, "icmp requires integer operands");
5540     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
5541   }
5542   return false;
5543 }
5544 
5545 //===----------------------------------------------------------------------===//
5546 // Other Instructions.
5547 //===----------------------------------------------------------------------===//
5548 
5549 
5550 /// ParseCast
5551 ///   ::= CastOpc TypeAndValue 'to' Type
5552 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
5553                          unsigned Opc) {
5554   LocTy Loc;
5555   Value *Op;
5556   Type *DestTy = nullptr;
5557   if (ParseTypeAndValue(Op, Loc, PFS) ||
5558       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
5559       ParseType(DestTy))
5560     return true;
5561 
5562   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
5563     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
5564     return Error(Loc, "invalid cast opcode for cast from '" +
5565                  getTypeString(Op->getType()) + "' to '" +
5566                  getTypeString(DestTy) + "'");
5567   }
5568   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
5569   return false;
5570 }
5571 
5572 /// ParseSelect
5573 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5574 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
5575   LocTy Loc;
5576   Value *Op0, *Op1, *Op2;
5577   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5578       ParseToken(lltok::comma, "expected ',' after select condition") ||
5579       ParseTypeAndValue(Op1, PFS) ||
5580       ParseToken(lltok::comma, "expected ',' after select value") ||
5581       ParseTypeAndValue(Op2, PFS))
5582     return true;
5583 
5584   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
5585     return Error(Loc, Reason);
5586 
5587   Inst = SelectInst::Create(Op0, Op1, Op2);
5588   return false;
5589 }
5590 
5591 /// ParseVA_Arg
5592 ///   ::= 'va_arg' TypeAndValue ',' Type
5593 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
5594   Value *Op;
5595   Type *EltTy = nullptr;
5596   LocTy TypeLoc;
5597   if (ParseTypeAndValue(Op, PFS) ||
5598       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
5599       ParseType(EltTy, TypeLoc))
5600     return true;
5601 
5602   if (!EltTy->isFirstClassType())
5603     return Error(TypeLoc, "va_arg requires operand with first class type");
5604 
5605   Inst = new VAArgInst(Op, EltTy);
5606   return false;
5607 }
5608 
5609 /// ParseExtractElement
5610 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
5611 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
5612   LocTy Loc;
5613   Value *Op0, *Op1;
5614   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5615       ParseToken(lltok::comma, "expected ',' after extract value") ||
5616       ParseTypeAndValue(Op1, PFS))
5617     return true;
5618 
5619   if (!ExtractElementInst::isValidOperands(Op0, Op1))
5620     return Error(Loc, "invalid extractelement operands");
5621 
5622   Inst = ExtractElementInst::Create(Op0, Op1);
5623   return false;
5624 }
5625 
5626 /// ParseInsertElement
5627 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5628 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
5629   LocTy Loc;
5630   Value *Op0, *Op1, *Op2;
5631   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5632       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5633       ParseTypeAndValue(Op1, PFS) ||
5634       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5635       ParseTypeAndValue(Op2, PFS))
5636     return true;
5637 
5638   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
5639     return Error(Loc, "invalid insertelement operands");
5640 
5641   Inst = InsertElementInst::Create(Op0, Op1, Op2);
5642   return false;
5643 }
5644 
5645 /// ParseShuffleVector
5646 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5647 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
5648   LocTy Loc;
5649   Value *Op0, *Op1, *Op2;
5650   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5651       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
5652       ParseTypeAndValue(Op1, PFS) ||
5653       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
5654       ParseTypeAndValue(Op2, PFS))
5655     return true;
5656 
5657   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
5658     return Error(Loc, "invalid shufflevector operands");
5659 
5660   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
5661   return false;
5662 }
5663 
5664 /// ParsePHI
5665 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
5666 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
5667   Type *Ty = nullptr;  LocTy TypeLoc;
5668   Value *Op0, *Op1;
5669 
5670   if (ParseType(Ty, TypeLoc) ||
5671       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
5672       ParseValue(Ty, Op0, PFS) ||
5673       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5674       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
5675       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
5676     return true;
5677 
5678   bool AteExtraComma = false;
5679   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
5680   while (1) {
5681     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
5682 
5683     if (!EatIfPresent(lltok::comma))
5684       break;
5685 
5686     if (Lex.getKind() == lltok::MetadataVar) {
5687       AteExtraComma = true;
5688       break;
5689     }
5690 
5691     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
5692         ParseValue(Ty, Op0, PFS) ||
5693         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5694         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
5695         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
5696       return true;
5697   }
5698 
5699   if (!Ty->isFirstClassType())
5700     return Error(TypeLoc, "phi node must have first class type");
5701 
5702   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
5703   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
5704     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
5705   Inst = PN;
5706   return AteExtraComma ? InstExtraComma : InstNormal;
5707 }
5708 
5709 /// ParseLandingPad
5710 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
5711 /// Clause
5712 ///   ::= 'catch' TypeAndValue
5713 ///   ::= 'filter'
5714 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
5715 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
5716   Type *Ty = nullptr; LocTy TyLoc;
5717 
5718   if (ParseType(Ty, TyLoc))
5719     return true;
5720 
5721   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
5722   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
5723 
5724   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
5725     LandingPadInst::ClauseType CT;
5726     if (EatIfPresent(lltok::kw_catch))
5727       CT = LandingPadInst::Catch;
5728     else if (EatIfPresent(lltok::kw_filter))
5729       CT = LandingPadInst::Filter;
5730     else
5731       return TokError("expected 'catch' or 'filter' clause type");
5732 
5733     Value *V;
5734     LocTy VLoc;
5735     if (ParseTypeAndValue(V, VLoc, PFS))
5736       return true;
5737 
5738     // A 'catch' type expects a non-array constant. A filter clause expects an
5739     // array constant.
5740     if (CT == LandingPadInst::Catch) {
5741       if (isa<ArrayType>(V->getType()))
5742         Error(VLoc, "'catch' clause has an invalid type");
5743     } else {
5744       if (!isa<ArrayType>(V->getType()))
5745         Error(VLoc, "'filter' clause has an invalid type");
5746     }
5747 
5748     Constant *CV = dyn_cast<Constant>(V);
5749     if (!CV)
5750       return Error(VLoc, "clause argument must be a constant");
5751     LP->addClause(CV);
5752   }
5753 
5754   Inst = LP.release();
5755   return false;
5756 }
5757 
5758 /// ParseCall
5759 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
5760 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5761 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
5762 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5763 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
5764 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5765 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
5766 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5767 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
5768                          CallInst::TailCallKind TCK) {
5769   AttrBuilder RetAttrs, FnAttrs;
5770   std::vector<unsigned> FwdRefAttrGrps;
5771   LocTy BuiltinLoc;
5772   unsigned CC;
5773   Type *RetType = nullptr;
5774   LocTy RetTypeLoc;
5775   ValID CalleeID;
5776   SmallVector<ParamInfo, 16> ArgList;
5777   SmallVector<OperandBundleDef, 2> BundleList;
5778   LocTy CallLoc = Lex.getLoc();
5779 
5780   if (TCK != CallInst::TCK_None &&
5781       ParseToken(lltok::kw_call,
5782                  "expected 'tail call', 'musttail call', or 'notail call'"))
5783     return true;
5784 
5785   FastMathFlags FMF = EatFastMathFlagsIfPresent();
5786 
5787   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5788       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
5789       ParseValID(CalleeID) ||
5790       ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
5791                          PFS.getFunction().isVarArg()) ||
5792       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
5793       ParseOptionalOperandBundles(BundleList, PFS))
5794     return true;
5795 
5796   if (FMF.any() && !RetType->isFPOrFPVectorTy())
5797     return Error(CallLoc, "fast-math-flags specified for call without "
5798                           "floating-point scalar or vector return type");
5799 
5800   // If RetType is a non-function pointer type, then this is the short syntax
5801   // for the call, which means that RetType is just the return type.  Infer the
5802   // rest of the function argument types from the arguments that are present.
5803   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
5804   if (!Ty) {
5805     // Pull out the types of all of the arguments...
5806     std::vector<Type*> ParamTypes;
5807     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
5808       ParamTypes.push_back(ArgList[i].V->getType());
5809 
5810     if (!FunctionType::isValidReturnType(RetType))
5811       return Error(RetTypeLoc, "Invalid result type for LLVM function");
5812 
5813     Ty = FunctionType::get(RetType, ParamTypes, false);
5814   }
5815 
5816   CalleeID.FTy = Ty;
5817 
5818   // Look up the callee.
5819   Value *Callee;
5820   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
5821     return true;
5822 
5823   // Set up the Attribute for the function.
5824   SmallVector<AttributeSet, 8> Attrs;
5825   if (RetAttrs.hasAttributes())
5826     Attrs.push_back(AttributeSet::get(RetType->getContext(),
5827                                       AttributeSet::ReturnIndex,
5828                                       RetAttrs));
5829 
5830   SmallVector<Value*, 8> Args;
5831 
5832   // Loop through FunctionType's arguments and ensure they are specified
5833   // correctly.  Also, gather any parameter attributes.
5834   FunctionType::param_iterator I = Ty->param_begin();
5835   FunctionType::param_iterator E = Ty->param_end();
5836   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5837     Type *ExpectedTy = nullptr;
5838     if (I != E) {
5839       ExpectedTy = *I++;
5840     } else if (!Ty->isVarArg()) {
5841       return Error(ArgList[i].Loc, "too many arguments specified");
5842     }
5843 
5844     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
5845       return Error(ArgList[i].Loc, "argument is not of expected type '" +
5846                    getTypeString(ExpectedTy) + "'");
5847     Args.push_back(ArgList[i].V);
5848     if (ArgList[i].Attrs.hasAttributes(i + 1)) {
5849       AttrBuilder B(ArgList[i].Attrs, i + 1);
5850       Attrs.push_back(AttributeSet::get(RetType->getContext(), i + 1, B));
5851     }
5852   }
5853 
5854   if (I != E)
5855     return Error(CallLoc, "not enough parameters specified for call");
5856 
5857   if (FnAttrs.hasAttributes()) {
5858     if (FnAttrs.hasAlignmentAttr())
5859       return Error(CallLoc, "call instructions may not have an alignment");
5860 
5861     Attrs.push_back(AttributeSet::get(RetType->getContext(),
5862                                       AttributeSet::FunctionIndex,
5863                                       FnAttrs));
5864   }
5865 
5866   // Finish off the Attribute and check them
5867   AttributeSet PAL = AttributeSet::get(Context, Attrs);
5868 
5869   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
5870   CI->setTailCallKind(TCK);
5871   CI->setCallingConv(CC);
5872   if (FMF.any())
5873     CI->setFastMathFlags(FMF);
5874   CI->setAttributes(PAL);
5875   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
5876   Inst = CI;
5877   return false;
5878 }
5879 
5880 //===----------------------------------------------------------------------===//
5881 // Memory Instructions.
5882 //===----------------------------------------------------------------------===//
5883 
5884 /// ParseAlloc
5885 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
5886 ///       (',' 'align' i32)?
5887 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
5888   Value *Size = nullptr;
5889   LocTy SizeLoc, TyLoc;
5890   unsigned Alignment = 0;
5891   Type *Ty = nullptr;
5892 
5893   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
5894   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
5895 
5896   if (ParseType(Ty, TyLoc)) return true;
5897 
5898   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
5899     return Error(TyLoc, "invalid type for alloca");
5900 
5901   bool AteExtraComma = false;
5902   if (EatIfPresent(lltok::comma)) {
5903     if (Lex.getKind() == lltok::kw_align) {
5904       if (ParseOptionalAlignment(Alignment)) return true;
5905     } else if (Lex.getKind() == lltok::MetadataVar) {
5906       AteExtraComma = true;
5907     } else {
5908       if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
5909           ParseOptionalCommaAlign(Alignment, AteExtraComma))
5910         return true;
5911     }
5912   }
5913 
5914   if (Size && !Size->getType()->isIntegerTy())
5915     return Error(SizeLoc, "element count must have integer type");
5916 
5917   AllocaInst *AI = new AllocaInst(Ty, Size, Alignment);
5918   AI->setUsedWithInAlloca(IsInAlloca);
5919   AI->setSwiftError(IsSwiftError);
5920   Inst = AI;
5921   return AteExtraComma ? InstExtraComma : InstNormal;
5922 }
5923 
5924 /// ParseLoad
5925 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
5926 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
5927 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
5928 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
5929   Value *Val; LocTy Loc;
5930   unsigned Alignment = 0;
5931   bool AteExtraComma = false;
5932   bool isAtomic = false;
5933   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
5934   SynchronizationScope Scope = CrossThread;
5935 
5936   if (Lex.getKind() == lltok::kw_atomic) {
5937     isAtomic = true;
5938     Lex.Lex();
5939   }
5940 
5941   bool isVolatile = false;
5942   if (Lex.getKind() == lltok::kw_volatile) {
5943     isVolatile = true;
5944     Lex.Lex();
5945   }
5946 
5947   Type *Ty;
5948   LocTy ExplicitTypeLoc = Lex.getLoc();
5949   if (ParseType(Ty) ||
5950       ParseToken(lltok::comma, "expected comma after load's type") ||
5951       ParseTypeAndValue(Val, Loc, PFS) ||
5952       ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
5953       ParseOptionalCommaAlign(Alignment, AteExtraComma))
5954     return true;
5955 
5956   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
5957     return Error(Loc, "load operand must be a pointer to a first class type");
5958   if (isAtomic && !Alignment)
5959     return Error(Loc, "atomic load must have explicit non-zero alignment");
5960   if (Ordering == AtomicOrdering::Release ||
5961       Ordering == AtomicOrdering::AcquireRelease)
5962     return Error(Loc, "atomic load cannot use Release ordering");
5963 
5964   if (Ty != cast<PointerType>(Val->getType())->getElementType())
5965     return Error(ExplicitTypeLoc,
5966                  "explicit pointee type doesn't match operand's pointee type");
5967 
5968   Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, Scope);
5969   return AteExtraComma ? InstExtraComma : InstNormal;
5970 }
5971 
5972 /// ParseStore
5973 
5974 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
5975 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
5976 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
5977 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
5978   Value *Val, *Ptr; LocTy Loc, PtrLoc;
5979   unsigned Alignment = 0;
5980   bool AteExtraComma = false;
5981   bool isAtomic = false;
5982   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
5983   SynchronizationScope Scope = CrossThread;
5984 
5985   if (Lex.getKind() == lltok::kw_atomic) {
5986     isAtomic = true;
5987     Lex.Lex();
5988   }
5989 
5990   bool isVolatile = false;
5991   if (Lex.getKind() == lltok::kw_volatile) {
5992     isVolatile = true;
5993     Lex.Lex();
5994   }
5995 
5996   if (ParseTypeAndValue(Val, Loc, PFS) ||
5997       ParseToken(lltok::comma, "expected ',' after store operand") ||
5998       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
5999       ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
6000       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6001     return true;
6002 
6003   if (!Ptr->getType()->isPointerTy())
6004     return Error(PtrLoc, "store operand must be a pointer");
6005   if (!Val->getType()->isFirstClassType())
6006     return Error(Loc, "store operand must be a first class value");
6007   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6008     return Error(Loc, "stored value and pointer type do not match");
6009   if (isAtomic && !Alignment)
6010     return Error(Loc, "atomic store must have explicit non-zero alignment");
6011   if (Ordering == AtomicOrdering::Acquire ||
6012       Ordering == AtomicOrdering::AcquireRelease)
6013     return Error(Loc, "atomic store cannot use Acquire ordering");
6014 
6015   Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope);
6016   return AteExtraComma ? InstExtraComma : InstNormal;
6017 }
6018 
6019 /// ParseCmpXchg
6020 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
6021 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
6022 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
6023   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
6024   bool AteExtraComma = false;
6025   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
6026   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
6027   SynchronizationScope Scope = CrossThread;
6028   bool isVolatile = false;
6029   bool isWeak = false;
6030 
6031   if (EatIfPresent(lltok::kw_weak))
6032     isWeak = true;
6033 
6034   if (EatIfPresent(lltok::kw_volatile))
6035     isVolatile = true;
6036 
6037   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6038       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
6039       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
6040       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
6041       ParseTypeAndValue(New, NewLoc, PFS) ||
6042       ParseScopeAndOrdering(true /*Always atomic*/, Scope, SuccessOrdering) ||
6043       ParseOrdering(FailureOrdering))
6044     return true;
6045 
6046   if (SuccessOrdering == AtomicOrdering::Unordered ||
6047       FailureOrdering == AtomicOrdering::Unordered)
6048     return TokError("cmpxchg cannot be unordered");
6049   if (isStrongerThan(FailureOrdering, SuccessOrdering))
6050     return TokError("cmpxchg failure argument shall be no stronger than the "
6051                     "success argument");
6052   if (FailureOrdering == AtomicOrdering::Release ||
6053       FailureOrdering == AtomicOrdering::AcquireRelease)
6054     return TokError(
6055         "cmpxchg failure ordering cannot include release semantics");
6056   if (!Ptr->getType()->isPointerTy())
6057     return Error(PtrLoc, "cmpxchg operand must be a pointer");
6058   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
6059     return Error(CmpLoc, "compare value and pointer type do not match");
6060   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
6061     return Error(NewLoc, "new value and pointer type do not match");
6062   if (!New->getType()->isFirstClassType())
6063     return Error(NewLoc, "cmpxchg operand must be a first class value");
6064   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
6065       Ptr, Cmp, New, SuccessOrdering, FailureOrdering, Scope);
6066   CXI->setVolatile(isVolatile);
6067   CXI->setWeak(isWeak);
6068   Inst = CXI;
6069   return AteExtraComma ? InstExtraComma : InstNormal;
6070 }
6071 
6072 /// ParseAtomicRMW
6073 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
6074 ///       'singlethread'? AtomicOrdering
6075 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
6076   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
6077   bool AteExtraComma = false;
6078   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6079   SynchronizationScope Scope = CrossThread;
6080   bool isVolatile = false;
6081   AtomicRMWInst::BinOp Operation;
6082 
6083   if (EatIfPresent(lltok::kw_volatile))
6084     isVolatile = true;
6085 
6086   switch (Lex.getKind()) {
6087   default: return TokError("expected binary operation in atomicrmw");
6088   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
6089   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
6090   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
6091   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
6092   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
6093   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
6094   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
6095   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
6096   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
6097   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
6098   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
6099   }
6100   Lex.Lex();  // Eat the operation.
6101 
6102   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6103       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
6104       ParseTypeAndValue(Val, ValLoc, PFS) ||
6105       ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
6106     return true;
6107 
6108   if (Ordering == AtomicOrdering::Unordered)
6109     return TokError("atomicrmw cannot be unordered");
6110   if (!Ptr->getType()->isPointerTy())
6111     return Error(PtrLoc, "atomicrmw operand must be a pointer");
6112   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6113     return Error(ValLoc, "atomicrmw value and pointer type do not match");
6114   if (!Val->getType()->isIntegerTy())
6115     return Error(ValLoc, "atomicrmw operand must be an integer");
6116   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
6117   if (Size < 8 || (Size & (Size - 1)))
6118     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
6119                          " integer");
6120 
6121   AtomicRMWInst *RMWI =
6122     new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope);
6123   RMWI->setVolatile(isVolatile);
6124   Inst = RMWI;
6125   return AteExtraComma ? InstExtraComma : InstNormal;
6126 }
6127 
6128 /// ParseFence
6129 ///   ::= 'fence' 'singlethread'? AtomicOrdering
6130 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
6131   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6132   SynchronizationScope Scope = CrossThread;
6133   if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
6134     return true;
6135 
6136   if (Ordering == AtomicOrdering::Unordered)
6137     return TokError("fence cannot be unordered");
6138   if (Ordering == AtomicOrdering::Monotonic)
6139     return TokError("fence cannot be monotonic");
6140 
6141   Inst = new FenceInst(Context, Ordering, Scope);
6142   return InstNormal;
6143 }
6144 
6145 /// ParseGetElementPtr
6146 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
6147 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
6148   Value *Ptr = nullptr;
6149   Value *Val = nullptr;
6150   LocTy Loc, EltLoc;
6151 
6152   bool InBounds = EatIfPresent(lltok::kw_inbounds);
6153 
6154   Type *Ty = nullptr;
6155   LocTy ExplicitTypeLoc = Lex.getLoc();
6156   if (ParseType(Ty) ||
6157       ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
6158       ParseTypeAndValue(Ptr, Loc, PFS))
6159     return true;
6160 
6161   Type *BaseType = Ptr->getType();
6162   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
6163   if (!BasePointerType)
6164     return Error(Loc, "base of getelementptr must be a pointer");
6165 
6166   if (Ty != BasePointerType->getElementType())
6167     return Error(ExplicitTypeLoc,
6168                  "explicit pointee type doesn't match operand's pointee type");
6169 
6170   SmallVector<Value*, 16> Indices;
6171   bool AteExtraComma = false;
6172   // GEP returns a vector of pointers if at least one of parameters is a vector.
6173   // All vector parameters should have the same vector width.
6174   unsigned GEPWidth = BaseType->isVectorTy() ?
6175     BaseType->getVectorNumElements() : 0;
6176 
6177   while (EatIfPresent(lltok::comma)) {
6178     if (Lex.getKind() == lltok::MetadataVar) {
6179       AteExtraComma = true;
6180       break;
6181     }
6182     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
6183     if (!Val->getType()->getScalarType()->isIntegerTy())
6184       return Error(EltLoc, "getelementptr index must be an integer");
6185 
6186     if (Val->getType()->isVectorTy()) {
6187       unsigned ValNumEl = Val->getType()->getVectorNumElements();
6188       if (GEPWidth && GEPWidth != ValNumEl)
6189         return Error(EltLoc,
6190           "getelementptr vector index has a wrong number of elements");
6191       GEPWidth = ValNumEl;
6192     }
6193     Indices.push_back(Val);
6194   }
6195 
6196   SmallPtrSet<Type*, 4> Visited;
6197   if (!Indices.empty() && !Ty->isSized(&Visited))
6198     return Error(Loc, "base element of getelementptr must be sized");
6199 
6200   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
6201     return Error(Loc, "invalid getelementptr indices");
6202   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
6203   if (InBounds)
6204     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
6205   return AteExtraComma ? InstExtraComma : InstNormal;
6206 }
6207 
6208 /// ParseExtractValue
6209 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
6210 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
6211   Value *Val; LocTy Loc;
6212   SmallVector<unsigned, 4> Indices;
6213   bool AteExtraComma;
6214   if (ParseTypeAndValue(Val, Loc, PFS) ||
6215       ParseIndexList(Indices, AteExtraComma))
6216     return true;
6217 
6218   if (!Val->getType()->isAggregateType())
6219     return Error(Loc, "extractvalue operand must be aggregate type");
6220 
6221   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
6222     return Error(Loc, "invalid indices for extractvalue");
6223   Inst = ExtractValueInst::Create(Val, Indices);
6224   return AteExtraComma ? InstExtraComma : InstNormal;
6225 }
6226 
6227 /// ParseInsertValue
6228 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
6229 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
6230   Value *Val0, *Val1; LocTy Loc0, Loc1;
6231   SmallVector<unsigned, 4> Indices;
6232   bool AteExtraComma;
6233   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
6234       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
6235       ParseTypeAndValue(Val1, Loc1, PFS) ||
6236       ParseIndexList(Indices, AteExtraComma))
6237     return true;
6238 
6239   if (!Val0->getType()->isAggregateType())
6240     return Error(Loc0, "insertvalue operand must be aggregate type");
6241 
6242   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
6243   if (!IndexedType)
6244     return Error(Loc0, "invalid indices for insertvalue");
6245   if (IndexedType != Val1->getType())
6246     return Error(Loc1, "insertvalue operand and field disagree in type: '" +
6247                            getTypeString(Val1->getType()) + "' instead of '" +
6248                            getTypeString(IndexedType) + "'");
6249   Inst = InsertValueInst::Create(Val0, Val1, Indices);
6250   return AteExtraComma ? InstExtraComma : InstNormal;
6251 }
6252 
6253 //===----------------------------------------------------------------------===//
6254 // Embedded metadata.
6255 //===----------------------------------------------------------------------===//
6256 
6257 /// ParseMDNodeVector
6258 ///   ::= { Element (',' Element)* }
6259 /// Element
6260 ///   ::= 'null' | TypeAndValue
6261 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
6262   if (ParseToken(lltok::lbrace, "expected '{' here"))
6263     return true;
6264 
6265   // Check for an empty list.
6266   if (EatIfPresent(lltok::rbrace))
6267     return false;
6268 
6269   do {
6270     // Null is a special case since it is typeless.
6271     if (EatIfPresent(lltok::kw_null)) {
6272       Elts.push_back(nullptr);
6273       continue;
6274     }
6275 
6276     Metadata *MD;
6277     if (ParseMetadata(MD, nullptr))
6278       return true;
6279     Elts.push_back(MD);
6280   } while (EatIfPresent(lltok::comma));
6281 
6282   return ParseToken(lltok::rbrace, "expected end of metadata node");
6283 }
6284 
6285 //===----------------------------------------------------------------------===//
6286 // Use-list order directives.
6287 //===----------------------------------------------------------------------===//
6288 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
6289                                 SMLoc Loc) {
6290   if (V->use_empty())
6291     return Error(Loc, "value has no uses");
6292 
6293   unsigned NumUses = 0;
6294   SmallDenseMap<const Use *, unsigned, 16> Order;
6295   for (const Use &U : V->uses()) {
6296     if (++NumUses > Indexes.size())
6297       break;
6298     Order[&U] = Indexes[NumUses - 1];
6299   }
6300   if (NumUses < 2)
6301     return Error(Loc, "value only has one use");
6302   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
6303     return Error(Loc, "wrong number of indexes, expected " +
6304                           Twine(std::distance(V->use_begin(), V->use_end())));
6305 
6306   V->sortUseList([&](const Use &L, const Use &R) {
6307     return Order.lookup(&L) < Order.lookup(&R);
6308   });
6309   return false;
6310 }
6311 
6312 /// ParseUseListOrderIndexes
6313 ///   ::= '{' uint32 (',' uint32)+ '}'
6314 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
6315   SMLoc Loc = Lex.getLoc();
6316   if (ParseToken(lltok::lbrace, "expected '{' here"))
6317     return true;
6318   if (Lex.getKind() == lltok::rbrace)
6319     return Lex.Error("expected non-empty list of uselistorder indexes");
6320 
6321   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
6322   // indexes should be distinct numbers in the range [0, size-1], and should
6323   // not be in order.
6324   unsigned Offset = 0;
6325   unsigned Max = 0;
6326   bool IsOrdered = true;
6327   assert(Indexes.empty() && "Expected empty order vector");
6328   do {
6329     unsigned Index;
6330     if (ParseUInt32(Index))
6331       return true;
6332 
6333     // Update consistency checks.
6334     Offset += Index - Indexes.size();
6335     Max = std::max(Max, Index);
6336     IsOrdered &= Index == Indexes.size();
6337 
6338     Indexes.push_back(Index);
6339   } while (EatIfPresent(lltok::comma));
6340 
6341   if (ParseToken(lltok::rbrace, "expected '}' here"))
6342     return true;
6343 
6344   if (Indexes.size() < 2)
6345     return Error(Loc, "expected >= 2 uselistorder indexes");
6346   if (Offset != 0 || Max >= Indexes.size())
6347     return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
6348   if (IsOrdered)
6349     return Error(Loc, "expected uselistorder indexes to change the order");
6350 
6351   return false;
6352 }
6353 
6354 /// ParseUseListOrder
6355 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
6356 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
6357   SMLoc Loc = Lex.getLoc();
6358   if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
6359     return true;
6360 
6361   Value *V;
6362   SmallVector<unsigned, 16> Indexes;
6363   if (ParseTypeAndValue(V, PFS) ||
6364       ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
6365       ParseUseListOrderIndexes(Indexes))
6366     return true;
6367 
6368   return sortUseListOrder(V, Indexes, Loc);
6369 }
6370 
6371 /// ParseUseListOrderBB
6372 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
6373 bool LLParser::ParseUseListOrderBB() {
6374   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
6375   SMLoc Loc = Lex.getLoc();
6376   Lex.Lex();
6377 
6378   ValID Fn, Label;
6379   SmallVector<unsigned, 16> Indexes;
6380   if (ParseValID(Fn) ||
6381       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
6382       ParseValID(Label) ||
6383       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
6384       ParseUseListOrderIndexes(Indexes))
6385     return true;
6386 
6387   // Check the function.
6388   GlobalValue *GV;
6389   if (Fn.Kind == ValID::t_GlobalName)
6390     GV = M->getNamedValue(Fn.StrVal);
6391   else if (Fn.Kind == ValID::t_GlobalID)
6392     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
6393   else
6394     return Error(Fn.Loc, "expected function name in uselistorder_bb");
6395   if (!GV)
6396     return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
6397   auto *F = dyn_cast<Function>(GV);
6398   if (!F)
6399     return Error(Fn.Loc, "expected function name in uselistorder_bb");
6400   if (F->isDeclaration())
6401     return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
6402 
6403   // Check the basic block.
6404   if (Label.Kind == ValID::t_LocalID)
6405     return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
6406   if (Label.Kind != ValID::t_LocalName)
6407     return Error(Label.Loc, "expected basic block name in uselistorder_bb");
6408   Value *V = F->getValueSymbolTable().lookup(Label.StrVal);
6409   if (!V)
6410     return Error(Label.Loc, "invalid basic block in uselistorder_bb");
6411   if (!isa<BasicBlock>(V))
6412     return Error(Label.Loc, "expected basic block in uselistorder_bb");
6413 
6414   return sortUseListOrder(V, Indexes, Loc);
6415 }
6416