1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/AsmParser/LLParser.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/AsmParser/LLToken.h"
20 #include "llvm/AsmParser/SlotMapping.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AutoUpgrade.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Comdat.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalIFunc.h"
33 #include "llvm/IR/GlobalObject.h"
34 #include "llvm/IR/InlineAsm.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/IR/ValueSymbolTable.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/MathExtras.h"
45 #include "llvm/Support/SaveAndRestore.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include <algorithm>
48 #include <cassert>
49 #include <cstring>
50 #include <iterator>
51 #include <vector>
52 
53 using namespace llvm;
54 
55 static std::string getTypeString(Type *T) {
56   std::string Result;
57   raw_string_ostream Tmp(Result);
58   Tmp << *T;
59   return Tmp.str();
60 }
61 
62 /// Run: module ::= toplevelentity*
63 bool LLParser::Run(bool UpgradeDebugInfo,
64                    DataLayoutCallbackTy DataLayoutCallback) {
65   // Prime the lexer.
66   Lex.Lex();
67 
68   if (Context.shouldDiscardValueNames())
69     return error(
70         Lex.getLoc(),
71         "Can't read textual IR with a Context that discards named Values");
72 
73   if (M) {
74     if (parseTargetDefinitions())
75       return true;
76 
77     if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple()))
78       M->setDataLayout(*LayoutOverride);
79   }
80 
81   return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) ||
82          validateEndOfIndex();
83 }
84 
85 bool LLParser::parseStandaloneConstantValue(Constant *&C,
86                                             const SlotMapping *Slots) {
87   restoreParsingState(Slots);
88   Lex.Lex();
89 
90   Type *Ty = nullptr;
91   if (parseType(Ty) || parseConstantValue(Ty, C))
92     return true;
93   if (Lex.getKind() != lltok::Eof)
94     return error(Lex.getLoc(), "expected end of string");
95   return false;
96 }
97 
98 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
99                                     const SlotMapping *Slots) {
100   restoreParsingState(Slots);
101   Lex.Lex();
102 
103   Read = 0;
104   SMLoc Start = Lex.getLoc();
105   Ty = nullptr;
106   if (parseType(Ty))
107     return true;
108   SMLoc End = Lex.getLoc();
109   Read = End.getPointer() - Start.getPointer();
110 
111   return false;
112 }
113 
114 void LLParser::restoreParsingState(const SlotMapping *Slots) {
115   if (!Slots)
116     return;
117   NumberedVals = Slots->GlobalValues;
118   NumberedMetadata = Slots->MetadataNodes;
119   for (const auto &I : Slots->NamedTypes)
120     NamedTypes.insert(
121         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
122   for (const auto &I : Slots->Types)
123     NumberedTypes.insert(
124         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
125 }
126 
127 /// validateEndOfModule - Do final validity and sanity checks at the end of the
128 /// module.
129 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) {
130   if (!M)
131     return false;
132   // Handle any function attribute group forward references.
133   for (const auto &RAG : ForwardRefAttrGroups) {
134     Value *V = RAG.first;
135     const std::vector<unsigned> &Attrs = RAG.second;
136     AttrBuilder B;
137 
138     for (const auto &Attr : Attrs)
139       B.merge(NumberedAttrBuilders[Attr]);
140 
141     if (Function *Fn = dyn_cast<Function>(V)) {
142       AttributeList AS = Fn->getAttributes();
143       AttrBuilder FnAttrs(AS.getFnAttributes());
144       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
145 
146       FnAttrs.merge(B);
147 
148       // If the alignment was parsed as an attribute, move to the alignment
149       // field.
150       if (FnAttrs.hasAlignmentAttr()) {
151         Fn->setAlignment(FnAttrs.getAlignment());
152         FnAttrs.removeAttribute(Attribute::Alignment);
153       }
154 
155       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
156                             AttributeSet::get(Context, FnAttrs));
157       Fn->setAttributes(AS);
158     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
159       AttributeList AS = CI->getAttributes();
160       AttrBuilder FnAttrs(AS.getFnAttributes());
161       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
162       FnAttrs.merge(B);
163       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
164                             AttributeSet::get(Context, FnAttrs));
165       CI->setAttributes(AS);
166     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
167       AttributeList AS = II->getAttributes();
168       AttrBuilder FnAttrs(AS.getFnAttributes());
169       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
170       FnAttrs.merge(B);
171       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
172                             AttributeSet::get(Context, FnAttrs));
173       II->setAttributes(AS);
174     } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
175       AttributeList AS = CBI->getAttributes();
176       AttrBuilder FnAttrs(AS.getFnAttributes());
177       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
178       FnAttrs.merge(B);
179       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
180                             AttributeSet::get(Context, FnAttrs));
181       CBI->setAttributes(AS);
182     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
183       AttrBuilder Attrs(GV->getAttributes());
184       Attrs.merge(B);
185       GV->setAttributes(AttributeSet::get(Context,Attrs));
186     } else {
187       llvm_unreachable("invalid object with forward attribute group reference");
188     }
189   }
190 
191   // If there are entries in ForwardRefBlockAddresses at this point, the
192   // function was never defined.
193   if (!ForwardRefBlockAddresses.empty())
194     return error(ForwardRefBlockAddresses.begin()->first.Loc,
195                  "expected function name in blockaddress");
196 
197   for (const auto &NT : NumberedTypes)
198     if (NT.second.second.isValid())
199       return error(NT.second.second,
200                    "use of undefined type '%" + Twine(NT.first) + "'");
201 
202   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
203        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
204     if (I->second.second.isValid())
205       return error(I->second.second,
206                    "use of undefined type named '" + I->getKey() + "'");
207 
208   if (!ForwardRefComdats.empty())
209     return error(ForwardRefComdats.begin()->second,
210                  "use of undefined comdat '$" +
211                      ForwardRefComdats.begin()->first + "'");
212 
213   if (!ForwardRefVals.empty())
214     return error(ForwardRefVals.begin()->second.second,
215                  "use of undefined value '@" + ForwardRefVals.begin()->first +
216                      "'");
217 
218   if (!ForwardRefValIDs.empty())
219     return error(ForwardRefValIDs.begin()->second.second,
220                  "use of undefined value '@" +
221                      Twine(ForwardRefValIDs.begin()->first) + "'");
222 
223   if (!ForwardRefMDNodes.empty())
224     return error(ForwardRefMDNodes.begin()->second.second,
225                  "use of undefined metadata '!" +
226                      Twine(ForwardRefMDNodes.begin()->first) + "'");
227 
228   // Resolve metadata cycles.
229   for (auto &N : NumberedMetadata) {
230     if (N.second && !N.second->isResolved())
231       N.second->resolveCycles();
232   }
233 
234   for (auto *Inst : InstsWithTBAATag) {
235     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
236     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
237     auto *UpgradedMD = UpgradeTBAANode(*MD);
238     if (MD != UpgradedMD)
239       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
240   }
241 
242   // Look for intrinsic functions and CallInst that need to be upgraded
243   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
244     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
245 
246   // Some types could be renamed during loading if several modules are
247   // loaded in the same LLVMContext (LTO scenario). In this case we should
248   // remangle intrinsics names as well.
249   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
250     Function *F = &*FI++;
251     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
252       F->replaceAllUsesWith(Remangled.getValue());
253       F->eraseFromParent();
254     }
255   }
256 
257   if (UpgradeDebugInfo)
258     llvm::UpgradeDebugInfo(*M);
259 
260   UpgradeModuleFlags(*M);
261   UpgradeSectionAttributes(*M);
262 
263   if (!Slots)
264     return false;
265   // Initialize the slot mapping.
266   // Because by this point we've parsed and validated everything, we can "steal"
267   // the mapping from LLParser as it doesn't need it anymore.
268   Slots->GlobalValues = std::move(NumberedVals);
269   Slots->MetadataNodes = std::move(NumberedMetadata);
270   for (const auto &I : NamedTypes)
271     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
272   for (const auto &I : NumberedTypes)
273     Slots->Types.insert(std::make_pair(I.first, I.second.first));
274 
275   return false;
276 }
277 
278 /// Do final validity and sanity checks at the end of the index.
279 bool LLParser::validateEndOfIndex() {
280   if (!Index)
281     return false;
282 
283   if (!ForwardRefValueInfos.empty())
284     return error(ForwardRefValueInfos.begin()->second.front().second,
285                  "use of undefined summary '^" +
286                      Twine(ForwardRefValueInfos.begin()->first) + "'");
287 
288   if (!ForwardRefAliasees.empty())
289     return error(ForwardRefAliasees.begin()->second.front().second,
290                  "use of undefined summary '^" +
291                      Twine(ForwardRefAliasees.begin()->first) + "'");
292 
293   if (!ForwardRefTypeIds.empty())
294     return error(ForwardRefTypeIds.begin()->second.front().second,
295                  "use of undefined type id summary '^" +
296                      Twine(ForwardRefTypeIds.begin()->first) + "'");
297 
298   return false;
299 }
300 
301 //===----------------------------------------------------------------------===//
302 // Top-Level Entities
303 //===----------------------------------------------------------------------===//
304 
305 bool LLParser::parseTargetDefinitions() {
306   while (true) {
307     switch (Lex.getKind()) {
308     case lltok::kw_target:
309       if (parseTargetDefinition())
310         return true;
311       break;
312     case lltok::kw_source_filename:
313       if (parseSourceFileName())
314         return true;
315       break;
316     default:
317       return false;
318     }
319   }
320 }
321 
322 bool LLParser::parseTopLevelEntities() {
323   // If there is no Module, then parse just the summary index entries.
324   if (!M) {
325     while (true) {
326       switch (Lex.getKind()) {
327       case lltok::Eof:
328         return false;
329       case lltok::SummaryID:
330         if (parseSummaryEntry())
331           return true;
332         break;
333       case lltok::kw_source_filename:
334         if (parseSourceFileName())
335           return true;
336         break;
337       default:
338         // Skip everything else
339         Lex.Lex();
340       }
341     }
342   }
343   while (true) {
344     switch (Lex.getKind()) {
345     default:
346       return tokError("expected top-level entity");
347     case lltok::Eof: return false;
348     case lltok::kw_declare:
349       if (parseDeclare())
350         return true;
351       break;
352     case lltok::kw_define:
353       if (parseDefine())
354         return true;
355       break;
356     case lltok::kw_module:
357       if (parseModuleAsm())
358         return true;
359       break;
360     case lltok::LocalVarID:
361       if (parseUnnamedType())
362         return true;
363       break;
364     case lltok::LocalVar:
365       if (parseNamedType())
366         return true;
367       break;
368     case lltok::GlobalID:
369       if (parseUnnamedGlobal())
370         return true;
371       break;
372     case lltok::GlobalVar:
373       if (parseNamedGlobal())
374         return true;
375       break;
376     case lltok::ComdatVar:  if (parseComdat()) return true; break;
377     case lltok::exclaim:
378       if (parseStandaloneMetadata())
379         return true;
380       break;
381     case lltok::SummaryID:
382       if (parseSummaryEntry())
383         return true;
384       break;
385     case lltok::MetadataVar:
386       if (parseNamedMetadata())
387         return true;
388       break;
389     case lltok::kw_attributes:
390       if (parseUnnamedAttrGrp())
391         return true;
392       break;
393     case lltok::kw_uselistorder:
394       if (parseUseListOrder())
395         return true;
396       break;
397     case lltok::kw_uselistorder_bb:
398       if (parseUseListOrderBB())
399         return true;
400       break;
401     }
402   }
403 }
404 
405 /// toplevelentity
406 ///   ::= 'module' 'asm' STRINGCONSTANT
407 bool LLParser::parseModuleAsm() {
408   assert(Lex.getKind() == lltok::kw_module);
409   Lex.Lex();
410 
411   std::string AsmStr;
412   if (parseToken(lltok::kw_asm, "expected 'module asm'") ||
413       parseStringConstant(AsmStr))
414     return true;
415 
416   M->appendModuleInlineAsm(AsmStr);
417   return false;
418 }
419 
420 /// toplevelentity
421 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
422 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
423 bool LLParser::parseTargetDefinition() {
424   assert(Lex.getKind() == lltok::kw_target);
425   std::string Str;
426   switch (Lex.Lex()) {
427   default:
428     return tokError("unknown target property");
429   case lltok::kw_triple:
430     Lex.Lex();
431     if (parseToken(lltok::equal, "expected '=' after target triple") ||
432         parseStringConstant(Str))
433       return true;
434     M->setTargetTriple(Str);
435     return false;
436   case lltok::kw_datalayout:
437     Lex.Lex();
438     if (parseToken(lltok::equal, "expected '=' after target datalayout") ||
439         parseStringConstant(Str))
440       return true;
441     M->setDataLayout(Str);
442     return false;
443   }
444 }
445 
446 /// toplevelentity
447 ///   ::= 'source_filename' '=' STRINGCONSTANT
448 bool LLParser::parseSourceFileName() {
449   assert(Lex.getKind() == lltok::kw_source_filename);
450   Lex.Lex();
451   if (parseToken(lltok::equal, "expected '=' after source_filename") ||
452       parseStringConstant(SourceFileName))
453     return true;
454   if (M)
455     M->setSourceFileName(SourceFileName);
456   return false;
457 }
458 
459 /// parseUnnamedType:
460 ///   ::= LocalVarID '=' 'type' type
461 bool LLParser::parseUnnamedType() {
462   LocTy TypeLoc = Lex.getLoc();
463   unsigned TypeID = Lex.getUIntVal();
464   Lex.Lex(); // eat LocalVarID;
465 
466   if (parseToken(lltok::equal, "expected '=' after name") ||
467       parseToken(lltok::kw_type, "expected 'type' after '='"))
468     return true;
469 
470   Type *Result = nullptr;
471   if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result))
472     return true;
473 
474   if (!isa<StructType>(Result)) {
475     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
476     if (Entry.first)
477       return error(TypeLoc, "non-struct types may not be recursive");
478     Entry.first = Result;
479     Entry.second = SMLoc();
480   }
481 
482   return false;
483 }
484 
485 /// toplevelentity
486 ///   ::= LocalVar '=' 'type' type
487 bool LLParser::parseNamedType() {
488   std::string Name = Lex.getStrVal();
489   LocTy NameLoc = Lex.getLoc();
490   Lex.Lex();  // eat LocalVar.
491 
492   if (parseToken(lltok::equal, "expected '=' after name") ||
493       parseToken(lltok::kw_type, "expected 'type' after name"))
494     return true;
495 
496   Type *Result = nullptr;
497   if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result))
498     return true;
499 
500   if (!isa<StructType>(Result)) {
501     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
502     if (Entry.first)
503       return error(NameLoc, "non-struct types may not be recursive");
504     Entry.first = Result;
505     Entry.second = SMLoc();
506   }
507 
508   return false;
509 }
510 
511 /// toplevelentity
512 ///   ::= 'declare' FunctionHeader
513 bool LLParser::parseDeclare() {
514   assert(Lex.getKind() == lltok::kw_declare);
515   Lex.Lex();
516 
517   std::vector<std::pair<unsigned, MDNode *>> MDs;
518   while (Lex.getKind() == lltok::MetadataVar) {
519     unsigned MDK;
520     MDNode *N;
521     if (parseMetadataAttachment(MDK, N))
522       return true;
523     MDs.push_back({MDK, N});
524   }
525 
526   Function *F;
527   if (parseFunctionHeader(F, false))
528     return true;
529   for (auto &MD : MDs)
530     F->addMetadata(MD.first, *MD.second);
531   return false;
532 }
533 
534 /// toplevelentity
535 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
536 bool LLParser::parseDefine() {
537   assert(Lex.getKind() == lltok::kw_define);
538   Lex.Lex();
539 
540   Function *F;
541   return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) ||
542          parseFunctionBody(*F);
543 }
544 
545 /// parseGlobalType
546 ///   ::= 'constant'
547 ///   ::= 'global'
548 bool LLParser::parseGlobalType(bool &IsConstant) {
549   if (Lex.getKind() == lltok::kw_constant)
550     IsConstant = true;
551   else if (Lex.getKind() == lltok::kw_global)
552     IsConstant = false;
553   else {
554     IsConstant = false;
555     return tokError("expected 'global' or 'constant'");
556   }
557   Lex.Lex();
558   return false;
559 }
560 
561 bool LLParser::parseOptionalUnnamedAddr(
562     GlobalVariable::UnnamedAddr &UnnamedAddr) {
563   if (EatIfPresent(lltok::kw_unnamed_addr))
564     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
565   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
566     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
567   else
568     UnnamedAddr = GlobalValue::UnnamedAddr::None;
569   return false;
570 }
571 
572 /// parseUnnamedGlobal:
573 ///   OptionalVisibility (ALIAS | IFUNC) ...
574 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
575 ///   OptionalDLLStorageClass
576 ///                                                     ...   -> global variable
577 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
578 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier
579 ///   OptionalVisibility
580 ///                OptionalDLLStorageClass
581 ///                                                     ...   -> global variable
582 bool LLParser::parseUnnamedGlobal() {
583   unsigned VarID = NumberedVals.size();
584   std::string Name;
585   LocTy NameLoc = Lex.getLoc();
586 
587   // Handle the GlobalID form.
588   if (Lex.getKind() == lltok::GlobalID) {
589     if (Lex.getUIntVal() != VarID)
590       return error(Lex.getLoc(),
591                    "variable expected to be numbered '%" + Twine(VarID) + "'");
592     Lex.Lex(); // eat GlobalID;
593 
594     if (parseToken(lltok::equal, "expected '=' after name"))
595       return true;
596   }
597 
598   bool HasLinkage;
599   unsigned Linkage, Visibility, DLLStorageClass;
600   bool DSOLocal;
601   GlobalVariable::ThreadLocalMode TLM;
602   GlobalVariable::UnnamedAddr UnnamedAddr;
603   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
604                            DSOLocal) ||
605       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
606     return true;
607 
608   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
609     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
610                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
611 
612   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
613                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
614 }
615 
616 /// parseNamedGlobal:
617 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
618 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
619 ///                 OptionalVisibility OptionalDLLStorageClass
620 ///                                                     ...   -> global variable
621 bool LLParser::parseNamedGlobal() {
622   assert(Lex.getKind() == lltok::GlobalVar);
623   LocTy NameLoc = Lex.getLoc();
624   std::string Name = Lex.getStrVal();
625   Lex.Lex();
626 
627   bool HasLinkage;
628   unsigned Linkage, Visibility, DLLStorageClass;
629   bool DSOLocal;
630   GlobalVariable::ThreadLocalMode TLM;
631   GlobalVariable::UnnamedAddr UnnamedAddr;
632   if (parseToken(lltok::equal, "expected '=' in global variable") ||
633       parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
634                            DSOLocal) ||
635       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
636     return true;
637 
638   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
639     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
640                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
641 
642   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
643                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
644 }
645 
646 bool LLParser::parseComdat() {
647   assert(Lex.getKind() == lltok::ComdatVar);
648   std::string Name = Lex.getStrVal();
649   LocTy NameLoc = Lex.getLoc();
650   Lex.Lex();
651 
652   if (parseToken(lltok::equal, "expected '=' here"))
653     return true;
654 
655   if (parseToken(lltok::kw_comdat, "expected comdat keyword"))
656     return tokError("expected comdat type");
657 
658   Comdat::SelectionKind SK;
659   switch (Lex.getKind()) {
660   default:
661     return tokError("unknown selection kind");
662   case lltok::kw_any:
663     SK = Comdat::Any;
664     break;
665   case lltok::kw_exactmatch:
666     SK = Comdat::ExactMatch;
667     break;
668   case lltok::kw_largest:
669     SK = Comdat::Largest;
670     break;
671   case lltok::kw_noduplicates:
672     SK = Comdat::NoDuplicates;
673     break;
674   case lltok::kw_samesize:
675     SK = Comdat::SameSize;
676     break;
677   }
678   Lex.Lex();
679 
680   // See if the comdat was forward referenced, if so, use the comdat.
681   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
682   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
683   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
684     return error(NameLoc, "redefinition of comdat '$" + Name + "'");
685 
686   Comdat *C;
687   if (I != ComdatSymTab.end())
688     C = &I->second;
689   else
690     C = M->getOrInsertComdat(Name);
691   C->setSelectionKind(SK);
692 
693   return false;
694 }
695 
696 // MDString:
697 //   ::= '!' STRINGCONSTANT
698 bool LLParser::parseMDString(MDString *&Result) {
699   std::string Str;
700   if (parseStringConstant(Str))
701     return true;
702   Result = MDString::get(Context, Str);
703   return false;
704 }
705 
706 // MDNode:
707 //   ::= '!' MDNodeNumber
708 bool LLParser::parseMDNodeID(MDNode *&Result) {
709   // !{ ..., !42, ... }
710   LocTy IDLoc = Lex.getLoc();
711   unsigned MID = 0;
712   if (parseUInt32(MID))
713     return true;
714 
715   // If not a forward reference, just return it now.
716   if (NumberedMetadata.count(MID)) {
717     Result = NumberedMetadata[MID];
718     return false;
719   }
720 
721   // Otherwise, create MDNode forward reference.
722   auto &FwdRef = ForwardRefMDNodes[MID];
723   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
724 
725   Result = FwdRef.first.get();
726   NumberedMetadata[MID].reset(Result);
727   return false;
728 }
729 
730 /// parseNamedMetadata:
731 ///   !foo = !{ !1, !2 }
732 bool LLParser::parseNamedMetadata() {
733   assert(Lex.getKind() == lltok::MetadataVar);
734   std::string Name = Lex.getStrVal();
735   Lex.Lex();
736 
737   if (parseToken(lltok::equal, "expected '=' here") ||
738       parseToken(lltok::exclaim, "Expected '!' here") ||
739       parseToken(lltok::lbrace, "Expected '{' here"))
740     return true;
741 
742   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
743   if (Lex.getKind() != lltok::rbrace)
744     do {
745       MDNode *N = nullptr;
746       // parse DIExpressions inline as a special case. They are still MDNodes,
747       // so they can still appear in named metadata. Remove this logic if they
748       // become plain Metadata.
749       if (Lex.getKind() == lltok::MetadataVar &&
750           Lex.getStrVal() == "DIExpression") {
751         if (parseDIExpression(N, /*IsDistinct=*/false))
752           return true;
753         // DIArgLists should only appear inline in a function, as they may
754         // contain LocalAsMetadata arguments which require a function context.
755       } else if (Lex.getKind() == lltok::MetadataVar &&
756                  Lex.getStrVal() == "DIArgList") {
757         return tokError("found DIArgList outside of function");
758       } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
759                  parseMDNodeID(N)) {
760         return true;
761       }
762       NMD->addOperand(N);
763     } while (EatIfPresent(lltok::comma));
764 
765   return parseToken(lltok::rbrace, "expected end of metadata node");
766 }
767 
768 /// parseStandaloneMetadata:
769 ///   !42 = !{...}
770 bool LLParser::parseStandaloneMetadata() {
771   assert(Lex.getKind() == lltok::exclaim);
772   Lex.Lex();
773   unsigned MetadataID = 0;
774 
775   MDNode *Init;
776   if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here"))
777     return true;
778 
779   // Detect common error, from old metadata syntax.
780   if (Lex.getKind() == lltok::Type)
781     return tokError("unexpected type in metadata definition");
782 
783   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
784   if (Lex.getKind() == lltok::MetadataVar) {
785     if (parseSpecializedMDNode(Init, IsDistinct))
786       return true;
787   } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
788              parseMDTuple(Init, IsDistinct))
789     return true;
790 
791   // See if this was forward referenced, if so, handle it.
792   auto FI = ForwardRefMDNodes.find(MetadataID);
793   if (FI != ForwardRefMDNodes.end()) {
794     FI->second.first->replaceAllUsesWith(Init);
795     ForwardRefMDNodes.erase(FI);
796 
797     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
798   } else {
799     if (NumberedMetadata.count(MetadataID))
800       return tokError("Metadata id is already used");
801     NumberedMetadata[MetadataID].reset(Init);
802   }
803 
804   return false;
805 }
806 
807 // Skips a single module summary entry.
808 bool LLParser::skipModuleSummaryEntry() {
809   // Each module summary entry consists of a tag for the entry
810   // type, followed by a colon, then the fields which may be surrounded by
811   // nested sets of parentheses. The "tag:" looks like a Label. Once parsing
812   // support is in place we will look for the tokens corresponding to the
813   // expected tags.
814   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
815       Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags &&
816       Lex.getKind() != lltok::kw_blockcount)
817     return tokError(
818         "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the "
819         "start of summary entry");
820   if (Lex.getKind() == lltok::kw_flags)
821     return parseSummaryIndexFlags();
822   if (Lex.getKind() == lltok::kw_blockcount)
823     return parseBlockCount();
824   Lex.Lex();
825   if (parseToken(lltok::colon, "expected ':' at start of summary entry") ||
826       parseToken(lltok::lparen, "expected '(' at start of summary entry"))
827     return true;
828   // Now walk through the parenthesized entry, until the number of open
829   // parentheses goes back down to 0 (the first '(' was parsed above).
830   unsigned NumOpenParen = 1;
831   do {
832     switch (Lex.getKind()) {
833     case lltok::lparen:
834       NumOpenParen++;
835       break;
836     case lltok::rparen:
837       NumOpenParen--;
838       break;
839     case lltok::Eof:
840       return tokError("found end of file while parsing summary entry");
841     default:
842       // Skip everything in between parentheses.
843       break;
844     }
845     Lex.Lex();
846   } while (NumOpenParen > 0);
847   return false;
848 }
849 
850 /// SummaryEntry
851 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
852 bool LLParser::parseSummaryEntry() {
853   assert(Lex.getKind() == lltok::SummaryID);
854   unsigned SummaryID = Lex.getUIntVal();
855 
856   // For summary entries, colons should be treated as distinct tokens,
857   // not an indication of the end of a label token.
858   Lex.setIgnoreColonInIdentifiers(true);
859 
860   Lex.Lex();
861   if (parseToken(lltok::equal, "expected '=' here"))
862     return true;
863 
864   // If we don't have an index object, skip the summary entry.
865   if (!Index)
866     return skipModuleSummaryEntry();
867 
868   bool result = false;
869   switch (Lex.getKind()) {
870   case lltok::kw_gv:
871     result = parseGVEntry(SummaryID);
872     break;
873   case lltok::kw_module:
874     result = parseModuleEntry(SummaryID);
875     break;
876   case lltok::kw_typeid:
877     result = parseTypeIdEntry(SummaryID);
878     break;
879   case lltok::kw_typeidCompatibleVTable:
880     result = parseTypeIdCompatibleVtableEntry(SummaryID);
881     break;
882   case lltok::kw_flags:
883     result = parseSummaryIndexFlags();
884     break;
885   case lltok::kw_blockcount:
886     result = parseBlockCount();
887     break;
888   default:
889     result = error(Lex.getLoc(), "unexpected summary kind");
890     break;
891   }
892   Lex.setIgnoreColonInIdentifiers(false);
893   return result;
894 }
895 
896 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
897   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
898          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
899 }
900 
901 // If there was an explicit dso_local, update GV. In the absence of an explicit
902 // dso_local we keep the default value.
903 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
904   if (DSOLocal)
905     GV.setDSOLocal(true);
906 }
907 
908 static std::string typeComparisonErrorMessage(StringRef Message, Type *Ty1,
909                                               Type *Ty2) {
910   std::string ErrString;
911   raw_string_ostream ErrOS(ErrString);
912   ErrOS << Message << " (" << *Ty1 << " vs " << *Ty2 << ")";
913   return ErrOS.str();
914 }
915 
916 /// parseIndirectSymbol:
917 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
918 ///                     OptionalVisibility OptionalDLLStorageClass
919 ///                     OptionalThreadLocal OptionalUnnamedAddr
920 ///                     'alias|ifunc' IndirectSymbol IndirectSymbolAttr*
921 ///
922 /// IndirectSymbol
923 ///   ::= TypeAndValue
924 ///
925 /// IndirectSymbolAttr
926 ///   ::= ',' 'partition' StringConstant
927 ///
928 /// Everything through OptionalUnnamedAddr has already been parsed.
929 ///
930 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
931                                    unsigned L, unsigned Visibility,
932                                    unsigned DLLStorageClass, bool DSOLocal,
933                                    GlobalVariable::ThreadLocalMode TLM,
934                                    GlobalVariable::UnnamedAddr UnnamedAddr) {
935   bool IsAlias;
936   if (Lex.getKind() == lltok::kw_alias)
937     IsAlias = true;
938   else if (Lex.getKind() == lltok::kw_ifunc)
939     IsAlias = false;
940   else
941     llvm_unreachable("Not an alias or ifunc!");
942   Lex.Lex();
943 
944   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
945 
946   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
947     return error(NameLoc, "invalid linkage type for alias");
948 
949   if (!isValidVisibilityForLinkage(Visibility, L))
950     return error(NameLoc,
951                  "symbol with local linkage must have default visibility");
952 
953   Type *Ty;
954   LocTy ExplicitTypeLoc = Lex.getLoc();
955   if (parseType(Ty) ||
956       parseToken(lltok::comma, "expected comma after alias or ifunc's type"))
957     return true;
958 
959   Constant *Aliasee;
960   LocTy AliaseeLoc = Lex.getLoc();
961   if (Lex.getKind() != lltok::kw_bitcast &&
962       Lex.getKind() != lltok::kw_getelementptr &&
963       Lex.getKind() != lltok::kw_addrspacecast &&
964       Lex.getKind() != lltok::kw_inttoptr) {
965     if (parseGlobalTypeAndValue(Aliasee))
966       return true;
967   } else {
968     // The bitcast dest type is not present, it is implied by the dest type.
969     ValID ID;
970     if (parseValID(ID, /*PFS=*/nullptr))
971       return true;
972     if (ID.Kind != ValID::t_Constant)
973       return error(AliaseeLoc, "invalid aliasee");
974     Aliasee = ID.ConstantVal;
975   }
976 
977   Type *AliaseeType = Aliasee->getType();
978   auto *PTy = dyn_cast<PointerType>(AliaseeType);
979   if (!PTy)
980     return error(AliaseeLoc, "An alias or ifunc must have pointer type");
981   unsigned AddrSpace = PTy->getAddressSpace();
982 
983   if (IsAlias && !PTy->isOpaqueOrPointeeTypeMatches(Ty)) {
984     return error(
985         ExplicitTypeLoc,
986         typeComparisonErrorMessage(
987             "explicit pointee type doesn't match operand's pointee type", Ty,
988             PTy->getElementType()));
989   }
990 
991   if (!IsAlias && !PTy->getElementType()->isFunctionTy()) {
992     return error(ExplicitTypeLoc,
993                  "explicit pointee type should be a function type");
994   }
995 
996   GlobalValue *GVal = nullptr;
997 
998   // See if the alias was forward referenced, if so, prepare to replace the
999   // forward reference.
1000   if (!Name.empty()) {
1001     auto I = ForwardRefVals.find(Name);
1002     if (I != ForwardRefVals.end()) {
1003       GVal = I->second.first;
1004       ForwardRefVals.erase(Name);
1005     } else if (M->getNamedValue(Name)) {
1006       return error(NameLoc, "redefinition of global '@" + Name + "'");
1007     }
1008   } else {
1009     auto I = ForwardRefValIDs.find(NumberedVals.size());
1010     if (I != ForwardRefValIDs.end()) {
1011       GVal = I->second.first;
1012       ForwardRefValIDs.erase(I);
1013     }
1014   }
1015 
1016   // Okay, create the alias but do not insert it into the module yet.
1017   std::unique_ptr<GlobalIndirectSymbol> GA;
1018   if (IsAlias)
1019     GA.reset(GlobalAlias::create(Ty, AddrSpace,
1020                                  (GlobalValue::LinkageTypes)Linkage, Name,
1021                                  Aliasee, /*Parent*/ nullptr));
1022   else
1023     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
1024                                  (GlobalValue::LinkageTypes)Linkage, Name,
1025                                  Aliasee, /*Parent*/ nullptr));
1026   GA->setThreadLocalMode(TLM);
1027   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1028   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1029   GA->setUnnamedAddr(UnnamedAddr);
1030   maybeSetDSOLocal(DSOLocal, *GA);
1031 
1032   // At this point we've parsed everything except for the IndirectSymbolAttrs.
1033   // Now parse them if there are any.
1034   while (Lex.getKind() == lltok::comma) {
1035     Lex.Lex();
1036 
1037     if (Lex.getKind() == lltok::kw_partition) {
1038       Lex.Lex();
1039       GA->setPartition(Lex.getStrVal());
1040       if (parseToken(lltok::StringConstant, "expected partition string"))
1041         return true;
1042     } else {
1043       return tokError("unknown alias or ifunc property!");
1044     }
1045   }
1046 
1047   if (Name.empty())
1048     NumberedVals.push_back(GA.get());
1049 
1050   if (GVal) {
1051     // Verify that types agree.
1052     if (GVal->getType() != GA->getType())
1053       return error(
1054           ExplicitTypeLoc,
1055           "forward reference and definition of alias have different types");
1056 
1057     // If they agree, just RAUW the old value with the alias and remove the
1058     // forward ref info.
1059     GVal->replaceAllUsesWith(GA.get());
1060     GVal->eraseFromParent();
1061   }
1062 
1063   // Insert into the module, we know its name won't collide now.
1064   if (IsAlias)
1065     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
1066   else
1067     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
1068   assert(GA->getName() == Name && "Should not be a name conflict!");
1069 
1070   // The module owns this now
1071   GA.release();
1072 
1073   return false;
1074 }
1075 
1076 /// parseGlobal
1077 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1078 ///       OptionalVisibility OptionalDLLStorageClass
1079 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1080 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1081 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1082 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1083 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1084 ///       Const OptionalAttrs
1085 ///
1086 /// Everything up to and including OptionalUnnamedAddr has been parsed
1087 /// already.
1088 ///
1089 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc,
1090                            unsigned Linkage, bool HasLinkage,
1091                            unsigned Visibility, unsigned DLLStorageClass,
1092                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1093                            GlobalVariable::UnnamedAddr UnnamedAddr) {
1094   if (!isValidVisibilityForLinkage(Visibility, Linkage))
1095     return error(NameLoc,
1096                  "symbol with local linkage must have default visibility");
1097 
1098   unsigned AddrSpace;
1099   bool IsConstant, IsExternallyInitialized;
1100   LocTy IsExternallyInitializedLoc;
1101   LocTy TyLoc;
1102 
1103   Type *Ty = nullptr;
1104   if (parseOptionalAddrSpace(AddrSpace) ||
1105       parseOptionalToken(lltok::kw_externally_initialized,
1106                          IsExternallyInitialized,
1107                          &IsExternallyInitializedLoc) ||
1108       parseGlobalType(IsConstant) || parseType(Ty, TyLoc))
1109     return true;
1110 
1111   // If the linkage is specified and is external, then no initializer is
1112   // present.
1113   Constant *Init = nullptr;
1114   if (!HasLinkage ||
1115       !GlobalValue::isValidDeclarationLinkage(
1116           (GlobalValue::LinkageTypes)Linkage)) {
1117     if (parseGlobalValue(Ty, Init))
1118       return true;
1119   }
1120 
1121   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1122     return error(TyLoc, "invalid type for global variable");
1123 
1124   GlobalValue *GVal = nullptr;
1125 
1126   // See if the global was forward referenced, if so, use the global.
1127   if (!Name.empty()) {
1128     auto I = ForwardRefVals.find(Name);
1129     if (I != ForwardRefVals.end()) {
1130       GVal = I->second.first;
1131       ForwardRefVals.erase(I);
1132     } else if (M->getNamedValue(Name)) {
1133       return error(NameLoc, "redefinition of global '@" + Name + "'");
1134     }
1135   } else {
1136     auto I = ForwardRefValIDs.find(NumberedVals.size());
1137     if (I != ForwardRefValIDs.end()) {
1138       GVal = I->second.first;
1139       ForwardRefValIDs.erase(I);
1140     }
1141   }
1142 
1143   GlobalVariable *GV = new GlobalVariable(
1144       *M, Ty, false, GlobalValue::ExternalLinkage, nullptr, Name, nullptr,
1145       GlobalVariable::NotThreadLocal, AddrSpace);
1146 
1147   if (Name.empty())
1148     NumberedVals.push_back(GV);
1149 
1150   // Set the parsed properties on the global.
1151   if (Init)
1152     GV->setInitializer(Init);
1153   GV->setConstant(IsConstant);
1154   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1155   maybeSetDSOLocal(DSOLocal, *GV);
1156   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1157   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1158   GV->setExternallyInitialized(IsExternallyInitialized);
1159   GV->setThreadLocalMode(TLM);
1160   GV->setUnnamedAddr(UnnamedAddr);
1161 
1162   if (GVal) {
1163     if (!GVal->getType()->isOpaque() && GVal->getValueType() != Ty)
1164       return error(
1165           TyLoc,
1166           "forward reference and definition of global have different types");
1167 
1168     GVal->replaceAllUsesWith(GV);
1169     GVal->eraseFromParent();
1170   }
1171 
1172   // parse attributes on the global.
1173   while (Lex.getKind() == lltok::comma) {
1174     Lex.Lex();
1175 
1176     if (Lex.getKind() == lltok::kw_section) {
1177       Lex.Lex();
1178       GV->setSection(Lex.getStrVal());
1179       if (parseToken(lltok::StringConstant, "expected global section string"))
1180         return true;
1181     } else if (Lex.getKind() == lltok::kw_partition) {
1182       Lex.Lex();
1183       GV->setPartition(Lex.getStrVal());
1184       if (parseToken(lltok::StringConstant, "expected partition string"))
1185         return true;
1186     } else if (Lex.getKind() == lltok::kw_align) {
1187       MaybeAlign Alignment;
1188       if (parseOptionalAlignment(Alignment))
1189         return true;
1190       GV->setAlignment(Alignment);
1191     } else if (Lex.getKind() == lltok::MetadataVar) {
1192       if (parseGlobalObjectMetadataAttachment(*GV))
1193         return true;
1194     } else {
1195       Comdat *C;
1196       if (parseOptionalComdat(Name, C))
1197         return true;
1198       if (C)
1199         GV->setComdat(C);
1200       else
1201         return tokError("unknown global variable property!");
1202     }
1203   }
1204 
1205   AttrBuilder Attrs;
1206   LocTy BuiltinLoc;
1207   std::vector<unsigned> FwdRefAttrGrps;
1208   if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1209     return true;
1210   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1211     GV->setAttributes(AttributeSet::get(Context, Attrs));
1212     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1213   }
1214 
1215   return false;
1216 }
1217 
1218 /// parseUnnamedAttrGrp
1219 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1220 bool LLParser::parseUnnamedAttrGrp() {
1221   assert(Lex.getKind() == lltok::kw_attributes);
1222   LocTy AttrGrpLoc = Lex.getLoc();
1223   Lex.Lex();
1224 
1225   if (Lex.getKind() != lltok::AttrGrpID)
1226     return tokError("expected attribute group id");
1227 
1228   unsigned VarID = Lex.getUIntVal();
1229   std::vector<unsigned> unused;
1230   LocTy BuiltinLoc;
1231   Lex.Lex();
1232 
1233   if (parseToken(lltok::equal, "expected '=' here") ||
1234       parseToken(lltok::lbrace, "expected '{' here") ||
1235       parseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1236                                  BuiltinLoc) ||
1237       parseToken(lltok::rbrace, "expected end of attribute group"))
1238     return true;
1239 
1240   if (!NumberedAttrBuilders[VarID].hasAttributes())
1241     return error(AttrGrpLoc, "attribute group has no attributes");
1242 
1243   return false;
1244 }
1245 
1246 /// parseFnAttributeValuePairs
1247 ///   ::= <attr> | <attr> '=' <value>
1248 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B,
1249                                           std::vector<unsigned> &FwdRefAttrGrps,
1250                                           bool inAttrGrp, LocTy &BuiltinLoc) {
1251   bool HaveError = false;
1252 
1253   B.clear();
1254 
1255   while (true) {
1256     lltok::Kind Token = Lex.getKind();
1257     if (Token == lltok::kw_builtin)
1258       BuiltinLoc = Lex.getLoc();
1259     switch (Token) {
1260     default:
1261       if (!inAttrGrp) return HaveError;
1262       return error(Lex.getLoc(), "unterminated attribute group");
1263     case lltok::rbrace:
1264       // Finished.
1265       return false;
1266 
1267     case lltok::AttrGrpID: {
1268       // Allow a function to reference an attribute group:
1269       //
1270       //   define void @foo() #1 { ... }
1271       if (inAttrGrp)
1272         HaveError |= error(
1273             Lex.getLoc(),
1274             "cannot have an attribute group reference in an attribute group");
1275 
1276       unsigned AttrGrpNum = Lex.getUIntVal();
1277       if (inAttrGrp) break;
1278 
1279       // Save the reference to the attribute group. We'll fill it in later.
1280       FwdRefAttrGrps.push_back(AttrGrpNum);
1281       break;
1282     }
1283     // Target-dependent attributes:
1284     case lltok::StringConstant: {
1285       if (parseStringAttribute(B))
1286         return true;
1287       continue;
1288     }
1289 
1290     // Target-independent attributes:
1291     case lltok::kw_align: {
1292       // As a hack, we allow function alignment to be initially parsed as an
1293       // attribute on a function declaration/definition or added to an attribute
1294       // group and later moved to the alignment field.
1295       MaybeAlign Alignment;
1296       if (inAttrGrp) {
1297         Lex.Lex();
1298         uint32_t Value = 0;
1299         if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value))
1300           return true;
1301         Alignment = Align(Value);
1302       } else {
1303         if (parseOptionalAlignment(Alignment))
1304           return true;
1305       }
1306       B.addAlignmentAttr(Alignment);
1307       continue;
1308     }
1309     case lltok::kw_alignstack: {
1310       unsigned Alignment;
1311       if (inAttrGrp) {
1312         Lex.Lex();
1313         if (parseToken(lltok::equal, "expected '=' here") ||
1314             parseUInt32(Alignment))
1315           return true;
1316       } else {
1317         if (parseOptionalStackAlignment(Alignment))
1318           return true;
1319       }
1320       B.addStackAlignmentAttr(Alignment);
1321       continue;
1322     }
1323     case lltok::kw_allocsize: {
1324       unsigned ElemSizeArg;
1325       Optional<unsigned> NumElemsArg;
1326       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1327       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1328         return true;
1329       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1330       continue;
1331     }
1332     case lltok::kw_vscale_range: {
1333       unsigned MinValue, MaxValue;
1334       // inAttrGrp doesn't matter; we only support vscale_range(a[, b])
1335       if (parseVScaleRangeArguments(MinValue, MaxValue))
1336         return true;
1337       B.addVScaleRangeAttr(MinValue, MaxValue);
1338       continue;
1339     }
1340     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1341     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1342     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1343     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1344     case lltok::kw_hot: B.addAttribute(Attribute::Hot); break;
1345     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1346     case lltok::kw_inaccessiblememonly:
1347       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1348     case lltok::kw_inaccessiblemem_or_argmemonly:
1349       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1350     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1351     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1352     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1353     case lltok::kw_mustprogress:
1354       B.addAttribute(Attribute::MustProgress);
1355       break;
1356     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1357     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1358     case lltok::kw_nocallback:
1359       B.addAttribute(Attribute::NoCallback);
1360       break;
1361     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1362     case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break;
1363     case lltok::kw_noimplicitfloat:
1364       B.addAttribute(Attribute::NoImplicitFloat); break;
1365     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1366     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1367     case lltok::kw_nomerge: B.addAttribute(Attribute::NoMerge); break;
1368     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1369     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1370     case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break;
1371     case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break;
1372     case lltok::kw_noprofile: B.addAttribute(Attribute::NoProfile); break;
1373     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1374     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1375     case lltok::kw_nosanitize_coverage:
1376       B.addAttribute(Attribute::NoSanitizeCoverage);
1377       break;
1378     case lltok::kw_null_pointer_is_valid:
1379       B.addAttribute(Attribute::NullPointerIsValid); break;
1380     case lltok::kw_optforfuzzing:
1381       B.addAttribute(Attribute::OptForFuzzing); break;
1382     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1383     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1384     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1385     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1386     case lltok::kw_returns_twice:
1387       B.addAttribute(Attribute::ReturnsTwice); break;
1388     case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1389     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1390     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1391     case lltok::kw_sspstrong:
1392       B.addAttribute(Attribute::StackProtectStrong); break;
1393     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1394     case lltok::kw_shadowcallstack:
1395       B.addAttribute(Attribute::ShadowCallStack); break;
1396     case lltok::kw_sanitize_address:
1397       B.addAttribute(Attribute::SanitizeAddress); break;
1398     case lltok::kw_sanitize_hwaddress:
1399       B.addAttribute(Attribute::SanitizeHWAddress); break;
1400     case lltok::kw_sanitize_memtag:
1401       B.addAttribute(Attribute::SanitizeMemTag); break;
1402     case lltok::kw_sanitize_thread:
1403       B.addAttribute(Attribute::SanitizeThread); break;
1404     case lltok::kw_sanitize_memory:
1405       B.addAttribute(Attribute::SanitizeMemory); break;
1406     case lltok::kw_speculative_load_hardening:
1407       B.addAttribute(Attribute::SpeculativeLoadHardening);
1408       break;
1409     case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1410     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1411     case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break;
1412     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1413     case lltok::kw_preallocated: {
1414       if (parseRequiredTypeAttr(B, lltok::kw_preallocated,
1415                                 Attribute::Preallocated))
1416         return true;
1417       break;
1418     }
1419 
1420     // error handling.
1421     case lltok::kw_inreg:
1422     case lltok::kw_signext:
1423     case lltok::kw_zeroext:
1424       HaveError |=
1425           error(Lex.getLoc(), "invalid use of attribute on a function");
1426       break;
1427     case lltok::kw_byval:
1428     case lltok::kw_dereferenceable:
1429     case lltok::kw_dereferenceable_or_null:
1430     case lltok::kw_inalloca:
1431     case lltok::kw_nest:
1432     case lltok::kw_noalias:
1433     case lltok::kw_noundef:
1434     case lltok::kw_nocapture:
1435     case lltok::kw_nonnull:
1436     case lltok::kw_returned:
1437     case lltok::kw_sret:
1438     case lltok::kw_swifterror:
1439     case lltok::kw_swiftself:
1440     case lltok::kw_swiftasync:
1441     case lltok::kw_immarg:
1442     case lltok::kw_byref:
1443       HaveError |=
1444           error(Lex.getLoc(),
1445                 "invalid use of parameter-only attribute on a function");
1446       break;
1447     }
1448 
1449     // parsePreallocated() consumes token
1450     if (Token != lltok::kw_preallocated)
1451       Lex.Lex();
1452   }
1453 }
1454 
1455 //===----------------------------------------------------------------------===//
1456 // GlobalValue Reference/Resolution Routines.
1457 //===----------------------------------------------------------------------===//
1458 
1459 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy) {
1460   // For opaque pointers, the used global type does not matter. We will later
1461   // RAUW it with a global/function of the correct type.
1462   if (PTy->isOpaque())
1463     return new GlobalVariable(*M, Type::getInt8Ty(M->getContext()), false,
1464                               GlobalValue::ExternalWeakLinkage, nullptr, "",
1465                               nullptr, GlobalVariable::NotThreadLocal,
1466                               PTy->getAddressSpace());
1467 
1468   if (auto *FT = dyn_cast<FunctionType>(PTy->getPointerElementType()))
1469     return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1470                             PTy->getAddressSpace(), "", M);
1471   else
1472     return new GlobalVariable(*M, PTy->getPointerElementType(), false,
1473                               GlobalValue::ExternalWeakLinkage, nullptr, "",
1474                               nullptr, GlobalVariable::NotThreadLocal,
1475                               PTy->getAddressSpace());
1476 }
1477 
1478 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1479                                         Value *Val, bool IsCall) {
1480   Type *ValTy = Val->getType();
1481   if (ValTy == Ty)
1482     return Val;
1483   // For calls, we also allow opaque pointers.
1484   if (IsCall && ValTy == PointerType::get(Ty->getContext(),
1485                                           Ty->getPointerAddressSpace()))
1486     return Val;
1487   if (Ty->isLabelTy())
1488     error(Loc, "'" + Name + "' is not a basic block");
1489   else
1490     error(Loc, "'" + Name + "' defined with type '" +
1491                    getTypeString(Val->getType()) + "' but expected '" +
1492                    getTypeString(Ty) + "'");
1493   return nullptr;
1494 }
1495 
1496 /// getGlobalVal - Get a value with the specified name or ID, creating a
1497 /// forward reference record if needed.  This can return null if the value
1498 /// exists but does not have the right type.
1499 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty,
1500                                     LocTy Loc, bool IsCall) {
1501   PointerType *PTy = dyn_cast<PointerType>(Ty);
1502   if (!PTy) {
1503     error(Loc, "global variable reference must have pointer type");
1504     return nullptr;
1505   }
1506 
1507   // Look this name up in the normal function symbol table.
1508   GlobalValue *Val =
1509     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1510 
1511   // If this is a forward reference for the value, see if we already created a
1512   // forward ref record.
1513   if (!Val) {
1514     auto I = ForwardRefVals.find(Name);
1515     if (I != ForwardRefVals.end())
1516       Val = I->second.first;
1517   }
1518 
1519   // If we have the value in the symbol table or fwd-ref table, return it.
1520   if (Val)
1521     return cast_or_null<GlobalValue>(
1522         checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall));
1523 
1524   // Otherwise, create a new forward reference for this value and remember it.
1525   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy);
1526   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1527   return FwdVal;
1528 }
1529 
1530 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc,
1531                                     bool IsCall) {
1532   PointerType *PTy = dyn_cast<PointerType>(Ty);
1533   if (!PTy) {
1534     error(Loc, "global variable reference must have pointer type");
1535     return nullptr;
1536   }
1537 
1538   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1539 
1540   // If this is a forward reference for the value, see if we already created a
1541   // forward ref record.
1542   if (!Val) {
1543     auto I = ForwardRefValIDs.find(ID);
1544     if (I != ForwardRefValIDs.end())
1545       Val = I->second.first;
1546   }
1547 
1548   // If we have the value in the symbol table or fwd-ref table, return it.
1549   if (Val)
1550     return cast_or_null<GlobalValue>(
1551         checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall));
1552 
1553   // Otherwise, create a new forward reference for this value and remember it.
1554   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy);
1555   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1556   return FwdVal;
1557 }
1558 
1559 //===----------------------------------------------------------------------===//
1560 // Comdat Reference/Resolution Routines.
1561 //===----------------------------------------------------------------------===//
1562 
1563 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1564   // Look this name up in the comdat symbol table.
1565   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1566   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1567   if (I != ComdatSymTab.end())
1568     return &I->second;
1569 
1570   // Otherwise, create a new forward reference for this value and remember it.
1571   Comdat *C = M->getOrInsertComdat(Name);
1572   ForwardRefComdats[Name] = Loc;
1573   return C;
1574 }
1575 
1576 //===----------------------------------------------------------------------===//
1577 // Helper Routines.
1578 //===----------------------------------------------------------------------===//
1579 
1580 /// parseToken - If the current token has the specified kind, eat it and return
1581 /// success.  Otherwise, emit the specified error and return failure.
1582 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) {
1583   if (Lex.getKind() != T)
1584     return tokError(ErrMsg);
1585   Lex.Lex();
1586   return false;
1587 }
1588 
1589 /// parseStringConstant
1590 ///   ::= StringConstant
1591 bool LLParser::parseStringConstant(std::string &Result) {
1592   if (Lex.getKind() != lltok::StringConstant)
1593     return tokError("expected string constant");
1594   Result = Lex.getStrVal();
1595   Lex.Lex();
1596   return false;
1597 }
1598 
1599 /// parseUInt32
1600 ///   ::= uint32
1601 bool LLParser::parseUInt32(uint32_t &Val) {
1602   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1603     return tokError("expected integer");
1604   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1605   if (Val64 != unsigned(Val64))
1606     return tokError("expected 32-bit integer (too large)");
1607   Val = Val64;
1608   Lex.Lex();
1609   return false;
1610 }
1611 
1612 /// parseUInt64
1613 ///   ::= uint64
1614 bool LLParser::parseUInt64(uint64_t &Val) {
1615   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1616     return tokError("expected integer");
1617   Val = Lex.getAPSIntVal().getLimitedValue();
1618   Lex.Lex();
1619   return false;
1620 }
1621 
1622 /// parseTLSModel
1623 ///   := 'localdynamic'
1624 ///   := 'initialexec'
1625 ///   := 'localexec'
1626 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1627   switch (Lex.getKind()) {
1628     default:
1629       return tokError("expected localdynamic, initialexec or localexec");
1630     case lltok::kw_localdynamic:
1631       TLM = GlobalVariable::LocalDynamicTLSModel;
1632       break;
1633     case lltok::kw_initialexec:
1634       TLM = GlobalVariable::InitialExecTLSModel;
1635       break;
1636     case lltok::kw_localexec:
1637       TLM = GlobalVariable::LocalExecTLSModel;
1638       break;
1639   }
1640 
1641   Lex.Lex();
1642   return false;
1643 }
1644 
1645 /// parseOptionalThreadLocal
1646 ///   := /*empty*/
1647 ///   := 'thread_local'
1648 ///   := 'thread_local' '(' tlsmodel ')'
1649 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1650   TLM = GlobalVariable::NotThreadLocal;
1651   if (!EatIfPresent(lltok::kw_thread_local))
1652     return false;
1653 
1654   TLM = GlobalVariable::GeneralDynamicTLSModel;
1655   if (Lex.getKind() == lltok::lparen) {
1656     Lex.Lex();
1657     return parseTLSModel(TLM) ||
1658            parseToken(lltok::rparen, "expected ')' after thread local model");
1659   }
1660   return false;
1661 }
1662 
1663 /// parseOptionalAddrSpace
1664 ///   := /*empty*/
1665 ///   := 'addrspace' '(' uint32 ')'
1666 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1667   AddrSpace = DefaultAS;
1668   if (!EatIfPresent(lltok::kw_addrspace))
1669     return false;
1670   return parseToken(lltok::lparen, "expected '(' in address space") ||
1671          parseUInt32(AddrSpace) ||
1672          parseToken(lltok::rparen, "expected ')' in address space");
1673 }
1674 
1675 /// parseStringAttribute
1676 ///   := StringConstant
1677 ///   := StringConstant '=' StringConstant
1678 bool LLParser::parseStringAttribute(AttrBuilder &B) {
1679   std::string Attr = Lex.getStrVal();
1680   Lex.Lex();
1681   std::string Val;
1682   if (EatIfPresent(lltok::equal) && parseStringConstant(Val))
1683     return true;
1684   B.addAttribute(Attr, Val);
1685   return false;
1686 }
1687 
1688 /// parseOptionalParamAttrs - parse a potentially empty list of parameter
1689 /// attributes.
1690 bool LLParser::parseOptionalParamAttrs(AttrBuilder &B) {
1691   bool HaveError = false;
1692 
1693   B.clear();
1694 
1695   while (true) {
1696     lltok::Kind Token = Lex.getKind();
1697     switch (Token) {
1698     default:  // End of attributes.
1699       return HaveError;
1700     case lltok::StringConstant: {
1701       if (parseStringAttribute(B))
1702         return true;
1703       continue;
1704     }
1705     case lltok::kw_align: {
1706       MaybeAlign Alignment;
1707       if (parseOptionalAlignment(Alignment, true))
1708         return true;
1709       B.addAlignmentAttr(Alignment);
1710       continue;
1711     }
1712     case lltok::kw_alignstack: {
1713       unsigned Alignment;
1714       if (parseOptionalStackAlignment(Alignment))
1715         return true;
1716       B.addStackAlignmentAttr(Alignment);
1717       continue;
1718     }
1719     case lltok::kw_byval:
1720       if (parseRequiredTypeAttr(B, lltok::kw_byval, Attribute::ByVal))
1721         return true;
1722       continue;
1723     case lltok::kw_byref:
1724       if (parseRequiredTypeAttr(B, lltok::kw_byref, Attribute::ByRef))
1725         return true;
1726       continue;
1727     case lltok::kw_inalloca:
1728       if (parseRequiredTypeAttr(B, lltok::kw_inalloca, Attribute::InAlloca))
1729         return true;
1730       continue;
1731     case lltok::kw_preallocated:
1732       if (parseRequiredTypeAttr(B, lltok::kw_preallocated,
1733                                 Attribute::Preallocated))
1734         return true;
1735       continue;
1736     case lltok::kw_sret:
1737       if (parseRequiredTypeAttr(B, lltok::kw_sret, Attribute::StructRet))
1738         return true;
1739       continue;
1740     case lltok::kw_dereferenceable: {
1741       uint64_t Bytes;
1742       if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1743         return true;
1744       B.addDereferenceableAttr(Bytes);
1745       continue;
1746     }
1747     case lltok::kw_dereferenceable_or_null: {
1748       uint64_t Bytes;
1749       if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1750         return true;
1751       B.addDereferenceableOrNullAttr(Bytes);
1752       continue;
1753     }
1754     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1755     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1756     case lltok::kw_noundef:
1757       B.addAttribute(Attribute::NoUndef);
1758       break;
1759     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1760     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1761     case lltok::kw_nofree:          B.addAttribute(Attribute::NoFree); break;
1762     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1763     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1764     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1765     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1766     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1767     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1768     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1769     case lltok::kw_swiftasync:      B.addAttribute(Attribute::SwiftAsync); break;
1770     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
1771     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1772     case lltok::kw_immarg:          B.addAttribute(Attribute::ImmArg); break;
1773 
1774     case lltok::kw_alwaysinline:
1775     case lltok::kw_argmemonly:
1776     case lltok::kw_builtin:
1777     case lltok::kw_inlinehint:
1778     case lltok::kw_jumptable:
1779     case lltok::kw_minsize:
1780     case lltok::kw_mustprogress:
1781     case lltok::kw_naked:
1782     case lltok::kw_nobuiltin:
1783     case lltok::kw_noduplicate:
1784     case lltok::kw_noimplicitfloat:
1785     case lltok::kw_noinline:
1786     case lltok::kw_nonlazybind:
1787     case lltok::kw_nomerge:
1788     case lltok::kw_noprofile:
1789     case lltok::kw_noredzone:
1790     case lltok::kw_noreturn:
1791     case lltok::kw_nocf_check:
1792     case lltok::kw_nounwind:
1793     case lltok::kw_nosanitize_coverage:
1794     case lltok::kw_optforfuzzing:
1795     case lltok::kw_optnone:
1796     case lltok::kw_optsize:
1797     case lltok::kw_returns_twice:
1798     case lltok::kw_sanitize_address:
1799     case lltok::kw_sanitize_hwaddress:
1800     case lltok::kw_sanitize_memtag:
1801     case lltok::kw_sanitize_memory:
1802     case lltok::kw_sanitize_thread:
1803     case lltok::kw_speculative_load_hardening:
1804     case lltok::kw_ssp:
1805     case lltok::kw_sspreq:
1806     case lltok::kw_sspstrong:
1807     case lltok::kw_safestack:
1808     case lltok::kw_shadowcallstack:
1809     case lltok::kw_strictfp:
1810     case lltok::kw_uwtable:
1811     case lltok::kw_vscale_range:
1812       HaveError |=
1813           error(Lex.getLoc(), "invalid use of function-only attribute");
1814       break;
1815     }
1816 
1817     Lex.Lex();
1818   }
1819 }
1820 
1821 /// parseOptionalReturnAttrs - parse a potentially empty list of return
1822 /// attributes.
1823 bool LLParser::parseOptionalReturnAttrs(AttrBuilder &B) {
1824   bool HaveError = false;
1825 
1826   B.clear();
1827 
1828   while (true) {
1829     lltok::Kind Token = Lex.getKind();
1830     switch (Token) {
1831     default:  // End of attributes.
1832       return HaveError;
1833     case lltok::StringConstant: {
1834       if (parseStringAttribute(B))
1835         return true;
1836       continue;
1837     }
1838     case lltok::kw_dereferenceable: {
1839       uint64_t Bytes;
1840       if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1841         return true;
1842       B.addDereferenceableAttr(Bytes);
1843       continue;
1844     }
1845     case lltok::kw_dereferenceable_or_null: {
1846       uint64_t Bytes;
1847       if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1848         return true;
1849       B.addDereferenceableOrNullAttr(Bytes);
1850       continue;
1851     }
1852     case lltok::kw_align: {
1853       MaybeAlign Alignment;
1854       if (parseOptionalAlignment(Alignment))
1855         return true;
1856       B.addAlignmentAttr(Alignment);
1857       continue;
1858     }
1859     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1860     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1861     case lltok::kw_noundef:
1862       B.addAttribute(Attribute::NoUndef);
1863       break;
1864     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1865     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1866     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1867 
1868     // error handling.
1869     case lltok::kw_byval:
1870     case lltok::kw_inalloca:
1871     case lltok::kw_nest:
1872     case lltok::kw_nocapture:
1873     case lltok::kw_returned:
1874     case lltok::kw_sret:
1875     case lltok::kw_swifterror:
1876     case lltok::kw_swiftself:
1877     case lltok::kw_swiftasync:
1878     case lltok::kw_immarg:
1879     case lltok::kw_byref:
1880       HaveError |=
1881           error(Lex.getLoc(), "invalid use of parameter-only attribute");
1882       break;
1883 
1884     case lltok::kw_alignstack:
1885     case lltok::kw_alwaysinline:
1886     case lltok::kw_argmemonly:
1887     case lltok::kw_builtin:
1888     case lltok::kw_cold:
1889     case lltok::kw_inlinehint:
1890     case lltok::kw_jumptable:
1891     case lltok::kw_minsize:
1892     case lltok::kw_mustprogress:
1893     case lltok::kw_naked:
1894     case lltok::kw_nobuiltin:
1895     case lltok::kw_noduplicate:
1896     case lltok::kw_noimplicitfloat:
1897     case lltok::kw_noinline:
1898     case lltok::kw_nonlazybind:
1899     case lltok::kw_nomerge:
1900     case lltok::kw_noprofile:
1901     case lltok::kw_noredzone:
1902     case lltok::kw_noreturn:
1903     case lltok::kw_nocf_check:
1904     case lltok::kw_nounwind:
1905     case lltok::kw_nosanitize_coverage:
1906     case lltok::kw_optforfuzzing:
1907     case lltok::kw_optnone:
1908     case lltok::kw_optsize:
1909     case lltok::kw_returns_twice:
1910     case lltok::kw_sanitize_address:
1911     case lltok::kw_sanitize_hwaddress:
1912     case lltok::kw_sanitize_memtag:
1913     case lltok::kw_sanitize_memory:
1914     case lltok::kw_sanitize_thread:
1915     case lltok::kw_speculative_load_hardening:
1916     case lltok::kw_ssp:
1917     case lltok::kw_sspreq:
1918     case lltok::kw_sspstrong:
1919     case lltok::kw_safestack:
1920     case lltok::kw_shadowcallstack:
1921     case lltok::kw_strictfp:
1922     case lltok::kw_uwtable:
1923     case lltok::kw_vscale_range:
1924       HaveError |=
1925           error(Lex.getLoc(), "invalid use of function-only attribute");
1926       break;
1927     case lltok::kw_readnone:
1928     case lltok::kw_readonly:
1929       HaveError |=
1930           error(Lex.getLoc(), "invalid use of attribute on return type");
1931       break;
1932     case lltok::kw_preallocated:
1933       HaveError |=
1934           error(Lex.getLoc(),
1935                 "invalid use of parameter-only/call site-only attribute");
1936       break;
1937     }
1938 
1939     Lex.Lex();
1940   }
1941 }
1942 
1943 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1944   HasLinkage = true;
1945   switch (Kind) {
1946   default:
1947     HasLinkage = false;
1948     return GlobalValue::ExternalLinkage;
1949   case lltok::kw_private:
1950     return GlobalValue::PrivateLinkage;
1951   case lltok::kw_internal:
1952     return GlobalValue::InternalLinkage;
1953   case lltok::kw_weak:
1954     return GlobalValue::WeakAnyLinkage;
1955   case lltok::kw_weak_odr:
1956     return GlobalValue::WeakODRLinkage;
1957   case lltok::kw_linkonce:
1958     return GlobalValue::LinkOnceAnyLinkage;
1959   case lltok::kw_linkonce_odr:
1960     return GlobalValue::LinkOnceODRLinkage;
1961   case lltok::kw_available_externally:
1962     return GlobalValue::AvailableExternallyLinkage;
1963   case lltok::kw_appending:
1964     return GlobalValue::AppendingLinkage;
1965   case lltok::kw_common:
1966     return GlobalValue::CommonLinkage;
1967   case lltok::kw_extern_weak:
1968     return GlobalValue::ExternalWeakLinkage;
1969   case lltok::kw_external:
1970     return GlobalValue::ExternalLinkage;
1971   }
1972 }
1973 
1974 /// parseOptionalLinkage
1975 ///   ::= /*empty*/
1976 ///   ::= 'private'
1977 ///   ::= 'internal'
1978 ///   ::= 'weak'
1979 ///   ::= 'weak_odr'
1980 ///   ::= 'linkonce'
1981 ///   ::= 'linkonce_odr'
1982 ///   ::= 'available_externally'
1983 ///   ::= 'appending'
1984 ///   ::= 'common'
1985 ///   ::= 'extern_weak'
1986 ///   ::= 'external'
1987 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1988                                     unsigned &Visibility,
1989                                     unsigned &DLLStorageClass, bool &DSOLocal) {
1990   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1991   if (HasLinkage)
1992     Lex.Lex();
1993   parseOptionalDSOLocal(DSOLocal);
1994   parseOptionalVisibility(Visibility);
1995   parseOptionalDLLStorageClass(DLLStorageClass);
1996 
1997   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1998     return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1999   }
2000 
2001   return false;
2002 }
2003 
2004 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) {
2005   switch (Lex.getKind()) {
2006   default:
2007     DSOLocal = false;
2008     break;
2009   case lltok::kw_dso_local:
2010     DSOLocal = true;
2011     Lex.Lex();
2012     break;
2013   case lltok::kw_dso_preemptable:
2014     DSOLocal = false;
2015     Lex.Lex();
2016     break;
2017   }
2018 }
2019 
2020 /// parseOptionalVisibility
2021 ///   ::= /*empty*/
2022 ///   ::= 'default'
2023 ///   ::= 'hidden'
2024 ///   ::= 'protected'
2025 ///
2026 void LLParser::parseOptionalVisibility(unsigned &Res) {
2027   switch (Lex.getKind()) {
2028   default:
2029     Res = GlobalValue::DefaultVisibility;
2030     return;
2031   case lltok::kw_default:
2032     Res = GlobalValue::DefaultVisibility;
2033     break;
2034   case lltok::kw_hidden:
2035     Res = GlobalValue::HiddenVisibility;
2036     break;
2037   case lltok::kw_protected:
2038     Res = GlobalValue::ProtectedVisibility;
2039     break;
2040   }
2041   Lex.Lex();
2042 }
2043 
2044 /// parseOptionalDLLStorageClass
2045 ///   ::= /*empty*/
2046 ///   ::= 'dllimport'
2047 ///   ::= 'dllexport'
2048 ///
2049 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) {
2050   switch (Lex.getKind()) {
2051   default:
2052     Res = GlobalValue::DefaultStorageClass;
2053     return;
2054   case lltok::kw_dllimport:
2055     Res = GlobalValue::DLLImportStorageClass;
2056     break;
2057   case lltok::kw_dllexport:
2058     Res = GlobalValue::DLLExportStorageClass;
2059     break;
2060   }
2061   Lex.Lex();
2062 }
2063 
2064 /// parseOptionalCallingConv
2065 ///   ::= /*empty*/
2066 ///   ::= 'ccc'
2067 ///   ::= 'fastcc'
2068 ///   ::= 'intel_ocl_bicc'
2069 ///   ::= 'coldcc'
2070 ///   ::= 'cfguard_checkcc'
2071 ///   ::= 'x86_stdcallcc'
2072 ///   ::= 'x86_fastcallcc'
2073 ///   ::= 'x86_thiscallcc'
2074 ///   ::= 'x86_vectorcallcc'
2075 ///   ::= 'arm_apcscc'
2076 ///   ::= 'arm_aapcscc'
2077 ///   ::= 'arm_aapcs_vfpcc'
2078 ///   ::= 'aarch64_vector_pcs'
2079 ///   ::= 'aarch64_sve_vector_pcs'
2080 ///   ::= 'msp430_intrcc'
2081 ///   ::= 'avr_intrcc'
2082 ///   ::= 'avr_signalcc'
2083 ///   ::= 'ptx_kernel'
2084 ///   ::= 'ptx_device'
2085 ///   ::= 'spir_func'
2086 ///   ::= 'spir_kernel'
2087 ///   ::= 'x86_64_sysvcc'
2088 ///   ::= 'win64cc'
2089 ///   ::= 'webkit_jscc'
2090 ///   ::= 'anyregcc'
2091 ///   ::= 'preserve_mostcc'
2092 ///   ::= 'preserve_allcc'
2093 ///   ::= 'ghccc'
2094 ///   ::= 'swiftcc'
2095 ///   ::= 'swifttailcc'
2096 ///   ::= 'x86_intrcc'
2097 ///   ::= 'hhvmcc'
2098 ///   ::= 'hhvm_ccc'
2099 ///   ::= 'cxx_fast_tlscc'
2100 ///   ::= 'amdgpu_vs'
2101 ///   ::= 'amdgpu_ls'
2102 ///   ::= 'amdgpu_hs'
2103 ///   ::= 'amdgpu_es'
2104 ///   ::= 'amdgpu_gs'
2105 ///   ::= 'amdgpu_ps'
2106 ///   ::= 'amdgpu_cs'
2107 ///   ::= 'amdgpu_kernel'
2108 ///   ::= 'tailcc'
2109 ///   ::= 'cc' UINT
2110 ///
2111 bool LLParser::parseOptionalCallingConv(unsigned &CC) {
2112   switch (Lex.getKind()) {
2113   default:                       CC = CallingConv::C; return false;
2114   case lltok::kw_ccc:            CC = CallingConv::C; break;
2115   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
2116   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
2117   case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break;
2118   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
2119   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
2120   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
2121   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
2122   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
2123   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
2124   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
2125   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
2126   case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
2127   case lltok::kw_aarch64_sve_vector_pcs:
2128     CC = CallingConv::AArch64_SVE_VectorCall;
2129     break;
2130   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
2131   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
2132   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
2133   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
2134   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
2135   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
2136   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
2137   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
2138   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
2139   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
2140   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
2141   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
2142   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
2143   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
2144   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
2145   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
2146   case lltok::kw_swifttailcc:    CC = CallingConv::SwiftTail; break;
2147   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
2148   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
2149   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
2150   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
2151   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
2152   case lltok::kw_amdgpu_gfx:     CC = CallingConv::AMDGPU_Gfx; break;
2153   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
2154   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
2155   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
2156   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
2157   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
2158   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
2159   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
2160   case lltok::kw_tailcc:         CC = CallingConv::Tail; break;
2161   case lltok::kw_cc: {
2162       Lex.Lex();
2163       return parseUInt32(CC);
2164     }
2165   }
2166 
2167   Lex.Lex();
2168   return false;
2169 }
2170 
2171 /// parseMetadataAttachment
2172 ///   ::= !dbg !42
2173 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
2174   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
2175 
2176   std::string Name = Lex.getStrVal();
2177   Kind = M->getMDKindID(Name);
2178   Lex.Lex();
2179 
2180   return parseMDNode(MD);
2181 }
2182 
2183 /// parseInstructionMetadata
2184 ///   ::= !dbg !42 (',' !dbg !57)*
2185 bool LLParser::parseInstructionMetadata(Instruction &Inst) {
2186   do {
2187     if (Lex.getKind() != lltok::MetadataVar)
2188       return tokError("expected metadata after comma");
2189 
2190     unsigned MDK;
2191     MDNode *N;
2192     if (parseMetadataAttachment(MDK, N))
2193       return true;
2194 
2195     Inst.setMetadata(MDK, N);
2196     if (MDK == LLVMContext::MD_tbaa)
2197       InstsWithTBAATag.push_back(&Inst);
2198 
2199     // If this is the end of the list, we're done.
2200   } while (EatIfPresent(lltok::comma));
2201   return false;
2202 }
2203 
2204 /// parseGlobalObjectMetadataAttachment
2205 ///   ::= !dbg !57
2206 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) {
2207   unsigned MDK;
2208   MDNode *N;
2209   if (parseMetadataAttachment(MDK, N))
2210     return true;
2211 
2212   GO.addMetadata(MDK, *N);
2213   return false;
2214 }
2215 
2216 /// parseOptionalFunctionMetadata
2217 ///   ::= (!dbg !57)*
2218 bool LLParser::parseOptionalFunctionMetadata(Function &F) {
2219   while (Lex.getKind() == lltok::MetadataVar)
2220     if (parseGlobalObjectMetadataAttachment(F))
2221       return true;
2222   return false;
2223 }
2224 
2225 /// parseOptionalAlignment
2226 ///   ::= /* empty */
2227 ///   ::= 'align' 4
2228 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) {
2229   Alignment = None;
2230   if (!EatIfPresent(lltok::kw_align))
2231     return false;
2232   LocTy AlignLoc = Lex.getLoc();
2233   uint32_t Value = 0;
2234 
2235   LocTy ParenLoc = Lex.getLoc();
2236   bool HaveParens = false;
2237   if (AllowParens) {
2238     if (EatIfPresent(lltok::lparen))
2239       HaveParens = true;
2240   }
2241 
2242   if (parseUInt32(Value))
2243     return true;
2244 
2245   if (HaveParens && !EatIfPresent(lltok::rparen))
2246     return error(ParenLoc, "expected ')'");
2247 
2248   if (!isPowerOf2_32(Value))
2249     return error(AlignLoc, "alignment is not a power of two");
2250   if (Value > Value::MaximumAlignment)
2251     return error(AlignLoc, "huge alignments are not supported yet");
2252   Alignment = Align(Value);
2253   return false;
2254 }
2255 
2256 /// parseOptionalDerefAttrBytes
2257 ///   ::= /* empty */
2258 ///   ::= AttrKind '(' 4 ')'
2259 ///
2260 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2261 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2262                                            uint64_t &Bytes) {
2263   assert((AttrKind == lltok::kw_dereferenceable ||
2264           AttrKind == lltok::kw_dereferenceable_or_null) &&
2265          "contract!");
2266 
2267   Bytes = 0;
2268   if (!EatIfPresent(AttrKind))
2269     return false;
2270   LocTy ParenLoc = Lex.getLoc();
2271   if (!EatIfPresent(lltok::lparen))
2272     return error(ParenLoc, "expected '('");
2273   LocTy DerefLoc = Lex.getLoc();
2274   if (parseUInt64(Bytes))
2275     return true;
2276   ParenLoc = Lex.getLoc();
2277   if (!EatIfPresent(lltok::rparen))
2278     return error(ParenLoc, "expected ')'");
2279   if (!Bytes)
2280     return error(DerefLoc, "dereferenceable bytes must be non-zero");
2281   return false;
2282 }
2283 
2284 /// parseOptionalCommaAlign
2285 ///   ::=
2286 ///   ::= ',' align 4
2287 ///
2288 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2289 /// end.
2290 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment,
2291                                        bool &AteExtraComma) {
2292   AteExtraComma = false;
2293   while (EatIfPresent(lltok::comma)) {
2294     // Metadata at the end is an early exit.
2295     if (Lex.getKind() == lltok::MetadataVar) {
2296       AteExtraComma = true;
2297       return false;
2298     }
2299 
2300     if (Lex.getKind() != lltok::kw_align)
2301       return error(Lex.getLoc(), "expected metadata or 'align'");
2302 
2303     if (parseOptionalAlignment(Alignment))
2304       return true;
2305   }
2306 
2307   return false;
2308 }
2309 
2310 /// parseOptionalCommaAddrSpace
2311 ///   ::=
2312 ///   ::= ',' addrspace(1)
2313 ///
2314 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2315 /// end.
2316 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc,
2317                                            bool &AteExtraComma) {
2318   AteExtraComma = false;
2319   while (EatIfPresent(lltok::comma)) {
2320     // Metadata at the end is an early exit.
2321     if (Lex.getKind() == lltok::MetadataVar) {
2322       AteExtraComma = true;
2323       return false;
2324     }
2325 
2326     Loc = Lex.getLoc();
2327     if (Lex.getKind() != lltok::kw_addrspace)
2328       return error(Lex.getLoc(), "expected metadata or 'addrspace'");
2329 
2330     if (parseOptionalAddrSpace(AddrSpace))
2331       return true;
2332   }
2333 
2334   return false;
2335 }
2336 
2337 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2338                                        Optional<unsigned> &HowManyArg) {
2339   Lex.Lex();
2340 
2341   auto StartParen = Lex.getLoc();
2342   if (!EatIfPresent(lltok::lparen))
2343     return error(StartParen, "expected '('");
2344 
2345   if (parseUInt32(BaseSizeArg))
2346     return true;
2347 
2348   if (EatIfPresent(lltok::comma)) {
2349     auto HowManyAt = Lex.getLoc();
2350     unsigned HowMany;
2351     if (parseUInt32(HowMany))
2352       return true;
2353     if (HowMany == BaseSizeArg)
2354       return error(HowManyAt,
2355                    "'allocsize' indices can't refer to the same parameter");
2356     HowManyArg = HowMany;
2357   } else
2358     HowManyArg = None;
2359 
2360   auto EndParen = Lex.getLoc();
2361   if (!EatIfPresent(lltok::rparen))
2362     return error(EndParen, "expected ')'");
2363   return false;
2364 }
2365 
2366 bool LLParser::parseVScaleRangeArguments(unsigned &MinValue,
2367                                          unsigned &MaxValue) {
2368   Lex.Lex();
2369 
2370   auto StartParen = Lex.getLoc();
2371   if (!EatIfPresent(lltok::lparen))
2372     return error(StartParen, "expected '('");
2373 
2374   if (parseUInt32(MinValue))
2375     return true;
2376 
2377   if (EatIfPresent(lltok::comma)) {
2378     if (parseUInt32(MaxValue))
2379       return true;
2380   } else
2381     MaxValue = MinValue;
2382 
2383   auto EndParen = Lex.getLoc();
2384   if (!EatIfPresent(lltok::rparen))
2385     return error(EndParen, "expected ')'");
2386   return false;
2387 }
2388 
2389 /// parseScopeAndOrdering
2390 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2391 ///   else: ::=
2392 ///
2393 /// This sets Scope and Ordering to the parsed values.
2394 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID,
2395                                      AtomicOrdering &Ordering) {
2396   if (!IsAtomic)
2397     return false;
2398 
2399   return parseScope(SSID) || parseOrdering(Ordering);
2400 }
2401 
2402 /// parseScope
2403 ///   ::= syncscope("singlethread" | "<target scope>")?
2404 ///
2405 /// This sets synchronization scope ID to the ID of the parsed value.
2406 bool LLParser::parseScope(SyncScope::ID &SSID) {
2407   SSID = SyncScope::System;
2408   if (EatIfPresent(lltok::kw_syncscope)) {
2409     auto StartParenAt = Lex.getLoc();
2410     if (!EatIfPresent(lltok::lparen))
2411       return error(StartParenAt, "Expected '(' in syncscope");
2412 
2413     std::string SSN;
2414     auto SSNAt = Lex.getLoc();
2415     if (parseStringConstant(SSN))
2416       return error(SSNAt, "Expected synchronization scope name");
2417 
2418     auto EndParenAt = Lex.getLoc();
2419     if (!EatIfPresent(lltok::rparen))
2420       return error(EndParenAt, "Expected ')' in syncscope");
2421 
2422     SSID = Context.getOrInsertSyncScopeID(SSN);
2423   }
2424 
2425   return false;
2426 }
2427 
2428 /// parseOrdering
2429 ///   ::= AtomicOrdering
2430 ///
2431 /// This sets Ordering to the parsed value.
2432 bool LLParser::parseOrdering(AtomicOrdering &Ordering) {
2433   switch (Lex.getKind()) {
2434   default:
2435     return tokError("Expected ordering on atomic instruction");
2436   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2437   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2438   // Not specified yet:
2439   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2440   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2441   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2442   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2443   case lltok::kw_seq_cst:
2444     Ordering = AtomicOrdering::SequentiallyConsistent;
2445     break;
2446   }
2447   Lex.Lex();
2448   return false;
2449 }
2450 
2451 /// parseOptionalStackAlignment
2452 ///   ::= /* empty */
2453 ///   ::= 'alignstack' '(' 4 ')'
2454 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) {
2455   Alignment = 0;
2456   if (!EatIfPresent(lltok::kw_alignstack))
2457     return false;
2458   LocTy ParenLoc = Lex.getLoc();
2459   if (!EatIfPresent(lltok::lparen))
2460     return error(ParenLoc, "expected '('");
2461   LocTy AlignLoc = Lex.getLoc();
2462   if (parseUInt32(Alignment))
2463     return true;
2464   ParenLoc = Lex.getLoc();
2465   if (!EatIfPresent(lltok::rparen))
2466     return error(ParenLoc, "expected ')'");
2467   if (!isPowerOf2_32(Alignment))
2468     return error(AlignLoc, "stack alignment is not a power of two");
2469   return false;
2470 }
2471 
2472 /// parseIndexList - This parses the index list for an insert/extractvalue
2473 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2474 /// comma at the end of the line and find that it is followed by metadata.
2475 /// Clients that don't allow metadata can call the version of this function that
2476 /// only takes one argument.
2477 ///
2478 /// parseIndexList
2479 ///    ::=  (',' uint32)+
2480 ///
2481 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices,
2482                               bool &AteExtraComma) {
2483   AteExtraComma = false;
2484 
2485   if (Lex.getKind() != lltok::comma)
2486     return tokError("expected ',' as start of index list");
2487 
2488   while (EatIfPresent(lltok::comma)) {
2489     if (Lex.getKind() == lltok::MetadataVar) {
2490       if (Indices.empty())
2491         return tokError("expected index");
2492       AteExtraComma = true;
2493       return false;
2494     }
2495     unsigned Idx = 0;
2496     if (parseUInt32(Idx))
2497       return true;
2498     Indices.push_back(Idx);
2499   }
2500 
2501   return false;
2502 }
2503 
2504 //===----------------------------------------------------------------------===//
2505 // Type Parsing.
2506 //===----------------------------------------------------------------------===//
2507 
2508 /// parseType - parse a type.
2509 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2510   SMLoc TypeLoc = Lex.getLoc();
2511   switch (Lex.getKind()) {
2512   default:
2513     return tokError(Msg);
2514   case lltok::Type:
2515     // Type ::= 'float' | 'void' (etc)
2516     Result = Lex.getTyVal();
2517     Lex.Lex();
2518     break;
2519   case lltok::lbrace:
2520     // Type ::= StructType
2521     if (parseAnonStructType(Result, false))
2522       return true;
2523     break;
2524   case lltok::lsquare:
2525     // Type ::= '[' ... ']'
2526     Lex.Lex(); // eat the lsquare.
2527     if (parseArrayVectorType(Result, false))
2528       return true;
2529     break;
2530   case lltok::less: // Either vector or packed struct.
2531     // Type ::= '<' ... '>'
2532     Lex.Lex();
2533     if (Lex.getKind() == lltok::lbrace) {
2534       if (parseAnonStructType(Result, true) ||
2535           parseToken(lltok::greater, "expected '>' at end of packed struct"))
2536         return true;
2537     } else if (parseArrayVectorType(Result, true))
2538       return true;
2539     break;
2540   case lltok::LocalVar: {
2541     // Type ::= %foo
2542     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2543 
2544     // If the type hasn't been defined yet, create a forward definition and
2545     // remember where that forward def'n was seen (in case it never is defined).
2546     if (!Entry.first) {
2547       Entry.first = StructType::create(Context, Lex.getStrVal());
2548       Entry.second = Lex.getLoc();
2549     }
2550     Result = Entry.first;
2551     Lex.Lex();
2552     break;
2553   }
2554 
2555   case lltok::LocalVarID: {
2556     // Type ::= %4
2557     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2558 
2559     // If the type hasn't been defined yet, create a forward definition and
2560     // remember where that forward def'n was seen (in case it never is defined).
2561     if (!Entry.first) {
2562       Entry.first = StructType::create(Context);
2563       Entry.second = Lex.getLoc();
2564     }
2565     Result = Entry.first;
2566     Lex.Lex();
2567     break;
2568   }
2569   }
2570 
2571   // Handle (explicit) opaque pointer types (not --force-opaque-pointers).
2572   //
2573   // Type ::= ptr ('addrspace' '(' uint32 ')')?
2574   if (Result->isOpaquePointerTy()) {
2575     unsigned AddrSpace;
2576     if (parseOptionalAddrSpace(AddrSpace))
2577       return true;
2578     Result = PointerType::get(getContext(), AddrSpace);
2579 
2580     // Give a nice error for 'ptr*'.
2581     if (Lex.getKind() == lltok::star)
2582       return tokError("ptr* is invalid - use ptr instead");
2583 
2584     // Fall through to parsing the type suffixes only if this 'ptr' is a
2585     // function return. Otherwise, return success, implicitly rejecting other
2586     // suffixes.
2587     if (Lex.getKind() != lltok::lparen)
2588       return false;
2589   }
2590 
2591   // parse the type suffixes.
2592   while (true) {
2593     switch (Lex.getKind()) {
2594     // End of type.
2595     default:
2596       if (!AllowVoid && Result->isVoidTy())
2597         return error(TypeLoc, "void type only allowed for function results");
2598       return false;
2599 
2600     // Type ::= Type '*'
2601     case lltok::star:
2602       if (Result->isLabelTy())
2603         return tokError("basic block pointers are invalid");
2604       if (Result->isVoidTy())
2605         return tokError("pointers to void are invalid - use i8* instead");
2606       if (!PointerType::isValidElementType(Result))
2607         return tokError("pointer to this type is invalid");
2608       Result = PointerType::getUnqual(Result);
2609       Lex.Lex();
2610       break;
2611 
2612     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2613     case lltok::kw_addrspace: {
2614       if (Result->isLabelTy())
2615         return tokError("basic block pointers are invalid");
2616       if (Result->isVoidTy())
2617         return tokError("pointers to void are invalid; use i8* instead");
2618       if (!PointerType::isValidElementType(Result))
2619         return tokError("pointer to this type is invalid");
2620       unsigned AddrSpace;
2621       if (parseOptionalAddrSpace(AddrSpace) ||
2622           parseToken(lltok::star, "expected '*' in address space"))
2623         return true;
2624 
2625       Result = PointerType::get(Result, AddrSpace);
2626       break;
2627     }
2628 
2629     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2630     case lltok::lparen:
2631       if (parseFunctionType(Result))
2632         return true;
2633       break;
2634     }
2635   }
2636 }
2637 
2638 /// parseParameterList
2639 ///    ::= '(' ')'
2640 ///    ::= '(' Arg (',' Arg)* ')'
2641 ///  Arg
2642 ///    ::= Type OptionalAttributes Value OptionalAttributes
2643 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2644                                   PerFunctionState &PFS, bool IsMustTailCall,
2645                                   bool InVarArgsFunc) {
2646   if (parseToken(lltok::lparen, "expected '(' in call"))
2647     return true;
2648 
2649   while (Lex.getKind() != lltok::rparen) {
2650     // If this isn't the first argument, we need a comma.
2651     if (!ArgList.empty() &&
2652         parseToken(lltok::comma, "expected ',' in argument list"))
2653       return true;
2654 
2655     // parse an ellipsis if this is a musttail call in a variadic function.
2656     if (Lex.getKind() == lltok::dotdotdot) {
2657       const char *Msg = "unexpected ellipsis in argument list for ";
2658       if (!IsMustTailCall)
2659         return tokError(Twine(Msg) + "non-musttail call");
2660       if (!InVarArgsFunc)
2661         return tokError(Twine(Msg) + "musttail call in non-varargs function");
2662       Lex.Lex();  // Lex the '...', it is purely for readability.
2663       return parseToken(lltok::rparen, "expected ')' at end of argument list");
2664     }
2665 
2666     // parse the argument.
2667     LocTy ArgLoc;
2668     Type *ArgTy = nullptr;
2669     AttrBuilder ArgAttrs;
2670     Value *V;
2671     if (parseType(ArgTy, ArgLoc))
2672       return true;
2673 
2674     if (ArgTy->isMetadataTy()) {
2675       if (parseMetadataAsValue(V, PFS))
2676         return true;
2677     } else {
2678       // Otherwise, handle normal operands.
2679       if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS))
2680         return true;
2681     }
2682     ArgList.push_back(ParamInfo(
2683         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2684   }
2685 
2686   if (IsMustTailCall && InVarArgsFunc)
2687     return tokError("expected '...' at end of argument list for musttail call "
2688                     "in varargs function");
2689 
2690   Lex.Lex();  // Lex the ')'.
2691   return false;
2692 }
2693 
2694 /// parseRequiredTypeAttr
2695 ///   ::= attrname(<ty>)
2696 bool LLParser::parseRequiredTypeAttr(AttrBuilder &B, lltok::Kind AttrToken,
2697                                      Attribute::AttrKind AttrKind) {
2698   Type *Ty = nullptr;
2699   if (!EatIfPresent(AttrToken))
2700     return true;
2701   if (!EatIfPresent(lltok::lparen))
2702     return error(Lex.getLoc(), "expected '('");
2703   if (parseType(Ty))
2704     return true;
2705   if (!EatIfPresent(lltok::rparen))
2706     return error(Lex.getLoc(), "expected ')'");
2707 
2708   B.addTypeAttr(AttrKind, Ty);
2709   return false;
2710 }
2711 
2712 /// parseOptionalOperandBundles
2713 ///    ::= /*empty*/
2714 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2715 ///
2716 /// OperandBundle
2717 ///    ::= bundle-tag '(' ')'
2718 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2719 ///
2720 /// bundle-tag ::= String Constant
2721 bool LLParser::parseOptionalOperandBundles(
2722     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2723   LocTy BeginLoc = Lex.getLoc();
2724   if (!EatIfPresent(lltok::lsquare))
2725     return false;
2726 
2727   while (Lex.getKind() != lltok::rsquare) {
2728     // If this isn't the first operand bundle, we need a comma.
2729     if (!BundleList.empty() &&
2730         parseToken(lltok::comma, "expected ',' in input list"))
2731       return true;
2732 
2733     std::string Tag;
2734     if (parseStringConstant(Tag))
2735       return true;
2736 
2737     if (parseToken(lltok::lparen, "expected '(' in operand bundle"))
2738       return true;
2739 
2740     std::vector<Value *> Inputs;
2741     while (Lex.getKind() != lltok::rparen) {
2742       // If this isn't the first input, we need a comma.
2743       if (!Inputs.empty() &&
2744           parseToken(lltok::comma, "expected ',' in input list"))
2745         return true;
2746 
2747       Type *Ty = nullptr;
2748       Value *Input = nullptr;
2749       if (parseType(Ty) || parseValue(Ty, Input, PFS))
2750         return true;
2751       Inputs.push_back(Input);
2752     }
2753 
2754     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2755 
2756     Lex.Lex(); // Lex the ')'.
2757   }
2758 
2759   if (BundleList.empty())
2760     return error(BeginLoc, "operand bundle set must not be empty");
2761 
2762   Lex.Lex(); // Lex the ']'.
2763   return false;
2764 }
2765 
2766 /// parseArgumentList - parse the argument list for a function type or function
2767 /// prototype.
2768 ///   ::= '(' ArgTypeListI ')'
2769 /// ArgTypeListI
2770 ///   ::= /*empty*/
2771 ///   ::= '...'
2772 ///   ::= ArgTypeList ',' '...'
2773 ///   ::= ArgType (',' ArgType)*
2774 ///
2775 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2776                                  bool &IsVarArg) {
2777   unsigned CurValID = 0;
2778   IsVarArg = false;
2779   assert(Lex.getKind() == lltok::lparen);
2780   Lex.Lex(); // eat the (.
2781 
2782   if (Lex.getKind() == lltok::rparen) {
2783     // empty
2784   } else if (Lex.getKind() == lltok::dotdotdot) {
2785     IsVarArg = true;
2786     Lex.Lex();
2787   } else {
2788     LocTy TypeLoc = Lex.getLoc();
2789     Type *ArgTy = nullptr;
2790     AttrBuilder Attrs;
2791     std::string Name;
2792 
2793     if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2794       return true;
2795 
2796     if (ArgTy->isVoidTy())
2797       return error(TypeLoc, "argument can not have void type");
2798 
2799     if (Lex.getKind() == lltok::LocalVar) {
2800       Name = Lex.getStrVal();
2801       Lex.Lex();
2802     } else if (Lex.getKind() == lltok::LocalVarID) {
2803       if (Lex.getUIntVal() != CurValID)
2804         return error(TypeLoc, "argument expected to be numbered '%" +
2805                                   Twine(CurValID) + "'");
2806       ++CurValID;
2807       Lex.Lex();
2808     }
2809 
2810     if (!FunctionType::isValidArgumentType(ArgTy))
2811       return error(TypeLoc, "invalid type for function argument");
2812 
2813     ArgList.emplace_back(TypeLoc, ArgTy,
2814                          AttributeSet::get(ArgTy->getContext(), Attrs),
2815                          std::move(Name));
2816 
2817     while (EatIfPresent(lltok::comma)) {
2818       // Handle ... at end of arg list.
2819       if (EatIfPresent(lltok::dotdotdot)) {
2820         IsVarArg = true;
2821         break;
2822       }
2823 
2824       // Otherwise must be an argument type.
2825       TypeLoc = Lex.getLoc();
2826       if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2827         return true;
2828 
2829       if (ArgTy->isVoidTy())
2830         return error(TypeLoc, "argument can not have void type");
2831 
2832       if (Lex.getKind() == lltok::LocalVar) {
2833         Name = Lex.getStrVal();
2834         Lex.Lex();
2835       } else {
2836         if (Lex.getKind() == lltok::LocalVarID) {
2837           if (Lex.getUIntVal() != CurValID)
2838             return error(TypeLoc, "argument expected to be numbered '%" +
2839                                       Twine(CurValID) + "'");
2840           Lex.Lex();
2841         }
2842         ++CurValID;
2843         Name = "";
2844       }
2845 
2846       if (!ArgTy->isFirstClassType())
2847         return error(TypeLoc, "invalid type for function argument");
2848 
2849       ArgList.emplace_back(TypeLoc, ArgTy,
2850                            AttributeSet::get(ArgTy->getContext(), Attrs),
2851                            std::move(Name));
2852     }
2853   }
2854 
2855   return parseToken(lltok::rparen, "expected ')' at end of argument list");
2856 }
2857 
2858 /// parseFunctionType
2859 ///  ::= Type ArgumentList OptionalAttrs
2860 bool LLParser::parseFunctionType(Type *&Result) {
2861   assert(Lex.getKind() == lltok::lparen);
2862 
2863   if (!FunctionType::isValidReturnType(Result))
2864     return tokError("invalid function return type");
2865 
2866   SmallVector<ArgInfo, 8> ArgList;
2867   bool IsVarArg;
2868   if (parseArgumentList(ArgList, IsVarArg))
2869     return true;
2870 
2871   // Reject names on the arguments lists.
2872   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2873     if (!ArgList[i].Name.empty())
2874       return error(ArgList[i].Loc, "argument name invalid in function type");
2875     if (ArgList[i].Attrs.hasAttributes())
2876       return error(ArgList[i].Loc,
2877                    "argument attributes invalid in function type");
2878   }
2879 
2880   SmallVector<Type*, 16> ArgListTy;
2881   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2882     ArgListTy.push_back(ArgList[i].Ty);
2883 
2884   Result = FunctionType::get(Result, ArgListTy, IsVarArg);
2885   return false;
2886 }
2887 
2888 /// parseAnonStructType - parse an anonymous struct type, which is inlined into
2889 /// other structs.
2890 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) {
2891   SmallVector<Type*, 8> Elts;
2892   if (parseStructBody(Elts))
2893     return true;
2894 
2895   Result = StructType::get(Context, Elts, Packed);
2896   return false;
2897 }
2898 
2899 /// parseStructDefinition - parse a struct in a 'type' definition.
2900 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name,
2901                                      std::pair<Type *, LocTy> &Entry,
2902                                      Type *&ResultTy) {
2903   // If the type was already defined, diagnose the redefinition.
2904   if (Entry.first && !Entry.second.isValid())
2905     return error(TypeLoc, "redefinition of type");
2906 
2907   // If we have opaque, just return without filling in the definition for the
2908   // struct.  This counts as a definition as far as the .ll file goes.
2909   if (EatIfPresent(lltok::kw_opaque)) {
2910     // This type is being defined, so clear the location to indicate this.
2911     Entry.second = SMLoc();
2912 
2913     // If this type number has never been uttered, create it.
2914     if (!Entry.first)
2915       Entry.first = StructType::create(Context, Name);
2916     ResultTy = Entry.first;
2917     return false;
2918   }
2919 
2920   // If the type starts with '<', then it is either a packed struct or a vector.
2921   bool isPacked = EatIfPresent(lltok::less);
2922 
2923   // If we don't have a struct, then we have a random type alias, which we
2924   // accept for compatibility with old files.  These types are not allowed to be
2925   // forward referenced and not allowed to be recursive.
2926   if (Lex.getKind() != lltok::lbrace) {
2927     if (Entry.first)
2928       return error(TypeLoc, "forward references to non-struct type");
2929 
2930     ResultTy = nullptr;
2931     if (isPacked)
2932       return parseArrayVectorType(ResultTy, true);
2933     return parseType(ResultTy);
2934   }
2935 
2936   // This type is being defined, so clear the location to indicate this.
2937   Entry.second = SMLoc();
2938 
2939   // If this type number has never been uttered, create it.
2940   if (!Entry.first)
2941     Entry.first = StructType::create(Context, Name);
2942 
2943   StructType *STy = cast<StructType>(Entry.first);
2944 
2945   SmallVector<Type*, 8> Body;
2946   if (parseStructBody(Body) ||
2947       (isPacked && parseToken(lltok::greater, "expected '>' in packed struct")))
2948     return true;
2949 
2950   STy->setBody(Body, isPacked);
2951   ResultTy = STy;
2952   return false;
2953 }
2954 
2955 /// parseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2956 ///   StructType
2957 ///     ::= '{' '}'
2958 ///     ::= '{' Type (',' Type)* '}'
2959 ///     ::= '<' '{' '}' '>'
2960 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2961 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) {
2962   assert(Lex.getKind() == lltok::lbrace);
2963   Lex.Lex(); // Consume the '{'
2964 
2965   // Handle the empty struct.
2966   if (EatIfPresent(lltok::rbrace))
2967     return false;
2968 
2969   LocTy EltTyLoc = Lex.getLoc();
2970   Type *Ty = nullptr;
2971   if (parseType(Ty))
2972     return true;
2973   Body.push_back(Ty);
2974 
2975   if (!StructType::isValidElementType(Ty))
2976     return error(EltTyLoc, "invalid element type for struct");
2977 
2978   while (EatIfPresent(lltok::comma)) {
2979     EltTyLoc = Lex.getLoc();
2980     if (parseType(Ty))
2981       return true;
2982 
2983     if (!StructType::isValidElementType(Ty))
2984       return error(EltTyLoc, "invalid element type for struct");
2985 
2986     Body.push_back(Ty);
2987   }
2988 
2989   return parseToken(lltok::rbrace, "expected '}' at end of struct");
2990 }
2991 
2992 /// parseArrayVectorType - parse an array or vector type, assuming the first
2993 /// token has already been consumed.
2994 ///   Type
2995 ///     ::= '[' APSINTVAL 'x' Types ']'
2996 ///     ::= '<' APSINTVAL 'x' Types '>'
2997 ///     ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
2998 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) {
2999   bool Scalable = false;
3000 
3001   if (IsVector && Lex.getKind() == lltok::kw_vscale) {
3002     Lex.Lex(); // consume the 'vscale'
3003     if (parseToken(lltok::kw_x, "expected 'x' after vscale"))
3004       return true;
3005 
3006     Scalable = true;
3007   }
3008 
3009   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
3010       Lex.getAPSIntVal().getBitWidth() > 64)
3011     return tokError("expected number in address space");
3012 
3013   LocTy SizeLoc = Lex.getLoc();
3014   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
3015   Lex.Lex();
3016 
3017   if (parseToken(lltok::kw_x, "expected 'x' after element count"))
3018     return true;
3019 
3020   LocTy TypeLoc = Lex.getLoc();
3021   Type *EltTy = nullptr;
3022   if (parseType(EltTy))
3023     return true;
3024 
3025   if (parseToken(IsVector ? lltok::greater : lltok::rsquare,
3026                  "expected end of sequential type"))
3027     return true;
3028 
3029   if (IsVector) {
3030     if (Size == 0)
3031       return error(SizeLoc, "zero element vector is illegal");
3032     if ((unsigned)Size != Size)
3033       return error(SizeLoc, "size too large for vector");
3034     if (!VectorType::isValidElementType(EltTy))
3035       return error(TypeLoc, "invalid vector element type");
3036     Result = VectorType::get(EltTy, unsigned(Size), Scalable);
3037   } else {
3038     if (!ArrayType::isValidElementType(EltTy))
3039       return error(TypeLoc, "invalid array element type");
3040     Result = ArrayType::get(EltTy, Size);
3041   }
3042   return false;
3043 }
3044 
3045 //===----------------------------------------------------------------------===//
3046 // Function Semantic Analysis.
3047 //===----------------------------------------------------------------------===//
3048 
3049 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
3050                                              int functionNumber)
3051   : P(p), F(f), FunctionNumber(functionNumber) {
3052 
3053   // Insert unnamed arguments into the NumberedVals list.
3054   for (Argument &A : F.args())
3055     if (!A.hasName())
3056       NumberedVals.push_back(&A);
3057 }
3058 
3059 LLParser::PerFunctionState::~PerFunctionState() {
3060   // If there were any forward referenced non-basicblock values, delete them.
3061 
3062   for (const auto &P : ForwardRefVals) {
3063     if (isa<BasicBlock>(P.second.first))
3064       continue;
3065     P.second.first->replaceAllUsesWith(
3066         UndefValue::get(P.second.first->getType()));
3067     P.second.first->deleteValue();
3068   }
3069 
3070   for (const auto &P : ForwardRefValIDs) {
3071     if (isa<BasicBlock>(P.second.first))
3072       continue;
3073     P.second.first->replaceAllUsesWith(
3074         UndefValue::get(P.second.first->getType()));
3075     P.second.first->deleteValue();
3076   }
3077 }
3078 
3079 bool LLParser::PerFunctionState::finishFunction() {
3080   if (!ForwardRefVals.empty())
3081     return P.error(ForwardRefVals.begin()->second.second,
3082                    "use of undefined value '%" + ForwardRefVals.begin()->first +
3083                        "'");
3084   if (!ForwardRefValIDs.empty())
3085     return P.error(ForwardRefValIDs.begin()->second.second,
3086                    "use of undefined value '%" +
3087                        Twine(ForwardRefValIDs.begin()->first) + "'");
3088   return false;
3089 }
3090 
3091 /// getVal - Get a value with the specified name or ID, creating a
3092 /// forward reference record if needed.  This can return null if the value
3093 /// exists but does not have the right type.
3094 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty,
3095                                           LocTy Loc, bool IsCall) {
3096   // Look this name up in the normal function symbol table.
3097   Value *Val = F.getValueSymbolTable()->lookup(Name);
3098 
3099   // If this is a forward reference for the value, see if we already created a
3100   // forward ref record.
3101   if (!Val) {
3102     auto I = ForwardRefVals.find(Name);
3103     if (I != ForwardRefVals.end())
3104       Val = I->second.first;
3105   }
3106 
3107   // If we have the value in the symbol table or fwd-ref table, return it.
3108   if (Val)
3109     return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall);
3110 
3111   // Don't make placeholders with invalid type.
3112   if (!Ty->isFirstClassType()) {
3113     P.error(Loc, "invalid use of a non-first-class type");
3114     return nullptr;
3115   }
3116 
3117   // Otherwise, create a new forward reference for this value and remember it.
3118   Value *FwdVal;
3119   if (Ty->isLabelTy()) {
3120     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
3121   } else {
3122     FwdVal = new Argument(Ty, Name);
3123   }
3124 
3125   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
3126   return FwdVal;
3127 }
3128 
3129 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc,
3130                                           bool IsCall) {
3131   // Look this name up in the normal function symbol table.
3132   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
3133 
3134   // If this is a forward reference for the value, see if we already created a
3135   // forward ref record.
3136   if (!Val) {
3137     auto I = ForwardRefValIDs.find(ID);
3138     if (I != ForwardRefValIDs.end())
3139       Val = I->second.first;
3140   }
3141 
3142   // If we have the value in the symbol table or fwd-ref table, return it.
3143   if (Val)
3144     return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall);
3145 
3146   if (!Ty->isFirstClassType()) {
3147     P.error(Loc, "invalid use of a non-first-class type");
3148     return nullptr;
3149   }
3150 
3151   // Otherwise, create a new forward reference for this value and remember it.
3152   Value *FwdVal;
3153   if (Ty->isLabelTy()) {
3154     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
3155   } else {
3156     FwdVal = new Argument(Ty);
3157   }
3158 
3159   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
3160   return FwdVal;
3161 }
3162 
3163 /// setInstName - After an instruction is parsed and inserted into its
3164 /// basic block, this installs its name.
3165 bool LLParser::PerFunctionState::setInstName(int NameID,
3166                                              const std::string &NameStr,
3167                                              LocTy NameLoc, Instruction *Inst) {
3168   // If this instruction has void type, it cannot have a name or ID specified.
3169   if (Inst->getType()->isVoidTy()) {
3170     if (NameID != -1 || !NameStr.empty())
3171       return P.error(NameLoc, "instructions returning void cannot have a name");
3172     return false;
3173   }
3174 
3175   // If this was a numbered instruction, verify that the instruction is the
3176   // expected value and resolve any forward references.
3177   if (NameStr.empty()) {
3178     // If neither a name nor an ID was specified, just use the next ID.
3179     if (NameID == -1)
3180       NameID = NumberedVals.size();
3181 
3182     if (unsigned(NameID) != NumberedVals.size())
3183       return P.error(NameLoc, "instruction expected to be numbered '%" +
3184                                   Twine(NumberedVals.size()) + "'");
3185 
3186     auto FI = ForwardRefValIDs.find(NameID);
3187     if (FI != ForwardRefValIDs.end()) {
3188       Value *Sentinel = FI->second.first;
3189       if (Sentinel->getType() != Inst->getType())
3190         return P.error(NameLoc, "instruction forward referenced with type '" +
3191                                     getTypeString(FI->second.first->getType()) +
3192                                     "'");
3193 
3194       Sentinel->replaceAllUsesWith(Inst);
3195       Sentinel->deleteValue();
3196       ForwardRefValIDs.erase(FI);
3197     }
3198 
3199     NumberedVals.push_back(Inst);
3200     return false;
3201   }
3202 
3203   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
3204   auto FI = ForwardRefVals.find(NameStr);
3205   if (FI != ForwardRefVals.end()) {
3206     Value *Sentinel = FI->second.first;
3207     if (Sentinel->getType() != Inst->getType())
3208       return P.error(NameLoc, "instruction forward referenced with type '" +
3209                                   getTypeString(FI->second.first->getType()) +
3210                                   "'");
3211 
3212     Sentinel->replaceAllUsesWith(Inst);
3213     Sentinel->deleteValue();
3214     ForwardRefVals.erase(FI);
3215   }
3216 
3217   // Set the name on the instruction.
3218   Inst->setName(NameStr);
3219 
3220   if (Inst->getName() != NameStr)
3221     return P.error(NameLoc, "multiple definition of local value named '" +
3222                                 NameStr + "'");
3223   return false;
3224 }
3225 
3226 /// getBB - Get a basic block with the specified name or ID, creating a
3227 /// forward reference record if needed.
3228 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name,
3229                                               LocTy Loc) {
3230   return dyn_cast_or_null<BasicBlock>(
3231       getVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3232 }
3233 
3234 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) {
3235   return dyn_cast_or_null<BasicBlock>(
3236       getVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3237 }
3238 
3239 /// defineBB - Define the specified basic block, which is either named or
3240 /// unnamed.  If there is an error, this returns null otherwise it returns
3241 /// the block being defined.
3242 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name,
3243                                                  int NameID, LocTy Loc) {
3244   BasicBlock *BB;
3245   if (Name.empty()) {
3246     if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
3247       P.error(Loc, "label expected to be numbered '" +
3248                        Twine(NumberedVals.size()) + "'");
3249       return nullptr;
3250     }
3251     BB = getBB(NumberedVals.size(), Loc);
3252     if (!BB) {
3253       P.error(Loc, "unable to create block numbered '" +
3254                        Twine(NumberedVals.size()) + "'");
3255       return nullptr;
3256     }
3257   } else {
3258     BB = getBB(Name, Loc);
3259     if (!BB) {
3260       P.error(Loc, "unable to create block named '" + Name + "'");
3261       return nullptr;
3262     }
3263   }
3264 
3265   // Move the block to the end of the function.  Forward ref'd blocks are
3266   // inserted wherever they happen to be referenced.
3267   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
3268 
3269   // Remove the block from forward ref sets.
3270   if (Name.empty()) {
3271     ForwardRefValIDs.erase(NumberedVals.size());
3272     NumberedVals.push_back(BB);
3273   } else {
3274     // BB forward references are already in the function symbol table.
3275     ForwardRefVals.erase(Name);
3276   }
3277 
3278   return BB;
3279 }
3280 
3281 //===----------------------------------------------------------------------===//
3282 // Constants.
3283 //===----------------------------------------------------------------------===//
3284 
3285 /// parseValID - parse an abstract value that doesn't necessarily have a
3286 /// type implied.  For example, if we parse "4" we don't know what integer type
3287 /// it has.  The value will later be combined with its type and checked for
3288 /// sanity.  PFS is used to convert function-local operands of metadata (since
3289 /// metadata operands are not just parsed here but also converted to values).
3290 /// PFS can be null when we are not parsing metadata values inside a function.
3291 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS, Type *ExpectedTy) {
3292   ID.Loc = Lex.getLoc();
3293   switch (Lex.getKind()) {
3294   default:
3295     return tokError("expected value token");
3296   case lltok::GlobalID:  // @42
3297     ID.UIntVal = Lex.getUIntVal();
3298     ID.Kind = ValID::t_GlobalID;
3299     break;
3300   case lltok::GlobalVar:  // @foo
3301     ID.StrVal = Lex.getStrVal();
3302     ID.Kind = ValID::t_GlobalName;
3303     break;
3304   case lltok::LocalVarID:  // %42
3305     ID.UIntVal = Lex.getUIntVal();
3306     ID.Kind = ValID::t_LocalID;
3307     break;
3308   case lltok::LocalVar:  // %foo
3309     ID.StrVal = Lex.getStrVal();
3310     ID.Kind = ValID::t_LocalName;
3311     break;
3312   case lltok::APSInt:
3313     ID.APSIntVal = Lex.getAPSIntVal();
3314     ID.Kind = ValID::t_APSInt;
3315     break;
3316   case lltok::APFloat:
3317     ID.APFloatVal = Lex.getAPFloatVal();
3318     ID.Kind = ValID::t_APFloat;
3319     break;
3320   case lltok::kw_true:
3321     ID.ConstantVal = ConstantInt::getTrue(Context);
3322     ID.Kind = ValID::t_Constant;
3323     break;
3324   case lltok::kw_false:
3325     ID.ConstantVal = ConstantInt::getFalse(Context);
3326     ID.Kind = ValID::t_Constant;
3327     break;
3328   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3329   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3330   case lltok::kw_poison: ID.Kind = ValID::t_Poison; break;
3331   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3332   case lltok::kw_none: ID.Kind = ValID::t_None; break;
3333 
3334   case lltok::lbrace: {
3335     // ValID ::= '{' ConstVector '}'
3336     Lex.Lex();
3337     SmallVector<Constant*, 16> Elts;
3338     if (parseGlobalValueVector(Elts) ||
3339         parseToken(lltok::rbrace, "expected end of struct constant"))
3340       return true;
3341 
3342     ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3343     ID.UIntVal = Elts.size();
3344     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3345            Elts.size() * sizeof(Elts[0]));
3346     ID.Kind = ValID::t_ConstantStruct;
3347     return false;
3348   }
3349   case lltok::less: {
3350     // ValID ::= '<' ConstVector '>'         --> Vector.
3351     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3352     Lex.Lex();
3353     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3354 
3355     SmallVector<Constant*, 16> Elts;
3356     LocTy FirstEltLoc = Lex.getLoc();
3357     if (parseGlobalValueVector(Elts) ||
3358         (isPackedStruct &&
3359          parseToken(lltok::rbrace, "expected end of packed struct")) ||
3360         parseToken(lltok::greater, "expected end of constant"))
3361       return true;
3362 
3363     if (isPackedStruct) {
3364       ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3365       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3366              Elts.size() * sizeof(Elts[0]));
3367       ID.UIntVal = Elts.size();
3368       ID.Kind = ValID::t_PackedConstantStruct;
3369       return false;
3370     }
3371 
3372     if (Elts.empty())
3373       return error(ID.Loc, "constant vector must not be empty");
3374 
3375     if (!Elts[0]->getType()->isIntegerTy() &&
3376         !Elts[0]->getType()->isFloatingPointTy() &&
3377         !Elts[0]->getType()->isPointerTy())
3378       return error(
3379           FirstEltLoc,
3380           "vector elements must have integer, pointer or floating point type");
3381 
3382     // Verify that all the vector elements have the same type.
3383     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3384       if (Elts[i]->getType() != Elts[0]->getType())
3385         return error(FirstEltLoc, "vector element #" + Twine(i) +
3386                                       " is not of type '" +
3387                                       getTypeString(Elts[0]->getType()));
3388 
3389     ID.ConstantVal = ConstantVector::get(Elts);
3390     ID.Kind = ValID::t_Constant;
3391     return false;
3392   }
3393   case lltok::lsquare: {   // Array Constant
3394     Lex.Lex();
3395     SmallVector<Constant*, 16> Elts;
3396     LocTy FirstEltLoc = Lex.getLoc();
3397     if (parseGlobalValueVector(Elts) ||
3398         parseToken(lltok::rsquare, "expected end of array constant"))
3399       return true;
3400 
3401     // Handle empty element.
3402     if (Elts.empty()) {
3403       // Use undef instead of an array because it's inconvenient to determine
3404       // the element type at this point, there being no elements to examine.
3405       ID.Kind = ValID::t_EmptyArray;
3406       return false;
3407     }
3408 
3409     if (!Elts[0]->getType()->isFirstClassType())
3410       return error(FirstEltLoc, "invalid array element type: " +
3411                                     getTypeString(Elts[0]->getType()));
3412 
3413     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3414 
3415     // Verify all elements are correct type!
3416     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3417       if (Elts[i]->getType() != Elts[0]->getType())
3418         return error(FirstEltLoc, "array element #" + Twine(i) +
3419                                       " is not of type '" +
3420                                       getTypeString(Elts[0]->getType()));
3421     }
3422 
3423     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3424     ID.Kind = ValID::t_Constant;
3425     return false;
3426   }
3427   case lltok::kw_c:  // c "foo"
3428     Lex.Lex();
3429     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3430                                                   false);
3431     if (parseToken(lltok::StringConstant, "expected string"))
3432       return true;
3433     ID.Kind = ValID::t_Constant;
3434     return false;
3435 
3436   case lltok::kw_asm: {
3437     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3438     //             STRINGCONSTANT
3439     bool HasSideEffect, AlignStack, AsmDialect, CanThrow;
3440     Lex.Lex();
3441     if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3442         parseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3443         parseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3444         parseOptionalToken(lltok::kw_unwind, CanThrow) ||
3445         parseStringConstant(ID.StrVal) ||
3446         parseToken(lltok::comma, "expected comma in inline asm expression") ||
3447         parseToken(lltok::StringConstant, "expected constraint string"))
3448       return true;
3449     ID.StrVal2 = Lex.getStrVal();
3450     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack) << 1) |
3451                  (unsigned(AsmDialect) << 2) | (unsigned(CanThrow) << 3);
3452     ID.Kind = ValID::t_InlineAsm;
3453     return false;
3454   }
3455 
3456   case lltok::kw_blockaddress: {
3457     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3458     Lex.Lex();
3459 
3460     ValID Fn, Label;
3461 
3462     if (parseToken(lltok::lparen, "expected '(' in block address expression") ||
3463         parseValID(Fn, PFS) ||
3464         parseToken(lltok::comma,
3465                    "expected comma in block address expression") ||
3466         parseValID(Label, PFS) ||
3467         parseToken(lltok::rparen, "expected ')' in block address expression"))
3468       return true;
3469 
3470     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3471       return error(Fn.Loc, "expected function name in blockaddress");
3472     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3473       return error(Label.Loc, "expected basic block name in blockaddress");
3474 
3475     // Try to find the function (but skip it if it's forward-referenced).
3476     GlobalValue *GV = nullptr;
3477     if (Fn.Kind == ValID::t_GlobalID) {
3478       if (Fn.UIntVal < NumberedVals.size())
3479         GV = NumberedVals[Fn.UIntVal];
3480     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3481       GV = M->getNamedValue(Fn.StrVal);
3482     }
3483     Function *F = nullptr;
3484     if (GV) {
3485       // Confirm that it's actually a function with a definition.
3486       if (!isa<Function>(GV))
3487         return error(Fn.Loc, "expected function name in blockaddress");
3488       F = cast<Function>(GV);
3489       if (F->isDeclaration())
3490         return error(Fn.Loc, "cannot take blockaddress inside a declaration");
3491     }
3492 
3493     if (!F) {
3494       // Make a global variable as a placeholder for this reference.
3495       GlobalValue *&FwdRef =
3496           ForwardRefBlockAddresses.insert(std::make_pair(
3497                                               std::move(Fn),
3498                                               std::map<ValID, GlobalValue *>()))
3499               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3500               .first->second;
3501       if (!FwdRef) {
3502         unsigned FwdDeclAS;
3503         if (ExpectedTy) {
3504           // If we know the type that the blockaddress is being assigned to,
3505           // we can use the address space of that type.
3506           if (!ExpectedTy->isPointerTy())
3507             return error(ID.Loc,
3508                          "type of blockaddress must be a pointer and not '" +
3509                              getTypeString(ExpectedTy) + "'");
3510           FwdDeclAS = ExpectedTy->getPointerAddressSpace();
3511         } else if (PFS) {
3512           // Otherwise, we default the address space of the current function.
3513           FwdDeclAS = PFS->getFunction().getAddressSpace();
3514         } else {
3515           llvm_unreachable("Unknown address space for blockaddress");
3516         }
3517         FwdRef = new GlobalVariable(
3518             *M, Type::getInt8Ty(Context), false, GlobalValue::InternalLinkage,
3519             nullptr, "", nullptr, GlobalValue::NotThreadLocal, FwdDeclAS);
3520       }
3521 
3522       ID.ConstantVal = FwdRef;
3523       ID.Kind = ValID::t_Constant;
3524       return false;
3525     }
3526 
3527     // We found the function; now find the basic block.  Don't use PFS, since we
3528     // might be inside a constant expression.
3529     BasicBlock *BB;
3530     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3531       if (Label.Kind == ValID::t_LocalID)
3532         BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc);
3533       else
3534         BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc);
3535       if (!BB)
3536         return error(Label.Loc, "referenced value is not a basic block");
3537     } else {
3538       if (Label.Kind == ValID::t_LocalID)
3539         return error(Label.Loc, "cannot take address of numeric label after "
3540                                 "the function is defined");
3541       BB = dyn_cast_or_null<BasicBlock>(
3542           F->getValueSymbolTable()->lookup(Label.StrVal));
3543       if (!BB)
3544         return error(Label.Loc, "referenced value is not a basic block");
3545     }
3546 
3547     ID.ConstantVal = BlockAddress::get(F, BB);
3548     ID.Kind = ValID::t_Constant;
3549     return false;
3550   }
3551 
3552   case lltok::kw_dso_local_equivalent: {
3553     // ValID ::= 'dso_local_equivalent' @foo
3554     Lex.Lex();
3555 
3556     ValID Fn;
3557 
3558     if (parseValID(Fn, PFS))
3559       return true;
3560 
3561     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3562       return error(Fn.Loc,
3563                    "expected global value name in dso_local_equivalent");
3564 
3565     // Try to find the function (but skip it if it's forward-referenced).
3566     GlobalValue *GV = nullptr;
3567     if (Fn.Kind == ValID::t_GlobalID) {
3568       if (Fn.UIntVal < NumberedVals.size())
3569         GV = NumberedVals[Fn.UIntVal];
3570     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3571       GV = M->getNamedValue(Fn.StrVal);
3572     }
3573 
3574     assert(GV && "Could not find a corresponding global variable");
3575 
3576     if (!GV->getValueType()->isFunctionTy())
3577       return error(Fn.Loc, "expected a function, alias to function, or ifunc "
3578                            "in dso_local_equivalent");
3579 
3580     ID.ConstantVal = DSOLocalEquivalent::get(GV);
3581     ID.Kind = ValID::t_Constant;
3582     return false;
3583   }
3584 
3585   case lltok::kw_trunc:
3586   case lltok::kw_zext:
3587   case lltok::kw_sext:
3588   case lltok::kw_fptrunc:
3589   case lltok::kw_fpext:
3590   case lltok::kw_bitcast:
3591   case lltok::kw_addrspacecast:
3592   case lltok::kw_uitofp:
3593   case lltok::kw_sitofp:
3594   case lltok::kw_fptoui:
3595   case lltok::kw_fptosi:
3596   case lltok::kw_inttoptr:
3597   case lltok::kw_ptrtoint: {
3598     unsigned Opc = Lex.getUIntVal();
3599     Type *DestTy = nullptr;
3600     Constant *SrcVal;
3601     Lex.Lex();
3602     if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3603         parseGlobalTypeAndValue(SrcVal) ||
3604         parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3605         parseType(DestTy) ||
3606         parseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3607       return true;
3608     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3609       return error(ID.Loc, "invalid cast opcode for cast from '" +
3610                                getTypeString(SrcVal->getType()) + "' to '" +
3611                                getTypeString(DestTy) + "'");
3612     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3613                                                  SrcVal, DestTy);
3614     ID.Kind = ValID::t_Constant;
3615     return false;
3616   }
3617   case lltok::kw_extractvalue: {
3618     Lex.Lex();
3619     Constant *Val;
3620     SmallVector<unsigned, 4> Indices;
3621     if (parseToken(lltok::lparen,
3622                    "expected '(' in extractvalue constantexpr") ||
3623         parseGlobalTypeAndValue(Val) || parseIndexList(Indices) ||
3624         parseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3625       return true;
3626 
3627     if (!Val->getType()->isAggregateType())
3628       return error(ID.Loc, "extractvalue operand must be aggregate type");
3629     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3630       return error(ID.Loc, "invalid indices for extractvalue");
3631     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3632     ID.Kind = ValID::t_Constant;
3633     return false;
3634   }
3635   case lltok::kw_insertvalue: {
3636     Lex.Lex();
3637     Constant *Val0, *Val1;
3638     SmallVector<unsigned, 4> Indices;
3639     if (parseToken(lltok::lparen, "expected '(' in insertvalue constantexpr") ||
3640         parseGlobalTypeAndValue(Val0) ||
3641         parseToken(lltok::comma,
3642                    "expected comma in insertvalue constantexpr") ||
3643         parseGlobalTypeAndValue(Val1) || parseIndexList(Indices) ||
3644         parseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3645       return true;
3646     if (!Val0->getType()->isAggregateType())
3647       return error(ID.Loc, "insertvalue operand must be aggregate type");
3648     Type *IndexedType =
3649         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3650     if (!IndexedType)
3651       return error(ID.Loc, "invalid indices for insertvalue");
3652     if (IndexedType != Val1->getType())
3653       return error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3654                                getTypeString(Val1->getType()) +
3655                                "' instead of '" + getTypeString(IndexedType) +
3656                                "'");
3657     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3658     ID.Kind = ValID::t_Constant;
3659     return false;
3660   }
3661   case lltok::kw_icmp:
3662   case lltok::kw_fcmp: {
3663     unsigned PredVal, Opc = Lex.getUIntVal();
3664     Constant *Val0, *Val1;
3665     Lex.Lex();
3666     if (parseCmpPredicate(PredVal, Opc) ||
3667         parseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3668         parseGlobalTypeAndValue(Val0) ||
3669         parseToken(lltok::comma, "expected comma in compare constantexpr") ||
3670         parseGlobalTypeAndValue(Val1) ||
3671         parseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3672       return true;
3673 
3674     if (Val0->getType() != Val1->getType())
3675       return error(ID.Loc, "compare operands must have the same type");
3676 
3677     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3678 
3679     if (Opc == Instruction::FCmp) {
3680       if (!Val0->getType()->isFPOrFPVectorTy())
3681         return error(ID.Loc, "fcmp requires floating point operands");
3682       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3683     } else {
3684       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3685       if (!Val0->getType()->isIntOrIntVectorTy() &&
3686           !Val0->getType()->isPtrOrPtrVectorTy())
3687         return error(ID.Loc, "icmp requires pointer or integer operands");
3688       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3689     }
3690     ID.Kind = ValID::t_Constant;
3691     return false;
3692   }
3693 
3694   // Unary Operators.
3695   case lltok::kw_fneg: {
3696     unsigned Opc = Lex.getUIntVal();
3697     Constant *Val;
3698     Lex.Lex();
3699     if (parseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3700         parseGlobalTypeAndValue(Val) ||
3701         parseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3702       return true;
3703 
3704     // Check that the type is valid for the operator.
3705     switch (Opc) {
3706     case Instruction::FNeg:
3707       if (!Val->getType()->isFPOrFPVectorTy())
3708         return error(ID.Loc, "constexpr requires fp operands");
3709       break;
3710     default: llvm_unreachable("Unknown unary operator!");
3711     }
3712     unsigned Flags = 0;
3713     Constant *C = ConstantExpr::get(Opc, Val, Flags);
3714     ID.ConstantVal = C;
3715     ID.Kind = ValID::t_Constant;
3716     return false;
3717   }
3718   // Binary Operators.
3719   case lltok::kw_add:
3720   case lltok::kw_fadd:
3721   case lltok::kw_sub:
3722   case lltok::kw_fsub:
3723   case lltok::kw_mul:
3724   case lltok::kw_fmul:
3725   case lltok::kw_udiv:
3726   case lltok::kw_sdiv:
3727   case lltok::kw_fdiv:
3728   case lltok::kw_urem:
3729   case lltok::kw_srem:
3730   case lltok::kw_frem:
3731   case lltok::kw_shl:
3732   case lltok::kw_lshr:
3733   case lltok::kw_ashr: {
3734     bool NUW = false;
3735     bool NSW = false;
3736     bool Exact = false;
3737     unsigned Opc = Lex.getUIntVal();
3738     Constant *Val0, *Val1;
3739     Lex.Lex();
3740     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3741         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3742       if (EatIfPresent(lltok::kw_nuw))
3743         NUW = true;
3744       if (EatIfPresent(lltok::kw_nsw)) {
3745         NSW = true;
3746         if (EatIfPresent(lltok::kw_nuw))
3747           NUW = true;
3748       }
3749     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3750                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3751       if (EatIfPresent(lltok::kw_exact))
3752         Exact = true;
3753     }
3754     if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3755         parseGlobalTypeAndValue(Val0) ||
3756         parseToken(lltok::comma, "expected comma in binary constantexpr") ||
3757         parseGlobalTypeAndValue(Val1) ||
3758         parseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3759       return true;
3760     if (Val0->getType() != Val1->getType())
3761       return error(ID.Loc, "operands of constexpr must have same type");
3762     // Check that the type is valid for the operator.
3763     switch (Opc) {
3764     case Instruction::Add:
3765     case Instruction::Sub:
3766     case Instruction::Mul:
3767     case Instruction::UDiv:
3768     case Instruction::SDiv:
3769     case Instruction::URem:
3770     case Instruction::SRem:
3771     case Instruction::Shl:
3772     case Instruction::AShr:
3773     case Instruction::LShr:
3774       if (!Val0->getType()->isIntOrIntVectorTy())
3775         return error(ID.Loc, "constexpr requires integer operands");
3776       break;
3777     case Instruction::FAdd:
3778     case Instruction::FSub:
3779     case Instruction::FMul:
3780     case Instruction::FDiv:
3781     case Instruction::FRem:
3782       if (!Val0->getType()->isFPOrFPVectorTy())
3783         return error(ID.Loc, "constexpr requires fp operands");
3784       break;
3785     default: llvm_unreachable("Unknown binary operator!");
3786     }
3787     unsigned Flags = 0;
3788     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3789     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3790     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3791     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3792     ID.ConstantVal = C;
3793     ID.Kind = ValID::t_Constant;
3794     return false;
3795   }
3796 
3797   // Logical Operations
3798   case lltok::kw_and:
3799   case lltok::kw_or:
3800   case lltok::kw_xor: {
3801     unsigned Opc = Lex.getUIntVal();
3802     Constant *Val0, *Val1;
3803     Lex.Lex();
3804     if (parseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3805         parseGlobalTypeAndValue(Val0) ||
3806         parseToken(lltok::comma, "expected comma in logical constantexpr") ||
3807         parseGlobalTypeAndValue(Val1) ||
3808         parseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3809       return true;
3810     if (Val0->getType() != Val1->getType())
3811       return error(ID.Loc, "operands of constexpr must have same type");
3812     if (!Val0->getType()->isIntOrIntVectorTy())
3813       return error(ID.Loc,
3814                    "constexpr requires integer or integer vector operands");
3815     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3816     ID.Kind = ValID::t_Constant;
3817     return false;
3818   }
3819 
3820   case lltok::kw_getelementptr:
3821   case lltok::kw_shufflevector:
3822   case lltok::kw_insertelement:
3823   case lltok::kw_extractelement:
3824   case lltok::kw_select: {
3825     unsigned Opc = Lex.getUIntVal();
3826     SmallVector<Constant*, 16> Elts;
3827     bool InBounds = false;
3828     Type *Ty;
3829     Lex.Lex();
3830 
3831     if (Opc == Instruction::GetElementPtr)
3832       InBounds = EatIfPresent(lltok::kw_inbounds);
3833 
3834     if (parseToken(lltok::lparen, "expected '(' in constantexpr"))
3835       return true;
3836 
3837     LocTy ExplicitTypeLoc = Lex.getLoc();
3838     if (Opc == Instruction::GetElementPtr) {
3839       if (parseType(Ty) ||
3840           parseToken(lltok::comma, "expected comma after getelementptr's type"))
3841         return true;
3842     }
3843 
3844     Optional<unsigned> InRangeOp;
3845     if (parseGlobalValueVector(
3846             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3847         parseToken(lltok::rparen, "expected ')' in constantexpr"))
3848       return true;
3849 
3850     if (Opc == Instruction::GetElementPtr) {
3851       if (Elts.size() == 0 ||
3852           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3853         return error(ID.Loc, "base of getelementptr must be a pointer");
3854 
3855       Type *BaseType = Elts[0]->getType();
3856       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3857       if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) {
3858         return error(
3859             ExplicitTypeLoc,
3860             typeComparisonErrorMessage(
3861                 "explicit pointee type doesn't match operand's pointee type",
3862                 Ty, BasePointerType->getElementType()));
3863       }
3864 
3865       unsigned GEPWidth =
3866           BaseType->isVectorTy()
3867               ? cast<FixedVectorType>(BaseType)->getNumElements()
3868               : 0;
3869 
3870       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3871       for (Constant *Val : Indices) {
3872         Type *ValTy = Val->getType();
3873         if (!ValTy->isIntOrIntVectorTy())
3874           return error(ID.Loc, "getelementptr index must be an integer");
3875         if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) {
3876           unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements();
3877           if (GEPWidth && (ValNumEl != GEPWidth))
3878             return error(
3879                 ID.Loc,
3880                 "getelementptr vector index has a wrong number of elements");
3881           // GEPWidth may have been unknown because the base is a scalar,
3882           // but it is known now.
3883           GEPWidth = ValNumEl;
3884         }
3885       }
3886 
3887       SmallPtrSet<Type*, 4> Visited;
3888       if (!Indices.empty() && !Ty->isSized(&Visited))
3889         return error(ID.Loc, "base element of getelementptr must be sized");
3890 
3891       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3892         return error(ID.Loc, "invalid getelementptr indices");
3893 
3894       if (InRangeOp) {
3895         if (*InRangeOp == 0)
3896           return error(ID.Loc,
3897                        "inrange keyword may not appear on pointer operand");
3898         --*InRangeOp;
3899       }
3900 
3901       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3902                                                       InBounds, InRangeOp);
3903     } else if (Opc == Instruction::Select) {
3904       if (Elts.size() != 3)
3905         return error(ID.Loc, "expected three operands to select");
3906       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3907                                                               Elts[2]))
3908         return error(ID.Loc, Reason);
3909       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3910     } else if (Opc == Instruction::ShuffleVector) {
3911       if (Elts.size() != 3)
3912         return error(ID.Loc, "expected three operands to shufflevector");
3913       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3914         return error(ID.Loc, "invalid operands to shufflevector");
3915       SmallVector<int, 16> Mask;
3916       ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask);
3917       ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask);
3918     } else if (Opc == Instruction::ExtractElement) {
3919       if (Elts.size() != 2)
3920         return error(ID.Loc, "expected two operands to extractelement");
3921       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3922         return error(ID.Loc, "invalid extractelement operands");
3923       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3924     } else {
3925       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3926       if (Elts.size() != 3)
3927         return error(ID.Loc, "expected three operands to insertelement");
3928       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3929         return error(ID.Loc, "invalid insertelement operands");
3930       ID.ConstantVal =
3931                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3932     }
3933 
3934     ID.Kind = ValID::t_Constant;
3935     return false;
3936   }
3937   }
3938 
3939   Lex.Lex();
3940   return false;
3941 }
3942 
3943 /// parseGlobalValue - parse a global value with the specified type.
3944 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) {
3945   C = nullptr;
3946   ValID ID;
3947   Value *V = nullptr;
3948   bool Parsed = parseValID(ID, /*PFS=*/nullptr, Ty) ||
3949                 convertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3950   if (V && !(C = dyn_cast<Constant>(V)))
3951     return error(ID.Loc, "global values must be constants");
3952   return Parsed;
3953 }
3954 
3955 bool LLParser::parseGlobalTypeAndValue(Constant *&V) {
3956   Type *Ty = nullptr;
3957   return parseType(Ty) || parseGlobalValue(Ty, V);
3958 }
3959 
3960 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3961   C = nullptr;
3962 
3963   LocTy KwLoc = Lex.getLoc();
3964   if (!EatIfPresent(lltok::kw_comdat))
3965     return false;
3966 
3967   if (EatIfPresent(lltok::lparen)) {
3968     if (Lex.getKind() != lltok::ComdatVar)
3969       return tokError("expected comdat variable");
3970     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3971     Lex.Lex();
3972     if (parseToken(lltok::rparen, "expected ')' after comdat var"))
3973       return true;
3974   } else {
3975     if (GlobalName.empty())
3976       return tokError("comdat cannot be unnamed");
3977     C = getComdat(std::string(GlobalName), KwLoc);
3978   }
3979 
3980   return false;
3981 }
3982 
3983 /// parseGlobalValueVector
3984 ///   ::= /*empty*/
3985 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3986 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3987                                       Optional<unsigned> *InRangeOp) {
3988   // Empty list.
3989   if (Lex.getKind() == lltok::rbrace ||
3990       Lex.getKind() == lltok::rsquare ||
3991       Lex.getKind() == lltok::greater ||
3992       Lex.getKind() == lltok::rparen)
3993     return false;
3994 
3995   do {
3996     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3997       *InRangeOp = Elts.size();
3998 
3999     Constant *C;
4000     if (parseGlobalTypeAndValue(C))
4001       return true;
4002     Elts.push_back(C);
4003   } while (EatIfPresent(lltok::comma));
4004 
4005   return false;
4006 }
4007 
4008 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) {
4009   SmallVector<Metadata *, 16> Elts;
4010   if (parseMDNodeVector(Elts))
4011     return true;
4012 
4013   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
4014   return false;
4015 }
4016 
4017 /// MDNode:
4018 ///  ::= !{ ... }
4019 ///  ::= !7
4020 ///  ::= !DILocation(...)
4021 bool LLParser::parseMDNode(MDNode *&N) {
4022   if (Lex.getKind() == lltok::MetadataVar)
4023     return parseSpecializedMDNode(N);
4024 
4025   return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N);
4026 }
4027 
4028 bool LLParser::parseMDNodeTail(MDNode *&N) {
4029   // !{ ... }
4030   if (Lex.getKind() == lltok::lbrace)
4031     return parseMDTuple(N);
4032 
4033   // !42
4034   return parseMDNodeID(N);
4035 }
4036 
4037 namespace {
4038 
4039 /// Structure to represent an optional metadata field.
4040 template <class FieldTy> struct MDFieldImpl {
4041   typedef MDFieldImpl ImplTy;
4042   FieldTy Val;
4043   bool Seen;
4044 
4045   void assign(FieldTy Val) {
4046     Seen = true;
4047     this->Val = std::move(Val);
4048   }
4049 
4050   explicit MDFieldImpl(FieldTy Default)
4051       : Val(std::move(Default)), Seen(false) {}
4052 };
4053 
4054 /// Structure to represent an optional metadata field that
4055 /// can be of either type (A or B) and encapsulates the
4056 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
4057 /// to reimplement the specifics for representing each Field.
4058 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
4059   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
4060   FieldTypeA A;
4061   FieldTypeB B;
4062   bool Seen;
4063 
4064   enum {
4065     IsInvalid = 0,
4066     IsTypeA = 1,
4067     IsTypeB = 2
4068   } WhatIs;
4069 
4070   void assign(FieldTypeA A) {
4071     Seen = true;
4072     this->A = std::move(A);
4073     WhatIs = IsTypeA;
4074   }
4075 
4076   void assign(FieldTypeB B) {
4077     Seen = true;
4078     this->B = std::move(B);
4079     WhatIs = IsTypeB;
4080   }
4081 
4082   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
4083       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
4084         WhatIs(IsInvalid) {}
4085 };
4086 
4087 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
4088   uint64_t Max;
4089 
4090   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
4091       : ImplTy(Default), Max(Max) {}
4092 };
4093 
4094 struct LineField : public MDUnsignedField {
4095   LineField() : MDUnsignedField(0, UINT32_MAX) {}
4096 };
4097 
4098 struct ColumnField : public MDUnsignedField {
4099   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
4100 };
4101 
4102 struct DwarfTagField : public MDUnsignedField {
4103   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
4104   DwarfTagField(dwarf::Tag DefaultTag)
4105       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
4106 };
4107 
4108 struct DwarfMacinfoTypeField : public MDUnsignedField {
4109   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
4110   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
4111     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
4112 };
4113 
4114 struct DwarfAttEncodingField : public MDUnsignedField {
4115   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
4116 };
4117 
4118 struct DwarfVirtualityField : public MDUnsignedField {
4119   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
4120 };
4121 
4122 struct DwarfLangField : public MDUnsignedField {
4123   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
4124 };
4125 
4126 struct DwarfCCField : public MDUnsignedField {
4127   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
4128 };
4129 
4130 struct EmissionKindField : public MDUnsignedField {
4131   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
4132 };
4133 
4134 struct NameTableKindField : public MDUnsignedField {
4135   NameTableKindField()
4136       : MDUnsignedField(
4137             0, (unsigned)
4138                    DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
4139 };
4140 
4141 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
4142   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
4143 };
4144 
4145 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
4146   DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
4147 };
4148 
4149 struct MDAPSIntField : public MDFieldImpl<APSInt> {
4150   MDAPSIntField() : ImplTy(APSInt()) {}
4151 };
4152 
4153 struct MDSignedField : public MDFieldImpl<int64_t> {
4154   int64_t Min;
4155   int64_t Max;
4156 
4157   MDSignedField(int64_t Default = 0)
4158       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
4159   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
4160       : ImplTy(Default), Min(Min), Max(Max) {}
4161 };
4162 
4163 struct MDBoolField : public MDFieldImpl<bool> {
4164   MDBoolField(bool Default = false) : ImplTy(Default) {}
4165 };
4166 
4167 struct MDField : public MDFieldImpl<Metadata *> {
4168   bool AllowNull;
4169 
4170   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
4171 };
4172 
4173 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
4174   MDConstant() : ImplTy(nullptr) {}
4175 };
4176 
4177 struct MDStringField : public MDFieldImpl<MDString *> {
4178   bool AllowEmpty;
4179   MDStringField(bool AllowEmpty = true)
4180       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
4181 };
4182 
4183 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
4184   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
4185 };
4186 
4187 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
4188   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
4189 };
4190 
4191 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
4192   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
4193       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
4194 
4195   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
4196                     bool AllowNull = true)
4197       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
4198 
4199   bool isMDSignedField() const { return WhatIs == IsTypeA; }
4200   bool isMDField() const { return WhatIs == IsTypeB; }
4201   int64_t getMDSignedValue() const {
4202     assert(isMDSignedField() && "Wrong field type");
4203     return A.Val;
4204   }
4205   Metadata *getMDFieldValue() const {
4206     assert(isMDField() && "Wrong field type");
4207     return B.Val;
4208   }
4209 };
4210 
4211 struct MDSignedOrUnsignedField
4212     : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
4213   MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
4214 
4215   bool isMDSignedField() const { return WhatIs == IsTypeA; }
4216   bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
4217   int64_t getMDSignedValue() const {
4218     assert(isMDSignedField() && "Wrong field type");
4219     return A.Val;
4220   }
4221   uint64_t getMDUnsignedValue() const {
4222     assert(isMDUnsignedField() && "Wrong field type");
4223     return B.Val;
4224   }
4225 };
4226 
4227 } // end anonymous namespace
4228 
4229 namespace llvm {
4230 
4231 template <>
4232 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) {
4233   if (Lex.getKind() != lltok::APSInt)
4234     return tokError("expected integer");
4235 
4236   Result.assign(Lex.getAPSIntVal());
4237   Lex.Lex();
4238   return false;
4239 }
4240 
4241 template <>
4242 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4243                             MDUnsignedField &Result) {
4244   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4245     return tokError("expected unsigned integer");
4246 
4247   auto &U = Lex.getAPSIntVal();
4248   if (U.ugt(Result.Max))
4249     return tokError("value for '" + Name + "' too large, limit is " +
4250                     Twine(Result.Max));
4251   Result.assign(U.getZExtValue());
4252   assert(Result.Val <= Result.Max && "Expected value in range");
4253   Lex.Lex();
4254   return false;
4255 }
4256 
4257 template <>
4258 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) {
4259   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4260 }
4261 template <>
4262 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
4263   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4264 }
4265 
4266 template <>
4267 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
4268   if (Lex.getKind() == lltok::APSInt)
4269     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4270 
4271   if (Lex.getKind() != lltok::DwarfTag)
4272     return tokError("expected DWARF tag");
4273 
4274   unsigned Tag = dwarf::getTag(Lex.getStrVal());
4275   if (Tag == dwarf::DW_TAG_invalid)
4276     return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
4277   assert(Tag <= Result.Max && "Expected valid DWARF tag");
4278 
4279   Result.assign(Tag);
4280   Lex.Lex();
4281   return false;
4282 }
4283 
4284 template <>
4285 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4286                             DwarfMacinfoTypeField &Result) {
4287   if (Lex.getKind() == lltok::APSInt)
4288     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4289 
4290   if (Lex.getKind() != lltok::DwarfMacinfo)
4291     return tokError("expected DWARF macinfo type");
4292 
4293   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
4294   if (Macinfo == dwarf::DW_MACINFO_invalid)
4295     return tokError("invalid DWARF macinfo type" + Twine(" '") +
4296                     Lex.getStrVal() + "'");
4297   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
4298 
4299   Result.assign(Macinfo);
4300   Lex.Lex();
4301   return false;
4302 }
4303 
4304 template <>
4305 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4306                             DwarfVirtualityField &Result) {
4307   if (Lex.getKind() == lltok::APSInt)
4308     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4309 
4310   if (Lex.getKind() != lltok::DwarfVirtuality)
4311     return tokError("expected DWARF virtuality code");
4312 
4313   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
4314   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
4315     return tokError("invalid DWARF virtuality code" + Twine(" '") +
4316                     Lex.getStrVal() + "'");
4317   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
4318   Result.assign(Virtuality);
4319   Lex.Lex();
4320   return false;
4321 }
4322 
4323 template <>
4324 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
4325   if (Lex.getKind() == lltok::APSInt)
4326     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4327 
4328   if (Lex.getKind() != lltok::DwarfLang)
4329     return tokError("expected DWARF language");
4330 
4331   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
4332   if (!Lang)
4333     return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
4334                     "'");
4335   assert(Lang <= Result.Max && "Expected valid DWARF language");
4336   Result.assign(Lang);
4337   Lex.Lex();
4338   return false;
4339 }
4340 
4341 template <>
4342 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4343   if (Lex.getKind() == lltok::APSInt)
4344     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4345 
4346   if (Lex.getKind() != lltok::DwarfCC)
4347     return tokError("expected DWARF calling convention");
4348 
4349   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
4350   if (!CC)
4351     return tokError("invalid DWARF calling convention" + Twine(" '") +
4352                     Lex.getStrVal() + "'");
4353   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4354   Result.assign(CC);
4355   Lex.Lex();
4356   return false;
4357 }
4358 
4359 template <>
4360 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4361                             EmissionKindField &Result) {
4362   if (Lex.getKind() == lltok::APSInt)
4363     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4364 
4365   if (Lex.getKind() != lltok::EmissionKind)
4366     return tokError("expected emission kind");
4367 
4368   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4369   if (!Kind)
4370     return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4371                     "'");
4372   assert(*Kind <= Result.Max && "Expected valid emission kind");
4373   Result.assign(*Kind);
4374   Lex.Lex();
4375   return false;
4376 }
4377 
4378 template <>
4379 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4380                             NameTableKindField &Result) {
4381   if (Lex.getKind() == lltok::APSInt)
4382     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4383 
4384   if (Lex.getKind() != lltok::NameTableKind)
4385     return tokError("expected nameTable kind");
4386 
4387   auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4388   if (!Kind)
4389     return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4390                     "'");
4391   assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4392   Result.assign((unsigned)*Kind);
4393   Lex.Lex();
4394   return false;
4395 }
4396 
4397 template <>
4398 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4399                             DwarfAttEncodingField &Result) {
4400   if (Lex.getKind() == lltok::APSInt)
4401     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4402 
4403   if (Lex.getKind() != lltok::DwarfAttEncoding)
4404     return tokError("expected DWARF type attribute encoding");
4405 
4406   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4407   if (!Encoding)
4408     return tokError("invalid DWARF type attribute encoding" + Twine(" '") +
4409                     Lex.getStrVal() + "'");
4410   assert(Encoding <= Result.Max && "Expected valid DWARF language");
4411   Result.assign(Encoding);
4412   Lex.Lex();
4413   return false;
4414 }
4415 
4416 /// DIFlagField
4417 ///  ::= uint32
4418 ///  ::= DIFlagVector
4419 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4420 template <>
4421 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4422 
4423   // parser for a single flag.
4424   auto parseFlag = [&](DINode::DIFlags &Val) {
4425     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4426       uint32_t TempVal = static_cast<uint32_t>(Val);
4427       bool Res = parseUInt32(TempVal);
4428       Val = static_cast<DINode::DIFlags>(TempVal);
4429       return Res;
4430     }
4431 
4432     if (Lex.getKind() != lltok::DIFlag)
4433       return tokError("expected debug info flag");
4434 
4435     Val = DINode::getFlag(Lex.getStrVal());
4436     if (!Val)
4437       return tokError(Twine("invalid debug info flag flag '") +
4438                       Lex.getStrVal() + "'");
4439     Lex.Lex();
4440     return false;
4441   };
4442 
4443   // parse the flags and combine them together.
4444   DINode::DIFlags Combined = DINode::FlagZero;
4445   do {
4446     DINode::DIFlags Val;
4447     if (parseFlag(Val))
4448       return true;
4449     Combined |= Val;
4450   } while (EatIfPresent(lltok::bar));
4451 
4452   Result.assign(Combined);
4453   return false;
4454 }
4455 
4456 /// DISPFlagField
4457 ///  ::= uint32
4458 ///  ::= DISPFlagVector
4459 ///  ::= DISPFlagVector '|' DISPFlag* '|' uint32
4460 template <>
4461 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4462 
4463   // parser for a single flag.
4464   auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4465     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4466       uint32_t TempVal = static_cast<uint32_t>(Val);
4467       bool Res = parseUInt32(TempVal);
4468       Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4469       return Res;
4470     }
4471 
4472     if (Lex.getKind() != lltok::DISPFlag)
4473       return tokError("expected debug info flag");
4474 
4475     Val = DISubprogram::getFlag(Lex.getStrVal());
4476     if (!Val)
4477       return tokError(Twine("invalid subprogram debug info flag '") +
4478                       Lex.getStrVal() + "'");
4479     Lex.Lex();
4480     return false;
4481   };
4482 
4483   // parse the flags and combine them together.
4484   DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4485   do {
4486     DISubprogram::DISPFlags Val;
4487     if (parseFlag(Val))
4488       return true;
4489     Combined |= Val;
4490   } while (EatIfPresent(lltok::bar));
4491 
4492   Result.assign(Combined);
4493   return false;
4494 }
4495 
4496 template <>
4497 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) {
4498   if (Lex.getKind() != lltok::APSInt)
4499     return tokError("expected signed integer");
4500 
4501   auto &S = Lex.getAPSIntVal();
4502   if (S < Result.Min)
4503     return tokError("value for '" + Name + "' too small, limit is " +
4504                     Twine(Result.Min));
4505   if (S > Result.Max)
4506     return tokError("value for '" + Name + "' too large, limit is " +
4507                     Twine(Result.Max));
4508   Result.assign(S.getExtValue());
4509   assert(Result.Val >= Result.Min && "Expected value in range");
4510   assert(Result.Val <= Result.Max && "Expected value in range");
4511   Lex.Lex();
4512   return false;
4513 }
4514 
4515 template <>
4516 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4517   switch (Lex.getKind()) {
4518   default:
4519     return tokError("expected 'true' or 'false'");
4520   case lltok::kw_true:
4521     Result.assign(true);
4522     break;
4523   case lltok::kw_false:
4524     Result.assign(false);
4525     break;
4526   }
4527   Lex.Lex();
4528   return false;
4529 }
4530 
4531 template <>
4532 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4533   if (Lex.getKind() == lltok::kw_null) {
4534     if (!Result.AllowNull)
4535       return tokError("'" + Name + "' cannot be null");
4536     Lex.Lex();
4537     Result.assign(nullptr);
4538     return false;
4539   }
4540 
4541   Metadata *MD;
4542   if (parseMetadata(MD, nullptr))
4543     return true;
4544 
4545   Result.assign(MD);
4546   return false;
4547 }
4548 
4549 template <>
4550 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4551                             MDSignedOrMDField &Result) {
4552   // Try to parse a signed int.
4553   if (Lex.getKind() == lltok::APSInt) {
4554     MDSignedField Res = Result.A;
4555     if (!parseMDField(Loc, Name, Res)) {
4556       Result.assign(Res);
4557       return false;
4558     }
4559     return true;
4560   }
4561 
4562   // Otherwise, try to parse as an MDField.
4563   MDField Res = Result.B;
4564   if (!parseMDField(Loc, Name, Res)) {
4565     Result.assign(Res);
4566     return false;
4567   }
4568 
4569   return true;
4570 }
4571 
4572 template <>
4573 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4574   LocTy ValueLoc = Lex.getLoc();
4575   std::string S;
4576   if (parseStringConstant(S))
4577     return true;
4578 
4579   if (!Result.AllowEmpty && S.empty())
4580     return error(ValueLoc, "'" + Name + "' cannot be empty");
4581 
4582   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4583   return false;
4584 }
4585 
4586 template <>
4587 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4588   SmallVector<Metadata *, 4> MDs;
4589   if (parseMDNodeVector(MDs))
4590     return true;
4591 
4592   Result.assign(std::move(MDs));
4593   return false;
4594 }
4595 
4596 template <>
4597 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4598                             ChecksumKindField &Result) {
4599   Optional<DIFile::ChecksumKind> CSKind =
4600       DIFile::getChecksumKind(Lex.getStrVal());
4601 
4602   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4603     return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() +
4604                     "'");
4605 
4606   Result.assign(*CSKind);
4607   Lex.Lex();
4608   return false;
4609 }
4610 
4611 } // end namespace llvm
4612 
4613 template <class ParserTy>
4614 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) {
4615   do {
4616     if (Lex.getKind() != lltok::LabelStr)
4617       return tokError("expected field label here");
4618 
4619     if (ParseField())
4620       return true;
4621   } while (EatIfPresent(lltok::comma));
4622 
4623   return false;
4624 }
4625 
4626 template <class ParserTy>
4627 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) {
4628   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4629   Lex.Lex();
4630 
4631   if (parseToken(lltok::lparen, "expected '(' here"))
4632     return true;
4633   if (Lex.getKind() != lltok::rparen)
4634     if (parseMDFieldsImplBody(ParseField))
4635       return true;
4636 
4637   ClosingLoc = Lex.getLoc();
4638   return parseToken(lltok::rparen, "expected ')' here");
4639 }
4640 
4641 template <class FieldTy>
4642 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) {
4643   if (Result.Seen)
4644     return tokError("field '" + Name + "' cannot be specified more than once");
4645 
4646   LocTy Loc = Lex.getLoc();
4647   Lex.Lex();
4648   return parseMDField(Loc, Name, Result);
4649 }
4650 
4651 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4652   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4653 
4654 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4655   if (Lex.getStrVal() == #CLASS)                                               \
4656     return parse##CLASS(N, IsDistinct);
4657 #include "llvm/IR/Metadata.def"
4658 
4659   return tokError("expected metadata type");
4660 }
4661 
4662 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4663 #define NOP_FIELD(NAME, TYPE, INIT)
4664 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4665   if (!NAME.Seen)                                                              \
4666     return error(ClosingLoc, "missing required field '" #NAME "'");
4667 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4668   if (Lex.getStrVal() == #NAME)                                                \
4669     return parseMDField(#NAME, NAME);
4670 #define PARSE_MD_FIELDS()                                                      \
4671   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4672   do {                                                                         \
4673     LocTy ClosingLoc;                                                          \
4674     if (parseMDFieldsImpl(                                                     \
4675             [&]() -> bool {                                                    \
4676               VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                  \
4677               return tokError(Twine("invalid field '") + Lex.getStrVal() +     \
4678                               "'");                                            \
4679             },                                                                 \
4680             ClosingLoc))                                                       \
4681       return true;                                                             \
4682     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4683   } while (false)
4684 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4685   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4686 
4687 /// parseDILocationFields:
4688 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4689 ///   isImplicitCode: true)
4690 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) {
4691 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4692   OPTIONAL(line, LineField, );                                                 \
4693   OPTIONAL(column, ColumnField, );                                             \
4694   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4695   OPTIONAL(inlinedAt, MDField, );                                              \
4696   OPTIONAL(isImplicitCode, MDBoolField, (false));
4697   PARSE_MD_FIELDS();
4698 #undef VISIT_MD_FIELDS
4699 
4700   Result =
4701       GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4702                                    inlinedAt.Val, isImplicitCode.Val));
4703   return false;
4704 }
4705 
4706 /// parseGenericDINode:
4707 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4708 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) {
4709 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4710   REQUIRED(tag, DwarfTagField, );                                              \
4711   OPTIONAL(header, MDStringField, );                                           \
4712   OPTIONAL(operands, MDFieldList, );
4713   PARSE_MD_FIELDS();
4714 #undef VISIT_MD_FIELDS
4715 
4716   Result = GET_OR_DISTINCT(GenericDINode,
4717                            (Context, tag.Val, header.Val, operands.Val));
4718   return false;
4719 }
4720 
4721 /// parseDISubrange:
4722 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4723 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4724 ///   ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3)
4725 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) {
4726 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4727   OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4728   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4729   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4730   OPTIONAL(stride, MDSignedOrMDField, );
4731   PARSE_MD_FIELDS();
4732 #undef VISIT_MD_FIELDS
4733 
4734   Metadata *Count = nullptr;
4735   Metadata *LowerBound = nullptr;
4736   Metadata *UpperBound = nullptr;
4737   Metadata *Stride = nullptr;
4738 
4739   auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4740     if (Bound.isMDSignedField())
4741       return ConstantAsMetadata::get(ConstantInt::getSigned(
4742           Type::getInt64Ty(Context), Bound.getMDSignedValue()));
4743     if (Bound.isMDField())
4744       return Bound.getMDFieldValue();
4745     return nullptr;
4746   };
4747 
4748   Count = convToMetadata(count);
4749   LowerBound = convToMetadata(lowerBound);
4750   UpperBound = convToMetadata(upperBound);
4751   Stride = convToMetadata(stride);
4752 
4753   Result = GET_OR_DISTINCT(DISubrange,
4754                            (Context, Count, LowerBound, UpperBound, Stride));
4755 
4756   return false;
4757 }
4758 
4759 /// parseDIGenericSubrange:
4760 ///   ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride:
4761 ///   !node3)
4762 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) {
4763 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4764   OPTIONAL(count, MDSignedOrMDField, );                                        \
4765   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4766   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4767   OPTIONAL(stride, MDSignedOrMDField, );
4768   PARSE_MD_FIELDS();
4769 #undef VISIT_MD_FIELDS
4770 
4771   auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4772     if (Bound.isMDSignedField())
4773       return DIExpression::get(
4774           Context, {dwarf::DW_OP_consts,
4775                     static_cast<uint64_t>(Bound.getMDSignedValue())});
4776     if (Bound.isMDField())
4777       return Bound.getMDFieldValue();
4778     return nullptr;
4779   };
4780 
4781   Metadata *Count = ConvToMetadata(count);
4782   Metadata *LowerBound = ConvToMetadata(lowerBound);
4783   Metadata *UpperBound = ConvToMetadata(upperBound);
4784   Metadata *Stride = ConvToMetadata(stride);
4785 
4786   Result = GET_OR_DISTINCT(DIGenericSubrange,
4787                            (Context, Count, LowerBound, UpperBound, Stride));
4788 
4789   return false;
4790 }
4791 
4792 /// parseDIEnumerator:
4793 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4794 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4795 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4796   REQUIRED(name, MDStringField, );                                             \
4797   REQUIRED(value, MDAPSIntField, );                                            \
4798   OPTIONAL(isUnsigned, MDBoolField, (false));
4799   PARSE_MD_FIELDS();
4800 #undef VISIT_MD_FIELDS
4801 
4802   if (isUnsigned.Val && value.Val.isNegative())
4803     return tokError("unsigned enumerator with negative value");
4804 
4805   APSInt Value(value.Val);
4806   // Add a leading zero so that unsigned values with the msb set are not
4807   // mistaken for negative values when used for signed enumerators.
4808   if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet())
4809     Value = Value.zext(Value.getBitWidth() + 1);
4810 
4811   Result =
4812       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4813 
4814   return false;
4815 }
4816 
4817 /// parseDIBasicType:
4818 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4819 ///                    encoding: DW_ATE_encoding, flags: 0)
4820 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) {
4821 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4822   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4823   OPTIONAL(name, MDStringField, );                                             \
4824   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4825   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4826   OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
4827   OPTIONAL(flags, DIFlagField, );
4828   PARSE_MD_FIELDS();
4829 #undef VISIT_MD_FIELDS
4830 
4831   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4832                                          align.Val, encoding.Val, flags.Val));
4833   return false;
4834 }
4835 
4836 /// parseDIStringType:
4837 ///   ::= !DIStringType(name: "character(4)", size: 32, align: 32)
4838 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) {
4839 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4840   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type));                   \
4841   OPTIONAL(name, MDStringField, );                                             \
4842   OPTIONAL(stringLength, MDField, );                                           \
4843   OPTIONAL(stringLengthExpression, MDField, );                                 \
4844   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4845   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4846   OPTIONAL(encoding, DwarfAttEncodingField, );
4847   PARSE_MD_FIELDS();
4848 #undef VISIT_MD_FIELDS
4849 
4850   Result = GET_OR_DISTINCT(DIStringType,
4851                            (Context, tag.Val, name.Val, stringLength.Val,
4852                             stringLengthExpression.Val, size.Val, align.Val,
4853                             encoding.Val));
4854   return false;
4855 }
4856 
4857 /// parseDIDerivedType:
4858 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4859 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4860 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4861 ///                      dwarfAddressSpace: 3)
4862 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4863 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4864   REQUIRED(tag, DwarfTagField, );                                              \
4865   OPTIONAL(name, MDStringField, );                                             \
4866   OPTIONAL(file, MDField, );                                                   \
4867   OPTIONAL(line, LineField, );                                                 \
4868   OPTIONAL(scope, MDField, );                                                  \
4869   REQUIRED(baseType, MDField, );                                               \
4870   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4871   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4872   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4873   OPTIONAL(flags, DIFlagField, );                                              \
4874   OPTIONAL(extraData, MDField, );                                              \
4875   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4876   PARSE_MD_FIELDS();
4877 #undef VISIT_MD_FIELDS
4878 
4879   Optional<unsigned> DWARFAddressSpace;
4880   if (dwarfAddressSpace.Val != UINT32_MAX)
4881     DWARFAddressSpace = dwarfAddressSpace.Val;
4882 
4883   Result = GET_OR_DISTINCT(DIDerivedType,
4884                            (Context, tag.Val, name.Val, file.Val, line.Val,
4885                             scope.Val, baseType.Val, size.Val, align.Val,
4886                             offset.Val, DWARFAddressSpace, flags.Val,
4887                             extraData.Val));
4888   return false;
4889 }
4890 
4891 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) {
4892 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4893   REQUIRED(tag, DwarfTagField, );                                              \
4894   OPTIONAL(name, MDStringField, );                                             \
4895   OPTIONAL(file, MDField, );                                                   \
4896   OPTIONAL(line, LineField, );                                                 \
4897   OPTIONAL(scope, MDField, );                                                  \
4898   OPTIONAL(baseType, MDField, );                                               \
4899   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4900   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4901   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4902   OPTIONAL(flags, DIFlagField, );                                              \
4903   OPTIONAL(elements, MDField, );                                               \
4904   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4905   OPTIONAL(vtableHolder, MDField, );                                           \
4906   OPTIONAL(templateParams, MDField, );                                         \
4907   OPTIONAL(identifier, MDStringField, );                                       \
4908   OPTIONAL(discriminator, MDField, );                                          \
4909   OPTIONAL(dataLocation, MDField, );                                           \
4910   OPTIONAL(associated, MDField, );                                             \
4911   OPTIONAL(allocated, MDField, );                                              \
4912   OPTIONAL(rank, MDSignedOrMDField, );
4913   PARSE_MD_FIELDS();
4914 #undef VISIT_MD_FIELDS
4915 
4916   Metadata *Rank = nullptr;
4917   if (rank.isMDSignedField())
4918     Rank = ConstantAsMetadata::get(ConstantInt::getSigned(
4919         Type::getInt64Ty(Context), rank.getMDSignedValue()));
4920   else if (rank.isMDField())
4921     Rank = rank.getMDFieldValue();
4922 
4923   // If this has an identifier try to build an ODR type.
4924   if (identifier.Val)
4925     if (auto *CT = DICompositeType::buildODRType(
4926             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4927             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4928             elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val,
4929             discriminator.Val, dataLocation.Val, associated.Val, allocated.Val,
4930             Rank)) {
4931       Result = CT;
4932       return false;
4933     }
4934 
4935   // Create a new node, and save it in the context if it belongs in the type
4936   // map.
4937   Result = GET_OR_DISTINCT(
4938       DICompositeType,
4939       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4940        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4941        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4942        discriminator.Val, dataLocation.Val, associated.Val, allocated.Val,
4943        Rank));
4944   return false;
4945 }
4946 
4947 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4948 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4949   OPTIONAL(flags, DIFlagField, );                                              \
4950   OPTIONAL(cc, DwarfCCField, );                                                \
4951   REQUIRED(types, MDField, );
4952   PARSE_MD_FIELDS();
4953 #undef VISIT_MD_FIELDS
4954 
4955   Result = GET_OR_DISTINCT(DISubroutineType,
4956                            (Context, flags.Val, cc.Val, types.Val));
4957   return false;
4958 }
4959 
4960 /// parseDIFileType:
4961 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4962 ///                   checksumkind: CSK_MD5,
4963 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
4964 ///                   source: "source file contents")
4965 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) {
4966   // The default constructed value for checksumkind is required, but will never
4967   // be used, as the parser checks if the field was actually Seen before using
4968   // the Val.
4969 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4970   REQUIRED(filename, MDStringField, );                                         \
4971   REQUIRED(directory, MDStringField, );                                        \
4972   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
4973   OPTIONAL(checksum, MDStringField, );                                         \
4974   OPTIONAL(source, MDStringField, );
4975   PARSE_MD_FIELDS();
4976 #undef VISIT_MD_FIELDS
4977 
4978   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4979   if (checksumkind.Seen && checksum.Seen)
4980     OptChecksum.emplace(checksumkind.Val, checksum.Val);
4981   else if (checksumkind.Seen || checksum.Seen)
4982     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4983 
4984   Optional<MDString *> OptSource;
4985   if (source.Seen)
4986     OptSource = source.Val;
4987   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4988                                     OptChecksum, OptSource));
4989   return false;
4990 }
4991 
4992 /// parseDICompileUnit:
4993 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4994 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4995 ///                      splitDebugFilename: "abc.debug",
4996 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4997 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd,
4998 ///                      sysroot: "/", sdk: "MacOSX.sdk")
4999 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) {
5000   if (!IsDistinct)
5001     return Lex.Error("missing 'distinct', required for !DICompileUnit");
5002 
5003 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5004   REQUIRED(language, DwarfLangField, );                                        \
5005   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
5006   OPTIONAL(producer, MDStringField, );                                         \
5007   OPTIONAL(isOptimized, MDBoolField, );                                        \
5008   OPTIONAL(flags, MDStringField, );                                            \
5009   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
5010   OPTIONAL(splitDebugFilename, MDStringField, );                               \
5011   OPTIONAL(emissionKind, EmissionKindField, );                                 \
5012   OPTIONAL(enums, MDField, );                                                  \
5013   OPTIONAL(retainedTypes, MDField, );                                          \
5014   OPTIONAL(globals, MDField, );                                                \
5015   OPTIONAL(imports, MDField, );                                                \
5016   OPTIONAL(macros, MDField, );                                                 \
5017   OPTIONAL(dwoId, MDUnsignedField, );                                          \
5018   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
5019   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
5020   OPTIONAL(nameTableKind, NameTableKindField, );                               \
5021   OPTIONAL(rangesBaseAddress, MDBoolField, = false);                           \
5022   OPTIONAL(sysroot, MDStringField, );                                          \
5023   OPTIONAL(sdk, MDStringField, );
5024   PARSE_MD_FIELDS();
5025 #undef VISIT_MD_FIELDS
5026 
5027   Result = DICompileUnit::getDistinct(
5028       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
5029       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
5030       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
5031       splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
5032       rangesBaseAddress.Val, sysroot.Val, sdk.Val);
5033   return false;
5034 }
5035 
5036 /// parseDISubprogram:
5037 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
5038 ///                     file: !1, line: 7, type: !2, isLocal: false,
5039 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
5040 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
5041 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
5042 ///                     spFlags: 10, isOptimized: false, templateParams: !4,
5043 ///                     declaration: !5, retainedNodes: !6, thrownTypes: !7)
5044 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) {
5045   auto Loc = Lex.getLoc();
5046 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5047   OPTIONAL(scope, MDField, );                                                  \
5048   OPTIONAL(name, MDStringField, );                                             \
5049   OPTIONAL(linkageName, MDStringField, );                                      \
5050   OPTIONAL(file, MDField, );                                                   \
5051   OPTIONAL(line, LineField, );                                                 \
5052   OPTIONAL(type, MDField, );                                                   \
5053   OPTIONAL(isLocal, MDBoolField, );                                            \
5054   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
5055   OPTIONAL(scopeLine, LineField, );                                            \
5056   OPTIONAL(containingType, MDField, );                                         \
5057   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
5058   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
5059   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
5060   OPTIONAL(flags, DIFlagField, );                                              \
5061   OPTIONAL(spFlags, DISPFlagField, );                                          \
5062   OPTIONAL(isOptimized, MDBoolField, );                                        \
5063   OPTIONAL(unit, MDField, );                                                   \
5064   OPTIONAL(templateParams, MDField, );                                         \
5065   OPTIONAL(declaration, MDField, );                                            \
5066   OPTIONAL(retainedNodes, MDField, );                                          \
5067   OPTIONAL(thrownTypes, MDField, );
5068   PARSE_MD_FIELDS();
5069 #undef VISIT_MD_FIELDS
5070 
5071   // An explicit spFlags field takes precedence over individual fields in
5072   // older IR versions.
5073   DISubprogram::DISPFlags SPFlags =
5074       spFlags.Seen ? spFlags.Val
5075                    : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
5076                                              isOptimized.Val, virtuality.Val);
5077   if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
5078     return Lex.Error(
5079         Loc,
5080         "missing 'distinct', required for !DISubprogram that is a Definition");
5081   Result = GET_OR_DISTINCT(
5082       DISubprogram,
5083       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
5084        type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
5085        thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
5086        declaration.Val, retainedNodes.Val, thrownTypes.Val));
5087   return false;
5088 }
5089 
5090 /// parseDILexicalBlock:
5091 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
5092 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
5093 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5094   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5095   OPTIONAL(file, MDField, );                                                   \
5096   OPTIONAL(line, LineField, );                                                 \
5097   OPTIONAL(column, ColumnField, );
5098   PARSE_MD_FIELDS();
5099 #undef VISIT_MD_FIELDS
5100 
5101   Result = GET_OR_DISTINCT(
5102       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
5103   return false;
5104 }
5105 
5106 /// parseDILexicalBlockFile:
5107 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
5108 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
5109 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5110   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5111   OPTIONAL(file, MDField, );                                                   \
5112   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
5113   PARSE_MD_FIELDS();
5114 #undef VISIT_MD_FIELDS
5115 
5116   Result = GET_OR_DISTINCT(DILexicalBlockFile,
5117                            (Context, scope.Val, file.Val, discriminator.Val));
5118   return false;
5119 }
5120 
5121 /// parseDICommonBlock:
5122 ///   ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
5123 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) {
5124 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5125   REQUIRED(scope, MDField, );                                                  \
5126   OPTIONAL(declaration, MDField, );                                            \
5127   OPTIONAL(name, MDStringField, );                                             \
5128   OPTIONAL(file, MDField, );                                                   \
5129   OPTIONAL(line, LineField, );
5130   PARSE_MD_FIELDS();
5131 #undef VISIT_MD_FIELDS
5132 
5133   Result = GET_OR_DISTINCT(DICommonBlock,
5134                            (Context, scope.Val, declaration.Val, name.Val,
5135                             file.Val, line.Val));
5136   return false;
5137 }
5138 
5139 /// parseDINamespace:
5140 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
5141 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) {
5142 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5143   REQUIRED(scope, MDField, );                                                  \
5144   OPTIONAL(name, MDStringField, );                                             \
5145   OPTIONAL(exportSymbols, MDBoolField, );
5146   PARSE_MD_FIELDS();
5147 #undef VISIT_MD_FIELDS
5148 
5149   Result = GET_OR_DISTINCT(DINamespace,
5150                            (Context, scope.Val, name.Val, exportSymbols.Val));
5151   return false;
5152 }
5153 
5154 /// parseDIMacro:
5155 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value:
5156 ///   "SomeValue")
5157 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) {
5158 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5159   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
5160   OPTIONAL(line, LineField, );                                                 \
5161   REQUIRED(name, MDStringField, );                                             \
5162   OPTIONAL(value, MDStringField, );
5163   PARSE_MD_FIELDS();
5164 #undef VISIT_MD_FIELDS
5165 
5166   Result = GET_OR_DISTINCT(DIMacro,
5167                            (Context, type.Val, line.Val, name.Val, value.Val));
5168   return false;
5169 }
5170 
5171 /// parseDIMacroFile:
5172 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
5173 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) {
5174 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5175   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
5176   OPTIONAL(line, LineField, );                                                 \
5177   REQUIRED(file, MDField, );                                                   \
5178   OPTIONAL(nodes, MDField, );
5179   PARSE_MD_FIELDS();
5180 #undef VISIT_MD_FIELDS
5181 
5182   Result = GET_OR_DISTINCT(DIMacroFile,
5183                            (Context, type.Val, line.Val, file.Val, nodes.Val));
5184   return false;
5185 }
5186 
5187 /// parseDIModule:
5188 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros:
5189 ///   "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes",
5190 ///   file: !1, line: 4, isDecl: false)
5191 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) {
5192 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5193   REQUIRED(scope, MDField, );                                                  \
5194   REQUIRED(name, MDStringField, );                                             \
5195   OPTIONAL(configMacros, MDStringField, );                                     \
5196   OPTIONAL(includePath, MDStringField, );                                      \
5197   OPTIONAL(apinotes, MDStringField, );                                         \
5198   OPTIONAL(file, MDField, );                                                   \
5199   OPTIONAL(line, LineField, );                                                 \
5200   OPTIONAL(isDecl, MDBoolField, );
5201   PARSE_MD_FIELDS();
5202 #undef VISIT_MD_FIELDS
5203 
5204   Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val,
5205                                       configMacros.Val, includePath.Val,
5206                                       apinotes.Val, line.Val, isDecl.Val));
5207   return false;
5208 }
5209 
5210 /// parseDITemplateTypeParameter:
5211 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false)
5212 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
5213 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5214   OPTIONAL(name, MDStringField, );                                             \
5215   REQUIRED(type, MDField, );                                                   \
5216   OPTIONAL(defaulted, MDBoolField, );
5217   PARSE_MD_FIELDS();
5218 #undef VISIT_MD_FIELDS
5219 
5220   Result = GET_OR_DISTINCT(DITemplateTypeParameter,
5221                            (Context, name.Val, type.Val, defaulted.Val));
5222   return false;
5223 }
5224 
5225 /// parseDITemplateValueParameter:
5226 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
5227 ///                                 name: "V", type: !1, defaulted: false,
5228 ///                                 value: i32 7)
5229 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
5230 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5231   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
5232   OPTIONAL(name, MDStringField, );                                             \
5233   OPTIONAL(type, MDField, );                                                   \
5234   OPTIONAL(defaulted, MDBoolField, );                                          \
5235   REQUIRED(value, MDField, );
5236 
5237   PARSE_MD_FIELDS();
5238 #undef VISIT_MD_FIELDS
5239 
5240   Result = GET_OR_DISTINCT(
5241       DITemplateValueParameter,
5242       (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val));
5243   return false;
5244 }
5245 
5246 /// parseDIGlobalVariable:
5247 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
5248 ///                         file: !1, line: 7, type: !2, isLocal: false,
5249 ///                         isDefinition: true, templateParams: !3,
5250 ///                         declaration: !4, align: 8)
5251 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
5252 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5253   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
5254   OPTIONAL(scope, MDField, );                                                  \
5255   OPTIONAL(linkageName, MDStringField, );                                      \
5256   OPTIONAL(file, MDField, );                                                   \
5257   OPTIONAL(line, LineField, );                                                 \
5258   OPTIONAL(type, MDField, );                                                   \
5259   OPTIONAL(isLocal, MDBoolField, );                                            \
5260   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
5261   OPTIONAL(templateParams, MDField, );                                         \
5262   OPTIONAL(declaration, MDField, );                                            \
5263   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
5264   PARSE_MD_FIELDS();
5265 #undef VISIT_MD_FIELDS
5266 
5267   Result =
5268       GET_OR_DISTINCT(DIGlobalVariable,
5269                       (Context, scope.Val, name.Val, linkageName.Val, file.Val,
5270                        line.Val, type.Val, isLocal.Val, isDefinition.Val,
5271                        declaration.Val, templateParams.Val, align.Val));
5272   return false;
5273 }
5274 
5275 /// parseDILocalVariable:
5276 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
5277 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5278 ///                        align: 8)
5279 ///   ::= !DILocalVariable(scope: !0, name: "foo",
5280 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5281 ///                        align: 8)
5282 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) {
5283 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5284   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5285   OPTIONAL(name, MDStringField, );                                             \
5286   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
5287   OPTIONAL(file, MDField, );                                                   \
5288   OPTIONAL(line, LineField, );                                                 \
5289   OPTIONAL(type, MDField, );                                                   \
5290   OPTIONAL(flags, DIFlagField, );                                              \
5291   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
5292   PARSE_MD_FIELDS();
5293 #undef VISIT_MD_FIELDS
5294 
5295   Result = GET_OR_DISTINCT(DILocalVariable,
5296                            (Context, scope.Val, name.Val, file.Val, line.Val,
5297                             type.Val, arg.Val, flags.Val, align.Val));
5298   return false;
5299 }
5300 
5301 /// parseDILabel:
5302 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
5303 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) {
5304 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5305   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5306   REQUIRED(name, MDStringField, );                                             \
5307   REQUIRED(file, MDField, );                                                   \
5308   REQUIRED(line, LineField, );
5309   PARSE_MD_FIELDS();
5310 #undef VISIT_MD_FIELDS
5311 
5312   Result = GET_OR_DISTINCT(DILabel,
5313                            (Context, scope.Val, name.Val, file.Val, line.Val));
5314   return false;
5315 }
5316 
5317 /// parseDIExpression:
5318 ///   ::= !DIExpression(0, 7, -1)
5319 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) {
5320   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5321   Lex.Lex();
5322 
5323   if (parseToken(lltok::lparen, "expected '(' here"))
5324     return true;
5325 
5326   SmallVector<uint64_t, 8> Elements;
5327   if (Lex.getKind() != lltok::rparen)
5328     do {
5329       if (Lex.getKind() == lltok::DwarfOp) {
5330         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
5331           Lex.Lex();
5332           Elements.push_back(Op);
5333           continue;
5334         }
5335         return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
5336       }
5337 
5338       if (Lex.getKind() == lltok::DwarfAttEncoding) {
5339         if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
5340           Lex.Lex();
5341           Elements.push_back(Op);
5342           continue;
5343         }
5344         return tokError(Twine("invalid DWARF attribute encoding '") +
5345                         Lex.getStrVal() + "'");
5346       }
5347 
5348       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
5349         return tokError("expected unsigned integer");
5350 
5351       auto &U = Lex.getAPSIntVal();
5352       if (U.ugt(UINT64_MAX))
5353         return tokError("element too large, limit is " + Twine(UINT64_MAX));
5354       Elements.push_back(U.getZExtValue());
5355       Lex.Lex();
5356     } while (EatIfPresent(lltok::comma));
5357 
5358   if (parseToken(lltok::rparen, "expected ')' here"))
5359     return true;
5360 
5361   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
5362   return false;
5363 }
5364 
5365 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct) {
5366   return parseDIArgList(Result, IsDistinct, nullptr);
5367 }
5368 /// ParseDIArgList:
5369 ///   ::= !DIArgList(i32 7, i64 %0)
5370 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct,
5371                               PerFunctionState *PFS) {
5372   assert(PFS && "Expected valid function state");
5373   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5374   Lex.Lex();
5375 
5376   if (parseToken(lltok::lparen, "expected '(' here"))
5377     return true;
5378 
5379   SmallVector<ValueAsMetadata *, 4> Args;
5380   if (Lex.getKind() != lltok::rparen)
5381     do {
5382       Metadata *MD;
5383       if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS))
5384         return true;
5385       Args.push_back(dyn_cast<ValueAsMetadata>(MD));
5386     } while (EatIfPresent(lltok::comma));
5387 
5388   if (parseToken(lltok::rparen, "expected ')' here"))
5389     return true;
5390 
5391   Result = GET_OR_DISTINCT(DIArgList, (Context, Args));
5392   return false;
5393 }
5394 
5395 /// parseDIGlobalVariableExpression:
5396 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
5397 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result,
5398                                                bool IsDistinct) {
5399 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5400   REQUIRED(var, MDField, );                                                    \
5401   REQUIRED(expr, MDField, );
5402   PARSE_MD_FIELDS();
5403 #undef VISIT_MD_FIELDS
5404 
5405   Result =
5406       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
5407   return false;
5408 }
5409 
5410 /// parseDIObjCProperty:
5411 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
5412 ///                       getter: "getFoo", attributes: 7, type: !2)
5413 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
5414 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5415   OPTIONAL(name, MDStringField, );                                             \
5416   OPTIONAL(file, MDField, );                                                   \
5417   OPTIONAL(line, LineField, );                                                 \
5418   OPTIONAL(setter, MDStringField, );                                           \
5419   OPTIONAL(getter, MDStringField, );                                           \
5420   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
5421   OPTIONAL(type, MDField, );
5422   PARSE_MD_FIELDS();
5423 #undef VISIT_MD_FIELDS
5424 
5425   Result = GET_OR_DISTINCT(DIObjCProperty,
5426                            (Context, name.Val, file.Val, line.Val, setter.Val,
5427                             getter.Val, attributes.Val, type.Val));
5428   return false;
5429 }
5430 
5431 /// parseDIImportedEntity:
5432 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
5433 ///                         line: 7, name: "foo")
5434 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
5435 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5436   REQUIRED(tag, DwarfTagField, );                                              \
5437   REQUIRED(scope, MDField, );                                                  \
5438   OPTIONAL(entity, MDField, );                                                 \
5439   OPTIONAL(file, MDField, );                                                   \
5440   OPTIONAL(line, LineField, );                                                 \
5441   OPTIONAL(name, MDStringField, );
5442   PARSE_MD_FIELDS();
5443 #undef VISIT_MD_FIELDS
5444 
5445   Result = GET_OR_DISTINCT(
5446       DIImportedEntity,
5447       (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
5448   return false;
5449 }
5450 
5451 #undef PARSE_MD_FIELD
5452 #undef NOP_FIELD
5453 #undef REQUIRE_FIELD
5454 #undef DECLARE_FIELD
5455 
5456 /// parseMetadataAsValue
5457 ///  ::= metadata i32 %local
5458 ///  ::= metadata i32 @global
5459 ///  ::= metadata i32 7
5460 ///  ::= metadata !0
5461 ///  ::= metadata !{...}
5462 ///  ::= metadata !"string"
5463 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5464   // Note: the type 'metadata' has already been parsed.
5465   Metadata *MD;
5466   if (parseMetadata(MD, &PFS))
5467     return true;
5468 
5469   V = MetadataAsValue::get(Context, MD);
5470   return false;
5471 }
5472 
5473 /// parseValueAsMetadata
5474 ///  ::= i32 %local
5475 ///  ::= i32 @global
5476 ///  ::= i32 7
5477 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
5478                                     PerFunctionState *PFS) {
5479   Type *Ty;
5480   LocTy Loc;
5481   if (parseType(Ty, TypeMsg, Loc))
5482     return true;
5483   if (Ty->isMetadataTy())
5484     return error(Loc, "invalid metadata-value-metadata roundtrip");
5485 
5486   Value *V;
5487   if (parseValue(Ty, V, PFS))
5488     return true;
5489 
5490   MD = ValueAsMetadata::get(V);
5491   return false;
5492 }
5493 
5494 /// parseMetadata
5495 ///  ::= i32 %local
5496 ///  ::= i32 @global
5497 ///  ::= i32 7
5498 ///  ::= !42
5499 ///  ::= !{...}
5500 ///  ::= !"string"
5501 ///  ::= !DILocation(...)
5502 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) {
5503   if (Lex.getKind() == lltok::MetadataVar) {
5504     MDNode *N;
5505     // DIArgLists are a special case, as they are a list of ValueAsMetadata and
5506     // so parsing this requires a Function State.
5507     if (Lex.getStrVal() == "DIArgList") {
5508       if (parseDIArgList(N, false, PFS))
5509         return true;
5510     } else if (parseSpecializedMDNode(N)) {
5511       return true;
5512     }
5513     MD = N;
5514     return false;
5515   }
5516 
5517   // ValueAsMetadata:
5518   // <type> <value>
5519   if (Lex.getKind() != lltok::exclaim)
5520     return parseValueAsMetadata(MD, "expected metadata operand", PFS);
5521 
5522   // '!'.
5523   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5524   Lex.Lex();
5525 
5526   // MDString:
5527   //   ::= '!' STRINGCONSTANT
5528   if (Lex.getKind() == lltok::StringConstant) {
5529     MDString *S;
5530     if (parseMDString(S))
5531       return true;
5532     MD = S;
5533     return false;
5534   }
5535 
5536   // MDNode:
5537   // !{ ... }
5538   // !7
5539   MDNode *N;
5540   if (parseMDNodeTail(N))
5541     return true;
5542   MD = N;
5543   return false;
5544 }
5545 
5546 //===----------------------------------------------------------------------===//
5547 // Function Parsing.
5548 //===----------------------------------------------------------------------===//
5549 
5550 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5551                                    PerFunctionState *PFS, bool IsCall) {
5552   if (Ty->isFunctionTy())
5553     return error(ID.Loc, "functions are not values, refer to them as pointers");
5554 
5555   switch (ID.Kind) {
5556   case ValID::t_LocalID:
5557     if (!PFS)
5558       return error(ID.Loc, "invalid use of function-local name");
5559     V = PFS->getVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5560     return V == nullptr;
5561   case ValID::t_LocalName:
5562     if (!PFS)
5563       return error(ID.Loc, "invalid use of function-local name");
5564     V = PFS->getVal(ID.StrVal, Ty, ID.Loc, IsCall);
5565     return V == nullptr;
5566   case ValID::t_InlineAsm: {
5567     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5568       return error(ID.Loc, "invalid type for inline asm constraint string");
5569     V = InlineAsm::get(
5570         ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, (ID.UIntVal >> 1) & 1,
5571         InlineAsm::AsmDialect((ID.UIntVal >> 2) & 1), (ID.UIntVal >> 3) & 1);
5572     return false;
5573   }
5574   case ValID::t_GlobalName:
5575     V = getGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall);
5576     return V == nullptr;
5577   case ValID::t_GlobalID:
5578     V = getGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5579     return V == nullptr;
5580   case ValID::t_APSInt:
5581     if (!Ty->isIntegerTy())
5582       return error(ID.Loc, "integer constant must have integer type");
5583     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5584     V = ConstantInt::get(Context, ID.APSIntVal);
5585     return false;
5586   case ValID::t_APFloat:
5587     if (!Ty->isFloatingPointTy() ||
5588         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5589       return error(ID.Loc, "floating point constant invalid for type");
5590 
5591     // The lexer has no type info, so builds all half, bfloat, float, and double
5592     // FP constants as double.  Fix this here.  Long double does not need this.
5593     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5594       // Check for signaling before potentially converting and losing that info.
5595       bool IsSNAN = ID.APFloatVal.isSignaling();
5596       bool Ignored;
5597       if (Ty->isHalfTy())
5598         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5599                               &Ignored);
5600       else if (Ty->isBFloatTy())
5601         ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven,
5602                               &Ignored);
5603       else if (Ty->isFloatTy())
5604         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5605                               &Ignored);
5606       if (IsSNAN) {
5607         // The convert call above may quiet an SNaN, so manufacture another
5608         // SNaN. The bitcast works because the payload (significand) parameter
5609         // is truncated to fit.
5610         APInt Payload = ID.APFloatVal.bitcastToAPInt();
5611         ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(),
5612                                          ID.APFloatVal.isNegative(), &Payload);
5613       }
5614     }
5615     V = ConstantFP::get(Context, ID.APFloatVal);
5616 
5617     if (V->getType() != Ty)
5618       return error(ID.Loc, "floating point constant does not have type '" +
5619                                getTypeString(Ty) + "'");
5620 
5621     return false;
5622   case ValID::t_Null:
5623     if (!Ty->isPointerTy())
5624       return error(ID.Loc, "null must be a pointer type");
5625     V = ConstantPointerNull::get(cast<PointerType>(Ty));
5626     return false;
5627   case ValID::t_Undef:
5628     // FIXME: LabelTy should not be a first-class type.
5629     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5630       return error(ID.Loc, "invalid type for undef constant");
5631     V = UndefValue::get(Ty);
5632     return false;
5633   case ValID::t_EmptyArray:
5634     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5635       return error(ID.Loc, "invalid empty array initializer");
5636     V = UndefValue::get(Ty);
5637     return false;
5638   case ValID::t_Zero:
5639     // FIXME: LabelTy should not be a first-class type.
5640     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5641       return error(ID.Loc, "invalid type for null constant");
5642     V = Constant::getNullValue(Ty);
5643     return false;
5644   case ValID::t_None:
5645     if (!Ty->isTokenTy())
5646       return error(ID.Loc, "invalid type for none constant");
5647     V = Constant::getNullValue(Ty);
5648     return false;
5649   case ValID::t_Poison:
5650     // FIXME: LabelTy should not be a first-class type.
5651     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5652       return error(ID.Loc, "invalid type for poison constant");
5653     V = PoisonValue::get(Ty);
5654     return false;
5655   case ValID::t_Constant:
5656     if (ID.ConstantVal->getType() != Ty)
5657       return error(ID.Loc, "constant expression type mismatch: got type '" +
5658                                getTypeString(ID.ConstantVal->getType()) +
5659                                "' but expected '" + getTypeString(Ty) + "'");
5660     V = ID.ConstantVal;
5661     return false;
5662   case ValID::t_ConstantStruct:
5663   case ValID::t_PackedConstantStruct:
5664     if (StructType *ST = dyn_cast<StructType>(Ty)) {
5665       if (ST->getNumElements() != ID.UIntVal)
5666         return error(ID.Loc,
5667                      "initializer with struct type has wrong # elements");
5668       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5669         return error(ID.Loc, "packed'ness of initializer and type don't match");
5670 
5671       // Verify that the elements are compatible with the structtype.
5672       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5673         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5674           return error(
5675               ID.Loc,
5676               "element " + Twine(i) +
5677                   " of struct initializer doesn't match struct element type");
5678 
5679       V = ConstantStruct::get(
5680           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5681     } else
5682       return error(ID.Loc, "constant expression type mismatch");
5683     return false;
5684   }
5685   llvm_unreachable("Invalid ValID");
5686 }
5687 
5688 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5689   C = nullptr;
5690   ValID ID;
5691   auto Loc = Lex.getLoc();
5692   if (parseValID(ID, /*PFS=*/nullptr))
5693     return true;
5694   switch (ID.Kind) {
5695   case ValID::t_APSInt:
5696   case ValID::t_APFloat:
5697   case ValID::t_Undef:
5698   case ValID::t_Constant:
5699   case ValID::t_ConstantStruct:
5700   case ValID::t_PackedConstantStruct: {
5701     Value *V;
5702     if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
5703       return true;
5704     assert(isa<Constant>(V) && "Expected a constant value");
5705     C = cast<Constant>(V);
5706     return false;
5707   }
5708   case ValID::t_Null:
5709     C = Constant::getNullValue(Ty);
5710     return false;
5711   default:
5712     return error(Loc, "expected a constant value");
5713   }
5714 }
5715 
5716 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5717   V = nullptr;
5718   ValID ID;
5719   return parseValID(ID, PFS, Ty) ||
5720          convertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
5721 }
5722 
5723 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5724   Type *Ty = nullptr;
5725   return parseType(Ty) || parseValue(Ty, V, PFS);
5726 }
5727 
5728 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5729                                       PerFunctionState &PFS) {
5730   Value *V;
5731   Loc = Lex.getLoc();
5732   if (parseTypeAndValue(V, PFS))
5733     return true;
5734   if (!isa<BasicBlock>(V))
5735     return error(Loc, "expected a basic block");
5736   BB = cast<BasicBlock>(V);
5737   return false;
5738 }
5739 
5740 /// FunctionHeader
5741 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5742 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5743 ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5744 ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5745 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) {
5746   // parse the linkage.
5747   LocTy LinkageLoc = Lex.getLoc();
5748   unsigned Linkage;
5749   unsigned Visibility;
5750   unsigned DLLStorageClass;
5751   bool DSOLocal;
5752   AttrBuilder RetAttrs;
5753   unsigned CC;
5754   bool HasLinkage;
5755   Type *RetType = nullptr;
5756   LocTy RetTypeLoc = Lex.getLoc();
5757   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5758                            DSOLocal) ||
5759       parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
5760       parseType(RetType, RetTypeLoc, true /*void allowed*/))
5761     return true;
5762 
5763   // Verify that the linkage is ok.
5764   switch ((GlobalValue::LinkageTypes)Linkage) {
5765   case GlobalValue::ExternalLinkage:
5766     break; // always ok.
5767   case GlobalValue::ExternalWeakLinkage:
5768     if (IsDefine)
5769       return error(LinkageLoc, "invalid linkage for function definition");
5770     break;
5771   case GlobalValue::PrivateLinkage:
5772   case GlobalValue::InternalLinkage:
5773   case GlobalValue::AvailableExternallyLinkage:
5774   case GlobalValue::LinkOnceAnyLinkage:
5775   case GlobalValue::LinkOnceODRLinkage:
5776   case GlobalValue::WeakAnyLinkage:
5777   case GlobalValue::WeakODRLinkage:
5778     if (!IsDefine)
5779       return error(LinkageLoc, "invalid linkage for function declaration");
5780     break;
5781   case GlobalValue::AppendingLinkage:
5782   case GlobalValue::CommonLinkage:
5783     return error(LinkageLoc, "invalid function linkage type");
5784   }
5785 
5786   if (!isValidVisibilityForLinkage(Visibility, Linkage))
5787     return error(LinkageLoc,
5788                  "symbol with local linkage must have default visibility");
5789 
5790   if (!FunctionType::isValidReturnType(RetType))
5791     return error(RetTypeLoc, "invalid function return type");
5792 
5793   LocTy NameLoc = Lex.getLoc();
5794 
5795   std::string FunctionName;
5796   if (Lex.getKind() == lltok::GlobalVar) {
5797     FunctionName = Lex.getStrVal();
5798   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
5799     unsigned NameID = Lex.getUIntVal();
5800 
5801     if (NameID != NumberedVals.size())
5802       return tokError("function expected to be numbered '%" +
5803                       Twine(NumberedVals.size()) + "'");
5804   } else {
5805     return tokError("expected function name");
5806   }
5807 
5808   Lex.Lex();
5809 
5810   if (Lex.getKind() != lltok::lparen)
5811     return tokError("expected '(' in function argument list");
5812 
5813   SmallVector<ArgInfo, 8> ArgList;
5814   bool IsVarArg;
5815   AttrBuilder FuncAttrs;
5816   std::vector<unsigned> FwdRefAttrGrps;
5817   LocTy BuiltinLoc;
5818   std::string Section;
5819   std::string Partition;
5820   MaybeAlign Alignment;
5821   std::string GC;
5822   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5823   unsigned AddrSpace = 0;
5824   Constant *Prefix = nullptr;
5825   Constant *Prologue = nullptr;
5826   Constant *PersonalityFn = nullptr;
5827   Comdat *C;
5828 
5829   if (parseArgumentList(ArgList, IsVarArg) ||
5830       parseOptionalUnnamedAddr(UnnamedAddr) ||
5831       parseOptionalProgramAddrSpace(AddrSpace) ||
5832       parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5833                                  BuiltinLoc) ||
5834       (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) ||
5835       (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) ||
5836       parseOptionalComdat(FunctionName, C) ||
5837       parseOptionalAlignment(Alignment) ||
5838       (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) ||
5839       (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) ||
5840       (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) ||
5841       (EatIfPresent(lltok::kw_personality) &&
5842        parseGlobalTypeAndValue(PersonalityFn)))
5843     return true;
5844 
5845   if (FuncAttrs.contains(Attribute::Builtin))
5846     return error(BuiltinLoc, "'builtin' attribute not valid on function");
5847 
5848   // If the alignment was parsed as an attribute, move to the alignment field.
5849   if (FuncAttrs.hasAlignmentAttr()) {
5850     Alignment = FuncAttrs.getAlignment();
5851     FuncAttrs.removeAttribute(Attribute::Alignment);
5852   }
5853 
5854   // Okay, if we got here, the function is syntactically valid.  Convert types
5855   // and do semantic checks.
5856   std::vector<Type*> ParamTypeList;
5857   SmallVector<AttributeSet, 8> Attrs;
5858 
5859   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5860     ParamTypeList.push_back(ArgList[i].Ty);
5861     Attrs.push_back(ArgList[i].Attrs);
5862   }
5863 
5864   AttributeList PAL =
5865       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5866                          AttributeSet::get(Context, RetAttrs), Attrs);
5867 
5868   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
5869     return error(RetTypeLoc, "functions with 'sret' argument must return void");
5870 
5871   FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg);
5872   PointerType *PFT = PointerType::get(FT, AddrSpace);
5873 
5874   Fn = nullptr;
5875   GlobalValue *FwdFn = nullptr;
5876   if (!FunctionName.empty()) {
5877     // If this was a definition of a forward reference, remove the definition
5878     // from the forward reference table and fill in the forward ref.
5879     auto FRVI = ForwardRefVals.find(FunctionName);
5880     if (FRVI != ForwardRefVals.end()) {
5881       FwdFn = FRVI->second.first;
5882       if (!FwdFn->getType()->isOpaque()) {
5883         if (!FwdFn->getType()->getPointerElementType()->isFunctionTy())
5884           return error(FRVI->second.second, "invalid forward reference to "
5885                                             "function as global value!");
5886         if (FwdFn->getType() != PFT)
5887           return error(FRVI->second.second,
5888                        "invalid forward reference to "
5889                        "function '" +
5890                            FunctionName +
5891                            "' with wrong type: "
5892                            "expected '" +
5893                            getTypeString(PFT) + "' but was '" +
5894                            getTypeString(FwdFn->getType()) + "'");
5895       }
5896       ForwardRefVals.erase(FRVI);
5897     } else if ((Fn = M->getFunction(FunctionName))) {
5898       // Reject redefinitions.
5899       return error(NameLoc,
5900                    "invalid redefinition of function '" + FunctionName + "'");
5901     } else if (M->getNamedValue(FunctionName)) {
5902       return error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5903     }
5904 
5905   } else {
5906     // If this is a definition of a forward referenced function, make sure the
5907     // types agree.
5908     auto I = ForwardRefValIDs.find(NumberedVals.size());
5909     if (I != ForwardRefValIDs.end()) {
5910       FwdFn = cast<Function>(I->second.first);
5911       if (!FwdFn->getType()->isOpaque() && FwdFn->getType() != PFT)
5912         return error(NameLoc, "type of definition and forward reference of '@" +
5913                                   Twine(NumberedVals.size()) +
5914                                   "' disagree: "
5915                                   "expected '" +
5916                                   getTypeString(PFT) + "' but was '" +
5917                                   getTypeString(FwdFn->getType()) + "'");
5918       ForwardRefValIDs.erase(I);
5919     }
5920   }
5921 
5922   Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5923                         FunctionName, M);
5924 
5925   assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5926 
5927   if (FunctionName.empty())
5928     NumberedVals.push_back(Fn);
5929 
5930   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5931   maybeSetDSOLocal(DSOLocal, *Fn);
5932   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5933   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5934   Fn->setCallingConv(CC);
5935   Fn->setAttributes(PAL);
5936   Fn->setUnnamedAddr(UnnamedAddr);
5937   Fn->setAlignment(MaybeAlign(Alignment));
5938   Fn->setSection(Section);
5939   Fn->setPartition(Partition);
5940   Fn->setComdat(C);
5941   Fn->setPersonalityFn(PersonalityFn);
5942   if (!GC.empty()) Fn->setGC(GC);
5943   Fn->setPrefixData(Prefix);
5944   Fn->setPrologueData(Prologue);
5945   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5946 
5947   // Add all of the arguments we parsed to the function.
5948   Function::arg_iterator ArgIt = Fn->arg_begin();
5949   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5950     // If the argument has a name, insert it into the argument symbol table.
5951     if (ArgList[i].Name.empty()) continue;
5952 
5953     // Set the name, if it conflicted, it will be auto-renamed.
5954     ArgIt->setName(ArgList[i].Name);
5955 
5956     if (ArgIt->getName() != ArgList[i].Name)
5957       return error(ArgList[i].Loc,
5958                    "redefinition of argument '%" + ArgList[i].Name + "'");
5959   }
5960 
5961   if (FwdFn) {
5962     FwdFn->replaceAllUsesWith(Fn);
5963     FwdFn->eraseFromParent();
5964   }
5965 
5966   if (IsDefine)
5967     return false;
5968 
5969   // Check the declaration has no block address forward references.
5970   ValID ID;
5971   if (FunctionName.empty()) {
5972     ID.Kind = ValID::t_GlobalID;
5973     ID.UIntVal = NumberedVals.size() - 1;
5974   } else {
5975     ID.Kind = ValID::t_GlobalName;
5976     ID.StrVal = FunctionName;
5977   }
5978   auto Blocks = ForwardRefBlockAddresses.find(ID);
5979   if (Blocks != ForwardRefBlockAddresses.end())
5980     return error(Blocks->first.Loc,
5981                  "cannot take blockaddress inside a declaration");
5982   return false;
5983 }
5984 
5985 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5986   ValID ID;
5987   if (FunctionNumber == -1) {
5988     ID.Kind = ValID::t_GlobalName;
5989     ID.StrVal = std::string(F.getName());
5990   } else {
5991     ID.Kind = ValID::t_GlobalID;
5992     ID.UIntVal = FunctionNumber;
5993   }
5994 
5995   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5996   if (Blocks == P.ForwardRefBlockAddresses.end())
5997     return false;
5998 
5999   for (const auto &I : Blocks->second) {
6000     const ValID &BBID = I.first;
6001     GlobalValue *GV = I.second;
6002 
6003     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
6004            "Expected local id or name");
6005     BasicBlock *BB;
6006     if (BBID.Kind == ValID::t_LocalName)
6007       BB = getBB(BBID.StrVal, BBID.Loc);
6008     else
6009       BB = getBB(BBID.UIntVal, BBID.Loc);
6010     if (!BB)
6011       return P.error(BBID.Loc, "referenced value is not a basic block");
6012 
6013     Value *ResolvedVal = BlockAddress::get(&F, BB);
6014     ResolvedVal = P.checkValidVariableType(BBID.Loc, BBID.StrVal, GV->getType(),
6015                                            ResolvedVal, false);
6016     if (!ResolvedVal)
6017       return true;
6018     GV->replaceAllUsesWith(ResolvedVal);
6019     GV->eraseFromParent();
6020   }
6021 
6022   P.ForwardRefBlockAddresses.erase(Blocks);
6023   return false;
6024 }
6025 
6026 /// parseFunctionBody
6027 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
6028 bool LLParser::parseFunctionBody(Function &Fn) {
6029   if (Lex.getKind() != lltok::lbrace)
6030     return tokError("expected '{' in function body");
6031   Lex.Lex();  // eat the {.
6032 
6033   int FunctionNumber = -1;
6034   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
6035 
6036   PerFunctionState PFS(*this, Fn, FunctionNumber);
6037 
6038   // Resolve block addresses and allow basic blocks to be forward-declared
6039   // within this function.
6040   if (PFS.resolveForwardRefBlockAddresses())
6041     return true;
6042   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
6043 
6044   // We need at least one basic block.
6045   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
6046     return tokError("function body requires at least one basic block");
6047 
6048   while (Lex.getKind() != lltok::rbrace &&
6049          Lex.getKind() != lltok::kw_uselistorder)
6050     if (parseBasicBlock(PFS))
6051       return true;
6052 
6053   while (Lex.getKind() != lltok::rbrace)
6054     if (parseUseListOrder(&PFS))
6055       return true;
6056 
6057   // Eat the }.
6058   Lex.Lex();
6059 
6060   // Verify function is ok.
6061   return PFS.finishFunction();
6062 }
6063 
6064 /// parseBasicBlock
6065 ///   ::= (LabelStr|LabelID)? Instruction*
6066 bool LLParser::parseBasicBlock(PerFunctionState &PFS) {
6067   // If this basic block starts out with a name, remember it.
6068   std::string Name;
6069   int NameID = -1;
6070   LocTy NameLoc = Lex.getLoc();
6071   if (Lex.getKind() == lltok::LabelStr) {
6072     Name = Lex.getStrVal();
6073     Lex.Lex();
6074   } else if (Lex.getKind() == lltok::LabelID) {
6075     NameID = Lex.getUIntVal();
6076     Lex.Lex();
6077   }
6078 
6079   BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc);
6080   if (!BB)
6081     return true;
6082 
6083   std::string NameStr;
6084 
6085   // parse the instructions in this block until we get a terminator.
6086   Instruction *Inst;
6087   do {
6088     // This instruction may have three possibilities for a name: a) none
6089     // specified, b) name specified "%foo =", c) number specified: "%4 =".
6090     LocTy NameLoc = Lex.getLoc();
6091     int NameID = -1;
6092     NameStr = "";
6093 
6094     if (Lex.getKind() == lltok::LocalVarID) {
6095       NameID = Lex.getUIntVal();
6096       Lex.Lex();
6097       if (parseToken(lltok::equal, "expected '=' after instruction id"))
6098         return true;
6099     } else if (Lex.getKind() == lltok::LocalVar) {
6100       NameStr = Lex.getStrVal();
6101       Lex.Lex();
6102       if (parseToken(lltok::equal, "expected '=' after instruction name"))
6103         return true;
6104     }
6105 
6106     switch (parseInstruction(Inst, BB, PFS)) {
6107     default:
6108       llvm_unreachable("Unknown parseInstruction result!");
6109     case InstError: return true;
6110     case InstNormal:
6111       BB->getInstList().push_back(Inst);
6112 
6113       // With a normal result, we check to see if the instruction is followed by
6114       // a comma and metadata.
6115       if (EatIfPresent(lltok::comma))
6116         if (parseInstructionMetadata(*Inst))
6117           return true;
6118       break;
6119     case InstExtraComma:
6120       BB->getInstList().push_back(Inst);
6121 
6122       // If the instruction parser ate an extra comma at the end of it, it
6123       // *must* be followed by metadata.
6124       if (parseInstructionMetadata(*Inst))
6125         return true;
6126       break;
6127     }
6128 
6129     // Set the name on the instruction.
6130     if (PFS.setInstName(NameID, NameStr, NameLoc, Inst))
6131       return true;
6132   } while (!Inst->isTerminator());
6133 
6134   return false;
6135 }
6136 
6137 //===----------------------------------------------------------------------===//
6138 // Instruction Parsing.
6139 //===----------------------------------------------------------------------===//
6140 
6141 /// parseInstruction - parse one of the many different instructions.
6142 ///
6143 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB,
6144                                PerFunctionState &PFS) {
6145   lltok::Kind Token = Lex.getKind();
6146   if (Token == lltok::Eof)
6147     return tokError("found end of file when expecting more instructions");
6148   LocTy Loc = Lex.getLoc();
6149   unsigned KeywordVal = Lex.getUIntVal();
6150   Lex.Lex();  // Eat the keyword.
6151 
6152   switch (Token) {
6153   default:
6154     return error(Loc, "expected instruction opcode");
6155   // Terminator Instructions.
6156   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
6157   case lltok::kw_ret:
6158     return parseRet(Inst, BB, PFS);
6159   case lltok::kw_br:
6160     return parseBr(Inst, PFS);
6161   case lltok::kw_switch:
6162     return parseSwitch(Inst, PFS);
6163   case lltok::kw_indirectbr:
6164     return parseIndirectBr(Inst, PFS);
6165   case lltok::kw_invoke:
6166     return parseInvoke(Inst, PFS);
6167   case lltok::kw_resume:
6168     return parseResume(Inst, PFS);
6169   case lltok::kw_cleanupret:
6170     return parseCleanupRet(Inst, PFS);
6171   case lltok::kw_catchret:
6172     return parseCatchRet(Inst, PFS);
6173   case lltok::kw_catchswitch:
6174     return parseCatchSwitch(Inst, PFS);
6175   case lltok::kw_catchpad:
6176     return parseCatchPad(Inst, PFS);
6177   case lltok::kw_cleanuppad:
6178     return parseCleanupPad(Inst, PFS);
6179   case lltok::kw_callbr:
6180     return parseCallBr(Inst, PFS);
6181   // Unary Operators.
6182   case lltok::kw_fneg: {
6183     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6184     int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true);
6185     if (Res != 0)
6186       return Res;
6187     if (FMF.any())
6188       Inst->setFastMathFlags(FMF);
6189     return false;
6190   }
6191   // Binary Operators.
6192   case lltok::kw_add:
6193   case lltok::kw_sub:
6194   case lltok::kw_mul:
6195   case lltok::kw_shl: {
6196     bool NUW = EatIfPresent(lltok::kw_nuw);
6197     bool NSW = EatIfPresent(lltok::kw_nsw);
6198     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
6199 
6200     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
6201       return true;
6202 
6203     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
6204     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
6205     return false;
6206   }
6207   case lltok::kw_fadd:
6208   case lltok::kw_fsub:
6209   case lltok::kw_fmul:
6210   case lltok::kw_fdiv:
6211   case lltok::kw_frem: {
6212     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6213     int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true);
6214     if (Res != 0)
6215       return Res;
6216     if (FMF.any())
6217       Inst->setFastMathFlags(FMF);
6218     return 0;
6219   }
6220 
6221   case lltok::kw_sdiv:
6222   case lltok::kw_udiv:
6223   case lltok::kw_lshr:
6224   case lltok::kw_ashr: {
6225     bool Exact = EatIfPresent(lltok::kw_exact);
6226 
6227     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
6228       return true;
6229     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
6230     return false;
6231   }
6232 
6233   case lltok::kw_urem:
6234   case lltok::kw_srem:
6235     return parseArithmetic(Inst, PFS, KeywordVal,
6236                            /*IsFP*/ false);
6237   case lltok::kw_and:
6238   case lltok::kw_or:
6239   case lltok::kw_xor:
6240     return parseLogical(Inst, PFS, KeywordVal);
6241   case lltok::kw_icmp:
6242     return parseCompare(Inst, PFS, KeywordVal);
6243   case lltok::kw_fcmp: {
6244     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6245     int Res = parseCompare(Inst, PFS, KeywordVal);
6246     if (Res != 0)
6247       return Res;
6248     if (FMF.any())
6249       Inst->setFastMathFlags(FMF);
6250     return 0;
6251   }
6252 
6253   // Casts.
6254   case lltok::kw_trunc:
6255   case lltok::kw_zext:
6256   case lltok::kw_sext:
6257   case lltok::kw_fptrunc:
6258   case lltok::kw_fpext:
6259   case lltok::kw_bitcast:
6260   case lltok::kw_addrspacecast:
6261   case lltok::kw_uitofp:
6262   case lltok::kw_sitofp:
6263   case lltok::kw_fptoui:
6264   case lltok::kw_fptosi:
6265   case lltok::kw_inttoptr:
6266   case lltok::kw_ptrtoint:
6267     return parseCast(Inst, PFS, KeywordVal);
6268   // Other.
6269   case lltok::kw_select: {
6270     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6271     int Res = parseSelect(Inst, PFS);
6272     if (Res != 0)
6273       return Res;
6274     if (FMF.any()) {
6275       if (!isa<FPMathOperator>(Inst))
6276         return error(Loc, "fast-math-flags specified for select without "
6277                           "floating-point scalar or vector return type");
6278       Inst->setFastMathFlags(FMF);
6279     }
6280     return 0;
6281   }
6282   case lltok::kw_va_arg:
6283     return parseVAArg(Inst, PFS);
6284   case lltok::kw_extractelement:
6285     return parseExtractElement(Inst, PFS);
6286   case lltok::kw_insertelement:
6287     return parseInsertElement(Inst, PFS);
6288   case lltok::kw_shufflevector:
6289     return parseShuffleVector(Inst, PFS);
6290   case lltok::kw_phi: {
6291     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6292     int Res = parsePHI(Inst, PFS);
6293     if (Res != 0)
6294       return Res;
6295     if (FMF.any()) {
6296       if (!isa<FPMathOperator>(Inst))
6297         return error(Loc, "fast-math-flags specified for phi without "
6298                           "floating-point scalar or vector return type");
6299       Inst->setFastMathFlags(FMF);
6300     }
6301     return 0;
6302   }
6303   case lltok::kw_landingpad:
6304     return parseLandingPad(Inst, PFS);
6305   case lltok::kw_freeze:
6306     return parseFreeze(Inst, PFS);
6307   // Call.
6308   case lltok::kw_call:
6309     return parseCall(Inst, PFS, CallInst::TCK_None);
6310   case lltok::kw_tail:
6311     return parseCall(Inst, PFS, CallInst::TCK_Tail);
6312   case lltok::kw_musttail:
6313     return parseCall(Inst, PFS, CallInst::TCK_MustTail);
6314   case lltok::kw_notail:
6315     return parseCall(Inst, PFS, CallInst::TCK_NoTail);
6316   // Memory.
6317   case lltok::kw_alloca:
6318     return parseAlloc(Inst, PFS);
6319   case lltok::kw_load:
6320     return parseLoad(Inst, PFS);
6321   case lltok::kw_store:
6322     return parseStore(Inst, PFS);
6323   case lltok::kw_cmpxchg:
6324     return parseCmpXchg(Inst, PFS);
6325   case lltok::kw_atomicrmw:
6326     return parseAtomicRMW(Inst, PFS);
6327   case lltok::kw_fence:
6328     return parseFence(Inst, PFS);
6329   case lltok::kw_getelementptr:
6330     return parseGetElementPtr(Inst, PFS);
6331   case lltok::kw_extractvalue:
6332     return parseExtractValue(Inst, PFS);
6333   case lltok::kw_insertvalue:
6334     return parseInsertValue(Inst, PFS);
6335   }
6336 }
6337 
6338 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind.
6339 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) {
6340   if (Opc == Instruction::FCmp) {
6341     switch (Lex.getKind()) {
6342     default:
6343       return tokError("expected fcmp predicate (e.g. 'oeq')");
6344     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
6345     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
6346     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
6347     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
6348     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
6349     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
6350     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
6351     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
6352     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
6353     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
6354     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
6355     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
6356     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
6357     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
6358     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
6359     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
6360     }
6361   } else {
6362     switch (Lex.getKind()) {
6363     default:
6364       return tokError("expected icmp predicate (e.g. 'eq')");
6365     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
6366     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
6367     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
6368     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
6369     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
6370     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
6371     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
6372     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
6373     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
6374     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
6375     }
6376   }
6377   Lex.Lex();
6378   return false;
6379 }
6380 
6381 //===----------------------------------------------------------------------===//
6382 // Terminator Instructions.
6383 //===----------------------------------------------------------------------===//
6384 
6385 /// parseRet - parse a return instruction.
6386 ///   ::= 'ret' void (',' !dbg, !1)*
6387 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
6388 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB,
6389                         PerFunctionState &PFS) {
6390   SMLoc TypeLoc = Lex.getLoc();
6391   Type *Ty = nullptr;
6392   if (parseType(Ty, true /*void allowed*/))
6393     return true;
6394 
6395   Type *ResType = PFS.getFunction().getReturnType();
6396 
6397   if (Ty->isVoidTy()) {
6398     if (!ResType->isVoidTy())
6399       return error(TypeLoc, "value doesn't match function result type '" +
6400                                 getTypeString(ResType) + "'");
6401 
6402     Inst = ReturnInst::Create(Context);
6403     return false;
6404   }
6405 
6406   Value *RV;
6407   if (parseValue(Ty, RV, PFS))
6408     return true;
6409 
6410   if (ResType != RV->getType())
6411     return error(TypeLoc, "value doesn't match function result type '" +
6412                               getTypeString(ResType) + "'");
6413 
6414   Inst = ReturnInst::Create(Context, RV);
6415   return false;
6416 }
6417 
6418 /// parseBr
6419 ///   ::= 'br' TypeAndValue
6420 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6421 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) {
6422   LocTy Loc, Loc2;
6423   Value *Op0;
6424   BasicBlock *Op1, *Op2;
6425   if (parseTypeAndValue(Op0, Loc, PFS))
6426     return true;
6427 
6428   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
6429     Inst = BranchInst::Create(BB);
6430     return false;
6431   }
6432 
6433   if (Op0->getType() != Type::getInt1Ty(Context))
6434     return error(Loc, "branch condition must have 'i1' type");
6435 
6436   if (parseToken(lltok::comma, "expected ',' after branch condition") ||
6437       parseTypeAndBasicBlock(Op1, Loc, PFS) ||
6438       parseToken(lltok::comma, "expected ',' after true destination") ||
6439       parseTypeAndBasicBlock(Op2, Loc2, PFS))
6440     return true;
6441 
6442   Inst = BranchInst::Create(Op1, Op2, Op0);
6443   return false;
6444 }
6445 
6446 /// parseSwitch
6447 ///  Instruction
6448 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
6449 ///  JumpTable
6450 ///    ::= (TypeAndValue ',' TypeAndValue)*
6451 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6452   LocTy CondLoc, BBLoc;
6453   Value *Cond;
6454   BasicBlock *DefaultBB;
6455   if (parseTypeAndValue(Cond, CondLoc, PFS) ||
6456       parseToken(lltok::comma, "expected ',' after switch condition") ||
6457       parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
6458       parseToken(lltok::lsquare, "expected '[' with switch table"))
6459     return true;
6460 
6461   if (!Cond->getType()->isIntegerTy())
6462     return error(CondLoc, "switch condition must have integer type");
6463 
6464   // parse the jump table pairs.
6465   SmallPtrSet<Value*, 32> SeenCases;
6466   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
6467   while (Lex.getKind() != lltok::rsquare) {
6468     Value *Constant;
6469     BasicBlock *DestBB;
6470 
6471     if (parseTypeAndValue(Constant, CondLoc, PFS) ||
6472         parseToken(lltok::comma, "expected ',' after case value") ||
6473         parseTypeAndBasicBlock(DestBB, PFS))
6474       return true;
6475 
6476     if (!SeenCases.insert(Constant).second)
6477       return error(CondLoc, "duplicate case value in switch");
6478     if (!isa<ConstantInt>(Constant))
6479       return error(CondLoc, "case value is not a constant integer");
6480 
6481     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
6482   }
6483 
6484   Lex.Lex();  // Eat the ']'.
6485 
6486   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
6487   for (unsigned i = 0, e = Table.size(); i != e; ++i)
6488     SI->addCase(Table[i].first, Table[i].second);
6489   Inst = SI;
6490   return false;
6491 }
6492 
6493 /// parseIndirectBr
6494 ///  Instruction
6495 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
6496 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
6497   LocTy AddrLoc;
6498   Value *Address;
6499   if (parseTypeAndValue(Address, AddrLoc, PFS) ||
6500       parseToken(lltok::comma, "expected ',' after indirectbr address") ||
6501       parseToken(lltok::lsquare, "expected '[' with indirectbr"))
6502     return true;
6503 
6504   if (!Address->getType()->isPointerTy())
6505     return error(AddrLoc, "indirectbr address must have pointer type");
6506 
6507   // parse the destination list.
6508   SmallVector<BasicBlock*, 16> DestList;
6509 
6510   if (Lex.getKind() != lltok::rsquare) {
6511     BasicBlock *DestBB;
6512     if (parseTypeAndBasicBlock(DestBB, PFS))
6513       return true;
6514     DestList.push_back(DestBB);
6515 
6516     while (EatIfPresent(lltok::comma)) {
6517       if (parseTypeAndBasicBlock(DestBB, PFS))
6518         return true;
6519       DestList.push_back(DestBB);
6520     }
6521   }
6522 
6523   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6524     return true;
6525 
6526   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
6527   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
6528     IBI->addDestination(DestList[i]);
6529   Inst = IBI;
6530   return false;
6531 }
6532 
6533 /// parseInvoke
6534 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
6535 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
6536 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
6537   LocTy CallLoc = Lex.getLoc();
6538   AttrBuilder RetAttrs, FnAttrs;
6539   std::vector<unsigned> FwdRefAttrGrps;
6540   LocTy NoBuiltinLoc;
6541   unsigned CC;
6542   unsigned InvokeAddrSpace;
6543   Type *RetType = nullptr;
6544   LocTy RetTypeLoc;
6545   ValID CalleeID;
6546   SmallVector<ParamInfo, 16> ArgList;
6547   SmallVector<OperandBundleDef, 2> BundleList;
6548 
6549   BasicBlock *NormalBB, *UnwindBB;
6550   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6551       parseOptionalProgramAddrSpace(InvokeAddrSpace) ||
6552       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6553       parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) ||
6554       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6555                                  NoBuiltinLoc) ||
6556       parseOptionalOperandBundles(BundleList, PFS) ||
6557       parseToken(lltok::kw_to, "expected 'to' in invoke") ||
6558       parseTypeAndBasicBlock(NormalBB, PFS) ||
6559       parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
6560       parseTypeAndBasicBlock(UnwindBB, PFS))
6561     return true;
6562 
6563   // If RetType is a non-function pointer type, then this is the short syntax
6564   // for the call, which means that RetType is just the return type.  Infer the
6565   // rest of the function argument types from the arguments that are present.
6566   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6567   if (!Ty) {
6568     // Pull out the types of all of the arguments...
6569     std::vector<Type*> ParamTypes;
6570     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6571       ParamTypes.push_back(ArgList[i].V->getType());
6572 
6573     if (!FunctionType::isValidReturnType(RetType))
6574       return error(RetTypeLoc, "Invalid result type for LLVM function");
6575 
6576     Ty = FunctionType::get(RetType, ParamTypes, false);
6577   }
6578 
6579   CalleeID.FTy = Ty;
6580 
6581   // Look up the callee.
6582   Value *Callee;
6583   if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
6584                           Callee, &PFS, /*IsCall=*/true))
6585     return true;
6586 
6587   // Set up the Attribute for the function.
6588   SmallVector<Value *, 8> Args;
6589   SmallVector<AttributeSet, 8> ArgAttrs;
6590 
6591   // Loop through FunctionType's arguments and ensure they are specified
6592   // correctly.  Also, gather any parameter attributes.
6593   FunctionType::param_iterator I = Ty->param_begin();
6594   FunctionType::param_iterator E = Ty->param_end();
6595   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6596     Type *ExpectedTy = nullptr;
6597     if (I != E) {
6598       ExpectedTy = *I++;
6599     } else if (!Ty->isVarArg()) {
6600       return error(ArgList[i].Loc, "too many arguments specified");
6601     }
6602 
6603     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6604       return error(ArgList[i].Loc, "argument is not of expected type '" +
6605                                        getTypeString(ExpectedTy) + "'");
6606     Args.push_back(ArgList[i].V);
6607     ArgAttrs.push_back(ArgList[i].Attrs);
6608   }
6609 
6610   if (I != E)
6611     return error(CallLoc, "not enough parameters specified for call");
6612 
6613   if (FnAttrs.hasAlignmentAttr())
6614     return error(CallLoc, "invoke instructions may not have an alignment");
6615 
6616   // Finish off the Attribute and check them
6617   AttributeList PAL =
6618       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6619                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6620 
6621   InvokeInst *II =
6622       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
6623   II->setCallingConv(CC);
6624   II->setAttributes(PAL);
6625   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
6626   Inst = II;
6627   return false;
6628 }
6629 
6630 /// parseResume
6631 ///   ::= 'resume' TypeAndValue
6632 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) {
6633   Value *Exn; LocTy ExnLoc;
6634   if (parseTypeAndValue(Exn, ExnLoc, PFS))
6635     return true;
6636 
6637   ResumeInst *RI = ResumeInst::Create(Exn);
6638   Inst = RI;
6639   return false;
6640 }
6641 
6642 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args,
6643                                   PerFunctionState &PFS) {
6644   if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
6645     return true;
6646 
6647   while (Lex.getKind() != lltok::rsquare) {
6648     // If this isn't the first argument, we need a comma.
6649     if (!Args.empty() &&
6650         parseToken(lltok::comma, "expected ',' in argument list"))
6651       return true;
6652 
6653     // parse the argument.
6654     LocTy ArgLoc;
6655     Type *ArgTy = nullptr;
6656     if (parseType(ArgTy, ArgLoc))
6657       return true;
6658 
6659     Value *V;
6660     if (ArgTy->isMetadataTy()) {
6661       if (parseMetadataAsValue(V, PFS))
6662         return true;
6663     } else {
6664       if (parseValue(ArgTy, V, PFS))
6665         return true;
6666     }
6667     Args.push_back(V);
6668   }
6669 
6670   Lex.Lex();  // Lex the ']'.
6671   return false;
6672 }
6673 
6674 /// parseCleanupRet
6675 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6676 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6677   Value *CleanupPad = nullptr;
6678 
6679   if (parseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6680     return true;
6681 
6682   if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6683     return true;
6684 
6685   if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6686     return true;
6687 
6688   BasicBlock *UnwindBB = nullptr;
6689   if (Lex.getKind() == lltok::kw_to) {
6690     Lex.Lex();
6691     if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6692       return true;
6693   } else {
6694     if (parseTypeAndBasicBlock(UnwindBB, PFS)) {
6695       return true;
6696     }
6697   }
6698 
6699   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6700   return false;
6701 }
6702 
6703 /// parseCatchRet
6704 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
6705 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6706   Value *CatchPad = nullptr;
6707 
6708   if (parseToken(lltok::kw_from, "expected 'from' after catchret"))
6709     return true;
6710 
6711   if (parseValue(Type::getTokenTy(Context), CatchPad, PFS))
6712     return true;
6713 
6714   BasicBlock *BB;
6715   if (parseToken(lltok::kw_to, "expected 'to' in catchret") ||
6716       parseTypeAndBasicBlock(BB, PFS))
6717     return true;
6718 
6719   Inst = CatchReturnInst::Create(CatchPad, BB);
6720   return false;
6721 }
6722 
6723 /// parseCatchSwitch
6724 ///   ::= 'catchswitch' within Parent
6725 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6726   Value *ParentPad;
6727 
6728   if (parseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6729     return true;
6730 
6731   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6732       Lex.getKind() != lltok::LocalVarID)
6733     return tokError("expected scope value for catchswitch");
6734 
6735   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6736     return true;
6737 
6738   if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6739     return true;
6740 
6741   SmallVector<BasicBlock *, 32> Table;
6742   do {
6743     BasicBlock *DestBB;
6744     if (parseTypeAndBasicBlock(DestBB, PFS))
6745       return true;
6746     Table.push_back(DestBB);
6747   } while (EatIfPresent(lltok::comma));
6748 
6749   if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6750     return true;
6751 
6752   if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope"))
6753     return true;
6754 
6755   BasicBlock *UnwindBB = nullptr;
6756   if (EatIfPresent(lltok::kw_to)) {
6757     if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6758       return true;
6759   } else {
6760     if (parseTypeAndBasicBlock(UnwindBB, PFS))
6761       return true;
6762   }
6763 
6764   auto *CatchSwitch =
6765       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6766   for (BasicBlock *DestBB : Table)
6767     CatchSwitch->addHandler(DestBB);
6768   Inst = CatchSwitch;
6769   return false;
6770 }
6771 
6772 /// parseCatchPad
6773 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6774 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6775   Value *CatchSwitch = nullptr;
6776 
6777   if (parseToken(lltok::kw_within, "expected 'within' after catchpad"))
6778     return true;
6779 
6780   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6781     return tokError("expected scope value for catchpad");
6782 
6783   if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6784     return true;
6785 
6786   SmallVector<Value *, 8> Args;
6787   if (parseExceptionArgs(Args, PFS))
6788     return true;
6789 
6790   Inst = CatchPadInst::Create(CatchSwitch, Args);
6791   return false;
6792 }
6793 
6794 /// parseCleanupPad
6795 ///   ::= 'cleanuppad' within Parent ParamList
6796 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6797   Value *ParentPad = nullptr;
6798 
6799   if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6800     return true;
6801 
6802   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6803       Lex.getKind() != lltok::LocalVarID)
6804     return tokError("expected scope value for cleanuppad");
6805 
6806   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6807     return true;
6808 
6809   SmallVector<Value *, 8> Args;
6810   if (parseExceptionArgs(Args, PFS))
6811     return true;
6812 
6813   Inst = CleanupPadInst::Create(ParentPad, Args);
6814   return false;
6815 }
6816 
6817 //===----------------------------------------------------------------------===//
6818 // Unary Operators.
6819 //===----------------------------------------------------------------------===//
6820 
6821 /// parseUnaryOp
6822 ///  ::= UnaryOp TypeAndValue ',' Value
6823 ///
6824 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6825 /// operand is allowed.
6826 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6827                             unsigned Opc, bool IsFP) {
6828   LocTy Loc; Value *LHS;
6829   if (parseTypeAndValue(LHS, Loc, PFS))
6830     return true;
6831 
6832   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6833                     : LHS->getType()->isIntOrIntVectorTy();
6834 
6835   if (!Valid)
6836     return error(Loc, "invalid operand type for instruction");
6837 
6838   Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6839   return false;
6840 }
6841 
6842 /// parseCallBr
6843 ///   ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6844 ///       OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6845 ///       '[' LabelList ']'
6846 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6847   LocTy CallLoc = Lex.getLoc();
6848   AttrBuilder RetAttrs, FnAttrs;
6849   std::vector<unsigned> FwdRefAttrGrps;
6850   LocTy NoBuiltinLoc;
6851   unsigned CC;
6852   Type *RetType = nullptr;
6853   LocTy RetTypeLoc;
6854   ValID CalleeID;
6855   SmallVector<ParamInfo, 16> ArgList;
6856   SmallVector<OperandBundleDef, 2> BundleList;
6857 
6858   BasicBlock *DefaultDest;
6859   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6860       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6861       parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) ||
6862       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6863                                  NoBuiltinLoc) ||
6864       parseOptionalOperandBundles(BundleList, PFS) ||
6865       parseToken(lltok::kw_to, "expected 'to' in callbr") ||
6866       parseTypeAndBasicBlock(DefaultDest, PFS) ||
6867       parseToken(lltok::lsquare, "expected '[' in callbr"))
6868     return true;
6869 
6870   // parse the destination list.
6871   SmallVector<BasicBlock *, 16> IndirectDests;
6872 
6873   if (Lex.getKind() != lltok::rsquare) {
6874     BasicBlock *DestBB;
6875     if (parseTypeAndBasicBlock(DestBB, PFS))
6876       return true;
6877     IndirectDests.push_back(DestBB);
6878 
6879     while (EatIfPresent(lltok::comma)) {
6880       if (parseTypeAndBasicBlock(DestBB, PFS))
6881         return true;
6882       IndirectDests.push_back(DestBB);
6883     }
6884   }
6885 
6886   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6887     return true;
6888 
6889   // If RetType is a non-function pointer type, then this is the short syntax
6890   // for the call, which means that RetType is just the return type.  Infer the
6891   // rest of the function argument types from the arguments that are present.
6892   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6893   if (!Ty) {
6894     // Pull out the types of all of the arguments...
6895     std::vector<Type *> ParamTypes;
6896     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6897       ParamTypes.push_back(ArgList[i].V->getType());
6898 
6899     if (!FunctionType::isValidReturnType(RetType))
6900       return error(RetTypeLoc, "Invalid result type for LLVM function");
6901 
6902     Ty = FunctionType::get(RetType, ParamTypes, false);
6903   }
6904 
6905   CalleeID.FTy = Ty;
6906 
6907   // Look up the callee.
6908   Value *Callee;
6909   if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
6910                           /*IsCall=*/true))
6911     return true;
6912 
6913   // Set up the Attribute for the function.
6914   SmallVector<Value *, 8> Args;
6915   SmallVector<AttributeSet, 8> ArgAttrs;
6916 
6917   // Loop through FunctionType's arguments and ensure they are specified
6918   // correctly.  Also, gather any parameter attributes.
6919   FunctionType::param_iterator I = Ty->param_begin();
6920   FunctionType::param_iterator E = Ty->param_end();
6921   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6922     Type *ExpectedTy = nullptr;
6923     if (I != E) {
6924       ExpectedTy = *I++;
6925     } else if (!Ty->isVarArg()) {
6926       return error(ArgList[i].Loc, "too many arguments specified");
6927     }
6928 
6929     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6930       return error(ArgList[i].Loc, "argument is not of expected type '" +
6931                                        getTypeString(ExpectedTy) + "'");
6932     Args.push_back(ArgList[i].V);
6933     ArgAttrs.push_back(ArgList[i].Attrs);
6934   }
6935 
6936   if (I != E)
6937     return error(CallLoc, "not enough parameters specified for call");
6938 
6939   if (FnAttrs.hasAlignmentAttr())
6940     return error(CallLoc, "callbr instructions may not have an alignment");
6941 
6942   // Finish off the Attribute and check them
6943   AttributeList PAL =
6944       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6945                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6946 
6947   CallBrInst *CBI =
6948       CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
6949                          BundleList);
6950   CBI->setCallingConv(CC);
6951   CBI->setAttributes(PAL);
6952   ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
6953   Inst = CBI;
6954   return false;
6955 }
6956 
6957 //===----------------------------------------------------------------------===//
6958 // Binary Operators.
6959 //===----------------------------------------------------------------------===//
6960 
6961 /// parseArithmetic
6962 ///  ::= ArithmeticOps TypeAndValue ',' Value
6963 ///
6964 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6965 /// operand is allowed.
6966 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6967                                unsigned Opc, bool IsFP) {
6968   LocTy Loc; Value *LHS, *RHS;
6969   if (parseTypeAndValue(LHS, Loc, PFS) ||
6970       parseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6971       parseValue(LHS->getType(), RHS, PFS))
6972     return true;
6973 
6974   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6975                     : LHS->getType()->isIntOrIntVectorTy();
6976 
6977   if (!Valid)
6978     return error(Loc, "invalid operand type for instruction");
6979 
6980   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6981   return false;
6982 }
6983 
6984 /// parseLogical
6985 ///  ::= ArithmeticOps TypeAndValue ',' Value {
6986 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS,
6987                             unsigned Opc) {
6988   LocTy Loc; Value *LHS, *RHS;
6989   if (parseTypeAndValue(LHS, Loc, PFS) ||
6990       parseToken(lltok::comma, "expected ',' in logical operation") ||
6991       parseValue(LHS->getType(), RHS, PFS))
6992     return true;
6993 
6994   if (!LHS->getType()->isIntOrIntVectorTy())
6995     return error(Loc,
6996                  "instruction requires integer or integer vector operands");
6997 
6998   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6999   return false;
7000 }
7001 
7002 /// parseCompare
7003 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
7004 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
7005 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS,
7006                             unsigned Opc) {
7007   // parse the integer/fp comparison predicate.
7008   LocTy Loc;
7009   unsigned Pred;
7010   Value *LHS, *RHS;
7011   if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) ||
7012       parseToken(lltok::comma, "expected ',' after compare value") ||
7013       parseValue(LHS->getType(), RHS, PFS))
7014     return true;
7015 
7016   if (Opc == Instruction::FCmp) {
7017     if (!LHS->getType()->isFPOrFPVectorTy())
7018       return error(Loc, "fcmp requires floating point operands");
7019     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
7020   } else {
7021     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
7022     if (!LHS->getType()->isIntOrIntVectorTy() &&
7023         !LHS->getType()->isPtrOrPtrVectorTy())
7024       return error(Loc, "icmp requires integer operands");
7025     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
7026   }
7027   return false;
7028 }
7029 
7030 //===----------------------------------------------------------------------===//
7031 // Other Instructions.
7032 //===----------------------------------------------------------------------===//
7033 
7034 /// parseCast
7035 ///   ::= CastOpc TypeAndValue 'to' Type
7036 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS,
7037                          unsigned Opc) {
7038   LocTy Loc;
7039   Value *Op;
7040   Type *DestTy = nullptr;
7041   if (parseTypeAndValue(Op, Loc, PFS) ||
7042       parseToken(lltok::kw_to, "expected 'to' after cast value") ||
7043       parseType(DestTy))
7044     return true;
7045 
7046   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
7047     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
7048     return error(Loc, "invalid cast opcode for cast from '" +
7049                           getTypeString(Op->getType()) + "' to '" +
7050                           getTypeString(DestTy) + "'");
7051   }
7052   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
7053   return false;
7054 }
7055 
7056 /// parseSelect
7057 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
7058 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) {
7059   LocTy Loc;
7060   Value *Op0, *Op1, *Op2;
7061   if (parseTypeAndValue(Op0, Loc, PFS) ||
7062       parseToken(lltok::comma, "expected ',' after select condition") ||
7063       parseTypeAndValue(Op1, PFS) ||
7064       parseToken(lltok::comma, "expected ',' after select value") ||
7065       parseTypeAndValue(Op2, PFS))
7066     return true;
7067 
7068   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
7069     return error(Loc, Reason);
7070 
7071   Inst = SelectInst::Create(Op0, Op1, Op2);
7072   return false;
7073 }
7074 
7075 /// parseVAArg
7076 ///   ::= 'va_arg' TypeAndValue ',' Type
7077 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) {
7078   Value *Op;
7079   Type *EltTy = nullptr;
7080   LocTy TypeLoc;
7081   if (parseTypeAndValue(Op, PFS) ||
7082       parseToken(lltok::comma, "expected ',' after vaarg operand") ||
7083       parseType(EltTy, TypeLoc))
7084     return true;
7085 
7086   if (!EltTy->isFirstClassType())
7087     return error(TypeLoc, "va_arg requires operand with first class type");
7088 
7089   Inst = new VAArgInst(Op, EltTy);
7090   return false;
7091 }
7092 
7093 /// parseExtractElement
7094 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
7095 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
7096   LocTy Loc;
7097   Value *Op0, *Op1;
7098   if (parseTypeAndValue(Op0, Loc, PFS) ||
7099       parseToken(lltok::comma, "expected ',' after extract value") ||
7100       parseTypeAndValue(Op1, PFS))
7101     return true;
7102 
7103   if (!ExtractElementInst::isValidOperands(Op0, Op1))
7104     return error(Loc, "invalid extractelement operands");
7105 
7106   Inst = ExtractElementInst::Create(Op0, Op1);
7107   return false;
7108 }
7109 
7110 /// parseInsertElement
7111 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
7112 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
7113   LocTy Loc;
7114   Value *Op0, *Op1, *Op2;
7115   if (parseTypeAndValue(Op0, Loc, PFS) ||
7116       parseToken(lltok::comma, "expected ',' after insertelement value") ||
7117       parseTypeAndValue(Op1, PFS) ||
7118       parseToken(lltok::comma, "expected ',' after insertelement value") ||
7119       parseTypeAndValue(Op2, PFS))
7120     return true;
7121 
7122   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
7123     return error(Loc, "invalid insertelement operands");
7124 
7125   Inst = InsertElementInst::Create(Op0, Op1, Op2);
7126   return false;
7127 }
7128 
7129 /// parseShuffleVector
7130 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
7131 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
7132   LocTy Loc;
7133   Value *Op0, *Op1, *Op2;
7134   if (parseTypeAndValue(Op0, Loc, PFS) ||
7135       parseToken(lltok::comma, "expected ',' after shuffle mask") ||
7136       parseTypeAndValue(Op1, PFS) ||
7137       parseToken(lltok::comma, "expected ',' after shuffle value") ||
7138       parseTypeAndValue(Op2, PFS))
7139     return true;
7140 
7141   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
7142     return error(Loc, "invalid shufflevector operands");
7143 
7144   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
7145   return false;
7146 }
7147 
7148 /// parsePHI
7149 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
7150 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) {
7151   Type *Ty = nullptr;  LocTy TypeLoc;
7152   Value *Op0, *Op1;
7153 
7154   if (parseType(Ty, TypeLoc) ||
7155       parseToken(lltok::lsquare, "expected '[' in phi value list") ||
7156       parseValue(Ty, Op0, PFS) ||
7157       parseToken(lltok::comma, "expected ',' after insertelement value") ||
7158       parseValue(Type::getLabelTy(Context), Op1, PFS) ||
7159       parseToken(lltok::rsquare, "expected ']' in phi value list"))
7160     return true;
7161 
7162   bool AteExtraComma = false;
7163   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
7164 
7165   while (true) {
7166     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
7167 
7168     if (!EatIfPresent(lltok::comma))
7169       break;
7170 
7171     if (Lex.getKind() == lltok::MetadataVar) {
7172       AteExtraComma = true;
7173       break;
7174     }
7175 
7176     if (parseToken(lltok::lsquare, "expected '[' in phi value list") ||
7177         parseValue(Ty, Op0, PFS) ||
7178         parseToken(lltok::comma, "expected ',' after insertelement value") ||
7179         parseValue(Type::getLabelTy(Context), Op1, PFS) ||
7180         parseToken(lltok::rsquare, "expected ']' in phi value list"))
7181       return true;
7182   }
7183 
7184   if (!Ty->isFirstClassType())
7185     return error(TypeLoc, "phi node must have first class type");
7186 
7187   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
7188   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
7189     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
7190   Inst = PN;
7191   return AteExtraComma ? InstExtraComma : InstNormal;
7192 }
7193 
7194 /// parseLandingPad
7195 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
7196 /// Clause
7197 ///   ::= 'catch' TypeAndValue
7198 ///   ::= 'filter'
7199 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
7200 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
7201   Type *Ty = nullptr; LocTy TyLoc;
7202 
7203   if (parseType(Ty, TyLoc))
7204     return true;
7205 
7206   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
7207   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
7208 
7209   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
7210     LandingPadInst::ClauseType CT;
7211     if (EatIfPresent(lltok::kw_catch))
7212       CT = LandingPadInst::Catch;
7213     else if (EatIfPresent(lltok::kw_filter))
7214       CT = LandingPadInst::Filter;
7215     else
7216       return tokError("expected 'catch' or 'filter' clause type");
7217 
7218     Value *V;
7219     LocTy VLoc;
7220     if (parseTypeAndValue(V, VLoc, PFS))
7221       return true;
7222 
7223     // A 'catch' type expects a non-array constant. A filter clause expects an
7224     // array constant.
7225     if (CT == LandingPadInst::Catch) {
7226       if (isa<ArrayType>(V->getType()))
7227         error(VLoc, "'catch' clause has an invalid type");
7228     } else {
7229       if (!isa<ArrayType>(V->getType()))
7230         error(VLoc, "'filter' clause has an invalid type");
7231     }
7232 
7233     Constant *CV = dyn_cast<Constant>(V);
7234     if (!CV)
7235       return error(VLoc, "clause argument must be a constant");
7236     LP->addClause(CV);
7237   }
7238 
7239   Inst = LP.release();
7240   return false;
7241 }
7242 
7243 /// parseFreeze
7244 ///   ::= 'freeze' Type Value
7245 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) {
7246   LocTy Loc;
7247   Value *Op;
7248   if (parseTypeAndValue(Op, Loc, PFS))
7249     return true;
7250 
7251   Inst = new FreezeInst(Op);
7252   return false;
7253 }
7254 
7255 /// parseCall
7256 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
7257 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7258 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
7259 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7260 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
7261 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7262 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
7263 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7264 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS,
7265                          CallInst::TailCallKind TCK) {
7266   AttrBuilder RetAttrs, FnAttrs;
7267   std::vector<unsigned> FwdRefAttrGrps;
7268   LocTy BuiltinLoc;
7269   unsigned CallAddrSpace;
7270   unsigned CC;
7271   Type *RetType = nullptr;
7272   LocTy RetTypeLoc;
7273   ValID CalleeID;
7274   SmallVector<ParamInfo, 16> ArgList;
7275   SmallVector<OperandBundleDef, 2> BundleList;
7276   LocTy CallLoc = Lex.getLoc();
7277 
7278   if (TCK != CallInst::TCK_None &&
7279       parseToken(lltok::kw_call,
7280                  "expected 'tail call', 'musttail call', or 'notail call'"))
7281     return true;
7282 
7283   FastMathFlags FMF = EatFastMathFlagsIfPresent();
7284 
7285   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
7286       parseOptionalProgramAddrSpace(CallAddrSpace) ||
7287       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
7288       parseValID(CalleeID, &PFS) ||
7289       parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
7290                          PFS.getFunction().isVarArg()) ||
7291       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
7292       parseOptionalOperandBundles(BundleList, PFS))
7293     return true;
7294 
7295   // If RetType is a non-function pointer type, then this is the short syntax
7296   // for the call, which means that RetType is just the return type.  Infer the
7297   // rest of the function argument types from the arguments that are present.
7298   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
7299   if (!Ty) {
7300     // Pull out the types of all of the arguments...
7301     std::vector<Type*> ParamTypes;
7302     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
7303       ParamTypes.push_back(ArgList[i].V->getType());
7304 
7305     if (!FunctionType::isValidReturnType(RetType))
7306       return error(RetTypeLoc, "Invalid result type for LLVM function");
7307 
7308     Ty = FunctionType::get(RetType, ParamTypes, false);
7309   }
7310 
7311   CalleeID.FTy = Ty;
7312 
7313   // Look up the callee.
7314   Value *Callee;
7315   if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
7316                           &PFS, /*IsCall=*/true))
7317     return true;
7318 
7319   // Set up the Attribute for the function.
7320   SmallVector<AttributeSet, 8> Attrs;
7321 
7322   SmallVector<Value*, 8> Args;
7323 
7324   // Loop through FunctionType's arguments and ensure they are specified
7325   // correctly.  Also, gather any parameter attributes.
7326   FunctionType::param_iterator I = Ty->param_begin();
7327   FunctionType::param_iterator E = Ty->param_end();
7328   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
7329     Type *ExpectedTy = nullptr;
7330     if (I != E) {
7331       ExpectedTy = *I++;
7332     } else if (!Ty->isVarArg()) {
7333       return error(ArgList[i].Loc, "too many arguments specified");
7334     }
7335 
7336     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
7337       return error(ArgList[i].Loc, "argument is not of expected type '" +
7338                                        getTypeString(ExpectedTy) + "'");
7339     Args.push_back(ArgList[i].V);
7340     Attrs.push_back(ArgList[i].Attrs);
7341   }
7342 
7343   if (I != E)
7344     return error(CallLoc, "not enough parameters specified for call");
7345 
7346   if (FnAttrs.hasAlignmentAttr())
7347     return error(CallLoc, "call instructions may not have an alignment");
7348 
7349   // Finish off the Attribute and check them
7350   AttributeList PAL =
7351       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
7352                          AttributeSet::get(Context, RetAttrs), Attrs);
7353 
7354   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
7355   CI->setTailCallKind(TCK);
7356   CI->setCallingConv(CC);
7357   if (FMF.any()) {
7358     if (!isa<FPMathOperator>(CI)) {
7359       CI->deleteValue();
7360       return error(CallLoc, "fast-math-flags specified for call without "
7361                             "floating-point scalar or vector return type");
7362     }
7363     CI->setFastMathFlags(FMF);
7364   }
7365   CI->setAttributes(PAL);
7366   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
7367   Inst = CI;
7368   return false;
7369 }
7370 
7371 //===----------------------------------------------------------------------===//
7372 // Memory Instructions.
7373 //===----------------------------------------------------------------------===//
7374 
7375 /// parseAlloc
7376 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
7377 ///       (',' 'align' i32)? (',', 'addrspace(n))?
7378 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
7379   Value *Size = nullptr;
7380   LocTy SizeLoc, TyLoc, ASLoc;
7381   MaybeAlign Alignment;
7382   unsigned AddrSpace = 0;
7383   Type *Ty = nullptr;
7384 
7385   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
7386   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
7387 
7388   if (parseType(Ty, TyLoc))
7389     return true;
7390 
7391   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
7392     return error(TyLoc, "invalid type for alloca");
7393 
7394   bool AteExtraComma = false;
7395   if (EatIfPresent(lltok::comma)) {
7396     if (Lex.getKind() == lltok::kw_align) {
7397       if (parseOptionalAlignment(Alignment))
7398         return true;
7399       if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7400         return true;
7401     } else if (Lex.getKind() == lltok::kw_addrspace) {
7402       ASLoc = Lex.getLoc();
7403       if (parseOptionalAddrSpace(AddrSpace))
7404         return true;
7405     } else if (Lex.getKind() == lltok::MetadataVar) {
7406       AteExtraComma = true;
7407     } else {
7408       if (parseTypeAndValue(Size, SizeLoc, PFS))
7409         return true;
7410       if (EatIfPresent(lltok::comma)) {
7411         if (Lex.getKind() == lltok::kw_align) {
7412           if (parseOptionalAlignment(Alignment))
7413             return true;
7414           if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7415             return true;
7416         } else if (Lex.getKind() == lltok::kw_addrspace) {
7417           ASLoc = Lex.getLoc();
7418           if (parseOptionalAddrSpace(AddrSpace))
7419             return true;
7420         } else if (Lex.getKind() == lltok::MetadataVar) {
7421           AteExtraComma = true;
7422         }
7423       }
7424     }
7425   }
7426 
7427   if (Size && !Size->getType()->isIntegerTy())
7428     return error(SizeLoc, "element count must have integer type");
7429 
7430   SmallPtrSet<Type *, 4> Visited;
7431   if (!Alignment && !Ty->isSized(&Visited))
7432     return error(TyLoc, "Cannot allocate unsized type");
7433   if (!Alignment)
7434     Alignment = M->getDataLayout().getPrefTypeAlign(Ty);
7435   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment);
7436   AI->setUsedWithInAlloca(IsInAlloca);
7437   AI->setSwiftError(IsSwiftError);
7438   Inst = AI;
7439   return AteExtraComma ? InstExtraComma : InstNormal;
7440 }
7441 
7442 /// parseLoad
7443 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
7444 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
7445 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7446 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) {
7447   Value *Val; LocTy Loc;
7448   MaybeAlign Alignment;
7449   bool AteExtraComma = false;
7450   bool isAtomic = false;
7451   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7452   SyncScope::ID SSID = SyncScope::System;
7453 
7454   if (Lex.getKind() == lltok::kw_atomic) {
7455     isAtomic = true;
7456     Lex.Lex();
7457   }
7458 
7459   bool isVolatile = false;
7460   if (Lex.getKind() == lltok::kw_volatile) {
7461     isVolatile = true;
7462     Lex.Lex();
7463   }
7464 
7465   Type *Ty;
7466   LocTy ExplicitTypeLoc = Lex.getLoc();
7467   if (parseType(Ty) ||
7468       parseToken(lltok::comma, "expected comma after load's type") ||
7469       parseTypeAndValue(Val, Loc, PFS) ||
7470       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7471       parseOptionalCommaAlign(Alignment, AteExtraComma))
7472     return true;
7473 
7474   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
7475     return error(Loc, "load operand must be a pointer to a first class type");
7476   if (isAtomic && !Alignment)
7477     return error(Loc, "atomic load must have explicit non-zero alignment");
7478   if (Ordering == AtomicOrdering::Release ||
7479       Ordering == AtomicOrdering::AcquireRelease)
7480     return error(Loc, "atomic load cannot use Release ordering");
7481 
7482   if (!cast<PointerType>(Val->getType())->isOpaqueOrPointeeTypeMatches(Ty)) {
7483     return error(
7484         ExplicitTypeLoc,
7485         typeComparisonErrorMessage(
7486             "explicit pointee type doesn't match operand's pointee type", Ty,
7487             cast<PointerType>(Val->getType())->getElementType()));
7488   }
7489   SmallPtrSet<Type *, 4> Visited;
7490   if (!Alignment && !Ty->isSized(&Visited))
7491     return error(ExplicitTypeLoc, "loading unsized types is not allowed");
7492   if (!Alignment)
7493     Alignment = M->getDataLayout().getABITypeAlign(Ty);
7494   Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID);
7495   return AteExtraComma ? InstExtraComma : InstNormal;
7496 }
7497 
7498 /// parseStore
7499 
7500 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
7501 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
7502 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7503 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) {
7504   Value *Val, *Ptr; LocTy Loc, PtrLoc;
7505   MaybeAlign Alignment;
7506   bool AteExtraComma = false;
7507   bool isAtomic = false;
7508   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7509   SyncScope::ID SSID = SyncScope::System;
7510 
7511   if (Lex.getKind() == lltok::kw_atomic) {
7512     isAtomic = true;
7513     Lex.Lex();
7514   }
7515 
7516   bool isVolatile = false;
7517   if (Lex.getKind() == lltok::kw_volatile) {
7518     isVolatile = true;
7519     Lex.Lex();
7520   }
7521 
7522   if (parseTypeAndValue(Val, Loc, PFS) ||
7523       parseToken(lltok::comma, "expected ',' after store operand") ||
7524       parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7525       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7526       parseOptionalCommaAlign(Alignment, AteExtraComma))
7527     return true;
7528 
7529   if (!Ptr->getType()->isPointerTy())
7530     return error(PtrLoc, "store operand must be a pointer");
7531   if (!Val->getType()->isFirstClassType())
7532     return error(Loc, "store operand must be a first class value");
7533   if (!cast<PointerType>(Ptr->getType())
7534            ->isOpaqueOrPointeeTypeMatches(Val->getType()))
7535     return error(Loc, "stored value and pointer type do not match");
7536   if (isAtomic && !Alignment)
7537     return error(Loc, "atomic store must have explicit non-zero alignment");
7538   if (Ordering == AtomicOrdering::Acquire ||
7539       Ordering == AtomicOrdering::AcquireRelease)
7540     return error(Loc, "atomic store cannot use Acquire ordering");
7541   SmallPtrSet<Type *, 4> Visited;
7542   if (!Alignment && !Val->getType()->isSized(&Visited))
7543     return error(Loc, "storing unsized types is not allowed");
7544   if (!Alignment)
7545     Alignment = M->getDataLayout().getABITypeAlign(Val->getType());
7546 
7547   Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID);
7548   return AteExtraComma ? InstExtraComma : InstNormal;
7549 }
7550 
7551 /// parseCmpXchg
7552 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
7553 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ','
7554 ///       'Align'?
7555 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
7556   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
7557   bool AteExtraComma = false;
7558   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
7559   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
7560   SyncScope::ID SSID = SyncScope::System;
7561   bool isVolatile = false;
7562   bool isWeak = false;
7563   MaybeAlign Alignment;
7564 
7565   if (EatIfPresent(lltok::kw_weak))
7566     isWeak = true;
7567 
7568   if (EatIfPresent(lltok::kw_volatile))
7569     isVolatile = true;
7570 
7571   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7572       parseToken(lltok::comma, "expected ',' after cmpxchg address") ||
7573       parseTypeAndValue(Cmp, CmpLoc, PFS) ||
7574       parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
7575       parseTypeAndValue(New, NewLoc, PFS) ||
7576       parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
7577       parseOrdering(FailureOrdering) ||
7578       parseOptionalCommaAlign(Alignment, AteExtraComma))
7579     return true;
7580 
7581   if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
7582     return tokError("invalid cmpxchg success ordering");
7583   if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
7584     return tokError("invalid cmpxchg failure ordering");
7585   if (!Ptr->getType()->isPointerTy())
7586     return error(PtrLoc, "cmpxchg operand must be a pointer");
7587   if (!cast<PointerType>(Ptr->getType())
7588            ->isOpaqueOrPointeeTypeMatches(Cmp->getType()))
7589     return error(CmpLoc, "compare value and pointer type do not match");
7590   if (!cast<PointerType>(Ptr->getType())
7591            ->isOpaqueOrPointeeTypeMatches(New->getType()))
7592     return error(NewLoc, "new value and pointer type do not match");
7593   if (Cmp->getType() != New->getType())
7594     return error(NewLoc, "compare value and new value type do not match");
7595   if (!New->getType()->isFirstClassType())
7596     return error(NewLoc, "cmpxchg operand must be a first class value");
7597 
7598   const Align DefaultAlignment(
7599       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7600           Cmp->getType()));
7601 
7602   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
7603       Ptr, Cmp, New, Alignment.getValueOr(DefaultAlignment), SuccessOrdering,
7604       FailureOrdering, SSID);
7605   CXI->setVolatile(isVolatile);
7606   CXI->setWeak(isWeak);
7607 
7608   Inst = CXI;
7609   return AteExtraComma ? InstExtraComma : InstNormal;
7610 }
7611 
7612 /// parseAtomicRMW
7613 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
7614 ///       'singlethread'? AtomicOrdering
7615 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
7616   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
7617   bool AteExtraComma = false;
7618   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7619   SyncScope::ID SSID = SyncScope::System;
7620   bool isVolatile = false;
7621   bool IsFP = false;
7622   AtomicRMWInst::BinOp Operation;
7623   MaybeAlign Alignment;
7624 
7625   if (EatIfPresent(lltok::kw_volatile))
7626     isVolatile = true;
7627 
7628   switch (Lex.getKind()) {
7629   default:
7630     return tokError("expected binary operation in atomicrmw");
7631   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
7632   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
7633   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
7634   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
7635   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
7636   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
7637   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
7638   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
7639   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
7640   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
7641   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
7642   case lltok::kw_fadd:
7643     Operation = AtomicRMWInst::FAdd;
7644     IsFP = true;
7645     break;
7646   case lltok::kw_fsub:
7647     Operation = AtomicRMWInst::FSub;
7648     IsFP = true;
7649     break;
7650   }
7651   Lex.Lex();  // Eat the operation.
7652 
7653   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7654       parseToken(lltok::comma, "expected ',' after atomicrmw address") ||
7655       parseTypeAndValue(Val, ValLoc, PFS) ||
7656       parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) ||
7657       parseOptionalCommaAlign(Alignment, AteExtraComma))
7658     return true;
7659 
7660   if (Ordering == AtomicOrdering::Unordered)
7661     return tokError("atomicrmw cannot be unordered");
7662   if (!Ptr->getType()->isPointerTy())
7663     return error(PtrLoc, "atomicrmw operand must be a pointer");
7664   if (!cast<PointerType>(Ptr->getType())
7665            ->isOpaqueOrPointeeTypeMatches(Val->getType()))
7666     return error(ValLoc, "atomicrmw value and pointer type do not match");
7667 
7668   if (Operation == AtomicRMWInst::Xchg) {
7669     if (!Val->getType()->isIntegerTy() &&
7670         !Val->getType()->isFloatingPointTy()) {
7671       return error(ValLoc,
7672                    "atomicrmw " + AtomicRMWInst::getOperationName(Operation) +
7673                        " operand must be an integer or floating point type");
7674     }
7675   } else if (IsFP) {
7676     if (!Val->getType()->isFloatingPointTy()) {
7677       return error(ValLoc, "atomicrmw " +
7678                                AtomicRMWInst::getOperationName(Operation) +
7679                                " operand must be a floating point type");
7680     }
7681   } else {
7682     if (!Val->getType()->isIntegerTy()) {
7683       return error(ValLoc, "atomicrmw " +
7684                                AtomicRMWInst::getOperationName(Operation) +
7685                                " operand must be an integer");
7686     }
7687   }
7688 
7689   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
7690   if (Size < 8 || (Size & (Size - 1)))
7691     return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7692                          " integer");
7693   const Align DefaultAlignment(
7694       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7695           Val->getType()));
7696   AtomicRMWInst *RMWI =
7697       new AtomicRMWInst(Operation, Ptr, Val,
7698                         Alignment.getValueOr(DefaultAlignment), Ordering, SSID);
7699   RMWI->setVolatile(isVolatile);
7700   Inst = RMWI;
7701   return AteExtraComma ? InstExtraComma : InstNormal;
7702 }
7703 
7704 /// parseFence
7705 ///   ::= 'fence' 'singlethread'? AtomicOrdering
7706 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) {
7707   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7708   SyncScope::ID SSID = SyncScope::System;
7709   if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7710     return true;
7711 
7712   if (Ordering == AtomicOrdering::Unordered)
7713     return tokError("fence cannot be unordered");
7714   if (Ordering == AtomicOrdering::Monotonic)
7715     return tokError("fence cannot be monotonic");
7716 
7717   Inst = new FenceInst(Context, Ordering, SSID);
7718   return InstNormal;
7719 }
7720 
7721 /// parseGetElementPtr
7722 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7723 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7724   Value *Ptr = nullptr;
7725   Value *Val = nullptr;
7726   LocTy Loc, EltLoc;
7727 
7728   bool InBounds = EatIfPresent(lltok::kw_inbounds);
7729 
7730   Type *Ty = nullptr;
7731   LocTy ExplicitTypeLoc = Lex.getLoc();
7732   if (parseType(Ty) ||
7733       parseToken(lltok::comma, "expected comma after getelementptr's type") ||
7734       parseTypeAndValue(Ptr, Loc, PFS))
7735     return true;
7736 
7737   Type *BaseType = Ptr->getType();
7738   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7739   if (!BasePointerType)
7740     return error(Loc, "base of getelementptr must be a pointer");
7741 
7742   if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) {
7743     return error(
7744         ExplicitTypeLoc,
7745         typeComparisonErrorMessage(
7746             "explicit pointee type doesn't match operand's pointee type", Ty,
7747             BasePointerType->getElementType()));
7748   }
7749 
7750   SmallVector<Value*, 16> Indices;
7751   bool AteExtraComma = false;
7752   // GEP returns a vector of pointers if at least one of parameters is a vector.
7753   // All vector parameters should have the same vector width.
7754   ElementCount GEPWidth = BaseType->isVectorTy()
7755                               ? cast<VectorType>(BaseType)->getElementCount()
7756                               : ElementCount::getFixed(0);
7757 
7758   while (EatIfPresent(lltok::comma)) {
7759     if (Lex.getKind() == lltok::MetadataVar) {
7760       AteExtraComma = true;
7761       break;
7762     }
7763     if (parseTypeAndValue(Val, EltLoc, PFS))
7764       return true;
7765     if (!Val->getType()->isIntOrIntVectorTy())
7766       return error(EltLoc, "getelementptr index must be an integer");
7767 
7768     if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) {
7769       ElementCount ValNumEl = ValVTy->getElementCount();
7770       if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl)
7771         return error(
7772             EltLoc,
7773             "getelementptr vector index has a wrong number of elements");
7774       GEPWidth = ValNumEl;
7775     }
7776     Indices.push_back(Val);
7777   }
7778 
7779   SmallPtrSet<Type*, 4> Visited;
7780   if (!Indices.empty() && !Ty->isSized(&Visited))
7781     return error(Loc, "base element of getelementptr must be sized");
7782 
7783   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7784     return error(Loc, "invalid getelementptr indices");
7785   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7786   if (InBounds)
7787     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7788   return AteExtraComma ? InstExtraComma : InstNormal;
7789 }
7790 
7791 /// parseExtractValue
7792 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
7793 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7794   Value *Val; LocTy Loc;
7795   SmallVector<unsigned, 4> Indices;
7796   bool AteExtraComma;
7797   if (parseTypeAndValue(Val, Loc, PFS) ||
7798       parseIndexList(Indices, AteExtraComma))
7799     return true;
7800 
7801   if (!Val->getType()->isAggregateType())
7802     return error(Loc, "extractvalue operand must be aggregate type");
7803 
7804   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7805     return error(Loc, "invalid indices for extractvalue");
7806   Inst = ExtractValueInst::Create(Val, Indices);
7807   return AteExtraComma ? InstExtraComma : InstNormal;
7808 }
7809 
7810 /// parseInsertValue
7811 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7812 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7813   Value *Val0, *Val1; LocTy Loc0, Loc1;
7814   SmallVector<unsigned, 4> Indices;
7815   bool AteExtraComma;
7816   if (parseTypeAndValue(Val0, Loc0, PFS) ||
7817       parseToken(lltok::comma, "expected comma after insertvalue operand") ||
7818       parseTypeAndValue(Val1, Loc1, PFS) ||
7819       parseIndexList(Indices, AteExtraComma))
7820     return true;
7821 
7822   if (!Val0->getType()->isAggregateType())
7823     return error(Loc0, "insertvalue operand must be aggregate type");
7824 
7825   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7826   if (!IndexedType)
7827     return error(Loc0, "invalid indices for insertvalue");
7828   if (IndexedType != Val1->getType())
7829     return error(Loc1, "insertvalue operand and field disagree in type: '" +
7830                            getTypeString(Val1->getType()) + "' instead of '" +
7831                            getTypeString(IndexedType) + "'");
7832   Inst = InsertValueInst::Create(Val0, Val1, Indices);
7833   return AteExtraComma ? InstExtraComma : InstNormal;
7834 }
7835 
7836 //===----------------------------------------------------------------------===//
7837 // Embedded metadata.
7838 //===----------------------------------------------------------------------===//
7839 
7840 /// parseMDNodeVector
7841 ///   ::= { Element (',' Element)* }
7842 /// Element
7843 ///   ::= 'null' | TypeAndValue
7844 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7845   if (parseToken(lltok::lbrace, "expected '{' here"))
7846     return true;
7847 
7848   // Check for an empty list.
7849   if (EatIfPresent(lltok::rbrace))
7850     return false;
7851 
7852   do {
7853     // Null is a special case since it is typeless.
7854     if (EatIfPresent(lltok::kw_null)) {
7855       Elts.push_back(nullptr);
7856       continue;
7857     }
7858 
7859     Metadata *MD;
7860     if (parseMetadata(MD, nullptr))
7861       return true;
7862     Elts.push_back(MD);
7863   } while (EatIfPresent(lltok::comma));
7864 
7865   return parseToken(lltok::rbrace, "expected end of metadata node");
7866 }
7867 
7868 //===----------------------------------------------------------------------===//
7869 // Use-list order directives.
7870 //===----------------------------------------------------------------------===//
7871 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7872                                 SMLoc Loc) {
7873   if (V->use_empty())
7874     return error(Loc, "value has no uses");
7875 
7876   unsigned NumUses = 0;
7877   SmallDenseMap<const Use *, unsigned, 16> Order;
7878   for (const Use &U : V->uses()) {
7879     if (++NumUses > Indexes.size())
7880       break;
7881     Order[&U] = Indexes[NumUses - 1];
7882   }
7883   if (NumUses < 2)
7884     return error(Loc, "value only has one use");
7885   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7886     return error(Loc,
7887                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
7888 
7889   V->sortUseList([&](const Use &L, const Use &R) {
7890     return Order.lookup(&L) < Order.lookup(&R);
7891   });
7892   return false;
7893 }
7894 
7895 /// parseUseListOrderIndexes
7896 ///   ::= '{' uint32 (',' uint32)+ '}'
7897 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7898   SMLoc Loc = Lex.getLoc();
7899   if (parseToken(lltok::lbrace, "expected '{' here"))
7900     return true;
7901   if (Lex.getKind() == lltok::rbrace)
7902     return Lex.Error("expected non-empty list of uselistorder indexes");
7903 
7904   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
7905   // indexes should be distinct numbers in the range [0, size-1], and should
7906   // not be in order.
7907   unsigned Offset = 0;
7908   unsigned Max = 0;
7909   bool IsOrdered = true;
7910   assert(Indexes.empty() && "Expected empty order vector");
7911   do {
7912     unsigned Index;
7913     if (parseUInt32(Index))
7914       return true;
7915 
7916     // Update consistency checks.
7917     Offset += Index - Indexes.size();
7918     Max = std::max(Max, Index);
7919     IsOrdered &= Index == Indexes.size();
7920 
7921     Indexes.push_back(Index);
7922   } while (EatIfPresent(lltok::comma));
7923 
7924   if (parseToken(lltok::rbrace, "expected '}' here"))
7925     return true;
7926 
7927   if (Indexes.size() < 2)
7928     return error(Loc, "expected >= 2 uselistorder indexes");
7929   if (Offset != 0 || Max >= Indexes.size())
7930     return error(Loc,
7931                  "expected distinct uselistorder indexes in range [0, size)");
7932   if (IsOrdered)
7933     return error(Loc, "expected uselistorder indexes to change the order");
7934 
7935   return false;
7936 }
7937 
7938 /// parseUseListOrder
7939 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7940 bool LLParser::parseUseListOrder(PerFunctionState *PFS) {
7941   SMLoc Loc = Lex.getLoc();
7942   if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7943     return true;
7944 
7945   Value *V;
7946   SmallVector<unsigned, 16> Indexes;
7947   if (parseTypeAndValue(V, PFS) ||
7948       parseToken(lltok::comma, "expected comma in uselistorder directive") ||
7949       parseUseListOrderIndexes(Indexes))
7950     return true;
7951 
7952   return sortUseListOrder(V, Indexes, Loc);
7953 }
7954 
7955 /// parseUseListOrderBB
7956 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
7957 bool LLParser::parseUseListOrderBB() {
7958   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7959   SMLoc Loc = Lex.getLoc();
7960   Lex.Lex();
7961 
7962   ValID Fn, Label;
7963   SmallVector<unsigned, 16> Indexes;
7964   if (parseValID(Fn, /*PFS=*/nullptr) ||
7965       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7966       parseValID(Label, /*PFS=*/nullptr) ||
7967       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7968       parseUseListOrderIndexes(Indexes))
7969     return true;
7970 
7971   // Check the function.
7972   GlobalValue *GV;
7973   if (Fn.Kind == ValID::t_GlobalName)
7974     GV = M->getNamedValue(Fn.StrVal);
7975   else if (Fn.Kind == ValID::t_GlobalID)
7976     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7977   else
7978     return error(Fn.Loc, "expected function name in uselistorder_bb");
7979   if (!GV)
7980     return error(Fn.Loc,
7981                  "invalid function forward reference in uselistorder_bb");
7982   auto *F = dyn_cast<Function>(GV);
7983   if (!F)
7984     return error(Fn.Loc, "expected function name in uselistorder_bb");
7985   if (F->isDeclaration())
7986     return error(Fn.Loc, "invalid declaration in uselistorder_bb");
7987 
7988   // Check the basic block.
7989   if (Label.Kind == ValID::t_LocalID)
7990     return error(Label.Loc, "invalid numeric label in uselistorder_bb");
7991   if (Label.Kind != ValID::t_LocalName)
7992     return error(Label.Loc, "expected basic block name in uselistorder_bb");
7993   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7994   if (!V)
7995     return error(Label.Loc, "invalid basic block in uselistorder_bb");
7996   if (!isa<BasicBlock>(V))
7997     return error(Label.Loc, "expected basic block in uselistorder_bb");
7998 
7999   return sortUseListOrder(V, Indexes, Loc);
8000 }
8001 
8002 /// ModuleEntry
8003 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
8004 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
8005 bool LLParser::parseModuleEntry(unsigned ID) {
8006   assert(Lex.getKind() == lltok::kw_module);
8007   Lex.Lex();
8008 
8009   std::string Path;
8010   if (parseToken(lltok::colon, "expected ':' here") ||
8011       parseToken(lltok::lparen, "expected '(' here") ||
8012       parseToken(lltok::kw_path, "expected 'path' here") ||
8013       parseToken(lltok::colon, "expected ':' here") ||
8014       parseStringConstant(Path) ||
8015       parseToken(lltok::comma, "expected ',' here") ||
8016       parseToken(lltok::kw_hash, "expected 'hash' here") ||
8017       parseToken(lltok::colon, "expected ':' here") ||
8018       parseToken(lltok::lparen, "expected '(' here"))
8019     return true;
8020 
8021   ModuleHash Hash;
8022   if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") ||
8023       parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") ||
8024       parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") ||
8025       parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") ||
8026       parseUInt32(Hash[4]))
8027     return true;
8028 
8029   if (parseToken(lltok::rparen, "expected ')' here") ||
8030       parseToken(lltok::rparen, "expected ')' here"))
8031     return true;
8032 
8033   auto ModuleEntry = Index->addModule(Path, ID, Hash);
8034   ModuleIdMap[ID] = ModuleEntry->first();
8035 
8036   return false;
8037 }
8038 
8039 /// TypeIdEntry
8040 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
8041 bool LLParser::parseTypeIdEntry(unsigned ID) {
8042   assert(Lex.getKind() == lltok::kw_typeid);
8043   Lex.Lex();
8044 
8045   std::string Name;
8046   if (parseToken(lltok::colon, "expected ':' here") ||
8047       parseToken(lltok::lparen, "expected '(' here") ||
8048       parseToken(lltok::kw_name, "expected 'name' here") ||
8049       parseToken(lltok::colon, "expected ':' here") ||
8050       parseStringConstant(Name))
8051     return true;
8052 
8053   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
8054   if (parseToken(lltok::comma, "expected ',' here") ||
8055       parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here"))
8056     return true;
8057 
8058   // Check if this ID was forward referenced, and if so, update the
8059   // corresponding GUIDs.
8060   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
8061   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
8062     for (auto TIDRef : FwdRefTIDs->second) {
8063       assert(!*TIDRef.first &&
8064              "Forward referenced type id GUID expected to be 0");
8065       *TIDRef.first = GlobalValue::getGUID(Name);
8066     }
8067     ForwardRefTypeIds.erase(FwdRefTIDs);
8068   }
8069 
8070   return false;
8071 }
8072 
8073 /// TypeIdSummary
8074 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
8075 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) {
8076   if (parseToken(lltok::kw_summary, "expected 'summary' here") ||
8077       parseToken(lltok::colon, "expected ':' here") ||
8078       parseToken(lltok::lparen, "expected '(' here") ||
8079       parseTypeTestResolution(TIS.TTRes))
8080     return true;
8081 
8082   if (EatIfPresent(lltok::comma)) {
8083     // Expect optional wpdResolutions field
8084     if (parseOptionalWpdResolutions(TIS.WPDRes))
8085       return true;
8086   }
8087 
8088   if (parseToken(lltok::rparen, "expected ')' here"))
8089     return true;
8090 
8091   return false;
8092 }
8093 
8094 static ValueInfo EmptyVI =
8095     ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
8096 
8097 /// TypeIdCompatibleVtableEntry
8098 ///   ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
8099 ///   TypeIdCompatibleVtableInfo
8100 ///   ')'
8101 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) {
8102   assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
8103   Lex.Lex();
8104 
8105   std::string Name;
8106   if (parseToken(lltok::colon, "expected ':' here") ||
8107       parseToken(lltok::lparen, "expected '(' here") ||
8108       parseToken(lltok::kw_name, "expected 'name' here") ||
8109       parseToken(lltok::colon, "expected ':' here") ||
8110       parseStringConstant(Name))
8111     return true;
8112 
8113   TypeIdCompatibleVtableInfo &TI =
8114       Index->getOrInsertTypeIdCompatibleVtableSummary(Name);
8115   if (parseToken(lltok::comma, "expected ',' here") ||
8116       parseToken(lltok::kw_summary, "expected 'summary' here") ||
8117       parseToken(lltok::colon, "expected ':' here") ||
8118       parseToken(lltok::lparen, "expected '(' here"))
8119     return true;
8120 
8121   IdToIndexMapType IdToIndexMap;
8122   // parse each call edge
8123   do {
8124     uint64_t Offset;
8125     if (parseToken(lltok::lparen, "expected '(' here") ||
8126         parseToken(lltok::kw_offset, "expected 'offset' here") ||
8127         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
8128         parseToken(lltok::comma, "expected ',' here"))
8129       return true;
8130 
8131     LocTy Loc = Lex.getLoc();
8132     unsigned GVId;
8133     ValueInfo VI;
8134     if (parseGVReference(VI, GVId))
8135       return true;
8136 
8137     // Keep track of the TypeIdCompatibleVtableInfo array index needing a
8138     // forward reference. We will save the location of the ValueInfo needing an
8139     // update, but can only do so once the std::vector is finalized.
8140     if (VI == EmptyVI)
8141       IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
8142     TI.push_back({Offset, VI});
8143 
8144     if (parseToken(lltok::rparen, "expected ')' in call"))
8145       return true;
8146   } while (EatIfPresent(lltok::comma));
8147 
8148   // Now that the TI vector is finalized, it is safe to save the locations
8149   // of any forward GV references that need updating later.
8150   for (auto I : IdToIndexMap) {
8151     auto &Infos = ForwardRefValueInfos[I.first];
8152     for (auto P : I.second) {
8153       assert(TI[P.first].VTableVI == EmptyVI &&
8154              "Forward referenced ValueInfo expected to be empty");
8155       Infos.emplace_back(&TI[P.first].VTableVI, P.second);
8156     }
8157   }
8158 
8159   if (parseToken(lltok::rparen, "expected ')' here") ||
8160       parseToken(lltok::rparen, "expected ')' here"))
8161     return true;
8162 
8163   // Check if this ID was forward referenced, and if so, update the
8164   // corresponding GUIDs.
8165   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
8166   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
8167     for (auto TIDRef : FwdRefTIDs->second) {
8168       assert(!*TIDRef.first &&
8169              "Forward referenced type id GUID expected to be 0");
8170       *TIDRef.first = GlobalValue::getGUID(Name);
8171     }
8172     ForwardRefTypeIds.erase(FwdRefTIDs);
8173   }
8174 
8175   return false;
8176 }
8177 
8178 /// TypeTestResolution
8179 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
8180 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
8181 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
8182 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
8183 ///         [',' 'inlinesBits' ':' UInt64]? ')'
8184 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) {
8185   if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
8186       parseToken(lltok::colon, "expected ':' here") ||
8187       parseToken(lltok::lparen, "expected '(' here") ||
8188       parseToken(lltok::kw_kind, "expected 'kind' here") ||
8189       parseToken(lltok::colon, "expected ':' here"))
8190     return true;
8191 
8192   switch (Lex.getKind()) {
8193   case lltok::kw_unknown:
8194     TTRes.TheKind = TypeTestResolution::Unknown;
8195     break;
8196   case lltok::kw_unsat:
8197     TTRes.TheKind = TypeTestResolution::Unsat;
8198     break;
8199   case lltok::kw_byteArray:
8200     TTRes.TheKind = TypeTestResolution::ByteArray;
8201     break;
8202   case lltok::kw_inline:
8203     TTRes.TheKind = TypeTestResolution::Inline;
8204     break;
8205   case lltok::kw_single:
8206     TTRes.TheKind = TypeTestResolution::Single;
8207     break;
8208   case lltok::kw_allOnes:
8209     TTRes.TheKind = TypeTestResolution::AllOnes;
8210     break;
8211   default:
8212     return error(Lex.getLoc(), "unexpected TypeTestResolution kind");
8213   }
8214   Lex.Lex();
8215 
8216   if (parseToken(lltok::comma, "expected ',' here") ||
8217       parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
8218       parseToken(lltok::colon, "expected ':' here") ||
8219       parseUInt32(TTRes.SizeM1BitWidth))
8220     return true;
8221 
8222   // parse optional fields
8223   while (EatIfPresent(lltok::comma)) {
8224     switch (Lex.getKind()) {
8225     case lltok::kw_alignLog2:
8226       Lex.Lex();
8227       if (parseToken(lltok::colon, "expected ':'") ||
8228           parseUInt64(TTRes.AlignLog2))
8229         return true;
8230       break;
8231     case lltok::kw_sizeM1:
8232       Lex.Lex();
8233       if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1))
8234         return true;
8235       break;
8236     case lltok::kw_bitMask: {
8237       unsigned Val;
8238       Lex.Lex();
8239       if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val))
8240         return true;
8241       assert(Val <= 0xff);
8242       TTRes.BitMask = (uint8_t)Val;
8243       break;
8244     }
8245     case lltok::kw_inlineBits:
8246       Lex.Lex();
8247       if (parseToken(lltok::colon, "expected ':'") ||
8248           parseUInt64(TTRes.InlineBits))
8249         return true;
8250       break;
8251     default:
8252       return error(Lex.getLoc(), "expected optional TypeTestResolution field");
8253     }
8254   }
8255 
8256   if (parseToken(lltok::rparen, "expected ')' here"))
8257     return true;
8258 
8259   return false;
8260 }
8261 
8262 /// OptionalWpdResolutions
8263 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
8264 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
8265 bool LLParser::parseOptionalWpdResolutions(
8266     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
8267   if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
8268       parseToken(lltok::colon, "expected ':' here") ||
8269       parseToken(lltok::lparen, "expected '(' here"))
8270     return true;
8271 
8272   do {
8273     uint64_t Offset;
8274     WholeProgramDevirtResolution WPDRes;
8275     if (parseToken(lltok::lparen, "expected '(' here") ||
8276         parseToken(lltok::kw_offset, "expected 'offset' here") ||
8277         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
8278         parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) ||
8279         parseToken(lltok::rparen, "expected ')' here"))
8280       return true;
8281     WPDResMap[Offset] = WPDRes;
8282   } while (EatIfPresent(lltok::comma));
8283 
8284   if (parseToken(lltok::rparen, "expected ')' here"))
8285     return true;
8286 
8287   return false;
8288 }
8289 
8290 /// WpdRes
8291 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
8292 ///         [',' OptionalResByArg]? ')'
8293 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
8294 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
8295 ///         [',' OptionalResByArg]? ')'
8296 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
8297 ///         [',' OptionalResByArg]? ')'
8298 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) {
8299   if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
8300       parseToken(lltok::colon, "expected ':' here") ||
8301       parseToken(lltok::lparen, "expected '(' here") ||
8302       parseToken(lltok::kw_kind, "expected 'kind' here") ||
8303       parseToken(lltok::colon, "expected ':' here"))
8304     return true;
8305 
8306   switch (Lex.getKind()) {
8307   case lltok::kw_indir:
8308     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
8309     break;
8310   case lltok::kw_singleImpl:
8311     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
8312     break;
8313   case lltok::kw_branchFunnel:
8314     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
8315     break;
8316   default:
8317     return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
8318   }
8319   Lex.Lex();
8320 
8321   // parse optional fields
8322   while (EatIfPresent(lltok::comma)) {
8323     switch (Lex.getKind()) {
8324     case lltok::kw_singleImplName:
8325       Lex.Lex();
8326       if (parseToken(lltok::colon, "expected ':' here") ||
8327           parseStringConstant(WPDRes.SingleImplName))
8328         return true;
8329       break;
8330     case lltok::kw_resByArg:
8331       if (parseOptionalResByArg(WPDRes.ResByArg))
8332         return true;
8333       break;
8334     default:
8335       return error(Lex.getLoc(),
8336                    "expected optional WholeProgramDevirtResolution field");
8337     }
8338   }
8339 
8340   if (parseToken(lltok::rparen, "expected ')' here"))
8341     return true;
8342 
8343   return false;
8344 }
8345 
8346 /// OptionalResByArg
8347 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
8348 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
8349 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
8350 ///                  'virtualConstProp' )
8351 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
8352 ///                [',' 'bit' ':' UInt32]? ')'
8353 bool LLParser::parseOptionalResByArg(
8354     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
8355         &ResByArg) {
8356   if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
8357       parseToken(lltok::colon, "expected ':' here") ||
8358       parseToken(lltok::lparen, "expected '(' here"))
8359     return true;
8360 
8361   do {
8362     std::vector<uint64_t> Args;
8363     if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") ||
8364         parseToken(lltok::kw_byArg, "expected 'byArg here") ||
8365         parseToken(lltok::colon, "expected ':' here") ||
8366         parseToken(lltok::lparen, "expected '(' here") ||
8367         parseToken(lltok::kw_kind, "expected 'kind' here") ||
8368         parseToken(lltok::colon, "expected ':' here"))
8369       return true;
8370 
8371     WholeProgramDevirtResolution::ByArg ByArg;
8372     switch (Lex.getKind()) {
8373     case lltok::kw_indir:
8374       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
8375       break;
8376     case lltok::kw_uniformRetVal:
8377       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
8378       break;
8379     case lltok::kw_uniqueRetVal:
8380       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
8381       break;
8382     case lltok::kw_virtualConstProp:
8383       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
8384       break;
8385     default:
8386       return error(Lex.getLoc(),
8387                    "unexpected WholeProgramDevirtResolution::ByArg kind");
8388     }
8389     Lex.Lex();
8390 
8391     // parse optional fields
8392     while (EatIfPresent(lltok::comma)) {
8393       switch (Lex.getKind()) {
8394       case lltok::kw_info:
8395         Lex.Lex();
8396         if (parseToken(lltok::colon, "expected ':' here") ||
8397             parseUInt64(ByArg.Info))
8398           return true;
8399         break;
8400       case lltok::kw_byte:
8401         Lex.Lex();
8402         if (parseToken(lltok::colon, "expected ':' here") ||
8403             parseUInt32(ByArg.Byte))
8404           return true;
8405         break;
8406       case lltok::kw_bit:
8407         Lex.Lex();
8408         if (parseToken(lltok::colon, "expected ':' here") ||
8409             parseUInt32(ByArg.Bit))
8410           return true;
8411         break;
8412       default:
8413         return error(Lex.getLoc(),
8414                      "expected optional whole program devirt field");
8415       }
8416     }
8417 
8418     if (parseToken(lltok::rparen, "expected ')' here"))
8419       return true;
8420 
8421     ResByArg[Args] = ByArg;
8422   } while (EatIfPresent(lltok::comma));
8423 
8424   if (parseToken(lltok::rparen, "expected ')' here"))
8425     return true;
8426 
8427   return false;
8428 }
8429 
8430 /// OptionalResByArg
8431 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
8432 bool LLParser::parseArgs(std::vector<uint64_t> &Args) {
8433   if (parseToken(lltok::kw_args, "expected 'args' here") ||
8434       parseToken(lltok::colon, "expected ':' here") ||
8435       parseToken(lltok::lparen, "expected '(' here"))
8436     return true;
8437 
8438   do {
8439     uint64_t Val;
8440     if (parseUInt64(Val))
8441       return true;
8442     Args.push_back(Val);
8443   } while (EatIfPresent(lltok::comma));
8444 
8445   if (parseToken(lltok::rparen, "expected ')' here"))
8446     return true;
8447 
8448   return false;
8449 }
8450 
8451 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
8452 
8453 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
8454   bool ReadOnly = Fwd->isReadOnly();
8455   bool WriteOnly = Fwd->isWriteOnly();
8456   assert(!(ReadOnly && WriteOnly));
8457   *Fwd = Resolved;
8458   if (ReadOnly)
8459     Fwd->setReadOnly();
8460   if (WriteOnly)
8461     Fwd->setWriteOnly();
8462 }
8463 
8464 /// Stores the given Name/GUID and associated summary into the Index.
8465 /// Also updates any forward references to the associated entry ID.
8466 void LLParser::addGlobalValueToIndex(
8467     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
8468     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
8469   // First create the ValueInfo utilizing the Name or GUID.
8470   ValueInfo VI;
8471   if (GUID != 0) {
8472     assert(Name.empty());
8473     VI = Index->getOrInsertValueInfo(GUID);
8474   } else {
8475     assert(!Name.empty());
8476     if (M) {
8477       auto *GV = M->getNamedValue(Name);
8478       assert(GV);
8479       VI = Index->getOrInsertValueInfo(GV);
8480     } else {
8481       assert(
8482           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
8483           "Need a source_filename to compute GUID for local");
8484       GUID = GlobalValue::getGUID(
8485           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
8486       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
8487     }
8488   }
8489 
8490   // Resolve forward references from calls/refs
8491   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
8492   if (FwdRefVIs != ForwardRefValueInfos.end()) {
8493     for (auto VIRef : FwdRefVIs->second) {
8494       assert(VIRef.first->getRef() == FwdVIRef &&
8495              "Forward referenced ValueInfo expected to be empty");
8496       resolveFwdRef(VIRef.first, VI);
8497     }
8498     ForwardRefValueInfos.erase(FwdRefVIs);
8499   }
8500 
8501   // Resolve forward references from aliases
8502   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
8503   if (FwdRefAliasees != ForwardRefAliasees.end()) {
8504     for (auto AliaseeRef : FwdRefAliasees->second) {
8505       assert(!AliaseeRef.first->hasAliasee() &&
8506              "Forward referencing alias already has aliasee");
8507       assert(Summary && "Aliasee must be a definition");
8508       AliaseeRef.first->setAliasee(VI, Summary.get());
8509     }
8510     ForwardRefAliasees.erase(FwdRefAliasees);
8511   }
8512 
8513   // Add the summary if one was provided.
8514   if (Summary)
8515     Index->addGlobalValueSummary(VI, std::move(Summary));
8516 
8517   // Save the associated ValueInfo for use in later references by ID.
8518   if (ID == NumberedValueInfos.size())
8519     NumberedValueInfos.push_back(VI);
8520   else {
8521     // Handle non-continuous numbers (to make test simplification easier).
8522     if (ID > NumberedValueInfos.size())
8523       NumberedValueInfos.resize(ID + 1);
8524     NumberedValueInfos[ID] = VI;
8525   }
8526 }
8527 
8528 /// parseSummaryIndexFlags
8529 ///   ::= 'flags' ':' UInt64
8530 bool LLParser::parseSummaryIndexFlags() {
8531   assert(Lex.getKind() == lltok::kw_flags);
8532   Lex.Lex();
8533 
8534   if (parseToken(lltok::colon, "expected ':' here"))
8535     return true;
8536   uint64_t Flags;
8537   if (parseUInt64(Flags))
8538     return true;
8539   if (Index)
8540     Index->setFlags(Flags);
8541   return false;
8542 }
8543 
8544 /// parseBlockCount
8545 ///   ::= 'blockcount' ':' UInt64
8546 bool LLParser::parseBlockCount() {
8547   assert(Lex.getKind() == lltok::kw_blockcount);
8548   Lex.Lex();
8549 
8550   if (parseToken(lltok::colon, "expected ':' here"))
8551     return true;
8552   uint64_t BlockCount;
8553   if (parseUInt64(BlockCount))
8554     return true;
8555   if (Index)
8556     Index->setBlockCount(BlockCount);
8557   return false;
8558 }
8559 
8560 /// parseGVEntry
8561 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
8562 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
8563 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
8564 bool LLParser::parseGVEntry(unsigned ID) {
8565   assert(Lex.getKind() == lltok::kw_gv);
8566   Lex.Lex();
8567 
8568   if (parseToken(lltok::colon, "expected ':' here") ||
8569       parseToken(lltok::lparen, "expected '(' here"))
8570     return true;
8571 
8572   std::string Name;
8573   GlobalValue::GUID GUID = 0;
8574   switch (Lex.getKind()) {
8575   case lltok::kw_name:
8576     Lex.Lex();
8577     if (parseToken(lltok::colon, "expected ':' here") ||
8578         parseStringConstant(Name))
8579       return true;
8580     // Can't create GUID/ValueInfo until we have the linkage.
8581     break;
8582   case lltok::kw_guid:
8583     Lex.Lex();
8584     if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID))
8585       return true;
8586     break;
8587   default:
8588     return error(Lex.getLoc(), "expected name or guid tag");
8589   }
8590 
8591   if (!EatIfPresent(lltok::comma)) {
8592     // No summaries. Wrap up.
8593     if (parseToken(lltok::rparen, "expected ')' here"))
8594       return true;
8595     // This was created for a call to an external or indirect target.
8596     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
8597     // created for indirect calls with VP. A Name with no GUID came from
8598     // an external definition. We pass ExternalLinkage since that is only
8599     // used when the GUID must be computed from Name, and in that case
8600     // the symbol must have external linkage.
8601     addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
8602                           nullptr);
8603     return false;
8604   }
8605 
8606   // Have a list of summaries
8607   if (parseToken(lltok::kw_summaries, "expected 'summaries' here") ||
8608       parseToken(lltok::colon, "expected ':' here") ||
8609       parseToken(lltok::lparen, "expected '(' here"))
8610     return true;
8611   do {
8612     switch (Lex.getKind()) {
8613     case lltok::kw_function:
8614       if (parseFunctionSummary(Name, GUID, ID))
8615         return true;
8616       break;
8617     case lltok::kw_variable:
8618       if (parseVariableSummary(Name, GUID, ID))
8619         return true;
8620       break;
8621     case lltok::kw_alias:
8622       if (parseAliasSummary(Name, GUID, ID))
8623         return true;
8624       break;
8625     default:
8626       return error(Lex.getLoc(), "expected summary type");
8627     }
8628   } while (EatIfPresent(lltok::comma));
8629 
8630   if (parseToken(lltok::rparen, "expected ')' here") ||
8631       parseToken(lltok::rparen, "expected ')' here"))
8632     return true;
8633 
8634   return false;
8635 }
8636 
8637 /// FunctionSummary
8638 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8639 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
8640 ///         [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]?
8641 ///         [',' OptionalRefs]? ')'
8642 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
8643                                     unsigned ID) {
8644   assert(Lex.getKind() == lltok::kw_function);
8645   Lex.Lex();
8646 
8647   StringRef ModulePath;
8648   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8649       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8650       /*NotEligibleToImport=*/false,
8651       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8652   unsigned InstCount;
8653   std::vector<FunctionSummary::EdgeTy> Calls;
8654   FunctionSummary::TypeIdInfo TypeIdInfo;
8655   std::vector<FunctionSummary::ParamAccess> ParamAccesses;
8656   std::vector<ValueInfo> Refs;
8657   // Default is all-zeros (conservative values).
8658   FunctionSummary::FFlags FFlags = {};
8659   if (parseToken(lltok::colon, "expected ':' here") ||
8660       parseToken(lltok::lparen, "expected '(' here") ||
8661       parseModuleReference(ModulePath) ||
8662       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8663       parseToken(lltok::comma, "expected ',' here") ||
8664       parseToken(lltok::kw_insts, "expected 'insts' here") ||
8665       parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount))
8666     return true;
8667 
8668   // parse optional fields
8669   while (EatIfPresent(lltok::comma)) {
8670     switch (Lex.getKind()) {
8671     case lltok::kw_funcFlags:
8672       if (parseOptionalFFlags(FFlags))
8673         return true;
8674       break;
8675     case lltok::kw_calls:
8676       if (parseOptionalCalls(Calls))
8677         return true;
8678       break;
8679     case lltok::kw_typeIdInfo:
8680       if (parseOptionalTypeIdInfo(TypeIdInfo))
8681         return true;
8682       break;
8683     case lltok::kw_refs:
8684       if (parseOptionalRefs(Refs))
8685         return true;
8686       break;
8687     case lltok::kw_params:
8688       if (parseOptionalParamAccesses(ParamAccesses))
8689         return true;
8690       break;
8691     default:
8692       return error(Lex.getLoc(), "expected optional function summary field");
8693     }
8694   }
8695 
8696   if (parseToken(lltok::rparen, "expected ')' here"))
8697     return true;
8698 
8699   auto FS = std::make_unique<FunctionSummary>(
8700       GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
8701       std::move(Calls), std::move(TypeIdInfo.TypeTests),
8702       std::move(TypeIdInfo.TypeTestAssumeVCalls),
8703       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
8704       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
8705       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls),
8706       std::move(ParamAccesses));
8707 
8708   FS->setModulePath(ModulePath);
8709 
8710   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8711                         ID, std::move(FS));
8712 
8713   return false;
8714 }
8715 
8716 /// VariableSummary
8717 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8718 ///         [',' OptionalRefs]? ')'
8719 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID,
8720                                     unsigned ID) {
8721   assert(Lex.getKind() == lltok::kw_variable);
8722   Lex.Lex();
8723 
8724   StringRef ModulePath;
8725   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8726       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8727       /*NotEligibleToImport=*/false,
8728       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8729   GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false,
8730                                         /* WriteOnly */ false,
8731                                         /* Constant */ false,
8732                                         GlobalObject::VCallVisibilityPublic);
8733   std::vector<ValueInfo> Refs;
8734   VTableFuncList VTableFuncs;
8735   if (parseToken(lltok::colon, "expected ':' here") ||
8736       parseToken(lltok::lparen, "expected '(' here") ||
8737       parseModuleReference(ModulePath) ||
8738       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8739       parseToken(lltok::comma, "expected ',' here") ||
8740       parseGVarFlags(GVarFlags))
8741     return true;
8742 
8743   // parse optional fields
8744   while (EatIfPresent(lltok::comma)) {
8745     switch (Lex.getKind()) {
8746     case lltok::kw_vTableFuncs:
8747       if (parseOptionalVTableFuncs(VTableFuncs))
8748         return true;
8749       break;
8750     case lltok::kw_refs:
8751       if (parseOptionalRefs(Refs))
8752         return true;
8753       break;
8754     default:
8755       return error(Lex.getLoc(), "expected optional variable summary field");
8756     }
8757   }
8758 
8759   if (parseToken(lltok::rparen, "expected ')' here"))
8760     return true;
8761 
8762   auto GS =
8763       std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
8764 
8765   GS->setModulePath(ModulePath);
8766   GS->setVTableFuncs(std::move(VTableFuncs));
8767 
8768   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8769                         ID, std::move(GS));
8770 
8771   return false;
8772 }
8773 
8774 /// AliasSummary
8775 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
8776 ///         'aliasee' ':' GVReference ')'
8777 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID,
8778                                  unsigned ID) {
8779   assert(Lex.getKind() == lltok::kw_alias);
8780   LocTy Loc = Lex.getLoc();
8781   Lex.Lex();
8782 
8783   StringRef ModulePath;
8784   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8785       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8786       /*NotEligibleToImport=*/false,
8787       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8788   if (parseToken(lltok::colon, "expected ':' here") ||
8789       parseToken(lltok::lparen, "expected '(' here") ||
8790       parseModuleReference(ModulePath) ||
8791       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8792       parseToken(lltok::comma, "expected ',' here") ||
8793       parseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
8794       parseToken(lltok::colon, "expected ':' here"))
8795     return true;
8796 
8797   ValueInfo AliaseeVI;
8798   unsigned GVId;
8799   if (parseGVReference(AliaseeVI, GVId))
8800     return true;
8801 
8802   if (parseToken(lltok::rparen, "expected ')' here"))
8803     return true;
8804 
8805   auto AS = std::make_unique<AliasSummary>(GVFlags);
8806 
8807   AS->setModulePath(ModulePath);
8808 
8809   // Record forward reference if the aliasee is not parsed yet.
8810   if (AliaseeVI.getRef() == FwdVIRef) {
8811     ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc);
8812   } else {
8813     auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
8814     assert(Summary && "Aliasee must be a definition");
8815     AS->setAliasee(AliaseeVI, Summary);
8816   }
8817 
8818   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8819                         ID, std::move(AS));
8820 
8821   return false;
8822 }
8823 
8824 /// Flag
8825 ///   ::= [0|1]
8826 bool LLParser::parseFlag(unsigned &Val) {
8827   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
8828     return tokError("expected integer");
8829   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
8830   Lex.Lex();
8831   return false;
8832 }
8833 
8834 /// OptionalFFlags
8835 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8836 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8837 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
8838 ///        [',' 'noInline' ':' Flag]? ')'
8839 ///        [',' 'alwaysInline' ':' Flag]? ')'
8840 
8841 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8842   assert(Lex.getKind() == lltok::kw_funcFlags);
8843   Lex.Lex();
8844 
8845   if (parseToken(lltok::colon, "expected ':' in funcFlags") |
8846       parseToken(lltok::lparen, "expected '(' in funcFlags"))
8847     return true;
8848 
8849   do {
8850     unsigned Val = 0;
8851     switch (Lex.getKind()) {
8852     case lltok::kw_readNone:
8853       Lex.Lex();
8854       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8855         return true;
8856       FFlags.ReadNone = Val;
8857       break;
8858     case lltok::kw_readOnly:
8859       Lex.Lex();
8860       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8861         return true;
8862       FFlags.ReadOnly = Val;
8863       break;
8864     case lltok::kw_noRecurse:
8865       Lex.Lex();
8866       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8867         return true;
8868       FFlags.NoRecurse = Val;
8869       break;
8870     case lltok::kw_returnDoesNotAlias:
8871       Lex.Lex();
8872       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8873         return true;
8874       FFlags.ReturnDoesNotAlias = Val;
8875       break;
8876     case lltok::kw_noInline:
8877       Lex.Lex();
8878       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8879         return true;
8880       FFlags.NoInline = Val;
8881       break;
8882     case lltok::kw_alwaysInline:
8883       Lex.Lex();
8884       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8885         return true;
8886       FFlags.AlwaysInline = Val;
8887       break;
8888     default:
8889       return error(Lex.getLoc(), "expected function flag type");
8890     }
8891   } while (EatIfPresent(lltok::comma));
8892 
8893   if (parseToken(lltok::rparen, "expected ')' in funcFlags"))
8894     return true;
8895 
8896   return false;
8897 }
8898 
8899 /// OptionalCalls
8900 ///   := 'calls' ':' '(' Call [',' Call]* ')'
8901 /// Call ::= '(' 'callee' ':' GVReference
8902 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
8903 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
8904   assert(Lex.getKind() == lltok::kw_calls);
8905   Lex.Lex();
8906 
8907   if (parseToken(lltok::colon, "expected ':' in calls") |
8908       parseToken(lltok::lparen, "expected '(' in calls"))
8909     return true;
8910 
8911   IdToIndexMapType IdToIndexMap;
8912   // parse each call edge
8913   do {
8914     ValueInfo VI;
8915     if (parseToken(lltok::lparen, "expected '(' in call") ||
8916         parseToken(lltok::kw_callee, "expected 'callee' in call") ||
8917         parseToken(lltok::colon, "expected ':'"))
8918       return true;
8919 
8920     LocTy Loc = Lex.getLoc();
8921     unsigned GVId;
8922     if (parseGVReference(VI, GVId))
8923       return true;
8924 
8925     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
8926     unsigned RelBF = 0;
8927     if (EatIfPresent(lltok::comma)) {
8928       // Expect either hotness or relbf
8929       if (EatIfPresent(lltok::kw_hotness)) {
8930         if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness))
8931           return true;
8932       } else {
8933         if (parseToken(lltok::kw_relbf, "expected relbf") ||
8934             parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF))
8935           return true;
8936       }
8937     }
8938     // Keep track of the Call array index needing a forward reference.
8939     // We will save the location of the ValueInfo needing an update, but
8940     // can only do so once the std::vector is finalized.
8941     if (VI.getRef() == FwdVIRef)
8942       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
8943     Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
8944 
8945     if (parseToken(lltok::rparen, "expected ')' in call"))
8946       return true;
8947   } while (EatIfPresent(lltok::comma));
8948 
8949   // Now that the Calls vector is finalized, it is safe to save the locations
8950   // of any forward GV references that need updating later.
8951   for (auto I : IdToIndexMap) {
8952     auto &Infos = ForwardRefValueInfos[I.first];
8953     for (auto P : I.second) {
8954       assert(Calls[P.first].first.getRef() == FwdVIRef &&
8955              "Forward referenced ValueInfo expected to be empty");
8956       Infos.emplace_back(&Calls[P.first].first, P.second);
8957     }
8958   }
8959 
8960   if (parseToken(lltok::rparen, "expected ')' in calls"))
8961     return true;
8962 
8963   return false;
8964 }
8965 
8966 /// Hotness
8967 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
8968 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) {
8969   switch (Lex.getKind()) {
8970   case lltok::kw_unknown:
8971     Hotness = CalleeInfo::HotnessType::Unknown;
8972     break;
8973   case lltok::kw_cold:
8974     Hotness = CalleeInfo::HotnessType::Cold;
8975     break;
8976   case lltok::kw_none:
8977     Hotness = CalleeInfo::HotnessType::None;
8978     break;
8979   case lltok::kw_hot:
8980     Hotness = CalleeInfo::HotnessType::Hot;
8981     break;
8982   case lltok::kw_critical:
8983     Hotness = CalleeInfo::HotnessType::Critical;
8984     break;
8985   default:
8986     return error(Lex.getLoc(), "invalid call edge hotness");
8987   }
8988   Lex.Lex();
8989   return false;
8990 }
8991 
8992 /// OptionalVTableFuncs
8993 ///   := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
8994 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
8995 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
8996   assert(Lex.getKind() == lltok::kw_vTableFuncs);
8997   Lex.Lex();
8998 
8999   if (parseToken(lltok::colon, "expected ':' in vTableFuncs") |
9000       parseToken(lltok::lparen, "expected '(' in vTableFuncs"))
9001     return true;
9002 
9003   IdToIndexMapType IdToIndexMap;
9004   // parse each virtual function pair
9005   do {
9006     ValueInfo VI;
9007     if (parseToken(lltok::lparen, "expected '(' in vTableFunc") ||
9008         parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
9009         parseToken(lltok::colon, "expected ':'"))
9010       return true;
9011 
9012     LocTy Loc = Lex.getLoc();
9013     unsigned GVId;
9014     if (parseGVReference(VI, GVId))
9015       return true;
9016 
9017     uint64_t Offset;
9018     if (parseToken(lltok::comma, "expected comma") ||
9019         parseToken(lltok::kw_offset, "expected offset") ||
9020         parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset))
9021       return true;
9022 
9023     // Keep track of the VTableFuncs array index needing a forward reference.
9024     // We will save the location of the ValueInfo needing an update, but
9025     // can only do so once the std::vector is finalized.
9026     if (VI == EmptyVI)
9027       IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
9028     VTableFuncs.push_back({VI, Offset});
9029 
9030     if (parseToken(lltok::rparen, "expected ')' in vTableFunc"))
9031       return true;
9032   } while (EatIfPresent(lltok::comma));
9033 
9034   // Now that the VTableFuncs vector is finalized, it is safe to save the
9035   // locations of any forward GV references that need updating later.
9036   for (auto I : IdToIndexMap) {
9037     auto &Infos = ForwardRefValueInfos[I.first];
9038     for (auto P : I.second) {
9039       assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
9040              "Forward referenced ValueInfo expected to be empty");
9041       Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second);
9042     }
9043   }
9044 
9045   if (parseToken(lltok::rparen, "expected ')' in vTableFuncs"))
9046     return true;
9047 
9048   return false;
9049 }
9050 
9051 /// ParamNo := 'param' ':' UInt64
9052 bool LLParser::parseParamNo(uint64_t &ParamNo) {
9053   if (parseToken(lltok::kw_param, "expected 'param' here") ||
9054       parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo))
9055     return true;
9056   return false;
9057 }
9058 
9059 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']'
9060 bool LLParser::parseParamAccessOffset(ConstantRange &Range) {
9061   APSInt Lower;
9062   APSInt Upper;
9063   auto ParseAPSInt = [&](APSInt &Val) {
9064     if (Lex.getKind() != lltok::APSInt)
9065       return tokError("expected integer");
9066     Val = Lex.getAPSIntVal();
9067     Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
9068     Val.setIsSigned(true);
9069     Lex.Lex();
9070     return false;
9071   };
9072   if (parseToken(lltok::kw_offset, "expected 'offset' here") ||
9073       parseToken(lltok::colon, "expected ':' here") ||
9074       parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) ||
9075       parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) ||
9076       parseToken(lltok::rsquare, "expected ']' here"))
9077     return true;
9078 
9079   ++Upper;
9080   Range =
9081       (Lower == Upper && !Lower.isMaxValue())
9082           ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth)
9083           : ConstantRange(Lower, Upper);
9084 
9085   return false;
9086 }
9087 
9088 /// ParamAccessCall
9089 ///   := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')'
9090 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call,
9091                                     IdLocListType &IdLocList) {
9092   if (parseToken(lltok::lparen, "expected '(' here") ||
9093       parseToken(lltok::kw_callee, "expected 'callee' here") ||
9094       parseToken(lltok::colon, "expected ':' here"))
9095     return true;
9096 
9097   unsigned GVId;
9098   ValueInfo VI;
9099   LocTy Loc = Lex.getLoc();
9100   if (parseGVReference(VI, GVId))
9101     return true;
9102 
9103   Call.Callee = VI;
9104   IdLocList.emplace_back(GVId, Loc);
9105 
9106   if (parseToken(lltok::comma, "expected ',' here") ||
9107       parseParamNo(Call.ParamNo) ||
9108       parseToken(lltok::comma, "expected ',' here") ||
9109       parseParamAccessOffset(Call.Offsets))
9110     return true;
9111 
9112   if (parseToken(lltok::rparen, "expected ')' here"))
9113     return true;
9114 
9115   return false;
9116 }
9117 
9118 /// ParamAccess
9119 ///   := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')'
9120 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')'
9121 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param,
9122                                 IdLocListType &IdLocList) {
9123   if (parseToken(lltok::lparen, "expected '(' here") ||
9124       parseParamNo(Param.ParamNo) ||
9125       parseToken(lltok::comma, "expected ',' here") ||
9126       parseParamAccessOffset(Param.Use))
9127     return true;
9128 
9129   if (EatIfPresent(lltok::comma)) {
9130     if (parseToken(lltok::kw_calls, "expected 'calls' here") ||
9131         parseToken(lltok::colon, "expected ':' here") ||
9132         parseToken(lltok::lparen, "expected '(' here"))
9133       return true;
9134     do {
9135       FunctionSummary::ParamAccess::Call Call;
9136       if (parseParamAccessCall(Call, IdLocList))
9137         return true;
9138       Param.Calls.push_back(Call);
9139     } while (EatIfPresent(lltok::comma));
9140 
9141     if (parseToken(lltok::rparen, "expected ')' here"))
9142       return true;
9143   }
9144 
9145   if (parseToken(lltok::rparen, "expected ')' here"))
9146     return true;
9147 
9148   return false;
9149 }
9150 
9151 /// OptionalParamAccesses
9152 ///   := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')'
9153 bool LLParser::parseOptionalParamAccesses(
9154     std::vector<FunctionSummary::ParamAccess> &Params) {
9155   assert(Lex.getKind() == lltok::kw_params);
9156   Lex.Lex();
9157 
9158   if (parseToken(lltok::colon, "expected ':' here") ||
9159       parseToken(lltok::lparen, "expected '(' here"))
9160     return true;
9161 
9162   IdLocListType VContexts;
9163   size_t CallsNum = 0;
9164   do {
9165     FunctionSummary::ParamAccess ParamAccess;
9166     if (parseParamAccess(ParamAccess, VContexts))
9167       return true;
9168     CallsNum += ParamAccess.Calls.size();
9169     assert(VContexts.size() == CallsNum);
9170     (void)CallsNum;
9171     Params.emplace_back(std::move(ParamAccess));
9172   } while (EatIfPresent(lltok::comma));
9173 
9174   if (parseToken(lltok::rparen, "expected ')' here"))
9175     return true;
9176 
9177   // Now that the Params is finalized, it is safe to save the locations
9178   // of any forward GV references that need updating later.
9179   IdLocListType::const_iterator ItContext = VContexts.begin();
9180   for (auto &PA : Params) {
9181     for (auto &C : PA.Calls) {
9182       if (C.Callee.getRef() == FwdVIRef)
9183         ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee,
9184                                                             ItContext->second);
9185       ++ItContext;
9186     }
9187   }
9188   assert(ItContext == VContexts.end());
9189 
9190   return false;
9191 }
9192 
9193 /// OptionalRefs
9194 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
9195 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) {
9196   assert(Lex.getKind() == lltok::kw_refs);
9197   Lex.Lex();
9198 
9199   if (parseToken(lltok::colon, "expected ':' in refs") ||
9200       parseToken(lltok::lparen, "expected '(' in refs"))
9201     return true;
9202 
9203   struct ValueContext {
9204     ValueInfo VI;
9205     unsigned GVId;
9206     LocTy Loc;
9207   };
9208   std::vector<ValueContext> VContexts;
9209   // parse each ref edge
9210   do {
9211     ValueContext VC;
9212     VC.Loc = Lex.getLoc();
9213     if (parseGVReference(VC.VI, VC.GVId))
9214       return true;
9215     VContexts.push_back(VC);
9216   } while (EatIfPresent(lltok::comma));
9217 
9218   // Sort value contexts so that ones with writeonly
9219   // and readonly ValueInfo  are at the end of VContexts vector.
9220   // See FunctionSummary::specialRefCounts()
9221   llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
9222     return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier();
9223   });
9224 
9225   IdToIndexMapType IdToIndexMap;
9226   for (auto &VC : VContexts) {
9227     // Keep track of the Refs array index needing a forward reference.
9228     // We will save the location of the ValueInfo needing an update, but
9229     // can only do so once the std::vector is finalized.
9230     if (VC.VI.getRef() == FwdVIRef)
9231       IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
9232     Refs.push_back(VC.VI);
9233   }
9234 
9235   // Now that the Refs vector is finalized, it is safe to save the locations
9236   // of any forward GV references that need updating later.
9237   for (auto I : IdToIndexMap) {
9238     auto &Infos = ForwardRefValueInfos[I.first];
9239     for (auto P : I.second) {
9240       assert(Refs[P.first].getRef() == FwdVIRef &&
9241              "Forward referenced ValueInfo expected to be empty");
9242       Infos.emplace_back(&Refs[P.first], P.second);
9243     }
9244   }
9245 
9246   if (parseToken(lltok::rparen, "expected ')' in refs"))
9247     return true;
9248 
9249   return false;
9250 }
9251 
9252 /// OptionalTypeIdInfo
9253 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
9254 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
9255 ///         [',' TypeCheckedLoadConstVCalls]? ')'
9256 bool LLParser::parseOptionalTypeIdInfo(
9257     FunctionSummary::TypeIdInfo &TypeIdInfo) {
9258   assert(Lex.getKind() == lltok::kw_typeIdInfo);
9259   Lex.Lex();
9260 
9261   if (parseToken(lltok::colon, "expected ':' here") ||
9262       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
9263     return true;
9264 
9265   do {
9266     switch (Lex.getKind()) {
9267     case lltok::kw_typeTests:
9268       if (parseTypeTests(TypeIdInfo.TypeTests))
9269         return true;
9270       break;
9271     case lltok::kw_typeTestAssumeVCalls:
9272       if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
9273                            TypeIdInfo.TypeTestAssumeVCalls))
9274         return true;
9275       break;
9276     case lltok::kw_typeCheckedLoadVCalls:
9277       if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
9278                            TypeIdInfo.TypeCheckedLoadVCalls))
9279         return true;
9280       break;
9281     case lltok::kw_typeTestAssumeConstVCalls:
9282       if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
9283                               TypeIdInfo.TypeTestAssumeConstVCalls))
9284         return true;
9285       break;
9286     case lltok::kw_typeCheckedLoadConstVCalls:
9287       if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
9288                               TypeIdInfo.TypeCheckedLoadConstVCalls))
9289         return true;
9290       break;
9291     default:
9292       return error(Lex.getLoc(), "invalid typeIdInfo list type");
9293     }
9294   } while (EatIfPresent(lltok::comma));
9295 
9296   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9297     return true;
9298 
9299   return false;
9300 }
9301 
9302 /// TypeTests
9303 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
9304 ///         [',' (SummaryID | UInt64)]* ')'
9305 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
9306   assert(Lex.getKind() == lltok::kw_typeTests);
9307   Lex.Lex();
9308 
9309   if (parseToken(lltok::colon, "expected ':' here") ||
9310       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
9311     return true;
9312 
9313   IdToIndexMapType IdToIndexMap;
9314   do {
9315     GlobalValue::GUID GUID = 0;
9316     if (Lex.getKind() == lltok::SummaryID) {
9317       unsigned ID = Lex.getUIntVal();
9318       LocTy Loc = Lex.getLoc();
9319       // Keep track of the TypeTests array index needing a forward reference.
9320       // We will save the location of the GUID needing an update, but
9321       // can only do so once the std::vector is finalized.
9322       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
9323       Lex.Lex();
9324     } else if (parseUInt64(GUID))
9325       return true;
9326     TypeTests.push_back(GUID);
9327   } while (EatIfPresent(lltok::comma));
9328 
9329   // Now that the TypeTests vector is finalized, it is safe to save the
9330   // locations of any forward GV references that need updating later.
9331   for (auto I : IdToIndexMap) {
9332     auto &Ids = ForwardRefTypeIds[I.first];
9333     for (auto P : I.second) {
9334       assert(TypeTests[P.first] == 0 &&
9335              "Forward referenced type id GUID expected to be 0");
9336       Ids.emplace_back(&TypeTests[P.first], P.second);
9337     }
9338   }
9339 
9340   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9341     return true;
9342 
9343   return false;
9344 }
9345 
9346 /// VFuncIdList
9347 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
9348 bool LLParser::parseVFuncIdList(
9349     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
9350   assert(Lex.getKind() == Kind);
9351   Lex.Lex();
9352 
9353   if (parseToken(lltok::colon, "expected ':' here") ||
9354       parseToken(lltok::lparen, "expected '(' here"))
9355     return true;
9356 
9357   IdToIndexMapType IdToIndexMap;
9358   do {
9359     FunctionSummary::VFuncId VFuncId;
9360     if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
9361       return true;
9362     VFuncIdList.push_back(VFuncId);
9363   } while (EatIfPresent(lltok::comma));
9364 
9365   if (parseToken(lltok::rparen, "expected ')' here"))
9366     return true;
9367 
9368   // Now that the VFuncIdList vector is finalized, it is safe to save the
9369   // locations of any forward GV references that need updating later.
9370   for (auto I : IdToIndexMap) {
9371     auto &Ids = ForwardRefTypeIds[I.first];
9372     for (auto P : I.second) {
9373       assert(VFuncIdList[P.first].GUID == 0 &&
9374              "Forward referenced type id GUID expected to be 0");
9375       Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second);
9376     }
9377   }
9378 
9379   return false;
9380 }
9381 
9382 /// ConstVCallList
9383 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
9384 bool LLParser::parseConstVCallList(
9385     lltok::Kind Kind,
9386     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
9387   assert(Lex.getKind() == Kind);
9388   Lex.Lex();
9389 
9390   if (parseToken(lltok::colon, "expected ':' here") ||
9391       parseToken(lltok::lparen, "expected '(' here"))
9392     return true;
9393 
9394   IdToIndexMapType IdToIndexMap;
9395   do {
9396     FunctionSummary::ConstVCall ConstVCall;
9397     if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
9398       return true;
9399     ConstVCallList.push_back(ConstVCall);
9400   } while (EatIfPresent(lltok::comma));
9401 
9402   if (parseToken(lltok::rparen, "expected ')' here"))
9403     return true;
9404 
9405   // Now that the ConstVCallList vector is finalized, it is safe to save the
9406   // locations of any forward GV references that need updating later.
9407   for (auto I : IdToIndexMap) {
9408     auto &Ids = ForwardRefTypeIds[I.first];
9409     for (auto P : I.second) {
9410       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
9411              "Forward referenced type id GUID expected to be 0");
9412       Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second);
9413     }
9414   }
9415 
9416   return false;
9417 }
9418 
9419 /// ConstVCall
9420 ///   ::= '(' VFuncId ',' Args ')'
9421 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
9422                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
9423   if (parseToken(lltok::lparen, "expected '(' here") ||
9424       parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
9425     return true;
9426 
9427   if (EatIfPresent(lltok::comma))
9428     if (parseArgs(ConstVCall.Args))
9429       return true;
9430 
9431   if (parseToken(lltok::rparen, "expected ')' here"))
9432     return true;
9433 
9434   return false;
9435 }
9436 
9437 /// VFuncId
9438 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
9439 ///         'offset' ':' UInt64 ')'
9440 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId,
9441                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
9442   assert(Lex.getKind() == lltok::kw_vFuncId);
9443   Lex.Lex();
9444 
9445   if (parseToken(lltok::colon, "expected ':' here") ||
9446       parseToken(lltok::lparen, "expected '(' here"))
9447     return true;
9448 
9449   if (Lex.getKind() == lltok::SummaryID) {
9450     VFuncId.GUID = 0;
9451     unsigned ID = Lex.getUIntVal();
9452     LocTy Loc = Lex.getLoc();
9453     // Keep track of the array index needing a forward reference.
9454     // We will save the location of the GUID needing an update, but
9455     // can only do so once the caller's std::vector is finalized.
9456     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
9457     Lex.Lex();
9458   } else if (parseToken(lltok::kw_guid, "expected 'guid' here") ||
9459              parseToken(lltok::colon, "expected ':' here") ||
9460              parseUInt64(VFuncId.GUID))
9461     return true;
9462 
9463   if (parseToken(lltok::comma, "expected ',' here") ||
9464       parseToken(lltok::kw_offset, "expected 'offset' here") ||
9465       parseToken(lltok::colon, "expected ':' here") ||
9466       parseUInt64(VFuncId.Offset) ||
9467       parseToken(lltok::rparen, "expected ')' here"))
9468     return true;
9469 
9470   return false;
9471 }
9472 
9473 /// GVFlags
9474 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
9475 ///         'visibility' ':' Flag 'notEligibleToImport' ':' Flag ','
9476 ///         'live' ':' Flag ',' 'dsoLocal' ':' Flag ','
9477 ///         'canAutoHide' ':' Flag ',' ')'
9478 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
9479   assert(Lex.getKind() == lltok::kw_flags);
9480   Lex.Lex();
9481 
9482   if (parseToken(lltok::colon, "expected ':' here") ||
9483       parseToken(lltok::lparen, "expected '(' here"))
9484     return true;
9485 
9486   do {
9487     unsigned Flag = 0;
9488     switch (Lex.getKind()) {
9489     case lltok::kw_linkage:
9490       Lex.Lex();
9491       if (parseToken(lltok::colon, "expected ':'"))
9492         return true;
9493       bool HasLinkage;
9494       GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
9495       assert(HasLinkage && "Linkage not optional in summary entry");
9496       Lex.Lex();
9497       break;
9498     case lltok::kw_visibility:
9499       Lex.Lex();
9500       if (parseToken(lltok::colon, "expected ':'"))
9501         return true;
9502       parseOptionalVisibility(Flag);
9503       GVFlags.Visibility = Flag;
9504       break;
9505     case lltok::kw_notEligibleToImport:
9506       Lex.Lex();
9507       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9508         return true;
9509       GVFlags.NotEligibleToImport = Flag;
9510       break;
9511     case lltok::kw_live:
9512       Lex.Lex();
9513       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9514         return true;
9515       GVFlags.Live = Flag;
9516       break;
9517     case lltok::kw_dsoLocal:
9518       Lex.Lex();
9519       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9520         return true;
9521       GVFlags.DSOLocal = Flag;
9522       break;
9523     case lltok::kw_canAutoHide:
9524       Lex.Lex();
9525       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9526         return true;
9527       GVFlags.CanAutoHide = Flag;
9528       break;
9529     default:
9530       return error(Lex.getLoc(), "expected gv flag type");
9531     }
9532   } while (EatIfPresent(lltok::comma));
9533 
9534   if (parseToken(lltok::rparen, "expected ')' here"))
9535     return true;
9536 
9537   return false;
9538 }
9539 
9540 /// GVarFlags
9541 ///   ::= 'varFlags' ':' '(' 'readonly' ':' Flag
9542 ///                      ',' 'writeonly' ':' Flag
9543 ///                      ',' 'constant' ':' Flag ')'
9544 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
9545   assert(Lex.getKind() == lltok::kw_varFlags);
9546   Lex.Lex();
9547 
9548   if (parseToken(lltok::colon, "expected ':' here") ||
9549       parseToken(lltok::lparen, "expected '(' here"))
9550     return true;
9551 
9552   auto ParseRest = [this](unsigned int &Val) {
9553     Lex.Lex();
9554     if (parseToken(lltok::colon, "expected ':'"))
9555       return true;
9556     return parseFlag(Val);
9557   };
9558 
9559   do {
9560     unsigned Flag = 0;
9561     switch (Lex.getKind()) {
9562     case lltok::kw_readonly:
9563       if (ParseRest(Flag))
9564         return true;
9565       GVarFlags.MaybeReadOnly = Flag;
9566       break;
9567     case lltok::kw_writeonly:
9568       if (ParseRest(Flag))
9569         return true;
9570       GVarFlags.MaybeWriteOnly = Flag;
9571       break;
9572     case lltok::kw_constant:
9573       if (ParseRest(Flag))
9574         return true;
9575       GVarFlags.Constant = Flag;
9576       break;
9577     case lltok::kw_vcall_visibility:
9578       if (ParseRest(Flag))
9579         return true;
9580       GVarFlags.VCallVisibility = Flag;
9581       break;
9582     default:
9583       return error(Lex.getLoc(), "expected gvar flag type");
9584     }
9585   } while (EatIfPresent(lltok::comma));
9586   return parseToken(lltok::rparen, "expected ')' here");
9587 }
9588 
9589 /// ModuleReference
9590 ///   ::= 'module' ':' UInt
9591 bool LLParser::parseModuleReference(StringRef &ModulePath) {
9592   // parse module id.
9593   if (parseToken(lltok::kw_module, "expected 'module' here") ||
9594       parseToken(lltok::colon, "expected ':' here") ||
9595       parseToken(lltok::SummaryID, "expected module ID"))
9596     return true;
9597 
9598   unsigned ModuleID = Lex.getUIntVal();
9599   auto I = ModuleIdMap.find(ModuleID);
9600   // We should have already parsed all module IDs
9601   assert(I != ModuleIdMap.end());
9602   ModulePath = I->second;
9603   return false;
9604 }
9605 
9606 /// GVReference
9607 ///   ::= SummaryID
9608 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) {
9609   bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly);
9610   if (!ReadOnly)
9611     WriteOnly = EatIfPresent(lltok::kw_writeonly);
9612   if (parseToken(lltok::SummaryID, "expected GV ID"))
9613     return true;
9614 
9615   GVId = Lex.getUIntVal();
9616   // Check if we already have a VI for this GV
9617   if (GVId < NumberedValueInfos.size()) {
9618     assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
9619     VI = NumberedValueInfos[GVId];
9620   } else
9621     // We will create a forward reference to the stored location.
9622     VI = ValueInfo(false, FwdVIRef);
9623 
9624   if (ReadOnly)
9625     VI.setReadOnly();
9626   if (WriteOnly)
9627     VI.setWriteOnly();
9628   return false;
9629 }
9630