1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "LLParser.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/AsmParser/SlotMapping.h"
20 #include "llvm/BinaryFormat/Dwarf.h"
21 #include "llvm/IR/Argument.h"
22 #include "llvm/IR/AutoUpgrade.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/CallingConv.h"
25 #include "llvm/IR/Comdat.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugInfoMetadata.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalIFunc.h"
31 #include "llvm/IR/GlobalObject.h"
32 #include "llvm/IR/InlineAsm.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/IR/ValueSymbolTable.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/MathExtras.h"
46 #include "llvm/Support/SaveAndRestore.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstring>
51 #include <iterator>
52 #include <vector>
53 
54 using namespace llvm;
55 
56 static std::string getTypeString(Type *T) {
57   std::string Result;
58   raw_string_ostream Tmp(Result);
59   Tmp << *T;
60   return Tmp.str();
61 }
62 
63 /// Run: module ::= toplevelentity*
64 bool LLParser::Run() {
65   // Prime the lexer.
66   Lex.Lex();
67 
68   if (Context.shouldDiscardValueNames())
69     return Error(
70         Lex.getLoc(),
71         "Can't read textual IR with a Context that discards named Values");
72 
73   return ParseTopLevelEntities() || ValidateEndOfModule() ||
74          ValidateEndOfIndex();
75 }
76 
77 bool LLParser::parseStandaloneConstantValue(Constant *&C,
78                                             const SlotMapping *Slots) {
79   restoreParsingState(Slots);
80   Lex.Lex();
81 
82   Type *Ty = nullptr;
83   if (ParseType(Ty) || parseConstantValue(Ty, C))
84     return true;
85   if (Lex.getKind() != lltok::Eof)
86     return Error(Lex.getLoc(), "expected end of string");
87   return false;
88 }
89 
90 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
91                                     const SlotMapping *Slots) {
92   restoreParsingState(Slots);
93   Lex.Lex();
94 
95   Read = 0;
96   SMLoc Start = Lex.getLoc();
97   Ty = nullptr;
98   if (ParseType(Ty))
99     return true;
100   SMLoc End = Lex.getLoc();
101   Read = End.getPointer() - Start.getPointer();
102 
103   return false;
104 }
105 
106 void LLParser::restoreParsingState(const SlotMapping *Slots) {
107   if (!Slots)
108     return;
109   NumberedVals = Slots->GlobalValues;
110   NumberedMetadata = Slots->MetadataNodes;
111   for (const auto &I : Slots->NamedTypes)
112     NamedTypes.insert(
113         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
114   for (const auto &I : Slots->Types)
115     NumberedTypes.insert(
116         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
117 }
118 
119 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
120 /// module.
121 bool LLParser::ValidateEndOfModule() {
122   if (!M)
123     return false;
124   // Handle any function attribute group forward references.
125   for (const auto &RAG : ForwardRefAttrGroups) {
126     Value *V = RAG.first;
127     const std::vector<unsigned> &Attrs = RAG.second;
128     AttrBuilder B;
129 
130     for (const auto &Attr : Attrs)
131       B.merge(NumberedAttrBuilders[Attr]);
132 
133     if (Function *Fn = dyn_cast<Function>(V)) {
134       AttributeList AS = Fn->getAttributes();
135       AttrBuilder FnAttrs(AS.getFnAttributes());
136       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
137 
138       FnAttrs.merge(B);
139 
140       // If the alignment was parsed as an attribute, move to the alignment
141       // field.
142       if (FnAttrs.hasAlignmentAttr()) {
143         Fn->setAlignment(FnAttrs.getAlignment());
144         FnAttrs.removeAttribute(Attribute::Alignment);
145       }
146 
147       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
148                             AttributeSet::get(Context, FnAttrs));
149       Fn->setAttributes(AS);
150     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
151       AttributeList AS = CI->getAttributes();
152       AttrBuilder FnAttrs(AS.getFnAttributes());
153       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
154       FnAttrs.merge(B);
155       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
156                             AttributeSet::get(Context, FnAttrs));
157       CI->setAttributes(AS);
158     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
159       AttributeList AS = II->getAttributes();
160       AttrBuilder FnAttrs(AS.getFnAttributes());
161       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
162       FnAttrs.merge(B);
163       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
164                             AttributeSet::get(Context, FnAttrs));
165       II->setAttributes(AS);
166     } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
167       AttributeList AS = CBI->getAttributes();
168       AttrBuilder FnAttrs(AS.getFnAttributes());
169       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
170       FnAttrs.merge(B);
171       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
172                             AttributeSet::get(Context, FnAttrs));
173       CBI->setAttributes(AS);
174     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
175       AttrBuilder Attrs(GV->getAttributes());
176       Attrs.merge(B);
177       GV->setAttributes(AttributeSet::get(Context,Attrs));
178     } else {
179       llvm_unreachable("invalid object with forward attribute group reference");
180     }
181   }
182 
183   // If there are entries in ForwardRefBlockAddresses at this point, the
184   // function was never defined.
185   if (!ForwardRefBlockAddresses.empty())
186     return Error(ForwardRefBlockAddresses.begin()->first.Loc,
187                  "expected function name in blockaddress");
188 
189   for (const auto &NT : NumberedTypes)
190     if (NT.second.second.isValid())
191       return Error(NT.second.second,
192                    "use of undefined type '%" + Twine(NT.first) + "'");
193 
194   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
195        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
196     if (I->second.second.isValid())
197       return Error(I->second.second,
198                    "use of undefined type named '" + I->getKey() + "'");
199 
200   if (!ForwardRefComdats.empty())
201     return Error(ForwardRefComdats.begin()->second,
202                  "use of undefined comdat '$" +
203                      ForwardRefComdats.begin()->first + "'");
204 
205   if (!ForwardRefVals.empty())
206     return Error(ForwardRefVals.begin()->second.second,
207                  "use of undefined value '@" + ForwardRefVals.begin()->first +
208                  "'");
209 
210   if (!ForwardRefValIDs.empty())
211     return Error(ForwardRefValIDs.begin()->second.second,
212                  "use of undefined value '@" +
213                  Twine(ForwardRefValIDs.begin()->first) + "'");
214 
215   if (!ForwardRefMDNodes.empty())
216     return Error(ForwardRefMDNodes.begin()->second.second,
217                  "use of undefined metadata '!" +
218                  Twine(ForwardRefMDNodes.begin()->first) + "'");
219 
220   // Resolve metadata cycles.
221   for (auto &N : NumberedMetadata) {
222     if (N.second && !N.second->isResolved())
223       N.second->resolveCycles();
224   }
225 
226   for (auto *Inst : InstsWithTBAATag) {
227     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
228     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
229     auto *UpgradedMD = UpgradeTBAANode(*MD);
230     if (MD != UpgradedMD)
231       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
232   }
233 
234   // Look for intrinsic functions and CallInst that need to be upgraded
235   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
236     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
237 
238   // Some types could be renamed during loading if several modules are
239   // loaded in the same LLVMContext (LTO scenario). In this case we should
240   // remangle intrinsics names as well.
241   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
242     Function *F = &*FI++;
243     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
244       F->replaceAllUsesWith(Remangled.getValue());
245       F->eraseFromParent();
246     }
247   }
248 
249   if (UpgradeDebugInfo)
250     llvm::UpgradeDebugInfo(*M);
251 
252   UpgradeModuleFlags(*M);
253   UpgradeSectionAttributes(*M);
254 
255   if (!Slots)
256     return false;
257   // Initialize the slot mapping.
258   // Because by this point we've parsed and validated everything, we can "steal"
259   // the mapping from LLParser as it doesn't need it anymore.
260   Slots->GlobalValues = std::move(NumberedVals);
261   Slots->MetadataNodes = std::move(NumberedMetadata);
262   for (const auto &I : NamedTypes)
263     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
264   for (const auto &I : NumberedTypes)
265     Slots->Types.insert(std::make_pair(I.first, I.second.first));
266 
267   return false;
268 }
269 
270 /// Do final validity and sanity checks at the end of the index.
271 bool LLParser::ValidateEndOfIndex() {
272   if (!Index)
273     return false;
274 
275   if (!ForwardRefValueInfos.empty())
276     return Error(ForwardRefValueInfos.begin()->second.front().second,
277                  "use of undefined summary '^" +
278                      Twine(ForwardRefValueInfos.begin()->first) + "'");
279 
280   if (!ForwardRefAliasees.empty())
281     return Error(ForwardRefAliasees.begin()->second.front().second,
282                  "use of undefined summary '^" +
283                      Twine(ForwardRefAliasees.begin()->first) + "'");
284 
285   if (!ForwardRefTypeIds.empty())
286     return Error(ForwardRefTypeIds.begin()->second.front().second,
287                  "use of undefined type id summary '^" +
288                      Twine(ForwardRefTypeIds.begin()->first) + "'");
289 
290   return false;
291 }
292 
293 //===----------------------------------------------------------------------===//
294 // Top-Level Entities
295 //===----------------------------------------------------------------------===//
296 
297 bool LLParser::ParseTopLevelEntities() {
298   // If there is no Module, then parse just the summary index entries.
299   if (!M) {
300     while (true) {
301       switch (Lex.getKind()) {
302       case lltok::Eof:
303         return false;
304       case lltok::SummaryID:
305         if (ParseSummaryEntry())
306           return true;
307         break;
308       case lltok::kw_source_filename:
309         if (ParseSourceFileName())
310           return true;
311         break;
312       default:
313         // Skip everything else
314         Lex.Lex();
315       }
316     }
317   }
318   while (true) {
319     switch (Lex.getKind()) {
320     default:         return TokError("expected top-level entity");
321     case lltok::Eof: return false;
322     case lltok::kw_declare: if (ParseDeclare()) return true; break;
323     case lltok::kw_define:  if (ParseDefine()) return true; break;
324     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
325     case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
326     case lltok::kw_source_filename:
327       if (ParseSourceFileName())
328         return true;
329       break;
330     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
331     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
332     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
333     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
334     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
335     case lltok::ComdatVar:  if (parseComdat()) return true; break;
336     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
337     case lltok::SummaryID:
338       if (ParseSummaryEntry())
339         return true;
340       break;
341     case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
342     case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
343     case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
344     case lltok::kw_uselistorder_bb:
345       if (ParseUseListOrderBB())
346         return true;
347       break;
348     }
349   }
350 }
351 
352 /// toplevelentity
353 ///   ::= 'module' 'asm' STRINGCONSTANT
354 bool LLParser::ParseModuleAsm() {
355   assert(Lex.getKind() == lltok::kw_module);
356   Lex.Lex();
357 
358   std::string AsmStr;
359   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
360       ParseStringConstant(AsmStr)) return true;
361 
362   M->appendModuleInlineAsm(AsmStr);
363   return false;
364 }
365 
366 /// toplevelentity
367 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
368 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
369 bool LLParser::ParseTargetDefinition() {
370   assert(Lex.getKind() == lltok::kw_target);
371   std::string Str;
372   switch (Lex.Lex()) {
373   default: return TokError("unknown target property");
374   case lltok::kw_triple:
375     Lex.Lex();
376     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
377         ParseStringConstant(Str))
378       return true;
379     M->setTargetTriple(Str);
380     return false;
381   case lltok::kw_datalayout:
382     Lex.Lex();
383     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
384         ParseStringConstant(Str))
385       return true;
386     if (DataLayoutStr.empty())
387       M->setDataLayout(Str);
388     return false;
389   }
390 }
391 
392 /// toplevelentity
393 ///   ::= 'source_filename' '=' STRINGCONSTANT
394 bool LLParser::ParseSourceFileName() {
395   assert(Lex.getKind() == lltok::kw_source_filename);
396   Lex.Lex();
397   if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
398       ParseStringConstant(SourceFileName))
399     return true;
400   if (M)
401     M->setSourceFileName(SourceFileName);
402   return false;
403 }
404 
405 /// toplevelentity
406 ///   ::= 'deplibs' '=' '[' ']'
407 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
408 /// FIXME: Remove in 4.0. Currently parse, but ignore.
409 bool LLParser::ParseDepLibs() {
410   assert(Lex.getKind() == lltok::kw_deplibs);
411   Lex.Lex();
412   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
413       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
414     return true;
415 
416   if (EatIfPresent(lltok::rsquare))
417     return false;
418 
419   do {
420     std::string Str;
421     if (ParseStringConstant(Str)) return true;
422   } while (EatIfPresent(lltok::comma));
423 
424   return ParseToken(lltok::rsquare, "expected ']' at end of list");
425 }
426 
427 /// ParseUnnamedType:
428 ///   ::= LocalVarID '=' 'type' type
429 bool LLParser::ParseUnnamedType() {
430   LocTy TypeLoc = Lex.getLoc();
431   unsigned TypeID = Lex.getUIntVal();
432   Lex.Lex(); // eat LocalVarID;
433 
434   if (ParseToken(lltok::equal, "expected '=' after name") ||
435       ParseToken(lltok::kw_type, "expected 'type' after '='"))
436     return true;
437 
438   Type *Result = nullptr;
439   if (ParseStructDefinition(TypeLoc, "",
440                             NumberedTypes[TypeID], Result)) return true;
441 
442   if (!isa<StructType>(Result)) {
443     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
444     if (Entry.first)
445       return Error(TypeLoc, "non-struct types may not be recursive");
446     Entry.first = Result;
447     Entry.second = SMLoc();
448   }
449 
450   return false;
451 }
452 
453 /// toplevelentity
454 ///   ::= LocalVar '=' 'type' type
455 bool LLParser::ParseNamedType() {
456   std::string Name = Lex.getStrVal();
457   LocTy NameLoc = Lex.getLoc();
458   Lex.Lex();  // eat LocalVar.
459 
460   if (ParseToken(lltok::equal, "expected '=' after name") ||
461       ParseToken(lltok::kw_type, "expected 'type' after name"))
462     return true;
463 
464   Type *Result = nullptr;
465   if (ParseStructDefinition(NameLoc, Name,
466                             NamedTypes[Name], Result)) return true;
467 
468   if (!isa<StructType>(Result)) {
469     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
470     if (Entry.first)
471       return Error(NameLoc, "non-struct types may not be recursive");
472     Entry.first = Result;
473     Entry.second = SMLoc();
474   }
475 
476   return false;
477 }
478 
479 /// toplevelentity
480 ///   ::= 'declare' FunctionHeader
481 bool LLParser::ParseDeclare() {
482   assert(Lex.getKind() == lltok::kw_declare);
483   Lex.Lex();
484 
485   std::vector<std::pair<unsigned, MDNode *>> MDs;
486   while (Lex.getKind() == lltok::MetadataVar) {
487     unsigned MDK;
488     MDNode *N;
489     if (ParseMetadataAttachment(MDK, N))
490       return true;
491     MDs.push_back({MDK, N});
492   }
493 
494   Function *F;
495   if (ParseFunctionHeader(F, false))
496     return true;
497   for (auto &MD : MDs)
498     F->addMetadata(MD.first, *MD.second);
499   return false;
500 }
501 
502 /// toplevelentity
503 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
504 bool LLParser::ParseDefine() {
505   assert(Lex.getKind() == lltok::kw_define);
506   Lex.Lex();
507 
508   Function *F;
509   return ParseFunctionHeader(F, true) ||
510          ParseOptionalFunctionMetadata(*F) ||
511          ParseFunctionBody(*F);
512 }
513 
514 /// ParseGlobalType
515 ///   ::= 'constant'
516 ///   ::= 'global'
517 bool LLParser::ParseGlobalType(bool &IsConstant) {
518   if (Lex.getKind() == lltok::kw_constant)
519     IsConstant = true;
520   else if (Lex.getKind() == lltok::kw_global)
521     IsConstant = false;
522   else {
523     IsConstant = false;
524     return TokError("expected 'global' or 'constant'");
525   }
526   Lex.Lex();
527   return false;
528 }
529 
530 bool LLParser::ParseOptionalUnnamedAddr(
531     GlobalVariable::UnnamedAddr &UnnamedAddr) {
532   if (EatIfPresent(lltok::kw_unnamed_addr))
533     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
534   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
535     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
536   else
537     UnnamedAddr = GlobalValue::UnnamedAddr::None;
538   return false;
539 }
540 
541 /// ParseUnnamedGlobal:
542 ///   OptionalVisibility (ALIAS | IFUNC) ...
543 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
544 ///   OptionalDLLStorageClass
545 ///                                                     ...   -> global variable
546 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
547 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
548 ///                OptionalDLLStorageClass
549 ///                                                     ...   -> global variable
550 bool LLParser::ParseUnnamedGlobal() {
551   unsigned VarID = NumberedVals.size();
552   std::string Name;
553   LocTy NameLoc = Lex.getLoc();
554 
555   // Handle the GlobalID form.
556   if (Lex.getKind() == lltok::GlobalID) {
557     if (Lex.getUIntVal() != VarID)
558       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
559                    Twine(VarID) + "'");
560     Lex.Lex(); // eat GlobalID;
561 
562     if (ParseToken(lltok::equal, "expected '=' after name"))
563       return true;
564   }
565 
566   bool HasLinkage;
567   unsigned Linkage, Visibility, DLLStorageClass;
568   bool DSOLocal;
569   GlobalVariable::ThreadLocalMode TLM;
570   GlobalVariable::UnnamedAddr UnnamedAddr;
571   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
572                            DSOLocal) ||
573       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
574     return true;
575 
576   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
577     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
578                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
579 
580   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
581                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
582 }
583 
584 /// ParseNamedGlobal:
585 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
586 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
587 ///                 OptionalVisibility OptionalDLLStorageClass
588 ///                                                     ...   -> global variable
589 bool LLParser::ParseNamedGlobal() {
590   assert(Lex.getKind() == lltok::GlobalVar);
591   LocTy NameLoc = Lex.getLoc();
592   std::string Name = Lex.getStrVal();
593   Lex.Lex();
594 
595   bool HasLinkage;
596   unsigned Linkage, Visibility, DLLStorageClass;
597   bool DSOLocal;
598   GlobalVariable::ThreadLocalMode TLM;
599   GlobalVariable::UnnamedAddr UnnamedAddr;
600   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
601       ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
602                            DSOLocal) ||
603       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
604     return true;
605 
606   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
607     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
608                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
609 
610   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
611                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
612 }
613 
614 bool LLParser::parseComdat() {
615   assert(Lex.getKind() == lltok::ComdatVar);
616   std::string Name = Lex.getStrVal();
617   LocTy NameLoc = Lex.getLoc();
618   Lex.Lex();
619 
620   if (ParseToken(lltok::equal, "expected '=' here"))
621     return true;
622 
623   if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
624     return TokError("expected comdat type");
625 
626   Comdat::SelectionKind SK;
627   switch (Lex.getKind()) {
628   default:
629     return TokError("unknown selection kind");
630   case lltok::kw_any:
631     SK = Comdat::Any;
632     break;
633   case lltok::kw_exactmatch:
634     SK = Comdat::ExactMatch;
635     break;
636   case lltok::kw_largest:
637     SK = Comdat::Largest;
638     break;
639   case lltok::kw_noduplicates:
640     SK = Comdat::NoDuplicates;
641     break;
642   case lltok::kw_samesize:
643     SK = Comdat::SameSize;
644     break;
645   }
646   Lex.Lex();
647 
648   // See if the comdat was forward referenced, if so, use the comdat.
649   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
650   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
651   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
652     return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
653 
654   Comdat *C;
655   if (I != ComdatSymTab.end())
656     C = &I->second;
657   else
658     C = M->getOrInsertComdat(Name);
659   C->setSelectionKind(SK);
660 
661   return false;
662 }
663 
664 // MDString:
665 //   ::= '!' STRINGCONSTANT
666 bool LLParser::ParseMDString(MDString *&Result) {
667   std::string Str;
668   if (ParseStringConstant(Str)) return true;
669   Result = MDString::get(Context, Str);
670   return false;
671 }
672 
673 // MDNode:
674 //   ::= '!' MDNodeNumber
675 bool LLParser::ParseMDNodeID(MDNode *&Result) {
676   // !{ ..., !42, ... }
677   LocTy IDLoc = Lex.getLoc();
678   unsigned MID = 0;
679   if (ParseUInt32(MID))
680     return true;
681 
682   // If not a forward reference, just return it now.
683   if (NumberedMetadata.count(MID)) {
684     Result = NumberedMetadata[MID];
685     return false;
686   }
687 
688   // Otherwise, create MDNode forward reference.
689   auto &FwdRef = ForwardRefMDNodes[MID];
690   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
691 
692   Result = FwdRef.first.get();
693   NumberedMetadata[MID].reset(Result);
694   return false;
695 }
696 
697 /// ParseNamedMetadata:
698 ///   !foo = !{ !1, !2 }
699 bool LLParser::ParseNamedMetadata() {
700   assert(Lex.getKind() == lltok::MetadataVar);
701   std::string Name = Lex.getStrVal();
702   Lex.Lex();
703 
704   if (ParseToken(lltok::equal, "expected '=' here") ||
705       ParseToken(lltok::exclaim, "Expected '!' here") ||
706       ParseToken(lltok::lbrace, "Expected '{' here"))
707     return true;
708 
709   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
710   if (Lex.getKind() != lltok::rbrace)
711     do {
712       MDNode *N = nullptr;
713       // Parse DIExpressions inline as a special case. They are still MDNodes,
714       // so they can still appear in named metadata. Remove this logic if they
715       // become plain Metadata.
716       if (Lex.getKind() == lltok::MetadataVar &&
717           Lex.getStrVal() == "DIExpression") {
718         if (ParseDIExpression(N, /*IsDistinct=*/false))
719           return true;
720       } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
721                  ParseMDNodeID(N)) {
722         return true;
723       }
724       NMD->addOperand(N);
725     } while (EatIfPresent(lltok::comma));
726 
727   return ParseToken(lltok::rbrace, "expected end of metadata node");
728 }
729 
730 /// ParseStandaloneMetadata:
731 ///   !42 = !{...}
732 bool LLParser::ParseStandaloneMetadata() {
733   assert(Lex.getKind() == lltok::exclaim);
734   Lex.Lex();
735   unsigned MetadataID = 0;
736 
737   MDNode *Init;
738   if (ParseUInt32(MetadataID) ||
739       ParseToken(lltok::equal, "expected '=' here"))
740     return true;
741 
742   // Detect common error, from old metadata syntax.
743   if (Lex.getKind() == lltok::Type)
744     return TokError("unexpected type in metadata definition");
745 
746   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
747   if (Lex.getKind() == lltok::MetadataVar) {
748     if (ParseSpecializedMDNode(Init, IsDistinct))
749       return true;
750   } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
751              ParseMDTuple(Init, IsDistinct))
752     return true;
753 
754   // See if this was forward referenced, if so, handle it.
755   auto FI = ForwardRefMDNodes.find(MetadataID);
756   if (FI != ForwardRefMDNodes.end()) {
757     FI->second.first->replaceAllUsesWith(Init);
758     ForwardRefMDNodes.erase(FI);
759 
760     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
761   } else {
762     if (NumberedMetadata.count(MetadataID))
763       return TokError("Metadata id is already used");
764     NumberedMetadata[MetadataID].reset(Init);
765   }
766 
767   return false;
768 }
769 
770 // Skips a single module summary entry.
771 bool LLParser::SkipModuleSummaryEntry() {
772   // Each module summary entry consists of a tag for the entry
773   // type, followed by a colon, then the fields surrounded by nested sets of
774   // parentheses. The "tag:" looks like a Label. Once parsing support is
775   // in place we will look for the tokens corresponding to the expected tags.
776   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
777       Lex.getKind() != lltok::kw_typeid)
778     return TokError(
779         "Expected 'gv', 'module', or 'typeid' at the start of summary entry");
780   Lex.Lex();
781   if (ParseToken(lltok::colon, "expected ':' at start of summary entry") ||
782       ParseToken(lltok::lparen, "expected '(' at start of summary entry"))
783     return true;
784   // Now walk through the parenthesized entry, until the number of open
785   // parentheses goes back down to 0 (the first '(' was parsed above).
786   unsigned NumOpenParen = 1;
787   do {
788     switch (Lex.getKind()) {
789     case lltok::lparen:
790       NumOpenParen++;
791       break;
792     case lltok::rparen:
793       NumOpenParen--;
794       break;
795     case lltok::Eof:
796       return TokError("found end of file while parsing summary entry");
797     default:
798       // Skip everything in between parentheses.
799       break;
800     }
801     Lex.Lex();
802   } while (NumOpenParen > 0);
803   return false;
804 }
805 
806 /// SummaryEntry
807 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
808 bool LLParser::ParseSummaryEntry() {
809   assert(Lex.getKind() == lltok::SummaryID);
810   unsigned SummaryID = Lex.getUIntVal();
811 
812   // For summary entries, colons should be treated as distinct tokens,
813   // not an indication of the end of a label token.
814   Lex.setIgnoreColonInIdentifiers(true);
815 
816   Lex.Lex();
817   if (ParseToken(lltok::equal, "expected '=' here"))
818     return true;
819 
820   // If we don't have an index object, skip the summary entry.
821   if (!Index)
822     return SkipModuleSummaryEntry();
823 
824   bool result = false;
825   switch (Lex.getKind()) {
826   case lltok::kw_gv:
827     result = ParseGVEntry(SummaryID);
828     break;
829   case lltok::kw_module:
830     result = ParseModuleEntry(SummaryID);
831     break;
832   case lltok::kw_typeid:
833     result = ParseTypeIdEntry(SummaryID);
834     break;
835   case lltok::kw_typeidCompatibleVTable:
836     result = ParseTypeIdCompatibleVtableEntry(SummaryID);
837     break;
838   default:
839     result = Error(Lex.getLoc(), "unexpected summary kind");
840     break;
841   }
842   Lex.setIgnoreColonInIdentifiers(false);
843   return result;
844 }
845 
846 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
847   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
848          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
849 }
850 
851 // If there was an explicit dso_local, update GV. In the absence of an explicit
852 // dso_local we keep the default value.
853 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
854   if (DSOLocal)
855     GV.setDSOLocal(true);
856 }
857 
858 /// parseIndirectSymbol:
859 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
860 ///                     OptionalVisibility OptionalDLLStorageClass
861 ///                     OptionalThreadLocal OptionalUnnamedAddr
862 ///                     'alias|ifunc' IndirectSymbol IndirectSymbolAttr*
863 ///
864 /// IndirectSymbol
865 ///   ::= TypeAndValue
866 ///
867 /// IndirectSymbolAttr
868 ///   ::= ',' 'partition' StringConstant
869 ///
870 /// Everything through OptionalUnnamedAddr has already been parsed.
871 ///
872 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
873                                    unsigned L, unsigned Visibility,
874                                    unsigned DLLStorageClass, bool DSOLocal,
875                                    GlobalVariable::ThreadLocalMode TLM,
876                                    GlobalVariable::UnnamedAddr UnnamedAddr) {
877   bool IsAlias;
878   if (Lex.getKind() == lltok::kw_alias)
879     IsAlias = true;
880   else if (Lex.getKind() == lltok::kw_ifunc)
881     IsAlias = false;
882   else
883     llvm_unreachable("Not an alias or ifunc!");
884   Lex.Lex();
885 
886   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
887 
888   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
889     return Error(NameLoc, "invalid linkage type for alias");
890 
891   if (!isValidVisibilityForLinkage(Visibility, L))
892     return Error(NameLoc,
893                  "symbol with local linkage must have default visibility");
894 
895   Type *Ty;
896   LocTy ExplicitTypeLoc = Lex.getLoc();
897   if (ParseType(Ty) ||
898       ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
899     return true;
900 
901   Constant *Aliasee;
902   LocTy AliaseeLoc = Lex.getLoc();
903   if (Lex.getKind() != lltok::kw_bitcast &&
904       Lex.getKind() != lltok::kw_getelementptr &&
905       Lex.getKind() != lltok::kw_addrspacecast &&
906       Lex.getKind() != lltok::kw_inttoptr) {
907     if (ParseGlobalTypeAndValue(Aliasee))
908       return true;
909   } else {
910     // The bitcast dest type is not present, it is implied by the dest type.
911     ValID ID;
912     if (ParseValID(ID))
913       return true;
914     if (ID.Kind != ValID::t_Constant)
915       return Error(AliaseeLoc, "invalid aliasee");
916     Aliasee = ID.ConstantVal;
917   }
918 
919   Type *AliaseeType = Aliasee->getType();
920   auto *PTy = dyn_cast<PointerType>(AliaseeType);
921   if (!PTy)
922     return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
923   unsigned AddrSpace = PTy->getAddressSpace();
924 
925   if (IsAlias && Ty != PTy->getElementType())
926     return Error(
927         ExplicitTypeLoc,
928         "explicit pointee type doesn't match operand's pointee type");
929 
930   if (!IsAlias && !PTy->getElementType()->isFunctionTy())
931     return Error(
932         ExplicitTypeLoc,
933         "explicit pointee type should be a function type");
934 
935   GlobalValue *GVal = nullptr;
936 
937   // See if the alias was forward referenced, if so, prepare to replace the
938   // forward reference.
939   if (!Name.empty()) {
940     GVal = M->getNamedValue(Name);
941     if (GVal) {
942       if (!ForwardRefVals.erase(Name))
943         return Error(NameLoc, "redefinition of global '@" + Name + "'");
944     }
945   } else {
946     auto I = ForwardRefValIDs.find(NumberedVals.size());
947     if (I != ForwardRefValIDs.end()) {
948       GVal = I->second.first;
949       ForwardRefValIDs.erase(I);
950     }
951   }
952 
953   // Okay, create the alias but do not insert it into the module yet.
954   std::unique_ptr<GlobalIndirectSymbol> GA;
955   if (IsAlias)
956     GA.reset(GlobalAlias::create(Ty, AddrSpace,
957                                  (GlobalValue::LinkageTypes)Linkage, Name,
958                                  Aliasee, /*Parent*/ nullptr));
959   else
960     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
961                                  (GlobalValue::LinkageTypes)Linkage, Name,
962                                  Aliasee, /*Parent*/ nullptr));
963   GA->setThreadLocalMode(TLM);
964   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
965   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
966   GA->setUnnamedAddr(UnnamedAddr);
967   maybeSetDSOLocal(DSOLocal, *GA);
968 
969   // At this point we've parsed everything except for the IndirectSymbolAttrs.
970   // Now parse them if there are any.
971   while (Lex.getKind() == lltok::comma) {
972     Lex.Lex();
973 
974     if (Lex.getKind() == lltok::kw_partition) {
975       Lex.Lex();
976       GA->setPartition(Lex.getStrVal());
977       if (ParseToken(lltok::StringConstant, "expected partition string"))
978         return true;
979     } else {
980       return TokError("unknown alias or ifunc property!");
981     }
982   }
983 
984   if (Name.empty())
985     NumberedVals.push_back(GA.get());
986 
987   if (GVal) {
988     // Verify that types agree.
989     if (GVal->getType() != GA->getType())
990       return Error(
991           ExplicitTypeLoc,
992           "forward reference and definition of alias have different types");
993 
994     // If they agree, just RAUW the old value with the alias and remove the
995     // forward ref info.
996     GVal->replaceAllUsesWith(GA.get());
997     GVal->eraseFromParent();
998   }
999 
1000   // Insert into the module, we know its name won't collide now.
1001   if (IsAlias)
1002     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
1003   else
1004     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
1005   assert(GA->getName() == Name && "Should not be a name conflict!");
1006 
1007   // The module owns this now
1008   GA.release();
1009 
1010   return false;
1011 }
1012 
1013 /// ParseGlobal
1014 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1015 ///       OptionalVisibility OptionalDLLStorageClass
1016 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1017 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1018 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1019 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1020 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1021 ///       Const OptionalAttrs
1022 ///
1023 /// Everything up to and including OptionalUnnamedAddr has been parsed
1024 /// already.
1025 ///
1026 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
1027                            unsigned Linkage, bool HasLinkage,
1028                            unsigned Visibility, unsigned DLLStorageClass,
1029                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1030                            GlobalVariable::UnnamedAddr UnnamedAddr) {
1031   if (!isValidVisibilityForLinkage(Visibility, Linkage))
1032     return Error(NameLoc,
1033                  "symbol with local linkage must have default visibility");
1034 
1035   unsigned AddrSpace;
1036   bool IsConstant, IsExternallyInitialized;
1037   LocTy IsExternallyInitializedLoc;
1038   LocTy TyLoc;
1039 
1040   Type *Ty = nullptr;
1041   if (ParseOptionalAddrSpace(AddrSpace) ||
1042       ParseOptionalToken(lltok::kw_externally_initialized,
1043                          IsExternallyInitialized,
1044                          &IsExternallyInitializedLoc) ||
1045       ParseGlobalType(IsConstant) ||
1046       ParseType(Ty, TyLoc))
1047     return true;
1048 
1049   // If the linkage is specified and is external, then no initializer is
1050   // present.
1051   Constant *Init = nullptr;
1052   if (!HasLinkage ||
1053       !GlobalValue::isValidDeclarationLinkage(
1054           (GlobalValue::LinkageTypes)Linkage)) {
1055     if (ParseGlobalValue(Ty, Init))
1056       return true;
1057   }
1058 
1059   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1060     return Error(TyLoc, "invalid type for global variable");
1061 
1062   GlobalValue *GVal = nullptr;
1063 
1064   // See if the global was forward referenced, if so, use the global.
1065   if (!Name.empty()) {
1066     GVal = M->getNamedValue(Name);
1067     if (GVal) {
1068       if (!ForwardRefVals.erase(Name))
1069         return Error(NameLoc, "redefinition of global '@" + Name + "'");
1070     }
1071   } else {
1072     auto I = ForwardRefValIDs.find(NumberedVals.size());
1073     if (I != ForwardRefValIDs.end()) {
1074       GVal = I->second.first;
1075       ForwardRefValIDs.erase(I);
1076     }
1077   }
1078 
1079   GlobalVariable *GV;
1080   if (!GVal) {
1081     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
1082                             Name, nullptr, GlobalVariable::NotThreadLocal,
1083                             AddrSpace);
1084   } else {
1085     if (GVal->getValueType() != Ty)
1086       return Error(TyLoc,
1087             "forward reference and definition of global have different types");
1088 
1089     GV = cast<GlobalVariable>(GVal);
1090 
1091     // Move the forward-reference to the correct spot in the module.
1092     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
1093   }
1094 
1095   if (Name.empty())
1096     NumberedVals.push_back(GV);
1097 
1098   // Set the parsed properties on the global.
1099   if (Init)
1100     GV->setInitializer(Init);
1101   GV->setConstant(IsConstant);
1102   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1103   maybeSetDSOLocal(DSOLocal, *GV);
1104   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1105   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1106   GV->setExternallyInitialized(IsExternallyInitialized);
1107   GV->setThreadLocalMode(TLM);
1108   GV->setUnnamedAddr(UnnamedAddr);
1109 
1110   // Parse attributes on the global.
1111   while (Lex.getKind() == lltok::comma) {
1112     Lex.Lex();
1113 
1114     if (Lex.getKind() == lltok::kw_section) {
1115       Lex.Lex();
1116       GV->setSection(Lex.getStrVal());
1117       if (ParseToken(lltok::StringConstant, "expected global section string"))
1118         return true;
1119     } else if (Lex.getKind() == lltok::kw_partition) {
1120       Lex.Lex();
1121       GV->setPartition(Lex.getStrVal());
1122       if (ParseToken(lltok::StringConstant, "expected partition string"))
1123         return true;
1124     } else if (Lex.getKind() == lltok::kw_align) {
1125       unsigned Alignment;
1126       if (ParseOptionalAlignment(Alignment)) return true;
1127       GV->setAlignment(Alignment);
1128     } else if (Lex.getKind() == lltok::MetadataVar) {
1129       if (ParseGlobalObjectMetadataAttachment(*GV))
1130         return true;
1131     } else {
1132       Comdat *C;
1133       if (parseOptionalComdat(Name, C))
1134         return true;
1135       if (C)
1136         GV->setComdat(C);
1137       else
1138         return TokError("unknown global variable property!");
1139     }
1140   }
1141 
1142   AttrBuilder Attrs;
1143   LocTy BuiltinLoc;
1144   std::vector<unsigned> FwdRefAttrGrps;
1145   if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1146     return true;
1147   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1148     GV->setAttributes(AttributeSet::get(Context, Attrs));
1149     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1150   }
1151 
1152   return false;
1153 }
1154 
1155 /// ParseUnnamedAttrGrp
1156 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1157 bool LLParser::ParseUnnamedAttrGrp() {
1158   assert(Lex.getKind() == lltok::kw_attributes);
1159   LocTy AttrGrpLoc = Lex.getLoc();
1160   Lex.Lex();
1161 
1162   if (Lex.getKind() != lltok::AttrGrpID)
1163     return TokError("expected attribute group id");
1164 
1165   unsigned VarID = Lex.getUIntVal();
1166   std::vector<unsigned> unused;
1167   LocTy BuiltinLoc;
1168   Lex.Lex();
1169 
1170   if (ParseToken(lltok::equal, "expected '=' here") ||
1171       ParseToken(lltok::lbrace, "expected '{' here") ||
1172       ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1173                                  BuiltinLoc) ||
1174       ParseToken(lltok::rbrace, "expected end of attribute group"))
1175     return true;
1176 
1177   if (!NumberedAttrBuilders[VarID].hasAttributes())
1178     return Error(AttrGrpLoc, "attribute group has no attributes");
1179 
1180   return false;
1181 }
1182 
1183 /// ParseFnAttributeValuePairs
1184 ///   ::= <attr> | <attr> '=' <value>
1185 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
1186                                           std::vector<unsigned> &FwdRefAttrGrps,
1187                                           bool inAttrGrp, LocTy &BuiltinLoc) {
1188   bool HaveError = false;
1189 
1190   B.clear();
1191 
1192   while (true) {
1193     lltok::Kind Token = Lex.getKind();
1194     if (Token == lltok::kw_builtin)
1195       BuiltinLoc = Lex.getLoc();
1196     switch (Token) {
1197     default:
1198       if (!inAttrGrp) return HaveError;
1199       return Error(Lex.getLoc(), "unterminated attribute group");
1200     case lltok::rbrace:
1201       // Finished.
1202       return false;
1203 
1204     case lltok::AttrGrpID: {
1205       // Allow a function to reference an attribute group:
1206       //
1207       //   define void @foo() #1 { ... }
1208       if (inAttrGrp)
1209         HaveError |=
1210           Error(Lex.getLoc(),
1211               "cannot have an attribute group reference in an attribute group");
1212 
1213       unsigned AttrGrpNum = Lex.getUIntVal();
1214       if (inAttrGrp) break;
1215 
1216       // Save the reference to the attribute group. We'll fill it in later.
1217       FwdRefAttrGrps.push_back(AttrGrpNum);
1218       break;
1219     }
1220     // Target-dependent attributes:
1221     case lltok::StringConstant: {
1222       if (ParseStringAttribute(B))
1223         return true;
1224       continue;
1225     }
1226 
1227     // Target-independent attributes:
1228     case lltok::kw_align: {
1229       // As a hack, we allow function alignment to be initially parsed as an
1230       // attribute on a function declaration/definition or added to an attribute
1231       // group and later moved to the alignment field.
1232       unsigned Alignment;
1233       if (inAttrGrp) {
1234         Lex.Lex();
1235         if (ParseToken(lltok::equal, "expected '=' here") ||
1236             ParseUInt32(Alignment))
1237           return true;
1238       } else {
1239         if (ParseOptionalAlignment(Alignment))
1240           return true;
1241       }
1242       B.addAlignmentAttr(Alignment);
1243       continue;
1244     }
1245     case lltok::kw_alignstack: {
1246       unsigned Alignment;
1247       if (inAttrGrp) {
1248         Lex.Lex();
1249         if (ParseToken(lltok::equal, "expected '=' here") ||
1250             ParseUInt32(Alignment))
1251           return true;
1252       } else {
1253         if (ParseOptionalStackAlignment(Alignment))
1254           return true;
1255       }
1256       B.addStackAlignmentAttr(Alignment);
1257       continue;
1258     }
1259     case lltok::kw_allocsize: {
1260       unsigned ElemSizeArg;
1261       Optional<unsigned> NumElemsArg;
1262       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1263       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1264         return true;
1265       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1266       continue;
1267     }
1268     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1269     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1270     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1271     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1272     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1273     case lltok::kw_inaccessiblememonly:
1274       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1275     case lltok::kw_inaccessiblemem_or_argmemonly:
1276       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1277     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1278     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1279     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1280     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1281     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1282     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1283     case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break;
1284     case lltok::kw_noimplicitfloat:
1285       B.addAttribute(Attribute::NoImplicitFloat); break;
1286     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1287     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1288     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1289     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1290     case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break;
1291     case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break;
1292     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1293     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1294     case lltok::kw_optforfuzzing:
1295       B.addAttribute(Attribute::OptForFuzzing); break;
1296     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1297     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1298     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1299     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1300     case lltok::kw_returns_twice:
1301       B.addAttribute(Attribute::ReturnsTwice); break;
1302     case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1303     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1304     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1305     case lltok::kw_sspstrong:
1306       B.addAttribute(Attribute::StackProtectStrong); break;
1307     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1308     case lltok::kw_shadowcallstack:
1309       B.addAttribute(Attribute::ShadowCallStack); break;
1310     case lltok::kw_sanitize_address:
1311       B.addAttribute(Attribute::SanitizeAddress); break;
1312     case lltok::kw_sanitize_hwaddress:
1313       B.addAttribute(Attribute::SanitizeHWAddress); break;
1314     case lltok::kw_sanitize_memtag:
1315       B.addAttribute(Attribute::SanitizeMemTag); break;
1316     case lltok::kw_sanitize_thread:
1317       B.addAttribute(Attribute::SanitizeThread); break;
1318     case lltok::kw_sanitize_memory:
1319       B.addAttribute(Attribute::SanitizeMemory); break;
1320     case lltok::kw_speculative_load_hardening:
1321       B.addAttribute(Attribute::SpeculativeLoadHardening);
1322       break;
1323     case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1324     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1325     case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break;
1326     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1327 
1328     // Error handling.
1329     case lltok::kw_inreg:
1330     case lltok::kw_signext:
1331     case lltok::kw_zeroext:
1332       HaveError |=
1333         Error(Lex.getLoc(),
1334               "invalid use of attribute on a function");
1335       break;
1336     case lltok::kw_byval:
1337     case lltok::kw_dereferenceable:
1338     case lltok::kw_dereferenceable_or_null:
1339     case lltok::kw_inalloca:
1340     case lltok::kw_nest:
1341     case lltok::kw_noalias:
1342     case lltok::kw_nocapture:
1343     case lltok::kw_nonnull:
1344     case lltok::kw_returned:
1345     case lltok::kw_sret:
1346     case lltok::kw_swifterror:
1347     case lltok::kw_swiftself:
1348     case lltok::kw_immarg:
1349       HaveError |=
1350         Error(Lex.getLoc(),
1351               "invalid use of parameter-only attribute on a function");
1352       break;
1353     }
1354 
1355     Lex.Lex();
1356   }
1357 }
1358 
1359 //===----------------------------------------------------------------------===//
1360 // GlobalValue Reference/Resolution Routines.
1361 //===----------------------------------------------------------------------===//
1362 
1363 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1364                                               const std::string &Name) {
1365   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1366     return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1367                             PTy->getAddressSpace(), Name, M);
1368   else
1369     return new GlobalVariable(*M, PTy->getElementType(), false,
1370                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1371                               nullptr, GlobalVariable::NotThreadLocal,
1372                               PTy->getAddressSpace());
1373 }
1374 
1375 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1376                                         Value *Val, bool IsCall) {
1377   if (Val->getType() == Ty)
1378     return Val;
1379   // For calls we also accept variables in the program address space.
1380   Type *SuggestedTy = Ty;
1381   if (IsCall && isa<PointerType>(Ty)) {
1382     Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo(
1383         M->getDataLayout().getProgramAddressSpace());
1384     SuggestedTy = TyInProgAS;
1385     if (Val->getType() == TyInProgAS)
1386       return Val;
1387   }
1388   if (Ty->isLabelTy())
1389     Error(Loc, "'" + Name + "' is not a basic block");
1390   else
1391     Error(Loc, "'" + Name + "' defined with type '" +
1392                    getTypeString(Val->getType()) + "' but expected '" +
1393                    getTypeString(SuggestedTy) + "'");
1394   return nullptr;
1395 }
1396 
1397 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1398 /// forward reference record if needed.  This can return null if the value
1399 /// exists but does not have the right type.
1400 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1401                                     LocTy Loc, bool IsCall) {
1402   PointerType *PTy = dyn_cast<PointerType>(Ty);
1403   if (!PTy) {
1404     Error(Loc, "global variable reference must have pointer type");
1405     return nullptr;
1406   }
1407 
1408   // Look this name up in the normal function symbol table.
1409   GlobalValue *Val =
1410     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1411 
1412   // If this is a forward reference for the value, see if we already created a
1413   // forward ref record.
1414   if (!Val) {
1415     auto I = ForwardRefVals.find(Name);
1416     if (I != ForwardRefVals.end())
1417       Val = I->second.first;
1418   }
1419 
1420   // If we have the value in the symbol table or fwd-ref table, return it.
1421   if (Val)
1422     return cast_or_null<GlobalValue>(
1423         checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall));
1424 
1425   // Otherwise, create a new forward reference for this value and remember it.
1426   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1427   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1428   return FwdVal;
1429 }
1430 
1431 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc,
1432                                     bool IsCall) {
1433   PointerType *PTy = dyn_cast<PointerType>(Ty);
1434   if (!PTy) {
1435     Error(Loc, "global variable reference must have pointer type");
1436     return nullptr;
1437   }
1438 
1439   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1440 
1441   // If this is a forward reference for the value, see if we already created a
1442   // forward ref record.
1443   if (!Val) {
1444     auto I = ForwardRefValIDs.find(ID);
1445     if (I != ForwardRefValIDs.end())
1446       Val = I->second.first;
1447   }
1448 
1449   // If we have the value in the symbol table or fwd-ref table, return it.
1450   if (Val)
1451     return cast_or_null<GlobalValue>(
1452         checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall));
1453 
1454   // Otherwise, create a new forward reference for this value and remember it.
1455   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1456   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1457   return FwdVal;
1458 }
1459 
1460 //===----------------------------------------------------------------------===//
1461 // Comdat Reference/Resolution Routines.
1462 //===----------------------------------------------------------------------===//
1463 
1464 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1465   // Look this name up in the comdat symbol table.
1466   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1467   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1468   if (I != ComdatSymTab.end())
1469     return &I->second;
1470 
1471   // Otherwise, create a new forward reference for this value and remember it.
1472   Comdat *C = M->getOrInsertComdat(Name);
1473   ForwardRefComdats[Name] = Loc;
1474   return C;
1475 }
1476 
1477 //===----------------------------------------------------------------------===//
1478 // Helper Routines.
1479 //===----------------------------------------------------------------------===//
1480 
1481 /// ParseToken - If the current token has the specified kind, eat it and return
1482 /// success.  Otherwise, emit the specified error and return failure.
1483 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1484   if (Lex.getKind() != T)
1485     return TokError(ErrMsg);
1486   Lex.Lex();
1487   return false;
1488 }
1489 
1490 /// ParseStringConstant
1491 ///   ::= StringConstant
1492 bool LLParser::ParseStringConstant(std::string &Result) {
1493   if (Lex.getKind() != lltok::StringConstant)
1494     return TokError("expected string constant");
1495   Result = Lex.getStrVal();
1496   Lex.Lex();
1497   return false;
1498 }
1499 
1500 /// ParseUInt32
1501 ///   ::= uint32
1502 bool LLParser::ParseUInt32(uint32_t &Val) {
1503   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1504     return TokError("expected integer");
1505   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1506   if (Val64 != unsigned(Val64))
1507     return TokError("expected 32-bit integer (too large)");
1508   Val = Val64;
1509   Lex.Lex();
1510   return false;
1511 }
1512 
1513 /// ParseUInt64
1514 ///   ::= uint64
1515 bool LLParser::ParseUInt64(uint64_t &Val) {
1516   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1517     return TokError("expected integer");
1518   Val = Lex.getAPSIntVal().getLimitedValue();
1519   Lex.Lex();
1520   return false;
1521 }
1522 
1523 /// ParseTLSModel
1524 ///   := 'localdynamic'
1525 ///   := 'initialexec'
1526 ///   := 'localexec'
1527 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1528   switch (Lex.getKind()) {
1529     default:
1530       return TokError("expected localdynamic, initialexec or localexec");
1531     case lltok::kw_localdynamic:
1532       TLM = GlobalVariable::LocalDynamicTLSModel;
1533       break;
1534     case lltok::kw_initialexec:
1535       TLM = GlobalVariable::InitialExecTLSModel;
1536       break;
1537     case lltok::kw_localexec:
1538       TLM = GlobalVariable::LocalExecTLSModel;
1539       break;
1540   }
1541 
1542   Lex.Lex();
1543   return false;
1544 }
1545 
1546 /// ParseOptionalThreadLocal
1547 ///   := /*empty*/
1548 ///   := 'thread_local'
1549 ///   := 'thread_local' '(' tlsmodel ')'
1550 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1551   TLM = GlobalVariable::NotThreadLocal;
1552   if (!EatIfPresent(lltok::kw_thread_local))
1553     return false;
1554 
1555   TLM = GlobalVariable::GeneralDynamicTLSModel;
1556   if (Lex.getKind() == lltok::lparen) {
1557     Lex.Lex();
1558     return ParseTLSModel(TLM) ||
1559       ParseToken(lltok::rparen, "expected ')' after thread local model");
1560   }
1561   return false;
1562 }
1563 
1564 /// ParseOptionalAddrSpace
1565 ///   := /*empty*/
1566 ///   := 'addrspace' '(' uint32 ')'
1567 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1568   AddrSpace = DefaultAS;
1569   if (!EatIfPresent(lltok::kw_addrspace))
1570     return false;
1571   return ParseToken(lltok::lparen, "expected '(' in address space") ||
1572          ParseUInt32(AddrSpace) ||
1573          ParseToken(lltok::rparen, "expected ')' in address space");
1574 }
1575 
1576 /// ParseStringAttribute
1577 ///   := StringConstant
1578 ///   := StringConstant '=' StringConstant
1579 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1580   std::string Attr = Lex.getStrVal();
1581   Lex.Lex();
1582   std::string Val;
1583   if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1584     return true;
1585   B.addAttribute(Attr, Val);
1586   return false;
1587 }
1588 
1589 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1590 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1591   bool HaveError = false;
1592 
1593   B.clear();
1594 
1595   while (true) {
1596     lltok::Kind Token = Lex.getKind();
1597     switch (Token) {
1598     default:  // End of attributes.
1599       return HaveError;
1600     case lltok::StringConstant: {
1601       if (ParseStringAttribute(B))
1602         return true;
1603       continue;
1604     }
1605     case lltok::kw_align: {
1606       unsigned Alignment;
1607       if (ParseOptionalAlignment(Alignment))
1608         return true;
1609       B.addAlignmentAttr(Alignment);
1610       continue;
1611     }
1612     case lltok::kw_byval: {
1613       Type *Ty;
1614       if (ParseByValWithOptionalType(Ty))
1615         return true;
1616       B.addByValAttr(Ty);
1617       continue;
1618     }
1619     case lltok::kw_dereferenceable: {
1620       uint64_t Bytes;
1621       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1622         return true;
1623       B.addDereferenceableAttr(Bytes);
1624       continue;
1625     }
1626     case lltok::kw_dereferenceable_or_null: {
1627       uint64_t Bytes;
1628       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1629         return true;
1630       B.addDereferenceableOrNullAttr(Bytes);
1631       continue;
1632     }
1633     case lltok::kw_inalloca:        B.addAttribute(Attribute::InAlloca); break;
1634     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1635     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1636     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1637     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1638     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1639     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1640     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1641     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1642     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1643     case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1644     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1645     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1646     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
1647     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1648     case lltok::kw_immarg:          B.addAttribute(Attribute::ImmArg); break;
1649 
1650     case lltok::kw_alignstack:
1651     case lltok::kw_alwaysinline:
1652     case lltok::kw_argmemonly:
1653     case lltok::kw_builtin:
1654     case lltok::kw_inlinehint:
1655     case lltok::kw_jumptable:
1656     case lltok::kw_minsize:
1657     case lltok::kw_naked:
1658     case lltok::kw_nobuiltin:
1659     case lltok::kw_noduplicate:
1660     case lltok::kw_noimplicitfloat:
1661     case lltok::kw_noinline:
1662     case lltok::kw_nonlazybind:
1663     case lltok::kw_noredzone:
1664     case lltok::kw_noreturn:
1665     case lltok::kw_nocf_check:
1666     case lltok::kw_nounwind:
1667     case lltok::kw_optforfuzzing:
1668     case lltok::kw_optnone:
1669     case lltok::kw_optsize:
1670     case lltok::kw_returns_twice:
1671     case lltok::kw_sanitize_address:
1672     case lltok::kw_sanitize_hwaddress:
1673     case lltok::kw_sanitize_memtag:
1674     case lltok::kw_sanitize_memory:
1675     case lltok::kw_sanitize_thread:
1676     case lltok::kw_speculative_load_hardening:
1677     case lltok::kw_ssp:
1678     case lltok::kw_sspreq:
1679     case lltok::kw_sspstrong:
1680     case lltok::kw_safestack:
1681     case lltok::kw_shadowcallstack:
1682     case lltok::kw_strictfp:
1683     case lltok::kw_uwtable:
1684       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1685       break;
1686     }
1687 
1688     Lex.Lex();
1689   }
1690 }
1691 
1692 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1693 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1694   bool HaveError = false;
1695 
1696   B.clear();
1697 
1698   while (true) {
1699     lltok::Kind Token = Lex.getKind();
1700     switch (Token) {
1701     default:  // End of attributes.
1702       return HaveError;
1703     case lltok::StringConstant: {
1704       if (ParseStringAttribute(B))
1705         return true;
1706       continue;
1707     }
1708     case lltok::kw_dereferenceable: {
1709       uint64_t Bytes;
1710       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1711         return true;
1712       B.addDereferenceableAttr(Bytes);
1713       continue;
1714     }
1715     case lltok::kw_dereferenceable_or_null: {
1716       uint64_t Bytes;
1717       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1718         return true;
1719       B.addDereferenceableOrNullAttr(Bytes);
1720       continue;
1721     }
1722     case lltok::kw_align: {
1723       unsigned Alignment;
1724       if (ParseOptionalAlignment(Alignment))
1725         return true;
1726       B.addAlignmentAttr(Alignment);
1727       continue;
1728     }
1729     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1730     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1731     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1732     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1733     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1734 
1735     // Error handling.
1736     case lltok::kw_byval:
1737     case lltok::kw_inalloca:
1738     case lltok::kw_nest:
1739     case lltok::kw_nocapture:
1740     case lltok::kw_returned:
1741     case lltok::kw_sret:
1742     case lltok::kw_swifterror:
1743     case lltok::kw_swiftself:
1744     case lltok::kw_immarg:
1745       HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1746       break;
1747 
1748     case lltok::kw_alignstack:
1749     case lltok::kw_alwaysinline:
1750     case lltok::kw_argmemonly:
1751     case lltok::kw_builtin:
1752     case lltok::kw_cold:
1753     case lltok::kw_inlinehint:
1754     case lltok::kw_jumptable:
1755     case lltok::kw_minsize:
1756     case lltok::kw_naked:
1757     case lltok::kw_nobuiltin:
1758     case lltok::kw_noduplicate:
1759     case lltok::kw_noimplicitfloat:
1760     case lltok::kw_noinline:
1761     case lltok::kw_nonlazybind:
1762     case lltok::kw_noredzone:
1763     case lltok::kw_noreturn:
1764     case lltok::kw_nocf_check:
1765     case lltok::kw_nounwind:
1766     case lltok::kw_optforfuzzing:
1767     case lltok::kw_optnone:
1768     case lltok::kw_optsize:
1769     case lltok::kw_returns_twice:
1770     case lltok::kw_sanitize_address:
1771     case lltok::kw_sanitize_hwaddress:
1772     case lltok::kw_sanitize_memtag:
1773     case lltok::kw_sanitize_memory:
1774     case lltok::kw_sanitize_thread:
1775     case lltok::kw_speculative_load_hardening:
1776     case lltok::kw_ssp:
1777     case lltok::kw_sspreq:
1778     case lltok::kw_sspstrong:
1779     case lltok::kw_safestack:
1780     case lltok::kw_shadowcallstack:
1781     case lltok::kw_strictfp:
1782     case lltok::kw_uwtable:
1783       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1784       break;
1785 
1786     case lltok::kw_readnone:
1787     case lltok::kw_readonly:
1788       HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1789     }
1790 
1791     Lex.Lex();
1792   }
1793 }
1794 
1795 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1796   HasLinkage = true;
1797   switch (Kind) {
1798   default:
1799     HasLinkage = false;
1800     return GlobalValue::ExternalLinkage;
1801   case lltok::kw_private:
1802     return GlobalValue::PrivateLinkage;
1803   case lltok::kw_internal:
1804     return GlobalValue::InternalLinkage;
1805   case lltok::kw_weak:
1806     return GlobalValue::WeakAnyLinkage;
1807   case lltok::kw_weak_odr:
1808     return GlobalValue::WeakODRLinkage;
1809   case lltok::kw_linkonce:
1810     return GlobalValue::LinkOnceAnyLinkage;
1811   case lltok::kw_linkonce_odr:
1812     return GlobalValue::LinkOnceODRLinkage;
1813   case lltok::kw_available_externally:
1814     return GlobalValue::AvailableExternallyLinkage;
1815   case lltok::kw_appending:
1816     return GlobalValue::AppendingLinkage;
1817   case lltok::kw_common:
1818     return GlobalValue::CommonLinkage;
1819   case lltok::kw_extern_weak:
1820     return GlobalValue::ExternalWeakLinkage;
1821   case lltok::kw_external:
1822     return GlobalValue::ExternalLinkage;
1823   }
1824 }
1825 
1826 /// ParseOptionalLinkage
1827 ///   ::= /*empty*/
1828 ///   ::= 'private'
1829 ///   ::= 'internal'
1830 ///   ::= 'weak'
1831 ///   ::= 'weak_odr'
1832 ///   ::= 'linkonce'
1833 ///   ::= 'linkonce_odr'
1834 ///   ::= 'available_externally'
1835 ///   ::= 'appending'
1836 ///   ::= 'common'
1837 ///   ::= 'extern_weak'
1838 ///   ::= 'external'
1839 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1840                                     unsigned &Visibility,
1841                                     unsigned &DLLStorageClass,
1842                                     bool &DSOLocal) {
1843   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1844   if (HasLinkage)
1845     Lex.Lex();
1846   ParseOptionalDSOLocal(DSOLocal);
1847   ParseOptionalVisibility(Visibility);
1848   ParseOptionalDLLStorageClass(DLLStorageClass);
1849 
1850   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1851     return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1852   }
1853 
1854   return false;
1855 }
1856 
1857 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) {
1858   switch (Lex.getKind()) {
1859   default:
1860     DSOLocal = false;
1861     break;
1862   case lltok::kw_dso_local:
1863     DSOLocal = true;
1864     Lex.Lex();
1865     break;
1866   case lltok::kw_dso_preemptable:
1867     DSOLocal = false;
1868     Lex.Lex();
1869     break;
1870   }
1871 }
1872 
1873 /// ParseOptionalVisibility
1874 ///   ::= /*empty*/
1875 ///   ::= 'default'
1876 ///   ::= 'hidden'
1877 ///   ::= 'protected'
1878 ///
1879 void LLParser::ParseOptionalVisibility(unsigned &Res) {
1880   switch (Lex.getKind()) {
1881   default:
1882     Res = GlobalValue::DefaultVisibility;
1883     return;
1884   case lltok::kw_default:
1885     Res = GlobalValue::DefaultVisibility;
1886     break;
1887   case lltok::kw_hidden:
1888     Res = GlobalValue::HiddenVisibility;
1889     break;
1890   case lltok::kw_protected:
1891     Res = GlobalValue::ProtectedVisibility;
1892     break;
1893   }
1894   Lex.Lex();
1895 }
1896 
1897 /// ParseOptionalDLLStorageClass
1898 ///   ::= /*empty*/
1899 ///   ::= 'dllimport'
1900 ///   ::= 'dllexport'
1901 ///
1902 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1903   switch (Lex.getKind()) {
1904   default:
1905     Res = GlobalValue::DefaultStorageClass;
1906     return;
1907   case lltok::kw_dllimport:
1908     Res = GlobalValue::DLLImportStorageClass;
1909     break;
1910   case lltok::kw_dllexport:
1911     Res = GlobalValue::DLLExportStorageClass;
1912     break;
1913   }
1914   Lex.Lex();
1915 }
1916 
1917 /// ParseOptionalCallingConv
1918 ///   ::= /*empty*/
1919 ///   ::= 'ccc'
1920 ///   ::= 'fastcc'
1921 ///   ::= 'intel_ocl_bicc'
1922 ///   ::= 'coldcc'
1923 ///   ::= 'x86_stdcallcc'
1924 ///   ::= 'x86_fastcallcc'
1925 ///   ::= 'x86_thiscallcc'
1926 ///   ::= 'x86_vectorcallcc'
1927 ///   ::= 'arm_apcscc'
1928 ///   ::= 'arm_aapcscc'
1929 ///   ::= 'arm_aapcs_vfpcc'
1930 ///   ::= 'aarch64_vector_pcs'
1931 ///   ::= 'msp430_intrcc'
1932 ///   ::= 'avr_intrcc'
1933 ///   ::= 'avr_signalcc'
1934 ///   ::= 'ptx_kernel'
1935 ///   ::= 'ptx_device'
1936 ///   ::= 'spir_func'
1937 ///   ::= 'spir_kernel'
1938 ///   ::= 'x86_64_sysvcc'
1939 ///   ::= 'win64cc'
1940 ///   ::= 'webkit_jscc'
1941 ///   ::= 'anyregcc'
1942 ///   ::= 'preserve_mostcc'
1943 ///   ::= 'preserve_allcc'
1944 ///   ::= 'ghccc'
1945 ///   ::= 'swiftcc'
1946 ///   ::= 'x86_intrcc'
1947 ///   ::= 'hhvmcc'
1948 ///   ::= 'hhvm_ccc'
1949 ///   ::= 'cxx_fast_tlscc'
1950 ///   ::= 'amdgpu_vs'
1951 ///   ::= 'amdgpu_ls'
1952 ///   ::= 'amdgpu_hs'
1953 ///   ::= 'amdgpu_es'
1954 ///   ::= 'amdgpu_gs'
1955 ///   ::= 'amdgpu_ps'
1956 ///   ::= 'amdgpu_cs'
1957 ///   ::= 'amdgpu_kernel'
1958 ///   ::= 'cc' UINT
1959 ///
1960 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
1961   switch (Lex.getKind()) {
1962   default:                       CC = CallingConv::C; return false;
1963   case lltok::kw_ccc:            CC = CallingConv::C; break;
1964   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1965   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1966   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1967   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1968   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
1969   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1970   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1971   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1972   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1973   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1974   case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
1975   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1976   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
1977   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
1978   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1979   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1980   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1981   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1982   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1983   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1984   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
1985   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
1986   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
1987   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1988   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1989   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
1990   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
1991   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
1992   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
1993   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
1994   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
1995   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
1996   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
1997   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
1998   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
1999   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
2000   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
2001   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
2002   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
2003   case lltok::kw_cc: {
2004       Lex.Lex();
2005       return ParseUInt32(CC);
2006     }
2007   }
2008 
2009   Lex.Lex();
2010   return false;
2011 }
2012 
2013 /// ParseMetadataAttachment
2014 ///   ::= !dbg !42
2015 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
2016   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
2017 
2018   std::string Name = Lex.getStrVal();
2019   Kind = M->getMDKindID(Name);
2020   Lex.Lex();
2021 
2022   return ParseMDNode(MD);
2023 }
2024 
2025 /// ParseInstructionMetadata
2026 ///   ::= !dbg !42 (',' !dbg !57)*
2027 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
2028   do {
2029     if (Lex.getKind() != lltok::MetadataVar)
2030       return TokError("expected metadata after comma");
2031 
2032     unsigned MDK;
2033     MDNode *N;
2034     if (ParseMetadataAttachment(MDK, N))
2035       return true;
2036 
2037     Inst.setMetadata(MDK, N);
2038     if (MDK == LLVMContext::MD_tbaa)
2039       InstsWithTBAATag.push_back(&Inst);
2040 
2041     // If this is the end of the list, we're done.
2042   } while (EatIfPresent(lltok::comma));
2043   return false;
2044 }
2045 
2046 /// ParseGlobalObjectMetadataAttachment
2047 ///   ::= !dbg !57
2048 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
2049   unsigned MDK;
2050   MDNode *N;
2051   if (ParseMetadataAttachment(MDK, N))
2052     return true;
2053 
2054   GO.addMetadata(MDK, *N);
2055   return false;
2056 }
2057 
2058 /// ParseOptionalFunctionMetadata
2059 ///   ::= (!dbg !57)*
2060 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
2061   while (Lex.getKind() == lltok::MetadataVar)
2062     if (ParseGlobalObjectMetadataAttachment(F))
2063       return true;
2064   return false;
2065 }
2066 
2067 /// ParseOptionalAlignment
2068 ///   ::= /* empty */
2069 ///   ::= 'align' 4
2070 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
2071   Alignment = 0;
2072   if (!EatIfPresent(lltok::kw_align))
2073     return false;
2074   LocTy AlignLoc = Lex.getLoc();
2075   if (ParseUInt32(Alignment)) return true;
2076   if (!isPowerOf2_32(Alignment))
2077     return Error(AlignLoc, "alignment is not a power of two");
2078   if (Alignment > Value::MaximumAlignment)
2079     return Error(AlignLoc, "huge alignments are not supported yet");
2080   return false;
2081 }
2082 
2083 /// ParseOptionalDerefAttrBytes
2084 ///   ::= /* empty */
2085 ///   ::= AttrKind '(' 4 ')'
2086 ///
2087 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2088 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2089                                            uint64_t &Bytes) {
2090   assert((AttrKind == lltok::kw_dereferenceable ||
2091           AttrKind == lltok::kw_dereferenceable_or_null) &&
2092          "contract!");
2093 
2094   Bytes = 0;
2095   if (!EatIfPresent(AttrKind))
2096     return false;
2097   LocTy ParenLoc = Lex.getLoc();
2098   if (!EatIfPresent(lltok::lparen))
2099     return Error(ParenLoc, "expected '('");
2100   LocTy DerefLoc = Lex.getLoc();
2101   if (ParseUInt64(Bytes)) return true;
2102   ParenLoc = Lex.getLoc();
2103   if (!EatIfPresent(lltok::rparen))
2104     return Error(ParenLoc, "expected ')'");
2105   if (!Bytes)
2106     return Error(DerefLoc, "dereferenceable bytes must be non-zero");
2107   return false;
2108 }
2109 
2110 /// ParseOptionalCommaAlign
2111 ///   ::=
2112 ///   ::= ',' align 4
2113 ///
2114 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2115 /// end.
2116 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
2117                                        bool &AteExtraComma) {
2118   AteExtraComma = false;
2119   while (EatIfPresent(lltok::comma)) {
2120     // Metadata at the end is an early exit.
2121     if (Lex.getKind() == lltok::MetadataVar) {
2122       AteExtraComma = true;
2123       return false;
2124     }
2125 
2126     if (Lex.getKind() != lltok::kw_align)
2127       return Error(Lex.getLoc(), "expected metadata or 'align'");
2128 
2129     if (ParseOptionalAlignment(Alignment)) return true;
2130   }
2131 
2132   return false;
2133 }
2134 
2135 /// ParseOptionalCommaAddrSpace
2136 ///   ::=
2137 ///   ::= ',' addrspace(1)
2138 ///
2139 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2140 /// end.
2141 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace,
2142                                            LocTy &Loc,
2143                                            bool &AteExtraComma) {
2144   AteExtraComma = false;
2145   while (EatIfPresent(lltok::comma)) {
2146     // Metadata at the end is an early exit.
2147     if (Lex.getKind() == lltok::MetadataVar) {
2148       AteExtraComma = true;
2149       return false;
2150     }
2151 
2152     Loc = Lex.getLoc();
2153     if (Lex.getKind() != lltok::kw_addrspace)
2154       return Error(Lex.getLoc(), "expected metadata or 'addrspace'");
2155 
2156     if (ParseOptionalAddrSpace(AddrSpace))
2157       return true;
2158   }
2159 
2160   return false;
2161 }
2162 
2163 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2164                                        Optional<unsigned> &HowManyArg) {
2165   Lex.Lex();
2166 
2167   auto StartParen = Lex.getLoc();
2168   if (!EatIfPresent(lltok::lparen))
2169     return Error(StartParen, "expected '('");
2170 
2171   if (ParseUInt32(BaseSizeArg))
2172     return true;
2173 
2174   if (EatIfPresent(lltok::comma)) {
2175     auto HowManyAt = Lex.getLoc();
2176     unsigned HowMany;
2177     if (ParseUInt32(HowMany))
2178       return true;
2179     if (HowMany == BaseSizeArg)
2180       return Error(HowManyAt,
2181                    "'allocsize' indices can't refer to the same parameter");
2182     HowManyArg = HowMany;
2183   } else
2184     HowManyArg = None;
2185 
2186   auto EndParen = Lex.getLoc();
2187   if (!EatIfPresent(lltok::rparen))
2188     return Error(EndParen, "expected ')'");
2189   return false;
2190 }
2191 
2192 /// ParseScopeAndOrdering
2193 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2194 ///   else: ::=
2195 ///
2196 /// This sets Scope and Ordering to the parsed values.
2197 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID,
2198                                      AtomicOrdering &Ordering) {
2199   if (!isAtomic)
2200     return false;
2201 
2202   return ParseScope(SSID) || ParseOrdering(Ordering);
2203 }
2204 
2205 /// ParseScope
2206 ///   ::= syncscope("singlethread" | "<target scope>")?
2207 ///
2208 /// This sets synchronization scope ID to the ID of the parsed value.
2209 bool LLParser::ParseScope(SyncScope::ID &SSID) {
2210   SSID = SyncScope::System;
2211   if (EatIfPresent(lltok::kw_syncscope)) {
2212     auto StartParenAt = Lex.getLoc();
2213     if (!EatIfPresent(lltok::lparen))
2214       return Error(StartParenAt, "Expected '(' in syncscope");
2215 
2216     std::string SSN;
2217     auto SSNAt = Lex.getLoc();
2218     if (ParseStringConstant(SSN))
2219       return Error(SSNAt, "Expected synchronization scope name");
2220 
2221     auto EndParenAt = Lex.getLoc();
2222     if (!EatIfPresent(lltok::rparen))
2223       return Error(EndParenAt, "Expected ')' in syncscope");
2224 
2225     SSID = Context.getOrInsertSyncScopeID(SSN);
2226   }
2227 
2228   return false;
2229 }
2230 
2231 /// ParseOrdering
2232 ///   ::= AtomicOrdering
2233 ///
2234 /// This sets Ordering to the parsed value.
2235 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
2236   switch (Lex.getKind()) {
2237   default: return TokError("Expected ordering on atomic instruction");
2238   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2239   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2240   // Not specified yet:
2241   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2242   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2243   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2244   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2245   case lltok::kw_seq_cst:
2246     Ordering = AtomicOrdering::SequentiallyConsistent;
2247     break;
2248   }
2249   Lex.Lex();
2250   return false;
2251 }
2252 
2253 /// ParseOptionalStackAlignment
2254 ///   ::= /* empty */
2255 ///   ::= 'alignstack' '(' 4 ')'
2256 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
2257   Alignment = 0;
2258   if (!EatIfPresent(lltok::kw_alignstack))
2259     return false;
2260   LocTy ParenLoc = Lex.getLoc();
2261   if (!EatIfPresent(lltok::lparen))
2262     return Error(ParenLoc, "expected '('");
2263   LocTy AlignLoc = Lex.getLoc();
2264   if (ParseUInt32(Alignment)) return true;
2265   ParenLoc = Lex.getLoc();
2266   if (!EatIfPresent(lltok::rparen))
2267     return Error(ParenLoc, "expected ')'");
2268   if (!isPowerOf2_32(Alignment))
2269     return Error(AlignLoc, "stack alignment is not a power of two");
2270   return false;
2271 }
2272 
2273 /// ParseIndexList - This parses the index list for an insert/extractvalue
2274 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2275 /// comma at the end of the line and find that it is followed by metadata.
2276 /// Clients that don't allow metadata can call the version of this function that
2277 /// only takes one argument.
2278 ///
2279 /// ParseIndexList
2280 ///    ::=  (',' uint32)+
2281 ///
2282 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
2283                               bool &AteExtraComma) {
2284   AteExtraComma = false;
2285 
2286   if (Lex.getKind() != lltok::comma)
2287     return TokError("expected ',' as start of index list");
2288 
2289   while (EatIfPresent(lltok::comma)) {
2290     if (Lex.getKind() == lltok::MetadataVar) {
2291       if (Indices.empty()) return TokError("expected index");
2292       AteExtraComma = true;
2293       return false;
2294     }
2295     unsigned Idx = 0;
2296     if (ParseUInt32(Idx)) return true;
2297     Indices.push_back(Idx);
2298   }
2299 
2300   return false;
2301 }
2302 
2303 //===----------------------------------------------------------------------===//
2304 // Type Parsing.
2305 //===----------------------------------------------------------------------===//
2306 
2307 /// ParseType - Parse a type.
2308 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2309   SMLoc TypeLoc = Lex.getLoc();
2310   switch (Lex.getKind()) {
2311   default:
2312     return TokError(Msg);
2313   case lltok::Type:
2314     // Type ::= 'float' | 'void' (etc)
2315     Result = Lex.getTyVal();
2316     Lex.Lex();
2317     break;
2318   case lltok::lbrace:
2319     // Type ::= StructType
2320     if (ParseAnonStructType(Result, false))
2321       return true;
2322     break;
2323   case lltok::lsquare:
2324     // Type ::= '[' ... ']'
2325     Lex.Lex(); // eat the lsquare.
2326     if (ParseArrayVectorType(Result, false))
2327       return true;
2328     break;
2329   case lltok::less: // Either vector or packed struct.
2330     // Type ::= '<' ... '>'
2331     Lex.Lex();
2332     if (Lex.getKind() == lltok::lbrace) {
2333       if (ParseAnonStructType(Result, true) ||
2334           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
2335         return true;
2336     } else if (ParseArrayVectorType(Result, true))
2337       return true;
2338     break;
2339   case lltok::LocalVar: {
2340     // Type ::= %foo
2341     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2342 
2343     // If the type hasn't been defined yet, create a forward definition and
2344     // remember where that forward def'n was seen (in case it never is defined).
2345     if (!Entry.first) {
2346       Entry.first = StructType::create(Context, Lex.getStrVal());
2347       Entry.second = Lex.getLoc();
2348     }
2349     Result = Entry.first;
2350     Lex.Lex();
2351     break;
2352   }
2353 
2354   case lltok::LocalVarID: {
2355     // Type ::= %4
2356     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2357 
2358     // If the type hasn't been defined yet, create a forward definition and
2359     // remember where that forward def'n was seen (in case it never is defined).
2360     if (!Entry.first) {
2361       Entry.first = StructType::create(Context);
2362       Entry.second = Lex.getLoc();
2363     }
2364     Result = Entry.first;
2365     Lex.Lex();
2366     break;
2367   }
2368   }
2369 
2370   // Parse the type suffixes.
2371   while (true) {
2372     switch (Lex.getKind()) {
2373     // End of type.
2374     default:
2375       if (!AllowVoid && Result->isVoidTy())
2376         return Error(TypeLoc, "void type only allowed for function results");
2377       return false;
2378 
2379     // Type ::= Type '*'
2380     case lltok::star:
2381       if (Result->isLabelTy())
2382         return TokError("basic block pointers are invalid");
2383       if (Result->isVoidTy())
2384         return TokError("pointers to void are invalid - use i8* instead");
2385       if (!PointerType::isValidElementType(Result))
2386         return TokError("pointer to this type is invalid");
2387       Result = PointerType::getUnqual(Result);
2388       Lex.Lex();
2389       break;
2390 
2391     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2392     case lltok::kw_addrspace: {
2393       if (Result->isLabelTy())
2394         return TokError("basic block pointers are invalid");
2395       if (Result->isVoidTy())
2396         return TokError("pointers to void are invalid; use i8* instead");
2397       if (!PointerType::isValidElementType(Result))
2398         return TokError("pointer to this type is invalid");
2399       unsigned AddrSpace;
2400       if (ParseOptionalAddrSpace(AddrSpace) ||
2401           ParseToken(lltok::star, "expected '*' in address space"))
2402         return true;
2403 
2404       Result = PointerType::get(Result, AddrSpace);
2405       break;
2406     }
2407 
2408     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2409     case lltok::lparen:
2410       if (ParseFunctionType(Result))
2411         return true;
2412       break;
2413     }
2414   }
2415 }
2416 
2417 /// ParseParameterList
2418 ///    ::= '(' ')'
2419 ///    ::= '(' Arg (',' Arg)* ')'
2420 ///  Arg
2421 ///    ::= Type OptionalAttributes Value OptionalAttributes
2422 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2423                                   PerFunctionState &PFS, bool IsMustTailCall,
2424                                   bool InVarArgsFunc) {
2425   if (ParseToken(lltok::lparen, "expected '(' in call"))
2426     return true;
2427 
2428   while (Lex.getKind() != lltok::rparen) {
2429     // If this isn't the first argument, we need a comma.
2430     if (!ArgList.empty() &&
2431         ParseToken(lltok::comma, "expected ',' in argument list"))
2432       return true;
2433 
2434     // Parse an ellipsis if this is a musttail call in a variadic function.
2435     if (Lex.getKind() == lltok::dotdotdot) {
2436       const char *Msg = "unexpected ellipsis in argument list for ";
2437       if (!IsMustTailCall)
2438         return TokError(Twine(Msg) + "non-musttail call");
2439       if (!InVarArgsFunc)
2440         return TokError(Twine(Msg) + "musttail call in non-varargs function");
2441       Lex.Lex();  // Lex the '...', it is purely for readability.
2442       return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2443     }
2444 
2445     // Parse the argument.
2446     LocTy ArgLoc;
2447     Type *ArgTy = nullptr;
2448     AttrBuilder ArgAttrs;
2449     Value *V;
2450     if (ParseType(ArgTy, ArgLoc))
2451       return true;
2452 
2453     if (ArgTy->isMetadataTy()) {
2454       if (ParseMetadataAsValue(V, PFS))
2455         return true;
2456     } else {
2457       // Otherwise, handle normal operands.
2458       if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2459         return true;
2460     }
2461     ArgList.push_back(ParamInfo(
2462         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2463   }
2464 
2465   if (IsMustTailCall && InVarArgsFunc)
2466     return TokError("expected '...' at end of argument list for musttail call "
2467                     "in varargs function");
2468 
2469   Lex.Lex();  // Lex the ')'.
2470   return false;
2471 }
2472 
2473 /// ParseByValWithOptionalType
2474 ///   ::= byval
2475 ///   ::= byval(<ty>)
2476 bool LLParser::ParseByValWithOptionalType(Type *&Result) {
2477   Result = nullptr;
2478   if (!EatIfPresent(lltok::kw_byval))
2479     return true;
2480   if (!EatIfPresent(lltok::lparen))
2481     return false;
2482   if (ParseType(Result))
2483     return true;
2484   if (!EatIfPresent(lltok::rparen))
2485     return Error(Lex.getLoc(), "expected ')'");
2486   return false;
2487 }
2488 
2489 /// ParseOptionalOperandBundles
2490 ///    ::= /*empty*/
2491 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2492 ///
2493 /// OperandBundle
2494 ///    ::= bundle-tag '(' ')'
2495 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2496 ///
2497 /// bundle-tag ::= String Constant
2498 bool LLParser::ParseOptionalOperandBundles(
2499     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2500   LocTy BeginLoc = Lex.getLoc();
2501   if (!EatIfPresent(lltok::lsquare))
2502     return false;
2503 
2504   while (Lex.getKind() != lltok::rsquare) {
2505     // If this isn't the first operand bundle, we need a comma.
2506     if (!BundleList.empty() &&
2507         ParseToken(lltok::comma, "expected ',' in input list"))
2508       return true;
2509 
2510     std::string Tag;
2511     if (ParseStringConstant(Tag))
2512       return true;
2513 
2514     if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2515       return true;
2516 
2517     std::vector<Value *> Inputs;
2518     while (Lex.getKind() != lltok::rparen) {
2519       // If this isn't the first input, we need a comma.
2520       if (!Inputs.empty() &&
2521           ParseToken(lltok::comma, "expected ',' in input list"))
2522         return true;
2523 
2524       Type *Ty = nullptr;
2525       Value *Input = nullptr;
2526       if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2527         return true;
2528       Inputs.push_back(Input);
2529     }
2530 
2531     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2532 
2533     Lex.Lex(); // Lex the ')'.
2534   }
2535 
2536   if (BundleList.empty())
2537     return Error(BeginLoc, "operand bundle set must not be empty");
2538 
2539   Lex.Lex(); // Lex the ']'.
2540   return false;
2541 }
2542 
2543 /// ParseArgumentList - Parse the argument list for a function type or function
2544 /// prototype.
2545 ///   ::= '(' ArgTypeListI ')'
2546 /// ArgTypeListI
2547 ///   ::= /*empty*/
2548 ///   ::= '...'
2549 ///   ::= ArgTypeList ',' '...'
2550 ///   ::= ArgType (',' ArgType)*
2551 ///
2552 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2553                                  bool &isVarArg){
2554   unsigned CurValID = 0;
2555   isVarArg = false;
2556   assert(Lex.getKind() == lltok::lparen);
2557   Lex.Lex(); // eat the (.
2558 
2559   if (Lex.getKind() == lltok::rparen) {
2560     // empty
2561   } else if (Lex.getKind() == lltok::dotdotdot) {
2562     isVarArg = true;
2563     Lex.Lex();
2564   } else {
2565     LocTy TypeLoc = Lex.getLoc();
2566     Type *ArgTy = nullptr;
2567     AttrBuilder Attrs;
2568     std::string Name;
2569 
2570     if (ParseType(ArgTy) ||
2571         ParseOptionalParamAttrs(Attrs)) return true;
2572 
2573     if (ArgTy->isVoidTy())
2574       return Error(TypeLoc, "argument can not have void type");
2575 
2576     if (Lex.getKind() == lltok::LocalVar) {
2577       Name = Lex.getStrVal();
2578       Lex.Lex();
2579     } else if (Lex.getKind() == lltok::LocalVarID) {
2580       if (Lex.getUIntVal() != CurValID)
2581         return Error(TypeLoc, "argument expected to be numbered '%" +
2582                                   Twine(CurValID) + "'");
2583       ++CurValID;
2584       Lex.Lex();
2585     }
2586 
2587     if (!FunctionType::isValidArgumentType(ArgTy))
2588       return Error(TypeLoc, "invalid type for function argument");
2589 
2590     ArgList.emplace_back(TypeLoc, ArgTy,
2591                          AttributeSet::get(ArgTy->getContext(), Attrs),
2592                          std::move(Name));
2593 
2594     while (EatIfPresent(lltok::comma)) {
2595       // Handle ... at end of arg list.
2596       if (EatIfPresent(lltok::dotdotdot)) {
2597         isVarArg = true;
2598         break;
2599       }
2600 
2601       // Otherwise must be an argument type.
2602       TypeLoc = Lex.getLoc();
2603       if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2604 
2605       if (ArgTy->isVoidTy())
2606         return Error(TypeLoc, "argument can not have void type");
2607 
2608       if (Lex.getKind() == lltok::LocalVar) {
2609         Name = Lex.getStrVal();
2610         Lex.Lex();
2611       } else {
2612         if (Lex.getKind() == lltok::LocalVarID) {
2613           if (Lex.getUIntVal() != CurValID)
2614             return Error(TypeLoc, "argument expected to be numbered '%" +
2615                                       Twine(CurValID) + "'");
2616           Lex.Lex();
2617         }
2618         ++CurValID;
2619         Name = "";
2620       }
2621 
2622       if (!ArgTy->isFirstClassType())
2623         return Error(TypeLoc, "invalid type for function argument");
2624 
2625       ArgList.emplace_back(TypeLoc, ArgTy,
2626                            AttributeSet::get(ArgTy->getContext(), Attrs),
2627                            std::move(Name));
2628     }
2629   }
2630 
2631   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2632 }
2633 
2634 /// ParseFunctionType
2635 ///  ::= Type ArgumentList OptionalAttrs
2636 bool LLParser::ParseFunctionType(Type *&Result) {
2637   assert(Lex.getKind() == lltok::lparen);
2638 
2639   if (!FunctionType::isValidReturnType(Result))
2640     return TokError("invalid function return type");
2641 
2642   SmallVector<ArgInfo, 8> ArgList;
2643   bool isVarArg;
2644   if (ParseArgumentList(ArgList, isVarArg))
2645     return true;
2646 
2647   // Reject names on the arguments lists.
2648   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2649     if (!ArgList[i].Name.empty())
2650       return Error(ArgList[i].Loc, "argument name invalid in function type");
2651     if (ArgList[i].Attrs.hasAttributes())
2652       return Error(ArgList[i].Loc,
2653                    "argument attributes invalid in function type");
2654   }
2655 
2656   SmallVector<Type*, 16> ArgListTy;
2657   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2658     ArgListTy.push_back(ArgList[i].Ty);
2659 
2660   Result = FunctionType::get(Result, ArgListTy, isVarArg);
2661   return false;
2662 }
2663 
2664 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2665 /// other structs.
2666 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2667   SmallVector<Type*, 8> Elts;
2668   if (ParseStructBody(Elts)) return true;
2669 
2670   Result = StructType::get(Context, Elts, Packed);
2671   return false;
2672 }
2673 
2674 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2675 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2676                                      std::pair<Type*, LocTy> &Entry,
2677                                      Type *&ResultTy) {
2678   // If the type was already defined, diagnose the redefinition.
2679   if (Entry.first && !Entry.second.isValid())
2680     return Error(TypeLoc, "redefinition of type");
2681 
2682   // If we have opaque, just return without filling in the definition for the
2683   // struct.  This counts as a definition as far as the .ll file goes.
2684   if (EatIfPresent(lltok::kw_opaque)) {
2685     // This type is being defined, so clear the location to indicate this.
2686     Entry.second = SMLoc();
2687 
2688     // If this type number has never been uttered, create it.
2689     if (!Entry.first)
2690       Entry.first = StructType::create(Context, Name);
2691     ResultTy = Entry.first;
2692     return false;
2693   }
2694 
2695   // If the type starts with '<', then it is either a packed struct or a vector.
2696   bool isPacked = EatIfPresent(lltok::less);
2697 
2698   // If we don't have a struct, then we have a random type alias, which we
2699   // accept for compatibility with old files.  These types are not allowed to be
2700   // forward referenced and not allowed to be recursive.
2701   if (Lex.getKind() != lltok::lbrace) {
2702     if (Entry.first)
2703       return Error(TypeLoc, "forward references to non-struct type");
2704 
2705     ResultTy = nullptr;
2706     if (isPacked)
2707       return ParseArrayVectorType(ResultTy, true);
2708     return ParseType(ResultTy);
2709   }
2710 
2711   // This type is being defined, so clear the location to indicate this.
2712   Entry.second = SMLoc();
2713 
2714   // If this type number has never been uttered, create it.
2715   if (!Entry.first)
2716     Entry.first = StructType::create(Context, Name);
2717 
2718   StructType *STy = cast<StructType>(Entry.first);
2719 
2720   SmallVector<Type*, 8> Body;
2721   if (ParseStructBody(Body) ||
2722       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2723     return true;
2724 
2725   STy->setBody(Body, isPacked);
2726   ResultTy = STy;
2727   return false;
2728 }
2729 
2730 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2731 ///   StructType
2732 ///     ::= '{' '}'
2733 ///     ::= '{' Type (',' Type)* '}'
2734 ///     ::= '<' '{' '}' '>'
2735 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2736 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2737   assert(Lex.getKind() == lltok::lbrace);
2738   Lex.Lex(); // Consume the '{'
2739 
2740   // Handle the empty struct.
2741   if (EatIfPresent(lltok::rbrace))
2742     return false;
2743 
2744   LocTy EltTyLoc = Lex.getLoc();
2745   Type *Ty = nullptr;
2746   if (ParseType(Ty)) return true;
2747   Body.push_back(Ty);
2748 
2749   if (!StructType::isValidElementType(Ty))
2750     return Error(EltTyLoc, "invalid element type for struct");
2751 
2752   while (EatIfPresent(lltok::comma)) {
2753     EltTyLoc = Lex.getLoc();
2754     if (ParseType(Ty)) return true;
2755 
2756     if (!StructType::isValidElementType(Ty))
2757       return Error(EltTyLoc, "invalid element type for struct");
2758 
2759     Body.push_back(Ty);
2760   }
2761 
2762   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2763 }
2764 
2765 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2766 /// token has already been consumed.
2767 ///   Type
2768 ///     ::= '[' APSINTVAL 'x' Types ']'
2769 ///     ::= '<' APSINTVAL 'x' Types '>'
2770 ///     ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
2771 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2772   bool Scalable = false;
2773 
2774   if (isVector && Lex.getKind() == lltok::kw_vscale) {
2775     Lex.Lex(); // consume the 'vscale'
2776     if (ParseToken(lltok::kw_x, "expected 'x' after vscale"))
2777       return true;
2778 
2779     Scalable = true;
2780   }
2781 
2782   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2783       Lex.getAPSIntVal().getBitWidth() > 64)
2784     return TokError("expected number in address space");
2785 
2786   LocTy SizeLoc = Lex.getLoc();
2787   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2788   Lex.Lex();
2789 
2790   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2791       return true;
2792 
2793   LocTy TypeLoc = Lex.getLoc();
2794   Type *EltTy = nullptr;
2795   if (ParseType(EltTy)) return true;
2796 
2797   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2798                  "expected end of sequential type"))
2799     return true;
2800 
2801   if (isVector) {
2802     if (Size == 0)
2803       return Error(SizeLoc, "zero element vector is illegal");
2804     if ((unsigned)Size != Size)
2805       return Error(SizeLoc, "size too large for vector");
2806     if (!VectorType::isValidElementType(EltTy))
2807       return Error(TypeLoc, "invalid vector element type");
2808     Result = VectorType::get(EltTy, unsigned(Size), Scalable);
2809   } else {
2810     if (!ArrayType::isValidElementType(EltTy))
2811       return Error(TypeLoc, "invalid array element type");
2812     Result = ArrayType::get(EltTy, Size);
2813   }
2814   return false;
2815 }
2816 
2817 //===----------------------------------------------------------------------===//
2818 // Function Semantic Analysis.
2819 //===----------------------------------------------------------------------===//
2820 
2821 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2822                                              int functionNumber)
2823   : P(p), F(f), FunctionNumber(functionNumber) {
2824 
2825   // Insert unnamed arguments into the NumberedVals list.
2826   for (Argument &A : F.args())
2827     if (!A.hasName())
2828       NumberedVals.push_back(&A);
2829 }
2830 
2831 LLParser::PerFunctionState::~PerFunctionState() {
2832   // If there were any forward referenced non-basicblock values, delete them.
2833 
2834   for (const auto &P : ForwardRefVals) {
2835     if (isa<BasicBlock>(P.second.first))
2836       continue;
2837     P.second.first->replaceAllUsesWith(
2838         UndefValue::get(P.second.first->getType()));
2839     P.second.first->deleteValue();
2840   }
2841 
2842   for (const auto &P : ForwardRefValIDs) {
2843     if (isa<BasicBlock>(P.second.first))
2844       continue;
2845     P.second.first->replaceAllUsesWith(
2846         UndefValue::get(P.second.first->getType()));
2847     P.second.first->deleteValue();
2848   }
2849 }
2850 
2851 bool LLParser::PerFunctionState::FinishFunction() {
2852   if (!ForwardRefVals.empty())
2853     return P.Error(ForwardRefVals.begin()->second.second,
2854                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2855                    "'");
2856   if (!ForwardRefValIDs.empty())
2857     return P.Error(ForwardRefValIDs.begin()->second.second,
2858                    "use of undefined value '%" +
2859                    Twine(ForwardRefValIDs.begin()->first) + "'");
2860   return false;
2861 }
2862 
2863 /// GetVal - Get a value with the specified name or ID, creating a
2864 /// forward reference record if needed.  This can return null if the value
2865 /// exists but does not have the right type.
2866 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2867                                           LocTy Loc, bool IsCall) {
2868   // Look this name up in the normal function symbol table.
2869   Value *Val = F.getValueSymbolTable()->lookup(Name);
2870 
2871   // If this is a forward reference for the value, see if we already created a
2872   // forward ref record.
2873   if (!Val) {
2874     auto I = ForwardRefVals.find(Name);
2875     if (I != ForwardRefVals.end())
2876       Val = I->second.first;
2877   }
2878 
2879   // If we have the value in the symbol table or fwd-ref table, return it.
2880   if (Val)
2881     return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall);
2882 
2883   // Don't make placeholders with invalid type.
2884   if (!Ty->isFirstClassType()) {
2885     P.Error(Loc, "invalid use of a non-first-class type");
2886     return nullptr;
2887   }
2888 
2889   // Otherwise, create a new forward reference for this value and remember it.
2890   Value *FwdVal;
2891   if (Ty->isLabelTy()) {
2892     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2893   } else {
2894     FwdVal = new Argument(Ty, Name);
2895   }
2896 
2897   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2898   return FwdVal;
2899 }
2900 
2901 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc,
2902                                           bool IsCall) {
2903   // Look this name up in the normal function symbol table.
2904   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2905 
2906   // If this is a forward reference for the value, see if we already created a
2907   // forward ref record.
2908   if (!Val) {
2909     auto I = ForwardRefValIDs.find(ID);
2910     if (I != ForwardRefValIDs.end())
2911       Val = I->second.first;
2912   }
2913 
2914   // If we have the value in the symbol table or fwd-ref table, return it.
2915   if (Val)
2916     return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall);
2917 
2918   if (!Ty->isFirstClassType()) {
2919     P.Error(Loc, "invalid use of a non-first-class type");
2920     return nullptr;
2921   }
2922 
2923   // Otherwise, create a new forward reference for this value and remember it.
2924   Value *FwdVal;
2925   if (Ty->isLabelTy()) {
2926     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2927   } else {
2928     FwdVal = new Argument(Ty);
2929   }
2930 
2931   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2932   return FwdVal;
2933 }
2934 
2935 /// SetInstName - After an instruction is parsed and inserted into its
2936 /// basic block, this installs its name.
2937 bool LLParser::PerFunctionState::SetInstName(int NameID,
2938                                              const std::string &NameStr,
2939                                              LocTy NameLoc, Instruction *Inst) {
2940   // If this instruction has void type, it cannot have a name or ID specified.
2941   if (Inst->getType()->isVoidTy()) {
2942     if (NameID != -1 || !NameStr.empty())
2943       return P.Error(NameLoc, "instructions returning void cannot have a name");
2944     return false;
2945   }
2946 
2947   // If this was a numbered instruction, verify that the instruction is the
2948   // expected value and resolve any forward references.
2949   if (NameStr.empty()) {
2950     // If neither a name nor an ID was specified, just use the next ID.
2951     if (NameID == -1)
2952       NameID = NumberedVals.size();
2953 
2954     if (unsigned(NameID) != NumberedVals.size())
2955       return P.Error(NameLoc, "instruction expected to be numbered '%" +
2956                      Twine(NumberedVals.size()) + "'");
2957 
2958     auto FI = ForwardRefValIDs.find(NameID);
2959     if (FI != ForwardRefValIDs.end()) {
2960       Value *Sentinel = FI->second.first;
2961       if (Sentinel->getType() != Inst->getType())
2962         return P.Error(NameLoc, "instruction forward referenced with type '" +
2963                        getTypeString(FI->second.first->getType()) + "'");
2964 
2965       Sentinel->replaceAllUsesWith(Inst);
2966       Sentinel->deleteValue();
2967       ForwardRefValIDs.erase(FI);
2968     }
2969 
2970     NumberedVals.push_back(Inst);
2971     return false;
2972   }
2973 
2974   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2975   auto FI = ForwardRefVals.find(NameStr);
2976   if (FI != ForwardRefVals.end()) {
2977     Value *Sentinel = FI->second.first;
2978     if (Sentinel->getType() != Inst->getType())
2979       return P.Error(NameLoc, "instruction forward referenced with type '" +
2980                      getTypeString(FI->second.first->getType()) + "'");
2981 
2982     Sentinel->replaceAllUsesWith(Inst);
2983     Sentinel->deleteValue();
2984     ForwardRefVals.erase(FI);
2985   }
2986 
2987   // Set the name on the instruction.
2988   Inst->setName(NameStr);
2989 
2990   if (Inst->getName() != NameStr)
2991     return P.Error(NameLoc, "multiple definition of local value named '" +
2992                    NameStr + "'");
2993   return false;
2994 }
2995 
2996 /// GetBB - Get a basic block with the specified name or ID, creating a
2997 /// forward reference record if needed.
2998 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2999                                               LocTy Loc) {
3000   return dyn_cast_or_null<BasicBlock>(
3001       GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3002 }
3003 
3004 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
3005   return dyn_cast_or_null<BasicBlock>(
3006       GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3007 }
3008 
3009 /// DefineBB - Define the specified basic block, which is either named or
3010 /// unnamed.  If there is an error, this returns null otherwise it returns
3011 /// the block being defined.
3012 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
3013                                                  int NameID, LocTy Loc) {
3014   BasicBlock *BB;
3015   if (Name.empty()) {
3016     if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
3017       P.Error(Loc, "label expected to be numbered '" +
3018                        Twine(NumberedVals.size()) + "'");
3019       return nullptr;
3020     }
3021     BB = GetBB(NumberedVals.size(), Loc);
3022     if (!BB) {
3023       P.Error(Loc, "unable to create block numbered '" +
3024                        Twine(NumberedVals.size()) + "'");
3025       return nullptr;
3026     }
3027   } else {
3028     BB = GetBB(Name, Loc);
3029     if (!BB) {
3030       P.Error(Loc, "unable to create block named '" + Name + "'");
3031       return nullptr;
3032     }
3033   }
3034 
3035   // Move the block to the end of the function.  Forward ref'd blocks are
3036   // inserted wherever they happen to be referenced.
3037   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
3038 
3039   // Remove the block from forward ref sets.
3040   if (Name.empty()) {
3041     ForwardRefValIDs.erase(NumberedVals.size());
3042     NumberedVals.push_back(BB);
3043   } else {
3044     // BB forward references are already in the function symbol table.
3045     ForwardRefVals.erase(Name);
3046   }
3047 
3048   return BB;
3049 }
3050 
3051 //===----------------------------------------------------------------------===//
3052 // Constants.
3053 //===----------------------------------------------------------------------===//
3054 
3055 /// ParseValID - Parse an abstract value that doesn't necessarily have a
3056 /// type implied.  For example, if we parse "4" we don't know what integer type
3057 /// it has.  The value will later be combined with its type and checked for
3058 /// sanity.  PFS is used to convert function-local operands of metadata (since
3059 /// metadata operands are not just parsed here but also converted to values).
3060 /// PFS can be null when we are not parsing metadata values inside a function.
3061 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
3062   ID.Loc = Lex.getLoc();
3063   switch (Lex.getKind()) {
3064   default: return TokError("expected value token");
3065   case lltok::GlobalID:  // @42
3066     ID.UIntVal = Lex.getUIntVal();
3067     ID.Kind = ValID::t_GlobalID;
3068     break;
3069   case lltok::GlobalVar:  // @foo
3070     ID.StrVal = Lex.getStrVal();
3071     ID.Kind = ValID::t_GlobalName;
3072     break;
3073   case lltok::LocalVarID:  // %42
3074     ID.UIntVal = Lex.getUIntVal();
3075     ID.Kind = ValID::t_LocalID;
3076     break;
3077   case lltok::LocalVar:  // %foo
3078     ID.StrVal = Lex.getStrVal();
3079     ID.Kind = ValID::t_LocalName;
3080     break;
3081   case lltok::APSInt:
3082     ID.APSIntVal = Lex.getAPSIntVal();
3083     ID.Kind = ValID::t_APSInt;
3084     break;
3085   case lltok::APFloat:
3086     ID.APFloatVal = Lex.getAPFloatVal();
3087     ID.Kind = ValID::t_APFloat;
3088     break;
3089   case lltok::kw_true:
3090     ID.ConstantVal = ConstantInt::getTrue(Context);
3091     ID.Kind = ValID::t_Constant;
3092     break;
3093   case lltok::kw_false:
3094     ID.ConstantVal = ConstantInt::getFalse(Context);
3095     ID.Kind = ValID::t_Constant;
3096     break;
3097   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3098   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3099   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3100   case lltok::kw_none: ID.Kind = ValID::t_None; break;
3101 
3102   case lltok::lbrace: {
3103     // ValID ::= '{' ConstVector '}'
3104     Lex.Lex();
3105     SmallVector<Constant*, 16> Elts;
3106     if (ParseGlobalValueVector(Elts) ||
3107         ParseToken(lltok::rbrace, "expected end of struct constant"))
3108       return true;
3109 
3110     ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
3111     ID.UIntVal = Elts.size();
3112     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3113            Elts.size() * sizeof(Elts[0]));
3114     ID.Kind = ValID::t_ConstantStruct;
3115     return false;
3116   }
3117   case lltok::less: {
3118     // ValID ::= '<' ConstVector '>'         --> Vector.
3119     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3120     Lex.Lex();
3121     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3122 
3123     SmallVector<Constant*, 16> Elts;
3124     LocTy FirstEltLoc = Lex.getLoc();
3125     if (ParseGlobalValueVector(Elts) ||
3126         (isPackedStruct &&
3127          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
3128         ParseToken(lltok::greater, "expected end of constant"))
3129       return true;
3130 
3131     if (isPackedStruct) {
3132       ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
3133       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3134              Elts.size() * sizeof(Elts[0]));
3135       ID.UIntVal = Elts.size();
3136       ID.Kind = ValID::t_PackedConstantStruct;
3137       return false;
3138     }
3139 
3140     if (Elts.empty())
3141       return Error(ID.Loc, "constant vector must not be empty");
3142 
3143     if (!Elts[0]->getType()->isIntegerTy() &&
3144         !Elts[0]->getType()->isFloatingPointTy() &&
3145         !Elts[0]->getType()->isPointerTy())
3146       return Error(FirstEltLoc,
3147             "vector elements must have integer, pointer or floating point type");
3148 
3149     // Verify that all the vector elements have the same type.
3150     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3151       if (Elts[i]->getType() != Elts[0]->getType())
3152         return Error(FirstEltLoc,
3153                      "vector element #" + Twine(i) +
3154                     " is not of type '" + getTypeString(Elts[0]->getType()));
3155 
3156     ID.ConstantVal = ConstantVector::get(Elts);
3157     ID.Kind = ValID::t_Constant;
3158     return false;
3159   }
3160   case lltok::lsquare: {   // Array Constant
3161     Lex.Lex();
3162     SmallVector<Constant*, 16> Elts;
3163     LocTy FirstEltLoc = Lex.getLoc();
3164     if (ParseGlobalValueVector(Elts) ||
3165         ParseToken(lltok::rsquare, "expected end of array constant"))
3166       return true;
3167 
3168     // Handle empty element.
3169     if (Elts.empty()) {
3170       // Use undef instead of an array because it's inconvenient to determine
3171       // the element type at this point, there being no elements to examine.
3172       ID.Kind = ValID::t_EmptyArray;
3173       return false;
3174     }
3175 
3176     if (!Elts[0]->getType()->isFirstClassType())
3177       return Error(FirstEltLoc, "invalid array element type: " +
3178                    getTypeString(Elts[0]->getType()));
3179 
3180     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3181 
3182     // Verify all elements are correct type!
3183     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3184       if (Elts[i]->getType() != Elts[0]->getType())
3185         return Error(FirstEltLoc,
3186                      "array element #" + Twine(i) +
3187                      " is not of type '" + getTypeString(Elts[0]->getType()));
3188     }
3189 
3190     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3191     ID.Kind = ValID::t_Constant;
3192     return false;
3193   }
3194   case lltok::kw_c:  // c "foo"
3195     Lex.Lex();
3196     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3197                                                   false);
3198     if (ParseToken(lltok::StringConstant, "expected string")) return true;
3199     ID.Kind = ValID::t_Constant;
3200     return false;
3201 
3202   case lltok::kw_asm: {
3203     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3204     //             STRINGCONSTANT
3205     bool HasSideEffect, AlignStack, AsmDialect;
3206     Lex.Lex();
3207     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3208         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3209         ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3210         ParseStringConstant(ID.StrVal) ||
3211         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
3212         ParseToken(lltok::StringConstant, "expected constraint string"))
3213       return true;
3214     ID.StrVal2 = Lex.getStrVal();
3215     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
3216       (unsigned(AsmDialect)<<2);
3217     ID.Kind = ValID::t_InlineAsm;
3218     return false;
3219   }
3220 
3221   case lltok::kw_blockaddress: {
3222     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3223     Lex.Lex();
3224 
3225     ValID Fn, Label;
3226 
3227     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
3228         ParseValID(Fn) ||
3229         ParseToken(lltok::comma, "expected comma in block address expression")||
3230         ParseValID(Label) ||
3231         ParseToken(lltok::rparen, "expected ')' in block address expression"))
3232       return true;
3233 
3234     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3235       return Error(Fn.Loc, "expected function name in blockaddress");
3236     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3237       return Error(Label.Loc, "expected basic block name in blockaddress");
3238 
3239     // Try to find the function (but skip it if it's forward-referenced).
3240     GlobalValue *GV = nullptr;
3241     if (Fn.Kind == ValID::t_GlobalID) {
3242       if (Fn.UIntVal < NumberedVals.size())
3243         GV = NumberedVals[Fn.UIntVal];
3244     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3245       GV = M->getNamedValue(Fn.StrVal);
3246     }
3247     Function *F = nullptr;
3248     if (GV) {
3249       // Confirm that it's actually a function with a definition.
3250       if (!isa<Function>(GV))
3251         return Error(Fn.Loc, "expected function name in blockaddress");
3252       F = cast<Function>(GV);
3253       if (F->isDeclaration())
3254         return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
3255     }
3256 
3257     if (!F) {
3258       // Make a global variable as a placeholder for this reference.
3259       GlobalValue *&FwdRef =
3260           ForwardRefBlockAddresses.insert(std::make_pair(
3261                                               std::move(Fn),
3262                                               std::map<ValID, GlobalValue *>()))
3263               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3264               .first->second;
3265       if (!FwdRef)
3266         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3267                                     GlobalValue::InternalLinkage, nullptr, "");
3268       ID.ConstantVal = FwdRef;
3269       ID.Kind = ValID::t_Constant;
3270       return false;
3271     }
3272 
3273     // We found the function; now find the basic block.  Don't use PFS, since we
3274     // might be inside a constant expression.
3275     BasicBlock *BB;
3276     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3277       if (Label.Kind == ValID::t_LocalID)
3278         BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
3279       else
3280         BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
3281       if (!BB)
3282         return Error(Label.Loc, "referenced value is not a basic block");
3283     } else {
3284       if (Label.Kind == ValID::t_LocalID)
3285         return Error(Label.Loc, "cannot take address of numeric label after "
3286                                 "the function is defined");
3287       BB = dyn_cast_or_null<BasicBlock>(
3288           F->getValueSymbolTable()->lookup(Label.StrVal));
3289       if (!BB)
3290         return Error(Label.Loc, "referenced value is not a basic block");
3291     }
3292 
3293     ID.ConstantVal = BlockAddress::get(F, BB);
3294     ID.Kind = ValID::t_Constant;
3295     return false;
3296   }
3297 
3298   case lltok::kw_trunc:
3299   case lltok::kw_zext:
3300   case lltok::kw_sext:
3301   case lltok::kw_fptrunc:
3302   case lltok::kw_fpext:
3303   case lltok::kw_bitcast:
3304   case lltok::kw_addrspacecast:
3305   case lltok::kw_uitofp:
3306   case lltok::kw_sitofp:
3307   case lltok::kw_fptoui:
3308   case lltok::kw_fptosi:
3309   case lltok::kw_inttoptr:
3310   case lltok::kw_ptrtoint: {
3311     unsigned Opc = Lex.getUIntVal();
3312     Type *DestTy = nullptr;
3313     Constant *SrcVal;
3314     Lex.Lex();
3315     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3316         ParseGlobalTypeAndValue(SrcVal) ||
3317         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3318         ParseType(DestTy) ||
3319         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3320       return true;
3321     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3322       return Error(ID.Loc, "invalid cast opcode for cast from '" +
3323                    getTypeString(SrcVal->getType()) + "' to '" +
3324                    getTypeString(DestTy) + "'");
3325     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3326                                                  SrcVal, DestTy);
3327     ID.Kind = ValID::t_Constant;
3328     return false;
3329   }
3330   case lltok::kw_extractvalue: {
3331     Lex.Lex();
3332     Constant *Val;
3333     SmallVector<unsigned, 4> Indices;
3334     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
3335         ParseGlobalTypeAndValue(Val) ||
3336         ParseIndexList(Indices) ||
3337         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3338       return true;
3339 
3340     if (!Val->getType()->isAggregateType())
3341       return Error(ID.Loc, "extractvalue operand must be aggregate type");
3342     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3343       return Error(ID.Loc, "invalid indices for extractvalue");
3344     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3345     ID.Kind = ValID::t_Constant;
3346     return false;
3347   }
3348   case lltok::kw_insertvalue: {
3349     Lex.Lex();
3350     Constant *Val0, *Val1;
3351     SmallVector<unsigned, 4> Indices;
3352     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
3353         ParseGlobalTypeAndValue(Val0) ||
3354         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
3355         ParseGlobalTypeAndValue(Val1) ||
3356         ParseIndexList(Indices) ||
3357         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3358       return true;
3359     if (!Val0->getType()->isAggregateType())
3360       return Error(ID.Loc, "insertvalue operand must be aggregate type");
3361     Type *IndexedType =
3362         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3363     if (!IndexedType)
3364       return Error(ID.Loc, "invalid indices for insertvalue");
3365     if (IndexedType != Val1->getType())
3366       return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3367                                getTypeString(Val1->getType()) +
3368                                "' instead of '" + getTypeString(IndexedType) +
3369                                "'");
3370     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3371     ID.Kind = ValID::t_Constant;
3372     return false;
3373   }
3374   case lltok::kw_icmp:
3375   case lltok::kw_fcmp: {
3376     unsigned PredVal, Opc = Lex.getUIntVal();
3377     Constant *Val0, *Val1;
3378     Lex.Lex();
3379     if (ParseCmpPredicate(PredVal, Opc) ||
3380         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3381         ParseGlobalTypeAndValue(Val0) ||
3382         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
3383         ParseGlobalTypeAndValue(Val1) ||
3384         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3385       return true;
3386 
3387     if (Val0->getType() != Val1->getType())
3388       return Error(ID.Loc, "compare operands must have the same type");
3389 
3390     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3391 
3392     if (Opc == Instruction::FCmp) {
3393       if (!Val0->getType()->isFPOrFPVectorTy())
3394         return Error(ID.Loc, "fcmp requires floating point operands");
3395       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3396     } else {
3397       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3398       if (!Val0->getType()->isIntOrIntVectorTy() &&
3399           !Val0->getType()->isPtrOrPtrVectorTy())
3400         return Error(ID.Loc, "icmp requires pointer or integer operands");
3401       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3402     }
3403     ID.Kind = ValID::t_Constant;
3404     return false;
3405   }
3406 
3407   // Unary Operators.
3408   case lltok::kw_fneg: {
3409     unsigned Opc = Lex.getUIntVal();
3410     Constant *Val;
3411     Lex.Lex();
3412     if (ParseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3413         ParseGlobalTypeAndValue(Val) ||
3414         ParseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3415       return true;
3416 
3417     // Check that the type is valid for the operator.
3418     switch (Opc) {
3419     case Instruction::FNeg:
3420       if (!Val->getType()->isFPOrFPVectorTy())
3421         return Error(ID.Loc, "constexpr requires fp operands");
3422       break;
3423     default: llvm_unreachable("Unknown unary operator!");
3424     }
3425     unsigned Flags = 0;
3426     Constant *C = ConstantExpr::get(Opc, Val, Flags);
3427     ID.ConstantVal = C;
3428     ID.Kind = ValID::t_Constant;
3429     return false;
3430   }
3431   // Binary Operators.
3432   case lltok::kw_add:
3433   case lltok::kw_fadd:
3434   case lltok::kw_sub:
3435   case lltok::kw_fsub:
3436   case lltok::kw_mul:
3437   case lltok::kw_fmul:
3438   case lltok::kw_udiv:
3439   case lltok::kw_sdiv:
3440   case lltok::kw_fdiv:
3441   case lltok::kw_urem:
3442   case lltok::kw_srem:
3443   case lltok::kw_frem:
3444   case lltok::kw_shl:
3445   case lltok::kw_lshr:
3446   case lltok::kw_ashr: {
3447     bool NUW = false;
3448     bool NSW = false;
3449     bool Exact = false;
3450     unsigned Opc = Lex.getUIntVal();
3451     Constant *Val0, *Val1;
3452     Lex.Lex();
3453     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3454         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3455       if (EatIfPresent(lltok::kw_nuw))
3456         NUW = true;
3457       if (EatIfPresent(lltok::kw_nsw)) {
3458         NSW = true;
3459         if (EatIfPresent(lltok::kw_nuw))
3460           NUW = true;
3461       }
3462     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3463                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3464       if (EatIfPresent(lltok::kw_exact))
3465         Exact = true;
3466     }
3467     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3468         ParseGlobalTypeAndValue(Val0) ||
3469         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
3470         ParseGlobalTypeAndValue(Val1) ||
3471         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3472       return true;
3473     if (Val0->getType() != Val1->getType())
3474       return Error(ID.Loc, "operands of constexpr must have same type");
3475     // Check that the type is valid for the operator.
3476     switch (Opc) {
3477     case Instruction::Add:
3478     case Instruction::Sub:
3479     case Instruction::Mul:
3480     case Instruction::UDiv:
3481     case Instruction::SDiv:
3482     case Instruction::URem:
3483     case Instruction::SRem:
3484     case Instruction::Shl:
3485     case Instruction::AShr:
3486     case Instruction::LShr:
3487       if (!Val0->getType()->isIntOrIntVectorTy())
3488         return Error(ID.Loc, "constexpr requires integer operands");
3489       break;
3490     case Instruction::FAdd:
3491     case Instruction::FSub:
3492     case Instruction::FMul:
3493     case Instruction::FDiv:
3494     case Instruction::FRem:
3495       if (!Val0->getType()->isFPOrFPVectorTy())
3496         return Error(ID.Loc, "constexpr requires fp operands");
3497       break;
3498     default: llvm_unreachable("Unknown binary operator!");
3499     }
3500     unsigned Flags = 0;
3501     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3502     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3503     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3504     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3505     ID.ConstantVal = C;
3506     ID.Kind = ValID::t_Constant;
3507     return false;
3508   }
3509 
3510   // Logical Operations
3511   case lltok::kw_and:
3512   case lltok::kw_or:
3513   case lltok::kw_xor: {
3514     unsigned Opc = Lex.getUIntVal();
3515     Constant *Val0, *Val1;
3516     Lex.Lex();
3517     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3518         ParseGlobalTypeAndValue(Val0) ||
3519         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3520         ParseGlobalTypeAndValue(Val1) ||
3521         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3522       return true;
3523     if (Val0->getType() != Val1->getType())
3524       return Error(ID.Loc, "operands of constexpr must have same type");
3525     if (!Val0->getType()->isIntOrIntVectorTy())
3526       return Error(ID.Loc,
3527                    "constexpr requires integer or integer vector operands");
3528     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3529     ID.Kind = ValID::t_Constant;
3530     return false;
3531   }
3532 
3533   case lltok::kw_getelementptr:
3534   case lltok::kw_shufflevector:
3535   case lltok::kw_insertelement:
3536   case lltok::kw_extractelement:
3537   case lltok::kw_select: {
3538     unsigned Opc = Lex.getUIntVal();
3539     SmallVector<Constant*, 16> Elts;
3540     bool InBounds = false;
3541     Type *Ty;
3542     Lex.Lex();
3543 
3544     if (Opc == Instruction::GetElementPtr)
3545       InBounds = EatIfPresent(lltok::kw_inbounds);
3546 
3547     if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3548       return true;
3549 
3550     LocTy ExplicitTypeLoc = Lex.getLoc();
3551     if (Opc == Instruction::GetElementPtr) {
3552       if (ParseType(Ty) ||
3553           ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3554         return true;
3555     }
3556 
3557     Optional<unsigned> InRangeOp;
3558     if (ParseGlobalValueVector(
3559             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3560         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3561       return true;
3562 
3563     if (Opc == Instruction::GetElementPtr) {
3564       if (Elts.size() == 0 ||
3565           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3566         return Error(ID.Loc, "base of getelementptr must be a pointer");
3567 
3568       Type *BaseType = Elts[0]->getType();
3569       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3570       if (Ty != BasePointerType->getElementType())
3571         return Error(
3572             ExplicitTypeLoc,
3573             "explicit pointee type doesn't match operand's pointee type");
3574 
3575       unsigned GEPWidth =
3576           BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0;
3577 
3578       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3579       for (Constant *Val : Indices) {
3580         Type *ValTy = Val->getType();
3581         if (!ValTy->isIntOrIntVectorTy())
3582           return Error(ID.Loc, "getelementptr index must be an integer");
3583         if (ValTy->isVectorTy()) {
3584           unsigned ValNumEl = ValTy->getVectorNumElements();
3585           if (GEPWidth && (ValNumEl != GEPWidth))
3586             return Error(
3587                 ID.Loc,
3588                 "getelementptr vector index has a wrong number of elements");
3589           // GEPWidth may have been unknown because the base is a scalar,
3590           // but it is known now.
3591           GEPWidth = ValNumEl;
3592         }
3593       }
3594 
3595       SmallPtrSet<Type*, 4> Visited;
3596       if (!Indices.empty() && !Ty->isSized(&Visited))
3597         return Error(ID.Loc, "base element of getelementptr must be sized");
3598 
3599       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3600         return Error(ID.Loc, "invalid getelementptr indices");
3601 
3602       if (InRangeOp) {
3603         if (*InRangeOp == 0)
3604           return Error(ID.Loc,
3605                        "inrange keyword may not appear on pointer operand");
3606         --*InRangeOp;
3607       }
3608 
3609       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3610                                                       InBounds, InRangeOp);
3611     } else if (Opc == Instruction::Select) {
3612       if (Elts.size() != 3)
3613         return Error(ID.Loc, "expected three operands to select");
3614       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3615                                                               Elts[2]))
3616         return Error(ID.Loc, Reason);
3617       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3618     } else if (Opc == Instruction::ShuffleVector) {
3619       if (Elts.size() != 3)
3620         return Error(ID.Loc, "expected three operands to shufflevector");
3621       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3622         return Error(ID.Loc, "invalid operands to shufflevector");
3623       ID.ConstantVal =
3624                  ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
3625     } else if (Opc == Instruction::ExtractElement) {
3626       if (Elts.size() != 2)
3627         return Error(ID.Loc, "expected two operands to extractelement");
3628       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3629         return Error(ID.Loc, "invalid extractelement operands");
3630       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3631     } else {
3632       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3633       if (Elts.size() != 3)
3634       return Error(ID.Loc, "expected three operands to insertelement");
3635       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3636         return Error(ID.Loc, "invalid insertelement operands");
3637       ID.ConstantVal =
3638                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3639     }
3640 
3641     ID.Kind = ValID::t_Constant;
3642     return false;
3643   }
3644   }
3645 
3646   Lex.Lex();
3647   return false;
3648 }
3649 
3650 /// ParseGlobalValue - Parse a global value with the specified type.
3651 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3652   C = nullptr;
3653   ValID ID;
3654   Value *V = nullptr;
3655   bool Parsed = ParseValID(ID) ||
3656                 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3657   if (V && !(C = dyn_cast<Constant>(V)))
3658     return Error(ID.Loc, "global values must be constants");
3659   return Parsed;
3660 }
3661 
3662 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3663   Type *Ty = nullptr;
3664   return ParseType(Ty) ||
3665          ParseGlobalValue(Ty, V);
3666 }
3667 
3668 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3669   C = nullptr;
3670 
3671   LocTy KwLoc = Lex.getLoc();
3672   if (!EatIfPresent(lltok::kw_comdat))
3673     return false;
3674 
3675   if (EatIfPresent(lltok::lparen)) {
3676     if (Lex.getKind() != lltok::ComdatVar)
3677       return TokError("expected comdat variable");
3678     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3679     Lex.Lex();
3680     if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3681       return true;
3682   } else {
3683     if (GlobalName.empty())
3684       return TokError("comdat cannot be unnamed");
3685     C = getComdat(GlobalName, KwLoc);
3686   }
3687 
3688   return false;
3689 }
3690 
3691 /// ParseGlobalValueVector
3692 ///   ::= /*empty*/
3693 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3694 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3695                                       Optional<unsigned> *InRangeOp) {
3696   // Empty list.
3697   if (Lex.getKind() == lltok::rbrace ||
3698       Lex.getKind() == lltok::rsquare ||
3699       Lex.getKind() == lltok::greater ||
3700       Lex.getKind() == lltok::rparen)
3701     return false;
3702 
3703   do {
3704     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3705       *InRangeOp = Elts.size();
3706 
3707     Constant *C;
3708     if (ParseGlobalTypeAndValue(C)) return true;
3709     Elts.push_back(C);
3710   } while (EatIfPresent(lltok::comma));
3711 
3712   return false;
3713 }
3714 
3715 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3716   SmallVector<Metadata *, 16> Elts;
3717   if (ParseMDNodeVector(Elts))
3718     return true;
3719 
3720   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3721   return false;
3722 }
3723 
3724 /// MDNode:
3725 ///  ::= !{ ... }
3726 ///  ::= !7
3727 ///  ::= !DILocation(...)
3728 bool LLParser::ParseMDNode(MDNode *&N) {
3729   if (Lex.getKind() == lltok::MetadataVar)
3730     return ParseSpecializedMDNode(N);
3731 
3732   return ParseToken(lltok::exclaim, "expected '!' here") ||
3733          ParseMDNodeTail(N);
3734 }
3735 
3736 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3737   // !{ ... }
3738   if (Lex.getKind() == lltok::lbrace)
3739     return ParseMDTuple(N);
3740 
3741   // !42
3742   return ParseMDNodeID(N);
3743 }
3744 
3745 namespace {
3746 
3747 /// Structure to represent an optional metadata field.
3748 template <class FieldTy> struct MDFieldImpl {
3749   typedef MDFieldImpl ImplTy;
3750   FieldTy Val;
3751   bool Seen;
3752 
3753   void assign(FieldTy Val) {
3754     Seen = true;
3755     this->Val = std::move(Val);
3756   }
3757 
3758   explicit MDFieldImpl(FieldTy Default)
3759       : Val(std::move(Default)), Seen(false) {}
3760 };
3761 
3762 /// Structure to represent an optional metadata field that
3763 /// can be of either type (A or B) and encapsulates the
3764 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3765 /// to reimplement the specifics for representing each Field.
3766 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3767   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3768   FieldTypeA A;
3769   FieldTypeB B;
3770   bool Seen;
3771 
3772   enum {
3773     IsInvalid = 0,
3774     IsTypeA = 1,
3775     IsTypeB = 2
3776   } WhatIs;
3777 
3778   void assign(FieldTypeA A) {
3779     Seen = true;
3780     this->A = std::move(A);
3781     WhatIs = IsTypeA;
3782   }
3783 
3784   void assign(FieldTypeB B) {
3785     Seen = true;
3786     this->B = std::move(B);
3787     WhatIs = IsTypeB;
3788   }
3789 
3790   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3791       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3792         WhatIs(IsInvalid) {}
3793 };
3794 
3795 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3796   uint64_t Max;
3797 
3798   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3799       : ImplTy(Default), Max(Max) {}
3800 };
3801 
3802 struct LineField : public MDUnsignedField {
3803   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3804 };
3805 
3806 struct ColumnField : public MDUnsignedField {
3807   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3808 };
3809 
3810 struct DwarfTagField : public MDUnsignedField {
3811   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3812   DwarfTagField(dwarf::Tag DefaultTag)
3813       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3814 };
3815 
3816 struct DwarfMacinfoTypeField : public MDUnsignedField {
3817   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3818   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3819     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3820 };
3821 
3822 struct DwarfAttEncodingField : public MDUnsignedField {
3823   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3824 };
3825 
3826 struct DwarfVirtualityField : public MDUnsignedField {
3827   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3828 };
3829 
3830 struct DwarfLangField : public MDUnsignedField {
3831   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3832 };
3833 
3834 struct DwarfCCField : public MDUnsignedField {
3835   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3836 };
3837 
3838 struct EmissionKindField : public MDUnsignedField {
3839   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3840 };
3841 
3842 struct NameTableKindField : public MDUnsignedField {
3843   NameTableKindField()
3844       : MDUnsignedField(
3845             0, (unsigned)
3846                    DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
3847 };
3848 
3849 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3850   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3851 };
3852 
3853 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
3854   DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
3855 };
3856 
3857 struct MDSignedField : public MDFieldImpl<int64_t> {
3858   int64_t Min;
3859   int64_t Max;
3860 
3861   MDSignedField(int64_t Default = 0)
3862       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3863   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3864       : ImplTy(Default), Min(Min), Max(Max) {}
3865 };
3866 
3867 struct MDBoolField : public MDFieldImpl<bool> {
3868   MDBoolField(bool Default = false) : ImplTy(Default) {}
3869 };
3870 
3871 struct MDField : public MDFieldImpl<Metadata *> {
3872   bool AllowNull;
3873 
3874   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3875 };
3876 
3877 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3878   MDConstant() : ImplTy(nullptr) {}
3879 };
3880 
3881 struct MDStringField : public MDFieldImpl<MDString *> {
3882   bool AllowEmpty;
3883   MDStringField(bool AllowEmpty = true)
3884       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3885 };
3886 
3887 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3888   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3889 };
3890 
3891 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
3892   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3893 };
3894 
3895 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
3896   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
3897       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
3898 
3899   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
3900                     bool AllowNull = true)
3901       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
3902 
3903   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3904   bool isMDField() const { return WhatIs == IsTypeB; }
3905   int64_t getMDSignedValue() const {
3906     assert(isMDSignedField() && "Wrong field type");
3907     return A.Val;
3908   }
3909   Metadata *getMDFieldValue() const {
3910     assert(isMDField() && "Wrong field type");
3911     return B.Val;
3912   }
3913 };
3914 
3915 struct MDSignedOrUnsignedField
3916     : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
3917   MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
3918 
3919   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3920   bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
3921   int64_t getMDSignedValue() const {
3922     assert(isMDSignedField() && "Wrong field type");
3923     return A.Val;
3924   }
3925   uint64_t getMDUnsignedValue() const {
3926     assert(isMDUnsignedField() && "Wrong field type");
3927     return B.Val;
3928   }
3929 };
3930 
3931 } // end anonymous namespace
3932 
3933 namespace llvm {
3934 
3935 template <>
3936 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3937                             MDUnsignedField &Result) {
3938   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3939     return TokError("expected unsigned integer");
3940 
3941   auto &U = Lex.getAPSIntVal();
3942   if (U.ugt(Result.Max))
3943     return TokError("value for '" + Name + "' too large, limit is " +
3944                     Twine(Result.Max));
3945   Result.assign(U.getZExtValue());
3946   assert(Result.Val <= Result.Max && "Expected value in range");
3947   Lex.Lex();
3948   return false;
3949 }
3950 
3951 template <>
3952 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3953   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3954 }
3955 template <>
3956 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3957   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3958 }
3959 
3960 template <>
3961 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3962   if (Lex.getKind() == lltok::APSInt)
3963     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3964 
3965   if (Lex.getKind() != lltok::DwarfTag)
3966     return TokError("expected DWARF tag");
3967 
3968   unsigned Tag = dwarf::getTag(Lex.getStrVal());
3969   if (Tag == dwarf::DW_TAG_invalid)
3970     return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3971   assert(Tag <= Result.Max && "Expected valid DWARF tag");
3972 
3973   Result.assign(Tag);
3974   Lex.Lex();
3975   return false;
3976 }
3977 
3978 template <>
3979 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3980                             DwarfMacinfoTypeField &Result) {
3981   if (Lex.getKind() == lltok::APSInt)
3982     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3983 
3984   if (Lex.getKind() != lltok::DwarfMacinfo)
3985     return TokError("expected DWARF macinfo type");
3986 
3987   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
3988   if (Macinfo == dwarf::DW_MACINFO_invalid)
3989     return TokError(
3990         "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
3991   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
3992 
3993   Result.assign(Macinfo);
3994   Lex.Lex();
3995   return false;
3996 }
3997 
3998 template <>
3999 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4000                             DwarfVirtualityField &Result) {
4001   if (Lex.getKind() == lltok::APSInt)
4002     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4003 
4004   if (Lex.getKind() != lltok::DwarfVirtuality)
4005     return TokError("expected DWARF virtuality code");
4006 
4007   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
4008   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
4009     return TokError("invalid DWARF virtuality code" + Twine(" '") +
4010                     Lex.getStrVal() + "'");
4011   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
4012   Result.assign(Virtuality);
4013   Lex.Lex();
4014   return false;
4015 }
4016 
4017 template <>
4018 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
4019   if (Lex.getKind() == lltok::APSInt)
4020     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4021 
4022   if (Lex.getKind() != lltok::DwarfLang)
4023     return TokError("expected DWARF language");
4024 
4025   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
4026   if (!Lang)
4027     return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
4028                     "'");
4029   assert(Lang <= Result.Max && "Expected valid DWARF language");
4030   Result.assign(Lang);
4031   Lex.Lex();
4032   return false;
4033 }
4034 
4035 template <>
4036 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4037   if (Lex.getKind() == lltok::APSInt)
4038     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4039 
4040   if (Lex.getKind() != lltok::DwarfCC)
4041     return TokError("expected DWARF calling convention");
4042 
4043   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
4044   if (!CC)
4045     return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() +
4046                     "'");
4047   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4048   Result.assign(CC);
4049   Lex.Lex();
4050   return false;
4051 }
4052 
4053 template <>
4054 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
4055   if (Lex.getKind() == lltok::APSInt)
4056     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4057 
4058   if (Lex.getKind() != lltok::EmissionKind)
4059     return TokError("expected emission kind");
4060 
4061   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4062   if (!Kind)
4063     return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4064                     "'");
4065   assert(*Kind <= Result.Max && "Expected valid emission kind");
4066   Result.assign(*Kind);
4067   Lex.Lex();
4068   return false;
4069 }
4070 
4071 template <>
4072 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4073                             NameTableKindField &Result) {
4074   if (Lex.getKind() == lltok::APSInt)
4075     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4076 
4077   if (Lex.getKind() != lltok::NameTableKind)
4078     return TokError("expected nameTable kind");
4079 
4080   auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4081   if (!Kind)
4082     return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4083                     "'");
4084   assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4085   Result.assign((unsigned)*Kind);
4086   Lex.Lex();
4087   return false;
4088 }
4089 
4090 template <>
4091 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4092                             DwarfAttEncodingField &Result) {
4093   if (Lex.getKind() == lltok::APSInt)
4094     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4095 
4096   if (Lex.getKind() != lltok::DwarfAttEncoding)
4097     return TokError("expected DWARF type attribute encoding");
4098 
4099   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4100   if (!Encoding)
4101     return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
4102                     Lex.getStrVal() + "'");
4103   assert(Encoding <= Result.Max && "Expected valid DWARF language");
4104   Result.assign(Encoding);
4105   Lex.Lex();
4106   return false;
4107 }
4108 
4109 /// DIFlagField
4110 ///  ::= uint32
4111 ///  ::= DIFlagVector
4112 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4113 template <>
4114 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4115 
4116   // Parser for a single flag.
4117   auto parseFlag = [&](DINode::DIFlags &Val) {
4118     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4119       uint32_t TempVal = static_cast<uint32_t>(Val);
4120       bool Res = ParseUInt32(TempVal);
4121       Val = static_cast<DINode::DIFlags>(TempVal);
4122       return Res;
4123     }
4124 
4125     if (Lex.getKind() != lltok::DIFlag)
4126       return TokError("expected debug info flag");
4127 
4128     Val = DINode::getFlag(Lex.getStrVal());
4129     if (!Val)
4130       return TokError(Twine("invalid debug info flag flag '") +
4131                       Lex.getStrVal() + "'");
4132     Lex.Lex();
4133     return false;
4134   };
4135 
4136   // Parse the flags and combine them together.
4137   DINode::DIFlags Combined = DINode::FlagZero;
4138   do {
4139     DINode::DIFlags Val;
4140     if (parseFlag(Val))
4141       return true;
4142     Combined |= Val;
4143   } while (EatIfPresent(lltok::bar));
4144 
4145   Result.assign(Combined);
4146   return false;
4147 }
4148 
4149 /// DISPFlagField
4150 ///  ::= uint32
4151 ///  ::= DISPFlagVector
4152 ///  ::= DISPFlagVector '|' DISPFlag* '|' uint32
4153 template <>
4154 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4155 
4156   // Parser for a single flag.
4157   auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4158     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4159       uint32_t TempVal = static_cast<uint32_t>(Val);
4160       bool Res = ParseUInt32(TempVal);
4161       Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4162       return Res;
4163     }
4164 
4165     if (Lex.getKind() != lltok::DISPFlag)
4166       return TokError("expected debug info flag");
4167 
4168     Val = DISubprogram::getFlag(Lex.getStrVal());
4169     if (!Val)
4170       return TokError(Twine("invalid subprogram debug info flag '") +
4171                       Lex.getStrVal() + "'");
4172     Lex.Lex();
4173     return false;
4174   };
4175 
4176   // Parse the flags and combine them together.
4177   DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4178   do {
4179     DISubprogram::DISPFlags Val;
4180     if (parseFlag(Val))
4181       return true;
4182     Combined |= Val;
4183   } while (EatIfPresent(lltok::bar));
4184 
4185   Result.assign(Combined);
4186   return false;
4187 }
4188 
4189 template <>
4190 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4191                             MDSignedField &Result) {
4192   if (Lex.getKind() != lltok::APSInt)
4193     return TokError("expected signed integer");
4194 
4195   auto &S = Lex.getAPSIntVal();
4196   if (S < Result.Min)
4197     return TokError("value for '" + Name + "' too small, limit is " +
4198                     Twine(Result.Min));
4199   if (S > Result.Max)
4200     return TokError("value for '" + Name + "' too large, limit is " +
4201                     Twine(Result.Max));
4202   Result.assign(S.getExtValue());
4203   assert(Result.Val >= Result.Min && "Expected value in range");
4204   assert(Result.Val <= Result.Max && "Expected value in range");
4205   Lex.Lex();
4206   return false;
4207 }
4208 
4209 template <>
4210 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4211   switch (Lex.getKind()) {
4212   default:
4213     return TokError("expected 'true' or 'false'");
4214   case lltok::kw_true:
4215     Result.assign(true);
4216     break;
4217   case lltok::kw_false:
4218     Result.assign(false);
4219     break;
4220   }
4221   Lex.Lex();
4222   return false;
4223 }
4224 
4225 template <>
4226 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4227   if (Lex.getKind() == lltok::kw_null) {
4228     if (!Result.AllowNull)
4229       return TokError("'" + Name + "' cannot be null");
4230     Lex.Lex();
4231     Result.assign(nullptr);
4232     return false;
4233   }
4234 
4235   Metadata *MD;
4236   if (ParseMetadata(MD, nullptr))
4237     return true;
4238 
4239   Result.assign(MD);
4240   return false;
4241 }
4242 
4243 template <>
4244 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4245                             MDSignedOrMDField &Result) {
4246   // Try to parse a signed int.
4247   if (Lex.getKind() == lltok::APSInt) {
4248     MDSignedField Res = Result.A;
4249     if (!ParseMDField(Loc, Name, Res)) {
4250       Result.assign(Res);
4251       return false;
4252     }
4253     return true;
4254   }
4255 
4256   // Otherwise, try to parse as an MDField.
4257   MDField Res = Result.B;
4258   if (!ParseMDField(Loc, Name, Res)) {
4259     Result.assign(Res);
4260     return false;
4261   }
4262 
4263   return true;
4264 }
4265 
4266 template <>
4267 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4268                             MDSignedOrUnsignedField &Result) {
4269   if (Lex.getKind() != lltok::APSInt)
4270     return false;
4271 
4272   if (Lex.getAPSIntVal().isSigned()) {
4273     MDSignedField Res = Result.A;
4274     if (ParseMDField(Loc, Name, Res))
4275       return true;
4276     Result.assign(Res);
4277     return false;
4278   }
4279 
4280   MDUnsignedField Res = Result.B;
4281   if (ParseMDField(Loc, Name, Res))
4282     return true;
4283   Result.assign(Res);
4284   return false;
4285 }
4286 
4287 template <>
4288 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4289   LocTy ValueLoc = Lex.getLoc();
4290   std::string S;
4291   if (ParseStringConstant(S))
4292     return true;
4293 
4294   if (!Result.AllowEmpty && S.empty())
4295     return Error(ValueLoc, "'" + Name + "' cannot be empty");
4296 
4297   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4298   return false;
4299 }
4300 
4301 template <>
4302 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4303   SmallVector<Metadata *, 4> MDs;
4304   if (ParseMDNodeVector(MDs))
4305     return true;
4306 
4307   Result.assign(std::move(MDs));
4308   return false;
4309 }
4310 
4311 template <>
4312 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4313                             ChecksumKindField &Result) {
4314   Optional<DIFile::ChecksumKind> CSKind =
4315       DIFile::getChecksumKind(Lex.getStrVal());
4316 
4317   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4318     return TokError(
4319         "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'");
4320 
4321   Result.assign(*CSKind);
4322   Lex.Lex();
4323   return false;
4324 }
4325 
4326 } // end namespace llvm
4327 
4328 template <class ParserTy>
4329 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
4330   do {
4331     if (Lex.getKind() != lltok::LabelStr)
4332       return TokError("expected field label here");
4333 
4334     if (parseField())
4335       return true;
4336   } while (EatIfPresent(lltok::comma));
4337 
4338   return false;
4339 }
4340 
4341 template <class ParserTy>
4342 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
4343   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4344   Lex.Lex();
4345 
4346   if (ParseToken(lltok::lparen, "expected '(' here"))
4347     return true;
4348   if (Lex.getKind() != lltok::rparen)
4349     if (ParseMDFieldsImplBody(parseField))
4350       return true;
4351 
4352   ClosingLoc = Lex.getLoc();
4353   return ParseToken(lltok::rparen, "expected ')' here");
4354 }
4355 
4356 template <class FieldTy>
4357 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
4358   if (Result.Seen)
4359     return TokError("field '" + Name + "' cannot be specified more than once");
4360 
4361   LocTy Loc = Lex.getLoc();
4362   Lex.Lex();
4363   return ParseMDField(Loc, Name, Result);
4364 }
4365 
4366 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4367   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4368 
4369 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4370   if (Lex.getStrVal() == #CLASS)                                               \
4371     return Parse##CLASS(N, IsDistinct);
4372 #include "llvm/IR/Metadata.def"
4373 
4374   return TokError("expected metadata type");
4375 }
4376 
4377 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4378 #define NOP_FIELD(NAME, TYPE, INIT)
4379 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4380   if (!NAME.Seen)                                                              \
4381     return Error(ClosingLoc, "missing required field '" #NAME "'");
4382 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4383   if (Lex.getStrVal() == #NAME)                                                \
4384     return ParseMDField(#NAME, NAME);
4385 #define PARSE_MD_FIELDS()                                                      \
4386   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4387   do {                                                                         \
4388     LocTy ClosingLoc;                                                          \
4389     if (ParseMDFieldsImpl([&]() -> bool {                                      \
4390       VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                          \
4391       return TokError(Twine("invalid field '") + Lex.getStrVal() + "'");       \
4392     }, ClosingLoc))                                                            \
4393       return true;                                                             \
4394     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4395   } while (false)
4396 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4397   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4398 
4399 /// ParseDILocationFields:
4400 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4401 ///   isImplicitCode: true)
4402 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
4403 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4404   OPTIONAL(line, LineField, );                                                 \
4405   OPTIONAL(column, ColumnField, );                                             \
4406   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4407   OPTIONAL(inlinedAt, MDField, );                                              \
4408   OPTIONAL(isImplicitCode, MDBoolField, (false));
4409   PARSE_MD_FIELDS();
4410 #undef VISIT_MD_FIELDS
4411 
4412   Result =
4413       GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4414                                    inlinedAt.Val, isImplicitCode.Val));
4415   return false;
4416 }
4417 
4418 /// ParseGenericDINode:
4419 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4420 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
4421 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4422   REQUIRED(tag, DwarfTagField, );                                              \
4423   OPTIONAL(header, MDStringField, );                                           \
4424   OPTIONAL(operands, MDFieldList, );
4425   PARSE_MD_FIELDS();
4426 #undef VISIT_MD_FIELDS
4427 
4428   Result = GET_OR_DISTINCT(GenericDINode,
4429                            (Context, tag.Val, header.Val, operands.Val));
4430   return false;
4431 }
4432 
4433 /// ParseDISubrange:
4434 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4435 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4436 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
4437 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4438   REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4439   OPTIONAL(lowerBound, MDSignedField, );
4440   PARSE_MD_FIELDS();
4441 #undef VISIT_MD_FIELDS
4442 
4443   if (count.isMDSignedField())
4444     Result = GET_OR_DISTINCT(
4445         DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val));
4446   else if (count.isMDField())
4447     Result = GET_OR_DISTINCT(
4448         DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val));
4449   else
4450     return true;
4451 
4452   return false;
4453 }
4454 
4455 /// ParseDIEnumerator:
4456 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4457 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4458 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4459   REQUIRED(name, MDStringField, );                                             \
4460   REQUIRED(value, MDSignedOrUnsignedField, );                                  \
4461   OPTIONAL(isUnsigned, MDBoolField, (false));
4462   PARSE_MD_FIELDS();
4463 #undef VISIT_MD_FIELDS
4464 
4465   if (isUnsigned.Val && value.isMDSignedField())
4466     return TokError("unsigned enumerator with negative value");
4467 
4468   int64_t Value = value.isMDSignedField()
4469                       ? value.getMDSignedValue()
4470                       : static_cast<int64_t>(value.getMDUnsignedValue());
4471   Result =
4472       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4473 
4474   return false;
4475 }
4476 
4477 /// ParseDIBasicType:
4478 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4479 ///                    encoding: DW_ATE_encoding, flags: 0)
4480 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
4481 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4482   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4483   OPTIONAL(name, MDStringField, );                                             \
4484   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4485   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4486   OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
4487   OPTIONAL(flags, DIFlagField, );
4488   PARSE_MD_FIELDS();
4489 #undef VISIT_MD_FIELDS
4490 
4491   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4492                                          align.Val, encoding.Val, flags.Val));
4493   return false;
4494 }
4495 
4496 /// ParseDIDerivedType:
4497 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4498 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4499 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4500 ///                      dwarfAddressSpace: 3)
4501 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4502 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4503   REQUIRED(tag, DwarfTagField, );                                              \
4504   OPTIONAL(name, MDStringField, );                                             \
4505   OPTIONAL(file, MDField, );                                                   \
4506   OPTIONAL(line, LineField, );                                                 \
4507   OPTIONAL(scope, MDField, );                                                  \
4508   REQUIRED(baseType, MDField, );                                               \
4509   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4510   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4511   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4512   OPTIONAL(flags, DIFlagField, );                                              \
4513   OPTIONAL(extraData, MDField, );                                              \
4514   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4515   PARSE_MD_FIELDS();
4516 #undef VISIT_MD_FIELDS
4517 
4518   Optional<unsigned> DWARFAddressSpace;
4519   if (dwarfAddressSpace.Val != UINT32_MAX)
4520     DWARFAddressSpace = dwarfAddressSpace.Val;
4521 
4522   Result = GET_OR_DISTINCT(DIDerivedType,
4523                            (Context, tag.Val, name.Val, file.Val, line.Val,
4524                             scope.Val, baseType.Val, size.Val, align.Val,
4525                             offset.Val, DWARFAddressSpace, flags.Val,
4526                             extraData.Val));
4527   return false;
4528 }
4529 
4530 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
4531 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4532   REQUIRED(tag, DwarfTagField, );                                              \
4533   OPTIONAL(name, MDStringField, );                                             \
4534   OPTIONAL(file, MDField, );                                                   \
4535   OPTIONAL(line, LineField, );                                                 \
4536   OPTIONAL(scope, MDField, );                                                  \
4537   OPTIONAL(baseType, MDField, );                                               \
4538   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4539   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4540   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4541   OPTIONAL(flags, DIFlagField, );                                              \
4542   OPTIONAL(elements, MDField, );                                               \
4543   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4544   OPTIONAL(vtableHolder, MDField, );                                           \
4545   OPTIONAL(templateParams, MDField, );                                         \
4546   OPTIONAL(identifier, MDStringField, );                                       \
4547   OPTIONAL(discriminator, MDField, );
4548   PARSE_MD_FIELDS();
4549 #undef VISIT_MD_FIELDS
4550 
4551   // If this has an identifier try to build an ODR type.
4552   if (identifier.Val)
4553     if (auto *CT = DICompositeType::buildODRType(
4554             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4555             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4556             elements.Val, runtimeLang.Val, vtableHolder.Val,
4557             templateParams.Val, discriminator.Val)) {
4558       Result = CT;
4559       return false;
4560     }
4561 
4562   // Create a new node, and save it in the context if it belongs in the type
4563   // map.
4564   Result = GET_OR_DISTINCT(
4565       DICompositeType,
4566       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4567        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4568        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4569        discriminator.Val));
4570   return false;
4571 }
4572 
4573 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4574 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4575   OPTIONAL(flags, DIFlagField, );                                              \
4576   OPTIONAL(cc, DwarfCCField, );                                                \
4577   REQUIRED(types, MDField, );
4578   PARSE_MD_FIELDS();
4579 #undef VISIT_MD_FIELDS
4580 
4581   Result = GET_OR_DISTINCT(DISubroutineType,
4582                            (Context, flags.Val, cc.Val, types.Val));
4583   return false;
4584 }
4585 
4586 /// ParseDIFileType:
4587 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4588 ///                   checksumkind: CSK_MD5,
4589 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
4590 ///                   source: "source file contents")
4591 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
4592   // The default constructed value for checksumkind is required, but will never
4593   // be used, as the parser checks if the field was actually Seen before using
4594   // the Val.
4595 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4596   REQUIRED(filename, MDStringField, );                                         \
4597   REQUIRED(directory, MDStringField, );                                        \
4598   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
4599   OPTIONAL(checksum, MDStringField, );                                         \
4600   OPTIONAL(source, MDStringField, );
4601   PARSE_MD_FIELDS();
4602 #undef VISIT_MD_FIELDS
4603 
4604   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4605   if (checksumkind.Seen && checksum.Seen)
4606     OptChecksum.emplace(checksumkind.Val, checksum.Val);
4607   else if (checksumkind.Seen || checksum.Seen)
4608     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4609 
4610   Optional<MDString *> OptSource;
4611   if (source.Seen)
4612     OptSource = source.Val;
4613   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4614                                     OptChecksum, OptSource));
4615   return false;
4616 }
4617 
4618 /// ParseDICompileUnit:
4619 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4620 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4621 ///                      splitDebugFilename: "abc.debug",
4622 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4623 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd)
4624 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4625   if (!IsDistinct)
4626     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4627 
4628 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4629   REQUIRED(language, DwarfLangField, );                                        \
4630   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4631   OPTIONAL(producer, MDStringField, );                                         \
4632   OPTIONAL(isOptimized, MDBoolField, );                                        \
4633   OPTIONAL(flags, MDStringField, );                                            \
4634   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4635   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4636   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4637   OPTIONAL(enums, MDField, );                                                  \
4638   OPTIONAL(retainedTypes, MDField, );                                          \
4639   OPTIONAL(globals, MDField, );                                                \
4640   OPTIONAL(imports, MDField, );                                                \
4641   OPTIONAL(macros, MDField, );                                                 \
4642   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4643   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
4644   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
4645   OPTIONAL(nameTableKind, NameTableKindField, );                               \
4646   OPTIONAL(debugBaseAddress, MDBoolField, = false);
4647   PARSE_MD_FIELDS();
4648 #undef VISIT_MD_FIELDS
4649 
4650   Result = DICompileUnit::getDistinct(
4651       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4652       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4653       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4654       splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
4655       debugBaseAddress.Val);
4656   return false;
4657 }
4658 
4659 /// ParseDISubprogram:
4660 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4661 ///                     file: !1, line: 7, type: !2, isLocal: false,
4662 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4663 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4664 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4665 ///                     spFlags: 10, isOptimized: false, templateParams: !4,
4666 ///                     declaration: !5, retainedNodes: !6, thrownTypes: !7)
4667 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
4668   auto Loc = Lex.getLoc();
4669 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4670   OPTIONAL(scope, MDField, );                                                  \
4671   OPTIONAL(name, MDStringField, );                                             \
4672   OPTIONAL(linkageName, MDStringField, );                                      \
4673   OPTIONAL(file, MDField, );                                                   \
4674   OPTIONAL(line, LineField, );                                                 \
4675   OPTIONAL(type, MDField, );                                                   \
4676   OPTIONAL(isLocal, MDBoolField, );                                            \
4677   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4678   OPTIONAL(scopeLine, LineField, );                                            \
4679   OPTIONAL(containingType, MDField, );                                         \
4680   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4681   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4682   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4683   OPTIONAL(flags, DIFlagField, );                                              \
4684   OPTIONAL(spFlags, DISPFlagField, );                                          \
4685   OPTIONAL(isOptimized, MDBoolField, );                                        \
4686   OPTIONAL(unit, MDField, );                                                   \
4687   OPTIONAL(templateParams, MDField, );                                         \
4688   OPTIONAL(declaration, MDField, );                                            \
4689   OPTIONAL(retainedNodes, MDField, );                                          \
4690   OPTIONAL(thrownTypes, MDField, );
4691   PARSE_MD_FIELDS();
4692 #undef VISIT_MD_FIELDS
4693 
4694   // An explicit spFlags field takes precedence over individual fields in
4695   // older IR versions.
4696   DISubprogram::DISPFlags SPFlags =
4697       spFlags.Seen ? spFlags.Val
4698                    : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
4699                                              isOptimized.Val, virtuality.Val);
4700   if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
4701     return Lex.Error(
4702         Loc,
4703         "missing 'distinct', required for !DISubprogram that is a Definition");
4704   Result = GET_OR_DISTINCT(
4705       DISubprogram,
4706       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4707        type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
4708        thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
4709        declaration.Val, retainedNodes.Val, thrownTypes.Val));
4710   return false;
4711 }
4712 
4713 /// ParseDILexicalBlock:
4714 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4715 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4716 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4717   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4718   OPTIONAL(file, MDField, );                                                   \
4719   OPTIONAL(line, LineField, );                                                 \
4720   OPTIONAL(column, ColumnField, );
4721   PARSE_MD_FIELDS();
4722 #undef VISIT_MD_FIELDS
4723 
4724   Result = GET_OR_DISTINCT(
4725       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4726   return false;
4727 }
4728 
4729 /// ParseDILexicalBlockFile:
4730 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4731 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4732 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4733   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4734   OPTIONAL(file, MDField, );                                                   \
4735   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4736   PARSE_MD_FIELDS();
4737 #undef VISIT_MD_FIELDS
4738 
4739   Result = GET_OR_DISTINCT(DILexicalBlockFile,
4740                            (Context, scope.Val, file.Val, discriminator.Val));
4741   return false;
4742 }
4743 
4744 /// ParseDICommonBlock:
4745 ///   ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
4746 bool LLParser::ParseDICommonBlock(MDNode *&Result, bool IsDistinct) {
4747 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4748   REQUIRED(scope, MDField, );                                                  \
4749   OPTIONAL(declaration, MDField, );                                            \
4750   OPTIONAL(name, MDStringField, );                                             \
4751   OPTIONAL(file, MDField, );                                                   \
4752   OPTIONAL(line, LineField, );
4753   PARSE_MD_FIELDS();
4754 #undef VISIT_MD_FIELDS
4755 
4756   Result = GET_OR_DISTINCT(DICommonBlock,
4757                            (Context, scope.Val, declaration.Val, name.Val,
4758                             file.Val, line.Val));
4759   return false;
4760 }
4761 
4762 /// ParseDINamespace:
4763 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4764 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
4765 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4766   REQUIRED(scope, MDField, );                                                  \
4767   OPTIONAL(name, MDStringField, );                                             \
4768   OPTIONAL(exportSymbols, MDBoolField, );
4769   PARSE_MD_FIELDS();
4770 #undef VISIT_MD_FIELDS
4771 
4772   Result = GET_OR_DISTINCT(DINamespace,
4773                            (Context, scope.Val, name.Val, exportSymbols.Val));
4774   return false;
4775 }
4776 
4777 /// ParseDIMacro:
4778 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
4779 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
4780 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4781   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
4782   OPTIONAL(line, LineField, );                                                 \
4783   REQUIRED(name, MDStringField, );                                             \
4784   OPTIONAL(value, MDStringField, );
4785   PARSE_MD_FIELDS();
4786 #undef VISIT_MD_FIELDS
4787 
4788   Result = GET_OR_DISTINCT(DIMacro,
4789                            (Context, type.Val, line.Val, name.Val, value.Val));
4790   return false;
4791 }
4792 
4793 /// ParseDIMacroFile:
4794 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4795 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4796 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4797   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
4798   OPTIONAL(line, LineField, );                                                 \
4799   REQUIRED(file, MDField, );                                                   \
4800   OPTIONAL(nodes, MDField, );
4801   PARSE_MD_FIELDS();
4802 #undef VISIT_MD_FIELDS
4803 
4804   Result = GET_OR_DISTINCT(DIMacroFile,
4805                            (Context, type.Val, line.Val, file.Val, nodes.Val));
4806   return false;
4807 }
4808 
4809 /// ParseDIModule:
4810 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
4811 ///                 includePath: "/usr/include", isysroot: "/")
4812 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4813 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4814   REQUIRED(scope, MDField, );                                                  \
4815   REQUIRED(name, MDStringField, );                                             \
4816   OPTIONAL(configMacros, MDStringField, );                                     \
4817   OPTIONAL(includePath, MDStringField, );                                      \
4818   OPTIONAL(isysroot, MDStringField, );
4819   PARSE_MD_FIELDS();
4820 #undef VISIT_MD_FIELDS
4821 
4822   Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val,
4823                            configMacros.Val, includePath.Val, isysroot.Val));
4824   return false;
4825 }
4826 
4827 /// ParseDITemplateTypeParameter:
4828 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1)
4829 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4830 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4831   OPTIONAL(name, MDStringField, );                                             \
4832   REQUIRED(type, MDField, );
4833   PARSE_MD_FIELDS();
4834 #undef VISIT_MD_FIELDS
4835 
4836   Result =
4837       GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val));
4838   return false;
4839 }
4840 
4841 /// ParseDITemplateValueParameter:
4842 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4843 ///                                 name: "V", type: !1, value: i32 7)
4844 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4845 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4846   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
4847   OPTIONAL(name, MDStringField, );                                             \
4848   OPTIONAL(type, MDField, );                                                   \
4849   REQUIRED(value, MDField, );
4850   PARSE_MD_FIELDS();
4851 #undef VISIT_MD_FIELDS
4852 
4853   Result = GET_OR_DISTINCT(DITemplateValueParameter,
4854                            (Context, tag.Val, name.Val, type.Val, value.Val));
4855   return false;
4856 }
4857 
4858 /// ParseDIGlobalVariable:
4859 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4860 ///                         file: !1, line: 7, type: !2, isLocal: false,
4861 ///                         isDefinition: true, templateParams: !3,
4862 ///                         declaration: !4, align: 8)
4863 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4864 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4865   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
4866   OPTIONAL(scope, MDField, );                                                  \
4867   OPTIONAL(linkageName, MDStringField, );                                      \
4868   OPTIONAL(file, MDField, );                                                   \
4869   OPTIONAL(line, LineField, );                                                 \
4870   OPTIONAL(type, MDField, );                                                   \
4871   OPTIONAL(isLocal, MDBoolField, );                                            \
4872   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4873   OPTIONAL(templateParams, MDField, );                                         \
4874   OPTIONAL(declaration, MDField, );                                            \
4875   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4876   PARSE_MD_FIELDS();
4877 #undef VISIT_MD_FIELDS
4878 
4879   Result =
4880       GET_OR_DISTINCT(DIGlobalVariable,
4881                       (Context, scope.Val, name.Val, linkageName.Val, file.Val,
4882                        line.Val, type.Val, isLocal.Val, isDefinition.Val,
4883                        declaration.Val, templateParams.Val, align.Val));
4884   return false;
4885 }
4886 
4887 /// ParseDILocalVariable:
4888 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4889 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4890 ///                        align: 8)
4891 ///   ::= !DILocalVariable(scope: !0, name: "foo",
4892 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4893 ///                        align: 8)
4894 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4895 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4896   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4897   OPTIONAL(name, MDStringField, );                                             \
4898   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
4899   OPTIONAL(file, MDField, );                                                   \
4900   OPTIONAL(line, LineField, );                                                 \
4901   OPTIONAL(type, MDField, );                                                   \
4902   OPTIONAL(flags, DIFlagField, );                                              \
4903   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4904   PARSE_MD_FIELDS();
4905 #undef VISIT_MD_FIELDS
4906 
4907   Result = GET_OR_DISTINCT(DILocalVariable,
4908                            (Context, scope.Val, name.Val, file.Val, line.Val,
4909                             type.Val, arg.Val, flags.Val, align.Val));
4910   return false;
4911 }
4912 
4913 /// ParseDILabel:
4914 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
4915 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) {
4916 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4917   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4918   REQUIRED(name, MDStringField, );                                             \
4919   REQUIRED(file, MDField, );                                                   \
4920   REQUIRED(line, LineField, );
4921   PARSE_MD_FIELDS();
4922 #undef VISIT_MD_FIELDS
4923 
4924   Result = GET_OR_DISTINCT(DILabel,
4925                            (Context, scope.Val, name.Val, file.Val, line.Val));
4926   return false;
4927 }
4928 
4929 /// ParseDIExpression:
4930 ///   ::= !DIExpression(0, 7, -1)
4931 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
4932   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4933   Lex.Lex();
4934 
4935   if (ParseToken(lltok::lparen, "expected '(' here"))
4936     return true;
4937 
4938   SmallVector<uint64_t, 8> Elements;
4939   if (Lex.getKind() != lltok::rparen)
4940     do {
4941       if (Lex.getKind() == lltok::DwarfOp) {
4942         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
4943           Lex.Lex();
4944           Elements.push_back(Op);
4945           continue;
4946         }
4947         return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
4948       }
4949 
4950       if (Lex.getKind() == lltok::DwarfAttEncoding) {
4951         if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
4952           Lex.Lex();
4953           Elements.push_back(Op);
4954           continue;
4955         }
4956         return TokError(Twine("invalid DWARF attribute encoding '") + Lex.getStrVal() + "'");
4957       }
4958 
4959       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4960         return TokError("expected unsigned integer");
4961 
4962       auto &U = Lex.getAPSIntVal();
4963       if (U.ugt(UINT64_MAX))
4964         return TokError("element too large, limit is " + Twine(UINT64_MAX));
4965       Elements.push_back(U.getZExtValue());
4966       Lex.Lex();
4967     } while (EatIfPresent(lltok::comma));
4968 
4969   if (ParseToken(lltok::rparen, "expected ')' here"))
4970     return true;
4971 
4972   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
4973   return false;
4974 }
4975 
4976 /// ParseDIGlobalVariableExpression:
4977 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
4978 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result,
4979                                                bool IsDistinct) {
4980 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4981   REQUIRED(var, MDField, );                                                    \
4982   REQUIRED(expr, MDField, );
4983   PARSE_MD_FIELDS();
4984 #undef VISIT_MD_FIELDS
4985 
4986   Result =
4987       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
4988   return false;
4989 }
4990 
4991 /// ParseDIObjCProperty:
4992 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
4993 ///                       getter: "getFoo", attributes: 7, type: !2)
4994 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
4995 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4996   OPTIONAL(name, MDStringField, );                                             \
4997   OPTIONAL(file, MDField, );                                                   \
4998   OPTIONAL(line, LineField, );                                                 \
4999   OPTIONAL(setter, MDStringField, );                                           \
5000   OPTIONAL(getter, MDStringField, );                                           \
5001   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
5002   OPTIONAL(type, MDField, );
5003   PARSE_MD_FIELDS();
5004 #undef VISIT_MD_FIELDS
5005 
5006   Result = GET_OR_DISTINCT(DIObjCProperty,
5007                            (Context, name.Val, file.Val, line.Val, setter.Val,
5008                             getter.Val, attributes.Val, type.Val));
5009   return false;
5010 }
5011 
5012 /// ParseDIImportedEntity:
5013 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
5014 ///                         line: 7, name: "foo")
5015 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
5016 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5017   REQUIRED(tag, DwarfTagField, );                                              \
5018   REQUIRED(scope, MDField, );                                                  \
5019   OPTIONAL(entity, MDField, );                                                 \
5020   OPTIONAL(file, MDField, );                                                   \
5021   OPTIONAL(line, LineField, );                                                 \
5022   OPTIONAL(name, MDStringField, );
5023   PARSE_MD_FIELDS();
5024 #undef VISIT_MD_FIELDS
5025 
5026   Result = GET_OR_DISTINCT(
5027       DIImportedEntity,
5028       (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
5029   return false;
5030 }
5031 
5032 #undef PARSE_MD_FIELD
5033 #undef NOP_FIELD
5034 #undef REQUIRE_FIELD
5035 #undef DECLARE_FIELD
5036 
5037 /// ParseMetadataAsValue
5038 ///  ::= metadata i32 %local
5039 ///  ::= metadata i32 @global
5040 ///  ::= metadata i32 7
5041 ///  ::= metadata !0
5042 ///  ::= metadata !{...}
5043 ///  ::= metadata !"string"
5044 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5045   // Note: the type 'metadata' has already been parsed.
5046   Metadata *MD;
5047   if (ParseMetadata(MD, &PFS))
5048     return true;
5049 
5050   V = MetadataAsValue::get(Context, MD);
5051   return false;
5052 }
5053 
5054 /// ParseValueAsMetadata
5055 ///  ::= i32 %local
5056 ///  ::= i32 @global
5057 ///  ::= i32 7
5058 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
5059                                     PerFunctionState *PFS) {
5060   Type *Ty;
5061   LocTy Loc;
5062   if (ParseType(Ty, TypeMsg, Loc))
5063     return true;
5064   if (Ty->isMetadataTy())
5065     return Error(Loc, "invalid metadata-value-metadata roundtrip");
5066 
5067   Value *V;
5068   if (ParseValue(Ty, V, PFS))
5069     return true;
5070 
5071   MD = ValueAsMetadata::get(V);
5072   return false;
5073 }
5074 
5075 /// ParseMetadata
5076 ///  ::= i32 %local
5077 ///  ::= i32 @global
5078 ///  ::= i32 7
5079 ///  ::= !42
5080 ///  ::= !{...}
5081 ///  ::= !"string"
5082 ///  ::= !DILocation(...)
5083 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
5084   if (Lex.getKind() == lltok::MetadataVar) {
5085     MDNode *N;
5086     if (ParseSpecializedMDNode(N))
5087       return true;
5088     MD = N;
5089     return false;
5090   }
5091 
5092   // ValueAsMetadata:
5093   // <type> <value>
5094   if (Lex.getKind() != lltok::exclaim)
5095     return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
5096 
5097   // '!'.
5098   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5099   Lex.Lex();
5100 
5101   // MDString:
5102   //   ::= '!' STRINGCONSTANT
5103   if (Lex.getKind() == lltok::StringConstant) {
5104     MDString *S;
5105     if (ParseMDString(S))
5106       return true;
5107     MD = S;
5108     return false;
5109   }
5110 
5111   // MDNode:
5112   // !{ ... }
5113   // !7
5114   MDNode *N;
5115   if (ParseMDNodeTail(N))
5116     return true;
5117   MD = N;
5118   return false;
5119 }
5120 
5121 //===----------------------------------------------------------------------===//
5122 // Function Parsing.
5123 //===----------------------------------------------------------------------===//
5124 
5125 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5126                                    PerFunctionState *PFS, bool IsCall) {
5127   if (Ty->isFunctionTy())
5128     return Error(ID.Loc, "functions are not values, refer to them as pointers");
5129 
5130   switch (ID.Kind) {
5131   case ValID::t_LocalID:
5132     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5133     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5134     return V == nullptr;
5135   case ValID::t_LocalName:
5136     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5137     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall);
5138     return V == nullptr;
5139   case ValID::t_InlineAsm: {
5140     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5141       return Error(ID.Loc, "invalid type for inline asm constraint string");
5142     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
5143                        (ID.UIntVal >> 1) & 1,
5144                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
5145     return false;
5146   }
5147   case ValID::t_GlobalName:
5148     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall);
5149     return V == nullptr;
5150   case ValID::t_GlobalID:
5151     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5152     return V == nullptr;
5153   case ValID::t_APSInt:
5154     if (!Ty->isIntegerTy())
5155       return Error(ID.Loc, "integer constant must have integer type");
5156     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5157     V = ConstantInt::get(Context, ID.APSIntVal);
5158     return false;
5159   case ValID::t_APFloat:
5160     if (!Ty->isFloatingPointTy() ||
5161         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5162       return Error(ID.Loc, "floating point constant invalid for type");
5163 
5164     // The lexer has no type info, so builds all half, float, and double FP
5165     // constants as double.  Fix this here.  Long double does not need this.
5166     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5167       bool Ignored;
5168       if (Ty->isHalfTy())
5169         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5170                               &Ignored);
5171       else if (Ty->isFloatTy())
5172         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5173                               &Ignored);
5174     }
5175     V = ConstantFP::get(Context, ID.APFloatVal);
5176 
5177     if (V->getType() != Ty)
5178       return Error(ID.Loc, "floating point constant does not have type '" +
5179                    getTypeString(Ty) + "'");
5180 
5181     return false;
5182   case ValID::t_Null:
5183     if (!Ty->isPointerTy())
5184       return Error(ID.Loc, "null must be a pointer type");
5185     V = ConstantPointerNull::get(cast<PointerType>(Ty));
5186     return false;
5187   case ValID::t_Undef:
5188     // FIXME: LabelTy should not be a first-class type.
5189     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5190       return Error(ID.Loc, "invalid type for undef constant");
5191     V = UndefValue::get(Ty);
5192     return false;
5193   case ValID::t_EmptyArray:
5194     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5195       return Error(ID.Loc, "invalid empty array initializer");
5196     V = UndefValue::get(Ty);
5197     return false;
5198   case ValID::t_Zero:
5199     // FIXME: LabelTy should not be a first-class type.
5200     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5201       return Error(ID.Loc, "invalid type for null constant");
5202     V = Constant::getNullValue(Ty);
5203     return false;
5204   case ValID::t_None:
5205     if (!Ty->isTokenTy())
5206       return Error(ID.Loc, "invalid type for none constant");
5207     V = Constant::getNullValue(Ty);
5208     return false;
5209   case ValID::t_Constant:
5210     if (ID.ConstantVal->getType() != Ty)
5211       return Error(ID.Loc, "constant expression type mismatch");
5212 
5213     V = ID.ConstantVal;
5214     return false;
5215   case ValID::t_ConstantStruct:
5216   case ValID::t_PackedConstantStruct:
5217     if (StructType *ST = dyn_cast<StructType>(Ty)) {
5218       if (ST->getNumElements() != ID.UIntVal)
5219         return Error(ID.Loc,
5220                      "initializer with struct type has wrong # elements");
5221       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5222         return Error(ID.Loc, "packed'ness of initializer and type don't match");
5223 
5224       // Verify that the elements are compatible with the structtype.
5225       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5226         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5227           return Error(ID.Loc, "element " + Twine(i) +
5228                     " of struct initializer doesn't match struct element type");
5229 
5230       V = ConstantStruct::get(
5231           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5232     } else
5233       return Error(ID.Loc, "constant expression type mismatch");
5234     return false;
5235   }
5236   llvm_unreachable("Invalid ValID");
5237 }
5238 
5239 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5240   C = nullptr;
5241   ValID ID;
5242   auto Loc = Lex.getLoc();
5243   if (ParseValID(ID, /*PFS=*/nullptr))
5244     return true;
5245   switch (ID.Kind) {
5246   case ValID::t_APSInt:
5247   case ValID::t_APFloat:
5248   case ValID::t_Undef:
5249   case ValID::t_Constant:
5250   case ValID::t_ConstantStruct:
5251   case ValID::t_PackedConstantStruct: {
5252     Value *V;
5253     if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
5254       return true;
5255     assert(isa<Constant>(V) && "Expected a constant value");
5256     C = cast<Constant>(V);
5257     return false;
5258   }
5259   case ValID::t_Null:
5260     C = Constant::getNullValue(Ty);
5261     return false;
5262   default:
5263     return Error(Loc, "expected a constant value");
5264   }
5265 }
5266 
5267 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5268   V = nullptr;
5269   ValID ID;
5270   return ParseValID(ID, PFS) ||
5271          ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
5272 }
5273 
5274 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5275   Type *Ty = nullptr;
5276   return ParseType(Ty) ||
5277          ParseValue(Ty, V, PFS);
5278 }
5279 
5280 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5281                                       PerFunctionState &PFS) {
5282   Value *V;
5283   Loc = Lex.getLoc();
5284   if (ParseTypeAndValue(V, PFS)) return true;
5285   if (!isa<BasicBlock>(V))
5286     return Error(Loc, "expected a basic block");
5287   BB = cast<BasicBlock>(V);
5288   return false;
5289 }
5290 
5291 /// FunctionHeader
5292 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5293 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5294 ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5295 ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5296 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
5297   // Parse the linkage.
5298   LocTy LinkageLoc = Lex.getLoc();
5299   unsigned Linkage;
5300   unsigned Visibility;
5301   unsigned DLLStorageClass;
5302   bool DSOLocal;
5303   AttrBuilder RetAttrs;
5304   unsigned CC;
5305   bool HasLinkage;
5306   Type *RetType = nullptr;
5307   LocTy RetTypeLoc = Lex.getLoc();
5308   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5309                            DSOLocal) ||
5310       ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5311       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
5312     return true;
5313 
5314   // Verify that the linkage is ok.
5315   switch ((GlobalValue::LinkageTypes)Linkage) {
5316   case GlobalValue::ExternalLinkage:
5317     break; // always ok.
5318   case GlobalValue::ExternalWeakLinkage:
5319     if (isDefine)
5320       return Error(LinkageLoc, "invalid linkage for function definition");
5321     break;
5322   case GlobalValue::PrivateLinkage:
5323   case GlobalValue::InternalLinkage:
5324   case GlobalValue::AvailableExternallyLinkage:
5325   case GlobalValue::LinkOnceAnyLinkage:
5326   case GlobalValue::LinkOnceODRLinkage:
5327   case GlobalValue::WeakAnyLinkage:
5328   case GlobalValue::WeakODRLinkage:
5329     if (!isDefine)
5330       return Error(LinkageLoc, "invalid linkage for function declaration");
5331     break;
5332   case GlobalValue::AppendingLinkage:
5333   case GlobalValue::CommonLinkage:
5334     return Error(LinkageLoc, "invalid function linkage type");
5335   }
5336 
5337   if (!isValidVisibilityForLinkage(Visibility, Linkage))
5338     return Error(LinkageLoc,
5339                  "symbol with local linkage must have default visibility");
5340 
5341   if (!FunctionType::isValidReturnType(RetType))
5342     return Error(RetTypeLoc, "invalid function return type");
5343 
5344   LocTy NameLoc = Lex.getLoc();
5345 
5346   std::string FunctionName;
5347   if (Lex.getKind() == lltok::GlobalVar) {
5348     FunctionName = Lex.getStrVal();
5349   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
5350     unsigned NameID = Lex.getUIntVal();
5351 
5352     if (NameID != NumberedVals.size())
5353       return TokError("function expected to be numbered '%" +
5354                       Twine(NumberedVals.size()) + "'");
5355   } else {
5356     return TokError("expected function name");
5357   }
5358 
5359   Lex.Lex();
5360 
5361   if (Lex.getKind() != lltok::lparen)
5362     return TokError("expected '(' in function argument list");
5363 
5364   SmallVector<ArgInfo, 8> ArgList;
5365   bool isVarArg;
5366   AttrBuilder FuncAttrs;
5367   std::vector<unsigned> FwdRefAttrGrps;
5368   LocTy BuiltinLoc;
5369   std::string Section;
5370   std::string Partition;
5371   unsigned Alignment;
5372   std::string GC;
5373   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5374   unsigned AddrSpace = 0;
5375   Constant *Prefix = nullptr;
5376   Constant *Prologue = nullptr;
5377   Constant *PersonalityFn = nullptr;
5378   Comdat *C;
5379 
5380   if (ParseArgumentList(ArgList, isVarArg) ||
5381       ParseOptionalUnnamedAddr(UnnamedAddr) ||
5382       ParseOptionalProgramAddrSpace(AddrSpace) ||
5383       ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5384                                  BuiltinLoc) ||
5385       (EatIfPresent(lltok::kw_section) &&
5386        ParseStringConstant(Section)) ||
5387       (EatIfPresent(lltok::kw_partition) &&
5388        ParseStringConstant(Partition)) ||
5389       parseOptionalComdat(FunctionName, C) ||
5390       ParseOptionalAlignment(Alignment) ||
5391       (EatIfPresent(lltok::kw_gc) &&
5392        ParseStringConstant(GC)) ||
5393       (EatIfPresent(lltok::kw_prefix) &&
5394        ParseGlobalTypeAndValue(Prefix)) ||
5395       (EatIfPresent(lltok::kw_prologue) &&
5396        ParseGlobalTypeAndValue(Prologue)) ||
5397       (EatIfPresent(lltok::kw_personality) &&
5398        ParseGlobalTypeAndValue(PersonalityFn)))
5399     return true;
5400 
5401   if (FuncAttrs.contains(Attribute::Builtin))
5402     return Error(BuiltinLoc, "'builtin' attribute not valid on function");
5403 
5404   // If the alignment was parsed as an attribute, move to the alignment field.
5405   if (FuncAttrs.hasAlignmentAttr()) {
5406     Alignment = FuncAttrs.getAlignment();
5407     FuncAttrs.removeAttribute(Attribute::Alignment);
5408   }
5409 
5410   // Okay, if we got here, the function is syntactically valid.  Convert types
5411   // and do semantic checks.
5412   std::vector<Type*> ParamTypeList;
5413   SmallVector<AttributeSet, 8> Attrs;
5414 
5415   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5416     ParamTypeList.push_back(ArgList[i].Ty);
5417     Attrs.push_back(ArgList[i].Attrs);
5418   }
5419 
5420   AttributeList PAL =
5421       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5422                          AttributeSet::get(Context, RetAttrs), Attrs);
5423 
5424   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
5425     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
5426 
5427   FunctionType *FT =
5428     FunctionType::get(RetType, ParamTypeList, isVarArg);
5429   PointerType *PFT = PointerType::get(FT, AddrSpace);
5430 
5431   Fn = nullptr;
5432   if (!FunctionName.empty()) {
5433     // If this was a definition of a forward reference, remove the definition
5434     // from the forward reference table and fill in the forward ref.
5435     auto FRVI = ForwardRefVals.find(FunctionName);
5436     if (FRVI != ForwardRefVals.end()) {
5437       Fn = M->getFunction(FunctionName);
5438       if (!Fn)
5439         return Error(FRVI->second.second, "invalid forward reference to "
5440                      "function as global value!");
5441       if (Fn->getType() != PFT)
5442         return Error(FRVI->second.second, "invalid forward reference to "
5443                      "function '" + FunctionName + "' with wrong type: "
5444                      "expected '" + getTypeString(PFT) + "' but was '" +
5445                      getTypeString(Fn->getType()) + "'");
5446       ForwardRefVals.erase(FRVI);
5447     } else if ((Fn = M->getFunction(FunctionName))) {
5448       // Reject redefinitions.
5449       return Error(NameLoc, "invalid redefinition of function '" +
5450                    FunctionName + "'");
5451     } else if (M->getNamedValue(FunctionName)) {
5452       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5453     }
5454 
5455   } else {
5456     // If this is a definition of a forward referenced function, make sure the
5457     // types agree.
5458     auto I = ForwardRefValIDs.find(NumberedVals.size());
5459     if (I != ForwardRefValIDs.end()) {
5460       Fn = cast<Function>(I->second.first);
5461       if (Fn->getType() != PFT)
5462         return Error(NameLoc, "type of definition and forward reference of '@" +
5463                      Twine(NumberedVals.size()) + "' disagree: "
5464                      "expected '" + getTypeString(PFT) + "' but was '" +
5465                      getTypeString(Fn->getType()) + "'");
5466       ForwardRefValIDs.erase(I);
5467     }
5468   }
5469 
5470   if (!Fn)
5471     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5472                           FunctionName, M);
5473   else // Move the forward-reference to the correct spot in the module.
5474     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
5475 
5476   assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5477 
5478   if (FunctionName.empty())
5479     NumberedVals.push_back(Fn);
5480 
5481   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5482   maybeSetDSOLocal(DSOLocal, *Fn);
5483   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5484   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5485   Fn->setCallingConv(CC);
5486   Fn->setAttributes(PAL);
5487   Fn->setUnnamedAddr(UnnamedAddr);
5488   Fn->setAlignment(Alignment);
5489   Fn->setSection(Section);
5490   Fn->setPartition(Partition);
5491   Fn->setComdat(C);
5492   Fn->setPersonalityFn(PersonalityFn);
5493   if (!GC.empty()) Fn->setGC(GC);
5494   Fn->setPrefixData(Prefix);
5495   Fn->setPrologueData(Prologue);
5496   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5497 
5498   // Add all of the arguments we parsed to the function.
5499   Function::arg_iterator ArgIt = Fn->arg_begin();
5500   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5501     // If the argument has a name, insert it into the argument symbol table.
5502     if (ArgList[i].Name.empty()) continue;
5503 
5504     // Set the name, if it conflicted, it will be auto-renamed.
5505     ArgIt->setName(ArgList[i].Name);
5506 
5507     if (ArgIt->getName() != ArgList[i].Name)
5508       return Error(ArgList[i].Loc, "redefinition of argument '%" +
5509                    ArgList[i].Name + "'");
5510   }
5511 
5512   if (isDefine)
5513     return false;
5514 
5515   // Check the declaration has no block address forward references.
5516   ValID ID;
5517   if (FunctionName.empty()) {
5518     ID.Kind = ValID::t_GlobalID;
5519     ID.UIntVal = NumberedVals.size() - 1;
5520   } else {
5521     ID.Kind = ValID::t_GlobalName;
5522     ID.StrVal = FunctionName;
5523   }
5524   auto Blocks = ForwardRefBlockAddresses.find(ID);
5525   if (Blocks != ForwardRefBlockAddresses.end())
5526     return Error(Blocks->first.Loc,
5527                  "cannot take blockaddress inside a declaration");
5528   return false;
5529 }
5530 
5531 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5532   ValID ID;
5533   if (FunctionNumber == -1) {
5534     ID.Kind = ValID::t_GlobalName;
5535     ID.StrVal = F.getName();
5536   } else {
5537     ID.Kind = ValID::t_GlobalID;
5538     ID.UIntVal = FunctionNumber;
5539   }
5540 
5541   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5542   if (Blocks == P.ForwardRefBlockAddresses.end())
5543     return false;
5544 
5545   for (const auto &I : Blocks->second) {
5546     const ValID &BBID = I.first;
5547     GlobalValue *GV = I.second;
5548 
5549     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5550            "Expected local id or name");
5551     BasicBlock *BB;
5552     if (BBID.Kind == ValID::t_LocalName)
5553       BB = GetBB(BBID.StrVal, BBID.Loc);
5554     else
5555       BB = GetBB(BBID.UIntVal, BBID.Loc);
5556     if (!BB)
5557       return P.Error(BBID.Loc, "referenced value is not a basic block");
5558 
5559     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
5560     GV->eraseFromParent();
5561   }
5562 
5563   P.ForwardRefBlockAddresses.erase(Blocks);
5564   return false;
5565 }
5566 
5567 /// ParseFunctionBody
5568 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
5569 bool LLParser::ParseFunctionBody(Function &Fn) {
5570   if (Lex.getKind() != lltok::lbrace)
5571     return TokError("expected '{' in function body");
5572   Lex.Lex();  // eat the {.
5573 
5574   int FunctionNumber = -1;
5575   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5576 
5577   PerFunctionState PFS(*this, Fn, FunctionNumber);
5578 
5579   // Resolve block addresses and allow basic blocks to be forward-declared
5580   // within this function.
5581   if (PFS.resolveForwardRefBlockAddresses())
5582     return true;
5583   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5584 
5585   // We need at least one basic block.
5586   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
5587     return TokError("function body requires at least one basic block");
5588 
5589   while (Lex.getKind() != lltok::rbrace &&
5590          Lex.getKind() != lltok::kw_uselistorder)
5591     if (ParseBasicBlock(PFS)) return true;
5592 
5593   while (Lex.getKind() != lltok::rbrace)
5594     if (ParseUseListOrder(&PFS))
5595       return true;
5596 
5597   // Eat the }.
5598   Lex.Lex();
5599 
5600   // Verify function is ok.
5601   return PFS.FinishFunction();
5602 }
5603 
5604 /// ParseBasicBlock
5605 ///   ::= (LabelStr|LabelID)? Instruction*
5606 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
5607   // If this basic block starts out with a name, remember it.
5608   std::string Name;
5609   int NameID = -1;
5610   LocTy NameLoc = Lex.getLoc();
5611   if (Lex.getKind() == lltok::LabelStr) {
5612     Name = Lex.getStrVal();
5613     Lex.Lex();
5614   } else if (Lex.getKind() == lltok::LabelID) {
5615     NameID = Lex.getUIntVal();
5616     Lex.Lex();
5617   }
5618 
5619   BasicBlock *BB = PFS.DefineBB(Name, NameID, NameLoc);
5620   if (!BB)
5621     return true;
5622 
5623   std::string NameStr;
5624 
5625   // Parse the instructions in this block until we get a terminator.
5626   Instruction *Inst;
5627   do {
5628     // This instruction may have three possibilities for a name: a) none
5629     // specified, b) name specified "%foo =", c) number specified: "%4 =".
5630     LocTy NameLoc = Lex.getLoc();
5631     int NameID = -1;
5632     NameStr = "";
5633 
5634     if (Lex.getKind() == lltok::LocalVarID) {
5635       NameID = Lex.getUIntVal();
5636       Lex.Lex();
5637       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
5638         return true;
5639     } else if (Lex.getKind() == lltok::LocalVar) {
5640       NameStr = Lex.getStrVal();
5641       Lex.Lex();
5642       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
5643         return true;
5644     }
5645 
5646     switch (ParseInstruction(Inst, BB, PFS)) {
5647     default: llvm_unreachable("Unknown ParseInstruction result!");
5648     case InstError: return true;
5649     case InstNormal:
5650       BB->getInstList().push_back(Inst);
5651 
5652       // With a normal result, we check to see if the instruction is followed by
5653       // a comma and metadata.
5654       if (EatIfPresent(lltok::comma))
5655         if (ParseInstructionMetadata(*Inst))
5656           return true;
5657       break;
5658     case InstExtraComma:
5659       BB->getInstList().push_back(Inst);
5660 
5661       // If the instruction parser ate an extra comma at the end of it, it
5662       // *must* be followed by metadata.
5663       if (ParseInstructionMetadata(*Inst))
5664         return true;
5665       break;
5666     }
5667 
5668     // Set the name on the instruction.
5669     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
5670   } while (!Inst->isTerminator());
5671 
5672   return false;
5673 }
5674 
5675 //===----------------------------------------------------------------------===//
5676 // Instruction Parsing.
5677 //===----------------------------------------------------------------------===//
5678 
5679 /// ParseInstruction - Parse one of the many different instructions.
5680 ///
5681 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
5682                                PerFunctionState &PFS) {
5683   lltok::Kind Token = Lex.getKind();
5684   if (Token == lltok::Eof)
5685     return TokError("found end of file when expecting more instructions");
5686   LocTy Loc = Lex.getLoc();
5687   unsigned KeywordVal = Lex.getUIntVal();
5688   Lex.Lex();  // Eat the keyword.
5689 
5690   switch (Token) {
5691   default:                    return Error(Loc, "expected instruction opcode");
5692   // Terminator Instructions.
5693   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5694   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
5695   case lltok::kw_br:          return ParseBr(Inst, PFS);
5696   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
5697   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
5698   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
5699   case lltok::kw_resume:      return ParseResume(Inst, PFS);
5700   case lltok::kw_cleanupret:  return ParseCleanupRet(Inst, PFS);
5701   case lltok::kw_catchret:    return ParseCatchRet(Inst, PFS);
5702   case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
5703   case lltok::kw_catchpad:    return ParseCatchPad(Inst, PFS);
5704   case lltok::kw_cleanuppad:  return ParseCleanupPad(Inst, PFS);
5705   case lltok::kw_callbr:      return ParseCallBr(Inst, PFS);
5706   // Unary Operators.
5707   case lltok::kw_fneg: {
5708     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5709     int Res = ParseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/true);
5710     if (Res != 0)
5711       return Res;
5712     if (FMF.any())
5713       Inst->setFastMathFlags(FMF);
5714     return false;
5715   }
5716   // Binary Operators.
5717   case lltok::kw_add:
5718   case lltok::kw_sub:
5719   case lltok::kw_mul:
5720   case lltok::kw_shl: {
5721     bool NUW = EatIfPresent(lltok::kw_nuw);
5722     bool NSW = EatIfPresent(lltok::kw_nsw);
5723     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5724 
5725     if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true;
5726 
5727     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5728     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5729     return false;
5730   }
5731   case lltok::kw_fadd:
5732   case lltok::kw_fsub:
5733   case lltok::kw_fmul:
5734   case lltok::kw_fdiv:
5735   case lltok::kw_frem: {
5736     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5737     int Res = ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/true);
5738     if (Res != 0)
5739       return Res;
5740     if (FMF.any())
5741       Inst->setFastMathFlags(FMF);
5742     return 0;
5743   }
5744 
5745   case lltok::kw_sdiv:
5746   case lltok::kw_udiv:
5747   case lltok::kw_lshr:
5748   case lltok::kw_ashr: {
5749     bool Exact = EatIfPresent(lltok::kw_exact);
5750 
5751     if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true;
5752     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5753     return false;
5754   }
5755 
5756   case lltok::kw_urem:
5757   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal,
5758                                                 /*IsFP*/false);
5759   case lltok::kw_and:
5760   case lltok::kw_or:
5761   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
5762   case lltok::kw_icmp:   return ParseCompare(Inst, PFS, KeywordVal);
5763   case lltok::kw_fcmp: {
5764     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5765     int Res = ParseCompare(Inst, PFS, KeywordVal);
5766     if (Res != 0)
5767       return Res;
5768     if (FMF.any())
5769       Inst->setFastMathFlags(FMF);
5770     return 0;
5771   }
5772 
5773   // Casts.
5774   case lltok::kw_trunc:
5775   case lltok::kw_zext:
5776   case lltok::kw_sext:
5777   case lltok::kw_fptrunc:
5778   case lltok::kw_fpext:
5779   case lltok::kw_bitcast:
5780   case lltok::kw_addrspacecast:
5781   case lltok::kw_uitofp:
5782   case lltok::kw_sitofp:
5783   case lltok::kw_fptoui:
5784   case lltok::kw_fptosi:
5785   case lltok::kw_inttoptr:
5786   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
5787   // Other.
5788   case lltok::kw_select: {
5789     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5790     int Res = ParseSelect(Inst, PFS);
5791     if (Res != 0)
5792       return Res;
5793     if (FMF.any()) {
5794       if (!Inst->getType()->isFPOrFPVectorTy())
5795         return Error(Loc, "fast-math-flags specified for select without "
5796                           "floating-point scalar or vector return type");
5797       Inst->setFastMathFlags(FMF);
5798     }
5799     return 0;
5800   }
5801   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
5802   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
5803   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
5804   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
5805   case lltok::kw_phi:            return ParsePHI(Inst, PFS);
5806   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
5807   // Call.
5808   case lltok::kw_call:     return ParseCall(Inst, PFS, CallInst::TCK_None);
5809   case lltok::kw_tail:     return ParseCall(Inst, PFS, CallInst::TCK_Tail);
5810   case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
5811   case lltok::kw_notail:   return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
5812   // Memory.
5813   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
5814   case lltok::kw_load:           return ParseLoad(Inst, PFS);
5815   case lltok::kw_store:          return ParseStore(Inst, PFS);
5816   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
5817   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
5818   case lltok::kw_fence:          return ParseFence(Inst, PFS);
5819   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
5820   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
5821   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
5822   }
5823 }
5824 
5825 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
5826 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
5827   if (Opc == Instruction::FCmp) {
5828     switch (Lex.getKind()) {
5829     default: return TokError("expected fcmp predicate (e.g. 'oeq')");
5830     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
5831     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
5832     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
5833     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
5834     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
5835     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
5836     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
5837     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
5838     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
5839     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
5840     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
5841     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
5842     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
5843     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
5844     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
5845     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
5846     }
5847   } else {
5848     switch (Lex.getKind()) {
5849     default: return TokError("expected icmp predicate (e.g. 'eq')");
5850     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
5851     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
5852     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
5853     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
5854     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
5855     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
5856     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
5857     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
5858     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
5859     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
5860     }
5861   }
5862   Lex.Lex();
5863   return false;
5864 }
5865 
5866 //===----------------------------------------------------------------------===//
5867 // Terminator Instructions.
5868 //===----------------------------------------------------------------------===//
5869 
5870 /// ParseRet - Parse a return instruction.
5871 ///   ::= 'ret' void (',' !dbg, !1)*
5872 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
5873 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
5874                         PerFunctionState &PFS) {
5875   SMLoc TypeLoc = Lex.getLoc();
5876   Type *Ty = nullptr;
5877   if (ParseType(Ty, true /*void allowed*/)) return true;
5878 
5879   Type *ResType = PFS.getFunction().getReturnType();
5880 
5881   if (Ty->isVoidTy()) {
5882     if (!ResType->isVoidTy())
5883       return Error(TypeLoc, "value doesn't match function result type '" +
5884                    getTypeString(ResType) + "'");
5885 
5886     Inst = ReturnInst::Create(Context);
5887     return false;
5888   }
5889 
5890   Value *RV;
5891   if (ParseValue(Ty, RV, PFS)) return true;
5892 
5893   if (ResType != RV->getType())
5894     return Error(TypeLoc, "value doesn't match function result type '" +
5895                  getTypeString(ResType) + "'");
5896 
5897   Inst = ReturnInst::Create(Context, RV);
5898   return false;
5899 }
5900 
5901 /// ParseBr
5902 ///   ::= 'br' TypeAndValue
5903 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5904 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
5905   LocTy Loc, Loc2;
5906   Value *Op0;
5907   BasicBlock *Op1, *Op2;
5908   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
5909 
5910   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
5911     Inst = BranchInst::Create(BB);
5912     return false;
5913   }
5914 
5915   if (Op0->getType() != Type::getInt1Ty(Context))
5916     return Error(Loc, "branch condition must have 'i1' type");
5917 
5918   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
5919       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
5920       ParseToken(lltok::comma, "expected ',' after true destination") ||
5921       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
5922     return true;
5923 
5924   Inst = BranchInst::Create(Op1, Op2, Op0);
5925   return false;
5926 }
5927 
5928 /// ParseSwitch
5929 ///  Instruction
5930 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
5931 ///  JumpTable
5932 ///    ::= (TypeAndValue ',' TypeAndValue)*
5933 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5934   LocTy CondLoc, BBLoc;
5935   Value *Cond;
5936   BasicBlock *DefaultBB;
5937   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
5938       ParseToken(lltok::comma, "expected ',' after switch condition") ||
5939       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
5940       ParseToken(lltok::lsquare, "expected '[' with switch table"))
5941     return true;
5942 
5943   if (!Cond->getType()->isIntegerTy())
5944     return Error(CondLoc, "switch condition must have integer type");
5945 
5946   // Parse the jump table pairs.
5947   SmallPtrSet<Value*, 32> SeenCases;
5948   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
5949   while (Lex.getKind() != lltok::rsquare) {
5950     Value *Constant;
5951     BasicBlock *DestBB;
5952 
5953     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
5954         ParseToken(lltok::comma, "expected ',' after case value") ||
5955         ParseTypeAndBasicBlock(DestBB, PFS))
5956       return true;
5957 
5958     if (!SeenCases.insert(Constant).second)
5959       return Error(CondLoc, "duplicate case value in switch");
5960     if (!isa<ConstantInt>(Constant))
5961       return Error(CondLoc, "case value is not a constant integer");
5962 
5963     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
5964   }
5965 
5966   Lex.Lex();  // Eat the ']'.
5967 
5968   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
5969   for (unsigned i = 0, e = Table.size(); i != e; ++i)
5970     SI->addCase(Table[i].first, Table[i].second);
5971   Inst = SI;
5972   return false;
5973 }
5974 
5975 /// ParseIndirectBr
5976 ///  Instruction
5977 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
5978 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
5979   LocTy AddrLoc;
5980   Value *Address;
5981   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
5982       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
5983       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
5984     return true;
5985 
5986   if (!Address->getType()->isPointerTy())
5987     return Error(AddrLoc, "indirectbr address must have pointer type");
5988 
5989   // Parse the destination list.
5990   SmallVector<BasicBlock*, 16> DestList;
5991 
5992   if (Lex.getKind() != lltok::rsquare) {
5993     BasicBlock *DestBB;
5994     if (ParseTypeAndBasicBlock(DestBB, PFS))
5995       return true;
5996     DestList.push_back(DestBB);
5997 
5998     while (EatIfPresent(lltok::comma)) {
5999       if (ParseTypeAndBasicBlock(DestBB, PFS))
6000         return true;
6001       DestList.push_back(DestBB);
6002     }
6003   }
6004 
6005   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
6006     return true;
6007 
6008   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
6009   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
6010     IBI->addDestination(DestList[i]);
6011   Inst = IBI;
6012   return false;
6013 }
6014 
6015 /// ParseInvoke
6016 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
6017 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
6018 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
6019   LocTy CallLoc = Lex.getLoc();
6020   AttrBuilder RetAttrs, FnAttrs;
6021   std::vector<unsigned> FwdRefAttrGrps;
6022   LocTy NoBuiltinLoc;
6023   unsigned CC;
6024   unsigned InvokeAddrSpace;
6025   Type *RetType = nullptr;
6026   LocTy RetTypeLoc;
6027   ValID CalleeID;
6028   SmallVector<ParamInfo, 16> ArgList;
6029   SmallVector<OperandBundleDef, 2> BundleList;
6030 
6031   BasicBlock *NormalBB, *UnwindBB;
6032   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6033       ParseOptionalProgramAddrSpace(InvokeAddrSpace) ||
6034       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6035       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
6036       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6037                                  NoBuiltinLoc) ||
6038       ParseOptionalOperandBundles(BundleList, PFS) ||
6039       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
6040       ParseTypeAndBasicBlock(NormalBB, PFS) ||
6041       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
6042       ParseTypeAndBasicBlock(UnwindBB, PFS))
6043     return true;
6044 
6045   // If RetType is a non-function pointer type, then this is the short syntax
6046   // for the call, which means that RetType is just the return type.  Infer the
6047   // rest of the function argument types from the arguments that are present.
6048   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6049   if (!Ty) {
6050     // Pull out the types of all of the arguments...
6051     std::vector<Type*> ParamTypes;
6052     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6053       ParamTypes.push_back(ArgList[i].V->getType());
6054 
6055     if (!FunctionType::isValidReturnType(RetType))
6056       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6057 
6058     Ty = FunctionType::get(RetType, ParamTypes, false);
6059   }
6060 
6061   CalleeID.FTy = Ty;
6062 
6063   // Look up the callee.
6064   Value *Callee;
6065   if (ConvertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
6066                           Callee, &PFS, /*IsCall=*/true))
6067     return true;
6068 
6069   // Set up the Attribute for the function.
6070   SmallVector<Value *, 8> Args;
6071   SmallVector<AttributeSet, 8> ArgAttrs;
6072 
6073   // Loop through FunctionType's arguments and ensure they are specified
6074   // correctly.  Also, gather any parameter attributes.
6075   FunctionType::param_iterator I = Ty->param_begin();
6076   FunctionType::param_iterator E = Ty->param_end();
6077   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6078     Type *ExpectedTy = nullptr;
6079     if (I != E) {
6080       ExpectedTy = *I++;
6081     } else if (!Ty->isVarArg()) {
6082       return Error(ArgList[i].Loc, "too many arguments specified");
6083     }
6084 
6085     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6086       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6087                    getTypeString(ExpectedTy) + "'");
6088     Args.push_back(ArgList[i].V);
6089     ArgAttrs.push_back(ArgList[i].Attrs);
6090   }
6091 
6092   if (I != E)
6093     return Error(CallLoc, "not enough parameters specified for call");
6094 
6095   if (FnAttrs.hasAlignmentAttr())
6096     return Error(CallLoc, "invoke instructions may not have an alignment");
6097 
6098   // Finish off the Attribute and check them
6099   AttributeList PAL =
6100       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6101                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6102 
6103   InvokeInst *II =
6104       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
6105   II->setCallingConv(CC);
6106   II->setAttributes(PAL);
6107   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
6108   Inst = II;
6109   return false;
6110 }
6111 
6112 /// ParseResume
6113 ///   ::= 'resume' TypeAndValue
6114 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
6115   Value *Exn; LocTy ExnLoc;
6116   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
6117     return true;
6118 
6119   ResumeInst *RI = ResumeInst::Create(Exn);
6120   Inst = RI;
6121   return false;
6122 }
6123 
6124 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
6125                                   PerFunctionState &PFS) {
6126   if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
6127     return true;
6128 
6129   while (Lex.getKind() != lltok::rsquare) {
6130     // If this isn't the first argument, we need a comma.
6131     if (!Args.empty() &&
6132         ParseToken(lltok::comma, "expected ',' in argument list"))
6133       return true;
6134 
6135     // Parse the argument.
6136     LocTy ArgLoc;
6137     Type *ArgTy = nullptr;
6138     if (ParseType(ArgTy, ArgLoc))
6139       return true;
6140 
6141     Value *V;
6142     if (ArgTy->isMetadataTy()) {
6143       if (ParseMetadataAsValue(V, PFS))
6144         return true;
6145     } else {
6146       if (ParseValue(ArgTy, V, PFS))
6147         return true;
6148     }
6149     Args.push_back(V);
6150   }
6151 
6152   Lex.Lex();  // Lex the ']'.
6153   return false;
6154 }
6155 
6156 /// ParseCleanupRet
6157 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6158 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6159   Value *CleanupPad = nullptr;
6160 
6161   if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6162     return true;
6163 
6164   if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6165     return true;
6166 
6167   if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6168     return true;
6169 
6170   BasicBlock *UnwindBB = nullptr;
6171   if (Lex.getKind() == lltok::kw_to) {
6172     Lex.Lex();
6173     if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6174       return true;
6175   } else {
6176     if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
6177       return true;
6178     }
6179   }
6180 
6181   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6182   return false;
6183 }
6184 
6185 /// ParseCatchRet
6186 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
6187 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6188   Value *CatchPad = nullptr;
6189 
6190   if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
6191     return true;
6192 
6193   if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
6194     return true;
6195 
6196   BasicBlock *BB;
6197   if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
6198       ParseTypeAndBasicBlock(BB, PFS))
6199       return true;
6200 
6201   Inst = CatchReturnInst::Create(CatchPad, BB);
6202   return false;
6203 }
6204 
6205 /// ParseCatchSwitch
6206 ///   ::= 'catchswitch' within Parent
6207 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6208   Value *ParentPad;
6209 
6210   if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6211     return true;
6212 
6213   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6214       Lex.getKind() != lltok::LocalVarID)
6215     return TokError("expected scope value for catchswitch");
6216 
6217   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6218     return true;
6219 
6220   if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6221     return true;
6222 
6223   SmallVector<BasicBlock *, 32> Table;
6224   do {
6225     BasicBlock *DestBB;
6226     if (ParseTypeAndBasicBlock(DestBB, PFS))
6227       return true;
6228     Table.push_back(DestBB);
6229   } while (EatIfPresent(lltok::comma));
6230 
6231   if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6232     return true;
6233 
6234   if (ParseToken(lltok::kw_unwind,
6235                  "expected 'unwind' after catchswitch scope"))
6236     return true;
6237 
6238   BasicBlock *UnwindBB = nullptr;
6239   if (EatIfPresent(lltok::kw_to)) {
6240     if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6241       return true;
6242   } else {
6243     if (ParseTypeAndBasicBlock(UnwindBB, PFS))
6244       return true;
6245   }
6246 
6247   auto *CatchSwitch =
6248       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6249   for (BasicBlock *DestBB : Table)
6250     CatchSwitch->addHandler(DestBB);
6251   Inst = CatchSwitch;
6252   return false;
6253 }
6254 
6255 /// ParseCatchPad
6256 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6257 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6258   Value *CatchSwitch = nullptr;
6259 
6260   if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
6261     return true;
6262 
6263   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6264     return TokError("expected scope value for catchpad");
6265 
6266   if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6267     return true;
6268 
6269   SmallVector<Value *, 8> Args;
6270   if (ParseExceptionArgs(Args, PFS))
6271     return true;
6272 
6273   Inst = CatchPadInst::Create(CatchSwitch, Args);
6274   return false;
6275 }
6276 
6277 /// ParseCleanupPad
6278 ///   ::= 'cleanuppad' within Parent ParamList
6279 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6280   Value *ParentPad = nullptr;
6281 
6282   if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6283     return true;
6284 
6285   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6286       Lex.getKind() != lltok::LocalVarID)
6287     return TokError("expected scope value for cleanuppad");
6288 
6289   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6290     return true;
6291 
6292   SmallVector<Value *, 8> Args;
6293   if (ParseExceptionArgs(Args, PFS))
6294     return true;
6295 
6296   Inst = CleanupPadInst::Create(ParentPad, Args);
6297   return false;
6298 }
6299 
6300 //===----------------------------------------------------------------------===//
6301 // Unary Operators.
6302 //===----------------------------------------------------------------------===//
6303 
6304 /// ParseUnaryOp
6305 ///  ::= UnaryOp TypeAndValue ',' Value
6306 ///
6307 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6308 /// operand is allowed.
6309 bool LLParser::ParseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6310                             unsigned Opc, bool IsFP) {
6311   LocTy Loc; Value *LHS;
6312   if (ParseTypeAndValue(LHS, Loc, PFS))
6313     return true;
6314 
6315   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6316                     : LHS->getType()->isIntOrIntVectorTy();
6317 
6318   if (!Valid)
6319     return Error(Loc, "invalid operand type for instruction");
6320 
6321   Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6322   return false;
6323 }
6324 
6325 /// ParseCallBr
6326 ///   ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6327 ///       OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6328 ///       '[' LabelList ']'
6329 bool LLParser::ParseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6330   LocTy CallLoc = Lex.getLoc();
6331   AttrBuilder RetAttrs, FnAttrs;
6332   std::vector<unsigned> FwdRefAttrGrps;
6333   LocTy NoBuiltinLoc;
6334   unsigned CC;
6335   Type *RetType = nullptr;
6336   LocTy RetTypeLoc;
6337   ValID CalleeID;
6338   SmallVector<ParamInfo, 16> ArgList;
6339   SmallVector<OperandBundleDef, 2> BundleList;
6340 
6341   BasicBlock *DefaultDest;
6342   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6343       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6344       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
6345       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6346                                  NoBuiltinLoc) ||
6347       ParseOptionalOperandBundles(BundleList, PFS) ||
6348       ParseToken(lltok::kw_to, "expected 'to' in callbr") ||
6349       ParseTypeAndBasicBlock(DefaultDest, PFS) ||
6350       ParseToken(lltok::lsquare, "expected '[' in callbr"))
6351     return true;
6352 
6353   // Parse the destination list.
6354   SmallVector<BasicBlock *, 16> IndirectDests;
6355 
6356   if (Lex.getKind() != lltok::rsquare) {
6357     BasicBlock *DestBB;
6358     if (ParseTypeAndBasicBlock(DestBB, PFS))
6359       return true;
6360     IndirectDests.push_back(DestBB);
6361 
6362     while (EatIfPresent(lltok::comma)) {
6363       if (ParseTypeAndBasicBlock(DestBB, PFS))
6364         return true;
6365       IndirectDests.push_back(DestBB);
6366     }
6367   }
6368 
6369   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
6370     return true;
6371 
6372   // If RetType is a non-function pointer type, then this is the short syntax
6373   // for the call, which means that RetType is just the return type.  Infer the
6374   // rest of the function argument types from the arguments that are present.
6375   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6376   if (!Ty) {
6377     // Pull out the types of all of the arguments...
6378     std::vector<Type *> ParamTypes;
6379     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6380       ParamTypes.push_back(ArgList[i].V->getType());
6381 
6382     if (!FunctionType::isValidReturnType(RetType))
6383       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6384 
6385     Ty = FunctionType::get(RetType, ParamTypes, false);
6386   }
6387 
6388   CalleeID.FTy = Ty;
6389 
6390   // Look up the callee.
6391   Value *Callee;
6392   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
6393                           /*IsCall=*/true))
6394     return true;
6395 
6396   if (isa<InlineAsm>(Callee) && !Ty->getReturnType()->isVoidTy())
6397     return Error(RetTypeLoc, "asm-goto outputs not supported");
6398 
6399   // Set up the Attribute for the function.
6400   SmallVector<Value *, 8> Args;
6401   SmallVector<AttributeSet, 8> ArgAttrs;
6402 
6403   // Loop through FunctionType's arguments and ensure they are specified
6404   // correctly.  Also, gather any parameter attributes.
6405   FunctionType::param_iterator I = Ty->param_begin();
6406   FunctionType::param_iterator E = Ty->param_end();
6407   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6408     Type *ExpectedTy = nullptr;
6409     if (I != E) {
6410       ExpectedTy = *I++;
6411     } else if (!Ty->isVarArg()) {
6412       return Error(ArgList[i].Loc, "too many arguments specified");
6413     }
6414 
6415     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6416       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6417                                        getTypeString(ExpectedTy) + "'");
6418     Args.push_back(ArgList[i].V);
6419     ArgAttrs.push_back(ArgList[i].Attrs);
6420   }
6421 
6422   if (I != E)
6423     return Error(CallLoc, "not enough parameters specified for call");
6424 
6425   if (FnAttrs.hasAlignmentAttr())
6426     return Error(CallLoc, "callbr instructions may not have an alignment");
6427 
6428   // Finish off the Attribute and check them
6429   AttributeList PAL =
6430       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6431                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6432 
6433   CallBrInst *CBI =
6434       CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
6435                          BundleList);
6436   CBI->setCallingConv(CC);
6437   CBI->setAttributes(PAL);
6438   ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
6439   Inst = CBI;
6440   return false;
6441 }
6442 
6443 //===----------------------------------------------------------------------===//
6444 // Binary Operators.
6445 //===----------------------------------------------------------------------===//
6446 
6447 /// ParseArithmetic
6448 ///  ::= ArithmeticOps TypeAndValue ',' Value
6449 ///
6450 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6451 /// operand is allowed.
6452 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6453                                unsigned Opc, bool IsFP) {
6454   LocTy Loc; Value *LHS, *RHS;
6455   if (ParseTypeAndValue(LHS, Loc, PFS) ||
6456       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6457       ParseValue(LHS->getType(), RHS, PFS))
6458     return true;
6459 
6460   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6461                     : LHS->getType()->isIntOrIntVectorTy();
6462 
6463   if (!Valid)
6464     return Error(Loc, "invalid operand type for instruction");
6465 
6466   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6467   return false;
6468 }
6469 
6470 /// ParseLogical
6471 ///  ::= ArithmeticOps TypeAndValue ',' Value {
6472 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
6473                             unsigned Opc) {
6474   LocTy Loc; Value *LHS, *RHS;
6475   if (ParseTypeAndValue(LHS, Loc, PFS) ||
6476       ParseToken(lltok::comma, "expected ',' in logical operation") ||
6477       ParseValue(LHS->getType(), RHS, PFS))
6478     return true;
6479 
6480   if (!LHS->getType()->isIntOrIntVectorTy())
6481     return Error(Loc,"instruction requires integer or integer vector operands");
6482 
6483   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6484   return false;
6485 }
6486 
6487 /// ParseCompare
6488 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
6489 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
6490 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
6491                             unsigned Opc) {
6492   // Parse the integer/fp comparison predicate.
6493   LocTy Loc;
6494   unsigned Pred;
6495   Value *LHS, *RHS;
6496   if (ParseCmpPredicate(Pred, Opc) ||
6497       ParseTypeAndValue(LHS, Loc, PFS) ||
6498       ParseToken(lltok::comma, "expected ',' after compare value") ||
6499       ParseValue(LHS->getType(), RHS, PFS))
6500     return true;
6501 
6502   if (Opc == Instruction::FCmp) {
6503     if (!LHS->getType()->isFPOrFPVectorTy())
6504       return Error(Loc, "fcmp requires floating point operands");
6505     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6506   } else {
6507     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
6508     if (!LHS->getType()->isIntOrIntVectorTy() &&
6509         !LHS->getType()->isPtrOrPtrVectorTy())
6510       return Error(Loc, "icmp requires integer operands");
6511     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6512   }
6513   return false;
6514 }
6515 
6516 //===----------------------------------------------------------------------===//
6517 // Other Instructions.
6518 //===----------------------------------------------------------------------===//
6519 
6520 
6521 /// ParseCast
6522 ///   ::= CastOpc TypeAndValue 'to' Type
6523 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
6524                          unsigned Opc) {
6525   LocTy Loc;
6526   Value *Op;
6527   Type *DestTy = nullptr;
6528   if (ParseTypeAndValue(Op, Loc, PFS) ||
6529       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
6530       ParseType(DestTy))
6531     return true;
6532 
6533   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
6534     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
6535     return Error(Loc, "invalid cast opcode for cast from '" +
6536                  getTypeString(Op->getType()) + "' to '" +
6537                  getTypeString(DestTy) + "'");
6538   }
6539   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
6540   return false;
6541 }
6542 
6543 /// ParseSelect
6544 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6545 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
6546   LocTy Loc;
6547   Value *Op0, *Op1, *Op2;
6548   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6549       ParseToken(lltok::comma, "expected ',' after select condition") ||
6550       ParseTypeAndValue(Op1, PFS) ||
6551       ParseToken(lltok::comma, "expected ',' after select value") ||
6552       ParseTypeAndValue(Op2, PFS))
6553     return true;
6554 
6555   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
6556     return Error(Loc, Reason);
6557 
6558   Inst = SelectInst::Create(Op0, Op1, Op2);
6559   return false;
6560 }
6561 
6562 /// ParseVA_Arg
6563 ///   ::= 'va_arg' TypeAndValue ',' Type
6564 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
6565   Value *Op;
6566   Type *EltTy = nullptr;
6567   LocTy TypeLoc;
6568   if (ParseTypeAndValue(Op, PFS) ||
6569       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
6570       ParseType(EltTy, TypeLoc))
6571     return true;
6572 
6573   if (!EltTy->isFirstClassType())
6574     return Error(TypeLoc, "va_arg requires operand with first class type");
6575 
6576   Inst = new VAArgInst(Op, EltTy);
6577   return false;
6578 }
6579 
6580 /// ParseExtractElement
6581 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
6582 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
6583   LocTy Loc;
6584   Value *Op0, *Op1;
6585   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6586       ParseToken(lltok::comma, "expected ',' after extract value") ||
6587       ParseTypeAndValue(Op1, PFS))
6588     return true;
6589 
6590   if (!ExtractElementInst::isValidOperands(Op0, Op1))
6591     return Error(Loc, "invalid extractelement operands");
6592 
6593   Inst = ExtractElementInst::Create(Op0, Op1);
6594   return false;
6595 }
6596 
6597 /// ParseInsertElement
6598 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6599 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
6600   LocTy Loc;
6601   Value *Op0, *Op1, *Op2;
6602   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6603       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6604       ParseTypeAndValue(Op1, PFS) ||
6605       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6606       ParseTypeAndValue(Op2, PFS))
6607     return true;
6608 
6609   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
6610     return Error(Loc, "invalid insertelement operands");
6611 
6612   Inst = InsertElementInst::Create(Op0, Op1, Op2);
6613   return false;
6614 }
6615 
6616 /// ParseShuffleVector
6617 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6618 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
6619   LocTy Loc;
6620   Value *Op0, *Op1, *Op2;
6621   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6622       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
6623       ParseTypeAndValue(Op1, PFS) ||
6624       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
6625       ParseTypeAndValue(Op2, PFS))
6626     return true;
6627 
6628   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
6629     return Error(Loc, "invalid shufflevector operands");
6630 
6631   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
6632   return false;
6633 }
6634 
6635 /// ParsePHI
6636 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
6637 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
6638   Type *Ty = nullptr;  LocTy TypeLoc;
6639   Value *Op0, *Op1;
6640 
6641   if (ParseType(Ty, TypeLoc) ||
6642       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6643       ParseValue(Ty, Op0, PFS) ||
6644       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6645       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6646       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6647     return true;
6648 
6649   bool AteExtraComma = false;
6650   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
6651 
6652   while (true) {
6653     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
6654 
6655     if (!EatIfPresent(lltok::comma))
6656       break;
6657 
6658     if (Lex.getKind() == lltok::MetadataVar) {
6659       AteExtraComma = true;
6660       break;
6661     }
6662 
6663     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6664         ParseValue(Ty, Op0, PFS) ||
6665         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6666         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6667         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6668       return true;
6669   }
6670 
6671   if (!Ty->isFirstClassType())
6672     return Error(TypeLoc, "phi node must have first class type");
6673 
6674   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
6675   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
6676     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
6677   Inst = PN;
6678   return AteExtraComma ? InstExtraComma : InstNormal;
6679 }
6680 
6681 /// ParseLandingPad
6682 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
6683 /// Clause
6684 ///   ::= 'catch' TypeAndValue
6685 ///   ::= 'filter'
6686 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
6687 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
6688   Type *Ty = nullptr; LocTy TyLoc;
6689 
6690   if (ParseType(Ty, TyLoc))
6691     return true;
6692 
6693   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
6694   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
6695 
6696   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
6697     LandingPadInst::ClauseType CT;
6698     if (EatIfPresent(lltok::kw_catch))
6699       CT = LandingPadInst::Catch;
6700     else if (EatIfPresent(lltok::kw_filter))
6701       CT = LandingPadInst::Filter;
6702     else
6703       return TokError("expected 'catch' or 'filter' clause type");
6704 
6705     Value *V;
6706     LocTy VLoc;
6707     if (ParseTypeAndValue(V, VLoc, PFS))
6708       return true;
6709 
6710     // A 'catch' type expects a non-array constant. A filter clause expects an
6711     // array constant.
6712     if (CT == LandingPadInst::Catch) {
6713       if (isa<ArrayType>(V->getType()))
6714         Error(VLoc, "'catch' clause has an invalid type");
6715     } else {
6716       if (!isa<ArrayType>(V->getType()))
6717         Error(VLoc, "'filter' clause has an invalid type");
6718     }
6719 
6720     Constant *CV = dyn_cast<Constant>(V);
6721     if (!CV)
6722       return Error(VLoc, "clause argument must be a constant");
6723     LP->addClause(CV);
6724   }
6725 
6726   Inst = LP.release();
6727   return false;
6728 }
6729 
6730 /// ParseCall
6731 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
6732 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6733 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
6734 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6735 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
6736 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6737 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
6738 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6739 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
6740                          CallInst::TailCallKind TCK) {
6741   AttrBuilder RetAttrs, FnAttrs;
6742   std::vector<unsigned> FwdRefAttrGrps;
6743   LocTy BuiltinLoc;
6744   unsigned CallAddrSpace;
6745   unsigned CC;
6746   Type *RetType = nullptr;
6747   LocTy RetTypeLoc;
6748   ValID CalleeID;
6749   SmallVector<ParamInfo, 16> ArgList;
6750   SmallVector<OperandBundleDef, 2> BundleList;
6751   LocTy CallLoc = Lex.getLoc();
6752 
6753   if (TCK != CallInst::TCK_None &&
6754       ParseToken(lltok::kw_call,
6755                  "expected 'tail call', 'musttail call', or 'notail call'"))
6756     return true;
6757 
6758   FastMathFlags FMF = EatFastMathFlagsIfPresent();
6759 
6760   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6761       ParseOptionalProgramAddrSpace(CallAddrSpace) ||
6762       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6763       ParseValID(CalleeID) ||
6764       ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
6765                          PFS.getFunction().isVarArg()) ||
6766       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
6767       ParseOptionalOperandBundles(BundleList, PFS))
6768     return true;
6769 
6770   if (FMF.any() && !RetType->isFPOrFPVectorTy())
6771     return Error(CallLoc, "fast-math-flags specified for call without "
6772                           "floating-point scalar or vector return type");
6773 
6774   // If RetType is a non-function pointer type, then this is the short syntax
6775   // for the call, which means that RetType is just the return type.  Infer the
6776   // rest of the function argument types from the arguments that are present.
6777   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6778   if (!Ty) {
6779     // Pull out the types of all of the arguments...
6780     std::vector<Type*> ParamTypes;
6781     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6782       ParamTypes.push_back(ArgList[i].V->getType());
6783 
6784     if (!FunctionType::isValidReturnType(RetType))
6785       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6786 
6787     Ty = FunctionType::get(RetType, ParamTypes, false);
6788   }
6789 
6790   CalleeID.FTy = Ty;
6791 
6792   // Look up the callee.
6793   Value *Callee;
6794   if (ConvertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
6795                           &PFS, /*IsCall=*/true))
6796     return true;
6797 
6798   // Set up the Attribute for the function.
6799   SmallVector<AttributeSet, 8> Attrs;
6800 
6801   SmallVector<Value*, 8> Args;
6802 
6803   // Loop through FunctionType's arguments and ensure they are specified
6804   // correctly.  Also, gather any parameter attributes.
6805   FunctionType::param_iterator I = Ty->param_begin();
6806   FunctionType::param_iterator E = Ty->param_end();
6807   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6808     Type *ExpectedTy = nullptr;
6809     if (I != E) {
6810       ExpectedTy = *I++;
6811     } else if (!Ty->isVarArg()) {
6812       return Error(ArgList[i].Loc, "too many arguments specified");
6813     }
6814 
6815     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6816       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6817                    getTypeString(ExpectedTy) + "'");
6818     Args.push_back(ArgList[i].V);
6819     Attrs.push_back(ArgList[i].Attrs);
6820   }
6821 
6822   if (I != E)
6823     return Error(CallLoc, "not enough parameters specified for call");
6824 
6825   if (FnAttrs.hasAlignmentAttr())
6826     return Error(CallLoc, "call instructions may not have an alignment");
6827 
6828   // Finish off the Attribute and check them
6829   AttributeList PAL =
6830       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6831                          AttributeSet::get(Context, RetAttrs), Attrs);
6832 
6833   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
6834   CI->setTailCallKind(TCK);
6835   CI->setCallingConv(CC);
6836   if (FMF.any())
6837     CI->setFastMathFlags(FMF);
6838   CI->setAttributes(PAL);
6839   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
6840   Inst = CI;
6841   return false;
6842 }
6843 
6844 //===----------------------------------------------------------------------===//
6845 // Memory Instructions.
6846 //===----------------------------------------------------------------------===//
6847 
6848 /// ParseAlloc
6849 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
6850 ///       (',' 'align' i32)? (',', 'addrspace(n))?
6851 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
6852   Value *Size = nullptr;
6853   LocTy SizeLoc, TyLoc, ASLoc;
6854   unsigned Alignment = 0;
6855   unsigned AddrSpace = 0;
6856   Type *Ty = nullptr;
6857 
6858   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
6859   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
6860 
6861   if (ParseType(Ty, TyLoc)) return true;
6862 
6863   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
6864     return Error(TyLoc, "invalid type for alloca");
6865 
6866   bool AteExtraComma = false;
6867   if (EatIfPresent(lltok::comma)) {
6868     if (Lex.getKind() == lltok::kw_align) {
6869       if (ParseOptionalAlignment(Alignment))
6870         return true;
6871       if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6872         return true;
6873     } else if (Lex.getKind() == lltok::kw_addrspace) {
6874       ASLoc = Lex.getLoc();
6875       if (ParseOptionalAddrSpace(AddrSpace))
6876         return true;
6877     } else if (Lex.getKind() == lltok::MetadataVar) {
6878       AteExtraComma = true;
6879     } else {
6880       if (ParseTypeAndValue(Size, SizeLoc, PFS))
6881         return true;
6882       if (EatIfPresent(lltok::comma)) {
6883         if (Lex.getKind() == lltok::kw_align) {
6884           if (ParseOptionalAlignment(Alignment))
6885             return true;
6886           if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6887             return true;
6888         } else if (Lex.getKind() == lltok::kw_addrspace) {
6889           ASLoc = Lex.getLoc();
6890           if (ParseOptionalAddrSpace(AddrSpace))
6891             return true;
6892         } else if (Lex.getKind() == lltok::MetadataVar) {
6893           AteExtraComma = true;
6894         }
6895       }
6896     }
6897   }
6898 
6899   if (Size && !Size->getType()->isIntegerTy())
6900     return Error(SizeLoc, "element count must have integer type");
6901 
6902   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, Alignment);
6903   AI->setUsedWithInAlloca(IsInAlloca);
6904   AI->setSwiftError(IsSwiftError);
6905   Inst = AI;
6906   return AteExtraComma ? InstExtraComma : InstNormal;
6907 }
6908 
6909 /// ParseLoad
6910 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
6911 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
6912 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6913 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
6914   Value *Val; LocTy Loc;
6915   unsigned Alignment = 0;
6916   bool AteExtraComma = false;
6917   bool isAtomic = false;
6918   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6919   SyncScope::ID SSID = SyncScope::System;
6920 
6921   if (Lex.getKind() == lltok::kw_atomic) {
6922     isAtomic = true;
6923     Lex.Lex();
6924   }
6925 
6926   bool isVolatile = false;
6927   if (Lex.getKind() == lltok::kw_volatile) {
6928     isVolatile = true;
6929     Lex.Lex();
6930   }
6931 
6932   Type *Ty;
6933   LocTy ExplicitTypeLoc = Lex.getLoc();
6934   if (ParseType(Ty) ||
6935       ParseToken(lltok::comma, "expected comma after load's type") ||
6936       ParseTypeAndValue(Val, Loc, PFS) ||
6937       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6938       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6939     return true;
6940 
6941   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
6942     return Error(Loc, "load operand must be a pointer to a first class type");
6943   if (isAtomic && !Alignment)
6944     return Error(Loc, "atomic load must have explicit non-zero alignment");
6945   if (Ordering == AtomicOrdering::Release ||
6946       Ordering == AtomicOrdering::AcquireRelease)
6947     return Error(Loc, "atomic load cannot use Release ordering");
6948 
6949   if (Ty != cast<PointerType>(Val->getType())->getElementType())
6950     return Error(ExplicitTypeLoc,
6951                  "explicit pointee type doesn't match operand's pointee type");
6952 
6953   Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID);
6954   return AteExtraComma ? InstExtraComma : InstNormal;
6955 }
6956 
6957 /// ParseStore
6958 
6959 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
6960 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
6961 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6962 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
6963   Value *Val, *Ptr; LocTy Loc, PtrLoc;
6964   unsigned Alignment = 0;
6965   bool AteExtraComma = false;
6966   bool isAtomic = false;
6967   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6968   SyncScope::ID SSID = SyncScope::System;
6969 
6970   if (Lex.getKind() == lltok::kw_atomic) {
6971     isAtomic = true;
6972     Lex.Lex();
6973   }
6974 
6975   bool isVolatile = false;
6976   if (Lex.getKind() == lltok::kw_volatile) {
6977     isVolatile = true;
6978     Lex.Lex();
6979   }
6980 
6981   if (ParseTypeAndValue(Val, Loc, PFS) ||
6982       ParseToken(lltok::comma, "expected ',' after store operand") ||
6983       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6984       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6985       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6986     return true;
6987 
6988   if (!Ptr->getType()->isPointerTy())
6989     return Error(PtrLoc, "store operand must be a pointer");
6990   if (!Val->getType()->isFirstClassType())
6991     return Error(Loc, "store operand must be a first class value");
6992   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6993     return Error(Loc, "stored value and pointer type do not match");
6994   if (isAtomic && !Alignment)
6995     return Error(Loc, "atomic store must have explicit non-zero alignment");
6996   if (Ordering == AtomicOrdering::Acquire ||
6997       Ordering == AtomicOrdering::AcquireRelease)
6998     return Error(Loc, "atomic store cannot use Acquire ordering");
6999 
7000   Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID);
7001   return AteExtraComma ? InstExtraComma : InstNormal;
7002 }
7003 
7004 /// ParseCmpXchg
7005 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
7006 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
7007 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
7008   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
7009   bool AteExtraComma = false;
7010   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
7011   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
7012   SyncScope::ID SSID = SyncScope::System;
7013   bool isVolatile = false;
7014   bool isWeak = false;
7015 
7016   if (EatIfPresent(lltok::kw_weak))
7017     isWeak = true;
7018 
7019   if (EatIfPresent(lltok::kw_volatile))
7020     isVolatile = true;
7021 
7022   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7023       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
7024       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
7025       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
7026       ParseTypeAndValue(New, NewLoc, PFS) ||
7027       ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
7028       ParseOrdering(FailureOrdering))
7029     return true;
7030 
7031   if (SuccessOrdering == AtomicOrdering::Unordered ||
7032       FailureOrdering == AtomicOrdering::Unordered)
7033     return TokError("cmpxchg cannot be unordered");
7034   if (isStrongerThan(FailureOrdering, SuccessOrdering))
7035     return TokError("cmpxchg failure argument shall be no stronger than the "
7036                     "success argument");
7037   if (FailureOrdering == AtomicOrdering::Release ||
7038       FailureOrdering == AtomicOrdering::AcquireRelease)
7039     return TokError(
7040         "cmpxchg failure ordering cannot include release semantics");
7041   if (!Ptr->getType()->isPointerTy())
7042     return Error(PtrLoc, "cmpxchg operand must be a pointer");
7043   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
7044     return Error(CmpLoc, "compare value and pointer type do not match");
7045   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
7046     return Error(NewLoc, "new value and pointer type do not match");
7047   if (!New->getType()->isFirstClassType())
7048     return Error(NewLoc, "cmpxchg operand must be a first class value");
7049   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
7050       Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID);
7051   CXI->setVolatile(isVolatile);
7052   CXI->setWeak(isWeak);
7053   Inst = CXI;
7054   return AteExtraComma ? InstExtraComma : InstNormal;
7055 }
7056 
7057 /// ParseAtomicRMW
7058 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
7059 ///       'singlethread'? AtomicOrdering
7060 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
7061   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
7062   bool AteExtraComma = false;
7063   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7064   SyncScope::ID SSID = SyncScope::System;
7065   bool isVolatile = false;
7066   bool IsFP = false;
7067   AtomicRMWInst::BinOp Operation;
7068 
7069   if (EatIfPresent(lltok::kw_volatile))
7070     isVolatile = true;
7071 
7072   switch (Lex.getKind()) {
7073   default: return TokError("expected binary operation in atomicrmw");
7074   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
7075   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
7076   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
7077   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
7078   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
7079   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
7080   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
7081   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
7082   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
7083   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
7084   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
7085   case lltok::kw_fadd:
7086     Operation = AtomicRMWInst::FAdd;
7087     IsFP = true;
7088     break;
7089   case lltok::kw_fsub:
7090     Operation = AtomicRMWInst::FSub;
7091     IsFP = true;
7092     break;
7093   }
7094   Lex.Lex();  // Eat the operation.
7095 
7096   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7097       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
7098       ParseTypeAndValue(Val, ValLoc, PFS) ||
7099       ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7100     return true;
7101 
7102   if (Ordering == AtomicOrdering::Unordered)
7103     return TokError("atomicrmw cannot be unordered");
7104   if (!Ptr->getType()->isPointerTy())
7105     return Error(PtrLoc, "atomicrmw operand must be a pointer");
7106   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
7107     return Error(ValLoc, "atomicrmw value and pointer type do not match");
7108 
7109   if (Operation == AtomicRMWInst::Xchg) {
7110     if (!Val->getType()->isIntegerTy() &&
7111         !Val->getType()->isFloatingPointTy()) {
7112       return Error(ValLoc, "atomicrmw " +
7113                    AtomicRMWInst::getOperationName(Operation) +
7114                    " operand must be an integer or floating point type");
7115     }
7116   } else if (IsFP) {
7117     if (!Val->getType()->isFloatingPointTy()) {
7118       return Error(ValLoc, "atomicrmw " +
7119                    AtomicRMWInst::getOperationName(Operation) +
7120                    " operand must be a floating point type");
7121     }
7122   } else {
7123     if (!Val->getType()->isIntegerTy()) {
7124       return Error(ValLoc, "atomicrmw " +
7125                    AtomicRMWInst::getOperationName(Operation) +
7126                    " operand must be an integer");
7127     }
7128   }
7129 
7130   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
7131   if (Size < 8 || (Size & (Size - 1)))
7132     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7133                          " integer");
7134 
7135   AtomicRMWInst *RMWI =
7136     new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
7137   RMWI->setVolatile(isVolatile);
7138   Inst = RMWI;
7139   return AteExtraComma ? InstExtraComma : InstNormal;
7140 }
7141 
7142 /// ParseFence
7143 ///   ::= 'fence' 'singlethread'? AtomicOrdering
7144 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
7145   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7146   SyncScope::ID SSID = SyncScope::System;
7147   if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7148     return true;
7149 
7150   if (Ordering == AtomicOrdering::Unordered)
7151     return TokError("fence cannot be unordered");
7152   if (Ordering == AtomicOrdering::Monotonic)
7153     return TokError("fence cannot be monotonic");
7154 
7155   Inst = new FenceInst(Context, Ordering, SSID);
7156   return InstNormal;
7157 }
7158 
7159 /// ParseGetElementPtr
7160 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7161 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7162   Value *Ptr = nullptr;
7163   Value *Val = nullptr;
7164   LocTy Loc, EltLoc;
7165 
7166   bool InBounds = EatIfPresent(lltok::kw_inbounds);
7167 
7168   Type *Ty = nullptr;
7169   LocTy ExplicitTypeLoc = Lex.getLoc();
7170   if (ParseType(Ty) ||
7171       ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
7172       ParseTypeAndValue(Ptr, Loc, PFS))
7173     return true;
7174 
7175   Type *BaseType = Ptr->getType();
7176   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7177   if (!BasePointerType)
7178     return Error(Loc, "base of getelementptr must be a pointer");
7179 
7180   if (Ty != BasePointerType->getElementType())
7181     return Error(ExplicitTypeLoc,
7182                  "explicit pointee type doesn't match operand's pointee type");
7183 
7184   SmallVector<Value*, 16> Indices;
7185   bool AteExtraComma = false;
7186   // GEP returns a vector of pointers if at least one of parameters is a vector.
7187   // All vector parameters should have the same vector width.
7188   unsigned GEPWidth = BaseType->isVectorTy() ?
7189     BaseType->getVectorNumElements() : 0;
7190 
7191   while (EatIfPresent(lltok::comma)) {
7192     if (Lex.getKind() == lltok::MetadataVar) {
7193       AteExtraComma = true;
7194       break;
7195     }
7196     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
7197     if (!Val->getType()->isIntOrIntVectorTy())
7198       return Error(EltLoc, "getelementptr index must be an integer");
7199 
7200     if (Val->getType()->isVectorTy()) {
7201       unsigned ValNumEl = Val->getType()->getVectorNumElements();
7202       if (GEPWidth && GEPWidth != ValNumEl)
7203         return Error(EltLoc,
7204           "getelementptr vector index has a wrong number of elements");
7205       GEPWidth = ValNumEl;
7206     }
7207     Indices.push_back(Val);
7208   }
7209 
7210   SmallPtrSet<Type*, 4> Visited;
7211   if (!Indices.empty() && !Ty->isSized(&Visited))
7212     return Error(Loc, "base element of getelementptr must be sized");
7213 
7214   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7215     return Error(Loc, "invalid getelementptr indices");
7216   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7217   if (InBounds)
7218     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7219   return AteExtraComma ? InstExtraComma : InstNormal;
7220 }
7221 
7222 /// ParseExtractValue
7223 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
7224 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7225   Value *Val; LocTy Loc;
7226   SmallVector<unsigned, 4> Indices;
7227   bool AteExtraComma;
7228   if (ParseTypeAndValue(Val, Loc, PFS) ||
7229       ParseIndexList(Indices, AteExtraComma))
7230     return true;
7231 
7232   if (!Val->getType()->isAggregateType())
7233     return Error(Loc, "extractvalue operand must be aggregate type");
7234 
7235   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7236     return Error(Loc, "invalid indices for extractvalue");
7237   Inst = ExtractValueInst::Create(Val, Indices);
7238   return AteExtraComma ? InstExtraComma : InstNormal;
7239 }
7240 
7241 /// ParseInsertValue
7242 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7243 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7244   Value *Val0, *Val1; LocTy Loc0, Loc1;
7245   SmallVector<unsigned, 4> Indices;
7246   bool AteExtraComma;
7247   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
7248       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
7249       ParseTypeAndValue(Val1, Loc1, PFS) ||
7250       ParseIndexList(Indices, AteExtraComma))
7251     return true;
7252 
7253   if (!Val0->getType()->isAggregateType())
7254     return Error(Loc0, "insertvalue operand must be aggregate type");
7255 
7256   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7257   if (!IndexedType)
7258     return Error(Loc0, "invalid indices for insertvalue");
7259   if (IndexedType != Val1->getType())
7260     return Error(Loc1, "insertvalue operand and field disagree in type: '" +
7261                            getTypeString(Val1->getType()) + "' instead of '" +
7262                            getTypeString(IndexedType) + "'");
7263   Inst = InsertValueInst::Create(Val0, Val1, Indices);
7264   return AteExtraComma ? InstExtraComma : InstNormal;
7265 }
7266 
7267 //===----------------------------------------------------------------------===//
7268 // Embedded metadata.
7269 //===----------------------------------------------------------------------===//
7270 
7271 /// ParseMDNodeVector
7272 ///   ::= { Element (',' Element)* }
7273 /// Element
7274 ///   ::= 'null' | TypeAndValue
7275 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7276   if (ParseToken(lltok::lbrace, "expected '{' here"))
7277     return true;
7278 
7279   // Check for an empty list.
7280   if (EatIfPresent(lltok::rbrace))
7281     return false;
7282 
7283   do {
7284     // Null is a special case since it is typeless.
7285     if (EatIfPresent(lltok::kw_null)) {
7286       Elts.push_back(nullptr);
7287       continue;
7288     }
7289 
7290     Metadata *MD;
7291     if (ParseMetadata(MD, nullptr))
7292       return true;
7293     Elts.push_back(MD);
7294   } while (EatIfPresent(lltok::comma));
7295 
7296   return ParseToken(lltok::rbrace, "expected end of metadata node");
7297 }
7298 
7299 //===----------------------------------------------------------------------===//
7300 // Use-list order directives.
7301 //===----------------------------------------------------------------------===//
7302 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7303                                 SMLoc Loc) {
7304   if (V->use_empty())
7305     return Error(Loc, "value has no uses");
7306 
7307   unsigned NumUses = 0;
7308   SmallDenseMap<const Use *, unsigned, 16> Order;
7309   for (const Use &U : V->uses()) {
7310     if (++NumUses > Indexes.size())
7311       break;
7312     Order[&U] = Indexes[NumUses - 1];
7313   }
7314   if (NumUses < 2)
7315     return Error(Loc, "value only has one use");
7316   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7317     return Error(Loc,
7318                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
7319 
7320   V->sortUseList([&](const Use &L, const Use &R) {
7321     return Order.lookup(&L) < Order.lookup(&R);
7322   });
7323   return false;
7324 }
7325 
7326 /// ParseUseListOrderIndexes
7327 ///   ::= '{' uint32 (',' uint32)+ '}'
7328 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7329   SMLoc Loc = Lex.getLoc();
7330   if (ParseToken(lltok::lbrace, "expected '{' here"))
7331     return true;
7332   if (Lex.getKind() == lltok::rbrace)
7333     return Lex.Error("expected non-empty list of uselistorder indexes");
7334 
7335   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
7336   // indexes should be distinct numbers in the range [0, size-1], and should
7337   // not be in order.
7338   unsigned Offset = 0;
7339   unsigned Max = 0;
7340   bool IsOrdered = true;
7341   assert(Indexes.empty() && "Expected empty order vector");
7342   do {
7343     unsigned Index;
7344     if (ParseUInt32(Index))
7345       return true;
7346 
7347     // Update consistency checks.
7348     Offset += Index - Indexes.size();
7349     Max = std::max(Max, Index);
7350     IsOrdered &= Index == Indexes.size();
7351 
7352     Indexes.push_back(Index);
7353   } while (EatIfPresent(lltok::comma));
7354 
7355   if (ParseToken(lltok::rbrace, "expected '}' here"))
7356     return true;
7357 
7358   if (Indexes.size() < 2)
7359     return Error(Loc, "expected >= 2 uselistorder indexes");
7360   if (Offset != 0 || Max >= Indexes.size())
7361     return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
7362   if (IsOrdered)
7363     return Error(Loc, "expected uselistorder indexes to change the order");
7364 
7365   return false;
7366 }
7367 
7368 /// ParseUseListOrder
7369 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7370 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
7371   SMLoc Loc = Lex.getLoc();
7372   if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7373     return true;
7374 
7375   Value *V;
7376   SmallVector<unsigned, 16> Indexes;
7377   if (ParseTypeAndValue(V, PFS) ||
7378       ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
7379       ParseUseListOrderIndexes(Indexes))
7380     return true;
7381 
7382   return sortUseListOrder(V, Indexes, Loc);
7383 }
7384 
7385 /// ParseUseListOrderBB
7386 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
7387 bool LLParser::ParseUseListOrderBB() {
7388   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7389   SMLoc Loc = Lex.getLoc();
7390   Lex.Lex();
7391 
7392   ValID Fn, Label;
7393   SmallVector<unsigned, 16> Indexes;
7394   if (ParseValID(Fn) ||
7395       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7396       ParseValID(Label) ||
7397       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7398       ParseUseListOrderIndexes(Indexes))
7399     return true;
7400 
7401   // Check the function.
7402   GlobalValue *GV;
7403   if (Fn.Kind == ValID::t_GlobalName)
7404     GV = M->getNamedValue(Fn.StrVal);
7405   else if (Fn.Kind == ValID::t_GlobalID)
7406     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7407   else
7408     return Error(Fn.Loc, "expected function name in uselistorder_bb");
7409   if (!GV)
7410     return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
7411   auto *F = dyn_cast<Function>(GV);
7412   if (!F)
7413     return Error(Fn.Loc, "expected function name in uselistorder_bb");
7414   if (F->isDeclaration())
7415     return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
7416 
7417   // Check the basic block.
7418   if (Label.Kind == ValID::t_LocalID)
7419     return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
7420   if (Label.Kind != ValID::t_LocalName)
7421     return Error(Label.Loc, "expected basic block name in uselistorder_bb");
7422   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7423   if (!V)
7424     return Error(Label.Loc, "invalid basic block in uselistorder_bb");
7425   if (!isa<BasicBlock>(V))
7426     return Error(Label.Loc, "expected basic block in uselistorder_bb");
7427 
7428   return sortUseListOrder(V, Indexes, Loc);
7429 }
7430 
7431 /// ModuleEntry
7432 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
7433 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
7434 bool LLParser::ParseModuleEntry(unsigned ID) {
7435   assert(Lex.getKind() == lltok::kw_module);
7436   Lex.Lex();
7437 
7438   std::string Path;
7439   if (ParseToken(lltok::colon, "expected ':' here") ||
7440       ParseToken(lltok::lparen, "expected '(' here") ||
7441       ParseToken(lltok::kw_path, "expected 'path' here") ||
7442       ParseToken(lltok::colon, "expected ':' here") ||
7443       ParseStringConstant(Path) ||
7444       ParseToken(lltok::comma, "expected ',' here") ||
7445       ParseToken(lltok::kw_hash, "expected 'hash' here") ||
7446       ParseToken(lltok::colon, "expected ':' here") ||
7447       ParseToken(lltok::lparen, "expected '(' here"))
7448     return true;
7449 
7450   ModuleHash Hash;
7451   if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") ||
7452       ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") ||
7453       ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") ||
7454       ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") ||
7455       ParseUInt32(Hash[4]))
7456     return true;
7457 
7458   if (ParseToken(lltok::rparen, "expected ')' here") ||
7459       ParseToken(lltok::rparen, "expected ')' here"))
7460     return true;
7461 
7462   auto ModuleEntry = Index->addModule(Path, ID, Hash);
7463   ModuleIdMap[ID] = ModuleEntry->first();
7464 
7465   return false;
7466 }
7467 
7468 /// TypeIdEntry
7469 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
7470 bool LLParser::ParseTypeIdEntry(unsigned ID) {
7471   assert(Lex.getKind() == lltok::kw_typeid);
7472   Lex.Lex();
7473 
7474   std::string Name;
7475   if (ParseToken(lltok::colon, "expected ':' here") ||
7476       ParseToken(lltok::lparen, "expected '(' here") ||
7477       ParseToken(lltok::kw_name, "expected 'name' here") ||
7478       ParseToken(lltok::colon, "expected ':' here") ||
7479       ParseStringConstant(Name))
7480     return true;
7481 
7482   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
7483   if (ParseToken(lltok::comma, "expected ',' here") ||
7484       ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here"))
7485     return true;
7486 
7487   // Check if this ID was forward referenced, and if so, update the
7488   // corresponding GUIDs.
7489   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7490   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7491     for (auto TIDRef : FwdRefTIDs->second) {
7492       assert(!*TIDRef.first &&
7493              "Forward referenced type id GUID expected to be 0");
7494       *TIDRef.first = GlobalValue::getGUID(Name);
7495     }
7496     ForwardRefTypeIds.erase(FwdRefTIDs);
7497   }
7498 
7499   return false;
7500 }
7501 
7502 /// TypeIdSummary
7503 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
7504 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) {
7505   if (ParseToken(lltok::kw_summary, "expected 'summary' here") ||
7506       ParseToken(lltok::colon, "expected ':' here") ||
7507       ParseToken(lltok::lparen, "expected '(' here") ||
7508       ParseTypeTestResolution(TIS.TTRes))
7509     return true;
7510 
7511   if (EatIfPresent(lltok::comma)) {
7512     // Expect optional wpdResolutions field
7513     if (ParseOptionalWpdResolutions(TIS.WPDRes))
7514       return true;
7515   }
7516 
7517   if (ParseToken(lltok::rparen, "expected ')' here"))
7518     return true;
7519 
7520   return false;
7521 }
7522 
7523 static ValueInfo EmptyVI =
7524     ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
7525 
7526 /// TypeIdCompatibleVtableEntry
7527 ///   ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
7528 ///   TypeIdCompatibleVtableInfo
7529 ///   ')'
7530 bool LLParser::ParseTypeIdCompatibleVtableEntry(unsigned ID) {
7531   assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
7532   Lex.Lex();
7533 
7534   std::string Name;
7535   if (ParseToken(lltok::colon, "expected ':' here") ||
7536       ParseToken(lltok::lparen, "expected '(' here") ||
7537       ParseToken(lltok::kw_name, "expected 'name' here") ||
7538       ParseToken(lltok::colon, "expected ':' here") ||
7539       ParseStringConstant(Name))
7540     return true;
7541 
7542   TypeIdCompatibleVtableInfo &TI =
7543       Index->getOrInsertTypeIdCompatibleVtableSummary(Name);
7544   if (ParseToken(lltok::comma, "expected ',' here") ||
7545       ParseToken(lltok::kw_summary, "expected 'summary' here") ||
7546       ParseToken(lltok::colon, "expected ':' here") ||
7547       ParseToken(lltok::lparen, "expected '(' here"))
7548     return true;
7549 
7550   IdToIndexMapType IdToIndexMap;
7551   // Parse each call edge
7552   do {
7553     uint64_t Offset;
7554     if (ParseToken(lltok::lparen, "expected '(' here") ||
7555         ParseToken(lltok::kw_offset, "expected 'offset' here") ||
7556         ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) ||
7557         ParseToken(lltok::comma, "expected ',' here"))
7558       return true;
7559 
7560     LocTy Loc = Lex.getLoc();
7561     unsigned GVId;
7562     ValueInfo VI;
7563     if (ParseGVReference(VI, GVId))
7564       return true;
7565 
7566     // Keep track of the TypeIdCompatibleVtableInfo array index needing a
7567     // forward reference. We will save the location of the ValueInfo needing an
7568     // update, but can only do so once the std::vector is finalized.
7569     if (VI == EmptyVI)
7570       IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
7571     TI.push_back({Offset, VI});
7572 
7573     if (ParseToken(lltok::rparen, "expected ')' in call"))
7574       return true;
7575   } while (EatIfPresent(lltok::comma));
7576 
7577   // Now that the TI vector is finalized, it is safe to save the locations
7578   // of any forward GV references that need updating later.
7579   for (auto I : IdToIndexMap) {
7580     for (auto P : I.second) {
7581       assert(TI[P.first].VTableVI == EmptyVI &&
7582              "Forward referenced ValueInfo expected to be empty");
7583       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
7584           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
7585       FwdRef.first->second.push_back(
7586           std::make_pair(&TI[P.first].VTableVI, P.second));
7587     }
7588   }
7589 
7590   if (ParseToken(lltok::rparen, "expected ')' here") ||
7591       ParseToken(lltok::rparen, "expected ')' here"))
7592     return true;
7593 
7594   // Check if this ID was forward referenced, and if so, update the
7595   // corresponding GUIDs.
7596   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7597   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7598     for (auto TIDRef : FwdRefTIDs->second) {
7599       assert(!*TIDRef.first &&
7600              "Forward referenced type id GUID expected to be 0");
7601       *TIDRef.first = GlobalValue::getGUID(Name);
7602     }
7603     ForwardRefTypeIds.erase(FwdRefTIDs);
7604   }
7605 
7606   return false;
7607 }
7608 
7609 /// TypeTestResolution
7610 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
7611 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
7612 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
7613 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
7614 ///         [',' 'inlinesBits' ':' UInt64]? ')'
7615 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) {
7616   if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
7617       ParseToken(lltok::colon, "expected ':' here") ||
7618       ParseToken(lltok::lparen, "expected '(' here") ||
7619       ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7620       ParseToken(lltok::colon, "expected ':' here"))
7621     return true;
7622 
7623   switch (Lex.getKind()) {
7624   case lltok::kw_unsat:
7625     TTRes.TheKind = TypeTestResolution::Unsat;
7626     break;
7627   case lltok::kw_byteArray:
7628     TTRes.TheKind = TypeTestResolution::ByteArray;
7629     break;
7630   case lltok::kw_inline:
7631     TTRes.TheKind = TypeTestResolution::Inline;
7632     break;
7633   case lltok::kw_single:
7634     TTRes.TheKind = TypeTestResolution::Single;
7635     break;
7636   case lltok::kw_allOnes:
7637     TTRes.TheKind = TypeTestResolution::AllOnes;
7638     break;
7639   default:
7640     return Error(Lex.getLoc(), "unexpected TypeTestResolution kind");
7641   }
7642   Lex.Lex();
7643 
7644   if (ParseToken(lltok::comma, "expected ',' here") ||
7645       ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
7646       ParseToken(lltok::colon, "expected ':' here") ||
7647       ParseUInt32(TTRes.SizeM1BitWidth))
7648     return true;
7649 
7650   // Parse optional fields
7651   while (EatIfPresent(lltok::comma)) {
7652     switch (Lex.getKind()) {
7653     case lltok::kw_alignLog2:
7654       Lex.Lex();
7655       if (ParseToken(lltok::colon, "expected ':'") ||
7656           ParseUInt64(TTRes.AlignLog2))
7657         return true;
7658       break;
7659     case lltok::kw_sizeM1:
7660       Lex.Lex();
7661       if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1))
7662         return true;
7663       break;
7664     case lltok::kw_bitMask: {
7665       unsigned Val;
7666       Lex.Lex();
7667       if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val))
7668         return true;
7669       assert(Val <= 0xff);
7670       TTRes.BitMask = (uint8_t)Val;
7671       break;
7672     }
7673     case lltok::kw_inlineBits:
7674       Lex.Lex();
7675       if (ParseToken(lltok::colon, "expected ':'") ||
7676           ParseUInt64(TTRes.InlineBits))
7677         return true;
7678       break;
7679     default:
7680       return Error(Lex.getLoc(), "expected optional TypeTestResolution field");
7681     }
7682   }
7683 
7684   if (ParseToken(lltok::rparen, "expected ')' here"))
7685     return true;
7686 
7687   return false;
7688 }
7689 
7690 /// OptionalWpdResolutions
7691 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
7692 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
7693 bool LLParser::ParseOptionalWpdResolutions(
7694     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
7695   if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
7696       ParseToken(lltok::colon, "expected ':' here") ||
7697       ParseToken(lltok::lparen, "expected '(' here"))
7698     return true;
7699 
7700   do {
7701     uint64_t Offset;
7702     WholeProgramDevirtResolution WPDRes;
7703     if (ParseToken(lltok::lparen, "expected '(' here") ||
7704         ParseToken(lltok::kw_offset, "expected 'offset' here") ||
7705         ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) ||
7706         ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) ||
7707         ParseToken(lltok::rparen, "expected ')' here"))
7708       return true;
7709     WPDResMap[Offset] = WPDRes;
7710   } while (EatIfPresent(lltok::comma));
7711 
7712   if (ParseToken(lltok::rparen, "expected ')' here"))
7713     return true;
7714 
7715   return false;
7716 }
7717 
7718 /// WpdRes
7719 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
7720 ///         [',' OptionalResByArg]? ')'
7721 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
7722 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
7723 ///         [',' OptionalResByArg]? ')'
7724 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
7725 ///         [',' OptionalResByArg]? ')'
7726 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) {
7727   if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
7728       ParseToken(lltok::colon, "expected ':' here") ||
7729       ParseToken(lltok::lparen, "expected '(' here") ||
7730       ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7731       ParseToken(lltok::colon, "expected ':' here"))
7732     return true;
7733 
7734   switch (Lex.getKind()) {
7735   case lltok::kw_indir:
7736     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
7737     break;
7738   case lltok::kw_singleImpl:
7739     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
7740     break;
7741   case lltok::kw_branchFunnel:
7742     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
7743     break;
7744   default:
7745     return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
7746   }
7747   Lex.Lex();
7748 
7749   // Parse optional fields
7750   while (EatIfPresent(lltok::comma)) {
7751     switch (Lex.getKind()) {
7752     case lltok::kw_singleImplName:
7753       Lex.Lex();
7754       if (ParseToken(lltok::colon, "expected ':' here") ||
7755           ParseStringConstant(WPDRes.SingleImplName))
7756         return true;
7757       break;
7758     case lltok::kw_resByArg:
7759       if (ParseOptionalResByArg(WPDRes.ResByArg))
7760         return true;
7761       break;
7762     default:
7763       return Error(Lex.getLoc(),
7764                    "expected optional WholeProgramDevirtResolution field");
7765     }
7766   }
7767 
7768   if (ParseToken(lltok::rparen, "expected ')' here"))
7769     return true;
7770 
7771   return false;
7772 }
7773 
7774 /// OptionalResByArg
7775 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
7776 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
7777 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
7778 ///                  'virtualConstProp' )
7779 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
7780 ///                [',' 'bit' ':' UInt32]? ')'
7781 bool LLParser::ParseOptionalResByArg(
7782     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
7783         &ResByArg) {
7784   if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
7785       ParseToken(lltok::colon, "expected ':' here") ||
7786       ParseToken(lltok::lparen, "expected '(' here"))
7787     return true;
7788 
7789   do {
7790     std::vector<uint64_t> Args;
7791     if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") ||
7792         ParseToken(lltok::kw_byArg, "expected 'byArg here") ||
7793         ParseToken(lltok::colon, "expected ':' here") ||
7794         ParseToken(lltok::lparen, "expected '(' here") ||
7795         ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7796         ParseToken(lltok::colon, "expected ':' here"))
7797       return true;
7798 
7799     WholeProgramDevirtResolution::ByArg ByArg;
7800     switch (Lex.getKind()) {
7801     case lltok::kw_indir:
7802       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
7803       break;
7804     case lltok::kw_uniformRetVal:
7805       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
7806       break;
7807     case lltok::kw_uniqueRetVal:
7808       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
7809       break;
7810     case lltok::kw_virtualConstProp:
7811       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
7812       break;
7813     default:
7814       return Error(Lex.getLoc(),
7815                    "unexpected WholeProgramDevirtResolution::ByArg kind");
7816     }
7817     Lex.Lex();
7818 
7819     // Parse optional fields
7820     while (EatIfPresent(lltok::comma)) {
7821       switch (Lex.getKind()) {
7822       case lltok::kw_info:
7823         Lex.Lex();
7824         if (ParseToken(lltok::colon, "expected ':' here") ||
7825             ParseUInt64(ByArg.Info))
7826           return true;
7827         break;
7828       case lltok::kw_byte:
7829         Lex.Lex();
7830         if (ParseToken(lltok::colon, "expected ':' here") ||
7831             ParseUInt32(ByArg.Byte))
7832           return true;
7833         break;
7834       case lltok::kw_bit:
7835         Lex.Lex();
7836         if (ParseToken(lltok::colon, "expected ':' here") ||
7837             ParseUInt32(ByArg.Bit))
7838           return true;
7839         break;
7840       default:
7841         return Error(Lex.getLoc(),
7842                      "expected optional whole program devirt field");
7843       }
7844     }
7845 
7846     if (ParseToken(lltok::rparen, "expected ')' here"))
7847       return true;
7848 
7849     ResByArg[Args] = ByArg;
7850   } while (EatIfPresent(lltok::comma));
7851 
7852   if (ParseToken(lltok::rparen, "expected ')' here"))
7853     return true;
7854 
7855   return false;
7856 }
7857 
7858 /// OptionalResByArg
7859 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
7860 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) {
7861   if (ParseToken(lltok::kw_args, "expected 'args' here") ||
7862       ParseToken(lltok::colon, "expected ':' here") ||
7863       ParseToken(lltok::lparen, "expected '(' here"))
7864     return true;
7865 
7866   do {
7867     uint64_t Val;
7868     if (ParseUInt64(Val))
7869       return true;
7870     Args.push_back(Val);
7871   } while (EatIfPresent(lltok::comma));
7872 
7873   if (ParseToken(lltok::rparen, "expected ')' here"))
7874     return true;
7875 
7876   return false;
7877 }
7878 
7879 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
7880 
7881 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
7882   bool ReadOnly = Fwd->isReadOnly();
7883   bool WriteOnly = Fwd->isWriteOnly();
7884   assert(!(ReadOnly && WriteOnly));
7885   *Fwd = Resolved;
7886   if (ReadOnly)
7887     Fwd->setReadOnly();
7888   if (WriteOnly)
7889     Fwd->setWriteOnly();
7890 }
7891 
7892 /// Stores the given Name/GUID and associated summary into the Index.
7893 /// Also updates any forward references to the associated entry ID.
7894 void LLParser::AddGlobalValueToIndex(
7895     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
7896     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
7897   // First create the ValueInfo utilizing the Name or GUID.
7898   ValueInfo VI;
7899   if (GUID != 0) {
7900     assert(Name.empty());
7901     VI = Index->getOrInsertValueInfo(GUID);
7902   } else {
7903     assert(!Name.empty());
7904     if (M) {
7905       auto *GV = M->getNamedValue(Name);
7906       assert(GV);
7907       VI = Index->getOrInsertValueInfo(GV);
7908     } else {
7909       assert(
7910           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
7911           "Need a source_filename to compute GUID for local");
7912       GUID = GlobalValue::getGUID(
7913           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
7914       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
7915     }
7916   }
7917 
7918   // Resolve forward references from calls/refs
7919   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
7920   if (FwdRefVIs != ForwardRefValueInfos.end()) {
7921     for (auto VIRef : FwdRefVIs->second) {
7922       assert(VIRef.first->getRef() == FwdVIRef &&
7923              "Forward referenced ValueInfo expected to be empty");
7924       resolveFwdRef(VIRef.first, VI);
7925     }
7926     ForwardRefValueInfos.erase(FwdRefVIs);
7927   }
7928 
7929   // Resolve forward references from aliases
7930   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
7931   if (FwdRefAliasees != ForwardRefAliasees.end()) {
7932     for (auto AliaseeRef : FwdRefAliasees->second) {
7933       assert(!AliaseeRef.first->hasAliasee() &&
7934              "Forward referencing alias already has aliasee");
7935       assert(Summary && "Aliasee must be a definition");
7936       AliaseeRef.first->setAliasee(VI, Summary.get());
7937     }
7938     ForwardRefAliasees.erase(FwdRefAliasees);
7939   }
7940 
7941   // Add the summary if one was provided.
7942   if (Summary)
7943     Index->addGlobalValueSummary(VI, std::move(Summary));
7944 
7945   // Save the associated ValueInfo for use in later references by ID.
7946   if (ID == NumberedValueInfos.size())
7947     NumberedValueInfos.push_back(VI);
7948   else {
7949     // Handle non-continuous numbers (to make test simplification easier).
7950     if (ID > NumberedValueInfos.size())
7951       NumberedValueInfos.resize(ID + 1);
7952     NumberedValueInfos[ID] = VI;
7953   }
7954 }
7955 
7956 /// ParseGVEntry
7957 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
7958 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
7959 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
7960 bool LLParser::ParseGVEntry(unsigned ID) {
7961   assert(Lex.getKind() == lltok::kw_gv);
7962   Lex.Lex();
7963 
7964   if (ParseToken(lltok::colon, "expected ':' here") ||
7965       ParseToken(lltok::lparen, "expected '(' here"))
7966     return true;
7967 
7968   std::string Name;
7969   GlobalValue::GUID GUID = 0;
7970   switch (Lex.getKind()) {
7971   case lltok::kw_name:
7972     Lex.Lex();
7973     if (ParseToken(lltok::colon, "expected ':' here") ||
7974         ParseStringConstant(Name))
7975       return true;
7976     // Can't create GUID/ValueInfo until we have the linkage.
7977     break;
7978   case lltok::kw_guid:
7979     Lex.Lex();
7980     if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID))
7981       return true;
7982     break;
7983   default:
7984     return Error(Lex.getLoc(), "expected name or guid tag");
7985   }
7986 
7987   if (!EatIfPresent(lltok::comma)) {
7988     // No summaries. Wrap up.
7989     if (ParseToken(lltok::rparen, "expected ')' here"))
7990       return true;
7991     // This was created for a call to an external or indirect target.
7992     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
7993     // created for indirect calls with VP. A Name with no GUID came from
7994     // an external definition. We pass ExternalLinkage since that is only
7995     // used when the GUID must be computed from Name, and in that case
7996     // the symbol must have external linkage.
7997     AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
7998                           nullptr);
7999     return false;
8000   }
8001 
8002   // Have a list of summaries
8003   if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") ||
8004       ParseToken(lltok::colon, "expected ':' here"))
8005     return true;
8006 
8007   do {
8008     if (ParseToken(lltok::lparen, "expected '(' here"))
8009       return true;
8010     switch (Lex.getKind()) {
8011     case lltok::kw_function:
8012       if (ParseFunctionSummary(Name, GUID, ID))
8013         return true;
8014       break;
8015     case lltok::kw_variable:
8016       if (ParseVariableSummary(Name, GUID, ID))
8017         return true;
8018       break;
8019     case lltok::kw_alias:
8020       if (ParseAliasSummary(Name, GUID, ID))
8021         return true;
8022       break;
8023     default:
8024       return Error(Lex.getLoc(), "expected summary type");
8025     }
8026     if (ParseToken(lltok::rparen, "expected ')' here"))
8027       return true;
8028   } while (EatIfPresent(lltok::comma));
8029 
8030   if (ParseToken(lltok::rparen, "expected ')' here"))
8031     return true;
8032 
8033   return false;
8034 }
8035 
8036 /// FunctionSummary
8037 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8038 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
8039 ///         [',' OptionalTypeIdInfo]? [',' OptionalRefs]? ')'
8040 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
8041                                     unsigned ID) {
8042   assert(Lex.getKind() == lltok::kw_function);
8043   Lex.Lex();
8044 
8045   StringRef ModulePath;
8046   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8047       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8048       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8049   unsigned InstCount;
8050   std::vector<FunctionSummary::EdgeTy> Calls;
8051   FunctionSummary::TypeIdInfo TypeIdInfo;
8052   std::vector<ValueInfo> Refs;
8053   // Default is all-zeros (conservative values).
8054   FunctionSummary::FFlags FFlags = {};
8055   if (ParseToken(lltok::colon, "expected ':' here") ||
8056       ParseToken(lltok::lparen, "expected '(' here") ||
8057       ParseModuleReference(ModulePath) ||
8058       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8059       ParseToken(lltok::comma, "expected ',' here") ||
8060       ParseToken(lltok::kw_insts, "expected 'insts' here") ||
8061       ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount))
8062     return true;
8063 
8064   // Parse optional fields
8065   while (EatIfPresent(lltok::comma)) {
8066     switch (Lex.getKind()) {
8067     case lltok::kw_funcFlags:
8068       if (ParseOptionalFFlags(FFlags))
8069         return true;
8070       break;
8071     case lltok::kw_calls:
8072       if (ParseOptionalCalls(Calls))
8073         return true;
8074       break;
8075     case lltok::kw_typeIdInfo:
8076       if (ParseOptionalTypeIdInfo(TypeIdInfo))
8077         return true;
8078       break;
8079     case lltok::kw_refs:
8080       if (ParseOptionalRefs(Refs))
8081         return true;
8082       break;
8083     default:
8084       return Error(Lex.getLoc(), "expected optional function summary field");
8085     }
8086   }
8087 
8088   if (ParseToken(lltok::rparen, "expected ')' here"))
8089     return true;
8090 
8091   auto FS = llvm::make_unique<FunctionSummary>(
8092       GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
8093       std::move(Calls), std::move(TypeIdInfo.TypeTests),
8094       std::move(TypeIdInfo.TypeTestAssumeVCalls),
8095       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
8096       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
8097       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls));
8098 
8099   FS->setModulePath(ModulePath);
8100 
8101   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8102                         ID, std::move(FS));
8103 
8104   return false;
8105 }
8106 
8107 /// VariableSummary
8108 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8109 ///         [',' OptionalRefs]? ')'
8110 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID,
8111                                     unsigned ID) {
8112   assert(Lex.getKind() == lltok::kw_variable);
8113   Lex.Lex();
8114 
8115   StringRef ModulePath;
8116   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8117       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8118       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8119   GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false,
8120                                         /* WriteOnly */ false);
8121   std::vector<ValueInfo> Refs;
8122   VTableFuncList VTableFuncs;
8123   if (ParseToken(lltok::colon, "expected ':' here") ||
8124       ParseToken(lltok::lparen, "expected '(' here") ||
8125       ParseModuleReference(ModulePath) ||
8126       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8127       ParseToken(lltok::comma, "expected ',' here") ||
8128       ParseGVarFlags(GVarFlags))
8129     return true;
8130 
8131   // Parse optional fields
8132   while (EatIfPresent(lltok::comma)) {
8133     switch (Lex.getKind()) {
8134     case lltok::kw_vTableFuncs:
8135       if (ParseOptionalVTableFuncs(VTableFuncs))
8136         return true;
8137       break;
8138     case lltok::kw_refs:
8139       if (ParseOptionalRefs(Refs))
8140         return true;
8141       break;
8142     default:
8143       return Error(Lex.getLoc(), "expected optional variable summary field");
8144     }
8145   }
8146 
8147   if (ParseToken(lltok::rparen, "expected ')' here"))
8148     return true;
8149 
8150   auto GS =
8151       llvm::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
8152 
8153   GS->setModulePath(ModulePath);
8154   GS->setVTableFuncs(std::move(VTableFuncs));
8155 
8156   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8157                         ID, std::move(GS));
8158 
8159   return false;
8160 }
8161 
8162 /// AliasSummary
8163 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
8164 ///         'aliasee' ':' GVReference ')'
8165 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID,
8166                                  unsigned ID) {
8167   assert(Lex.getKind() == lltok::kw_alias);
8168   LocTy Loc = Lex.getLoc();
8169   Lex.Lex();
8170 
8171   StringRef ModulePath;
8172   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8173       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8174       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8175   if (ParseToken(lltok::colon, "expected ':' here") ||
8176       ParseToken(lltok::lparen, "expected '(' here") ||
8177       ParseModuleReference(ModulePath) ||
8178       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8179       ParseToken(lltok::comma, "expected ',' here") ||
8180       ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
8181       ParseToken(lltok::colon, "expected ':' here"))
8182     return true;
8183 
8184   ValueInfo AliaseeVI;
8185   unsigned GVId;
8186   if (ParseGVReference(AliaseeVI, GVId))
8187     return true;
8188 
8189   if (ParseToken(lltok::rparen, "expected ')' here"))
8190     return true;
8191 
8192   auto AS = llvm::make_unique<AliasSummary>(GVFlags);
8193 
8194   AS->setModulePath(ModulePath);
8195 
8196   // Record forward reference if the aliasee is not parsed yet.
8197   if (AliaseeVI.getRef() == FwdVIRef) {
8198     auto FwdRef = ForwardRefAliasees.insert(
8199         std::make_pair(GVId, std::vector<std::pair<AliasSummary *, LocTy>>()));
8200     FwdRef.first->second.push_back(std::make_pair(AS.get(), Loc));
8201   } else {
8202     auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
8203     assert(Summary && "Aliasee must be a definition");
8204     AS->setAliasee(AliaseeVI, Summary);
8205   }
8206 
8207   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8208                         ID, std::move(AS));
8209 
8210   return false;
8211 }
8212 
8213 /// Flag
8214 ///   ::= [0|1]
8215 bool LLParser::ParseFlag(unsigned &Val) {
8216   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
8217     return TokError("expected integer");
8218   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
8219   Lex.Lex();
8220   return false;
8221 }
8222 
8223 /// OptionalFFlags
8224 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8225 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8226 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
8227 ///        [',' 'noInline' ':' Flag]? ')'
8228 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8229   assert(Lex.getKind() == lltok::kw_funcFlags);
8230   Lex.Lex();
8231 
8232   if (ParseToken(lltok::colon, "expected ':' in funcFlags") |
8233       ParseToken(lltok::lparen, "expected '(' in funcFlags"))
8234     return true;
8235 
8236   do {
8237     unsigned Val = 0;
8238     switch (Lex.getKind()) {
8239     case lltok::kw_readNone:
8240       Lex.Lex();
8241       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8242         return true;
8243       FFlags.ReadNone = Val;
8244       break;
8245     case lltok::kw_readOnly:
8246       Lex.Lex();
8247       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8248         return true;
8249       FFlags.ReadOnly = Val;
8250       break;
8251     case lltok::kw_noRecurse:
8252       Lex.Lex();
8253       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8254         return true;
8255       FFlags.NoRecurse = Val;
8256       break;
8257     case lltok::kw_returnDoesNotAlias:
8258       Lex.Lex();
8259       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8260         return true;
8261       FFlags.ReturnDoesNotAlias = Val;
8262       break;
8263     case lltok::kw_noInline:
8264       Lex.Lex();
8265       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8266         return true;
8267       FFlags.NoInline = Val;
8268       break;
8269     default:
8270       return Error(Lex.getLoc(), "expected function flag type");
8271     }
8272   } while (EatIfPresent(lltok::comma));
8273 
8274   if (ParseToken(lltok::rparen, "expected ')' in funcFlags"))
8275     return true;
8276 
8277   return false;
8278 }
8279 
8280 /// OptionalCalls
8281 ///   := 'calls' ':' '(' Call [',' Call]* ')'
8282 /// Call ::= '(' 'callee' ':' GVReference
8283 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
8284 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
8285   assert(Lex.getKind() == lltok::kw_calls);
8286   Lex.Lex();
8287 
8288   if (ParseToken(lltok::colon, "expected ':' in calls") |
8289       ParseToken(lltok::lparen, "expected '(' in calls"))
8290     return true;
8291 
8292   IdToIndexMapType IdToIndexMap;
8293   // Parse each call edge
8294   do {
8295     ValueInfo VI;
8296     if (ParseToken(lltok::lparen, "expected '(' in call") ||
8297         ParseToken(lltok::kw_callee, "expected 'callee' in call") ||
8298         ParseToken(lltok::colon, "expected ':'"))
8299       return true;
8300 
8301     LocTy Loc = Lex.getLoc();
8302     unsigned GVId;
8303     if (ParseGVReference(VI, GVId))
8304       return true;
8305 
8306     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
8307     unsigned RelBF = 0;
8308     if (EatIfPresent(lltok::comma)) {
8309       // Expect either hotness or relbf
8310       if (EatIfPresent(lltok::kw_hotness)) {
8311         if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness))
8312           return true;
8313       } else {
8314         if (ParseToken(lltok::kw_relbf, "expected relbf") ||
8315             ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF))
8316           return true;
8317       }
8318     }
8319     // Keep track of the Call array index needing a forward reference.
8320     // We will save the location of the ValueInfo needing an update, but
8321     // can only do so once the std::vector is finalized.
8322     if (VI.getRef() == FwdVIRef)
8323       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
8324     Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
8325 
8326     if (ParseToken(lltok::rparen, "expected ')' in call"))
8327       return true;
8328   } while (EatIfPresent(lltok::comma));
8329 
8330   // Now that the Calls vector is finalized, it is safe to save the locations
8331   // of any forward GV references that need updating later.
8332   for (auto I : IdToIndexMap) {
8333     for (auto P : I.second) {
8334       assert(Calls[P.first].first.getRef() == FwdVIRef &&
8335              "Forward referenced ValueInfo expected to be empty");
8336       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8337           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8338       FwdRef.first->second.push_back(
8339           std::make_pair(&Calls[P.first].first, P.second));
8340     }
8341   }
8342 
8343   if (ParseToken(lltok::rparen, "expected ')' in calls"))
8344     return true;
8345 
8346   return false;
8347 }
8348 
8349 /// Hotness
8350 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
8351 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) {
8352   switch (Lex.getKind()) {
8353   case lltok::kw_unknown:
8354     Hotness = CalleeInfo::HotnessType::Unknown;
8355     break;
8356   case lltok::kw_cold:
8357     Hotness = CalleeInfo::HotnessType::Cold;
8358     break;
8359   case lltok::kw_none:
8360     Hotness = CalleeInfo::HotnessType::None;
8361     break;
8362   case lltok::kw_hot:
8363     Hotness = CalleeInfo::HotnessType::Hot;
8364     break;
8365   case lltok::kw_critical:
8366     Hotness = CalleeInfo::HotnessType::Critical;
8367     break;
8368   default:
8369     return Error(Lex.getLoc(), "invalid call edge hotness");
8370   }
8371   Lex.Lex();
8372   return false;
8373 }
8374 
8375 /// OptionalVTableFuncs
8376 ///   := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
8377 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
8378 bool LLParser::ParseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
8379   assert(Lex.getKind() == lltok::kw_vTableFuncs);
8380   Lex.Lex();
8381 
8382   if (ParseToken(lltok::colon, "expected ':' in vTableFuncs") |
8383       ParseToken(lltok::lparen, "expected '(' in vTableFuncs"))
8384     return true;
8385 
8386   IdToIndexMapType IdToIndexMap;
8387   // Parse each virtual function pair
8388   do {
8389     ValueInfo VI;
8390     if (ParseToken(lltok::lparen, "expected '(' in vTableFunc") ||
8391         ParseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
8392         ParseToken(lltok::colon, "expected ':'"))
8393       return true;
8394 
8395     LocTy Loc = Lex.getLoc();
8396     unsigned GVId;
8397     if (ParseGVReference(VI, GVId))
8398       return true;
8399 
8400     uint64_t Offset;
8401     if (ParseToken(lltok::comma, "expected comma") ||
8402         ParseToken(lltok::kw_offset, "expected offset") ||
8403         ParseToken(lltok::colon, "expected ':'") || ParseUInt64(Offset))
8404       return true;
8405 
8406     // Keep track of the VTableFuncs array index needing a forward reference.
8407     // We will save the location of the ValueInfo needing an update, but
8408     // can only do so once the std::vector is finalized.
8409     if (VI == EmptyVI)
8410       IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
8411     VTableFuncs.push_back({VI, Offset});
8412 
8413     if (ParseToken(lltok::rparen, "expected ')' in vTableFunc"))
8414       return true;
8415   } while (EatIfPresent(lltok::comma));
8416 
8417   // Now that the VTableFuncs vector is finalized, it is safe to save the
8418   // locations of any forward GV references that need updating later.
8419   for (auto I : IdToIndexMap) {
8420     for (auto P : I.second) {
8421       assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
8422              "Forward referenced ValueInfo expected to be empty");
8423       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8424           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8425       FwdRef.first->second.push_back(
8426           std::make_pair(&VTableFuncs[P.first].FuncVI, P.second));
8427     }
8428   }
8429 
8430   if (ParseToken(lltok::rparen, "expected ')' in vTableFuncs"))
8431     return true;
8432 
8433   return false;
8434 }
8435 
8436 /// OptionalRefs
8437 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
8438 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) {
8439   assert(Lex.getKind() == lltok::kw_refs);
8440   Lex.Lex();
8441 
8442   if (ParseToken(lltok::colon, "expected ':' in refs") |
8443       ParseToken(lltok::lparen, "expected '(' in refs"))
8444     return true;
8445 
8446   struct ValueContext {
8447     ValueInfo VI;
8448     unsigned GVId;
8449     LocTy Loc;
8450   };
8451   std::vector<ValueContext> VContexts;
8452   // Parse each ref edge
8453   do {
8454     ValueContext VC;
8455     VC.Loc = Lex.getLoc();
8456     if (ParseGVReference(VC.VI, VC.GVId))
8457       return true;
8458     VContexts.push_back(VC);
8459   } while (EatIfPresent(lltok::comma));
8460 
8461   // Sort value contexts so that ones with writeonly
8462   // and readonly ValueInfo  are at the end of VContexts vector.
8463   // See FunctionSummary::specialRefCounts()
8464   llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
8465     return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier();
8466   });
8467 
8468   IdToIndexMapType IdToIndexMap;
8469   for (auto &VC : VContexts) {
8470     // Keep track of the Refs array index needing a forward reference.
8471     // We will save the location of the ValueInfo needing an update, but
8472     // can only do so once the std::vector is finalized.
8473     if (VC.VI.getRef() == FwdVIRef)
8474       IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
8475     Refs.push_back(VC.VI);
8476   }
8477 
8478   // Now that the Refs vector is finalized, it is safe to save the locations
8479   // of any forward GV references that need updating later.
8480   for (auto I : IdToIndexMap) {
8481     for (auto P : I.second) {
8482       assert(Refs[P.first].getRef() == FwdVIRef &&
8483              "Forward referenced ValueInfo expected to be empty");
8484       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8485           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8486       FwdRef.first->second.push_back(std::make_pair(&Refs[P.first], P.second));
8487     }
8488   }
8489 
8490   if (ParseToken(lltok::rparen, "expected ')' in refs"))
8491     return true;
8492 
8493   return false;
8494 }
8495 
8496 /// OptionalTypeIdInfo
8497 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
8498 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
8499 ///         [',' TypeCheckedLoadConstVCalls]? ')'
8500 bool LLParser::ParseOptionalTypeIdInfo(
8501     FunctionSummary::TypeIdInfo &TypeIdInfo) {
8502   assert(Lex.getKind() == lltok::kw_typeIdInfo);
8503   Lex.Lex();
8504 
8505   if (ParseToken(lltok::colon, "expected ':' here") ||
8506       ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8507     return true;
8508 
8509   do {
8510     switch (Lex.getKind()) {
8511     case lltok::kw_typeTests:
8512       if (ParseTypeTests(TypeIdInfo.TypeTests))
8513         return true;
8514       break;
8515     case lltok::kw_typeTestAssumeVCalls:
8516       if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
8517                            TypeIdInfo.TypeTestAssumeVCalls))
8518         return true;
8519       break;
8520     case lltok::kw_typeCheckedLoadVCalls:
8521       if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
8522                            TypeIdInfo.TypeCheckedLoadVCalls))
8523         return true;
8524       break;
8525     case lltok::kw_typeTestAssumeConstVCalls:
8526       if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
8527                               TypeIdInfo.TypeTestAssumeConstVCalls))
8528         return true;
8529       break;
8530     case lltok::kw_typeCheckedLoadConstVCalls:
8531       if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
8532                               TypeIdInfo.TypeCheckedLoadConstVCalls))
8533         return true;
8534       break;
8535     default:
8536       return Error(Lex.getLoc(), "invalid typeIdInfo list type");
8537     }
8538   } while (EatIfPresent(lltok::comma));
8539 
8540   if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8541     return true;
8542 
8543   return false;
8544 }
8545 
8546 /// TypeTests
8547 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
8548 ///         [',' (SummaryID | UInt64)]* ')'
8549 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
8550   assert(Lex.getKind() == lltok::kw_typeTests);
8551   Lex.Lex();
8552 
8553   if (ParseToken(lltok::colon, "expected ':' here") ||
8554       ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8555     return true;
8556 
8557   IdToIndexMapType IdToIndexMap;
8558   do {
8559     GlobalValue::GUID GUID = 0;
8560     if (Lex.getKind() == lltok::SummaryID) {
8561       unsigned ID = Lex.getUIntVal();
8562       LocTy Loc = Lex.getLoc();
8563       // Keep track of the TypeTests array index needing a forward reference.
8564       // We will save the location of the GUID needing an update, but
8565       // can only do so once the std::vector is finalized.
8566       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
8567       Lex.Lex();
8568     } else if (ParseUInt64(GUID))
8569       return true;
8570     TypeTests.push_back(GUID);
8571   } while (EatIfPresent(lltok::comma));
8572 
8573   // Now that the TypeTests vector is finalized, it is safe to save the
8574   // locations of any forward GV references that need updating later.
8575   for (auto I : IdToIndexMap) {
8576     for (auto P : I.second) {
8577       assert(TypeTests[P.first] == 0 &&
8578              "Forward referenced type id GUID expected to be 0");
8579       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8580           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8581       FwdRef.first->second.push_back(
8582           std::make_pair(&TypeTests[P.first], P.second));
8583     }
8584   }
8585 
8586   if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8587     return true;
8588 
8589   return false;
8590 }
8591 
8592 /// VFuncIdList
8593 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
8594 bool LLParser::ParseVFuncIdList(
8595     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
8596   assert(Lex.getKind() == Kind);
8597   Lex.Lex();
8598 
8599   if (ParseToken(lltok::colon, "expected ':' here") ||
8600       ParseToken(lltok::lparen, "expected '(' here"))
8601     return true;
8602 
8603   IdToIndexMapType IdToIndexMap;
8604   do {
8605     FunctionSummary::VFuncId VFuncId;
8606     if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
8607       return true;
8608     VFuncIdList.push_back(VFuncId);
8609   } while (EatIfPresent(lltok::comma));
8610 
8611   if (ParseToken(lltok::rparen, "expected ')' here"))
8612     return true;
8613 
8614   // Now that the VFuncIdList vector is finalized, it is safe to save the
8615   // locations of any forward GV references that need updating later.
8616   for (auto I : IdToIndexMap) {
8617     for (auto P : I.second) {
8618       assert(VFuncIdList[P.first].GUID == 0 &&
8619              "Forward referenced type id GUID expected to be 0");
8620       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8621           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8622       FwdRef.first->second.push_back(
8623           std::make_pair(&VFuncIdList[P.first].GUID, P.second));
8624     }
8625   }
8626 
8627   return false;
8628 }
8629 
8630 /// ConstVCallList
8631 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
8632 bool LLParser::ParseConstVCallList(
8633     lltok::Kind Kind,
8634     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
8635   assert(Lex.getKind() == Kind);
8636   Lex.Lex();
8637 
8638   if (ParseToken(lltok::colon, "expected ':' here") ||
8639       ParseToken(lltok::lparen, "expected '(' here"))
8640     return true;
8641 
8642   IdToIndexMapType IdToIndexMap;
8643   do {
8644     FunctionSummary::ConstVCall ConstVCall;
8645     if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
8646       return true;
8647     ConstVCallList.push_back(ConstVCall);
8648   } while (EatIfPresent(lltok::comma));
8649 
8650   if (ParseToken(lltok::rparen, "expected ')' here"))
8651     return true;
8652 
8653   // Now that the ConstVCallList vector is finalized, it is safe to save the
8654   // locations of any forward GV references that need updating later.
8655   for (auto I : IdToIndexMap) {
8656     for (auto P : I.second) {
8657       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
8658              "Forward referenced type id GUID expected to be 0");
8659       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8660           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8661       FwdRef.first->second.push_back(
8662           std::make_pair(&ConstVCallList[P.first].VFunc.GUID, P.second));
8663     }
8664   }
8665 
8666   return false;
8667 }
8668 
8669 /// ConstVCall
8670 ///   ::= '(' VFuncId ',' Args ')'
8671 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
8672                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
8673   if (ParseToken(lltok::lparen, "expected '(' here") ||
8674       ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
8675     return true;
8676 
8677   if (EatIfPresent(lltok::comma))
8678     if (ParseArgs(ConstVCall.Args))
8679       return true;
8680 
8681   if (ParseToken(lltok::rparen, "expected ')' here"))
8682     return true;
8683 
8684   return false;
8685 }
8686 
8687 /// VFuncId
8688 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
8689 ///         'offset' ':' UInt64 ')'
8690 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId,
8691                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
8692   assert(Lex.getKind() == lltok::kw_vFuncId);
8693   Lex.Lex();
8694 
8695   if (ParseToken(lltok::colon, "expected ':' here") ||
8696       ParseToken(lltok::lparen, "expected '(' here"))
8697     return true;
8698 
8699   if (Lex.getKind() == lltok::SummaryID) {
8700     VFuncId.GUID = 0;
8701     unsigned ID = Lex.getUIntVal();
8702     LocTy Loc = Lex.getLoc();
8703     // Keep track of the array index needing a forward reference.
8704     // We will save the location of the GUID needing an update, but
8705     // can only do so once the caller's std::vector is finalized.
8706     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
8707     Lex.Lex();
8708   } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") ||
8709              ParseToken(lltok::colon, "expected ':' here") ||
8710              ParseUInt64(VFuncId.GUID))
8711     return true;
8712 
8713   if (ParseToken(lltok::comma, "expected ',' here") ||
8714       ParseToken(lltok::kw_offset, "expected 'offset' here") ||
8715       ParseToken(lltok::colon, "expected ':' here") ||
8716       ParseUInt64(VFuncId.Offset) ||
8717       ParseToken(lltok::rparen, "expected ')' here"))
8718     return true;
8719 
8720   return false;
8721 }
8722 
8723 /// GVFlags
8724 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
8725 ///         'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ','
8726 ///         'dsoLocal' ':' Flag ',' 'canAutoHide' ':' Flag ')'
8727 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
8728   assert(Lex.getKind() == lltok::kw_flags);
8729   Lex.Lex();
8730 
8731   if (ParseToken(lltok::colon, "expected ':' here") ||
8732       ParseToken(lltok::lparen, "expected '(' here"))
8733     return true;
8734 
8735   do {
8736     unsigned Flag = 0;
8737     switch (Lex.getKind()) {
8738     case lltok::kw_linkage:
8739       Lex.Lex();
8740       if (ParseToken(lltok::colon, "expected ':'"))
8741         return true;
8742       bool HasLinkage;
8743       GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
8744       assert(HasLinkage && "Linkage not optional in summary entry");
8745       Lex.Lex();
8746       break;
8747     case lltok::kw_notEligibleToImport:
8748       Lex.Lex();
8749       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8750         return true;
8751       GVFlags.NotEligibleToImport = Flag;
8752       break;
8753     case lltok::kw_live:
8754       Lex.Lex();
8755       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8756         return true;
8757       GVFlags.Live = Flag;
8758       break;
8759     case lltok::kw_dsoLocal:
8760       Lex.Lex();
8761       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8762         return true;
8763       GVFlags.DSOLocal = Flag;
8764       break;
8765     case lltok::kw_canAutoHide:
8766       Lex.Lex();
8767       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8768         return true;
8769       GVFlags.CanAutoHide = Flag;
8770       break;
8771     default:
8772       return Error(Lex.getLoc(), "expected gv flag type");
8773     }
8774   } while (EatIfPresent(lltok::comma));
8775 
8776   if (ParseToken(lltok::rparen, "expected ')' here"))
8777     return true;
8778 
8779   return false;
8780 }
8781 
8782 /// GVarFlags
8783 ///   ::= 'varFlags' ':' '(' 'readonly' ':' Flag
8784 ///                      ',' 'writeonly' ':' Flag ')'
8785 bool LLParser::ParseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
8786   assert(Lex.getKind() == lltok::kw_varFlags);
8787   Lex.Lex();
8788 
8789   if (ParseToken(lltok::colon, "expected ':' here") ||
8790       ParseToken(lltok::lparen, "expected '(' here"))
8791     return true;
8792 
8793   auto ParseRest = [this](unsigned int &Val) {
8794     Lex.Lex();
8795     if (ParseToken(lltok::colon, "expected ':'"))
8796       return true;
8797     return ParseFlag(Val);
8798   };
8799 
8800   do {
8801     unsigned Flag = 0;
8802     switch (Lex.getKind()) {
8803     case lltok::kw_readonly:
8804       if (ParseRest(Flag))
8805         return true;
8806       GVarFlags.MaybeReadOnly = Flag;
8807       break;
8808     case lltok::kw_writeonly:
8809       if (ParseRest(Flag))
8810         return true;
8811       GVarFlags.MaybeWriteOnly = Flag;
8812       break;
8813     default:
8814       return Error(Lex.getLoc(), "expected gvar flag type");
8815     }
8816   } while (EatIfPresent(lltok::comma));
8817   return ParseToken(lltok::rparen, "expected ')' here");
8818 }
8819 
8820 /// ModuleReference
8821 ///   ::= 'module' ':' UInt
8822 bool LLParser::ParseModuleReference(StringRef &ModulePath) {
8823   // Parse module id.
8824   if (ParseToken(lltok::kw_module, "expected 'module' here") ||
8825       ParseToken(lltok::colon, "expected ':' here") ||
8826       ParseToken(lltok::SummaryID, "expected module ID"))
8827     return true;
8828 
8829   unsigned ModuleID = Lex.getUIntVal();
8830   auto I = ModuleIdMap.find(ModuleID);
8831   // We should have already parsed all module IDs
8832   assert(I != ModuleIdMap.end());
8833   ModulePath = I->second;
8834   return false;
8835 }
8836 
8837 /// GVReference
8838 ///   ::= SummaryID
8839 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) {
8840   bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly);
8841   if (!ReadOnly)
8842     WriteOnly = EatIfPresent(lltok::kw_writeonly);
8843   if (ParseToken(lltok::SummaryID, "expected GV ID"))
8844     return true;
8845 
8846   GVId = Lex.getUIntVal();
8847   // Check if we already have a VI for this GV
8848   if (GVId < NumberedValueInfos.size()) {
8849     assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
8850     VI = NumberedValueInfos[GVId];
8851   } else
8852     // We will create a forward reference to the stored location.
8853     VI = ValueInfo(false, FwdVIRef);
8854 
8855   if (ReadOnly)
8856     VI.setReadOnly();
8857   if (WriteOnly)
8858     VI.setWriteOnly();
8859   return false;
8860 }
8861