1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the parser class for .ll files. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LLParser.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/AsmParser/SlotMapping.h" 21 #include "llvm/BinaryFormat/Dwarf.h" 22 #include "llvm/IR/Argument.h" 23 #include "llvm/IR/AutoUpgrade.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallingConv.h" 26 #include "llvm/IR/Comdat.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DebugInfoMetadata.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/GlobalIFunc.h" 32 #include "llvm/IR/GlobalObject.h" 33 #include "llvm/IR/InlineAsm.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/LLVMContext.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/Operator.h" 41 #include "llvm/IR/Type.h" 42 #include "llvm/IR/Value.h" 43 #include "llvm/IR/ValueSymbolTable.h" 44 #include "llvm/Support/Casting.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/MathExtras.h" 47 #include "llvm/Support/SaveAndRestore.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <cstring> 52 #include <iterator> 53 #include <vector> 54 55 using namespace llvm; 56 57 static std::string getTypeString(Type *T) { 58 std::string Result; 59 raw_string_ostream Tmp(Result); 60 Tmp << *T; 61 return Tmp.str(); 62 } 63 64 /// Run: module ::= toplevelentity* 65 bool LLParser::Run() { 66 // Prime the lexer. 67 Lex.Lex(); 68 69 if (Context.shouldDiscardValueNames()) 70 return Error( 71 Lex.getLoc(), 72 "Can't read textual IR with a Context that discards named Values"); 73 74 return ParseTopLevelEntities() || ValidateEndOfModule() || 75 ValidateEndOfIndex(); 76 } 77 78 bool LLParser::parseStandaloneConstantValue(Constant *&C, 79 const SlotMapping *Slots) { 80 restoreParsingState(Slots); 81 Lex.Lex(); 82 83 Type *Ty = nullptr; 84 if (ParseType(Ty) || parseConstantValue(Ty, C)) 85 return true; 86 if (Lex.getKind() != lltok::Eof) 87 return Error(Lex.getLoc(), "expected end of string"); 88 return false; 89 } 90 91 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 92 const SlotMapping *Slots) { 93 restoreParsingState(Slots); 94 Lex.Lex(); 95 96 Read = 0; 97 SMLoc Start = Lex.getLoc(); 98 Ty = nullptr; 99 if (ParseType(Ty)) 100 return true; 101 SMLoc End = Lex.getLoc(); 102 Read = End.getPointer() - Start.getPointer(); 103 104 return false; 105 } 106 107 void LLParser::restoreParsingState(const SlotMapping *Slots) { 108 if (!Slots) 109 return; 110 NumberedVals = Slots->GlobalValues; 111 NumberedMetadata = Slots->MetadataNodes; 112 for (const auto &I : Slots->NamedTypes) 113 NamedTypes.insert( 114 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 115 for (const auto &I : Slots->Types) 116 NumberedTypes.insert( 117 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 118 } 119 120 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 121 /// module. 122 bool LLParser::ValidateEndOfModule() { 123 if (!M) 124 return false; 125 // Handle any function attribute group forward references. 126 for (const auto &RAG : ForwardRefAttrGroups) { 127 Value *V = RAG.first; 128 const std::vector<unsigned> &Attrs = RAG.second; 129 AttrBuilder B; 130 131 for (const auto &Attr : Attrs) 132 B.merge(NumberedAttrBuilders[Attr]); 133 134 if (Function *Fn = dyn_cast<Function>(V)) { 135 AttributeList AS = Fn->getAttributes(); 136 AttrBuilder FnAttrs(AS.getFnAttributes()); 137 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 138 139 FnAttrs.merge(B); 140 141 // If the alignment was parsed as an attribute, move to the alignment 142 // field. 143 if (FnAttrs.hasAlignmentAttr()) { 144 Fn->setAlignment(FnAttrs.getAlignment()); 145 FnAttrs.removeAttribute(Attribute::Alignment); 146 } 147 148 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 149 AttributeSet::get(Context, FnAttrs)); 150 Fn->setAttributes(AS); 151 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 152 AttributeList AS = CI->getAttributes(); 153 AttrBuilder FnAttrs(AS.getFnAttributes()); 154 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 155 FnAttrs.merge(B); 156 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 157 AttributeSet::get(Context, FnAttrs)); 158 CI->setAttributes(AS); 159 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 160 AttributeList AS = II->getAttributes(); 161 AttrBuilder FnAttrs(AS.getFnAttributes()); 162 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 163 FnAttrs.merge(B); 164 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 165 AttributeSet::get(Context, FnAttrs)); 166 II->setAttributes(AS); 167 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 168 AttrBuilder Attrs(GV->getAttributes()); 169 Attrs.merge(B); 170 GV->setAttributes(AttributeSet::get(Context,Attrs)); 171 } else { 172 llvm_unreachable("invalid object with forward attribute group reference"); 173 } 174 } 175 176 // If there are entries in ForwardRefBlockAddresses at this point, the 177 // function was never defined. 178 if (!ForwardRefBlockAddresses.empty()) 179 return Error(ForwardRefBlockAddresses.begin()->first.Loc, 180 "expected function name in blockaddress"); 181 182 for (const auto &NT : NumberedTypes) 183 if (NT.second.second.isValid()) 184 return Error(NT.second.second, 185 "use of undefined type '%" + Twine(NT.first) + "'"); 186 187 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 188 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 189 if (I->second.second.isValid()) 190 return Error(I->second.second, 191 "use of undefined type named '" + I->getKey() + "'"); 192 193 if (!ForwardRefComdats.empty()) 194 return Error(ForwardRefComdats.begin()->second, 195 "use of undefined comdat '$" + 196 ForwardRefComdats.begin()->first + "'"); 197 198 if (!ForwardRefVals.empty()) 199 return Error(ForwardRefVals.begin()->second.second, 200 "use of undefined value '@" + ForwardRefVals.begin()->first + 201 "'"); 202 203 if (!ForwardRefValIDs.empty()) 204 return Error(ForwardRefValIDs.begin()->second.second, 205 "use of undefined value '@" + 206 Twine(ForwardRefValIDs.begin()->first) + "'"); 207 208 if (!ForwardRefMDNodes.empty()) 209 return Error(ForwardRefMDNodes.begin()->second.second, 210 "use of undefined metadata '!" + 211 Twine(ForwardRefMDNodes.begin()->first) + "'"); 212 213 // Resolve metadata cycles. 214 for (auto &N : NumberedMetadata) { 215 if (N.second && !N.second->isResolved()) 216 N.second->resolveCycles(); 217 } 218 219 for (auto *Inst : InstsWithTBAATag) { 220 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 221 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 222 auto *UpgradedMD = UpgradeTBAANode(*MD); 223 if (MD != UpgradedMD) 224 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 225 } 226 227 // Look for intrinsic functions and CallInst that need to be upgraded 228 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 229 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 230 231 // Some types could be renamed during loading if several modules are 232 // loaded in the same LLVMContext (LTO scenario). In this case we should 233 // remangle intrinsics names as well. 234 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) { 235 Function *F = &*FI++; 236 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 237 F->replaceAllUsesWith(Remangled.getValue()); 238 F->eraseFromParent(); 239 } 240 } 241 242 if (UpgradeDebugInfo) 243 llvm::UpgradeDebugInfo(*M); 244 245 UpgradeModuleFlags(*M); 246 UpgradeSectionAttributes(*M); 247 248 if (!Slots) 249 return false; 250 // Initialize the slot mapping. 251 // Because by this point we've parsed and validated everything, we can "steal" 252 // the mapping from LLParser as it doesn't need it anymore. 253 Slots->GlobalValues = std::move(NumberedVals); 254 Slots->MetadataNodes = std::move(NumberedMetadata); 255 for (const auto &I : NamedTypes) 256 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 257 for (const auto &I : NumberedTypes) 258 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 259 260 return false; 261 } 262 263 /// Do final validity and sanity checks at the end of the index. 264 bool LLParser::ValidateEndOfIndex() { 265 if (!Index) 266 return false; 267 268 if (!ForwardRefValueInfos.empty()) 269 return Error(ForwardRefValueInfos.begin()->second.front().second, 270 "use of undefined summary '^" + 271 Twine(ForwardRefValueInfos.begin()->first) + "'"); 272 273 if (!ForwardRefAliasees.empty()) 274 return Error(ForwardRefAliasees.begin()->second.front().second, 275 "use of undefined summary '^" + 276 Twine(ForwardRefAliasees.begin()->first) + "'"); 277 278 if (!ForwardRefTypeIds.empty()) 279 return Error(ForwardRefTypeIds.begin()->second.front().second, 280 "use of undefined type id summary '^" + 281 Twine(ForwardRefTypeIds.begin()->first) + "'"); 282 283 return false; 284 } 285 286 //===----------------------------------------------------------------------===// 287 // Top-Level Entities 288 //===----------------------------------------------------------------------===// 289 290 bool LLParser::ParseTopLevelEntities() { 291 // If there is no Module, then parse just the summary index entries. 292 if (!M) { 293 while (true) { 294 switch (Lex.getKind()) { 295 case lltok::Eof: 296 return false; 297 case lltok::SummaryID: 298 if (ParseSummaryEntry()) 299 return true; 300 break; 301 case lltok::kw_source_filename: 302 if (ParseSourceFileName()) 303 return true; 304 break; 305 default: 306 // Skip everything else 307 Lex.Lex(); 308 } 309 } 310 } 311 while (true) { 312 switch (Lex.getKind()) { 313 default: return TokError("expected top-level entity"); 314 case lltok::Eof: return false; 315 case lltok::kw_declare: if (ParseDeclare()) return true; break; 316 case lltok::kw_define: if (ParseDefine()) return true; break; 317 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 318 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 319 case lltok::kw_source_filename: 320 if (ParseSourceFileName()) 321 return true; 322 break; 323 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 324 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 325 case lltok::LocalVar: if (ParseNamedType()) return true; break; 326 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 327 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 328 case lltok::ComdatVar: if (parseComdat()) return true; break; 329 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 330 case lltok::SummaryID: 331 if (ParseSummaryEntry()) 332 return true; 333 break; 334 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break; 335 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break; 336 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break; 337 case lltok::kw_uselistorder_bb: 338 if (ParseUseListOrderBB()) 339 return true; 340 break; 341 } 342 } 343 } 344 345 /// toplevelentity 346 /// ::= 'module' 'asm' STRINGCONSTANT 347 bool LLParser::ParseModuleAsm() { 348 assert(Lex.getKind() == lltok::kw_module); 349 Lex.Lex(); 350 351 std::string AsmStr; 352 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 353 ParseStringConstant(AsmStr)) return true; 354 355 M->appendModuleInlineAsm(AsmStr); 356 return false; 357 } 358 359 /// toplevelentity 360 /// ::= 'target' 'triple' '=' STRINGCONSTANT 361 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 362 bool LLParser::ParseTargetDefinition() { 363 assert(Lex.getKind() == lltok::kw_target); 364 std::string Str; 365 switch (Lex.Lex()) { 366 default: return TokError("unknown target property"); 367 case lltok::kw_triple: 368 Lex.Lex(); 369 if (ParseToken(lltok::equal, "expected '=' after target triple") || 370 ParseStringConstant(Str)) 371 return true; 372 M->setTargetTriple(Str); 373 return false; 374 case lltok::kw_datalayout: 375 Lex.Lex(); 376 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 377 ParseStringConstant(Str)) 378 return true; 379 if (DataLayoutStr.empty()) 380 M->setDataLayout(Str); 381 return false; 382 } 383 } 384 385 /// toplevelentity 386 /// ::= 'source_filename' '=' STRINGCONSTANT 387 bool LLParser::ParseSourceFileName() { 388 assert(Lex.getKind() == lltok::kw_source_filename); 389 Lex.Lex(); 390 if (ParseToken(lltok::equal, "expected '=' after source_filename") || 391 ParseStringConstant(SourceFileName)) 392 return true; 393 if (M) 394 M->setSourceFileName(SourceFileName); 395 return false; 396 } 397 398 /// toplevelentity 399 /// ::= 'deplibs' '=' '[' ']' 400 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 401 /// FIXME: Remove in 4.0. Currently parse, but ignore. 402 bool LLParser::ParseDepLibs() { 403 assert(Lex.getKind() == lltok::kw_deplibs); 404 Lex.Lex(); 405 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 406 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 407 return true; 408 409 if (EatIfPresent(lltok::rsquare)) 410 return false; 411 412 do { 413 std::string Str; 414 if (ParseStringConstant(Str)) return true; 415 } while (EatIfPresent(lltok::comma)); 416 417 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 418 } 419 420 /// ParseUnnamedType: 421 /// ::= LocalVarID '=' 'type' type 422 bool LLParser::ParseUnnamedType() { 423 LocTy TypeLoc = Lex.getLoc(); 424 unsigned TypeID = Lex.getUIntVal(); 425 Lex.Lex(); // eat LocalVarID; 426 427 if (ParseToken(lltok::equal, "expected '=' after name") || 428 ParseToken(lltok::kw_type, "expected 'type' after '='")) 429 return true; 430 431 Type *Result = nullptr; 432 if (ParseStructDefinition(TypeLoc, "", 433 NumberedTypes[TypeID], Result)) return true; 434 435 if (!isa<StructType>(Result)) { 436 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 437 if (Entry.first) 438 return Error(TypeLoc, "non-struct types may not be recursive"); 439 Entry.first = Result; 440 Entry.second = SMLoc(); 441 } 442 443 return false; 444 } 445 446 /// toplevelentity 447 /// ::= LocalVar '=' 'type' type 448 bool LLParser::ParseNamedType() { 449 std::string Name = Lex.getStrVal(); 450 LocTy NameLoc = Lex.getLoc(); 451 Lex.Lex(); // eat LocalVar. 452 453 if (ParseToken(lltok::equal, "expected '=' after name") || 454 ParseToken(lltok::kw_type, "expected 'type' after name")) 455 return true; 456 457 Type *Result = nullptr; 458 if (ParseStructDefinition(NameLoc, Name, 459 NamedTypes[Name], Result)) return true; 460 461 if (!isa<StructType>(Result)) { 462 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 463 if (Entry.first) 464 return Error(NameLoc, "non-struct types may not be recursive"); 465 Entry.first = Result; 466 Entry.second = SMLoc(); 467 } 468 469 return false; 470 } 471 472 /// toplevelentity 473 /// ::= 'declare' FunctionHeader 474 bool LLParser::ParseDeclare() { 475 assert(Lex.getKind() == lltok::kw_declare); 476 Lex.Lex(); 477 478 std::vector<std::pair<unsigned, MDNode *>> MDs; 479 while (Lex.getKind() == lltok::MetadataVar) { 480 unsigned MDK; 481 MDNode *N; 482 if (ParseMetadataAttachment(MDK, N)) 483 return true; 484 MDs.push_back({MDK, N}); 485 } 486 487 Function *F; 488 if (ParseFunctionHeader(F, false)) 489 return true; 490 for (auto &MD : MDs) 491 F->addMetadata(MD.first, *MD.second); 492 return false; 493 } 494 495 /// toplevelentity 496 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 497 bool LLParser::ParseDefine() { 498 assert(Lex.getKind() == lltok::kw_define); 499 Lex.Lex(); 500 501 Function *F; 502 return ParseFunctionHeader(F, true) || 503 ParseOptionalFunctionMetadata(*F) || 504 ParseFunctionBody(*F); 505 } 506 507 /// ParseGlobalType 508 /// ::= 'constant' 509 /// ::= 'global' 510 bool LLParser::ParseGlobalType(bool &IsConstant) { 511 if (Lex.getKind() == lltok::kw_constant) 512 IsConstant = true; 513 else if (Lex.getKind() == lltok::kw_global) 514 IsConstant = false; 515 else { 516 IsConstant = false; 517 return TokError("expected 'global' or 'constant'"); 518 } 519 Lex.Lex(); 520 return false; 521 } 522 523 bool LLParser::ParseOptionalUnnamedAddr( 524 GlobalVariable::UnnamedAddr &UnnamedAddr) { 525 if (EatIfPresent(lltok::kw_unnamed_addr)) 526 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 527 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 528 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 529 else 530 UnnamedAddr = GlobalValue::UnnamedAddr::None; 531 return false; 532 } 533 534 /// ParseUnnamedGlobal: 535 /// OptionalVisibility (ALIAS | IFUNC) ... 536 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 537 /// OptionalDLLStorageClass 538 /// ... -> global variable 539 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 540 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 541 /// OptionalDLLStorageClass 542 /// ... -> global variable 543 bool LLParser::ParseUnnamedGlobal() { 544 unsigned VarID = NumberedVals.size(); 545 std::string Name; 546 LocTy NameLoc = Lex.getLoc(); 547 548 // Handle the GlobalID form. 549 if (Lex.getKind() == lltok::GlobalID) { 550 if (Lex.getUIntVal() != VarID) 551 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 552 Twine(VarID) + "'"); 553 Lex.Lex(); // eat GlobalID; 554 555 if (ParseToken(lltok::equal, "expected '=' after name")) 556 return true; 557 } 558 559 bool HasLinkage; 560 unsigned Linkage, Visibility, DLLStorageClass; 561 bool DSOLocal; 562 GlobalVariable::ThreadLocalMode TLM; 563 GlobalVariable::UnnamedAddr UnnamedAddr; 564 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 565 DSOLocal) || 566 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 567 return true; 568 569 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 570 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 571 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 572 573 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 574 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 575 } 576 577 /// ParseNamedGlobal: 578 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 579 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 580 /// OptionalVisibility OptionalDLLStorageClass 581 /// ... -> global variable 582 bool LLParser::ParseNamedGlobal() { 583 assert(Lex.getKind() == lltok::GlobalVar); 584 LocTy NameLoc = Lex.getLoc(); 585 std::string Name = Lex.getStrVal(); 586 Lex.Lex(); 587 588 bool HasLinkage; 589 unsigned Linkage, Visibility, DLLStorageClass; 590 bool DSOLocal; 591 GlobalVariable::ThreadLocalMode TLM; 592 GlobalVariable::UnnamedAddr UnnamedAddr; 593 if (ParseToken(lltok::equal, "expected '=' in global variable") || 594 ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 595 DSOLocal) || 596 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 597 return true; 598 599 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 600 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 601 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 602 603 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 604 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 605 } 606 607 bool LLParser::parseComdat() { 608 assert(Lex.getKind() == lltok::ComdatVar); 609 std::string Name = Lex.getStrVal(); 610 LocTy NameLoc = Lex.getLoc(); 611 Lex.Lex(); 612 613 if (ParseToken(lltok::equal, "expected '=' here")) 614 return true; 615 616 if (ParseToken(lltok::kw_comdat, "expected comdat keyword")) 617 return TokError("expected comdat type"); 618 619 Comdat::SelectionKind SK; 620 switch (Lex.getKind()) { 621 default: 622 return TokError("unknown selection kind"); 623 case lltok::kw_any: 624 SK = Comdat::Any; 625 break; 626 case lltok::kw_exactmatch: 627 SK = Comdat::ExactMatch; 628 break; 629 case lltok::kw_largest: 630 SK = Comdat::Largest; 631 break; 632 case lltok::kw_noduplicates: 633 SK = Comdat::NoDuplicates; 634 break; 635 case lltok::kw_samesize: 636 SK = Comdat::SameSize; 637 break; 638 } 639 Lex.Lex(); 640 641 // See if the comdat was forward referenced, if so, use the comdat. 642 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 643 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 644 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 645 return Error(NameLoc, "redefinition of comdat '$" + Name + "'"); 646 647 Comdat *C; 648 if (I != ComdatSymTab.end()) 649 C = &I->second; 650 else 651 C = M->getOrInsertComdat(Name); 652 C->setSelectionKind(SK); 653 654 return false; 655 } 656 657 // MDString: 658 // ::= '!' STRINGCONSTANT 659 bool LLParser::ParseMDString(MDString *&Result) { 660 std::string Str; 661 if (ParseStringConstant(Str)) return true; 662 Result = MDString::get(Context, Str); 663 return false; 664 } 665 666 // MDNode: 667 // ::= '!' MDNodeNumber 668 bool LLParser::ParseMDNodeID(MDNode *&Result) { 669 // !{ ..., !42, ... } 670 LocTy IDLoc = Lex.getLoc(); 671 unsigned MID = 0; 672 if (ParseUInt32(MID)) 673 return true; 674 675 // If not a forward reference, just return it now. 676 if (NumberedMetadata.count(MID)) { 677 Result = NumberedMetadata[MID]; 678 return false; 679 } 680 681 // Otherwise, create MDNode forward reference. 682 auto &FwdRef = ForwardRefMDNodes[MID]; 683 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 684 685 Result = FwdRef.first.get(); 686 NumberedMetadata[MID].reset(Result); 687 return false; 688 } 689 690 /// ParseNamedMetadata: 691 /// !foo = !{ !1, !2 } 692 bool LLParser::ParseNamedMetadata() { 693 assert(Lex.getKind() == lltok::MetadataVar); 694 std::string Name = Lex.getStrVal(); 695 Lex.Lex(); 696 697 if (ParseToken(lltok::equal, "expected '=' here") || 698 ParseToken(lltok::exclaim, "Expected '!' here") || 699 ParseToken(lltok::lbrace, "Expected '{' here")) 700 return true; 701 702 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 703 if (Lex.getKind() != lltok::rbrace) 704 do { 705 MDNode *N = nullptr; 706 // Parse DIExpressions inline as a special case. They are still MDNodes, 707 // so they can still appear in named metadata. Remove this logic if they 708 // become plain Metadata. 709 if (Lex.getKind() == lltok::MetadataVar && 710 Lex.getStrVal() == "DIExpression") { 711 if (ParseDIExpression(N, /*IsDistinct=*/false)) 712 return true; 713 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 714 ParseMDNodeID(N)) { 715 return true; 716 } 717 NMD->addOperand(N); 718 } while (EatIfPresent(lltok::comma)); 719 720 return ParseToken(lltok::rbrace, "expected end of metadata node"); 721 } 722 723 /// ParseStandaloneMetadata: 724 /// !42 = !{...} 725 bool LLParser::ParseStandaloneMetadata() { 726 assert(Lex.getKind() == lltok::exclaim); 727 Lex.Lex(); 728 unsigned MetadataID = 0; 729 730 MDNode *Init; 731 if (ParseUInt32(MetadataID) || 732 ParseToken(lltok::equal, "expected '=' here")) 733 return true; 734 735 // Detect common error, from old metadata syntax. 736 if (Lex.getKind() == lltok::Type) 737 return TokError("unexpected type in metadata definition"); 738 739 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 740 if (Lex.getKind() == lltok::MetadataVar) { 741 if (ParseSpecializedMDNode(Init, IsDistinct)) 742 return true; 743 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 744 ParseMDTuple(Init, IsDistinct)) 745 return true; 746 747 // See if this was forward referenced, if so, handle it. 748 auto FI = ForwardRefMDNodes.find(MetadataID); 749 if (FI != ForwardRefMDNodes.end()) { 750 FI->second.first->replaceAllUsesWith(Init); 751 ForwardRefMDNodes.erase(FI); 752 753 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 754 } else { 755 if (NumberedMetadata.count(MetadataID)) 756 return TokError("Metadata id is already used"); 757 NumberedMetadata[MetadataID].reset(Init); 758 } 759 760 return false; 761 } 762 763 // Skips a single module summary entry. 764 bool LLParser::SkipModuleSummaryEntry() { 765 // Each module summary entry consists of a tag for the entry 766 // type, followed by a colon, then the fields surrounded by nested sets of 767 // parentheses. The "tag:" looks like a Label. Once parsing support is 768 // in place we will look for the tokens corresponding to the expected tags. 769 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module && 770 Lex.getKind() != lltok::kw_typeid) 771 return TokError( 772 "Expected 'gv', 'module', or 'typeid' at the start of summary entry"); 773 Lex.Lex(); 774 if (ParseToken(lltok::colon, "expected ':' at start of summary entry") || 775 ParseToken(lltok::lparen, "expected '(' at start of summary entry")) 776 return true; 777 // Now walk through the parenthesized entry, until the number of open 778 // parentheses goes back down to 0 (the first '(' was parsed above). 779 unsigned NumOpenParen = 1; 780 do { 781 switch (Lex.getKind()) { 782 case lltok::lparen: 783 NumOpenParen++; 784 break; 785 case lltok::rparen: 786 NumOpenParen--; 787 break; 788 case lltok::Eof: 789 return TokError("found end of file while parsing summary entry"); 790 default: 791 // Skip everything in between parentheses. 792 break; 793 } 794 Lex.Lex(); 795 } while (NumOpenParen > 0); 796 return false; 797 } 798 799 /// SummaryEntry 800 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry 801 bool LLParser::ParseSummaryEntry() { 802 assert(Lex.getKind() == lltok::SummaryID); 803 unsigned SummaryID = Lex.getUIntVal(); 804 805 // For summary entries, colons should be treated as distinct tokens, 806 // not an indication of the end of a label token. 807 Lex.setIgnoreColonInIdentifiers(true); 808 809 Lex.Lex(); 810 if (ParseToken(lltok::equal, "expected '=' here")) 811 return true; 812 813 // If we don't have an index object, skip the summary entry. 814 if (!Index) 815 return SkipModuleSummaryEntry(); 816 817 switch (Lex.getKind()) { 818 case lltok::kw_gv: 819 return ParseGVEntry(SummaryID); 820 case lltok::kw_module: 821 return ParseModuleEntry(SummaryID); 822 case lltok::kw_typeid: 823 return ParseTypeIdEntry(SummaryID); 824 break; 825 default: 826 return Error(Lex.getLoc(), "unexpected summary kind"); 827 } 828 Lex.setIgnoreColonInIdentifiers(false); 829 return false; 830 } 831 832 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 833 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 834 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 835 } 836 837 // If there was an explicit dso_local, update GV. In the absence of an explicit 838 // dso_local we keep the default value. 839 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { 840 if (DSOLocal) 841 GV.setDSOLocal(true); 842 } 843 844 /// parseIndirectSymbol: 845 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 846 /// OptionalVisibility OptionalDLLStorageClass 847 /// OptionalThreadLocal OptionalUnnamedAddr 848 // 'alias|ifunc' IndirectSymbol 849 /// 850 /// IndirectSymbol 851 /// ::= TypeAndValue 852 /// 853 /// Everything through OptionalUnnamedAddr has already been parsed. 854 /// 855 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc, 856 unsigned L, unsigned Visibility, 857 unsigned DLLStorageClass, bool DSOLocal, 858 GlobalVariable::ThreadLocalMode TLM, 859 GlobalVariable::UnnamedAddr UnnamedAddr) { 860 bool IsAlias; 861 if (Lex.getKind() == lltok::kw_alias) 862 IsAlias = true; 863 else if (Lex.getKind() == lltok::kw_ifunc) 864 IsAlias = false; 865 else 866 llvm_unreachable("Not an alias or ifunc!"); 867 Lex.Lex(); 868 869 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 870 871 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 872 return Error(NameLoc, "invalid linkage type for alias"); 873 874 if (!isValidVisibilityForLinkage(Visibility, L)) 875 return Error(NameLoc, 876 "symbol with local linkage must have default visibility"); 877 878 Type *Ty; 879 LocTy ExplicitTypeLoc = Lex.getLoc(); 880 if (ParseType(Ty) || 881 ParseToken(lltok::comma, "expected comma after alias or ifunc's type")) 882 return true; 883 884 Constant *Aliasee; 885 LocTy AliaseeLoc = Lex.getLoc(); 886 if (Lex.getKind() != lltok::kw_bitcast && 887 Lex.getKind() != lltok::kw_getelementptr && 888 Lex.getKind() != lltok::kw_addrspacecast && 889 Lex.getKind() != lltok::kw_inttoptr) { 890 if (ParseGlobalTypeAndValue(Aliasee)) 891 return true; 892 } else { 893 // The bitcast dest type is not present, it is implied by the dest type. 894 ValID ID; 895 if (ParseValID(ID)) 896 return true; 897 if (ID.Kind != ValID::t_Constant) 898 return Error(AliaseeLoc, "invalid aliasee"); 899 Aliasee = ID.ConstantVal; 900 } 901 902 Type *AliaseeType = Aliasee->getType(); 903 auto *PTy = dyn_cast<PointerType>(AliaseeType); 904 if (!PTy) 905 return Error(AliaseeLoc, "An alias or ifunc must have pointer type"); 906 unsigned AddrSpace = PTy->getAddressSpace(); 907 908 if (IsAlias && Ty != PTy->getElementType()) 909 return Error( 910 ExplicitTypeLoc, 911 "explicit pointee type doesn't match operand's pointee type"); 912 913 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) 914 return Error( 915 ExplicitTypeLoc, 916 "explicit pointee type should be a function type"); 917 918 GlobalValue *GVal = nullptr; 919 920 // See if the alias was forward referenced, if so, prepare to replace the 921 // forward reference. 922 if (!Name.empty()) { 923 GVal = M->getNamedValue(Name); 924 if (GVal) { 925 if (!ForwardRefVals.erase(Name)) 926 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 927 } 928 } else { 929 auto I = ForwardRefValIDs.find(NumberedVals.size()); 930 if (I != ForwardRefValIDs.end()) { 931 GVal = I->second.first; 932 ForwardRefValIDs.erase(I); 933 } 934 } 935 936 // Okay, create the alias but do not insert it into the module yet. 937 std::unique_ptr<GlobalIndirectSymbol> GA; 938 if (IsAlias) 939 GA.reset(GlobalAlias::create(Ty, AddrSpace, 940 (GlobalValue::LinkageTypes)Linkage, Name, 941 Aliasee, /*Parent*/ nullptr)); 942 else 943 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 944 (GlobalValue::LinkageTypes)Linkage, Name, 945 Aliasee, /*Parent*/ nullptr)); 946 GA->setThreadLocalMode(TLM); 947 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 948 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 949 GA->setUnnamedAddr(UnnamedAddr); 950 maybeSetDSOLocal(DSOLocal, *GA); 951 952 if (Name.empty()) 953 NumberedVals.push_back(GA.get()); 954 955 if (GVal) { 956 // Verify that types agree. 957 if (GVal->getType() != GA->getType()) 958 return Error( 959 ExplicitTypeLoc, 960 "forward reference and definition of alias have different types"); 961 962 // If they agree, just RAUW the old value with the alias and remove the 963 // forward ref info. 964 GVal->replaceAllUsesWith(GA.get()); 965 GVal->eraseFromParent(); 966 } 967 968 // Insert into the module, we know its name won't collide now. 969 if (IsAlias) 970 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 971 else 972 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 973 assert(GA->getName() == Name && "Should not be a name conflict!"); 974 975 // The module owns this now 976 GA.release(); 977 978 return false; 979 } 980 981 /// ParseGlobal 982 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 983 /// OptionalVisibility OptionalDLLStorageClass 984 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 985 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 986 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 987 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 988 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 989 /// Const OptionalAttrs 990 /// 991 /// Everything up to and including OptionalUnnamedAddr has been parsed 992 /// already. 993 /// 994 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 995 unsigned Linkage, bool HasLinkage, 996 unsigned Visibility, unsigned DLLStorageClass, 997 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 998 GlobalVariable::UnnamedAddr UnnamedAddr) { 999 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 1000 return Error(NameLoc, 1001 "symbol with local linkage must have default visibility"); 1002 1003 unsigned AddrSpace; 1004 bool IsConstant, IsExternallyInitialized; 1005 LocTy IsExternallyInitializedLoc; 1006 LocTy TyLoc; 1007 1008 Type *Ty = nullptr; 1009 if (ParseOptionalAddrSpace(AddrSpace) || 1010 ParseOptionalToken(lltok::kw_externally_initialized, 1011 IsExternallyInitialized, 1012 &IsExternallyInitializedLoc) || 1013 ParseGlobalType(IsConstant) || 1014 ParseType(Ty, TyLoc)) 1015 return true; 1016 1017 // If the linkage is specified and is external, then no initializer is 1018 // present. 1019 Constant *Init = nullptr; 1020 if (!HasLinkage || 1021 !GlobalValue::isValidDeclarationLinkage( 1022 (GlobalValue::LinkageTypes)Linkage)) { 1023 if (ParseGlobalValue(Ty, Init)) 1024 return true; 1025 } 1026 1027 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 1028 return Error(TyLoc, "invalid type for global variable"); 1029 1030 GlobalValue *GVal = nullptr; 1031 1032 // See if the global was forward referenced, if so, use the global. 1033 if (!Name.empty()) { 1034 GVal = M->getNamedValue(Name); 1035 if (GVal) { 1036 if (!ForwardRefVals.erase(Name)) 1037 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 1038 } 1039 } else { 1040 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1041 if (I != ForwardRefValIDs.end()) { 1042 GVal = I->second.first; 1043 ForwardRefValIDs.erase(I); 1044 } 1045 } 1046 1047 GlobalVariable *GV; 1048 if (!GVal) { 1049 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 1050 Name, nullptr, GlobalVariable::NotThreadLocal, 1051 AddrSpace); 1052 } else { 1053 if (GVal->getValueType() != Ty) 1054 return Error(TyLoc, 1055 "forward reference and definition of global have different types"); 1056 1057 GV = cast<GlobalVariable>(GVal); 1058 1059 // Move the forward-reference to the correct spot in the module. 1060 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 1061 } 1062 1063 if (Name.empty()) 1064 NumberedVals.push_back(GV); 1065 1066 // Set the parsed properties on the global. 1067 if (Init) 1068 GV->setInitializer(Init); 1069 GV->setConstant(IsConstant); 1070 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 1071 maybeSetDSOLocal(DSOLocal, *GV); 1072 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1073 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1074 GV->setExternallyInitialized(IsExternallyInitialized); 1075 GV->setThreadLocalMode(TLM); 1076 GV->setUnnamedAddr(UnnamedAddr); 1077 1078 // Parse attributes on the global. 1079 while (Lex.getKind() == lltok::comma) { 1080 Lex.Lex(); 1081 1082 if (Lex.getKind() == lltok::kw_section) { 1083 Lex.Lex(); 1084 GV->setSection(Lex.getStrVal()); 1085 if (ParseToken(lltok::StringConstant, "expected global section string")) 1086 return true; 1087 } else if (Lex.getKind() == lltok::kw_align) { 1088 unsigned Alignment; 1089 if (ParseOptionalAlignment(Alignment)) return true; 1090 GV->setAlignment(Alignment); 1091 } else if (Lex.getKind() == lltok::MetadataVar) { 1092 if (ParseGlobalObjectMetadataAttachment(*GV)) 1093 return true; 1094 } else { 1095 Comdat *C; 1096 if (parseOptionalComdat(Name, C)) 1097 return true; 1098 if (C) 1099 GV->setComdat(C); 1100 else 1101 return TokError("unknown global variable property!"); 1102 } 1103 } 1104 1105 AttrBuilder Attrs; 1106 LocTy BuiltinLoc; 1107 std::vector<unsigned> FwdRefAttrGrps; 1108 if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 1109 return true; 1110 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 1111 GV->setAttributes(AttributeSet::get(Context, Attrs)); 1112 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 1113 } 1114 1115 return false; 1116 } 1117 1118 /// ParseUnnamedAttrGrp 1119 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 1120 bool LLParser::ParseUnnamedAttrGrp() { 1121 assert(Lex.getKind() == lltok::kw_attributes); 1122 LocTy AttrGrpLoc = Lex.getLoc(); 1123 Lex.Lex(); 1124 1125 if (Lex.getKind() != lltok::AttrGrpID) 1126 return TokError("expected attribute group id"); 1127 1128 unsigned VarID = Lex.getUIntVal(); 1129 std::vector<unsigned> unused; 1130 LocTy BuiltinLoc; 1131 Lex.Lex(); 1132 1133 if (ParseToken(lltok::equal, "expected '=' here") || 1134 ParseToken(lltok::lbrace, "expected '{' here") || 1135 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 1136 BuiltinLoc) || 1137 ParseToken(lltok::rbrace, "expected end of attribute group")) 1138 return true; 1139 1140 if (!NumberedAttrBuilders[VarID].hasAttributes()) 1141 return Error(AttrGrpLoc, "attribute group has no attributes"); 1142 1143 return false; 1144 } 1145 1146 /// ParseFnAttributeValuePairs 1147 /// ::= <attr> | <attr> '=' <value> 1148 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B, 1149 std::vector<unsigned> &FwdRefAttrGrps, 1150 bool inAttrGrp, LocTy &BuiltinLoc) { 1151 bool HaveError = false; 1152 1153 B.clear(); 1154 1155 while (true) { 1156 lltok::Kind Token = Lex.getKind(); 1157 if (Token == lltok::kw_builtin) 1158 BuiltinLoc = Lex.getLoc(); 1159 switch (Token) { 1160 default: 1161 if (!inAttrGrp) return HaveError; 1162 return Error(Lex.getLoc(), "unterminated attribute group"); 1163 case lltok::rbrace: 1164 // Finished. 1165 return false; 1166 1167 case lltok::AttrGrpID: { 1168 // Allow a function to reference an attribute group: 1169 // 1170 // define void @foo() #1 { ... } 1171 if (inAttrGrp) 1172 HaveError |= 1173 Error(Lex.getLoc(), 1174 "cannot have an attribute group reference in an attribute group"); 1175 1176 unsigned AttrGrpNum = Lex.getUIntVal(); 1177 if (inAttrGrp) break; 1178 1179 // Save the reference to the attribute group. We'll fill it in later. 1180 FwdRefAttrGrps.push_back(AttrGrpNum); 1181 break; 1182 } 1183 // Target-dependent attributes: 1184 case lltok::StringConstant: { 1185 if (ParseStringAttribute(B)) 1186 return true; 1187 continue; 1188 } 1189 1190 // Target-independent attributes: 1191 case lltok::kw_align: { 1192 // As a hack, we allow function alignment to be initially parsed as an 1193 // attribute on a function declaration/definition or added to an attribute 1194 // group and later moved to the alignment field. 1195 unsigned Alignment; 1196 if (inAttrGrp) { 1197 Lex.Lex(); 1198 if (ParseToken(lltok::equal, "expected '=' here") || 1199 ParseUInt32(Alignment)) 1200 return true; 1201 } else { 1202 if (ParseOptionalAlignment(Alignment)) 1203 return true; 1204 } 1205 B.addAlignmentAttr(Alignment); 1206 continue; 1207 } 1208 case lltok::kw_alignstack: { 1209 unsigned Alignment; 1210 if (inAttrGrp) { 1211 Lex.Lex(); 1212 if (ParseToken(lltok::equal, "expected '=' here") || 1213 ParseUInt32(Alignment)) 1214 return true; 1215 } else { 1216 if (ParseOptionalStackAlignment(Alignment)) 1217 return true; 1218 } 1219 B.addStackAlignmentAttr(Alignment); 1220 continue; 1221 } 1222 case lltok::kw_allocsize: { 1223 unsigned ElemSizeArg; 1224 Optional<unsigned> NumElemsArg; 1225 // inAttrGrp doesn't matter; we only support allocsize(a[, b]) 1226 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1227 return true; 1228 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1229 continue; 1230 } 1231 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 1232 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 1233 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 1234 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 1235 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 1236 case lltok::kw_inaccessiblememonly: 1237 B.addAttribute(Attribute::InaccessibleMemOnly); break; 1238 case lltok::kw_inaccessiblemem_or_argmemonly: 1239 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break; 1240 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 1241 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 1242 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 1243 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 1244 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 1245 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 1246 case lltok::kw_noimplicitfloat: 1247 B.addAttribute(Attribute::NoImplicitFloat); break; 1248 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1249 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1250 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1251 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1252 case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break; 1253 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1254 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1255 case lltok::kw_optforfuzzing: 1256 B.addAttribute(Attribute::OptForFuzzing); break; 1257 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1258 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1259 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1260 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1261 case lltok::kw_returns_twice: 1262 B.addAttribute(Attribute::ReturnsTwice); break; 1263 case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break; 1264 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1265 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1266 case lltok::kw_sspstrong: 1267 B.addAttribute(Attribute::StackProtectStrong); break; 1268 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1269 case lltok::kw_shadowcallstack: 1270 B.addAttribute(Attribute::ShadowCallStack); break; 1271 case lltok::kw_sanitize_address: 1272 B.addAttribute(Attribute::SanitizeAddress); break; 1273 case lltok::kw_sanitize_hwaddress: 1274 B.addAttribute(Attribute::SanitizeHWAddress); break; 1275 case lltok::kw_sanitize_thread: 1276 B.addAttribute(Attribute::SanitizeThread); break; 1277 case lltok::kw_sanitize_memory: 1278 B.addAttribute(Attribute::SanitizeMemory); break; 1279 case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break; 1280 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1281 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1282 1283 // Error handling. 1284 case lltok::kw_inreg: 1285 case lltok::kw_signext: 1286 case lltok::kw_zeroext: 1287 HaveError |= 1288 Error(Lex.getLoc(), 1289 "invalid use of attribute on a function"); 1290 break; 1291 case lltok::kw_byval: 1292 case lltok::kw_dereferenceable: 1293 case lltok::kw_dereferenceable_or_null: 1294 case lltok::kw_inalloca: 1295 case lltok::kw_nest: 1296 case lltok::kw_noalias: 1297 case lltok::kw_nocapture: 1298 case lltok::kw_nonnull: 1299 case lltok::kw_returned: 1300 case lltok::kw_sret: 1301 case lltok::kw_swifterror: 1302 case lltok::kw_swiftself: 1303 HaveError |= 1304 Error(Lex.getLoc(), 1305 "invalid use of parameter-only attribute on a function"); 1306 break; 1307 } 1308 1309 Lex.Lex(); 1310 } 1311 } 1312 1313 //===----------------------------------------------------------------------===// 1314 // GlobalValue Reference/Resolution Routines. 1315 //===----------------------------------------------------------------------===// 1316 1317 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1318 const std::string &Name) { 1319 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1320 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M); 1321 else 1322 return new GlobalVariable(*M, PTy->getElementType(), false, 1323 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1324 nullptr, GlobalVariable::NotThreadLocal, 1325 PTy->getAddressSpace()); 1326 } 1327 1328 /// GetGlobalVal - Get a value with the specified name or ID, creating a 1329 /// forward reference record if needed. This can return null if the value 1330 /// exists but does not have the right type. 1331 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 1332 LocTy Loc) { 1333 PointerType *PTy = dyn_cast<PointerType>(Ty); 1334 if (!PTy) { 1335 Error(Loc, "global variable reference must have pointer type"); 1336 return nullptr; 1337 } 1338 1339 // Look this name up in the normal function symbol table. 1340 GlobalValue *Val = 1341 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1342 1343 // If this is a forward reference for the value, see if we already created a 1344 // forward ref record. 1345 if (!Val) { 1346 auto I = ForwardRefVals.find(Name); 1347 if (I != ForwardRefVals.end()) 1348 Val = I->second.first; 1349 } 1350 1351 // If we have the value in the symbol table or fwd-ref table, return it. 1352 if (Val) { 1353 if (Val->getType() == Ty) return Val; 1354 Error(Loc, "'@" + Name + "' defined with type '" + 1355 getTypeString(Val->getType()) + "'"); 1356 return nullptr; 1357 } 1358 1359 // Otherwise, create a new forward reference for this value and remember it. 1360 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1361 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1362 return FwdVal; 1363 } 1364 1365 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { 1366 PointerType *PTy = dyn_cast<PointerType>(Ty); 1367 if (!PTy) { 1368 Error(Loc, "global variable reference must have pointer type"); 1369 return nullptr; 1370 } 1371 1372 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1373 1374 // If this is a forward reference for the value, see if we already created a 1375 // forward ref record. 1376 if (!Val) { 1377 auto I = ForwardRefValIDs.find(ID); 1378 if (I != ForwardRefValIDs.end()) 1379 Val = I->second.first; 1380 } 1381 1382 // If we have the value in the symbol table or fwd-ref table, return it. 1383 if (Val) { 1384 if (Val->getType() == Ty) return Val; 1385 Error(Loc, "'@" + Twine(ID) + "' defined with type '" + 1386 getTypeString(Val->getType()) + "'"); 1387 return nullptr; 1388 } 1389 1390 // Otherwise, create a new forward reference for this value and remember it. 1391 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1392 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1393 return FwdVal; 1394 } 1395 1396 //===----------------------------------------------------------------------===// 1397 // Comdat Reference/Resolution Routines. 1398 //===----------------------------------------------------------------------===// 1399 1400 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1401 // Look this name up in the comdat symbol table. 1402 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1403 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1404 if (I != ComdatSymTab.end()) 1405 return &I->second; 1406 1407 // Otherwise, create a new forward reference for this value and remember it. 1408 Comdat *C = M->getOrInsertComdat(Name); 1409 ForwardRefComdats[Name] = Loc; 1410 return C; 1411 } 1412 1413 //===----------------------------------------------------------------------===// 1414 // Helper Routines. 1415 //===----------------------------------------------------------------------===// 1416 1417 /// ParseToken - If the current token has the specified kind, eat it and return 1418 /// success. Otherwise, emit the specified error and return failure. 1419 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 1420 if (Lex.getKind() != T) 1421 return TokError(ErrMsg); 1422 Lex.Lex(); 1423 return false; 1424 } 1425 1426 /// ParseStringConstant 1427 /// ::= StringConstant 1428 bool LLParser::ParseStringConstant(std::string &Result) { 1429 if (Lex.getKind() != lltok::StringConstant) 1430 return TokError("expected string constant"); 1431 Result = Lex.getStrVal(); 1432 Lex.Lex(); 1433 return false; 1434 } 1435 1436 /// ParseUInt32 1437 /// ::= uint32 1438 bool LLParser::ParseUInt32(uint32_t &Val) { 1439 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1440 return TokError("expected integer"); 1441 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1442 if (Val64 != unsigned(Val64)) 1443 return TokError("expected 32-bit integer (too large)"); 1444 Val = Val64; 1445 Lex.Lex(); 1446 return false; 1447 } 1448 1449 /// ParseUInt64 1450 /// ::= uint64 1451 bool LLParser::ParseUInt64(uint64_t &Val) { 1452 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1453 return TokError("expected integer"); 1454 Val = Lex.getAPSIntVal().getLimitedValue(); 1455 Lex.Lex(); 1456 return false; 1457 } 1458 1459 /// ParseTLSModel 1460 /// := 'localdynamic' 1461 /// := 'initialexec' 1462 /// := 'localexec' 1463 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1464 switch (Lex.getKind()) { 1465 default: 1466 return TokError("expected localdynamic, initialexec or localexec"); 1467 case lltok::kw_localdynamic: 1468 TLM = GlobalVariable::LocalDynamicTLSModel; 1469 break; 1470 case lltok::kw_initialexec: 1471 TLM = GlobalVariable::InitialExecTLSModel; 1472 break; 1473 case lltok::kw_localexec: 1474 TLM = GlobalVariable::LocalExecTLSModel; 1475 break; 1476 } 1477 1478 Lex.Lex(); 1479 return false; 1480 } 1481 1482 /// ParseOptionalThreadLocal 1483 /// := /*empty*/ 1484 /// := 'thread_local' 1485 /// := 'thread_local' '(' tlsmodel ')' 1486 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1487 TLM = GlobalVariable::NotThreadLocal; 1488 if (!EatIfPresent(lltok::kw_thread_local)) 1489 return false; 1490 1491 TLM = GlobalVariable::GeneralDynamicTLSModel; 1492 if (Lex.getKind() == lltok::lparen) { 1493 Lex.Lex(); 1494 return ParseTLSModel(TLM) || 1495 ParseToken(lltok::rparen, "expected ')' after thread local model"); 1496 } 1497 return false; 1498 } 1499 1500 /// ParseOptionalAddrSpace 1501 /// := /*empty*/ 1502 /// := 'addrspace' '(' uint32 ')' 1503 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) { 1504 AddrSpace = 0; 1505 if (!EatIfPresent(lltok::kw_addrspace)) 1506 return false; 1507 return ParseToken(lltok::lparen, "expected '(' in address space") || 1508 ParseUInt32(AddrSpace) || 1509 ParseToken(lltok::rparen, "expected ')' in address space"); 1510 } 1511 1512 /// ParseStringAttribute 1513 /// := StringConstant 1514 /// := StringConstant '=' StringConstant 1515 bool LLParser::ParseStringAttribute(AttrBuilder &B) { 1516 std::string Attr = Lex.getStrVal(); 1517 Lex.Lex(); 1518 std::string Val; 1519 if (EatIfPresent(lltok::equal) && ParseStringConstant(Val)) 1520 return true; 1521 B.addAttribute(Attr, Val); 1522 return false; 1523 } 1524 1525 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes. 1526 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) { 1527 bool HaveError = false; 1528 1529 B.clear(); 1530 1531 while (true) { 1532 lltok::Kind Token = Lex.getKind(); 1533 switch (Token) { 1534 default: // End of attributes. 1535 return HaveError; 1536 case lltok::StringConstant: { 1537 if (ParseStringAttribute(B)) 1538 return true; 1539 continue; 1540 } 1541 case lltok::kw_align: { 1542 unsigned Alignment; 1543 if (ParseOptionalAlignment(Alignment)) 1544 return true; 1545 B.addAlignmentAttr(Alignment); 1546 continue; 1547 } 1548 case lltok::kw_byval: B.addAttribute(Attribute::ByVal); break; 1549 case lltok::kw_dereferenceable: { 1550 uint64_t Bytes; 1551 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1552 return true; 1553 B.addDereferenceableAttr(Bytes); 1554 continue; 1555 } 1556 case lltok::kw_dereferenceable_or_null: { 1557 uint64_t Bytes; 1558 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1559 return true; 1560 B.addDereferenceableOrNullAttr(Bytes); 1561 continue; 1562 } 1563 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break; 1564 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1565 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1566 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1567 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1568 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1569 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1570 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1571 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1572 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1573 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break; 1574 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break; 1575 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break; 1576 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1577 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1578 1579 case lltok::kw_alignstack: 1580 case lltok::kw_alwaysinline: 1581 case lltok::kw_argmemonly: 1582 case lltok::kw_builtin: 1583 case lltok::kw_inlinehint: 1584 case lltok::kw_jumptable: 1585 case lltok::kw_minsize: 1586 case lltok::kw_naked: 1587 case lltok::kw_nobuiltin: 1588 case lltok::kw_noduplicate: 1589 case lltok::kw_noimplicitfloat: 1590 case lltok::kw_noinline: 1591 case lltok::kw_nonlazybind: 1592 case lltok::kw_noredzone: 1593 case lltok::kw_noreturn: 1594 case lltok::kw_nocf_check: 1595 case lltok::kw_nounwind: 1596 case lltok::kw_optforfuzzing: 1597 case lltok::kw_optnone: 1598 case lltok::kw_optsize: 1599 case lltok::kw_returns_twice: 1600 case lltok::kw_sanitize_address: 1601 case lltok::kw_sanitize_hwaddress: 1602 case lltok::kw_sanitize_memory: 1603 case lltok::kw_sanitize_thread: 1604 case lltok::kw_ssp: 1605 case lltok::kw_sspreq: 1606 case lltok::kw_sspstrong: 1607 case lltok::kw_safestack: 1608 case lltok::kw_shadowcallstack: 1609 case lltok::kw_strictfp: 1610 case lltok::kw_uwtable: 1611 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1612 break; 1613 } 1614 1615 Lex.Lex(); 1616 } 1617 } 1618 1619 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes. 1620 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) { 1621 bool HaveError = false; 1622 1623 B.clear(); 1624 1625 while (true) { 1626 lltok::Kind Token = Lex.getKind(); 1627 switch (Token) { 1628 default: // End of attributes. 1629 return HaveError; 1630 case lltok::StringConstant: { 1631 if (ParseStringAttribute(B)) 1632 return true; 1633 continue; 1634 } 1635 case lltok::kw_dereferenceable: { 1636 uint64_t Bytes; 1637 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1638 return true; 1639 B.addDereferenceableAttr(Bytes); 1640 continue; 1641 } 1642 case lltok::kw_dereferenceable_or_null: { 1643 uint64_t Bytes; 1644 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1645 return true; 1646 B.addDereferenceableOrNullAttr(Bytes); 1647 continue; 1648 } 1649 case lltok::kw_align: { 1650 unsigned Alignment; 1651 if (ParseOptionalAlignment(Alignment)) 1652 return true; 1653 B.addAlignmentAttr(Alignment); 1654 continue; 1655 } 1656 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1657 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1658 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1659 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1660 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1661 1662 // Error handling. 1663 case lltok::kw_byval: 1664 case lltok::kw_inalloca: 1665 case lltok::kw_nest: 1666 case lltok::kw_nocapture: 1667 case lltok::kw_returned: 1668 case lltok::kw_sret: 1669 case lltok::kw_swifterror: 1670 case lltok::kw_swiftself: 1671 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1672 break; 1673 1674 case lltok::kw_alignstack: 1675 case lltok::kw_alwaysinline: 1676 case lltok::kw_argmemonly: 1677 case lltok::kw_builtin: 1678 case lltok::kw_cold: 1679 case lltok::kw_inlinehint: 1680 case lltok::kw_jumptable: 1681 case lltok::kw_minsize: 1682 case lltok::kw_naked: 1683 case lltok::kw_nobuiltin: 1684 case lltok::kw_noduplicate: 1685 case lltok::kw_noimplicitfloat: 1686 case lltok::kw_noinline: 1687 case lltok::kw_nonlazybind: 1688 case lltok::kw_noredzone: 1689 case lltok::kw_noreturn: 1690 case lltok::kw_nocf_check: 1691 case lltok::kw_nounwind: 1692 case lltok::kw_optforfuzzing: 1693 case lltok::kw_optnone: 1694 case lltok::kw_optsize: 1695 case lltok::kw_returns_twice: 1696 case lltok::kw_sanitize_address: 1697 case lltok::kw_sanitize_hwaddress: 1698 case lltok::kw_sanitize_memory: 1699 case lltok::kw_sanitize_thread: 1700 case lltok::kw_ssp: 1701 case lltok::kw_sspreq: 1702 case lltok::kw_sspstrong: 1703 case lltok::kw_safestack: 1704 case lltok::kw_shadowcallstack: 1705 case lltok::kw_strictfp: 1706 case lltok::kw_uwtable: 1707 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1708 break; 1709 1710 case lltok::kw_readnone: 1711 case lltok::kw_readonly: 1712 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type"); 1713 } 1714 1715 Lex.Lex(); 1716 } 1717 } 1718 1719 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1720 HasLinkage = true; 1721 switch (Kind) { 1722 default: 1723 HasLinkage = false; 1724 return GlobalValue::ExternalLinkage; 1725 case lltok::kw_private: 1726 return GlobalValue::PrivateLinkage; 1727 case lltok::kw_internal: 1728 return GlobalValue::InternalLinkage; 1729 case lltok::kw_weak: 1730 return GlobalValue::WeakAnyLinkage; 1731 case lltok::kw_weak_odr: 1732 return GlobalValue::WeakODRLinkage; 1733 case lltok::kw_linkonce: 1734 return GlobalValue::LinkOnceAnyLinkage; 1735 case lltok::kw_linkonce_odr: 1736 return GlobalValue::LinkOnceODRLinkage; 1737 case lltok::kw_available_externally: 1738 return GlobalValue::AvailableExternallyLinkage; 1739 case lltok::kw_appending: 1740 return GlobalValue::AppendingLinkage; 1741 case lltok::kw_common: 1742 return GlobalValue::CommonLinkage; 1743 case lltok::kw_extern_weak: 1744 return GlobalValue::ExternalWeakLinkage; 1745 case lltok::kw_external: 1746 return GlobalValue::ExternalLinkage; 1747 } 1748 } 1749 1750 /// ParseOptionalLinkage 1751 /// ::= /*empty*/ 1752 /// ::= 'private' 1753 /// ::= 'internal' 1754 /// ::= 'weak' 1755 /// ::= 'weak_odr' 1756 /// ::= 'linkonce' 1757 /// ::= 'linkonce_odr' 1758 /// ::= 'available_externally' 1759 /// ::= 'appending' 1760 /// ::= 'common' 1761 /// ::= 'extern_weak' 1762 /// ::= 'external' 1763 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1764 unsigned &Visibility, 1765 unsigned &DLLStorageClass, 1766 bool &DSOLocal) { 1767 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1768 if (HasLinkage) 1769 Lex.Lex(); 1770 ParseOptionalDSOLocal(DSOLocal); 1771 ParseOptionalVisibility(Visibility); 1772 ParseOptionalDLLStorageClass(DLLStorageClass); 1773 1774 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 1775 return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 1776 } 1777 1778 return false; 1779 } 1780 1781 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) { 1782 switch (Lex.getKind()) { 1783 default: 1784 DSOLocal = false; 1785 break; 1786 case lltok::kw_dso_local: 1787 DSOLocal = true; 1788 Lex.Lex(); 1789 break; 1790 case lltok::kw_dso_preemptable: 1791 DSOLocal = false; 1792 Lex.Lex(); 1793 break; 1794 } 1795 } 1796 1797 /// ParseOptionalVisibility 1798 /// ::= /*empty*/ 1799 /// ::= 'default' 1800 /// ::= 'hidden' 1801 /// ::= 'protected' 1802 /// 1803 void LLParser::ParseOptionalVisibility(unsigned &Res) { 1804 switch (Lex.getKind()) { 1805 default: 1806 Res = GlobalValue::DefaultVisibility; 1807 return; 1808 case lltok::kw_default: 1809 Res = GlobalValue::DefaultVisibility; 1810 break; 1811 case lltok::kw_hidden: 1812 Res = GlobalValue::HiddenVisibility; 1813 break; 1814 case lltok::kw_protected: 1815 Res = GlobalValue::ProtectedVisibility; 1816 break; 1817 } 1818 Lex.Lex(); 1819 } 1820 1821 /// ParseOptionalDLLStorageClass 1822 /// ::= /*empty*/ 1823 /// ::= 'dllimport' 1824 /// ::= 'dllexport' 1825 /// 1826 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) { 1827 switch (Lex.getKind()) { 1828 default: 1829 Res = GlobalValue::DefaultStorageClass; 1830 return; 1831 case lltok::kw_dllimport: 1832 Res = GlobalValue::DLLImportStorageClass; 1833 break; 1834 case lltok::kw_dllexport: 1835 Res = GlobalValue::DLLExportStorageClass; 1836 break; 1837 } 1838 Lex.Lex(); 1839 } 1840 1841 /// ParseOptionalCallingConv 1842 /// ::= /*empty*/ 1843 /// ::= 'ccc' 1844 /// ::= 'fastcc' 1845 /// ::= 'intel_ocl_bicc' 1846 /// ::= 'coldcc' 1847 /// ::= 'x86_stdcallcc' 1848 /// ::= 'x86_fastcallcc' 1849 /// ::= 'x86_thiscallcc' 1850 /// ::= 'x86_vectorcallcc' 1851 /// ::= 'arm_apcscc' 1852 /// ::= 'arm_aapcscc' 1853 /// ::= 'arm_aapcs_vfpcc' 1854 /// ::= 'msp430_intrcc' 1855 /// ::= 'avr_intrcc' 1856 /// ::= 'avr_signalcc' 1857 /// ::= 'ptx_kernel' 1858 /// ::= 'ptx_device' 1859 /// ::= 'spir_func' 1860 /// ::= 'spir_kernel' 1861 /// ::= 'x86_64_sysvcc' 1862 /// ::= 'win64cc' 1863 /// ::= 'webkit_jscc' 1864 /// ::= 'anyregcc' 1865 /// ::= 'preserve_mostcc' 1866 /// ::= 'preserve_allcc' 1867 /// ::= 'ghccc' 1868 /// ::= 'swiftcc' 1869 /// ::= 'x86_intrcc' 1870 /// ::= 'hhvmcc' 1871 /// ::= 'hhvm_ccc' 1872 /// ::= 'cxx_fast_tlscc' 1873 /// ::= 'amdgpu_vs' 1874 /// ::= 'amdgpu_ls' 1875 /// ::= 'amdgpu_hs' 1876 /// ::= 'amdgpu_es' 1877 /// ::= 'amdgpu_gs' 1878 /// ::= 'amdgpu_ps' 1879 /// ::= 'amdgpu_cs' 1880 /// ::= 'amdgpu_kernel' 1881 /// ::= 'cc' UINT 1882 /// 1883 bool LLParser::ParseOptionalCallingConv(unsigned &CC) { 1884 switch (Lex.getKind()) { 1885 default: CC = CallingConv::C; return false; 1886 case lltok::kw_ccc: CC = CallingConv::C; break; 1887 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1888 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1889 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1890 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1891 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 1892 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1893 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1894 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1895 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1896 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1897 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1898 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 1899 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 1900 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1901 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1902 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1903 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1904 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1905 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1906 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 1907 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1908 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1909 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1910 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1911 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1912 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 1913 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 1914 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 1915 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 1916 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 1917 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 1918 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 1919 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 1920 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 1921 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 1922 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 1923 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 1924 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 1925 case lltok::kw_cc: { 1926 Lex.Lex(); 1927 return ParseUInt32(CC); 1928 } 1929 } 1930 1931 Lex.Lex(); 1932 return false; 1933 } 1934 1935 /// ParseMetadataAttachment 1936 /// ::= !dbg !42 1937 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 1938 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 1939 1940 std::string Name = Lex.getStrVal(); 1941 Kind = M->getMDKindID(Name); 1942 Lex.Lex(); 1943 1944 return ParseMDNode(MD); 1945 } 1946 1947 /// ParseInstructionMetadata 1948 /// ::= !dbg !42 (',' !dbg !57)* 1949 bool LLParser::ParseInstructionMetadata(Instruction &Inst) { 1950 do { 1951 if (Lex.getKind() != lltok::MetadataVar) 1952 return TokError("expected metadata after comma"); 1953 1954 unsigned MDK; 1955 MDNode *N; 1956 if (ParseMetadataAttachment(MDK, N)) 1957 return true; 1958 1959 Inst.setMetadata(MDK, N); 1960 if (MDK == LLVMContext::MD_tbaa) 1961 InstsWithTBAATag.push_back(&Inst); 1962 1963 // If this is the end of the list, we're done. 1964 } while (EatIfPresent(lltok::comma)); 1965 return false; 1966 } 1967 1968 /// ParseGlobalObjectMetadataAttachment 1969 /// ::= !dbg !57 1970 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) { 1971 unsigned MDK; 1972 MDNode *N; 1973 if (ParseMetadataAttachment(MDK, N)) 1974 return true; 1975 1976 GO.addMetadata(MDK, *N); 1977 return false; 1978 } 1979 1980 /// ParseOptionalFunctionMetadata 1981 /// ::= (!dbg !57)* 1982 bool LLParser::ParseOptionalFunctionMetadata(Function &F) { 1983 while (Lex.getKind() == lltok::MetadataVar) 1984 if (ParseGlobalObjectMetadataAttachment(F)) 1985 return true; 1986 return false; 1987 } 1988 1989 /// ParseOptionalAlignment 1990 /// ::= /* empty */ 1991 /// ::= 'align' 4 1992 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { 1993 Alignment = 0; 1994 if (!EatIfPresent(lltok::kw_align)) 1995 return false; 1996 LocTy AlignLoc = Lex.getLoc(); 1997 if (ParseUInt32(Alignment)) return true; 1998 if (!isPowerOf2_32(Alignment)) 1999 return Error(AlignLoc, "alignment is not a power of two"); 2000 if (Alignment > Value::MaximumAlignment) 2001 return Error(AlignLoc, "huge alignments are not supported yet"); 2002 return false; 2003 } 2004 2005 /// ParseOptionalDerefAttrBytes 2006 /// ::= /* empty */ 2007 /// ::= AttrKind '(' 4 ')' 2008 /// 2009 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 2010 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind, 2011 uint64_t &Bytes) { 2012 assert((AttrKind == lltok::kw_dereferenceable || 2013 AttrKind == lltok::kw_dereferenceable_or_null) && 2014 "contract!"); 2015 2016 Bytes = 0; 2017 if (!EatIfPresent(AttrKind)) 2018 return false; 2019 LocTy ParenLoc = Lex.getLoc(); 2020 if (!EatIfPresent(lltok::lparen)) 2021 return Error(ParenLoc, "expected '('"); 2022 LocTy DerefLoc = Lex.getLoc(); 2023 if (ParseUInt64(Bytes)) return true; 2024 ParenLoc = Lex.getLoc(); 2025 if (!EatIfPresent(lltok::rparen)) 2026 return Error(ParenLoc, "expected ')'"); 2027 if (!Bytes) 2028 return Error(DerefLoc, "dereferenceable bytes must be non-zero"); 2029 return false; 2030 } 2031 2032 /// ParseOptionalCommaAlign 2033 /// ::= 2034 /// ::= ',' align 4 2035 /// 2036 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2037 /// end. 2038 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, 2039 bool &AteExtraComma) { 2040 AteExtraComma = false; 2041 while (EatIfPresent(lltok::comma)) { 2042 // Metadata at the end is an early exit. 2043 if (Lex.getKind() == lltok::MetadataVar) { 2044 AteExtraComma = true; 2045 return false; 2046 } 2047 2048 if (Lex.getKind() != lltok::kw_align) 2049 return Error(Lex.getLoc(), "expected metadata or 'align'"); 2050 2051 if (ParseOptionalAlignment(Alignment)) return true; 2052 } 2053 2054 return false; 2055 } 2056 2057 /// ParseOptionalCommaAddrSpace 2058 /// ::= 2059 /// ::= ',' addrspace(1) 2060 /// 2061 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2062 /// end. 2063 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace, 2064 LocTy &Loc, 2065 bool &AteExtraComma) { 2066 AteExtraComma = false; 2067 while (EatIfPresent(lltok::comma)) { 2068 // Metadata at the end is an early exit. 2069 if (Lex.getKind() == lltok::MetadataVar) { 2070 AteExtraComma = true; 2071 return false; 2072 } 2073 2074 Loc = Lex.getLoc(); 2075 if (Lex.getKind() != lltok::kw_addrspace) 2076 return Error(Lex.getLoc(), "expected metadata or 'addrspace'"); 2077 2078 if (ParseOptionalAddrSpace(AddrSpace)) 2079 return true; 2080 } 2081 2082 return false; 2083 } 2084 2085 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 2086 Optional<unsigned> &HowManyArg) { 2087 Lex.Lex(); 2088 2089 auto StartParen = Lex.getLoc(); 2090 if (!EatIfPresent(lltok::lparen)) 2091 return Error(StartParen, "expected '('"); 2092 2093 if (ParseUInt32(BaseSizeArg)) 2094 return true; 2095 2096 if (EatIfPresent(lltok::comma)) { 2097 auto HowManyAt = Lex.getLoc(); 2098 unsigned HowMany; 2099 if (ParseUInt32(HowMany)) 2100 return true; 2101 if (HowMany == BaseSizeArg) 2102 return Error(HowManyAt, 2103 "'allocsize' indices can't refer to the same parameter"); 2104 HowManyArg = HowMany; 2105 } else 2106 HowManyArg = None; 2107 2108 auto EndParen = Lex.getLoc(); 2109 if (!EatIfPresent(lltok::rparen)) 2110 return Error(EndParen, "expected ')'"); 2111 return false; 2112 } 2113 2114 /// ParseScopeAndOrdering 2115 /// if isAtomic: ::= SyncScope? AtomicOrdering 2116 /// else: ::= 2117 /// 2118 /// This sets Scope and Ordering to the parsed values. 2119 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID, 2120 AtomicOrdering &Ordering) { 2121 if (!isAtomic) 2122 return false; 2123 2124 return ParseScope(SSID) || ParseOrdering(Ordering); 2125 } 2126 2127 /// ParseScope 2128 /// ::= syncscope("singlethread" | "<target scope>")? 2129 /// 2130 /// This sets synchronization scope ID to the ID of the parsed value. 2131 bool LLParser::ParseScope(SyncScope::ID &SSID) { 2132 SSID = SyncScope::System; 2133 if (EatIfPresent(lltok::kw_syncscope)) { 2134 auto StartParenAt = Lex.getLoc(); 2135 if (!EatIfPresent(lltok::lparen)) 2136 return Error(StartParenAt, "Expected '(' in syncscope"); 2137 2138 std::string SSN; 2139 auto SSNAt = Lex.getLoc(); 2140 if (ParseStringConstant(SSN)) 2141 return Error(SSNAt, "Expected synchronization scope name"); 2142 2143 auto EndParenAt = Lex.getLoc(); 2144 if (!EatIfPresent(lltok::rparen)) 2145 return Error(EndParenAt, "Expected ')' in syncscope"); 2146 2147 SSID = Context.getOrInsertSyncScopeID(SSN); 2148 } 2149 2150 return false; 2151 } 2152 2153 /// ParseOrdering 2154 /// ::= AtomicOrdering 2155 /// 2156 /// This sets Ordering to the parsed value. 2157 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) { 2158 switch (Lex.getKind()) { 2159 default: return TokError("Expected ordering on atomic instruction"); 2160 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2161 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2162 // Not specified yet: 2163 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2164 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2165 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2166 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2167 case lltok::kw_seq_cst: 2168 Ordering = AtomicOrdering::SequentiallyConsistent; 2169 break; 2170 } 2171 Lex.Lex(); 2172 return false; 2173 } 2174 2175 /// ParseOptionalStackAlignment 2176 /// ::= /* empty */ 2177 /// ::= 'alignstack' '(' 4 ')' 2178 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 2179 Alignment = 0; 2180 if (!EatIfPresent(lltok::kw_alignstack)) 2181 return false; 2182 LocTy ParenLoc = Lex.getLoc(); 2183 if (!EatIfPresent(lltok::lparen)) 2184 return Error(ParenLoc, "expected '('"); 2185 LocTy AlignLoc = Lex.getLoc(); 2186 if (ParseUInt32(Alignment)) return true; 2187 ParenLoc = Lex.getLoc(); 2188 if (!EatIfPresent(lltok::rparen)) 2189 return Error(ParenLoc, "expected ')'"); 2190 if (!isPowerOf2_32(Alignment)) 2191 return Error(AlignLoc, "stack alignment is not a power of two"); 2192 return false; 2193 } 2194 2195 /// ParseIndexList - This parses the index list for an insert/extractvalue 2196 /// instruction. This sets AteExtraComma in the case where we eat an extra 2197 /// comma at the end of the line and find that it is followed by metadata. 2198 /// Clients that don't allow metadata can call the version of this function that 2199 /// only takes one argument. 2200 /// 2201 /// ParseIndexList 2202 /// ::= (',' uint32)+ 2203 /// 2204 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 2205 bool &AteExtraComma) { 2206 AteExtraComma = false; 2207 2208 if (Lex.getKind() != lltok::comma) 2209 return TokError("expected ',' as start of index list"); 2210 2211 while (EatIfPresent(lltok::comma)) { 2212 if (Lex.getKind() == lltok::MetadataVar) { 2213 if (Indices.empty()) return TokError("expected index"); 2214 AteExtraComma = true; 2215 return false; 2216 } 2217 unsigned Idx = 0; 2218 if (ParseUInt32(Idx)) return true; 2219 Indices.push_back(Idx); 2220 } 2221 2222 return false; 2223 } 2224 2225 //===----------------------------------------------------------------------===// 2226 // Type Parsing. 2227 //===----------------------------------------------------------------------===// 2228 2229 /// ParseType - Parse a type. 2230 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2231 SMLoc TypeLoc = Lex.getLoc(); 2232 switch (Lex.getKind()) { 2233 default: 2234 return TokError(Msg); 2235 case lltok::Type: 2236 // Type ::= 'float' | 'void' (etc) 2237 Result = Lex.getTyVal(); 2238 Lex.Lex(); 2239 break; 2240 case lltok::lbrace: 2241 // Type ::= StructType 2242 if (ParseAnonStructType(Result, false)) 2243 return true; 2244 break; 2245 case lltok::lsquare: 2246 // Type ::= '[' ... ']' 2247 Lex.Lex(); // eat the lsquare. 2248 if (ParseArrayVectorType(Result, false)) 2249 return true; 2250 break; 2251 case lltok::less: // Either vector or packed struct. 2252 // Type ::= '<' ... '>' 2253 Lex.Lex(); 2254 if (Lex.getKind() == lltok::lbrace) { 2255 if (ParseAnonStructType(Result, true) || 2256 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 2257 return true; 2258 } else if (ParseArrayVectorType(Result, true)) 2259 return true; 2260 break; 2261 case lltok::LocalVar: { 2262 // Type ::= %foo 2263 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2264 2265 // If the type hasn't been defined yet, create a forward definition and 2266 // remember where that forward def'n was seen (in case it never is defined). 2267 if (!Entry.first) { 2268 Entry.first = StructType::create(Context, Lex.getStrVal()); 2269 Entry.second = Lex.getLoc(); 2270 } 2271 Result = Entry.first; 2272 Lex.Lex(); 2273 break; 2274 } 2275 2276 case lltok::LocalVarID: { 2277 // Type ::= %4 2278 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2279 2280 // If the type hasn't been defined yet, create a forward definition and 2281 // remember where that forward def'n was seen (in case it never is defined). 2282 if (!Entry.first) { 2283 Entry.first = StructType::create(Context); 2284 Entry.second = Lex.getLoc(); 2285 } 2286 Result = Entry.first; 2287 Lex.Lex(); 2288 break; 2289 } 2290 } 2291 2292 // Parse the type suffixes. 2293 while (true) { 2294 switch (Lex.getKind()) { 2295 // End of type. 2296 default: 2297 if (!AllowVoid && Result->isVoidTy()) 2298 return Error(TypeLoc, "void type only allowed for function results"); 2299 return false; 2300 2301 // Type ::= Type '*' 2302 case lltok::star: 2303 if (Result->isLabelTy()) 2304 return TokError("basic block pointers are invalid"); 2305 if (Result->isVoidTy()) 2306 return TokError("pointers to void are invalid - use i8* instead"); 2307 if (!PointerType::isValidElementType(Result)) 2308 return TokError("pointer to this type is invalid"); 2309 Result = PointerType::getUnqual(Result); 2310 Lex.Lex(); 2311 break; 2312 2313 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2314 case lltok::kw_addrspace: { 2315 if (Result->isLabelTy()) 2316 return TokError("basic block pointers are invalid"); 2317 if (Result->isVoidTy()) 2318 return TokError("pointers to void are invalid; use i8* instead"); 2319 if (!PointerType::isValidElementType(Result)) 2320 return TokError("pointer to this type is invalid"); 2321 unsigned AddrSpace; 2322 if (ParseOptionalAddrSpace(AddrSpace) || 2323 ParseToken(lltok::star, "expected '*' in address space")) 2324 return true; 2325 2326 Result = PointerType::get(Result, AddrSpace); 2327 break; 2328 } 2329 2330 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2331 case lltok::lparen: 2332 if (ParseFunctionType(Result)) 2333 return true; 2334 break; 2335 } 2336 } 2337 } 2338 2339 /// ParseParameterList 2340 /// ::= '(' ')' 2341 /// ::= '(' Arg (',' Arg)* ')' 2342 /// Arg 2343 /// ::= Type OptionalAttributes Value OptionalAttributes 2344 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2345 PerFunctionState &PFS, bool IsMustTailCall, 2346 bool InVarArgsFunc) { 2347 if (ParseToken(lltok::lparen, "expected '(' in call")) 2348 return true; 2349 2350 while (Lex.getKind() != lltok::rparen) { 2351 // If this isn't the first argument, we need a comma. 2352 if (!ArgList.empty() && 2353 ParseToken(lltok::comma, "expected ',' in argument list")) 2354 return true; 2355 2356 // Parse an ellipsis if this is a musttail call in a variadic function. 2357 if (Lex.getKind() == lltok::dotdotdot) { 2358 const char *Msg = "unexpected ellipsis in argument list for "; 2359 if (!IsMustTailCall) 2360 return TokError(Twine(Msg) + "non-musttail call"); 2361 if (!InVarArgsFunc) 2362 return TokError(Twine(Msg) + "musttail call in non-varargs function"); 2363 Lex.Lex(); // Lex the '...', it is purely for readability. 2364 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2365 } 2366 2367 // Parse the argument. 2368 LocTy ArgLoc; 2369 Type *ArgTy = nullptr; 2370 AttrBuilder ArgAttrs; 2371 Value *V; 2372 if (ParseType(ArgTy, ArgLoc)) 2373 return true; 2374 2375 if (ArgTy->isMetadataTy()) { 2376 if (ParseMetadataAsValue(V, PFS)) 2377 return true; 2378 } else { 2379 // Otherwise, handle normal operands. 2380 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS)) 2381 return true; 2382 } 2383 ArgList.push_back(ParamInfo( 2384 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2385 } 2386 2387 if (IsMustTailCall && InVarArgsFunc) 2388 return TokError("expected '...' at end of argument list for musttail call " 2389 "in varargs function"); 2390 2391 Lex.Lex(); // Lex the ')'. 2392 return false; 2393 } 2394 2395 /// ParseOptionalOperandBundles 2396 /// ::= /*empty*/ 2397 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2398 /// 2399 /// OperandBundle 2400 /// ::= bundle-tag '(' ')' 2401 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2402 /// 2403 /// bundle-tag ::= String Constant 2404 bool LLParser::ParseOptionalOperandBundles( 2405 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2406 LocTy BeginLoc = Lex.getLoc(); 2407 if (!EatIfPresent(lltok::lsquare)) 2408 return false; 2409 2410 while (Lex.getKind() != lltok::rsquare) { 2411 // If this isn't the first operand bundle, we need a comma. 2412 if (!BundleList.empty() && 2413 ParseToken(lltok::comma, "expected ',' in input list")) 2414 return true; 2415 2416 std::string Tag; 2417 if (ParseStringConstant(Tag)) 2418 return true; 2419 2420 if (ParseToken(lltok::lparen, "expected '(' in operand bundle")) 2421 return true; 2422 2423 std::vector<Value *> Inputs; 2424 while (Lex.getKind() != lltok::rparen) { 2425 // If this isn't the first input, we need a comma. 2426 if (!Inputs.empty() && 2427 ParseToken(lltok::comma, "expected ',' in input list")) 2428 return true; 2429 2430 Type *Ty = nullptr; 2431 Value *Input = nullptr; 2432 if (ParseType(Ty) || ParseValue(Ty, Input, PFS)) 2433 return true; 2434 Inputs.push_back(Input); 2435 } 2436 2437 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2438 2439 Lex.Lex(); // Lex the ')'. 2440 } 2441 2442 if (BundleList.empty()) 2443 return Error(BeginLoc, "operand bundle set must not be empty"); 2444 2445 Lex.Lex(); // Lex the ']'. 2446 return false; 2447 } 2448 2449 /// ParseArgumentList - Parse the argument list for a function type or function 2450 /// prototype. 2451 /// ::= '(' ArgTypeListI ')' 2452 /// ArgTypeListI 2453 /// ::= /*empty*/ 2454 /// ::= '...' 2455 /// ::= ArgTypeList ',' '...' 2456 /// ::= ArgType (',' ArgType)* 2457 /// 2458 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2459 bool &isVarArg){ 2460 isVarArg = false; 2461 assert(Lex.getKind() == lltok::lparen); 2462 Lex.Lex(); // eat the (. 2463 2464 if (Lex.getKind() == lltok::rparen) { 2465 // empty 2466 } else if (Lex.getKind() == lltok::dotdotdot) { 2467 isVarArg = true; 2468 Lex.Lex(); 2469 } else { 2470 LocTy TypeLoc = Lex.getLoc(); 2471 Type *ArgTy = nullptr; 2472 AttrBuilder Attrs; 2473 std::string Name; 2474 2475 if (ParseType(ArgTy) || 2476 ParseOptionalParamAttrs(Attrs)) return true; 2477 2478 if (ArgTy->isVoidTy()) 2479 return Error(TypeLoc, "argument can not have void type"); 2480 2481 if (Lex.getKind() == lltok::LocalVar) { 2482 Name = Lex.getStrVal(); 2483 Lex.Lex(); 2484 } 2485 2486 if (!FunctionType::isValidArgumentType(ArgTy)) 2487 return Error(TypeLoc, "invalid type for function argument"); 2488 2489 ArgList.emplace_back(TypeLoc, ArgTy, 2490 AttributeSet::get(ArgTy->getContext(), Attrs), 2491 std::move(Name)); 2492 2493 while (EatIfPresent(lltok::comma)) { 2494 // Handle ... at end of arg list. 2495 if (EatIfPresent(lltok::dotdotdot)) { 2496 isVarArg = true; 2497 break; 2498 } 2499 2500 // Otherwise must be an argument type. 2501 TypeLoc = Lex.getLoc(); 2502 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true; 2503 2504 if (ArgTy->isVoidTy()) 2505 return Error(TypeLoc, "argument can not have void type"); 2506 2507 if (Lex.getKind() == lltok::LocalVar) { 2508 Name = Lex.getStrVal(); 2509 Lex.Lex(); 2510 } else { 2511 Name = ""; 2512 } 2513 2514 if (!ArgTy->isFirstClassType()) 2515 return Error(TypeLoc, "invalid type for function argument"); 2516 2517 ArgList.emplace_back(TypeLoc, ArgTy, 2518 AttributeSet::get(ArgTy->getContext(), Attrs), 2519 std::move(Name)); 2520 } 2521 } 2522 2523 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2524 } 2525 2526 /// ParseFunctionType 2527 /// ::= Type ArgumentList OptionalAttrs 2528 bool LLParser::ParseFunctionType(Type *&Result) { 2529 assert(Lex.getKind() == lltok::lparen); 2530 2531 if (!FunctionType::isValidReturnType(Result)) 2532 return TokError("invalid function return type"); 2533 2534 SmallVector<ArgInfo, 8> ArgList; 2535 bool isVarArg; 2536 if (ParseArgumentList(ArgList, isVarArg)) 2537 return true; 2538 2539 // Reject names on the arguments lists. 2540 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2541 if (!ArgList[i].Name.empty()) 2542 return Error(ArgList[i].Loc, "argument name invalid in function type"); 2543 if (ArgList[i].Attrs.hasAttributes()) 2544 return Error(ArgList[i].Loc, 2545 "argument attributes invalid in function type"); 2546 } 2547 2548 SmallVector<Type*, 16> ArgListTy; 2549 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2550 ArgListTy.push_back(ArgList[i].Ty); 2551 2552 Result = FunctionType::get(Result, ArgListTy, isVarArg); 2553 return false; 2554 } 2555 2556 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 2557 /// other structs. 2558 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 2559 SmallVector<Type*, 8> Elts; 2560 if (ParseStructBody(Elts)) return true; 2561 2562 Result = StructType::get(Context, Elts, Packed); 2563 return false; 2564 } 2565 2566 /// ParseStructDefinition - Parse a struct in a 'type' definition. 2567 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 2568 std::pair<Type*, LocTy> &Entry, 2569 Type *&ResultTy) { 2570 // If the type was already defined, diagnose the redefinition. 2571 if (Entry.first && !Entry.second.isValid()) 2572 return Error(TypeLoc, "redefinition of type"); 2573 2574 // If we have opaque, just return without filling in the definition for the 2575 // struct. This counts as a definition as far as the .ll file goes. 2576 if (EatIfPresent(lltok::kw_opaque)) { 2577 // This type is being defined, so clear the location to indicate this. 2578 Entry.second = SMLoc(); 2579 2580 // If this type number has never been uttered, create it. 2581 if (!Entry.first) 2582 Entry.first = StructType::create(Context, Name); 2583 ResultTy = Entry.first; 2584 return false; 2585 } 2586 2587 // If the type starts with '<', then it is either a packed struct or a vector. 2588 bool isPacked = EatIfPresent(lltok::less); 2589 2590 // If we don't have a struct, then we have a random type alias, which we 2591 // accept for compatibility with old files. These types are not allowed to be 2592 // forward referenced and not allowed to be recursive. 2593 if (Lex.getKind() != lltok::lbrace) { 2594 if (Entry.first) 2595 return Error(TypeLoc, "forward references to non-struct type"); 2596 2597 ResultTy = nullptr; 2598 if (isPacked) 2599 return ParseArrayVectorType(ResultTy, true); 2600 return ParseType(ResultTy); 2601 } 2602 2603 // This type is being defined, so clear the location to indicate this. 2604 Entry.second = SMLoc(); 2605 2606 // If this type number has never been uttered, create it. 2607 if (!Entry.first) 2608 Entry.first = StructType::create(Context, Name); 2609 2610 StructType *STy = cast<StructType>(Entry.first); 2611 2612 SmallVector<Type*, 8> Body; 2613 if (ParseStructBody(Body) || 2614 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 2615 return true; 2616 2617 STy->setBody(Body, isPacked); 2618 ResultTy = STy; 2619 return false; 2620 } 2621 2622 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2623 /// StructType 2624 /// ::= '{' '}' 2625 /// ::= '{' Type (',' Type)* '}' 2626 /// ::= '<' '{' '}' '>' 2627 /// ::= '<' '{' Type (',' Type)* '}' '>' 2628 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 2629 assert(Lex.getKind() == lltok::lbrace); 2630 Lex.Lex(); // Consume the '{' 2631 2632 // Handle the empty struct. 2633 if (EatIfPresent(lltok::rbrace)) 2634 return false; 2635 2636 LocTy EltTyLoc = Lex.getLoc(); 2637 Type *Ty = nullptr; 2638 if (ParseType(Ty)) return true; 2639 Body.push_back(Ty); 2640 2641 if (!StructType::isValidElementType(Ty)) 2642 return Error(EltTyLoc, "invalid element type for struct"); 2643 2644 while (EatIfPresent(lltok::comma)) { 2645 EltTyLoc = Lex.getLoc(); 2646 if (ParseType(Ty)) return true; 2647 2648 if (!StructType::isValidElementType(Ty)) 2649 return Error(EltTyLoc, "invalid element type for struct"); 2650 2651 Body.push_back(Ty); 2652 } 2653 2654 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 2655 } 2656 2657 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 2658 /// token has already been consumed. 2659 /// Type 2660 /// ::= '[' APSINTVAL 'x' Types ']' 2661 /// ::= '<' APSINTVAL 'x' Types '>' 2662 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 2663 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2664 Lex.getAPSIntVal().getBitWidth() > 64) 2665 return TokError("expected number in address space"); 2666 2667 LocTy SizeLoc = Lex.getLoc(); 2668 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2669 Lex.Lex(); 2670 2671 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 2672 return true; 2673 2674 LocTy TypeLoc = Lex.getLoc(); 2675 Type *EltTy = nullptr; 2676 if (ParseType(EltTy)) return true; 2677 2678 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 2679 "expected end of sequential type")) 2680 return true; 2681 2682 if (isVector) { 2683 if (Size == 0) 2684 return Error(SizeLoc, "zero element vector is illegal"); 2685 if ((unsigned)Size != Size) 2686 return Error(SizeLoc, "size too large for vector"); 2687 if (!VectorType::isValidElementType(EltTy)) 2688 return Error(TypeLoc, "invalid vector element type"); 2689 Result = VectorType::get(EltTy, unsigned(Size)); 2690 } else { 2691 if (!ArrayType::isValidElementType(EltTy)) 2692 return Error(TypeLoc, "invalid array element type"); 2693 Result = ArrayType::get(EltTy, Size); 2694 } 2695 return false; 2696 } 2697 2698 //===----------------------------------------------------------------------===// 2699 // Function Semantic Analysis. 2700 //===----------------------------------------------------------------------===// 2701 2702 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2703 int functionNumber) 2704 : P(p), F(f), FunctionNumber(functionNumber) { 2705 2706 // Insert unnamed arguments into the NumberedVals list. 2707 for (Argument &A : F.args()) 2708 if (!A.hasName()) 2709 NumberedVals.push_back(&A); 2710 } 2711 2712 LLParser::PerFunctionState::~PerFunctionState() { 2713 // If there were any forward referenced non-basicblock values, delete them. 2714 2715 for (const auto &P : ForwardRefVals) { 2716 if (isa<BasicBlock>(P.second.first)) 2717 continue; 2718 P.second.first->replaceAllUsesWith( 2719 UndefValue::get(P.second.first->getType())); 2720 P.second.first->deleteValue(); 2721 } 2722 2723 for (const auto &P : ForwardRefValIDs) { 2724 if (isa<BasicBlock>(P.second.first)) 2725 continue; 2726 P.second.first->replaceAllUsesWith( 2727 UndefValue::get(P.second.first->getType())); 2728 P.second.first->deleteValue(); 2729 } 2730 } 2731 2732 bool LLParser::PerFunctionState::FinishFunction() { 2733 if (!ForwardRefVals.empty()) 2734 return P.Error(ForwardRefVals.begin()->second.second, 2735 "use of undefined value '%" + ForwardRefVals.begin()->first + 2736 "'"); 2737 if (!ForwardRefValIDs.empty()) 2738 return P.Error(ForwardRefValIDs.begin()->second.second, 2739 "use of undefined value '%" + 2740 Twine(ForwardRefValIDs.begin()->first) + "'"); 2741 return false; 2742 } 2743 2744 static bool isValidVariableType(Module *M, Type *Ty, Value *Val, bool IsCall) { 2745 if (Val->getType() == Ty) 2746 return true; 2747 // For calls we also accept variables in the program address space 2748 if (IsCall && isa<PointerType>(Ty)) { 2749 Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo( 2750 M->getDataLayout().getProgramAddressSpace()); 2751 if (Val->getType() == TyInProgAS) 2752 return true; 2753 } 2754 return false; 2755 } 2756 2757 /// GetVal - Get a value with the specified name or ID, creating a 2758 /// forward reference record if needed. This can return null if the value 2759 /// exists but does not have the right type. 2760 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty, 2761 LocTy Loc, bool IsCall) { 2762 // Look this name up in the normal function symbol table. 2763 Value *Val = F.getValueSymbolTable()->lookup(Name); 2764 2765 // If this is a forward reference for the value, see if we already created a 2766 // forward ref record. 2767 if (!Val) { 2768 auto I = ForwardRefVals.find(Name); 2769 if (I != ForwardRefVals.end()) 2770 Val = I->second.first; 2771 } 2772 2773 // If we have the value in the symbol table or fwd-ref table, return it. 2774 if (Val) { 2775 if (isValidVariableType(P.M, Ty, Val, IsCall)) 2776 return Val; 2777 if (Ty->isLabelTy()) 2778 P.Error(Loc, "'%" + Name + "' is not a basic block"); 2779 else 2780 P.Error(Loc, "'%" + Name + "' defined with type '" + 2781 getTypeString(Val->getType()) + "'"); 2782 return nullptr; 2783 } 2784 2785 // Don't make placeholders with invalid type. 2786 if (!Ty->isFirstClassType()) { 2787 P.Error(Loc, "invalid use of a non-first-class type"); 2788 return nullptr; 2789 } 2790 2791 // Otherwise, create a new forward reference for this value and remember it. 2792 Value *FwdVal; 2793 if (Ty->isLabelTy()) { 2794 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2795 } else { 2796 FwdVal = new Argument(Ty, Name); 2797 } 2798 2799 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2800 return FwdVal; 2801 } 2802 2803 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc, 2804 bool IsCall) { 2805 // Look this name up in the normal function symbol table. 2806 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2807 2808 // If this is a forward reference for the value, see if we already created a 2809 // forward ref record. 2810 if (!Val) { 2811 auto I = ForwardRefValIDs.find(ID); 2812 if (I != ForwardRefValIDs.end()) 2813 Val = I->second.first; 2814 } 2815 2816 // If we have the value in the symbol table or fwd-ref table, return it. 2817 if (Val) { 2818 if (isValidVariableType(P.M, Ty, Val, IsCall)) 2819 return Val; 2820 if (Ty->isLabelTy()) 2821 P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block"); 2822 else 2823 P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" + 2824 getTypeString(Val->getType()) + "'"); 2825 return nullptr; 2826 } 2827 2828 if (!Ty->isFirstClassType()) { 2829 P.Error(Loc, "invalid use of a non-first-class type"); 2830 return nullptr; 2831 } 2832 2833 // Otherwise, create a new forward reference for this value and remember it. 2834 Value *FwdVal; 2835 if (Ty->isLabelTy()) { 2836 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2837 } else { 2838 FwdVal = new Argument(Ty); 2839 } 2840 2841 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2842 return FwdVal; 2843 } 2844 2845 /// SetInstName - After an instruction is parsed and inserted into its 2846 /// basic block, this installs its name. 2847 bool LLParser::PerFunctionState::SetInstName(int NameID, 2848 const std::string &NameStr, 2849 LocTy NameLoc, Instruction *Inst) { 2850 // If this instruction has void type, it cannot have a name or ID specified. 2851 if (Inst->getType()->isVoidTy()) { 2852 if (NameID != -1 || !NameStr.empty()) 2853 return P.Error(NameLoc, "instructions returning void cannot have a name"); 2854 return false; 2855 } 2856 2857 // If this was a numbered instruction, verify that the instruction is the 2858 // expected value and resolve any forward references. 2859 if (NameStr.empty()) { 2860 // If neither a name nor an ID was specified, just use the next ID. 2861 if (NameID == -1) 2862 NameID = NumberedVals.size(); 2863 2864 if (unsigned(NameID) != NumberedVals.size()) 2865 return P.Error(NameLoc, "instruction expected to be numbered '%" + 2866 Twine(NumberedVals.size()) + "'"); 2867 2868 auto FI = ForwardRefValIDs.find(NameID); 2869 if (FI != ForwardRefValIDs.end()) { 2870 Value *Sentinel = FI->second.first; 2871 if (Sentinel->getType() != Inst->getType()) 2872 return P.Error(NameLoc, "instruction forward referenced with type '" + 2873 getTypeString(FI->second.first->getType()) + "'"); 2874 2875 Sentinel->replaceAllUsesWith(Inst); 2876 Sentinel->deleteValue(); 2877 ForwardRefValIDs.erase(FI); 2878 } 2879 2880 NumberedVals.push_back(Inst); 2881 return false; 2882 } 2883 2884 // Otherwise, the instruction had a name. Resolve forward refs and set it. 2885 auto FI = ForwardRefVals.find(NameStr); 2886 if (FI != ForwardRefVals.end()) { 2887 Value *Sentinel = FI->second.first; 2888 if (Sentinel->getType() != Inst->getType()) 2889 return P.Error(NameLoc, "instruction forward referenced with type '" + 2890 getTypeString(FI->second.first->getType()) + "'"); 2891 2892 Sentinel->replaceAllUsesWith(Inst); 2893 Sentinel->deleteValue(); 2894 ForwardRefVals.erase(FI); 2895 } 2896 2897 // Set the name on the instruction. 2898 Inst->setName(NameStr); 2899 2900 if (Inst->getName() != NameStr) 2901 return P.Error(NameLoc, "multiple definition of local value named '" + 2902 NameStr + "'"); 2903 return false; 2904 } 2905 2906 /// GetBB - Get a basic block with the specified name or ID, creating a 2907 /// forward reference record if needed. 2908 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 2909 LocTy Loc) { 2910 return dyn_cast_or_null<BasicBlock>( 2911 GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 2912 } 2913 2914 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 2915 return dyn_cast_or_null<BasicBlock>( 2916 GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 2917 } 2918 2919 /// DefineBB - Define the specified basic block, which is either named or 2920 /// unnamed. If there is an error, this returns null otherwise it returns 2921 /// the block being defined. 2922 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 2923 LocTy Loc) { 2924 BasicBlock *BB; 2925 if (Name.empty()) 2926 BB = GetBB(NumberedVals.size(), Loc); 2927 else 2928 BB = GetBB(Name, Loc); 2929 if (!BB) return nullptr; // Already diagnosed error. 2930 2931 // Move the block to the end of the function. Forward ref'd blocks are 2932 // inserted wherever they happen to be referenced. 2933 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 2934 2935 // Remove the block from forward ref sets. 2936 if (Name.empty()) { 2937 ForwardRefValIDs.erase(NumberedVals.size()); 2938 NumberedVals.push_back(BB); 2939 } else { 2940 // BB forward references are already in the function symbol table. 2941 ForwardRefVals.erase(Name); 2942 } 2943 2944 return BB; 2945 } 2946 2947 //===----------------------------------------------------------------------===// 2948 // Constants. 2949 //===----------------------------------------------------------------------===// 2950 2951 /// ParseValID - Parse an abstract value that doesn't necessarily have a 2952 /// type implied. For example, if we parse "4" we don't know what integer type 2953 /// it has. The value will later be combined with its type and checked for 2954 /// sanity. PFS is used to convert function-local operands of metadata (since 2955 /// metadata operands are not just parsed here but also converted to values). 2956 /// PFS can be null when we are not parsing metadata values inside a function. 2957 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 2958 ID.Loc = Lex.getLoc(); 2959 switch (Lex.getKind()) { 2960 default: return TokError("expected value token"); 2961 case lltok::GlobalID: // @42 2962 ID.UIntVal = Lex.getUIntVal(); 2963 ID.Kind = ValID::t_GlobalID; 2964 break; 2965 case lltok::GlobalVar: // @foo 2966 ID.StrVal = Lex.getStrVal(); 2967 ID.Kind = ValID::t_GlobalName; 2968 break; 2969 case lltok::LocalVarID: // %42 2970 ID.UIntVal = Lex.getUIntVal(); 2971 ID.Kind = ValID::t_LocalID; 2972 break; 2973 case lltok::LocalVar: // %foo 2974 ID.StrVal = Lex.getStrVal(); 2975 ID.Kind = ValID::t_LocalName; 2976 break; 2977 case lltok::APSInt: 2978 ID.APSIntVal = Lex.getAPSIntVal(); 2979 ID.Kind = ValID::t_APSInt; 2980 break; 2981 case lltok::APFloat: 2982 ID.APFloatVal = Lex.getAPFloatVal(); 2983 ID.Kind = ValID::t_APFloat; 2984 break; 2985 case lltok::kw_true: 2986 ID.ConstantVal = ConstantInt::getTrue(Context); 2987 ID.Kind = ValID::t_Constant; 2988 break; 2989 case lltok::kw_false: 2990 ID.ConstantVal = ConstantInt::getFalse(Context); 2991 ID.Kind = ValID::t_Constant; 2992 break; 2993 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 2994 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 2995 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 2996 case lltok::kw_none: ID.Kind = ValID::t_None; break; 2997 2998 case lltok::lbrace: { 2999 // ValID ::= '{' ConstVector '}' 3000 Lex.Lex(); 3001 SmallVector<Constant*, 16> Elts; 3002 if (ParseGlobalValueVector(Elts) || 3003 ParseToken(lltok::rbrace, "expected end of struct constant")) 3004 return true; 3005 3006 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 3007 ID.UIntVal = Elts.size(); 3008 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3009 Elts.size() * sizeof(Elts[0])); 3010 ID.Kind = ValID::t_ConstantStruct; 3011 return false; 3012 } 3013 case lltok::less: { 3014 // ValID ::= '<' ConstVector '>' --> Vector. 3015 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 3016 Lex.Lex(); 3017 bool isPackedStruct = EatIfPresent(lltok::lbrace); 3018 3019 SmallVector<Constant*, 16> Elts; 3020 LocTy FirstEltLoc = Lex.getLoc(); 3021 if (ParseGlobalValueVector(Elts) || 3022 (isPackedStruct && 3023 ParseToken(lltok::rbrace, "expected end of packed struct")) || 3024 ParseToken(lltok::greater, "expected end of constant")) 3025 return true; 3026 3027 if (isPackedStruct) { 3028 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 3029 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3030 Elts.size() * sizeof(Elts[0])); 3031 ID.UIntVal = Elts.size(); 3032 ID.Kind = ValID::t_PackedConstantStruct; 3033 return false; 3034 } 3035 3036 if (Elts.empty()) 3037 return Error(ID.Loc, "constant vector must not be empty"); 3038 3039 if (!Elts[0]->getType()->isIntegerTy() && 3040 !Elts[0]->getType()->isFloatingPointTy() && 3041 !Elts[0]->getType()->isPointerTy()) 3042 return Error(FirstEltLoc, 3043 "vector elements must have integer, pointer or floating point type"); 3044 3045 // Verify that all the vector elements have the same type. 3046 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 3047 if (Elts[i]->getType() != Elts[0]->getType()) 3048 return Error(FirstEltLoc, 3049 "vector element #" + Twine(i) + 3050 " is not of type '" + getTypeString(Elts[0]->getType())); 3051 3052 ID.ConstantVal = ConstantVector::get(Elts); 3053 ID.Kind = ValID::t_Constant; 3054 return false; 3055 } 3056 case lltok::lsquare: { // Array Constant 3057 Lex.Lex(); 3058 SmallVector<Constant*, 16> Elts; 3059 LocTy FirstEltLoc = Lex.getLoc(); 3060 if (ParseGlobalValueVector(Elts) || 3061 ParseToken(lltok::rsquare, "expected end of array constant")) 3062 return true; 3063 3064 // Handle empty element. 3065 if (Elts.empty()) { 3066 // Use undef instead of an array because it's inconvenient to determine 3067 // the element type at this point, there being no elements to examine. 3068 ID.Kind = ValID::t_EmptyArray; 3069 return false; 3070 } 3071 3072 if (!Elts[0]->getType()->isFirstClassType()) 3073 return Error(FirstEltLoc, "invalid array element type: " + 3074 getTypeString(Elts[0]->getType())); 3075 3076 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 3077 3078 // Verify all elements are correct type! 3079 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 3080 if (Elts[i]->getType() != Elts[0]->getType()) 3081 return Error(FirstEltLoc, 3082 "array element #" + Twine(i) + 3083 " is not of type '" + getTypeString(Elts[0]->getType())); 3084 } 3085 3086 ID.ConstantVal = ConstantArray::get(ATy, Elts); 3087 ID.Kind = ValID::t_Constant; 3088 return false; 3089 } 3090 case lltok::kw_c: // c "foo" 3091 Lex.Lex(); 3092 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 3093 false); 3094 if (ParseToken(lltok::StringConstant, "expected string")) return true; 3095 ID.Kind = ValID::t_Constant; 3096 return false; 3097 3098 case lltok::kw_asm: { 3099 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 3100 // STRINGCONSTANT 3101 bool HasSideEffect, AlignStack, AsmDialect; 3102 Lex.Lex(); 3103 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 3104 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 3105 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 3106 ParseStringConstant(ID.StrVal) || 3107 ParseToken(lltok::comma, "expected comma in inline asm expression") || 3108 ParseToken(lltok::StringConstant, "expected constraint string")) 3109 return true; 3110 ID.StrVal2 = Lex.getStrVal(); 3111 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 3112 (unsigned(AsmDialect)<<2); 3113 ID.Kind = ValID::t_InlineAsm; 3114 return false; 3115 } 3116 3117 case lltok::kw_blockaddress: { 3118 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 3119 Lex.Lex(); 3120 3121 ValID Fn, Label; 3122 3123 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 3124 ParseValID(Fn) || 3125 ParseToken(lltok::comma, "expected comma in block address expression")|| 3126 ParseValID(Label) || 3127 ParseToken(lltok::rparen, "expected ')' in block address expression")) 3128 return true; 3129 3130 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3131 return Error(Fn.Loc, "expected function name in blockaddress"); 3132 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 3133 return Error(Label.Loc, "expected basic block name in blockaddress"); 3134 3135 // Try to find the function (but skip it if it's forward-referenced). 3136 GlobalValue *GV = nullptr; 3137 if (Fn.Kind == ValID::t_GlobalID) { 3138 if (Fn.UIntVal < NumberedVals.size()) 3139 GV = NumberedVals[Fn.UIntVal]; 3140 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3141 GV = M->getNamedValue(Fn.StrVal); 3142 } 3143 Function *F = nullptr; 3144 if (GV) { 3145 // Confirm that it's actually a function with a definition. 3146 if (!isa<Function>(GV)) 3147 return Error(Fn.Loc, "expected function name in blockaddress"); 3148 F = cast<Function>(GV); 3149 if (F->isDeclaration()) 3150 return Error(Fn.Loc, "cannot take blockaddress inside a declaration"); 3151 } 3152 3153 if (!F) { 3154 // Make a global variable as a placeholder for this reference. 3155 GlobalValue *&FwdRef = 3156 ForwardRefBlockAddresses.insert(std::make_pair( 3157 std::move(Fn), 3158 std::map<ValID, GlobalValue *>())) 3159 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 3160 .first->second; 3161 if (!FwdRef) 3162 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 3163 GlobalValue::InternalLinkage, nullptr, ""); 3164 ID.ConstantVal = FwdRef; 3165 ID.Kind = ValID::t_Constant; 3166 return false; 3167 } 3168 3169 // We found the function; now find the basic block. Don't use PFS, since we 3170 // might be inside a constant expression. 3171 BasicBlock *BB; 3172 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 3173 if (Label.Kind == ValID::t_LocalID) 3174 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc); 3175 else 3176 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc); 3177 if (!BB) 3178 return Error(Label.Loc, "referenced value is not a basic block"); 3179 } else { 3180 if (Label.Kind == ValID::t_LocalID) 3181 return Error(Label.Loc, "cannot take address of numeric label after " 3182 "the function is defined"); 3183 BB = dyn_cast_or_null<BasicBlock>( 3184 F->getValueSymbolTable()->lookup(Label.StrVal)); 3185 if (!BB) 3186 return Error(Label.Loc, "referenced value is not a basic block"); 3187 } 3188 3189 ID.ConstantVal = BlockAddress::get(F, BB); 3190 ID.Kind = ValID::t_Constant; 3191 return false; 3192 } 3193 3194 case lltok::kw_trunc: 3195 case lltok::kw_zext: 3196 case lltok::kw_sext: 3197 case lltok::kw_fptrunc: 3198 case lltok::kw_fpext: 3199 case lltok::kw_bitcast: 3200 case lltok::kw_addrspacecast: 3201 case lltok::kw_uitofp: 3202 case lltok::kw_sitofp: 3203 case lltok::kw_fptoui: 3204 case lltok::kw_fptosi: 3205 case lltok::kw_inttoptr: 3206 case lltok::kw_ptrtoint: { 3207 unsigned Opc = Lex.getUIntVal(); 3208 Type *DestTy = nullptr; 3209 Constant *SrcVal; 3210 Lex.Lex(); 3211 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3212 ParseGlobalTypeAndValue(SrcVal) || 3213 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3214 ParseType(DestTy) || 3215 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3216 return true; 3217 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3218 return Error(ID.Loc, "invalid cast opcode for cast from '" + 3219 getTypeString(SrcVal->getType()) + "' to '" + 3220 getTypeString(DestTy) + "'"); 3221 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3222 SrcVal, DestTy); 3223 ID.Kind = ValID::t_Constant; 3224 return false; 3225 } 3226 case lltok::kw_extractvalue: { 3227 Lex.Lex(); 3228 Constant *Val; 3229 SmallVector<unsigned, 4> Indices; 3230 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 3231 ParseGlobalTypeAndValue(Val) || 3232 ParseIndexList(Indices) || 3233 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 3234 return true; 3235 3236 if (!Val->getType()->isAggregateType()) 3237 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 3238 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 3239 return Error(ID.Loc, "invalid indices for extractvalue"); 3240 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 3241 ID.Kind = ValID::t_Constant; 3242 return false; 3243 } 3244 case lltok::kw_insertvalue: { 3245 Lex.Lex(); 3246 Constant *Val0, *Val1; 3247 SmallVector<unsigned, 4> Indices; 3248 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 3249 ParseGlobalTypeAndValue(Val0) || 3250 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 3251 ParseGlobalTypeAndValue(Val1) || 3252 ParseIndexList(Indices) || 3253 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 3254 return true; 3255 if (!Val0->getType()->isAggregateType()) 3256 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 3257 Type *IndexedType = 3258 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3259 if (!IndexedType) 3260 return Error(ID.Loc, "invalid indices for insertvalue"); 3261 if (IndexedType != Val1->getType()) 3262 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3263 getTypeString(Val1->getType()) + 3264 "' instead of '" + getTypeString(IndexedType) + 3265 "'"); 3266 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3267 ID.Kind = ValID::t_Constant; 3268 return false; 3269 } 3270 case lltok::kw_icmp: 3271 case lltok::kw_fcmp: { 3272 unsigned PredVal, Opc = Lex.getUIntVal(); 3273 Constant *Val0, *Val1; 3274 Lex.Lex(); 3275 if (ParseCmpPredicate(PredVal, Opc) || 3276 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3277 ParseGlobalTypeAndValue(Val0) || 3278 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 3279 ParseGlobalTypeAndValue(Val1) || 3280 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3281 return true; 3282 3283 if (Val0->getType() != Val1->getType()) 3284 return Error(ID.Loc, "compare operands must have the same type"); 3285 3286 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3287 3288 if (Opc == Instruction::FCmp) { 3289 if (!Val0->getType()->isFPOrFPVectorTy()) 3290 return Error(ID.Loc, "fcmp requires floating point operands"); 3291 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3292 } else { 3293 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3294 if (!Val0->getType()->isIntOrIntVectorTy() && 3295 !Val0->getType()->isPtrOrPtrVectorTy()) 3296 return Error(ID.Loc, "icmp requires pointer or integer operands"); 3297 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3298 } 3299 ID.Kind = ValID::t_Constant; 3300 return false; 3301 } 3302 3303 // Binary Operators. 3304 case lltok::kw_add: 3305 case lltok::kw_fadd: 3306 case lltok::kw_sub: 3307 case lltok::kw_fsub: 3308 case lltok::kw_mul: 3309 case lltok::kw_fmul: 3310 case lltok::kw_udiv: 3311 case lltok::kw_sdiv: 3312 case lltok::kw_fdiv: 3313 case lltok::kw_urem: 3314 case lltok::kw_srem: 3315 case lltok::kw_frem: 3316 case lltok::kw_shl: 3317 case lltok::kw_lshr: 3318 case lltok::kw_ashr: { 3319 bool NUW = false; 3320 bool NSW = false; 3321 bool Exact = false; 3322 unsigned Opc = Lex.getUIntVal(); 3323 Constant *Val0, *Val1; 3324 Lex.Lex(); 3325 LocTy ModifierLoc = Lex.getLoc(); 3326 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3327 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3328 if (EatIfPresent(lltok::kw_nuw)) 3329 NUW = true; 3330 if (EatIfPresent(lltok::kw_nsw)) { 3331 NSW = true; 3332 if (EatIfPresent(lltok::kw_nuw)) 3333 NUW = true; 3334 } 3335 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3336 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3337 if (EatIfPresent(lltok::kw_exact)) 3338 Exact = true; 3339 } 3340 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3341 ParseGlobalTypeAndValue(Val0) || 3342 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 3343 ParseGlobalTypeAndValue(Val1) || 3344 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3345 return true; 3346 if (Val0->getType() != Val1->getType()) 3347 return Error(ID.Loc, "operands of constexpr must have same type"); 3348 if (!Val0->getType()->isIntOrIntVectorTy()) { 3349 if (NUW) 3350 return Error(ModifierLoc, "nuw only applies to integer operations"); 3351 if (NSW) 3352 return Error(ModifierLoc, "nsw only applies to integer operations"); 3353 } 3354 // Check that the type is valid for the operator. 3355 switch (Opc) { 3356 case Instruction::Add: 3357 case Instruction::Sub: 3358 case Instruction::Mul: 3359 case Instruction::UDiv: 3360 case Instruction::SDiv: 3361 case Instruction::URem: 3362 case Instruction::SRem: 3363 case Instruction::Shl: 3364 case Instruction::AShr: 3365 case Instruction::LShr: 3366 if (!Val0->getType()->isIntOrIntVectorTy()) 3367 return Error(ID.Loc, "constexpr requires integer operands"); 3368 break; 3369 case Instruction::FAdd: 3370 case Instruction::FSub: 3371 case Instruction::FMul: 3372 case Instruction::FDiv: 3373 case Instruction::FRem: 3374 if (!Val0->getType()->isFPOrFPVectorTy()) 3375 return Error(ID.Loc, "constexpr requires fp operands"); 3376 break; 3377 default: llvm_unreachable("Unknown binary operator!"); 3378 } 3379 unsigned Flags = 0; 3380 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3381 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3382 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3383 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3384 ID.ConstantVal = C; 3385 ID.Kind = ValID::t_Constant; 3386 return false; 3387 } 3388 3389 // Logical Operations 3390 case lltok::kw_and: 3391 case lltok::kw_or: 3392 case lltok::kw_xor: { 3393 unsigned Opc = Lex.getUIntVal(); 3394 Constant *Val0, *Val1; 3395 Lex.Lex(); 3396 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3397 ParseGlobalTypeAndValue(Val0) || 3398 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 3399 ParseGlobalTypeAndValue(Val1) || 3400 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3401 return true; 3402 if (Val0->getType() != Val1->getType()) 3403 return Error(ID.Loc, "operands of constexpr must have same type"); 3404 if (!Val0->getType()->isIntOrIntVectorTy()) 3405 return Error(ID.Loc, 3406 "constexpr requires integer or integer vector operands"); 3407 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3408 ID.Kind = ValID::t_Constant; 3409 return false; 3410 } 3411 3412 case lltok::kw_getelementptr: 3413 case lltok::kw_shufflevector: 3414 case lltok::kw_insertelement: 3415 case lltok::kw_extractelement: 3416 case lltok::kw_select: { 3417 unsigned Opc = Lex.getUIntVal(); 3418 SmallVector<Constant*, 16> Elts; 3419 bool InBounds = false; 3420 Type *Ty; 3421 Lex.Lex(); 3422 3423 if (Opc == Instruction::GetElementPtr) 3424 InBounds = EatIfPresent(lltok::kw_inbounds); 3425 3426 if (ParseToken(lltok::lparen, "expected '(' in constantexpr")) 3427 return true; 3428 3429 LocTy ExplicitTypeLoc = Lex.getLoc(); 3430 if (Opc == Instruction::GetElementPtr) { 3431 if (ParseType(Ty) || 3432 ParseToken(lltok::comma, "expected comma after getelementptr's type")) 3433 return true; 3434 } 3435 3436 Optional<unsigned> InRangeOp; 3437 if (ParseGlobalValueVector( 3438 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3439 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 3440 return true; 3441 3442 if (Opc == Instruction::GetElementPtr) { 3443 if (Elts.size() == 0 || 3444 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 3445 return Error(ID.Loc, "base of getelementptr must be a pointer"); 3446 3447 Type *BaseType = Elts[0]->getType(); 3448 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3449 if (Ty != BasePointerType->getElementType()) 3450 return Error( 3451 ExplicitTypeLoc, 3452 "explicit pointee type doesn't match operand's pointee type"); 3453 3454 unsigned GEPWidth = 3455 BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0; 3456 3457 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3458 for (Constant *Val : Indices) { 3459 Type *ValTy = Val->getType(); 3460 if (!ValTy->isIntOrIntVectorTy()) 3461 return Error(ID.Loc, "getelementptr index must be an integer"); 3462 if (ValTy->isVectorTy()) { 3463 unsigned ValNumEl = ValTy->getVectorNumElements(); 3464 if (GEPWidth && (ValNumEl != GEPWidth)) 3465 return Error( 3466 ID.Loc, 3467 "getelementptr vector index has a wrong number of elements"); 3468 // GEPWidth may have been unknown because the base is a scalar, 3469 // but it is known now. 3470 GEPWidth = ValNumEl; 3471 } 3472 } 3473 3474 SmallPtrSet<Type*, 4> Visited; 3475 if (!Indices.empty() && !Ty->isSized(&Visited)) 3476 return Error(ID.Loc, "base element of getelementptr must be sized"); 3477 3478 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3479 return Error(ID.Loc, "invalid getelementptr indices"); 3480 3481 if (InRangeOp) { 3482 if (*InRangeOp == 0) 3483 return Error(ID.Loc, 3484 "inrange keyword may not appear on pointer operand"); 3485 --*InRangeOp; 3486 } 3487 3488 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3489 InBounds, InRangeOp); 3490 } else if (Opc == Instruction::Select) { 3491 if (Elts.size() != 3) 3492 return Error(ID.Loc, "expected three operands to select"); 3493 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3494 Elts[2])) 3495 return Error(ID.Loc, Reason); 3496 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3497 } else if (Opc == Instruction::ShuffleVector) { 3498 if (Elts.size() != 3) 3499 return Error(ID.Loc, "expected three operands to shufflevector"); 3500 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3501 return Error(ID.Loc, "invalid operands to shufflevector"); 3502 ID.ConstantVal = 3503 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 3504 } else if (Opc == Instruction::ExtractElement) { 3505 if (Elts.size() != 2) 3506 return Error(ID.Loc, "expected two operands to extractelement"); 3507 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3508 return Error(ID.Loc, "invalid extractelement operands"); 3509 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3510 } else { 3511 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3512 if (Elts.size() != 3) 3513 return Error(ID.Loc, "expected three operands to insertelement"); 3514 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3515 return Error(ID.Loc, "invalid insertelement operands"); 3516 ID.ConstantVal = 3517 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3518 } 3519 3520 ID.Kind = ValID::t_Constant; 3521 return false; 3522 } 3523 } 3524 3525 Lex.Lex(); 3526 return false; 3527 } 3528 3529 /// ParseGlobalValue - Parse a global value with the specified type. 3530 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 3531 C = nullptr; 3532 ValID ID; 3533 Value *V = nullptr; 3534 bool Parsed = ParseValID(ID) || 3535 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false); 3536 if (V && !(C = dyn_cast<Constant>(V))) 3537 return Error(ID.Loc, "global values must be constants"); 3538 return Parsed; 3539 } 3540 3541 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 3542 Type *Ty = nullptr; 3543 return ParseType(Ty) || 3544 ParseGlobalValue(Ty, V); 3545 } 3546 3547 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3548 C = nullptr; 3549 3550 LocTy KwLoc = Lex.getLoc(); 3551 if (!EatIfPresent(lltok::kw_comdat)) 3552 return false; 3553 3554 if (EatIfPresent(lltok::lparen)) { 3555 if (Lex.getKind() != lltok::ComdatVar) 3556 return TokError("expected comdat variable"); 3557 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3558 Lex.Lex(); 3559 if (ParseToken(lltok::rparen, "expected ')' after comdat var")) 3560 return true; 3561 } else { 3562 if (GlobalName.empty()) 3563 return TokError("comdat cannot be unnamed"); 3564 C = getComdat(GlobalName, KwLoc); 3565 } 3566 3567 return false; 3568 } 3569 3570 /// ParseGlobalValueVector 3571 /// ::= /*empty*/ 3572 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 3573 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 3574 Optional<unsigned> *InRangeOp) { 3575 // Empty list. 3576 if (Lex.getKind() == lltok::rbrace || 3577 Lex.getKind() == lltok::rsquare || 3578 Lex.getKind() == lltok::greater || 3579 Lex.getKind() == lltok::rparen) 3580 return false; 3581 3582 do { 3583 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 3584 *InRangeOp = Elts.size(); 3585 3586 Constant *C; 3587 if (ParseGlobalTypeAndValue(C)) return true; 3588 Elts.push_back(C); 3589 } while (EatIfPresent(lltok::comma)); 3590 3591 return false; 3592 } 3593 3594 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) { 3595 SmallVector<Metadata *, 16> Elts; 3596 if (ParseMDNodeVector(Elts)) 3597 return true; 3598 3599 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3600 return false; 3601 } 3602 3603 /// MDNode: 3604 /// ::= !{ ... } 3605 /// ::= !7 3606 /// ::= !DILocation(...) 3607 bool LLParser::ParseMDNode(MDNode *&N) { 3608 if (Lex.getKind() == lltok::MetadataVar) 3609 return ParseSpecializedMDNode(N); 3610 3611 return ParseToken(lltok::exclaim, "expected '!' here") || 3612 ParseMDNodeTail(N); 3613 } 3614 3615 bool LLParser::ParseMDNodeTail(MDNode *&N) { 3616 // !{ ... } 3617 if (Lex.getKind() == lltok::lbrace) 3618 return ParseMDTuple(N); 3619 3620 // !42 3621 return ParseMDNodeID(N); 3622 } 3623 3624 namespace { 3625 3626 /// Structure to represent an optional metadata field. 3627 template <class FieldTy> struct MDFieldImpl { 3628 typedef MDFieldImpl ImplTy; 3629 FieldTy Val; 3630 bool Seen; 3631 3632 void assign(FieldTy Val) { 3633 Seen = true; 3634 this->Val = std::move(Val); 3635 } 3636 3637 explicit MDFieldImpl(FieldTy Default) 3638 : Val(std::move(Default)), Seen(false) {} 3639 }; 3640 3641 /// Structure to represent an optional metadata field that 3642 /// can be of either type (A or B) and encapsulates the 3643 /// MD<typeofA>Field and MD<typeofB>Field structs, so not 3644 /// to reimplement the specifics for representing each Field. 3645 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl { 3646 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy; 3647 FieldTypeA A; 3648 FieldTypeB B; 3649 bool Seen; 3650 3651 enum { 3652 IsInvalid = 0, 3653 IsTypeA = 1, 3654 IsTypeB = 2 3655 } WhatIs; 3656 3657 void assign(FieldTypeA A) { 3658 Seen = true; 3659 this->A = std::move(A); 3660 WhatIs = IsTypeA; 3661 } 3662 3663 void assign(FieldTypeB B) { 3664 Seen = true; 3665 this->B = std::move(B); 3666 WhatIs = IsTypeB; 3667 } 3668 3669 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) 3670 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), 3671 WhatIs(IsInvalid) {} 3672 }; 3673 3674 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3675 uint64_t Max; 3676 3677 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3678 : ImplTy(Default), Max(Max) {} 3679 }; 3680 3681 struct LineField : public MDUnsignedField { 3682 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3683 }; 3684 3685 struct ColumnField : public MDUnsignedField { 3686 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3687 }; 3688 3689 struct DwarfTagField : public MDUnsignedField { 3690 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3691 DwarfTagField(dwarf::Tag DefaultTag) 3692 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3693 }; 3694 3695 struct DwarfMacinfoTypeField : public MDUnsignedField { 3696 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 3697 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 3698 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 3699 }; 3700 3701 struct DwarfAttEncodingField : public MDUnsignedField { 3702 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3703 }; 3704 3705 struct DwarfVirtualityField : public MDUnsignedField { 3706 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3707 }; 3708 3709 struct DwarfLangField : public MDUnsignedField { 3710 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3711 }; 3712 3713 struct DwarfCCField : public MDUnsignedField { 3714 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 3715 }; 3716 3717 struct EmissionKindField : public MDUnsignedField { 3718 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 3719 }; 3720 3721 struct NameTableKindField : public MDUnsignedField { 3722 NameTableKindField() 3723 : MDUnsignedField( 3724 0, (unsigned) 3725 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {} 3726 }; 3727 3728 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 3729 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 3730 }; 3731 3732 struct MDSignedField : public MDFieldImpl<int64_t> { 3733 int64_t Min; 3734 int64_t Max; 3735 3736 MDSignedField(int64_t Default = 0) 3737 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3738 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3739 : ImplTy(Default), Min(Min), Max(Max) {} 3740 }; 3741 3742 struct MDBoolField : public MDFieldImpl<bool> { 3743 MDBoolField(bool Default = false) : ImplTy(Default) {} 3744 }; 3745 3746 struct MDField : public MDFieldImpl<Metadata *> { 3747 bool AllowNull; 3748 3749 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3750 }; 3751 3752 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 3753 MDConstant() : ImplTy(nullptr) {} 3754 }; 3755 3756 struct MDStringField : public MDFieldImpl<MDString *> { 3757 bool AllowEmpty; 3758 MDStringField(bool AllowEmpty = true) 3759 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3760 }; 3761 3762 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3763 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3764 }; 3765 3766 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 3767 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 3768 }; 3769 3770 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> { 3771 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) 3772 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} 3773 3774 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, 3775 bool AllowNull = true) 3776 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} 3777 3778 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3779 bool isMDField() const { return WhatIs == IsTypeB; } 3780 int64_t getMDSignedValue() const { 3781 assert(isMDSignedField() && "Wrong field type"); 3782 return A.Val; 3783 } 3784 Metadata *getMDFieldValue() const { 3785 assert(isMDField() && "Wrong field type"); 3786 return B.Val; 3787 } 3788 }; 3789 3790 struct MDSignedOrUnsignedField 3791 : MDEitherFieldImpl<MDSignedField, MDUnsignedField> { 3792 MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {} 3793 3794 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3795 bool isMDUnsignedField() const { return WhatIs == IsTypeB; } 3796 int64_t getMDSignedValue() const { 3797 assert(isMDSignedField() && "Wrong field type"); 3798 return A.Val; 3799 } 3800 uint64_t getMDUnsignedValue() const { 3801 assert(isMDUnsignedField() && "Wrong field type"); 3802 return B.Val; 3803 } 3804 }; 3805 3806 } // end anonymous namespace 3807 3808 namespace llvm { 3809 3810 template <> 3811 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3812 MDUnsignedField &Result) { 3813 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3814 return TokError("expected unsigned integer"); 3815 3816 auto &U = Lex.getAPSIntVal(); 3817 if (U.ugt(Result.Max)) 3818 return TokError("value for '" + Name + "' too large, limit is " + 3819 Twine(Result.Max)); 3820 Result.assign(U.getZExtValue()); 3821 assert(Result.Val <= Result.Max && "Expected value in range"); 3822 Lex.Lex(); 3823 return false; 3824 } 3825 3826 template <> 3827 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) { 3828 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3829 } 3830 template <> 3831 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 3832 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3833 } 3834 3835 template <> 3836 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 3837 if (Lex.getKind() == lltok::APSInt) 3838 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3839 3840 if (Lex.getKind() != lltok::DwarfTag) 3841 return TokError("expected DWARF tag"); 3842 3843 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 3844 if (Tag == dwarf::DW_TAG_invalid) 3845 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 3846 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 3847 3848 Result.assign(Tag); 3849 Lex.Lex(); 3850 return false; 3851 } 3852 3853 template <> 3854 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3855 DwarfMacinfoTypeField &Result) { 3856 if (Lex.getKind() == lltok::APSInt) 3857 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3858 3859 if (Lex.getKind() != lltok::DwarfMacinfo) 3860 return TokError("expected DWARF macinfo type"); 3861 3862 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 3863 if (Macinfo == dwarf::DW_MACINFO_invalid) 3864 return TokError( 3865 "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'"); 3866 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 3867 3868 Result.assign(Macinfo); 3869 Lex.Lex(); 3870 return false; 3871 } 3872 3873 template <> 3874 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3875 DwarfVirtualityField &Result) { 3876 if (Lex.getKind() == lltok::APSInt) 3877 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3878 3879 if (Lex.getKind() != lltok::DwarfVirtuality) 3880 return TokError("expected DWARF virtuality code"); 3881 3882 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 3883 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 3884 return TokError("invalid DWARF virtuality code" + Twine(" '") + 3885 Lex.getStrVal() + "'"); 3886 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 3887 Result.assign(Virtuality); 3888 Lex.Lex(); 3889 return false; 3890 } 3891 3892 template <> 3893 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 3894 if (Lex.getKind() == lltok::APSInt) 3895 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3896 3897 if (Lex.getKind() != lltok::DwarfLang) 3898 return TokError("expected DWARF language"); 3899 3900 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 3901 if (!Lang) 3902 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 3903 "'"); 3904 assert(Lang <= Result.Max && "Expected valid DWARF language"); 3905 Result.assign(Lang); 3906 Lex.Lex(); 3907 return false; 3908 } 3909 3910 template <> 3911 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 3912 if (Lex.getKind() == lltok::APSInt) 3913 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3914 3915 if (Lex.getKind() != lltok::DwarfCC) 3916 return TokError("expected DWARF calling convention"); 3917 3918 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 3919 if (!CC) 3920 return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() + 3921 "'"); 3922 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 3923 Result.assign(CC); 3924 Lex.Lex(); 3925 return false; 3926 } 3927 3928 template <> 3929 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) { 3930 if (Lex.getKind() == lltok::APSInt) 3931 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3932 3933 if (Lex.getKind() != lltok::EmissionKind) 3934 return TokError("expected emission kind"); 3935 3936 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 3937 if (!Kind) 3938 return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 3939 "'"); 3940 assert(*Kind <= Result.Max && "Expected valid emission kind"); 3941 Result.assign(*Kind); 3942 Lex.Lex(); 3943 return false; 3944 } 3945 3946 template <> 3947 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3948 NameTableKindField &Result) { 3949 if (Lex.getKind() == lltok::APSInt) 3950 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3951 3952 if (Lex.getKind() != lltok::NameTableKind) 3953 return TokError("expected nameTable kind"); 3954 3955 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal()); 3956 if (!Kind) 3957 return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() + 3958 "'"); 3959 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind"); 3960 Result.assign((unsigned)*Kind); 3961 Lex.Lex(); 3962 return false; 3963 } 3964 3965 template <> 3966 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3967 DwarfAttEncodingField &Result) { 3968 if (Lex.getKind() == lltok::APSInt) 3969 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3970 3971 if (Lex.getKind() != lltok::DwarfAttEncoding) 3972 return TokError("expected DWARF type attribute encoding"); 3973 3974 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 3975 if (!Encoding) 3976 return TokError("invalid DWARF type attribute encoding" + Twine(" '") + 3977 Lex.getStrVal() + "'"); 3978 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 3979 Result.assign(Encoding); 3980 Lex.Lex(); 3981 return false; 3982 } 3983 3984 /// DIFlagField 3985 /// ::= uint32 3986 /// ::= DIFlagVector 3987 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 3988 template <> 3989 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 3990 3991 // Parser for a single flag. 3992 auto parseFlag = [&](DINode::DIFlags &Val) { 3993 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 3994 uint32_t TempVal = static_cast<uint32_t>(Val); 3995 bool Res = ParseUInt32(TempVal); 3996 Val = static_cast<DINode::DIFlags>(TempVal); 3997 return Res; 3998 } 3999 4000 if (Lex.getKind() != lltok::DIFlag) 4001 return TokError("expected debug info flag"); 4002 4003 Val = DINode::getFlag(Lex.getStrVal()); 4004 if (!Val) 4005 return TokError(Twine("invalid debug info flag flag '") + 4006 Lex.getStrVal() + "'"); 4007 Lex.Lex(); 4008 return false; 4009 }; 4010 4011 // Parse the flags and combine them together. 4012 DINode::DIFlags Combined = DINode::FlagZero; 4013 do { 4014 DINode::DIFlags Val; 4015 if (parseFlag(Val)) 4016 return true; 4017 Combined |= Val; 4018 } while (EatIfPresent(lltok::bar)); 4019 4020 Result.assign(Combined); 4021 return false; 4022 } 4023 4024 template <> 4025 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4026 MDSignedField &Result) { 4027 if (Lex.getKind() != lltok::APSInt) 4028 return TokError("expected signed integer"); 4029 4030 auto &S = Lex.getAPSIntVal(); 4031 if (S < Result.Min) 4032 return TokError("value for '" + Name + "' too small, limit is " + 4033 Twine(Result.Min)); 4034 if (S > Result.Max) 4035 return TokError("value for '" + Name + "' too large, limit is " + 4036 Twine(Result.Max)); 4037 Result.assign(S.getExtValue()); 4038 assert(Result.Val >= Result.Min && "Expected value in range"); 4039 assert(Result.Val <= Result.Max && "Expected value in range"); 4040 Lex.Lex(); 4041 return false; 4042 } 4043 4044 template <> 4045 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 4046 switch (Lex.getKind()) { 4047 default: 4048 return TokError("expected 'true' or 'false'"); 4049 case lltok::kw_true: 4050 Result.assign(true); 4051 break; 4052 case lltok::kw_false: 4053 Result.assign(false); 4054 break; 4055 } 4056 Lex.Lex(); 4057 return false; 4058 } 4059 4060 template <> 4061 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) { 4062 if (Lex.getKind() == lltok::kw_null) { 4063 if (!Result.AllowNull) 4064 return TokError("'" + Name + "' cannot be null"); 4065 Lex.Lex(); 4066 Result.assign(nullptr); 4067 return false; 4068 } 4069 4070 Metadata *MD; 4071 if (ParseMetadata(MD, nullptr)) 4072 return true; 4073 4074 Result.assign(MD); 4075 return false; 4076 } 4077 4078 template <> 4079 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4080 MDSignedOrMDField &Result) { 4081 // Try to parse a signed int. 4082 if (Lex.getKind() == lltok::APSInt) { 4083 MDSignedField Res = Result.A; 4084 if (!ParseMDField(Loc, Name, Res)) { 4085 Result.assign(Res); 4086 return false; 4087 } 4088 return true; 4089 } 4090 4091 // Otherwise, try to parse as an MDField. 4092 MDField Res = Result.B; 4093 if (!ParseMDField(Loc, Name, Res)) { 4094 Result.assign(Res); 4095 return false; 4096 } 4097 4098 return true; 4099 } 4100 4101 template <> 4102 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4103 MDSignedOrUnsignedField &Result) { 4104 if (Lex.getKind() != lltok::APSInt) 4105 return false; 4106 4107 if (Lex.getAPSIntVal().isSigned()) { 4108 MDSignedField Res = Result.A; 4109 if (ParseMDField(Loc, Name, Res)) 4110 return true; 4111 Result.assign(Res); 4112 return false; 4113 } 4114 4115 MDUnsignedField Res = Result.B; 4116 if (ParseMDField(Loc, Name, Res)) 4117 return true; 4118 Result.assign(Res); 4119 return false; 4120 } 4121 4122 template <> 4123 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 4124 LocTy ValueLoc = Lex.getLoc(); 4125 std::string S; 4126 if (ParseStringConstant(S)) 4127 return true; 4128 4129 if (!Result.AllowEmpty && S.empty()) 4130 return Error(ValueLoc, "'" + Name + "' cannot be empty"); 4131 4132 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 4133 return false; 4134 } 4135 4136 template <> 4137 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 4138 SmallVector<Metadata *, 4> MDs; 4139 if (ParseMDNodeVector(MDs)) 4140 return true; 4141 4142 Result.assign(std::move(MDs)); 4143 return false; 4144 } 4145 4146 template <> 4147 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4148 ChecksumKindField &Result) { 4149 Optional<DIFile::ChecksumKind> CSKind = 4150 DIFile::getChecksumKind(Lex.getStrVal()); 4151 4152 if (Lex.getKind() != lltok::ChecksumKind || !CSKind) 4153 return TokError( 4154 "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'"); 4155 4156 Result.assign(*CSKind); 4157 Lex.Lex(); 4158 return false; 4159 } 4160 4161 } // end namespace llvm 4162 4163 template <class ParserTy> 4164 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) { 4165 do { 4166 if (Lex.getKind() != lltok::LabelStr) 4167 return TokError("expected field label here"); 4168 4169 if (parseField()) 4170 return true; 4171 } while (EatIfPresent(lltok::comma)); 4172 4173 return false; 4174 } 4175 4176 template <class ParserTy> 4177 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) { 4178 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4179 Lex.Lex(); 4180 4181 if (ParseToken(lltok::lparen, "expected '(' here")) 4182 return true; 4183 if (Lex.getKind() != lltok::rparen) 4184 if (ParseMDFieldsImplBody(parseField)) 4185 return true; 4186 4187 ClosingLoc = Lex.getLoc(); 4188 return ParseToken(lltok::rparen, "expected ')' here"); 4189 } 4190 4191 template <class FieldTy> 4192 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) { 4193 if (Result.Seen) 4194 return TokError("field '" + Name + "' cannot be specified more than once"); 4195 4196 LocTy Loc = Lex.getLoc(); 4197 Lex.Lex(); 4198 return ParseMDField(Loc, Name, Result); 4199 } 4200 4201 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 4202 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4203 4204 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 4205 if (Lex.getStrVal() == #CLASS) \ 4206 return Parse##CLASS(N, IsDistinct); 4207 #include "llvm/IR/Metadata.def" 4208 4209 return TokError("expected metadata type"); 4210 } 4211 4212 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 4213 #define NOP_FIELD(NAME, TYPE, INIT) 4214 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 4215 if (!NAME.Seen) \ 4216 return Error(ClosingLoc, "missing required field '" #NAME "'"); 4217 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 4218 if (Lex.getStrVal() == #NAME) \ 4219 return ParseMDField(#NAME, NAME); 4220 #define PARSE_MD_FIELDS() \ 4221 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 4222 do { \ 4223 LocTy ClosingLoc; \ 4224 if (ParseMDFieldsImpl([&]() -> bool { \ 4225 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 4226 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \ 4227 }, ClosingLoc)) \ 4228 return true; \ 4229 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 4230 } while (false) 4231 #define GET_OR_DISTINCT(CLASS, ARGS) \ 4232 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 4233 4234 /// ParseDILocationFields: 4235 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6) 4236 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) { 4237 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4238 OPTIONAL(line, LineField, ); \ 4239 OPTIONAL(column, ColumnField, ); \ 4240 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4241 OPTIONAL(inlinedAt, MDField, ); 4242 PARSE_MD_FIELDS(); 4243 #undef VISIT_MD_FIELDS 4244 4245 Result = GET_OR_DISTINCT( 4246 DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val)); 4247 return false; 4248 } 4249 4250 /// ParseGenericDINode: 4251 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 4252 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) { 4253 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4254 REQUIRED(tag, DwarfTagField, ); \ 4255 OPTIONAL(header, MDStringField, ); \ 4256 OPTIONAL(operands, MDFieldList, ); 4257 PARSE_MD_FIELDS(); 4258 #undef VISIT_MD_FIELDS 4259 4260 Result = GET_OR_DISTINCT(GenericDINode, 4261 (Context, tag.Val, header.Val, operands.Val)); 4262 return false; 4263 } 4264 4265 /// ParseDISubrange: 4266 /// ::= !DISubrange(count: 30, lowerBound: 2) 4267 /// ::= !DISubrange(count: !node, lowerBound: 2) 4268 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) { 4269 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4270 REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ 4271 OPTIONAL(lowerBound, MDSignedField, ); 4272 PARSE_MD_FIELDS(); 4273 #undef VISIT_MD_FIELDS 4274 4275 if (count.isMDSignedField()) 4276 Result = GET_OR_DISTINCT( 4277 DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val)); 4278 else if (count.isMDField()) 4279 Result = GET_OR_DISTINCT( 4280 DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val)); 4281 else 4282 return true; 4283 4284 return false; 4285 } 4286 4287 /// ParseDIEnumerator: 4288 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind") 4289 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) { 4290 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4291 REQUIRED(name, MDStringField, ); \ 4292 REQUIRED(value, MDSignedOrUnsignedField, ); \ 4293 OPTIONAL(isUnsigned, MDBoolField, (false)); 4294 PARSE_MD_FIELDS(); 4295 #undef VISIT_MD_FIELDS 4296 4297 if (isUnsigned.Val && value.isMDSignedField()) 4298 return TokError("unsigned enumerator with negative value"); 4299 4300 int64_t Value = value.isMDSignedField() 4301 ? value.getMDSignedValue() 4302 : static_cast<int64_t>(value.getMDUnsignedValue()); 4303 Result = 4304 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val)); 4305 4306 return false; 4307 } 4308 4309 /// ParseDIBasicType: 4310 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32, 4311 /// encoding: DW_ATE_encoding, flags: 0) 4312 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) { 4313 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4314 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 4315 OPTIONAL(name, MDStringField, ); \ 4316 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4317 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4318 OPTIONAL(encoding, DwarfAttEncodingField, ); \ 4319 OPTIONAL(flags, DIFlagField, ); 4320 PARSE_MD_FIELDS(); 4321 #undef VISIT_MD_FIELDS 4322 4323 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 4324 align.Val, encoding.Val, flags.Val)); 4325 return false; 4326 } 4327 4328 /// ParseDIDerivedType: 4329 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 4330 /// line: 7, scope: !1, baseType: !2, size: 32, 4331 /// align: 32, offset: 0, flags: 0, extraData: !3, 4332 /// dwarfAddressSpace: 3) 4333 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) { 4334 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4335 REQUIRED(tag, DwarfTagField, ); \ 4336 OPTIONAL(name, MDStringField, ); \ 4337 OPTIONAL(file, MDField, ); \ 4338 OPTIONAL(line, LineField, ); \ 4339 OPTIONAL(scope, MDField, ); \ 4340 REQUIRED(baseType, MDField, ); \ 4341 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4342 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4343 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4344 OPTIONAL(flags, DIFlagField, ); \ 4345 OPTIONAL(extraData, MDField, ); \ 4346 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); 4347 PARSE_MD_FIELDS(); 4348 #undef VISIT_MD_FIELDS 4349 4350 Optional<unsigned> DWARFAddressSpace; 4351 if (dwarfAddressSpace.Val != UINT32_MAX) 4352 DWARFAddressSpace = dwarfAddressSpace.Val; 4353 4354 Result = GET_OR_DISTINCT(DIDerivedType, 4355 (Context, tag.Val, name.Val, file.Val, line.Val, 4356 scope.Val, baseType.Val, size.Val, align.Val, 4357 offset.Val, DWARFAddressSpace, flags.Val, 4358 extraData.Val)); 4359 return false; 4360 } 4361 4362 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) { 4363 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4364 REQUIRED(tag, DwarfTagField, ); \ 4365 OPTIONAL(name, MDStringField, ); \ 4366 OPTIONAL(file, MDField, ); \ 4367 OPTIONAL(line, LineField, ); \ 4368 OPTIONAL(scope, MDField, ); \ 4369 OPTIONAL(baseType, MDField, ); \ 4370 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4371 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4372 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4373 OPTIONAL(flags, DIFlagField, ); \ 4374 OPTIONAL(elements, MDField, ); \ 4375 OPTIONAL(runtimeLang, DwarfLangField, ); \ 4376 OPTIONAL(vtableHolder, MDField, ); \ 4377 OPTIONAL(templateParams, MDField, ); \ 4378 OPTIONAL(identifier, MDStringField, ); \ 4379 OPTIONAL(discriminator, MDField, ); 4380 PARSE_MD_FIELDS(); 4381 #undef VISIT_MD_FIELDS 4382 4383 // If this has an identifier try to build an ODR type. 4384 if (identifier.Val) 4385 if (auto *CT = DICompositeType::buildODRType( 4386 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 4387 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 4388 elements.Val, runtimeLang.Val, vtableHolder.Val, 4389 templateParams.Val, discriminator.Val)) { 4390 Result = CT; 4391 return false; 4392 } 4393 4394 // Create a new node, and save it in the context if it belongs in the type 4395 // map. 4396 Result = GET_OR_DISTINCT( 4397 DICompositeType, 4398 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 4399 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 4400 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val, 4401 discriminator.Val)); 4402 return false; 4403 } 4404 4405 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) { 4406 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4407 OPTIONAL(flags, DIFlagField, ); \ 4408 OPTIONAL(cc, DwarfCCField, ); \ 4409 REQUIRED(types, MDField, ); 4410 PARSE_MD_FIELDS(); 4411 #undef VISIT_MD_FIELDS 4412 4413 Result = GET_OR_DISTINCT(DISubroutineType, 4414 (Context, flags.Val, cc.Val, types.Val)); 4415 return false; 4416 } 4417 4418 /// ParseDIFileType: 4419 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir", 4420 /// checksumkind: CSK_MD5, 4421 /// checksum: "000102030405060708090a0b0c0d0e0f", 4422 /// source: "source file contents") 4423 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) { 4424 // The default constructed value for checksumkind is required, but will never 4425 // be used, as the parser checks if the field was actually Seen before using 4426 // the Val. 4427 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4428 REQUIRED(filename, MDStringField, ); \ 4429 REQUIRED(directory, MDStringField, ); \ 4430 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \ 4431 OPTIONAL(checksum, MDStringField, ); \ 4432 OPTIONAL(source, MDStringField, ); 4433 PARSE_MD_FIELDS(); 4434 #undef VISIT_MD_FIELDS 4435 4436 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum; 4437 if (checksumkind.Seen && checksum.Seen) 4438 OptChecksum.emplace(checksumkind.Val, checksum.Val); 4439 else if (checksumkind.Seen || checksum.Seen) 4440 return Lex.Error("'checksumkind' and 'checksum' must be provided together"); 4441 4442 Optional<MDString *> OptSource; 4443 if (source.Seen) 4444 OptSource = source.Val; 4445 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val, 4446 OptChecksum, OptSource)); 4447 return false; 4448 } 4449 4450 /// ParseDICompileUnit: 4451 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 4452 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 4453 /// splitDebugFilename: "abc.debug", 4454 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 4455 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd) 4456 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) { 4457 if (!IsDistinct) 4458 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 4459 4460 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4461 REQUIRED(language, DwarfLangField, ); \ 4462 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 4463 OPTIONAL(producer, MDStringField, ); \ 4464 OPTIONAL(isOptimized, MDBoolField, ); \ 4465 OPTIONAL(flags, MDStringField, ); \ 4466 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 4467 OPTIONAL(splitDebugFilename, MDStringField, ); \ 4468 OPTIONAL(emissionKind, EmissionKindField, ); \ 4469 OPTIONAL(enums, MDField, ); \ 4470 OPTIONAL(retainedTypes, MDField, ); \ 4471 OPTIONAL(globals, MDField, ); \ 4472 OPTIONAL(imports, MDField, ); \ 4473 OPTIONAL(macros, MDField, ); \ 4474 OPTIONAL(dwoId, MDUnsignedField, ); \ 4475 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 4476 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 4477 OPTIONAL(nameTableKind, NameTableKindField, ); 4478 PARSE_MD_FIELDS(); 4479 #undef VISIT_MD_FIELDS 4480 4481 Result = DICompileUnit::getDistinct( 4482 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 4483 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 4484 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 4485 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val); 4486 return false; 4487 } 4488 4489 /// ParseDISubprogram: 4490 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 4491 /// file: !1, line: 7, type: !2, isLocal: false, 4492 /// isDefinition: true, scopeLine: 8, containingType: !3, 4493 /// virtuality: DW_VIRTUALTIY_pure_virtual, 4494 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 4495 /// isOptimized: false, templateParams: !4, declaration: !5, 4496 /// retainedNodes: !6, thrownTypes: !7) 4497 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) { 4498 auto Loc = Lex.getLoc(); 4499 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4500 OPTIONAL(scope, MDField, ); \ 4501 OPTIONAL(name, MDStringField, ); \ 4502 OPTIONAL(linkageName, MDStringField, ); \ 4503 OPTIONAL(file, MDField, ); \ 4504 OPTIONAL(line, LineField, ); \ 4505 OPTIONAL(type, MDField, ); \ 4506 OPTIONAL(isLocal, MDBoolField, ); \ 4507 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4508 OPTIONAL(scopeLine, LineField, ); \ 4509 OPTIONAL(containingType, MDField, ); \ 4510 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 4511 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 4512 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 4513 OPTIONAL(flags, DIFlagField, ); \ 4514 OPTIONAL(isOptimized, MDBoolField, ); \ 4515 OPTIONAL(unit, MDField, ); \ 4516 OPTIONAL(templateParams, MDField, ); \ 4517 OPTIONAL(declaration, MDField, ); \ 4518 OPTIONAL(retainedNodes, MDField, ); \ 4519 OPTIONAL(thrownTypes, MDField, ); 4520 PARSE_MD_FIELDS(); 4521 #undef VISIT_MD_FIELDS 4522 4523 if (isDefinition.Val && !IsDistinct) 4524 return Lex.Error( 4525 Loc, 4526 "missing 'distinct', required for !DISubprogram when 'isDefinition'"); 4527 4528 Result = GET_OR_DISTINCT( 4529 DISubprogram, 4530 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 4531 type.Val, isLocal.Val, isDefinition.Val, scopeLine.Val, 4532 containingType.Val, virtuality.Val, virtualIndex.Val, thisAdjustment.Val, 4533 flags.Val, isOptimized.Val, unit.Val, templateParams.Val, 4534 declaration.Val, retainedNodes.Val, thrownTypes.Val)); 4535 return false; 4536 } 4537 4538 /// ParseDILexicalBlock: 4539 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 4540 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 4541 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4542 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4543 OPTIONAL(file, MDField, ); \ 4544 OPTIONAL(line, LineField, ); \ 4545 OPTIONAL(column, ColumnField, ); 4546 PARSE_MD_FIELDS(); 4547 #undef VISIT_MD_FIELDS 4548 4549 Result = GET_OR_DISTINCT( 4550 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 4551 return false; 4552 } 4553 4554 /// ParseDILexicalBlockFile: 4555 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 4556 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 4557 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4558 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4559 OPTIONAL(file, MDField, ); \ 4560 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 4561 PARSE_MD_FIELDS(); 4562 #undef VISIT_MD_FIELDS 4563 4564 Result = GET_OR_DISTINCT(DILexicalBlockFile, 4565 (Context, scope.Val, file.Val, discriminator.Val)); 4566 return false; 4567 } 4568 4569 /// ParseDINamespace: 4570 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 4571 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) { 4572 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4573 REQUIRED(scope, MDField, ); \ 4574 OPTIONAL(name, MDStringField, ); \ 4575 OPTIONAL(exportSymbols, MDBoolField, ); 4576 PARSE_MD_FIELDS(); 4577 #undef VISIT_MD_FIELDS 4578 4579 Result = GET_OR_DISTINCT(DINamespace, 4580 (Context, scope.Val, name.Val, exportSymbols.Val)); 4581 return false; 4582 } 4583 4584 /// ParseDIMacro: 4585 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue") 4586 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) { 4587 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4588 REQUIRED(type, DwarfMacinfoTypeField, ); \ 4589 OPTIONAL(line, LineField, ); \ 4590 REQUIRED(name, MDStringField, ); \ 4591 OPTIONAL(value, MDStringField, ); 4592 PARSE_MD_FIELDS(); 4593 #undef VISIT_MD_FIELDS 4594 4595 Result = GET_OR_DISTINCT(DIMacro, 4596 (Context, type.Val, line.Val, name.Val, value.Val)); 4597 return false; 4598 } 4599 4600 /// ParseDIMacroFile: 4601 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 4602 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) { 4603 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4604 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 4605 OPTIONAL(line, LineField, ); \ 4606 REQUIRED(file, MDField, ); \ 4607 OPTIONAL(nodes, MDField, ); 4608 PARSE_MD_FIELDS(); 4609 #undef VISIT_MD_FIELDS 4610 4611 Result = GET_OR_DISTINCT(DIMacroFile, 4612 (Context, type.Val, line.Val, file.Val, nodes.Val)); 4613 return false; 4614 } 4615 4616 /// ParseDIModule: 4617 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG", 4618 /// includePath: "/usr/include", isysroot: "/") 4619 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) { 4620 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4621 REQUIRED(scope, MDField, ); \ 4622 REQUIRED(name, MDStringField, ); \ 4623 OPTIONAL(configMacros, MDStringField, ); \ 4624 OPTIONAL(includePath, MDStringField, ); \ 4625 OPTIONAL(isysroot, MDStringField, ); 4626 PARSE_MD_FIELDS(); 4627 #undef VISIT_MD_FIELDS 4628 4629 Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val, 4630 configMacros.Val, includePath.Val, isysroot.Val)); 4631 return false; 4632 } 4633 4634 /// ParseDITemplateTypeParameter: 4635 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1) 4636 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 4637 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4638 OPTIONAL(name, MDStringField, ); \ 4639 REQUIRED(type, MDField, ); 4640 PARSE_MD_FIELDS(); 4641 #undef VISIT_MD_FIELDS 4642 4643 Result = 4644 GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val)); 4645 return false; 4646 } 4647 4648 /// ParseDITemplateValueParameter: 4649 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 4650 /// name: "V", type: !1, value: i32 7) 4651 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 4652 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4653 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 4654 OPTIONAL(name, MDStringField, ); \ 4655 OPTIONAL(type, MDField, ); \ 4656 REQUIRED(value, MDField, ); 4657 PARSE_MD_FIELDS(); 4658 #undef VISIT_MD_FIELDS 4659 4660 Result = GET_OR_DISTINCT(DITemplateValueParameter, 4661 (Context, tag.Val, name.Val, type.Val, value.Val)); 4662 return false; 4663 } 4664 4665 /// ParseDIGlobalVariable: 4666 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 4667 /// file: !1, line: 7, type: !2, isLocal: false, 4668 /// isDefinition: true, declaration: !3, align: 8) 4669 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 4670 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4671 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 4672 OPTIONAL(scope, MDField, ); \ 4673 OPTIONAL(linkageName, MDStringField, ); \ 4674 OPTIONAL(file, MDField, ); \ 4675 OPTIONAL(line, LineField, ); \ 4676 OPTIONAL(type, MDField, ); \ 4677 OPTIONAL(isLocal, MDBoolField, ); \ 4678 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4679 OPTIONAL(declaration, MDField, ); \ 4680 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4681 PARSE_MD_FIELDS(); 4682 #undef VISIT_MD_FIELDS 4683 4684 Result = GET_OR_DISTINCT(DIGlobalVariable, 4685 (Context, scope.Val, name.Val, linkageName.Val, 4686 file.Val, line.Val, type.Val, isLocal.Val, 4687 isDefinition.Val, declaration.Val, align.Val)); 4688 return false; 4689 } 4690 4691 /// ParseDILocalVariable: 4692 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 4693 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4694 /// align: 8) 4695 /// ::= !DILocalVariable(scope: !0, name: "foo", 4696 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4697 /// align: 8) 4698 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) { 4699 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4700 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4701 OPTIONAL(name, MDStringField, ); \ 4702 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 4703 OPTIONAL(file, MDField, ); \ 4704 OPTIONAL(line, LineField, ); \ 4705 OPTIONAL(type, MDField, ); \ 4706 OPTIONAL(flags, DIFlagField, ); \ 4707 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4708 PARSE_MD_FIELDS(); 4709 #undef VISIT_MD_FIELDS 4710 4711 Result = GET_OR_DISTINCT(DILocalVariable, 4712 (Context, scope.Val, name.Val, file.Val, line.Val, 4713 type.Val, arg.Val, flags.Val, align.Val)); 4714 return false; 4715 } 4716 4717 /// ParseDILabel: 4718 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7) 4719 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) { 4720 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4721 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4722 REQUIRED(name, MDStringField, ); \ 4723 REQUIRED(file, MDField, ); \ 4724 REQUIRED(line, LineField, ); 4725 PARSE_MD_FIELDS(); 4726 #undef VISIT_MD_FIELDS 4727 4728 Result = GET_OR_DISTINCT(DILabel, 4729 (Context, scope.Val, name.Val, file.Val, line.Val)); 4730 return false; 4731 } 4732 4733 /// ParseDIExpression: 4734 /// ::= !DIExpression(0, 7, -1) 4735 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) { 4736 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4737 Lex.Lex(); 4738 4739 if (ParseToken(lltok::lparen, "expected '(' here")) 4740 return true; 4741 4742 SmallVector<uint64_t, 8> Elements; 4743 if (Lex.getKind() != lltok::rparen) 4744 do { 4745 if (Lex.getKind() == lltok::DwarfOp) { 4746 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 4747 Lex.Lex(); 4748 Elements.push_back(Op); 4749 continue; 4750 } 4751 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 4752 } 4753 4754 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4755 return TokError("expected unsigned integer"); 4756 4757 auto &U = Lex.getAPSIntVal(); 4758 if (U.ugt(UINT64_MAX)) 4759 return TokError("element too large, limit is " + Twine(UINT64_MAX)); 4760 Elements.push_back(U.getZExtValue()); 4761 Lex.Lex(); 4762 } while (EatIfPresent(lltok::comma)); 4763 4764 if (ParseToken(lltok::rparen, "expected ')' here")) 4765 return true; 4766 4767 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 4768 return false; 4769 } 4770 4771 /// ParseDIGlobalVariableExpression: 4772 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 4773 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result, 4774 bool IsDistinct) { 4775 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4776 REQUIRED(var, MDField, ); \ 4777 REQUIRED(expr, MDField, ); 4778 PARSE_MD_FIELDS(); 4779 #undef VISIT_MD_FIELDS 4780 4781 Result = 4782 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 4783 return false; 4784 } 4785 4786 /// ParseDIObjCProperty: 4787 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 4788 /// getter: "getFoo", attributes: 7, type: !2) 4789 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 4790 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4791 OPTIONAL(name, MDStringField, ); \ 4792 OPTIONAL(file, MDField, ); \ 4793 OPTIONAL(line, LineField, ); \ 4794 OPTIONAL(setter, MDStringField, ); \ 4795 OPTIONAL(getter, MDStringField, ); \ 4796 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 4797 OPTIONAL(type, MDField, ); 4798 PARSE_MD_FIELDS(); 4799 #undef VISIT_MD_FIELDS 4800 4801 Result = GET_OR_DISTINCT(DIObjCProperty, 4802 (Context, name.Val, file.Val, line.Val, setter.Val, 4803 getter.Val, attributes.Val, type.Val)); 4804 return false; 4805 } 4806 4807 /// ParseDIImportedEntity: 4808 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 4809 /// line: 7, name: "foo") 4810 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 4811 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4812 REQUIRED(tag, DwarfTagField, ); \ 4813 REQUIRED(scope, MDField, ); \ 4814 OPTIONAL(entity, MDField, ); \ 4815 OPTIONAL(file, MDField, ); \ 4816 OPTIONAL(line, LineField, ); \ 4817 OPTIONAL(name, MDStringField, ); 4818 PARSE_MD_FIELDS(); 4819 #undef VISIT_MD_FIELDS 4820 4821 Result = GET_OR_DISTINCT( 4822 DIImportedEntity, 4823 (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val)); 4824 return false; 4825 } 4826 4827 #undef PARSE_MD_FIELD 4828 #undef NOP_FIELD 4829 #undef REQUIRE_FIELD 4830 #undef DECLARE_FIELD 4831 4832 /// ParseMetadataAsValue 4833 /// ::= metadata i32 %local 4834 /// ::= metadata i32 @global 4835 /// ::= metadata i32 7 4836 /// ::= metadata !0 4837 /// ::= metadata !{...} 4838 /// ::= metadata !"string" 4839 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 4840 // Note: the type 'metadata' has already been parsed. 4841 Metadata *MD; 4842 if (ParseMetadata(MD, &PFS)) 4843 return true; 4844 4845 V = MetadataAsValue::get(Context, MD); 4846 return false; 4847 } 4848 4849 /// ParseValueAsMetadata 4850 /// ::= i32 %local 4851 /// ::= i32 @global 4852 /// ::= i32 7 4853 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 4854 PerFunctionState *PFS) { 4855 Type *Ty; 4856 LocTy Loc; 4857 if (ParseType(Ty, TypeMsg, Loc)) 4858 return true; 4859 if (Ty->isMetadataTy()) 4860 return Error(Loc, "invalid metadata-value-metadata roundtrip"); 4861 4862 Value *V; 4863 if (ParseValue(Ty, V, PFS)) 4864 return true; 4865 4866 MD = ValueAsMetadata::get(V); 4867 return false; 4868 } 4869 4870 /// ParseMetadata 4871 /// ::= i32 %local 4872 /// ::= i32 @global 4873 /// ::= i32 7 4874 /// ::= !42 4875 /// ::= !{...} 4876 /// ::= !"string" 4877 /// ::= !DILocation(...) 4878 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) { 4879 if (Lex.getKind() == lltok::MetadataVar) { 4880 MDNode *N; 4881 if (ParseSpecializedMDNode(N)) 4882 return true; 4883 MD = N; 4884 return false; 4885 } 4886 4887 // ValueAsMetadata: 4888 // <type> <value> 4889 if (Lex.getKind() != lltok::exclaim) 4890 return ParseValueAsMetadata(MD, "expected metadata operand", PFS); 4891 4892 // '!'. 4893 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 4894 Lex.Lex(); 4895 4896 // MDString: 4897 // ::= '!' STRINGCONSTANT 4898 if (Lex.getKind() == lltok::StringConstant) { 4899 MDString *S; 4900 if (ParseMDString(S)) 4901 return true; 4902 MD = S; 4903 return false; 4904 } 4905 4906 // MDNode: 4907 // !{ ... } 4908 // !7 4909 MDNode *N; 4910 if (ParseMDNodeTail(N)) 4911 return true; 4912 MD = N; 4913 return false; 4914 } 4915 4916 //===----------------------------------------------------------------------===// 4917 // Function Parsing. 4918 //===----------------------------------------------------------------------===// 4919 4920 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 4921 PerFunctionState *PFS, bool IsCall) { 4922 if (Ty->isFunctionTy()) 4923 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 4924 4925 switch (ID.Kind) { 4926 case ValID::t_LocalID: 4927 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4928 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall); 4929 return V == nullptr; 4930 case ValID::t_LocalName: 4931 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4932 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall); 4933 return V == nullptr; 4934 case ValID::t_InlineAsm: { 4935 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 4936 return Error(ID.Loc, "invalid type for inline asm constraint string"); 4937 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, 4938 (ID.UIntVal >> 1) & 1, 4939 (InlineAsm::AsmDialect(ID.UIntVal >> 2))); 4940 return false; 4941 } 4942 case ValID::t_GlobalName: 4943 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc); 4944 return V == nullptr; 4945 case ValID::t_GlobalID: 4946 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc); 4947 return V == nullptr; 4948 case ValID::t_APSInt: 4949 if (!Ty->isIntegerTy()) 4950 return Error(ID.Loc, "integer constant must have integer type"); 4951 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 4952 V = ConstantInt::get(Context, ID.APSIntVal); 4953 return false; 4954 case ValID::t_APFloat: 4955 if (!Ty->isFloatingPointTy() || 4956 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 4957 return Error(ID.Loc, "floating point constant invalid for type"); 4958 4959 // The lexer has no type info, so builds all half, float, and double FP 4960 // constants as double. Fix this here. Long double does not need this. 4961 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 4962 bool Ignored; 4963 if (Ty->isHalfTy()) 4964 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 4965 &Ignored); 4966 else if (Ty->isFloatTy()) 4967 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 4968 &Ignored); 4969 } 4970 V = ConstantFP::get(Context, ID.APFloatVal); 4971 4972 if (V->getType() != Ty) 4973 return Error(ID.Loc, "floating point constant does not have type '" + 4974 getTypeString(Ty) + "'"); 4975 4976 return false; 4977 case ValID::t_Null: 4978 if (!Ty->isPointerTy()) 4979 return Error(ID.Loc, "null must be a pointer type"); 4980 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 4981 return false; 4982 case ValID::t_Undef: 4983 // FIXME: LabelTy should not be a first-class type. 4984 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4985 return Error(ID.Loc, "invalid type for undef constant"); 4986 V = UndefValue::get(Ty); 4987 return false; 4988 case ValID::t_EmptyArray: 4989 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 4990 return Error(ID.Loc, "invalid empty array initializer"); 4991 V = UndefValue::get(Ty); 4992 return false; 4993 case ValID::t_Zero: 4994 // FIXME: LabelTy should not be a first-class type. 4995 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4996 return Error(ID.Loc, "invalid type for null constant"); 4997 V = Constant::getNullValue(Ty); 4998 return false; 4999 case ValID::t_None: 5000 if (!Ty->isTokenTy()) 5001 return Error(ID.Loc, "invalid type for none constant"); 5002 V = Constant::getNullValue(Ty); 5003 return false; 5004 case ValID::t_Constant: 5005 if (ID.ConstantVal->getType() != Ty) 5006 return Error(ID.Loc, "constant expression type mismatch"); 5007 5008 V = ID.ConstantVal; 5009 return false; 5010 case ValID::t_ConstantStruct: 5011 case ValID::t_PackedConstantStruct: 5012 if (StructType *ST = dyn_cast<StructType>(Ty)) { 5013 if (ST->getNumElements() != ID.UIntVal) 5014 return Error(ID.Loc, 5015 "initializer with struct type has wrong # elements"); 5016 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 5017 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 5018 5019 // Verify that the elements are compatible with the structtype. 5020 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 5021 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 5022 return Error(ID.Loc, "element " + Twine(i) + 5023 " of struct initializer doesn't match struct element type"); 5024 5025 V = ConstantStruct::get( 5026 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 5027 } else 5028 return Error(ID.Loc, "constant expression type mismatch"); 5029 return false; 5030 } 5031 llvm_unreachable("Invalid ValID"); 5032 } 5033 5034 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 5035 C = nullptr; 5036 ValID ID; 5037 auto Loc = Lex.getLoc(); 5038 if (ParseValID(ID, /*PFS=*/nullptr)) 5039 return true; 5040 switch (ID.Kind) { 5041 case ValID::t_APSInt: 5042 case ValID::t_APFloat: 5043 case ValID::t_Undef: 5044 case ValID::t_Constant: 5045 case ValID::t_ConstantStruct: 5046 case ValID::t_PackedConstantStruct: { 5047 Value *V; 5048 if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false)) 5049 return true; 5050 assert(isa<Constant>(V) && "Expected a constant value"); 5051 C = cast<Constant>(V); 5052 return false; 5053 } 5054 case ValID::t_Null: 5055 C = Constant::getNullValue(Ty); 5056 return false; 5057 default: 5058 return Error(Loc, "expected a constant value"); 5059 } 5060 } 5061 5062 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 5063 V = nullptr; 5064 ValID ID; 5065 return ParseValID(ID, PFS) || 5066 ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false); 5067 } 5068 5069 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 5070 Type *Ty = nullptr; 5071 return ParseType(Ty) || 5072 ParseValue(Ty, V, PFS); 5073 } 5074 5075 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 5076 PerFunctionState &PFS) { 5077 Value *V; 5078 Loc = Lex.getLoc(); 5079 if (ParseTypeAndValue(V, PFS)) return true; 5080 if (!isa<BasicBlock>(V)) 5081 return Error(Loc, "expected a basic block"); 5082 BB = cast<BasicBlock>(V); 5083 return false; 5084 } 5085 5086 /// FunctionHeader 5087 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 5088 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 5089 /// '(' ArgList ')' OptFuncAttrs OptSection OptionalAlign OptGC 5090 /// OptionalPrefix OptionalPrologue OptPersonalityFn 5091 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 5092 // Parse the linkage. 5093 LocTy LinkageLoc = Lex.getLoc(); 5094 unsigned Linkage; 5095 unsigned Visibility; 5096 unsigned DLLStorageClass; 5097 bool DSOLocal; 5098 AttrBuilder RetAttrs; 5099 unsigned CC; 5100 bool HasLinkage; 5101 Type *RetType = nullptr; 5102 LocTy RetTypeLoc = Lex.getLoc(); 5103 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 5104 DSOLocal) || 5105 ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5106 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 5107 return true; 5108 5109 // Verify that the linkage is ok. 5110 switch ((GlobalValue::LinkageTypes)Linkage) { 5111 case GlobalValue::ExternalLinkage: 5112 break; // always ok. 5113 case GlobalValue::ExternalWeakLinkage: 5114 if (isDefine) 5115 return Error(LinkageLoc, "invalid linkage for function definition"); 5116 break; 5117 case GlobalValue::PrivateLinkage: 5118 case GlobalValue::InternalLinkage: 5119 case GlobalValue::AvailableExternallyLinkage: 5120 case GlobalValue::LinkOnceAnyLinkage: 5121 case GlobalValue::LinkOnceODRLinkage: 5122 case GlobalValue::WeakAnyLinkage: 5123 case GlobalValue::WeakODRLinkage: 5124 if (!isDefine) 5125 return Error(LinkageLoc, "invalid linkage for function declaration"); 5126 break; 5127 case GlobalValue::AppendingLinkage: 5128 case GlobalValue::CommonLinkage: 5129 return Error(LinkageLoc, "invalid function linkage type"); 5130 } 5131 5132 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 5133 return Error(LinkageLoc, 5134 "symbol with local linkage must have default visibility"); 5135 5136 if (!FunctionType::isValidReturnType(RetType)) 5137 return Error(RetTypeLoc, "invalid function return type"); 5138 5139 LocTy NameLoc = Lex.getLoc(); 5140 5141 std::string FunctionName; 5142 if (Lex.getKind() == lltok::GlobalVar) { 5143 FunctionName = Lex.getStrVal(); 5144 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 5145 unsigned NameID = Lex.getUIntVal(); 5146 5147 if (NameID != NumberedVals.size()) 5148 return TokError("function expected to be numbered '%" + 5149 Twine(NumberedVals.size()) + "'"); 5150 } else { 5151 return TokError("expected function name"); 5152 } 5153 5154 Lex.Lex(); 5155 5156 if (Lex.getKind() != lltok::lparen) 5157 return TokError("expected '(' in function argument list"); 5158 5159 SmallVector<ArgInfo, 8> ArgList; 5160 bool isVarArg; 5161 AttrBuilder FuncAttrs; 5162 std::vector<unsigned> FwdRefAttrGrps; 5163 LocTy BuiltinLoc; 5164 std::string Section; 5165 unsigned Alignment; 5166 std::string GC; 5167 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 5168 Constant *Prefix = nullptr; 5169 Constant *Prologue = nullptr; 5170 Constant *PersonalityFn = nullptr; 5171 Comdat *C; 5172 5173 if (ParseArgumentList(ArgList, isVarArg) || 5174 ParseOptionalUnnamedAddr(UnnamedAddr) || 5175 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 5176 BuiltinLoc) || 5177 (EatIfPresent(lltok::kw_section) && 5178 ParseStringConstant(Section)) || 5179 parseOptionalComdat(FunctionName, C) || 5180 ParseOptionalAlignment(Alignment) || 5181 (EatIfPresent(lltok::kw_gc) && 5182 ParseStringConstant(GC)) || 5183 (EatIfPresent(lltok::kw_prefix) && 5184 ParseGlobalTypeAndValue(Prefix)) || 5185 (EatIfPresent(lltok::kw_prologue) && 5186 ParseGlobalTypeAndValue(Prologue)) || 5187 (EatIfPresent(lltok::kw_personality) && 5188 ParseGlobalTypeAndValue(PersonalityFn))) 5189 return true; 5190 5191 if (FuncAttrs.contains(Attribute::Builtin)) 5192 return Error(BuiltinLoc, "'builtin' attribute not valid on function"); 5193 5194 // If the alignment was parsed as an attribute, move to the alignment field. 5195 if (FuncAttrs.hasAlignmentAttr()) { 5196 Alignment = FuncAttrs.getAlignment(); 5197 FuncAttrs.removeAttribute(Attribute::Alignment); 5198 } 5199 5200 // Okay, if we got here, the function is syntactically valid. Convert types 5201 // and do semantic checks. 5202 std::vector<Type*> ParamTypeList; 5203 SmallVector<AttributeSet, 8> Attrs; 5204 5205 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5206 ParamTypeList.push_back(ArgList[i].Ty); 5207 Attrs.push_back(ArgList[i].Attrs); 5208 } 5209 5210 AttributeList PAL = 5211 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 5212 AttributeSet::get(Context, RetAttrs), Attrs); 5213 5214 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 5215 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 5216 5217 FunctionType *FT = 5218 FunctionType::get(RetType, ParamTypeList, isVarArg); 5219 PointerType *PFT = PointerType::getUnqual(FT); 5220 5221 Fn = nullptr; 5222 if (!FunctionName.empty()) { 5223 // If this was a definition of a forward reference, remove the definition 5224 // from the forward reference table and fill in the forward ref. 5225 auto FRVI = ForwardRefVals.find(FunctionName); 5226 if (FRVI != ForwardRefVals.end()) { 5227 Fn = M->getFunction(FunctionName); 5228 if (!Fn) 5229 return Error(FRVI->second.second, "invalid forward reference to " 5230 "function as global value!"); 5231 if (Fn->getType() != PFT) 5232 return Error(FRVI->second.second, "invalid forward reference to " 5233 "function '" + FunctionName + "' with wrong type!"); 5234 5235 ForwardRefVals.erase(FRVI); 5236 } else if ((Fn = M->getFunction(FunctionName))) { 5237 // Reject redefinitions. 5238 return Error(NameLoc, "invalid redefinition of function '" + 5239 FunctionName + "'"); 5240 } else if (M->getNamedValue(FunctionName)) { 5241 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 5242 } 5243 5244 } else { 5245 // If this is a definition of a forward referenced function, make sure the 5246 // types agree. 5247 auto I = ForwardRefValIDs.find(NumberedVals.size()); 5248 if (I != ForwardRefValIDs.end()) { 5249 Fn = cast<Function>(I->second.first); 5250 if (Fn->getType() != PFT) 5251 return Error(NameLoc, "type of definition and forward reference of '@" + 5252 Twine(NumberedVals.size()) + "' disagree"); 5253 ForwardRefValIDs.erase(I); 5254 } 5255 } 5256 5257 if (!Fn) 5258 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M); 5259 else // Move the forward-reference to the correct spot in the module. 5260 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 5261 5262 if (FunctionName.empty()) 5263 NumberedVals.push_back(Fn); 5264 5265 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 5266 maybeSetDSOLocal(DSOLocal, *Fn); 5267 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 5268 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 5269 Fn->setCallingConv(CC); 5270 Fn->setAttributes(PAL); 5271 Fn->setUnnamedAddr(UnnamedAddr); 5272 Fn->setAlignment(Alignment); 5273 Fn->setSection(Section); 5274 Fn->setComdat(C); 5275 Fn->setPersonalityFn(PersonalityFn); 5276 if (!GC.empty()) Fn->setGC(GC); 5277 Fn->setPrefixData(Prefix); 5278 Fn->setPrologueData(Prologue); 5279 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 5280 5281 // Add all of the arguments we parsed to the function. 5282 Function::arg_iterator ArgIt = Fn->arg_begin(); 5283 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 5284 // If the argument has a name, insert it into the argument symbol table. 5285 if (ArgList[i].Name.empty()) continue; 5286 5287 // Set the name, if it conflicted, it will be auto-renamed. 5288 ArgIt->setName(ArgList[i].Name); 5289 5290 if (ArgIt->getName() != ArgList[i].Name) 5291 return Error(ArgList[i].Loc, "redefinition of argument '%" + 5292 ArgList[i].Name + "'"); 5293 } 5294 5295 if (isDefine) 5296 return false; 5297 5298 // Check the declaration has no block address forward references. 5299 ValID ID; 5300 if (FunctionName.empty()) { 5301 ID.Kind = ValID::t_GlobalID; 5302 ID.UIntVal = NumberedVals.size() - 1; 5303 } else { 5304 ID.Kind = ValID::t_GlobalName; 5305 ID.StrVal = FunctionName; 5306 } 5307 auto Blocks = ForwardRefBlockAddresses.find(ID); 5308 if (Blocks != ForwardRefBlockAddresses.end()) 5309 return Error(Blocks->first.Loc, 5310 "cannot take blockaddress inside a declaration"); 5311 return false; 5312 } 5313 5314 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 5315 ValID ID; 5316 if (FunctionNumber == -1) { 5317 ID.Kind = ValID::t_GlobalName; 5318 ID.StrVal = F.getName(); 5319 } else { 5320 ID.Kind = ValID::t_GlobalID; 5321 ID.UIntVal = FunctionNumber; 5322 } 5323 5324 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 5325 if (Blocks == P.ForwardRefBlockAddresses.end()) 5326 return false; 5327 5328 for (const auto &I : Blocks->second) { 5329 const ValID &BBID = I.first; 5330 GlobalValue *GV = I.second; 5331 5332 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 5333 "Expected local id or name"); 5334 BasicBlock *BB; 5335 if (BBID.Kind == ValID::t_LocalName) 5336 BB = GetBB(BBID.StrVal, BBID.Loc); 5337 else 5338 BB = GetBB(BBID.UIntVal, BBID.Loc); 5339 if (!BB) 5340 return P.Error(BBID.Loc, "referenced value is not a basic block"); 5341 5342 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 5343 GV->eraseFromParent(); 5344 } 5345 5346 P.ForwardRefBlockAddresses.erase(Blocks); 5347 return false; 5348 } 5349 5350 /// ParseFunctionBody 5351 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 5352 bool LLParser::ParseFunctionBody(Function &Fn) { 5353 if (Lex.getKind() != lltok::lbrace) 5354 return TokError("expected '{' in function body"); 5355 Lex.Lex(); // eat the {. 5356 5357 int FunctionNumber = -1; 5358 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 5359 5360 PerFunctionState PFS(*this, Fn, FunctionNumber); 5361 5362 // Resolve block addresses and allow basic blocks to be forward-declared 5363 // within this function. 5364 if (PFS.resolveForwardRefBlockAddresses()) 5365 return true; 5366 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 5367 5368 // We need at least one basic block. 5369 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 5370 return TokError("function body requires at least one basic block"); 5371 5372 while (Lex.getKind() != lltok::rbrace && 5373 Lex.getKind() != lltok::kw_uselistorder) 5374 if (ParseBasicBlock(PFS)) return true; 5375 5376 while (Lex.getKind() != lltok::rbrace) 5377 if (ParseUseListOrder(&PFS)) 5378 return true; 5379 5380 // Eat the }. 5381 Lex.Lex(); 5382 5383 // Verify function is ok. 5384 return PFS.FinishFunction(); 5385 } 5386 5387 /// ParseBasicBlock 5388 /// ::= LabelStr? Instruction* 5389 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 5390 // If this basic block starts out with a name, remember it. 5391 std::string Name; 5392 LocTy NameLoc = Lex.getLoc(); 5393 if (Lex.getKind() == lltok::LabelStr) { 5394 Name = Lex.getStrVal(); 5395 Lex.Lex(); 5396 } 5397 5398 BasicBlock *BB = PFS.DefineBB(Name, NameLoc); 5399 if (!BB) 5400 return Error(NameLoc, 5401 "unable to create block named '" + Name + "'"); 5402 5403 std::string NameStr; 5404 5405 // Parse the instructions in this block until we get a terminator. 5406 Instruction *Inst; 5407 do { 5408 // This instruction may have three possibilities for a name: a) none 5409 // specified, b) name specified "%foo =", c) number specified: "%4 =". 5410 LocTy NameLoc = Lex.getLoc(); 5411 int NameID = -1; 5412 NameStr = ""; 5413 5414 if (Lex.getKind() == lltok::LocalVarID) { 5415 NameID = Lex.getUIntVal(); 5416 Lex.Lex(); 5417 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 5418 return true; 5419 } else if (Lex.getKind() == lltok::LocalVar) { 5420 NameStr = Lex.getStrVal(); 5421 Lex.Lex(); 5422 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 5423 return true; 5424 } 5425 5426 switch (ParseInstruction(Inst, BB, PFS)) { 5427 default: llvm_unreachable("Unknown ParseInstruction result!"); 5428 case InstError: return true; 5429 case InstNormal: 5430 BB->getInstList().push_back(Inst); 5431 5432 // With a normal result, we check to see if the instruction is followed by 5433 // a comma and metadata. 5434 if (EatIfPresent(lltok::comma)) 5435 if (ParseInstructionMetadata(*Inst)) 5436 return true; 5437 break; 5438 case InstExtraComma: 5439 BB->getInstList().push_back(Inst); 5440 5441 // If the instruction parser ate an extra comma at the end of it, it 5442 // *must* be followed by metadata. 5443 if (ParseInstructionMetadata(*Inst)) 5444 return true; 5445 break; 5446 } 5447 5448 // Set the name on the instruction. 5449 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 5450 } while (!isa<TerminatorInst>(Inst)); 5451 5452 return false; 5453 } 5454 5455 //===----------------------------------------------------------------------===// 5456 // Instruction Parsing. 5457 //===----------------------------------------------------------------------===// 5458 5459 /// ParseInstruction - Parse one of the many different instructions. 5460 /// 5461 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 5462 PerFunctionState &PFS) { 5463 lltok::Kind Token = Lex.getKind(); 5464 if (Token == lltok::Eof) 5465 return TokError("found end of file when expecting more instructions"); 5466 LocTy Loc = Lex.getLoc(); 5467 unsigned KeywordVal = Lex.getUIntVal(); 5468 Lex.Lex(); // Eat the keyword. 5469 5470 switch (Token) { 5471 default: return Error(Loc, "expected instruction opcode"); 5472 // Terminator Instructions. 5473 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 5474 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 5475 case lltok::kw_br: return ParseBr(Inst, PFS); 5476 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 5477 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 5478 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 5479 case lltok::kw_resume: return ParseResume(Inst, PFS); 5480 case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS); 5481 case lltok::kw_catchret: return ParseCatchRet(Inst, PFS); 5482 case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS); 5483 case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS); 5484 case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS); 5485 // Binary Operators. 5486 case lltok::kw_add: 5487 case lltok::kw_sub: 5488 case lltok::kw_mul: 5489 case lltok::kw_shl: { 5490 bool NUW = EatIfPresent(lltok::kw_nuw); 5491 bool NSW = EatIfPresent(lltok::kw_nsw); 5492 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 5493 5494 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 5495 5496 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 5497 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 5498 return false; 5499 } 5500 case lltok::kw_fadd: 5501 case lltok::kw_fsub: 5502 case lltok::kw_fmul: 5503 case lltok::kw_fdiv: 5504 case lltok::kw_frem: { 5505 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5506 int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2); 5507 if (Res != 0) 5508 return Res; 5509 if (FMF.any()) 5510 Inst->setFastMathFlags(FMF); 5511 return 0; 5512 } 5513 5514 case lltok::kw_sdiv: 5515 case lltok::kw_udiv: 5516 case lltok::kw_lshr: 5517 case lltok::kw_ashr: { 5518 bool Exact = EatIfPresent(lltok::kw_exact); 5519 5520 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 5521 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 5522 return false; 5523 } 5524 5525 case lltok::kw_urem: 5526 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1); 5527 case lltok::kw_and: 5528 case lltok::kw_or: 5529 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 5530 case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal); 5531 case lltok::kw_fcmp: { 5532 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5533 int Res = ParseCompare(Inst, PFS, KeywordVal); 5534 if (Res != 0) 5535 return Res; 5536 if (FMF.any()) 5537 Inst->setFastMathFlags(FMF); 5538 return 0; 5539 } 5540 5541 // Casts. 5542 case lltok::kw_trunc: 5543 case lltok::kw_zext: 5544 case lltok::kw_sext: 5545 case lltok::kw_fptrunc: 5546 case lltok::kw_fpext: 5547 case lltok::kw_bitcast: 5548 case lltok::kw_addrspacecast: 5549 case lltok::kw_uitofp: 5550 case lltok::kw_sitofp: 5551 case lltok::kw_fptoui: 5552 case lltok::kw_fptosi: 5553 case lltok::kw_inttoptr: 5554 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 5555 // Other. 5556 case lltok::kw_select: return ParseSelect(Inst, PFS); 5557 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 5558 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 5559 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 5560 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 5561 case lltok::kw_phi: return ParsePHI(Inst, PFS); 5562 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 5563 // Call. 5564 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None); 5565 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail); 5566 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail); 5567 case lltok::kw_notail: return ParseCall(Inst, PFS, CallInst::TCK_NoTail); 5568 // Memory. 5569 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 5570 case lltok::kw_load: return ParseLoad(Inst, PFS); 5571 case lltok::kw_store: return ParseStore(Inst, PFS); 5572 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 5573 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 5574 case lltok::kw_fence: return ParseFence(Inst, PFS); 5575 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 5576 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 5577 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 5578 } 5579 } 5580 5581 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 5582 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 5583 if (Opc == Instruction::FCmp) { 5584 switch (Lex.getKind()) { 5585 default: return TokError("expected fcmp predicate (e.g. 'oeq')"); 5586 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 5587 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 5588 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 5589 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 5590 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 5591 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 5592 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 5593 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 5594 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 5595 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 5596 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 5597 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 5598 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 5599 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 5600 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 5601 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 5602 } 5603 } else { 5604 switch (Lex.getKind()) { 5605 default: return TokError("expected icmp predicate (e.g. 'eq')"); 5606 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 5607 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 5608 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 5609 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 5610 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 5611 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 5612 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 5613 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 5614 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 5615 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 5616 } 5617 } 5618 Lex.Lex(); 5619 return false; 5620 } 5621 5622 //===----------------------------------------------------------------------===// 5623 // Terminator Instructions. 5624 //===----------------------------------------------------------------------===// 5625 5626 /// ParseRet - Parse a return instruction. 5627 /// ::= 'ret' void (',' !dbg, !1)* 5628 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 5629 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 5630 PerFunctionState &PFS) { 5631 SMLoc TypeLoc = Lex.getLoc(); 5632 Type *Ty = nullptr; 5633 if (ParseType(Ty, true /*void allowed*/)) return true; 5634 5635 Type *ResType = PFS.getFunction().getReturnType(); 5636 5637 if (Ty->isVoidTy()) { 5638 if (!ResType->isVoidTy()) 5639 return Error(TypeLoc, "value doesn't match function result type '" + 5640 getTypeString(ResType) + "'"); 5641 5642 Inst = ReturnInst::Create(Context); 5643 return false; 5644 } 5645 5646 Value *RV; 5647 if (ParseValue(Ty, RV, PFS)) return true; 5648 5649 if (ResType != RV->getType()) 5650 return Error(TypeLoc, "value doesn't match function result type '" + 5651 getTypeString(ResType) + "'"); 5652 5653 Inst = ReturnInst::Create(Context, RV); 5654 return false; 5655 } 5656 5657 /// ParseBr 5658 /// ::= 'br' TypeAndValue 5659 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5660 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 5661 LocTy Loc, Loc2; 5662 Value *Op0; 5663 BasicBlock *Op1, *Op2; 5664 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 5665 5666 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 5667 Inst = BranchInst::Create(BB); 5668 return false; 5669 } 5670 5671 if (Op0->getType() != Type::getInt1Ty(Context)) 5672 return Error(Loc, "branch condition must have 'i1' type"); 5673 5674 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 5675 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 5676 ParseToken(lltok::comma, "expected ',' after true destination") || 5677 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 5678 return true; 5679 5680 Inst = BranchInst::Create(Op1, Op2, Op0); 5681 return false; 5682 } 5683 5684 /// ParseSwitch 5685 /// Instruction 5686 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 5687 /// JumpTable 5688 /// ::= (TypeAndValue ',' TypeAndValue)* 5689 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5690 LocTy CondLoc, BBLoc; 5691 Value *Cond; 5692 BasicBlock *DefaultBB; 5693 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 5694 ParseToken(lltok::comma, "expected ',' after switch condition") || 5695 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 5696 ParseToken(lltok::lsquare, "expected '[' with switch table")) 5697 return true; 5698 5699 if (!Cond->getType()->isIntegerTy()) 5700 return Error(CondLoc, "switch condition must have integer type"); 5701 5702 // Parse the jump table pairs. 5703 SmallPtrSet<Value*, 32> SeenCases; 5704 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 5705 while (Lex.getKind() != lltok::rsquare) { 5706 Value *Constant; 5707 BasicBlock *DestBB; 5708 5709 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 5710 ParseToken(lltok::comma, "expected ',' after case value") || 5711 ParseTypeAndBasicBlock(DestBB, PFS)) 5712 return true; 5713 5714 if (!SeenCases.insert(Constant).second) 5715 return Error(CondLoc, "duplicate case value in switch"); 5716 if (!isa<ConstantInt>(Constant)) 5717 return Error(CondLoc, "case value is not a constant integer"); 5718 5719 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 5720 } 5721 5722 Lex.Lex(); // Eat the ']'. 5723 5724 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 5725 for (unsigned i = 0, e = Table.size(); i != e; ++i) 5726 SI->addCase(Table[i].first, Table[i].second); 5727 Inst = SI; 5728 return false; 5729 } 5730 5731 /// ParseIndirectBr 5732 /// Instruction 5733 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 5734 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 5735 LocTy AddrLoc; 5736 Value *Address; 5737 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 5738 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 5739 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 5740 return true; 5741 5742 if (!Address->getType()->isPointerTy()) 5743 return Error(AddrLoc, "indirectbr address must have pointer type"); 5744 5745 // Parse the destination list. 5746 SmallVector<BasicBlock*, 16> DestList; 5747 5748 if (Lex.getKind() != lltok::rsquare) { 5749 BasicBlock *DestBB; 5750 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5751 return true; 5752 DestList.push_back(DestBB); 5753 5754 while (EatIfPresent(lltok::comma)) { 5755 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5756 return true; 5757 DestList.push_back(DestBB); 5758 } 5759 } 5760 5761 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 5762 return true; 5763 5764 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 5765 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 5766 IBI->addDestination(DestList[i]); 5767 Inst = IBI; 5768 return false; 5769 } 5770 5771 /// ParseInvoke 5772 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 5773 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 5774 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 5775 LocTy CallLoc = Lex.getLoc(); 5776 AttrBuilder RetAttrs, FnAttrs; 5777 std::vector<unsigned> FwdRefAttrGrps; 5778 LocTy NoBuiltinLoc; 5779 unsigned CC; 5780 Type *RetType = nullptr; 5781 LocTy RetTypeLoc; 5782 ValID CalleeID; 5783 SmallVector<ParamInfo, 16> ArgList; 5784 SmallVector<OperandBundleDef, 2> BundleList; 5785 5786 BasicBlock *NormalBB, *UnwindBB; 5787 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5788 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5789 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 5790 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 5791 NoBuiltinLoc) || 5792 ParseOptionalOperandBundles(BundleList, PFS) || 5793 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 5794 ParseTypeAndBasicBlock(NormalBB, PFS) || 5795 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 5796 ParseTypeAndBasicBlock(UnwindBB, PFS)) 5797 return true; 5798 5799 // If RetType is a non-function pointer type, then this is the short syntax 5800 // for the call, which means that RetType is just the return type. Infer the 5801 // rest of the function argument types from the arguments that are present. 5802 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 5803 if (!Ty) { 5804 // Pull out the types of all of the arguments... 5805 std::vector<Type*> ParamTypes; 5806 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 5807 ParamTypes.push_back(ArgList[i].V->getType()); 5808 5809 if (!FunctionType::isValidReturnType(RetType)) 5810 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 5811 5812 Ty = FunctionType::get(RetType, ParamTypes, false); 5813 } 5814 5815 CalleeID.FTy = Ty; 5816 5817 // Look up the callee. 5818 Value *Callee; 5819 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS, 5820 /*IsCall=*/true)) 5821 return true; 5822 5823 // Set up the Attribute for the function. 5824 SmallVector<Value *, 8> Args; 5825 SmallVector<AttributeSet, 8> ArgAttrs; 5826 5827 // Loop through FunctionType's arguments and ensure they are specified 5828 // correctly. Also, gather any parameter attributes. 5829 FunctionType::param_iterator I = Ty->param_begin(); 5830 FunctionType::param_iterator E = Ty->param_end(); 5831 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5832 Type *ExpectedTy = nullptr; 5833 if (I != E) { 5834 ExpectedTy = *I++; 5835 } else if (!Ty->isVarArg()) { 5836 return Error(ArgList[i].Loc, "too many arguments specified"); 5837 } 5838 5839 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 5840 return Error(ArgList[i].Loc, "argument is not of expected type '" + 5841 getTypeString(ExpectedTy) + "'"); 5842 Args.push_back(ArgList[i].V); 5843 ArgAttrs.push_back(ArgList[i].Attrs); 5844 } 5845 5846 if (I != E) 5847 return Error(CallLoc, "not enough parameters specified for call"); 5848 5849 if (FnAttrs.hasAlignmentAttr()) 5850 return Error(CallLoc, "invoke instructions may not have an alignment"); 5851 5852 // Finish off the Attribute and check them 5853 AttributeList PAL = 5854 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 5855 AttributeSet::get(Context, RetAttrs), ArgAttrs); 5856 5857 InvokeInst *II = 5858 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 5859 II->setCallingConv(CC); 5860 II->setAttributes(PAL); 5861 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 5862 Inst = II; 5863 return false; 5864 } 5865 5866 /// ParseResume 5867 /// ::= 'resume' TypeAndValue 5868 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 5869 Value *Exn; LocTy ExnLoc; 5870 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 5871 return true; 5872 5873 ResumeInst *RI = ResumeInst::Create(Exn); 5874 Inst = RI; 5875 return false; 5876 } 5877 5878 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args, 5879 PerFunctionState &PFS) { 5880 if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 5881 return true; 5882 5883 while (Lex.getKind() != lltok::rsquare) { 5884 // If this isn't the first argument, we need a comma. 5885 if (!Args.empty() && 5886 ParseToken(lltok::comma, "expected ',' in argument list")) 5887 return true; 5888 5889 // Parse the argument. 5890 LocTy ArgLoc; 5891 Type *ArgTy = nullptr; 5892 if (ParseType(ArgTy, ArgLoc)) 5893 return true; 5894 5895 Value *V; 5896 if (ArgTy->isMetadataTy()) { 5897 if (ParseMetadataAsValue(V, PFS)) 5898 return true; 5899 } else { 5900 if (ParseValue(ArgTy, V, PFS)) 5901 return true; 5902 } 5903 Args.push_back(V); 5904 } 5905 5906 Lex.Lex(); // Lex the ']'. 5907 return false; 5908 } 5909 5910 /// ParseCleanupRet 5911 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 5912 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 5913 Value *CleanupPad = nullptr; 5914 5915 if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret")) 5916 return true; 5917 5918 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 5919 return true; 5920 5921 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 5922 return true; 5923 5924 BasicBlock *UnwindBB = nullptr; 5925 if (Lex.getKind() == lltok::kw_to) { 5926 Lex.Lex(); 5927 if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 5928 return true; 5929 } else { 5930 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 5931 return true; 5932 } 5933 } 5934 5935 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 5936 return false; 5937 } 5938 5939 /// ParseCatchRet 5940 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 5941 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 5942 Value *CatchPad = nullptr; 5943 5944 if (ParseToken(lltok::kw_from, "expected 'from' after catchret")) 5945 return true; 5946 5947 if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS)) 5948 return true; 5949 5950 BasicBlock *BB; 5951 if (ParseToken(lltok::kw_to, "expected 'to' in catchret") || 5952 ParseTypeAndBasicBlock(BB, PFS)) 5953 return true; 5954 5955 Inst = CatchReturnInst::Create(CatchPad, BB); 5956 return false; 5957 } 5958 5959 /// ParseCatchSwitch 5960 /// ::= 'catchswitch' within Parent 5961 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5962 Value *ParentPad; 5963 5964 if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch")) 5965 return true; 5966 5967 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 5968 Lex.getKind() != lltok::LocalVarID) 5969 return TokError("expected scope value for catchswitch"); 5970 5971 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 5972 return true; 5973 5974 if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 5975 return true; 5976 5977 SmallVector<BasicBlock *, 32> Table; 5978 do { 5979 BasicBlock *DestBB; 5980 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5981 return true; 5982 Table.push_back(DestBB); 5983 } while (EatIfPresent(lltok::comma)); 5984 5985 if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 5986 return true; 5987 5988 if (ParseToken(lltok::kw_unwind, 5989 "expected 'unwind' after catchswitch scope")) 5990 return true; 5991 5992 BasicBlock *UnwindBB = nullptr; 5993 if (EatIfPresent(lltok::kw_to)) { 5994 if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 5995 return true; 5996 } else { 5997 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) 5998 return true; 5999 } 6000 6001 auto *CatchSwitch = 6002 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 6003 for (BasicBlock *DestBB : Table) 6004 CatchSwitch->addHandler(DestBB); 6005 Inst = CatchSwitch; 6006 return false; 6007 } 6008 6009 /// ParseCatchPad 6010 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 6011 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 6012 Value *CatchSwitch = nullptr; 6013 6014 if (ParseToken(lltok::kw_within, "expected 'within' after catchpad")) 6015 return true; 6016 6017 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 6018 return TokError("expected scope value for catchpad"); 6019 6020 if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 6021 return true; 6022 6023 SmallVector<Value *, 8> Args; 6024 if (ParseExceptionArgs(Args, PFS)) 6025 return true; 6026 6027 Inst = CatchPadInst::Create(CatchSwitch, Args); 6028 return false; 6029 } 6030 6031 /// ParseCleanupPad 6032 /// ::= 'cleanuppad' within Parent ParamList 6033 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 6034 Value *ParentPad = nullptr; 6035 6036 if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 6037 return true; 6038 6039 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6040 Lex.getKind() != lltok::LocalVarID) 6041 return TokError("expected scope value for cleanuppad"); 6042 6043 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6044 return true; 6045 6046 SmallVector<Value *, 8> Args; 6047 if (ParseExceptionArgs(Args, PFS)) 6048 return true; 6049 6050 Inst = CleanupPadInst::Create(ParentPad, Args); 6051 return false; 6052 } 6053 6054 //===----------------------------------------------------------------------===// 6055 // Binary Operators. 6056 //===----------------------------------------------------------------------===// 6057 6058 /// ParseArithmetic 6059 /// ::= ArithmeticOps TypeAndValue ',' Value 6060 /// 6061 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, 6062 /// then any integer operand is allowed, if it is 2, any fp operand is allowed. 6063 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 6064 unsigned Opc, unsigned OperandType) { 6065 LocTy Loc; Value *LHS, *RHS; 6066 if (ParseTypeAndValue(LHS, Loc, PFS) || 6067 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 6068 ParseValue(LHS->getType(), RHS, PFS)) 6069 return true; 6070 6071 bool Valid; 6072 switch (OperandType) { 6073 default: llvm_unreachable("Unknown operand type!"); 6074 case 0: // int or FP. 6075 Valid = LHS->getType()->isIntOrIntVectorTy() || 6076 LHS->getType()->isFPOrFPVectorTy(); 6077 break; 6078 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break; 6079 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break; 6080 } 6081 6082 if (!Valid) 6083 return Error(Loc, "invalid operand type for instruction"); 6084 6085 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6086 return false; 6087 } 6088 6089 /// ParseLogical 6090 /// ::= ArithmeticOps TypeAndValue ',' Value { 6091 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 6092 unsigned Opc) { 6093 LocTy Loc; Value *LHS, *RHS; 6094 if (ParseTypeAndValue(LHS, Loc, PFS) || 6095 ParseToken(lltok::comma, "expected ',' in logical operation") || 6096 ParseValue(LHS->getType(), RHS, PFS)) 6097 return true; 6098 6099 if (!LHS->getType()->isIntOrIntVectorTy()) 6100 return Error(Loc,"instruction requires integer or integer vector operands"); 6101 6102 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6103 return false; 6104 } 6105 6106 /// ParseCompare 6107 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 6108 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 6109 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 6110 unsigned Opc) { 6111 // Parse the integer/fp comparison predicate. 6112 LocTy Loc; 6113 unsigned Pred; 6114 Value *LHS, *RHS; 6115 if (ParseCmpPredicate(Pred, Opc) || 6116 ParseTypeAndValue(LHS, Loc, PFS) || 6117 ParseToken(lltok::comma, "expected ',' after compare value") || 6118 ParseValue(LHS->getType(), RHS, PFS)) 6119 return true; 6120 6121 if (Opc == Instruction::FCmp) { 6122 if (!LHS->getType()->isFPOrFPVectorTy()) 6123 return Error(Loc, "fcmp requires floating point operands"); 6124 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6125 } else { 6126 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 6127 if (!LHS->getType()->isIntOrIntVectorTy() && 6128 !LHS->getType()->isPtrOrPtrVectorTy()) 6129 return Error(Loc, "icmp requires integer operands"); 6130 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6131 } 6132 return false; 6133 } 6134 6135 //===----------------------------------------------------------------------===// 6136 // Other Instructions. 6137 //===----------------------------------------------------------------------===// 6138 6139 6140 /// ParseCast 6141 /// ::= CastOpc TypeAndValue 'to' Type 6142 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 6143 unsigned Opc) { 6144 LocTy Loc; 6145 Value *Op; 6146 Type *DestTy = nullptr; 6147 if (ParseTypeAndValue(Op, Loc, PFS) || 6148 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 6149 ParseType(DestTy)) 6150 return true; 6151 6152 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 6153 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 6154 return Error(Loc, "invalid cast opcode for cast from '" + 6155 getTypeString(Op->getType()) + "' to '" + 6156 getTypeString(DestTy) + "'"); 6157 } 6158 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 6159 return false; 6160 } 6161 6162 /// ParseSelect 6163 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6164 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 6165 LocTy Loc; 6166 Value *Op0, *Op1, *Op2; 6167 if (ParseTypeAndValue(Op0, Loc, PFS) || 6168 ParseToken(lltok::comma, "expected ',' after select condition") || 6169 ParseTypeAndValue(Op1, PFS) || 6170 ParseToken(lltok::comma, "expected ',' after select value") || 6171 ParseTypeAndValue(Op2, PFS)) 6172 return true; 6173 6174 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 6175 return Error(Loc, Reason); 6176 6177 Inst = SelectInst::Create(Op0, Op1, Op2); 6178 return false; 6179 } 6180 6181 /// ParseVA_Arg 6182 /// ::= 'va_arg' TypeAndValue ',' Type 6183 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 6184 Value *Op; 6185 Type *EltTy = nullptr; 6186 LocTy TypeLoc; 6187 if (ParseTypeAndValue(Op, PFS) || 6188 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 6189 ParseType(EltTy, TypeLoc)) 6190 return true; 6191 6192 if (!EltTy->isFirstClassType()) 6193 return Error(TypeLoc, "va_arg requires operand with first class type"); 6194 6195 Inst = new VAArgInst(Op, EltTy); 6196 return false; 6197 } 6198 6199 /// ParseExtractElement 6200 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 6201 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 6202 LocTy Loc; 6203 Value *Op0, *Op1; 6204 if (ParseTypeAndValue(Op0, Loc, PFS) || 6205 ParseToken(lltok::comma, "expected ',' after extract value") || 6206 ParseTypeAndValue(Op1, PFS)) 6207 return true; 6208 6209 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 6210 return Error(Loc, "invalid extractelement operands"); 6211 6212 Inst = ExtractElementInst::Create(Op0, Op1); 6213 return false; 6214 } 6215 6216 /// ParseInsertElement 6217 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6218 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 6219 LocTy Loc; 6220 Value *Op0, *Op1, *Op2; 6221 if (ParseTypeAndValue(Op0, Loc, PFS) || 6222 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6223 ParseTypeAndValue(Op1, PFS) || 6224 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6225 ParseTypeAndValue(Op2, PFS)) 6226 return true; 6227 6228 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 6229 return Error(Loc, "invalid insertelement operands"); 6230 6231 Inst = InsertElementInst::Create(Op0, Op1, Op2); 6232 return false; 6233 } 6234 6235 /// ParseShuffleVector 6236 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6237 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 6238 LocTy Loc; 6239 Value *Op0, *Op1, *Op2; 6240 if (ParseTypeAndValue(Op0, Loc, PFS) || 6241 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 6242 ParseTypeAndValue(Op1, PFS) || 6243 ParseToken(lltok::comma, "expected ',' after shuffle value") || 6244 ParseTypeAndValue(Op2, PFS)) 6245 return true; 6246 6247 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 6248 return Error(Loc, "invalid shufflevector operands"); 6249 6250 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 6251 return false; 6252 } 6253 6254 /// ParsePHI 6255 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 6256 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 6257 Type *Ty = nullptr; LocTy TypeLoc; 6258 Value *Op0, *Op1; 6259 6260 if (ParseType(Ty, TypeLoc) || 6261 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 6262 ParseValue(Ty, Op0, PFS) || 6263 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6264 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 6265 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 6266 return true; 6267 6268 bool AteExtraComma = false; 6269 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 6270 6271 while (true) { 6272 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 6273 6274 if (!EatIfPresent(lltok::comma)) 6275 break; 6276 6277 if (Lex.getKind() == lltok::MetadataVar) { 6278 AteExtraComma = true; 6279 break; 6280 } 6281 6282 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 6283 ParseValue(Ty, Op0, PFS) || 6284 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6285 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 6286 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 6287 return true; 6288 } 6289 6290 if (!Ty->isFirstClassType()) 6291 return Error(TypeLoc, "phi node must have first class type"); 6292 6293 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 6294 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 6295 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 6296 Inst = PN; 6297 return AteExtraComma ? InstExtraComma : InstNormal; 6298 } 6299 6300 /// ParseLandingPad 6301 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 6302 /// Clause 6303 /// ::= 'catch' TypeAndValue 6304 /// ::= 'filter' 6305 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 6306 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 6307 Type *Ty = nullptr; LocTy TyLoc; 6308 6309 if (ParseType(Ty, TyLoc)) 6310 return true; 6311 6312 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 6313 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 6314 6315 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 6316 LandingPadInst::ClauseType CT; 6317 if (EatIfPresent(lltok::kw_catch)) 6318 CT = LandingPadInst::Catch; 6319 else if (EatIfPresent(lltok::kw_filter)) 6320 CT = LandingPadInst::Filter; 6321 else 6322 return TokError("expected 'catch' or 'filter' clause type"); 6323 6324 Value *V; 6325 LocTy VLoc; 6326 if (ParseTypeAndValue(V, VLoc, PFS)) 6327 return true; 6328 6329 // A 'catch' type expects a non-array constant. A filter clause expects an 6330 // array constant. 6331 if (CT == LandingPadInst::Catch) { 6332 if (isa<ArrayType>(V->getType())) 6333 Error(VLoc, "'catch' clause has an invalid type"); 6334 } else { 6335 if (!isa<ArrayType>(V->getType())) 6336 Error(VLoc, "'filter' clause has an invalid type"); 6337 } 6338 6339 Constant *CV = dyn_cast<Constant>(V); 6340 if (!CV) 6341 return Error(VLoc, "clause argument must be a constant"); 6342 LP->addClause(CV); 6343 } 6344 6345 Inst = LP.release(); 6346 return false; 6347 } 6348 6349 /// ParseCall 6350 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 6351 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6352 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 6353 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6354 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 6355 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6356 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 6357 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6358 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 6359 CallInst::TailCallKind TCK) { 6360 AttrBuilder RetAttrs, FnAttrs; 6361 std::vector<unsigned> FwdRefAttrGrps; 6362 LocTy BuiltinLoc; 6363 unsigned CC; 6364 Type *RetType = nullptr; 6365 LocTy RetTypeLoc; 6366 ValID CalleeID; 6367 SmallVector<ParamInfo, 16> ArgList; 6368 SmallVector<OperandBundleDef, 2> BundleList; 6369 LocTy CallLoc = Lex.getLoc(); 6370 6371 if (TCK != CallInst::TCK_None && 6372 ParseToken(lltok::kw_call, 6373 "expected 'tail call', 'musttail call', or 'notail call'")) 6374 return true; 6375 6376 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6377 6378 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6379 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6380 ParseValID(CalleeID) || 6381 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 6382 PFS.getFunction().isVarArg()) || 6383 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 6384 ParseOptionalOperandBundles(BundleList, PFS)) 6385 return true; 6386 6387 if (FMF.any() && !RetType->isFPOrFPVectorTy()) 6388 return Error(CallLoc, "fast-math-flags specified for call without " 6389 "floating-point scalar or vector return type"); 6390 6391 // If RetType is a non-function pointer type, then this is the short syntax 6392 // for the call, which means that RetType is just the return type. Infer the 6393 // rest of the function argument types from the arguments that are present. 6394 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6395 if (!Ty) { 6396 // Pull out the types of all of the arguments... 6397 std::vector<Type*> ParamTypes; 6398 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6399 ParamTypes.push_back(ArgList[i].V->getType()); 6400 6401 if (!FunctionType::isValidReturnType(RetType)) 6402 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6403 6404 Ty = FunctionType::get(RetType, ParamTypes, false); 6405 } 6406 6407 CalleeID.FTy = Ty; 6408 6409 // Look up the callee. 6410 Value *Callee; 6411 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS, 6412 /*IsCall=*/true)) 6413 return true; 6414 6415 // Set up the Attribute for the function. 6416 SmallVector<AttributeSet, 8> Attrs; 6417 6418 SmallVector<Value*, 8> Args; 6419 6420 // Loop through FunctionType's arguments and ensure they are specified 6421 // correctly. Also, gather any parameter attributes. 6422 FunctionType::param_iterator I = Ty->param_begin(); 6423 FunctionType::param_iterator E = Ty->param_end(); 6424 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6425 Type *ExpectedTy = nullptr; 6426 if (I != E) { 6427 ExpectedTy = *I++; 6428 } else if (!Ty->isVarArg()) { 6429 return Error(ArgList[i].Loc, "too many arguments specified"); 6430 } 6431 6432 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6433 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6434 getTypeString(ExpectedTy) + "'"); 6435 Args.push_back(ArgList[i].V); 6436 Attrs.push_back(ArgList[i].Attrs); 6437 } 6438 6439 if (I != E) 6440 return Error(CallLoc, "not enough parameters specified for call"); 6441 6442 if (FnAttrs.hasAlignmentAttr()) 6443 return Error(CallLoc, "call instructions may not have an alignment"); 6444 6445 // Finish off the Attribute and check them 6446 AttributeList PAL = 6447 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6448 AttributeSet::get(Context, RetAttrs), Attrs); 6449 6450 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 6451 CI->setTailCallKind(TCK); 6452 CI->setCallingConv(CC); 6453 if (FMF.any()) 6454 CI->setFastMathFlags(FMF); 6455 CI->setAttributes(PAL); 6456 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 6457 Inst = CI; 6458 return false; 6459 } 6460 6461 //===----------------------------------------------------------------------===// 6462 // Memory Instructions. 6463 //===----------------------------------------------------------------------===// 6464 6465 /// ParseAlloc 6466 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 6467 /// (',' 'align' i32)? (',', 'addrspace(n))? 6468 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 6469 Value *Size = nullptr; 6470 LocTy SizeLoc, TyLoc, ASLoc; 6471 unsigned Alignment = 0; 6472 unsigned AddrSpace = 0; 6473 Type *Ty = nullptr; 6474 6475 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 6476 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 6477 6478 if (ParseType(Ty, TyLoc)) return true; 6479 6480 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 6481 return Error(TyLoc, "invalid type for alloca"); 6482 6483 bool AteExtraComma = false; 6484 if (EatIfPresent(lltok::comma)) { 6485 if (Lex.getKind() == lltok::kw_align) { 6486 if (ParseOptionalAlignment(Alignment)) 6487 return true; 6488 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 6489 return true; 6490 } else if (Lex.getKind() == lltok::kw_addrspace) { 6491 ASLoc = Lex.getLoc(); 6492 if (ParseOptionalAddrSpace(AddrSpace)) 6493 return true; 6494 } else if (Lex.getKind() == lltok::MetadataVar) { 6495 AteExtraComma = true; 6496 } else { 6497 if (ParseTypeAndValue(Size, SizeLoc, PFS)) 6498 return true; 6499 if (EatIfPresent(lltok::comma)) { 6500 if (Lex.getKind() == lltok::kw_align) { 6501 if (ParseOptionalAlignment(Alignment)) 6502 return true; 6503 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 6504 return true; 6505 } else if (Lex.getKind() == lltok::kw_addrspace) { 6506 ASLoc = Lex.getLoc(); 6507 if (ParseOptionalAddrSpace(AddrSpace)) 6508 return true; 6509 } else if (Lex.getKind() == lltok::MetadataVar) { 6510 AteExtraComma = true; 6511 } 6512 } 6513 } 6514 } 6515 6516 if (Size && !Size->getType()->isIntegerTy()) 6517 return Error(SizeLoc, "element count must have integer type"); 6518 6519 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, Alignment); 6520 AI->setUsedWithInAlloca(IsInAlloca); 6521 AI->setSwiftError(IsSwiftError); 6522 Inst = AI; 6523 return AteExtraComma ? InstExtraComma : InstNormal; 6524 } 6525 6526 /// ParseLoad 6527 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 6528 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 6529 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6530 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 6531 Value *Val; LocTy Loc; 6532 unsigned Alignment = 0; 6533 bool AteExtraComma = false; 6534 bool isAtomic = false; 6535 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6536 SyncScope::ID SSID = SyncScope::System; 6537 6538 if (Lex.getKind() == lltok::kw_atomic) { 6539 isAtomic = true; 6540 Lex.Lex(); 6541 } 6542 6543 bool isVolatile = false; 6544 if (Lex.getKind() == lltok::kw_volatile) { 6545 isVolatile = true; 6546 Lex.Lex(); 6547 } 6548 6549 Type *Ty; 6550 LocTy ExplicitTypeLoc = Lex.getLoc(); 6551 if (ParseType(Ty) || 6552 ParseToken(lltok::comma, "expected comma after load's type") || 6553 ParseTypeAndValue(Val, Loc, PFS) || 6554 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 6555 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6556 return true; 6557 6558 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 6559 return Error(Loc, "load operand must be a pointer to a first class type"); 6560 if (isAtomic && !Alignment) 6561 return Error(Loc, "atomic load must have explicit non-zero alignment"); 6562 if (Ordering == AtomicOrdering::Release || 6563 Ordering == AtomicOrdering::AcquireRelease) 6564 return Error(Loc, "atomic load cannot use Release ordering"); 6565 6566 if (Ty != cast<PointerType>(Val->getType())->getElementType()) 6567 return Error(ExplicitTypeLoc, 6568 "explicit pointee type doesn't match operand's pointee type"); 6569 6570 Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID); 6571 return AteExtraComma ? InstExtraComma : InstNormal; 6572 } 6573 6574 /// ParseStore 6575 6576 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 6577 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 6578 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6579 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 6580 Value *Val, *Ptr; LocTy Loc, PtrLoc; 6581 unsigned Alignment = 0; 6582 bool AteExtraComma = false; 6583 bool isAtomic = false; 6584 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6585 SyncScope::ID SSID = SyncScope::System; 6586 6587 if (Lex.getKind() == lltok::kw_atomic) { 6588 isAtomic = true; 6589 Lex.Lex(); 6590 } 6591 6592 bool isVolatile = false; 6593 if (Lex.getKind() == lltok::kw_volatile) { 6594 isVolatile = true; 6595 Lex.Lex(); 6596 } 6597 6598 if (ParseTypeAndValue(Val, Loc, PFS) || 6599 ParseToken(lltok::comma, "expected ',' after store operand") || 6600 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6601 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 6602 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6603 return true; 6604 6605 if (!Ptr->getType()->isPointerTy()) 6606 return Error(PtrLoc, "store operand must be a pointer"); 6607 if (!Val->getType()->isFirstClassType()) 6608 return Error(Loc, "store operand must be a first class value"); 6609 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6610 return Error(Loc, "stored value and pointer type do not match"); 6611 if (isAtomic && !Alignment) 6612 return Error(Loc, "atomic store must have explicit non-zero alignment"); 6613 if (Ordering == AtomicOrdering::Acquire || 6614 Ordering == AtomicOrdering::AcquireRelease) 6615 return Error(Loc, "atomic store cannot use Acquire ordering"); 6616 6617 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID); 6618 return AteExtraComma ? InstExtraComma : InstNormal; 6619 } 6620 6621 /// ParseCmpXchg 6622 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 6623 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering 6624 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 6625 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 6626 bool AteExtraComma = false; 6627 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 6628 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 6629 SyncScope::ID SSID = SyncScope::System; 6630 bool isVolatile = false; 6631 bool isWeak = false; 6632 6633 if (EatIfPresent(lltok::kw_weak)) 6634 isWeak = true; 6635 6636 if (EatIfPresent(lltok::kw_volatile)) 6637 isVolatile = true; 6638 6639 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6640 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 6641 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 6642 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 6643 ParseTypeAndValue(New, NewLoc, PFS) || 6644 ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 6645 ParseOrdering(FailureOrdering)) 6646 return true; 6647 6648 if (SuccessOrdering == AtomicOrdering::Unordered || 6649 FailureOrdering == AtomicOrdering::Unordered) 6650 return TokError("cmpxchg cannot be unordered"); 6651 if (isStrongerThan(FailureOrdering, SuccessOrdering)) 6652 return TokError("cmpxchg failure argument shall be no stronger than the " 6653 "success argument"); 6654 if (FailureOrdering == AtomicOrdering::Release || 6655 FailureOrdering == AtomicOrdering::AcquireRelease) 6656 return TokError( 6657 "cmpxchg failure ordering cannot include release semantics"); 6658 if (!Ptr->getType()->isPointerTy()) 6659 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 6660 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 6661 return Error(CmpLoc, "compare value and pointer type do not match"); 6662 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 6663 return Error(NewLoc, "new value and pointer type do not match"); 6664 if (!New->getType()->isFirstClassType()) 6665 return Error(NewLoc, "cmpxchg operand must be a first class value"); 6666 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 6667 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID); 6668 CXI->setVolatile(isVolatile); 6669 CXI->setWeak(isWeak); 6670 Inst = CXI; 6671 return AteExtraComma ? InstExtraComma : InstNormal; 6672 } 6673 6674 /// ParseAtomicRMW 6675 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 6676 /// 'singlethread'? AtomicOrdering 6677 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 6678 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 6679 bool AteExtraComma = false; 6680 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6681 SyncScope::ID SSID = SyncScope::System; 6682 bool isVolatile = false; 6683 AtomicRMWInst::BinOp Operation; 6684 6685 if (EatIfPresent(lltok::kw_volatile)) 6686 isVolatile = true; 6687 6688 switch (Lex.getKind()) { 6689 default: return TokError("expected binary operation in atomicrmw"); 6690 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 6691 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 6692 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 6693 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 6694 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 6695 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 6696 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 6697 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 6698 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 6699 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 6700 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 6701 } 6702 Lex.Lex(); // Eat the operation. 6703 6704 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6705 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 6706 ParseTypeAndValue(Val, ValLoc, PFS) || 6707 ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 6708 return true; 6709 6710 if (Ordering == AtomicOrdering::Unordered) 6711 return TokError("atomicrmw cannot be unordered"); 6712 if (!Ptr->getType()->isPointerTy()) 6713 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 6714 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6715 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 6716 if (!Val->getType()->isIntegerTy()) 6717 return Error(ValLoc, "atomicrmw operand must be an integer"); 6718 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 6719 if (Size < 8 || (Size & (Size - 1))) 6720 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 6721 " integer"); 6722 6723 AtomicRMWInst *RMWI = 6724 new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 6725 RMWI->setVolatile(isVolatile); 6726 Inst = RMWI; 6727 return AteExtraComma ? InstExtraComma : InstNormal; 6728 } 6729 6730 /// ParseFence 6731 /// ::= 'fence' 'singlethread'? AtomicOrdering 6732 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 6733 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6734 SyncScope::ID SSID = SyncScope::System; 6735 if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 6736 return true; 6737 6738 if (Ordering == AtomicOrdering::Unordered) 6739 return TokError("fence cannot be unordered"); 6740 if (Ordering == AtomicOrdering::Monotonic) 6741 return TokError("fence cannot be monotonic"); 6742 6743 Inst = new FenceInst(Context, Ordering, SSID); 6744 return InstNormal; 6745 } 6746 6747 /// ParseGetElementPtr 6748 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 6749 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 6750 Value *Ptr = nullptr; 6751 Value *Val = nullptr; 6752 LocTy Loc, EltLoc; 6753 6754 bool InBounds = EatIfPresent(lltok::kw_inbounds); 6755 6756 Type *Ty = nullptr; 6757 LocTy ExplicitTypeLoc = Lex.getLoc(); 6758 if (ParseType(Ty) || 6759 ParseToken(lltok::comma, "expected comma after getelementptr's type") || 6760 ParseTypeAndValue(Ptr, Loc, PFS)) 6761 return true; 6762 6763 Type *BaseType = Ptr->getType(); 6764 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 6765 if (!BasePointerType) 6766 return Error(Loc, "base of getelementptr must be a pointer"); 6767 6768 if (Ty != BasePointerType->getElementType()) 6769 return Error(ExplicitTypeLoc, 6770 "explicit pointee type doesn't match operand's pointee type"); 6771 6772 SmallVector<Value*, 16> Indices; 6773 bool AteExtraComma = false; 6774 // GEP returns a vector of pointers if at least one of parameters is a vector. 6775 // All vector parameters should have the same vector width. 6776 unsigned GEPWidth = BaseType->isVectorTy() ? 6777 BaseType->getVectorNumElements() : 0; 6778 6779 while (EatIfPresent(lltok::comma)) { 6780 if (Lex.getKind() == lltok::MetadataVar) { 6781 AteExtraComma = true; 6782 break; 6783 } 6784 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 6785 if (!Val->getType()->isIntOrIntVectorTy()) 6786 return Error(EltLoc, "getelementptr index must be an integer"); 6787 6788 if (Val->getType()->isVectorTy()) { 6789 unsigned ValNumEl = Val->getType()->getVectorNumElements(); 6790 if (GEPWidth && GEPWidth != ValNumEl) 6791 return Error(EltLoc, 6792 "getelementptr vector index has a wrong number of elements"); 6793 GEPWidth = ValNumEl; 6794 } 6795 Indices.push_back(Val); 6796 } 6797 6798 SmallPtrSet<Type*, 4> Visited; 6799 if (!Indices.empty() && !Ty->isSized(&Visited)) 6800 return Error(Loc, "base element of getelementptr must be sized"); 6801 6802 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 6803 return Error(Loc, "invalid getelementptr indices"); 6804 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 6805 if (InBounds) 6806 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 6807 return AteExtraComma ? InstExtraComma : InstNormal; 6808 } 6809 6810 /// ParseExtractValue 6811 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 6812 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 6813 Value *Val; LocTy Loc; 6814 SmallVector<unsigned, 4> Indices; 6815 bool AteExtraComma; 6816 if (ParseTypeAndValue(Val, Loc, PFS) || 6817 ParseIndexList(Indices, AteExtraComma)) 6818 return true; 6819 6820 if (!Val->getType()->isAggregateType()) 6821 return Error(Loc, "extractvalue operand must be aggregate type"); 6822 6823 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 6824 return Error(Loc, "invalid indices for extractvalue"); 6825 Inst = ExtractValueInst::Create(Val, Indices); 6826 return AteExtraComma ? InstExtraComma : InstNormal; 6827 } 6828 6829 /// ParseInsertValue 6830 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 6831 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 6832 Value *Val0, *Val1; LocTy Loc0, Loc1; 6833 SmallVector<unsigned, 4> Indices; 6834 bool AteExtraComma; 6835 if (ParseTypeAndValue(Val0, Loc0, PFS) || 6836 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 6837 ParseTypeAndValue(Val1, Loc1, PFS) || 6838 ParseIndexList(Indices, AteExtraComma)) 6839 return true; 6840 6841 if (!Val0->getType()->isAggregateType()) 6842 return Error(Loc0, "insertvalue operand must be aggregate type"); 6843 6844 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 6845 if (!IndexedType) 6846 return Error(Loc0, "invalid indices for insertvalue"); 6847 if (IndexedType != Val1->getType()) 6848 return Error(Loc1, "insertvalue operand and field disagree in type: '" + 6849 getTypeString(Val1->getType()) + "' instead of '" + 6850 getTypeString(IndexedType) + "'"); 6851 Inst = InsertValueInst::Create(Val0, Val1, Indices); 6852 return AteExtraComma ? InstExtraComma : InstNormal; 6853 } 6854 6855 //===----------------------------------------------------------------------===// 6856 // Embedded metadata. 6857 //===----------------------------------------------------------------------===// 6858 6859 /// ParseMDNodeVector 6860 /// ::= { Element (',' Element)* } 6861 /// Element 6862 /// ::= 'null' | TypeAndValue 6863 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 6864 if (ParseToken(lltok::lbrace, "expected '{' here")) 6865 return true; 6866 6867 // Check for an empty list. 6868 if (EatIfPresent(lltok::rbrace)) 6869 return false; 6870 6871 do { 6872 // Null is a special case since it is typeless. 6873 if (EatIfPresent(lltok::kw_null)) { 6874 Elts.push_back(nullptr); 6875 continue; 6876 } 6877 6878 Metadata *MD; 6879 if (ParseMetadata(MD, nullptr)) 6880 return true; 6881 Elts.push_back(MD); 6882 } while (EatIfPresent(lltok::comma)); 6883 6884 return ParseToken(lltok::rbrace, "expected end of metadata node"); 6885 } 6886 6887 //===----------------------------------------------------------------------===// 6888 // Use-list order directives. 6889 //===----------------------------------------------------------------------===// 6890 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 6891 SMLoc Loc) { 6892 if (V->use_empty()) 6893 return Error(Loc, "value has no uses"); 6894 6895 unsigned NumUses = 0; 6896 SmallDenseMap<const Use *, unsigned, 16> Order; 6897 for (const Use &U : V->uses()) { 6898 if (++NumUses > Indexes.size()) 6899 break; 6900 Order[&U] = Indexes[NumUses - 1]; 6901 } 6902 if (NumUses < 2) 6903 return Error(Loc, "value only has one use"); 6904 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 6905 return Error(Loc, 6906 "wrong number of indexes, expected " + Twine(V->getNumUses())); 6907 6908 V->sortUseList([&](const Use &L, const Use &R) { 6909 return Order.lookup(&L) < Order.lookup(&R); 6910 }); 6911 return false; 6912 } 6913 6914 /// ParseUseListOrderIndexes 6915 /// ::= '{' uint32 (',' uint32)+ '}' 6916 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 6917 SMLoc Loc = Lex.getLoc(); 6918 if (ParseToken(lltok::lbrace, "expected '{' here")) 6919 return true; 6920 if (Lex.getKind() == lltok::rbrace) 6921 return Lex.Error("expected non-empty list of uselistorder indexes"); 6922 6923 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 6924 // indexes should be distinct numbers in the range [0, size-1], and should 6925 // not be in order. 6926 unsigned Offset = 0; 6927 unsigned Max = 0; 6928 bool IsOrdered = true; 6929 assert(Indexes.empty() && "Expected empty order vector"); 6930 do { 6931 unsigned Index; 6932 if (ParseUInt32(Index)) 6933 return true; 6934 6935 // Update consistency checks. 6936 Offset += Index - Indexes.size(); 6937 Max = std::max(Max, Index); 6938 IsOrdered &= Index == Indexes.size(); 6939 6940 Indexes.push_back(Index); 6941 } while (EatIfPresent(lltok::comma)); 6942 6943 if (ParseToken(lltok::rbrace, "expected '}' here")) 6944 return true; 6945 6946 if (Indexes.size() < 2) 6947 return Error(Loc, "expected >= 2 uselistorder indexes"); 6948 if (Offset != 0 || Max >= Indexes.size()) 6949 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)"); 6950 if (IsOrdered) 6951 return Error(Loc, "expected uselistorder indexes to change the order"); 6952 6953 return false; 6954 } 6955 6956 /// ParseUseListOrder 6957 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 6958 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) { 6959 SMLoc Loc = Lex.getLoc(); 6960 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 6961 return true; 6962 6963 Value *V; 6964 SmallVector<unsigned, 16> Indexes; 6965 if (ParseTypeAndValue(V, PFS) || 6966 ParseToken(lltok::comma, "expected comma in uselistorder directive") || 6967 ParseUseListOrderIndexes(Indexes)) 6968 return true; 6969 6970 return sortUseListOrder(V, Indexes, Loc); 6971 } 6972 6973 /// ParseUseListOrderBB 6974 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 6975 bool LLParser::ParseUseListOrderBB() { 6976 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 6977 SMLoc Loc = Lex.getLoc(); 6978 Lex.Lex(); 6979 6980 ValID Fn, Label; 6981 SmallVector<unsigned, 16> Indexes; 6982 if (ParseValID(Fn) || 6983 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6984 ParseValID(Label) || 6985 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6986 ParseUseListOrderIndexes(Indexes)) 6987 return true; 6988 6989 // Check the function. 6990 GlobalValue *GV; 6991 if (Fn.Kind == ValID::t_GlobalName) 6992 GV = M->getNamedValue(Fn.StrVal); 6993 else if (Fn.Kind == ValID::t_GlobalID) 6994 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 6995 else 6996 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 6997 if (!GV) 6998 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb"); 6999 auto *F = dyn_cast<Function>(GV); 7000 if (!F) 7001 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 7002 if (F->isDeclaration()) 7003 return Error(Fn.Loc, "invalid declaration in uselistorder_bb"); 7004 7005 // Check the basic block. 7006 if (Label.Kind == ValID::t_LocalID) 7007 return Error(Label.Loc, "invalid numeric label in uselistorder_bb"); 7008 if (Label.Kind != ValID::t_LocalName) 7009 return Error(Label.Loc, "expected basic block name in uselistorder_bb"); 7010 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 7011 if (!V) 7012 return Error(Label.Loc, "invalid basic block in uselistorder_bb"); 7013 if (!isa<BasicBlock>(V)) 7014 return Error(Label.Loc, "expected basic block in uselistorder_bb"); 7015 7016 return sortUseListOrder(V, Indexes, Loc); 7017 } 7018 7019 /// ModuleEntry 7020 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')' 7021 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')' 7022 bool LLParser::ParseModuleEntry(unsigned ID) { 7023 assert(Lex.getKind() == lltok::kw_module); 7024 Lex.Lex(); 7025 7026 std::string Path; 7027 if (ParseToken(lltok::colon, "expected ':' here") || 7028 ParseToken(lltok::lparen, "expected '(' here") || 7029 ParseToken(lltok::kw_path, "expected 'path' here") || 7030 ParseToken(lltok::colon, "expected ':' here") || 7031 ParseStringConstant(Path) || 7032 ParseToken(lltok::comma, "expected ',' here") || 7033 ParseToken(lltok::kw_hash, "expected 'hash' here") || 7034 ParseToken(lltok::colon, "expected ':' here") || 7035 ParseToken(lltok::lparen, "expected '(' here")) 7036 return true; 7037 7038 ModuleHash Hash; 7039 if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") || 7040 ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") || 7041 ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") || 7042 ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") || 7043 ParseUInt32(Hash[4])) 7044 return true; 7045 7046 if (ParseToken(lltok::rparen, "expected ')' here") || 7047 ParseToken(lltok::rparen, "expected ')' here")) 7048 return true; 7049 7050 auto ModuleEntry = Index->addModule(Path, ID, Hash); 7051 ModuleIdMap[ID] = ModuleEntry->first(); 7052 7053 return false; 7054 } 7055 7056 /// TypeIdEntry 7057 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')' 7058 bool LLParser::ParseTypeIdEntry(unsigned ID) { 7059 assert(Lex.getKind() == lltok::kw_typeid); 7060 Lex.Lex(); 7061 7062 std::string Name; 7063 if (ParseToken(lltok::colon, "expected ':' here") || 7064 ParseToken(lltok::lparen, "expected '(' here") || 7065 ParseToken(lltok::kw_name, "expected 'name' here") || 7066 ParseToken(lltok::colon, "expected ':' here") || 7067 ParseStringConstant(Name)) 7068 return true; 7069 7070 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name); 7071 if (ParseToken(lltok::comma, "expected ',' here") || 7072 ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here")) 7073 return true; 7074 7075 // Check if this ID was forward referenced, and if so, update the 7076 // corresponding GUIDs. 7077 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7078 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7079 for (auto TIDRef : FwdRefTIDs->second) { 7080 assert(!*TIDRef.first && 7081 "Forward referenced type id GUID expected to be 0"); 7082 *TIDRef.first = GlobalValue::getGUID(Name); 7083 } 7084 ForwardRefTypeIds.erase(FwdRefTIDs); 7085 } 7086 7087 return false; 7088 } 7089 7090 /// TypeIdSummary 7091 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')' 7092 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) { 7093 if (ParseToken(lltok::kw_summary, "expected 'summary' here") || 7094 ParseToken(lltok::colon, "expected ':' here") || 7095 ParseToken(lltok::lparen, "expected '(' here") || 7096 ParseTypeTestResolution(TIS.TTRes)) 7097 return true; 7098 7099 if (EatIfPresent(lltok::comma)) { 7100 // Expect optional wpdResolutions field 7101 if (ParseOptionalWpdResolutions(TIS.WPDRes)) 7102 return true; 7103 } 7104 7105 if (ParseToken(lltok::rparen, "expected ')' here")) 7106 return true; 7107 7108 return false; 7109 } 7110 7111 /// TypeTestResolution 7112 /// ::= 'typeTestRes' ':' '(' 'kind' ':' 7113 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ',' 7114 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]? 7115 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]? 7116 /// [',' 'inlinesBits' ':' UInt64]? ')' 7117 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) { 7118 if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") || 7119 ParseToken(lltok::colon, "expected ':' here") || 7120 ParseToken(lltok::lparen, "expected '(' here") || 7121 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7122 ParseToken(lltok::colon, "expected ':' here")) 7123 return true; 7124 7125 switch (Lex.getKind()) { 7126 case lltok::kw_unsat: 7127 TTRes.TheKind = TypeTestResolution::Unsat; 7128 break; 7129 case lltok::kw_byteArray: 7130 TTRes.TheKind = TypeTestResolution::ByteArray; 7131 break; 7132 case lltok::kw_inline: 7133 TTRes.TheKind = TypeTestResolution::Inline; 7134 break; 7135 case lltok::kw_single: 7136 TTRes.TheKind = TypeTestResolution::Single; 7137 break; 7138 case lltok::kw_allOnes: 7139 TTRes.TheKind = TypeTestResolution::AllOnes; 7140 break; 7141 default: 7142 return Error(Lex.getLoc(), "unexpected TypeTestResolution kind"); 7143 } 7144 Lex.Lex(); 7145 7146 if (ParseToken(lltok::comma, "expected ',' here") || 7147 ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") || 7148 ParseToken(lltok::colon, "expected ':' here") || 7149 ParseUInt32(TTRes.SizeM1BitWidth)) 7150 return true; 7151 7152 // Parse optional fields 7153 while (EatIfPresent(lltok::comma)) { 7154 switch (Lex.getKind()) { 7155 case lltok::kw_alignLog2: 7156 Lex.Lex(); 7157 if (ParseToken(lltok::colon, "expected ':'") || 7158 ParseUInt64(TTRes.AlignLog2)) 7159 return true; 7160 break; 7161 case lltok::kw_sizeM1: 7162 Lex.Lex(); 7163 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1)) 7164 return true; 7165 break; 7166 case lltok::kw_bitMask: { 7167 unsigned Val; 7168 Lex.Lex(); 7169 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val)) 7170 return true; 7171 assert(Val <= 0xff); 7172 TTRes.BitMask = (uint8_t)Val; 7173 break; 7174 } 7175 case lltok::kw_inlineBits: 7176 Lex.Lex(); 7177 if (ParseToken(lltok::colon, "expected ':'") || 7178 ParseUInt64(TTRes.InlineBits)) 7179 return true; 7180 break; 7181 default: 7182 return Error(Lex.getLoc(), "expected optional TypeTestResolution field"); 7183 } 7184 } 7185 7186 if (ParseToken(lltok::rparen, "expected ')' here")) 7187 return true; 7188 7189 return false; 7190 } 7191 7192 /// OptionalWpdResolutions 7193 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')' 7194 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')' 7195 bool LLParser::ParseOptionalWpdResolutions( 7196 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) { 7197 if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") || 7198 ParseToken(lltok::colon, "expected ':' here") || 7199 ParseToken(lltok::lparen, "expected '(' here")) 7200 return true; 7201 7202 do { 7203 uint64_t Offset; 7204 WholeProgramDevirtResolution WPDRes; 7205 if (ParseToken(lltok::lparen, "expected '(' here") || 7206 ParseToken(lltok::kw_offset, "expected 'offset' here") || 7207 ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) || 7208 ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) || 7209 ParseToken(lltok::rparen, "expected ')' here")) 7210 return true; 7211 WPDResMap[Offset] = WPDRes; 7212 } while (EatIfPresent(lltok::comma)); 7213 7214 if (ParseToken(lltok::rparen, "expected ')' here")) 7215 return true; 7216 7217 return false; 7218 } 7219 7220 /// WpdRes 7221 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir' 7222 /// [',' OptionalResByArg]? ')' 7223 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl' 7224 /// ',' 'singleImplName' ':' STRINGCONSTANT ',' 7225 /// [',' OptionalResByArg]? ')' 7226 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel' 7227 /// [',' OptionalResByArg]? ')' 7228 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) { 7229 if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") || 7230 ParseToken(lltok::colon, "expected ':' here") || 7231 ParseToken(lltok::lparen, "expected '(' here") || 7232 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7233 ParseToken(lltok::colon, "expected ':' here")) 7234 return true; 7235 7236 switch (Lex.getKind()) { 7237 case lltok::kw_indir: 7238 WPDRes.TheKind = WholeProgramDevirtResolution::Indir; 7239 break; 7240 case lltok::kw_singleImpl: 7241 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl; 7242 break; 7243 case lltok::kw_branchFunnel: 7244 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel; 7245 break; 7246 default: 7247 return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind"); 7248 } 7249 Lex.Lex(); 7250 7251 // Parse optional fields 7252 while (EatIfPresent(lltok::comma)) { 7253 switch (Lex.getKind()) { 7254 case lltok::kw_singleImplName: 7255 Lex.Lex(); 7256 if (ParseToken(lltok::colon, "expected ':' here") || 7257 ParseStringConstant(WPDRes.SingleImplName)) 7258 return true; 7259 break; 7260 case lltok::kw_resByArg: 7261 if (ParseOptionalResByArg(WPDRes.ResByArg)) 7262 return true; 7263 break; 7264 default: 7265 return Error(Lex.getLoc(), 7266 "expected optional WholeProgramDevirtResolution field"); 7267 } 7268 } 7269 7270 if (ParseToken(lltok::rparen, "expected ')' here")) 7271 return true; 7272 7273 return false; 7274 } 7275 7276 /// OptionalResByArg 7277 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')' 7278 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':' 7279 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' | 7280 /// 'virtualConstProp' ) 7281 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]? 7282 /// [',' 'bit' ':' UInt32]? ')' 7283 bool LLParser::ParseOptionalResByArg( 7284 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg> 7285 &ResByArg) { 7286 if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") || 7287 ParseToken(lltok::colon, "expected ':' here") || 7288 ParseToken(lltok::lparen, "expected '(' here")) 7289 return true; 7290 7291 do { 7292 std::vector<uint64_t> Args; 7293 if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") || 7294 ParseToken(lltok::kw_byArg, "expected 'byArg here") || 7295 ParseToken(lltok::colon, "expected ':' here") || 7296 ParseToken(lltok::lparen, "expected '(' here") || 7297 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7298 ParseToken(lltok::colon, "expected ':' here")) 7299 return true; 7300 7301 WholeProgramDevirtResolution::ByArg ByArg; 7302 switch (Lex.getKind()) { 7303 case lltok::kw_indir: 7304 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir; 7305 break; 7306 case lltok::kw_uniformRetVal: 7307 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 7308 break; 7309 case lltok::kw_uniqueRetVal: 7310 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 7311 break; 7312 case lltok::kw_virtualConstProp: 7313 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 7314 break; 7315 default: 7316 return Error(Lex.getLoc(), 7317 "unexpected WholeProgramDevirtResolution::ByArg kind"); 7318 } 7319 Lex.Lex(); 7320 7321 // Parse optional fields 7322 while (EatIfPresent(lltok::comma)) { 7323 switch (Lex.getKind()) { 7324 case lltok::kw_info: 7325 Lex.Lex(); 7326 if (ParseToken(lltok::colon, "expected ':' here") || 7327 ParseUInt64(ByArg.Info)) 7328 return true; 7329 break; 7330 case lltok::kw_byte: 7331 Lex.Lex(); 7332 if (ParseToken(lltok::colon, "expected ':' here") || 7333 ParseUInt32(ByArg.Byte)) 7334 return true; 7335 break; 7336 case lltok::kw_bit: 7337 Lex.Lex(); 7338 if (ParseToken(lltok::colon, "expected ':' here") || 7339 ParseUInt32(ByArg.Bit)) 7340 return true; 7341 break; 7342 default: 7343 return Error(Lex.getLoc(), 7344 "expected optional whole program devirt field"); 7345 } 7346 } 7347 7348 if (ParseToken(lltok::rparen, "expected ')' here")) 7349 return true; 7350 7351 ResByArg[Args] = ByArg; 7352 } while (EatIfPresent(lltok::comma)); 7353 7354 if (ParseToken(lltok::rparen, "expected ')' here")) 7355 return true; 7356 7357 return false; 7358 } 7359 7360 /// OptionalResByArg 7361 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')' 7362 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) { 7363 if (ParseToken(lltok::kw_args, "expected 'args' here") || 7364 ParseToken(lltok::colon, "expected ':' here") || 7365 ParseToken(lltok::lparen, "expected '(' here")) 7366 return true; 7367 7368 do { 7369 uint64_t Val; 7370 if (ParseUInt64(Val)) 7371 return true; 7372 Args.push_back(Val); 7373 } while (EatIfPresent(lltok::comma)); 7374 7375 if (ParseToken(lltok::rparen, "expected ')' here")) 7376 return true; 7377 7378 return false; 7379 } 7380 7381 static ValueInfo EmptyVI = 7382 ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8); 7383 7384 /// Stores the given Name/GUID and associated summary into the Index. 7385 /// Also updates any forward references to the associated entry ID. 7386 void LLParser::AddGlobalValueToIndex( 7387 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage, 7388 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) { 7389 // First create the ValueInfo utilizing the Name or GUID. 7390 ValueInfo VI; 7391 if (GUID != 0) { 7392 assert(Name.empty()); 7393 VI = Index->getOrInsertValueInfo(GUID); 7394 } else { 7395 assert(!Name.empty()); 7396 if (M) { 7397 auto *GV = M->getNamedValue(Name); 7398 assert(GV); 7399 VI = Index->getOrInsertValueInfo(GV); 7400 } else { 7401 assert( 7402 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) && 7403 "Need a source_filename to compute GUID for local"); 7404 GUID = GlobalValue::getGUID( 7405 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName)); 7406 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name)); 7407 } 7408 } 7409 7410 // Add the summary if one was provided. 7411 if (Summary) 7412 Index->addGlobalValueSummary(VI, std::move(Summary)); 7413 7414 // Resolve forward references from calls/refs 7415 auto FwdRefVIs = ForwardRefValueInfos.find(ID); 7416 if (FwdRefVIs != ForwardRefValueInfos.end()) { 7417 for (auto VIRef : FwdRefVIs->second) { 7418 assert(*VIRef.first == EmptyVI && 7419 "Forward referenced ValueInfo expected to be empty"); 7420 *VIRef.first = VI; 7421 } 7422 ForwardRefValueInfos.erase(FwdRefVIs); 7423 } 7424 7425 // Resolve forward references from aliases 7426 auto FwdRefAliasees = ForwardRefAliasees.find(ID); 7427 if (FwdRefAliasees != ForwardRefAliasees.end()) { 7428 for (auto AliaseeRef : FwdRefAliasees->second) { 7429 assert(!AliaseeRef.first->hasAliasee() && 7430 "Forward referencing alias already has aliasee"); 7431 AliaseeRef.first->setAliasee(VI.getSummaryList().front().get()); 7432 } 7433 ForwardRefAliasees.erase(FwdRefAliasees); 7434 } 7435 7436 // Save the associated ValueInfo for use in later references by ID. 7437 if (ID == NumberedValueInfos.size()) 7438 NumberedValueInfos.push_back(VI); 7439 else { 7440 // Handle non-continuous numbers (to make test simplification easier). 7441 if (ID > NumberedValueInfos.size()) 7442 NumberedValueInfos.resize(ID + 1); 7443 NumberedValueInfos[ID] = VI; 7444 } 7445 } 7446 7447 /// ParseGVEntry 7448 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64) 7449 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')' 7450 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')' 7451 bool LLParser::ParseGVEntry(unsigned ID) { 7452 assert(Lex.getKind() == lltok::kw_gv); 7453 Lex.Lex(); 7454 7455 if (ParseToken(lltok::colon, "expected ':' here") || 7456 ParseToken(lltok::lparen, "expected '(' here")) 7457 return true; 7458 7459 std::string Name; 7460 GlobalValue::GUID GUID = 0; 7461 switch (Lex.getKind()) { 7462 case lltok::kw_name: 7463 Lex.Lex(); 7464 if (ParseToken(lltok::colon, "expected ':' here") || 7465 ParseStringConstant(Name)) 7466 return true; 7467 // Can't create GUID/ValueInfo until we have the linkage. 7468 break; 7469 case lltok::kw_guid: 7470 Lex.Lex(); 7471 if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID)) 7472 return true; 7473 break; 7474 default: 7475 return Error(Lex.getLoc(), "expected name or guid tag"); 7476 } 7477 7478 if (!EatIfPresent(lltok::comma)) { 7479 // No summaries. Wrap up. 7480 if (ParseToken(lltok::rparen, "expected ')' here")) 7481 return true; 7482 // This was created for a call to an external or indirect target. 7483 // A GUID with no summary came from a VALUE_GUID record, dummy GUID 7484 // created for indirect calls with VP. A Name with no GUID came from 7485 // an external definition. We pass ExternalLinkage since that is only 7486 // used when the GUID must be computed from Name, and in that case 7487 // the symbol must have external linkage. 7488 AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID, 7489 nullptr); 7490 return false; 7491 } 7492 7493 // Have a list of summaries 7494 if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") || 7495 ParseToken(lltok::colon, "expected ':' here")) 7496 return true; 7497 7498 do { 7499 if (ParseToken(lltok::lparen, "expected '(' here")) 7500 return true; 7501 switch (Lex.getKind()) { 7502 case lltok::kw_function: 7503 if (ParseFunctionSummary(Name, GUID, ID)) 7504 return true; 7505 break; 7506 case lltok::kw_variable: 7507 if (ParseVariableSummary(Name, GUID, ID)) 7508 return true; 7509 break; 7510 case lltok::kw_alias: 7511 if (ParseAliasSummary(Name, GUID, ID)) 7512 return true; 7513 break; 7514 default: 7515 return Error(Lex.getLoc(), "expected summary type"); 7516 } 7517 if (ParseToken(lltok::rparen, "expected ')' here")) 7518 return true; 7519 } while (EatIfPresent(lltok::comma)); 7520 7521 if (ParseToken(lltok::rparen, "expected ')' here")) 7522 return true; 7523 7524 return false; 7525 } 7526 7527 /// FunctionSummary 7528 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags 7529 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]? 7530 /// [',' OptionalTypeIdInfo]? [',' OptionalRefs]? ')' 7531 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID, 7532 unsigned ID) { 7533 assert(Lex.getKind() == lltok::kw_function); 7534 Lex.Lex(); 7535 7536 StringRef ModulePath; 7537 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 7538 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 7539 /*Live=*/false, /*IsLocal=*/false); 7540 unsigned InstCount; 7541 std::vector<FunctionSummary::EdgeTy> Calls; 7542 FunctionSummary::TypeIdInfo TypeIdInfo; 7543 std::vector<ValueInfo> Refs; 7544 // Default is all-zeros (conservative values). 7545 FunctionSummary::FFlags FFlags = {}; 7546 if (ParseToken(lltok::colon, "expected ':' here") || 7547 ParseToken(lltok::lparen, "expected '(' here") || 7548 ParseModuleReference(ModulePath) || 7549 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 7550 ParseToken(lltok::comma, "expected ',' here") || 7551 ParseToken(lltok::kw_insts, "expected 'insts' here") || 7552 ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount)) 7553 return true; 7554 7555 // Parse optional fields 7556 while (EatIfPresent(lltok::comma)) { 7557 switch (Lex.getKind()) { 7558 case lltok::kw_funcFlags: 7559 if (ParseOptionalFFlags(FFlags)) 7560 return true; 7561 break; 7562 case lltok::kw_calls: 7563 if (ParseOptionalCalls(Calls)) 7564 return true; 7565 break; 7566 case lltok::kw_typeIdInfo: 7567 if (ParseOptionalTypeIdInfo(TypeIdInfo)) 7568 return true; 7569 break; 7570 case lltok::kw_refs: 7571 if (ParseOptionalRefs(Refs)) 7572 return true; 7573 break; 7574 default: 7575 return Error(Lex.getLoc(), "expected optional function summary field"); 7576 } 7577 } 7578 7579 if (ParseToken(lltok::rparen, "expected ')' here")) 7580 return true; 7581 7582 auto FS = llvm::make_unique<FunctionSummary>( 7583 GVFlags, InstCount, FFlags, std::move(Refs), std::move(Calls), 7584 std::move(TypeIdInfo.TypeTests), 7585 std::move(TypeIdInfo.TypeTestAssumeVCalls), 7586 std::move(TypeIdInfo.TypeCheckedLoadVCalls), 7587 std::move(TypeIdInfo.TypeTestAssumeConstVCalls), 7588 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls)); 7589 7590 FS->setModulePath(ModulePath); 7591 7592 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 7593 ID, std::move(FS)); 7594 7595 return false; 7596 } 7597 7598 /// VariableSummary 7599 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags 7600 /// [',' OptionalRefs]? ')' 7601 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID, 7602 unsigned ID) { 7603 assert(Lex.getKind() == lltok::kw_variable); 7604 Lex.Lex(); 7605 7606 StringRef ModulePath; 7607 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 7608 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 7609 /*Live=*/false, /*IsLocal=*/false); 7610 std::vector<ValueInfo> Refs; 7611 if (ParseToken(lltok::colon, "expected ':' here") || 7612 ParseToken(lltok::lparen, "expected '(' here") || 7613 ParseModuleReference(ModulePath) || 7614 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags)) 7615 return true; 7616 7617 // Parse optional refs field 7618 if (EatIfPresent(lltok::comma)) { 7619 if (ParseOptionalRefs(Refs)) 7620 return true; 7621 } 7622 7623 if (ParseToken(lltok::rparen, "expected ')' here")) 7624 return true; 7625 7626 auto GS = llvm::make_unique<GlobalVarSummary>(GVFlags, std::move(Refs)); 7627 7628 GS->setModulePath(ModulePath); 7629 7630 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 7631 ID, std::move(GS)); 7632 7633 return false; 7634 } 7635 7636 /// AliasSummary 7637 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ',' 7638 /// 'aliasee' ':' GVReference ')' 7639 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID, 7640 unsigned ID) { 7641 assert(Lex.getKind() == lltok::kw_alias); 7642 LocTy Loc = Lex.getLoc(); 7643 Lex.Lex(); 7644 7645 StringRef ModulePath; 7646 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 7647 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 7648 /*Live=*/false, /*IsLocal=*/false); 7649 if (ParseToken(lltok::colon, "expected ':' here") || 7650 ParseToken(lltok::lparen, "expected '(' here") || 7651 ParseModuleReference(ModulePath) || 7652 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 7653 ParseToken(lltok::comma, "expected ',' here") || 7654 ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") || 7655 ParseToken(lltok::colon, "expected ':' here")) 7656 return true; 7657 7658 ValueInfo AliaseeVI; 7659 unsigned GVId; 7660 if (ParseGVReference(AliaseeVI, GVId)) 7661 return true; 7662 7663 if (ParseToken(lltok::rparen, "expected ')' here")) 7664 return true; 7665 7666 auto AS = llvm::make_unique<AliasSummary>(GVFlags); 7667 7668 AS->setModulePath(ModulePath); 7669 7670 // Record forward reference if the aliasee is not parsed yet. 7671 if (AliaseeVI == EmptyVI) { 7672 auto FwdRef = ForwardRefAliasees.insert( 7673 std::make_pair(GVId, std::vector<std::pair<AliasSummary *, LocTy>>())); 7674 FwdRef.first->second.push_back(std::make_pair(AS.get(), Loc)); 7675 } else 7676 AS->setAliasee(AliaseeVI.getSummaryList().front().get()); 7677 7678 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 7679 ID, std::move(AS)); 7680 7681 return false; 7682 } 7683 7684 /// Flag 7685 /// ::= [0|1] 7686 bool LLParser::ParseFlag(unsigned &Val) { 7687 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 7688 return TokError("expected integer"); 7689 Val = (unsigned)Lex.getAPSIntVal().getBoolValue(); 7690 Lex.Lex(); 7691 return false; 7692 } 7693 7694 /// OptionalFFlags 7695 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]? 7696 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]? 7697 /// [',' 'returnDoesNotAlias' ':' Flag]? ')' 7698 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) { 7699 assert(Lex.getKind() == lltok::kw_funcFlags); 7700 Lex.Lex(); 7701 7702 if (ParseToken(lltok::colon, "expected ':' in funcFlags") | 7703 ParseToken(lltok::lparen, "expected '(' in funcFlags")) 7704 return true; 7705 7706 do { 7707 unsigned Val; 7708 switch (Lex.getKind()) { 7709 case lltok::kw_readNone: 7710 Lex.Lex(); 7711 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 7712 return true; 7713 FFlags.ReadNone = Val; 7714 break; 7715 case lltok::kw_readOnly: 7716 Lex.Lex(); 7717 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 7718 return true; 7719 FFlags.ReadOnly = Val; 7720 break; 7721 case lltok::kw_noRecurse: 7722 Lex.Lex(); 7723 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 7724 return true; 7725 FFlags.NoRecurse = Val; 7726 break; 7727 case lltok::kw_returnDoesNotAlias: 7728 Lex.Lex(); 7729 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 7730 return true; 7731 FFlags.ReturnDoesNotAlias = Val; 7732 break; 7733 default: 7734 return Error(Lex.getLoc(), "expected function flag type"); 7735 } 7736 } while (EatIfPresent(lltok::comma)); 7737 7738 if (ParseToken(lltok::rparen, "expected ')' in funcFlags")) 7739 return true; 7740 7741 return false; 7742 } 7743 7744 /// OptionalCalls 7745 /// := 'calls' ':' '(' Call [',' Call]* ')' 7746 /// Call ::= '(' 'callee' ':' GVReference 7747 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')' 7748 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) { 7749 assert(Lex.getKind() == lltok::kw_calls); 7750 Lex.Lex(); 7751 7752 if (ParseToken(lltok::colon, "expected ':' in calls") | 7753 ParseToken(lltok::lparen, "expected '(' in calls")) 7754 return true; 7755 7756 IdToIndexMapType IdToIndexMap; 7757 // Parse each call edge 7758 do { 7759 ValueInfo VI; 7760 if (ParseToken(lltok::lparen, "expected '(' in call") || 7761 ParseToken(lltok::kw_callee, "expected 'callee' in call") || 7762 ParseToken(lltok::colon, "expected ':'")) 7763 return true; 7764 7765 LocTy Loc = Lex.getLoc(); 7766 unsigned GVId; 7767 if (ParseGVReference(VI, GVId)) 7768 return true; 7769 7770 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 7771 unsigned RelBF = 0; 7772 if (EatIfPresent(lltok::comma)) { 7773 // Expect either hotness or relbf 7774 if (EatIfPresent(lltok::kw_hotness)) { 7775 if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness)) 7776 return true; 7777 } else { 7778 if (ParseToken(lltok::kw_relbf, "expected relbf") || 7779 ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF)) 7780 return true; 7781 } 7782 } 7783 // Keep track of the Call array index needing a forward reference. 7784 // We will save the location of the ValueInfo needing an update, but 7785 // can only do so once the std::vector is finalized. 7786 if (VI == EmptyVI) 7787 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc)); 7788 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)}); 7789 7790 if (ParseToken(lltok::rparen, "expected ')' in call")) 7791 return true; 7792 } while (EatIfPresent(lltok::comma)); 7793 7794 // Now that the Calls vector is finalized, it is safe to save the locations 7795 // of any forward GV references that need updating later. 7796 for (auto I : IdToIndexMap) { 7797 for (auto P : I.second) { 7798 assert(Calls[P.first].first == EmptyVI && 7799 "Forward referenced ValueInfo expected to be empty"); 7800 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 7801 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 7802 FwdRef.first->second.push_back( 7803 std::make_pair(&Calls[P.first].first, P.second)); 7804 } 7805 } 7806 7807 if (ParseToken(lltok::rparen, "expected ')' in calls")) 7808 return true; 7809 7810 return false; 7811 } 7812 7813 /// Hotness 7814 /// := ('unknown'|'cold'|'none'|'hot'|'critical') 7815 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) { 7816 switch (Lex.getKind()) { 7817 case lltok::kw_unknown: 7818 Hotness = CalleeInfo::HotnessType::Unknown; 7819 break; 7820 case lltok::kw_cold: 7821 Hotness = CalleeInfo::HotnessType::Cold; 7822 break; 7823 case lltok::kw_none: 7824 Hotness = CalleeInfo::HotnessType::None; 7825 break; 7826 case lltok::kw_hot: 7827 Hotness = CalleeInfo::HotnessType::Hot; 7828 break; 7829 case lltok::kw_critical: 7830 Hotness = CalleeInfo::HotnessType::Critical; 7831 break; 7832 default: 7833 return Error(Lex.getLoc(), "invalid call edge hotness"); 7834 } 7835 Lex.Lex(); 7836 return false; 7837 } 7838 7839 /// OptionalRefs 7840 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')' 7841 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) { 7842 assert(Lex.getKind() == lltok::kw_refs); 7843 Lex.Lex(); 7844 7845 if (ParseToken(lltok::colon, "expected ':' in refs") | 7846 ParseToken(lltok::lparen, "expected '(' in refs")) 7847 return true; 7848 7849 IdToIndexMapType IdToIndexMap; 7850 // Parse each ref edge 7851 do { 7852 ValueInfo VI; 7853 LocTy Loc = Lex.getLoc(); 7854 unsigned GVId; 7855 if (ParseGVReference(VI, GVId)) 7856 return true; 7857 7858 // Keep track of the Refs array index needing a forward reference. 7859 // We will save the location of the ValueInfo needing an update, but 7860 // can only do so once the std::vector is finalized. 7861 if (VI == EmptyVI) 7862 IdToIndexMap[GVId].push_back(std::make_pair(Refs.size(), Loc)); 7863 Refs.push_back(VI); 7864 } while (EatIfPresent(lltok::comma)); 7865 7866 // Now that the Refs vector is finalized, it is safe to save the locations 7867 // of any forward GV references that need updating later. 7868 for (auto I : IdToIndexMap) { 7869 for (auto P : I.second) { 7870 assert(Refs[P.first] == EmptyVI && 7871 "Forward referenced ValueInfo expected to be empty"); 7872 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 7873 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 7874 FwdRef.first->second.push_back(std::make_pair(&Refs[P.first], P.second)); 7875 } 7876 } 7877 7878 if (ParseToken(lltok::rparen, "expected ')' in refs")) 7879 return true; 7880 7881 return false; 7882 } 7883 7884 /// OptionalTypeIdInfo 7885 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]? 7886 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]? 7887 /// [',' TypeCheckedLoadConstVCalls]? ')' 7888 bool LLParser::ParseOptionalTypeIdInfo( 7889 FunctionSummary::TypeIdInfo &TypeIdInfo) { 7890 assert(Lex.getKind() == lltok::kw_typeIdInfo); 7891 Lex.Lex(); 7892 7893 if (ParseToken(lltok::colon, "expected ':' here") || 7894 ParseToken(lltok::lparen, "expected '(' in typeIdInfo")) 7895 return true; 7896 7897 do { 7898 switch (Lex.getKind()) { 7899 case lltok::kw_typeTests: 7900 if (ParseTypeTests(TypeIdInfo.TypeTests)) 7901 return true; 7902 break; 7903 case lltok::kw_typeTestAssumeVCalls: 7904 if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls, 7905 TypeIdInfo.TypeTestAssumeVCalls)) 7906 return true; 7907 break; 7908 case lltok::kw_typeCheckedLoadVCalls: 7909 if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls, 7910 TypeIdInfo.TypeCheckedLoadVCalls)) 7911 return true; 7912 break; 7913 case lltok::kw_typeTestAssumeConstVCalls: 7914 if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls, 7915 TypeIdInfo.TypeTestAssumeConstVCalls)) 7916 return true; 7917 break; 7918 case lltok::kw_typeCheckedLoadConstVCalls: 7919 if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls, 7920 TypeIdInfo.TypeCheckedLoadConstVCalls)) 7921 return true; 7922 break; 7923 default: 7924 return Error(Lex.getLoc(), "invalid typeIdInfo list type"); 7925 } 7926 } while (EatIfPresent(lltok::comma)); 7927 7928 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo")) 7929 return true; 7930 7931 return false; 7932 } 7933 7934 /// TypeTests 7935 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64) 7936 /// [',' (SummaryID | UInt64)]* ')' 7937 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) { 7938 assert(Lex.getKind() == lltok::kw_typeTests); 7939 Lex.Lex(); 7940 7941 if (ParseToken(lltok::colon, "expected ':' here") || 7942 ParseToken(lltok::lparen, "expected '(' in typeIdInfo")) 7943 return true; 7944 7945 IdToIndexMapType IdToIndexMap; 7946 do { 7947 GlobalValue::GUID GUID = 0; 7948 if (Lex.getKind() == lltok::SummaryID) { 7949 unsigned ID = Lex.getUIntVal(); 7950 LocTy Loc = Lex.getLoc(); 7951 // Keep track of the TypeTests array index needing a forward reference. 7952 // We will save the location of the GUID needing an update, but 7953 // can only do so once the std::vector is finalized. 7954 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc)); 7955 Lex.Lex(); 7956 } else if (ParseUInt64(GUID)) 7957 return true; 7958 TypeTests.push_back(GUID); 7959 } while (EatIfPresent(lltok::comma)); 7960 7961 // Now that the TypeTests vector is finalized, it is safe to save the 7962 // locations of any forward GV references that need updating later. 7963 for (auto I : IdToIndexMap) { 7964 for (auto P : I.second) { 7965 assert(TypeTests[P.first] == 0 && 7966 "Forward referenced type id GUID expected to be 0"); 7967 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 7968 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 7969 FwdRef.first->second.push_back( 7970 std::make_pair(&TypeTests[P.first], P.second)); 7971 } 7972 } 7973 7974 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo")) 7975 return true; 7976 7977 return false; 7978 } 7979 7980 /// VFuncIdList 7981 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')' 7982 bool LLParser::ParseVFuncIdList( 7983 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) { 7984 assert(Lex.getKind() == Kind); 7985 Lex.Lex(); 7986 7987 if (ParseToken(lltok::colon, "expected ':' here") || 7988 ParseToken(lltok::lparen, "expected '(' here")) 7989 return true; 7990 7991 IdToIndexMapType IdToIndexMap; 7992 do { 7993 FunctionSummary::VFuncId VFuncId; 7994 if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size())) 7995 return true; 7996 VFuncIdList.push_back(VFuncId); 7997 } while (EatIfPresent(lltok::comma)); 7998 7999 if (ParseToken(lltok::rparen, "expected ')' here")) 8000 return true; 8001 8002 // Now that the VFuncIdList vector is finalized, it is safe to save the 8003 // locations of any forward GV references that need updating later. 8004 for (auto I : IdToIndexMap) { 8005 for (auto P : I.second) { 8006 assert(VFuncIdList[P.first].GUID == 0 && 8007 "Forward referenced type id GUID expected to be 0"); 8008 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8009 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8010 FwdRef.first->second.push_back( 8011 std::make_pair(&VFuncIdList[P.first].GUID, P.second)); 8012 } 8013 } 8014 8015 return false; 8016 } 8017 8018 /// ConstVCallList 8019 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')' 8020 bool LLParser::ParseConstVCallList( 8021 lltok::Kind Kind, 8022 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) { 8023 assert(Lex.getKind() == Kind); 8024 Lex.Lex(); 8025 8026 if (ParseToken(lltok::colon, "expected ':' here") || 8027 ParseToken(lltok::lparen, "expected '(' here")) 8028 return true; 8029 8030 IdToIndexMapType IdToIndexMap; 8031 do { 8032 FunctionSummary::ConstVCall ConstVCall; 8033 if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size())) 8034 return true; 8035 ConstVCallList.push_back(ConstVCall); 8036 } while (EatIfPresent(lltok::comma)); 8037 8038 if (ParseToken(lltok::rparen, "expected ')' here")) 8039 return true; 8040 8041 // Now that the ConstVCallList vector is finalized, it is safe to save the 8042 // locations of any forward GV references that need updating later. 8043 for (auto I : IdToIndexMap) { 8044 for (auto P : I.second) { 8045 assert(ConstVCallList[P.first].VFunc.GUID == 0 && 8046 "Forward referenced type id GUID expected to be 0"); 8047 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8048 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8049 FwdRef.first->second.push_back( 8050 std::make_pair(&ConstVCallList[P.first].VFunc.GUID, P.second)); 8051 } 8052 } 8053 8054 return false; 8055 } 8056 8057 /// ConstVCall 8058 /// ::= '(' VFuncId ',' Args ')' 8059 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall, 8060 IdToIndexMapType &IdToIndexMap, unsigned Index) { 8061 if (ParseToken(lltok::lparen, "expected '(' here") || 8062 ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index)) 8063 return true; 8064 8065 if (EatIfPresent(lltok::comma)) 8066 if (ParseArgs(ConstVCall.Args)) 8067 return true; 8068 8069 if (ParseToken(lltok::rparen, "expected ')' here")) 8070 return true; 8071 8072 return false; 8073 } 8074 8075 /// VFuncId 8076 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ',' 8077 /// 'offset' ':' UInt64 ')' 8078 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId, 8079 IdToIndexMapType &IdToIndexMap, unsigned Index) { 8080 assert(Lex.getKind() == lltok::kw_vFuncId); 8081 Lex.Lex(); 8082 8083 if (ParseToken(lltok::colon, "expected ':' here") || 8084 ParseToken(lltok::lparen, "expected '(' here")) 8085 return true; 8086 8087 if (Lex.getKind() == lltok::SummaryID) { 8088 VFuncId.GUID = 0; 8089 unsigned ID = Lex.getUIntVal(); 8090 LocTy Loc = Lex.getLoc(); 8091 // Keep track of the array index needing a forward reference. 8092 // We will save the location of the GUID needing an update, but 8093 // can only do so once the caller's std::vector is finalized. 8094 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc)); 8095 Lex.Lex(); 8096 } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") || 8097 ParseToken(lltok::colon, "expected ':' here") || 8098 ParseUInt64(VFuncId.GUID)) 8099 return true; 8100 8101 if (ParseToken(lltok::comma, "expected ',' here") || 8102 ParseToken(lltok::kw_offset, "expected 'offset' here") || 8103 ParseToken(lltok::colon, "expected ':' here") || 8104 ParseUInt64(VFuncId.Offset) || 8105 ParseToken(lltok::rparen, "expected ')' here")) 8106 return true; 8107 8108 return false; 8109 } 8110 8111 /// GVFlags 8112 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ',' 8113 /// 'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ',' 8114 /// 'dsoLocal' ':' Flag ')' 8115 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) { 8116 assert(Lex.getKind() == lltok::kw_flags); 8117 Lex.Lex(); 8118 8119 bool HasLinkage; 8120 if (ParseToken(lltok::colon, "expected ':' here") || 8121 ParseToken(lltok::lparen, "expected '(' here") || 8122 ParseToken(lltok::kw_linkage, "expected 'linkage' here") || 8123 ParseToken(lltok::colon, "expected ':' here")) 8124 return true; 8125 8126 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 8127 assert(HasLinkage && "Linkage not optional in summary entry"); 8128 Lex.Lex(); 8129 8130 unsigned Flag; 8131 if (ParseToken(lltok::comma, "expected ',' here") || 8132 ParseToken(lltok::kw_notEligibleToImport, 8133 "expected 'notEligibleToImport' here") || 8134 ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag)) 8135 return true; 8136 GVFlags.NotEligibleToImport = Flag; 8137 8138 if (ParseToken(lltok::comma, "expected ',' here") || 8139 ParseToken(lltok::kw_live, "expected 'live' here") || 8140 ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag)) 8141 return true; 8142 GVFlags.Live = Flag; 8143 8144 if (ParseToken(lltok::comma, "expected ',' here") || 8145 ParseToken(lltok::kw_dsoLocal, "expected 'dsoLocal' here") || 8146 ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag)) 8147 return true; 8148 GVFlags.DSOLocal = Flag; 8149 8150 if (ParseToken(lltok::rparen, "expected ')' here")) 8151 return true; 8152 8153 return false; 8154 } 8155 8156 /// ModuleReference 8157 /// ::= 'module' ':' UInt 8158 bool LLParser::ParseModuleReference(StringRef &ModulePath) { 8159 // Parse module id. 8160 if (ParseToken(lltok::kw_module, "expected 'module' here") || 8161 ParseToken(lltok::colon, "expected ':' here") || 8162 ParseToken(lltok::SummaryID, "expected module ID")) 8163 return true; 8164 8165 unsigned ModuleID = Lex.getUIntVal(); 8166 auto I = ModuleIdMap.find(ModuleID); 8167 // We should have already parsed all module IDs 8168 assert(I != ModuleIdMap.end()); 8169 ModulePath = I->second; 8170 return false; 8171 } 8172 8173 /// GVReference 8174 /// ::= SummaryID 8175 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) { 8176 if (ParseToken(lltok::SummaryID, "expected GV ID")) 8177 return true; 8178 8179 GVId = Lex.getUIntVal(); 8180 8181 // Check if we already have a VI for this GV 8182 if (GVId < NumberedValueInfos.size()) { 8183 assert(NumberedValueInfos[GVId] != EmptyVI); 8184 VI = NumberedValueInfos[GVId]; 8185 } else 8186 // We will create a forward reference to the stored location. 8187 VI = EmptyVI; 8188 8189 return false; 8190 } 8191