1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/AsmParser/LLParser.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/AsmParser/LLToken.h"
20 #include "llvm/AsmParser/SlotMapping.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AutoUpgrade.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Comdat.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalIFunc.h"
33 #include "llvm/IR/GlobalObject.h"
34 #include "llvm/IR/InlineAsm.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/Value.h"
41 #include "llvm/IR/ValueSymbolTable.h"
42 #include "llvm/Support/Casting.h"
43 #include "llvm/Support/ErrorHandling.h"
44 #include "llvm/Support/MathExtras.h"
45 #include "llvm/Support/SaveAndRestore.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include <algorithm>
48 #include <cassert>
49 #include <cstring>
50 #include <iterator>
51 #include <vector>
52 
53 using namespace llvm;
54 
55 static std::string getTypeString(Type *T) {
56   std::string Result;
57   raw_string_ostream Tmp(Result);
58   Tmp << *T;
59   return Tmp.str();
60 }
61 
62 /// Run: module ::= toplevelentity*
63 bool LLParser::Run(bool UpgradeDebugInfo,
64                    DataLayoutCallbackTy DataLayoutCallback) {
65   // Prime the lexer.
66   Lex.Lex();
67 
68   if (Context.shouldDiscardValueNames())
69     return error(
70         Lex.getLoc(),
71         "Can't read textual IR with a Context that discards named Values");
72 
73   if (M) {
74     if (parseTargetDefinitions())
75       return true;
76 
77     if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple()))
78       M->setDataLayout(*LayoutOverride);
79   }
80 
81   return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) ||
82          validateEndOfIndex();
83 }
84 
85 bool LLParser::parseStandaloneConstantValue(Constant *&C,
86                                             const SlotMapping *Slots) {
87   restoreParsingState(Slots);
88   Lex.Lex();
89 
90   Type *Ty = nullptr;
91   if (parseType(Ty) || parseConstantValue(Ty, C))
92     return true;
93   if (Lex.getKind() != lltok::Eof)
94     return error(Lex.getLoc(), "expected end of string");
95   return false;
96 }
97 
98 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
99                                     const SlotMapping *Slots) {
100   restoreParsingState(Slots);
101   Lex.Lex();
102 
103   Read = 0;
104   SMLoc Start = Lex.getLoc();
105   Ty = nullptr;
106   if (parseType(Ty))
107     return true;
108   SMLoc End = Lex.getLoc();
109   Read = End.getPointer() - Start.getPointer();
110 
111   return false;
112 }
113 
114 void LLParser::restoreParsingState(const SlotMapping *Slots) {
115   if (!Slots)
116     return;
117   NumberedVals = Slots->GlobalValues;
118   NumberedMetadata = Slots->MetadataNodes;
119   for (const auto &I : Slots->NamedTypes)
120     NamedTypes.insert(
121         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
122   for (const auto &I : Slots->Types)
123     NumberedTypes.insert(
124         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
125 }
126 
127 /// validateEndOfModule - Do final validity and sanity checks at the end of the
128 /// module.
129 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) {
130   if (!M)
131     return false;
132   // Handle any function attribute group forward references.
133   for (const auto &RAG : ForwardRefAttrGroups) {
134     Value *V = RAG.first;
135     const std::vector<unsigned> &Attrs = RAG.second;
136     AttrBuilder B;
137 
138     for (const auto &Attr : Attrs)
139       B.merge(NumberedAttrBuilders[Attr]);
140 
141     if (Function *Fn = dyn_cast<Function>(V)) {
142       AttributeList AS = Fn->getAttributes();
143       AttrBuilder FnAttrs(AS.getFnAttributes());
144       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
145 
146       FnAttrs.merge(B);
147 
148       // If the alignment was parsed as an attribute, move to the alignment
149       // field.
150       if (FnAttrs.hasAlignmentAttr()) {
151         Fn->setAlignment(FnAttrs.getAlignment());
152         FnAttrs.removeAttribute(Attribute::Alignment);
153       }
154 
155       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
156                             AttributeSet::get(Context, FnAttrs));
157       Fn->setAttributes(AS);
158     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
159       AttributeList AS = CI->getAttributes();
160       AttrBuilder FnAttrs(AS.getFnAttributes());
161       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
162       FnAttrs.merge(B);
163       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
164                             AttributeSet::get(Context, FnAttrs));
165       CI->setAttributes(AS);
166     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
167       AttributeList AS = II->getAttributes();
168       AttrBuilder FnAttrs(AS.getFnAttributes());
169       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
170       FnAttrs.merge(B);
171       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
172                             AttributeSet::get(Context, FnAttrs));
173       II->setAttributes(AS);
174     } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
175       AttributeList AS = CBI->getAttributes();
176       AttrBuilder FnAttrs(AS.getFnAttributes());
177       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
178       FnAttrs.merge(B);
179       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
180                             AttributeSet::get(Context, FnAttrs));
181       CBI->setAttributes(AS);
182     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
183       AttrBuilder Attrs(GV->getAttributes());
184       Attrs.merge(B);
185       GV->setAttributes(AttributeSet::get(Context,Attrs));
186     } else {
187       llvm_unreachable("invalid object with forward attribute group reference");
188     }
189   }
190 
191   // If there are entries in ForwardRefBlockAddresses at this point, the
192   // function was never defined.
193   if (!ForwardRefBlockAddresses.empty())
194     return error(ForwardRefBlockAddresses.begin()->first.Loc,
195                  "expected function name in blockaddress");
196 
197   for (const auto &NT : NumberedTypes)
198     if (NT.second.second.isValid())
199       return error(NT.second.second,
200                    "use of undefined type '%" + Twine(NT.first) + "'");
201 
202   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
203        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
204     if (I->second.second.isValid())
205       return error(I->second.second,
206                    "use of undefined type named '" + I->getKey() + "'");
207 
208   if (!ForwardRefComdats.empty())
209     return error(ForwardRefComdats.begin()->second,
210                  "use of undefined comdat '$" +
211                      ForwardRefComdats.begin()->first + "'");
212 
213   if (!ForwardRefVals.empty())
214     return error(ForwardRefVals.begin()->second.second,
215                  "use of undefined value '@" + ForwardRefVals.begin()->first +
216                      "'");
217 
218   if (!ForwardRefValIDs.empty())
219     return error(ForwardRefValIDs.begin()->second.second,
220                  "use of undefined value '@" +
221                      Twine(ForwardRefValIDs.begin()->first) + "'");
222 
223   if (!ForwardRefMDNodes.empty())
224     return error(ForwardRefMDNodes.begin()->second.second,
225                  "use of undefined metadata '!" +
226                      Twine(ForwardRefMDNodes.begin()->first) + "'");
227 
228   // Resolve metadata cycles.
229   for (auto &N : NumberedMetadata) {
230     if (N.second && !N.second->isResolved())
231       N.second->resolveCycles();
232   }
233 
234   for (auto *Inst : InstsWithTBAATag) {
235     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
236     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
237     auto *UpgradedMD = UpgradeTBAANode(*MD);
238     if (MD != UpgradedMD)
239       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
240   }
241 
242   // Look for intrinsic functions and CallInst that need to be upgraded
243   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
244     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
245 
246   // Some types could be renamed during loading if several modules are
247   // loaded in the same LLVMContext (LTO scenario). In this case we should
248   // remangle intrinsics names as well.
249   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
250     Function *F = &*FI++;
251     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
252       F->replaceAllUsesWith(Remangled.getValue());
253       F->eraseFromParent();
254     }
255   }
256 
257   if (UpgradeDebugInfo)
258     llvm::UpgradeDebugInfo(*M);
259 
260   UpgradeModuleFlags(*M);
261   UpgradeSectionAttributes(*M);
262 
263   if (!Slots)
264     return false;
265   // Initialize the slot mapping.
266   // Because by this point we've parsed and validated everything, we can "steal"
267   // the mapping from LLParser as it doesn't need it anymore.
268   Slots->GlobalValues = std::move(NumberedVals);
269   Slots->MetadataNodes = std::move(NumberedMetadata);
270   for (const auto &I : NamedTypes)
271     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
272   for (const auto &I : NumberedTypes)
273     Slots->Types.insert(std::make_pair(I.first, I.second.first));
274 
275   return false;
276 }
277 
278 /// Do final validity and sanity checks at the end of the index.
279 bool LLParser::validateEndOfIndex() {
280   if (!Index)
281     return false;
282 
283   if (!ForwardRefValueInfos.empty())
284     return error(ForwardRefValueInfos.begin()->second.front().second,
285                  "use of undefined summary '^" +
286                      Twine(ForwardRefValueInfos.begin()->first) + "'");
287 
288   if (!ForwardRefAliasees.empty())
289     return error(ForwardRefAliasees.begin()->second.front().second,
290                  "use of undefined summary '^" +
291                      Twine(ForwardRefAliasees.begin()->first) + "'");
292 
293   if (!ForwardRefTypeIds.empty())
294     return error(ForwardRefTypeIds.begin()->second.front().second,
295                  "use of undefined type id summary '^" +
296                      Twine(ForwardRefTypeIds.begin()->first) + "'");
297 
298   return false;
299 }
300 
301 //===----------------------------------------------------------------------===//
302 // Top-Level Entities
303 //===----------------------------------------------------------------------===//
304 
305 bool LLParser::parseTargetDefinitions() {
306   while (true) {
307     switch (Lex.getKind()) {
308     case lltok::kw_target:
309       if (parseTargetDefinition())
310         return true;
311       break;
312     case lltok::kw_source_filename:
313       if (parseSourceFileName())
314         return true;
315       break;
316     default:
317       return false;
318     }
319   }
320 }
321 
322 bool LLParser::parseTopLevelEntities() {
323   // If there is no Module, then parse just the summary index entries.
324   if (!M) {
325     while (true) {
326       switch (Lex.getKind()) {
327       case lltok::Eof:
328         return false;
329       case lltok::SummaryID:
330         if (parseSummaryEntry())
331           return true;
332         break;
333       case lltok::kw_source_filename:
334         if (parseSourceFileName())
335           return true;
336         break;
337       default:
338         // Skip everything else
339         Lex.Lex();
340       }
341     }
342   }
343   while (true) {
344     switch (Lex.getKind()) {
345     default:
346       return tokError("expected top-level entity");
347     case lltok::Eof: return false;
348     case lltok::kw_declare:
349       if (parseDeclare())
350         return true;
351       break;
352     case lltok::kw_define:
353       if (parseDefine())
354         return true;
355       break;
356     case lltok::kw_module:
357       if (parseModuleAsm())
358         return true;
359       break;
360     case lltok::LocalVarID:
361       if (parseUnnamedType())
362         return true;
363       break;
364     case lltok::LocalVar:
365       if (parseNamedType())
366         return true;
367       break;
368     case lltok::GlobalID:
369       if (parseUnnamedGlobal())
370         return true;
371       break;
372     case lltok::GlobalVar:
373       if (parseNamedGlobal())
374         return true;
375       break;
376     case lltok::ComdatVar:  if (parseComdat()) return true; break;
377     case lltok::exclaim:
378       if (parseStandaloneMetadata())
379         return true;
380       break;
381     case lltok::SummaryID:
382       if (parseSummaryEntry())
383         return true;
384       break;
385     case lltok::MetadataVar:
386       if (parseNamedMetadata())
387         return true;
388       break;
389     case lltok::kw_attributes:
390       if (parseUnnamedAttrGrp())
391         return true;
392       break;
393     case lltok::kw_uselistorder:
394       if (parseUseListOrder())
395         return true;
396       break;
397     case lltok::kw_uselistorder_bb:
398       if (parseUseListOrderBB())
399         return true;
400       break;
401     }
402   }
403 }
404 
405 /// toplevelentity
406 ///   ::= 'module' 'asm' STRINGCONSTANT
407 bool LLParser::parseModuleAsm() {
408   assert(Lex.getKind() == lltok::kw_module);
409   Lex.Lex();
410 
411   std::string AsmStr;
412   if (parseToken(lltok::kw_asm, "expected 'module asm'") ||
413       parseStringConstant(AsmStr))
414     return true;
415 
416   M->appendModuleInlineAsm(AsmStr);
417   return false;
418 }
419 
420 /// toplevelentity
421 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
422 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
423 bool LLParser::parseTargetDefinition() {
424   assert(Lex.getKind() == lltok::kw_target);
425   std::string Str;
426   switch (Lex.Lex()) {
427   default:
428     return tokError("unknown target property");
429   case lltok::kw_triple:
430     Lex.Lex();
431     if (parseToken(lltok::equal, "expected '=' after target triple") ||
432         parseStringConstant(Str))
433       return true;
434     M->setTargetTriple(Str);
435     return false;
436   case lltok::kw_datalayout:
437     Lex.Lex();
438     if (parseToken(lltok::equal, "expected '=' after target datalayout") ||
439         parseStringConstant(Str))
440       return true;
441     M->setDataLayout(Str);
442     return false;
443   }
444 }
445 
446 /// toplevelentity
447 ///   ::= 'source_filename' '=' STRINGCONSTANT
448 bool LLParser::parseSourceFileName() {
449   assert(Lex.getKind() == lltok::kw_source_filename);
450   Lex.Lex();
451   if (parseToken(lltok::equal, "expected '=' after source_filename") ||
452       parseStringConstant(SourceFileName))
453     return true;
454   if (M)
455     M->setSourceFileName(SourceFileName);
456   return false;
457 }
458 
459 /// parseUnnamedType:
460 ///   ::= LocalVarID '=' 'type' type
461 bool LLParser::parseUnnamedType() {
462   LocTy TypeLoc = Lex.getLoc();
463   unsigned TypeID = Lex.getUIntVal();
464   Lex.Lex(); // eat LocalVarID;
465 
466   if (parseToken(lltok::equal, "expected '=' after name") ||
467       parseToken(lltok::kw_type, "expected 'type' after '='"))
468     return true;
469 
470   Type *Result = nullptr;
471   if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result))
472     return true;
473 
474   if (!isa<StructType>(Result)) {
475     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
476     if (Entry.first)
477       return error(TypeLoc, "non-struct types may not be recursive");
478     Entry.first = Result;
479     Entry.second = SMLoc();
480   }
481 
482   return false;
483 }
484 
485 /// toplevelentity
486 ///   ::= LocalVar '=' 'type' type
487 bool LLParser::parseNamedType() {
488   std::string Name = Lex.getStrVal();
489   LocTy NameLoc = Lex.getLoc();
490   Lex.Lex();  // eat LocalVar.
491 
492   if (parseToken(lltok::equal, "expected '=' after name") ||
493       parseToken(lltok::kw_type, "expected 'type' after name"))
494     return true;
495 
496   Type *Result = nullptr;
497   if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result))
498     return true;
499 
500   if (!isa<StructType>(Result)) {
501     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
502     if (Entry.first)
503       return error(NameLoc, "non-struct types may not be recursive");
504     Entry.first = Result;
505     Entry.second = SMLoc();
506   }
507 
508   return false;
509 }
510 
511 /// toplevelentity
512 ///   ::= 'declare' FunctionHeader
513 bool LLParser::parseDeclare() {
514   assert(Lex.getKind() == lltok::kw_declare);
515   Lex.Lex();
516 
517   std::vector<std::pair<unsigned, MDNode *>> MDs;
518   while (Lex.getKind() == lltok::MetadataVar) {
519     unsigned MDK;
520     MDNode *N;
521     if (parseMetadataAttachment(MDK, N))
522       return true;
523     MDs.push_back({MDK, N});
524   }
525 
526   Function *F;
527   if (parseFunctionHeader(F, false))
528     return true;
529   for (auto &MD : MDs)
530     F->addMetadata(MD.first, *MD.second);
531   return false;
532 }
533 
534 /// toplevelentity
535 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
536 bool LLParser::parseDefine() {
537   assert(Lex.getKind() == lltok::kw_define);
538   Lex.Lex();
539 
540   Function *F;
541   return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) ||
542          parseFunctionBody(*F);
543 }
544 
545 /// parseGlobalType
546 ///   ::= 'constant'
547 ///   ::= 'global'
548 bool LLParser::parseGlobalType(bool &IsConstant) {
549   if (Lex.getKind() == lltok::kw_constant)
550     IsConstant = true;
551   else if (Lex.getKind() == lltok::kw_global)
552     IsConstant = false;
553   else {
554     IsConstant = false;
555     return tokError("expected 'global' or 'constant'");
556   }
557   Lex.Lex();
558   return false;
559 }
560 
561 bool LLParser::parseOptionalUnnamedAddr(
562     GlobalVariable::UnnamedAddr &UnnamedAddr) {
563   if (EatIfPresent(lltok::kw_unnamed_addr))
564     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
565   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
566     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
567   else
568     UnnamedAddr = GlobalValue::UnnamedAddr::None;
569   return false;
570 }
571 
572 /// parseUnnamedGlobal:
573 ///   OptionalVisibility (ALIAS | IFUNC) ...
574 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
575 ///   OptionalDLLStorageClass
576 ///                                                     ...   -> global variable
577 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
578 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier
579 ///   OptionalVisibility
580 ///                OptionalDLLStorageClass
581 ///                                                     ...   -> global variable
582 bool LLParser::parseUnnamedGlobal() {
583   unsigned VarID = NumberedVals.size();
584   std::string Name;
585   LocTy NameLoc = Lex.getLoc();
586 
587   // Handle the GlobalID form.
588   if (Lex.getKind() == lltok::GlobalID) {
589     if (Lex.getUIntVal() != VarID)
590       return error(Lex.getLoc(),
591                    "variable expected to be numbered '%" + Twine(VarID) + "'");
592     Lex.Lex(); // eat GlobalID;
593 
594     if (parseToken(lltok::equal, "expected '=' after name"))
595       return true;
596   }
597 
598   bool HasLinkage;
599   unsigned Linkage, Visibility, DLLStorageClass;
600   bool DSOLocal;
601   GlobalVariable::ThreadLocalMode TLM;
602   GlobalVariable::UnnamedAddr UnnamedAddr;
603   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
604                            DSOLocal) ||
605       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
606     return true;
607 
608   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
609     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
610                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
611 
612   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
613                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
614 }
615 
616 /// parseNamedGlobal:
617 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
618 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
619 ///                 OptionalVisibility OptionalDLLStorageClass
620 ///                                                     ...   -> global variable
621 bool LLParser::parseNamedGlobal() {
622   assert(Lex.getKind() == lltok::GlobalVar);
623   LocTy NameLoc = Lex.getLoc();
624   std::string Name = Lex.getStrVal();
625   Lex.Lex();
626 
627   bool HasLinkage;
628   unsigned Linkage, Visibility, DLLStorageClass;
629   bool DSOLocal;
630   GlobalVariable::ThreadLocalMode TLM;
631   GlobalVariable::UnnamedAddr UnnamedAddr;
632   if (parseToken(lltok::equal, "expected '=' in global variable") ||
633       parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
634                            DSOLocal) ||
635       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
636     return true;
637 
638   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
639     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
640                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
641 
642   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
643                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
644 }
645 
646 bool LLParser::parseComdat() {
647   assert(Lex.getKind() == lltok::ComdatVar);
648   std::string Name = Lex.getStrVal();
649   LocTy NameLoc = Lex.getLoc();
650   Lex.Lex();
651 
652   if (parseToken(lltok::equal, "expected '=' here"))
653     return true;
654 
655   if (parseToken(lltok::kw_comdat, "expected comdat keyword"))
656     return tokError("expected comdat type");
657 
658   Comdat::SelectionKind SK;
659   switch (Lex.getKind()) {
660   default:
661     return tokError("unknown selection kind");
662   case lltok::kw_any:
663     SK = Comdat::Any;
664     break;
665   case lltok::kw_exactmatch:
666     SK = Comdat::ExactMatch;
667     break;
668   case lltok::kw_largest:
669     SK = Comdat::Largest;
670     break;
671   case lltok::kw_noduplicates:
672     SK = Comdat::NoDuplicates;
673     break;
674   case lltok::kw_samesize:
675     SK = Comdat::SameSize;
676     break;
677   }
678   Lex.Lex();
679 
680   // See if the comdat was forward referenced, if so, use the comdat.
681   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
682   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
683   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
684     return error(NameLoc, "redefinition of comdat '$" + Name + "'");
685 
686   Comdat *C;
687   if (I != ComdatSymTab.end())
688     C = &I->second;
689   else
690     C = M->getOrInsertComdat(Name);
691   C->setSelectionKind(SK);
692 
693   return false;
694 }
695 
696 // MDString:
697 //   ::= '!' STRINGCONSTANT
698 bool LLParser::parseMDString(MDString *&Result) {
699   std::string Str;
700   if (parseStringConstant(Str))
701     return true;
702   Result = MDString::get(Context, Str);
703   return false;
704 }
705 
706 // MDNode:
707 //   ::= '!' MDNodeNumber
708 bool LLParser::parseMDNodeID(MDNode *&Result) {
709   // !{ ..., !42, ... }
710   LocTy IDLoc = Lex.getLoc();
711   unsigned MID = 0;
712   if (parseUInt32(MID))
713     return true;
714 
715   // If not a forward reference, just return it now.
716   if (NumberedMetadata.count(MID)) {
717     Result = NumberedMetadata[MID];
718     return false;
719   }
720 
721   // Otherwise, create MDNode forward reference.
722   auto &FwdRef = ForwardRefMDNodes[MID];
723   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
724 
725   Result = FwdRef.first.get();
726   NumberedMetadata[MID].reset(Result);
727   return false;
728 }
729 
730 /// parseNamedMetadata:
731 ///   !foo = !{ !1, !2 }
732 bool LLParser::parseNamedMetadata() {
733   assert(Lex.getKind() == lltok::MetadataVar);
734   std::string Name = Lex.getStrVal();
735   Lex.Lex();
736 
737   if (parseToken(lltok::equal, "expected '=' here") ||
738       parseToken(lltok::exclaim, "Expected '!' here") ||
739       parseToken(lltok::lbrace, "Expected '{' here"))
740     return true;
741 
742   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
743   if (Lex.getKind() != lltok::rbrace)
744     do {
745       MDNode *N = nullptr;
746       // parse DIExpressions inline as a special case. They are still MDNodes,
747       // so they can still appear in named metadata. Remove this logic if they
748       // become plain Metadata.
749       if (Lex.getKind() == lltok::MetadataVar &&
750           Lex.getStrVal() == "DIExpression") {
751         if (parseDIExpression(N, /*IsDistinct=*/false))
752           return true;
753         // DIArgLists should only appear inline in a function, as they may
754         // contain LocalAsMetadata arguments which require a function context.
755       } else if (Lex.getKind() == lltok::MetadataVar &&
756                  Lex.getStrVal() == "DIArgList") {
757         return tokError("found DIArgList outside of function");
758       } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
759                  parseMDNodeID(N)) {
760         return true;
761       }
762       NMD->addOperand(N);
763     } while (EatIfPresent(lltok::comma));
764 
765   return parseToken(lltok::rbrace, "expected end of metadata node");
766 }
767 
768 /// parseStandaloneMetadata:
769 ///   !42 = !{...}
770 bool LLParser::parseStandaloneMetadata() {
771   assert(Lex.getKind() == lltok::exclaim);
772   Lex.Lex();
773   unsigned MetadataID = 0;
774 
775   MDNode *Init;
776   if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here"))
777     return true;
778 
779   // Detect common error, from old metadata syntax.
780   if (Lex.getKind() == lltok::Type)
781     return tokError("unexpected type in metadata definition");
782 
783   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
784   if (Lex.getKind() == lltok::MetadataVar) {
785     if (parseSpecializedMDNode(Init, IsDistinct))
786       return true;
787   } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
788              parseMDTuple(Init, IsDistinct))
789     return true;
790 
791   // See if this was forward referenced, if so, handle it.
792   auto FI = ForwardRefMDNodes.find(MetadataID);
793   if (FI != ForwardRefMDNodes.end()) {
794     FI->second.first->replaceAllUsesWith(Init);
795     ForwardRefMDNodes.erase(FI);
796 
797     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
798   } else {
799     if (NumberedMetadata.count(MetadataID))
800       return tokError("Metadata id is already used");
801     NumberedMetadata[MetadataID].reset(Init);
802   }
803 
804   return false;
805 }
806 
807 // Skips a single module summary entry.
808 bool LLParser::skipModuleSummaryEntry() {
809   // Each module summary entry consists of a tag for the entry
810   // type, followed by a colon, then the fields which may be surrounded by
811   // nested sets of parentheses. The "tag:" looks like a Label. Once parsing
812   // support is in place we will look for the tokens corresponding to the
813   // expected tags.
814   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
815       Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags &&
816       Lex.getKind() != lltok::kw_blockcount)
817     return tokError(
818         "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the "
819         "start of summary entry");
820   if (Lex.getKind() == lltok::kw_flags)
821     return parseSummaryIndexFlags();
822   if (Lex.getKind() == lltok::kw_blockcount)
823     return parseBlockCount();
824   Lex.Lex();
825   if (parseToken(lltok::colon, "expected ':' at start of summary entry") ||
826       parseToken(lltok::lparen, "expected '(' at start of summary entry"))
827     return true;
828   // Now walk through the parenthesized entry, until the number of open
829   // parentheses goes back down to 0 (the first '(' was parsed above).
830   unsigned NumOpenParen = 1;
831   do {
832     switch (Lex.getKind()) {
833     case lltok::lparen:
834       NumOpenParen++;
835       break;
836     case lltok::rparen:
837       NumOpenParen--;
838       break;
839     case lltok::Eof:
840       return tokError("found end of file while parsing summary entry");
841     default:
842       // Skip everything in between parentheses.
843       break;
844     }
845     Lex.Lex();
846   } while (NumOpenParen > 0);
847   return false;
848 }
849 
850 /// SummaryEntry
851 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
852 bool LLParser::parseSummaryEntry() {
853   assert(Lex.getKind() == lltok::SummaryID);
854   unsigned SummaryID = Lex.getUIntVal();
855 
856   // For summary entries, colons should be treated as distinct tokens,
857   // not an indication of the end of a label token.
858   Lex.setIgnoreColonInIdentifiers(true);
859 
860   Lex.Lex();
861   if (parseToken(lltok::equal, "expected '=' here"))
862     return true;
863 
864   // If we don't have an index object, skip the summary entry.
865   if (!Index)
866     return skipModuleSummaryEntry();
867 
868   bool result = false;
869   switch (Lex.getKind()) {
870   case lltok::kw_gv:
871     result = parseGVEntry(SummaryID);
872     break;
873   case lltok::kw_module:
874     result = parseModuleEntry(SummaryID);
875     break;
876   case lltok::kw_typeid:
877     result = parseTypeIdEntry(SummaryID);
878     break;
879   case lltok::kw_typeidCompatibleVTable:
880     result = parseTypeIdCompatibleVtableEntry(SummaryID);
881     break;
882   case lltok::kw_flags:
883     result = parseSummaryIndexFlags();
884     break;
885   case lltok::kw_blockcount:
886     result = parseBlockCount();
887     break;
888   default:
889     result = error(Lex.getLoc(), "unexpected summary kind");
890     break;
891   }
892   Lex.setIgnoreColonInIdentifiers(false);
893   return result;
894 }
895 
896 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
897   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
898          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
899 }
900 
901 // If there was an explicit dso_local, update GV. In the absence of an explicit
902 // dso_local we keep the default value.
903 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
904   if (DSOLocal)
905     GV.setDSOLocal(true);
906 }
907 
908 static std::string typeComparisonErrorMessage(StringRef Message, Type *Ty1,
909                                               Type *Ty2) {
910   std::string ErrString;
911   raw_string_ostream ErrOS(ErrString);
912   ErrOS << Message << " (" << *Ty1 << " vs " << *Ty2 << ")";
913   return ErrOS.str();
914 }
915 
916 /// parseIndirectSymbol:
917 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
918 ///                     OptionalVisibility OptionalDLLStorageClass
919 ///                     OptionalThreadLocal OptionalUnnamedAddr
920 ///                     'alias|ifunc' IndirectSymbol IndirectSymbolAttr*
921 ///
922 /// IndirectSymbol
923 ///   ::= TypeAndValue
924 ///
925 /// IndirectSymbolAttr
926 ///   ::= ',' 'partition' StringConstant
927 ///
928 /// Everything through OptionalUnnamedAddr has already been parsed.
929 ///
930 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
931                                    unsigned L, unsigned Visibility,
932                                    unsigned DLLStorageClass, bool DSOLocal,
933                                    GlobalVariable::ThreadLocalMode TLM,
934                                    GlobalVariable::UnnamedAddr UnnamedAddr) {
935   bool IsAlias;
936   if (Lex.getKind() == lltok::kw_alias)
937     IsAlias = true;
938   else if (Lex.getKind() == lltok::kw_ifunc)
939     IsAlias = false;
940   else
941     llvm_unreachable("Not an alias or ifunc!");
942   Lex.Lex();
943 
944   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
945 
946   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
947     return error(NameLoc, "invalid linkage type for alias");
948 
949   if (!isValidVisibilityForLinkage(Visibility, L))
950     return error(NameLoc,
951                  "symbol with local linkage must have default visibility");
952 
953   Type *Ty;
954   LocTy ExplicitTypeLoc = Lex.getLoc();
955   if (parseType(Ty) ||
956       parseToken(lltok::comma, "expected comma after alias or ifunc's type"))
957     return true;
958 
959   Constant *Aliasee;
960   LocTy AliaseeLoc = Lex.getLoc();
961   if (Lex.getKind() != lltok::kw_bitcast &&
962       Lex.getKind() != lltok::kw_getelementptr &&
963       Lex.getKind() != lltok::kw_addrspacecast &&
964       Lex.getKind() != lltok::kw_inttoptr) {
965     if (parseGlobalTypeAndValue(Aliasee))
966       return true;
967   } else {
968     // The bitcast dest type is not present, it is implied by the dest type.
969     ValID ID;
970     if (parseValID(ID))
971       return true;
972     if (ID.Kind != ValID::t_Constant)
973       return error(AliaseeLoc, "invalid aliasee");
974     Aliasee = ID.ConstantVal;
975   }
976 
977   Type *AliaseeType = Aliasee->getType();
978   auto *PTy = dyn_cast<PointerType>(AliaseeType);
979   if (!PTy)
980     return error(AliaseeLoc, "An alias or ifunc must have pointer type");
981   unsigned AddrSpace = PTy->getAddressSpace();
982 
983   if (IsAlias && Ty != PTy->getElementType()) {
984     return error(
985         ExplicitTypeLoc,
986         typeComparisonErrorMessage(
987             "explicit pointee type doesn't match operand's pointee type", Ty,
988             PTy->getElementType()));
989   }
990 
991   if (!IsAlias && !PTy->getElementType()->isFunctionTy()) {
992     return error(ExplicitTypeLoc,
993                  "explicit pointee type should be a function type");
994   }
995 
996   GlobalValue *GVal = nullptr;
997 
998   // See if the alias was forward referenced, if so, prepare to replace the
999   // forward reference.
1000   if (!Name.empty()) {
1001     GVal = M->getNamedValue(Name);
1002     if (GVal) {
1003       if (!ForwardRefVals.erase(Name))
1004         return error(NameLoc, "redefinition of global '@" + Name + "'");
1005     }
1006   } else {
1007     auto I = ForwardRefValIDs.find(NumberedVals.size());
1008     if (I != ForwardRefValIDs.end()) {
1009       GVal = I->second.first;
1010       ForwardRefValIDs.erase(I);
1011     }
1012   }
1013 
1014   // Okay, create the alias but do not insert it into the module yet.
1015   std::unique_ptr<GlobalIndirectSymbol> GA;
1016   if (IsAlias)
1017     GA.reset(GlobalAlias::create(Ty, AddrSpace,
1018                                  (GlobalValue::LinkageTypes)Linkage, Name,
1019                                  Aliasee, /*Parent*/ nullptr));
1020   else
1021     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
1022                                  (GlobalValue::LinkageTypes)Linkage, Name,
1023                                  Aliasee, /*Parent*/ nullptr));
1024   GA->setThreadLocalMode(TLM);
1025   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1026   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1027   GA->setUnnamedAddr(UnnamedAddr);
1028   maybeSetDSOLocal(DSOLocal, *GA);
1029 
1030   // At this point we've parsed everything except for the IndirectSymbolAttrs.
1031   // Now parse them if there are any.
1032   while (Lex.getKind() == lltok::comma) {
1033     Lex.Lex();
1034 
1035     if (Lex.getKind() == lltok::kw_partition) {
1036       Lex.Lex();
1037       GA->setPartition(Lex.getStrVal());
1038       if (parseToken(lltok::StringConstant, "expected partition string"))
1039         return true;
1040     } else {
1041       return tokError("unknown alias or ifunc property!");
1042     }
1043   }
1044 
1045   if (Name.empty())
1046     NumberedVals.push_back(GA.get());
1047 
1048   if (GVal) {
1049     // Verify that types agree.
1050     if (GVal->getType() != GA->getType())
1051       return error(
1052           ExplicitTypeLoc,
1053           "forward reference and definition of alias have different types");
1054 
1055     // If they agree, just RAUW the old value with the alias and remove the
1056     // forward ref info.
1057     GVal->replaceAllUsesWith(GA.get());
1058     GVal->eraseFromParent();
1059   }
1060 
1061   // Insert into the module, we know its name won't collide now.
1062   if (IsAlias)
1063     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
1064   else
1065     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
1066   assert(GA->getName() == Name && "Should not be a name conflict!");
1067 
1068   // The module owns this now
1069   GA.release();
1070 
1071   return false;
1072 }
1073 
1074 /// parseGlobal
1075 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1076 ///       OptionalVisibility OptionalDLLStorageClass
1077 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1078 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1079 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1080 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1081 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1082 ///       Const OptionalAttrs
1083 ///
1084 /// Everything up to and including OptionalUnnamedAddr has been parsed
1085 /// already.
1086 ///
1087 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc,
1088                            unsigned Linkage, bool HasLinkage,
1089                            unsigned Visibility, unsigned DLLStorageClass,
1090                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1091                            GlobalVariable::UnnamedAddr UnnamedAddr) {
1092   if (!isValidVisibilityForLinkage(Visibility, Linkage))
1093     return error(NameLoc,
1094                  "symbol with local linkage must have default visibility");
1095 
1096   unsigned AddrSpace;
1097   bool IsConstant, IsExternallyInitialized;
1098   LocTy IsExternallyInitializedLoc;
1099   LocTy TyLoc;
1100 
1101   Type *Ty = nullptr;
1102   if (parseOptionalAddrSpace(AddrSpace) ||
1103       parseOptionalToken(lltok::kw_externally_initialized,
1104                          IsExternallyInitialized,
1105                          &IsExternallyInitializedLoc) ||
1106       parseGlobalType(IsConstant) || parseType(Ty, TyLoc))
1107     return true;
1108 
1109   // If the linkage is specified and is external, then no initializer is
1110   // present.
1111   Constant *Init = nullptr;
1112   if (!HasLinkage ||
1113       !GlobalValue::isValidDeclarationLinkage(
1114           (GlobalValue::LinkageTypes)Linkage)) {
1115     if (parseGlobalValue(Ty, Init))
1116       return true;
1117   }
1118 
1119   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1120     return error(TyLoc, "invalid type for global variable");
1121 
1122   GlobalValue *GVal = nullptr;
1123 
1124   // See if the global was forward referenced, if so, use the global.
1125   if (!Name.empty()) {
1126     GVal = M->getNamedValue(Name);
1127     if (GVal) {
1128       if (!ForwardRefVals.erase(Name))
1129         return error(NameLoc, "redefinition of global '@" + Name + "'");
1130     }
1131   } else {
1132     auto I = ForwardRefValIDs.find(NumberedVals.size());
1133     if (I != ForwardRefValIDs.end()) {
1134       GVal = I->second.first;
1135       ForwardRefValIDs.erase(I);
1136     }
1137   }
1138 
1139   GlobalVariable *GV;
1140   if (!GVal) {
1141     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
1142                             Name, nullptr, GlobalVariable::NotThreadLocal,
1143                             AddrSpace);
1144   } else {
1145     if (GVal->getValueType() != Ty)
1146       return error(
1147           TyLoc,
1148           "forward reference and definition of global have different types");
1149 
1150     GV = cast<GlobalVariable>(GVal);
1151 
1152     // Move the forward-reference to the correct spot in the module.
1153     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
1154   }
1155 
1156   if (Name.empty())
1157     NumberedVals.push_back(GV);
1158 
1159   // Set the parsed properties on the global.
1160   if (Init)
1161     GV->setInitializer(Init);
1162   GV->setConstant(IsConstant);
1163   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1164   maybeSetDSOLocal(DSOLocal, *GV);
1165   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1166   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1167   GV->setExternallyInitialized(IsExternallyInitialized);
1168   GV->setThreadLocalMode(TLM);
1169   GV->setUnnamedAddr(UnnamedAddr);
1170 
1171   // parse attributes on the global.
1172   while (Lex.getKind() == lltok::comma) {
1173     Lex.Lex();
1174 
1175     if (Lex.getKind() == lltok::kw_section) {
1176       Lex.Lex();
1177       GV->setSection(Lex.getStrVal());
1178       if (parseToken(lltok::StringConstant, "expected global section string"))
1179         return true;
1180     } else if (Lex.getKind() == lltok::kw_partition) {
1181       Lex.Lex();
1182       GV->setPartition(Lex.getStrVal());
1183       if (parseToken(lltok::StringConstant, "expected partition string"))
1184         return true;
1185     } else if (Lex.getKind() == lltok::kw_align) {
1186       MaybeAlign Alignment;
1187       if (parseOptionalAlignment(Alignment))
1188         return true;
1189       GV->setAlignment(Alignment);
1190     } else if (Lex.getKind() == lltok::MetadataVar) {
1191       if (parseGlobalObjectMetadataAttachment(*GV))
1192         return true;
1193     } else {
1194       Comdat *C;
1195       if (parseOptionalComdat(Name, C))
1196         return true;
1197       if (C)
1198         GV->setComdat(C);
1199       else
1200         return tokError("unknown global variable property!");
1201     }
1202   }
1203 
1204   AttrBuilder Attrs;
1205   LocTy BuiltinLoc;
1206   std::vector<unsigned> FwdRefAttrGrps;
1207   if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1208     return true;
1209   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1210     GV->setAttributes(AttributeSet::get(Context, Attrs));
1211     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1212   }
1213 
1214   return false;
1215 }
1216 
1217 /// parseUnnamedAttrGrp
1218 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1219 bool LLParser::parseUnnamedAttrGrp() {
1220   assert(Lex.getKind() == lltok::kw_attributes);
1221   LocTy AttrGrpLoc = Lex.getLoc();
1222   Lex.Lex();
1223 
1224   if (Lex.getKind() != lltok::AttrGrpID)
1225     return tokError("expected attribute group id");
1226 
1227   unsigned VarID = Lex.getUIntVal();
1228   std::vector<unsigned> unused;
1229   LocTy BuiltinLoc;
1230   Lex.Lex();
1231 
1232   if (parseToken(lltok::equal, "expected '=' here") ||
1233       parseToken(lltok::lbrace, "expected '{' here") ||
1234       parseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1235                                  BuiltinLoc) ||
1236       parseToken(lltok::rbrace, "expected end of attribute group"))
1237     return true;
1238 
1239   if (!NumberedAttrBuilders[VarID].hasAttributes())
1240     return error(AttrGrpLoc, "attribute group has no attributes");
1241 
1242   return false;
1243 }
1244 
1245 /// parseFnAttributeValuePairs
1246 ///   ::= <attr> | <attr> '=' <value>
1247 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B,
1248                                           std::vector<unsigned> &FwdRefAttrGrps,
1249                                           bool inAttrGrp, LocTy &BuiltinLoc) {
1250   bool HaveError = false;
1251 
1252   B.clear();
1253 
1254   while (true) {
1255     lltok::Kind Token = Lex.getKind();
1256     if (Token == lltok::kw_builtin)
1257       BuiltinLoc = Lex.getLoc();
1258     switch (Token) {
1259     default:
1260       if (!inAttrGrp) return HaveError;
1261       return error(Lex.getLoc(), "unterminated attribute group");
1262     case lltok::rbrace:
1263       // Finished.
1264       return false;
1265 
1266     case lltok::AttrGrpID: {
1267       // Allow a function to reference an attribute group:
1268       //
1269       //   define void @foo() #1 { ... }
1270       if (inAttrGrp)
1271         HaveError |= error(
1272             Lex.getLoc(),
1273             "cannot have an attribute group reference in an attribute group");
1274 
1275       unsigned AttrGrpNum = Lex.getUIntVal();
1276       if (inAttrGrp) break;
1277 
1278       // Save the reference to the attribute group. We'll fill it in later.
1279       FwdRefAttrGrps.push_back(AttrGrpNum);
1280       break;
1281     }
1282     // Target-dependent attributes:
1283     case lltok::StringConstant: {
1284       if (parseStringAttribute(B))
1285         return true;
1286       continue;
1287     }
1288 
1289     // Target-independent attributes:
1290     case lltok::kw_align: {
1291       // As a hack, we allow function alignment to be initially parsed as an
1292       // attribute on a function declaration/definition or added to an attribute
1293       // group and later moved to the alignment field.
1294       MaybeAlign Alignment;
1295       if (inAttrGrp) {
1296         Lex.Lex();
1297         uint32_t Value = 0;
1298         if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value))
1299           return true;
1300         Alignment = Align(Value);
1301       } else {
1302         if (parseOptionalAlignment(Alignment))
1303           return true;
1304       }
1305       B.addAlignmentAttr(Alignment);
1306       continue;
1307     }
1308     case lltok::kw_alignstack: {
1309       unsigned Alignment;
1310       if (inAttrGrp) {
1311         Lex.Lex();
1312         if (parseToken(lltok::equal, "expected '=' here") ||
1313             parseUInt32(Alignment))
1314           return true;
1315       } else {
1316         if (parseOptionalStackAlignment(Alignment))
1317           return true;
1318       }
1319       B.addStackAlignmentAttr(Alignment);
1320       continue;
1321     }
1322     case lltok::kw_allocsize: {
1323       unsigned ElemSizeArg;
1324       Optional<unsigned> NumElemsArg;
1325       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1326       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1327         return true;
1328       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1329       continue;
1330     }
1331     case lltok::kw_vscale_range: {
1332       unsigned MinValue, MaxValue;
1333       // inAttrGrp doesn't matter; we only support vscale_range(a[, b])
1334       if (parseVScaleRangeArguments(MinValue, MaxValue))
1335         return true;
1336       B.addVScaleRangeAttr(MinValue, MaxValue);
1337       continue;
1338     }
1339     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1340     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1341     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1342     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1343     case lltok::kw_hot: B.addAttribute(Attribute::Hot); break;
1344     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1345     case lltok::kw_inaccessiblememonly:
1346       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1347     case lltok::kw_inaccessiblemem_or_argmemonly:
1348       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1349     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1350     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1351     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1352     case lltok::kw_mustprogress:
1353       B.addAttribute(Attribute::MustProgress);
1354       break;
1355     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1356     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1357     case lltok::kw_nocallback:
1358       B.addAttribute(Attribute::NoCallback);
1359       break;
1360     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1361     case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break;
1362     case lltok::kw_noimplicitfloat:
1363       B.addAttribute(Attribute::NoImplicitFloat); break;
1364     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1365     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1366     case lltok::kw_nomerge: B.addAttribute(Attribute::NoMerge); break;
1367     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1368     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1369     case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break;
1370     case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break;
1371     case lltok::kw_noprofile: B.addAttribute(Attribute::NoProfile); break;
1372     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1373     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1374     case lltok::kw_nosanitize_coverage:
1375       B.addAttribute(Attribute::NoSanitizeCoverage);
1376       break;
1377     case lltok::kw_null_pointer_is_valid:
1378       B.addAttribute(Attribute::NullPointerIsValid); break;
1379     case lltok::kw_optforfuzzing:
1380       B.addAttribute(Attribute::OptForFuzzing); break;
1381     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1382     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1383     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1384     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1385     case lltok::kw_returns_twice:
1386       B.addAttribute(Attribute::ReturnsTwice); break;
1387     case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1388     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1389     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1390     case lltok::kw_sspstrong:
1391       B.addAttribute(Attribute::StackProtectStrong); break;
1392     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1393     case lltok::kw_shadowcallstack:
1394       B.addAttribute(Attribute::ShadowCallStack); break;
1395     case lltok::kw_sanitize_address:
1396       B.addAttribute(Attribute::SanitizeAddress); break;
1397     case lltok::kw_sanitize_hwaddress:
1398       B.addAttribute(Attribute::SanitizeHWAddress); break;
1399     case lltok::kw_sanitize_memtag:
1400       B.addAttribute(Attribute::SanitizeMemTag); break;
1401     case lltok::kw_sanitize_thread:
1402       B.addAttribute(Attribute::SanitizeThread); break;
1403     case lltok::kw_sanitize_memory:
1404       B.addAttribute(Attribute::SanitizeMemory); break;
1405     case lltok::kw_speculative_load_hardening:
1406       B.addAttribute(Attribute::SpeculativeLoadHardening);
1407       break;
1408     case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1409     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1410     case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break;
1411     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1412     case lltok::kw_preallocated: {
1413       Type *Ty;
1414       if (parsePreallocated(Ty))
1415         return true;
1416       B.addPreallocatedAttr(Ty);
1417       break;
1418     }
1419 
1420     // error handling.
1421     case lltok::kw_inreg:
1422     case lltok::kw_signext:
1423     case lltok::kw_zeroext:
1424       HaveError |=
1425           error(Lex.getLoc(), "invalid use of attribute on a function");
1426       break;
1427     case lltok::kw_byval:
1428     case lltok::kw_dereferenceable:
1429     case lltok::kw_dereferenceable_or_null:
1430     case lltok::kw_inalloca:
1431     case lltok::kw_nest:
1432     case lltok::kw_noalias:
1433     case lltok::kw_noundef:
1434     case lltok::kw_nocapture:
1435     case lltok::kw_nonnull:
1436     case lltok::kw_returned:
1437     case lltok::kw_sret:
1438     case lltok::kw_swifterror:
1439     case lltok::kw_swiftself:
1440     case lltok::kw_swiftasync:
1441     case lltok::kw_immarg:
1442     case lltok::kw_byref:
1443       HaveError |=
1444           error(Lex.getLoc(),
1445                 "invalid use of parameter-only attribute on a function");
1446       break;
1447     }
1448 
1449     // parsePreallocated() consumes token
1450     if (Token != lltok::kw_preallocated)
1451       Lex.Lex();
1452   }
1453 }
1454 
1455 //===----------------------------------------------------------------------===//
1456 // GlobalValue Reference/Resolution Routines.
1457 //===----------------------------------------------------------------------===//
1458 
1459 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1460                                               const std::string &Name) {
1461   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1462     return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1463                             PTy->getAddressSpace(), Name, M);
1464   else
1465     return new GlobalVariable(*M, PTy->getElementType(), false,
1466                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1467                               nullptr, GlobalVariable::NotThreadLocal,
1468                               PTy->getAddressSpace());
1469 }
1470 
1471 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1472                                         Value *Val, bool IsCall) {
1473   if (Val->getType() == Ty)
1474     return Val;
1475   // For calls we also accept variables in the program address space.
1476   Type *SuggestedTy = Ty;
1477   if (IsCall && isa<PointerType>(Ty)) {
1478     Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo(
1479         M->getDataLayout().getProgramAddressSpace());
1480     SuggestedTy = TyInProgAS;
1481     if (Val->getType() == TyInProgAS)
1482       return Val;
1483   }
1484   if (Ty->isLabelTy())
1485     error(Loc, "'" + Name + "' is not a basic block");
1486   else
1487     error(Loc, "'" + Name + "' defined with type '" +
1488                    getTypeString(Val->getType()) + "' but expected '" +
1489                    getTypeString(SuggestedTy) + "'");
1490   return nullptr;
1491 }
1492 
1493 /// getGlobalVal - Get a value with the specified name or ID, creating a
1494 /// forward reference record if needed.  This can return null if the value
1495 /// exists but does not have the right type.
1496 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty,
1497                                     LocTy Loc, bool IsCall) {
1498   PointerType *PTy = dyn_cast<PointerType>(Ty);
1499   if (!PTy) {
1500     error(Loc, "global variable reference must have pointer type");
1501     return nullptr;
1502   }
1503 
1504   // Look this name up in the normal function symbol table.
1505   GlobalValue *Val =
1506     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1507 
1508   // If this is a forward reference for the value, see if we already created a
1509   // forward ref record.
1510   if (!Val) {
1511     auto I = ForwardRefVals.find(Name);
1512     if (I != ForwardRefVals.end())
1513       Val = I->second.first;
1514   }
1515 
1516   // If we have the value in the symbol table or fwd-ref table, return it.
1517   if (Val)
1518     return cast_or_null<GlobalValue>(
1519         checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall));
1520 
1521   // Otherwise, create a new forward reference for this value and remember it.
1522   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1523   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1524   return FwdVal;
1525 }
1526 
1527 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc,
1528                                     bool IsCall) {
1529   PointerType *PTy = dyn_cast<PointerType>(Ty);
1530   if (!PTy) {
1531     error(Loc, "global variable reference must have pointer type");
1532     return nullptr;
1533   }
1534 
1535   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1536 
1537   // If this is a forward reference for the value, see if we already created a
1538   // forward ref record.
1539   if (!Val) {
1540     auto I = ForwardRefValIDs.find(ID);
1541     if (I != ForwardRefValIDs.end())
1542       Val = I->second.first;
1543   }
1544 
1545   // If we have the value in the symbol table or fwd-ref table, return it.
1546   if (Val)
1547     return cast_or_null<GlobalValue>(
1548         checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall));
1549 
1550   // Otherwise, create a new forward reference for this value and remember it.
1551   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1552   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1553   return FwdVal;
1554 }
1555 
1556 //===----------------------------------------------------------------------===//
1557 // Comdat Reference/Resolution Routines.
1558 //===----------------------------------------------------------------------===//
1559 
1560 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1561   // Look this name up in the comdat symbol table.
1562   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1563   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1564   if (I != ComdatSymTab.end())
1565     return &I->second;
1566 
1567   // Otherwise, create a new forward reference for this value and remember it.
1568   Comdat *C = M->getOrInsertComdat(Name);
1569   ForwardRefComdats[Name] = Loc;
1570   return C;
1571 }
1572 
1573 //===----------------------------------------------------------------------===//
1574 // Helper Routines.
1575 //===----------------------------------------------------------------------===//
1576 
1577 /// parseToken - If the current token has the specified kind, eat it and return
1578 /// success.  Otherwise, emit the specified error and return failure.
1579 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) {
1580   if (Lex.getKind() != T)
1581     return tokError(ErrMsg);
1582   Lex.Lex();
1583   return false;
1584 }
1585 
1586 /// parseStringConstant
1587 ///   ::= StringConstant
1588 bool LLParser::parseStringConstant(std::string &Result) {
1589   if (Lex.getKind() != lltok::StringConstant)
1590     return tokError("expected string constant");
1591   Result = Lex.getStrVal();
1592   Lex.Lex();
1593   return false;
1594 }
1595 
1596 /// parseUInt32
1597 ///   ::= uint32
1598 bool LLParser::parseUInt32(uint32_t &Val) {
1599   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1600     return tokError("expected integer");
1601   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1602   if (Val64 != unsigned(Val64))
1603     return tokError("expected 32-bit integer (too large)");
1604   Val = Val64;
1605   Lex.Lex();
1606   return false;
1607 }
1608 
1609 /// parseUInt64
1610 ///   ::= uint64
1611 bool LLParser::parseUInt64(uint64_t &Val) {
1612   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1613     return tokError("expected integer");
1614   Val = Lex.getAPSIntVal().getLimitedValue();
1615   Lex.Lex();
1616   return false;
1617 }
1618 
1619 /// parseTLSModel
1620 ///   := 'localdynamic'
1621 ///   := 'initialexec'
1622 ///   := 'localexec'
1623 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1624   switch (Lex.getKind()) {
1625     default:
1626       return tokError("expected localdynamic, initialexec or localexec");
1627     case lltok::kw_localdynamic:
1628       TLM = GlobalVariable::LocalDynamicTLSModel;
1629       break;
1630     case lltok::kw_initialexec:
1631       TLM = GlobalVariable::InitialExecTLSModel;
1632       break;
1633     case lltok::kw_localexec:
1634       TLM = GlobalVariable::LocalExecTLSModel;
1635       break;
1636   }
1637 
1638   Lex.Lex();
1639   return false;
1640 }
1641 
1642 /// parseOptionalThreadLocal
1643 ///   := /*empty*/
1644 ///   := 'thread_local'
1645 ///   := 'thread_local' '(' tlsmodel ')'
1646 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1647   TLM = GlobalVariable::NotThreadLocal;
1648   if (!EatIfPresent(lltok::kw_thread_local))
1649     return false;
1650 
1651   TLM = GlobalVariable::GeneralDynamicTLSModel;
1652   if (Lex.getKind() == lltok::lparen) {
1653     Lex.Lex();
1654     return parseTLSModel(TLM) ||
1655            parseToken(lltok::rparen, "expected ')' after thread local model");
1656   }
1657   return false;
1658 }
1659 
1660 /// parseOptionalAddrSpace
1661 ///   := /*empty*/
1662 ///   := 'addrspace' '(' uint32 ')'
1663 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1664   AddrSpace = DefaultAS;
1665   if (!EatIfPresent(lltok::kw_addrspace))
1666     return false;
1667   return parseToken(lltok::lparen, "expected '(' in address space") ||
1668          parseUInt32(AddrSpace) ||
1669          parseToken(lltok::rparen, "expected ')' in address space");
1670 }
1671 
1672 /// parseStringAttribute
1673 ///   := StringConstant
1674 ///   := StringConstant '=' StringConstant
1675 bool LLParser::parseStringAttribute(AttrBuilder &B) {
1676   std::string Attr = Lex.getStrVal();
1677   Lex.Lex();
1678   std::string Val;
1679   if (EatIfPresent(lltok::equal) && parseStringConstant(Val))
1680     return true;
1681   B.addAttribute(Attr, Val);
1682   return false;
1683 }
1684 
1685 /// parseOptionalParamAttrs - parse a potentially empty list of parameter
1686 /// attributes.
1687 bool LLParser::parseOptionalParamAttrs(AttrBuilder &B) {
1688   bool HaveError = false;
1689 
1690   B.clear();
1691 
1692   while (true) {
1693     lltok::Kind Token = Lex.getKind();
1694     switch (Token) {
1695     default:  // End of attributes.
1696       return HaveError;
1697     case lltok::StringConstant: {
1698       if (parseStringAttribute(B))
1699         return true;
1700       continue;
1701     }
1702     case lltok::kw_align: {
1703       MaybeAlign Alignment;
1704       if (parseOptionalAlignment(Alignment, true))
1705         return true;
1706       B.addAlignmentAttr(Alignment);
1707       continue;
1708     }
1709     case lltok::kw_alignstack: {
1710       unsigned Alignment;
1711       if (parseOptionalStackAlignment(Alignment))
1712         return true;
1713       B.addStackAlignmentAttr(Alignment);
1714       continue;
1715     }
1716     case lltok::kw_byval: {
1717       Type *Ty;
1718       if (parseRequiredTypeAttr(Ty, lltok::kw_byval))
1719         return true;
1720       B.addByValAttr(Ty);
1721       continue;
1722     }
1723     case lltok::kw_sret: {
1724       Type *Ty;
1725       if (parseRequiredTypeAttr(Ty, lltok::kw_sret))
1726         return true;
1727       B.addStructRetAttr(Ty);
1728       continue;
1729     }
1730     case lltok::kw_preallocated: {
1731       Type *Ty;
1732       if (parsePreallocated(Ty))
1733         return true;
1734       B.addPreallocatedAttr(Ty);
1735       continue;
1736     }
1737     case lltok::kw_inalloca: {
1738       Type *Ty;
1739       if (parseInalloca(Ty))
1740         return true;
1741       B.addInAllocaAttr(Ty);
1742       continue;
1743     }
1744     case lltok::kw_dereferenceable: {
1745       uint64_t Bytes;
1746       if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1747         return true;
1748       B.addDereferenceableAttr(Bytes);
1749       continue;
1750     }
1751     case lltok::kw_dereferenceable_or_null: {
1752       uint64_t Bytes;
1753       if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1754         return true;
1755       B.addDereferenceableOrNullAttr(Bytes);
1756       continue;
1757     }
1758     case lltok::kw_byref: {
1759       Type *Ty;
1760       if (parseByRef(Ty))
1761         return true;
1762       B.addByRefAttr(Ty);
1763       continue;
1764     }
1765     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1766     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1767     case lltok::kw_noundef:
1768       B.addAttribute(Attribute::NoUndef);
1769       break;
1770     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1771     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1772     case lltok::kw_nofree:          B.addAttribute(Attribute::NoFree); break;
1773     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1774     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1775     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1776     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1777     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1778     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1779     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1780     case lltok::kw_swiftasync:      B.addAttribute(Attribute::SwiftAsync); break;
1781     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
1782     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1783     case lltok::kw_immarg:          B.addAttribute(Attribute::ImmArg); break;
1784 
1785     case lltok::kw_alwaysinline:
1786     case lltok::kw_argmemonly:
1787     case lltok::kw_builtin:
1788     case lltok::kw_inlinehint:
1789     case lltok::kw_jumptable:
1790     case lltok::kw_minsize:
1791     case lltok::kw_mustprogress:
1792     case lltok::kw_naked:
1793     case lltok::kw_nobuiltin:
1794     case lltok::kw_noduplicate:
1795     case lltok::kw_noimplicitfloat:
1796     case lltok::kw_noinline:
1797     case lltok::kw_nonlazybind:
1798     case lltok::kw_nomerge:
1799     case lltok::kw_noprofile:
1800     case lltok::kw_noredzone:
1801     case lltok::kw_noreturn:
1802     case lltok::kw_nocf_check:
1803     case lltok::kw_nounwind:
1804     case lltok::kw_nosanitize_coverage:
1805     case lltok::kw_optforfuzzing:
1806     case lltok::kw_optnone:
1807     case lltok::kw_optsize:
1808     case lltok::kw_returns_twice:
1809     case lltok::kw_sanitize_address:
1810     case lltok::kw_sanitize_hwaddress:
1811     case lltok::kw_sanitize_memtag:
1812     case lltok::kw_sanitize_memory:
1813     case lltok::kw_sanitize_thread:
1814     case lltok::kw_speculative_load_hardening:
1815     case lltok::kw_ssp:
1816     case lltok::kw_sspreq:
1817     case lltok::kw_sspstrong:
1818     case lltok::kw_safestack:
1819     case lltok::kw_shadowcallstack:
1820     case lltok::kw_strictfp:
1821     case lltok::kw_uwtable:
1822     case lltok::kw_vscale_range:
1823       HaveError |=
1824           error(Lex.getLoc(), "invalid use of function-only attribute");
1825       break;
1826     }
1827 
1828     Lex.Lex();
1829   }
1830 }
1831 
1832 /// parseOptionalReturnAttrs - parse a potentially empty list of return
1833 /// attributes.
1834 bool LLParser::parseOptionalReturnAttrs(AttrBuilder &B) {
1835   bool HaveError = false;
1836 
1837   B.clear();
1838 
1839   while (true) {
1840     lltok::Kind Token = Lex.getKind();
1841     switch (Token) {
1842     default:  // End of attributes.
1843       return HaveError;
1844     case lltok::StringConstant: {
1845       if (parseStringAttribute(B))
1846         return true;
1847       continue;
1848     }
1849     case lltok::kw_dereferenceable: {
1850       uint64_t Bytes;
1851       if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1852         return true;
1853       B.addDereferenceableAttr(Bytes);
1854       continue;
1855     }
1856     case lltok::kw_dereferenceable_or_null: {
1857       uint64_t Bytes;
1858       if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1859         return true;
1860       B.addDereferenceableOrNullAttr(Bytes);
1861       continue;
1862     }
1863     case lltok::kw_align: {
1864       MaybeAlign Alignment;
1865       if (parseOptionalAlignment(Alignment))
1866         return true;
1867       B.addAlignmentAttr(Alignment);
1868       continue;
1869     }
1870     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1871     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1872     case lltok::kw_noundef:
1873       B.addAttribute(Attribute::NoUndef);
1874       break;
1875     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1876     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1877     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1878 
1879     // error handling.
1880     case lltok::kw_byval:
1881     case lltok::kw_inalloca:
1882     case lltok::kw_nest:
1883     case lltok::kw_nocapture:
1884     case lltok::kw_returned:
1885     case lltok::kw_sret:
1886     case lltok::kw_swifterror:
1887     case lltok::kw_swiftself:
1888     case lltok::kw_swiftasync:
1889     case lltok::kw_immarg:
1890     case lltok::kw_byref:
1891       HaveError |=
1892           error(Lex.getLoc(), "invalid use of parameter-only attribute");
1893       break;
1894 
1895     case lltok::kw_alignstack:
1896     case lltok::kw_alwaysinline:
1897     case lltok::kw_argmemonly:
1898     case lltok::kw_builtin:
1899     case lltok::kw_cold:
1900     case lltok::kw_inlinehint:
1901     case lltok::kw_jumptable:
1902     case lltok::kw_minsize:
1903     case lltok::kw_mustprogress:
1904     case lltok::kw_naked:
1905     case lltok::kw_nobuiltin:
1906     case lltok::kw_noduplicate:
1907     case lltok::kw_noimplicitfloat:
1908     case lltok::kw_noinline:
1909     case lltok::kw_nonlazybind:
1910     case lltok::kw_nomerge:
1911     case lltok::kw_noprofile:
1912     case lltok::kw_noredzone:
1913     case lltok::kw_noreturn:
1914     case lltok::kw_nocf_check:
1915     case lltok::kw_nounwind:
1916     case lltok::kw_nosanitize_coverage:
1917     case lltok::kw_optforfuzzing:
1918     case lltok::kw_optnone:
1919     case lltok::kw_optsize:
1920     case lltok::kw_returns_twice:
1921     case lltok::kw_sanitize_address:
1922     case lltok::kw_sanitize_hwaddress:
1923     case lltok::kw_sanitize_memtag:
1924     case lltok::kw_sanitize_memory:
1925     case lltok::kw_sanitize_thread:
1926     case lltok::kw_speculative_load_hardening:
1927     case lltok::kw_ssp:
1928     case lltok::kw_sspreq:
1929     case lltok::kw_sspstrong:
1930     case lltok::kw_safestack:
1931     case lltok::kw_shadowcallstack:
1932     case lltok::kw_strictfp:
1933     case lltok::kw_uwtable:
1934     case lltok::kw_vscale_range:
1935       HaveError |=
1936           error(Lex.getLoc(), "invalid use of function-only attribute");
1937       break;
1938     case lltok::kw_readnone:
1939     case lltok::kw_readonly:
1940       HaveError |=
1941           error(Lex.getLoc(), "invalid use of attribute on return type");
1942       break;
1943     case lltok::kw_preallocated:
1944       HaveError |=
1945           error(Lex.getLoc(),
1946                 "invalid use of parameter-only/call site-only attribute");
1947       break;
1948     }
1949 
1950     Lex.Lex();
1951   }
1952 }
1953 
1954 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1955   HasLinkage = true;
1956   switch (Kind) {
1957   default:
1958     HasLinkage = false;
1959     return GlobalValue::ExternalLinkage;
1960   case lltok::kw_private:
1961     return GlobalValue::PrivateLinkage;
1962   case lltok::kw_internal:
1963     return GlobalValue::InternalLinkage;
1964   case lltok::kw_weak:
1965     return GlobalValue::WeakAnyLinkage;
1966   case lltok::kw_weak_odr:
1967     return GlobalValue::WeakODRLinkage;
1968   case lltok::kw_linkonce:
1969     return GlobalValue::LinkOnceAnyLinkage;
1970   case lltok::kw_linkonce_odr:
1971     return GlobalValue::LinkOnceODRLinkage;
1972   case lltok::kw_available_externally:
1973     return GlobalValue::AvailableExternallyLinkage;
1974   case lltok::kw_appending:
1975     return GlobalValue::AppendingLinkage;
1976   case lltok::kw_common:
1977     return GlobalValue::CommonLinkage;
1978   case lltok::kw_extern_weak:
1979     return GlobalValue::ExternalWeakLinkage;
1980   case lltok::kw_external:
1981     return GlobalValue::ExternalLinkage;
1982   }
1983 }
1984 
1985 /// parseOptionalLinkage
1986 ///   ::= /*empty*/
1987 ///   ::= 'private'
1988 ///   ::= 'internal'
1989 ///   ::= 'weak'
1990 ///   ::= 'weak_odr'
1991 ///   ::= 'linkonce'
1992 ///   ::= 'linkonce_odr'
1993 ///   ::= 'available_externally'
1994 ///   ::= 'appending'
1995 ///   ::= 'common'
1996 ///   ::= 'extern_weak'
1997 ///   ::= 'external'
1998 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1999                                     unsigned &Visibility,
2000                                     unsigned &DLLStorageClass, bool &DSOLocal) {
2001   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
2002   if (HasLinkage)
2003     Lex.Lex();
2004   parseOptionalDSOLocal(DSOLocal);
2005   parseOptionalVisibility(Visibility);
2006   parseOptionalDLLStorageClass(DLLStorageClass);
2007 
2008   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
2009     return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
2010   }
2011 
2012   return false;
2013 }
2014 
2015 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) {
2016   switch (Lex.getKind()) {
2017   default:
2018     DSOLocal = false;
2019     break;
2020   case lltok::kw_dso_local:
2021     DSOLocal = true;
2022     Lex.Lex();
2023     break;
2024   case lltok::kw_dso_preemptable:
2025     DSOLocal = false;
2026     Lex.Lex();
2027     break;
2028   }
2029 }
2030 
2031 /// parseOptionalVisibility
2032 ///   ::= /*empty*/
2033 ///   ::= 'default'
2034 ///   ::= 'hidden'
2035 ///   ::= 'protected'
2036 ///
2037 void LLParser::parseOptionalVisibility(unsigned &Res) {
2038   switch (Lex.getKind()) {
2039   default:
2040     Res = GlobalValue::DefaultVisibility;
2041     return;
2042   case lltok::kw_default:
2043     Res = GlobalValue::DefaultVisibility;
2044     break;
2045   case lltok::kw_hidden:
2046     Res = GlobalValue::HiddenVisibility;
2047     break;
2048   case lltok::kw_protected:
2049     Res = GlobalValue::ProtectedVisibility;
2050     break;
2051   }
2052   Lex.Lex();
2053 }
2054 
2055 /// parseOptionalDLLStorageClass
2056 ///   ::= /*empty*/
2057 ///   ::= 'dllimport'
2058 ///   ::= 'dllexport'
2059 ///
2060 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) {
2061   switch (Lex.getKind()) {
2062   default:
2063     Res = GlobalValue::DefaultStorageClass;
2064     return;
2065   case lltok::kw_dllimport:
2066     Res = GlobalValue::DLLImportStorageClass;
2067     break;
2068   case lltok::kw_dllexport:
2069     Res = GlobalValue::DLLExportStorageClass;
2070     break;
2071   }
2072   Lex.Lex();
2073 }
2074 
2075 /// parseOptionalCallingConv
2076 ///   ::= /*empty*/
2077 ///   ::= 'ccc'
2078 ///   ::= 'fastcc'
2079 ///   ::= 'intel_ocl_bicc'
2080 ///   ::= 'coldcc'
2081 ///   ::= 'cfguard_checkcc'
2082 ///   ::= 'x86_stdcallcc'
2083 ///   ::= 'x86_fastcallcc'
2084 ///   ::= 'x86_thiscallcc'
2085 ///   ::= 'x86_vectorcallcc'
2086 ///   ::= 'arm_apcscc'
2087 ///   ::= 'arm_aapcscc'
2088 ///   ::= 'arm_aapcs_vfpcc'
2089 ///   ::= 'aarch64_vector_pcs'
2090 ///   ::= 'aarch64_sve_vector_pcs'
2091 ///   ::= 'msp430_intrcc'
2092 ///   ::= 'avr_intrcc'
2093 ///   ::= 'avr_signalcc'
2094 ///   ::= 'ptx_kernel'
2095 ///   ::= 'ptx_device'
2096 ///   ::= 'spir_func'
2097 ///   ::= 'spir_kernel'
2098 ///   ::= 'x86_64_sysvcc'
2099 ///   ::= 'win64cc'
2100 ///   ::= 'webkit_jscc'
2101 ///   ::= 'anyregcc'
2102 ///   ::= 'preserve_mostcc'
2103 ///   ::= 'preserve_allcc'
2104 ///   ::= 'ghccc'
2105 ///   ::= 'swiftcc'
2106 ///   ::= 'swifttailcc'
2107 ///   ::= 'x86_intrcc'
2108 ///   ::= 'hhvmcc'
2109 ///   ::= 'hhvm_ccc'
2110 ///   ::= 'cxx_fast_tlscc'
2111 ///   ::= 'amdgpu_vs'
2112 ///   ::= 'amdgpu_ls'
2113 ///   ::= 'amdgpu_hs'
2114 ///   ::= 'amdgpu_es'
2115 ///   ::= 'amdgpu_gs'
2116 ///   ::= 'amdgpu_ps'
2117 ///   ::= 'amdgpu_cs'
2118 ///   ::= 'amdgpu_kernel'
2119 ///   ::= 'tailcc'
2120 ///   ::= 'cc' UINT
2121 ///
2122 bool LLParser::parseOptionalCallingConv(unsigned &CC) {
2123   switch (Lex.getKind()) {
2124   default:                       CC = CallingConv::C; return false;
2125   case lltok::kw_ccc:            CC = CallingConv::C; break;
2126   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
2127   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
2128   case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break;
2129   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
2130   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
2131   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
2132   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
2133   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
2134   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
2135   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
2136   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
2137   case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
2138   case lltok::kw_aarch64_sve_vector_pcs:
2139     CC = CallingConv::AArch64_SVE_VectorCall;
2140     break;
2141   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
2142   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
2143   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
2144   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
2145   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
2146   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
2147   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
2148   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
2149   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
2150   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
2151   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
2152   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
2153   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
2154   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
2155   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
2156   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
2157   case lltok::kw_swifttailcc:    CC = CallingConv::SwiftTail; break;
2158   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
2159   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
2160   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
2161   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
2162   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
2163   case lltok::kw_amdgpu_gfx:     CC = CallingConv::AMDGPU_Gfx; break;
2164   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
2165   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
2166   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
2167   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
2168   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
2169   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
2170   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
2171   case lltok::kw_tailcc:         CC = CallingConv::Tail; break;
2172   case lltok::kw_cc: {
2173       Lex.Lex();
2174       return parseUInt32(CC);
2175     }
2176   }
2177 
2178   Lex.Lex();
2179   return false;
2180 }
2181 
2182 /// parseMetadataAttachment
2183 ///   ::= !dbg !42
2184 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
2185   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
2186 
2187   std::string Name = Lex.getStrVal();
2188   Kind = M->getMDKindID(Name);
2189   Lex.Lex();
2190 
2191   return parseMDNode(MD);
2192 }
2193 
2194 /// parseInstructionMetadata
2195 ///   ::= !dbg !42 (',' !dbg !57)*
2196 bool LLParser::parseInstructionMetadata(Instruction &Inst) {
2197   do {
2198     if (Lex.getKind() != lltok::MetadataVar)
2199       return tokError("expected metadata after comma");
2200 
2201     unsigned MDK;
2202     MDNode *N;
2203     if (parseMetadataAttachment(MDK, N))
2204       return true;
2205 
2206     Inst.setMetadata(MDK, N);
2207     if (MDK == LLVMContext::MD_tbaa)
2208       InstsWithTBAATag.push_back(&Inst);
2209 
2210     // If this is the end of the list, we're done.
2211   } while (EatIfPresent(lltok::comma));
2212   return false;
2213 }
2214 
2215 /// parseGlobalObjectMetadataAttachment
2216 ///   ::= !dbg !57
2217 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) {
2218   unsigned MDK;
2219   MDNode *N;
2220   if (parseMetadataAttachment(MDK, N))
2221     return true;
2222 
2223   GO.addMetadata(MDK, *N);
2224   return false;
2225 }
2226 
2227 /// parseOptionalFunctionMetadata
2228 ///   ::= (!dbg !57)*
2229 bool LLParser::parseOptionalFunctionMetadata(Function &F) {
2230   while (Lex.getKind() == lltok::MetadataVar)
2231     if (parseGlobalObjectMetadataAttachment(F))
2232       return true;
2233   return false;
2234 }
2235 
2236 /// parseOptionalAlignment
2237 ///   ::= /* empty */
2238 ///   ::= 'align' 4
2239 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) {
2240   Alignment = None;
2241   if (!EatIfPresent(lltok::kw_align))
2242     return false;
2243   LocTy AlignLoc = Lex.getLoc();
2244   uint32_t Value = 0;
2245 
2246   LocTy ParenLoc = Lex.getLoc();
2247   bool HaveParens = false;
2248   if (AllowParens) {
2249     if (EatIfPresent(lltok::lparen))
2250       HaveParens = true;
2251   }
2252 
2253   if (parseUInt32(Value))
2254     return true;
2255 
2256   if (HaveParens && !EatIfPresent(lltok::rparen))
2257     return error(ParenLoc, "expected ')'");
2258 
2259   if (!isPowerOf2_32(Value))
2260     return error(AlignLoc, "alignment is not a power of two");
2261   if (Value > Value::MaximumAlignment)
2262     return error(AlignLoc, "huge alignments are not supported yet");
2263   Alignment = Align(Value);
2264   return false;
2265 }
2266 
2267 /// parseOptionalDerefAttrBytes
2268 ///   ::= /* empty */
2269 ///   ::= AttrKind '(' 4 ')'
2270 ///
2271 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2272 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2273                                            uint64_t &Bytes) {
2274   assert((AttrKind == lltok::kw_dereferenceable ||
2275           AttrKind == lltok::kw_dereferenceable_or_null) &&
2276          "contract!");
2277 
2278   Bytes = 0;
2279   if (!EatIfPresent(AttrKind))
2280     return false;
2281   LocTy ParenLoc = Lex.getLoc();
2282   if (!EatIfPresent(lltok::lparen))
2283     return error(ParenLoc, "expected '('");
2284   LocTy DerefLoc = Lex.getLoc();
2285   if (parseUInt64(Bytes))
2286     return true;
2287   ParenLoc = Lex.getLoc();
2288   if (!EatIfPresent(lltok::rparen))
2289     return error(ParenLoc, "expected ')'");
2290   if (!Bytes)
2291     return error(DerefLoc, "dereferenceable bytes must be non-zero");
2292   return false;
2293 }
2294 
2295 /// parseOptionalCommaAlign
2296 ///   ::=
2297 ///   ::= ',' align 4
2298 ///
2299 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2300 /// end.
2301 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment,
2302                                        bool &AteExtraComma) {
2303   AteExtraComma = false;
2304   while (EatIfPresent(lltok::comma)) {
2305     // Metadata at the end is an early exit.
2306     if (Lex.getKind() == lltok::MetadataVar) {
2307       AteExtraComma = true;
2308       return false;
2309     }
2310 
2311     if (Lex.getKind() != lltok::kw_align)
2312       return error(Lex.getLoc(), "expected metadata or 'align'");
2313 
2314     if (parseOptionalAlignment(Alignment))
2315       return true;
2316   }
2317 
2318   return false;
2319 }
2320 
2321 /// parseOptionalCommaAddrSpace
2322 ///   ::=
2323 ///   ::= ',' addrspace(1)
2324 ///
2325 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2326 /// end.
2327 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc,
2328                                            bool &AteExtraComma) {
2329   AteExtraComma = false;
2330   while (EatIfPresent(lltok::comma)) {
2331     // Metadata at the end is an early exit.
2332     if (Lex.getKind() == lltok::MetadataVar) {
2333       AteExtraComma = true;
2334       return false;
2335     }
2336 
2337     Loc = Lex.getLoc();
2338     if (Lex.getKind() != lltok::kw_addrspace)
2339       return error(Lex.getLoc(), "expected metadata or 'addrspace'");
2340 
2341     if (parseOptionalAddrSpace(AddrSpace))
2342       return true;
2343   }
2344 
2345   return false;
2346 }
2347 
2348 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2349                                        Optional<unsigned> &HowManyArg) {
2350   Lex.Lex();
2351 
2352   auto StartParen = Lex.getLoc();
2353   if (!EatIfPresent(lltok::lparen))
2354     return error(StartParen, "expected '('");
2355 
2356   if (parseUInt32(BaseSizeArg))
2357     return true;
2358 
2359   if (EatIfPresent(lltok::comma)) {
2360     auto HowManyAt = Lex.getLoc();
2361     unsigned HowMany;
2362     if (parseUInt32(HowMany))
2363       return true;
2364     if (HowMany == BaseSizeArg)
2365       return error(HowManyAt,
2366                    "'allocsize' indices can't refer to the same parameter");
2367     HowManyArg = HowMany;
2368   } else
2369     HowManyArg = None;
2370 
2371   auto EndParen = Lex.getLoc();
2372   if (!EatIfPresent(lltok::rparen))
2373     return error(EndParen, "expected ')'");
2374   return false;
2375 }
2376 
2377 bool LLParser::parseVScaleRangeArguments(unsigned &MinValue,
2378                                          unsigned &MaxValue) {
2379   Lex.Lex();
2380 
2381   auto StartParen = Lex.getLoc();
2382   if (!EatIfPresent(lltok::lparen))
2383     return error(StartParen, "expected '('");
2384 
2385   if (parseUInt32(MinValue))
2386     return true;
2387 
2388   if (EatIfPresent(lltok::comma)) {
2389     if (parseUInt32(MaxValue))
2390       return true;
2391   } else
2392     MaxValue = MinValue;
2393 
2394   auto EndParen = Lex.getLoc();
2395   if (!EatIfPresent(lltok::rparen))
2396     return error(EndParen, "expected ')'");
2397   return false;
2398 }
2399 
2400 /// parseScopeAndOrdering
2401 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2402 ///   else: ::=
2403 ///
2404 /// This sets Scope and Ordering to the parsed values.
2405 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID,
2406                                      AtomicOrdering &Ordering) {
2407   if (!IsAtomic)
2408     return false;
2409 
2410   return parseScope(SSID) || parseOrdering(Ordering);
2411 }
2412 
2413 /// parseScope
2414 ///   ::= syncscope("singlethread" | "<target scope>")?
2415 ///
2416 /// This sets synchronization scope ID to the ID of the parsed value.
2417 bool LLParser::parseScope(SyncScope::ID &SSID) {
2418   SSID = SyncScope::System;
2419   if (EatIfPresent(lltok::kw_syncscope)) {
2420     auto StartParenAt = Lex.getLoc();
2421     if (!EatIfPresent(lltok::lparen))
2422       return error(StartParenAt, "Expected '(' in syncscope");
2423 
2424     std::string SSN;
2425     auto SSNAt = Lex.getLoc();
2426     if (parseStringConstant(SSN))
2427       return error(SSNAt, "Expected synchronization scope name");
2428 
2429     auto EndParenAt = Lex.getLoc();
2430     if (!EatIfPresent(lltok::rparen))
2431       return error(EndParenAt, "Expected ')' in syncscope");
2432 
2433     SSID = Context.getOrInsertSyncScopeID(SSN);
2434   }
2435 
2436   return false;
2437 }
2438 
2439 /// parseOrdering
2440 ///   ::= AtomicOrdering
2441 ///
2442 /// This sets Ordering to the parsed value.
2443 bool LLParser::parseOrdering(AtomicOrdering &Ordering) {
2444   switch (Lex.getKind()) {
2445   default:
2446     return tokError("Expected ordering on atomic instruction");
2447   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2448   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2449   // Not specified yet:
2450   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2451   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2452   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2453   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2454   case lltok::kw_seq_cst:
2455     Ordering = AtomicOrdering::SequentiallyConsistent;
2456     break;
2457   }
2458   Lex.Lex();
2459   return false;
2460 }
2461 
2462 /// parseOptionalStackAlignment
2463 ///   ::= /* empty */
2464 ///   ::= 'alignstack' '(' 4 ')'
2465 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) {
2466   Alignment = 0;
2467   if (!EatIfPresent(lltok::kw_alignstack))
2468     return false;
2469   LocTy ParenLoc = Lex.getLoc();
2470   if (!EatIfPresent(lltok::lparen))
2471     return error(ParenLoc, "expected '('");
2472   LocTy AlignLoc = Lex.getLoc();
2473   if (parseUInt32(Alignment))
2474     return true;
2475   ParenLoc = Lex.getLoc();
2476   if (!EatIfPresent(lltok::rparen))
2477     return error(ParenLoc, "expected ')'");
2478   if (!isPowerOf2_32(Alignment))
2479     return error(AlignLoc, "stack alignment is not a power of two");
2480   return false;
2481 }
2482 
2483 /// parseIndexList - This parses the index list for an insert/extractvalue
2484 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2485 /// comma at the end of the line and find that it is followed by metadata.
2486 /// Clients that don't allow metadata can call the version of this function that
2487 /// only takes one argument.
2488 ///
2489 /// parseIndexList
2490 ///    ::=  (',' uint32)+
2491 ///
2492 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices,
2493                               bool &AteExtraComma) {
2494   AteExtraComma = false;
2495 
2496   if (Lex.getKind() != lltok::comma)
2497     return tokError("expected ',' as start of index list");
2498 
2499   while (EatIfPresent(lltok::comma)) {
2500     if (Lex.getKind() == lltok::MetadataVar) {
2501       if (Indices.empty())
2502         return tokError("expected index");
2503       AteExtraComma = true;
2504       return false;
2505     }
2506     unsigned Idx = 0;
2507     if (parseUInt32(Idx))
2508       return true;
2509     Indices.push_back(Idx);
2510   }
2511 
2512   return false;
2513 }
2514 
2515 //===----------------------------------------------------------------------===//
2516 // Type Parsing.
2517 //===----------------------------------------------------------------------===//
2518 
2519 /// parseType - parse a type.
2520 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2521   SMLoc TypeLoc = Lex.getLoc();
2522   switch (Lex.getKind()) {
2523   default:
2524     return tokError(Msg);
2525   case lltok::Type:
2526     // Type ::= 'float' | 'void' (etc)
2527     Result = Lex.getTyVal();
2528     Lex.Lex();
2529     break;
2530   case lltok::lbrace:
2531     // Type ::= StructType
2532     if (parseAnonStructType(Result, false))
2533       return true;
2534     break;
2535   case lltok::lsquare:
2536     // Type ::= '[' ... ']'
2537     Lex.Lex(); // eat the lsquare.
2538     if (parseArrayVectorType(Result, false))
2539       return true;
2540     break;
2541   case lltok::less: // Either vector or packed struct.
2542     // Type ::= '<' ... '>'
2543     Lex.Lex();
2544     if (Lex.getKind() == lltok::lbrace) {
2545       if (parseAnonStructType(Result, true) ||
2546           parseToken(lltok::greater, "expected '>' at end of packed struct"))
2547         return true;
2548     } else if (parseArrayVectorType(Result, true))
2549       return true;
2550     break;
2551   case lltok::LocalVar: {
2552     // Type ::= %foo
2553     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2554 
2555     // If the type hasn't been defined yet, create a forward definition and
2556     // remember where that forward def'n was seen (in case it never is defined).
2557     if (!Entry.first) {
2558       Entry.first = StructType::create(Context, Lex.getStrVal());
2559       Entry.second = Lex.getLoc();
2560     }
2561     Result = Entry.first;
2562     Lex.Lex();
2563     break;
2564   }
2565 
2566   case lltok::LocalVarID: {
2567     // Type ::= %4
2568     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2569 
2570     // If the type hasn't been defined yet, create a forward definition and
2571     // remember where that forward def'n was seen (in case it never is defined).
2572     if (!Entry.first) {
2573       Entry.first = StructType::create(Context);
2574       Entry.second = Lex.getLoc();
2575     }
2576     Result = Entry.first;
2577     Lex.Lex();
2578     break;
2579   }
2580   }
2581 
2582   if (Result->isPointerTy() && cast<PointerType>(Result)->isOpaque()) {
2583     unsigned AddrSpace;
2584     if (parseOptionalAddrSpace(AddrSpace))
2585       return true;
2586     Result = PointerType::get(getContext(), AddrSpace);
2587   }
2588 
2589   // parse the type suffixes.
2590   while (true) {
2591     switch (Lex.getKind()) {
2592     // End of type.
2593     default:
2594       if (!AllowVoid && Result->isVoidTy())
2595         return error(TypeLoc, "void type only allowed for function results");
2596       return false;
2597 
2598     // Type ::= Type '*'
2599     case lltok::star:
2600       if (Result->isLabelTy())
2601         return tokError("basic block pointers are invalid");
2602       if (Result->isVoidTy())
2603         return tokError("pointers to void are invalid - use i8* instead");
2604       if (!PointerType::isValidElementType(Result))
2605         return tokError("pointer to this type is invalid");
2606       Result = PointerType::getUnqual(Result);
2607       Lex.Lex();
2608       break;
2609 
2610     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2611     case lltok::kw_addrspace: {
2612       if (Result->isLabelTy())
2613         return tokError("basic block pointers are invalid");
2614       if (Result->isVoidTy())
2615         return tokError("pointers to void are invalid; use i8* instead");
2616       if (!PointerType::isValidElementType(Result))
2617         return tokError("pointer to this type is invalid");
2618       unsigned AddrSpace;
2619       if (parseOptionalAddrSpace(AddrSpace) ||
2620           parseToken(lltok::star, "expected '*' in address space"))
2621         return true;
2622 
2623       Result = PointerType::get(Result, AddrSpace);
2624       break;
2625     }
2626 
2627     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2628     case lltok::lparen:
2629       if (parseFunctionType(Result))
2630         return true;
2631       break;
2632     }
2633   }
2634 }
2635 
2636 /// parseParameterList
2637 ///    ::= '(' ')'
2638 ///    ::= '(' Arg (',' Arg)* ')'
2639 ///  Arg
2640 ///    ::= Type OptionalAttributes Value OptionalAttributes
2641 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2642                                   PerFunctionState &PFS, bool IsMustTailCall,
2643                                   bool InVarArgsFunc) {
2644   if (parseToken(lltok::lparen, "expected '(' in call"))
2645     return true;
2646 
2647   while (Lex.getKind() != lltok::rparen) {
2648     // If this isn't the first argument, we need a comma.
2649     if (!ArgList.empty() &&
2650         parseToken(lltok::comma, "expected ',' in argument list"))
2651       return true;
2652 
2653     // parse an ellipsis if this is a musttail call in a variadic function.
2654     if (Lex.getKind() == lltok::dotdotdot) {
2655       const char *Msg = "unexpected ellipsis in argument list for ";
2656       if (!IsMustTailCall)
2657         return tokError(Twine(Msg) + "non-musttail call");
2658       if (!InVarArgsFunc)
2659         return tokError(Twine(Msg) + "musttail call in non-varargs function");
2660       Lex.Lex();  // Lex the '...', it is purely for readability.
2661       return parseToken(lltok::rparen, "expected ')' at end of argument list");
2662     }
2663 
2664     // parse the argument.
2665     LocTy ArgLoc;
2666     Type *ArgTy = nullptr;
2667     AttrBuilder ArgAttrs;
2668     Value *V;
2669     if (parseType(ArgTy, ArgLoc))
2670       return true;
2671 
2672     if (ArgTy->isMetadataTy()) {
2673       if (parseMetadataAsValue(V, PFS))
2674         return true;
2675     } else {
2676       // Otherwise, handle normal operands.
2677       if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS))
2678         return true;
2679     }
2680     ArgList.push_back(ParamInfo(
2681         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2682   }
2683 
2684   if (IsMustTailCall && InVarArgsFunc)
2685     return tokError("expected '...' at end of argument list for musttail call "
2686                     "in varargs function");
2687 
2688   Lex.Lex();  // Lex the ')'.
2689   return false;
2690 }
2691 
2692 /// parseRequiredTypeAttr
2693 ///   ::= attrname(<ty>)
2694 bool LLParser::parseRequiredTypeAttr(Type *&Result, lltok::Kind AttrName) {
2695   Result = nullptr;
2696   if (!EatIfPresent(AttrName))
2697     return true;
2698   if (!EatIfPresent(lltok::lparen))
2699     return error(Lex.getLoc(), "expected '('");
2700   if (parseType(Result))
2701     return true;
2702   if (!EatIfPresent(lltok::rparen))
2703     return error(Lex.getLoc(), "expected ')'");
2704   return false;
2705 }
2706 
2707 /// parsePreallocated
2708 ///   ::= preallocated(<ty>)
2709 bool LLParser::parsePreallocated(Type *&Result) {
2710   return parseRequiredTypeAttr(Result, lltok::kw_preallocated);
2711 }
2712 
2713 /// parseInalloca
2714 ///   ::= inalloca(<ty>)
2715 bool LLParser::parseInalloca(Type *&Result) {
2716   return parseRequiredTypeAttr(Result, lltok::kw_inalloca);
2717 }
2718 
2719 /// parseByRef
2720 ///   ::= byref(<type>)
2721 bool LLParser::parseByRef(Type *&Result) {
2722   return parseRequiredTypeAttr(Result, lltok::kw_byref);
2723 }
2724 
2725 /// parseOptionalOperandBundles
2726 ///    ::= /*empty*/
2727 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2728 ///
2729 /// OperandBundle
2730 ///    ::= bundle-tag '(' ')'
2731 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2732 ///
2733 /// bundle-tag ::= String Constant
2734 bool LLParser::parseOptionalOperandBundles(
2735     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2736   LocTy BeginLoc = Lex.getLoc();
2737   if (!EatIfPresent(lltok::lsquare))
2738     return false;
2739 
2740   while (Lex.getKind() != lltok::rsquare) {
2741     // If this isn't the first operand bundle, we need a comma.
2742     if (!BundleList.empty() &&
2743         parseToken(lltok::comma, "expected ',' in input list"))
2744       return true;
2745 
2746     std::string Tag;
2747     if (parseStringConstant(Tag))
2748       return true;
2749 
2750     if (parseToken(lltok::lparen, "expected '(' in operand bundle"))
2751       return true;
2752 
2753     std::vector<Value *> Inputs;
2754     while (Lex.getKind() != lltok::rparen) {
2755       // If this isn't the first input, we need a comma.
2756       if (!Inputs.empty() &&
2757           parseToken(lltok::comma, "expected ',' in input list"))
2758         return true;
2759 
2760       Type *Ty = nullptr;
2761       Value *Input = nullptr;
2762       if (parseType(Ty) || parseValue(Ty, Input, PFS))
2763         return true;
2764       Inputs.push_back(Input);
2765     }
2766 
2767     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2768 
2769     Lex.Lex(); // Lex the ')'.
2770   }
2771 
2772   if (BundleList.empty())
2773     return error(BeginLoc, "operand bundle set must not be empty");
2774 
2775   Lex.Lex(); // Lex the ']'.
2776   return false;
2777 }
2778 
2779 /// parseArgumentList - parse the argument list for a function type or function
2780 /// prototype.
2781 ///   ::= '(' ArgTypeListI ')'
2782 /// ArgTypeListI
2783 ///   ::= /*empty*/
2784 ///   ::= '...'
2785 ///   ::= ArgTypeList ',' '...'
2786 ///   ::= ArgType (',' ArgType)*
2787 ///
2788 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2789                                  bool &IsVarArg) {
2790   unsigned CurValID = 0;
2791   IsVarArg = false;
2792   assert(Lex.getKind() == lltok::lparen);
2793   Lex.Lex(); // eat the (.
2794 
2795   if (Lex.getKind() == lltok::rparen) {
2796     // empty
2797   } else if (Lex.getKind() == lltok::dotdotdot) {
2798     IsVarArg = true;
2799     Lex.Lex();
2800   } else {
2801     LocTy TypeLoc = Lex.getLoc();
2802     Type *ArgTy = nullptr;
2803     AttrBuilder Attrs;
2804     std::string Name;
2805 
2806     if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2807       return true;
2808 
2809     if (ArgTy->isVoidTy())
2810       return error(TypeLoc, "argument can not have void type");
2811 
2812     if (Lex.getKind() == lltok::LocalVar) {
2813       Name = Lex.getStrVal();
2814       Lex.Lex();
2815     } else if (Lex.getKind() == lltok::LocalVarID) {
2816       if (Lex.getUIntVal() != CurValID)
2817         return error(TypeLoc, "argument expected to be numbered '%" +
2818                                   Twine(CurValID) + "'");
2819       ++CurValID;
2820       Lex.Lex();
2821     }
2822 
2823     if (!FunctionType::isValidArgumentType(ArgTy))
2824       return error(TypeLoc, "invalid type for function argument");
2825 
2826     ArgList.emplace_back(TypeLoc, ArgTy,
2827                          AttributeSet::get(ArgTy->getContext(), Attrs),
2828                          std::move(Name));
2829 
2830     while (EatIfPresent(lltok::comma)) {
2831       // Handle ... at end of arg list.
2832       if (EatIfPresent(lltok::dotdotdot)) {
2833         IsVarArg = true;
2834         break;
2835       }
2836 
2837       // Otherwise must be an argument type.
2838       TypeLoc = Lex.getLoc();
2839       if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2840         return true;
2841 
2842       if (ArgTy->isVoidTy())
2843         return error(TypeLoc, "argument can not have void type");
2844 
2845       if (Lex.getKind() == lltok::LocalVar) {
2846         Name = Lex.getStrVal();
2847         Lex.Lex();
2848       } else {
2849         if (Lex.getKind() == lltok::LocalVarID) {
2850           if (Lex.getUIntVal() != CurValID)
2851             return error(TypeLoc, "argument expected to be numbered '%" +
2852                                       Twine(CurValID) + "'");
2853           Lex.Lex();
2854         }
2855         ++CurValID;
2856         Name = "";
2857       }
2858 
2859       if (!ArgTy->isFirstClassType())
2860         return error(TypeLoc, "invalid type for function argument");
2861 
2862       ArgList.emplace_back(TypeLoc, ArgTy,
2863                            AttributeSet::get(ArgTy->getContext(), Attrs),
2864                            std::move(Name));
2865     }
2866   }
2867 
2868   return parseToken(lltok::rparen, "expected ')' at end of argument list");
2869 }
2870 
2871 /// parseFunctionType
2872 ///  ::= Type ArgumentList OptionalAttrs
2873 bool LLParser::parseFunctionType(Type *&Result) {
2874   assert(Lex.getKind() == lltok::lparen);
2875 
2876   if (!FunctionType::isValidReturnType(Result))
2877     return tokError("invalid function return type");
2878 
2879   SmallVector<ArgInfo, 8> ArgList;
2880   bool IsVarArg;
2881   if (parseArgumentList(ArgList, IsVarArg))
2882     return true;
2883 
2884   // Reject names on the arguments lists.
2885   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2886     if (!ArgList[i].Name.empty())
2887       return error(ArgList[i].Loc, "argument name invalid in function type");
2888     if (ArgList[i].Attrs.hasAttributes())
2889       return error(ArgList[i].Loc,
2890                    "argument attributes invalid in function type");
2891   }
2892 
2893   SmallVector<Type*, 16> ArgListTy;
2894   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2895     ArgListTy.push_back(ArgList[i].Ty);
2896 
2897   Result = FunctionType::get(Result, ArgListTy, IsVarArg);
2898   return false;
2899 }
2900 
2901 /// parseAnonStructType - parse an anonymous struct type, which is inlined into
2902 /// other structs.
2903 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) {
2904   SmallVector<Type*, 8> Elts;
2905   if (parseStructBody(Elts))
2906     return true;
2907 
2908   Result = StructType::get(Context, Elts, Packed);
2909   return false;
2910 }
2911 
2912 /// parseStructDefinition - parse a struct in a 'type' definition.
2913 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name,
2914                                      std::pair<Type *, LocTy> &Entry,
2915                                      Type *&ResultTy) {
2916   // If the type was already defined, diagnose the redefinition.
2917   if (Entry.first && !Entry.second.isValid())
2918     return error(TypeLoc, "redefinition of type");
2919 
2920   // If we have opaque, just return without filling in the definition for the
2921   // struct.  This counts as a definition as far as the .ll file goes.
2922   if (EatIfPresent(lltok::kw_opaque)) {
2923     // This type is being defined, so clear the location to indicate this.
2924     Entry.second = SMLoc();
2925 
2926     // If this type number has never been uttered, create it.
2927     if (!Entry.first)
2928       Entry.first = StructType::create(Context, Name);
2929     ResultTy = Entry.first;
2930     return false;
2931   }
2932 
2933   // If the type starts with '<', then it is either a packed struct or a vector.
2934   bool isPacked = EatIfPresent(lltok::less);
2935 
2936   // If we don't have a struct, then we have a random type alias, which we
2937   // accept for compatibility with old files.  These types are not allowed to be
2938   // forward referenced and not allowed to be recursive.
2939   if (Lex.getKind() != lltok::lbrace) {
2940     if (Entry.first)
2941       return error(TypeLoc, "forward references to non-struct type");
2942 
2943     ResultTy = nullptr;
2944     if (isPacked)
2945       return parseArrayVectorType(ResultTy, true);
2946     return parseType(ResultTy);
2947   }
2948 
2949   // This type is being defined, so clear the location to indicate this.
2950   Entry.second = SMLoc();
2951 
2952   // If this type number has never been uttered, create it.
2953   if (!Entry.first)
2954     Entry.first = StructType::create(Context, Name);
2955 
2956   StructType *STy = cast<StructType>(Entry.first);
2957 
2958   SmallVector<Type*, 8> Body;
2959   if (parseStructBody(Body) ||
2960       (isPacked && parseToken(lltok::greater, "expected '>' in packed struct")))
2961     return true;
2962 
2963   STy->setBody(Body, isPacked);
2964   ResultTy = STy;
2965   return false;
2966 }
2967 
2968 /// parseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2969 ///   StructType
2970 ///     ::= '{' '}'
2971 ///     ::= '{' Type (',' Type)* '}'
2972 ///     ::= '<' '{' '}' '>'
2973 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2974 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) {
2975   assert(Lex.getKind() == lltok::lbrace);
2976   Lex.Lex(); // Consume the '{'
2977 
2978   // Handle the empty struct.
2979   if (EatIfPresent(lltok::rbrace))
2980     return false;
2981 
2982   LocTy EltTyLoc = Lex.getLoc();
2983   Type *Ty = nullptr;
2984   if (parseType(Ty))
2985     return true;
2986   Body.push_back(Ty);
2987 
2988   if (!StructType::isValidElementType(Ty))
2989     return error(EltTyLoc, "invalid element type for struct");
2990 
2991   while (EatIfPresent(lltok::comma)) {
2992     EltTyLoc = Lex.getLoc();
2993     if (parseType(Ty))
2994       return true;
2995 
2996     if (!StructType::isValidElementType(Ty))
2997       return error(EltTyLoc, "invalid element type for struct");
2998 
2999     Body.push_back(Ty);
3000   }
3001 
3002   return parseToken(lltok::rbrace, "expected '}' at end of struct");
3003 }
3004 
3005 /// parseArrayVectorType - parse an array or vector type, assuming the first
3006 /// token has already been consumed.
3007 ///   Type
3008 ///     ::= '[' APSINTVAL 'x' Types ']'
3009 ///     ::= '<' APSINTVAL 'x' Types '>'
3010 ///     ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
3011 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) {
3012   bool Scalable = false;
3013 
3014   if (IsVector && Lex.getKind() == lltok::kw_vscale) {
3015     Lex.Lex(); // consume the 'vscale'
3016     if (parseToken(lltok::kw_x, "expected 'x' after vscale"))
3017       return true;
3018 
3019     Scalable = true;
3020   }
3021 
3022   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
3023       Lex.getAPSIntVal().getBitWidth() > 64)
3024     return tokError("expected number in address space");
3025 
3026   LocTy SizeLoc = Lex.getLoc();
3027   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
3028   Lex.Lex();
3029 
3030   if (parseToken(lltok::kw_x, "expected 'x' after element count"))
3031     return true;
3032 
3033   LocTy TypeLoc = Lex.getLoc();
3034   Type *EltTy = nullptr;
3035   if (parseType(EltTy))
3036     return true;
3037 
3038   if (parseToken(IsVector ? lltok::greater : lltok::rsquare,
3039                  "expected end of sequential type"))
3040     return true;
3041 
3042   if (IsVector) {
3043     if (Size == 0)
3044       return error(SizeLoc, "zero element vector is illegal");
3045     if ((unsigned)Size != Size)
3046       return error(SizeLoc, "size too large for vector");
3047     if (!VectorType::isValidElementType(EltTy))
3048       return error(TypeLoc, "invalid vector element type");
3049     Result = VectorType::get(EltTy, unsigned(Size), Scalable);
3050   } else {
3051     if (!ArrayType::isValidElementType(EltTy))
3052       return error(TypeLoc, "invalid array element type");
3053     Result = ArrayType::get(EltTy, Size);
3054   }
3055   return false;
3056 }
3057 
3058 //===----------------------------------------------------------------------===//
3059 // Function Semantic Analysis.
3060 //===----------------------------------------------------------------------===//
3061 
3062 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
3063                                              int functionNumber)
3064   : P(p), F(f), FunctionNumber(functionNumber) {
3065 
3066   // Insert unnamed arguments into the NumberedVals list.
3067   for (Argument &A : F.args())
3068     if (!A.hasName())
3069       NumberedVals.push_back(&A);
3070 }
3071 
3072 LLParser::PerFunctionState::~PerFunctionState() {
3073   // If there were any forward referenced non-basicblock values, delete them.
3074 
3075   for (const auto &P : ForwardRefVals) {
3076     if (isa<BasicBlock>(P.second.first))
3077       continue;
3078     P.second.first->replaceAllUsesWith(
3079         UndefValue::get(P.second.first->getType()));
3080     P.second.first->deleteValue();
3081   }
3082 
3083   for (const auto &P : ForwardRefValIDs) {
3084     if (isa<BasicBlock>(P.second.first))
3085       continue;
3086     P.second.first->replaceAllUsesWith(
3087         UndefValue::get(P.second.first->getType()));
3088     P.second.first->deleteValue();
3089   }
3090 }
3091 
3092 bool LLParser::PerFunctionState::finishFunction() {
3093   if (!ForwardRefVals.empty())
3094     return P.error(ForwardRefVals.begin()->second.second,
3095                    "use of undefined value '%" + ForwardRefVals.begin()->first +
3096                        "'");
3097   if (!ForwardRefValIDs.empty())
3098     return P.error(ForwardRefValIDs.begin()->second.second,
3099                    "use of undefined value '%" +
3100                        Twine(ForwardRefValIDs.begin()->first) + "'");
3101   return false;
3102 }
3103 
3104 /// getVal - Get a value with the specified name or ID, creating a
3105 /// forward reference record if needed.  This can return null if the value
3106 /// exists but does not have the right type.
3107 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty,
3108                                           LocTy Loc, bool IsCall) {
3109   // Look this name up in the normal function symbol table.
3110   Value *Val = F.getValueSymbolTable()->lookup(Name);
3111 
3112   // If this is a forward reference for the value, see if we already created a
3113   // forward ref record.
3114   if (!Val) {
3115     auto I = ForwardRefVals.find(Name);
3116     if (I != ForwardRefVals.end())
3117       Val = I->second.first;
3118   }
3119 
3120   // If we have the value in the symbol table or fwd-ref table, return it.
3121   if (Val)
3122     return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall);
3123 
3124   // Don't make placeholders with invalid type.
3125   if (!Ty->isFirstClassType()) {
3126     P.error(Loc, "invalid use of a non-first-class type");
3127     return nullptr;
3128   }
3129 
3130   // Otherwise, create a new forward reference for this value and remember it.
3131   Value *FwdVal;
3132   if (Ty->isLabelTy()) {
3133     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
3134   } else {
3135     FwdVal = new Argument(Ty, Name);
3136   }
3137 
3138   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
3139   return FwdVal;
3140 }
3141 
3142 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc,
3143                                           bool IsCall) {
3144   // Look this name up in the normal function symbol table.
3145   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
3146 
3147   // If this is a forward reference for the value, see if we already created a
3148   // forward ref record.
3149   if (!Val) {
3150     auto I = ForwardRefValIDs.find(ID);
3151     if (I != ForwardRefValIDs.end())
3152       Val = I->second.first;
3153   }
3154 
3155   // If we have the value in the symbol table or fwd-ref table, return it.
3156   if (Val)
3157     return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall);
3158 
3159   if (!Ty->isFirstClassType()) {
3160     P.error(Loc, "invalid use of a non-first-class type");
3161     return nullptr;
3162   }
3163 
3164   // Otherwise, create a new forward reference for this value and remember it.
3165   Value *FwdVal;
3166   if (Ty->isLabelTy()) {
3167     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
3168   } else {
3169     FwdVal = new Argument(Ty);
3170   }
3171 
3172   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
3173   return FwdVal;
3174 }
3175 
3176 /// setInstName - After an instruction is parsed and inserted into its
3177 /// basic block, this installs its name.
3178 bool LLParser::PerFunctionState::setInstName(int NameID,
3179                                              const std::string &NameStr,
3180                                              LocTy NameLoc, Instruction *Inst) {
3181   // If this instruction has void type, it cannot have a name or ID specified.
3182   if (Inst->getType()->isVoidTy()) {
3183     if (NameID != -1 || !NameStr.empty())
3184       return P.error(NameLoc, "instructions returning void cannot have a name");
3185     return false;
3186   }
3187 
3188   // If this was a numbered instruction, verify that the instruction is the
3189   // expected value and resolve any forward references.
3190   if (NameStr.empty()) {
3191     // If neither a name nor an ID was specified, just use the next ID.
3192     if (NameID == -1)
3193       NameID = NumberedVals.size();
3194 
3195     if (unsigned(NameID) != NumberedVals.size())
3196       return P.error(NameLoc, "instruction expected to be numbered '%" +
3197                                   Twine(NumberedVals.size()) + "'");
3198 
3199     auto FI = ForwardRefValIDs.find(NameID);
3200     if (FI != ForwardRefValIDs.end()) {
3201       Value *Sentinel = FI->second.first;
3202       if (Sentinel->getType() != Inst->getType())
3203         return P.error(NameLoc, "instruction forward referenced with type '" +
3204                                     getTypeString(FI->second.first->getType()) +
3205                                     "'");
3206 
3207       Sentinel->replaceAllUsesWith(Inst);
3208       Sentinel->deleteValue();
3209       ForwardRefValIDs.erase(FI);
3210     }
3211 
3212     NumberedVals.push_back(Inst);
3213     return false;
3214   }
3215 
3216   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
3217   auto FI = ForwardRefVals.find(NameStr);
3218   if (FI != ForwardRefVals.end()) {
3219     Value *Sentinel = FI->second.first;
3220     if (Sentinel->getType() != Inst->getType())
3221       return P.error(NameLoc, "instruction forward referenced with type '" +
3222                                   getTypeString(FI->second.first->getType()) +
3223                                   "'");
3224 
3225     Sentinel->replaceAllUsesWith(Inst);
3226     Sentinel->deleteValue();
3227     ForwardRefVals.erase(FI);
3228   }
3229 
3230   // Set the name on the instruction.
3231   Inst->setName(NameStr);
3232 
3233   if (Inst->getName() != NameStr)
3234     return P.error(NameLoc, "multiple definition of local value named '" +
3235                                 NameStr + "'");
3236   return false;
3237 }
3238 
3239 /// getBB - Get a basic block with the specified name or ID, creating a
3240 /// forward reference record if needed.
3241 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name,
3242                                               LocTy Loc) {
3243   return dyn_cast_or_null<BasicBlock>(
3244       getVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3245 }
3246 
3247 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) {
3248   return dyn_cast_or_null<BasicBlock>(
3249       getVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3250 }
3251 
3252 /// defineBB - Define the specified basic block, which is either named or
3253 /// unnamed.  If there is an error, this returns null otherwise it returns
3254 /// the block being defined.
3255 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name,
3256                                                  int NameID, LocTy Loc) {
3257   BasicBlock *BB;
3258   if (Name.empty()) {
3259     if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
3260       P.error(Loc, "label expected to be numbered '" +
3261                        Twine(NumberedVals.size()) + "'");
3262       return nullptr;
3263     }
3264     BB = getBB(NumberedVals.size(), Loc);
3265     if (!BB) {
3266       P.error(Loc, "unable to create block numbered '" +
3267                        Twine(NumberedVals.size()) + "'");
3268       return nullptr;
3269     }
3270   } else {
3271     BB = getBB(Name, Loc);
3272     if (!BB) {
3273       P.error(Loc, "unable to create block named '" + Name + "'");
3274       return nullptr;
3275     }
3276   }
3277 
3278   // Move the block to the end of the function.  Forward ref'd blocks are
3279   // inserted wherever they happen to be referenced.
3280   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
3281 
3282   // Remove the block from forward ref sets.
3283   if (Name.empty()) {
3284     ForwardRefValIDs.erase(NumberedVals.size());
3285     NumberedVals.push_back(BB);
3286   } else {
3287     // BB forward references are already in the function symbol table.
3288     ForwardRefVals.erase(Name);
3289   }
3290 
3291   return BB;
3292 }
3293 
3294 //===----------------------------------------------------------------------===//
3295 // Constants.
3296 //===----------------------------------------------------------------------===//
3297 
3298 /// parseValID - parse an abstract value that doesn't necessarily have a
3299 /// type implied.  For example, if we parse "4" we don't know what integer type
3300 /// it has.  The value will later be combined with its type and checked for
3301 /// sanity.  PFS is used to convert function-local operands of metadata (since
3302 /// metadata operands are not just parsed here but also converted to values).
3303 /// PFS can be null when we are not parsing metadata values inside a function.
3304 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS) {
3305   ID.Loc = Lex.getLoc();
3306   switch (Lex.getKind()) {
3307   default:
3308     return tokError("expected value token");
3309   case lltok::GlobalID:  // @42
3310     ID.UIntVal = Lex.getUIntVal();
3311     ID.Kind = ValID::t_GlobalID;
3312     break;
3313   case lltok::GlobalVar:  // @foo
3314     ID.StrVal = Lex.getStrVal();
3315     ID.Kind = ValID::t_GlobalName;
3316     break;
3317   case lltok::LocalVarID:  // %42
3318     ID.UIntVal = Lex.getUIntVal();
3319     ID.Kind = ValID::t_LocalID;
3320     break;
3321   case lltok::LocalVar:  // %foo
3322     ID.StrVal = Lex.getStrVal();
3323     ID.Kind = ValID::t_LocalName;
3324     break;
3325   case lltok::APSInt:
3326     ID.APSIntVal = Lex.getAPSIntVal();
3327     ID.Kind = ValID::t_APSInt;
3328     break;
3329   case lltok::APFloat:
3330     ID.APFloatVal = Lex.getAPFloatVal();
3331     ID.Kind = ValID::t_APFloat;
3332     break;
3333   case lltok::kw_true:
3334     ID.ConstantVal = ConstantInt::getTrue(Context);
3335     ID.Kind = ValID::t_Constant;
3336     break;
3337   case lltok::kw_false:
3338     ID.ConstantVal = ConstantInt::getFalse(Context);
3339     ID.Kind = ValID::t_Constant;
3340     break;
3341   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3342   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3343   case lltok::kw_poison: ID.Kind = ValID::t_Poison; break;
3344   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3345   case lltok::kw_none: ID.Kind = ValID::t_None; break;
3346 
3347   case lltok::lbrace: {
3348     // ValID ::= '{' ConstVector '}'
3349     Lex.Lex();
3350     SmallVector<Constant*, 16> Elts;
3351     if (parseGlobalValueVector(Elts) ||
3352         parseToken(lltok::rbrace, "expected end of struct constant"))
3353       return true;
3354 
3355     ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3356     ID.UIntVal = Elts.size();
3357     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3358            Elts.size() * sizeof(Elts[0]));
3359     ID.Kind = ValID::t_ConstantStruct;
3360     return false;
3361   }
3362   case lltok::less: {
3363     // ValID ::= '<' ConstVector '>'         --> Vector.
3364     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3365     Lex.Lex();
3366     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3367 
3368     SmallVector<Constant*, 16> Elts;
3369     LocTy FirstEltLoc = Lex.getLoc();
3370     if (parseGlobalValueVector(Elts) ||
3371         (isPackedStruct &&
3372          parseToken(lltok::rbrace, "expected end of packed struct")) ||
3373         parseToken(lltok::greater, "expected end of constant"))
3374       return true;
3375 
3376     if (isPackedStruct) {
3377       ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3378       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3379              Elts.size() * sizeof(Elts[0]));
3380       ID.UIntVal = Elts.size();
3381       ID.Kind = ValID::t_PackedConstantStruct;
3382       return false;
3383     }
3384 
3385     if (Elts.empty())
3386       return error(ID.Loc, "constant vector must not be empty");
3387 
3388     if (!Elts[0]->getType()->isIntegerTy() &&
3389         !Elts[0]->getType()->isFloatingPointTy() &&
3390         !Elts[0]->getType()->isPointerTy())
3391       return error(
3392           FirstEltLoc,
3393           "vector elements must have integer, pointer or floating point type");
3394 
3395     // Verify that all the vector elements have the same type.
3396     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3397       if (Elts[i]->getType() != Elts[0]->getType())
3398         return error(FirstEltLoc, "vector element #" + Twine(i) +
3399                                       " is not of type '" +
3400                                       getTypeString(Elts[0]->getType()));
3401 
3402     ID.ConstantVal = ConstantVector::get(Elts);
3403     ID.Kind = ValID::t_Constant;
3404     return false;
3405   }
3406   case lltok::lsquare: {   // Array Constant
3407     Lex.Lex();
3408     SmallVector<Constant*, 16> Elts;
3409     LocTy FirstEltLoc = Lex.getLoc();
3410     if (parseGlobalValueVector(Elts) ||
3411         parseToken(lltok::rsquare, "expected end of array constant"))
3412       return true;
3413 
3414     // Handle empty element.
3415     if (Elts.empty()) {
3416       // Use undef instead of an array because it's inconvenient to determine
3417       // the element type at this point, there being no elements to examine.
3418       ID.Kind = ValID::t_EmptyArray;
3419       return false;
3420     }
3421 
3422     if (!Elts[0]->getType()->isFirstClassType())
3423       return error(FirstEltLoc, "invalid array element type: " +
3424                                     getTypeString(Elts[0]->getType()));
3425 
3426     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3427 
3428     // Verify all elements are correct type!
3429     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3430       if (Elts[i]->getType() != Elts[0]->getType())
3431         return error(FirstEltLoc, "array element #" + Twine(i) +
3432                                       " is not of type '" +
3433                                       getTypeString(Elts[0]->getType()));
3434     }
3435 
3436     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3437     ID.Kind = ValID::t_Constant;
3438     return false;
3439   }
3440   case lltok::kw_c:  // c "foo"
3441     Lex.Lex();
3442     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3443                                                   false);
3444     if (parseToken(lltok::StringConstant, "expected string"))
3445       return true;
3446     ID.Kind = ValID::t_Constant;
3447     return false;
3448 
3449   case lltok::kw_asm: {
3450     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3451     //             STRINGCONSTANT
3452     bool HasSideEffect, AlignStack, AsmDialect, CanThrow;
3453     Lex.Lex();
3454     if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3455         parseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3456         parseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3457         parseOptionalToken(lltok::kw_unwind, CanThrow) ||
3458         parseStringConstant(ID.StrVal) ||
3459         parseToken(lltok::comma, "expected comma in inline asm expression") ||
3460         parseToken(lltok::StringConstant, "expected constraint string"))
3461       return true;
3462     ID.StrVal2 = Lex.getStrVal();
3463     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack) << 1) |
3464                  (unsigned(AsmDialect) << 2) | (unsigned(CanThrow) << 3);
3465     ID.Kind = ValID::t_InlineAsm;
3466     return false;
3467   }
3468 
3469   case lltok::kw_blockaddress: {
3470     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3471     Lex.Lex();
3472 
3473     ValID Fn, Label;
3474 
3475     if (parseToken(lltok::lparen, "expected '(' in block address expression") ||
3476         parseValID(Fn) ||
3477         parseToken(lltok::comma,
3478                    "expected comma in block address expression") ||
3479         parseValID(Label) ||
3480         parseToken(lltok::rparen, "expected ')' in block address expression"))
3481       return true;
3482 
3483     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3484       return error(Fn.Loc, "expected function name in blockaddress");
3485     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3486       return error(Label.Loc, "expected basic block name in blockaddress");
3487 
3488     // Try to find the function (but skip it if it's forward-referenced).
3489     GlobalValue *GV = nullptr;
3490     if (Fn.Kind == ValID::t_GlobalID) {
3491       if (Fn.UIntVal < NumberedVals.size())
3492         GV = NumberedVals[Fn.UIntVal];
3493     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3494       GV = M->getNamedValue(Fn.StrVal);
3495     }
3496     Function *F = nullptr;
3497     if (GV) {
3498       // Confirm that it's actually a function with a definition.
3499       if (!isa<Function>(GV))
3500         return error(Fn.Loc, "expected function name in blockaddress");
3501       F = cast<Function>(GV);
3502       if (F->isDeclaration())
3503         return error(Fn.Loc, "cannot take blockaddress inside a declaration");
3504     }
3505 
3506     if (!F) {
3507       // Make a global variable as a placeholder for this reference.
3508       GlobalValue *&FwdRef =
3509           ForwardRefBlockAddresses.insert(std::make_pair(
3510                                               std::move(Fn),
3511                                               std::map<ValID, GlobalValue *>()))
3512               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3513               .first->second;
3514       if (!FwdRef)
3515         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3516                                     GlobalValue::InternalLinkage, nullptr, "");
3517       ID.ConstantVal = FwdRef;
3518       ID.Kind = ValID::t_Constant;
3519       return false;
3520     }
3521 
3522     // We found the function; now find the basic block.  Don't use PFS, since we
3523     // might be inside a constant expression.
3524     BasicBlock *BB;
3525     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3526       if (Label.Kind == ValID::t_LocalID)
3527         BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc);
3528       else
3529         BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc);
3530       if (!BB)
3531         return error(Label.Loc, "referenced value is not a basic block");
3532     } else {
3533       if (Label.Kind == ValID::t_LocalID)
3534         return error(Label.Loc, "cannot take address of numeric label after "
3535                                 "the function is defined");
3536       BB = dyn_cast_or_null<BasicBlock>(
3537           F->getValueSymbolTable()->lookup(Label.StrVal));
3538       if (!BB)
3539         return error(Label.Loc, "referenced value is not a basic block");
3540     }
3541 
3542     ID.ConstantVal = BlockAddress::get(F, BB);
3543     ID.Kind = ValID::t_Constant;
3544     return false;
3545   }
3546 
3547   case lltok::kw_dso_local_equivalent: {
3548     // ValID ::= 'dso_local_equivalent' @foo
3549     Lex.Lex();
3550 
3551     ValID Fn;
3552 
3553     if (parseValID(Fn))
3554       return true;
3555 
3556     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3557       return error(Fn.Loc,
3558                    "expected global value name in dso_local_equivalent");
3559 
3560     // Try to find the function (but skip it if it's forward-referenced).
3561     GlobalValue *GV = nullptr;
3562     if (Fn.Kind == ValID::t_GlobalID) {
3563       if (Fn.UIntVal < NumberedVals.size())
3564         GV = NumberedVals[Fn.UIntVal];
3565     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3566       GV = M->getNamedValue(Fn.StrVal);
3567     }
3568 
3569     assert(GV && "Could not find a corresponding global variable");
3570 
3571     if (!GV->getValueType()->isFunctionTy())
3572       return error(Fn.Loc, "expected a function, alias to function, or ifunc "
3573                            "in dso_local_equivalent");
3574 
3575     ID.ConstantVal = DSOLocalEquivalent::get(GV);
3576     ID.Kind = ValID::t_Constant;
3577     return false;
3578   }
3579 
3580   case lltok::kw_trunc:
3581   case lltok::kw_zext:
3582   case lltok::kw_sext:
3583   case lltok::kw_fptrunc:
3584   case lltok::kw_fpext:
3585   case lltok::kw_bitcast:
3586   case lltok::kw_addrspacecast:
3587   case lltok::kw_uitofp:
3588   case lltok::kw_sitofp:
3589   case lltok::kw_fptoui:
3590   case lltok::kw_fptosi:
3591   case lltok::kw_inttoptr:
3592   case lltok::kw_ptrtoint: {
3593     unsigned Opc = Lex.getUIntVal();
3594     Type *DestTy = nullptr;
3595     Constant *SrcVal;
3596     Lex.Lex();
3597     if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3598         parseGlobalTypeAndValue(SrcVal) ||
3599         parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3600         parseType(DestTy) ||
3601         parseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3602       return true;
3603     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3604       return error(ID.Loc, "invalid cast opcode for cast from '" +
3605                                getTypeString(SrcVal->getType()) + "' to '" +
3606                                getTypeString(DestTy) + "'");
3607     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3608                                                  SrcVal, DestTy);
3609     ID.Kind = ValID::t_Constant;
3610     return false;
3611   }
3612   case lltok::kw_extractvalue: {
3613     Lex.Lex();
3614     Constant *Val;
3615     SmallVector<unsigned, 4> Indices;
3616     if (parseToken(lltok::lparen,
3617                    "expected '(' in extractvalue constantexpr") ||
3618         parseGlobalTypeAndValue(Val) || parseIndexList(Indices) ||
3619         parseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3620       return true;
3621 
3622     if (!Val->getType()->isAggregateType())
3623       return error(ID.Loc, "extractvalue operand must be aggregate type");
3624     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3625       return error(ID.Loc, "invalid indices for extractvalue");
3626     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3627     ID.Kind = ValID::t_Constant;
3628     return false;
3629   }
3630   case lltok::kw_insertvalue: {
3631     Lex.Lex();
3632     Constant *Val0, *Val1;
3633     SmallVector<unsigned, 4> Indices;
3634     if (parseToken(lltok::lparen, "expected '(' in insertvalue constantexpr") ||
3635         parseGlobalTypeAndValue(Val0) ||
3636         parseToken(lltok::comma,
3637                    "expected comma in insertvalue constantexpr") ||
3638         parseGlobalTypeAndValue(Val1) || parseIndexList(Indices) ||
3639         parseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3640       return true;
3641     if (!Val0->getType()->isAggregateType())
3642       return error(ID.Loc, "insertvalue operand must be aggregate type");
3643     Type *IndexedType =
3644         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3645     if (!IndexedType)
3646       return error(ID.Loc, "invalid indices for insertvalue");
3647     if (IndexedType != Val1->getType())
3648       return error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3649                                getTypeString(Val1->getType()) +
3650                                "' instead of '" + getTypeString(IndexedType) +
3651                                "'");
3652     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3653     ID.Kind = ValID::t_Constant;
3654     return false;
3655   }
3656   case lltok::kw_icmp:
3657   case lltok::kw_fcmp: {
3658     unsigned PredVal, Opc = Lex.getUIntVal();
3659     Constant *Val0, *Val1;
3660     Lex.Lex();
3661     if (parseCmpPredicate(PredVal, Opc) ||
3662         parseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3663         parseGlobalTypeAndValue(Val0) ||
3664         parseToken(lltok::comma, "expected comma in compare constantexpr") ||
3665         parseGlobalTypeAndValue(Val1) ||
3666         parseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3667       return true;
3668 
3669     if (Val0->getType() != Val1->getType())
3670       return error(ID.Loc, "compare operands must have the same type");
3671 
3672     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3673 
3674     if (Opc == Instruction::FCmp) {
3675       if (!Val0->getType()->isFPOrFPVectorTy())
3676         return error(ID.Loc, "fcmp requires floating point operands");
3677       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3678     } else {
3679       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3680       if (!Val0->getType()->isIntOrIntVectorTy() &&
3681           !Val0->getType()->isPtrOrPtrVectorTy())
3682         return error(ID.Loc, "icmp requires pointer or integer operands");
3683       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3684     }
3685     ID.Kind = ValID::t_Constant;
3686     return false;
3687   }
3688 
3689   // Unary Operators.
3690   case lltok::kw_fneg: {
3691     unsigned Opc = Lex.getUIntVal();
3692     Constant *Val;
3693     Lex.Lex();
3694     if (parseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3695         parseGlobalTypeAndValue(Val) ||
3696         parseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3697       return true;
3698 
3699     // Check that the type is valid for the operator.
3700     switch (Opc) {
3701     case Instruction::FNeg:
3702       if (!Val->getType()->isFPOrFPVectorTy())
3703         return error(ID.Loc, "constexpr requires fp operands");
3704       break;
3705     default: llvm_unreachable("Unknown unary operator!");
3706     }
3707     unsigned Flags = 0;
3708     Constant *C = ConstantExpr::get(Opc, Val, Flags);
3709     ID.ConstantVal = C;
3710     ID.Kind = ValID::t_Constant;
3711     return false;
3712   }
3713   // Binary Operators.
3714   case lltok::kw_add:
3715   case lltok::kw_fadd:
3716   case lltok::kw_sub:
3717   case lltok::kw_fsub:
3718   case lltok::kw_mul:
3719   case lltok::kw_fmul:
3720   case lltok::kw_udiv:
3721   case lltok::kw_sdiv:
3722   case lltok::kw_fdiv:
3723   case lltok::kw_urem:
3724   case lltok::kw_srem:
3725   case lltok::kw_frem:
3726   case lltok::kw_shl:
3727   case lltok::kw_lshr:
3728   case lltok::kw_ashr: {
3729     bool NUW = false;
3730     bool NSW = false;
3731     bool Exact = false;
3732     unsigned Opc = Lex.getUIntVal();
3733     Constant *Val0, *Val1;
3734     Lex.Lex();
3735     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3736         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3737       if (EatIfPresent(lltok::kw_nuw))
3738         NUW = true;
3739       if (EatIfPresent(lltok::kw_nsw)) {
3740         NSW = true;
3741         if (EatIfPresent(lltok::kw_nuw))
3742           NUW = true;
3743       }
3744     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3745                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3746       if (EatIfPresent(lltok::kw_exact))
3747         Exact = true;
3748     }
3749     if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3750         parseGlobalTypeAndValue(Val0) ||
3751         parseToken(lltok::comma, "expected comma in binary constantexpr") ||
3752         parseGlobalTypeAndValue(Val1) ||
3753         parseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3754       return true;
3755     if (Val0->getType() != Val1->getType())
3756       return error(ID.Loc, "operands of constexpr must have same type");
3757     // Check that the type is valid for the operator.
3758     switch (Opc) {
3759     case Instruction::Add:
3760     case Instruction::Sub:
3761     case Instruction::Mul:
3762     case Instruction::UDiv:
3763     case Instruction::SDiv:
3764     case Instruction::URem:
3765     case Instruction::SRem:
3766     case Instruction::Shl:
3767     case Instruction::AShr:
3768     case Instruction::LShr:
3769       if (!Val0->getType()->isIntOrIntVectorTy())
3770         return error(ID.Loc, "constexpr requires integer operands");
3771       break;
3772     case Instruction::FAdd:
3773     case Instruction::FSub:
3774     case Instruction::FMul:
3775     case Instruction::FDiv:
3776     case Instruction::FRem:
3777       if (!Val0->getType()->isFPOrFPVectorTy())
3778         return error(ID.Loc, "constexpr requires fp operands");
3779       break;
3780     default: llvm_unreachable("Unknown binary operator!");
3781     }
3782     unsigned Flags = 0;
3783     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3784     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3785     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3786     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3787     ID.ConstantVal = C;
3788     ID.Kind = ValID::t_Constant;
3789     return false;
3790   }
3791 
3792   // Logical Operations
3793   case lltok::kw_and:
3794   case lltok::kw_or:
3795   case lltok::kw_xor: {
3796     unsigned Opc = Lex.getUIntVal();
3797     Constant *Val0, *Val1;
3798     Lex.Lex();
3799     if (parseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3800         parseGlobalTypeAndValue(Val0) ||
3801         parseToken(lltok::comma, "expected comma in logical constantexpr") ||
3802         parseGlobalTypeAndValue(Val1) ||
3803         parseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3804       return true;
3805     if (Val0->getType() != Val1->getType())
3806       return error(ID.Loc, "operands of constexpr must have same type");
3807     if (!Val0->getType()->isIntOrIntVectorTy())
3808       return error(ID.Loc,
3809                    "constexpr requires integer or integer vector operands");
3810     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3811     ID.Kind = ValID::t_Constant;
3812     return false;
3813   }
3814 
3815   case lltok::kw_getelementptr:
3816   case lltok::kw_shufflevector:
3817   case lltok::kw_insertelement:
3818   case lltok::kw_extractelement:
3819   case lltok::kw_select: {
3820     unsigned Opc = Lex.getUIntVal();
3821     SmallVector<Constant*, 16> Elts;
3822     bool InBounds = false;
3823     Type *Ty;
3824     Lex.Lex();
3825 
3826     if (Opc == Instruction::GetElementPtr)
3827       InBounds = EatIfPresent(lltok::kw_inbounds);
3828 
3829     if (parseToken(lltok::lparen, "expected '(' in constantexpr"))
3830       return true;
3831 
3832     LocTy ExplicitTypeLoc = Lex.getLoc();
3833     if (Opc == Instruction::GetElementPtr) {
3834       if (parseType(Ty) ||
3835           parseToken(lltok::comma, "expected comma after getelementptr's type"))
3836         return true;
3837     }
3838 
3839     Optional<unsigned> InRangeOp;
3840     if (parseGlobalValueVector(
3841             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3842         parseToken(lltok::rparen, "expected ')' in constantexpr"))
3843       return true;
3844 
3845     if (Opc == Instruction::GetElementPtr) {
3846       if (Elts.size() == 0 ||
3847           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3848         return error(ID.Loc, "base of getelementptr must be a pointer");
3849 
3850       Type *BaseType = Elts[0]->getType();
3851       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3852       if (Ty != BasePointerType->getElementType()) {
3853         return error(
3854             ExplicitTypeLoc,
3855             typeComparisonErrorMessage(
3856                 "explicit pointee type doesn't match operand's pointee type",
3857                 Ty, BasePointerType->getElementType()));
3858       }
3859 
3860       unsigned GEPWidth =
3861           BaseType->isVectorTy()
3862               ? cast<FixedVectorType>(BaseType)->getNumElements()
3863               : 0;
3864 
3865       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3866       for (Constant *Val : Indices) {
3867         Type *ValTy = Val->getType();
3868         if (!ValTy->isIntOrIntVectorTy())
3869           return error(ID.Loc, "getelementptr index must be an integer");
3870         if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) {
3871           unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements();
3872           if (GEPWidth && (ValNumEl != GEPWidth))
3873             return error(
3874                 ID.Loc,
3875                 "getelementptr vector index has a wrong number of elements");
3876           // GEPWidth may have been unknown because the base is a scalar,
3877           // but it is known now.
3878           GEPWidth = ValNumEl;
3879         }
3880       }
3881 
3882       SmallPtrSet<Type*, 4> Visited;
3883       if (!Indices.empty() && !Ty->isSized(&Visited))
3884         return error(ID.Loc, "base element of getelementptr must be sized");
3885 
3886       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3887         return error(ID.Loc, "invalid getelementptr indices");
3888 
3889       if (InRangeOp) {
3890         if (*InRangeOp == 0)
3891           return error(ID.Loc,
3892                        "inrange keyword may not appear on pointer operand");
3893         --*InRangeOp;
3894       }
3895 
3896       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3897                                                       InBounds, InRangeOp);
3898     } else if (Opc == Instruction::Select) {
3899       if (Elts.size() != 3)
3900         return error(ID.Loc, "expected three operands to select");
3901       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3902                                                               Elts[2]))
3903         return error(ID.Loc, Reason);
3904       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3905     } else if (Opc == Instruction::ShuffleVector) {
3906       if (Elts.size() != 3)
3907         return error(ID.Loc, "expected three operands to shufflevector");
3908       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3909         return error(ID.Loc, "invalid operands to shufflevector");
3910       SmallVector<int, 16> Mask;
3911       ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask);
3912       ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask);
3913     } else if (Opc == Instruction::ExtractElement) {
3914       if (Elts.size() != 2)
3915         return error(ID.Loc, "expected two operands to extractelement");
3916       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3917         return error(ID.Loc, "invalid extractelement operands");
3918       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3919     } else {
3920       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3921       if (Elts.size() != 3)
3922         return error(ID.Loc, "expected three operands to insertelement");
3923       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3924         return error(ID.Loc, "invalid insertelement operands");
3925       ID.ConstantVal =
3926                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3927     }
3928 
3929     ID.Kind = ValID::t_Constant;
3930     return false;
3931   }
3932   }
3933 
3934   Lex.Lex();
3935   return false;
3936 }
3937 
3938 /// parseGlobalValue - parse a global value with the specified type.
3939 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) {
3940   C = nullptr;
3941   ValID ID;
3942   Value *V = nullptr;
3943   bool Parsed = parseValID(ID) ||
3944                 convertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3945   if (V && !(C = dyn_cast<Constant>(V)))
3946     return error(ID.Loc, "global values must be constants");
3947   return Parsed;
3948 }
3949 
3950 bool LLParser::parseGlobalTypeAndValue(Constant *&V) {
3951   Type *Ty = nullptr;
3952   return parseType(Ty) || parseGlobalValue(Ty, V);
3953 }
3954 
3955 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3956   C = nullptr;
3957 
3958   LocTy KwLoc = Lex.getLoc();
3959   if (!EatIfPresent(lltok::kw_comdat))
3960     return false;
3961 
3962   if (EatIfPresent(lltok::lparen)) {
3963     if (Lex.getKind() != lltok::ComdatVar)
3964       return tokError("expected comdat variable");
3965     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3966     Lex.Lex();
3967     if (parseToken(lltok::rparen, "expected ')' after comdat var"))
3968       return true;
3969   } else {
3970     if (GlobalName.empty())
3971       return tokError("comdat cannot be unnamed");
3972     C = getComdat(std::string(GlobalName), KwLoc);
3973   }
3974 
3975   return false;
3976 }
3977 
3978 /// parseGlobalValueVector
3979 ///   ::= /*empty*/
3980 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3981 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3982                                       Optional<unsigned> *InRangeOp) {
3983   // Empty list.
3984   if (Lex.getKind() == lltok::rbrace ||
3985       Lex.getKind() == lltok::rsquare ||
3986       Lex.getKind() == lltok::greater ||
3987       Lex.getKind() == lltok::rparen)
3988     return false;
3989 
3990   do {
3991     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3992       *InRangeOp = Elts.size();
3993 
3994     Constant *C;
3995     if (parseGlobalTypeAndValue(C))
3996       return true;
3997     Elts.push_back(C);
3998   } while (EatIfPresent(lltok::comma));
3999 
4000   return false;
4001 }
4002 
4003 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) {
4004   SmallVector<Metadata *, 16> Elts;
4005   if (parseMDNodeVector(Elts))
4006     return true;
4007 
4008   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
4009   return false;
4010 }
4011 
4012 /// MDNode:
4013 ///  ::= !{ ... }
4014 ///  ::= !7
4015 ///  ::= !DILocation(...)
4016 bool LLParser::parseMDNode(MDNode *&N) {
4017   if (Lex.getKind() == lltok::MetadataVar)
4018     return parseSpecializedMDNode(N);
4019 
4020   return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N);
4021 }
4022 
4023 bool LLParser::parseMDNodeTail(MDNode *&N) {
4024   // !{ ... }
4025   if (Lex.getKind() == lltok::lbrace)
4026     return parseMDTuple(N);
4027 
4028   // !42
4029   return parseMDNodeID(N);
4030 }
4031 
4032 namespace {
4033 
4034 /// Structure to represent an optional metadata field.
4035 template <class FieldTy> struct MDFieldImpl {
4036   typedef MDFieldImpl ImplTy;
4037   FieldTy Val;
4038   bool Seen;
4039 
4040   void assign(FieldTy Val) {
4041     Seen = true;
4042     this->Val = std::move(Val);
4043   }
4044 
4045   explicit MDFieldImpl(FieldTy Default)
4046       : Val(std::move(Default)), Seen(false) {}
4047 };
4048 
4049 /// Structure to represent an optional metadata field that
4050 /// can be of either type (A or B) and encapsulates the
4051 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
4052 /// to reimplement the specifics for representing each Field.
4053 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
4054   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
4055   FieldTypeA A;
4056   FieldTypeB B;
4057   bool Seen;
4058 
4059   enum {
4060     IsInvalid = 0,
4061     IsTypeA = 1,
4062     IsTypeB = 2
4063   } WhatIs;
4064 
4065   void assign(FieldTypeA A) {
4066     Seen = true;
4067     this->A = std::move(A);
4068     WhatIs = IsTypeA;
4069   }
4070 
4071   void assign(FieldTypeB B) {
4072     Seen = true;
4073     this->B = std::move(B);
4074     WhatIs = IsTypeB;
4075   }
4076 
4077   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
4078       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
4079         WhatIs(IsInvalid) {}
4080 };
4081 
4082 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
4083   uint64_t Max;
4084 
4085   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
4086       : ImplTy(Default), Max(Max) {}
4087 };
4088 
4089 struct LineField : public MDUnsignedField {
4090   LineField() : MDUnsignedField(0, UINT32_MAX) {}
4091 };
4092 
4093 struct ColumnField : public MDUnsignedField {
4094   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
4095 };
4096 
4097 struct DwarfTagField : public MDUnsignedField {
4098   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
4099   DwarfTagField(dwarf::Tag DefaultTag)
4100       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
4101 };
4102 
4103 struct DwarfMacinfoTypeField : public MDUnsignedField {
4104   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
4105   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
4106     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
4107 };
4108 
4109 struct DwarfAttEncodingField : public MDUnsignedField {
4110   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
4111 };
4112 
4113 struct DwarfVirtualityField : public MDUnsignedField {
4114   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
4115 };
4116 
4117 struct DwarfLangField : public MDUnsignedField {
4118   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
4119 };
4120 
4121 struct DwarfCCField : public MDUnsignedField {
4122   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
4123 };
4124 
4125 struct EmissionKindField : public MDUnsignedField {
4126   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
4127 };
4128 
4129 struct NameTableKindField : public MDUnsignedField {
4130   NameTableKindField()
4131       : MDUnsignedField(
4132             0, (unsigned)
4133                    DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
4134 };
4135 
4136 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
4137   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
4138 };
4139 
4140 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
4141   DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
4142 };
4143 
4144 struct MDAPSIntField : public MDFieldImpl<APSInt> {
4145   MDAPSIntField() : ImplTy(APSInt()) {}
4146 };
4147 
4148 struct MDSignedField : public MDFieldImpl<int64_t> {
4149   int64_t Min;
4150   int64_t Max;
4151 
4152   MDSignedField(int64_t Default = 0)
4153       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
4154   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
4155       : ImplTy(Default), Min(Min), Max(Max) {}
4156 };
4157 
4158 struct MDBoolField : public MDFieldImpl<bool> {
4159   MDBoolField(bool Default = false) : ImplTy(Default) {}
4160 };
4161 
4162 struct MDField : public MDFieldImpl<Metadata *> {
4163   bool AllowNull;
4164 
4165   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
4166 };
4167 
4168 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
4169   MDConstant() : ImplTy(nullptr) {}
4170 };
4171 
4172 struct MDStringField : public MDFieldImpl<MDString *> {
4173   bool AllowEmpty;
4174   MDStringField(bool AllowEmpty = true)
4175       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
4176 };
4177 
4178 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
4179   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
4180 };
4181 
4182 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
4183   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
4184 };
4185 
4186 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
4187   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
4188       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
4189 
4190   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
4191                     bool AllowNull = true)
4192       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
4193 
4194   bool isMDSignedField() const { return WhatIs == IsTypeA; }
4195   bool isMDField() const { return WhatIs == IsTypeB; }
4196   int64_t getMDSignedValue() const {
4197     assert(isMDSignedField() && "Wrong field type");
4198     return A.Val;
4199   }
4200   Metadata *getMDFieldValue() const {
4201     assert(isMDField() && "Wrong field type");
4202     return B.Val;
4203   }
4204 };
4205 
4206 struct MDSignedOrUnsignedField
4207     : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
4208   MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
4209 
4210   bool isMDSignedField() const { return WhatIs == IsTypeA; }
4211   bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
4212   int64_t getMDSignedValue() const {
4213     assert(isMDSignedField() && "Wrong field type");
4214     return A.Val;
4215   }
4216   uint64_t getMDUnsignedValue() const {
4217     assert(isMDUnsignedField() && "Wrong field type");
4218     return B.Val;
4219   }
4220 };
4221 
4222 } // end anonymous namespace
4223 
4224 namespace llvm {
4225 
4226 template <>
4227 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) {
4228   if (Lex.getKind() != lltok::APSInt)
4229     return tokError("expected integer");
4230 
4231   Result.assign(Lex.getAPSIntVal());
4232   Lex.Lex();
4233   return false;
4234 }
4235 
4236 template <>
4237 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4238                             MDUnsignedField &Result) {
4239   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4240     return tokError("expected unsigned integer");
4241 
4242   auto &U = Lex.getAPSIntVal();
4243   if (U.ugt(Result.Max))
4244     return tokError("value for '" + Name + "' too large, limit is " +
4245                     Twine(Result.Max));
4246   Result.assign(U.getZExtValue());
4247   assert(Result.Val <= Result.Max && "Expected value in range");
4248   Lex.Lex();
4249   return false;
4250 }
4251 
4252 template <>
4253 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) {
4254   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4255 }
4256 template <>
4257 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
4258   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4259 }
4260 
4261 template <>
4262 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
4263   if (Lex.getKind() == lltok::APSInt)
4264     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4265 
4266   if (Lex.getKind() != lltok::DwarfTag)
4267     return tokError("expected DWARF tag");
4268 
4269   unsigned Tag = dwarf::getTag(Lex.getStrVal());
4270   if (Tag == dwarf::DW_TAG_invalid)
4271     return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
4272   assert(Tag <= Result.Max && "Expected valid DWARF tag");
4273 
4274   Result.assign(Tag);
4275   Lex.Lex();
4276   return false;
4277 }
4278 
4279 template <>
4280 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4281                             DwarfMacinfoTypeField &Result) {
4282   if (Lex.getKind() == lltok::APSInt)
4283     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4284 
4285   if (Lex.getKind() != lltok::DwarfMacinfo)
4286     return tokError("expected DWARF macinfo type");
4287 
4288   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
4289   if (Macinfo == dwarf::DW_MACINFO_invalid)
4290     return tokError("invalid DWARF macinfo type" + Twine(" '") +
4291                     Lex.getStrVal() + "'");
4292   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
4293 
4294   Result.assign(Macinfo);
4295   Lex.Lex();
4296   return false;
4297 }
4298 
4299 template <>
4300 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4301                             DwarfVirtualityField &Result) {
4302   if (Lex.getKind() == lltok::APSInt)
4303     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4304 
4305   if (Lex.getKind() != lltok::DwarfVirtuality)
4306     return tokError("expected DWARF virtuality code");
4307 
4308   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
4309   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
4310     return tokError("invalid DWARF virtuality code" + Twine(" '") +
4311                     Lex.getStrVal() + "'");
4312   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
4313   Result.assign(Virtuality);
4314   Lex.Lex();
4315   return false;
4316 }
4317 
4318 template <>
4319 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
4320   if (Lex.getKind() == lltok::APSInt)
4321     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4322 
4323   if (Lex.getKind() != lltok::DwarfLang)
4324     return tokError("expected DWARF language");
4325 
4326   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
4327   if (!Lang)
4328     return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
4329                     "'");
4330   assert(Lang <= Result.Max && "Expected valid DWARF language");
4331   Result.assign(Lang);
4332   Lex.Lex();
4333   return false;
4334 }
4335 
4336 template <>
4337 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4338   if (Lex.getKind() == lltok::APSInt)
4339     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4340 
4341   if (Lex.getKind() != lltok::DwarfCC)
4342     return tokError("expected DWARF calling convention");
4343 
4344   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
4345   if (!CC)
4346     return tokError("invalid DWARF calling convention" + Twine(" '") +
4347                     Lex.getStrVal() + "'");
4348   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4349   Result.assign(CC);
4350   Lex.Lex();
4351   return false;
4352 }
4353 
4354 template <>
4355 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4356                             EmissionKindField &Result) {
4357   if (Lex.getKind() == lltok::APSInt)
4358     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4359 
4360   if (Lex.getKind() != lltok::EmissionKind)
4361     return tokError("expected emission kind");
4362 
4363   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4364   if (!Kind)
4365     return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4366                     "'");
4367   assert(*Kind <= Result.Max && "Expected valid emission kind");
4368   Result.assign(*Kind);
4369   Lex.Lex();
4370   return false;
4371 }
4372 
4373 template <>
4374 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4375                             NameTableKindField &Result) {
4376   if (Lex.getKind() == lltok::APSInt)
4377     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4378 
4379   if (Lex.getKind() != lltok::NameTableKind)
4380     return tokError("expected nameTable kind");
4381 
4382   auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4383   if (!Kind)
4384     return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4385                     "'");
4386   assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4387   Result.assign((unsigned)*Kind);
4388   Lex.Lex();
4389   return false;
4390 }
4391 
4392 template <>
4393 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4394                             DwarfAttEncodingField &Result) {
4395   if (Lex.getKind() == lltok::APSInt)
4396     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4397 
4398   if (Lex.getKind() != lltok::DwarfAttEncoding)
4399     return tokError("expected DWARF type attribute encoding");
4400 
4401   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4402   if (!Encoding)
4403     return tokError("invalid DWARF type attribute encoding" + Twine(" '") +
4404                     Lex.getStrVal() + "'");
4405   assert(Encoding <= Result.Max && "Expected valid DWARF language");
4406   Result.assign(Encoding);
4407   Lex.Lex();
4408   return false;
4409 }
4410 
4411 /// DIFlagField
4412 ///  ::= uint32
4413 ///  ::= DIFlagVector
4414 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4415 template <>
4416 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4417 
4418   // parser for a single flag.
4419   auto parseFlag = [&](DINode::DIFlags &Val) {
4420     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4421       uint32_t TempVal = static_cast<uint32_t>(Val);
4422       bool Res = parseUInt32(TempVal);
4423       Val = static_cast<DINode::DIFlags>(TempVal);
4424       return Res;
4425     }
4426 
4427     if (Lex.getKind() != lltok::DIFlag)
4428       return tokError("expected debug info flag");
4429 
4430     Val = DINode::getFlag(Lex.getStrVal());
4431     if (!Val)
4432       return tokError(Twine("invalid debug info flag flag '") +
4433                       Lex.getStrVal() + "'");
4434     Lex.Lex();
4435     return false;
4436   };
4437 
4438   // parse the flags and combine them together.
4439   DINode::DIFlags Combined = DINode::FlagZero;
4440   do {
4441     DINode::DIFlags Val;
4442     if (parseFlag(Val))
4443       return true;
4444     Combined |= Val;
4445   } while (EatIfPresent(lltok::bar));
4446 
4447   Result.assign(Combined);
4448   return false;
4449 }
4450 
4451 /// DISPFlagField
4452 ///  ::= uint32
4453 ///  ::= DISPFlagVector
4454 ///  ::= DISPFlagVector '|' DISPFlag* '|' uint32
4455 template <>
4456 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4457 
4458   // parser for a single flag.
4459   auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4460     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4461       uint32_t TempVal = static_cast<uint32_t>(Val);
4462       bool Res = parseUInt32(TempVal);
4463       Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4464       return Res;
4465     }
4466 
4467     if (Lex.getKind() != lltok::DISPFlag)
4468       return tokError("expected debug info flag");
4469 
4470     Val = DISubprogram::getFlag(Lex.getStrVal());
4471     if (!Val)
4472       return tokError(Twine("invalid subprogram debug info flag '") +
4473                       Lex.getStrVal() + "'");
4474     Lex.Lex();
4475     return false;
4476   };
4477 
4478   // parse the flags and combine them together.
4479   DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4480   do {
4481     DISubprogram::DISPFlags Val;
4482     if (parseFlag(Val))
4483       return true;
4484     Combined |= Val;
4485   } while (EatIfPresent(lltok::bar));
4486 
4487   Result.assign(Combined);
4488   return false;
4489 }
4490 
4491 template <>
4492 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) {
4493   if (Lex.getKind() != lltok::APSInt)
4494     return tokError("expected signed integer");
4495 
4496   auto &S = Lex.getAPSIntVal();
4497   if (S < Result.Min)
4498     return tokError("value for '" + Name + "' too small, limit is " +
4499                     Twine(Result.Min));
4500   if (S > Result.Max)
4501     return tokError("value for '" + Name + "' too large, limit is " +
4502                     Twine(Result.Max));
4503   Result.assign(S.getExtValue());
4504   assert(Result.Val >= Result.Min && "Expected value in range");
4505   assert(Result.Val <= Result.Max && "Expected value in range");
4506   Lex.Lex();
4507   return false;
4508 }
4509 
4510 template <>
4511 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4512   switch (Lex.getKind()) {
4513   default:
4514     return tokError("expected 'true' or 'false'");
4515   case lltok::kw_true:
4516     Result.assign(true);
4517     break;
4518   case lltok::kw_false:
4519     Result.assign(false);
4520     break;
4521   }
4522   Lex.Lex();
4523   return false;
4524 }
4525 
4526 template <>
4527 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4528   if (Lex.getKind() == lltok::kw_null) {
4529     if (!Result.AllowNull)
4530       return tokError("'" + Name + "' cannot be null");
4531     Lex.Lex();
4532     Result.assign(nullptr);
4533     return false;
4534   }
4535 
4536   Metadata *MD;
4537   if (parseMetadata(MD, nullptr))
4538     return true;
4539 
4540   Result.assign(MD);
4541   return false;
4542 }
4543 
4544 template <>
4545 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4546                             MDSignedOrMDField &Result) {
4547   // Try to parse a signed int.
4548   if (Lex.getKind() == lltok::APSInt) {
4549     MDSignedField Res = Result.A;
4550     if (!parseMDField(Loc, Name, Res)) {
4551       Result.assign(Res);
4552       return false;
4553     }
4554     return true;
4555   }
4556 
4557   // Otherwise, try to parse as an MDField.
4558   MDField Res = Result.B;
4559   if (!parseMDField(Loc, Name, Res)) {
4560     Result.assign(Res);
4561     return false;
4562   }
4563 
4564   return true;
4565 }
4566 
4567 template <>
4568 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4569   LocTy ValueLoc = Lex.getLoc();
4570   std::string S;
4571   if (parseStringConstant(S))
4572     return true;
4573 
4574   if (!Result.AllowEmpty && S.empty())
4575     return error(ValueLoc, "'" + Name + "' cannot be empty");
4576 
4577   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4578   return false;
4579 }
4580 
4581 template <>
4582 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4583   SmallVector<Metadata *, 4> MDs;
4584   if (parseMDNodeVector(MDs))
4585     return true;
4586 
4587   Result.assign(std::move(MDs));
4588   return false;
4589 }
4590 
4591 template <>
4592 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4593                             ChecksumKindField &Result) {
4594   Optional<DIFile::ChecksumKind> CSKind =
4595       DIFile::getChecksumKind(Lex.getStrVal());
4596 
4597   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4598     return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() +
4599                     "'");
4600 
4601   Result.assign(*CSKind);
4602   Lex.Lex();
4603   return false;
4604 }
4605 
4606 } // end namespace llvm
4607 
4608 template <class ParserTy>
4609 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) {
4610   do {
4611     if (Lex.getKind() != lltok::LabelStr)
4612       return tokError("expected field label here");
4613 
4614     if (ParseField())
4615       return true;
4616   } while (EatIfPresent(lltok::comma));
4617 
4618   return false;
4619 }
4620 
4621 template <class ParserTy>
4622 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) {
4623   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4624   Lex.Lex();
4625 
4626   if (parseToken(lltok::lparen, "expected '(' here"))
4627     return true;
4628   if (Lex.getKind() != lltok::rparen)
4629     if (parseMDFieldsImplBody(ParseField))
4630       return true;
4631 
4632   ClosingLoc = Lex.getLoc();
4633   return parseToken(lltok::rparen, "expected ')' here");
4634 }
4635 
4636 template <class FieldTy>
4637 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) {
4638   if (Result.Seen)
4639     return tokError("field '" + Name + "' cannot be specified more than once");
4640 
4641   LocTy Loc = Lex.getLoc();
4642   Lex.Lex();
4643   return parseMDField(Loc, Name, Result);
4644 }
4645 
4646 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4647   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4648 
4649 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4650   if (Lex.getStrVal() == #CLASS)                                               \
4651     return parse##CLASS(N, IsDistinct);
4652 #include "llvm/IR/Metadata.def"
4653 
4654   return tokError("expected metadata type");
4655 }
4656 
4657 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4658 #define NOP_FIELD(NAME, TYPE, INIT)
4659 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4660   if (!NAME.Seen)                                                              \
4661     return error(ClosingLoc, "missing required field '" #NAME "'");
4662 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4663   if (Lex.getStrVal() == #NAME)                                                \
4664     return parseMDField(#NAME, NAME);
4665 #define PARSE_MD_FIELDS()                                                      \
4666   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4667   do {                                                                         \
4668     LocTy ClosingLoc;                                                          \
4669     if (parseMDFieldsImpl(                                                     \
4670             [&]() -> bool {                                                    \
4671               VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                  \
4672               return tokError(Twine("invalid field '") + Lex.getStrVal() +     \
4673                               "'");                                            \
4674             },                                                                 \
4675             ClosingLoc))                                                       \
4676       return true;                                                             \
4677     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4678   } while (false)
4679 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4680   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4681 
4682 /// parseDILocationFields:
4683 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4684 ///   isImplicitCode: true)
4685 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) {
4686 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4687   OPTIONAL(line, LineField, );                                                 \
4688   OPTIONAL(column, ColumnField, );                                             \
4689   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4690   OPTIONAL(inlinedAt, MDField, );                                              \
4691   OPTIONAL(isImplicitCode, MDBoolField, (false));
4692   PARSE_MD_FIELDS();
4693 #undef VISIT_MD_FIELDS
4694 
4695   Result =
4696       GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4697                                    inlinedAt.Val, isImplicitCode.Val));
4698   return false;
4699 }
4700 
4701 /// parseGenericDINode:
4702 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4703 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) {
4704 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4705   REQUIRED(tag, DwarfTagField, );                                              \
4706   OPTIONAL(header, MDStringField, );                                           \
4707   OPTIONAL(operands, MDFieldList, );
4708   PARSE_MD_FIELDS();
4709 #undef VISIT_MD_FIELDS
4710 
4711   Result = GET_OR_DISTINCT(GenericDINode,
4712                            (Context, tag.Val, header.Val, operands.Val));
4713   return false;
4714 }
4715 
4716 /// parseDISubrange:
4717 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4718 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4719 ///   ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3)
4720 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) {
4721 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4722   OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4723   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4724   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4725   OPTIONAL(stride, MDSignedOrMDField, );
4726   PARSE_MD_FIELDS();
4727 #undef VISIT_MD_FIELDS
4728 
4729   Metadata *Count = nullptr;
4730   Metadata *LowerBound = nullptr;
4731   Metadata *UpperBound = nullptr;
4732   Metadata *Stride = nullptr;
4733 
4734   auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4735     if (Bound.isMDSignedField())
4736       return ConstantAsMetadata::get(ConstantInt::getSigned(
4737           Type::getInt64Ty(Context), Bound.getMDSignedValue()));
4738     if (Bound.isMDField())
4739       return Bound.getMDFieldValue();
4740     return nullptr;
4741   };
4742 
4743   Count = convToMetadata(count);
4744   LowerBound = convToMetadata(lowerBound);
4745   UpperBound = convToMetadata(upperBound);
4746   Stride = convToMetadata(stride);
4747 
4748   Result = GET_OR_DISTINCT(DISubrange,
4749                            (Context, Count, LowerBound, UpperBound, Stride));
4750 
4751   return false;
4752 }
4753 
4754 /// parseDIGenericSubrange:
4755 ///   ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride:
4756 ///   !node3)
4757 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) {
4758 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4759   OPTIONAL(count, MDSignedOrMDField, );                                        \
4760   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4761   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4762   OPTIONAL(stride, MDSignedOrMDField, );
4763   PARSE_MD_FIELDS();
4764 #undef VISIT_MD_FIELDS
4765 
4766   auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4767     if (Bound.isMDSignedField())
4768       return DIExpression::get(
4769           Context, {dwarf::DW_OP_consts,
4770                     static_cast<uint64_t>(Bound.getMDSignedValue())});
4771     if (Bound.isMDField())
4772       return Bound.getMDFieldValue();
4773     return nullptr;
4774   };
4775 
4776   Metadata *Count = ConvToMetadata(count);
4777   Metadata *LowerBound = ConvToMetadata(lowerBound);
4778   Metadata *UpperBound = ConvToMetadata(upperBound);
4779   Metadata *Stride = ConvToMetadata(stride);
4780 
4781   Result = GET_OR_DISTINCT(DIGenericSubrange,
4782                            (Context, Count, LowerBound, UpperBound, Stride));
4783 
4784   return false;
4785 }
4786 
4787 /// parseDIEnumerator:
4788 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4789 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4790 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4791   REQUIRED(name, MDStringField, );                                             \
4792   REQUIRED(value, MDAPSIntField, );                                            \
4793   OPTIONAL(isUnsigned, MDBoolField, (false));
4794   PARSE_MD_FIELDS();
4795 #undef VISIT_MD_FIELDS
4796 
4797   if (isUnsigned.Val && value.Val.isNegative())
4798     return tokError("unsigned enumerator with negative value");
4799 
4800   APSInt Value(value.Val);
4801   // Add a leading zero so that unsigned values with the msb set are not
4802   // mistaken for negative values when used for signed enumerators.
4803   if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet())
4804     Value = Value.zext(Value.getBitWidth() + 1);
4805 
4806   Result =
4807       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4808 
4809   return false;
4810 }
4811 
4812 /// parseDIBasicType:
4813 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4814 ///                    encoding: DW_ATE_encoding, flags: 0)
4815 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) {
4816 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4817   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4818   OPTIONAL(name, MDStringField, );                                             \
4819   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4820   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4821   OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
4822   OPTIONAL(flags, DIFlagField, );
4823   PARSE_MD_FIELDS();
4824 #undef VISIT_MD_FIELDS
4825 
4826   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4827                                          align.Val, encoding.Val, flags.Val));
4828   return false;
4829 }
4830 
4831 /// parseDIStringType:
4832 ///   ::= !DIStringType(name: "character(4)", size: 32, align: 32)
4833 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) {
4834 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4835   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type));                   \
4836   OPTIONAL(name, MDStringField, );                                             \
4837   OPTIONAL(stringLength, MDField, );                                           \
4838   OPTIONAL(stringLengthExpression, MDField, );                                 \
4839   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4840   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4841   OPTIONAL(encoding, DwarfAttEncodingField, );
4842   PARSE_MD_FIELDS();
4843 #undef VISIT_MD_FIELDS
4844 
4845   Result = GET_OR_DISTINCT(DIStringType,
4846                            (Context, tag.Val, name.Val, stringLength.Val,
4847                             stringLengthExpression.Val, size.Val, align.Val,
4848                             encoding.Val));
4849   return false;
4850 }
4851 
4852 /// parseDIDerivedType:
4853 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4854 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4855 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4856 ///                      dwarfAddressSpace: 3)
4857 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4858 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4859   REQUIRED(tag, DwarfTagField, );                                              \
4860   OPTIONAL(name, MDStringField, );                                             \
4861   OPTIONAL(file, MDField, );                                                   \
4862   OPTIONAL(line, LineField, );                                                 \
4863   OPTIONAL(scope, MDField, );                                                  \
4864   REQUIRED(baseType, MDField, );                                               \
4865   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4866   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4867   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4868   OPTIONAL(flags, DIFlagField, );                                              \
4869   OPTIONAL(extraData, MDField, );                                              \
4870   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4871   PARSE_MD_FIELDS();
4872 #undef VISIT_MD_FIELDS
4873 
4874   Optional<unsigned> DWARFAddressSpace;
4875   if (dwarfAddressSpace.Val != UINT32_MAX)
4876     DWARFAddressSpace = dwarfAddressSpace.Val;
4877 
4878   Result = GET_OR_DISTINCT(DIDerivedType,
4879                            (Context, tag.Val, name.Val, file.Val, line.Val,
4880                             scope.Val, baseType.Val, size.Val, align.Val,
4881                             offset.Val, DWARFAddressSpace, flags.Val,
4882                             extraData.Val));
4883   return false;
4884 }
4885 
4886 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) {
4887 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4888   REQUIRED(tag, DwarfTagField, );                                              \
4889   OPTIONAL(name, MDStringField, );                                             \
4890   OPTIONAL(file, MDField, );                                                   \
4891   OPTIONAL(line, LineField, );                                                 \
4892   OPTIONAL(scope, MDField, );                                                  \
4893   OPTIONAL(baseType, MDField, );                                               \
4894   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4895   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4896   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4897   OPTIONAL(flags, DIFlagField, );                                              \
4898   OPTIONAL(elements, MDField, );                                               \
4899   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4900   OPTIONAL(vtableHolder, MDField, );                                           \
4901   OPTIONAL(templateParams, MDField, );                                         \
4902   OPTIONAL(identifier, MDStringField, );                                       \
4903   OPTIONAL(discriminator, MDField, );                                          \
4904   OPTIONAL(dataLocation, MDField, );                                           \
4905   OPTIONAL(associated, MDField, );                                             \
4906   OPTIONAL(allocated, MDField, );                                              \
4907   OPTIONAL(rank, MDSignedOrMDField, );
4908   PARSE_MD_FIELDS();
4909 #undef VISIT_MD_FIELDS
4910 
4911   Metadata *Rank = nullptr;
4912   if (rank.isMDSignedField())
4913     Rank = ConstantAsMetadata::get(ConstantInt::getSigned(
4914         Type::getInt64Ty(Context), rank.getMDSignedValue()));
4915   else if (rank.isMDField())
4916     Rank = rank.getMDFieldValue();
4917 
4918   // If this has an identifier try to build an ODR type.
4919   if (identifier.Val)
4920     if (auto *CT = DICompositeType::buildODRType(
4921             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4922             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4923             elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val,
4924             discriminator.Val, dataLocation.Val, associated.Val, allocated.Val,
4925             Rank)) {
4926       Result = CT;
4927       return false;
4928     }
4929 
4930   // Create a new node, and save it in the context if it belongs in the type
4931   // map.
4932   Result = GET_OR_DISTINCT(
4933       DICompositeType,
4934       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4935        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4936        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4937        discriminator.Val, dataLocation.Val, associated.Val, allocated.Val,
4938        Rank));
4939   return false;
4940 }
4941 
4942 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4943 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4944   OPTIONAL(flags, DIFlagField, );                                              \
4945   OPTIONAL(cc, DwarfCCField, );                                                \
4946   REQUIRED(types, MDField, );
4947   PARSE_MD_FIELDS();
4948 #undef VISIT_MD_FIELDS
4949 
4950   Result = GET_OR_DISTINCT(DISubroutineType,
4951                            (Context, flags.Val, cc.Val, types.Val));
4952   return false;
4953 }
4954 
4955 /// parseDIFileType:
4956 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4957 ///                   checksumkind: CSK_MD5,
4958 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
4959 ///                   source: "source file contents")
4960 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) {
4961   // The default constructed value for checksumkind is required, but will never
4962   // be used, as the parser checks if the field was actually Seen before using
4963   // the Val.
4964 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4965   REQUIRED(filename, MDStringField, );                                         \
4966   REQUIRED(directory, MDStringField, );                                        \
4967   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
4968   OPTIONAL(checksum, MDStringField, );                                         \
4969   OPTIONAL(source, MDStringField, );
4970   PARSE_MD_FIELDS();
4971 #undef VISIT_MD_FIELDS
4972 
4973   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4974   if (checksumkind.Seen && checksum.Seen)
4975     OptChecksum.emplace(checksumkind.Val, checksum.Val);
4976   else if (checksumkind.Seen || checksum.Seen)
4977     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4978 
4979   Optional<MDString *> OptSource;
4980   if (source.Seen)
4981     OptSource = source.Val;
4982   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4983                                     OptChecksum, OptSource));
4984   return false;
4985 }
4986 
4987 /// parseDICompileUnit:
4988 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4989 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4990 ///                      splitDebugFilename: "abc.debug",
4991 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4992 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd,
4993 ///                      sysroot: "/", sdk: "MacOSX.sdk")
4994 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4995   if (!IsDistinct)
4996     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4997 
4998 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4999   REQUIRED(language, DwarfLangField, );                                        \
5000   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
5001   OPTIONAL(producer, MDStringField, );                                         \
5002   OPTIONAL(isOptimized, MDBoolField, );                                        \
5003   OPTIONAL(flags, MDStringField, );                                            \
5004   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
5005   OPTIONAL(splitDebugFilename, MDStringField, );                               \
5006   OPTIONAL(emissionKind, EmissionKindField, );                                 \
5007   OPTIONAL(enums, MDField, );                                                  \
5008   OPTIONAL(retainedTypes, MDField, );                                          \
5009   OPTIONAL(globals, MDField, );                                                \
5010   OPTIONAL(imports, MDField, );                                                \
5011   OPTIONAL(macros, MDField, );                                                 \
5012   OPTIONAL(dwoId, MDUnsignedField, );                                          \
5013   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
5014   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
5015   OPTIONAL(nameTableKind, NameTableKindField, );                               \
5016   OPTIONAL(rangesBaseAddress, MDBoolField, = false);                           \
5017   OPTIONAL(sysroot, MDStringField, );                                          \
5018   OPTIONAL(sdk, MDStringField, );
5019   PARSE_MD_FIELDS();
5020 #undef VISIT_MD_FIELDS
5021 
5022   Result = DICompileUnit::getDistinct(
5023       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
5024       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
5025       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
5026       splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
5027       rangesBaseAddress.Val, sysroot.Val, sdk.Val);
5028   return false;
5029 }
5030 
5031 /// parseDISubprogram:
5032 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
5033 ///                     file: !1, line: 7, type: !2, isLocal: false,
5034 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
5035 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
5036 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
5037 ///                     spFlags: 10, isOptimized: false, templateParams: !4,
5038 ///                     declaration: !5, retainedNodes: !6, thrownTypes: !7)
5039 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) {
5040   auto Loc = Lex.getLoc();
5041 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5042   OPTIONAL(scope, MDField, );                                                  \
5043   OPTIONAL(name, MDStringField, );                                             \
5044   OPTIONAL(linkageName, MDStringField, );                                      \
5045   OPTIONAL(file, MDField, );                                                   \
5046   OPTIONAL(line, LineField, );                                                 \
5047   OPTIONAL(type, MDField, );                                                   \
5048   OPTIONAL(isLocal, MDBoolField, );                                            \
5049   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
5050   OPTIONAL(scopeLine, LineField, );                                            \
5051   OPTIONAL(containingType, MDField, );                                         \
5052   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
5053   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
5054   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
5055   OPTIONAL(flags, DIFlagField, );                                              \
5056   OPTIONAL(spFlags, DISPFlagField, );                                          \
5057   OPTIONAL(isOptimized, MDBoolField, );                                        \
5058   OPTIONAL(unit, MDField, );                                                   \
5059   OPTIONAL(templateParams, MDField, );                                         \
5060   OPTIONAL(declaration, MDField, );                                            \
5061   OPTIONAL(retainedNodes, MDField, );                                          \
5062   OPTIONAL(thrownTypes, MDField, );
5063   PARSE_MD_FIELDS();
5064 #undef VISIT_MD_FIELDS
5065 
5066   // An explicit spFlags field takes precedence over individual fields in
5067   // older IR versions.
5068   DISubprogram::DISPFlags SPFlags =
5069       spFlags.Seen ? spFlags.Val
5070                    : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
5071                                              isOptimized.Val, virtuality.Val);
5072   if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
5073     return Lex.Error(
5074         Loc,
5075         "missing 'distinct', required for !DISubprogram that is a Definition");
5076   Result = GET_OR_DISTINCT(
5077       DISubprogram,
5078       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
5079        type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
5080        thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
5081        declaration.Val, retainedNodes.Val, thrownTypes.Val));
5082   return false;
5083 }
5084 
5085 /// parseDILexicalBlock:
5086 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
5087 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
5088 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5089   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5090   OPTIONAL(file, MDField, );                                                   \
5091   OPTIONAL(line, LineField, );                                                 \
5092   OPTIONAL(column, ColumnField, );
5093   PARSE_MD_FIELDS();
5094 #undef VISIT_MD_FIELDS
5095 
5096   Result = GET_OR_DISTINCT(
5097       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
5098   return false;
5099 }
5100 
5101 /// parseDILexicalBlockFile:
5102 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
5103 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
5104 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5105   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5106   OPTIONAL(file, MDField, );                                                   \
5107   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
5108   PARSE_MD_FIELDS();
5109 #undef VISIT_MD_FIELDS
5110 
5111   Result = GET_OR_DISTINCT(DILexicalBlockFile,
5112                            (Context, scope.Val, file.Val, discriminator.Val));
5113   return false;
5114 }
5115 
5116 /// parseDICommonBlock:
5117 ///   ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
5118 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) {
5119 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5120   REQUIRED(scope, MDField, );                                                  \
5121   OPTIONAL(declaration, MDField, );                                            \
5122   OPTIONAL(name, MDStringField, );                                             \
5123   OPTIONAL(file, MDField, );                                                   \
5124   OPTIONAL(line, LineField, );
5125   PARSE_MD_FIELDS();
5126 #undef VISIT_MD_FIELDS
5127 
5128   Result = GET_OR_DISTINCT(DICommonBlock,
5129                            (Context, scope.Val, declaration.Val, name.Val,
5130                             file.Val, line.Val));
5131   return false;
5132 }
5133 
5134 /// parseDINamespace:
5135 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
5136 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) {
5137 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5138   REQUIRED(scope, MDField, );                                                  \
5139   OPTIONAL(name, MDStringField, );                                             \
5140   OPTIONAL(exportSymbols, MDBoolField, );
5141   PARSE_MD_FIELDS();
5142 #undef VISIT_MD_FIELDS
5143 
5144   Result = GET_OR_DISTINCT(DINamespace,
5145                            (Context, scope.Val, name.Val, exportSymbols.Val));
5146   return false;
5147 }
5148 
5149 /// parseDIMacro:
5150 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value:
5151 ///   "SomeValue")
5152 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) {
5153 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5154   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
5155   OPTIONAL(line, LineField, );                                                 \
5156   REQUIRED(name, MDStringField, );                                             \
5157   OPTIONAL(value, MDStringField, );
5158   PARSE_MD_FIELDS();
5159 #undef VISIT_MD_FIELDS
5160 
5161   Result = GET_OR_DISTINCT(DIMacro,
5162                            (Context, type.Val, line.Val, name.Val, value.Val));
5163   return false;
5164 }
5165 
5166 /// parseDIMacroFile:
5167 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
5168 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) {
5169 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5170   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
5171   OPTIONAL(line, LineField, );                                                 \
5172   REQUIRED(file, MDField, );                                                   \
5173   OPTIONAL(nodes, MDField, );
5174   PARSE_MD_FIELDS();
5175 #undef VISIT_MD_FIELDS
5176 
5177   Result = GET_OR_DISTINCT(DIMacroFile,
5178                            (Context, type.Val, line.Val, file.Val, nodes.Val));
5179   return false;
5180 }
5181 
5182 /// parseDIModule:
5183 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros:
5184 ///   "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes",
5185 ///   file: !1, line: 4, isDecl: false)
5186 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) {
5187 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5188   REQUIRED(scope, MDField, );                                                  \
5189   REQUIRED(name, MDStringField, );                                             \
5190   OPTIONAL(configMacros, MDStringField, );                                     \
5191   OPTIONAL(includePath, MDStringField, );                                      \
5192   OPTIONAL(apinotes, MDStringField, );                                         \
5193   OPTIONAL(file, MDField, );                                                   \
5194   OPTIONAL(line, LineField, );                                                 \
5195   OPTIONAL(isDecl, MDBoolField, );
5196   PARSE_MD_FIELDS();
5197 #undef VISIT_MD_FIELDS
5198 
5199   Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val,
5200                                       configMacros.Val, includePath.Val,
5201                                       apinotes.Val, line.Val, isDecl.Val));
5202   return false;
5203 }
5204 
5205 /// parseDITemplateTypeParameter:
5206 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false)
5207 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
5208 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5209   OPTIONAL(name, MDStringField, );                                             \
5210   REQUIRED(type, MDField, );                                                   \
5211   OPTIONAL(defaulted, MDBoolField, );
5212   PARSE_MD_FIELDS();
5213 #undef VISIT_MD_FIELDS
5214 
5215   Result = GET_OR_DISTINCT(DITemplateTypeParameter,
5216                            (Context, name.Val, type.Val, defaulted.Val));
5217   return false;
5218 }
5219 
5220 /// parseDITemplateValueParameter:
5221 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
5222 ///                                 name: "V", type: !1, defaulted: false,
5223 ///                                 value: i32 7)
5224 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
5225 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5226   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
5227   OPTIONAL(name, MDStringField, );                                             \
5228   OPTIONAL(type, MDField, );                                                   \
5229   OPTIONAL(defaulted, MDBoolField, );                                          \
5230   REQUIRED(value, MDField, );
5231 
5232   PARSE_MD_FIELDS();
5233 #undef VISIT_MD_FIELDS
5234 
5235   Result = GET_OR_DISTINCT(
5236       DITemplateValueParameter,
5237       (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val));
5238   return false;
5239 }
5240 
5241 /// parseDIGlobalVariable:
5242 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
5243 ///                         file: !1, line: 7, type: !2, isLocal: false,
5244 ///                         isDefinition: true, templateParams: !3,
5245 ///                         declaration: !4, align: 8)
5246 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
5247 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5248   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
5249   OPTIONAL(scope, MDField, );                                                  \
5250   OPTIONAL(linkageName, MDStringField, );                                      \
5251   OPTIONAL(file, MDField, );                                                   \
5252   OPTIONAL(line, LineField, );                                                 \
5253   OPTIONAL(type, MDField, );                                                   \
5254   OPTIONAL(isLocal, MDBoolField, );                                            \
5255   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
5256   OPTIONAL(templateParams, MDField, );                                         \
5257   OPTIONAL(declaration, MDField, );                                            \
5258   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
5259   PARSE_MD_FIELDS();
5260 #undef VISIT_MD_FIELDS
5261 
5262   Result =
5263       GET_OR_DISTINCT(DIGlobalVariable,
5264                       (Context, scope.Val, name.Val, linkageName.Val, file.Val,
5265                        line.Val, type.Val, isLocal.Val, isDefinition.Val,
5266                        declaration.Val, templateParams.Val, align.Val));
5267   return false;
5268 }
5269 
5270 /// parseDILocalVariable:
5271 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
5272 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5273 ///                        align: 8)
5274 ///   ::= !DILocalVariable(scope: !0, name: "foo",
5275 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5276 ///                        align: 8)
5277 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) {
5278 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5279   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5280   OPTIONAL(name, MDStringField, );                                             \
5281   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
5282   OPTIONAL(file, MDField, );                                                   \
5283   OPTIONAL(line, LineField, );                                                 \
5284   OPTIONAL(type, MDField, );                                                   \
5285   OPTIONAL(flags, DIFlagField, );                                              \
5286   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
5287   PARSE_MD_FIELDS();
5288 #undef VISIT_MD_FIELDS
5289 
5290   Result = GET_OR_DISTINCT(DILocalVariable,
5291                            (Context, scope.Val, name.Val, file.Val, line.Val,
5292                             type.Val, arg.Val, flags.Val, align.Val));
5293   return false;
5294 }
5295 
5296 /// parseDILabel:
5297 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
5298 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) {
5299 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5300   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5301   REQUIRED(name, MDStringField, );                                             \
5302   REQUIRED(file, MDField, );                                                   \
5303   REQUIRED(line, LineField, );
5304   PARSE_MD_FIELDS();
5305 #undef VISIT_MD_FIELDS
5306 
5307   Result = GET_OR_DISTINCT(DILabel,
5308                            (Context, scope.Val, name.Val, file.Val, line.Val));
5309   return false;
5310 }
5311 
5312 /// parseDIExpression:
5313 ///   ::= !DIExpression(0, 7, -1)
5314 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) {
5315   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5316   Lex.Lex();
5317 
5318   if (parseToken(lltok::lparen, "expected '(' here"))
5319     return true;
5320 
5321   SmallVector<uint64_t, 8> Elements;
5322   if (Lex.getKind() != lltok::rparen)
5323     do {
5324       if (Lex.getKind() == lltok::DwarfOp) {
5325         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
5326           Lex.Lex();
5327           Elements.push_back(Op);
5328           continue;
5329         }
5330         return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
5331       }
5332 
5333       if (Lex.getKind() == lltok::DwarfAttEncoding) {
5334         if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
5335           Lex.Lex();
5336           Elements.push_back(Op);
5337           continue;
5338         }
5339         return tokError(Twine("invalid DWARF attribute encoding '") +
5340                         Lex.getStrVal() + "'");
5341       }
5342 
5343       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
5344         return tokError("expected unsigned integer");
5345 
5346       auto &U = Lex.getAPSIntVal();
5347       if (U.ugt(UINT64_MAX))
5348         return tokError("element too large, limit is " + Twine(UINT64_MAX));
5349       Elements.push_back(U.getZExtValue());
5350       Lex.Lex();
5351     } while (EatIfPresent(lltok::comma));
5352 
5353   if (parseToken(lltok::rparen, "expected ')' here"))
5354     return true;
5355 
5356   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
5357   return false;
5358 }
5359 
5360 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct) {
5361   return parseDIArgList(Result, IsDistinct, nullptr);
5362 }
5363 /// ParseDIArgList:
5364 ///   ::= !DIArgList(i32 7, i64 %0)
5365 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct,
5366                               PerFunctionState *PFS) {
5367   assert(PFS && "Expected valid function state");
5368   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5369   Lex.Lex();
5370 
5371   if (parseToken(lltok::lparen, "expected '(' here"))
5372     return true;
5373 
5374   SmallVector<ValueAsMetadata *, 4> Args;
5375   if (Lex.getKind() != lltok::rparen)
5376     do {
5377       Metadata *MD;
5378       if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS))
5379         return true;
5380       Args.push_back(dyn_cast<ValueAsMetadata>(MD));
5381     } while (EatIfPresent(lltok::comma));
5382 
5383   if (parseToken(lltok::rparen, "expected ')' here"))
5384     return true;
5385 
5386   Result = GET_OR_DISTINCT(DIArgList, (Context, Args));
5387   return false;
5388 }
5389 
5390 /// parseDIGlobalVariableExpression:
5391 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
5392 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result,
5393                                                bool IsDistinct) {
5394 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5395   REQUIRED(var, MDField, );                                                    \
5396   REQUIRED(expr, MDField, );
5397   PARSE_MD_FIELDS();
5398 #undef VISIT_MD_FIELDS
5399 
5400   Result =
5401       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
5402   return false;
5403 }
5404 
5405 /// parseDIObjCProperty:
5406 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
5407 ///                       getter: "getFoo", attributes: 7, type: !2)
5408 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
5409 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5410   OPTIONAL(name, MDStringField, );                                             \
5411   OPTIONAL(file, MDField, );                                                   \
5412   OPTIONAL(line, LineField, );                                                 \
5413   OPTIONAL(setter, MDStringField, );                                           \
5414   OPTIONAL(getter, MDStringField, );                                           \
5415   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
5416   OPTIONAL(type, MDField, );
5417   PARSE_MD_FIELDS();
5418 #undef VISIT_MD_FIELDS
5419 
5420   Result = GET_OR_DISTINCT(DIObjCProperty,
5421                            (Context, name.Val, file.Val, line.Val, setter.Val,
5422                             getter.Val, attributes.Val, type.Val));
5423   return false;
5424 }
5425 
5426 /// parseDIImportedEntity:
5427 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
5428 ///                         line: 7, name: "foo")
5429 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
5430 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5431   REQUIRED(tag, DwarfTagField, );                                              \
5432   REQUIRED(scope, MDField, );                                                  \
5433   OPTIONAL(entity, MDField, );                                                 \
5434   OPTIONAL(file, MDField, );                                                   \
5435   OPTIONAL(line, LineField, );                                                 \
5436   OPTIONAL(name, MDStringField, );
5437   PARSE_MD_FIELDS();
5438 #undef VISIT_MD_FIELDS
5439 
5440   Result = GET_OR_DISTINCT(
5441       DIImportedEntity,
5442       (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
5443   return false;
5444 }
5445 
5446 #undef PARSE_MD_FIELD
5447 #undef NOP_FIELD
5448 #undef REQUIRE_FIELD
5449 #undef DECLARE_FIELD
5450 
5451 /// parseMetadataAsValue
5452 ///  ::= metadata i32 %local
5453 ///  ::= metadata i32 @global
5454 ///  ::= metadata i32 7
5455 ///  ::= metadata !0
5456 ///  ::= metadata !{...}
5457 ///  ::= metadata !"string"
5458 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5459   // Note: the type 'metadata' has already been parsed.
5460   Metadata *MD;
5461   if (parseMetadata(MD, &PFS))
5462     return true;
5463 
5464   V = MetadataAsValue::get(Context, MD);
5465   return false;
5466 }
5467 
5468 /// parseValueAsMetadata
5469 ///  ::= i32 %local
5470 ///  ::= i32 @global
5471 ///  ::= i32 7
5472 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
5473                                     PerFunctionState *PFS) {
5474   Type *Ty;
5475   LocTy Loc;
5476   if (parseType(Ty, TypeMsg, Loc))
5477     return true;
5478   if (Ty->isMetadataTy())
5479     return error(Loc, "invalid metadata-value-metadata roundtrip");
5480 
5481   Value *V;
5482   if (parseValue(Ty, V, PFS))
5483     return true;
5484 
5485   MD = ValueAsMetadata::get(V);
5486   return false;
5487 }
5488 
5489 /// parseMetadata
5490 ///  ::= i32 %local
5491 ///  ::= i32 @global
5492 ///  ::= i32 7
5493 ///  ::= !42
5494 ///  ::= !{...}
5495 ///  ::= !"string"
5496 ///  ::= !DILocation(...)
5497 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) {
5498   if (Lex.getKind() == lltok::MetadataVar) {
5499     MDNode *N;
5500     // DIArgLists are a special case, as they are a list of ValueAsMetadata and
5501     // so parsing this requires a Function State.
5502     if (Lex.getStrVal() == "DIArgList") {
5503       if (parseDIArgList(N, false, PFS))
5504         return true;
5505     } else if (parseSpecializedMDNode(N)) {
5506       return true;
5507     }
5508     MD = N;
5509     return false;
5510   }
5511 
5512   // ValueAsMetadata:
5513   // <type> <value>
5514   if (Lex.getKind() != lltok::exclaim)
5515     return parseValueAsMetadata(MD, "expected metadata operand", PFS);
5516 
5517   // '!'.
5518   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5519   Lex.Lex();
5520 
5521   // MDString:
5522   //   ::= '!' STRINGCONSTANT
5523   if (Lex.getKind() == lltok::StringConstant) {
5524     MDString *S;
5525     if (parseMDString(S))
5526       return true;
5527     MD = S;
5528     return false;
5529   }
5530 
5531   // MDNode:
5532   // !{ ... }
5533   // !7
5534   MDNode *N;
5535   if (parseMDNodeTail(N))
5536     return true;
5537   MD = N;
5538   return false;
5539 }
5540 
5541 //===----------------------------------------------------------------------===//
5542 // Function Parsing.
5543 //===----------------------------------------------------------------------===//
5544 
5545 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5546                                    PerFunctionState *PFS, bool IsCall) {
5547   if (Ty->isFunctionTy())
5548     return error(ID.Loc, "functions are not values, refer to them as pointers");
5549 
5550   switch (ID.Kind) {
5551   case ValID::t_LocalID:
5552     if (!PFS)
5553       return error(ID.Loc, "invalid use of function-local name");
5554     V = PFS->getVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5555     return V == nullptr;
5556   case ValID::t_LocalName:
5557     if (!PFS)
5558       return error(ID.Loc, "invalid use of function-local name");
5559     V = PFS->getVal(ID.StrVal, Ty, ID.Loc, IsCall);
5560     return V == nullptr;
5561   case ValID::t_InlineAsm: {
5562     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5563       return error(ID.Loc, "invalid type for inline asm constraint string");
5564     V = InlineAsm::get(
5565         ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, (ID.UIntVal >> 1) & 1,
5566         InlineAsm::AsmDialect((ID.UIntVal >> 2) & 1), (ID.UIntVal >> 3) & 1);
5567     return false;
5568   }
5569   case ValID::t_GlobalName:
5570     V = getGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall);
5571     return V == nullptr;
5572   case ValID::t_GlobalID:
5573     V = getGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5574     return V == nullptr;
5575   case ValID::t_APSInt:
5576     if (!Ty->isIntegerTy())
5577       return error(ID.Loc, "integer constant must have integer type");
5578     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5579     V = ConstantInt::get(Context, ID.APSIntVal);
5580     return false;
5581   case ValID::t_APFloat:
5582     if (!Ty->isFloatingPointTy() ||
5583         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5584       return error(ID.Loc, "floating point constant invalid for type");
5585 
5586     // The lexer has no type info, so builds all half, bfloat, float, and double
5587     // FP constants as double.  Fix this here.  Long double does not need this.
5588     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5589       // Check for signaling before potentially converting and losing that info.
5590       bool IsSNAN = ID.APFloatVal.isSignaling();
5591       bool Ignored;
5592       if (Ty->isHalfTy())
5593         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5594                               &Ignored);
5595       else if (Ty->isBFloatTy())
5596         ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven,
5597                               &Ignored);
5598       else if (Ty->isFloatTy())
5599         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5600                               &Ignored);
5601       if (IsSNAN) {
5602         // The convert call above may quiet an SNaN, so manufacture another
5603         // SNaN. The bitcast works because the payload (significand) parameter
5604         // is truncated to fit.
5605         APInt Payload = ID.APFloatVal.bitcastToAPInt();
5606         ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(),
5607                                          ID.APFloatVal.isNegative(), &Payload);
5608       }
5609     }
5610     V = ConstantFP::get(Context, ID.APFloatVal);
5611 
5612     if (V->getType() != Ty)
5613       return error(ID.Loc, "floating point constant does not have type '" +
5614                                getTypeString(Ty) + "'");
5615 
5616     return false;
5617   case ValID::t_Null:
5618     if (!Ty->isPointerTy())
5619       return error(ID.Loc, "null must be a pointer type");
5620     V = ConstantPointerNull::get(cast<PointerType>(Ty));
5621     return false;
5622   case ValID::t_Undef:
5623     // FIXME: LabelTy should not be a first-class type.
5624     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5625       return error(ID.Loc, "invalid type for undef constant");
5626     V = UndefValue::get(Ty);
5627     return false;
5628   case ValID::t_EmptyArray:
5629     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5630       return error(ID.Loc, "invalid empty array initializer");
5631     V = UndefValue::get(Ty);
5632     return false;
5633   case ValID::t_Zero:
5634     // FIXME: LabelTy should not be a first-class type.
5635     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5636       return error(ID.Loc, "invalid type for null constant");
5637     V = Constant::getNullValue(Ty);
5638     return false;
5639   case ValID::t_None:
5640     if (!Ty->isTokenTy())
5641       return error(ID.Loc, "invalid type for none constant");
5642     V = Constant::getNullValue(Ty);
5643     return false;
5644   case ValID::t_Poison:
5645     // FIXME: LabelTy should not be a first-class type.
5646     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5647       return error(ID.Loc, "invalid type for poison constant");
5648     V = PoisonValue::get(Ty);
5649     return false;
5650   case ValID::t_Constant:
5651     if (ID.ConstantVal->getType() != Ty)
5652       return error(ID.Loc, "constant expression type mismatch");
5653     V = ID.ConstantVal;
5654     return false;
5655   case ValID::t_ConstantStruct:
5656   case ValID::t_PackedConstantStruct:
5657     if (StructType *ST = dyn_cast<StructType>(Ty)) {
5658       if (ST->getNumElements() != ID.UIntVal)
5659         return error(ID.Loc,
5660                      "initializer with struct type has wrong # elements");
5661       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5662         return error(ID.Loc, "packed'ness of initializer and type don't match");
5663 
5664       // Verify that the elements are compatible with the structtype.
5665       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5666         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5667           return error(
5668               ID.Loc,
5669               "element " + Twine(i) +
5670                   " of struct initializer doesn't match struct element type");
5671 
5672       V = ConstantStruct::get(
5673           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5674     } else
5675       return error(ID.Loc, "constant expression type mismatch");
5676     return false;
5677   }
5678   llvm_unreachable("Invalid ValID");
5679 }
5680 
5681 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5682   C = nullptr;
5683   ValID ID;
5684   auto Loc = Lex.getLoc();
5685   if (parseValID(ID, /*PFS=*/nullptr))
5686     return true;
5687   switch (ID.Kind) {
5688   case ValID::t_APSInt:
5689   case ValID::t_APFloat:
5690   case ValID::t_Undef:
5691   case ValID::t_Constant:
5692   case ValID::t_ConstantStruct:
5693   case ValID::t_PackedConstantStruct: {
5694     Value *V;
5695     if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
5696       return true;
5697     assert(isa<Constant>(V) && "Expected a constant value");
5698     C = cast<Constant>(V);
5699     return false;
5700   }
5701   case ValID::t_Null:
5702     C = Constant::getNullValue(Ty);
5703     return false;
5704   default:
5705     return error(Loc, "expected a constant value");
5706   }
5707 }
5708 
5709 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5710   V = nullptr;
5711   ValID ID;
5712   return parseValID(ID, PFS) ||
5713          convertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
5714 }
5715 
5716 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5717   Type *Ty = nullptr;
5718   return parseType(Ty) || parseValue(Ty, V, PFS);
5719 }
5720 
5721 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5722                                       PerFunctionState &PFS) {
5723   Value *V;
5724   Loc = Lex.getLoc();
5725   if (parseTypeAndValue(V, PFS))
5726     return true;
5727   if (!isa<BasicBlock>(V))
5728     return error(Loc, "expected a basic block");
5729   BB = cast<BasicBlock>(V);
5730   return false;
5731 }
5732 
5733 /// FunctionHeader
5734 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5735 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5736 ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5737 ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5738 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) {
5739   // parse the linkage.
5740   LocTy LinkageLoc = Lex.getLoc();
5741   unsigned Linkage;
5742   unsigned Visibility;
5743   unsigned DLLStorageClass;
5744   bool DSOLocal;
5745   AttrBuilder RetAttrs;
5746   unsigned CC;
5747   bool HasLinkage;
5748   Type *RetType = nullptr;
5749   LocTy RetTypeLoc = Lex.getLoc();
5750   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5751                            DSOLocal) ||
5752       parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
5753       parseType(RetType, RetTypeLoc, true /*void allowed*/))
5754     return true;
5755 
5756   // Verify that the linkage is ok.
5757   switch ((GlobalValue::LinkageTypes)Linkage) {
5758   case GlobalValue::ExternalLinkage:
5759     break; // always ok.
5760   case GlobalValue::ExternalWeakLinkage:
5761     if (IsDefine)
5762       return error(LinkageLoc, "invalid linkage for function definition");
5763     break;
5764   case GlobalValue::PrivateLinkage:
5765   case GlobalValue::InternalLinkage:
5766   case GlobalValue::AvailableExternallyLinkage:
5767   case GlobalValue::LinkOnceAnyLinkage:
5768   case GlobalValue::LinkOnceODRLinkage:
5769   case GlobalValue::WeakAnyLinkage:
5770   case GlobalValue::WeakODRLinkage:
5771     if (!IsDefine)
5772       return error(LinkageLoc, "invalid linkage for function declaration");
5773     break;
5774   case GlobalValue::AppendingLinkage:
5775   case GlobalValue::CommonLinkage:
5776     return error(LinkageLoc, "invalid function linkage type");
5777   }
5778 
5779   if (!isValidVisibilityForLinkage(Visibility, Linkage))
5780     return error(LinkageLoc,
5781                  "symbol with local linkage must have default visibility");
5782 
5783   if (!FunctionType::isValidReturnType(RetType))
5784     return error(RetTypeLoc, "invalid function return type");
5785 
5786   LocTy NameLoc = Lex.getLoc();
5787 
5788   std::string FunctionName;
5789   if (Lex.getKind() == lltok::GlobalVar) {
5790     FunctionName = Lex.getStrVal();
5791   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
5792     unsigned NameID = Lex.getUIntVal();
5793 
5794     if (NameID != NumberedVals.size())
5795       return tokError("function expected to be numbered '%" +
5796                       Twine(NumberedVals.size()) + "'");
5797   } else {
5798     return tokError("expected function name");
5799   }
5800 
5801   Lex.Lex();
5802 
5803   if (Lex.getKind() != lltok::lparen)
5804     return tokError("expected '(' in function argument list");
5805 
5806   SmallVector<ArgInfo, 8> ArgList;
5807   bool IsVarArg;
5808   AttrBuilder FuncAttrs;
5809   std::vector<unsigned> FwdRefAttrGrps;
5810   LocTy BuiltinLoc;
5811   std::string Section;
5812   std::string Partition;
5813   MaybeAlign Alignment;
5814   std::string GC;
5815   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5816   unsigned AddrSpace = 0;
5817   Constant *Prefix = nullptr;
5818   Constant *Prologue = nullptr;
5819   Constant *PersonalityFn = nullptr;
5820   Comdat *C;
5821 
5822   if (parseArgumentList(ArgList, IsVarArg) ||
5823       parseOptionalUnnamedAddr(UnnamedAddr) ||
5824       parseOptionalProgramAddrSpace(AddrSpace) ||
5825       parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5826                                  BuiltinLoc) ||
5827       (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) ||
5828       (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) ||
5829       parseOptionalComdat(FunctionName, C) ||
5830       parseOptionalAlignment(Alignment) ||
5831       (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) ||
5832       (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) ||
5833       (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) ||
5834       (EatIfPresent(lltok::kw_personality) &&
5835        parseGlobalTypeAndValue(PersonalityFn)))
5836     return true;
5837 
5838   if (FuncAttrs.contains(Attribute::Builtin))
5839     return error(BuiltinLoc, "'builtin' attribute not valid on function");
5840 
5841   // If the alignment was parsed as an attribute, move to the alignment field.
5842   if (FuncAttrs.hasAlignmentAttr()) {
5843     Alignment = FuncAttrs.getAlignment();
5844     FuncAttrs.removeAttribute(Attribute::Alignment);
5845   }
5846 
5847   // Okay, if we got here, the function is syntactically valid.  Convert types
5848   // and do semantic checks.
5849   std::vector<Type*> ParamTypeList;
5850   SmallVector<AttributeSet, 8> Attrs;
5851 
5852   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5853     ParamTypeList.push_back(ArgList[i].Ty);
5854     Attrs.push_back(ArgList[i].Attrs);
5855   }
5856 
5857   AttributeList PAL =
5858       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5859                          AttributeSet::get(Context, RetAttrs), Attrs);
5860 
5861   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
5862     return error(RetTypeLoc, "functions with 'sret' argument must return void");
5863 
5864   FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg);
5865   PointerType *PFT = PointerType::get(FT, AddrSpace);
5866 
5867   Fn = nullptr;
5868   if (!FunctionName.empty()) {
5869     // If this was a definition of a forward reference, remove the definition
5870     // from the forward reference table and fill in the forward ref.
5871     auto FRVI = ForwardRefVals.find(FunctionName);
5872     if (FRVI != ForwardRefVals.end()) {
5873       Fn = M->getFunction(FunctionName);
5874       if (!Fn)
5875         return error(FRVI->second.second, "invalid forward reference to "
5876                                           "function as global value!");
5877       if (Fn->getType() != PFT)
5878         return error(FRVI->second.second,
5879                      "invalid forward reference to "
5880                      "function '" +
5881                          FunctionName +
5882                          "' with wrong type: "
5883                          "expected '" +
5884                          getTypeString(PFT) + "' but was '" +
5885                          getTypeString(Fn->getType()) + "'");
5886       ForwardRefVals.erase(FRVI);
5887     } else if ((Fn = M->getFunction(FunctionName))) {
5888       // Reject redefinitions.
5889       return error(NameLoc,
5890                    "invalid redefinition of function '" + FunctionName + "'");
5891     } else if (M->getNamedValue(FunctionName)) {
5892       return error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5893     }
5894 
5895   } else {
5896     // If this is a definition of a forward referenced function, make sure the
5897     // types agree.
5898     auto I = ForwardRefValIDs.find(NumberedVals.size());
5899     if (I != ForwardRefValIDs.end()) {
5900       Fn = cast<Function>(I->second.first);
5901       if (Fn->getType() != PFT)
5902         return error(NameLoc, "type of definition and forward reference of '@" +
5903                                   Twine(NumberedVals.size()) +
5904                                   "' disagree: "
5905                                   "expected '" +
5906                                   getTypeString(PFT) + "' but was '" +
5907                                   getTypeString(Fn->getType()) + "'");
5908       ForwardRefValIDs.erase(I);
5909     }
5910   }
5911 
5912   if (!Fn)
5913     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5914                           FunctionName, M);
5915   else // Move the forward-reference to the correct spot in the module.
5916     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
5917 
5918   assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5919 
5920   if (FunctionName.empty())
5921     NumberedVals.push_back(Fn);
5922 
5923   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5924   maybeSetDSOLocal(DSOLocal, *Fn);
5925   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5926   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5927   Fn->setCallingConv(CC);
5928   Fn->setAttributes(PAL);
5929   Fn->setUnnamedAddr(UnnamedAddr);
5930   Fn->setAlignment(MaybeAlign(Alignment));
5931   Fn->setSection(Section);
5932   Fn->setPartition(Partition);
5933   Fn->setComdat(C);
5934   Fn->setPersonalityFn(PersonalityFn);
5935   if (!GC.empty()) Fn->setGC(GC);
5936   Fn->setPrefixData(Prefix);
5937   Fn->setPrologueData(Prologue);
5938   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5939 
5940   // Add all of the arguments we parsed to the function.
5941   Function::arg_iterator ArgIt = Fn->arg_begin();
5942   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5943     // If the argument has a name, insert it into the argument symbol table.
5944     if (ArgList[i].Name.empty()) continue;
5945 
5946     // Set the name, if it conflicted, it will be auto-renamed.
5947     ArgIt->setName(ArgList[i].Name);
5948 
5949     if (ArgIt->getName() != ArgList[i].Name)
5950       return error(ArgList[i].Loc,
5951                    "redefinition of argument '%" + ArgList[i].Name + "'");
5952   }
5953 
5954   if (IsDefine)
5955     return false;
5956 
5957   // Check the declaration has no block address forward references.
5958   ValID ID;
5959   if (FunctionName.empty()) {
5960     ID.Kind = ValID::t_GlobalID;
5961     ID.UIntVal = NumberedVals.size() - 1;
5962   } else {
5963     ID.Kind = ValID::t_GlobalName;
5964     ID.StrVal = FunctionName;
5965   }
5966   auto Blocks = ForwardRefBlockAddresses.find(ID);
5967   if (Blocks != ForwardRefBlockAddresses.end())
5968     return error(Blocks->first.Loc,
5969                  "cannot take blockaddress inside a declaration");
5970   return false;
5971 }
5972 
5973 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5974   ValID ID;
5975   if (FunctionNumber == -1) {
5976     ID.Kind = ValID::t_GlobalName;
5977     ID.StrVal = std::string(F.getName());
5978   } else {
5979     ID.Kind = ValID::t_GlobalID;
5980     ID.UIntVal = FunctionNumber;
5981   }
5982 
5983   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5984   if (Blocks == P.ForwardRefBlockAddresses.end())
5985     return false;
5986 
5987   for (const auto &I : Blocks->second) {
5988     const ValID &BBID = I.first;
5989     GlobalValue *GV = I.second;
5990 
5991     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5992            "Expected local id or name");
5993     BasicBlock *BB;
5994     if (BBID.Kind == ValID::t_LocalName)
5995       BB = getBB(BBID.StrVal, BBID.Loc);
5996     else
5997       BB = getBB(BBID.UIntVal, BBID.Loc);
5998     if (!BB)
5999       return P.error(BBID.Loc, "referenced value is not a basic block");
6000 
6001     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
6002     GV->eraseFromParent();
6003   }
6004 
6005   P.ForwardRefBlockAddresses.erase(Blocks);
6006   return false;
6007 }
6008 
6009 /// parseFunctionBody
6010 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
6011 bool LLParser::parseFunctionBody(Function &Fn) {
6012   if (Lex.getKind() != lltok::lbrace)
6013     return tokError("expected '{' in function body");
6014   Lex.Lex();  // eat the {.
6015 
6016   int FunctionNumber = -1;
6017   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
6018 
6019   PerFunctionState PFS(*this, Fn, FunctionNumber);
6020 
6021   // Resolve block addresses and allow basic blocks to be forward-declared
6022   // within this function.
6023   if (PFS.resolveForwardRefBlockAddresses())
6024     return true;
6025   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
6026 
6027   // We need at least one basic block.
6028   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
6029     return tokError("function body requires at least one basic block");
6030 
6031   while (Lex.getKind() != lltok::rbrace &&
6032          Lex.getKind() != lltok::kw_uselistorder)
6033     if (parseBasicBlock(PFS))
6034       return true;
6035 
6036   while (Lex.getKind() != lltok::rbrace)
6037     if (parseUseListOrder(&PFS))
6038       return true;
6039 
6040   // Eat the }.
6041   Lex.Lex();
6042 
6043   // Verify function is ok.
6044   return PFS.finishFunction();
6045 }
6046 
6047 /// parseBasicBlock
6048 ///   ::= (LabelStr|LabelID)? Instruction*
6049 bool LLParser::parseBasicBlock(PerFunctionState &PFS) {
6050   // If this basic block starts out with a name, remember it.
6051   std::string Name;
6052   int NameID = -1;
6053   LocTy NameLoc = Lex.getLoc();
6054   if (Lex.getKind() == lltok::LabelStr) {
6055     Name = Lex.getStrVal();
6056     Lex.Lex();
6057   } else if (Lex.getKind() == lltok::LabelID) {
6058     NameID = Lex.getUIntVal();
6059     Lex.Lex();
6060   }
6061 
6062   BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc);
6063   if (!BB)
6064     return true;
6065 
6066   std::string NameStr;
6067 
6068   // parse the instructions in this block until we get a terminator.
6069   Instruction *Inst;
6070   do {
6071     // This instruction may have three possibilities for a name: a) none
6072     // specified, b) name specified "%foo =", c) number specified: "%4 =".
6073     LocTy NameLoc = Lex.getLoc();
6074     int NameID = -1;
6075     NameStr = "";
6076 
6077     if (Lex.getKind() == lltok::LocalVarID) {
6078       NameID = Lex.getUIntVal();
6079       Lex.Lex();
6080       if (parseToken(lltok::equal, "expected '=' after instruction id"))
6081         return true;
6082     } else if (Lex.getKind() == lltok::LocalVar) {
6083       NameStr = Lex.getStrVal();
6084       Lex.Lex();
6085       if (parseToken(lltok::equal, "expected '=' after instruction name"))
6086         return true;
6087     }
6088 
6089     switch (parseInstruction(Inst, BB, PFS)) {
6090     default:
6091       llvm_unreachable("Unknown parseInstruction result!");
6092     case InstError: return true;
6093     case InstNormal:
6094       BB->getInstList().push_back(Inst);
6095 
6096       // With a normal result, we check to see if the instruction is followed by
6097       // a comma and metadata.
6098       if (EatIfPresent(lltok::comma))
6099         if (parseInstructionMetadata(*Inst))
6100           return true;
6101       break;
6102     case InstExtraComma:
6103       BB->getInstList().push_back(Inst);
6104 
6105       // If the instruction parser ate an extra comma at the end of it, it
6106       // *must* be followed by metadata.
6107       if (parseInstructionMetadata(*Inst))
6108         return true;
6109       break;
6110     }
6111 
6112     // Set the name on the instruction.
6113     if (PFS.setInstName(NameID, NameStr, NameLoc, Inst))
6114       return true;
6115   } while (!Inst->isTerminator());
6116 
6117   return false;
6118 }
6119 
6120 //===----------------------------------------------------------------------===//
6121 // Instruction Parsing.
6122 //===----------------------------------------------------------------------===//
6123 
6124 /// parseInstruction - parse one of the many different instructions.
6125 ///
6126 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB,
6127                                PerFunctionState &PFS) {
6128   lltok::Kind Token = Lex.getKind();
6129   if (Token == lltok::Eof)
6130     return tokError("found end of file when expecting more instructions");
6131   LocTy Loc = Lex.getLoc();
6132   unsigned KeywordVal = Lex.getUIntVal();
6133   Lex.Lex();  // Eat the keyword.
6134 
6135   switch (Token) {
6136   default:
6137     return error(Loc, "expected instruction opcode");
6138   // Terminator Instructions.
6139   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
6140   case lltok::kw_ret:
6141     return parseRet(Inst, BB, PFS);
6142   case lltok::kw_br:
6143     return parseBr(Inst, PFS);
6144   case lltok::kw_switch:
6145     return parseSwitch(Inst, PFS);
6146   case lltok::kw_indirectbr:
6147     return parseIndirectBr(Inst, PFS);
6148   case lltok::kw_invoke:
6149     return parseInvoke(Inst, PFS);
6150   case lltok::kw_resume:
6151     return parseResume(Inst, PFS);
6152   case lltok::kw_cleanupret:
6153     return parseCleanupRet(Inst, PFS);
6154   case lltok::kw_catchret:
6155     return parseCatchRet(Inst, PFS);
6156   case lltok::kw_catchswitch:
6157     return parseCatchSwitch(Inst, PFS);
6158   case lltok::kw_catchpad:
6159     return parseCatchPad(Inst, PFS);
6160   case lltok::kw_cleanuppad:
6161     return parseCleanupPad(Inst, PFS);
6162   case lltok::kw_callbr:
6163     return parseCallBr(Inst, PFS);
6164   // Unary Operators.
6165   case lltok::kw_fneg: {
6166     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6167     int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true);
6168     if (Res != 0)
6169       return Res;
6170     if (FMF.any())
6171       Inst->setFastMathFlags(FMF);
6172     return false;
6173   }
6174   // Binary Operators.
6175   case lltok::kw_add:
6176   case lltok::kw_sub:
6177   case lltok::kw_mul:
6178   case lltok::kw_shl: {
6179     bool NUW = EatIfPresent(lltok::kw_nuw);
6180     bool NSW = EatIfPresent(lltok::kw_nsw);
6181     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
6182 
6183     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
6184       return true;
6185 
6186     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
6187     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
6188     return false;
6189   }
6190   case lltok::kw_fadd:
6191   case lltok::kw_fsub:
6192   case lltok::kw_fmul:
6193   case lltok::kw_fdiv:
6194   case lltok::kw_frem: {
6195     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6196     int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true);
6197     if (Res != 0)
6198       return Res;
6199     if (FMF.any())
6200       Inst->setFastMathFlags(FMF);
6201     return 0;
6202   }
6203 
6204   case lltok::kw_sdiv:
6205   case lltok::kw_udiv:
6206   case lltok::kw_lshr:
6207   case lltok::kw_ashr: {
6208     bool Exact = EatIfPresent(lltok::kw_exact);
6209 
6210     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
6211       return true;
6212     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
6213     return false;
6214   }
6215 
6216   case lltok::kw_urem:
6217   case lltok::kw_srem:
6218     return parseArithmetic(Inst, PFS, KeywordVal,
6219                            /*IsFP*/ false);
6220   case lltok::kw_and:
6221   case lltok::kw_or:
6222   case lltok::kw_xor:
6223     return parseLogical(Inst, PFS, KeywordVal);
6224   case lltok::kw_icmp:
6225     return parseCompare(Inst, PFS, KeywordVal);
6226   case lltok::kw_fcmp: {
6227     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6228     int Res = parseCompare(Inst, PFS, KeywordVal);
6229     if (Res != 0)
6230       return Res;
6231     if (FMF.any())
6232       Inst->setFastMathFlags(FMF);
6233     return 0;
6234   }
6235 
6236   // Casts.
6237   case lltok::kw_trunc:
6238   case lltok::kw_zext:
6239   case lltok::kw_sext:
6240   case lltok::kw_fptrunc:
6241   case lltok::kw_fpext:
6242   case lltok::kw_bitcast:
6243   case lltok::kw_addrspacecast:
6244   case lltok::kw_uitofp:
6245   case lltok::kw_sitofp:
6246   case lltok::kw_fptoui:
6247   case lltok::kw_fptosi:
6248   case lltok::kw_inttoptr:
6249   case lltok::kw_ptrtoint:
6250     return parseCast(Inst, PFS, KeywordVal);
6251   // Other.
6252   case lltok::kw_select: {
6253     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6254     int Res = parseSelect(Inst, PFS);
6255     if (Res != 0)
6256       return Res;
6257     if (FMF.any()) {
6258       if (!isa<FPMathOperator>(Inst))
6259         return error(Loc, "fast-math-flags specified for select without "
6260                           "floating-point scalar or vector return type");
6261       Inst->setFastMathFlags(FMF);
6262     }
6263     return 0;
6264   }
6265   case lltok::kw_va_arg:
6266     return parseVAArg(Inst, PFS);
6267   case lltok::kw_extractelement:
6268     return parseExtractElement(Inst, PFS);
6269   case lltok::kw_insertelement:
6270     return parseInsertElement(Inst, PFS);
6271   case lltok::kw_shufflevector:
6272     return parseShuffleVector(Inst, PFS);
6273   case lltok::kw_phi: {
6274     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6275     int Res = parsePHI(Inst, PFS);
6276     if (Res != 0)
6277       return Res;
6278     if (FMF.any()) {
6279       if (!isa<FPMathOperator>(Inst))
6280         return error(Loc, "fast-math-flags specified for phi without "
6281                           "floating-point scalar or vector return type");
6282       Inst->setFastMathFlags(FMF);
6283     }
6284     return 0;
6285   }
6286   case lltok::kw_landingpad:
6287     return parseLandingPad(Inst, PFS);
6288   case lltok::kw_freeze:
6289     return parseFreeze(Inst, PFS);
6290   // Call.
6291   case lltok::kw_call:
6292     return parseCall(Inst, PFS, CallInst::TCK_None);
6293   case lltok::kw_tail:
6294     return parseCall(Inst, PFS, CallInst::TCK_Tail);
6295   case lltok::kw_musttail:
6296     return parseCall(Inst, PFS, CallInst::TCK_MustTail);
6297   case lltok::kw_notail:
6298     return parseCall(Inst, PFS, CallInst::TCK_NoTail);
6299   // Memory.
6300   case lltok::kw_alloca:
6301     return parseAlloc(Inst, PFS);
6302   case lltok::kw_load:
6303     return parseLoad(Inst, PFS);
6304   case lltok::kw_store:
6305     return parseStore(Inst, PFS);
6306   case lltok::kw_cmpxchg:
6307     return parseCmpXchg(Inst, PFS);
6308   case lltok::kw_atomicrmw:
6309     return parseAtomicRMW(Inst, PFS);
6310   case lltok::kw_fence:
6311     return parseFence(Inst, PFS);
6312   case lltok::kw_getelementptr:
6313     return parseGetElementPtr(Inst, PFS);
6314   case lltok::kw_extractvalue:
6315     return parseExtractValue(Inst, PFS);
6316   case lltok::kw_insertvalue:
6317     return parseInsertValue(Inst, PFS);
6318   }
6319 }
6320 
6321 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind.
6322 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) {
6323   if (Opc == Instruction::FCmp) {
6324     switch (Lex.getKind()) {
6325     default:
6326       return tokError("expected fcmp predicate (e.g. 'oeq')");
6327     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
6328     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
6329     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
6330     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
6331     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
6332     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
6333     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
6334     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
6335     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
6336     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
6337     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
6338     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
6339     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
6340     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
6341     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
6342     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
6343     }
6344   } else {
6345     switch (Lex.getKind()) {
6346     default:
6347       return tokError("expected icmp predicate (e.g. 'eq')");
6348     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
6349     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
6350     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
6351     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
6352     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
6353     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
6354     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
6355     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
6356     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
6357     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
6358     }
6359   }
6360   Lex.Lex();
6361   return false;
6362 }
6363 
6364 //===----------------------------------------------------------------------===//
6365 // Terminator Instructions.
6366 //===----------------------------------------------------------------------===//
6367 
6368 /// parseRet - parse a return instruction.
6369 ///   ::= 'ret' void (',' !dbg, !1)*
6370 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
6371 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB,
6372                         PerFunctionState &PFS) {
6373   SMLoc TypeLoc = Lex.getLoc();
6374   Type *Ty = nullptr;
6375   if (parseType(Ty, true /*void allowed*/))
6376     return true;
6377 
6378   Type *ResType = PFS.getFunction().getReturnType();
6379 
6380   if (Ty->isVoidTy()) {
6381     if (!ResType->isVoidTy())
6382       return error(TypeLoc, "value doesn't match function result type '" +
6383                                 getTypeString(ResType) + "'");
6384 
6385     Inst = ReturnInst::Create(Context);
6386     return false;
6387   }
6388 
6389   Value *RV;
6390   if (parseValue(Ty, RV, PFS))
6391     return true;
6392 
6393   if (ResType != RV->getType())
6394     return error(TypeLoc, "value doesn't match function result type '" +
6395                               getTypeString(ResType) + "'");
6396 
6397   Inst = ReturnInst::Create(Context, RV);
6398   return false;
6399 }
6400 
6401 /// parseBr
6402 ///   ::= 'br' TypeAndValue
6403 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6404 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) {
6405   LocTy Loc, Loc2;
6406   Value *Op0;
6407   BasicBlock *Op1, *Op2;
6408   if (parseTypeAndValue(Op0, Loc, PFS))
6409     return true;
6410 
6411   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
6412     Inst = BranchInst::Create(BB);
6413     return false;
6414   }
6415 
6416   if (Op0->getType() != Type::getInt1Ty(Context))
6417     return error(Loc, "branch condition must have 'i1' type");
6418 
6419   if (parseToken(lltok::comma, "expected ',' after branch condition") ||
6420       parseTypeAndBasicBlock(Op1, Loc, PFS) ||
6421       parseToken(lltok::comma, "expected ',' after true destination") ||
6422       parseTypeAndBasicBlock(Op2, Loc2, PFS))
6423     return true;
6424 
6425   Inst = BranchInst::Create(Op1, Op2, Op0);
6426   return false;
6427 }
6428 
6429 /// parseSwitch
6430 ///  Instruction
6431 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
6432 ///  JumpTable
6433 ///    ::= (TypeAndValue ',' TypeAndValue)*
6434 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6435   LocTy CondLoc, BBLoc;
6436   Value *Cond;
6437   BasicBlock *DefaultBB;
6438   if (parseTypeAndValue(Cond, CondLoc, PFS) ||
6439       parseToken(lltok::comma, "expected ',' after switch condition") ||
6440       parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
6441       parseToken(lltok::lsquare, "expected '[' with switch table"))
6442     return true;
6443 
6444   if (!Cond->getType()->isIntegerTy())
6445     return error(CondLoc, "switch condition must have integer type");
6446 
6447   // parse the jump table pairs.
6448   SmallPtrSet<Value*, 32> SeenCases;
6449   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
6450   while (Lex.getKind() != lltok::rsquare) {
6451     Value *Constant;
6452     BasicBlock *DestBB;
6453 
6454     if (parseTypeAndValue(Constant, CondLoc, PFS) ||
6455         parseToken(lltok::comma, "expected ',' after case value") ||
6456         parseTypeAndBasicBlock(DestBB, PFS))
6457       return true;
6458 
6459     if (!SeenCases.insert(Constant).second)
6460       return error(CondLoc, "duplicate case value in switch");
6461     if (!isa<ConstantInt>(Constant))
6462       return error(CondLoc, "case value is not a constant integer");
6463 
6464     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
6465   }
6466 
6467   Lex.Lex();  // Eat the ']'.
6468 
6469   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
6470   for (unsigned i = 0, e = Table.size(); i != e; ++i)
6471     SI->addCase(Table[i].first, Table[i].second);
6472   Inst = SI;
6473   return false;
6474 }
6475 
6476 /// parseIndirectBr
6477 ///  Instruction
6478 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
6479 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
6480   LocTy AddrLoc;
6481   Value *Address;
6482   if (parseTypeAndValue(Address, AddrLoc, PFS) ||
6483       parseToken(lltok::comma, "expected ',' after indirectbr address") ||
6484       parseToken(lltok::lsquare, "expected '[' with indirectbr"))
6485     return true;
6486 
6487   if (!Address->getType()->isPointerTy())
6488     return error(AddrLoc, "indirectbr address must have pointer type");
6489 
6490   // parse the destination list.
6491   SmallVector<BasicBlock*, 16> DestList;
6492 
6493   if (Lex.getKind() != lltok::rsquare) {
6494     BasicBlock *DestBB;
6495     if (parseTypeAndBasicBlock(DestBB, PFS))
6496       return true;
6497     DestList.push_back(DestBB);
6498 
6499     while (EatIfPresent(lltok::comma)) {
6500       if (parseTypeAndBasicBlock(DestBB, PFS))
6501         return true;
6502       DestList.push_back(DestBB);
6503     }
6504   }
6505 
6506   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6507     return true;
6508 
6509   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
6510   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
6511     IBI->addDestination(DestList[i]);
6512   Inst = IBI;
6513   return false;
6514 }
6515 
6516 /// parseInvoke
6517 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
6518 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
6519 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
6520   LocTy CallLoc = Lex.getLoc();
6521   AttrBuilder RetAttrs, FnAttrs;
6522   std::vector<unsigned> FwdRefAttrGrps;
6523   LocTy NoBuiltinLoc;
6524   unsigned CC;
6525   unsigned InvokeAddrSpace;
6526   Type *RetType = nullptr;
6527   LocTy RetTypeLoc;
6528   ValID CalleeID;
6529   SmallVector<ParamInfo, 16> ArgList;
6530   SmallVector<OperandBundleDef, 2> BundleList;
6531 
6532   BasicBlock *NormalBB, *UnwindBB;
6533   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6534       parseOptionalProgramAddrSpace(InvokeAddrSpace) ||
6535       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6536       parseValID(CalleeID) || parseParameterList(ArgList, PFS) ||
6537       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6538                                  NoBuiltinLoc) ||
6539       parseOptionalOperandBundles(BundleList, PFS) ||
6540       parseToken(lltok::kw_to, "expected 'to' in invoke") ||
6541       parseTypeAndBasicBlock(NormalBB, PFS) ||
6542       parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
6543       parseTypeAndBasicBlock(UnwindBB, PFS))
6544     return true;
6545 
6546   // If RetType is a non-function pointer type, then this is the short syntax
6547   // for the call, which means that RetType is just the return type.  Infer the
6548   // rest of the function argument types from the arguments that are present.
6549   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6550   if (!Ty) {
6551     // Pull out the types of all of the arguments...
6552     std::vector<Type*> ParamTypes;
6553     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6554       ParamTypes.push_back(ArgList[i].V->getType());
6555 
6556     if (!FunctionType::isValidReturnType(RetType))
6557       return error(RetTypeLoc, "Invalid result type for LLVM function");
6558 
6559     Ty = FunctionType::get(RetType, ParamTypes, false);
6560   }
6561 
6562   CalleeID.FTy = Ty;
6563 
6564   // Look up the callee.
6565   Value *Callee;
6566   if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
6567                           Callee, &PFS, /*IsCall=*/true))
6568     return true;
6569 
6570   // Set up the Attribute for the function.
6571   SmallVector<Value *, 8> Args;
6572   SmallVector<AttributeSet, 8> ArgAttrs;
6573 
6574   // Loop through FunctionType's arguments and ensure they are specified
6575   // correctly.  Also, gather any parameter attributes.
6576   FunctionType::param_iterator I = Ty->param_begin();
6577   FunctionType::param_iterator E = Ty->param_end();
6578   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6579     Type *ExpectedTy = nullptr;
6580     if (I != E) {
6581       ExpectedTy = *I++;
6582     } else if (!Ty->isVarArg()) {
6583       return error(ArgList[i].Loc, "too many arguments specified");
6584     }
6585 
6586     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6587       return error(ArgList[i].Loc, "argument is not of expected type '" +
6588                                        getTypeString(ExpectedTy) + "'");
6589     Args.push_back(ArgList[i].V);
6590     ArgAttrs.push_back(ArgList[i].Attrs);
6591   }
6592 
6593   if (I != E)
6594     return error(CallLoc, "not enough parameters specified for call");
6595 
6596   if (FnAttrs.hasAlignmentAttr())
6597     return error(CallLoc, "invoke instructions may not have an alignment");
6598 
6599   // Finish off the Attribute and check them
6600   AttributeList PAL =
6601       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6602                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6603 
6604   InvokeInst *II =
6605       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
6606   II->setCallingConv(CC);
6607   II->setAttributes(PAL);
6608   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
6609   Inst = II;
6610   return false;
6611 }
6612 
6613 /// parseResume
6614 ///   ::= 'resume' TypeAndValue
6615 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) {
6616   Value *Exn; LocTy ExnLoc;
6617   if (parseTypeAndValue(Exn, ExnLoc, PFS))
6618     return true;
6619 
6620   ResumeInst *RI = ResumeInst::Create(Exn);
6621   Inst = RI;
6622   return false;
6623 }
6624 
6625 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args,
6626                                   PerFunctionState &PFS) {
6627   if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
6628     return true;
6629 
6630   while (Lex.getKind() != lltok::rsquare) {
6631     // If this isn't the first argument, we need a comma.
6632     if (!Args.empty() &&
6633         parseToken(lltok::comma, "expected ',' in argument list"))
6634       return true;
6635 
6636     // parse the argument.
6637     LocTy ArgLoc;
6638     Type *ArgTy = nullptr;
6639     if (parseType(ArgTy, ArgLoc))
6640       return true;
6641 
6642     Value *V;
6643     if (ArgTy->isMetadataTy()) {
6644       if (parseMetadataAsValue(V, PFS))
6645         return true;
6646     } else {
6647       if (parseValue(ArgTy, V, PFS))
6648         return true;
6649     }
6650     Args.push_back(V);
6651   }
6652 
6653   Lex.Lex();  // Lex the ']'.
6654   return false;
6655 }
6656 
6657 /// parseCleanupRet
6658 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6659 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6660   Value *CleanupPad = nullptr;
6661 
6662   if (parseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6663     return true;
6664 
6665   if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6666     return true;
6667 
6668   if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6669     return true;
6670 
6671   BasicBlock *UnwindBB = nullptr;
6672   if (Lex.getKind() == lltok::kw_to) {
6673     Lex.Lex();
6674     if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6675       return true;
6676   } else {
6677     if (parseTypeAndBasicBlock(UnwindBB, PFS)) {
6678       return true;
6679     }
6680   }
6681 
6682   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6683   return false;
6684 }
6685 
6686 /// parseCatchRet
6687 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
6688 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6689   Value *CatchPad = nullptr;
6690 
6691   if (parseToken(lltok::kw_from, "expected 'from' after catchret"))
6692     return true;
6693 
6694   if (parseValue(Type::getTokenTy(Context), CatchPad, PFS))
6695     return true;
6696 
6697   BasicBlock *BB;
6698   if (parseToken(lltok::kw_to, "expected 'to' in catchret") ||
6699       parseTypeAndBasicBlock(BB, PFS))
6700     return true;
6701 
6702   Inst = CatchReturnInst::Create(CatchPad, BB);
6703   return false;
6704 }
6705 
6706 /// parseCatchSwitch
6707 ///   ::= 'catchswitch' within Parent
6708 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6709   Value *ParentPad;
6710 
6711   if (parseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6712     return true;
6713 
6714   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6715       Lex.getKind() != lltok::LocalVarID)
6716     return tokError("expected scope value for catchswitch");
6717 
6718   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6719     return true;
6720 
6721   if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6722     return true;
6723 
6724   SmallVector<BasicBlock *, 32> Table;
6725   do {
6726     BasicBlock *DestBB;
6727     if (parseTypeAndBasicBlock(DestBB, PFS))
6728       return true;
6729     Table.push_back(DestBB);
6730   } while (EatIfPresent(lltok::comma));
6731 
6732   if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6733     return true;
6734 
6735   if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope"))
6736     return true;
6737 
6738   BasicBlock *UnwindBB = nullptr;
6739   if (EatIfPresent(lltok::kw_to)) {
6740     if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6741       return true;
6742   } else {
6743     if (parseTypeAndBasicBlock(UnwindBB, PFS))
6744       return true;
6745   }
6746 
6747   auto *CatchSwitch =
6748       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6749   for (BasicBlock *DestBB : Table)
6750     CatchSwitch->addHandler(DestBB);
6751   Inst = CatchSwitch;
6752   return false;
6753 }
6754 
6755 /// parseCatchPad
6756 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6757 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6758   Value *CatchSwitch = nullptr;
6759 
6760   if (parseToken(lltok::kw_within, "expected 'within' after catchpad"))
6761     return true;
6762 
6763   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6764     return tokError("expected scope value for catchpad");
6765 
6766   if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6767     return true;
6768 
6769   SmallVector<Value *, 8> Args;
6770   if (parseExceptionArgs(Args, PFS))
6771     return true;
6772 
6773   Inst = CatchPadInst::Create(CatchSwitch, Args);
6774   return false;
6775 }
6776 
6777 /// parseCleanupPad
6778 ///   ::= 'cleanuppad' within Parent ParamList
6779 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6780   Value *ParentPad = nullptr;
6781 
6782   if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6783     return true;
6784 
6785   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6786       Lex.getKind() != lltok::LocalVarID)
6787     return tokError("expected scope value for cleanuppad");
6788 
6789   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6790     return true;
6791 
6792   SmallVector<Value *, 8> Args;
6793   if (parseExceptionArgs(Args, PFS))
6794     return true;
6795 
6796   Inst = CleanupPadInst::Create(ParentPad, Args);
6797   return false;
6798 }
6799 
6800 //===----------------------------------------------------------------------===//
6801 // Unary Operators.
6802 //===----------------------------------------------------------------------===//
6803 
6804 /// parseUnaryOp
6805 ///  ::= UnaryOp TypeAndValue ',' Value
6806 ///
6807 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6808 /// operand is allowed.
6809 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6810                             unsigned Opc, bool IsFP) {
6811   LocTy Loc; Value *LHS;
6812   if (parseTypeAndValue(LHS, Loc, PFS))
6813     return true;
6814 
6815   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6816                     : LHS->getType()->isIntOrIntVectorTy();
6817 
6818   if (!Valid)
6819     return error(Loc, "invalid operand type for instruction");
6820 
6821   Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6822   return false;
6823 }
6824 
6825 /// parseCallBr
6826 ///   ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6827 ///       OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6828 ///       '[' LabelList ']'
6829 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6830   LocTy CallLoc = Lex.getLoc();
6831   AttrBuilder RetAttrs, FnAttrs;
6832   std::vector<unsigned> FwdRefAttrGrps;
6833   LocTy NoBuiltinLoc;
6834   unsigned CC;
6835   Type *RetType = nullptr;
6836   LocTy RetTypeLoc;
6837   ValID CalleeID;
6838   SmallVector<ParamInfo, 16> ArgList;
6839   SmallVector<OperandBundleDef, 2> BundleList;
6840 
6841   BasicBlock *DefaultDest;
6842   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6843       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6844       parseValID(CalleeID) || parseParameterList(ArgList, PFS) ||
6845       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6846                                  NoBuiltinLoc) ||
6847       parseOptionalOperandBundles(BundleList, PFS) ||
6848       parseToken(lltok::kw_to, "expected 'to' in callbr") ||
6849       parseTypeAndBasicBlock(DefaultDest, PFS) ||
6850       parseToken(lltok::lsquare, "expected '[' in callbr"))
6851     return true;
6852 
6853   // parse the destination list.
6854   SmallVector<BasicBlock *, 16> IndirectDests;
6855 
6856   if (Lex.getKind() != lltok::rsquare) {
6857     BasicBlock *DestBB;
6858     if (parseTypeAndBasicBlock(DestBB, PFS))
6859       return true;
6860     IndirectDests.push_back(DestBB);
6861 
6862     while (EatIfPresent(lltok::comma)) {
6863       if (parseTypeAndBasicBlock(DestBB, PFS))
6864         return true;
6865       IndirectDests.push_back(DestBB);
6866     }
6867   }
6868 
6869   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6870     return true;
6871 
6872   // If RetType is a non-function pointer type, then this is the short syntax
6873   // for the call, which means that RetType is just the return type.  Infer the
6874   // rest of the function argument types from the arguments that are present.
6875   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6876   if (!Ty) {
6877     // Pull out the types of all of the arguments...
6878     std::vector<Type *> ParamTypes;
6879     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6880       ParamTypes.push_back(ArgList[i].V->getType());
6881 
6882     if (!FunctionType::isValidReturnType(RetType))
6883       return error(RetTypeLoc, "Invalid result type for LLVM function");
6884 
6885     Ty = FunctionType::get(RetType, ParamTypes, false);
6886   }
6887 
6888   CalleeID.FTy = Ty;
6889 
6890   // Look up the callee.
6891   Value *Callee;
6892   if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
6893                           /*IsCall=*/true))
6894     return true;
6895 
6896   // Set up the Attribute for the function.
6897   SmallVector<Value *, 8> Args;
6898   SmallVector<AttributeSet, 8> ArgAttrs;
6899 
6900   // Loop through FunctionType's arguments and ensure they are specified
6901   // correctly.  Also, gather any parameter attributes.
6902   FunctionType::param_iterator I = Ty->param_begin();
6903   FunctionType::param_iterator E = Ty->param_end();
6904   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6905     Type *ExpectedTy = nullptr;
6906     if (I != E) {
6907       ExpectedTy = *I++;
6908     } else if (!Ty->isVarArg()) {
6909       return error(ArgList[i].Loc, "too many arguments specified");
6910     }
6911 
6912     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6913       return error(ArgList[i].Loc, "argument is not of expected type '" +
6914                                        getTypeString(ExpectedTy) + "'");
6915     Args.push_back(ArgList[i].V);
6916     ArgAttrs.push_back(ArgList[i].Attrs);
6917   }
6918 
6919   if (I != E)
6920     return error(CallLoc, "not enough parameters specified for call");
6921 
6922   if (FnAttrs.hasAlignmentAttr())
6923     return error(CallLoc, "callbr instructions may not have an alignment");
6924 
6925   // Finish off the Attribute and check them
6926   AttributeList PAL =
6927       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6928                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6929 
6930   CallBrInst *CBI =
6931       CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
6932                          BundleList);
6933   CBI->setCallingConv(CC);
6934   CBI->setAttributes(PAL);
6935   ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
6936   Inst = CBI;
6937   return false;
6938 }
6939 
6940 //===----------------------------------------------------------------------===//
6941 // Binary Operators.
6942 //===----------------------------------------------------------------------===//
6943 
6944 /// parseArithmetic
6945 ///  ::= ArithmeticOps TypeAndValue ',' Value
6946 ///
6947 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6948 /// operand is allowed.
6949 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6950                                unsigned Opc, bool IsFP) {
6951   LocTy Loc; Value *LHS, *RHS;
6952   if (parseTypeAndValue(LHS, Loc, PFS) ||
6953       parseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6954       parseValue(LHS->getType(), RHS, PFS))
6955     return true;
6956 
6957   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6958                     : LHS->getType()->isIntOrIntVectorTy();
6959 
6960   if (!Valid)
6961     return error(Loc, "invalid operand type for instruction");
6962 
6963   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6964   return false;
6965 }
6966 
6967 /// parseLogical
6968 ///  ::= ArithmeticOps TypeAndValue ',' Value {
6969 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS,
6970                             unsigned Opc) {
6971   LocTy Loc; Value *LHS, *RHS;
6972   if (parseTypeAndValue(LHS, Loc, PFS) ||
6973       parseToken(lltok::comma, "expected ',' in logical operation") ||
6974       parseValue(LHS->getType(), RHS, PFS))
6975     return true;
6976 
6977   if (!LHS->getType()->isIntOrIntVectorTy())
6978     return error(Loc,
6979                  "instruction requires integer or integer vector operands");
6980 
6981   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6982   return false;
6983 }
6984 
6985 /// parseCompare
6986 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
6987 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
6988 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS,
6989                             unsigned Opc) {
6990   // parse the integer/fp comparison predicate.
6991   LocTy Loc;
6992   unsigned Pred;
6993   Value *LHS, *RHS;
6994   if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) ||
6995       parseToken(lltok::comma, "expected ',' after compare value") ||
6996       parseValue(LHS->getType(), RHS, PFS))
6997     return true;
6998 
6999   if (Opc == Instruction::FCmp) {
7000     if (!LHS->getType()->isFPOrFPVectorTy())
7001       return error(Loc, "fcmp requires floating point operands");
7002     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
7003   } else {
7004     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
7005     if (!LHS->getType()->isIntOrIntVectorTy() &&
7006         !LHS->getType()->isPtrOrPtrVectorTy())
7007       return error(Loc, "icmp requires integer operands");
7008     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
7009   }
7010   return false;
7011 }
7012 
7013 //===----------------------------------------------------------------------===//
7014 // Other Instructions.
7015 //===----------------------------------------------------------------------===//
7016 
7017 /// parseCast
7018 ///   ::= CastOpc TypeAndValue 'to' Type
7019 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS,
7020                          unsigned Opc) {
7021   LocTy Loc;
7022   Value *Op;
7023   Type *DestTy = nullptr;
7024   if (parseTypeAndValue(Op, Loc, PFS) ||
7025       parseToken(lltok::kw_to, "expected 'to' after cast value") ||
7026       parseType(DestTy))
7027     return true;
7028 
7029   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
7030     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
7031     return error(Loc, "invalid cast opcode for cast from '" +
7032                           getTypeString(Op->getType()) + "' to '" +
7033                           getTypeString(DestTy) + "'");
7034   }
7035   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
7036   return false;
7037 }
7038 
7039 /// parseSelect
7040 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
7041 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) {
7042   LocTy Loc;
7043   Value *Op0, *Op1, *Op2;
7044   if (parseTypeAndValue(Op0, Loc, PFS) ||
7045       parseToken(lltok::comma, "expected ',' after select condition") ||
7046       parseTypeAndValue(Op1, PFS) ||
7047       parseToken(lltok::comma, "expected ',' after select value") ||
7048       parseTypeAndValue(Op2, PFS))
7049     return true;
7050 
7051   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
7052     return error(Loc, Reason);
7053 
7054   Inst = SelectInst::Create(Op0, Op1, Op2);
7055   return false;
7056 }
7057 
7058 /// parseVAArg
7059 ///   ::= 'va_arg' TypeAndValue ',' Type
7060 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) {
7061   Value *Op;
7062   Type *EltTy = nullptr;
7063   LocTy TypeLoc;
7064   if (parseTypeAndValue(Op, PFS) ||
7065       parseToken(lltok::comma, "expected ',' after vaarg operand") ||
7066       parseType(EltTy, TypeLoc))
7067     return true;
7068 
7069   if (!EltTy->isFirstClassType())
7070     return error(TypeLoc, "va_arg requires operand with first class type");
7071 
7072   Inst = new VAArgInst(Op, EltTy);
7073   return false;
7074 }
7075 
7076 /// parseExtractElement
7077 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
7078 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
7079   LocTy Loc;
7080   Value *Op0, *Op1;
7081   if (parseTypeAndValue(Op0, Loc, PFS) ||
7082       parseToken(lltok::comma, "expected ',' after extract value") ||
7083       parseTypeAndValue(Op1, PFS))
7084     return true;
7085 
7086   if (!ExtractElementInst::isValidOperands(Op0, Op1))
7087     return error(Loc, "invalid extractelement operands");
7088 
7089   Inst = ExtractElementInst::Create(Op0, Op1);
7090   return false;
7091 }
7092 
7093 /// parseInsertElement
7094 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
7095 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
7096   LocTy Loc;
7097   Value *Op0, *Op1, *Op2;
7098   if (parseTypeAndValue(Op0, Loc, PFS) ||
7099       parseToken(lltok::comma, "expected ',' after insertelement value") ||
7100       parseTypeAndValue(Op1, PFS) ||
7101       parseToken(lltok::comma, "expected ',' after insertelement value") ||
7102       parseTypeAndValue(Op2, PFS))
7103     return true;
7104 
7105   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
7106     return error(Loc, "invalid insertelement operands");
7107 
7108   Inst = InsertElementInst::Create(Op0, Op1, Op2);
7109   return false;
7110 }
7111 
7112 /// parseShuffleVector
7113 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
7114 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
7115   LocTy Loc;
7116   Value *Op0, *Op1, *Op2;
7117   if (parseTypeAndValue(Op0, Loc, PFS) ||
7118       parseToken(lltok::comma, "expected ',' after shuffle mask") ||
7119       parseTypeAndValue(Op1, PFS) ||
7120       parseToken(lltok::comma, "expected ',' after shuffle value") ||
7121       parseTypeAndValue(Op2, PFS))
7122     return true;
7123 
7124   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
7125     return error(Loc, "invalid shufflevector operands");
7126 
7127   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
7128   return false;
7129 }
7130 
7131 /// parsePHI
7132 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
7133 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) {
7134   Type *Ty = nullptr;  LocTy TypeLoc;
7135   Value *Op0, *Op1;
7136 
7137   if (parseType(Ty, TypeLoc) ||
7138       parseToken(lltok::lsquare, "expected '[' in phi value list") ||
7139       parseValue(Ty, Op0, PFS) ||
7140       parseToken(lltok::comma, "expected ',' after insertelement value") ||
7141       parseValue(Type::getLabelTy(Context), Op1, PFS) ||
7142       parseToken(lltok::rsquare, "expected ']' in phi value list"))
7143     return true;
7144 
7145   bool AteExtraComma = false;
7146   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
7147 
7148   while (true) {
7149     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
7150 
7151     if (!EatIfPresent(lltok::comma))
7152       break;
7153 
7154     if (Lex.getKind() == lltok::MetadataVar) {
7155       AteExtraComma = true;
7156       break;
7157     }
7158 
7159     if (parseToken(lltok::lsquare, "expected '[' in phi value list") ||
7160         parseValue(Ty, Op0, PFS) ||
7161         parseToken(lltok::comma, "expected ',' after insertelement value") ||
7162         parseValue(Type::getLabelTy(Context), Op1, PFS) ||
7163         parseToken(lltok::rsquare, "expected ']' in phi value list"))
7164       return true;
7165   }
7166 
7167   if (!Ty->isFirstClassType())
7168     return error(TypeLoc, "phi node must have first class type");
7169 
7170   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
7171   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
7172     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
7173   Inst = PN;
7174   return AteExtraComma ? InstExtraComma : InstNormal;
7175 }
7176 
7177 /// parseLandingPad
7178 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
7179 /// Clause
7180 ///   ::= 'catch' TypeAndValue
7181 ///   ::= 'filter'
7182 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
7183 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
7184   Type *Ty = nullptr; LocTy TyLoc;
7185 
7186   if (parseType(Ty, TyLoc))
7187     return true;
7188 
7189   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
7190   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
7191 
7192   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
7193     LandingPadInst::ClauseType CT;
7194     if (EatIfPresent(lltok::kw_catch))
7195       CT = LandingPadInst::Catch;
7196     else if (EatIfPresent(lltok::kw_filter))
7197       CT = LandingPadInst::Filter;
7198     else
7199       return tokError("expected 'catch' or 'filter' clause type");
7200 
7201     Value *V;
7202     LocTy VLoc;
7203     if (parseTypeAndValue(V, VLoc, PFS))
7204       return true;
7205 
7206     // A 'catch' type expects a non-array constant. A filter clause expects an
7207     // array constant.
7208     if (CT == LandingPadInst::Catch) {
7209       if (isa<ArrayType>(V->getType()))
7210         error(VLoc, "'catch' clause has an invalid type");
7211     } else {
7212       if (!isa<ArrayType>(V->getType()))
7213         error(VLoc, "'filter' clause has an invalid type");
7214     }
7215 
7216     Constant *CV = dyn_cast<Constant>(V);
7217     if (!CV)
7218       return error(VLoc, "clause argument must be a constant");
7219     LP->addClause(CV);
7220   }
7221 
7222   Inst = LP.release();
7223   return false;
7224 }
7225 
7226 /// parseFreeze
7227 ///   ::= 'freeze' Type Value
7228 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) {
7229   LocTy Loc;
7230   Value *Op;
7231   if (parseTypeAndValue(Op, Loc, PFS))
7232     return true;
7233 
7234   Inst = new FreezeInst(Op);
7235   return false;
7236 }
7237 
7238 /// parseCall
7239 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
7240 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7241 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
7242 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7243 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
7244 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7245 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
7246 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7247 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS,
7248                          CallInst::TailCallKind TCK) {
7249   AttrBuilder RetAttrs, FnAttrs;
7250   std::vector<unsigned> FwdRefAttrGrps;
7251   LocTy BuiltinLoc;
7252   unsigned CallAddrSpace;
7253   unsigned CC;
7254   Type *RetType = nullptr;
7255   LocTy RetTypeLoc;
7256   ValID CalleeID;
7257   SmallVector<ParamInfo, 16> ArgList;
7258   SmallVector<OperandBundleDef, 2> BundleList;
7259   LocTy CallLoc = Lex.getLoc();
7260 
7261   if (TCK != CallInst::TCK_None &&
7262       parseToken(lltok::kw_call,
7263                  "expected 'tail call', 'musttail call', or 'notail call'"))
7264     return true;
7265 
7266   FastMathFlags FMF = EatFastMathFlagsIfPresent();
7267 
7268   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
7269       parseOptionalProgramAddrSpace(CallAddrSpace) ||
7270       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
7271       parseValID(CalleeID) ||
7272       parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
7273                          PFS.getFunction().isVarArg()) ||
7274       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
7275       parseOptionalOperandBundles(BundleList, PFS))
7276     return true;
7277 
7278   // If RetType is a non-function pointer type, then this is the short syntax
7279   // for the call, which means that RetType is just the return type.  Infer the
7280   // rest of the function argument types from the arguments that are present.
7281   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
7282   if (!Ty) {
7283     // Pull out the types of all of the arguments...
7284     std::vector<Type*> ParamTypes;
7285     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
7286       ParamTypes.push_back(ArgList[i].V->getType());
7287 
7288     if (!FunctionType::isValidReturnType(RetType))
7289       return error(RetTypeLoc, "Invalid result type for LLVM function");
7290 
7291     Ty = FunctionType::get(RetType, ParamTypes, false);
7292   }
7293 
7294   CalleeID.FTy = Ty;
7295 
7296   // Look up the callee.
7297   Value *Callee;
7298   if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
7299                           &PFS, /*IsCall=*/true))
7300     return true;
7301 
7302   // Set up the Attribute for the function.
7303   SmallVector<AttributeSet, 8> Attrs;
7304 
7305   SmallVector<Value*, 8> Args;
7306 
7307   // Loop through FunctionType's arguments and ensure they are specified
7308   // correctly.  Also, gather any parameter attributes.
7309   FunctionType::param_iterator I = Ty->param_begin();
7310   FunctionType::param_iterator E = Ty->param_end();
7311   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
7312     Type *ExpectedTy = nullptr;
7313     if (I != E) {
7314       ExpectedTy = *I++;
7315     } else if (!Ty->isVarArg()) {
7316       return error(ArgList[i].Loc, "too many arguments specified");
7317     }
7318 
7319     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
7320       return error(ArgList[i].Loc, "argument is not of expected type '" +
7321                                        getTypeString(ExpectedTy) + "'");
7322     Args.push_back(ArgList[i].V);
7323     Attrs.push_back(ArgList[i].Attrs);
7324   }
7325 
7326   if (I != E)
7327     return error(CallLoc, "not enough parameters specified for call");
7328 
7329   if (FnAttrs.hasAlignmentAttr())
7330     return error(CallLoc, "call instructions may not have an alignment");
7331 
7332   // Finish off the Attribute and check them
7333   AttributeList PAL =
7334       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
7335                          AttributeSet::get(Context, RetAttrs), Attrs);
7336 
7337   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
7338   CI->setTailCallKind(TCK);
7339   CI->setCallingConv(CC);
7340   if (FMF.any()) {
7341     if (!isa<FPMathOperator>(CI)) {
7342       CI->deleteValue();
7343       return error(CallLoc, "fast-math-flags specified for call without "
7344                             "floating-point scalar or vector return type");
7345     }
7346     CI->setFastMathFlags(FMF);
7347   }
7348   CI->setAttributes(PAL);
7349   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
7350   Inst = CI;
7351   return false;
7352 }
7353 
7354 //===----------------------------------------------------------------------===//
7355 // Memory Instructions.
7356 //===----------------------------------------------------------------------===//
7357 
7358 /// parseAlloc
7359 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
7360 ///       (',' 'align' i32)? (',', 'addrspace(n))?
7361 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
7362   Value *Size = nullptr;
7363   LocTy SizeLoc, TyLoc, ASLoc;
7364   MaybeAlign Alignment;
7365   unsigned AddrSpace = 0;
7366   Type *Ty = nullptr;
7367 
7368   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
7369   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
7370 
7371   if (parseType(Ty, TyLoc))
7372     return true;
7373 
7374   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
7375     return error(TyLoc, "invalid type for alloca");
7376 
7377   bool AteExtraComma = false;
7378   if (EatIfPresent(lltok::comma)) {
7379     if (Lex.getKind() == lltok::kw_align) {
7380       if (parseOptionalAlignment(Alignment))
7381         return true;
7382       if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7383         return true;
7384     } else if (Lex.getKind() == lltok::kw_addrspace) {
7385       ASLoc = Lex.getLoc();
7386       if (parseOptionalAddrSpace(AddrSpace))
7387         return true;
7388     } else if (Lex.getKind() == lltok::MetadataVar) {
7389       AteExtraComma = true;
7390     } else {
7391       if (parseTypeAndValue(Size, SizeLoc, PFS))
7392         return true;
7393       if (EatIfPresent(lltok::comma)) {
7394         if (Lex.getKind() == lltok::kw_align) {
7395           if (parseOptionalAlignment(Alignment))
7396             return true;
7397           if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7398             return true;
7399         } else if (Lex.getKind() == lltok::kw_addrspace) {
7400           ASLoc = Lex.getLoc();
7401           if (parseOptionalAddrSpace(AddrSpace))
7402             return true;
7403         } else if (Lex.getKind() == lltok::MetadataVar) {
7404           AteExtraComma = true;
7405         }
7406       }
7407     }
7408   }
7409 
7410   if (Size && !Size->getType()->isIntegerTy())
7411     return error(SizeLoc, "element count must have integer type");
7412 
7413   SmallPtrSet<Type *, 4> Visited;
7414   if (!Alignment && !Ty->isSized(&Visited))
7415     return error(TyLoc, "Cannot allocate unsized type");
7416   if (!Alignment)
7417     Alignment = M->getDataLayout().getPrefTypeAlign(Ty);
7418   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment);
7419   AI->setUsedWithInAlloca(IsInAlloca);
7420   AI->setSwiftError(IsSwiftError);
7421   Inst = AI;
7422   return AteExtraComma ? InstExtraComma : InstNormal;
7423 }
7424 
7425 /// parseLoad
7426 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
7427 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
7428 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7429 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) {
7430   Value *Val; LocTy Loc;
7431   MaybeAlign Alignment;
7432   bool AteExtraComma = false;
7433   bool isAtomic = false;
7434   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7435   SyncScope::ID SSID = SyncScope::System;
7436 
7437   if (Lex.getKind() == lltok::kw_atomic) {
7438     isAtomic = true;
7439     Lex.Lex();
7440   }
7441 
7442   bool isVolatile = false;
7443   if (Lex.getKind() == lltok::kw_volatile) {
7444     isVolatile = true;
7445     Lex.Lex();
7446   }
7447 
7448   Type *Ty;
7449   LocTy ExplicitTypeLoc = Lex.getLoc();
7450   if (parseType(Ty) ||
7451       parseToken(lltok::comma, "expected comma after load's type") ||
7452       parseTypeAndValue(Val, Loc, PFS) ||
7453       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7454       parseOptionalCommaAlign(Alignment, AteExtraComma))
7455     return true;
7456 
7457   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
7458     return error(Loc, "load operand must be a pointer to a first class type");
7459   if (isAtomic && !Alignment)
7460     return error(Loc, "atomic load must have explicit non-zero alignment");
7461   if (Ordering == AtomicOrdering::Release ||
7462       Ordering == AtomicOrdering::AcquireRelease)
7463     return error(Loc, "atomic load cannot use Release ordering");
7464 
7465   if (!cast<PointerType>(Val->getType())->isOpaqueOrPointeeTypeMatches(Ty)) {
7466     return error(
7467         ExplicitTypeLoc,
7468         typeComparisonErrorMessage(
7469             "explicit pointee type doesn't match operand's pointee type", Ty,
7470             cast<PointerType>(Val->getType())->getElementType()));
7471   }
7472   SmallPtrSet<Type *, 4> Visited;
7473   if (!Alignment && !Ty->isSized(&Visited))
7474     return error(ExplicitTypeLoc, "loading unsized types is not allowed");
7475   if (!Alignment)
7476     Alignment = M->getDataLayout().getABITypeAlign(Ty);
7477   Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID);
7478   return AteExtraComma ? InstExtraComma : InstNormal;
7479 }
7480 
7481 /// parseStore
7482 
7483 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
7484 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
7485 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7486 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) {
7487   Value *Val, *Ptr; LocTy Loc, PtrLoc;
7488   MaybeAlign Alignment;
7489   bool AteExtraComma = false;
7490   bool isAtomic = false;
7491   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7492   SyncScope::ID SSID = SyncScope::System;
7493 
7494   if (Lex.getKind() == lltok::kw_atomic) {
7495     isAtomic = true;
7496     Lex.Lex();
7497   }
7498 
7499   bool isVolatile = false;
7500   if (Lex.getKind() == lltok::kw_volatile) {
7501     isVolatile = true;
7502     Lex.Lex();
7503   }
7504 
7505   if (parseTypeAndValue(Val, Loc, PFS) ||
7506       parseToken(lltok::comma, "expected ',' after store operand") ||
7507       parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7508       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7509       parseOptionalCommaAlign(Alignment, AteExtraComma))
7510     return true;
7511 
7512   if (!Ptr->getType()->isPointerTy())
7513     return error(PtrLoc, "store operand must be a pointer");
7514   if (!Val->getType()->isFirstClassType())
7515     return error(Loc, "store operand must be a first class value");
7516   if (!cast<PointerType>(Ptr->getType())
7517            ->isOpaqueOrPointeeTypeMatches(Val->getType()))
7518     return error(Loc, "stored value and pointer type do not match");
7519   if (isAtomic && !Alignment)
7520     return error(Loc, "atomic store must have explicit non-zero alignment");
7521   if (Ordering == AtomicOrdering::Acquire ||
7522       Ordering == AtomicOrdering::AcquireRelease)
7523     return error(Loc, "atomic store cannot use Acquire ordering");
7524   SmallPtrSet<Type *, 4> Visited;
7525   if (!Alignment && !Val->getType()->isSized(&Visited))
7526     return error(Loc, "storing unsized types is not allowed");
7527   if (!Alignment)
7528     Alignment = M->getDataLayout().getABITypeAlign(Val->getType());
7529 
7530   Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID);
7531   return AteExtraComma ? InstExtraComma : InstNormal;
7532 }
7533 
7534 /// parseCmpXchg
7535 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
7536 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ','
7537 ///       'Align'?
7538 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
7539   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
7540   bool AteExtraComma = false;
7541   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
7542   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
7543   SyncScope::ID SSID = SyncScope::System;
7544   bool isVolatile = false;
7545   bool isWeak = false;
7546   MaybeAlign Alignment;
7547 
7548   if (EatIfPresent(lltok::kw_weak))
7549     isWeak = true;
7550 
7551   if (EatIfPresent(lltok::kw_volatile))
7552     isVolatile = true;
7553 
7554   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7555       parseToken(lltok::comma, "expected ',' after cmpxchg address") ||
7556       parseTypeAndValue(Cmp, CmpLoc, PFS) ||
7557       parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
7558       parseTypeAndValue(New, NewLoc, PFS) ||
7559       parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
7560       parseOrdering(FailureOrdering) ||
7561       parseOptionalCommaAlign(Alignment, AteExtraComma))
7562     return true;
7563 
7564   if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
7565     return tokError("invalid cmpxchg success ordering");
7566   if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
7567     return tokError("invalid cmpxchg failure ordering");
7568   if (!Ptr->getType()->isPointerTy())
7569     return error(PtrLoc, "cmpxchg operand must be a pointer");
7570   if (!cast<PointerType>(Ptr->getType())
7571            ->isOpaqueOrPointeeTypeMatches(Cmp->getType()))
7572     return error(CmpLoc, "compare value and pointer type do not match");
7573   if (!cast<PointerType>(Ptr->getType())
7574            ->isOpaqueOrPointeeTypeMatches(New->getType()))
7575     return error(NewLoc, "new value and pointer type do not match");
7576   if (Cmp->getType() != New->getType())
7577     return error(NewLoc, "compare value and new value type do not match");
7578   if (!New->getType()->isFirstClassType())
7579     return error(NewLoc, "cmpxchg operand must be a first class value");
7580 
7581   const Align DefaultAlignment(
7582       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7583           Cmp->getType()));
7584 
7585   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
7586       Ptr, Cmp, New, Alignment.getValueOr(DefaultAlignment), SuccessOrdering,
7587       FailureOrdering, SSID);
7588   CXI->setVolatile(isVolatile);
7589   CXI->setWeak(isWeak);
7590 
7591   Inst = CXI;
7592   return AteExtraComma ? InstExtraComma : InstNormal;
7593 }
7594 
7595 /// parseAtomicRMW
7596 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
7597 ///       'singlethread'? AtomicOrdering
7598 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
7599   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
7600   bool AteExtraComma = false;
7601   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7602   SyncScope::ID SSID = SyncScope::System;
7603   bool isVolatile = false;
7604   bool IsFP = false;
7605   AtomicRMWInst::BinOp Operation;
7606   MaybeAlign Alignment;
7607 
7608   if (EatIfPresent(lltok::kw_volatile))
7609     isVolatile = true;
7610 
7611   switch (Lex.getKind()) {
7612   default:
7613     return tokError("expected binary operation in atomicrmw");
7614   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
7615   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
7616   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
7617   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
7618   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
7619   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
7620   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
7621   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
7622   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
7623   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
7624   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
7625   case lltok::kw_fadd:
7626     Operation = AtomicRMWInst::FAdd;
7627     IsFP = true;
7628     break;
7629   case lltok::kw_fsub:
7630     Operation = AtomicRMWInst::FSub;
7631     IsFP = true;
7632     break;
7633   }
7634   Lex.Lex();  // Eat the operation.
7635 
7636   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7637       parseToken(lltok::comma, "expected ',' after atomicrmw address") ||
7638       parseTypeAndValue(Val, ValLoc, PFS) ||
7639       parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) ||
7640       parseOptionalCommaAlign(Alignment, AteExtraComma))
7641     return true;
7642 
7643   if (Ordering == AtomicOrdering::Unordered)
7644     return tokError("atomicrmw cannot be unordered");
7645   if (!Ptr->getType()->isPointerTy())
7646     return error(PtrLoc, "atomicrmw operand must be a pointer");
7647   if (!cast<PointerType>(Ptr->getType())
7648            ->isOpaqueOrPointeeTypeMatches(Val->getType()))
7649     return error(ValLoc, "atomicrmw value and pointer type do not match");
7650 
7651   if (Operation == AtomicRMWInst::Xchg) {
7652     if (!Val->getType()->isIntegerTy() &&
7653         !Val->getType()->isFloatingPointTy()) {
7654       return error(ValLoc,
7655                    "atomicrmw " + AtomicRMWInst::getOperationName(Operation) +
7656                        " operand must be an integer or floating point type");
7657     }
7658   } else if (IsFP) {
7659     if (!Val->getType()->isFloatingPointTy()) {
7660       return error(ValLoc, "atomicrmw " +
7661                                AtomicRMWInst::getOperationName(Operation) +
7662                                " operand must be a floating point type");
7663     }
7664   } else {
7665     if (!Val->getType()->isIntegerTy()) {
7666       return error(ValLoc, "atomicrmw " +
7667                                AtomicRMWInst::getOperationName(Operation) +
7668                                " operand must be an integer");
7669     }
7670   }
7671 
7672   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
7673   if (Size < 8 || (Size & (Size - 1)))
7674     return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7675                          " integer");
7676   const Align DefaultAlignment(
7677       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7678           Val->getType()));
7679   AtomicRMWInst *RMWI =
7680       new AtomicRMWInst(Operation, Ptr, Val,
7681                         Alignment.getValueOr(DefaultAlignment), Ordering, SSID);
7682   RMWI->setVolatile(isVolatile);
7683   Inst = RMWI;
7684   return AteExtraComma ? InstExtraComma : InstNormal;
7685 }
7686 
7687 /// parseFence
7688 ///   ::= 'fence' 'singlethread'? AtomicOrdering
7689 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) {
7690   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7691   SyncScope::ID SSID = SyncScope::System;
7692   if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7693     return true;
7694 
7695   if (Ordering == AtomicOrdering::Unordered)
7696     return tokError("fence cannot be unordered");
7697   if (Ordering == AtomicOrdering::Monotonic)
7698     return tokError("fence cannot be monotonic");
7699 
7700   Inst = new FenceInst(Context, Ordering, SSID);
7701   return InstNormal;
7702 }
7703 
7704 /// parseGetElementPtr
7705 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7706 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7707   Value *Ptr = nullptr;
7708   Value *Val = nullptr;
7709   LocTy Loc, EltLoc;
7710 
7711   bool InBounds = EatIfPresent(lltok::kw_inbounds);
7712 
7713   Type *Ty = nullptr;
7714   LocTy ExplicitTypeLoc = Lex.getLoc();
7715   if (parseType(Ty) ||
7716       parseToken(lltok::comma, "expected comma after getelementptr's type") ||
7717       parseTypeAndValue(Ptr, Loc, PFS))
7718     return true;
7719 
7720   Type *BaseType = Ptr->getType();
7721   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7722   if (!BasePointerType)
7723     return error(Loc, "base of getelementptr must be a pointer");
7724 
7725   if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) {
7726     return error(
7727         ExplicitTypeLoc,
7728         typeComparisonErrorMessage(
7729             "explicit pointee type doesn't match operand's pointee type", Ty,
7730             BasePointerType->getElementType()));
7731   }
7732 
7733   SmallVector<Value*, 16> Indices;
7734   bool AteExtraComma = false;
7735   // GEP returns a vector of pointers if at least one of parameters is a vector.
7736   // All vector parameters should have the same vector width.
7737   ElementCount GEPWidth = BaseType->isVectorTy()
7738                               ? cast<VectorType>(BaseType)->getElementCount()
7739                               : ElementCount::getFixed(0);
7740 
7741   while (EatIfPresent(lltok::comma)) {
7742     if (Lex.getKind() == lltok::MetadataVar) {
7743       AteExtraComma = true;
7744       break;
7745     }
7746     if (parseTypeAndValue(Val, EltLoc, PFS))
7747       return true;
7748     if (!Val->getType()->isIntOrIntVectorTy())
7749       return error(EltLoc, "getelementptr index must be an integer");
7750 
7751     if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) {
7752       ElementCount ValNumEl = ValVTy->getElementCount();
7753       if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl)
7754         return error(
7755             EltLoc,
7756             "getelementptr vector index has a wrong number of elements");
7757       GEPWidth = ValNumEl;
7758     }
7759     Indices.push_back(Val);
7760   }
7761 
7762   SmallPtrSet<Type*, 4> Visited;
7763   if (!Indices.empty() && !Ty->isSized(&Visited))
7764     return error(Loc, "base element of getelementptr must be sized");
7765 
7766   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7767     return error(Loc, "invalid getelementptr indices");
7768   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7769   if (InBounds)
7770     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7771   return AteExtraComma ? InstExtraComma : InstNormal;
7772 }
7773 
7774 /// parseExtractValue
7775 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
7776 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7777   Value *Val; LocTy Loc;
7778   SmallVector<unsigned, 4> Indices;
7779   bool AteExtraComma;
7780   if (parseTypeAndValue(Val, Loc, PFS) ||
7781       parseIndexList(Indices, AteExtraComma))
7782     return true;
7783 
7784   if (!Val->getType()->isAggregateType())
7785     return error(Loc, "extractvalue operand must be aggregate type");
7786 
7787   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7788     return error(Loc, "invalid indices for extractvalue");
7789   Inst = ExtractValueInst::Create(Val, Indices);
7790   return AteExtraComma ? InstExtraComma : InstNormal;
7791 }
7792 
7793 /// parseInsertValue
7794 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7795 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7796   Value *Val0, *Val1; LocTy Loc0, Loc1;
7797   SmallVector<unsigned, 4> Indices;
7798   bool AteExtraComma;
7799   if (parseTypeAndValue(Val0, Loc0, PFS) ||
7800       parseToken(lltok::comma, "expected comma after insertvalue operand") ||
7801       parseTypeAndValue(Val1, Loc1, PFS) ||
7802       parseIndexList(Indices, AteExtraComma))
7803     return true;
7804 
7805   if (!Val0->getType()->isAggregateType())
7806     return error(Loc0, "insertvalue operand must be aggregate type");
7807 
7808   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7809   if (!IndexedType)
7810     return error(Loc0, "invalid indices for insertvalue");
7811   if (IndexedType != Val1->getType())
7812     return error(Loc1, "insertvalue operand and field disagree in type: '" +
7813                            getTypeString(Val1->getType()) + "' instead of '" +
7814                            getTypeString(IndexedType) + "'");
7815   Inst = InsertValueInst::Create(Val0, Val1, Indices);
7816   return AteExtraComma ? InstExtraComma : InstNormal;
7817 }
7818 
7819 //===----------------------------------------------------------------------===//
7820 // Embedded metadata.
7821 //===----------------------------------------------------------------------===//
7822 
7823 /// parseMDNodeVector
7824 ///   ::= { Element (',' Element)* }
7825 /// Element
7826 ///   ::= 'null' | TypeAndValue
7827 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7828   if (parseToken(lltok::lbrace, "expected '{' here"))
7829     return true;
7830 
7831   // Check for an empty list.
7832   if (EatIfPresent(lltok::rbrace))
7833     return false;
7834 
7835   do {
7836     // Null is a special case since it is typeless.
7837     if (EatIfPresent(lltok::kw_null)) {
7838       Elts.push_back(nullptr);
7839       continue;
7840     }
7841 
7842     Metadata *MD;
7843     if (parseMetadata(MD, nullptr))
7844       return true;
7845     Elts.push_back(MD);
7846   } while (EatIfPresent(lltok::comma));
7847 
7848   return parseToken(lltok::rbrace, "expected end of metadata node");
7849 }
7850 
7851 //===----------------------------------------------------------------------===//
7852 // Use-list order directives.
7853 //===----------------------------------------------------------------------===//
7854 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7855                                 SMLoc Loc) {
7856   if (V->use_empty())
7857     return error(Loc, "value has no uses");
7858 
7859   unsigned NumUses = 0;
7860   SmallDenseMap<const Use *, unsigned, 16> Order;
7861   for (const Use &U : V->uses()) {
7862     if (++NumUses > Indexes.size())
7863       break;
7864     Order[&U] = Indexes[NumUses - 1];
7865   }
7866   if (NumUses < 2)
7867     return error(Loc, "value only has one use");
7868   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7869     return error(Loc,
7870                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
7871 
7872   V->sortUseList([&](const Use &L, const Use &R) {
7873     return Order.lookup(&L) < Order.lookup(&R);
7874   });
7875   return false;
7876 }
7877 
7878 /// parseUseListOrderIndexes
7879 ///   ::= '{' uint32 (',' uint32)+ '}'
7880 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7881   SMLoc Loc = Lex.getLoc();
7882   if (parseToken(lltok::lbrace, "expected '{' here"))
7883     return true;
7884   if (Lex.getKind() == lltok::rbrace)
7885     return Lex.Error("expected non-empty list of uselistorder indexes");
7886 
7887   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
7888   // indexes should be distinct numbers in the range [0, size-1], and should
7889   // not be in order.
7890   unsigned Offset = 0;
7891   unsigned Max = 0;
7892   bool IsOrdered = true;
7893   assert(Indexes.empty() && "Expected empty order vector");
7894   do {
7895     unsigned Index;
7896     if (parseUInt32(Index))
7897       return true;
7898 
7899     // Update consistency checks.
7900     Offset += Index - Indexes.size();
7901     Max = std::max(Max, Index);
7902     IsOrdered &= Index == Indexes.size();
7903 
7904     Indexes.push_back(Index);
7905   } while (EatIfPresent(lltok::comma));
7906 
7907   if (parseToken(lltok::rbrace, "expected '}' here"))
7908     return true;
7909 
7910   if (Indexes.size() < 2)
7911     return error(Loc, "expected >= 2 uselistorder indexes");
7912   if (Offset != 0 || Max >= Indexes.size())
7913     return error(Loc,
7914                  "expected distinct uselistorder indexes in range [0, size)");
7915   if (IsOrdered)
7916     return error(Loc, "expected uselistorder indexes to change the order");
7917 
7918   return false;
7919 }
7920 
7921 /// parseUseListOrder
7922 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7923 bool LLParser::parseUseListOrder(PerFunctionState *PFS) {
7924   SMLoc Loc = Lex.getLoc();
7925   if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7926     return true;
7927 
7928   Value *V;
7929   SmallVector<unsigned, 16> Indexes;
7930   if (parseTypeAndValue(V, PFS) ||
7931       parseToken(lltok::comma, "expected comma in uselistorder directive") ||
7932       parseUseListOrderIndexes(Indexes))
7933     return true;
7934 
7935   return sortUseListOrder(V, Indexes, Loc);
7936 }
7937 
7938 /// parseUseListOrderBB
7939 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
7940 bool LLParser::parseUseListOrderBB() {
7941   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7942   SMLoc Loc = Lex.getLoc();
7943   Lex.Lex();
7944 
7945   ValID Fn, Label;
7946   SmallVector<unsigned, 16> Indexes;
7947   if (parseValID(Fn) ||
7948       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7949       parseValID(Label) ||
7950       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7951       parseUseListOrderIndexes(Indexes))
7952     return true;
7953 
7954   // Check the function.
7955   GlobalValue *GV;
7956   if (Fn.Kind == ValID::t_GlobalName)
7957     GV = M->getNamedValue(Fn.StrVal);
7958   else if (Fn.Kind == ValID::t_GlobalID)
7959     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7960   else
7961     return error(Fn.Loc, "expected function name in uselistorder_bb");
7962   if (!GV)
7963     return error(Fn.Loc,
7964                  "invalid function forward reference in uselistorder_bb");
7965   auto *F = dyn_cast<Function>(GV);
7966   if (!F)
7967     return error(Fn.Loc, "expected function name in uselistorder_bb");
7968   if (F->isDeclaration())
7969     return error(Fn.Loc, "invalid declaration in uselistorder_bb");
7970 
7971   // Check the basic block.
7972   if (Label.Kind == ValID::t_LocalID)
7973     return error(Label.Loc, "invalid numeric label in uselistorder_bb");
7974   if (Label.Kind != ValID::t_LocalName)
7975     return error(Label.Loc, "expected basic block name in uselistorder_bb");
7976   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7977   if (!V)
7978     return error(Label.Loc, "invalid basic block in uselistorder_bb");
7979   if (!isa<BasicBlock>(V))
7980     return error(Label.Loc, "expected basic block in uselistorder_bb");
7981 
7982   return sortUseListOrder(V, Indexes, Loc);
7983 }
7984 
7985 /// ModuleEntry
7986 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
7987 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
7988 bool LLParser::parseModuleEntry(unsigned ID) {
7989   assert(Lex.getKind() == lltok::kw_module);
7990   Lex.Lex();
7991 
7992   std::string Path;
7993   if (parseToken(lltok::colon, "expected ':' here") ||
7994       parseToken(lltok::lparen, "expected '(' here") ||
7995       parseToken(lltok::kw_path, "expected 'path' here") ||
7996       parseToken(lltok::colon, "expected ':' here") ||
7997       parseStringConstant(Path) ||
7998       parseToken(lltok::comma, "expected ',' here") ||
7999       parseToken(lltok::kw_hash, "expected 'hash' here") ||
8000       parseToken(lltok::colon, "expected ':' here") ||
8001       parseToken(lltok::lparen, "expected '(' here"))
8002     return true;
8003 
8004   ModuleHash Hash;
8005   if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") ||
8006       parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") ||
8007       parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") ||
8008       parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") ||
8009       parseUInt32(Hash[4]))
8010     return true;
8011 
8012   if (parseToken(lltok::rparen, "expected ')' here") ||
8013       parseToken(lltok::rparen, "expected ')' here"))
8014     return true;
8015 
8016   auto ModuleEntry = Index->addModule(Path, ID, Hash);
8017   ModuleIdMap[ID] = ModuleEntry->first();
8018 
8019   return false;
8020 }
8021 
8022 /// TypeIdEntry
8023 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
8024 bool LLParser::parseTypeIdEntry(unsigned ID) {
8025   assert(Lex.getKind() == lltok::kw_typeid);
8026   Lex.Lex();
8027 
8028   std::string Name;
8029   if (parseToken(lltok::colon, "expected ':' here") ||
8030       parseToken(lltok::lparen, "expected '(' here") ||
8031       parseToken(lltok::kw_name, "expected 'name' here") ||
8032       parseToken(lltok::colon, "expected ':' here") ||
8033       parseStringConstant(Name))
8034     return true;
8035 
8036   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
8037   if (parseToken(lltok::comma, "expected ',' here") ||
8038       parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here"))
8039     return true;
8040 
8041   // Check if this ID was forward referenced, and if so, update the
8042   // corresponding GUIDs.
8043   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
8044   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
8045     for (auto TIDRef : FwdRefTIDs->second) {
8046       assert(!*TIDRef.first &&
8047              "Forward referenced type id GUID expected to be 0");
8048       *TIDRef.first = GlobalValue::getGUID(Name);
8049     }
8050     ForwardRefTypeIds.erase(FwdRefTIDs);
8051   }
8052 
8053   return false;
8054 }
8055 
8056 /// TypeIdSummary
8057 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
8058 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) {
8059   if (parseToken(lltok::kw_summary, "expected 'summary' here") ||
8060       parseToken(lltok::colon, "expected ':' here") ||
8061       parseToken(lltok::lparen, "expected '(' here") ||
8062       parseTypeTestResolution(TIS.TTRes))
8063     return true;
8064 
8065   if (EatIfPresent(lltok::comma)) {
8066     // Expect optional wpdResolutions field
8067     if (parseOptionalWpdResolutions(TIS.WPDRes))
8068       return true;
8069   }
8070 
8071   if (parseToken(lltok::rparen, "expected ')' here"))
8072     return true;
8073 
8074   return false;
8075 }
8076 
8077 static ValueInfo EmptyVI =
8078     ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
8079 
8080 /// TypeIdCompatibleVtableEntry
8081 ///   ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
8082 ///   TypeIdCompatibleVtableInfo
8083 ///   ')'
8084 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) {
8085   assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
8086   Lex.Lex();
8087 
8088   std::string Name;
8089   if (parseToken(lltok::colon, "expected ':' here") ||
8090       parseToken(lltok::lparen, "expected '(' here") ||
8091       parseToken(lltok::kw_name, "expected 'name' here") ||
8092       parseToken(lltok::colon, "expected ':' here") ||
8093       parseStringConstant(Name))
8094     return true;
8095 
8096   TypeIdCompatibleVtableInfo &TI =
8097       Index->getOrInsertTypeIdCompatibleVtableSummary(Name);
8098   if (parseToken(lltok::comma, "expected ',' here") ||
8099       parseToken(lltok::kw_summary, "expected 'summary' here") ||
8100       parseToken(lltok::colon, "expected ':' here") ||
8101       parseToken(lltok::lparen, "expected '(' here"))
8102     return true;
8103 
8104   IdToIndexMapType IdToIndexMap;
8105   // parse each call edge
8106   do {
8107     uint64_t Offset;
8108     if (parseToken(lltok::lparen, "expected '(' here") ||
8109         parseToken(lltok::kw_offset, "expected 'offset' here") ||
8110         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
8111         parseToken(lltok::comma, "expected ',' here"))
8112       return true;
8113 
8114     LocTy Loc = Lex.getLoc();
8115     unsigned GVId;
8116     ValueInfo VI;
8117     if (parseGVReference(VI, GVId))
8118       return true;
8119 
8120     // Keep track of the TypeIdCompatibleVtableInfo array index needing a
8121     // forward reference. We will save the location of the ValueInfo needing an
8122     // update, but can only do so once the std::vector is finalized.
8123     if (VI == EmptyVI)
8124       IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
8125     TI.push_back({Offset, VI});
8126 
8127     if (parseToken(lltok::rparen, "expected ')' in call"))
8128       return true;
8129   } while (EatIfPresent(lltok::comma));
8130 
8131   // Now that the TI vector is finalized, it is safe to save the locations
8132   // of any forward GV references that need updating later.
8133   for (auto I : IdToIndexMap) {
8134     auto &Infos = ForwardRefValueInfos[I.first];
8135     for (auto P : I.second) {
8136       assert(TI[P.first].VTableVI == EmptyVI &&
8137              "Forward referenced ValueInfo expected to be empty");
8138       Infos.emplace_back(&TI[P.first].VTableVI, P.second);
8139     }
8140   }
8141 
8142   if (parseToken(lltok::rparen, "expected ')' here") ||
8143       parseToken(lltok::rparen, "expected ')' here"))
8144     return true;
8145 
8146   // Check if this ID was forward referenced, and if so, update the
8147   // corresponding GUIDs.
8148   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
8149   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
8150     for (auto TIDRef : FwdRefTIDs->second) {
8151       assert(!*TIDRef.first &&
8152              "Forward referenced type id GUID expected to be 0");
8153       *TIDRef.first = GlobalValue::getGUID(Name);
8154     }
8155     ForwardRefTypeIds.erase(FwdRefTIDs);
8156   }
8157 
8158   return false;
8159 }
8160 
8161 /// TypeTestResolution
8162 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
8163 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
8164 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
8165 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
8166 ///         [',' 'inlinesBits' ':' UInt64]? ')'
8167 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) {
8168   if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
8169       parseToken(lltok::colon, "expected ':' here") ||
8170       parseToken(lltok::lparen, "expected '(' here") ||
8171       parseToken(lltok::kw_kind, "expected 'kind' here") ||
8172       parseToken(lltok::colon, "expected ':' here"))
8173     return true;
8174 
8175   switch (Lex.getKind()) {
8176   case lltok::kw_unknown:
8177     TTRes.TheKind = TypeTestResolution::Unknown;
8178     break;
8179   case lltok::kw_unsat:
8180     TTRes.TheKind = TypeTestResolution::Unsat;
8181     break;
8182   case lltok::kw_byteArray:
8183     TTRes.TheKind = TypeTestResolution::ByteArray;
8184     break;
8185   case lltok::kw_inline:
8186     TTRes.TheKind = TypeTestResolution::Inline;
8187     break;
8188   case lltok::kw_single:
8189     TTRes.TheKind = TypeTestResolution::Single;
8190     break;
8191   case lltok::kw_allOnes:
8192     TTRes.TheKind = TypeTestResolution::AllOnes;
8193     break;
8194   default:
8195     return error(Lex.getLoc(), "unexpected TypeTestResolution kind");
8196   }
8197   Lex.Lex();
8198 
8199   if (parseToken(lltok::comma, "expected ',' here") ||
8200       parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
8201       parseToken(lltok::colon, "expected ':' here") ||
8202       parseUInt32(TTRes.SizeM1BitWidth))
8203     return true;
8204 
8205   // parse optional fields
8206   while (EatIfPresent(lltok::comma)) {
8207     switch (Lex.getKind()) {
8208     case lltok::kw_alignLog2:
8209       Lex.Lex();
8210       if (parseToken(lltok::colon, "expected ':'") ||
8211           parseUInt64(TTRes.AlignLog2))
8212         return true;
8213       break;
8214     case lltok::kw_sizeM1:
8215       Lex.Lex();
8216       if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1))
8217         return true;
8218       break;
8219     case lltok::kw_bitMask: {
8220       unsigned Val;
8221       Lex.Lex();
8222       if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val))
8223         return true;
8224       assert(Val <= 0xff);
8225       TTRes.BitMask = (uint8_t)Val;
8226       break;
8227     }
8228     case lltok::kw_inlineBits:
8229       Lex.Lex();
8230       if (parseToken(lltok::colon, "expected ':'") ||
8231           parseUInt64(TTRes.InlineBits))
8232         return true;
8233       break;
8234     default:
8235       return error(Lex.getLoc(), "expected optional TypeTestResolution field");
8236     }
8237   }
8238 
8239   if (parseToken(lltok::rparen, "expected ')' here"))
8240     return true;
8241 
8242   return false;
8243 }
8244 
8245 /// OptionalWpdResolutions
8246 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
8247 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
8248 bool LLParser::parseOptionalWpdResolutions(
8249     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
8250   if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
8251       parseToken(lltok::colon, "expected ':' here") ||
8252       parseToken(lltok::lparen, "expected '(' here"))
8253     return true;
8254 
8255   do {
8256     uint64_t Offset;
8257     WholeProgramDevirtResolution WPDRes;
8258     if (parseToken(lltok::lparen, "expected '(' here") ||
8259         parseToken(lltok::kw_offset, "expected 'offset' here") ||
8260         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
8261         parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) ||
8262         parseToken(lltok::rparen, "expected ')' here"))
8263       return true;
8264     WPDResMap[Offset] = WPDRes;
8265   } while (EatIfPresent(lltok::comma));
8266 
8267   if (parseToken(lltok::rparen, "expected ')' here"))
8268     return true;
8269 
8270   return false;
8271 }
8272 
8273 /// WpdRes
8274 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
8275 ///         [',' OptionalResByArg]? ')'
8276 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
8277 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
8278 ///         [',' OptionalResByArg]? ')'
8279 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
8280 ///         [',' OptionalResByArg]? ')'
8281 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) {
8282   if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
8283       parseToken(lltok::colon, "expected ':' here") ||
8284       parseToken(lltok::lparen, "expected '(' here") ||
8285       parseToken(lltok::kw_kind, "expected 'kind' here") ||
8286       parseToken(lltok::colon, "expected ':' here"))
8287     return true;
8288 
8289   switch (Lex.getKind()) {
8290   case lltok::kw_indir:
8291     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
8292     break;
8293   case lltok::kw_singleImpl:
8294     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
8295     break;
8296   case lltok::kw_branchFunnel:
8297     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
8298     break;
8299   default:
8300     return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
8301   }
8302   Lex.Lex();
8303 
8304   // parse optional fields
8305   while (EatIfPresent(lltok::comma)) {
8306     switch (Lex.getKind()) {
8307     case lltok::kw_singleImplName:
8308       Lex.Lex();
8309       if (parseToken(lltok::colon, "expected ':' here") ||
8310           parseStringConstant(WPDRes.SingleImplName))
8311         return true;
8312       break;
8313     case lltok::kw_resByArg:
8314       if (parseOptionalResByArg(WPDRes.ResByArg))
8315         return true;
8316       break;
8317     default:
8318       return error(Lex.getLoc(),
8319                    "expected optional WholeProgramDevirtResolution field");
8320     }
8321   }
8322 
8323   if (parseToken(lltok::rparen, "expected ')' here"))
8324     return true;
8325 
8326   return false;
8327 }
8328 
8329 /// OptionalResByArg
8330 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
8331 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
8332 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
8333 ///                  'virtualConstProp' )
8334 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
8335 ///                [',' 'bit' ':' UInt32]? ')'
8336 bool LLParser::parseOptionalResByArg(
8337     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
8338         &ResByArg) {
8339   if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
8340       parseToken(lltok::colon, "expected ':' here") ||
8341       parseToken(lltok::lparen, "expected '(' here"))
8342     return true;
8343 
8344   do {
8345     std::vector<uint64_t> Args;
8346     if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") ||
8347         parseToken(lltok::kw_byArg, "expected 'byArg here") ||
8348         parseToken(lltok::colon, "expected ':' here") ||
8349         parseToken(lltok::lparen, "expected '(' here") ||
8350         parseToken(lltok::kw_kind, "expected 'kind' here") ||
8351         parseToken(lltok::colon, "expected ':' here"))
8352       return true;
8353 
8354     WholeProgramDevirtResolution::ByArg ByArg;
8355     switch (Lex.getKind()) {
8356     case lltok::kw_indir:
8357       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
8358       break;
8359     case lltok::kw_uniformRetVal:
8360       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
8361       break;
8362     case lltok::kw_uniqueRetVal:
8363       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
8364       break;
8365     case lltok::kw_virtualConstProp:
8366       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
8367       break;
8368     default:
8369       return error(Lex.getLoc(),
8370                    "unexpected WholeProgramDevirtResolution::ByArg kind");
8371     }
8372     Lex.Lex();
8373 
8374     // parse optional fields
8375     while (EatIfPresent(lltok::comma)) {
8376       switch (Lex.getKind()) {
8377       case lltok::kw_info:
8378         Lex.Lex();
8379         if (parseToken(lltok::colon, "expected ':' here") ||
8380             parseUInt64(ByArg.Info))
8381           return true;
8382         break;
8383       case lltok::kw_byte:
8384         Lex.Lex();
8385         if (parseToken(lltok::colon, "expected ':' here") ||
8386             parseUInt32(ByArg.Byte))
8387           return true;
8388         break;
8389       case lltok::kw_bit:
8390         Lex.Lex();
8391         if (parseToken(lltok::colon, "expected ':' here") ||
8392             parseUInt32(ByArg.Bit))
8393           return true;
8394         break;
8395       default:
8396         return error(Lex.getLoc(),
8397                      "expected optional whole program devirt field");
8398       }
8399     }
8400 
8401     if (parseToken(lltok::rparen, "expected ')' here"))
8402       return true;
8403 
8404     ResByArg[Args] = ByArg;
8405   } while (EatIfPresent(lltok::comma));
8406 
8407   if (parseToken(lltok::rparen, "expected ')' here"))
8408     return true;
8409 
8410   return false;
8411 }
8412 
8413 /// OptionalResByArg
8414 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
8415 bool LLParser::parseArgs(std::vector<uint64_t> &Args) {
8416   if (parseToken(lltok::kw_args, "expected 'args' here") ||
8417       parseToken(lltok::colon, "expected ':' here") ||
8418       parseToken(lltok::lparen, "expected '(' here"))
8419     return true;
8420 
8421   do {
8422     uint64_t Val;
8423     if (parseUInt64(Val))
8424       return true;
8425     Args.push_back(Val);
8426   } while (EatIfPresent(lltok::comma));
8427 
8428   if (parseToken(lltok::rparen, "expected ')' here"))
8429     return true;
8430 
8431   return false;
8432 }
8433 
8434 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
8435 
8436 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
8437   bool ReadOnly = Fwd->isReadOnly();
8438   bool WriteOnly = Fwd->isWriteOnly();
8439   assert(!(ReadOnly && WriteOnly));
8440   *Fwd = Resolved;
8441   if (ReadOnly)
8442     Fwd->setReadOnly();
8443   if (WriteOnly)
8444     Fwd->setWriteOnly();
8445 }
8446 
8447 /// Stores the given Name/GUID and associated summary into the Index.
8448 /// Also updates any forward references to the associated entry ID.
8449 void LLParser::addGlobalValueToIndex(
8450     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
8451     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
8452   // First create the ValueInfo utilizing the Name or GUID.
8453   ValueInfo VI;
8454   if (GUID != 0) {
8455     assert(Name.empty());
8456     VI = Index->getOrInsertValueInfo(GUID);
8457   } else {
8458     assert(!Name.empty());
8459     if (M) {
8460       auto *GV = M->getNamedValue(Name);
8461       assert(GV);
8462       VI = Index->getOrInsertValueInfo(GV);
8463     } else {
8464       assert(
8465           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
8466           "Need a source_filename to compute GUID for local");
8467       GUID = GlobalValue::getGUID(
8468           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
8469       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
8470     }
8471   }
8472 
8473   // Resolve forward references from calls/refs
8474   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
8475   if (FwdRefVIs != ForwardRefValueInfos.end()) {
8476     for (auto VIRef : FwdRefVIs->second) {
8477       assert(VIRef.first->getRef() == FwdVIRef &&
8478              "Forward referenced ValueInfo expected to be empty");
8479       resolveFwdRef(VIRef.first, VI);
8480     }
8481     ForwardRefValueInfos.erase(FwdRefVIs);
8482   }
8483 
8484   // Resolve forward references from aliases
8485   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
8486   if (FwdRefAliasees != ForwardRefAliasees.end()) {
8487     for (auto AliaseeRef : FwdRefAliasees->second) {
8488       assert(!AliaseeRef.first->hasAliasee() &&
8489              "Forward referencing alias already has aliasee");
8490       assert(Summary && "Aliasee must be a definition");
8491       AliaseeRef.first->setAliasee(VI, Summary.get());
8492     }
8493     ForwardRefAliasees.erase(FwdRefAliasees);
8494   }
8495 
8496   // Add the summary if one was provided.
8497   if (Summary)
8498     Index->addGlobalValueSummary(VI, std::move(Summary));
8499 
8500   // Save the associated ValueInfo for use in later references by ID.
8501   if (ID == NumberedValueInfos.size())
8502     NumberedValueInfos.push_back(VI);
8503   else {
8504     // Handle non-continuous numbers (to make test simplification easier).
8505     if (ID > NumberedValueInfos.size())
8506       NumberedValueInfos.resize(ID + 1);
8507     NumberedValueInfos[ID] = VI;
8508   }
8509 }
8510 
8511 /// parseSummaryIndexFlags
8512 ///   ::= 'flags' ':' UInt64
8513 bool LLParser::parseSummaryIndexFlags() {
8514   assert(Lex.getKind() == lltok::kw_flags);
8515   Lex.Lex();
8516 
8517   if (parseToken(lltok::colon, "expected ':' here"))
8518     return true;
8519   uint64_t Flags;
8520   if (parseUInt64(Flags))
8521     return true;
8522   if (Index)
8523     Index->setFlags(Flags);
8524   return false;
8525 }
8526 
8527 /// parseBlockCount
8528 ///   ::= 'blockcount' ':' UInt64
8529 bool LLParser::parseBlockCount() {
8530   assert(Lex.getKind() == lltok::kw_blockcount);
8531   Lex.Lex();
8532 
8533   if (parseToken(lltok::colon, "expected ':' here"))
8534     return true;
8535   uint64_t BlockCount;
8536   if (parseUInt64(BlockCount))
8537     return true;
8538   if (Index)
8539     Index->setBlockCount(BlockCount);
8540   return false;
8541 }
8542 
8543 /// parseGVEntry
8544 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
8545 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
8546 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
8547 bool LLParser::parseGVEntry(unsigned ID) {
8548   assert(Lex.getKind() == lltok::kw_gv);
8549   Lex.Lex();
8550 
8551   if (parseToken(lltok::colon, "expected ':' here") ||
8552       parseToken(lltok::lparen, "expected '(' here"))
8553     return true;
8554 
8555   std::string Name;
8556   GlobalValue::GUID GUID = 0;
8557   switch (Lex.getKind()) {
8558   case lltok::kw_name:
8559     Lex.Lex();
8560     if (parseToken(lltok::colon, "expected ':' here") ||
8561         parseStringConstant(Name))
8562       return true;
8563     // Can't create GUID/ValueInfo until we have the linkage.
8564     break;
8565   case lltok::kw_guid:
8566     Lex.Lex();
8567     if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID))
8568       return true;
8569     break;
8570   default:
8571     return error(Lex.getLoc(), "expected name or guid tag");
8572   }
8573 
8574   if (!EatIfPresent(lltok::comma)) {
8575     // No summaries. Wrap up.
8576     if (parseToken(lltok::rparen, "expected ')' here"))
8577       return true;
8578     // This was created for a call to an external or indirect target.
8579     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
8580     // created for indirect calls with VP. A Name with no GUID came from
8581     // an external definition. We pass ExternalLinkage since that is only
8582     // used when the GUID must be computed from Name, and in that case
8583     // the symbol must have external linkage.
8584     addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
8585                           nullptr);
8586     return false;
8587   }
8588 
8589   // Have a list of summaries
8590   if (parseToken(lltok::kw_summaries, "expected 'summaries' here") ||
8591       parseToken(lltok::colon, "expected ':' here") ||
8592       parseToken(lltok::lparen, "expected '(' here"))
8593     return true;
8594   do {
8595     switch (Lex.getKind()) {
8596     case lltok::kw_function:
8597       if (parseFunctionSummary(Name, GUID, ID))
8598         return true;
8599       break;
8600     case lltok::kw_variable:
8601       if (parseVariableSummary(Name, GUID, ID))
8602         return true;
8603       break;
8604     case lltok::kw_alias:
8605       if (parseAliasSummary(Name, GUID, ID))
8606         return true;
8607       break;
8608     default:
8609       return error(Lex.getLoc(), "expected summary type");
8610     }
8611   } while (EatIfPresent(lltok::comma));
8612 
8613   if (parseToken(lltok::rparen, "expected ')' here") ||
8614       parseToken(lltok::rparen, "expected ')' here"))
8615     return true;
8616 
8617   return false;
8618 }
8619 
8620 /// FunctionSummary
8621 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8622 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
8623 ///         [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]?
8624 ///         [',' OptionalRefs]? ')'
8625 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
8626                                     unsigned ID) {
8627   assert(Lex.getKind() == lltok::kw_function);
8628   Lex.Lex();
8629 
8630   StringRef ModulePath;
8631   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8632       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8633       /*NotEligibleToImport=*/false,
8634       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8635   unsigned InstCount;
8636   std::vector<FunctionSummary::EdgeTy> Calls;
8637   FunctionSummary::TypeIdInfo TypeIdInfo;
8638   std::vector<FunctionSummary::ParamAccess> ParamAccesses;
8639   std::vector<ValueInfo> Refs;
8640   // Default is all-zeros (conservative values).
8641   FunctionSummary::FFlags FFlags = {};
8642   if (parseToken(lltok::colon, "expected ':' here") ||
8643       parseToken(lltok::lparen, "expected '(' here") ||
8644       parseModuleReference(ModulePath) ||
8645       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8646       parseToken(lltok::comma, "expected ',' here") ||
8647       parseToken(lltok::kw_insts, "expected 'insts' here") ||
8648       parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount))
8649     return true;
8650 
8651   // parse optional fields
8652   while (EatIfPresent(lltok::comma)) {
8653     switch (Lex.getKind()) {
8654     case lltok::kw_funcFlags:
8655       if (parseOptionalFFlags(FFlags))
8656         return true;
8657       break;
8658     case lltok::kw_calls:
8659       if (parseOptionalCalls(Calls))
8660         return true;
8661       break;
8662     case lltok::kw_typeIdInfo:
8663       if (parseOptionalTypeIdInfo(TypeIdInfo))
8664         return true;
8665       break;
8666     case lltok::kw_refs:
8667       if (parseOptionalRefs(Refs))
8668         return true;
8669       break;
8670     case lltok::kw_params:
8671       if (parseOptionalParamAccesses(ParamAccesses))
8672         return true;
8673       break;
8674     default:
8675       return error(Lex.getLoc(), "expected optional function summary field");
8676     }
8677   }
8678 
8679   if (parseToken(lltok::rparen, "expected ')' here"))
8680     return true;
8681 
8682   auto FS = std::make_unique<FunctionSummary>(
8683       GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
8684       std::move(Calls), std::move(TypeIdInfo.TypeTests),
8685       std::move(TypeIdInfo.TypeTestAssumeVCalls),
8686       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
8687       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
8688       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls),
8689       std::move(ParamAccesses));
8690 
8691   FS->setModulePath(ModulePath);
8692 
8693   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8694                         ID, std::move(FS));
8695 
8696   return false;
8697 }
8698 
8699 /// VariableSummary
8700 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8701 ///         [',' OptionalRefs]? ')'
8702 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID,
8703                                     unsigned ID) {
8704   assert(Lex.getKind() == lltok::kw_variable);
8705   Lex.Lex();
8706 
8707   StringRef ModulePath;
8708   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8709       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8710       /*NotEligibleToImport=*/false,
8711       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8712   GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false,
8713                                         /* WriteOnly */ false,
8714                                         /* Constant */ false,
8715                                         GlobalObject::VCallVisibilityPublic);
8716   std::vector<ValueInfo> Refs;
8717   VTableFuncList VTableFuncs;
8718   if (parseToken(lltok::colon, "expected ':' here") ||
8719       parseToken(lltok::lparen, "expected '(' here") ||
8720       parseModuleReference(ModulePath) ||
8721       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8722       parseToken(lltok::comma, "expected ',' here") ||
8723       parseGVarFlags(GVarFlags))
8724     return true;
8725 
8726   // parse optional fields
8727   while (EatIfPresent(lltok::comma)) {
8728     switch (Lex.getKind()) {
8729     case lltok::kw_vTableFuncs:
8730       if (parseOptionalVTableFuncs(VTableFuncs))
8731         return true;
8732       break;
8733     case lltok::kw_refs:
8734       if (parseOptionalRefs(Refs))
8735         return true;
8736       break;
8737     default:
8738       return error(Lex.getLoc(), "expected optional variable summary field");
8739     }
8740   }
8741 
8742   if (parseToken(lltok::rparen, "expected ')' here"))
8743     return true;
8744 
8745   auto GS =
8746       std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
8747 
8748   GS->setModulePath(ModulePath);
8749   GS->setVTableFuncs(std::move(VTableFuncs));
8750 
8751   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8752                         ID, std::move(GS));
8753 
8754   return false;
8755 }
8756 
8757 /// AliasSummary
8758 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
8759 ///         'aliasee' ':' GVReference ')'
8760 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID,
8761                                  unsigned ID) {
8762   assert(Lex.getKind() == lltok::kw_alias);
8763   LocTy Loc = Lex.getLoc();
8764   Lex.Lex();
8765 
8766   StringRef ModulePath;
8767   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8768       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8769       /*NotEligibleToImport=*/false,
8770       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8771   if (parseToken(lltok::colon, "expected ':' here") ||
8772       parseToken(lltok::lparen, "expected '(' here") ||
8773       parseModuleReference(ModulePath) ||
8774       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8775       parseToken(lltok::comma, "expected ',' here") ||
8776       parseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
8777       parseToken(lltok::colon, "expected ':' here"))
8778     return true;
8779 
8780   ValueInfo AliaseeVI;
8781   unsigned GVId;
8782   if (parseGVReference(AliaseeVI, GVId))
8783     return true;
8784 
8785   if (parseToken(lltok::rparen, "expected ')' here"))
8786     return true;
8787 
8788   auto AS = std::make_unique<AliasSummary>(GVFlags);
8789 
8790   AS->setModulePath(ModulePath);
8791 
8792   // Record forward reference if the aliasee is not parsed yet.
8793   if (AliaseeVI.getRef() == FwdVIRef) {
8794     ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc);
8795   } else {
8796     auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
8797     assert(Summary && "Aliasee must be a definition");
8798     AS->setAliasee(AliaseeVI, Summary);
8799   }
8800 
8801   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8802                         ID, std::move(AS));
8803 
8804   return false;
8805 }
8806 
8807 /// Flag
8808 ///   ::= [0|1]
8809 bool LLParser::parseFlag(unsigned &Val) {
8810   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
8811     return tokError("expected integer");
8812   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
8813   Lex.Lex();
8814   return false;
8815 }
8816 
8817 /// OptionalFFlags
8818 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8819 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8820 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
8821 ///        [',' 'noInline' ':' Flag]? ')'
8822 ///        [',' 'alwaysInline' ':' Flag]? ')'
8823 
8824 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8825   assert(Lex.getKind() == lltok::kw_funcFlags);
8826   Lex.Lex();
8827 
8828   if (parseToken(lltok::colon, "expected ':' in funcFlags") |
8829       parseToken(lltok::lparen, "expected '(' in funcFlags"))
8830     return true;
8831 
8832   do {
8833     unsigned Val = 0;
8834     switch (Lex.getKind()) {
8835     case lltok::kw_readNone:
8836       Lex.Lex();
8837       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8838         return true;
8839       FFlags.ReadNone = Val;
8840       break;
8841     case lltok::kw_readOnly:
8842       Lex.Lex();
8843       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8844         return true;
8845       FFlags.ReadOnly = Val;
8846       break;
8847     case lltok::kw_noRecurse:
8848       Lex.Lex();
8849       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8850         return true;
8851       FFlags.NoRecurse = Val;
8852       break;
8853     case lltok::kw_returnDoesNotAlias:
8854       Lex.Lex();
8855       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8856         return true;
8857       FFlags.ReturnDoesNotAlias = Val;
8858       break;
8859     case lltok::kw_noInline:
8860       Lex.Lex();
8861       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8862         return true;
8863       FFlags.NoInline = Val;
8864       break;
8865     case lltok::kw_alwaysInline:
8866       Lex.Lex();
8867       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8868         return true;
8869       FFlags.AlwaysInline = Val;
8870       break;
8871     default:
8872       return error(Lex.getLoc(), "expected function flag type");
8873     }
8874   } while (EatIfPresent(lltok::comma));
8875 
8876   if (parseToken(lltok::rparen, "expected ')' in funcFlags"))
8877     return true;
8878 
8879   return false;
8880 }
8881 
8882 /// OptionalCalls
8883 ///   := 'calls' ':' '(' Call [',' Call]* ')'
8884 /// Call ::= '(' 'callee' ':' GVReference
8885 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
8886 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
8887   assert(Lex.getKind() == lltok::kw_calls);
8888   Lex.Lex();
8889 
8890   if (parseToken(lltok::colon, "expected ':' in calls") |
8891       parseToken(lltok::lparen, "expected '(' in calls"))
8892     return true;
8893 
8894   IdToIndexMapType IdToIndexMap;
8895   // parse each call edge
8896   do {
8897     ValueInfo VI;
8898     if (parseToken(lltok::lparen, "expected '(' in call") ||
8899         parseToken(lltok::kw_callee, "expected 'callee' in call") ||
8900         parseToken(lltok::colon, "expected ':'"))
8901       return true;
8902 
8903     LocTy Loc = Lex.getLoc();
8904     unsigned GVId;
8905     if (parseGVReference(VI, GVId))
8906       return true;
8907 
8908     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
8909     unsigned RelBF = 0;
8910     if (EatIfPresent(lltok::comma)) {
8911       // Expect either hotness or relbf
8912       if (EatIfPresent(lltok::kw_hotness)) {
8913         if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness))
8914           return true;
8915       } else {
8916         if (parseToken(lltok::kw_relbf, "expected relbf") ||
8917             parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF))
8918           return true;
8919       }
8920     }
8921     // Keep track of the Call array index needing a forward reference.
8922     // We will save the location of the ValueInfo needing an update, but
8923     // can only do so once the std::vector is finalized.
8924     if (VI.getRef() == FwdVIRef)
8925       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
8926     Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
8927 
8928     if (parseToken(lltok::rparen, "expected ')' in call"))
8929       return true;
8930   } while (EatIfPresent(lltok::comma));
8931 
8932   // Now that the Calls vector is finalized, it is safe to save the locations
8933   // of any forward GV references that need updating later.
8934   for (auto I : IdToIndexMap) {
8935     auto &Infos = ForwardRefValueInfos[I.first];
8936     for (auto P : I.second) {
8937       assert(Calls[P.first].first.getRef() == FwdVIRef &&
8938              "Forward referenced ValueInfo expected to be empty");
8939       Infos.emplace_back(&Calls[P.first].first, P.second);
8940     }
8941   }
8942 
8943   if (parseToken(lltok::rparen, "expected ')' in calls"))
8944     return true;
8945 
8946   return false;
8947 }
8948 
8949 /// Hotness
8950 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
8951 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) {
8952   switch (Lex.getKind()) {
8953   case lltok::kw_unknown:
8954     Hotness = CalleeInfo::HotnessType::Unknown;
8955     break;
8956   case lltok::kw_cold:
8957     Hotness = CalleeInfo::HotnessType::Cold;
8958     break;
8959   case lltok::kw_none:
8960     Hotness = CalleeInfo::HotnessType::None;
8961     break;
8962   case lltok::kw_hot:
8963     Hotness = CalleeInfo::HotnessType::Hot;
8964     break;
8965   case lltok::kw_critical:
8966     Hotness = CalleeInfo::HotnessType::Critical;
8967     break;
8968   default:
8969     return error(Lex.getLoc(), "invalid call edge hotness");
8970   }
8971   Lex.Lex();
8972   return false;
8973 }
8974 
8975 /// OptionalVTableFuncs
8976 ///   := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
8977 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
8978 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
8979   assert(Lex.getKind() == lltok::kw_vTableFuncs);
8980   Lex.Lex();
8981 
8982   if (parseToken(lltok::colon, "expected ':' in vTableFuncs") |
8983       parseToken(lltok::lparen, "expected '(' in vTableFuncs"))
8984     return true;
8985 
8986   IdToIndexMapType IdToIndexMap;
8987   // parse each virtual function pair
8988   do {
8989     ValueInfo VI;
8990     if (parseToken(lltok::lparen, "expected '(' in vTableFunc") ||
8991         parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
8992         parseToken(lltok::colon, "expected ':'"))
8993       return true;
8994 
8995     LocTy Loc = Lex.getLoc();
8996     unsigned GVId;
8997     if (parseGVReference(VI, GVId))
8998       return true;
8999 
9000     uint64_t Offset;
9001     if (parseToken(lltok::comma, "expected comma") ||
9002         parseToken(lltok::kw_offset, "expected offset") ||
9003         parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset))
9004       return true;
9005 
9006     // Keep track of the VTableFuncs array index needing a forward reference.
9007     // We will save the location of the ValueInfo needing an update, but
9008     // can only do so once the std::vector is finalized.
9009     if (VI == EmptyVI)
9010       IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
9011     VTableFuncs.push_back({VI, Offset});
9012 
9013     if (parseToken(lltok::rparen, "expected ')' in vTableFunc"))
9014       return true;
9015   } while (EatIfPresent(lltok::comma));
9016 
9017   // Now that the VTableFuncs vector is finalized, it is safe to save the
9018   // locations of any forward GV references that need updating later.
9019   for (auto I : IdToIndexMap) {
9020     auto &Infos = ForwardRefValueInfos[I.first];
9021     for (auto P : I.second) {
9022       assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
9023              "Forward referenced ValueInfo expected to be empty");
9024       Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second);
9025     }
9026   }
9027 
9028   if (parseToken(lltok::rparen, "expected ')' in vTableFuncs"))
9029     return true;
9030 
9031   return false;
9032 }
9033 
9034 /// ParamNo := 'param' ':' UInt64
9035 bool LLParser::parseParamNo(uint64_t &ParamNo) {
9036   if (parseToken(lltok::kw_param, "expected 'param' here") ||
9037       parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo))
9038     return true;
9039   return false;
9040 }
9041 
9042 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']'
9043 bool LLParser::parseParamAccessOffset(ConstantRange &Range) {
9044   APSInt Lower;
9045   APSInt Upper;
9046   auto ParseAPSInt = [&](APSInt &Val) {
9047     if (Lex.getKind() != lltok::APSInt)
9048       return tokError("expected integer");
9049     Val = Lex.getAPSIntVal();
9050     Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
9051     Val.setIsSigned(true);
9052     Lex.Lex();
9053     return false;
9054   };
9055   if (parseToken(lltok::kw_offset, "expected 'offset' here") ||
9056       parseToken(lltok::colon, "expected ':' here") ||
9057       parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) ||
9058       parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) ||
9059       parseToken(lltok::rsquare, "expected ']' here"))
9060     return true;
9061 
9062   ++Upper;
9063   Range =
9064       (Lower == Upper && !Lower.isMaxValue())
9065           ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth)
9066           : ConstantRange(Lower, Upper);
9067 
9068   return false;
9069 }
9070 
9071 /// ParamAccessCall
9072 ///   := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')'
9073 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call,
9074                                     IdLocListType &IdLocList) {
9075   if (parseToken(lltok::lparen, "expected '(' here") ||
9076       parseToken(lltok::kw_callee, "expected 'callee' here") ||
9077       parseToken(lltok::colon, "expected ':' here"))
9078     return true;
9079 
9080   unsigned GVId;
9081   ValueInfo VI;
9082   LocTy Loc = Lex.getLoc();
9083   if (parseGVReference(VI, GVId))
9084     return true;
9085 
9086   Call.Callee = VI;
9087   IdLocList.emplace_back(GVId, Loc);
9088 
9089   if (parseToken(lltok::comma, "expected ',' here") ||
9090       parseParamNo(Call.ParamNo) ||
9091       parseToken(lltok::comma, "expected ',' here") ||
9092       parseParamAccessOffset(Call.Offsets))
9093     return true;
9094 
9095   if (parseToken(lltok::rparen, "expected ')' here"))
9096     return true;
9097 
9098   return false;
9099 }
9100 
9101 /// ParamAccess
9102 ///   := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')'
9103 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')'
9104 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param,
9105                                 IdLocListType &IdLocList) {
9106   if (parseToken(lltok::lparen, "expected '(' here") ||
9107       parseParamNo(Param.ParamNo) ||
9108       parseToken(lltok::comma, "expected ',' here") ||
9109       parseParamAccessOffset(Param.Use))
9110     return true;
9111 
9112   if (EatIfPresent(lltok::comma)) {
9113     if (parseToken(lltok::kw_calls, "expected 'calls' here") ||
9114         parseToken(lltok::colon, "expected ':' here") ||
9115         parseToken(lltok::lparen, "expected '(' here"))
9116       return true;
9117     do {
9118       FunctionSummary::ParamAccess::Call Call;
9119       if (parseParamAccessCall(Call, IdLocList))
9120         return true;
9121       Param.Calls.push_back(Call);
9122     } while (EatIfPresent(lltok::comma));
9123 
9124     if (parseToken(lltok::rparen, "expected ')' here"))
9125       return true;
9126   }
9127 
9128   if (parseToken(lltok::rparen, "expected ')' here"))
9129     return true;
9130 
9131   return false;
9132 }
9133 
9134 /// OptionalParamAccesses
9135 ///   := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')'
9136 bool LLParser::parseOptionalParamAccesses(
9137     std::vector<FunctionSummary::ParamAccess> &Params) {
9138   assert(Lex.getKind() == lltok::kw_params);
9139   Lex.Lex();
9140 
9141   if (parseToken(lltok::colon, "expected ':' here") ||
9142       parseToken(lltok::lparen, "expected '(' here"))
9143     return true;
9144 
9145   IdLocListType VContexts;
9146   size_t CallsNum = 0;
9147   do {
9148     FunctionSummary::ParamAccess ParamAccess;
9149     if (parseParamAccess(ParamAccess, VContexts))
9150       return true;
9151     CallsNum += ParamAccess.Calls.size();
9152     assert(VContexts.size() == CallsNum);
9153     (void)CallsNum;
9154     Params.emplace_back(std::move(ParamAccess));
9155   } while (EatIfPresent(lltok::comma));
9156 
9157   if (parseToken(lltok::rparen, "expected ')' here"))
9158     return true;
9159 
9160   // Now that the Params is finalized, it is safe to save the locations
9161   // of any forward GV references that need updating later.
9162   IdLocListType::const_iterator ItContext = VContexts.begin();
9163   for (auto &PA : Params) {
9164     for (auto &C : PA.Calls) {
9165       if (C.Callee.getRef() == FwdVIRef)
9166         ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee,
9167                                                             ItContext->second);
9168       ++ItContext;
9169     }
9170   }
9171   assert(ItContext == VContexts.end());
9172 
9173   return false;
9174 }
9175 
9176 /// OptionalRefs
9177 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
9178 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) {
9179   assert(Lex.getKind() == lltok::kw_refs);
9180   Lex.Lex();
9181 
9182   if (parseToken(lltok::colon, "expected ':' in refs") ||
9183       parseToken(lltok::lparen, "expected '(' in refs"))
9184     return true;
9185 
9186   struct ValueContext {
9187     ValueInfo VI;
9188     unsigned GVId;
9189     LocTy Loc;
9190   };
9191   std::vector<ValueContext> VContexts;
9192   // parse each ref edge
9193   do {
9194     ValueContext VC;
9195     VC.Loc = Lex.getLoc();
9196     if (parseGVReference(VC.VI, VC.GVId))
9197       return true;
9198     VContexts.push_back(VC);
9199   } while (EatIfPresent(lltok::comma));
9200 
9201   // Sort value contexts so that ones with writeonly
9202   // and readonly ValueInfo  are at the end of VContexts vector.
9203   // See FunctionSummary::specialRefCounts()
9204   llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
9205     return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier();
9206   });
9207 
9208   IdToIndexMapType IdToIndexMap;
9209   for (auto &VC : VContexts) {
9210     // Keep track of the Refs array index needing a forward reference.
9211     // We will save the location of the ValueInfo needing an update, but
9212     // can only do so once the std::vector is finalized.
9213     if (VC.VI.getRef() == FwdVIRef)
9214       IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
9215     Refs.push_back(VC.VI);
9216   }
9217 
9218   // Now that the Refs vector is finalized, it is safe to save the locations
9219   // of any forward GV references that need updating later.
9220   for (auto I : IdToIndexMap) {
9221     auto &Infos = ForwardRefValueInfos[I.first];
9222     for (auto P : I.second) {
9223       assert(Refs[P.first].getRef() == FwdVIRef &&
9224              "Forward referenced ValueInfo expected to be empty");
9225       Infos.emplace_back(&Refs[P.first], P.second);
9226     }
9227   }
9228 
9229   if (parseToken(lltok::rparen, "expected ')' in refs"))
9230     return true;
9231 
9232   return false;
9233 }
9234 
9235 /// OptionalTypeIdInfo
9236 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
9237 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
9238 ///         [',' TypeCheckedLoadConstVCalls]? ')'
9239 bool LLParser::parseOptionalTypeIdInfo(
9240     FunctionSummary::TypeIdInfo &TypeIdInfo) {
9241   assert(Lex.getKind() == lltok::kw_typeIdInfo);
9242   Lex.Lex();
9243 
9244   if (parseToken(lltok::colon, "expected ':' here") ||
9245       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
9246     return true;
9247 
9248   do {
9249     switch (Lex.getKind()) {
9250     case lltok::kw_typeTests:
9251       if (parseTypeTests(TypeIdInfo.TypeTests))
9252         return true;
9253       break;
9254     case lltok::kw_typeTestAssumeVCalls:
9255       if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
9256                            TypeIdInfo.TypeTestAssumeVCalls))
9257         return true;
9258       break;
9259     case lltok::kw_typeCheckedLoadVCalls:
9260       if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
9261                            TypeIdInfo.TypeCheckedLoadVCalls))
9262         return true;
9263       break;
9264     case lltok::kw_typeTestAssumeConstVCalls:
9265       if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
9266                               TypeIdInfo.TypeTestAssumeConstVCalls))
9267         return true;
9268       break;
9269     case lltok::kw_typeCheckedLoadConstVCalls:
9270       if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
9271                               TypeIdInfo.TypeCheckedLoadConstVCalls))
9272         return true;
9273       break;
9274     default:
9275       return error(Lex.getLoc(), "invalid typeIdInfo list type");
9276     }
9277   } while (EatIfPresent(lltok::comma));
9278 
9279   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9280     return true;
9281 
9282   return false;
9283 }
9284 
9285 /// TypeTests
9286 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
9287 ///         [',' (SummaryID | UInt64)]* ')'
9288 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
9289   assert(Lex.getKind() == lltok::kw_typeTests);
9290   Lex.Lex();
9291 
9292   if (parseToken(lltok::colon, "expected ':' here") ||
9293       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
9294     return true;
9295 
9296   IdToIndexMapType IdToIndexMap;
9297   do {
9298     GlobalValue::GUID GUID = 0;
9299     if (Lex.getKind() == lltok::SummaryID) {
9300       unsigned ID = Lex.getUIntVal();
9301       LocTy Loc = Lex.getLoc();
9302       // Keep track of the TypeTests array index needing a forward reference.
9303       // We will save the location of the GUID needing an update, but
9304       // can only do so once the std::vector is finalized.
9305       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
9306       Lex.Lex();
9307     } else if (parseUInt64(GUID))
9308       return true;
9309     TypeTests.push_back(GUID);
9310   } while (EatIfPresent(lltok::comma));
9311 
9312   // Now that the TypeTests vector is finalized, it is safe to save the
9313   // locations of any forward GV references that need updating later.
9314   for (auto I : IdToIndexMap) {
9315     auto &Ids = ForwardRefTypeIds[I.first];
9316     for (auto P : I.second) {
9317       assert(TypeTests[P.first] == 0 &&
9318              "Forward referenced type id GUID expected to be 0");
9319       Ids.emplace_back(&TypeTests[P.first], P.second);
9320     }
9321   }
9322 
9323   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9324     return true;
9325 
9326   return false;
9327 }
9328 
9329 /// VFuncIdList
9330 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
9331 bool LLParser::parseVFuncIdList(
9332     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
9333   assert(Lex.getKind() == Kind);
9334   Lex.Lex();
9335 
9336   if (parseToken(lltok::colon, "expected ':' here") ||
9337       parseToken(lltok::lparen, "expected '(' here"))
9338     return true;
9339 
9340   IdToIndexMapType IdToIndexMap;
9341   do {
9342     FunctionSummary::VFuncId VFuncId;
9343     if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
9344       return true;
9345     VFuncIdList.push_back(VFuncId);
9346   } while (EatIfPresent(lltok::comma));
9347 
9348   if (parseToken(lltok::rparen, "expected ')' here"))
9349     return true;
9350 
9351   // Now that the VFuncIdList vector is finalized, it is safe to save the
9352   // locations of any forward GV references that need updating later.
9353   for (auto I : IdToIndexMap) {
9354     auto &Ids = ForwardRefTypeIds[I.first];
9355     for (auto P : I.second) {
9356       assert(VFuncIdList[P.first].GUID == 0 &&
9357              "Forward referenced type id GUID expected to be 0");
9358       Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second);
9359     }
9360   }
9361 
9362   return false;
9363 }
9364 
9365 /// ConstVCallList
9366 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
9367 bool LLParser::parseConstVCallList(
9368     lltok::Kind Kind,
9369     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
9370   assert(Lex.getKind() == Kind);
9371   Lex.Lex();
9372 
9373   if (parseToken(lltok::colon, "expected ':' here") ||
9374       parseToken(lltok::lparen, "expected '(' here"))
9375     return true;
9376 
9377   IdToIndexMapType IdToIndexMap;
9378   do {
9379     FunctionSummary::ConstVCall ConstVCall;
9380     if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
9381       return true;
9382     ConstVCallList.push_back(ConstVCall);
9383   } while (EatIfPresent(lltok::comma));
9384 
9385   if (parseToken(lltok::rparen, "expected ')' here"))
9386     return true;
9387 
9388   // Now that the ConstVCallList vector is finalized, it is safe to save the
9389   // locations of any forward GV references that need updating later.
9390   for (auto I : IdToIndexMap) {
9391     auto &Ids = ForwardRefTypeIds[I.first];
9392     for (auto P : I.second) {
9393       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
9394              "Forward referenced type id GUID expected to be 0");
9395       Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second);
9396     }
9397   }
9398 
9399   return false;
9400 }
9401 
9402 /// ConstVCall
9403 ///   ::= '(' VFuncId ',' Args ')'
9404 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
9405                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
9406   if (parseToken(lltok::lparen, "expected '(' here") ||
9407       parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
9408     return true;
9409 
9410   if (EatIfPresent(lltok::comma))
9411     if (parseArgs(ConstVCall.Args))
9412       return true;
9413 
9414   if (parseToken(lltok::rparen, "expected ')' here"))
9415     return true;
9416 
9417   return false;
9418 }
9419 
9420 /// VFuncId
9421 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
9422 ///         'offset' ':' UInt64 ')'
9423 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId,
9424                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
9425   assert(Lex.getKind() == lltok::kw_vFuncId);
9426   Lex.Lex();
9427 
9428   if (parseToken(lltok::colon, "expected ':' here") ||
9429       parseToken(lltok::lparen, "expected '(' here"))
9430     return true;
9431 
9432   if (Lex.getKind() == lltok::SummaryID) {
9433     VFuncId.GUID = 0;
9434     unsigned ID = Lex.getUIntVal();
9435     LocTy Loc = Lex.getLoc();
9436     // Keep track of the array index needing a forward reference.
9437     // We will save the location of the GUID needing an update, but
9438     // can only do so once the caller's std::vector is finalized.
9439     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
9440     Lex.Lex();
9441   } else if (parseToken(lltok::kw_guid, "expected 'guid' here") ||
9442              parseToken(lltok::colon, "expected ':' here") ||
9443              parseUInt64(VFuncId.GUID))
9444     return true;
9445 
9446   if (parseToken(lltok::comma, "expected ',' here") ||
9447       parseToken(lltok::kw_offset, "expected 'offset' here") ||
9448       parseToken(lltok::colon, "expected ':' here") ||
9449       parseUInt64(VFuncId.Offset) ||
9450       parseToken(lltok::rparen, "expected ')' here"))
9451     return true;
9452 
9453   return false;
9454 }
9455 
9456 /// GVFlags
9457 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
9458 ///         'visibility' ':' Flag 'notEligibleToImport' ':' Flag ','
9459 ///         'live' ':' Flag ',' 'dsoLocal' ':' Flag ','
9460 ///         'canAutoHide' ':' Flag ',' ')'
9461 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
9462   assert(Lex.getKind() == lltok::kw_flags);
9463   Lex.Lex();
9464 
9465   if (parseToken(lltok::colon, "expected ':' here") ||
9466       parseToken(lltok::lparen, "expected '(' here"))
9467     return true;
9468 
9469   do {
9470     unsigned Flag = 0;
9471     switch (Lex.getKind()) {
9472     case lltok::kw_linkage:
9473       Lex.Lex();
9474       if (parseToken(lltok::colon, "expected ':'"))
9475         return true;
9476       bool HasLinkage;
9477       GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
9478       assert(HasLinkage && "Linkage not optional in summary entry");
9479       Lex.Lex();
9480       break;
9481     case lltok::kw_visibility:
9482       Lex.Lex();
9483       if (parseToken(lltok::colon, "expected ':'"))
9484         return true;
9485       parseOptionalVisibility(Flag);
9486       GVFlags.Visibility = Flag;
9487       break;
9488     case lltok::kw_notEligibleToImport:
9489       Lex.Lex();
9490       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9491         return true;
9492       GVFlags.NotEligibleToImport = Flag;
9493       break;
9494     case lltok::kw_live:
9495       Lex.Lex();
9496       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9497         return true;
9498       GVFlags.Live = Flag;
9499       break;
9500     case lltok::kw_dsoLocal:
9501       Lex.Lex();
9502       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9503         return true;
9504       GVFlags.DSOLocal = Flag;
9505       break;
9506     case lltok::kw_canAutoHide:
9507       Lex.Lex();
9508       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9509         return true;
9510       GVFlags.CanAutoHide = Flag;
9511       break;
9512     default:
9513       return error(Lex.getLoc(), "expected gv flag type");
9514     }
9515   } while (EatIfPresent(lltok::comma));
9516 
9517   if (parseToken(lltok::rparen, "expected ')' here"))
9518     return true;
9519 
9520   return false;
9521 }
9522 
9523 /// GVarFlags
9524 ///   ::= 'varFlags' ':' '(' 'readonly' ':' Flag
9525 ///                      ',' 'writeonly' ':' Flag
9526 ///                      ',' 'constant' ':' Flag ')'
9527 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
9528   assert(Lex.getKind() == lltok::kw_varFlags);
9529   Lex.Lex();
9530 
9531   if (parseToken(lltok::colon, "expected ':' here") ||
9532       parseToken(lltok::lparen, "expected '(' here"))
9533     return true;
9534 
9535   auto ParseRest = [this](unsigned int &Val) {
9536     Lex.Lex();
9537     if (parseToken(lltok::colon, "expected ':'"))
9538       return true;
9539     return parseFlag(Val);
9540   };
9541 
9542   do {
9543     unsigned Flag = 0;
9544     switch (Lex.getKind()) {
9545     case lltok::kw_readonly:
9546       if (ParseRest(Flag))
9547         return true;
9548       GVarFlags.MaybeReadOnly = Flag;
9549       break;
9550     case lltok::kw_writeonly:
9551       if (ParseRest(Flag))
9552         return true;
9553       GVarFlags.MaybeWriteOnly = Flag;
9554       break;
9555     case lltok::kw_constant:
9556       if (ParseRest(Flag))
9557         return true;
9558       GVarFlags.Constant = Flag;
9559       break;
9560     case lltok::kw_vcall_visibility:
9561       if (ParseRest(Flag))
9562         return true;
9563       GVarFlags.VCallVisibility = Flag;
9564       break;
9565     default:
9566       return error(Lex.getLoc(), "expected gvar flag type");
9567     }
9568   } while (EatIfPresent(lltok::comma));
9569   return parseToken(lltok::rparen, "expected ')' here");
9570 }
9571 
9572 /// ModuleReference
9573 ///   ::= 'module' ':' UInt
9574 bool LLParser::parseModuleReference(StringRef &ModulePath) {
9575   // parse module id.
9576   if (parseToken(lltok::kw_module, "expected 'module' here") ||
9577       parseToken(lltok::colon, "expected ':' here") ||
9578       parseToken(lltok::SummaryID, "expected module ID"))
9579     return true;
9580 
9581   unsigned ModuleID = Lex.getUIntVal();
9582   auto I = ModuleIdMap.find(ModuleID);
9583   // We should have already parsed all module IDs
9584   assert(I != ModuleIdMap.end());
9585   ModulePath = I->second;
9586   return false;
9587 }
9588 
9589 /// GVReference
9590 ///   ::= SummaryID
9591 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) {
9592   bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly);
9593   if (!ReadOnly)
9594     WriteOnly = EatIfPresent(lltok::kw_writeonly);
9595   if (parseToken(lltok::SummaryID, "expected GV ID"))
9596     return true;
9597 
9598   GVId = Lex.getUIntVal();
9599   // Check if we already have a VI for this GV
9600   if (GVId < NumberedValueInfos.size()) {
9601     assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
9602     VI = NumberedValueInfos[GVId];
9603   } else
9604     // We will create a forward reference to the stored location.
9605     VI = ValueInfo(false, FwdVIRef);
9606 
9607   if (ReadOnly)
9608     VI.setReadOnly();
9609   if (WriteOnly)
9610     VI.setWriteOnly();
9611   return false;
9612 }
9613