1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the parser class for .ll files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "LLParser.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/None.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/AsmParser/SlotMapping.h" 20 #include "llvm/BinaryFormat/Dwarf.h" 21 #include "llvm/IR/Argument.h" 22 #include "llvm/IR/AutoUpgrade.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/CallingConv.h" 25 #include "llvm/IR/Comdat.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DebugInfoMetadata.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/GlobalIFunc.h" 31 #include "llvm/IR/GlobalObject.h" 32 #include "llvm/IR/InlineAsm.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/IR/ValueSymbolTable.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/MathExtras.h" 46 #include "llvm/Support/SaveAndRestore.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <cstring> 51 #include <iterator> 52 #include <vector> 53 54 using namespace llvm; 55 56 static std::string getTypeString(Type *T) { 57 std::string Result; 58 raw_string_ostream Tmp(Result); 59 Tmp << *T; 60 return Tmp.str(); 61 } 62 63 /// Run: module ::= toplevelentity* 64 bool LLParser::Run() { 65 // Prime the lexer. 66 Lex.Lex(); 67 68 if (Context.shouldDiscardValueNames()) 69 return Error( 70 Lex.getLoc(), 71 "Can't read textual IR with a Context that discards named Values"); 72 73 return ParseTopLevelEntities() || ValidateEndOfModule() || 74 ValidateEndOfIndex(); 75 } 76 77 bool LLParser::parseStandaloneConstantValue(Constant *&C, 78 const SlotMapping *Slots) { 79 restoreParsingState(Slots); 80 Lex.Lex(); 81 82 Type *Ty = nullptr; 83 if (ParseType(Ty) || parseConstantValue(Ty, C)) 84 return true; 85 if (Lex.getKind() != lltok::Eof) 86 return Error(Lex.getLoc(), "expected end of string"); 87 return false; 88 } 89 90 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 91 const SlotMapping *Slots) { 92 restoreParsingState(Slots); 93 Lex.Lex(); 94 95 Read = 0; 96 SMLoc Start = Lex.getLoc(); 97 Ty = nullptr; 98 if (ParseType(Ty)) 99 return true; 100 SMLoc End = Lex.getLoc(); 101 Read = End.getPointer() - Start.getPointer(); 102 103 return false; 104 } 105 106 void LLParser::restoreParsingState(const SlotMapping *Slots) { 107 if (!Slots) 108 return; 109 NumberedVals = Slots->GlobalValues; 110 NumberedMetadata = Slots->MetadataNodes; 111 for (const auto &I : Slots->NamedTypes) 112 NamedTypes.insert( 113 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 114 for (const auto &I : Slots->Types) 115 NumberedTypes.insert( 116 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 117 } 118 119 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 120 /// module. 121 bool LLParser::ValidateEndOfModule() { 122 if (!M) 123 return false; 124 // Handle any function attribute group forward references. 125 for (const auto &RAG : ForwardRefAttrGroups) { 126 Value *V = RAG.first; 127 const std::vector<unsigned> &Attrs = RAG.second; 128 AttrBuilder B; 129 130 for (const auto &Attr : Attrs) 131 B.merge(NumberedAttrBuilders[Attr]); 132 133 if (Function *Fn = dyn_cast<Function>(V)) { 134 AttributeList AS = Fn->getAttributes(); 135 AttrBuilder FnAttrs(AS.getFnAttributes()); 136 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 137 138 FnAttrs.merge(B); 139 140 // If the alignment was parsed as an attribute, move to the alignment 141 // field. 142 if (FnAttrs.hasAlignmentAttr()) { 143 Fn->setAlignment(FnAttrs.getAlignment()); 144 FnAttrs.removeAttribute(Attribute::Alignment); 145 } 146 147 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 148 AttributeSet::get(Context, FnAttrs)); 149 Fn->setAttributes(AS); 150 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 151 AttributeList AS = CI->getAttributes(); 152 AttrBuilder FnAttrs(AS.getFnAttributes()); 153 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 154 FnAttrs.merge(B); 155 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 156 AttributeSet::get(Context, FnAttrs)); 157 CI->setAttributes(AS); 158 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 159 AttributeList AS = II->getAttributes(); 160 AttrBuilder FnAttrs(AS.getFnAttributes()); 161 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 162 FnAttrs.merge(B); 163 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 164 AttributeSet::get(Context, FnAttrs)); 165 II->setAttributes(AS); 166 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) { 167 AttributeList AS = CBI->getAttributes(); 168 AttrBuilder FnAttrs(AS.getFnAttributes()); 169 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 170 FnAttrs.merge(B); 171 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 172 AttributeSet::get(Context, FnAttrs)); 173 CBI->setAttributes(AS); 174 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 175 AttrBuilder Attrs(GV->getAttributes()); 176 Attrs.merge(B); 177 GV->setAttributes(AttributeSet::get(Context,Attrs)); 178 } else { 179 llvm_unreachable("invalid object with forward attribute group reference"); 180 } 181 } 182 183 // If there are entries in ForwardRefBlockAddresses at this point, the 184 // function was never defined. 185 if (!ForwardRefBlockAddresses.empty()) 186 return Error(ForwardRefBlockAddresses.begin()->first.Loc, 187 "expected function name in blockaddress"); 188 189 for (const auto &NT : NumberedTypes) 190 if (NT.second.second.isValid()) 191 return Error(NT.second.second, 192 "use of undefined type '%" + Twine(NT.first) + "'"); 193 194 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 195 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 196 if (I->second.second.isValid()) 197 return Error(I->second.second, 198 "use of undefined type named '" + I->getKey() + "'"); 199 200 if (!ForwardRefComdats.empty()) 201 return Error(ForwardRefComdats.begin()->second, 202 "use of undefined comdat '$" + 203 ForwardRefComdats.begin()->first + "'"); 204 205 if (!ForwardRefVals.empty()) 206 return Error(ForwardRefVals.begin()->second.second, 207 "use of undefined value '@" + ForwardRefVals.begin()->first + 208 "'"); 209 210 if (!ForwardRefValIDs.empty()) 211 return Error(ForwardRefValIDs.begin()->second.second, 212 "use of undefined value '@" + 213 Twine(ForwardRefValIDs.begin()->first) + "'"); 214 215 if (!ForwardRefMDNodes.empty()) 216 return Error(ForwardRefMDNodes.begin()->second.second, 217 "use of undefined metadata '!" + 218 Twine(ForwardRefMDNodes.begin()->first) + "'"); 219 220 // Resolve metadata cycles. 221 for (auto &N : NumberedMetadata) { 222 if (N.second && !N.second->isResolved()) 223 N.second->resolveCycles(); 224 } 225 226 for (auto *Inst : InstsWithTBAATag) { 227 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 228 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 229 auto *UpgradedMD = UpgradeTBAANode(*MD); 230 if (MD != UpgradedMD) 231 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 232 } 233 234 // Look for intrinsic functions and CallInst that need to be upgraded 235 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 236 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 237 238 // Some types could be renamed during loading if several modules are 239 // loaded in the same LLVMContext (LTO scenario). In this case we should 240 // remangle intrinsics names as well. 241 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) { 242 Function *F = &*FI++; 243 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 244 F->replaceAllUsesWith(Remangled.getValue()); 245 F->eraseFromParent(); 246 } 247 } 248 249 if (UpgradeDebugInfo) 250 llvm::UpgradeDebugInfo(*M); 251 252 UpgradeModuleFlags(*M); 253 UpgradeSectionAttributes(*M); 254 255 if (!Slots) 256 return false; 257 // Initialize the slot mapping. 258 // Because by this point we've parsed and validated everything, we can "steal" 259 // the mapping from LLParser as it doesn't need it anymore. 260 Slots->GlobalValues = std::move(NumberedVals); 261 Slots->MetadataNodes = std::move(NumberedMetadata); 262 for (const auto &I : NamedTypes) 263 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 264 for (const auto &I : NumberedTypes) 265 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 266 267 return false; 268 } 269 270 /// Do final validity and sanity checks at the end of the index. 271 bool LLParser::ValidateEndOfIndex() { 272 if (!Index) 273 return false; 274 275 if (!ForwardRefValueInfos.empty()) 276 return Error(ForwardRefValueInfos.begin()->second.front().second, 277 "use of undefined summary '^" + 278 Twine(ForwardRefValueInfos.begin()->first) + "'"); 279 280 if (!ForwardRefAliasees.empty()) 281 return Error(ForwardRefAliasees.begin()->second.front().second, 282 "use of undefined summary '^" + 283 Twine(ForwardRefAliasees.begin()->first) + "'"); 284 285 if (!ForwardRefTypeIds.empty()) 286 return Error(ForwardRefTypeIds.begin()->second.front().second, 287 "use of undefined type id summary '^" + 288 Twine(ForwardRefTypeIds.begin()->first) + "'"); 289 290 return false; 291 } 292 293 //===----------------------------------------------------------------------===// 294 // Top-Level Entities 295 //===----------------------------------------------------------------------===// 296 297 bool LLParser::ParseTopLevelEntities() { 298 // If there is no Module, then parse just the summary index entries. 299 if (!M) { 300 while (true) { 301 switch (Lex.getKind()) { 302 case lltok::Eof: 303 return false; 304 case lltok::SummaryID: 305 if (ParseSummaryEntry()) 306 return true; 307 break; 308 case lltok::kw_source_filename: 309 if (ParseSourceFileName()) 310 return true; 311 break; 312 default: 313 // Skip everything else 314 Lex.Lex(); 315 } 316 } 317 } 318 while (true) { 319 switch (Lex.getKind()) { 320 default: return TokError("expected top-level entity"); 321 case lltok::Eof: return false; 322 case lltok::kw_declare: if (ParseDeclare()) return true; break; 323 case lltok::kw_define: if (ParseDefine()) return true; break; 324 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 325 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 326 case lltok::kw_source_filename: 327 if (ParseSourceFileName()) 328 return true; 329 break; 330 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 331 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 332 case lltok::LocalVar: if (ParseNamedType()) return true; break; 333 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 334 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 335 case lltok::ComdatVar: if (parseComdat()) return true; break; 336 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 337 case lltok::SummaryID: 338 if (ParseSummaryEntry()) 339 return true; 340 break; 341 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break; 342 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break; 343 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break; 344 case lltok::kw_uselistorder_bb: 345 if (ParseUseListOrderBB()) 346 return true; 347 break; 348 } 349 } 350 } 351 352 /// toplevelentity 353 /// ::= 'module' 'asm' STRINGCONSTANT 354 bool LLParser::ParseModuleAsm() { 355 assert(Lex.getKind() == lltok::kw_module); 356 Lex.Lex(); 357 358 std::string AsmStr; 359 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 360 ParseStringConstant(AsmStr)) return true; 361 362 M->appendModuleInlineAsm(AsmStr); 363 return false; 364 } 365 366 /// toplevelentity 367 /// ::= 'target' 'triple' '=' STRINGCONSTANT 368 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 369 bool LLParser::ParseTargetDefinition() { 370 assert(Lex.getKind() == lltok::kw_target); 371 std::string Str; 372 switch (Lex.Lex()) { 373 default: return TokError("unknown target property"); 374 case lltok::kw_triple: 375 Lex.Lex(); 376 if (ParseToken(lltok::equal, "expected '=' after target triple") || 377 ParseStringConstant(Str)) 378 return true; 379 M->setTargetTriple(Str); 380 return false; 381 case lltok::kw_datalayout: 382 Lex.Lex(); 383 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 384 ParseStringConstant(Str)) 385 return true; 386 if (DataLayoutStr.empty()) 387 M->setDataLayout(Str); 388 return false; 389 } 390 } 391 392 /// toplevelentity 393 /// ::= 'source_filename' '=' STRINGCONSTANT 394 bool LLParser::ParseSourceFileName() { 395 assert(Lex.getKind() == lltok::kw_source_filename); 396 Lex.Lex(); 397 if (ParseToken(lltok::equal, "expected '=' after source_filename") || 398 ParseStringConstant(SourceFileName)) 399 return true; 400 if (M) 401 M->setSourceFileName(SourceFileName); 402 return false; 403 } 404 405 /// toplevelentity 406 /// ::= 'deplibs' '=' '[' ']' 407 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 408 /// FIXME: Remove in 4.0. Currently parse, but ignore. 409 bool LLParser::ParseDepLibs() { 410 assert(Lex.getKind() == lltok::kw_deplibs); 411 Lex.Lex(); 412 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 413 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 414 return true; 415 416 if (EatIfPresent(lltok::rsquare)) 417 return false; 418 419 do { 420 std::string Str; 421 if (ParseStringConstant(Str)) return true; 422 } while (EatIfPresent(lltok::comma)); 423 424 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 425 } 426 427 /// ParseUnnamedType: 428 /// ::= LocalVarID '=' 'type' type 429 bool LLParser::ParseUnnamedType() { 430 LocTy TypeLoc = Lex.getLoc(); 431 unsigned TypeID = Lex.getUIntVal(); 432 Lex.Lex(); // eat LocalVarID; 433 434 if (ParseToken(lltok::equal, "expected '=' after name") || 435 ParseToken(lltok::kw_type, "expected 'type' after '='")) 436 return true; 437 438 Type *Result = nullptr; 439 if (ParseStructDefinition(TypeLoc, "", 440 NumberedTypes[TypeID], Result)) return true; 441 442 if (!isa<StructType>(Result)) { 443 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 444 if (Entry.first) 445 return Error(TypeLoc, "non-struct types may not be recursive"); 446 Entry.first = Result; 447 Entry.second = SMLoc(); 448 } 449 450 return false; 451 } 452 453 /// toplevelentity 454 /// ::= LocalVar '=' 'type' type 455 bool LLParser::ParseNamedType() { 456 std::string Name = Lex.getStrVal(); 457 LocTy NameLoc = Lex.getLoc(); 458 Lex.Lex(); // eat LocalVar. 459 460 if (ParseToken(lltok::equal, "expected '=' after name") || 461 ParseToken(lltok::kw_type, "expected 'type' after name")) 462 return true; 463 464 Type *Result = nullptr; 465 if (ParseStructDefinition(NameLoc, Name, 466 NamedTypes[Name], Result)) return true; 467 468 if (!isa<StructType>(Result)) { 469 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 470 if (Entry.first) 471 return Error(NameLoc, "non-struct types may not be recursive"); 472 Entry.first = Result; 473 Entry.second = SMLoc(); 474 } 475 476 return false; 477 } 478 479 /// toplevelentity 480 /// ::= 'declare' FunctionHeader 481 bool LLParser::ParseDeclare() { 482 assert(Lex.getKind() == lltok::kw_declare); 483 Lex.Lex(); 484 485 std::vector<std::pair<unsigned, MDNode *>> MDs; 486 while (Lex.getKind() == lltok::MetadataVar) { 487 unsigned MDK; 488 MDNode *N; 489 if (ParseMetadataAttachment(MDK, N)) 490 return true; 491 MDs.push_back({MDK, N}); 492 } 493 494 Function *F; 495 if (ParseFunctionHeader(F, false)) 496 return true; 497 for (auto &MD : MDs) 498 F->addMetadata(MD.first, *MD.second); 499 return false; 500 } 501 502 /// toplevelentity 503 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 504 bool LLParser::ParseDefine() { 505 assert(Lex.getKind() == lltok::kw_define); 506 Lex.Lex(); 507 508 Function *F; 509 return ParseFunctionHeader(F, true) || 510 ParseOptionalFunctionMetadata(*F) || 511 ParseFunctionBody(*F); 512 } 513 514 /// ParseGlobalType 515 /// ::= 'constant' 516 /// ::= 'global' 517 bool LLParser::ParseGlobalType(bool &IsConstant) { 518 if (Lex.getKind() == lltok::kw_constant) 519 IsConstant = true; 520 else if (Lex.getKind() == lltok::kw_global) 521 IsConstant = false; 522 else { 523 IsConstant = false; 524 return TokError("expected 'global' or 'constant'"); 525 } 526 Lex.Lex(); 527 return false; 528 } 529 530 bool LLParser::ParseOptionalUnnamedAddr( 531 GlobalVariable::UnnamedAddr &UnnamedAddr) { 532 if (EatIfPresent(lltok::kw_unnamed_addr)) 533 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 534 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 535 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 536 else 537 UnnamedAddr = GlobalValue::UnnamedAddr::None; 538 return false; 539 } 540 541 /// ParseUnnamedGlobal: 542 /// OptionalVisibility (ALIAS | IFUNC) ... 543 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 544 /// OptionalDLLStorageClass 545 /// ... -> global variable 546 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 547 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 548 /// OptionalDLLStorageClass 549 /// ... -> global variable 550 bool LLParser::ParseUnnamedGlobal() { 551 unsigned VarID = NumberedVals.size(); 552 std::string Name; 553 LocTy NameLoc = Lex.getLoc(); 554 555 // Handle the GlobalID form. 556 if (Lex.getKind() == lltok::GlobalID) { 557 if (Lex.getUIntVal() != VarID) 558 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 559 Twine(VarID) + "'"); 560 Lex.Lex(); // eat GlobalID; 561 562 if (ParseToken(lltok::equal, "expected '=' after name")) 563 return true; 564 } 565 566 bool HasLinkage; 567 unsigned Linkage, Visibility, DLLStorageClass; 568 bool DSOLocal; 569 GlobalVariable::ThreadLocalMode TLM; 570 GlobalVariable::UnnamedAddr UnnamedAddr; 571 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 572 DSOLocal) || 573 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 574 return true; 575 576 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 577 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 578 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 579 580 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 581 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 582 } 583 584 /// ParseNamedGlobal: 585 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 586 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 587 /// OptionalVisibility OptionalDLLStorageClass 588 /// ... -> global variable 589 bool LLParser::ParseNamedGlobal() { 590 assert(Lex.getKind() == lltok::GlobalVar); 591 LocTy NameLoc = Lex.getLoc(); 592 std::string Name = Lex.getStrVal(); 593 Lex.Lex(); 594 595 bool HasLinkage; 596 unsigned Linkage, Visibility, DLLStorageClass; 597 bool DSOLocal; 598 GlobalVariable::ThreadLocalMode TLM; 599 GlobalVariable::UnnamedAddr UnnamedAddr; 600 if (ParseToken(lltok::equal, "expected '=' in global variable") || 601 ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 602 DSOLocal) || 603 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 604 return true; 605 606 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 607 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 608 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 609 610 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 611 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 612 } 613 614 bool LLParser::parseComdat() { 615 assert(Lex.getKind() == lltok::ComdatVar); 616 std::string Name = Lex.getStrVal(); 617 LocTy NameLoc = Lex.getLoc(); 618 Lex.Lex(); 619 620 if (ParseToken(lltok::equal, "expected '=' here")) 621 return true; 622 623 if (ParseToken(lltok::kw_comdat, "expected comdat keyword")) 624 return TokError("expected comdat type"); 625 626 Comdat::SelectionKind SK; 627 switch (Lex.getKind()) { 628 default: 629 return TokError("unknown selection kind"); 630 case lltok::kw_any: 631 SK = Comdat::Any; 632 break; 633 case lltok::kw_exactmatch: 634 SK = Comdat::ExactMatch; 635 break; 636 case lltok::kw_largest: 637 SK = Comdat::Largest; 638 break; 639 case lltok::kw_noduplicates: 640 SK = Comdat::NoDuplicates; 641 break; 642 case lltok::kw_samesize: 643 SK = Comdat::SameSize; 644 break; 645 } 646 Lex.Lex(); 647 648 // See if the comdat was forward referenced, if so, use the comdat. 649 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 650 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 651 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 652 return Error(NameLoc, "redefinition of comdat '$" + Name + "'"); 653 654 Comdat *C; 655 if (I != ComdatSymTab.end()) 656 C = &I->second; 657 else 658 C = M->getOrInsertComdat(Name); 659 C->setSelectionKind(SK); 660 661 return false; 662 } 663 664 // MDString: 665 // ::= '!' STRINGCONSTANT 666 bool LLParser::ParseMDString(MDString *&Result) { 667 std::string Str; 668 if (ParseStringConstant(Str)) return true; 669 Result = MDString::get(Context, Str); 670 return false; 671 } 672 673 // MDNode: 674 // ::= '!' MDNodeNumber 675 bool LLParser::ParseMDNodeID(MDNode *&Result) { 676 // !{ ..., !42, ... } 677 LocTy IDLoc = Lex.getLoc(); 678 unsigned MID = 0; 679 if (ParseUInt32(MID)) 680 return true; 681 682 // If not a forward reference, just return it now. 683 if (NumberedMetadata.count(MID)) { 684 Result = NumberedMetadata[MID]; 685 return false; 686 } 687 688 // Otherwise, create MDNode forward reference. 689 auto &FwdRef = ForwardRefMDNodes[MID]; 690 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 691 692 Result = FwdRef.first.get(); 693 NumberedMetadata[MID].reset(Result); 694 return false; 695 } 696 697 /// ParseNamedMetadata: 698 /// !foo = !{ !1, !2 } 699 bool LLParser::ParseNamedMetadata() { 700 assert(Lex.getKind() == lltok::MetadataVar); 701 std::string Name = Lex.getStrVal(); 702 Lex.Lex(); 703 704 if (ParseToken(lltok::equal, "expected '=' here") || 705 ParseToken(lltok::exclaim, "Expected '!' here") || 706 ParseToken(lltok::lbrace, "Expected '{' here")) 707 return true; 708 709 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 710 if (Lex.getKind() != lltok::rbrace) 711 do { 712 MDNode *N = nullptr; 713 // Parse DIExpressions inline as a special case. They are still MDNodes, 714 // so they can still appear in named metadata. Remove this logic if they 715 // become plain Metadata. 716 if (Lex.getKind() == lltok::MetadataVar && 717 Lex.getStrVal() == "DIExpression") { 718 if (ParseDIExpression(N, /*IsDistinct=*/false)) 719 return true; 720 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 721 ParseMDNodeID(N)) { 722 return true; 723 } 724 NMD->addOperand(N); 725 } while (EatIfPresent(lltok::comma)); 726 727 return ParseToken(lltok::rbrace, "expected end of metadata node"); 728 } 729 730 /// ParseStandaloneMetadata: 731 /// !42 = !{...} 732 bool LLParser::ParseStandaloneMetadata() { 733 assert(Lex.getKind() == lltok::exclaim); 734 Lex.Lex(); 735 unsigned MetadataID = 0; 736 737 MDNode *Init; 738 if (ParseUInt32(MetadataID) || 739 ParseToken(lltok::equal, "expected '=' here")) 740 return true; 741 742 // Detect common error, from old metadata syntax. 743 if (Lex.getKind() == lltok::Type) 744 return TokError("unexpected type in metadata definition"); 745 746 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 747 if (Lex.getKind() == lltok::MetadataVar) { 748 if (ParseSpecializedMDNode(Init, IsDistinct)) 749 return true; 750 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 751 ParseMDTuple(Init, IsDistinct)) 752 return true; 753 754 // See if this was forward referenced, if so, handle it. 755 auto FI = ForwardRefMDNodes.find(MetadataID); 756 if (FI != ForwardRefMDNodes.end()) { 757 FI->second.first->replaceAllUsesWith(Init); 758 ForwardRefMDNodes.erase(FI); 759 760 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 761 } else { 762 if (NumberedMetadata.count(MetadataID)) 763 return TokError("Metadata id is already used"); 764 NumberedMetadata[MetadataID].reset(Init); 765 } 766 767 return false; 768 } 769 770 // Skips a single module summary entry. 771 bool LLParser::SkipModuleSummaryEntry() { 772 // Each module summary entry consists of a tag for the entry 773 // type, followed by a colon, then the fields surrounded by nested sets of 774 // parentheses. The "tag:" looks like a Label. Once parsing support is 775 // in place we will look for the tokens corresponding to the expected tags. 776 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module && 777 Lex.getKind() != lltok::kw_typeid) 778 return TokError( 779 "Expected 'gv', 'module', or 'typeid' at the start of summary entry"); 780 Lex.Lex(); 781 if (ParseToken(lltok::colon, "expected ':' at start of summary entry") || 782 ParseToken(lltok::lparen, "expected '(' at start of summary entry")) 783 return true; 784 // Now walk through the parenthesized entry, until the number of open 785 // parentheses goes back down to 0 (the first '(' was parsed above). 786 unsigned NumOpenParen = 1; 787 do { 788 switch (Lex.getKind()) { 789 case lltok::lparen: 790 NumOpenParen++; 791 break; 792 case lltok::rparen: 793 NumOpenParen--; 794 break; 795 case lltok::Eof: 796 return TokError("found end of file while parsing summary entry"); 797 default: 798 // Skip everything in between parentheses. 799 break; 800 } 801 Lex.Lex(); 802 } while (NumOpenParen > 0); 803 return false; 804 } 805 806 /// SummaryEntry 807 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry 808 bool LLParser::ParseSummaryEntry() { 809 assert(Lex.getKind() == lltok::SummaryID); 810 unsigned SummaryID = Lex.getUIntVal(); 811 812 // For summary entries, colons should be treated as distinct tokens, 813 // not an indication of the end of a label token. 814 Lex.setIgnoreColonInIdentifiers(true); 815 816 Lex.Lex(); 817 if (ParseToken(lltok::equal, "expected '=' here")) 818 return true; 819 820 // If we don't have an index object, skip the summary entry. 821 if (!Index) 822 return SkipModuleSummaryEntry(); 823 824 bool result = false; 825 switch (Lex.getKind()) { 826 case lltok::kw_gv: 827 result = ParseGVEntry(SummaryID); 828 break; 829 case lltok::kw_module: 830 result = ParseModuleEntry(SummaryID); 831 break; 832 case lltok::kw_typeid: 833 result = ParseTypeIdEntry(SummaryID); 834 break; 835 case lltok::kw_typeidCompatibleVTable: 836 result = ParseTypeIdCompatibleVtableEntry(SummaryID); 837 break; 838 default: 839 result = Error(Lex.getLoc(), "unexpected summary kind"); 840 break; 841 } 842 Lex.setIgnoreColonInIdentifiers(false); 843 return result; 844 } 845 846 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 847 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 848 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 849 } 850 851 // If there was an explicit dso_local, update GV. In the absence of an explicit 852 // dso_local we keep the default value. 853 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { 854 if (DSOLocal) 855 GV.setDSOLocal(true); 856 } 857 858 /// parseIndirectSymbol: 859 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 860 /// OptionalVisibility OptionalDLLStorageClass 861 /// OptionalThreadLocal OptionalUnnamedAddr 862 /// 'alias|ifunc' IndirectSymbol IndirectSymbolAttr* 863 /// 864 /// IndirectSymbol 865 /// ::= TypeAndValue 866 /// 867 /// IndirectSymbolAttr 868 /// ::= ',' 'partition' StringConstant 869 /// 870 /// Everything through OptionalUnnamedAddr has already been parsed. 871 /// 872 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc, 873 unsigned L, unsigned Visibility, 874 unsigned DLLStorageClass, bool DSOLocal, 875 GlobalVariable::ThreadLocalMode TLM, 876 GlobalVariable::UnnamedAddr UnnamedAddr) { 877 bool IsAlias; 878 if (Lex.getKind() == lltok::kw_alias) 879 IsAlias = true; 880 else if (Lex.getKind() == lltok::kw_ifunc) 881 IsAlias = false; 882 else 883 llvm_unreachable("Not an alias or ifunc!"); 884 Lex.Lex(); 885 886 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 887 888 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 889 return Error(NameLoc, "invalid linkage type for alias"); 890 891 if (!isValidVisibilityForLinkage(Visibility, L)) 892 return Error(NameLoc, 893 "symbol with local linkage must have default visibility"); 894 895 Type *Ty; 896 LocTy ExplicitTypeLoc = Lex.getLoc(); 897 if (ParseType(Ty) || 898 ParseToken(lltok::comma, "expected comma after alias or ifunc's type")) 899 return true; 900 901 Constant *Aliasee; 902 LocTy AliaseeLoc = Lex.getLoc(); 903 if (Lex.getKind() != lltok::kw_bitcast && 904 Lex.getKind() != lltok::kw_getelementptr && 905 Lex.getKind() != lltok::kw_addrspacecast && 906 Lex.getKind() != lltok::kw_inttoptr) { 907 if (ParseGlobalTypeAndValue(Aliasee)) 908 return true; 909 } else { 910 // The bitcast dest type is not present, it is implied by the dest type. 911 ValID ID; 912 if (ParseValID(ID)) 913 return true; 914 if (ID.Kind != ValID::t_Constant) 915 return Error(AliaseeLoc, "invalid aliasee"); 916 Aliasee = ID.ConstantVal; 917 } 918 919 Type *AliaseeType = Aliasee->getType(); 920 auto *PTy = dyn_cast<PointerType>(AliaseeType); 921 if (!PTy) 922 return Error(AliaseeLoc, "An alias or ifunc must have pointer type"); 923 unsigned AddrSpace = PTy->getAddressSpace(); 924 925 if (IsAlias && Ty != PTy->getElementType()) 926 return Error( 927 ExplicitTypeLoc, 928 "explicit pointee type doesn't match operand's pointee type"); 929 930 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) 931 return Error( 932 ExplicitTypeLoc, 933 "explicit pointee type should be a function type"); 934 935 GlobalValue *GVal = nullptr; 936 937 // See if the alias was forward referenced, if so, prepare to replace the 938 // forward reference. 939 if (!Name.empty()) { 940 GVal = M->getNamedValue(Name); 941 if (GVal) { 942 if (!ForwardRefVals.erase(Name)) 943 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 944 } 945 } else { 946 auto I = ForwardRefValIDs.find(NumberedVals.size()); 947 if (I != ForwardRefValIDs.end()) { 948 GVal = I->second.first; 949 ForwardRefValIDs.erase(I); 950 } 951 } 952 953 // Okay, create the alias but do not insert it into the module yet. 954 std::unique_ptr<GlobalIndirectSymbol> GA; 955 if (IsAlias) 956 GA.reset(GlobalAlias::create(Ty, AddrSpace, 957 (GlobalValue::LinkageTypes)Linkage, Name, 958 Aliasee, /*Parent*/ nullptr)); 959 else 960 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 961 (GlobalValue::LinkageTypes)Linkage, Name, 962 Aliasee, /*Parent*/ nullptr)); 963 GA->setThreadLocalMode(TLM); 964 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 965 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 966 GA->setUnnamedAddr(UnnamedAddr); 967 maybeSetDSOLocal(DSOLocal, *GA); 968 969 // At this point we've parsed everything except for the IndirectSymbolAttrs. 970 // Now parse them if there are any. 971 while (Lex.getKind() == lltok::comma) { 972 Lex.Lex(); 973 974 if (Lex.getKind() == lltok::kw_partition) { 975 Lex.Lex(); 976 GA->setPartition(Lex.getStrVal()); 977 if (ParseToken(lltok::StringConstant, "expected partition string")) 978 return true; 979 } else { 980 return TokError("unknown alias or ifunc property!"); 981 } 982 } 983 984 if (Name.empty()) 985 NumberedVals.push_back(GA.get()); 986 987 if (GVal) { 988 // Verify that types agree. 989 if (GVal->getType() != GA->getType()) 990 return Error( 991 ExplicitTypeLoc, 992 "forward reference and definition of alias have different types"); 993 994 // If they agree, just RAUW the old value with the alias and remove the 995 // forward ref info. 996 GVal->replaceAllUsesWith(GA.get()); 997 GVal->eraseFromParent(); 998 } 999 1000 // Insert into the module, we know its name won't collide now. 1001 if (IsAlias) 1002 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 1003 else 1004 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 1005 assert(GA->getName() == Name && "Should not be a name conflict!"); 1006 1007 // The module owns this now 1008 GA.release(); 1009 1010 return false; 1011 } 1012 1013 /// ParseGlobal 1014 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 1015 /// OptionalVisibility OptionalDLLStorageClass 1016 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 1017 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 1018 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 1019 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 1020 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 1021 /// Const OptionalAttrs 1022 /// 1023 /// Everything up to and including OptionalUnnamedAddr has been parsed 1024 /// already. 1025 /// 1026 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 1027 unsigned Linkage, bool HasLinkage, 1028 unsigned Visibility, unsigned DLLStorageClass, 1029 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 1030 GlobalVariable::UnnamedAddr UnnamedAddr) { 1031 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 1032 return Error(NameLoc, 1033 "symbol with local linkage must have default visibility"); 1034 1035 unsigned AddrSpace; 1036 bool IsConstant, IsExternallyInitialized; 1037 LocTy IsExternallyInitializedLoc; 1038 LocTy TyLoc; 1039 1040 Type *Ty = nullptr; 1041 if (ParseOptionalAddrSpace(AddrSpace) || 1042 ParseOptionalToken(lltok::kw_externally_initialized, 1043 IsExternallyInitialized, 1044 &IsExternallyInitializedLoc) || 1045 ParseGlobalType(IsConstant) || 1046 ParseType(Ty, TyLoc)) 1047 return true; 1048 1049 // If the linkage is specified and is external, then no initializer is 1050 // present. 1051 Constant *Init = nullptr; 1052 if (!HasLinkage || 1053 !GlobalValue::isValidDeclarationLinkage( 1054 (GlobalValue::LinkageTypes)Linkage)) { 1055 if (ParseGlobalValue(Ty, Init)) 1056 return true; 1057 } 1058 1059 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 1060 return Error(TyLoc, "invalid type for global variable"); 1061 1062 GlobalValue *GVal = nullptr; 1063 1064 // See if the global was forward referenced, if so, use the global. 1065 if (!Name.empty()) { 1066 GVal = M->getNamedValue(Name); 1067 if (GVal) { 1068 if (!ForwardRefVals.erase(Name)) 1069 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 1070 } 1071 } else { 1072 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1073 if (I != ForwardRefValIDs.end()) { 1074 GVal = I->second.first; 1075 ForwardRefValIDs.erase(I); 1076 } 1077 } 1078 1079 GlobalVariable *GV; 1080 if (!GVal) { 1081 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 1082 Name, nullptr, GlobalVariable::NotThreadLocal, 1083 AddrSpace); 1084 } else { 1085 if (GVal->getValueType() != Ty) 1086 return Error(TyLoc, 1087 "forward reference and definition of global have different types"); 1088 1089 GV = cast<GlobalVariable>(GVal); 1090 1091 // Move the forward-reference to the correct spot in the module. 1092 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 1093 } 1094 1095 if (Name.empty()) 1096 NumberedVals.push_back(GV); 1097 1098 // Set the parsed properties on the global. 1099 if (Init) 1100 GV->setInitializer(Init); 1101 GV->setConstant(IsConstant); 1102 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 1103 maybeSetDSOLocal(DSOLocal, *GV); 1104 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1105 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1106 GV->setExternallyInitialized(IsExternallyInitialized); 1107 GV->setThreadLocalMode(TLM); 1108 GV->setUnnamedAddr(UnnamedAddr); 1109 1110 // Parse attributes on the global. 1111 while (Lex.getKind() == lltok::comma) { 1112 Lex.Lex(); 1113 1114 if (Lex.getKind() == lltok::kw_section) { 1115 Lex.Lex(); 1116 GV->setSection(Lex.getStrVal()); 1117 if (ParseToken(lltok::StringConstant, "expected global section string")) 1118 return true; 1119 } else if (Lex.getKind() == lltok::kw_partition) { 1120 Lex.Lex(); 1121 GV->setPartition(Lex.getStrVal()); 1122 if (ParseToken(lltok::StringConstant, "expected partition string")) 1123 return true; 1124 } else if (Lex.getKind() == lltok::kw_align) { 1125 unsigned Alignment; 1126 if (ParseOptionalAlignment(Alignment)) return true; 1127 GV->setAlignment(Alignment); 1128 } else if (Lex.getKind() == lltok::MetadataVar) { 1129 if (ParseGlobalObjectMetadataAttachment(*GV)) 1130 return true; 1131 } else { 1132 Comdat *C; 1133 if (parseOptionalComdat(Name, C)) 1134 return true; 1135 if (C) 1136 GV->setComdat(C); 1137 else 1138 return TokError("unknown global variable property!"); 1139 } 1140 } 1141 1142 AttrBuilder Attrs; 1143 LocTy BuiltinLoc; 1144 std::vector<unsigned> FwdRefAttrGrps; 1145 if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 1146 return true; 1147 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 1148 GV->setAttributes(AttributeSet::get(Context, Attrs)); 1149 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 1150 } 1151 1152 return false; 1153 } 1154 1155 /// ParseUnnamedAttrGrp 1156 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 1157 bool LLParser::ParseUnnamedAttrGrp() { 1158 assert(Lex.getKind() == lltok::kw_attributes); 1159 LocTy AttrGrpLoc = Lex.getLoc(); 1160 Lex.Lex(); 1161 1162 if (Lex.getKind() != lltok::AttrGrpID) 1163 return TokError("expected attribute group id"); 1164 1165 unsigned VarID = Lex.getUIntVal(); 1166 std::vector<unsigned> unused; 1167 LocTy BuiltinLoc; 1168 Lex.Lex(); 1169 1170 if (ParseToken(lltok::equal, "expected '=' here") || 1171 ParseToken(lltok::lbrace, "expected '{' here") || 1172 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 1173 BuiltinLoc) || 1174 ParseToken(lltok::rbrace, "expected end of attribute group")) 1175 return true; 1176 1177 if (!NumberedAttrBuilders[VarID].hasAttributes()) 1178 return Error(AttrGrpLoc, "attribute group has no attributes"); 1179 1180 return false; 1181 } 1182 1183 /// ParseFnAttributeValuePairs 1184 /// ::= <attr> | <attr> '=' <value> 1185 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B, 1186 std::vector<unsigned> &FwdRefAttrGrps, 1187 bool inAttrGrp, LocTy &BuiltinLoc) { 1188 bool HaveError = false; 1189 1190 B.clear(); 1191 1192 while (true) { 1193 lltok::Kind Token = Lex.getKind(); 1194 if (Token == lltok::kw_builtin) 1195 BuiltinLoc = Lex.getLoc(); 1196 switch (Token) { 1197 default: 1198 if (!inAttrGrp) return HaveError; 1199 return Error(Lex.getLoc(), "unterminated attribute group"); 1200 case lltok::rbrace: 1201 // Finished. 1202 return false; 1203 1204 case lltok::AttrGrpID: { 1205 // Allow a function to reference an attribute group: 1206 // 1207 // define void @foo() #1 { ... } 1208 if (inAttrGrp) 1209 HaveError |= 1210 Error(Lex.getLoc(), 1211 "cannot have an attribute group reference in an attribute group"); 1212 1213 unsigned AttrGrpNum = Lex.getUIntVal(); 1214 if (inAttrGrp) break; 1215 1216 // Save the reference to the attribute group. We'll fill it in later. 1217 FwdRefAttrGrps.push_back(AttrGrpNum); 1218 break; 1219 } 1220 // Target-dependent attributes: 1221 case lltok::StringConstant: { 1222 if (ParseStringAttribute(B)) 1223 return true; 1224 continue; 1225 } 1226 1227 // Target-independent attributes: 1228 case lltok::kw_align: { 1229 // As a hack, we allow function alignment to be initially parsed as an 1230 // attribute on a function declaration/definition or added to an attribute 1231 // group and later moved to the alignment field. 1232 unsigned Alignment; 1233 if (inAttrGrp) { 1234 Lex.Lex(); 1235 if (ParseToken(lltok::equal, "expected '=' here") || 1236 ParseUInt32(Alignment)) 1237 return true; 1238 } else { 1239 if (ParseOptionalAlignment(Alignment)) 1240 return true; 1241 } 1242 B.addAlignmentAttr(Alignment); 1243 continue; 1244 } 1245 case lltok::kw_alignstack: { 1246 unsigned Alignment; 1247 if (inAttrGrp) { 1248 Lex.Lex(); 1249 if (ParseToken(lltok::equal, "expected '=' here") || 1250 ParseUInt32(Alignment)) 1251 return true; 1252 } else { 1253 if (ParseOptionalStackAlignment(Alignment)) 1254 return true; 1255 } 1256 B.addStackAlignmentAttr(Alignment); 1257 continue; 1258 } 1259 case lltok::kw_allocsize: { 1260 unsigned ElemSizeArg; 1261 Optional<unsigned> NumElemsArg; 1262 // inAttrGrp doesn't matter; we only support allocsize(a[, b]) 1263 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1264 return true; 1265 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1266 continue; 1267 } 1268 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 1269 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 1270 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 1271 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 1272 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 1273 case lltok::kw_inaccessiblememonly: 1274 B.addAttribute(Attribute::InaccessibleMemOnly); break; 1275 case lltok::kw_inaccessiblemem_or_argmemonly: 1276 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break; 1277 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 1278 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 1279 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 1280 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 1281 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 1282 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 1283 case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break; 1284 case lltok::kw_noimplicitfloat: 1285 B.addAttribute(Attribute::NoImplicitFloat); break; 1286 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1287 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1288 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1289 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1290 case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break; 1291 case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break; 1292 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1293 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1294 case lltok::kw_optforfuzzing: 1295 B.addAttribute(Attribute::OptForFuzzing); break; 1296 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1297 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1298 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1299 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1300 case lltok::kw_returns_twice: 1301 B.addAttribute(Attribute::ReturnsTwice); break; 1302 case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break; 1303 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1304 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1305 case lltok::kw_sspstrong: 1306 B.addAttribute(Attribute::StackProtectStrong); break; 1307 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1308 case lltok::kw_shadowcallstack: 1309 B.addAttribute(Attribute::ShadowCallStack); break; 1310 case lltok::kw_sanitize_address: 1311 B.addAttribute(Attribute::SanitizeAddress); break; 1312 case lltok::kw_sanitize_hwaddress: 1313 B.addAttribute(Attribute::SanitizeHWAddress); break; 1314 case lltok::kw_sanitize_memtag: 1315 B.addAttribute(Attribute::SanitizeMemTag); break; 1316 case lltok::kw_sanitize_thread: 1317 B.addAttribute(Attribute::SanitizeThread); break; 1318 case lltok::kw_sanitize_memory: 1319 B.addAttribute(Attribute::SanitizeMemory); break; 1320 case lltok::kw_speculative_load_hardening: 1321 B.addAttribute(Attribute::SpeculativeLoadHardening); 1322 break; 1323 case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break; 1324 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1325 case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break; 1326 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1327 1328 // Error handling. 1329 case lltok::kw_inreg: 1330 case lltok::kw_signext: 1331 case lltok::kw_zeroext: 1332 HaveError |= 1333 Error(Lex.getLoc(), 1334 "invalid use of attribute on a function"); 1335 break; 1336 case lltok::kw_byval: 1337 case lltok::kw_dereferenceable: 1338 case lltok::kw_dereferenceable_or_null: 1339 case lltok::kw_inalloca: 1340 case lltok::kw_nest: 1341 case lltok::kw_noalias: 1342 case lltok::kw_nocapture: 1343 case lltok::kw_nonnull: 1344 case lltok::kw_returned: 1345 case lltok::kw_sret: 1346 case lltok::kw_swifterror: 1347 case lltok::kw_swiftself: 1348 case lltok::kw_immarg: 1349 HaveError |= 1350 Error(Lex.getLoc(), 1351 "invalid use of parameter-only attribute on a function"); 1352 break; 1353 } 1354 1355 Lex.Lex(); 1356 } 1357 } 1358 1359 //===----------------------------------------------------------------------===// 1360 // GlobalValue Reference/Resolution Routines. 1361 //===----------------------------------------------------------------------===// 1362 1363 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1364 const std::string &Name) { 1365 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1366 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, 1367 PTy->getAddressSpace(), Name, M); 1368 else 1369 return new GlobalVariable(*M, PTy->getElementType(), false, 1370 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1371 nullptr, GlobalVariable::NotThreadLocal, 1372 PTy->getAddressSpace()); 1373 } 1374 1375 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty, 1376 Value *Val, bool IsCall) { 1377 if (Val->getType() == Ty) 1378 return Val; 1379 // For calls we also accept variables in the program address space. 1380 Type *SuggestedTy = Ty; 1381 if (IsCall && isa<PointerType>(Ty)) { 1382 Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo( 1383 M->getDataLayout().getProgramAddressSpace()); 1384 SuggestedTy = TyInProgAS; 1385 if (Val->getType() == TyInProgAS) 1386 return Val; 1387 } 1388 if (Ty->isLabelTy()) 1389 Error(Loc, "'" + Name + "' is not a basic block"); 1390 else 1391 Error(Loc, "'" + Name + "' defined with type '" + 1392 getTypeString(Val->getType()) + "' but expected '" + 1393 getTypeString(SuggestedTy) + "'"); 1394 return nullptr; 1395 } 1396 1397 /// GetGlobalVal - Get a value with the specified name or ID, creating a 1398 /// forward reference record if needed. This can return null if the value 1399 /// exists but does not have the right type. 1400 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 1401 LocTy Loc, bool IsCall) { 1402 PointerType *PTy = dyn_cast<PointerType>(Ty); 1403 if (!PTy) { 1404 Error(Loc, "global variable reference must have pointer type"); 1405 return nullptr; 1406 } 1407 1408 // Look this name up in the normal function symbol table. 1409 GlobalValue *Val = 1410 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1411 1412 // If this is a forward reference for the value, see if we already created a 1413 // forward ref record. 1414 if (!Val) { 1415 auto I = ForwardRefVals.find(Name); 1416 if (I != ForwardRefVals.end()) 1417 Val = I->second.first; 1418 } 1419 1420 // If we have the value in the symbol table or fwd-ref table, return it. 1421 if (Val) 1422 return cast_or_null<GlobalValue>( 1423 checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall)); 1424 1425 // Otherwise, create a new forward reference for this value and remember it. 1426 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1427 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1428 return FwdVal; 1429 } 1430 1431 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc, 1432 bool IsCall) { 1433 PointerType *PTy = dyn_cast<PointerType>(Ty); 1434 if (!PTy) { 1435 Error(Loc, "global variable reference must have pointer type"); 1436 return nullptr; 1437 } 1438 1439 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1440 1441 // If this is a forward reference for the value, see if we already created a 1442 // forward ref record. 1443 if (!Val) { 1444 auto I = ForwardRefValIDs.find(ID); 1445 if (I != ForwardRefValIDs.end()) 1446 Val = I->second.first; 1447 } 1448 1449 // If we have the value in the symbol table or fwd-ref table, return it. 1450 if (Val) 1451 return cast_or_null<GlobalValue>( 1452 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall)); 1453 1454 // Otherwise, create a new forward reference for this value and remember it. 1455 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1456 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1457 return FwdVal; 1458 } 1459 1460 //===----------------------------------------------------------------------===// 1461 // Comdat Reference/Resolution Routines. 1462 //===----------------------------------------------------------------------===// 1463 1464 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1465 // Look this name up in the comdat symbol table. 1466 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1467 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1468 if (I != ComdatSymTab.end()) 1469 return &I->second; 1470 1471 // Otherwise, create a new forward reference for this value and remember it. 1472 Comdat *C = M->getOrInsertComdat(Name); 1473 ForwardRefComdats[Name] = Loc; 1474 return C; 1475 } 1476 1477 //===----------------------------------------------------------------------===// 1478 // Helper Routines. 1479 //===----------------------------------------------------------------------===// 1480 1481 /// ParseToken - If the current token has the specified kind, eat it and return 1482 /// success. Otherwise, emit the specified error and return failure. 1483 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 1484 if (Lex.getKind() != T) 1485 return TokError(ErrMsg); 1486 Lex.Lex(); 1487 return false; 1488 } 1489 1490 /// ParseStringConstant 1491 /// ::= StringConstant 1492 bool LLParser::ParseStringConstant(std::string &Result) { 1493 if (Lex.getKind() != lltok::StringConstant) 1494 return TokError("expected string constant"); 1495 Result = Lex.getStrVal(); 1496 Lex.Lex(); 1497 return false; 1498 } 1499 1500 /// ParseUInt32 1501 /// ::= uint32 1502 bool LLParser::ParseUInt32(uint32_t &Val) { 1503 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1504 return TokError("expected integer"); 1505 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1506 if (Val64 != unsigned(Val64)) 1507 return TokError("expected 32-bit integer (too large)"); 1508 Val = Val64; 1509 Lex.Lex(); 1510 return false; 1511 } 1512 1513 /// ParseUInt64 1514 /// ::= uint64 1515 bool LLParser::ParseUInt64(uint64_t &Val) { 1516 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1517 return TokError("expected integer"); 1518 Val = Lex.getAPSIntVal().getLimitedValue(); 1519 Lex.Lex(); 1520 return false; 1521 } 1522 1523 /// ParseTLSModel 1524 /// := 'localdynamic' 1525 /// := 'initialexec' 1526 /// := 'localexec' 1527 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1528 switch (Lex.getKind()) { 1529 default: 1530 return TokError("expected localdynamic, initialexec or localexec"); 1531 case lltok::kw_localdynamic: 1532 TLM = GlobalVariable::LocalDynamicTLSModel; 1533 break; 1534 case lltok::kw_initialexec: 1535 TLM = GlobalVariable::InitialExecTLSModel; 1536 break; 1537 case lltok::kw_localexec: 1538 TLM = GlobalVariable::LocalExecTLSModel; 1539 break; 1540 } 1541 1542 Lex.Lex(); 1543 return false; 1544 } 1545 1546 /// ParseOptionalThreadLocal 1547 /// := /*empty*/ 1548 /// := 'thread_local' 1549 /// := 'thread_local' '(' tlsmodel ')' 1550 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1551 TLM = GlobalVariable::NotThreadLocal; 1552 if (!EatIfPresent(lltok::kw_thread_local)) 1553 return false; 1554 1555 TLM = GlobalVariable::GeneralDynamicTLSModel; 1556 if (Lex.getKind() == lltok::lparen) { 1557 Lex.Lex(); 1558 return ParseTLSModel(TLM) || 1559 ParseToken(lltok::rparen, "expected ')' after thread local model"); 1560 } 1561 return false; 1562 } 1563 1564 /// ParseOptionalAddrSpace 1565 /// := /*empty*/ 1566 /// := 'addrspace' '(' uint32 ')' 1567 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) { 1568 AddrSpace = DefaultAS; 1569 if (!EatIfPresent(lltok::kw_addrspace)) 1570 return false; 1571 return ParseToken(lltok::lparen, "expected '(' in address space") || 1572 ParseUInt32(AddrSpace) || 1573 ParseToken(lltok::rparen, "expected ')' in address space"); 1574 } 1575 1576 /// ParseStringAttribute 1577 /// := StringConstant 1578 /// := StringConstant '=' StringConstant 1579 bool LLParser::ParseStringAttribute(AttrBuilder &B) { 1580 std::string Attr = Lex.getStrVal(); 1581 Lex.Lex(); 1582 std::string Val; 1583 if (EatIfPresent(lltok::equal) && ParseStringConstant(Val)) 1584 return true; 1585 B.addAttribute(Attr, Val); 1586 return false; 1587 } 1588 1589 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes. 1590 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) { 1591 bool HaveError = false; 1592 1593 B.clear(); 1594 1595 while (true) { 1596 lltok::Kind Token = Lex.getKind(); 1597 switch (Token) { 1598 default: // End of attributes. 1599 return HaveError; 1600 case lltok::StringConstant: { 1601 if (ParseStringAttribute(B)) 1602 return true; 1603 continue; 1604 } 1605 case lltok::kw_align: { 1606 unsigned Alignment; 1607 if (ParseOptionalAlignment(Alignment)) 1608 return true; 1609 B.addAlignmentAttr(Alignment); 1610 continue; 1611 } 1612 case lltok::kw_byval: { 1613 Type *Ty; 1614 if (ParseByValWithOptionalType(Ty)) 1615 return true; 1616 B.addByValAttr(Ty); 1617 continue; 1618 } 1619 case lltok::kw_dereferenceable: { 1620 uint64_t Bytes; 1621 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1622 return true; 1623 B.addDereferenceableAttr(Bytes); 1624 continue; 1625 } 1626 case lltok::kw_dereferenceable_or_null: { 1627 uint64_t Bytes; 1628 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1629 return true; 1630 B.addDereferenceableOrNullAttr(Bytes); 1631 continue; 1632 } 1633 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break; 1634 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1635 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1636 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1637 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1638 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1639 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1640 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1641 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1642 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1643 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break; 1644 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break; 1645 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break; 1646 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1647 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1648 case lltok::kw_immarg: B.addAttribute(Attribute::ImmArg); break; 1649 1650 case lltok::kw_alignstack: 1651 case lltok::kw_alwaysinline: 1652 case lltok::kw_argmemonly: 1653 case lltok::kw_builtin: 1654 case lltok::kw_inlinehint: 1655 case lltok::kw_jumptable: 1656 case lltok::kw_minsize: 1657 case lltok::kw_naked: 1658 case lltok::kw_nobuiltin: 1659 case lltok::kw_noduplicate: 1660 case lltok::kw_noimplicitfloat: 1661 case lltok::kw_noinline: 1662 case lltok::kw_nonlazybind: 1663 case lltok::kw_noredzone: 1664 case lltok::kw_noreturn: 1665 case lltok::kw_nocf_check: 1666 case lltok::kw_nounwind: 1667 case lltok::kw_optforfuzzing: 1668 case lltok::kw_optnone: 1669 case lltok::kw_optsize: 1670 case lltok::kw_returns_twice: 1671 case lltok::kw_sanitize_address: 1672 case lltok::kw_sanitize_hwaddress: 1673 case lltok::kw_sanitize_memtag: 1674 case lltok::kw_sanitize_memory: 1675 case lltok::kw_sanitize_thread: 1676 case lltok::kw_speculative_load_hardening: 1677 case lltok::kw_ssp: 1678 case lltok::kw_sspreq: 1679 case lltok::kw_sspstrong: 1680 case lltok::kw_safestack: 1681 case lltok::kw_shadowcallstack: 1682 case lltok::kw_strictfp: 1683 case lltok::kw_uwtable: 1684 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1685 break; 1686 } 1687 1688 Lex.Lex(); 1689 } 1690 } 1691 1692 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes. 1693 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) { 1694 bool HaveError = false; 1695 1696 B.clear(); 1697 1698 while (true) { 1699 lltok::Kind Token = Lex.getKind(); 1700 switch (Token) { 1701 default: // End of attributes. 1702 return HaveError; 1703 case lltok::StringConstant: { 1704 if (ParseStringAttribute(B)) 1705 return true; 1706 continue; 1707 } 1708 case lltok::kw_dereferenceable: { 1709 uint64_t Bytes; 1710 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1711 return true; 1712 B.addDereferenceableAttr(Bytes); 1713 continue; 1714 } 1715 case lltok::kw_dereferenceable_or_null: { 1716 uint64_t Bytes; 1717 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1718 return true; 1719 B.addDereferenceableOrNullAttr(Bytes); 1720 continue; 1721 } 1722 case lltok::kw_align: { 1723 unsigned Alignment; 1724 if (ParseOptionalAlignment(Alignment)) 1725 return true; 1726 B.addAlignmentAttr(Alignment); 1727 continue; 1728 } 1729 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1730 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1731 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1732 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1733 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1734 1735 // Error handling. 1736 case lltok::kw_byval: 1737 case lltok::kw_inalloca: 1738 case lltok::kw_nest: 1739 case lltok::kw_nocapture: 1740 case lltok::kw_returned: 1741 case lltok::kw_sret: 1742 case lltok::kw_swifterror: 1743 case lltok::kw_swiftself: 1744 case lltok::kw_immarg: 1745 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1746 break; 1747 1748 case lltok::kw_alignstack: 1749 case lltok::kw_alwaysinline: 1750 case lltok::kw_argmemonly: 1751 case lltok::kw_builtin: 1752 case lltok::kw_cold: 1753 case lltok::kw_inlinehint: 1754 case lltok::kw_jumptable: 1755 case lltok::kw_minsize: 1756 case lltok::kw_naked: 1757 case lltok::kw_nobuiltin: 1758 case lltok::kw_noduplicate: 1759 case lltok::kw_noimplicitfloat: 1760 case lltok::kw_noinline: 1761 case lltok::kw_nonlazybind: 1762 case lltok::kw_noredzone: 1763 case lltok::kw_noreturn: 1764 case lltok::kw_nocf_check: 1765 case lltok::kw_nounwind: 1766 case lltok::kw_optforfuzzing: 1767 case lltok::kw_optnone: 1768 case lltok::kw_optsize: 1769 case lltok::kw_returns_twice: 1770 case lltok::kw_sanitize_address: 1771 case lltok::kw_sanitize_hwaddress: 1772 case lltok::kw_sanitize_memtag: 1773 case lltok::kw_sanitize_memory: 1774 case lltok::kw_sanitize_thread: 1775 case lltok::kw_speculative_load_hardening: 1776 case lltok::kw_ssp: 1777 case lltok::kw_sspreq: 1778 case lltok::kw_sspstrong: 1779 case lltok::kw_safestack: 1780 case lltok::kw_shadowcallstack: 1781 case lltok::kw_strictfp: 1782 case lltok::kw_uwtable: 1783 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1784 break; 1785 1786 case lltok::kw_readnone: 1787 case lltok::kw_readonly: 1788 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type"); 1789 } 1790 1791 Lex.Lex(); 1792 } 1793 } 1794 1795 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1796 HasLinkage = true; 1797 switch (Kind) { 1798 default: 1799 HasLinkage = false; 1800 return GlobalValue::ExternalLinkage; 1801 case lltok::kw_private: 1802 return GlobalValue::PrivateLinkage; 1803 case lltok::kw_internal: 1804 return GlobalValue::InternalLinkage; 1805 case lltok::kw_weak: 1806 return GlobalValue::WeakAnyLinkage; 1807 case lltok::kw_weak_odr: 1808 return GlobalValue::WeakODRLinkage; 1809 case lltok::kw_linkonce: 1810 return GlobalValue::LinkOnceAnyLinkage; 1811 case lltok::kw_linkonce_odr: 1812 return GlobalValue::LinkOnceODRLinkage; 1813 case lltok::kw_available_externally: 1814 return GlobalValue::AvailableExternallyLinkage; 1815 case lltok::kw_appending: 1816 return GlobalValue::AppendingLinkage; 1817 case lltok::kw_common: 1818 return GlobalValue::CommonLinkage; 1819 case lltok::kw_extern_weak: 1820 return GlobalValue::ExternalWeakLinkage; 1821 case lltok::kw_external: 1822 return GlobalValue::ExternalLinkage; 1823 } 1824 } 1825 1826 /// ParseOptionalLinkage 1827 /// ::= /*empty*/ 1828 /// ::= 'private' 1829 /// ::= 'internal' 1830 /// ::= 'weak' 1831 /// ::= 'weak_odr' 1832 /// ::= 'linkonce' 1833 /// ::= 'linkonce_odr' 1834 /// ::= 'available_externally' 1835 /// ::= 'appending' 1836 /// ::= 'common' 1837 /// ::= 'extern_weak' 1838 /// ::= 'external' 1839 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1840 unsigned &Visibility, 1841 unsigned &DLLStorageClass, 1842 bool &DSOLocal) { 1843 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1844 if (HasLinkage) 1845 Lex.Lex(); 1846 ParseOptionalDSOLocal(DSOLocal); 1847 ParseOptionalVisibility(Visibility); 1848 ParseOptionalDLLStorageClass(DLLStorageClass); 1849 1850 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 1851 return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 1852 } 1853 1854 return false; 1855 } 1856 1857 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) { 1858 switch (Lex.getKind()) { 1859 default: 1860 DSOLocal = false; 1861 break; 1862 case lltok::kw_dso_local: 1863 DSOLocal = true; 1864 Lex.Lex(); 1865 break; 1866 case lltok::kw_dso_preemptable: 1867 DSOLocal = false; 1868 Lex.Lex(); 1869 break; 1870 } 1871 } 1872 1873 /// ParseOptionalVisibility 1874 /// ::= /*empty*/ 1875 /// ::= 'default' 1876 /// ::= 'hidden' 1877 /// ::= 'protected' 1878 /// 1879 void LLParser::ParseOptionalVisibility(unsigned &Res) { 1880 switch (Lex.getKind()) { 1881 default: 1882 Res = GlobalValue::DefaultVisibility; 1883 return; 1884 case lltok::kw_default: 1885 Res = GlobalValue::DefaultVisibility; 1886 break; 1887 case lltok::kw_hidden: 1888 Res = GlobalValue::HiddenVisibility; 1889 break; 1890 case lltok::kw_protected: 1891 Res = GlobalValue::ProtectedVisibility; 1892 break; 1893 } 1894 Lex.Lex(); 1895 } 1896 1897 /// ParseOptionalDLLStorageClass 1898 /// ::= /*empty*/ 1899 /// ::= 'dllimport' 1900 /// ::= 'dllexport' 1901 /// 1902 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) { 1903 switch (Lex.getKind()) { 1904 default: 1905 Res = GlobalValue::DefaultStorageClass; 1906 return; 1907 case lltok::kw_dllimport: 1908 Res = GlobalValue::DLLImportStorageClass; 1909 break; 1910 case lltok::kw_dllexport: 1911 Res = GlobalValue::DLLExportStorageClass; 1912 break; 1913 } 1914 Lex.Lex(); 1915 } 1916 1917 /// ParseOptionalCallingConv 1918 /// ::= /*empty*/ 1919 /// ::= 'ccc' 1920 /// ::= 'fastcc' 1921 /// ::= 'intel_ocl_bicc' 1922 /// ::= 'coldcc' 1923 /// ::= 'x86_stdcallcc' 1924 /// ::= 'x86_fastcallcc' 1925 /// ::= 'x86_thiscallcc' 1926 /// ::= 'x86_vectorcallcc' 1927 /// ::= 'arm_apcscc' 1928 /// ::= 'arm_aapcscc' 1929 /// ::= 'arm_aapcs_vfpcc' 1930 /// ::= 'aarch64_vector_pcs' 1931 /// ::= 'msp430_intrcc' 1932 /// ::= 'avr_intrcc' 1933 /// ::= 'avr_signalcc' 1934 /// ::= 'ptx_kernel' 1935 /// ::= 'ptx_device' 1936 /// ::= 'spir_func' 1937 /// ::= 'spir_kernel' 1938 /// ::= 'x86_64_sysvcc' 1939 /// ::= 'win64cc' 1940 /// ::= 'webkit_jscc' 1941 /// ::= 'anyregcc' 1942 /// ::= 'preserve_mostcc' 1943 /// ::= 'preserve_allcc' 1944 /// ::= 'ghccc' 1945 /// ::= 'swiftcc' 1946 /// ::= 'x86_intrcc' 1947 /// ::= 'hhvmcc' 1948 /// ::= 'hhvm_ccc' 1949 /// ::= 'cxx_fast_tlscc' 1950 /// ::= 'amdgpu_vs' 1951 /// ::= 'amdgpu_ls' 1952 /// ::= 'amdgpu_hs' 1953 /// ::= 'amdgpu_es' 1954 /// ::= 'amdgpu_gs' 1955 /// ::= 'amdgpu_ps' 1956 /// ::= 'amdgpu_cs' 1957 /// ::= 'amdgpu_kernel' 1958 /// ::= 'cc' UINT 1959 /// 1960 bool LLParser::ParseOptionalCallingConv(unsigned &CC) { 1961 switch (Lex.getKind()) { 1962 default: CC = CallingConv::C; return false; 1963 case lltok::kw_ccc: CC = CallingConv::C; break; 1964 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1965 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1966 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1967 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1968 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 1969 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1970 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1971 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1972 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1973 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1974 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break; 1975 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1976 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 1977 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 1978 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1979 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1980 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1981 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1982 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1983 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1984 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 1985 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1986 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1987 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1988 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1989 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1990 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 1991 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 1992 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 1993 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 1994 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 1995 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 1996 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 1997 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 1998 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 1999 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 2000 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 2001 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 2002 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 2003 case lltok::kw_cc: { 2004 Lex.Lex(); 2005 return ParseUInt32(CC); 2006 } 2007 } 2008 2009 Lex.Lex(); 2010 return false; 2011 } 2012 2013 /// ParseMetadataAttachment 2014 /// ::= !dbg !42 2015 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 2016 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 2017 2018 std::string Name = Lex.getStrVal(); 2019 Kind = M->getMDKindID(Name); 2020 Lex.Lex(); 2021 2022 return ParseMDNode(MD); 2023 } 2024 2025 /// ParseInstructionMetadata 2026 /// ::= !dbg !42 (',' !dbg !57)* 2027 bool LLParser::ParseInstructionMetadata(Instruction &Inst) { 2028 do { 2029 if (Lex.getKind() != lltok::MetadataVar) 2030 return TokError("expected metadata after comma"); 2031 2032 unsigned MDK; 2033 MDNode *N; 2034 if (ParseMetadataAttachment(MDK, N)) 2035 return true; 2036 2037 Inst.setMetadata(MDK, N); 2038 if (MDK == LLVMContext::MD_tbaa) 2039 InstsWithTBAATag.push_back(&Inst); 2040 2041 // If this is the end of the list, we're done. 2042 } while (EatIfPresent(lltok::comma)); 2043 return false; 2044 } 2045 2046 /// ParseGlobalObjectMetadataAttachment 2047 /// ::= !dbg !57 2048 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) { 2049 unsigned MDK; 2050 MDNode *N; 2051 if (ParseMetadataAttachment(MDK, N)) 2052 return true; 2053 2054 GO.addMetadata(MDK, *N); 2055 return false; 2056 } 2057 2058 /// ParseOptionalFunctionMetadata 2059 /// ::= (!dbg !57)* 2060 bool LLParser::ParseOptionalFunctionMetadata(Function &F) { 2061 while (Lex.getKind() == lltok::MetadataVar) 2062 if (ParseGlobalObjectMetadataAttachment(F)) 2063 return true; 2064 return false; 2065 } 2066 2067 /// ParseOptionalAlignment 2068 /// ::= /* empty */ 2069 /// ::= 'align' 4 2070 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { 2071 Alignment = 0; 2072 if (!EatIfPresent(lltok::kw_align)) 2073 return false; 2074 LocTy AlignLoc = Lex.getLoc(); 2075 if (ParseUInt32(Alignment)) return true; 2076 if (!isPowerOf2_32(Alignment)) 2077 return Error(AlignLoc, "alignment is not a power of two"); 2078 if (Alignment > Value::MaximumAlignment) 2079 return Error(AlignLoc, "huge alignments are not supported yet"); 2080 return false; 2081 } 2082 2083 /// ParseOptionalDerefAttrBytes 2084 /// ::= /* empty */ 2085 /// ::= AttrKind '(' 4 ')' 2086 /// 2087 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 2088 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind, 2089 uint64_t &Bytes) { 2090 assert((AttrKind == lltok::kw_dereferenceable || 2091 AttrKind == lltok::kw_dereferenceable_or_null) && 2092 "contract!"); 2093 2094 Bytes = 0; 2095 if (!EatIfPresent(AttrKind)) 2096 return false; 2097 LocTy ParenLoc = Lex.getLoc(); 2098 if (!EatIfPresent(lltok::lparen)) 2099 return Error(ParenLoc, "expected '('"); 2100 LocTy DerefLoc = Lex.getLoc(); 2101 if (ParseUInt64(Bytes)) return true; 2102 ParenLoc = Lex.getLoc(); 2103 if (!EatIfPresent(lltok::rparen)) 2104 return Error(ParenLoc, "expected ')'"); 2105 if (!Bytes) 2106 return Error(DerefLoc, "dereferenceable bytes must be non-zero"); 2107 return false; 2108 } 2109 2110 /// ParseOptionalCommaAlign 2111 /// ::= 2112 /// ::= ',' align 4 2113 /// 2114 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2115 /// end. 2116 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, 2117 bool &AteExtraComma) { 2118 AteExtraComma = false; 2119 while (EatIfPresent(lltok::comma)) { 2120 // Metadata at the end is an early exit. 2121 if (Lex.getKind() == lltok::MetadataVar) { 2122 AteExtraComma = true; 2123 return false; 2124 } 2125 2126 if (Lex.getKind() != lltok::kw_align) 2127 return Error(Lex.getLoc(), "expected metadata or 'align'"); 2128 2129 if (ParseOptionalAlignment(Alignment)) return true; 2130 } 2131 2132 return false; 2133 } 2134 2135 /// ParseOptionalCommaAddrSpace 2136 /// ::= 2137 /// ::= ',' addrspace(1) 2138 /// 2139 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2140 /// end. 2141 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace, 2142 LocTy &Loc, 2143 bool &AteExtraComma) { 2144 AteExtraComma = false; 2145 while (EatIfPresent(lltok::comma)) { 2146 // Metadata at the end is an early exit. 2147 if (Lex.getKind() == lltok::MetadataVar) { 2148 AteExtraComma = true; 2149 return false; 2150 } 2151 2152 Loc = Lex.getLoc(); 2153 if (Lex.getKind() != lltok::kw_addrspace) 2154 return Error(Lex.getLoc(), "expected metadata or 'addrspace'"); 2155 2156 if (ParseOptionalAddrSpace(AddrSpace)) 2157 return true; 2158 } 2159 2160 return false; 2161 } 2162 2163 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 2164 Optional<unsigned> &HowManyArg) { 2165 Lex.Lex(); 2166 2167 auto StartParen = Lex.getLoc(); 2168 if (!EatIfPresent(lltok::lparen)) 2169 return Error(StartParen, "expected '('"); 2170 2171 if (ParseUInt32(BaseSizeArg)) 2172 return true; 2173 2174 if (EatIfPresent(lltok::comma)) { 2175 auto HowManyAt = Lex.getLoc(); 2176 unsigned HowMany; 2177 if (ParseUInt32(HowMany)) 2178 return true; 2179 if (HowMany == BaseSizeArg) 2180 return Error(HowManyAt, 2181 "'allocsize' indices can't refer to the same parameter"); 2182 HowManyArg = HowMany; 2183 } else 2184 HowManyArg = None; 2185 2186 auto EndParen = Lex.getLoc(); 2187 if (!EatIfPresent(lltok::rparen)) 2188 return Error(EndParen, "expected ')'"); 2189 return false; 2190 } 2191 2192 /// ParseScopeAndOrdering 2193 /// if isAtomic: ::= SyncScope? AtomicOrdering 2194 /// else: ::= 2195 /// 2196 /// This sets Scope and Ordering to the parsed values. 2197 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID, 2198 AtomicOrdering &Ordering) { 2199 if (!isAtomic) 2200 return false; 2201 2202 return ParseScope(SSID) || ParseOrdering(Ordering); 2203 } 2204 2205 /// ParseScope 2206 /// ::= syncscope("singlethread" | "<target scope>")? 2207 /// 2208 /// This sets synchronization scope ID to the ID of the parsed value. 2209 bool LLParser::ParseScope(SyncScope::ID &SSID) { 2210 SSID = SyncScope::System; 2211 if (EatIfPresent(lltok::kw_syncscope)) { 2212 auto StartParenAt = Lex.getLoc(); 2213 if (!EatIfPresent(lltok::lparen)) 2214 return Error(StartParenAt, "Expected '(' in syncscope"); 2215 2216 std::string SSN; 2217 auto SSNAt = Lex.getLoc(); 2218 if (ParseStringConstant(SSN)) 2219 return Error(SSNAt, "Expected synchronization scope name"); 2220 2221 auto EndParenAt = Lex.getLoc(); 2222 if (!EatIfPresent(lltok::rparen)) 2223 return Error(EndParenAt, "Expected ')' in syncscope"); 2224 2225 SSID = Context.getOrInsertSyncScopeID(SSN); 2226 } 2227 2228 return false; 2229 } 2230 2231 /// ParseOrdering 2232 /// ::= AtomicOrdering 2233 /// 2234 /// This sets Ordering to the parsed value. 2235 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) { 2236 switch (Lex.getKind()) { 2237 default: return TokError("Expected ordering on atomic instruction"); 2238 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2239 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2240 // Not specified yet: 2241 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2242 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2243 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2244 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2245 case lltok::kw_seq_cst: 2246 Ordering = AtomicOrdering::SequentiallyConsistent; 2247 break; 2248 } 2249 Lex.Lex(); 2250 return false; 2251 } 2252 2253 /// ParseOptionalStackAlignment 2254 /// ::= /* empty */ 2255 /// ::= 'alignstack' '(' 4 ')' 2256 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 2257 Alignment = 0; 2258 if (!EatIfPresent(lltok::kw_alignstack)) 2259 return false; 2260 LocTy ParenLoc = Lex.getLoc(); 2261 if (!EatIfPresent(lltok::lparen)) 2262 return Error(ParenLoc, "expected '('"); 2263 LocTy AlignLoc = Lex.getLoc(); 2264 if (ParseUInt32(Alignment)) return true; 2265 ParenLoc = Lex.getLoc(); 2266 if (!EatIfPresent(lltok::rparen)) 2267 return Error(ParenLoc, "expected ')'"); 2268 if (!isPowerOf2_32(Alignment)) 2269 return Error(AlignLoc, "stack alignment is not a power of two"); 2270 return false; 2271 } 2272 2273 /// ParseIndexList - This parses the index list for an insert/extractvalue 2274 /// instruction. This sets AteExtraComma in the case where we eat an extra 2275 /// comma at the end of the line and find that it is followed by metadata. 2276 /// Clients that don't allow metadata can call the version of this function that 2277 /// only takes one argument. 2278 /// 2279 /// ParseIndexList 2280 /// ::= (',' uint32)+ 2281 /// 2282 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 2283 bool &AteExtraComma) { 2284 AteExtraComma = false; 2285 2286 if (Lex.getKind() != lltok::comma) 2287 return TokError("expected ',' as start of index list"); 2288 2289 while (EatIfPresent(lltok::comma)) { 2290 if (Lex.getKind() == lltok::MetadataVar) { 2291 if (Indices.empty()) return TokError("expected index"); 2292 AteExtraComma = true; 2293 return false; 2294 } 2295 unsigned Idx = 0; 2296 if (ParseUInt32(Idx)) return true; 2297 Indices.push_back(Idx); 2298 } 2299 2300 return false; 2301 } 2302 2303 //===----------------------------------------------------------------------===// 2304 // Type Parsing. 2305 //===----------------------------------------------------------------------===// 2306 2307 /// ParseType - Parse a type. 2308 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2309 SMLoc TypeLoc = Lex.getLoc(); 2310 switch (Lex.getKind()) { 2311 default: 2312 return TokError(Msg); 2313 case lltok::Type: 2314 // Type ::= 'float' | 'void' (etc) 2315 Result = Lex.getTyVal(); 2316 Lex.Lex(); 2317 break; 2318 case lltok::lbrace: 2319 // Type ::= StructType 2320 if (ParseAnonStructType(Result, false)) 2321 return true; 2322 break; 2323 case lltok::lsquare: 2324 // Type ::= '[' ... ']' 2325 Lex.Lex(); // eat the lsquare. 2326 if (ParseArrayVectorType(Result, false)) 2327 return true; 2328 break; 2329 case lltok::less: // Either vector or packed struct. 2330 // Type ::= '<' ... '>' 2331 Lex.Lex(); 2332 if (Lex.getKind() == lltok::lbrace) { 2333 if (ParseAnonStructType(Result, true) || 2334 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 2335 return true; 2336 } else if (ParseArrayVectorType(Result, true)) 2337 return true; 2338 break; 2339 case lltok::LocalVar: { 2340 // Type ::= %foo 2341 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2342 2343 // If the type hasn't been defined yet, create a forward definition and 2344 // remember where that forward def'n was seen (in case it never is defined). 2345 if (!Entry.first) { 2346 Entry.first = StructType::create(Context, Lex.getStrVal()); 2347 Entry.second = Lex.getLoc(); 2348 } 2349 Result = Entry.first; 2350 Lex.Lex(); 2351 break; 2352 } 2353 2354 case lltok::LocalVarID: { 2355 // Type ::= %4 2356 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2357 2358 // If the type hasn't been defined yet, create a forward definition and 2359 // remember where that forward def'n was seen (in case it never is defined). 2360 if (!Entry.first) { 2361 Entry.first = StructType::create(Context); 2362 Entry.second = Lex.getLoc(); 2363 } 2364 Result = Entry.first; 2365 Lex.Lex(); 2366 break; 2367 } 2368 } 2369 2370 // Parse the type suffixes. 2371 while (true) { 2372 switch (Lex.getKind()) { 2373 // End of type. 2374 default: 2375 if (!AllowVoid && Result->isVoidTy()) 2376 return Error(TypeLoc, "void type only allowed for function results"); 2377 return false; 2378 2379 // Type ::= Type '*' 2380 case lltok::star: 2381 if (Result->isLabelTy()) 2382 return TokError("basic block pointers are invalid"); 2383 if (Result->isVoidTy()) 2384 return TokError("pointers to void are invalid - use i8* instead"); 2385 if (!PointerType::isValidElementType(Result)) 2386 return TokError("pointer to this type is invalid"); 2387 Result = PointerType::getUnqual(Result); 2388 Lex.Lex(); 2389 break; 2390 2391 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2392 case lltok::kw_addrspace: { 2393 if (Result->isLabelTy()) 2394 return TokError("basic block pointers are invalid"); 2395 if (Result->isVoidTy()) 2396 return TokError("pointers to void are invalid; use i8* instead"); 2397 if (!PointerType::isValidElementType(Result)) 2398 return TokError("pointer to this type is invalid"); 2399 unsigned AddrSpace; 2400 if (ParseOptionalAddrSpace(AddrSpace) || 2401 ParseToken(lltok::star, "expected '*' in address space")) 2402 return true; 2403 2404 Result = PointerType::get(Result, AddrSpace); 2405 break; 2406 } 2407 2408 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2409 case lltok::lparen: 2410 if (ParseFunctionType(Result)) 2411 return true; 2412 break; 2413 } 2414 } 2415 } 2416 2417 /// ParseParameterList 2418 /// ::= '(' ')' 2419 /// ::= '(' Arg (',' Arg)* ')' 2420 /// Arg 2421 /// ::= Type OptionalAttributes Value OptionalAttributes 2422 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2423 PerFunctionState &PFS, bool IsMustTailCall, 2424 bool InVarArgsFunc) { 2425 if (ParseToken(lltok::lparen, "expected '(' in call")) 2426 return true; 2427 2428 while (Lex.getKind() != lltok::rparen) { 2429 // If this isn't the first argument, we need a comma. 2430 if (!ArgList.empty() && 2431 ParseToken(lltok::comma, "expected ',' in argument list")) 2432 return true; 2433 2434 // Parse an ellipsis if this is a musttail call in a variadic function. 2435 if (Lex.getKind() == lltok::dotdotdot) { 2436 const char *Msg = "unexpected ellipsis in argument list for "; 2437 if (!IsMustTailCall) 2438 return TokError(Twine(Msg) + "non-musttail call"); 2439 if (!InVarArgsFunc) 2440 return TokError(Twine(Msg) + "musttail call in non-varargs function"); 2441 Lex.Lex(); // Lex the '...', it is purely for readability. 2442 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2443 } 2444 2445 // Parse the argument. 2446 LocTy ArgLoc; 2447 Type *ArgTy = nullptr; 2448 AttrBuilder ArgAttrs; 2449 Value *V; 2450 if (ParseType(ArgTy, ArgLoc)) 2451 return true; 2452 2453 if (ArgTy->isMetadataTy()) { 2454 if (ParseMetadataAsValue(V, PFS)) 2455 return true; 2456 } else { 2457 // Otherwise, handle normal operands. 2458 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS)) 2459 return true; 2460 } 2461 ArgList.push_back(ParamInfo( 2462 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2463 } 2464 2465 if (IsMustTailCall && InVarArgsFunc) 2466 return TokError("expected '...' at end of argument list for musttail call " 2467 "in varargs function"); 2468 2469 Lex.Lex(); // Lex the ')'. 2470 return false; 2471 } 2472 2473 /// ParseByValWithOptionalType 2474 /// ::= byval 2475 /// ::= byval(<ty>) 2476 bool LLParser::ParseByValWithOptionalType(Type *&Result) { 2477 Result = nullptr; 2478 if (!EatIfPresent(lltok::kw_byval)) 2479 return true; 2480 if (!EatIfPresent(lltok::lparen)) 2481 return false; 2482 if (ParseType(Result)) 2483 return true; 2484 if (!EatIfPresent(lltok::rparen)) 2485 return Error(Lex.getLoc(), "expected ')'"); 2486 return false; 2487 } 2488 2489 /// ParseOptionalOperandBundles 2490 /// ::= /*empty*/ 2491 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2492 /// 2493 /// OperandBundle 2494 /// ::= bundle-tag '(' ')' 2495 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2496 /// 2497 /// bundle-tag ::= String Constant 2498 bool LLParser::ParseOptionalOperandBundles( 2499 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2500 LocTy BeginLoc = Lex.getLoc(); 2501 if (!EatIfPresent(lltok::lsquare)) 2502 return false; 2503 2504 while (Lex.getKind() != lltok::rsquare) { 2505 // If this isn't the first operand bundle, we need a comma. 2506 if (!BundleList.empty() && 2507 ParseToken(lltok::comma, "expected ',' in input list")) 2508 return true; 2509 2510 std::string Tag; 2511 if (ParseStringConstant(Tag)) 2512 return true; 2513 2514 if (ParseToken(lltok::lparen, "expected '(' in operand bundle")) 2515 return true; 2516 2517 std::vector<Value *> Inputs; 2518 while (Lex.getKind() != lltok::rparen) { 2519 // If this isn't the first input, we need a comma. 2520 if (!Inputs.empty() && 2521 ParseToken(lltok::comma, "expected ',' in input list")) 2522 return true; 2523 2524 Type *Ty = nullptr; 2525 Value *Input = nullptr; 2526 if (ParseType(Ty) || ParseValue(Ty, Input, PFS)) 2527 return true; 2528 Inputs.push_back(Input); 2529 } 2530 2531 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2532 2533 Lex.Lex(); // Lex the ')'. 2534 } 2535 2536 if (BundleList.empty()) 2537 return Error(BeginLoc, "operand bundle set must not be empty"); 2538 2539 Lex.Lex(); // Lex the ']'. 2540 return false; 2541 } 2542 2543 /// ParseArgumentList - Parse the argument list for a function type or function 2544 /// prototype. 2545 /// ::= '(' ArgTypeListI ')' 2546 /// ArgTypeListI 2547 /// ::= /*empty*/ 2548 /// ::= '...' 2549 /// ::= ArgTypeList ',' '...' 2550 /// ::= ArgType (',' ArgType)* 2551 /// 2552 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2553 bool &isVarArg){ 2554 unsigned CurValID = 0; 2555 isVarArg = false; 2556 assert(Lex.getKind() == lltok::lparen); 2557 Lex.Lex(); // eat the (. 2558 2559 if (Lex.getKind() == lltok::rparen) { 2560 // empty 2561 } else if (Lex.getKind() == lltok::dotdotdot) { 2562 isVarArg = true; 2563 Lex.Lex(); 2564 } else { 2565 LocTy TypeLoc = Lex.getLoc(); 2566 Type *ArgTy = nullptr; 2567 AttrBuilder Attrs; 2568 std::string Name; 2569 2570 if (ParseType(ArgTy) || 2571 ParseOptionalParamAttrs(Attrs)) return true; 2572 2573 if (ArgTy->isVoidTy()) 2574 return Error(TypeLoc, "argument can not have void type"); 2575 2576 if (Lex.getKind() == lltok::LocalVar) { 2577 Name = Lex.getStrVal(); 2578 Lex.Lex(); 2579 } else if (Lex.getKind() == lltok::LocalVarID) { 2580 if (Lex.getUIntVal() != CurValID) 2581 return Error(TypeLoc, "argument expected to be numbered '%" + 2582 Twine(CurValID) + "'"); 2583 ++CurValID; 2584 Lex.Lex(); 2585 } 2586 2587 if (!FunctionType::isValidArgumentType(ArgTy)) 2588 return Error(TypeLoc, "invalid type for function argument"); 2589 2590 ArgList.emplace_back(TypeLoc, ArgTy, 2591 AttributeSet::get(ArgTy->getContext(), Attrs), 2592 std::move(Name)); 2593 2594 while (EatIfPresent(lltok::comma)) { 2595 // Handle ... at end of arg list. 2596 if (EatIfPresent(lltok::dotdotdot)) { 2597 isVarArg = true; 2598 break; 2599 } 2600 2601 // Otherwise must be an argument type. 2602 TypeLoc = Lex.getLoc(); 2603 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true; 2604 2605 if (ArgTy->isVoidTy()) 2606 return Error(TypeLoc, "argument can not have void type"); 2607 2608 if (Lex.getKind() == lltok::LocalVar) { 2609 Name = Lex.getStrVal(); 2610 Lex.Lex(); 2611 } else { 2612 if (Lex.getKind() == lltok::LocalVarID) { 2613 if (Lex.getUIntVal() != CurValID) 2614 return Error(TypeLoc, "argument expected to be numbered '%" + 2615 Twine(CurValID) + "'"); 2616 Lex.Lex(); 2617 } 2618 ++CurValID; 2619 Name = ""; 2620 } 2621 2622 if (!ArgTy->isFirstClassType()) 2623 return Error(TypeLoc, "invalid type for function argument"); 2624 2625 ArgList.emplace_back(TypeLoc, ArgTy, 2626 AttributeSet::get(ArgTy->getContext(), Attrs), 2627 std::move(Name)); 2628 } 2629 } 2630 2631 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2632 } 2633 2634 /// ParseFunctionType 2635 /// ::= Type ArgumentList OptionalAttrs 2636 bool LLParser::ParseFunctionType(Type *&Result) { 2637 assert(Lex.getKind() == lltok::lparen); 2638 2639 if (!FunctionType::isValidReturnType(Result)) 2640 return TokError("invalid function return type"); 2641 2642 SmallVector<ArgInfo, 8> ArgList; 2643 bool isVarArg; 2644 if (ParseArgumentList(ArgList, isVarArg)) 2645 return true; 2646 2647 // Reject names on the arguments lists. 2648 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2649 if (!ArgList[i].Name.empty()) 2650 return Error(ArgList[i].Loc, "argument name invalid in function type"); 2651 if (ArgList[i].Attrs.hasAttributes()) 2652 return Error(ArgList[i].Loc, 2653 "argument attributes invalid in function type"); 2654 } 2655 2656 SmallVector<Type*, 16> ArgListTy; 2657 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2658 ArgListTy.push_back(ArgList[i].Ty); 2659 2660 Result = FunctionType::get(Result, ArgListTy, isVarArg); 2661 return false; 2662 } 2663 2664 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 2665 /// other structs. 2666 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 2667 SmallVector<Type*, 8> Elts; 2668 if (ParseStructBody(Elts)) return true; 2669 2670 Result = StructType::get(Context, Elts, Packed); 2671 return false; 2672 } 2673 2674 /// ParseStructDefinition - Parse a struct in a 'type' definition. 2675 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 2676 std::pair<Type*, LocTy> &Entry, 2677 Type *&ResultTy) { 2678 // If the type was already defined, diagnose the redefinition. 2679 if (Entry.first && !Entry.second.isValid()) 2680 return Error(TypeLoc, "redefinition of type"); 2681 2682 // If we have opaque, just return without filling in the definition for the 2683 // struct. This counts as a definition as far as the .ll file goes. 2684 if (EatIfPresent(lltok::kw_opaque)) { 2685 // This type is being defined, so clear the location to indicate this. 2686 Entry.second = SMLoc(); 2687 2688 // If this type number has never been uttered, create it. 2689 if (!Entry.first) 2690 Entry.first = StructType::create(Context, Name); 2691 ResultTy = Entry.first; 2692 return false; 2693 } 2694 2695 // If the type starts with '<', then it is either a packed struct or a vector. 2696 bool isPacked = EatIfPresent(lltok::less); 2697 2698 // If we don't have a struct, then we have a random type alias, which we 2699 // accept for compatibility with old files. These types are not allowed to be 2700 // forward referenced and not allowed to be recursive. 2701 if (Lex.getKind() != lltok::lbrace) { 2702 if (Entry.first) 2703 return Error(TypeLoc, "forward references to non-struct type"); 2704 2705 ResultTy = nullptr; 2706 if (isPacked) 2707 return ParseArrayVectorType(ResultTy, true); 2708 return ParseType(ResultTy); 2709 } 2710 2711 // This type is being defined, so clear the location to indicate this. 2712 Entry.second = SMLoc(); 2713 2714 // If this type number has never been uttered, create it. 2715 if (!Entry.first) 2716 Entry.first = StructType::create(Context, Name); 2717 2718 StructType *STy = cast<StructType>(Entry.first); 2719 2720 SmallVector<Type*, 8> Body; 2721 if (ParseStructBody(Body) || 2722 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 2723 return true; 2724 2725 STy->setBody(Body, isPacked); 2726 ResultTy = STy; 2727 return false; 2728 } 2729 2730 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2731 /// StructType 2732 /// ::= '{' '}' 2733 /// ::= '{' Type (',' Type)* '}' 2734 /// ::= '<' '{' '}' '>' 2735 /// ::= '<' '{' Type (',' Type)* '}' '>' 2736 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 2737 assert(Lex.getKind() == lltok::lbrace); 2738 Lex.Lex(); // Consume the '{' 2739 2740 // Handle the empty struct. 2741 if (EatIfPresent(lltok::rbrace)) 2742 return false; 2743 2744 LocTy EltTyLoc = Lex.getLoc(); 2745 Type *Ty = nullptr; 2746 if (ParseType(Ty)) return true; 2747 Body.push_back(Ty); 2748 2749 if (!StructType::isValidElementType(Ty)) 2750 return Error(EltTyLoc, "invalid element type for struct"); 2751 2752 while (EatIfPresent(lltok::comma)) { 2753 EltTyLoc = Lex.getLoc(); 2754 if (ParseType(Ty)) return true; 2755 2756 if (!StructType::isValidElementType(Ty)) 2757 return Error(EltTyLoc, "invalid element type for struct"); 2758 2759 Body.push_back(Ty); 2760 } 2761 2762 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 2763 } 2764 2765 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 2766 /// token has already been consumed. 2767 /// Type 2768 /// ::= '[' APSINTVAL 'x' Types ']' 2769 /// ::= '<' APSINTVAL 'x' Types '>' 2770 /// ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>' 2771 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 2772 bool Scalable = false; 2773 2774 if (isVector && Lex.getKind() == lltok::kw_vscale) { 2775 Lex.Lex(); // consume the 'vscale' 2776 if (ParseToken(lltok::kw_x, "expected 'x' after vscale")) 2777 return true; 2778 2779 Scalable = true; 2780 } 2781 2782 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2783 Lex.getAPSIntVal().getBitWidth() > 64) 2784 return TokError("expected number in address space"); 2785 2786 LocTy SizeLoc = Lex.getLoc(); 2787 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2788 Lex.Lex(); 2789 2790 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 2791 return true; 2792 2793 LocTy TypeLoc = Lex.getLoc(); 2794 Type *EltTy = nullptr; 2795 if (ParseType(EltTy)) return true; 2796 2797 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 2798 "expected end of sequential type")) 2799 return true; 2800 2801 if (isVector) { 2802 if (Size == 0) 2803 return Error(SizeLoc, "zero element vector is illegal"); 2804 if ((unsigned)Size != Size) 2805 return Error(SizeLoc, "size too large for vector"); 2806 if (!VectorType::isValidElementType(EltTy)) 2807 return Error(TypeLoc, "invalid vector element type"); 2808 Result = VectorType::get(EltTy, unsigned(Size), Scalable); 2809 } else { 2810 if (!ArrayType::isValidElementType(EltTy)) 2811 return Error(TypeLoc, "invalid array element type"); 2812 Result = ArrayType::get(EltTy, Size); 2813 } 2814 return false; 2815 } 2816 2817 //===----------------------------------------------------------------------===// 2818 // Function Semantic Analysis. 2819 //===----------------------------------------------------------------------===// 2820 2821 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2822 int functionNumber) 2823 : P(p), F(f), FunctionNumber(functionNumber) { 2824 2825 // Insert unnamed arguments into the NumberedVals list. 2826 for (Argument &A : F.args()) 2827 if (!A.hasName()) 2828 NumberedVals.push_back(&A); 2829 } 2830 2831 LLParser::PerFunctionState::~PerFunctionState() { 2832 // If there were any forward referenced non-basicblock values, delete them. 2833 2834 for (const auto &P : ForwardRefVals) { 2835 if (isa<BasicBlock>(P.second.first)) 2836 continue; 2837 P.second.first->replaceAllUsesWith( 2838 UndefValue::get(P.second.first->getType())); 2839 P.second.first->deleteValue(); 2840 } 2841 2842 for (const auto &P : ForwardRefValIDs) { 2843 if (isa<BasicBlock>(P.second.first)) 2844 continue; 2845 P.second.first->replaceAllUsesWith( 2846 UndefValue::get(P.second.first->getType())); 2847 P.second.first->deleteValue(); 2848 } 2849 } 2850 2851 bool LLParser::PerFunctionState::FinishFunction() { 2852 if (!ForwardRefVals.empty()) 2853 return P.Error(ForwardRefVals.begin()->second.second, 2854 "use of undefined value '%" + ForwardRefVals.begin()->first + 2855 "'"); 2856 if (!ForwardRefValIDs.empty()) 2857 return P.Error(ForwardRefValIDs.begin()->second.second, 2858 "use of undefined value '%" + 2859 Twine(ForwardRefValIDs.begin()->first) + "'"); 2860 return false; 2861 } 2862 2863 /// GetVal - Get a value with the specified name or ID, creating a 2864 /// forward reference record if needed. This can return null if the value 2865 /// exists but does not have the right type. 2866 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty, 2867 LocTy Loc, bool IsCall) { 2868 // Look this name up in the normal function symbol table. 2869 Value *Val = F.getValueSymbolTable()->lookup(Name); 2870 2871 // If this is a forward reference for the value, see if we already created a 2872 // forward ref record. 2873 if (!Val) { 2874 auto I = ForwardRefVals.find(Name); 2875 if (I != ForwardRefVals.end()) 2876 Val = I->second.first; 2877 } 2878 2879 // If we have the value in the symbol table or fwd-ref table, return it. 2880 if (Val) 2881 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall); 2882 2883 // Don't make placeholders with invalid type. 2884 if (!Ty->isFirstClassType()) { 2885 P.Error(Loc, "invalid use of a non-first-class type"); 2886 return nullptr; 2887 } 2888 2889 // Otherwise, create a new forward reference for this value and remember it. 2890 Value *FwdVal; 2891 if (Ty->isLabelTy()) { 2892 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2893 } else { 2894 FwdVal = new Argument(Ty, Name); 2895 } 2896 2897 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2898 return FwdVal; 2899 } 2900 2901 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc, 2902 bool IsCall) { 2903 // Look this name up in the normal function symbol table. 2904 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2905 2906 // If this is a forward reference for the value, see if we already created a 2907 // forward ref record. 2908 if (!Val) { 2909 auto I = ForwardRefValIDs.find(ID); 2910 if (I != ForwardRefValIDs.end()) 2911 Val = I->second.first; 2912 } 2913 2914 // If we have the value in the symbol table or fwd-ref table, return it. 2915 if (Val) 2916 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall); 2917 2918 if (!Ty->isFirstClassType()) { 2919 P.Error(Loc, "invalid use of a non-first-class type"); 2920 return nullptr; 2921 } 2922 2923 // Otherwise, create a new forward reference for this value and remember it. 2924 Value *FwdVal; 2925 if (Ty->isLabelTy()) { 2926 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2927 } else { 2928 FwdVal = new Argument(Ty); 2929 } 2930 2931 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2932 return FwdVal; 2933 } 2934 2935 /// SetInstName - After an instruction is parsed and inserted into its 2936 /// basic block, this installs its name. 2937 bool LLParser::PerFunctionState::SetInstName(int NameID, 2938 const std::string &NameStr, 2939 LocTy NameLoc, Instruction *Inst) { 2940 // If this instruction has void type, it cannot have a name or ID specified. 2941 if (Inst->getType()->isVoidTy()) { 2942 if (NameID != -1 || !NameStr.empty()) 2943 return P.Error(NameLoc, "instructions returning void cannot have a name"); 2944 return false; 2945 } 2946 2947 // If this was a numbered instruction, verify that the instruction is the 2948 // expected value and resolve any forward references. 2949 if (NameStr.empty()) { 2950 // If neither a name nor an ID was specified, just use the next ID. 2951 if (NameID == -1) 2952 NameID = NumberedVals.size(); 2953 2954 if (unsigned(NameID) != NumberedVals.size()) 2955 return P.Error(NameLoc, "instruction expected to be numbered '%" + 2956 Twine(NumberedVals.size()) + "'"); 2957 2958 auto FI = ForwardRefValIDs.find(NameID); 2959 if (FI != ForwardRefValIDs.end()) { 2960 Value *Sentinel = FI->second.first; 2961 if (Sentinel->getType() != Inst->getType()) 2962 return P.Error(NameLoc, "instruction forward referenced with type '" + 2963 getTypeString(FI->second.first->getType()) + "'"); 2964 2965 Sentinel->replaceAllUsesWith(Inst); 2966 Sentinel->deleteValue(); 2967 ForwardRefValIDs.erase(FI); 2968 } 2969 2970 NumberedVals.push_back(Inst); 2971 return false; 2972 } 2973 2974 // Otherwise, the instruction had a name. Resolve forward refs and set it. 2975 auto FI = ForwardRefVals.find(NameStr); 2976 if (FI != ForwardRefVals.end()) { 2977 Value *Sentinel = FI->second.first; 2978 if (Sentinel->getType() != Inst->getType()) 2979 return P.Error(NameLoc, "instruction forward referenced with type '" + 2980 getTypeString(FI->second.first->getType()) + "'"); 2981 2982 Sentinel->replaceAllUsesWith(Inst); 2983 Sentinel->deleteValue(); 2984 ForwardRefVals.erase(FI); 2985 } 2986 2987 // Set the name on the instruction. 2988 Inst->setName(NameStr); 2989 2990 if (Inst->getName() != NameStr) 2991 return P.Error(NameLoc, "multiple definition of local value named '" + 2992 NameStr + "'"); 2993 return false; 2994 } 2995 2996 /// GetBB - Get a basic block with the specified name or ID, creating a 2997 /// forward reference record if needed. 2998 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 2999 LocTy Loc) { 3000 return dyn_cast_or_null<BasicBlock>( 3001 GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 3002 } 3003 3004 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 3005 return dyn_cast_or_null<BasicBlock>( 3006 GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 3007 } 3008 3009 /// DefineBB - Define the specified basic block, which is either named or 3010 /// unnamed. If there is an error, this returns null otherwise it returns 3011 /// the block being defined. 3012 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 3013 int NameID, LocTy Loc) { 3014 BasicBlock *BB; 3015 if (Name.empty()) { 3016 if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) { 3017 P.Error(Loc, "label expected to be numbered '" + 3018 Twine(NumberedVals.size()) + "'"); 3019 return nullptr; 3020 } 3021 BB = GetBB(NumberedVals.size(), Loc); 3022 if (!BB) { 3023 P.Error(Loc, "unable to create block numbered '" + 3024 Twine(NumberedVals.size()) + "'"); 3025 return nullptr; 3026 } 3027 } else { 3028 BB = GetBB(Name, Loc); 3029 if (!BB) { 3030 P.Error(Loc, "unable to create block named '" + Name + "'"); 3031 return nullptr; 3032 } 3033 } 3034 3035 // Move the block to the end of the function. Forward ref'd blocks are 3036 // inserted wherever they happen to be referenced. 3037 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 3038 3039 // Remove the block from forward ref sets. 3040 if (Name.empty()) { 3041 ForwardRefValIDs.erase(NumberedVals.size()); 3042 NumberedVals.push_back(BB); 3043 } else { 3044 // BB forward references are already in the function symbol table. 3045 ForwardRefVals.erase(Name); 3046 } 3047 3048 return BB; 3049 } 3050 3051 //===----------------------------------------------------------------------===// 3052 // Constants. 3053 //===----------------------------------------------------------------------===// 3054 3055 /// ParseValID - Parse an abstract value that doesn't necessarily have a 3056 /// type implied. For example, if we parse "4" we don't know what integer type 3057 /// it has. The value will later be combined with its type and checked for 3058 /// sanity. PFS is used to convert function-local operands of metadata (since 3059 /// metadata operands are not just parsed here but also converted to values). 3060 /// PFS can be null when we are not parsing metadata values inside a function. 3061 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 3062 ID.Loc = Lex.getLoc(); 3063 switch (Lex.getKind()) { 3064 default: return TokError("expected value token"); 3065 case lltok::GlobalID: // @42 3066 ID.UIntVal = Lex.getUIntVal(); 3067 ID.Kind = ValID::t_GlobalID; 3068 break; 3069 case lltok::GlobalVar: // @foo 3070 ID.StrVal = Lex.getStrVal(); 3071 ID.Kind = ValID::t_GlobalName; 3072 break; 3073 case lltok::LocalVarID: // %42 3074 ID.UIntVal = Lex.getUIntVal(); 3075 ID.Kind = ValID::t_LocalID; 3076 break; 3077 case lltok::LocalVar: // %foo 3078 ID.StrVal = Lex.getStrVal(); 3079 ID.Kind = ValID::t_LocalName; 3080 break; 3081 case lltok::APSInt: 3082 ID.APSIntVal = Lex.getAPSIntVal(); 3083 ID.Kind = ValID::t_APSInt; 3084 break; 3085 case lltok::APFloat: 3086 ID.APFloatVal = Lex.getAPFloatVal(); 3087 ID.Kind = ValID::t_APFloat; 3088 break; 3089 case lltok::kw_true: 3090 ID.ConstantVal = ConstantInt::getTrue(Context); 3091 ID.Kind = ValID::t_Constant; 3092 break; 3093 case lltok::kw_false: 3094 ID.ConstantVal = ConstantInt::getFalse(Context); 3095 ID.Kind = ValID::t_Constant; 3096 break; 3097 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 3098 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 3099 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 3100 case lltok::kw_none: ID.Kind = ValID::t_None; break; 3101 3102 case lltok::lbrace: { 3103 // ValID ::= '{' ConstVector '}' 3104 Lex.Lex(); 3105 SmallVector<Constant*, 16> Elts; 3106 if (ParseGlobalValueVector(Elts) || 3107 ParseToken(lltok::rbrace, "expected end of struct constant")) 3108 return true; 3109 3110 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 3111 ID.UIntVal = Elts.size(); 3112 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3113 Elts.size() * sizeof(Elts[0])); 3114 ID.Kind = ValID::t_ConstantStruct; 3115 return false; 3116 } 3117 case lltok::less: { 3118 // ValID ::= '<' ConstVector '>' --> Vector. 3119 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 3120 Lex.Lex(); 3121 bool isPackedStruct = EatIfPresent(lltok::lbrace); 3122 3123 SmallVector<Constant*, 16> Elts; 3124 LocTy FirstEltLoc = Lex.getLoc(); 3125 if (ParseGlobalValueVector(Elts) || 3126 (isPackedStruct && 3127 ParseToken(lltok::rbrace, "expected end of packed struct")) || 3128 ParseToken(lltok::greater, "expected end of constant")) 3129 return true; 3130 3131 if (isPackedStruct) { 3132 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 3133 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3134 Elts.size() * sizeof(Elts[0])); 3135 ID.UIntVal = Elts.size(); 3136 ID.Kind = ValID::t_PackedConstantStruct; 3137 return false; 3138 } 3139 3140 if (Elts.empty()) 3141 return Error(ID.Loc, "constant vector must not be empty"); 3142 3143 if (!Elts[0]->getType()->isIntegerTy() && 3144 !Elts[0]->getType()->isFloatingPointTy() && 3145 !Elts[0]->getType()->isPointerTy()) 3146 return Error(FirstEltLoc, 3147 "vector elements must have integer, pointer or floating point type"); 3148 3149 // Verify that all the vector elements have the same type. 3150 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 3151 if (Elts[i]->getType() != Elts[0]->getType()) 3152 return Error(FirstEltLoc, 3153 "vector element #" + Twine(i) + 3154 " is not of type '" + getTypeString(Elts[0]->getType())); 3155 3156 ID.ConstantVal = ConstantVector::get(Elts); 3157 ID.Kind = ValID::t_Constant; 3158 return false; 3159 } 3160 case lltok::lsquare: { // Array Constant 3161 Lex.Lex(); 3162 SmallVector<Constant*, 16> Elts; 3163 LocTy FirstEltLoc = Lex.getLoc(); 3164 if (ParseGlobalValueVector(Elts) || 3165 ParseToken(lltok::rsquare, "expected end of array constant")) 3166 return true; 3167 3168 // Handle empty element. 3169 if (Elts.empty()) { 3170 // Use undef instead of an array because it's inconvenient to determine 3171 // the element type at this point, there being no elements to examine. 3172 ID.Kind = ValID::t_EmptyArray; 3173 return false; 3174 } 3175 3176 if (!Elts[0]->getType()->isFirstClassType()) 3177 return Error(FirstEltLoc, "invalid array element type: " + 3178 getTypeString(Elts[0]->getType())); 3179 3180 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 3181 3182 // Verify all elements are correct type! 3183 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 3184 if (Elts[i]->getType() != Elts[0]->getType()) 3185 return Error(FirstEltLoc, 3186 "array element #" + Twine(i) + 3187 " is not of type '" + getTypeString(Elts[0]->getType())); 3188 } 3189 3190 ID.ConstantVal = ConstantArray::get(ATy, Elts); 3191 ID.Kind = ValID::t_Constant; 3192 return false; 3193 } 3194 case lltok::kw_c: // c "foo" 3195 Lex.Lex(); 3196 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 3197 false); 3198 if (ParseToken(lltok::StringConstant, "expected string")) return true; 3199 ID.Kind = ValID::t_Constant; 3200 return false; 3201 3202 case lltok::kw_asm: { 3203 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 3204 // STRINGCONSTANT 3205 bool HasSideEffect, AlignStack, AsmDialect; 3206 Lex.Lex(); 3207 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 3208 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 3209 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 3210 ParseStringConstant(ID.StrVal) || 3211 ParseToken(lltok::comma, "expected comma in inline asm expression") || 3212 ParseToken(lltok::StringConstant, "expected constraint string")) 3213 return true; 3214 ID.StrVal2 = Lex.getStrVal(); 3215 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 3216 (unsigned(AsmDialect)<<2); 3217 ID.Kind = ValID::t_InlineAsm; 3218 return false; 3219 } 3220 3221 case lltok::kw_blockaddress: { 3222 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 3223 Lex.Lex(); 3224 3225 ValID Fn, Label; 3226 3227 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 3228 ParseValID(Fn) || 3229 ParseToken(lltok::comma, "expected comma in block address expression")|| 3230 ParseValID(Label) || 3231 ParseToken(lltok::rparen, "expected ')' in block address expression")) 3232 return true; 3233 3234 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3235 return Error(Fn.Loc, "expected function name in blockaddress"); 3236 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 3237 return Error(Label.Loc, "expected basic block name in blockaddress"); 3238 3239 // Try to find the function (but skip it if it's forward-referenced). 3240 GlobalValue *GV = nullptr; 3241 if (Fn.Kind == ValID::t_GlobalID) { 3242 if (Fn.UIntVal < NumberedVals.size()) 3243 GV = NumberedVals[Fn.UIntVal]; 3244 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3245 GV = M->getNamedValue(Fn.StrVal); 3246 } 3247 Function *F = nullptr; 3248 if (GV) { 3249 // Confirm that it's actually a function with a definition. 3250 if (!isa<Function>(GV)) 3251 return Error(Fn.Loc, "expected function name in blockaddress"); 3252 F = cast<Function>(GV); 3253 if (F->isDeclaration()) 3254 return Error(Fn.Loc, "cannot take blockaddress inside a declaration"); 3255 } 3256 3257 if (!F) { 3258 // Make a global variable as a placeholder for this reference. 3259 GlobalValue *&FwdRef = 3260 ForwardRefBlockAddresses.insert(std::make_pair( 3261 std::move(Fn), 3262 std::map<ValID, GlobalValue *>())) 3263 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 3264 .first->second; 3265 if (!FwdRef) 3266 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 3267 GlobalValue::InternalLinkage, nullptr, ""); 3268 ID.ConstantVal = FwdRef; 3269 ID.Kind = ValID::t_Constant; 3270 return false; 3271 } 3272 3273 // We found the function; now find the basic block. Don't use PFS, since we 3274 // might be inside a constant expression. 3275 BasicBlock *BB; 3276 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 3277 if (Label.Kind == ValID::t_LocalID) 3278 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc); 3279 else 3280 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc); 3281 if (!BB) 3282 return Error(Label.Loc, "referenced value is not a basic block"); 3283 } else { 3284 if (Label.Kind == ValID::t_LocalID) 3285 return Error(Label.Loc, "cannot take address of numeric label after " 3286 "the function is defined"); 3287 BB = dyn_cast_or_null<BasicBlock>( 3288 F->getValueSymbolTable()->lookup(Label.StrVal)); 3289 if (!BB) 3290 return Error(Label.Loc, "referenced value is not a basic block"); 3291 } 3292 3293 ID.ConstantVal = BlockAddress::get(F, BB); 3294 ID.Kind = ValID::t_Constant; 3295 return false; 3296 } 3297 3298 case lltok::kw_trunc: 3299 case lltok::kw_zext: 3300 case lltok::kw_sext: 3301 case lltok::kw_fptrunc: 3302 case lltok::kw_fpext: 3303 case lltok::kw_bitcast: 3304 case lltok::kw_addrspacecast: 3305 case lltok::kw_uitofp: 3306 case lltok::kw_sitofp: 3307 case lltok::kw_fptoui: 3308 case lltok::kw_fptosi: 3309 case lltok::kw_inttoptr: 3310 case lltok::kw_ptrtoint: { 3311 unsigned Opc = Lex.getUIntVal(); 3312 Type *DestTy = nullptr; 3313 Constant *SrcVal; 3314 Lex.Lex(); 3315 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3316 ParseGlobalTypeAndValue(SrcVal) || 3317 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3318 ParseType(DestTy) || 3319 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3320 return true; 3321 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3322 return Error(ID.Loc, "invalid cast opcode for cast from '" + 3323 getTypeString(SrcVal->getType()) + "' to '" + 3324 getTypeString(DestTy) + "'"); 3325 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3326 SrcVal, DestTy); 3327 ID.Kind = ValID::t_Constant; 3328 return false; 3329 } 3330 case lltok::kw_extractvalue: { 3331 Lex.Lex(); 3332 Constant *Val; 3333 SmallVector<unsigned, 4> Indices; 3334 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 3335 ParseGlobalTypeAndValue(Val) || 3336 ParseIndexList(Indices) || 3337 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 3338 return true; 3339 3340 if (!Val->getType()->isAggregateType()) 3341 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 3342 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 3343 return Error(ID.Loc, "invalid indices for extractvalue"); 3344 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 3345 ID.Kind = ValID::t_Constant; 3346 return false; 3347 } 3348 case lltok::kw_insertvalue: { 3349 Lex.Lex(); 3350 Constant *Val0, *Val1; 3351 SmallVector<unsigned, 4> Indices; 3352 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 3353 ParseGlobalTypeAndValue(Val0) || 3354 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 3355 ParseGlobalTypeAndValue(Val1) || 3356 ParseIndexList(Indices) || 3357 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 3358 return true; 3359 if (!Val0->getType()->isAggregateType()) 3360 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 3361 Type *IndexedType = 3362 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3363 if (!IndexedType) 3364 return Error(ID.Loc, "invalid indices for insertvalue"); 3365 if (IndexedType != Val1->getType()) 3366 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3367 getTypeString(Val1->getType()) + 3368 "' instead of '" + getTypeString(IndexedType) + 3369 "'"); 3370 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3371 ID.Kind = ValID::t_Constant; 3372 return false; 3373 } 3374 case lltok::kw_icmp: 3375 case lltok::kw_fcmp: { 3376 unsigned PredVal, Opc = Lex.getUIntVal(); 3377 Constant *Val0, *Val1; 3378 Lex.Lex(); 3379 if (ParseCmpPredicate(PredVal, Opc) || 3380 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3381 ParseGlobalTypeAndValue(Val0) || 3382 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 3383 ParseGlobalTypeAndValue(Val1) || 3384 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3385 return true; 3386 3387 if (Val0->getType() != Val1->getType()) 3388 return Error(ID.Loc, "compare operands must have the same type"); 3389 3390 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3391 3392 if (Opc == Instruction::FCmp) { 3393 if (!Val0->getType()->isFPOrFPVectorTy()) 3394 return Error(ID.Loc, "fcmp requires floating point operands"); 3395 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3396 } else { 3397 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3398 if (!Val0->getType()->isIntOrIntVectorTy() && 3399 !Val0->getType()->isPtrOrPtrVectorTy()) 3400 return Error(ID.Loc, "icmp requires pointer or integer operands"); 3401 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3402 } 3403 ID.Kind = ValID::t_Constant; 3404 return false; 3405 } 3406 3407 // Unary Operators. 3408 case lltok::kw_fneg: { 3409 unsigned Opc = Lex.getUIntVal(); 3410 Constant *Val; 3411 Lex.Lex(); 3412 if (ParseToken(lltok::lparen, "expected '(' in unary constantexpr") || 3413 ParseGlobalTypeAndValue(Val) || 3414 ParseToken(lltok::rparen, "expected ')' in unary constantexpr")) 3415 return true; 3416 3417 // Check that the type is valid for the operator. 3418 switch (Opc) { 3419 case Instruction::FNeg: 3420 if (!Val->getType()->isFPOrFPVectorTy()) 3421 return Error(ID.Loc, "constexpr requires fp operands"); 3422 break; 3423 default: llvm_unreachable("Unknown unary operator!"); 3424 } 3425 unsigned Flags = 0; 3426 Constant *C = ConstantExpr::get(Opc, Val, Flags); 3427 ID.ConstantVal = C; 3428 ID.Kind = ValID::t_Constant; 3429 return false; 3430 } 3431 // Binary Operators. 3432 case lltok::kw_add: 3433 case lltok::kw_fadd: 3434 case lltok::kw_sub: 3435 case lltok::kw_fsub: 3436 case lltok::kw_mul: 3437 case lltok::kw_fmul: 3438 case lltok::kw_udiv: 3439 case lltok::kw_sdiv: 3440 case lltok::kw_fdiv: 3441 case lltok::kw_urem: 3442 case lltok::kw_srem: 3443 case lltok::kw_frem: 3444 case lltok::kw_shl: 3445 case lltok::kw_lshr: 3446 case lltok::kw_ashr: { 3447 bool NUW = false; 3448 bool NSW = false; 3449 bool Exact = false; 3450 unsigned Opc = Lex.getUIntVal(); 3451 Constant *Val0, *Val1; 3452 Lex.Lex(); 3453 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3454 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3455 if (EatIfPresent(lltok::kw_nuw)) 3456 NUW = true; 3457 if (EatIfPresent(lltok::kw_nsw)) { 3458 NSW = true; 3459 if (EatIfPresent(lltok::kw_nuw)) 3460 NUW = true; 3461 } 3462 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3463 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3464 if (EatIfPresent(lltok::kw_exact)) 3465 Exact = true; 3466 } 3467 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3468 ParseGlobalTypeAndValue(Val0) || 3469 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 3470 ParseGlobalTypeAndValue(Val1) || 3471 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3472 return true; 3473 if (Val0->getType() != Val1->getType()) 3474 return Error(ID.Loc, "operands of constexpr must have same type"); 3475 // Check that the type is valid for the operator. 3476 switch (Opc) { 3477 case Instruction::Add: 3478 case Instruction::Sub: 3479 case Instruction::Mul: 3480 case Instruction::UDiv: 3481 case Instruction::SDiv: 3482 case Instruction::URem: 3483 case Instruction::SRem: 3484 case Instruction::Shl: 3485 case Instruction::AShr: 3486 case Instruction::LShr: 3487 if (!Val0->getType()->isIntOrIntVectorTy()) 3488 return Error(ID.Loc, "constexpr requires integer operands"); 3489 break; 3490 case Instruction::FAdd: 3491 case Instruction::FSub: 3492 case Instruction::FMul: 3493 case Instruction::FDiv: 3494 case Instruction::FRem: 3495 if (!Val0->getType()->isFPOrFPVectorTy()) 3496 return Error(ID.Loc, "constexpr requires fp operands"); 3497 break; 3498 default: llvm_unreachable("Unknown binary operator!"); 3499 } 3500 unsigned Flags = 0; 3501 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3502 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3503 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3504 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3505 ID.ConstantVal = C; 3506 ID.Kind = ValID::t_Constant; 3507 return false; 3508 } 3509 3510 // Logical Operations 3511 case lltok::kw_and: 3512 case lltok::kw_or: 3513 case lltok::kw_xor: { 3514 unsigned Opc = Lex.getUIntVal(); 3515 Constant *Val0, *Val1; 3516 Lex.Lex(); 3517 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3518 ParseGlobalTypeAndValue(Val0) || 3519 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 3520 ParseGlobalTypeAndValue(Val1) || 3521 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3522 return true; 3523 if (Val0->getType() != Val1->getType()) 3524 return Error(ID.Loc, "operands of constexpr must have same type"); 3525 if (!Val0->getType()->isIntOrIntVectorTy()) 3526 return Error(ID.Loc, 3527 "constexpr requires integer or integer vector operands"); 3528 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3529 ID.Kind = ValID::t_Constant; 3530 return false; 3531 } 3532 3533 case lltok::kw_getelementptr: 3534 case lltok::kw_shufflevector: 3535 case lltok::kw_insertelement: 3536 case lltok::kw_extractelement: 3537 case lltok::kw_select: { 3538 unsigned Opc = Lex.getUIntVal(); 3539 SmallVector<Constant*, 16> Elts; 3540 bool InBounds = false; 3541 Type *Ty; 3542 Lex.Lex(); 3543 3544 if (Opc == Instruction::GetElementPtr) 3545 InBounds = EatIfPresent(lltok::kw_inbounds); 3546 3547 if (ParseToken(lltok::lparen, "expected '(' in constantexpr")) 3548 return true; 3549 3550 LocTy ExplicitTypeLoc = Lex.getLoc(); 3551 if (Opc == Instruction::GetElementPtr) { 3552 if (ParseType(Ty) || 3553 ParseToken(lltok::comma, "expected comma after getelementptr's type")) 3554 return true; 3555 } 3556 3557 Optional<unsigned> InRangeOp; 3558 if (ParseGlobalValueVector( 3559 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3560 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 3561 return true; 3562 3563 if (Opc == Instruction::GetElementPtr) { 3564 if (Elts.size() == 0 || 3565 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 3566 return Error(ID.Loc, "base of getelementptr must be a pointer"); 3567 3568 Type *BaseType = Elts[0]->getType(); 3569 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3570 if (Ty != BasePointerType->getElementType()) 3571 return Error( 3572 ExplicitTypeLoc, 3573 "explicit pointee type doesn't match operand's pointee type"); 3574 3575 unsigned GEPWidth = 3576 BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0; 3577 3578 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3579 for (Constant *Val : Indices) { 3580 Type *ValTy = Val->getType(); 3581 if (!ValTy->isIntOrIntVectorTy()) 3582 return Error(ID.Loc, "getelementptr index must be an integer"); 3583 if (ValTy->isVectorTy()) { 3584 unsigned ValNumEl = ValTy->getVectorNumElements(); 3585 if (GEPWidth && (ValNumEl != GEPWidth)) 3586 return Error( 3587 ID.Loc, 3588 "getelementptr vector index has a wrong number of elements"); 3589 // GEPWidth may have been unknown because the base is a scalar, 3590 // but it is known now. 3591 GEPWidth = ValNumEl; 3592 } 3593 } 3594 3595 SmallPtrSet<Type*, 4> Visited; 3596 if (!Indices.empty() && !Ty->isSized(&Visited)) 3597 return Error(ID.Loc, "base element of getelementptr must be sized"); 3598 3599 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3600 return Error(ID.Loc, "invalid getelementptr indices"); 3601 3602 if (InRangeOp) { 3603 if (*InRangeOp == 0) 3604 return Error(ID.Loc, 3605 "inrange keyword may not appear on pointer operand"); 3606 --*InRangeOp; 3607 } 3608 3609 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3610 InBounds, InRangeOp); 3611 } else if (Opc == Instruction::Select) { 3612 if (Elts.size() != 3) 3613 return Error(ID.Loc, "expected three operands to select"); 3614 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3615 Elts[2])) 3616 return Error(ID.Loc, Reason); 3617 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3618 } else if (Opc == Instruction::ShuffleVector) { 3619 if (Elts.size() != 3) 3620 return Error(ID.Loc, "expected three operands to shufflevector"); 3621 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3622 return Error(ID.Loc, "invalid operands to shufflevector"); 3623 ID.ConstantVal = 3624 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 3625 } else if (Opc == Instruction::ExtractElement) { 3626 if (Elts.size() != 2) 3627 return Error(ID.Loc, "expected two operands to extractelement"); 3628 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3629 return Error(ID.Loc, "invalid extractelement operands"); 3630 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3631 } else { 3632 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3633 if (Elts.size() != 3) 3634 return Error(ID.Loc, "expected three operands to insertelement"); 3635 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3636 return Error(ID.Loc, "invalid insertelement operands"); 3637 ID.ConstantVal = 3638 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3639 } 3640 3641 ID.Kind = ValID::t_Constant; 3642 return false; 3643 } 3644 } 3645 3646 Lex.Lex(); 3647 return false; 3648 } 3649 3650 /// ParseGlobalValue - Parse a global value with the specified type. 3651 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 3652 C = nullptr; 3653 ValID ID; 3654 Value *V = nullptr; 3655 bool Parsed = ParseValID(ID) || 3656 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false); 3657 if (V && !(C = dyn_cast<Constant>(V))) 3658 return Error(ID.Loc, "global values must be constants"); 3659 return Parsed; 3660 } 3661 3662 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 3663 Type *Ty = nullptr; 3664 return ParseType(Ty) || 3665 ParseGlobalValue(Ty, V); 3666 } 3667 3668 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3669 C = nullptr; 3670 3671 LocTy KwLoc = Lex.getLoc(); 3672 if (!EatIfPresent(lltok::kw_comdat)) 3673 return false; 3674 3675 if (EatIfPresent(lltok::lparen)) { 3676 if (Lex.getKind() != lltok::ComdatVar) 3677 return TokError("expected comdat variable"); 3678 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3679 Lex.Lex(); 3680 if (ParseToken(lltok::rparen, "expected ')' after comdat var")) 3681 return true; 3682 } else { 3683 if (GlobalName.empty()) 3684 return TokError("comdat cannot be unnamed"); 3685 C = getComdat(GlobalName, KwLoc); 3686 } 3687 3688 return false; 3689 } 3690 3691 /// ParseGlobalValueVector 3692 /// ::= /*empty*/ 3693 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 3694 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 3695 Optional<unsigned> *InRangeOp) { 3696 // Empty list. 3697 if (Lex.getKind() == lltok::rbrace || 3698 Lex.getKind() == lltok::rsquare || 3699 Lex.getKind() == lltok::greater || 3700 Lex.getKind() == lltok::rparen) 3701 return false; 3702 3703 do { 3704 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 3705 *InRangeOp = Elts.size(); 3706 3707 Constant *C; 3708 if (ParseGlobalTypeAndValue(C)) return true; 3709 Elts.push_back(C); 3710 } while (EatIfPresent(lltok::comma)); 3711 3712 return false; 3713 } 3714 3715 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) { 3716 SmallVector<Metadata *, 16> Elts; 3717 if (ParseMDNodeVector(Elts)) 3718 return true; 3719 3720 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3721 return false; 3722 } 3723 3724 /// MDNode: 3725 /// ::= !{ ... } 3726 /// ::= !7 3727 /// ::= !DILocation(...) 3728 bool LLParser::ParseMDNode(MDNode *&N) { 3729 if (Lex.getKind() == lltok::MetadataVar) 3730 return ParseSpecializedMDNode(N); 3731 3732 return ParseToken(lltok::exclaim, "expected '!' here") || 3733 ParseMDNodeTail(N); 3734 } 3735 3736 bool LLParser::ParseMDNodeTail(MDNode *&N) { 3737 // !{ ... } 3738 if (Lex.getKind() == lltok::lbrace) 3739 return ParseMDTuple(N); 3740 3741 // !42 3742 return ParseMDNodeID(N); 3743 } 3744 3745 namespace { 3746 3747 /// Structure to represent an optional metadata field. 3748 template <class FieldTy> struct MDFieldImpl { 3749 typedef MDFieldImpl ImplTy; 3750 FieldTy Val; 3751 bool Seen; 3752 3753 void assign(FieldTy Val) { 3754 Seen = true; 3755 this->Val = std::move(Val); 3756 } 3757 3758 explicit MDFieldImpl(FieldTy Default) 3759 : Val(std::move(Default)), Seen(false) {} 3760 }; 3761 3762 /// Structure to represent an optional metadata field that 3763 /// can be of either type (A or B) and encapsulates the 3764 /// MD<typeofA>Field and MD<typeofB>Field structs, so not 3765 /// to reimplement the specifics for representing each Field. 3766 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl { 3767 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy; 3768 FieldTypeA A; 3769 FieldTypeB B; 3770 bool Seen; 3771 3772 enum { 3773 IsInvalid = 0, 3774 IsTypeA = 1, 3775 IsTypeB = 2 3776 } WhatIs; 3777 3778 void assign(FieldTypeA A) { 3779 Seen = true; 3780 this->A = std::move(A); 3781 WhatIs = IsTypeA; 3782 } 3783 3784 void assign(FieldTypeB B) { 3785 Seen = true; 3786 this->B = std::move(B); 3787 WhatIs = IsTypeB; 3788 } 3789 3790 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) 3791 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), 3792 WhatIs(IsInvalid) {} 3793 }; 3794 3795 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3796 uint64_t Max; 3797 3798 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3799 : ImplTy(Default), Max(Max) {} 3800 }; 3801 3802 struct LineField : public MDUnsignedField { 3803 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3804 }; 3805 3806 struct ColumnField : public MDUnsignedField { 3807 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3808 }; 3809 3810 struct DwarfTagField : public MDUnsignedField { 3811 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3812 DwarfTagField(dwarf::Tag DefaultTag) 3813 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3814 }; 3815 3816 struct DwarfMacinfoTypeField : public MDUnsignedField { 3817 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 3818 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 3819 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 3820 }; 3821 3822 struct DwarfAttEncodingField : public MDUnsignedField { 3823 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3824 }; 3825 3826 struct DwarfVirtualityField : public MDUnsignedField { 3827 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3828 }; 3829 3830 struct DwarfLangField : public MDUnsignedField { 3831 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3832 }; 3833 3834 struct DwarfCCField : public MDUnsignedField { 3835 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 3836 }; 3837 3838 struct EmissionKindField : public MDUnsignedField { 3839 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 3840 }; 3841 3842 struct NameTableKindField : public MDUnsignedField { 3843 NameTableKindField() 3844 : MDUnsignedField( 3845 0, (unsigned) 3846 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {} 3847 }; 3848 3849 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 3850 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 3851 }; 3852 3853 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> { 3854 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {} 3855 }; 3856 3857 struct MDSignedField : public MDFieldImpl<int64_t> { 3858 int64_t Min; 3859 int64_t Max; 3860 3861 MDSignedField(int64_t Default = 0) 3862 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3863 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3864 : ImplTy(Default), Min(Min), Max(Max) {} 3865 }; 3866 3867 struct MDBoolField : public MDFieldImpl<bool> { 3868 MDBoolField(bool Default = false) : ImplTy(Default) {} 3869 }; 3870 3871 struct MDField : public MDFieldImpl<Metadata *> { 3872 bool AllowNull; 3873 3874 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3875 }; 3876 3877 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 3878 MDConstant() : ImplTy(nullptr) {} 3879 }; 3880 3881 struct MDStringField : public MDFieldImpl<MDString *> { 3882 bool AllowEmpty; 3883 MDStringField(bool AllowEmpty = true) 3884 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3885 }; 3886 3887 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3888 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3889 }; 3890 3891 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 3892 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 3893 }; 3894 3895 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> { 3896 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) 3897 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} 3898 3899 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, 3900 bool AllowNull = true) 3901 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} 3902 3903 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3904 bool isMDField() const { return WhatIs == IsTypeB; } 3905 int64_t getMDSignedValue() const { 3906 assert(isMDSignedField() && "Wrong field type"); 3907 return A.Val; 3908 } 3909 Metadata *getMDFieldValue() const { 3910 assert(isMDField() && "Wrong field type"); 3911 return B.Val; 3912 } 3913 }; 3914 3915 struct MDSignedOrUnsignedField 3916 : MDEitherFieldImpl<MDSignedField, MDUnsignedField> { 3917 MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {} 3918 3919 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3920 bool isMDUnsignedField() const { return WhatIs == IsTypeB; } 3921 int64_t getMDSignedValue() const { 3922 assert(isMDSignedField() && "Wrong field type"); 3923 return A.Val; 3924 } 3925 uint64_t getMDUnsignedValue() const { 3926 assert(isMDUnsignedField() && "Wrong field type"); 3927 return B.Val; 3928 } 3929 }; 3930 3931 } // end anonymous namespace 3932 3933 namespace llvm { 3934 3935 template <> 3936 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3937 MDUnsignedField &Result) { 3938 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3939 return TokError("expected unsigned integer"); 3940 3941 auto &U = Lex.getAPSIntVal(); 3942 if (U.ugt(Result.Max)) 3943 return TokError("value for '" + Name + "' too large, limit is " + 3944 Twine(Result.Max)); 3945 Result.assign(U.getZExtValue()); 3946 assert(Result.Val <= Result.Max && "Expected value in range"); 3947 Lex.Lex(); 3948 return false; 3949 } 3950 3951 template <> 3952 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) { 3953 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3954 } 3955 template <> 3956 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 3957 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3958 } 3959 3960 template <> 3961 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 3962 if (Lex.getKind() == lltok::APSInt) 3963 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3964 3965 if (Lex.getKind() != lltok::DwarfTag) 3966 return TokError("expected DWARF tag"); 3967 3968 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 3969 if (Tag == dwarf::DW_TAG_invalid) 3970 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 3971 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 3972 3973 Result.assign(Tag); 3974 Lex.Lex(); 3975 return false; 3976 } 3977 3978 template <> 3979 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3980 DwarfMacinfoTypeField &Result) { 3981 if (Lex.getKind() == lltok::APSInt) 3982 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3983 3984 if (Lex.getKind() != lltok::DwarfMacinfo) 3985 return TokError("expected DWARF macinfo type"); 3986 3987 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 3988 if (Macinfo == dwarf::DW_MACINFO_invalid) 3989 return TokError( 3990 "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'"); 3991 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 3992 3993 Result.assign(Macinfo); 3994 Lex.Lex(); 3995 return false; 3996 } 3997 3998 template <> 3999 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4000 DwarfVirtualityField &Result) { 4001 if (Lex.getKind() == lltok::APSInt) 4002 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4003 4004 if (Lex.getKind() != lltok::DwarfVirtuality) 4005 return TokError("expected DWARF virtuality code"); 4006 4007 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 4008 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 4009 return TokError("invalid DWARF virtuality code" + Twine(" '") + 4010 Lex.getStrVal() + "'"); 4011 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 4012 Result.assign(Virtuality); 4013 Lex.Lex(); 4014 return false; 4015 } 4016 4017 template <> 4018 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 4019 if (Lex.getKind() == lltok::APSInt) 4020 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4021 4022 if (Lex.getKind() != lltok::DwarfLang) 4023 return TokError("expected DWARF language"); 4024 4025 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 4026 if (!Lang) 4027 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 4028 "'"); 4029 assert(Lang <= Result.Max && "Expected valid DWARF language"); 4030 Result.assign(Lang); 4031 Lex.Lex(); 4032 return false; 4033 } 4034 4035 template <> 4036 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 4037 if (Lex.getKind() == lltok::APSInt) 4038 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4039 4040 if (Lex.getKind() != lltok::DwarfCC) 4041 return TokError("expected DWARF calling convention"); 4042 4043 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 4044 if (!CC) 4045 return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() + 4046 "'"); 4047 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 4048 Result.assign(CC); 4049 Lex.Lex(); 4050 return false; 4051 } 4052 4053 template <> 4054 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) { 4055 if (Lex.getKind() == lltok::APSInt) 4056 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4057 4058 if (Lex.getKind() != lltok::EmissionKind) 4059 return TokError("expected emission kind"); 4060 4061 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 4062 if (!Kind) 4063 return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 4064 "'"); 4065 assert(*Kind <= Result.Max && "Expected valid emission kind"); 4066 Result.assign(*Kind); 4067 Lex.Lex(); 4068 return false; 4069 } 4070 4071 template <> 4072 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4073 NameTableKindField &Result) { 4074 if (Lex.getKind() == lltok::APSInt) 4075 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4076 4077 if (Lex.getKind() != lltok::NameTableKind) 4078 return TokError("expected nameTable kind"); 4079 4080 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal()); 4081 if (!Kind) 4082 return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() + 4083 "'"); 4084 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind"); 4085 Result.assign((unsigned)*Kind); 4086 Lex.Lex(); 4087 return false; 4088 } 4089 4090 template <> 4091 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4092 DwarfAttEncodingField &Result) { 4093 if (Lex.getKind() == lltok::APSInt) 4094 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4095 4096 if (Lex.getKind() != lltok::DwarfAttEncoding) 4097 return TokError("expected DWARF type attribute encoding"); 4098 4099 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 4100 if (!Encoding) 4101 return TokError("invalid DWARF type attribute encoding" + Twine(" '") + 4102 Lex.getStrVal() + "'"); 4103 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 4104 Result.assign(Encoding); 4105 Lex.Lex(); 4106 return false; 4107 } 4108 4109 /// DIFlagField 4110 /// ::= uint32 4111 /// ::= DIFlagVector 4112 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 4113 template <> 4114 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 4115 4116 // Parser for a single flag. 4117 auto parseFlag = [&](DINode::DIFlags &Val) { 4118 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4119 uint32_t TempVal = static_cast<uint32_t>(Val); 4120 bool Res = ParseUInt32(TempVal); 4121 Val = static_cast<DINode::DIFlags>(TempVal); 4122 return Res; 4123 } 4124 4125 if (Lex.getKind() != lltok::DIFlag) 4126 return TokError("expected debug info flag"); 4127 4128 Val = DINode::getFlag(Lex.getStrVal()); 4129 if (!Val) 4130 return TokError(Twine("invalid debug info flag flag '") + 4131 Lex.getStrVal() + "'"); 4132 Lex.Lex(); 4133 return false; 4134 }; 4135 4136 // Parse the flags and combine them together. 4137 DINode::DIFlags Combined = DINode::FlagZero; 4138 do { 4139 DINode::DIFlags Val; 4140 if (parseFlag(Val)) 4141 return true; 4142 Combined |= Val; 4143 } while (EatIfPresent(lltok::bar)); 4144 4145 Result.assign(Combined); 4146 return false; 4147 } 4148 4149 /// DISPFlagField 4150 /// ::= uint32 4151 /// ::= DISPFlagVector 4152 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32 4153 template <> 4154 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) { 4155 4156 // Parser for a single flag. 4157 auto parseFlag = [&](DISubprogram::DISPFlags &Val) { 4158 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4159 uint32_t TempVal = static_cast<uint32_t>(Val); 4160 bool Res = ParseUInt32(TempVal); 4161 Val = static_cast<DISubprogram::DISPFlags>(TempVal); 4162 return Res; 4163 } 4164 4165 if (Lex.getKind() != lltok::DISPFlag) 4166 return TokError("expected debug info flag"); 4167 4168 Val = DISubprogram::getFlag(Lex.getStrVal()); 4169 if (!Val) 4170 return TokError(Twine("invalid subprogram debug info flag '") + 4171 Lex.getStrVal() + "'"); 4172 Lex.Lex(); 4173 return false; 4174 }; 4175 4176 // Parse the flags and combine them together. 4177 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero; 4178 do { 4179 DISubprogram::DISPFlags Val; 4180 if (parseFlag(Val)) 4181 return true; 4182 Combined |= Val; 4183 } while (EatIfPresent(lltok::bar)); 4184 4185 Result.assign(Combined); 4186 return false; 4187 } 4188 4189 template <> 4190 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4191 MDSignedField &Result) { 4192 if (Lex.getKind() != lltok::APSInt) 4193 return TokError("expected signed integer"); 4194 4195 auto &S = Lex.getAPSIntVal(); 4196 if (S < Result.Min) 4197 return TokError("value for '" + Name + "' too small, limit is " + 4198 Twine(Result.Min)); 4199 if (S > Result.Max) 4200 return TokError("value for '" + Name + "' too large, limit is " + 4201 Twine(Result.Max)); 4202 Result.assign(S.getExtValue()); 4203 assert(Result.Val >= Result.Min && "Expected value in range"); 4204 assert(Result.Val <= Result.Max && "Expected value in range"); 4205 Lex.Lex(); 4206 return false; 4207 } 4208 4209 template <> 4210 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 4211 switch (Lex.getKind()) { 4212 default: 4213 return TokError("expected 'true' or 'false'"); 4214 case lltok::kw_true: 4215 Result.assign(true); 4216 break; 4217 case lltok::kw_false: 4218 Result.assign(false); 4219 break; 4220 } 4221 Lex.Lex(); 4222 return false; 4223 } 4224 4225 template <> 4226 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) { 4227 if (Lex.getKind() == lltok::kw_null) { 4228 if (!Result.AllowNull) 4229 return TokError("'" + Name + "' cannot be null"); 4230 Lex.Lex(); 4231 Result.assign(nullptr); 4232 return false; 4233 } 4234 4235 Metadata *MD; 4236 if (ParseMetadata(MD, nullptr)) 4237 return true; 4238 4239 Result.assign(MD); 4240 return false; 4241 } 4242 4243 template <> 4244 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4245 MDSignedOrMDField &Result) { 4246 // Try to parse a signed int. 4247 if (Lex.getKind() == lltok::APSInt) { 4248 MDSignedField Res = Result.A; 4249 if (!ParseMDField(Loc, Name, Res)) { 4250 Result.assign(Res); 4251 return false; 4252 } 4253 return true; 4254 } 4255 4256 // Otherwise, try to parse as an MDField. 4257 MDField Res = Result.B; 4258 if (!ParseMDField(Loc, Name, Res)) { 4259 Result.assign(Res); 4260 return false; 4261 } 4262 4263 return true; 4264 } 4265 4266 template <> 4267 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4268 MDSignedOrUnsignedField &Result) { 4269 if (Lex.getKind() != lltok::APSInt) 4270 return false; 4271 4272 if (Lex.getAPSIntVal().isSigned()) { 4273 MDSignedField Res = Result.A; 4274 if (ParseMDField(Loc, Name, Res)) 4275 return true; 4276 Result.assign(Res); 4277 return false; 4278 } 4279 4280 MDUnsignedField Res = Result.B; 4281 if (ParseMDField(Loc, Name, Res)) 4282 return true; 4283 Result.assign(Res); 4284 return false; 4285 } 4286 4287 template <> 4288 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 4289 LocTy ValueLoc = Lex.getLoc(); 4290 std::string S; 4291 if (ParseStringConstant(S)) 4292 return true; 4293 4294 if (!Result.AllowEmpty && S.empty()) 4295 return Error(ValueLoc, "'" + Name + "' cannot be empty"); 4296 4297 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 4298 return false; 4299 } 4300 4301 template <> 4302 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 4303 SmallVector<Metadata *, 4> MDs; 4304 if (ParseMDNodeVector(MDs)) 4305 return true; 4306 4307 Result.assign(std::move(MDs)); 4308 return false; 4309 } 4310 4311 template <> 4312 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4313 ChecksumKindField &Result) { 4314 Optional<DIFile::ChecksumKind> CSKind = 4315 DIFile::getChecksumKind(Lex.getStrVal()); 4316 4317 if (Lex.getKind() != lltok::ChecksumKind || !CSKind) 4318 return TokError( 4319 "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'"); 4320 4321 Result.assign(*CSKind); 4322 Lex.Lex(); 4323 return false; 4324 } 4325 4326 } // end namespace llvm 4327 4328 template <class ParserTy> 4329 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) { 4330 do { 4331 if (Lex.getKind() != lltok::LabelStr) 4332 return TokError("expected field label here"); 4333 4334 if (parseField()) 4335 return true; 4336 } while (EatIfPresent(lltok::comma)); 4337 4338 return false; 4339 } 4340 4341 template <class ParserTy> 4342 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) { 4343 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4344 Lex.Lex(); 4345 4346 if (ParseToken(lltok::lparen, "expected '(' here")) 4347 return true; 4348 if (Lex.getKind() != lltok::rparen) 4349 if (ParseMDFieldsImplBody(parseField)) 4350 return true; 4351 4352 ClosingLoc = Lex.getLoc(); 4353 return ParseToken(lltok::rparen, "expected ')' here"); 4354 } 4355 4356 template <class FieldTy> 4357 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) { 4358 if (Result.Seen) 4359 return TokError("field '" + Name + "' cannot be specified more than once"); 4360 4361 LocTy Loc = Lex.getLoc(); 4362 Lex.Lex(); 4363 return ParseMDField(Loc, Name, Result); 4364 } 4365 4366 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 4367 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4368 4369 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 4370 if (Lex.getStrVal() == #CLASS) \ 4371 return Parse##CLASS(N, IsDistinct); 4372 #include "llvm/IR/Metadata.def" 4373 4374 return TokError("expected metadata type"); 4375 } 4376 4377 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 4378 #define NOP_FIELD(NAME, TYPE, INIT) 4379 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 4380 if (!NAME.Seen) \ 4381 return Error(ClosingLoc, "missing required field '" #NAME "'"); 4382 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 4383 if (Lex.getStrVal() == #NAME) \ 4384 return ParseMDField(#NAME, NAME); 4385 #define PARSE_MD_FIELDS() \ 4386 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 4387 do { \ 4388 LocTy ClosingLoc; \ 4389 if (ParseMDFieldsImpl([&]() -> bool { \ 4390 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 4391 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \ 4392 }, ClosingLoc)) \ 4393 return true; \ 4394 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 4395 } while (false) 4396 #define GET_OR_DISTINCT(CLASS, ARGS) \ 4397 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 4398 4399 /// ParseDILocationFields: 4400 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6, 4401 /// isImplicitCode: true) 4402 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) { 4403 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4404 OPTIONAL(line, LineField, ); \ 4405 OPTIONAL(column, ColumnField, ); \ 4406 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4407 OPTIONAL(inlinedAt, MDField, ); \ 4408 OPTIONAL(isImplicitCode, MDBoolField, (false)); 4409 PARSE_MD_FIELDS(); 4410 #undef VISIT_MD_FIELDS 4411 4412 Result = 4413 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val, 4414 inlinedAt.Val, isImplicitCode.Val)); 4415 return false; 4416 } 4417 4418 /// ParseGenericDINode: 4419 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 4420 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) { 4421 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4422 REQUIRED(tag, DwarfTagField, ); \ 4423 OPTIONAL(header, MDStringField, ); \ 4424 OPTIONAL(operands, MDFieldList, ); 4425 PARSE_MD_FIELDS(); 4426 #undef VISIT_MD_FIELDS 4427 4428 Result = GET_OR_DISTINCT(GenericDINode, 4429 (Context, tag.Val, header.Val, operands.Val)); 4430 return false; 4431 } 4432 4433 /// ParseDISubrange: 4434 /// ::= !DISubrange(count: 30, lowerBound: 2) 4435 /// ::= !DISubrange(count: !node, lowerBound: 2) 4436 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) { 4437 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4438 REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ 4439 OPTIONAL(lowerBound, MDSignedField, ); 4440 PARSE_MD_FIELDS(); 4441 #undef VISIT_MD_FIELDS 4442 4443 if (count.isMDSignedField()) 4444 Result = GET_OR_DISTINCT( 4445 DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val)); 4446 else if (count.isMDField()) 4447 Result = GET_OR_DISTINCT( 4448 DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val)); 4449 else 4450 return true; 4451 4452 return false; 4453 } 4454 4455 /// ParseDIEnumerator: 4456 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind") 4457 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) { 4458 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4459 REQUIRED(name, MDStringField, ); \ 4460 REQUIRED(value, MDSignedOrUnsignedField, ); \ 4461 OPTIONAL(isUnsigned, MDBoolField, (false)); 4462 PARSE_MD_FIELDS(); 4463 #undef VISIT_MD_FIELDS 4464 4465 if (isUnsigned.Val && value.isMDSignedField()) 4466 return TokError("unsigned enumerator with negative value"); 4467 4468 int64_t Value = value.isMDSignedField() 4469 ? value.getMDSignedValue() 4470 : static_cast<int64_t>(value.getMDUnsignedValue()); 4471 Result = 4472 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val)); 4473 4474 return false; 4475 } 4476 4477 /// ParseDIBasicType: 4478 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32, 4479 /// encoding: DW_ATE_encoding, flags: 0) 4480 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) { 4481 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4482 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 4483 OPTIONAL(name, MDStringField, ); \ 4484 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4485 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4486 OPTIONAL(encoding, DwarfAttEncodingField, ); \ 4487 OPTIONAL(flags, DIFlagField, ); 4488 PARSE_MD_FIELDS(); 4489 #undef VISIT_MD_FIELDS 4490 4491 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 4492 align.Val, encoding.Val, flags.Val)); 4493 return false; 4494 } 4495 4496 /// ParseDIDerivedType: 4497 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 4498 /// line: 7, scope: !1, baseType: !2, size: 32, 4499 /// align: 32, offset: 0, flags: 0, extraData: !3, 4500 /// dwarfAddressSpace: 3) 4501 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) { 4502 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4503 REQUIRED(tag, DwarfTagField, ); \ 4504 OPTIONAL(name, MDStringField, ); \ 4505 OPTIONAL(file, MDField, ); \ 4506 OPTIONAL(line, LineField, ); \ 4507 OPTIONAL(scope, MDField, ); \ 4508 REQUIRED(baseType, MDField, ); \ 4509 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4510 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4511 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4512 OPTIONAL(flags, DIFlagField, ); \ 4513 OPTIONAL(extraData, MDField, ); \ 4514 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); 4515 PARSE_MD_FIELDS(); 4516 #undef VISIT_MD_FIELDS 4517 4518 Optional<unsigned> DWARFAddressSpace; 4519 if (dwarfAddressSpace.Val != UINT32_MAX) 4520 DWARFAddressSpace = dwarfAddressSpace.Val; 4521 4522 Result = GET_OR_DISTINCT(DIDerivedType, 4523 (Context, tag.Val, name.Val, file.Val, line.Val, 4524 scope.Val, baseType.Val, size.Val, align.Val, 4525 offset.Val, DWARFAddressSpace, flags.Val, 4526 extraData.Val)); 4527 return false; 4528 } 4529 4530 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) { 4531 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4532 REQUIRED(tag, DwarfTagField, ); \ 4533 OPTIONAL(name, MDStringField, ); \ 4534 OPTIONAL(file, MDField, ); \ 4535 OPTIONAL(line, LineField, ); \ 4536 OPTIONAL(scope, MDField, ); \ 4537 OPTIONAL(baseType, MDField, ); \ 4538 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4539 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4540 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4541 OPTIONAL(flags, DIFlagField, ); \ 4542 OPTIONAL(elements, MDField, ); \ 4543 OPTIONAL(runtimeLang, DwarfLangField, ); \ 4544 OPTIONAL(vtableHolder, MDField, ); \ 4545 OPTIONAL(templateParams, MDField, ); \ 4546 OPTIONAL(identifier, MDStringField, ); \ 4547 OPTIONAL(discriminator, MDField, ); 4548 PARSE_MD_FIELDS(); 4549 #undef VISIT_MD_FIELDS 4550 4551 // If this has an identifier try to build an ODR type. 4552 if (identifier.Val) 4553 if (auto *CT = DICompositeType::buildODRType( 4554 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 4555 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 4556 elements.Val, runtimeLang.Val, vtableHolder.Val, 4557 templateParams.Val, discriminator.Val)) { 4558 Result = CT; 4559 return false; 4560 } 4561 4562 // Create a new node, and save it in the context if it belongs in the type 4563 // map. 4564 Result = GET_OR_DISTINCT( 4565 DICompositeType, 4566 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 4567 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 4568 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val, 4569 discriminator.Val)); 4570 return false; 4571 } 4572 4573 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) { 4574 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4575 OPTIONAL(flags, DIFlagField, ); \ 4576 OPTIONAL(cc, DwarfCCField, ); \ 4577 REQUIRED(types, MDField, ); 4578 PARSE_MD_FIELDS(); 4579 #undef VISIT_MD_FIELDS 4580 4581 Result = GET_OR_DISTINCT(DISubroutineType, 4582 (Context, flags.Val, cc.Val, types.Val)); 4583 return false; 4584 } 4585 4586 /// ParseDIFileType: 4587 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir", 4588 /// checksumkind: CSK_MD5, 4589 /// checksum: "000102030405060708090a0b0c0d0e0f", 4590 /// source: "source file contents") 4591 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) { 4592 // The default constructed value for checksumkind is required, but will never 4593 // be used, as the parser checks if the field was actually Seen before using 4594 // the Val. 4595 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4596 REQUIRED(filename, MDStringField, ); \ 4597 REQUIRED(directory, MDStringField, ); \ 4598 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \ 4599 OPTIONAL(checksum, MDStringField, ); \ 4600 OPTIONAL(source, MDStringField, ); 4601 PARSE_MD_FIELDS(); 4602 #undef VISIT_MD_FIELDS 4603 4604 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum; 4605 if (checksumkind.Seen && checksum.Seen) 4606 OptChecksum.emplace(checksumkind.Val, checksum.Val); 4607 else if (checksumkind.Seen || checksum.Seen) 4608 return Lex.Error("'checksumkind' and 'checksum' must be provided together"); 4609 4610 Optional<MDString *> OptSource; 4611 if (source.Seen) 4612 OptSource = source.Val; 4613 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val, 4614 OptChecksum, OptSource)); 4615 return false; 4616 } 4617 4618 /// ParseDICompileUnit: 4619 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 4620 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 4621 /// splitDebugFilename: "abc.debug", 4622 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 4623 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd) 4624 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) { 4625 if (!IsDistinct) 4626 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 4627 4628 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4629 REQUIRED(language, DwarfLangField, ); \ 4630 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 4631 OPTIONAL(producer, MDStringField, ); \ 4632 OPTIONAL(isOptimized, MDBoolField, ); \ 4633 OPTIONAL(flags, MDStringField, ); \ 4634 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 4635 OPTIONAL(splitDebugFilename, MDStringField, ); \ 4636 OPTIONAL(emissionKind, EmissionKindField, ); \ 4637 OPTIONAL(enums, MDField, ); \ 4638 OPTIONAL(retainedTypes, MDField, ); \ 4639 OPTIONAL(globals, MDField, ); \ 4640 OPTIONAL(imports, MDField, ); \ 4641 OPTIONAL(macros, MDField, ); \ 4642 OPTIONAL(dwoId, MDUnsignedField, ); \ 4643 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 4644 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 4645 OPTIONAL(nameTableKind, NameTableKindField, ); \ 4646 OPTIONAL(debugBaseAddress, MDBoolField, = false); 4647 PARSE_MD_FIELDS(); 4648 #undef VISIT_MD_FIELDS 4649 4650 Result = DICompileUnit::getDistinct( 4651 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 4652 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 4653 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 4654 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val, 4655 debugBaseAddress.Val); 4656 return false; 4657 } 4658 4659 /// ParseDISubprogram: 4660 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 4661 /// file: !1, line: 7, type: !2, isLocal: false, 4662 /// isDefinition: true, scopeLine: 8, containingType: !3, 4663 /// virtuality: DW_VIRTUALTIY_pure_virtual, 4664 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 4665 /// spFlags: 10, isOptimized: false, templateParams: !4, 4666 /// declaration: !5, retainedNodes: !6, thrownTypes: !7) 4667 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) { 4668 auto Loc = Lex.getLoc(); 4669 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4670 OPTIONAL(scope, MDField, ); \ 4671 OPTIONAL(name, MDStringField, ); \ 4672 OPTIONAL(linkageName, MDStringField, ); \ 4673 OPTIONAL(file, MDField, ); \ 4674 OPTIONAL(line, LineField, ); \ 4675 OPTIONAL(type, MDField, ); \ 4676 OPTIONAL(isLocal, MDBoolField, ); \ 4677 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4678 OPTIONAL(scopeLine, LineField, ); \ 4679 OPTIONAL(containingType, MDField, ); \ 4680 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 4681 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 4682 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 4683 OPTIONAL(flags, DIFlagField, ); \ 4684 OPTIONAL(spFlags, DISPFlagField, ); \ 4685 OPTIONAL(isOptimized, MDBoolField, ); \ 4686 OPTIONAL(unit, MDField, ); \ 4687 OPTIONAL(templateParams, MDField, ); \ 4688 OPTIONAL(declaration, MDField, ); \ 4689 OPTIONAL(retainedNodes, MDField, ); \ 4690 OPTIONAL(thrownTypes, MDField, ); 4691 PARSE_MD_FIELDS(); 4692 #undef VISIT_MD_FIELDS 4693 4694 // An explicit spFlags field takes precedence over individual fields in 4695 // older IR versions. 4696 DISubprogram::DISPFlags SPFlags = 4697 spFlags.Seen ? spFlags.Val 4698 : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val, 4699 isOptimized.Val, virtuality.Val); 4700 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct) 4701 return Lex.Error( 4702 Loc, 4703 "missing 'distinct', required for !DISubprogram that is a Definition"); 4704 Result = GET_OR_DISTINCT( 4705 DISubprogram, 4706 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 4707 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val, 4708 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val, 4709 declaration.Val, retainedNodes.Val, thrownTypes.Val)); 4710 return false; 4711 } 4712 4713 /// ParseDILexicalBlock: 4714 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 4715 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 4716 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4717 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4718 OPTIONAL(file, MDField, ); \ 4719 OPTIONAL(line, LineField, ); \ 4720 OPTIONAL(column, ColumnField, ); 4721 PARSE_MD_FIELDS(); 4722 #undef VISIT_MD_FIELDS 4723 4724 Result = GET_OR_DISTINCT( 4725 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 4726 return false; 4727 } 4728 4729 /// ParseDILexicalBlockFile: 4730 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 4731 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 4732 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4733 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4734 OPTIONAL(file, MDField, ); \ 4735 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 4736 PARSE_MD_FIELDS(); 4737 #undef VISIT_MD_FIELDS 4738 4739 Result = GET_OR_DISTINCT(DILexicalBlockFile, 4740 (Context, scope.Val, file.Val, discriminator.Val)); 4741 return false; 4742 } 4743 4744 /// ParseDICommonBlock: 4745 /// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9) 4746 bool LLParser::ParseDICommonBlock(MDNode *&Result, bool IsDistinct) { 4747 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4748 REQUIRED(scope, MDField, ); \ 4749 OPTIONAL(declaration, MDField, ); \ 4750 OPTIONAL(name, MDStringField, ); \ 4751 OPTIONAL(file, MDField, ); \ 4752 OPTIONAL(line, LineField, ); 4753 PARSE_MD_FIELDS(); 4754 #undef VISIT_MD_FIELDS 4755 4756 Result = GET_OR_DISTINCT(DICommonBlock, 4757 (Context, scope.Val, declaration.Val, name.Val, 4758 file.Val, line.Val)); 4759 return false; 4760 } 4761 4762 /// ParseDINamespace: 4763 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 4764 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) { 4765 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4766 REQUIRED(scope, MDField, ); \ 4767 OPTIONAL(name, MDStringField, ); \ 4768 OPTIONAL(exportSymbols, MDBoolField, ); 4769 PARSE_MD_FIELDS(); 4770 #undef VISIT_MD_FIELDS 4771 4772 Result = GET_OR_DISTINCT(DINamespace, 4773 (Context, scope.Val, name.Val, exportSymbols.Val)); 4774 return false; 4775 } 4776 4777 /// ParseDIMacro: 4778 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue") 4779 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) { 4780 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4781 REQUIRED(type, DwarfMacinfoTypeField, ); \ 4782 OPTIONAL(line, LineField, ); \ 4783 REQUIRED(name, MDStringField, ); \ 4784 OPTIONAL(value, MDStringField, ); 4785 PARSE_MD_FIELDS(); 4786 #undef VISIT_MD_FIELDS 4787 4788 Result = GET_OR_DISTINCT(DIMacro, 4789 (Context, type.Val, line.Val, name.Val, value.Val)); 4790 return false; 4791 } 4792 4793 /// ParseDIMacroFile: 4794 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 4795 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) { 4796 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4797 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 4798 OPTIONAL(line, LineField, ); \ 4799 REQUIRED(file, MDField, ); \ 4800 OPTIONAL(nodes, MDField, ); 4801 PARSE_MD_FIELDS(); 4802 #undef VISIT_MD_FIELDS 4803 4804 Result = GET_OR_DISTINCT(DIMacroFile, 4805 (Context, type.Val, line.Val, file.Val, nodes.Val)); 4806 return false; 4807 } 4808 4809 /// ParseDIModule: 4810 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG", 4811 /// includePath: "/usr/include", isysroot: "/") 4812 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) { 4813 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4814 REQUIRED(scope, MDField, ); \ 4815 REQUIRED(name, MDStringField, ); \ 4816 OPTIONAL(configMacros, MDStringField, ); \ 4817 OPTIONAL(includePath, MDStringField, ); \ 4818 OPTIONAL(isysroot, MDStringField, ); 4819 PARSE_MD_FIELDS(); 4820 #undef VISIT_MD_FIELDS 4821 4822 Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val, 4823 configMacros.Val, includePath.Val, isysroot.Val)); 4824 return false; 4825 } 4826 4827 /// ParseDITemplateTypeParameter: 4828 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1) 4829 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 4830 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4831 OPTIONAL(name, MDStringField, ); \ 4832 REQUIRED(type, MDField, ); 4833 PARSE_MD_FIELDS(); 4834 #undef VISIT_MD_FIELDS 4835 4836 Result = 4837 GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val)); 4838 return false; 4839 } 4840 4841 /// ParseDITemplateValueParameter: 4842 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 4843 /// name: "V", type: !1, value: i32 7) 4844 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 4845 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4846 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 4847 OPTIONAL(name, MDStringField, ); \ 4848 OPTIONAL(type, MDField, ); \ 4849 REQUIRED(value, MDField, ); 4850 PARSE_MD_FIELDS(); 4851 #undef VISIT_MD_FIELDS 4852 4853 Result = GET_OR_DISTINCT(DITemplateValueParameter, 4854 (Context, tag.Val, name.Val, type.Val, value.Val)); 4855 return false; 4856 } 4857 4858 /// ParseDIGlobalVariable: 4859 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 4860 /// file: !1, line: 7, type: !2, isLocal: false, 4861 /// isDefinition: true, templateParams: !3, 4862 /// declaration: !4, align: 8) 4863 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 4864 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4865 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 4866 OPTIONAL(scope, MDField, ); \ 4867 OPTIONAL(linkageName, MDStringField, ); \ 4868 OPTIONAL(file, MDField, ); \ 4869 OPTIONAL(line, LineField, ); \ 4870 OPTIONAL(type, MDField, ); \ 4871 OPTIONAL(isLocal, MDBoolField, ); \ 4872 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4873 OPTIONAL(templateParams, MDField, ); \ 4874 OPTIONAL(declaration, MDField, ); \ 4875 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4876 PARSE_MD_FIELDS(); 4877 #undef VISIT_MD_FIELDS 4878 4879 Result = 4880 GET_OR_DISTINCT(DIGlobalVariable, 4881 (Context, scope.Val, name.Val, linkageName.Val, file.Val, 4882 line.Val, type.Val, isLocal.Val, isDefinition.Val, 4883 declaration.Val, templateParams.Val, align.Val)); 4884 return false; 4885 } 4886 4887 /// ParseDILocalVariable: 4888 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 4889 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4890 /// align: 8) 4891 /// ::= !DILocalVariable(scope: !0, name: "foo", 4892 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4893 /// align: 8) 4894 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) { 4895 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4896 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4897 OPTIONAL(name, MDStringField, ); \ 4898 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 4899 OPTIONAL(file, MDField, ); \ 4900 OPTIONAL(line, LineField, ); \ 4901 OPTIONAL(type, MDField, ); \ 4902 OPTIONAL(flags, DIFlagField, ); \ 4903 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4904 PARSE_MD_FIELDS(); 4905 #undef VISIT_MD_FIELDS 4906 4907 Result = GET_OR_DISTINCT(DILocalVariable, 4908 (Context, scope.Val, name.Val, file.Val, line.Val, 4909 type.Val, arg.Val, flags.Val, align.Val)); 4910 return false; 4911 } 4912 4913 /// ParseDILabel: 4914 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7) 4915 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) { 4916 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4917 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4918 REQUIRED(name, MDStringField, ); \ 4919 REQUIRED(file, MDField, ); \ 4920 REQUIRED(line, LineField, ); 4921 PARSE_MD_FIELDS(); 4922 #undef VISIT_MD_FIELDS 4923 4924 Result = GET_OR_DISTINCT(DILabel, 4925 (Context, scope.Val, name.Val, file.Val, line.Val)); 4926 return false; 4927 } 4928 4929 /// ParseDIExpression: 4930 /// ::= !DIExpression(0, 7, -1) 4931 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) { 4932 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4933 Lex.Lex(); 4934 4935 if (ParseToken(lltok::lparen, "expected '(' here")) 4936 return true; 4937 4938 SmallVector<uint64_t, 8> Elements; 4939 if (Lex.getKind() != lltok::rparen) 4940 do { 4941 if (Lex.getKind() == lltok::DwarfOp) { 4942 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 4943 Lex.Lex(); 4944 Elements.push_back(Op); 4945 continue; 4946 } 4947 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 4948 } 4949 4950 if (Lex.getKind() == lltok::DwarfAttEncoding) { 4951 if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) { 4952 Lex.Lex(); 4953 Elements.push_back(Op); 4954 continue; 4955 } 4956 return TokError(Twine("invalid DWARF attribute encoding '") + Lex.getStrVal() + "'"); 4957 } 4958 4959 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4960 return TokError("expected unsigned integer"); 4961 4962 auto &U = Lex.getAPSIntVal(); 4963 if (U.ugt(UINT64_MAX)) 4964 return TokError("element too large, limit is " + Twine(UINT64_MAX)); 4965 Elements.push_back(U.getZExtValue()); 4966 Lex.Lex(); 4967 } while (EatIfPresent(lltok::comma)); 4968 4969 if (ParseToken(lltok::rparen, "expected ')' here")) 4970 return true; 4971 4972 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 4973 return false; 4974 } 4975 4976 /// ParseDIGlobalVariableExpression: 4977 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 4978 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result, 4979 bool IsDistinct) { 4980 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4981 REQUIRED(var, MDField, ); \ 4982 REQUIRED(expr, MDField, ); 4983 PARSE_MD_FIELDS(); 4984 #undef VISIT_MD_FIELDS 4985 4986 Result = 4987 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 4988 return false; 4989 } 4990 4991 /// ParseDIObjCProperty: 4992 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 4993 /// getter: "getFoo", attributes: 7, type: !2) 4994 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 4995 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4996 OPTIONAL(name, MDStringField, ); \ 4997 OPTIONAL(file, MDField, ); \ 4998 OPTIONAL(line, LineField, ); \ 4999 OPTIONAL(setter, MDStringField, ); \ 5000 OPTIONAL(getter, MDStringField, ); \ 5001 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 5002 OPTIONAL(type, MDField, ); 5003 PARSE_MD_FIELDS(); 5004 #undef VISIT_MD_FIELDS 5005 5006 Result = GET_OR_DISTINCT(DIObjCProperty, 5007 (Context, name.Val, file.Val, line.Val, setter.Val, 5008 getter.Val, attributes.Val, type.Val)); 5009 return false; 5010 } 5011 5012 /// ParseDIImportedEntity: 5013 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 5014 /// line: 7, name: "foo") 5015 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 5016 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5017 REQUIRED(tag, DwarfTagField, ); \ 5018 REQUIRED(scope, MDField, ); \ 5019 OPTIONAL(entity, MDField, ); \ 5020 OPTIONAL(file, MDField, ); \ 5021 OPTIONAL(line, LineField, ); \ 5022 OPTIONAL(name, MDStringField, ); 5023 PARSE_MD_FIELDS(); 5024 #undef VISIT_MD_FIELDS 5025 5026 Result = GET_OR_DISTINCT( 5027 DIImportedEntity, 5028 (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val)); 5029 return false; 5030 } 5031 5032 #undef PARSE_MD_FIELD 5033 #undef NOP_FIELD 5034 #undef REQUIRE_FIELD 5035 #undef DECLARE_FIELD 5036 5037 /// ParseMetadataAsValue 5038 /// ::= metadata i32 %local 5039 /// ::= metadata i32 @global 5040 /// ::= metadata i32 7 5041 /// ::= metadata !0 5042 /// ::= metadata !{...} 5043 /// ::= metadata !"string" 5044 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 5045 // Note: the type 'metadata' has already been parsed. 5046 Metadata *MD; 5047 if (ParseMetadata(MD, &PFS)) 5048 return true; 5049 5050 V = MetadataAsValue::get(Context, MD); 5051 return false; 5052 } 5053 5054 /// ParseValueAsMetadata 5055 /// ::= i32 %local 5056 /// ::= i32 @global 5057 /// ::= i32 7 5058 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 5059 PerFunctionState *PFS) { 5060 Type *Ty; 5061 LocTy Loc; 5062 if (ParseType(Ty, TypeMsg, Loc)) 5063 return true; 5064 if (Ty->isMetadataTy()) 5065 return Error(Loc, "invalid metadata-value-metadata roundtrip"); 5066 5067 Value *V; 5068 if (ParseValue(Ty, V, PFS)) 5069 return true; 5070 5071 MD = ValueAsMetadata::get(V); 5072 return false; 5073 } 5074 5075 /// ParseMetadata 5076 /// ::= i32 %local 5077 /// ::= i32 @global 5078 /// ::= i32 7 5079 /// ::= !42 5080 /// ::= !{...} 5081 /// ::= !"string" 5082 /// ::= !DILocation(...) 5083 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) { 5084 if (Lex.getKind() == lltok::MetadataVar) { 5085 MDNode *N; 5086 if (ParseSpecializedMDNode(N)) 5087 return true; 5088 MD = N; 5089 return false; 5090 } 5091 5092 // ValueAsMetadata: 5093 // <type> <value> 5094 if (Lex.getKind() != lltok::exclaim) 5095 return ParseValueAsMetadata(MD, "expected metadata operand", PFS); 5096 5097 // '!'. 5098 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 5099 Lex.Lex(); 5100 5101 // MDString: 5102 // ::= '!' STRINGCONSTANT 5103 if (Lex.getKind() == lltok::StringConstant) { 5104 MDString *S; 5105 if (ParseMDString(S)) 5106 return true; 5107 MD = S; 5108 return false; 5109 } 5110 5111 // MDNode: 5112 // !{ ... } 5113 // !7 5114 MDNode *N; 5115 if (ParseMDNodeTail(N)) 5116 return true; 5117 MD = N; 5118 return false; 5119 } 5120 5121 //===----------------------------------------------------------------------===// 5122 // Function Parsing. 5123 //===----------------------------------------------------------------------===// 5124 5125 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 5126 PerFunctionState *PFS, bool IsCall) { 5127 if (Ty->isFunctionTy()) 5128 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 5129 5130 switch (ID.Kind) { 5131 case ValID::t_LocalID: 5132 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 5133 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5134 return V == nullptr; 5135 case ValID::t_LocalName: 5136 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 5137 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall); 5138 return V == nullptr; 5139 case ValID::t_InlineAsm: { 5140 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 5141 return Error(ID.Loc, "invalid type for inline asm constraint string"); 5142 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, 5143 (ID.UIntVal >> 1) & 1, 5144 (InlineAsm::AsmDialect(ID.UIntVal >> 2))); 5145 return false; 5146 } 5147 case ValID::t_GlobalName: 5148 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall); 5149 return V == nullptr; 5150 case ValID::t_GlobalID: 5151 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5152 return V == nullptr; 5153 case ValID::t_APSInt: 5154 if (!Ty->isIntegerTy()) 5155 return Error(ID.Loc, "integer constant must have integer type"); 5156 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 5157 V = ConstantInt::get(Context, ID.APSIntVal); 5158 return false; 5159 case ValID::t_APFloat: 5160 if (!Ty->isFloatingPointTy() || 5161 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 5162 return Error(ID.Loc, "floating point constant invalid for type"); 5163 5164 // The lexer has no type info, so builds all half, float, and double FP 5165 // constants as double. Fix this here. Long double does not need this. 5166 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 5167 bool Ignored; 5168 if (Ty->isHalfTy()) 5169 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 5170 &Ignored); 5171 else if (Ty->isFloatTy()) 5172 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 5173 &Ignored); 5174 } 5175 V = ConstantFP::get(Context, ID.APFloatVal); 5176 5177 if (V->getType() != Ty) 5178 return Error(ID.Loc, "floating point constant does not have type '" + 5179 getTypeString(Ty) + "'"); 5180 5181 return false; 5182 case ValID::t_Null: 5183 if (!Ty->isPointerTy()) 5184 return Error(ID.Loc, "null must be a pointer type"); 5185 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 5186 return false; 5187 case ValID::t_Undef: 5188 // FIXME: LabelTy should not be a first-class type. 5189 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5190 return Error(ID.Loc, "invalid type for undef constant"); 5191 V = UndefValue::get(Ty); 5192 return false; 5193 case ValID::t_EmptyArray: 5194 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 5195 return Error(ID.Loc, "invalid empty array initializer"); 5196 V = UndefValue::get(Ty); 5197 return false; 5198 case ValID::t_Zero: 5199 // FIXME: LabelTy should not be a first-class type. 5200 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5201 return Error(ID.Loc, "invalid type for null constant"); 5202 V = Constant::getNullValue(Ty); 5203 return false; 5204 case ValID::t_None: 5205 if (!Ty->isTokenTy()) 5206 return Error(ID.Loc, "invalid type for none constant"); 5207 V = Constant::getNullValue(Ty); 5208 return false; 5209 case ValID::t_Constant: 5210 if (ID.ConstantVal->getType() != Ty) 5211 return Error(ID.Loc, "constant expression type mismatch"); 5212 5213 V = ID.ConstantVal; 5214 return false; 5215 case ValID::t_ConstantStruct: 5216 case ValID::t_PackedConstantStruct: 5217 if (StructType *ST = dyn_cast<StructType>(Ty)) { 5218 if (ST->getNumElements() != ID.UIntVal) 5219 return Error(ID.Loc, 5220 "initializer with struct type has wrong # elements"); 5221 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 5222 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 5223 5224 // Verify that the elements are compatible with the structtype. 5225 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 5226 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 5227 return Error(ID.Loc, "element " + Twine(i) + 5228 " of struct initializer doesn't match struct element type"); 5229 5230 V = ConstantStruct::get( 5231 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 5232 } else 5233 return Error(ID.Loc, "constant expression type mismatch"); 5234 return false; 5235 } 5236 llvm_unreachable("Invalid ValID"); 5237 } 5238 5239 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 5240 C = nullptr; 5241 ValID ID; 5242 auto Loc = Lex.getLoc(); 5243 if (ParseValID(ID, /*PFS=*/nullptr)) 5244 return true; 5245 switch (ID.Kind) { 5246 case ValID::t_APSInt: 5247 case ValID::t_APFloat: 5248 case ValID::t_Undef: 5249 case ValID::t_Constant: 5250 case ValID::t_ConstantStruct: 5251 case ValID::t_PackedConstantStruct: { 5252 Value *V; 5253 if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false)) 5254 return true; 5255 assert(isa<Constant>(V) && "Expected a constant value"); 5256 C = cast<Constant>(V); 5257 return false; 5258 } 5259 case ValID::t_Null: 5260 C = Constant::getNullValue(Ty); 5261 return false; 5262 default: 5263 return Error(Loc, "expected a constant value"); 5264 } 5265 } 5266 5267 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 5268 V = nullptr; 5269 ValID ID; 5270 return ParseValID(ID, PFS) || 5271 ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false); 5272 } 5273 5274 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 5275 Type *Ty = nullptr; 5276 return ParseType(Ty) || 5277 ParseValue(Ty, V, PFS); 5278 } 5279 5280 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 5281 PerFunctionState &PFS) { 5282 Value *V; 5283 Loc = Lex.getLoc(); 5284 if (ParseTypeAndValue(V, PFS)) return true; 5285 if (!isa<BasicBlock>(V)) 5286 return Error(Loc, "expected a basic block"); 5287 BB = cast<BasicBlock>(V); 5288 return false; 5289 } 5290 5291 /// FunctionHeader 5292 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 5293 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 5294 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign 5295 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 5296 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 5297 // Parse the linkage. 5298 LocTy LinkageLoc = Lex.getLoc(); 5299 unsigned Linkage; 5300 unsigned Visibility; 5301 unsigned DLLStorageClass; 5302 bool DSOLocal; 5303 AttrBuilder RetAttrs; 5304 unsigned CC; 5305 bool HasLinkage; 5306 Type *RetType = nullptr; 5307 LocTy RetTypeLoc = Lex.getLoc(); 5308 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 5309 DSOLocal) || 5310 ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5311 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 5312 return true; 5313 5314 // Verify that the linkage is ok. 5315 switch ((GlobalValue::LinkageTypes)Linkage) { 5316 case GlobalValue::ExternalLinkage: 5317 break; // always ok. 5318 case GlobalValue::ExternalWeakLinkage: 5319 if (isDefine) 5320 return Error(LinkageLoc, "invalid linkage for function definition"); 5321 break; 5322 case GlobalValue::PrivateLinkage: 5323 case GlobalValue::InternalLinkage: 5324 case GlobalValue::AvailableExternallyLinkage: 5325 case GlobalValue::LinkOnceAnyLinkage: 5326 case GlobalValue::LinkOnceODRLinkage: 5327 case GlobalValue::WeakAnyLinkage: 5328 case GlobalValue::WeakODRLinkage: 5329 if (!isDefine) 5330 return Error(LinkageLoc, "invalid linkage for function declaration"); 5331 break; 5332 case GlobalValue::AppendingLinkage: 5333 case GlobalValue::CommonLinkage: 5334 return Error(LinkageLoc, "invalid function linkage type"); 5335 } 5336 5337 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 5338 return Error(LinkageLoc, 5339 "symbol with local linkage must have default visibility"); 5340 5341 if (!FunctionType::isValidReturnType(RetType)) 5342 return Error(RetTypeLoc, "invalid function return type"); 5343 5344 LocTy NameLoc = Lex.getLoc(); 5345 5346 std::string FunctionName; 5347 if (Lex.getKind() == lltok::GlobalVar) { 5348 FunctionName = Lex.getStrVal(); 5349 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 5350 unsigned NameID = Lex.getUIntVal(); 5351 5352 if (NameID != NumberedVals.size()) 5353 return TokError("function expected to be numbered '%" + 5354 Twine(NumberedVals.size()) + "'"); 5355 } else { 5356 return TokError("expected function name"); 5357 } 5358 5359 Lex.Lex(); 5360 5361 if (Lex.getKind() != lltok::lparen) 5362 return TokError("expected '(' in function argument list"); 5363 5364 SmallVector<ArgInfo, 8> ArgList; 5365 bool isVarArg; 5366 AttrBuilder FuncAttrs; 5367 std::vector<unsigned> FwdRefAttrGrps; 5368 LocTy BuiltinLoc; 5369 std::string Section; 5370 std::string Partition; 5371 unsigned Alignment; 5372 std::string GC; 5373 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 5374 unsigned AddrSpace = 0; 5375 Constant *Prefix = nullptr; 5376 Constant *Prologue = nullptr; 5377 Constant *PersonalityFn = nullptr; 5378 Comdat *C; 5379 5380 if (ParseArgumentList(ArgList, isVarArg) || 5381 ParseOptionalUnnamedAddr(UnnamedAddr) || 5382 ParseOptionalProgramAddrSpace(AddrSpace) || 5383 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 5384 BuiltinLoc) || 5385 (EatIfPresent(lltok::kw_section) && 5386 ParseStringConstant(Section)) || 5387 (EatIfPresent(lltok::kw_partition) && 5388 ParseStringConstant(Partition)) || 5389 parseOptionalComdat(FunctionName, C) || 5390 ParseOptionalAlignment(Alignment) || 5391 (EatIfPresent(lltok::kw_gc) && 5392 ParseStringConstant(GC)) || 5393 (EatIfPresent(lltok::kw_prefix) && 5394 ParseGlobalTypeAndValue(Prefix)) || 5395 (EatIfPresent(lltok::kw_prologue) && 5396 ParseGlobalTypeAndValue(Prologue)) || 5397 (EatIfPresent(lltok::kw_personality) && 5398 ParseGlobalTypeAndValue(PersonalityFn))) 5399 return true; 5400 5401 if (FuncAttrs.contains(Attribute::Builtin)) 5402 return Error(BuiltinLoc, "'builtin' attribute not valid on function"); 5403 5404 // If the alignment was parsed as an attribute, move to the alignment field. 5405 if (FuncAttrs.hasAlignmentAttr()) { 5406 Alignment = FuncAttrs.getAlignment(); 5407 FuncAttrs.removeAttribute(Attribute::Alignment); 5408 } 5409 5410 // Okay, if we got here, the function is syntactically valid. Convert types 5411 // and do semantic checks. 5412 std::vector<Type*> ParamTypeList; 5413 SmallVector<AttributeSet, 8> Attrs; 5414 5415 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5416 ParamTypeList.push_back(ArgList[i].Ty); 5417 Attrs.push_back(ArgList[i].Attrs); 5418 } 5419 5420 AttributeList PAL = 5421 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 5422 AttributeSet::get(Context, RetAttrs), Attrs); 5423 5424 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 5425 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 5426 5427 FunctionType *FT = 5428 FunctionType::get(RetType, ParamTypeList, isVarArg); 5429 PointerType *PFT = PointerType::get(FT, AddrSpace); 5430 5431 Fn = nullptr; 5432 if (!FunctionName.empty()) { 5433 // If this was a definition of a forward reference, remove the definition 5434 // from the forward reference table and fill in the forward ref. 5435 auto FRVI = ForwardRefVals.find(FunctionName); 5436 if (FRVI != ForwardRefVals.end()) { 5437 Fn = M->getFunction(FunctionName); 5438 if (!Fn) 5439 return Error(FRVI->second.second, "invalid forward reference to " 5440 "function as global value!"); 5441 if (Fn->getType() != PFT) 5442 return Error(FRVI->second.second, "invalid forward reference to " 5443 "function '" + FunctionName + "' with wrong type: " 5444 "expected '" + getTypeString(PFT) + "' but was '" + 5445 getTypeString(Fn->getType()) + "'"); 5446 ForwardRefVals.erase(FRVI); 5447 } else if ((Fn = M->getFunction(FunctionName))) { 5448 // Reject redefinitions. 5449 return Error(NameLoc, "invalid redefinition of function '" + 5450 FunctionName + "'"); 5451 } else if (M->getNamedValue(FunctionName)) { 5452 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 5453 } 5454 5455 } else { 5456 // If this is a definition of a forward referenced function, make sure the 5457 // types agree. 5458 auto I = ForwardRefValIDs.find(NumberedVals.size()); 5459 if (I != ForwardRefValIDs.end()) { 5460 Fn = cast<Function>(I->second.first); 5461 if (Fn->getType() != PFT) 5462 return Error(NameLoc, "type of definition and forward reference of '@" + 5463 Twine(NumberedVals.size()) + "' disagree: " 5464 "expected '" + getTypeString(PFT) + "' but was '" + 5465 getTypeString(Fn->getType()) + "'"); 5466 ForwardRefValIDs.erase(I); 5467 } 5468 } 5469 5470 if (!Fn) 5471 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace, 5472 FunctionName, M); 5473 else // Move the forward-reference to the correct spot in the module. 5474 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 5475 5476 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS"); 5477 5478 if (FunctionName.empty()) 5479 NumberedVals.push_back(Fn); 5480 5481 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 5482 maybeSetDSOLocal(DSOLocal, *Fn); 5483 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 5484 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 5485 Fn->setCallingConv(CC); 5486 Fn->setAttributes(PAL); 5487 Fn->setUnnamedAddr(UnnamedAddr); 5488 Fn->setAlignment(Alignment); 5489 Fn->setSection(Section); 5490 Fn->setPartition(Partition); 5491 Fn->setComdat(C); 5492 Fn->setPersonalityFn(PersonalityFn); 5493 if (!GC.empty()) Fn->setGC(GC); 5494 Fn->setPrefixData(Prefix); 5495 Fn->setPrologueData(Prologue); 5496 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 5497 5498 // Add all of the arguments we parsed to the function. 5499 Function::arg_iterator ArgIt = Fn->arg_begin(); 5500 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 5501 // If the argument has a name, insert it into the argument symbol table. 5502 if (ArgList[i].Name.empty()) continue; 5503 5504 // Set the name, if it conflicted, it will be auto-renamed. 5505 ArgIt->setName(ArgList[i].Name); 5506 5507 if (ArgIt->getName() != ArgList[i].Name) 5508 return Error(ArgList[i].Loc, "redefinition of argument '%" + 5509 ArgList[i].Name + "'"); 5510 } 5511 5512 if (isDefine) 5513 return false; 5514 5515 // Check the declaration has no block address forward references. 5516 ValID ID; 5517 if (FunctionName.empty()) { 5518 ID.Kind = ValID::t_GlobalID; 5519 ID.UIntVal = NumberedVals.size() - 1; 5520 } else { 5521 ID.Kind = ValID::t_GlobalName; 5522 ID.StrVal = FunctionName; 5523 } 5524 auto Blocks = ForwardRefBlockAddresses.find(ID); 5525 if (Blocks != ForwardRefBlockAddresses.end()) 5526 return Error(Blocks->first.Loc, 5527 "cannot take blockaddress inside a declaration"); 5528 return false; 5529 } 5530 5531 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 5532 ValID ID; 5533 if (FunctionNumber == -1) { 5534 ID.Kind = ValID::t_GlobalName; 5535 ID.StrVal = F.getName(); 5536 } else { 5537 ID.Kind = ValID::t_GlobalID; 5538 ID.UIntVal = FunctionNumber; 5539 } 5540 5541 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 5542 if (Blocks == P.ForwardRefBlockAddresses.end()) 5543 return false; 5544 5545 for (const auto &I : Blocks->second) { 5546 const ValID &BBID = I.first; 5547 GlobalValue *GV = I.second; 5548 5549 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 5550 "Expected local id or name"); 5551 BasicBlock *BB; 5552 if (BBID.Kind == ValID::t_LocalName) 5553 BB = GetBB(BBID.StrVal, BBID.Loc); 5554 else 5555 BB = GetBB(BBID.UIntVal, BBID.Loc); 5556 if (!BB) 5557 return P.Error(BBID.Loc, "referenced value is not a basic block"); 5558 5559 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 5560 GV->eraseFromParent(); 5561 } 5562 5563 P.ForwardRefBlockAddresses.erase(Blocks); 5564 return false; 5565 } 5566 5567 /// ParseFunctionBody 5568 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 5569 bool LLParser::ParseFunctionBody(Function &Fn) { 5570 if (Lex.getKind() != lltok::lbrace) 5571 return TokError("expected '{' in function body"); 5572 Lex.Lex(); // eat the {. 5573 5574 int FunctionNumber = -1; 5575 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 5576 5577 PerFunctionState PFS(*this, Fn, FunctionNumber); 5578 5579 // Resolve block addresses and allow basic blocks to be forward-declared 5580 // within this function. 5581 if (PFS.resolveForwardRefBlockAddresses()) 5582 return true; 5583 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 5584 5585 // We need at least one basic block. 5586 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 5587 return TokError("function body requires at least one basic block"); 5588 5589 while (Lex.getKind() != lltok::rbrace && 5590 Lex.getKind() != lltok::kw_uselistorder) 5591 if (ParseBasicBlock(PFS)) return true; 5592 5593 while (Lex.getKind() != lltok::rbrace) 5594 if (ParseUseListOrder(&PFS)) 5595 return true; 5596 5597 // Eat the }. 5598 Lex.Lex(); 5599 5600 // Verify function is ok. 5601 return PFS.FinishFunction(); 5602 } 5603 5604 /// ParseBasicBlock 5605 /// ::= (LabelStr|LabelID)? Instruction* 5606 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 5607 // If this basic block starts out with a name, remember it. 5608 std::string Name; 5609 int NameID = -1; 5610 LocTy NameLoc = Lex.getLoc(); 5611 if (Lex.getKind() == lltok::LabelStr) { 5612 Name = Lex.getStrVal(); 5613 Lex.Lex(); 5614 } else if (Lex.getKind() == lltok::LabelID) { 5615 NameID = Lex.getUIntVal(); 5616 Lex.Lex(); 5617 } 5618 5619 BasicBlock *BB = PFS.DefineBB(Name, NameID, NameLoc); 5620 if (!BB) 5621 return true; 5622 5623 std::string NameStr; 5624 5625 // Parse the instructions in this block until we get a terminator. 5626 Instruction *Inst; 5627 do { 5628 // This instruction may have three possibilities for a name: a) none 5629 // specified, b) name specified "%foo =", c) number specified: "%4 =". 5630 LocTy NameLoc = Lex.getLoc(); 5631 int NameID = -1; 5632 NameStr = ""; 5633 5634 if (Lex.getKind() == lltok::LocalVarID) { 5635 NameID = Lex.getUIntVal(); 5636 Lex.Lex(); 5637 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 5638 return true; 5639 } else if (Lex.getKind() == lltok::LocalVar) { 5640 NameStr = Lex.getStrVal(); 5641 Lex.Lex(); 5642 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 5643 return true; 5644 } 5645 5646 switch (ParseInstruction(Inst, BB, PFS)) { 5647 default: llvm_unreachable("Unknown ParseInstruction result!"); 5648 case InstError: return true; 5649 case InstNormal: 5650 BB->getInstList().push_back(Inst); 5651 5652 // With a normal result, we check to see if the instruction is followed by 5653 // a comma and metadata. 5654 if (EatIfPresent(lltok::comma)) 5655 if (ParseInstructionMetadata(*Inst)) 5656 return true; 5657 break; 5658 case InstExtraComma: 5659 BB->getInstList().push_back(Inst); 5660 5661 // If the instruction parser ate an extra comma at the end of it, it 5662 // *must* be followed by metadata. 5663 if (ParseInstructionMetadata(*Inst)) 5664 return true; 5665 break; 5666 } 5667 5668 // Set the name on the instruction. 5669 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 5670 } while (!Inst->isTerminator()); 5671 5672 return false; 5673 } 5674 5675 //===----------------------------------------------------------------------===// 5676 // Instruction Parsing. 5677 //===----------------------------------------------------------------------===// 5678 5679 /// ParseInstruction - Parse one of the many different instructions. 5680 /// 5681 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 5682 PerFunctionState &PFS) { 5683 lltok::Kind Token = Lex.getKind(); 5684 if (Token == lltok::Eof) 5685 return TokError("found end of file when expecting more instructions"); 5686 LocTy Loc = Lex.getLoc(); 5687 unsigned KeywordVal = Lex.getUIntVal(); 5688 Lex.Lex(); // Eat the keyword. 5689 5690 switch (Token) { 5691 default: return Error(Loc, "expected instruction opcode"); 5692 // Terminator Instructions. 5693 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 5694 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 5695 case lltok::kw_br: return ParseBr(Inst, PFS); 5696 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 5697 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 5698 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 5699 case lltok::kw_resume: return ParseResume(Inst, PFS); 5700 case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS); 5701 case lltok::kw_catchret: return ParseCatchRet(Inst, PFS); 5702 case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS); 5703 case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS); 5704 case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS); 5705 case lltok::kw_callbr: return ParseCallBr(Inst, PFS); 5706 // Unary Operators. 5707 case lltok::kw_fneg: { 5708 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5709 int Res = ParseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/true); 5710 if (Res != 0) 5711 return Res; 5712 if (FMF.any()) 5713 Inst->setFastMathFlags(FMF); 5714 return false; 5715 } 5716 // Binary Operators. 5717 case lltok::kw_add: 5718 case lltok::kw_sub: 5719 case lltok::kw_mul: 5720 case lltok::kw_shl: { 5721 bool NUW = EatIfPresent(lltok::kw_nuw); 5722 bool NSW = EatIfPresent(lltok::kw_nsw); 5723 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 5724 5725 if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true; 5726 5727 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 5728 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 5729 return false; 5730 } 5731 case lltok::kw_fadd: 5732 case lltok::kw_fsub: 5733 case lltok::kw_fmul: 5734 case lltok::kw_fdiv: 5735 case lltok::kw_frem: { 5736 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5737 int Res = ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/true); 5738 if (Res != 0) 5739 return Res; 5740 if (FMF.any()) 5741 Inst->setFastMathFlags(FMF); 5742 return 0; 5743 } 5744 5745 case lltok::kw_sdiv: 5746 case lltok::kw_udiv: 5747 case lltok::kw_lshr: 5748 case lltok::kw_ashr: { 5749 bool Exact = EatIfPresent(lltok::kw_exact); 5750 5751 if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true; 5752 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 5753 return false; 5754 } 5755 5756 case lltok::kw_urem: 5757 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 5758 /*IsFP*/false); 5759 case lltok::kw_and: 5760 case lltok::kw_or: 5761 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 5762 case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal); 5763 case lltok::kw_fcmp: { 5764 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5765 int Res = ParseCompare(Inst, PFS, KeywordVal); 5766 if (Res != 0) 5767 return Res; 5768 if (FMF.any()) 5769 Inst->setFastMathFlags(FMF); 5770 return 0; 5771 } 5772 5773 // Casts. 5774 case lltok::kw_trunc: 5775 case lltok::kw_zext: 5776 case lltok::kw_sext: 5777 case lltok::kw_fptrunc: 5778 case lltok::kw_fpext: 5779 case lltok::kw_bitcast: 5780 case lltok::kw_addrspacecast: 5781 case lltok::kw_uitofp: 5782 case lltok::kw_sitofp: 5783 case lltok::kw_fptoui: 5784 case lltok::kw_fptosi: 5785 case lltok::kw_inttoptr: 5786 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 5787 // Other. 5788 case lltok::kw_select: { 5789 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5790 int Res = ParseSelect(Inst, PFS); 5791 if (Res != 0) 5792 return Res; 5793 if (FMF.any()) { 5794 if (!Inst->getType()->isFPOrFPVectorTy()) 5795 return Error(Loc, "fast-math-flags specified for select without " 5796 "floating-point scalar or vector return type"); 5797 Inst->setFastMathFlags(FMF); 5798 } 5799 return 0; 5800 } 5801 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 5802 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 5803 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 5804 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 5805 case lltok::kw_phi: return ParsePHI(Inst, PFS); 5806 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 5807 // Call. 5808 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None); 5809 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail); 5810 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail); 5811 case lltok::kw_notail: return ParseCall(Inst, PFS, CallInst::TCK_NoTail); 5812 // Memory. 5813 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 5814 case lltok::kw_load: return ParseLoad(Inst, PFS); 5815 case lltok::kw_store: return ParseStore(Inst, PFS); 5816 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 5817 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 5818 case lltok::kw_fence: return ParseFence(Inst, PFS); 5819 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 5820 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 5821 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 5822 } 5823 } 5824 5825 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 5826 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 5827 if (Opc == Instruction::FCmp) { 5828 switch (Lex.getKind()) { 5829 default: return TokError("expected fcmp predicate (e.g. 'oeq')"); 5830 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 5831 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 5832 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 5833 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 5834 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 5835 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 5836 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 5837 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 5838 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 5839 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 5840 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 5841 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 5842 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 5843 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 5844 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 5845 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 5846 } 5847 } else { 5848 switch (Lex.getKind()) { 5849 default: return TokError("expected icmp predicate (e.g. 'eq')"); 5850 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 5851 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 5852 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 5853 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 5854 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 5855 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 5856 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 5857 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 5858 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 5859 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 5860 } 5861 } 5862 Lex.Lex(); 5863 return false; 5864 } 5865 5866 //===----------------------------------------------------------------------===// 5867 // Terminator Instructions. 5868 //===----------------------------------------------------------------------===// 5869 5870 /// ParseRet - Parse a return instruction. 5871 /// ::= 'ret' void (',' !dbg, !1)* 5872 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 5873 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 5874 PerFunctionState &PFS) { 5875 SMLoc TypeLoc = Lex.getLoc(); 5876 Type *Ty = nullptr; 5877 if (ParseType(Ty, true /*void allowed*/)) return true; 5878 5879 Type *ResType = PFS.getFunction().getReturnType(); 5880 5881 if (Ty->isVoidTy()) { 5882 if (!ResType->isVoidTy()) 5883 return Error(TypeLoc, "value doesn't match function result type '" + 5884 getTypeString(ResType) + "'"); 5885 5886 Inst = ReturnInst::Create(Context); 5887 return false; 5888 } 5889 5890 Value *RV; 5891 if (ParseValue(Ty, RV, PFS)) return true; 5892 5893 if (ResType != RV->getType()) 5894 return Error(TypeLoc, "value doesn't match function result type '" + 5895 getTypeString(ResType) + "'"); 5896 5897 Inst = ReturnInst::Create(Context, RV); 5898 return false; 5899 } 5900 5901 /// ParseBr 5902 /// ::= 'br' TypeAndValue 5903 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5904 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 5905 LocTy Loc, Loc2; 5906 Value *Op0; 5907 BasicBlock *Op1, *Op2; 5908 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 5909 5910 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 5911 Inst = BranchInst::Create(BB); 5912 return false; 5913 } 5914 5915 if (Op0->getType() != Type::getInt1Ty(Context)) 5916 return Error(Loc, "branch condition must have 'i1' type"); 5917 5918 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 5919 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 5920 ParseToken(lltok::comma, "expected ',' after true destination") || 5921 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 5922 return true; 5923 5924 Inst = BranchInst::Create(Op1, Op2, Op0); 5925 return false; 5926 } 5927 5928 /// ParseSwitch 5929 /// Instruction 5930 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 5931 /// JumpTable 5932 /// ::= (TypeAndValue ',' TypeAndValue)* 5933 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5934 LocTy CondLoc, BBLoc; 5935 Value *Cond; 5936 BasicBlock *DefaultBB; 5937 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 5938 ParseToken(lltok::comma, "expected ',' after switch condition") || 5939 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 5940 ParseToken(lltok::lsquare, "expected '[' with switch table")) 5941 return true; 5942 5943 if (!Cond->getType()->isIntegerTy()) 5944 return Error(CondLoc, "switch condition must have integer type"); 5945 5946 // Parse the jump table pairs. 5947 SmallPtrSet<Value*, 32> SeenCases; 5948 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 5949 while (Lex.getKind() != lltok::rsquare) { 5950 Value *Constant; 5951 BasicBlock *DestBB; 5952 5953 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 5954 ParseToken(lltok::comma, "expected ',' after case value") || 5955 ParseTypeAndBasicBlock(DestBB, PFS)) 5956 return true; 5957 5958 if (!SeenCases.insert(Constant).second) 5959 return Error(CondLoc, "duplicate case value in switch"); 5960 if (!isa<ConstantInt>(Constant)) 5961 return Error(CondLoc, "case value is not a constant integer"); 5962 5963 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 5964 } 5965 5966 Lex.Lex(); // Eat the ']'. 5967 5968 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 5969 for (unsigned i = 0, e = Table.size(); i != e; ++i) 5970 SI->addCase(Table[i].first, Table[i].second); 5971 Inst = SI; 5972 return false; 5973 } 5974 5975 /// ParseIndirectBr 5976 /// Instruction 5977 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 5978 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 5979 LocTy AddrLoc; 5980 Value *Address; 5981 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 5982 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 5983 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 5984 return true; 5985 5986 if (!Address->getType()->isPointerTy()) 5987 return Error(AddrLoc, "indirectbr address must have pointer type"); 5988 5989 // Parse the destination list. 5990 SmallVector<BasicBlock*, 16> DestList; 5991 5992 if (Lex.getKind() != lltok::rsquare) { 5993 BasicBlock *DestBB; 5994 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5995 return true; 5996 DestList.push_back(DestBB); 5997 5998 while (EatIfPresent(lltok::comma)) { 5999 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6000 return true; 6001 DestList.push_back(DestBB); 6002 } 6003 } 6004 6005 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 6006 return true; 6007 6008 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 6009 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 6010 IBI->addDestination(DestList[i]); 6011 Inst = IBI; 6012 return false; 6013 } 6014 6015 /// ParseInvoke 6016 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 6017 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 6018 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 6019 LocTy CallLoc = Lex.getLoc(); 6020 AttrBuilder RetAttrs, FnAttrs; 6021 std::vector<unsigned> FwdRefAttrGrps; 6022 LocTy NoBuiltinLoc; 6023 unsigned CC; 6024 unsigned InvokeAddrSpace; 6025 Type *RetType = nullptr; 6026 LocTy RetTypeLoc; 6027 ValID CalleeID; 6028 SmallVector<ParamInfo, 16> ArgList; 6029 SmallVector<OperandBundleDef, 2> BundleList; 6030 6031 BasicBlock *NormalBB, *UnwindBB; 6032 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6033 ParseOptionalProgramAddrSpace(InvokeAddrSpace) || 6034 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6035 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 6036 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6037 NoBuiltinLoc) || 6038 ParseOptionalOperandBundles(BundleList, PFS) || 6039 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 6040 ParseTypeAndBasicBlock(NormalBB, PFS) || 6041 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 6042 ParseTypeAndBasicBlock(UnwindBB, PFS)) 6043 return true; 6044 6045 // If RetType is a non-function pointer type, then this is the short syntax 6046 // for the call, which means that RetType is just the return type. Infer the 6047 // rest of the function argument types from the arguments that are present. 6048 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6049 if (!Ty) { 6050 // Pull out the types of all of the arguments... 6051 std::vector<Type*> ParamTypes; 6052 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6053 ParamTypes.push_back(ArgList[i].V->getType()); 6054 6055 if (!FunctionType::isValidReturnType(RetType)) 6056 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6057 6058 Ty = FunctionType::get(RetType, ParamTypes, false); 6059 } 6060 6061 CalleeID.FTy = Ty; 6062 6063 // Look up the callee. 6064 Value *Callee; 6065 if (ConvertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID, 6066 Callee, &PFS, /*IsCall=*/true)) 6067 return true; 6068 6069 // Set up the Attribute for the function. 6070 SmallVector<Value *, 8> Args; 6071 SmallVector<AttributeSet, 8> ArgAttrs; 6072 6073 // Loop through FunctionType's arguments and ensure they are specified 6074 // correctly. Also, gather any parameter attributes. 6075 FunctionType::param_iterator I = Ty->param_begin(); 6076 FunctionType::param_iterator E = Ty->param_end(); 6077 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6078 Type *ExpectedTy = nullptr; 6079 if (I != E) { 6080 ExpectedTy = *I++; 6081 } else if (!Ty->isVarArg()) { 6082 return Error(ArgList[i].Loc, "too many arguments specified"); 6083 } 6084 6085 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6086 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6087 getTypeString(ExpectedTy) + "'"); 6088 Args.push_back(ArgList[i].V); 6089 ArgAttrs.push_back(ArgList[i].Attrs); 6090 } 6091 6092 if (I != E) 6093 return Error(CallLoc, "not enough parameters specified for call"); 6094 6095 if (FnAttrs.hasAlignmentAttr()) 6096 return Error(CallLoc, "invoke instructions may not have an alignment"); 6097 6098 // Finish off the Attribute and check them 6099 AttributeList PAL = 6100 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6101 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6102 6103 InvokeInst *II = 6104 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 6105 II->setCallingConv(CC); 6106 II->setAttributes(PAL); 6107 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 6108 Inst = II; 6109 return false; 6110 } 6111 6112 /// ParseResume 6113 /// ::= 'resume' TypeAndValue 6114 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 6115 Value *Exn; LocTy ExnLoc; 6116 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 6117 return true; 6118 6119 ResumeInst *RI = ResumeInst::Create(Exn); 6120 Inst = RI; 6121 return false; 6122 } 6123 6124 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args, 6125 PerFunctionState &PFS) { 6126 if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 6127 return true; 6128 6129 while (Lex.getKind() != lltok::rsquare) { 6130 // If this isn't the first argument, we need a comma. 6131 if (!Args.empty() && 6132 ParseToken(lltok::comma, "expected ',' in argument list")) 6133 return true; 6134 6135 // Parse the argument. 6136 LocTy ArgLoc; 6137 Type *ArgTy = nullptr; 6138 if (ParseType(ArgTy, ArgLoc)) 6139 return true; 6140 6141 Value *V; 6142 if (ArgTy->isMetadataTy()) { 6143 if (ParseMetadataAsValue(V, PFS)) 6144 return true; 6145 } else { 6146 if (ParseValue(ArgTy, V, PFS)) 6147 return true; 6148 } 6149 Args.push_back(V); 6150 } 6151 6152 Lex.Lex(); // Lex the ']'. 6153 return false; 6154 } 6155 6156 /// ParseCleanupRet 6157 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 6158 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 6159 Value *CleanupPad = nullptr; 6160 6161 if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret")) 6162 return true; 6163 6164 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 6165 return true; 6166 6167 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 6168 return true; 6169 6170 BasicBlock *UnwindBB = nullptr; 6171 if (Lex.getKind() == lltok::kw_to) { 6172 Lex.Lex(); 6173 if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 6174 return true; 6175 } else { 6176 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 6177 return true; 6178 } 6179 } 6180 6181 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 6182 return false; 6183 } 6184 6185 /// ParseCatchRet 6186 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 6187 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 6188 Value *CatchPad = nullptr; 6189 6190 if (ParseToken(lltok::kw_from, "expected 'from' after catchret")) 6191 return true; 6192 6193 if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS)) 6194 return true; 6195 6196 BasicBlock *BB; 6197 if (ParseToken(lltok::kw_to, "expected 'to' in catchret") || 6198 ParseTypeAndBasicBlock(BB, PFS)) 6199 return true; 6200 6201 Inst = CatchReturnInst::Create(CatchPad, BB); 6202 return false; 6203 } 6204 6205 /// ParseCatchSwitch 6206 /// ::= 'catchswitch' within Parent 6207 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6208 Value *ParentPad; 6209 6210 if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch")) 6211 return true; 6212 6213 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6214 Lex.getKind() != lltok::LocalVarID) 6215 return TokError("expected scope value for catchswitch"); 6216 6217 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6218 return true; 6219 6220 if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 6221 return true; 6222 6223 SmallVector<BasicBlock *, 32> Table; 6224 do { 6225 BasicBlock *DestBB; 6226 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6227 return true; 6228 Table.push_back(DestBB); 6229 } while (EatIfPresent(lltok::comma)); 6230 6231 if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 6232 return true; 6233 6234 if (ParseToken(lltok::kw_unwind, 6235 "expected 'unwind' after catchswitch scope")) 6236 return true; 6237 6238 BasicBlock *UnwindBB = nullptr; 6239 if (EatIfPresent(lltok::kw_to)) { 6240 if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 6241 return true; 6242 } else { 6243 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) 6244 return true; 6245 } 6246 6247 auto *CatchSwitch = 6248 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 6249 for (BasicBlock *DestBB : Table) 6250 CatchSwitch->addHandler(DestBB); 6251 Inst = CatchSwitch; 6252 return false; 6253 } 6254 6255 /// ParseCatchPad 6256 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 6257 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 6258 Value *CatchSwitch = nullptr; 6259 6260 if (ParseToken(lltok::kw_within, "expected 'within' after catchpad")) 6261 return true; 6262 6263 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 6264 return TokError("expected scope value for catchpad"); 6265 6266 if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 6267 return true; 6268 6269 SmallVector<Value *, 8> Args; 6270 if (ParseExceptionArgs(Args, PFS)) 6271 return true; 6272 6273 Inst = CatchPadInst::Create(CatchSwitch, Args); 6274 return false; 6275 } 6276 6277 /// ParseCleanupPad 6278 /// ::= 'cleanuppad' within Parent ParamList 6279 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 6280 Value *ParentPad = nullptr; 6281 6282 if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 6283 return true; 6284 6285 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6286 Lex.getKind() != lltok::LocalVarID) 6287 return TokError("expected scope value for cleanuppad"); 6288 6289 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6290 return true; 6291 6292 SmallVector<Value *, 8> Args; 6293 if (ParseExceptionArgs(Args, PFS)) 6294 return true; 6295 6296 Inst = CleanupPadInst::Create(ParentPad, Args); 6297 return false; 6298 } 6299 6300 //===----------------------------------------------------------------------===// 6301 // Unary Operators. 6302 //===----------------------------------------------------------------------===// 6303 6304 /// ParseUnaryOp 6305 /// ::= UnaryOp TypeAndValue ',' Value 6306 /// 6307 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6308 /// operand is allowed. 6309 bool LLParser::ParseUnaryOp(Instruction *&Inst, PerFunctionState &PFS, 6310 unsigned Opc, bool IsFP) { 6311 LocTy Loc; Value *LHS; 6312 if (ParseTypeAndValue(LHS, Loc, PFS)) 6313 return true; 6314 6315 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6316 : LHS->getType()->isIntOrIntVectorTy(); 6317 6318 if (!Valid) 6319 return Error(Loc, "invalid operand type for instruction"); 6320 6321 Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 6322 return false; 6323 } 6324 6325 /// ParseCallBr 6326 /// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList 6327 /// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue 6328 /// '[' LabelList ']' 6329 bool LLParser::ParseCallBr(Instruction *&Inst, PerFunctionState &PFS) { 6330 LocTy CallLoc = Lex.getLoc(); 6331 AttrBuilder RetAttrs, FnAttrs; 6332 std::vector<unsigned> FwdRefAttrGrps; 6333 LocTy NoBuiltinLoc; 6334 unsigned CC; 6335 Type *RetType = nullptr; 6336 LocTy RetTypeLoc; 6337 ValID CalleeID; 6338 SmallVector<ParamInfo, 16> ArgList; 6339 SmallVector<OperandBundleDef, 2> BundleList; 6340 6341 BasicBlock *DefaultDest; 6342 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6343 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6344 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 6345 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6346 NoBuiltinLoc) || 6347 ParseOptionalOperandBundles(BundleList, PFS) || 6348 ParseToken(lltok::kw_to, "expected 'to' in callbr") || 6349 ParseTypeAndBasicBlock(DefaultDest, PFS) || 6350 ParseToken(lltok::lsquare, "expected '[' in callbr")) 6351 return true; 6352 6353 // Parse the destination list. 6354 SmallVector<BasicBlock *, 16> IndirectDests; 6355 6356 if (Lex.getKind() != lltok::rsquare) { 6357 BasicBlock *DestBB; 6358 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6359 return true; 6360 IndirectDests.push_back(DestBB); 6361 6362 while (EatIfPresent(lltok::comma)) { 6363 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6364 return true; 6365 IndirectDests.push_back(DestBB); 6366 } 6367 } 6368 6369 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 6370 return true; 6371 6372 // If RetType is a non-function pointer type, then this is the short syntax 6373 // for the call, which means that RetType is just the return type. Infer the 6374 // rest of the function argument types from the arguments that are present. 6375 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6376 if (!Ty) { 6377 // Pull out the types of all of the arguments... 6378 std::vector<Type *> ParamTypes; 6379 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6380 ParamTypes.push_back(ArgList[i].V->getType()); 6381 6382 if (!FunctionType::isValidReturnType(RetType)) 6383 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6384 6385 Ty = FunctionType::get(RetType, ParamTypes, false); 6386 } 6387 6388 CalleeID.FTy = Ty; 6389 6390 // Look up the callee. 6391 Value *Callee; 6392 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS, 6393 /*IsCall=*/true)) 6394 return true; 6395 6396 if (isa<InlineAsm>(Callee) && !Ty->getReturnType()->isVoidTy()) 6397 return Error(RetTypeLoc, "asm-goto outputs not supported"); 6398 6399 // Set up the Attribute for the function. 6400 SmallVector<Value *, 8> Args; 6401 SmallVector<AttributeSet, 8> ArgAttrs; 6402 6403 // Loop through FunctionType's arguments and ensure they are specified 6404 // correctly. Also, gather any parameter attributes. 6405 FunctionType::param_iterator I = Ty->param_begin(); 6406 FunctionType::param_iterator E = Ty->param_end(); 6407 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6408 Type *ExpectedTy = nullptr; 6409 if (I != E) { 6410 ExpectedTy = *I++; 6411 } else if (!Ty->isVarArg()) { 6412 return Error(ArgList[i].Loc, "too many arguments specified"); 6413 } 6414 6415 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6416 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6417 getTypeString(ExpectedTy) + "'"); 6418 Args.push_back(ArgList[i].V); 6419 ArgAttrs.push_back(ArgList[i].Attrs); 6420 } 6421 6422 if (I != E) 6423 return Error(CallLoc, "not enough parameters specified for call"); 6424 6425 if (FnAttrs.hasAlignmentAttr()) 6426 return Error(CallLoc, "callbr instructions may not have an alignment"); 6427 6428 // Finish off the Attribute and check them 6429 AttributeList PAL = 6430 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6431 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6432 6433 CallBrInst *CBI = 6434 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args, 6435 BundleList); 6436 CBI->setCallingConv(CC); 6437 CBI->setAttributes(PAL); 6438 ForwardRefAttrGroups[CBI] = FwdRefAttrGrps; 6439 Inst = CBI; 6440 return false; 6441 } 6442 6443 //===----------------------------------------------------------------------===// 6444 // Binary Operators. 6445 //===----------------------------------------------------------------------===// 6446 6447 /// ParseArithmetic 6448 /// ::= ArithmeticOps TypeAndValue ',' Value 6449 /// 6450 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6451 /// operand is allowed. 6452 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 6453 unsigned Opc, bool IsFP) { 6454 LocTy Loc; Value *LHS, *RHS; 6455 if (ParseTypeAndValue(LHS, Loc, PFS) || 6456 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 6457 ParseValue(LHS->getType(), RHS, PFS)) 6458 return true; 6459 6460 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6461 : LHS->getType()->isIntOrIntVectorTy(); 6462 6463 if (!Valid) 6464 return Error(Loc, "invalid operand type for instruction"); 6465 6466 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6467 return false; 6468 } 6469 6470 /// ParseLogical 6471 /// ::= ArithmeticOps TypeAndValue ',' Value { 6472 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 6473 unsigned Opc) { 6474 LocTy Loc; Value *LHS, *RHS; 6475 if (ParseTypeAndValue(LHS, Loc, PFS) || 6476 ParseToken(lltok::comma, "expected ',' in logical operation") || 6477 ParseValue(LHS->getType(), RHS, PFS)) 6478 return true; 6479 6480 if (!LHS->getType()->isIntOrIntVectorTy()) 6481 return Error(Loc,"instruction requires integer or integer vector operands"); 6482 6483 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6484 return false; 6485 } 6486 6487 /// ParseCompare 6488 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 6489 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 6490 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 6491 unsigned Opc) { 6492 // Parse the integer/fp comparison predicate. 6493 LocTy Loc; 6494 unsigned Pred; 6495 Value *LHS, *RHS; 6496 if (ParseCmpPredicate(Pred, Opc) || 6497 ParseTypeAndValue(LHS, Loc, PFS) || 6498 ParseToken(lltok::comma, "expected ',' after compare value") || 6499 ParseValue(LHS->getType(), RHS, PFS)) 6500 return true; 6501 6502 if (Opc == Instruction::FCmp) { 6503 if (!LHS->getType()->isFPOrFPVectorTy()) 6504 return Error(Loc, "fcmp requires floating point operands"); 6505 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6506 } else { 6507 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 6508 if (!LHS->getType()->isIntOrIntVectorTy() && 6509 !LHS->getType()->isPtrOrPtrVectorTy()) 6510 return Error(Loc, "icmp requires integer operands"); 6511 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6512 } 6513 return false; 6514 } 6515 6516 //===----------------------------------------------------------------------===// 6517 // Other Instructions. 6518 //===----------------------------------------------------------------------===// 6519 6520 6521 /// ParseCast 6522 /// ::= CastOpc TypeAndValue 'to' Type 6523 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 6524 unsigned Opc) { 6525 LocTy Loc; 6526 Value *Op; 6527 Type *DestTy = nullptr; 6528 if (ParseTypeAndValue(Op, Loc, PFS) || 6529 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 6530 ParseType(DestTy)) 6531 return true; 6532 6533 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 6534 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 6535 return Error(Loc, "invalid cast opcode for cast from '" + 6536 getTypeString(Op->getType()) + "' to '" + 6537 getTypeString(DestTy) + "'"); 6538 } 6539 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 6540 return false; 6541 } 6542 6543 /// ParseSelect 6544 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6545 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 6546 LocTy Loc; 6547 Value *Op0, *Op1, *Op2; 6548 if (ParseTypeAndValue(Op0, Loc, PFS) || 6549 ParseToken(lltok::comma, "expected ',' after select condition") || 6550 ParseTypeAndValue(Op1, PFS) || 6551 ParseToken(lltok::comma, "expected ',' after select value") || 6552 ParseTypeAndValue(Op2, PFS)) 6553 return true; 6554 6555 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 6556 return Error(Loc, Reason); 6557 6558 Inst = SelectInst::Create(Op0, Op1, Op2); 6559 return false; 6560 } 6561 6562 /// ParseVA_Arg 6563 /// ::= 'va_arg' TypeAndValue ',' Type 6564 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 6565 Value *Op; 6566 Type *EltTy = nullptr; 6567 LocTy TypeLoc; 6568 if (ParseTypeAndValue(Op, PFS) || 6569 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 6570 ParseType(EltTy, TypeLoc)) 6571 return true; 6572 6573 if (!EltTy->isFirstClassType()) 6574 return Error(TypeLoc, "va_arg requires operand with first class type"); 6575 6576 Inst = new VAArgInst(Op, EltTy); 6577 return false; 6578 } 6579 6580 /// ParseExtractElement 6581 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 6582 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 6583 LocTy Loc; 6584 Value *Op0, *Op1; 6585 if (ParseTypeAndValue(Op0, Loc, PFS) || 6586 ParseToken(lltok::comma, "expected ',' after extract value") || 6587 ParseTypeAndValue(Op1, PFS)) 6588 return true; 6589 6590 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 6591 return Error(Loc, "invalid extractelement operands"); 6592 6593 Inst = ExtractElementInst::Create(Op0, Op1); 6594 return false; 6595 } 6596 6597 /// ParseInsertElement 6598 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6599 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 6600 LocTy Loc; 6601 Value *Op0, *Op1, *Op2; 6602 if (ParseTypeAndValue(Op0, Loc, PFS) || 6603 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6604 ParseTypeAndValue(Op1, PFS) || 6605 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6606 ParseTypeAndValue(Op2, PFS)) 6607 return true; 6608 6609 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 6610 return Error(Loc, "invalid insertelement operands"); 6611 6612 Inst = InsertElementInst::Create(Op0, Op1, Op2); 6613 return false; 6614 } 6615 6616 /// ParseShuffleVector 6617 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6618 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 6619 LocTy Loc; 6620 Value *Op0, *Op1, *Op2; 6621 if (ParseTypeAndValue(Op0, Loc, PFS) || 6622 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 6623 ParseTypeAndValue(Op1, PFS) || 6624 ParseToken(lltok::comma, "expected ',' after shuffle value") || 6625 ParseTypeAndValue(Op2, PFS)) 6626 return true; 6627 6628 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 6629 return Error(Loc, "invalid shufflevector operands"); 6630 6631 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 6632 return false; 6633 } 6634 6635 /// ParsePHI 6636 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 6637 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 6638 Type *Ty = nullptr; LocTy TypeLoc; 6639 Value *Op0, *Op1; 6640 6641 if (ParseType(Ty, TypeLoc) || 6642 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 6643 ParseValue(Ty, Op0, PFS) || 6644 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6645 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 6646 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 6647 return true; 6648 6649 bool AteExtraComma = false; 6650 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 6651 6652 while (true) { 6653 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 6654 6655 if (!EatIfPresent(lltok::comma)) 6656 break; 6657 6658 if (Lex.getKind() == lltok::MetadataVar) { 6659 AteExtraComma = true; 6660 break; 6661 } 6662 6663 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 6664 ParseValue(Ty, Op0, PFS) || 6665 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6666 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 6667 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 6668 return true; 6669 } 6670 6671 if (!Ty->isFirstClassType()) 6672 return Error(TypeLoc, "phi node must have first class type"); 6673 6674 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 6675 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 6676 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 6677 Inst = PN; 6678 return AteExtraComma ? InstExtraComma : InstNormal; 6679 } 6680 6681 /// ParseLandingPad 6682 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 6683 /// Clause 6684 /// ::= 'catch' TypeAndValue 6685 /// ::= 'filter' 6686 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 6687 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 6688 Type *Ty = nullptr; LocTy TyLoc; 6689 6690 if (ParseType(Ty, TyLoc)) 6691 return true; 6692 6693 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 6694 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 6695 6696 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 6697 LandingPadInst::ClauseType CT; 6698 if (EatIfPresent(lltok::kw_catch)) 6699 CT = LandingPadInst::Catch; 6700 else if (EatIfPresent(lltok::kw_filter)) 6701 CT = LandingPadInst::Filter; 6702 else 6703 return TokError("expected 'catch' or 'filter' clause type"); 6704 6705 Value *V; 6706 LocTy VLoc; 6707 if (ParseTypeAndValue(V, VLoc, PFS)) 6708 return true; 6709 6710 // A 'catch' type expects a non-array constant. A filter clause expects an 6711 // array constant. 6712 if (CT == LandingPadInst::Catch) { 6713 if (isa<ArrayType>(V->getType())) 6714 Error(VLoc, "'catch' clause has an invalid type"); 6715 } else { 6716 if (!isa<ArrayType>(V->getType())) 6717 Error(VLoc, "'filter' clause has an invalid type"); 6718 } 6719 6720 Constant *CV = dyn_cast<Constant>(V); 6721 if (!CV) 6722 return Error(VLoc, "clause argument must be a constant"); 6723 LP->addClause(CV); 6724 } 6725 6726 Inst = LP.release(); 6727 return false; 6728 } 6729 6730 /// ParseCall 6731 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 6732 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6733 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 6734 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6735 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 6736 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6737 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 6738 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6739 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 6740 CallInst::TailCallKind TCK) { 6741 AttrBuilder RetAttrs, FnAttrs; 6742 std::vector<unsigned> FwdRefAttrGrps; 6743 LocTy BuiltinLoc; 6744 unsigned CallAddrSpace; 6745 unsigned CC; 6746 Type *RetType = nullptr; 6747 LocTy RetTypeLoc; 6748 ValID CalleeID; 6749 SmallVector<ParamInfo, 16> ArgList; 6750 SmallVector<OperandBundleDef, 2> BundleList; 6751 LocTy CallLoc = Lex.getLoc(); 6752 6753 if (TCK != CallInst::TCK_None && 6754 ParseToken(lltok::kw_call, 6755 "expected 'tail call', 'musttail call', or 'notail call'")) 6756 return true; 6757 6758 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6759 6760 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6761 ParseOptionalProgramAddrSpace(CallAddrSpace) || 6762 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6763 ParseValID(CalleeID) || 6764 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 6765 PFS.getFunction().isVarArg()) || 6766 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 6767 ParseOptionalOperandBundles(BundleList, PFS)) 6768 return true; 6769 6770 if (FMF.any() && !RetType->isFPOrFPVectorTy()) 6771 return Error(CallLoc, "fast-math-flags specified for call without " 6772 "floating-point scalar or vector return type"); 6773 6774 // If RetType is a non-function pointer type, then this is the short syntax 6775 // for the call, which means that RetType is just the return type. Infer the 6776 // rest of the function argument types from the arguments that are present. 6777 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6778 if (!Ty) { 6779 // Pull out the types of all of the arguments... 6780 std::vector<Type*> ParamTypes; 6781 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6782 ParamTypes.push_back(ArgList[i].V->getType()); 6783 6784 if (!FunctionType::isValidReturnType(RetType)) 6785 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6786 6787 Ty = FunctionType::get(RetType, ParamTypes, false); 6788 } 6789 6790 CalleeID.FTy = Ty; 6791 6792 // Look up the callee. 6793 Value *Callee; 6794 if (ConvertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee, 6795 &PFS, /*IsCall=*/true)) 6796 return true; 6797 6798 // Set up the Attribute for the function. 6799 SmallVector<AttributeSet, 8> Attrs; 6800 6801 SmallVector<Value*, 8> Args; 6802 6803 // Loop through FunctionType's arguments and ensure they are specified 6804 // correctly. Also, gather any parameter attributes. 6805 FunctionType::param_iterator I = Ty->param_begin(); 6806 FunctionType::param_iterator E = Ty->param_end(); 6807 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6808 Type *ExpectedTy = nullptr; 6809 if (I != E) { 6810 ExpectedTy = *I++; 6811 } else if (!Ty->isVarArg()) { 6812 return Error(ArgList[i].Loc, "too many arguments specified"); 6813 } 6814 6815 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6816 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6817 getTypeString(ExpectedTy) + "'"); 6818 Args.push_back(ArgList[i].V); 6819 Attrs.push_back(ArgList[i].Attrs); 6820 } 6821 6822 if (I != E) 6823 return Error(CallLoc, "not enough parameters specified for call"); 6824 6825 if (FnAttrs.hasAlignmentAttr()) 6826 return Error(CallLoc, "call instructions may not have an alignment"); 6827 6828 // Finish off the Attribute and check them 6829 AttributeList PAL = 6830 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6831 AttributeSet::get(Context, RetAttrs), Attrs); 6832 6833 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 6834 CI->setTailCallKind(TCK); 6835 CI->setCallingConv(CC); 6836 if (FMF.any()) 6837 CI->setFastMathFlags(FMF); 6838 CI->setAttributes(PAL); 6839 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 6840 Inst = CI; 6841 return false; 6842 } 6843 6844 //===----------------------------------------------------------------------===// 6845 // Memory Instructions. 6846 //===----------------------------------------------------------------------===// 6847 6848 /// ParseAlloc 6849 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 6850 /// (',' 'align' i32)? (',', 'addrspace(n))? 6851 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 6852 Value *Size = nullptr; 6853 LocTy SizeLoc, TyLoc, ASLoc; 6854 unsigned Alignment = 0; 6855 unsigned AddrSpace = 0; 6856 Type *Ty = nullptr; 6857 6858 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 6859 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 6860 6861 if (ParseType(Ty, TyLoc)) return true; 6862 6863 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 6864 return Error(TyLoc, "invalid type for alloca"); 6865 6866 bool AteExtraComma = false; 6867 if (EatIfPresent(lltok::comma)) { 6868 if (Lex.getKind() == lltok::kw_align) { 6869 if (ParseOptionalAlignment(Alignment)) 6870 return true; 6871 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 6872 return true; 6873 } else if (Lex.getKind() == lltok::kw_addrspace) { 6874 ASLoc = Lex.getLoc(); 6875 if (ParseOptionalAddrSpace(AddrSpace)) 6876 return true; 6877 } else if (Lex.getKind() == lltok::MetadataVar) { 6878 AteExtraComma = true; 6879 } else { 6880 if (ParseTypeAndValue(Size, SizeLoc, PFS)) 6881 return true; 6882 if (EatIfPresent(lltok::comma)) { 6883 if (Lex.getKind() == lltok::kw_align) { 6884 if (ParseOptionalAlignment(Alignment)) 6885 return true; 6886 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 6887 return true; 6888 } else if (Lex.getKind() == lltok::kw_addrspace) { 6889 ASLoc = Lex.getLoc(); 6890 if (ParseOptionalAddrSpace(AddrSpace)) 6891 return true; 6892 } else if (Lex.getKind() == lltok::MetadataVar) { 6893 AteExtraComma = true; 6894 } 6895 } 6896 } 6897 } 6898 6899 if (Size && !Size->getType()->isIntegerTy()) 6900 return Error(SizeLoc, "element count must have integer type"); 6901 6902 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, Alignment); 6903 AI->setUsedWithInAlloca(IsInAlloca); 6904 AI->setSwiftError(IsSwiftError); 6905 Inst = AI; 6906 return AteExtraComma ? InstExtraComma : InstNormal; 6907 } 6908 6909 /// ParseLoad 6910 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 6911 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 6912 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6913 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 6914 Value *Val; LocTy Loc; 6915 unsigned Alignment = 0; 6916 bool AteExtraComma = false; 6917 bool isAtomic = false; 6918 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6919 SyncScope::ID SSID = SyncScope::System; 6920 6921 if (Lex.getKind() == lltok::kw_atomic) { 6922 isAtomic = true; 6923 Lex.Lex(); 6924 } 6925 6926 bool isVolatile = false; 6927 if (Lex.getKind() == lltok::kw_volatile) { 6928 isVolatile = true; 6929 Lex.Lex(); 6930 } 6931 6932 Type *Ty; 6933 LocTy ExplicitTypeLoc = Lex.getLoc(); 6934 if (ParseType(Ty) || 6935 ParseToken(lltok::comma, "expected comma after load's type") || 6936 ParseTypeAndValue(Val, Loc, PFS) || 6937 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 6938 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6939 return true; 6940 6941 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 6942 return Error(Loc, "load operand must be a pointer to a first class type"); 6943 if (isAtomic && !Alignment) 6944 return Error(Loc, "atomic load must have explicit non-zero alignment"); 6945 if (Ordering == AtomicOrdering::Release || 6946 Ordering == AtomicOrdering::AcquireRelease) 6947 return Error(Loc, "atomic load cannot use Release ordering"); 6948 6949 if (Ty != cast<PointerType>(Val->getType())->getElementType()) 6950 return Error(ExplicitTypeLoc, 6951 "explicit pointee type doesn't match operand's pointee type"); 6952 6953 Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID); 6954 return AteExtraComma ? InstExtraComma : InstNormal; 6955 } 6956 6957 /// ParseStore 6958 6959 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 6960 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 6961 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6962 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 6963 Value *Val, *Ptr; LocTy Loc, PtrLoc; 6964 unsigned Alignment = 0; 6965 bool AteExtraComma = false; 6966 bool isAtomic = false; 6967 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6968 SyncScope::ID SSID = SyncScope::System; 6969 6970 if (Lex.getKind() == lltok::kw_atomic) { 6971 isAtomic = true; 6972 Lex.Lex(); 6973 } 6974 6975 bool isVolatile = false; 6976 if (Lex.getKind() == lltok::kw_volatile) { 6977 isVolatile = true; 6978 Lex.Lex(); 6979 } 6980 6981 if (ParseTypeAndValue(Val, Loc, PFS) || 6982 ParseToken(lltok::comma, "expected ',' after store operand") || 6983 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6984 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 6985 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6986 return true; 6987 6988 if (!Ptr->getType()->isPointerTy()) 6989 return Error(PtrLoc, "store operand must be a pointer"); 6990 if (!Val->getType()->isFirstClassType()) 6991 return Error(Loc, "store operand must be a first class value"); 6992 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6993 return Error(Loc, "stored value and pointer type do not match"); 6994 if (isAtomic && !Alignment) 6995 return Error(Loc, "atomic store must have explicit non-zero alignment"); 6996 if (Ordering == AtomicOrdering::Acquire || 6997 Ordering == AtomicOrdering::AcquireRelease) 6998 return Error(Loc, "atomic store cannot use Acquire ordering"); 6999 7000 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID); 7001 return AteExtraComma ? InstExtraComma : InstNormal; 7002 } 7003 7004 /// ParseCmpXchg 7005 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 7006 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering 7007 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 7008 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 7009 bool AteExtraComma = false; 7010 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 7011 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 7012 SyncScope::ID SSID = SyncScope::System; 7013 bool isVolatile = false; 7014 bool isWeak = false; 7015 7016 if (EatIfPresent(lltok::kw_weak)) 7017 isWeak = true; 7018 7019 if (EatIfPresent(lltok::kw_volatile)) 7020 isVolatile = true; 7021 7022 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 7023 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 7024 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 7025 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 7026 ParseTypeAndValue(New, NewLoc, PFS) || 7027 ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 7028 ParseOrdering(FailureOrdering)) 7029 return true; 7030 7031 if (SuccessOrdering == AtomicOrdering::Unordered || 7032 FailureOrdering == AtomicOrdering::Unordered) 7033 return TokError("cmpxchg cannot be unordered"); 7034 if (isStrongerThan(FailureOrdering, SuccessOrdering)) 7035 return TokError("cmpxchg failure argument shall be no stronger than the " 7036 "success argument"); 7037 if (FailureOrdering == AtomicOrdering::Release || 7038 FailureOrdering == AtomicOrdering::AcquireRelease) 7039 return TokError( 7040 "cmpxchg failure ordering cannot include release semantics"); 7041 if (!Ptr->getType()->isPointerTy()) 7042 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 7043 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 7044 return Error(CmpLoc, "compare value and pointer type do not match"); 7045 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 7046 return Error(NewLoc, "new value and pointer type do not match"); 7047 if (!New->getType()->isFirstClassType()) 7048 return Error(NewLoc, "cmpxchg operand must be a first class value"); 7049 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 7050 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID); 7051 CXI->setVolatile(isVolatile); 7052 CXI->setWeak(isWeak); 7053 Inst = CXI; 7054 return AteExtraComma ? InstExtraComma : InstNormal; 7055 } 7056 7057 /// ParseAtomicRMW 7058 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 7059 /// 'singlethread'? AtomicOrdering 7060 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 7061 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 7062 bool AteExtraComma = false; 7063 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7064 SyncScope::ID SSID = SyncScope::System; 7065 bool isVolatile = false; 7066 bool IsFP = false; 7067 AtomicRMWInst::BinOp Operation; 7068 7069 if (EatIfPresent(lltok::kw_volatile)) 7070 isVolatile = true; 7071 7072 switch (Lex.getKind()) { 7073 default: return TokError("expected binary operation in atomicrmw"); 7074 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 7075 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 7076 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 7077 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 7078 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 7079 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 7080 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 7081 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 7082 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 7083 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 7084 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 7085 case lltok::kw_fadd: 7086 Operation = AtomicRMWInst::FAdd; 7087 IsFP = true; 7088 break; 7089 case lltok::kw_fsub: 7090 Operation = AtomicRMWInst::FSub; 7091 IsFP = true; 7092 break; 7093 } 7094 Lex.Lex(); // Eat the operation. 7095 7096 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 7097 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 7098 ParseTypeAndValue(Val, ValLoc, PFS) || 7099 ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7100 return true; 7101 7102 if (Ordering == AtomicOrdering::Unordered) 7103 return TokError("atomicrmw cannot be unordered"); 7104 if (!Ptr->getType()->isPointerTy()) 7105 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 7106 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 7107 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 7108 7109 if (Operation == AtomicRMWInst::Xchg) { 7110 if (!Val->getType()->isIntegerTy() && 7111 !Val->getType()->isFloatingPointTy()) { 7112 return Error(ValLoc, "atomicrmw " + 7113 AtomicRMWInst::getOperationName(Operation) + 7114 " operand must be an integer or floating point type"); 7115 } 7116 } else if (IsFP) { 7117 if (!Val->getType()->isFloatingPointTy()) { 7118 return Error(ValLoc, "atomicrmw " + 7119 AtomicRMWInst::getOperationName(Operation) + 7120 " operand must be a floating point type"); 7121 } 7122 } else { 7123 if (!Val->getType()->isIntegerTy()) { 7124 return Error(ValLoc, "atomicrmw " + 7125 AtomicRMWInst::getOperationName(Operation) + 7126 " operand must be an integer"); 7127 } 7128 } 7129 7130 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 7131 if (Size < 8 || (Size & (Size - 1))) 7132 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 7133 " integer"); 7134 7135 AtomicRMWInst *RMWI = 7136 new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 7137 RMWI->setVolatile(isVolatile); 7138 Inst = RMWI; 7139 return AteExtraComma ? InstExtraComma : InstNormal; 7140 } 7141 7142 /// ParseFence 7143 /// ::= 'fence' 'singlethread'? AtomicOrdering 7144 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 7145 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7146 SyncScope::ID SSID = SyncScope::System; 7147 if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7148 return true; 7149 7150 if (Ordering == AtomicOrdering::Unordered) 7151 return TokError("fence cannot be unordered"); 7152 if (Ordering == AtomicOrdering::Monotonic) 7153 return TokError("fence cannot be monotonic"); 7154 7155 Inst = new FenceInst(Context, Ordering, SSID); 7156 return InstNormal; 7157 } 7158 7159 /// ParseGetElementPtr 7160 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 7161 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 7162 Value *Ptr = nullptr; 7163 Value *Val = nullptr; 7164 LocTy Loc, EltLoc; 7165 7166 bool InBounds = EatIfPresent(lltok::kw_inbounds); 7167 7168 Type *Ty = nullptr; 7169 LocTy ExplicitTypeLoc = Lex.getLoc(); 7170 if (ParseType(Ty) || 7171 ParseToken(lltok::comma, "expected comma after getelementptr's type") || 7172 ParseTypeAndValue(Ptr, Loc, PFS)) 7173 return true; 7174 7175 Type *BaseType = Ptr->getType(); 7176 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 7177 if (!BasePointerType) 7178 return Error(Loc, "base of getelementptr must be a pointer"); 7179 7180 if (Ty != BasePointerType->getElementType()) 7181 return Error(ExplicitTypeLoc, 7182 "explicit pointee type doesn't match operand's pointee type"); 7183 7184 SmallVector<Value*, 16> Indices; 7185 bool AteExtraComma = false; 7186 // GEP returns a vector of pointers if at least one of parameters is a vector. 7187 // All vector parameters should have the same vector width. 7188 unsigned GEPWidth = BaseType->isVectorTy() ? 7189 BaseType->getVectorNumElements() : 0; 7190 7191 while (EatIfPresent(lltok::comma)) { 7192 if (Lex.getKind() == lltok::MetadataVar) { 7193 AteExtraComma = true; 7194 break; 7195 } 7196 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 7197 if (!Val->getType()->isIntOrIntVectorTy()) 7198 return Error(EltLoc, "getelementptr index must be an integer"); 7199 7200 if (Val->getType()->isVectorTy()) { 7201 unsigned ValNumEl = Val->getType()->getVectorNumElements(); 7202 if (GEPWidth && GEPWidth != ValNumEl) 7203 return Error(EltLoc, 7204 "getelementptr vector index has a wrong number of elements"); 7205 GEPWidth = ValNumEl; 7206 } 7207 Indices.push_back(Val); 7208 } 7209 7210 SmallPtrSet<Type*, 4> Visited; 7211 if (!Indices.empty() && !Ty->isSized(&Visited)) 7212 return Error(Loc, "base element of getelementptr must be sized"); 7213 7214 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 7215 return Error(Loc, "invalid getelementptr indices"); 7216 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 7217 if (InBounds) 7218 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 7219 return AteExtraComma ? InstExtraComma : InstNormal; 7220 } 7221 7222 /// ParseExtractValue 7223 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 7224 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 7225 Value *Val; LocTy Loc; 7226 SmallVector<unsigned, 4> Indices; 7227 bool AteExtraComma; 7228 if (ParseTypeAndValue(Val, Loc, PFS) || 7229 ParseIndexList(Indices, AteExtraComma)) 7230 return true; 7231 7232 if (!Val->getType()->isAggregateType()) 7233 return Error(Loc, "extractvalue operand must be aggregate type"); 7234 7235 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 7236 return Error(Loc, "invalid indices for extractvalue"); 7237 Inst = ExtractValueInst::Create(Val, Indices); 7238 return AteExtraComma ? InstExtraComma : InstNormal; 7239 } 7240 7241 /// ParseInsertValue 7242 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 7243 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 7244 Value *Val0, *Val1; LocTy Loc0, Loc1; 7245 SmallVector<unsigned, 4> Indices; 7246 bool AteExtraComma; 7247 if (ParseTypeAndValue(Val0, Loc0, PFS) || 7248 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 7249 ParseTypeAndValue(Val1, Loc1, PFS) || 7250 ParseIndexList(Indices, AteExtraComma)) 7251 return true; 7252 7253 if (!Val0->getType()->isAggregateType()) 7254 return Error(Loc0, "insertvalue operand must be aggregate type"); 7255 7256 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 7257 if (!IndexedType) 7258 return Error(Loc0, "invalid indices for insertvalue"); 7259 if (IndexedType != Val1->getType()) 7260 return Error(Loc1, "insertvalue operand and field disagree in type: '" + 7261 getTypeString(Val1->getType()) + "' instead of '" + 7262 getTypeString(IndexedType) + "'"); 7263 Inst = InsertValueInst::Create(Val0, Val1, Indices); 7264 return AteExtraComma ? InstExtraComma : InstNormal; 7265 } 7266 7267 //===----------------------------------------------------------------------===// 7268 // Embedded metadata. 7269 //===----------------------------------------------------------------------===// 7270 7271 /// ParseMDNodeVector 7272 /// ::= { Element (',' Element)* } 7273 /// Element 7274 /// ::= 'null' | TypeAndValue 7275 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 7276 if (ParseToken(lltok::lbrace, "expected '{' here")) 7277 return true; 7278 7279 // Check for an empty list. 7280 if (EatIfPresent(lltok::rbrace)) 7281 return false; 7282 7283 do { 7284 // Null is a special case since it is typeless. 7285 if (EatIfPresent(lltok::kw_null)) { 7286 Elts.push_back(nullptr); 7287 continue; 7288 } 7289 7290 Metadata *MD; 7291 if (ParseMetadata(MD, nullptr)) 7292 return true; 7293 Elts.push_back(MD); 7294 } while (EatIfPresent(lltok::comma)); 7295 7296 return ParseToken(lltok::rbrace, "expected end of metadata node"); 7297 } 7298 7299 //===----------------------------------------------------------------------===// 7300 // Use-list order directives. 7301 //===----------------------------------------------------------------------===// 7302 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 7303 SMLoc Loc) { 7304 if (V->use_empty()) 7305 return Error(Loc, "value has no uses"); 7306 7307 unsigned NumUses = 0; 7308 SmallDenseMap<const Use *, unsigned, 16> Order; 7309 for (const Use &U : V->uses()) { 7310 if (++NumUses > Indexes.size()) 7311 break; 7312 Order[&U] = Indexes[NumUses - 1]; 7313 } 7314 if (NumUses < 2) 7315 return Error(Loc, "value only has one use"); 7316 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 7317 return Error(Loc, 7318 "wrong number of indexes, expected " + Twine(V->getNumUses())); 7319 7320 V->sortUseList([&](const Use &L, const Use &R) { 7321 return Order.lookup(&L) < Order.lookup(&R); 7322 }); 7323 return false; 7324 } 7325 7326 /// ParseUseListOrderIndexes 7327 /// ::= '{' uint32 (',' uint32)+ '}' 7328 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 7329 SMLoc Loc = Lex.getLoc(); 7330 if (ParseToken(lltok::lbrace, "expected '{' here")) 7331 return true; 7332 if (Lex.getKind() == lltok::rbrace) 7333 return Lex.Error("expected non-empty list of uselistorder indexes"); 7334 7335 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 7336 // indexes should be distinct numbers in the range [0, size-1], and should 7337 // not be in order. 7338 unsigned Offset = 0; 7339 unsigned Max = 0; 7340 bool IsOrdered = true; 7341 assert(Indexes.empty() && "Expected empty order vector"); 7342 do { 7343 unsigned Index; 7344 if (ParseUInt32(Index)) 7345 return true; 7346 7347 // Update consistency checks. 7348 Offset += Index - Indexes.size(); 7349 Max = std::max(Max, Index); 7350 IsOrdered &= Index == Indexes.size(); 7351 7352 Indexes.push_back(Index); 7353 } while (EatIfPresent(lltok::comma)); 7354 7355 if (ParseToken(lltok::rbrace, "expected '}' here")) 7356 return true; 7357 7358 if (Indexes.size() < 2) 7359 return Error(Loc, "expected >= 2 uselistorder indexes"); 7360 if (Offset != 0 || Max >= Indexes.size()) 7361 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)"); 7362 if (IsOrdered) 7363 return Error(Loc, "expected uselistorder indexes to change the order"); 7364 7365 return false; 7366 } 7367 7368 /// ParseUseListOrder 7369 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 7370 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) { 7371 SMLoc Loc = Lex.getLoc(); 7372 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 7373 return true; 7374 7375 Value *V; 7376 SmallVector<unsigned, 16> Indexes; 7377 if (ParseTypeAndValue(V, PFS) || 7378 ParseToken(lltok::comma, "expected comma in uselistorder directive") || 7379 ParseUseListOrderIndexes(Indexes)) 7380 return true; 7381 7382 return sortUseListOrder(V, Indexes, Loc); 7383 } 7384 7385 /// ParseUseListOrderBB 7386 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 7387 bool LLParser::ParseUseListOrderBB() { 7388 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 7389 SMLoc Loc = Lex.getLoc(); 7390 Lex.Lex(); 7391 7392 ValID Fn, Label; 7393 SmallVector<unsigned, 16> Indexes; 7394 if (ParseValID(Fn) || 7395 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7396 ParseValID(Label) || 7397 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7398 ParseUseListOrderIndexes(Indexes)) 7399 return true; 7400 7401 // Check the function. 7402 GlobalValue *GV; 7403 if (Fn.Kind == ValID::t_GlobalName) 7404 GV = M->getNamedValue(Fn.StrVal); 7405 else if (Fn.Kind == ValID::t_GlobalID) 7406 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 7407 else 7408 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 7409 if (!GV) 7410 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb"); 7411 auto *F = dyn_cast<Function>(GV); 7412 if (!F) 7413 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 7414 if (F->isDeclaration()) 7415 return Error(Fn.Loc, "invalid declaration in uselistorder_bb"); 7416 7417 // Check the basic block. 7418 if (Label.Kind == ValID::t_LocalID) 7419 return Error(Label.Loc, "invalid numeric label in uselistorder_bb"); 7420 if (Label.Kind != ValID::t_LocalName) 7421 return Error(Label.Loc, "expected basic block name in uselistorder_bb"); 7422 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 7423 if (!V) 7424 return Error(Label.Loc, "invalid basic block in uselistorder_bb"); 7425 if (!isa<BasicBlock>(V)) 7426 return Error(Label.Loc, "expected basic block in uselistorder_bb"); 7427 7428 return sortUseListOrder(V, Indexes, Loc); 7429 } 7430 7431 /// ModuleEntry 7432 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')' 7433 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')' 7434 bool LLParser::ParseModuleEntry(unsigned ID) { 7435 assert(Lex.getKind() == lltok::kw_module); 7436 Lex.Lex(); 7437 7438 std::string Path; 7439 if (ParseToken(lltok::colon, "expected ':' here") || 7440 ParseToken(lltok::lparen, "expected '(' here") || 7441 ParseToken(lltok::kw_path, "expected 'path' here") || 7442 ParseToken(lltok::colon, "expected ':' here") || 7443 ParseStringConstant(Path) || 7444 ParseToken(lltok::comma, "expected ',' here") || 7445 ParseToken(lltok::kw_hash, "expected 'hash' here") || 7446 ParseToken(lltok::colon, "expected ':' here") || 7447 ParseToken(lltok::lparen, "expected '(' here")) 7448 return true; 7449 7450 ModuleHash Hash; 7451 if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") || 7452 ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") || 7453 ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") || 7454 ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") || 7455 ParseUInt32(Hash[4])) 7456 return true; 7457 7458 if (ParseToken(lltok::rparen, "expected ')' here") || 7459 ParseToken(lltok::rparen, "expected ')' here")) 7460 return true; 7461 7462 auto ModuleEntry = Index->addModule(Path, ID, Hash); 7463 ModuleIdMap[ID] = ModuleEntry->first(); 7464 7465 return false; 7466 } 7467 7468 /// TypeIdEntry 7469 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')' 7470 bool LLParser::ParseTypeIdEntry(unsigned ID) { 7471 assert(Lex.getKind() == lltok::kw_typeid); 7472 Lex.Lex(); 7473 7474 std::string Name; 7475 if (ParseToken(lltok::colon, "expected ':' here") || 7476 ParseToken(lltok::lparen, "expected '(' here") || 7477 ParseToken(lltok::kw_name, "expected 'name' here") || 7478 ParseToken(lltok::colon, "expected ':' here") || 7479 ParseStringConstant(Name)) 7480 return true; 7481 7482 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name); 7483 if (ParseToken(lltok::comma, "expected ',' here") || 7484 ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here")) 7485 return true; 7486 7487 // Check if this ID was forward referenced, and if so, update the 7488 // corresponding GUIDs. 7489 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7490 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7491 for (auto TIDRef : FwdRefTIDs->second) { 7492 assert(!*TIDRef.first && 7493 "Forward referenced type id GUID expected to be 0"); 7494 *TIDRef.first = GlobalValue::getGUID(Name); 7495 } 7496 ForwardRefTypeIds.erase(FwdRefTIDs); 7497 } 7498 7499 return false; 7500 } 7501 7502 /// TypeIdSummary 7503 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')' 7504 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) { 7505 if (ParseToken(lltok::kw_summary, "expected 'summary' here") || 7506 ParseToken(lltok::colon, "expected ':' here") || 7507 ParseToken(lltok::lparen, "expected '(' here") || 7508 ParseTypeTestResolution(TIS.TTRes)) 7509 return true; 7510 7511 if (EatIfPresent(lltok::comma)) { 7512 // Expect optional wpdResolutions field 7513 if (ParseOptionalWpdResolutions(TIS.WPDRes)) 7514 return true; 7515 } 7516 7517 if (ParseToken(lltok::rparen, "expected ')' here")) 7518 return true; 7519 7520 return false; 7521 } 7522 7523 static ValueInfo EmptyVI = 7524 ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8); 7525 7526 /// TypeIdCompatibleVtableEntry 7527 /// ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ',' 7528 /// TypeIdCompatibleVtableInfo 7529 /// ')' 7530 bool LLParser::ParseTypeIdCompatibleVtableEntry(unsigned ID) { 7531 assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable); 7532 Lex.Lex(); 7533 7534 std::string Name; 7535 if (ParseToken(lltok::colon, "expected ':' here") || 7536 ParseToken(lltok::lparen, "expected '(' here") || 7537 ParseToken(lltok::kw_name, "expected 'name' here") || 7538 ParseToken(lltok::colon, "expected ':' here") || 7539 ParseStringConstant(Name)) 7540 return true; 7541 7542 TypeIdCompatibleVtableInfo &TI = 7543 Index->getOrInsertTypeIdCompatibleVtableSummary(Name); 7544 if (ParseToken(lltok::comma, "expected ',' here") || 7545 ParseToken(lltok::kw_summary, "expected 'summary' here") || 7546 ParseToken(lltok::colon, "expected ':' here") || 7547 ParseToken(lltok::lparen, "expected '(' here")) 7548 return true; 7549 7550 IdToIndexMapType IdToIndexMap; 7551 // Parse each call edge 7552 do { 7553 uint64_t Offset; 7554 if (ParseToken(lltok::lparen, "expected '(' here") || 7555 ParseToken(lltok::kw_offset, "expected 'offset' here") || 7556 ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) || 7557 ParseToken(lltok::comma, "expected ',' here")) 7558 return true; 7559 7560 LocTy Loc = Lex.getLoc(); 7561 unsigned GVId; 7562 ValueInfo VI; 7563 if (ParseGVReference(VI, GVId)) 7564 return true; 7565 7566 // Keep track of the TypeIdCompatibleVtableInfo array index needing a 7567 // forward reference. We will save the location of the ValueInfo needing an 7568 // update, but can only do so once the std::vector is finalized. 7569 if (VI == EmptyVI) 7570 IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc)); 7571 TI.push_back({Offset, VI}); 7572 7573 if (ParseToken(lltok::rparen, "expected ')' in call")) 7574 return true; 7575 } while (EatIfPresent(lltok::comma)); 7576 7577 // Now that the TI vector is finalized, it is safe to save the locations 7578 // of any forward GV references that need updating later. 7579 for (auto I : IdToIndexMap) { 7580 for (auto P : I.second) { 7581 assert(TI[P.first].VTableVI == EmptyVI && 7582 "Forward referenced ValueInfo expected to be empty"); 7583 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 7584 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 7585 FwdRef.first->second.push_back( 7586 std::make_pair(&TI[P.first].VTableVI, P.second)); 7587 } 7588 } 7589 7590 if (ParseToken(lltok::rparen, "expected ')' here") || 7591 ParseToken(lltok::rparen, "expected ')' here")) 7592 return true; 7593 7594 // Check if this ID was forward referenced, and if so, update the 7595 // corresponding GUIDs. 7596 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7597 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7598 for (auto TIDRef : FwdRefTIDs->second) { 7599 assert(!*TIDRef.first && 7600 "Forward referenced type id GUID expected to be 0"); 7601 *TIDRef.first = GlobalValue::getGUID(Name); 7602 } 7603 ForwardRefTypeIds.erase(FwdRefTIDs); 7604 } 7605 7606 return false; 7607 } 7608 7609 /// TypeTestResolution 7610 /// ::= 'typeTestRes' ':' '(' 'kind' ':' 7611 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ',' 7612 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]? 7613 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]? 7614 /// [',' 'inlinesBits' ':' UInt64]? ')' 7615 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) { 7616 if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") || 7617 ParseToken(lltok::colon, "expected ':' here") || 7618 ParseToken(lltok::lparen, "expected '(' here") || 7619 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7620 ParseToken(lltok::colon, "expected ':' here")) 7621 return true; 7622 7623 switch (Lex.getKind()) { 7624 case lltok::kw_unsat: 7625 TTRes.TheKind = TypeTestResolution::Unsat; 7626 break; 7627 case lltok::kw_byteArray: 7628 TTRes.TheKind = TypeTestResolution::ByteArray; 7629 break; 7630 case lltok::kw_inline: 7631 TTRes.TheKind = TypeTestResolution::Inline; 7632 break; 7633 case lltok::kw_single: 7634 TTRes.TheKind = TypeTestResolution::Single; 7635 break; 7636 case lltok::kw_allOnes: 7637 TTRes.TheKind = TypeTestResolution::AllOnes; 7638 break; 7639 default: 7640 return Error(Lex.getLoc(), "unexpected TypeTestResolution kind"); 7641 } 7642 Lex.Lex(); 7643 7644 if (ParseToken(lltok::comma, "expected ',' here") || 7645 ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") || 7646 ParseToken(lltok::colon, "expected ':' here") || 7647 ParseUInt32(TTRes.SizeM1BitWidth)) 7648 return true; 7649 7650 // Parse optional fields 7651 while (EatIfPresent(lltok::comma)) { 7652 switch (Lex.getKind()) { 7653 case lltok::kw_alignLog2: 7654 Lex.Lex(); 7655 if (ParseToken(lltok::colon, "expected ':'") || 7656 ParseUInt64(TTRes.AlignLog2)) 7657 return true; 7658 break; 7659 case lltok::kw_sizeM1: 7660 Lex.Lex(); 7661 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1)) 7662 return true; 7663 break; 7664 case lltok::kw_bitMask: { 7665 unsigned Val; 7666 Lex.Lex(); 7667 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val)) 7668 return true; 7669 assert(Val <= 0xff); 7670 TTRes.BitMask = (uint8_t)Val; 7671 break; 7672 } 7673 case lltok::kw_inlineBits: 7674 Lex.Lex(); 7675 if (ParseToken(lltok::colon, "expected ':'") || 7676 ParseUInt64(TTRes.InlineBits)) 7677 return true; 7678 break; 7679 default: 7680 return Error(Lex.getLoc(), "expected optional TypeTestResolution field"); 7681 } 7682 } 7683 7684 if (ParseToken(lltok::rparen, "expected ')' here")) 7685 return true; 7686 7687 return false; 7688 } 7689 7690 /// OptionalWpdResolutions 7691 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')' 7692 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')' 7693 bool LLParser::ParseOptionalWpdResolutions( 7694 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) { 7695 if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") || 7696 ParseToken(lltok::colon, "expected ':' here") || 7697 ParseToken(lltok::lparen, "expected '(' here")) 7698 return true; 7699 7700 do { 7701 uint64_t Offset; 7702 WholeProgramDevirtResolution WPDRes; 7703 if (ParseToken(lltok::lparen, "expected '(' here") || 7704 ParseToken(lltok::kw_offset, "expected 'offset' here") || 7705 ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) || 7706 ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) || 7707 ParseToken(lltok::rparen, "expected ')' here")) 7708 return true; 7709 WPDResMap[Offset] = WPDRes; 7710 } while (EatIfPresent(lltok::comma)); 7711 7712 if (ParseToken(lltok::rparen, "expected ')' here")) 7713 return true; 7714 7715 return false; 7716 } 7717 7718 /// WpdRes 7719 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir' 7720 /// [',' OptionalResByArg]? ')' 7721 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl' 7722 /// ',' 'singleImplName' ':' STRINGCONSTANT ',' 7723 /// [',' OptionalResByArg]? ')' 7724 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel' 7725 /// [',' OptionalResByArg]? ')' 7726 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) { 7727 if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") || 7728 ParseToken(lltok::colon, "expected ':' here") || 7729 ParseToken(lltok::lparen, "expected '(' here") || 7730 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7731 ParseToken(lltok::colon, "expected ':' here")) 7732 return true; 7733 7734 switch (Lex.getKind()) { 7735 case lltok::kw_indir: 7736 WPDRes.TheKind = WholeProgramDevirtResolution::Indir; 7737 break; 7738 case lltok::kw_singleImpl: 7739 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl; 7740 break; 7741 case lltok::kw_branchFunnel: 7742 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel; 7743 break; 7744 default: 7745 return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind"); 7746 } 7747 Lex.Lex(); 7748 7749 // Parse optional fields 7750 while (EatIfPresent(lltok::comma)) { 7751 switch (Lex.getKind()) { 7752 case lltok::kw_singleImplName: 7753 Lex.Lex(); 7754 if (ParseToken(lltok::colon, "expected ':' here") || 7755 ParseStringConstant(WPDRes.SingleImplName)) 7756 return true; 7757 break; 7758 case lltok::kw_resByArg: 7759 if (ParseOptionalResByArg(WPDRes.ResByArg)) 7760 return true; 7761 break; 7762 default: 7763 return Error(Lex.getLoc(), 7764 "expected optional WholeProgramDevirtResolution field"); 7765 } 7766 } 7767 7768 if (ParseToken(lltok::rparen, "expected ')' here")) 7769 return true; 7770 7771 return false; 7772 } 7773 7774 /// OptionalResByArg 7775 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')' 7776 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':' 7777 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' | 7778 /// 'virtualConstProp' ) 7779 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]? 7780 /// [',' 'bit' ':' UInt32]? ')' 7781 bool LLParser::ParseOptionalResByArg( 7782 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg> 7783 &ResByArg) { 7784 if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") || 7785 ParseToken(lltok::colon, "expected ':' here") || 7786 ParseToken(lltok::lparen, "expected '(' here")) 7787 return true; 7788 7789 do { 7790 std::vector<uint64_t> Args; 7791 if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") || 7792 ParseToken(lltok::kw_byArg, "expected 'byArg here") || 7793 ParseToken(lltok::colon, "expected ':' here") || 7794 ParseToken(lltok::lparen, "expected '(' here") || 7795 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7796 ParseToken(lltok::colon, "expected ':' here")) 7797 return true; 7798 7799 WholeProgramDevirtResolution::ByArg ByArg; 7800 switch (Lex.getKind()) { 7801 case lltok::kw_indir: 7802 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir; 7803 break; 7804 case lltok::kw_uniformRetVal: 7805 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 7806 break; 7807 case lltok::kw_uniqueRetVal: 7808 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 7809 break; 7810 case lltok::kw_virtualConstProp: 7811 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 7812 break; 7813 default: 7814 return Error(Lex.getLoc(), 7815 "unexpected WholeProgramDevirtResolution::ByArg kind"); 7816 } 7817 Lex.Lex(); 7818 7819 // Parse optional fields 7820 while (EatIfPresent(lltok::comma)) { 7821 switch (Lex.getKind()) { 7822 case lltok::kw_info: 7823 Lex.Lex(); 7824 if (ParseToken(lltok::colon, "expected ':' here") || 7825 ParseUInt64(ByArg.Info)) 7826 return true; 7827 break; 7828 case lltok::kw_byte: 7829 Lex.Lex(); 7830 if (ParseToken(lltok::colon, "expected ':' here") || 7831 ParseUInt32(ByArg.Byte)) 7832 return true; 7833 break; 7834 case lltok::kw_bit: 7835 Lex.Lex(); 7836 if (ParseToken(lltok::colon, "expected ':' here") || 7837 ParseUInt32(ByArg.Bit)) 7838 return true; 7839 break; 7840 default: 7841 return Error(Lex.getLoc(), 7842 "expected optional whole program devirt field"); 7843 } 7844 } 7845 7846 if (ParseToken(lltok::rparen, "expected ')' here")) 7847 return true; 7848 7849 ResByArg[Args] = ByArg; 7850 } while (EatIfPresent(lltok::comma)); 7851 7852 if (ParseToken(lltok::rparen, "expected ')' here")) 7853 return true; 7854 7855 return false; 7856 } 7857 7858 /// OptionalResByArg 7859 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')' 7860 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) { 7861 if (ParseToken(lltok::kw_args, "expected 'args' here") || 7862 ParseToken(lltok::colon, "expected ':' here") || 7863 ParseToken(lltok::lparen, "expected '(' here")) 7864 return true; 7865 7866 do { 7867 uint64_t Val; 7868 if (ParseUInt64(Val)) 7869 return true; 7870 Args.push_back(Val); 7871 } while (EatIfPresent(lltok::comma)); 7872 7873 if (ParseToken(lltok::rparen, "expected ')' here")) 7874 return true; 7875 7876 return false; 7877 } 7878 7879 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8; 7880 7881 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) { 7882 bool ReadOnly = Fwd->isReadOnly(); 7883 bool WriteOnly = Fwd->isWriteOnly(); 7884 assert(!(ReadOnly && WriteOnly)); 7885 *Fwd = Resolved; 7886 if (ReadOnly) 7887 Fwd->setReadOnly(); 7888 if (WriteOnly) 7889 Fwd->setWriteOnly(); 7890 } 7891 7892 /// Stores the given Name/GUID and associated summary into the Index. 7893 /// Also updates any forward references to the associated entry ID. 7894 void LLParser::AddGlobalValueToIndex( 7895 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage, 7896 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) { 7897 // First create the ValueInfo utilizing the Name or GUID. 7898 ValueInfo VI; 7899 if (GUID != 0) { 7900 assert(Name.empty()); 7901 VI = Index->getOrInsertValueInfo(GUID); 7902 } else { 7903 assert(!Name.empty()); 7904 if (M) { 7905 auto *GV = M->getNamedValue(Name); 7906 assert(GV); 7907 VI = Index->getOrInsertValueInfo(GV); 7908 } else { 7909 assert( 7910 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) && 7911 "Need a source_filename to compute GUID for local"); 7912 GUID = GlobalValue::getGUID( 7913 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName)); 7914 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name)); 7915 } 7916 } 7917 7918 // Resolve forward references from calls/refs 7919 auto FwdRefVIs = ForwardRefValueInfos.find(ID); 7920 if (FwdRefVIs != ForwardRefValueInfos.end()) { 7921 for (auto VIRef : FwdRefVIs->second) { 7922 assert(VIRef.first->getRef() == FwdVIRef && 7923 "Forward referenced ValueInfo expected to be empty"); 7924 resolveFwdRef(VIRef.first, VI); 7925 } 7926 ForwardRefValueInfos.erase(FwdRefVIs); 7927 } 7928 7929 // Resolve forward references from aliases 7930 auto FwdRefAliasees = ForwardRefAliasees.find(ID); 7931 if (FwdRefAliasees != ForwardRefAliasees.end()) { 7932 for (auto AliaseeRef : FwdRefAliasees->second) { 7933 assert(!AliaseeRef.first->hasAliasee() && 7934 "Forward referencing alias already has aliasee"); 7935 assert(Summary && "Aliasee must be a definition"); 7936 AliaseeRef.first->setAliasee(VI, Summary.get()); 7937 } 7938 ForwardRefAliasees.erase(FwdRefAliasees); 7939 } 7940 7941 // Add the summary if one was provided. 7942 if (Summary) 7943 Index->addGlobalValueSummary(VI, std::move(Summary)); 7944 7945 // Save the associated ValueInfo for use in later references by ID. 7946 if (ID == NumberedValueInfos.size()) 7947 NumberedValueInfos.push_back(VI); 7948 else { 7949 // Handle non-continuous numbers (to make test simplification easier). 7950 if (ID > NumberedValueInfos.size()) 7951 NumberedValueInfos.resize(ID + 1); 7952 NumberedValueInfos[ID] = VI; 7953 } 7954 } 7955 7956 /// ParseGVEntry 7957 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64) 7958 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')' 7959 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')' 7960 bool LLParser::ParseGVEntry(unsigned ID) { 7961 assert(Lex.getKind() == lltok::kw_gv); 7962 Lex.Lex(); 7963 7964 if (ParseToken(lltok::colon, "expected ':' here") || 7965 ParseToken(lltok::lparen, "expected '(' here")) 7966 return true; 7967 7968 std::string Name; 7969 GlobalValue::GUID GUID = 0; 7970 switch (Lex.getKind()) { 7971 case lltok::kw_name: 7972 Lex.Lex(); 7973 if (ParseToken(lltok::colon, "expected ':' here") || 7974 ParseStringConstant(Name)) 7975 return true; 7976 // Can't create GUID/ValueInfo until we have the linkage. 7977 break; 7978 case lltok::kw_guid: 7979 Lex.Lex(); 7980 if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID)) 7981 return true; 7982 break; 7983 default: 7984 return Error(Lex.getLoc(), "expected name or guid tag"); 7985 } 7986 7987 if (!EatIfPresent(lltok::comma)) { 7988 // No summaries. Wrap up. 7989 if (ParseToken(lltok::rparen, "expected ')' here")) 7990 return true; 7991 // This was created for a call to an external or indirect target. 7992 // A GUID with no summary came from a VALUE_GUID record, dummy GUID 7993 // created for indirect calls with VP. A Name with no GUID came from 7994 // an external definition. We pass ExternalLinkage since that is only 7995 // used when the GUID must be computed from Name, and in that case 7996 // the symbol must have external linkage. 7997 AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID, 7998 nullptr); 7999 return false; 8000 } 8001 8002 // Have a list of summaries 8003 if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") || 8004 ParseToken(lltok::colon, "expected ':' here")) 8005 return true; 8006 8007 do { 8008 if (ParseToken(lltok::lparen, "expected '(' here")) 8009 return true; 8010 switch (Lex.getKind()) { 8011 case lltok::kw_function: 8012 if (ParseFunctionSummary(Name, GUID, ID)) 8013 return true; 8014 break; 8015 case lltok::kw_variable: 8016 if (ParseVariableSummary(Name, GUID, ID)) 8017 return true; 8018 break; 8019 case lltok::kw_alias: 8020 if (ParseAliasSummary(Name, GUID, ID)) 8021 return true; 8022 break; 8023 default: 8024 return Error(Lex.getLoc(), "expected summary type"); 8025 } 8026 if (ParseToken(lltok::rparen, "expected ')' here")) 8027 return true; 8028 } while (EatIfPresent(lltok::comma)); 8029 8030 if (ParseToken(lltok::rparen, "expected ')' here")) 8031 return true; 8032 8033 return false; 8034 } 8035 8036 /// FunctionSummary 8037 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8038 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]? 8039 /// [',' OptionalTypeIdInfo]? [',' OptionalRefs]? ')' 8040 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID, 8041 unsigned ID) { 8042 assert(Lex.getKind() == lltok::kw_function); 8043 Lex.Lex(); 8044 8045 StringRef ModulePath; 8046 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8047 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 8048 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8049 unsigned InstCount; 8050 std::vector<FunctionSummary::EdgeTy> Calls; 8051 FunctionSummary::TypeIdInfo TypeIdInfo; 8052 std::vector<ValueInfo> Refs; 8053 // Default is all-zeros (conservative values). 8054 FunctionSummary::FFlags FFlags = {}; 8055 if (ParseToken(lltok::colon, "expected ':' here") || 8056 ParseToken(lltok::lparen, "expected '(' here") || 8057 ParseModuleReference(ModulePath) || 8058 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 8059 ParseToken(lltok::comma, "expected ',' here") || 8060 ParseToken(lltok::kw_insts, "expected 'insts' here") || 8061 ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount)) 8062 return true; 8063 8064 // Parse optional fields 8065 while (EatIfPresent(lltok::comma)) { 8066 switch (Lex.getKind()) { 8067 case lltok::kw_funcFlags: 8068 if (ParseOptionalFFlags(FFlags)) 8069 return true; 8070 break; 8071 case lltok::kw_calls: 8072 if (ParseOptionalCalls(Calls)) 8073 return true; 8074 break; 8075 case lltok::kw_typeIdInfo: 8076 if (ParseOptionalTypeIdInfo(TypeIdInfo)) 8077 return true; 8078 break; 8079 case lltok::kw_refs: 8080 if (ParseOptionalRefs(Refs)) 8081 return true; 8082 break; 8083 default: 8084 return Error(Lex.getLoc(), "expected optional function summary field"); 8085 } 8086 } 8087 8088 if (ParseToken(lltok::rparen, "expected ')' here")) 8089 return true; 8090 8091 auto FS = llvm::make_unique<FunctionSummary>( 8092 GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs), 8093 std::move(Calls), std::move(TypeIdInfo.TypeTests), 8094 std::move(TypeIdInfo.TypeTestAssumeVCalls), 8095 std::move(TypeIdInfo.TypeCheckedLoadVCalls), 8096 std::move(TypeIdInfo.TypeTestAssumeConstVCalls), 8097 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls)); 8098 8099 FS->setModulePath(ModulePath); 8100 8101 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8102 ID, std::move(FS)); 8103 8104 return false; 8105 } 8106 8107 /// VariableSummary 8108 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8109 /// [',' OptionalRefs]? ')' 8110 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID, 8111 unsigned ID) { 8112 assert(Lex.getKind() == lltok::kw_variable); 8113 Lex.Lex(); 8114 8115 StringRef ModulePath; 8116 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8117 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 8118 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8119 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false, 8120 /* WriteOnly */ false); 8121 std::vector<ValueInfo> Refs; 8122 VTableFuncList VTableFuncs; 8123 if (ParseToken(lltok::colon, "expected ':' here") || 8124 ParseToken(lltok::lparen, "expected '(' here") || 8125 ParseModuleReference(ModulePath) || 8126 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 8127 ParseToken(lltok::comma, "expected ',' here") || 8128 ParseGVarFlags(GVarFlags)) 8129 return true; 8130 8131 // Parse optional fields 8132 while (EatIfPresent(lltok::comma)) { 8133 switch (Lex.getKind()) { 8134 case lltok::kw_vTableFuncs: 8135 if (ParseOptionalVTableFuncs(VTableFuncs)) 8136 return true; 8137 break; 8138 case lltok::kw_refs: 8139 if (ParseOptionalRefs(Refs)) 8140 return true; 8141 break; 8142 default: 8143 return Error(Lex.getLoc(), "expected optional variable summary field"); 8144 } 8145 } 8146 8147 if (ParseToken(lltok::rparen, "expected ')' here")) 8148 return true; 8149 8150 auto GS = 8151 llvm::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs)); 8152 8153 GS->setModulePath(ModulePath); 8154 GS->setVTableFuncs(std::move(VTableFuncs)); 8155 8156 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8157 ID, std::move(GS)); 8158 8159 return false; 8160 } 8161 8162 /// AliasSummary 8163 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ',' 8164 /// 'aliasee' ':' GVReference ')' 8165 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID, 8166 unsigned ID) { 8167 assert(Lex.getKind() == lltok::kw_alias); 8168 LocTy Loc = Lex.getLoc(); 8169 Lex.Lex(); 8170 8171 StringRef ModulePath; 8172 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8173 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 8174 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8175 if (ParseToken(lltok::colon, "expected ':' here") || 8176 ParseToken(lltok::lparen, "expected '(' here") || 8177 ParseModuleReference(ModulePath) || 8178 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 8179 ParseToken(lltok::comma, "expected ',' here") || 8180 ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") || 8181 ParseToken(lltok::colon, "expected ':' here")) 8182 return true; 8183 8184 ValueInfo AliaseeVI; 8185 unsigned GVId; 8186 if (ParseGVReference(AliaseeVI, GVId)) 8187 return true; 8188 8189 if (ParseToken(lltok::rparen, "expected ')' here")) 8190 return true; 8191 8192 auto AS = llvm::make_unique<AliasSummary>(GVFlags); 8193 8194 AS->setModulePath(ModulePath); 8195 8196 // Record forward reference if the aliasee is not parsed yet. 8197 if (AliaseeVI.getRef() == FwdVIRef) { 8198 auto FwdRef = ForwardRefAliasees.insert( 8199 std::make_pair(GVId, std::vector<std::pair<AliasSummary *, LocTy>>())); 8200 FwdRef.first->second.push_back(std::make_pair(AS.get(), Loc)); 8201 } else { 8202 auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath); 8203 assert(Summary && "Aliasee must be a definition"); 8204 AS->setAliasee(AliaseeVI, Summary); 8205 } 8206 8207 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8208 ID, std::move(AS)); 8209 8210 return false; 8211 } 8212 8213 /// Flag 8214 /// ::= [0|1] 8215 bool LLParser::ParseFlag(unsigned &Val) { 8216 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 8217 return TokError("expected integer"); 8218 Val = (unsigned)Lex.getAPSIntVal().getBoolValue(); 8219 Lex.Lex(); 8220 return false; 8221 } 8222 8223 /// OptionalFFlags 8224 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]? 8225 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]? 8226 /// [',' 'returnDoesNotAlias' ':' Flag]? ')' 8227 /// [',' 'noInline' ':' Flag]? ')' 8228 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) { 8229 assert(Lex.getKind() == lltok::kw_funcFlags); 8230 Lex.Lex(); 8231 8232 if (ParseToken(lltok::colon, "expected ':' in funcFlags") | 8233 ParseToken(lltok::lparen, "expected '(' in funcFlags")) 8234 return true; 8235 8236 do { 8237 unsigned Val = 0; 8238 switch (Lex.getKind()) { 8239 case lltok::kw_readNone: 8240 Lex.Lex(); 8241 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8242 return true; 8243 FFlags.ReadNone = Val; 8244 break; 8245 case lltok::kw_readOnly: 8246 Lex.Lex(); 8247 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8248 return true; 8249 FFlags.ReadOnly = Val; 8250 break; 8251 case lltok::kw_noRecurse: 8252 Lex.Lex(); 8253 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8254 return true; 8255 FFlags.NoRecurse = Val; 8256 break; 8257 case lltok::kw_returnDoesNotAlias: 8258 Lex.Lex(); 8259 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8260 return true; 8261 FFlags.ReturnDoesNotAlias = Val; 8262 break; 8263 case lltok::kw_noInline: 8264 Lex.Lex(); 8265 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8266 return true; 8267 FFlags.NoInline = Val; 8268 break; 8269 default: 8270 return Error(Lex.getLoc(), "expected function flag type"); 8271 } 8272 } while (EatIfPresent(lltok::comma)); 8273 8274 if (ParseToken(lltok::rparen, "expected ')' in funcFlags")) 8275 return true; 8276 8277 return false; 8278 } 8279 8280 /// OptionalCalls 8281 /// := 'calls' ':' '(' Call [',' Call]* ')' 8282 /// Call ::= '(' 'callee' ':' GVReference 8283 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')' 8284 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) { 8285 assert(Lex.getKind() == lltok::kw_calls); 8286 Lex.Lex(); 8287 8288 if (ParseToken(lltok::colon, "expected ':' in calls") | 8289 ParseToken(lltok::lparen, "expected '(' in calls")) 8290 return true; 8291 8292 IdToIndexMapType IdToIndexMap; 8293 // Parse each call edge 8294 do { 8295 ValueInfo VI; 8296 if (ParseToken(lltok::lparen, "expected '(' in call") || 8297 ParseToken(lltok::kw_callee, "expected 'callee' in call") || 8298 ParseToken(lltok::colon, "expected ':'")) 8299 return true; 8300 8301 LocTy Loc = Lex.getLoc(); 8302 unsigned GVId; 8303 if (ParseGVReference(VI, GVId)) 8304 return true; 8305 8306 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 8307 unsigned RelBF = 0; 8308 if (EatIfPresent(lltok::comma)) { 8309 // Expect either hotness or relbf 8310 if (EatIfPresent(lltok::kw_hotness)) { 8311 if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness)) 8312 return true; 8313 } else { 8314 if (ParseToken(lltok::kw_relbf, "expected relbf") || 8315 ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF)) 8316 return true; 8317 } 8318 } 8319 // Keep track of the Call array index needing a forward reference. 8320 // We will save the location of the ValueInfo needing an update, but 8321 // can only do so once the std::vector is finalized. 8322 if (VI.getRef() == FwdVIRef) 8323 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc)); 8324 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)}); 8325 8326 if (ParseToken(lltok::rparen, "expected ')' in call")) 8327 return true; 8328 } while (EatIfPresent(lltok::comma)); 8329 8330 // Now that the Calls vector is finalized, it is safe to save the locations 8331 // of any forward GV references that need updating later. 8332 for (auto I : IdToIndexMap) { 8333 for (auto P : I.second) { 8334 assert(Calls[P.first].first.getRef() == FwdVIRef && 8335 "Forward referenced ValueInfo expected to be empty"); 8336 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 8337 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 8338 FwdRef.first->second.push_back( 8339 std::make_pair(&Calls[P.first].first, P.second)); 8340 } 8341 } 8342 8343 if (ParseToken(lltok::rparen, "expected ')' in calls")) 8344 return true; 8345 8346 return false; 8347 } 8348 8349 /// Hotness 8350 /// := ('unknown'|'cold'|'none'|'hot'|'critical') 8351 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) { 8352 switch (Lex.getKind()) { 8353 case lltok::kw_unknown: 8354 Hotness = CalleeInfo::HotnessType::Unknown; 8355 break; 8356 case lltok::kw_cold: 8357 Hotness = CalleeInfo::HotnessType::Cold; 8358 break; 8359 case lltok::kw_none: 8360 Hotness = CalleeInfo::HotnessType::None; 8361 break; 8362 case lltok::kw_hot: 8363 Hotness = CalleeInfo::HotnessType::Hot; 8364 break; 8365 case lltok::kw_critical: 8366 Hotness = CalleeInfo::HotnessType::Critical; 8367 break; 8368 default: 8369 return Error(Lex.getLoc(), "invalid call edge hotness"); 8370 } 8371 Lex.Lex(); 8372 return false; 8373 } 8374 8375 /// OptionalVTableFuncs 8376 /// := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')' 8377 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')' 8378 bool LLParser::ParseOptionalVTableFuncs(VTableFuncList &VTableFuncs) { 8379 assert(Lex.getKind() == lltok::kw_vTableFuncs); 8380 Lex.Lex(); 8381 8382 if (ParseToken(lltok::colon, "expected ':' in vTableFuncs") | 8383 ParseToken(lltok::lparen, "expected '(' in vTableFuncs")) 8384 return true; 8385 8386 IdToIndexMapType IdToIndexMap; 8387 // Parse each virtual function pair 8388 do { 8389 ValueInfo VI; 8390 if (ParseToken(lltok::lparen, "expected '(' in vTableFunc") || 8391 ParseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") || 8392 ParseToken(lltok::colon, "expected ':'")) 8393 return true; 8394 8395 LocTy Loc = Lex.getLoc(); 8396 unsigned GVId; 8397 if (ParseGVReference(VI, GVId)) 8398 return true; 8399 8400 uint64_t Offset; 8401 if (ParseToken(lltok::comma, "expected comma") || 8402 ParseToken(lltok::kw_offset, "expected offset") || 8403 ParseToken(lltok::colon, "expected ':'") || ParseUInt64(Offset)) 8404 return true; 8405 8406 // Keep track of the VTableFuncs array index needing a forward reference. 8407 // We will save the location of the ValueInfo needing an update, but 8408 // can only do so once the std::vector is finalized. 8409 if (VI == EmptyVI) 8410 IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc)); 8411 VTableFuncs.push_back({VI, Offset}); 8412 8413 if (ParseToken(lltok::rparen, "expected ')' in vTableFunc")) 8414 return true; 8415 } while (EatIfPresent(lltok::comma)); 8416 8417 // Now that the VTableFuncs vector is finalized, it is safe to save the 8418 // locations of any forward GV references that need updating later. 8419 for (auto I : IdToIndexMap) { 8420 for (auto P : I.second) { 8421 assert(VTableFuncs[P.first].FuncVI == EmptyVI && 8422 "Forward referenced ValueInfo expected to be empty"); 8423 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 8424 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 8425 FwdRef.first->second.push_back( 8426 std::make_pair(&VTableFuncs[P.first].FuncVI, P.second)); 8427 } 8428 } 8429 8430 if (ParseToken(lltok::rparen, "expected ')' in vTableFuncs")) 8431 return true; 8432 8433 return false; 8434 } 8435 8436 /// OptionalRefs 8437 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')' 8438 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) { 8439 assert(Lex.getKind() == lltok::kw_refs); 8440 Lex.Lex(); 8441 8442 if (ParseToken(lltok::colon, "expected ':' in refs") | 8443 ParseToken(lltok::lparen, "expected '(' in refs")) 8444 return true; 8445 8446 struct ValueContext { 8447 ValueInfo VI; 8448 unsigned GVId; 8449 LocTy Loc; 8450 }; 8451 std::vector<ValueContext> VContexts; 8452 // Parse each ref edge 8453 do { 8454 ValueContext VC; 8455 VC.Loc = Lex.getLoc(); 8456 if (ParseGVReference(VC.VI, VC.GVId)) 8457 return true; 8458 VContexts.push_back(VC); 8459 } while (EatIfPresent(lltok::comma)); 8460 8461 // Sort value contexts so that ones with writeonly 8462 // and readonly ValueInfo are at the end of VContexts vector. 8463 // See FunctionSummary::specialRefCounts() 8464 llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) { 8465 return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier(); 8466 }); 8467 8468 IdToIndexMapType IdToIndexMap; 8469 for (auto &VC : VContexts) { 8470 // Keep track of the Refs array index needing a forward reference. 8471 // We will save the location of the ValueInfo needing an update, but 8472 // can only do so once the std::vector is finalized. 8473 if (VC.VI.getRef() == FwdVIRef) 8474 IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc)); 8475 Refs.push_back(VC.VI); 8476 } 8477 8478 // Now that the Refs vector is finalized, it is safe to save the locations 8479 // of any forward GV references that need updating later. 8480 for (auto I : IdToIndexMap) { 8481 for (auto P : I.second) { 8482 assert(Refs[P.first].getRef() == FwdVIRef && 8483 "Forward referenced ValueInfo expected to be empty"); 8484 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 8485 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 8486 FwdRef.first->second.push_back(std::make_pair(&Refs[P.first], P.second)); 8487 } 8488 } 8489 8490 if (ParseToken(lltok::rparen, "expected ')' in refs")) 8491 return true; 8492 8493 return false; 8494 } 8495 8496 /// OptionalTypeIdInfo 8497 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]? 8498 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]? 8499 /// [',' TypeCheckedLoadConstVCalls]? ')' 8500 bool LLParser::ParseOptionalTypeIdInfo( 8501 FunctionSummary::TypeIdInfo &TypeIdInfo) { 8502 assert(Lex.getKind() == lltok::kw_typeIdInfo); 8503 Lex.Lex(); 8504 8505 if (ParseToken(lltok::colon, "expected ':' here") || 8506 ParseToken(lltok::lparen, "expected '(' in typeIdInfo")) 8507 return true; 8508 8509 do { 8510 switch (Lex.getKind()) { 8511 case lltok::kw_typeTests: 8512 if (ParseTypeTests(TypeIdInfo.TypeTests)) 8513 return true; 8514 break; 8515 case lltok::kw_typeTestAssumeVCalls: 8516 if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls, 8517 TypeIdInfo.TypeTestAssumeVCalls)) 8518 return true; 8519 break; 8520 case lltok::kw_typeCheckedLoadVCalls: 8521 if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls, 8522 TypeIdInfo.TypeCheckedLoadVCalls)) 8523 return true; 8524 break; 8525 case lltok::kw_typeTestAssumeConstVCalls: 8526 if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls, 8527 TypeIdInfo.TypeTestAssumeConstVCalls)) 8528 return true; 8529 break; 8530 case lltok::kw_typeCheckedLoadConstVCalls: 8531 if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls, 8532 TypeIdInfo.TypeCheckedLoadConstVCalls)) 8533 return true; 8534 break; 8535 default: 8536 return Error(Lex.getLoc(), "invalid typeIdInfo list type"); 8537 } 8538 } while (EatIfPresent(lltok::comma)); 8539 8540 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo")) 8541 return true; 8542 8543 return false; 8544 } 8545 8546 /// TypeTests 8547 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64) 8548 /// [',' (SummaryID | UInt64)]* ')' 8549 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) { 8550 assert(Lex.getKind() == lltok::kw_typeTests); 8551 Lex.Lex(); 8552 8553 if (ParseToken(lltok::colon, "expected ':' here") || 8554 ParseToken(lltok::lparen, "expected '(' in typeIdInfo")) 8555 return true; 8556 8557 IdToIndexMapType IdToIndexMap; 8558 do { 8559 GlobalValue::GUID GUID = 0; 8560 if (Lex.getKind() == lltok::SummaryID) { 8561 unsigned ID = Lex.getUIntVal(); 8562 LocTy Loc = Lex.getLoc(); 8563 // Keep track of the TypeTests array index needing a forward reference. 8564 // We will save the location of the GUID needing an update, but 8565 // can only do so once the std::vector is finalized. 8566 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc)); 8567 Lex.Lex(); 8568 } else if (ParseUInt64(GUID)) 8569 return true; 8570 TypeTests.push_back(GUID); 8571 } while (EatIfPresent(lltok::comma)); 8572 8573 // Now that the TypeTests vector is finalized, it is safe to save the 8574 // locations of any forward GV references that need updating later. 8575 for (auto I : IdToIndexMap) { 8576 for (auto P : I.second) { 8577 assert(TypeTests[P.first] == 0 && 8578 "Forward referenced type id GUID expected to be 0"); 8579 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8580 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8581 FwdRef.first->second.push_back( 8582 std::make_pair(&TypeTests[P.first], P.second)); 8583 } 8584 } 8585 8586 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo")) 8587 return true; 8588 8589 return false; 8590 } 8591 8592 /// VFuncIdList 8593 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')' 8594 bool LLParser::ParseVFuncIdList( 8595 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) { 8596 assert(Lex.getKind() == Kind); 8597 Lex.Lex(); 8598 8599 if (ParseToken(lltok::colon, "expected ':' here") || 8600 ParseToken(lltok::lparen, "expected '(' here")) 8601 return true; 8602 8603 IdToIndexMapType IdToIndexMap; 8604 do { 8605 FunctionSummary::VFuncId VFuncId; 8606 if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size())) 8607 return true; 8608 VFuncIdList.push_back(VFuncId); 8609 } while (EatIfPresent(lltok::comma)); 8610 8611 if (ParseToken(lltok::rparen, "expected ')' here")) 8612 return true; 8613 8614 // Now that the VFuncIdList vector is finalized, it is safe to save the 8615 // locations of any forward GV references that need updating later. 8616 for (auto I : IdToIndexMap) { 8617 for (auto P : I.second) { 8618 assert(VFuncIdList[P.first].GUID == 0 && 8619 "Forward referenced type id GUID expected to be 0"); 8620 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8621 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8622 FwdRef.first->second.push_back( 8623 std::make_pair(&VFuncIdList[P.first].GUID, P.second)); 8624 } 8625 } 8626 8627 return false; 8628 } 8629 8630 /// ConstVCallList 8631 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')' 8632 bool LLParser::ParseConstVCallList( 8633 lltok::Kind Kind, 8634 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) { 8635 assert(Lex.getKind() == Kind); 8636 Lex.Lex(); 8637 8638 if (ParseToken(lltok::colon, "expected ':' here") || 8639 ParseToken(lltok::lparen, "expected '(' here")) 8640 return true; 8641 8642 IdToIndexMapType IdToIndexMap; 8643 do { 8644 FunctionSummary::ConstVCall ConstVCall; 8645 if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size())) 8646 return true; 8647 ConstVCallList.push_back(ConstVCall); 8648 } while (EatIfPresent(lltok::comma)); 8649 8650 if (ParseToken(lltok::rparen, "expected ')' here")) 8651 return true; 8652 8653 // Now that the ConstVCallList vector is finalized, it is safe to save the 8654 // locations of any forward GV references that need updating later. 8655 for (auto I : IdToIndexMap) { 8656 for (auto P : I.second) { 8657 assert(ConstVCallList[P.first].VFunc.GUID == 0 && 8658 "Forward referenced type id GUID expected to be 0"); 8659 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8660 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8661 FwdRef.first->second.push_back( 8662 std::make_pair(&ConstVCallList[P.first].VFunc.GUID, P.second)); 8663 } 8664 } 8665 8666 return false; 8667 } 8668 8669 /// ConstVCall 8670 /// ::= '(' VFuncId ',' Args ')' 8671 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall, 8672 IdToIndexMapType &IdToIndexMap, unsigned Index) { 8673 if (ParseToken(lltok::lparen, "expected '(' here") || 8674 ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index)) 8675 return true; 8676 8677 if (EatIfPresent(lltok::comma)) 8678 if (ParseArgs(ConstVCall.Args)) 8679 return true; 8680 8681 if (ParseToken(lltok::rparen, "expected ')' here")) 8682 return true; 8683 8684 return false; 8685 } 8686 8687 /// VFuncId 8688 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ',' 8689 /// 'offset' ':' UInt64 ')' 8690 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId, 8691 IdToIndexMapType &IdToIndexMap, unsigned Index) { 8692 assert(Lex.getKind() == lltok::kw_vFuncId); 8693 Lex.Lex(); 8694 8695 if (ParseToken(lltok::colon, "expected ':' here") || 8696 ParseToken(lltok::lparen, "expected '(' here")) 8697 return true; 8698 8699 if (Lex.getKind() == lltok::SummaryID) { 8700 VFuncId.GUID = 0; 8701 unsigned ID = Lex.getUIntVal(); 8702 LocTy Loc = Lex.getLoc(); 8703 // Keep track of the array index needing a forward reference. 8704 // We will save the location of the GUID needing an update, but 8705 // can only do so once the caller's std::vector is finalized. 8706 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc)); 8707 Lex.Lex(); 8708 } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") || 8709 ParseToken(lltok::colon, "expected ':' here") || 8710 ParseUInt64(VFuncId.GUID)) 8711 return true; 8712 8713 if (ParseToken(lltok::comma, "expected ',' here") || 8714 ParseToken(lltok::kw_offset, "expected 'offset' here") || 8715 ParseToken(lltok::colon, "expected ':' here") || 8716 ParseUInt64(VFuncId.Offset) || 8717 ParseToken(lltok::rparen, "expected ')' here")) 8718 return true; 8719 8720 return false; 8721 } 8722 8723 /// GVFlags 8724 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ',' 8725 /// 'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ',' 8726 /// 'dsoLocal' ':' Flag ',' 'canAutoHide' ':' Flag ')' 8727 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) { 8728 assert(Lex.getKind() == lltok::kw_flags); 8729 Lex.Lex(); 8730 8731 if (ParseToken(lltok::colon, "expected ':' here") || 8732 ParseToken(lltok::lparen, "expected '(' here")) 8733 return true; 8734 8735 do { 8736 unsigned Flag = 0; 8737 switch (Lex.getKind()) { 8738 case lltok::kw_linkage: 8739 Lex.Lex(); 8740 if (ParseToken(lltok::colon, "expected ':'")) 8741 return true; 8742 bool HasLinkage; 8743 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 8744 assert(HasLinkage && "Linkage not optional in summary entry"); 8745 Lex.Lex(); 8746 break; 8747 case lltok::kw_notEligibleToImport: 8748 Lex.Lex(); 8749 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag)) 8750 return true; 8751 GVFlags.NotEligibleToImport = Flag; 8752 break; 8753 case lltok::kw_live: 8754 Lex.Lex(); 8755 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag)) 8756 return true; 8757 GVFlags.Live = Flag; 8758 break; 8759 case lltok::kw_dsoLocal: 8760 Lex.Lex(); 8761 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag)) 8762 return true; 8763 GVFlags.DSOLocal = Flag; 8764 break; 8765 case lltok::kw_canAutoHide: 8766 Lex.Lex(); 8767 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag)) 8768 return true; 8769 GVFlags.CanAutoHide = Flag; 8770 break; 8771 default: 8772 return Error(Lex.getLoc(), "expected gv flag type"); 8773 } 8774 } while (EatIfPresent(lltok::comma)); 8775 8776 if (ParseToken(lltok::rparen, "expected ')' here")) 8777 return true; 8778 8779 return false; 8780 } 8781 8782 /// GVarFlags 8783 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag 8784 /// ',' 'writeonly' ':' Flag ')' 8785 bool LLParser::ParseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) { 8786 assert(Lex.getKind() == lltok::kw_varFlags); 8787 Lex.Lex(); 8788 8789 if (ParseToken(lltok::colon, "expected ':' here") || 8790 ParseToken(lltok::lparen, "expected '(' here")) 8791 return true; 8792 8793 auto ParseRest = [this](unsigned int &Val) { 8794 Lex.Lex(); 8795 if (ParseToken(lltok::colon, "expected ':'")) 8796 return true; 8797 return ParseFlag(Val); 8798 }; 8799 8800 do { 8801 unsigned Flag = 0; 8802 switch (Lex.getKind()) { 8803 case lltok::kw_readonly: 8804 if (ParseRest(Flag)) 8805 return true; 8806 GVarFlags.MaybeReadOnly = Flag; 8807 break; 8808 case lltok::kw_writeonly: 8809 if (ParseRest(Flag)) 8810 return true; 8811 GVarFlags.MaybeWriteOnly = Flag; 8812 break; 8813 default: 8814 return Error(Lex.getLoc(), "expected gvar flag type"); 8815 } 8816 } while (EatIfPresent(lltok::comma)); 8817 return ParseToken(lltok::rparen, "expected ')' here"); 8818 } 8819 8820 /// ModuleReference 8821 /// ::= 'module' ':' UInt 8822 bool LLParser::ParseModuleReference(StringRef &ModulePath) { 8823 // Parse module id. 8824 if (ParseToken(lltok::kw_module, "expected 'module' here") || 8825 ParseToken(lltok::colon, "expected ':' here") || 8826 ParseToken(lltok::SummaryID, "expected module ID")) 8827 return true; 8828 8829 unsigned ModuleID = Lex.getUIntVal(); 8830 auto I = ModuleIdMap.find(ModuleID); 8831 // We should have already parsed all module IDs 8832 assert(I != ModuleIdMap.end()); 8833 ModulePath = I->second; 8834 return false; 8835 } 8836 8837 /// GVReference 8838 /// ::= SummaryID 8839 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) { 8840 bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly); 8841 if (!ReadOnly) 8842 WriteOnly = EatIfPresent(lltok::kw_writeonly); 8843 if (ParseToken(lltok::SummaryID, "expected GV ID")) 8844 return true; 8845 8846 GVId = Lex.getUIntVal(); 8847 // Check if we already have a VI for this GV 8848 if (GVId < NumberedValueInfos.size()) { 8849 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef); 8850 VI = NumberedValueInfos[GVId]; 8851 } else 8852 // We will create a forward reference to the stored location. 8853 VI = ValueInfo(false, FwdVIRef); 8854 8855 if (ReadOnly) 8856 VI.setReadOnly(); 8857 if (WriteOnly) 8858 VI.setWriteOnly(); 8859 return false; 8860 } 8861