1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the parser class for .ll files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "LLParser.h" 14 #include "LLToken.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/AsmParser/SlotMapping.h" 21 #include "llvm/BinaryFormat/Dwarf.h" 22 #include "llvm/IR/Argument.h" 23 #include "llvm/IR/AutoUpgrade.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallingConv.h" 26 #include "llvm/IR/Comdat.h" 27 #include "llvm/IR/ConstantRange.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DebugInfoMetadata.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/GlobalIFunc.h" 33 #include "llvm/IR/GlobalObject.h" 34 #include "llvm/IR/InlineAsm.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/IR/ValueSymbolTable.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/MathExtras.h" 44 #include "llvm/Support/SaveAndRestore.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include <algorithm> 47 #include <cassert> 48 #include <cstring> 49 #include <iterator> 50 #include <vector> 51 52 using namespace llvm; 53 54 static std::string getTypeString(Type *T) { 55 std::string Result; 56 raw_string_ostream Tmp(Result); 57 Tmp << *T; 58 return Tmp.str(); 59 } 60 61 /// Run: module ::= toplevelentity* 62 bool LLParser::Run(bool UpgradeDebugInfo, 63 DataLayoutCallbackTy DataLayoutCallback) { 64 // Prime the lexer. 65 Lex.Lex(); 66 67 if (Context.shouldDiscardValueNames()) 68 return error( 69 Lex.getLoc(), 70 "Can't read textual IR with a Context that discards named Values"); 71 72 if (M) { 73 if (parseTargetDefinitions()) 74 return true; 75 76 if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple())) 77 M->setDataLayout(*LayoutOverride); 78 } 79 80 return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) || 81 validateEndOfIndex(); 82 } 83 84 bool LLParser::parseStandaloneConstantValue(Constant *&C, 85 const SlotMapping *Slots) { 86 restoreParsingState(Slots); 87 Lex.Lex(); 88 89 Type *Ty = nullptr; 90 if (parseType(Ty) || parseConstantValue(Ty, C)) 91 return true; 92 if (Lex.getKind() != lltok::Eof) 93 return error(Lex.getLoc(), "expected end of string"); 94 return false; 95 } 96 97 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 98 const SlotMapping *Slots) { 99 restoreParsingState(Slots); 100 Lex.Lex(); 101 102 Read = 0; 103 SMLoc Start = Lex.getLoc(); 104 Ty = nullptr; 105 if (parseType(Ty)) 106 return true; 107 SMLoc End = Lex.getLoc(); 108 Read = End.getPointer() - Start.getPointer(); 109 110 return false; 111 } 112 113 void LLParser::restoreParsingState(const SlotMapping *Slots) { 114 if (!Slots) 115 return; 116 NumberedVals = Slots->GlobalValues; 117 NumberedMetadata = Slots->MetadataNodes; 118 for (const auto &I : Slots->NamedTypes) 119 NamedTypes.insert( 120 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 121 for (const auto &I : Slots->Types) 122 NumberedTypes.insert( 123 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 124 } 125 126 /// validateEndOfModule - Do final validity and sanity checks at the end of the 127 /// module. 128 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) { 129 if (!M) 130 return false; 131 // Handle any function attribute group forward references. 132 for (const auto &RAG : ForwardRefAttrGroups) { 133 Value *V = RAG.first; 134 const std::vector<unsigned> &Attrs = RAG.second; 135 AttrBuilder B; 136 137 for (const auto &Attr : Attrs) 138 B.merge(NumberedAttrBuilders[Attr]); 139 140 if (Function *Fn = dyn_cast<Function>(V)) { 141 AttributeList AS = Fn->getAttributes(); 142 AttrBuilder FnAttrs(AS.getFnAttributes()); 143 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 144 145 FnAttrs.merge(B); 146 147 // If the alignment was parsed as an attribute, move to the alignment 148 // field. 149 if (FnAttrs.hasAlignmentAttr()) { 150 Fn->setAlignment(FnAttrs.getAlignment()); 151 FnAttrs.removeAttribute(Attribute::Alignment); 152 } 153 154 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 155 AttributeSet::get(Context, FnAttrs)); 156 Fn->setAttributes(AS); 157 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 158 AttributeList AS = CI->getAttributes(); 159 AttrBuilder FnAttrs(AS.getFnAttributes()); 160 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 161 FnAttrs.merge(B); 162 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 163 AttributeSet::get(Context, FnAttrs)); 164 CI->setAttributes(AS); 165 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 166 AttributeList AS = II->getAttributes(); 167 AttrBuilder FnAttrs(AS.getFnAttributes()); 168 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 169 FnAttrs.merge(B); 170 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 171 AttributeSet::get(Context, FnAttrs)); 172 II->setAttributes(AS); 173 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) { 174 AttributeList AS = CBI->getAttributes(); 175 AttrBuilder FnAttrs(AS.getFnAttributes()); 176 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 177 FnAttrs.merge(B); 178 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 179 AttributeSet::get(Context, FnAttrs)); 180 CBI->setAttributes(AS); 181 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 182 AttrBuilder Attrs(GV->getAttributes()); 183 Attrs.merge(B); 184 GV->setAttributes(AttributeSet::get(Context,Attrs)); 185 } else { 186 llvm_unreachable("invalid object with forward attribute group reference"); 187 } 188 } 189 190 // If there are entries in ForwardRefBlockAddresses at this point, the 191 // function was never defined. 192 if (!ForwardRefBlockAddresses.empty()) 193 return error(ForwardRefBlockAddresses.begin()->first.Loc, 194 "expected function name in blockaddress"); 195 196 for (const auto &NT : NumberedTypes) 197 if (NT.second.second.isValid()) 198 return error(NT.second.second, 199 "use of undefined type '%" + Twine(NT.first) + "'"); 200 201 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 202 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 203 if (I->second.second.isValid()) 204 return error(I->second.second, 205 "use of undefined type named '" + I->getKey() + "'"); 206 207 if (!ForwardRefComdats.empty()) 208 return error(ForwardRefComdats.begin()->second, 209 "use of undefined comdat '$" + 210 ForwardRefComdats.begin()->first + "'"); 211 212 if (!ForwardRefVals.empty()) 213 return error(ForwardRefVals.begin()->second.second, 214 "use of undefined value '@" + ForwardRefVals.begin()->first + 215 "'"); 216 217 if (!ForwardRefValIDs.empty()) 218 return error(ForwardRefValIDs.begin()->second.second, 219 "use of undefined value '@" + 220 Twine(ForwardRefValIDs.begin()->first) + "'"); 221 222 if (!ForwardRefMDNodes.empty()) 223 return error(ForwardRefMDNodes.begin()->second.second, 224 "use of undefined metadata '!" + 225 Twine(ForwardRefMDNodes.begin()->first) + "'"); 226 227 // Resolve metadata cycles. 228 for (auto &N : NumberedMetadata) { 229 if (N.second && !N.second->isResolved()) 230 N.second->resolveCycles(); 231 } 232 233 for (auto *Inst : InstsWithTBAATag) { 234 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 235 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 236 auto *UpgradedMD = UpgradeTBAANode(*MD); 237 if (MD != UpgradedMD) 238 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 239 } 240 241 // Look for intrinsic functions and CallInst that need to be upgraded 242 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 243 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 244 245 // Some types could be renamed during loading if several modules are 246 // loaded in the same LLVMContext (LTO scenario). In this case we should 247 // remangle intrinsics names as well. 248 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) { 249 Function *F = &*FI++; 250 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 251 F->replaceAllUsesWith(Remangled.getValue()); 252 F->eraseFromParent(); 253 } 254 } 255 256 if (UpgradeDebugInfo) 257 llvm::UpgradeDebugInfo(*M); 258 259 UpgradeModuleFlags(*M); 260 UpgradeSectionAttributes(*M); 261 262 if (!Slots) 263 return false; 264 // Initialize the slot mapping. 265 // Because by this point we've parsed and validated everything, we can "steal" 266 // the mapping from LLParser as it doesn't need it anymore. 267 Slots->GlobalValues = std::move(NumberedVals); 268 Slots->MetadataNodes = std::move(NumberedMetadata); 269 for (const auto &I : NamedTypes) 270 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 271 for (const auto &I : NumberedTypes) 272 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 273 274 return false; 275 } 276 277 /// Do final validity and sanity checks at the end of the index. 278 bool LLParser::validateEndOfIndex() { 279 if (!Index) 280 return false; 281 282 if (!ForwardRefValueInfos.empty()) 283 return error(ForwardRefValueInfos.begin()->second.front().second, 284 "use of undefined summary '^" + 285 Twine(ForwardRefValueInfos.begin()->first) + "'"); 286 287 if (!ForwardRefAliasees.empty()) 288 return error(ForwardRefAliasees.begin()->second.front().second, 289 "use of undefined summary '^" + 290 Twine(ForwardRefAliasees.begin()->first) + "'"); 291 292 if (!ForwardRefTypeIds.empty()) 293 return error(ForwardRefTypeIds.begin()->second.front().second, 294 "use of undefined type id summary '^" + 295 Twine(ForwardRefTypeIds.begin()->first) + "'"); 296 297 return false; 298 } 299 300 //===----------------------------------------------------------------------===// 301 // Top-Level Entities 302 //===----------------------------------------------------------------------===// 303 304 bool LLParser::parseTargetDefinitions() { 305 while (true) { 306 switch (Lex.getKind()) { 307 case lltok::kw_target: 308 if (parseTargetDefinition()) 309 return true; 310 break; 311 case lltok::kw_source_filename: 312 if (parseSourceFileName()) 313 return true; 314 break; 315 default: 316 return false; 317 } 318 } 319 } 320 321 bool LLParser::parseTopLevelEntities() { 322 // If there is no Module, then parse just the summary index entries. 323 if (!M) { 324 while (true) { 325 switch (Lex.getKind()) { 326 case lltok::Eof: 327 return false; 328 case lltok::SummaryID: 329 if (parseSummaryEntry()) 330 return true; 331 break; 332 case lltok::kw_source_filename: 333 if (parseSourceFileName()) 334 return true; 335 break; 336 default: 337 // Skip everything else 338 Lex.Lex(); 339 } 340 } 341 } 342 while (true) { 343 switch (Lex.getKind()) { 344 default: 345 return tokError("expected top-level entity"); 346 case lltok::Eof: return false; 347 case lltok::kw_declare: 348 if (parseDeclare()) 349 return true; 350 break; 351 case lltok::kw_define: 352 if (parseDefine()) 353 return true; 354 break; 355 case lltok::kw_module: 356 if (parseModuleAsm()) 357 return true; 358 break; 359 case lltok::kw_deplibs: 360 if (parseDepLibs()) 361 return true; 362 break; 363 case lltok::LocalVarID: 364 if (parseUnnamedType()) 365 return true; 366 break; 367 case lltok::LocalVar: 368 if (parseNamedType()) 369 return true; 370 break; 371 case lltok::GlobalID: 372 if (parseUnnamedGlobal()) 373 return true; 374 break; 375 case lltok::GlobalVar: 376 if (parseNamedGlobal()) 377 return true; 378 break; 379 case lltok::ComdatVar: if (parseComdat()) return true; break; 380 case lltok::exclaim: 381 if (parseStandaloneMetadata()) 382 return true; 383 break; 384 case lltok::SummaryID: 385 if (parseSummaryEntry()) 386 return true; 387 break; 388 case lltok::MetadataVar: 389 if (parseNamedMetadata()) 390 return true; 391 break; 392 case lltok::kw_attributes: 393 if (parseUnnamedAttrGrp()) 394 return true; 395 break; 396 case lltok::kw_uselistorder: 397 if (parseUseListOrder()) 398 return true; 399 break; 400 case lltok::kw_uselistorder_bb: 401 if (parseUseListOrderBB()) 402 return true; 403 break; 404 } 405 } 406 } 407 408 /// toplevelentity 409 /// ::= 'module' 'asm' STRINGCONSTANT 410 bool LLParser::parseModuleAsm() { 411 assert(Lex.getKind() == lltok::kw_module); 412 Lex.Lex(); 413 414 std::string AsmStr; 415 if (parseToken(lltok::kw_asm, "expected 'module asm'") || 416 parseStringConstant(AsmStr)) 417 return true; 418 419 M->appendModuleInlineAsm(AsmStr); 420 return false; 421 } 422 423 /// toplevelentity 424 /// ::= 'target' 'triple' '=' STRINGCONSTANT 425 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 426 bool LLParser::parseTargetDefinition() { 427 assert(Lex.getKind() == lltok::kw_target); 428 std::string Str; 429 switch (Lex.Lex()) { 430 default: 431 return tokError("unknown target property"); 432 case lltok::kw_triple: 433 Lex.Lex(); 434 if (parseToken(lltok::equal, "expected '=' after target triple") || 435 parseStringConstant(Str)) 436 return true; 437 M->setTargetTriple(Str); 438 return false; 439 case lltok::kw_datalayout: 440 Lex.Lex(); 441 if (parseToken(lltok::equal, "expected '=' after target datalayout") || 442 parseStringConstant(Str)) 443 return true; 444 M->setDataLayout(Str); 445 return false; 446 } 447 } 448 449 /// toplevelentity 450 /// ::= 'source_filename' '=' STRINGCONSTANT 451 bool LLParser::parseSourceFileName() { 452 assert(Lex.getKind() == lltok::kw_source_filename); 453 Lex.Lex(); 454 if (parseToken(lltok::equal, "expected '=' after source_filename") || 455 parseStringConstant(SourceFileName)) 456 return true; 457 if (M) 458 M->setSourceFileName(SourceFileName); 459 return false; 460 } 461 462 /// toplevelentity 463 /// ::= 'deplibs' '=' '[' ']' 464 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 465 /// FIXME: Remove in 4.0. Currently parse, but ignore. 466 bool LLParser::parseDepLibs() { 467 assert(Lex.getKind() == lltok::kw_deplibs); 468 Lex.Lex(); 469 if (parseToken(lltok::equal, "expected '=' after deplibs") || 470 parseToken(lltok::lsquare, "expected '=' after deplibs")) 471 return true; 472 473 if (EatIfPresent(lltok::rsquare)) 474 return false; 475 476 do { 477 std::string Str; 478 if (parseStringConstant(Str)) 479 return true; 480 } while (EatIfPresent(lltok::comma)); 481 482 return parseToken(lltok::rsquare, "expected ']' at end of list"); 483 } 484 485 /// parseUnnamedType: 486 /// ::= LocalVarID '=' 'type' type 487 bool LLParser::parseUnnamedType() { 488 LocTy TypeLoc = Lex.getLoc(); 489 unsigned TypeID = Lex.getUIntVal(); 490 Lex.Lex(); // eat LocalVarID; 491 492 if (parseToken(lltok::equal, "expected '=' after name") || 493 parseToken(lltok::kw_type, "expected 'type' after '='")) 494 return true; 495 496 Type *Result = nullptr; 497 if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result)) 498 return true; 499 500 if (!isa<StructType>(Result)) { 501 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 502 if (Entry.first) 503 return error(TypeLoc, "non-struct types may not be recursive"); 504 Entry.first = Result; 505 Entry.second = SMLoc(); 506 } 507 508 return false; 509 } 510 511 /// toplevelentity 512 /// ::= LocalVar '=' 'type' type 513 bool LLParser::parseNamedType() { 514 std::string Name = Lex.getStrVal(); 515 LocTy NameLoc = Lex.getLoc(); 516 Lex.Lex(); // eat LocalVar. 517 518 if (parseToken(lltok::equal, "expected '=' after name") || 519 parseToken(lltok::kw_type, "expected 'type' after name")) 520 return true; 521 522 Type *Result = nullptr; 523 if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result)) 524 return true; 525 526 if (!isa<StructType>(Result)) { 527 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 528 if (Entry.first) 529 return error(NameLoc, "non-struct types may not be recursive"); 530 Entry.first = Result; 531 Entry.second = SMLoc(); 532 } 533 534 return false; 535 } 536 537 /// toplevelentity 538 /// ::= 'declare' FunctionHeader 539 bool LLParser::parseDeclare() { 540 assert(Lex.getKind() == lltok::kw_declare); 541 Lex.Lex(); 542 543 std::vector<std::pair<unsigned, MDNode *>> MDs; 544 while (Lex.getKind() == lltok::MetadataVar) { 545 unsigned MDK; 546 MDNode *N; 547 if (parseMetadataAttachment(MDK, N)) 548 return true; 549 MDs.push_back({MDK, N}); 550 } 551 552 Function *F; 553 if (parseFunctionHeader(F, false)) 554 return true; 555 for (auto &MD : MDs) 556 F->addMetadata(MD.first, *MD.second); 557 return false; 558 } 559 560 /// toplevelentity 561 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 562 bool LLParser::parseDefine() { 563 assert(Lex.getKind() == lltok::kw_define); 564 Lex.Lex(); 565 566 Function *F; 567 return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) || 568 parseFunctionBody(*F); 569 } 570 571 /// parseGlobalType 572 /// ::= 'constant' 573 /// ::= 'global' 574 bool LLParser::parseGlobalType(bool &IsConstant) { 575 if (Lex.getKind() == lltok::kw_constant) 576 IsConstant = true; 577 else if (Lex.getKind() == lltok::kw_global) 578 IsConstant = false; 579 else { 580 IsConstant = false; 581 return tokError("expected 'global' or 'constant'"); 582 } 583 Lex.Lex(); 584 return false; 585 } 586 587 bool LLParser::parseOptionalUnnamedAddr( 588 GlobalVariable::UnnamedAddr &UnnamedAddr) { 589 if (EatIfPresent(lltok::kw_unnamed_addr)) 590 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 591 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 592 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 593 else 594 UnnamedAddr = GlobalValue::UnnamedAddr::None; 595 return false; 596 } 597 598 /// parseUnnamedGlobal: 599 /// OptionalVisibility (ALIAS | IFUNC) ... 600 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 601 /// OptionalDLLStorageClass 602 /// ... -> global variable 603 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 604 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier 605 /// OptionalVisibility 606 /// OptionalDLLStorageClass 607 /// ... -> global variable 608 bool LLParser::parseUnnamedGlobal() { 609 unsigned VarID = NumberedVals.size(); 610 std::string Name; 611 LocTy NameLoc = Lex.getLoc(); 612 613 // Handle the GlobalID form. 614 if (Lex.getKind() == lltok::GlobalID) { 615 if (Lex.getUIntVal() != VarID) 616 return error(Lex.getLoc(), 617 "variable expected to be numbered '%" + Twine(VarID) + "'"); 618 Lex.Lex(); // eat GlobalID; 619 620 if (parseToken(lltok::equal, "expected '=' after name")) 621 return true; 622 } 623 624 bool HasLinkage; 625 unsigned Linkage, Visibility, DLLStorageClass; 626 bool DSOLocal; 627 GlobalVariable::ThreadLocalMode TLM; 628 GlobalVariable::UnnamedAddr UnnamedAddr; 629 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 630 DSOLocal) || 631 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 632 return true; 633 634 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 635 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 636 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 637 638 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 639 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 640 } 641 642 /// parseNamedGlobal: 643 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 644 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 645 /// OptionalVisibility OptionalDLLStorageClass 646 /// ... -> global variable 647 bool LLParser::parseNamedGlobal() { 648 assert(Lex.getKind() == lltok::GlobalVar); 649 LocTy NameLoc = Lex.getLoc(); 650 std::string Name = Lex.getStrVal(); 651 Lex.Lex(); 652 653 bool HasLinkage; 654 unsigned Linkage, Visibility, DLLStorageClass; 655 bool DSOLocal; 656 GlobalVariable::ThreadLocalMode TLM; 657 GlobalVariable::UnnamedAddr UnnamedAddr; 658 if (parseToken(lltok::equal, "expected '=' in global variable") || 659 parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 660 DSOLocal) || 661 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 662 return true; 663 664 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 665 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 666 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 667 668 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 669 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 670 } 671 672 bool LLParser::parseComdat() { 673 assert(Lex.getKind() == lltok::ComdatVar); 674 std::string Name = Lex.getStrVal(); 675 LocTy NameLoc = Lex.getLoc(); 676 Lex.Lex(); 677 678 if (parseToken(lltok::equal, "expected '=' here")) 679 return true; 680 681 if (parseToken(lltok::kw_comdat, "expected comdat keyword")) 682 return tokError("expected comdat type"); 683 684 Comdat::SelectionKind SK; 685 switch (Lex.getKind()) { 686 default: 687 return tokError("unknown selection kind"); 688 case lltok::kw_any: 689 SK = Comdat::Any; 690 break; 691 case lltok::kw_exactmatch: 692 SK = Comdat::ExactMatch; 693 break; 694 case lltok::kw_largest: 695 SK = Comdat::Largest; 696 break; 697 case lltok::kw_noduplicates: 698 SK = Comdat::NoDuplicates; 699 break; 700 case lltok::kw_samesize: 701 SK = Comdat::SameSize; 702 break; 703 } 704 Lex.Lex(); 705 706 // See if the comdat was forward referenced, if so, use the comdat. 707 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 708 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 709 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 710 return error(NameLoc, "redefinition of comdat '$" + Name + "'"); 711 712 Comdat *C; 713 if (I != ComdatSymTab.end()) 714 C = &I->second; 715 else 716 C = M->getOrInsertComdat(Name); 717 C->setSelectionKind(SK); 718 719 return false; 720 } 721 722 // MDString: 723 // ::= '!' STRINGCONSTANT 724 bool LLParser::parseMDString(MDString *&Result) { 725 std::string Str; 726 if (parseStringConstant(Str)) 727 return true; 728 Result = MDString::get(Context, Str); 729 return false; 730 } 731 732 // MDNode: 733 // ::= '!' MDNodeNumber 734 bool LLParser::parseMDNodeID(MDNode *&Result) { 735 // !{ ..., !42, ... } 736 LocTy IDLoc = Lex.getLoc(); 737 unsigned MID = 0; 738 if (parseUInt32(MID)) 739 return true; 740 741 // If not a forward reference, just return it now. 742 if (NumberedMetadata.count(MID)) { 743 Result = NumberedMetadata[MID]; 744 return false; 745 } 746 747 // Otherwise, create MDNode forward reference. 748 auto &FwdRef = ForwardRefMDNodes[MID]; 749 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 750 751 Result = FwdRef.first.get(); 752 NumberedMetadata[MID].reset(Result); 753 return false; 754 } 755 756 /// parseNamedMetadata: 757 /// !foo = !{ !1, !2 } 758 bool LLParser::parseNamedMetadata() { 759 assert(Lex.getKind() == lltok::MetadataVar); 760 std::string Name = Lex.getStrVal(); 761 Lex.Lex(); 762 763 if (parseToken(lltok::equal, "expected '=' here") || 764 parseToken(lltok::exclaim, "Expected '!' here") || 765 parseToken(lltok::lbrace, "Expected '{' here")) 766 return true; 767 768 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 769 if (Lex.getKind() != lltok::rbrace) 770 do { 771 MDNode *N = nullptr; 772 // parse DIExpressions inline as a special case. They are still MDNodes, 773 // so they can still appear in named metadata. Remove this logic if they 774 // become plain Metadata. 775 if (Lex.getKind() == lltok::MetadataVar && 776 Lex.getStrVal() == "DIExpression") { 777 if (parseDIExpression(N, /*IsDistinct=*/false)) 778 return true; 779 // DIArgLists should only appear inline in a function, as they may 780 // contain LocalAsMetadata arguments which require a function context. 781 } else if (Lex.getKind() == lltok::MetadataVar && 782 Lex.getStrVal() == "DIArgList") { 783 return tokError("found DIArgList outside of function"); 784 } else if (parseToken(lltok::exclaim, "Expected '!' here") || 785 parseMDNodeID(N)) { 786 return true; 787 } 788 NMD->addOperand(N); 789 } while (EatIfPresent(lltok::comma)); 790 791 return parseToken(lltok::rbrace, "expected end of metadata node"); 792 } 793 794 /// parseStandaloneMetadata: 795 /// !42 = !{...} 796 bool LLParser::parseStandaloneMetadata() { 797 assert(Lex.getKind() == lltok::exclaim); 798 Lex.Lex(); 799 unsigned MetadataID = 0; 800 801 MDNode *Init; 802 if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here")) 803 return true; 804 805 // Detect common error, from old metadata syntax. 806 if (Lex.getKind() == lltok::Type) 807 return tokError("unexpected type in metadata definition"); 808 809 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 810 if (Lex.getKind() == lltok::MetadataVar) { 811 if (parseSpecializedMDNode(Init, IsDistinct)) 812 return true; 813 } else if (parseToken(lltok::exclaim, "Expected '!' here") || 814 parseMDTuple(Init, IsDistinct)) 815 return true; 816 817 // See if this was forward referenced, if so, handle it. 818 auto FI = ForwardRefMDNodes.find(MetadataID); 819 if (FI != ForwardRefMDNodes.end()) { 820 FI->second.first->replaceAllUsesWith(Init); 821 ForwardRefMDNodes.erase(FI); 822 823 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 824 } else { 825 if (NumberedMetadata.count(MetadataID)) 826 return tokError("Metadata id is already used"); 827 NumberedMetadata[MetadataID].reset(Init); 828 } 829 830 return false; 831 } 832 833 // Skips a single module summary entry. 834 bool LLParser::skipModuleSummaryEntry() { 835 // Each module summary entry consists of a tag for the entry 836 // type, followed by a colon, then the fields which may be surrounded by 837 // nested sets of parentheses. The "tag:" looks like a Label. Once parsing 838 // support is in place we will look for the tokens corresponding to the 839 // expected tags. 840 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module && 841 Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags && 842 Lex.getKind() != lltok::kw_blockcount) 843 return tokError( 844 "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the " 845 "start of summary entry"); 846 if (Lex.getKind() == lltok::kw_flags) 847 return parseSummaryIndexFlags(); 848 if (Lex.getKind() == lltok::kw_blockcount) 849 return parseBlockCount(); 850 Lex.Lex(); 851 if (parseToken(lltok::colon, "expected ':' at start of summary entry") || 852 parseToken(lltok::lparen, "expected '(' at start of summary entry")) 853 return true; 854 // Now walk through the parenthesized entry, until the number of open 855 // parentheses goes back down to 0 (the first '(' was parsed above). 856 unsigned NumOpenParen = 1; 857 do { 858 switch (Lex.getKind()) { 859 case lltok::lparen: 860 NumOpenParen++; 861 break; 862 case lltok::rparen: 863 NumOpenParen--; 864 break; 865 case lltok::Eof: 866 return tokError("found end of file while parsing summary entry"); 867 default: 868 // Skip everything in between parentheses. 869 break; 870 } 871 Lex.Lex(); 872 } while (NumOpenParen > 0); 873 return false; 874 } 875 876 /// SummaryEntry 877 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry 878 bool LLParser::parseSummaryEntry() { 879 assert(Lex.getKind() == lltok::SummaryID); 880 unsigned SummaryID = Lex.getUIntVal(); 881 882 // For summary entries, colons should be treated as distinct tokens, 883 // not an indication of the end of a label token. 884 Lex.setIgnoreColonInIdentifiers(true); 885 886 Lex.Lex(); 887 if (parseToken(lltok::equal, "expected '=' here")) 888 return true; 889 890 // If we don't have an index object, skip the summary entry. 891 if (!Index) 892 return skipModuleSummaryEntry(); 893 894 bool result = false; 895 switch (Lex.getKind()) { 896 case lltok::kw_gv: 897 result = parseGVEntry(SummaryID); 898 break; 899 case lltok::kw_module: 900 result = parseModuleEntry(SummaryID); 901 break; 902 case lltok::kw_typeid: 903 result = parseTypeIdEntry(SummaryID); 904 break; 905 case lltok::kw_typeidCompatibleVTable: 906 result = parseTypeIdCompatibleVtableEntry(SummaryID); 907 break; 908 case lltok::kw_flags: 909 result = parseSummaryIndexFlags(); 910 break; 911 case lltok::kw_blockcount: 912 result = parseBlockCount(); 913 break; 914 default: 915 result = error(Lex.getLoc(), "unexpected summary kind"); 916 break; 917 } 918 Lex.setIgnoreColonInIdentifiers(false); 919 return result; 920 } 921 922 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 923 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 924 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 925 } 926 927 // If there was an explicit dso_local, update GV. In the absence of an explicit 928 // dso_local we keep the default value. 929 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { 930 if (DSOLocal) 931 GV.setDSOLocal(true); 932 } 933 934 /// parseIndirectSymbol: 935 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 936 /// OptionalVisibility OptionalDLLStorageClass 937 /// OptionalThreadLocal OptionalUnnamedAddr 938 /// 'alias|ifunc' IndirectSymbol IndirectSymbolAttr* 939 /// 940 /// IndirectSymbol 941 /// ::= TypeAndValue 942 /// 943 /// IndirectSymbolAttr 944 /// ::= ',' 'partition' StringConstant 945 /// 946 /// Everything through OptionalUnnamedAddr has already been parsed. 947 /// 948 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc, 949 unsigned L, unsigned Visibility, 950 unsigned DLLStorageClass, bool DSOLocal, 951 GlobalVariable::ThreadLocalMode TLM, 952 GlobalVariable::UnnamedAddr UnnamedAddr) { 953 bool IsAlias; 954 if (Lex.getKind() == lltok::kw_alias) 955 IsAlias = true; 956 else if (Lex.getKind() == lltok::kw_ifunc) 957 IsAlias = false; 958 else 959 llvm_unreachable("Not an alias or ifunc!"); 960 Lex.Lex(); 961 962 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 963 964 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 965 return error(NameLoc, "invalid linkage type for alias"); 966 967 if (!isValidVisibilityForLinkage(Visibility, L)) 968 return error(NameLoc, 969 "symbol with local linkage must have default visibility"); 970 971 Type *Ty; 972 LocTy ExplicitTypeLoc = Lex.getLoc(); 973 if (parseType(Ty) || 974 parseToken(lltok::comma, "expected comma after alias or ifunc's type")) 975 return true; 976 977 Constant *Aliasee; 978 LocTy AliaseeLoc = Lex.getLoc(); 979 if (Lex.getKind() != lltok::kw_bitcast && 980 Lex.getKind() != lltok::kw_getelementptr && 981 Lex.getKind() != lltok::kw_addrspacecast && 982 Lex.getKind() != lltok::kw_inttoptr) { 983 if (parseGlobalTypeAndValue(Aliasee)) 984 return true; 985 } else { 986 // The bitcast dest type is not present, it is implied by the dest type. 987 ValID ID; 988 if (parseValID(ID)) 989 return true; 990 if (ID.Kind != ValID::t_Constant) 991 return error(AliaseeLoc, "invalid aliasee"); 992 Aliasee = ID.ConstantVal; 993 } 994 995 Type *AliaseeType = Aliasee->getType(); 996 auto *PTy = dyn_cast<PointerType>(AliaseeType); 997 if (!PTy) 998 return error(AliaseeLoc, "An alias or ifunc must have pointer type"); 999 unsigned AddrSpace = PTy->getAddressSpace(); 1000 1001 if (IsAlias && Ty != PTy->getElementType()) 1002 return error(ExplicitTypeLoc, 1003 "explicit pointee type doesn't match operand's pointee type"); 1004 1005 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) 1006 return error(ExplicitTypeLoc, 1007 "explicit pointee type should be a function type"); 1008 1009 GlobalValue *GVal = nullptr; 1010 1011 // See if the alias was forward referenced, if so, prepare to replace the 1012 // forward reference. 1013 if (!Name.empty()) { 1014 GVal = M->getNamedValue(Name); 1015 if (GVal) { 1016 if (!ForwardRefVals.erase(Name)) 1017 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1018 } 1019 } else { 1020 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1021 if (I != ForwardRefValIDs.end()) { 1022 GVal = I->second.first; 1023 ForwardRefValIDs.erase(I); 1024 } 1025 } 1026 1027 // Okay, create the alias but do not insert it into the module yet. 1028 std::unique_ptr<GlobalIndirectSymbol> GA; 1029 if (IsAlias) 1030 GA.reset(GlobalAlias::create(Ty, AddrSpace, 1031 (GlobalValue::LinkageTypes)Linkage, Name, 1032 Aliasee, /*Parent*/ nullptr)); 1033 else 1034 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 1035 (GlobalValue::LinkageTypes)Linkage, Name, 1036 Aliasee, /*Parent*/ nullptr)); 1037 GA->setThreadLocalMode(TLM); 1038 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1039 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1040 GA->setUnnamedAddr(UnnamedAddr); 1041 maybeSetDSOLocal(DSOLocal, *GA); 1042 1043 // At this point we've parsed everything except for the IndirectSymbolAttrs. 1044 // Now parse them if there are any. 1045 while (Lex.getKind() == lltok::comma) { 1046 Lex.Lex(); 1047 1048 if (Lex.getKind() == lltok::kw_partition) { 1049 Lex.Lex(); 1050 GA->setPartition(Lex.getStrVal()); 1051 if (parseToken(lltok::StringConstant, "expected partition string")) 1052 return true; 1053 } else { 1054 return tokError("unknown alias or ifunc property!"); 1055 } 1056 } 1057 1058 if (Name.empty()) 1059 NumberedVals.push_back(GA.get()); 1060 1061 if (GVal) { 1062 // Verify that types agree. 1063 if (GVal->getType() != GA->getType()) 1064 return error( 1065 ExplicitTypeLoc, 1066 "forward reference and definition of alias have different types"); 1067 1068 // If they agree, just RAUW the old value with the alias and remove the 1069 // forward ref info. 1070 GVal->replaceAllUsesWith(GA.get()); 1071 GVal->eraseFromParent(); 1072 } 1073 1074 // Insert into the module, we know its name won't collide now. 1075 if (IsAlias) 1076 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 1077 else 1078 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 1079 assert(GA->getName() == Name && "Should not be a name conflict!"); 1080 1081 // The module owns this now 1082 GA.release(); 1083 1084 return false; 1085 } 1086 1087 /// parseGlobal 1088 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 1089 /// OptionalVisibility OptionalDLLStorageClass 1090 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 1091 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 1092 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 1093 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 1094 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 1095 /// Const OptionalAttrs 1096 /// 1097 /// Everything up to and including OptionalUnnamedAddr has been parsed 1098 /// already. 1099 /// 1100 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc, 1101 unsigned Linkage, bool HasLinkage, 1102 unsigned Visibility, unsigned DLLStorageClass, 1103 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 1104 GlobalVariable::UnnamedAddr UnnamedAddr) { 1105 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 1106 return error(NameLoc, 1107 "symbol with local linkage must have default visibility"); 1108 1109 unsigned AddrSpace; 1110 bool IsConstant, IsExternallyInitialized; 1111 LocTy IsExternallyInitializedLoc; 1112 LocTy TyLoc; 1113 1114 Type *Ty = nullptr; 1115 if (parseOptionalAddrSpace(AddrSpace) || 1116 parseOptionalToken(lltok::kw_externally_initialized, 1117 IsExternallyInitialized, 1118 &IsExternallyInitializedLoc) || 1119 parseGlobalType(IsConstant) || parseType(Ty, TyLoc)) 1120 return true; 1121 1122 // If the linkage is specified and is external, then no initializer is 1123 // present. 1124 Constant *Init = nullptr; 1125 if (!HasLinkage || 1126 !GlobalValue::isValidDeclarationLinkage( 1127 (GlobalValue::LinkageTypes)Linkage)) { 1128 if (parseGlobalValue(Ty, Init)) 1129 return true; 1130 } 1131 1132 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 1133 return error(TyLoc, "invalid type for global variable"); 1134 1135 GlobalValue *GVal = nullptr; 1136 1137 // See if the global was forward referenced, if so, use the global. 1138 if (!Name.empty()) { 1139 GVal = M->getNamedValue(Name); 1140 if (GVal) { 1141 if (!ForwardRefVals.erase(Name)) 1142 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1143 } 1144 } else { 1145 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1146 if (I != ForwardRefValIDs.end()) { 1147 GVal = I->second.first; 1148 ForwardRefValIDs.erase(I); 1149 } 1150 } 1151 1152 GlobalVariable *GV; 1153 if (!GVal) { 1154 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 1155 Name, nullptr, GlobalVariable::NotThreadLocal, 1156 AddrSpace); 1157 } else { 1158 if (GVal->getValueType() != Ty) 1159 return error( 1160 TyLoc, 1161 "forward reference and definition of global have different types"); 1162 1163 GV = cast<GlobalVariable>(GVal); 1164 1165 // Move the forward-reference to the correct spot in the module. 1166 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 1167 } 1168 1169 if (Name.empty()) 1170 NumberedVals.push_back(GV); 1171 1172 // Set the parsed properties on the global. 1173 if (Init) 1174 GV->setInitializer(Init); 1175 GV->setConstant(IsConstant); 1176 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 1177 maybeSetDSOLocal(DSOLocal, *GV); 1178 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1179 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1180 GV->setExternallyInitialized(IsExternallyInitialized); 1181 GV->setThreadLocalMode(TLM); 1182 GV->setUnnamedAddr(UnnamedAddr); 1183 1184 // parse attributes on the global. 1185 while (Lex.getKind() == lltok::comma) { 1186 Lex.Lex(); 1187 1188 if (Lex.getKind() == lltok::kw_section) { 1189 Lex.Lex(); 1190 GV->setSection(Lex.getStrVal()); 1191 if (parseToken(lltok::StringConstant, "expected global section string")) 1192 return true; 1193 } else if (Lex.getKind() == lltok::kw_partition) { 1194 Lex.Lex(); 1195 GV->setPartition(Lex.getStrVal()); 1196 if (parseToken(lltok::StringConstant, "expected partition string")) 1197 return true; 1198 } else if (Lex.getKind() == lltok::kw_align) { 1199 MaybeAlign Alignment; 1200 if (parseOptionalAlignment(Alignment)) 1201 return true; 1202 GV->setAlignment(Alignment); 1203 } else if (Lex.getKind() == lltok::MetadataVar) { 1204 if (parseGlobalObjectMetadataAttachment(*GV)) 1205 return true; 1206 } else { 1207 Comdat *C; 1208 if (parseOptionalComdat(Name, C)) 1209 return true; 1210 if (C) 1211 GV->setComdat(C); 1212 else 1213 return tokError("unknown global variable property!"); 1214 } 1215 } 1216 1217 AttrBuilder Attrs; 1218 LocTy BuiltinLoc; 1219 std::vector<unsigned> FwdRefAttrGrps; 1220 if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 1221 return true; 1222 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 1223 GV->setAttributes(AttributeSet::get(Context, Attrs)); 1224 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 1225 } 1226 1227 return false; 1228 } 1229 1230 /// parseUnnamedAttrGrp 1231 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 1232 bool LLParser::parseUnnamedAttrGrp() { 1233 assert(Lex.getKind() == lltok::kw_attributes); 1234 LocTy AttrGrpLoc = Lex.getLoc(); 1235 Lex.Lex(); 1236 1237 if (Lex.getKind() != lltok::AttrGrpID) 1238 return tokError("expected attribute group id"); 1239 1240 unsigned VarID = Lex.getUIntVal(); 1241 std::vector<unsigned> unused; 1242 LocTy BuiltinLoc; 1243 Lex.Lex(); 1244 1245 if (parseToken(lltok::equal, "expected '=' here") || 1246 parseToken(lltok::lbrace, "expected '{' here") || 1247 parseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 1248 BuiltinLoc) || 1249 parseToken(lltok::rbrace, "expected end of attribute group")) 1250 return true; 1251 1252 if (!NumberedAttrBuilders[VarID].hasAttributes()) 1253 return error(AttrGrpLoc, "attribute group has no attributes"); 1254 1255 return false; 1256 } 1257 1258 /// parseFnAttributeValuePairs 1259 /// ::= <attr> | <attr> '=' <value> 1260 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B, 1261 std::vector<unsigned> &FwdRefAttrGrps, 1262 bool inAttrGrp, LocTy &BuiltinLoc) { 1263 bool HaveError = false; 1264 1265 B.clear(); 1266 1267 while (true) { 1268 lltok::Kind Token = Lex.getKind(); 1269 if (Token == lltok::kw_builtin) 1270 BuiltinLoc = Lex.getLoc(); 1271 switch (Token) { 1272 default: 1273 if (!inAttrGrp) return HaveError; 1274 return error(Lex.getLoc(), "unterminated attribute group"); 1275 case lltok::rbrace: 1276 // Finished. 1277 return false; 1278 1279 case lltok::AttrGrpID: { 1280 // Allow a function to reference an attribute group: 1281 // 1282 // define void @foo() #1 { ... } 1283 if (inAttrGrp) 1284 HaveError |= error( 1285 Lex.getLoc(), 1286 "cannot have an attribute group reference in an attribute group"); 1287 1288 unsigned AttrGrpNum = Lex.getUIntVal(); 1289 if (inAttrGrp) break; 1290 1291 // Save the reference to the attribute group. We'll fill it in later. 1292 FwdRefAttrGrps.push_back(AttrGrpNum); 1293 break; 1294 } 1295 // Target-dependent attributes: 1296 case lltok::StringConstant: { 1297 if (parseStringAttribute(B)) 1298 return true; 1299 continue; 1300 } 1301 1302 // Target-independent attributes: 1303 case lltok::kw_align: { 1304 // As a hack, we allow function alignment to be initially parsed as an 1305 // attribute on a function declaration/definition or added to an attribute 1306 // group and later moved to the alignment field. 1307 MaybeAlign Alignment; 1308 if (inAttrGrp) { 1309 Lex.Lex(); 1310 uint32_t Value = 0; 1311 if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value)) 1312 return true; 1313 Alignment = Align(Value); 1314 } else { 1315 if (parseOptionalAlignment(Alignment)) 1316 return true; 1317 } 1318 B.addAlignmentAttr(Alignment); 1319 continue; 1320 } 1321 case lltok::kw_alignstack: { 1322 unsigned Alignment; 1323 if (inAttrGrp) { 1324 Lex.Lex(); 1325 if (parseToken(lltok::equal, "expected '=' here") || 1326 parseUInt32(Alignment)) 1327 return true; 1328 } else { 1329 if (parseOptionalStackAlignment(Alignment)) 1330 return true; 1331 } 1332 B.addStackAlignmentAttr(Alignment); 1333 continue; 1334 } 1335 case lltok::kw_allocsize: { 1336 unsigned ElemSizeArg; 1337 Optional<unsigned> NumElemsArg; 1338 // inAttrGrp doesn't matter; we only support allocsize(a[, b]) 1339 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1340 return true; 1341 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1342 continue; 1343 } 1344 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 1345 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 1346 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 1347 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 1348 case lltok::kw_hot: B.addAttribute(Attribute::Hot); break; 1349 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 1350 case lltok::kw_inaccessiblememonly: 1351 B.addAttribute(Attribute::InaccessibleMemOnly); break; 1352 case lltok::kw_inaccessiblemem_or_argmemonly: 1353 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break; 1354 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 1355 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 1356 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 1357 case lltok::kw_mustprogress: 1358 B.addAttribute(Attribute::MustProgress); 1359 break; 1360 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 1361 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 1362 case lltok::kw_nocallback: 1363 B.addAttribute(Attribute::NoCallback); 1364 break; 1365 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 1366 case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break; 1367 case lltok::kw_noimplicitfloat: 1368 B.addAttribute(Attribute::NoImplicitFloat); break; 1369 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1370 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1371 case lltok::kw_nomerge: B.addAttribute(Attribute::NoMerge); break; 1372 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1373 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1374 case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break; 1375 case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break; 1376 case lltok::kw_noprofile: B.addAttribute(Attribute::NoProfile); break; 1377 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1378 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1379 case lltok::kw_null_pointer_is_valid: 1380 B.addAttribute(Attribute::NullPointerIsValid); break; 1381 case lltok::kw_optforfuzzing: 1382 B.addAttribute(Attribute::OptForFuzzing); break; 1383 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1384 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1385 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1386 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1387 case lltok::kw_returns_twice: 1388 B.addAttribute(Attribute::ReturnsTwice); break; 1389 case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break; 1390 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1391 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1392 case lltok::kw_sspstrong: 1393 B.addAttribute(Attribute::StackProtectStrong); break; 1394 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1395 case lltok::kw_shadowcallstack: 1396 B.addAttribute(Attribute::ShadowCallStack); break; 1397 case lltok::kw_sanitize_address: 1398 B.addAttribute(Attribute::SanitizeAddress); break; 1399 case lltok::kw_sanitize_hwaddress: 1400 B.addAttribute(Attribute::SanitizeHWAddress); break; 1401 case lltok::kw_sanitize_memtag: 1402 B.addAttribute(Attribute::SanitizeMemTag); break; 1403 case lltok::kw_sanitize_thread: 1404 B.addAttribute(Attribute::SanitizeThread); break; 1405 case lltok::kw_sanitize_memory: 1406 B.addAttribute(Attribute::SanitizeMemory); break; 1407 case lltok::kw_speculative_load_hardening: 1408 B.addAttribute(Attribute::SpeculativeLoadHardening); 1409 break; 1410 case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break; 1411 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1412 case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break; 1413 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1414 case lltok::kw_preallocated: { 1415 Type *Ty; 1416 if (parsePreallocated(Ty)) 1417 return true; 1418 B.addPreallocatedAttr(Ty); 1419 break; 1420 } 1421 1422 // error handling. 1423 case lltok::kw_inreg: 1424 case lltok::kw_signext: 1425 case lltok::kw_zeroext: 1426 HaveError |= 1427 error(Lex.getLoc(), "invalid use of attribute on a function"); 1428 break; 1429 case lltok::kw_byval: 1430 case lltok::kw_dereferenceable: 1431 case lltok::kw_dereferenceable_or_null: 1432 case lltok::kw_inalloca: 1433 case lltok::kw_nest: 1434 case lltok::kw_noalias: 1435 case lltok::kw_noundef: 1436 case lltok::kw_nocapture: 1437 case lltok::kw_nonnull: 1438 case lltok::kw_returned: 1439 case lltok::kw_sret: 1440 case lltok::kw_swifterror: 1441 case lltok::kw_swiftself: 1442 case lltok::kw_immarg: 1443 case lltok::kw_byref: 1444 HaveError |= 1445 error(Lex.getLoc(), 1446 "invalid use of parameter-only attribute on a function"); 1447 break; 1448 } 1449 1450 // parsePreallocated() consumes token 1451 if (Token != lltok::kw_preallocated) 1452 Lex.Lex(); 1453 } 1454 } 1455 1456 //===----------------------------------------------------------------------===// 1457 // GlobalValue Reference/Resolution Routines. 1458 //===----------------------------------------------------------------------===// 1459 1460 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1461 const std::string &Name) { 1462 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1463 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, 1464 PTy->getAddressSpace(), Name, M); 1465 else 1466 return new GlobalVariable(*M, PTy->getElementType(), false, 1467 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1468 nullptr, GlobalVariable::NotThreadLocal, 1469 PTy->getAddressSpace()); 1470 } 1471 1472 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty, 1473 Value *Val, bool IsCall) { 1474 if (Val->getType() == Ty) 1475 return Val; 1476 // For calls we also accept variables in the program address space. 1477 Type *SuggestedTy = Ty; 1478 if (IsCall && isa<PointerType>(Ty)) { 1479 Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo( 1480 M->getDataLayout().getProgramAddressSpace()); 1481 SuggestedTy = TyInProgAS; 1482 if (Val->getType() == TyInProgAS) 1483 return Val; 1484 } 1485 if (Ty->isLabelTy()) 1486 error(Loc, "'" + Name + "' is not a basic block"); 1487 else 1488 error(Loc, "'" + Name + "' defined with type '" + 1489 getTypeString(Val->getType()) + "' but expected '" + 1490 getTypeString(SuggestedTy) + "'"); 1491 return nullptr; 1492 } 1493 1494 /// getGlobalVal - Get a value with the specified name or ID, creating a 1495 /// forward reference record if needed. This can return null if the value 1496 /// exists but does not have the right type. 1497 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty, 1498 LocTy Loc, bool IsCall) { 1499 PointerType *PTy = dyn_cast<PointerType>(Ty); 1500 if (!PTy) { 1501 error(Loc, "global variable reference must have pointer type"); 1502 return nullptr; 1503 } 1504 1505 // Look this name up in the normal function symbol table. 1506 GlobalValue *Val = 1507 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1508 1509 // If this is a forward reference for the value, see if we already created a 1510 // forward ref record. 1511 if (!Val) { 1512 auto I = ForwardRefVals.find(Name); 1513 if (I != ForwardRefVals.end()) 1514 Val = I->second.first; 1515 } 1516 1517 // If we have the value in the symbol table or fwd-ref table, return it. 1518 if (Val) 1519 return cast_or_null<GlobalValue>( 1520 checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall)); 1521 1522 // Otherwise, create a new forward reference for this value and remember it. 1523 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1524 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1525 return FwdVal; 1526 } 1527 1528 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc, 1529 bool IsCall) { 1530 PointerType *PTy = dyn_cast<PointerType>(Ty); 1531 if (!PTy) { 1532 error(Loc, "global variable reference must have pointer type"); 1533 return nullptr; 1534 } 1535 1536 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1537 1538 // If this is a forward reference for the value, see if we already created a 1539 // forward ref record. 1540 if (!Val) { 1541 auto I = ForwardRefValIDs.find(ID); 1542 if (I != ForwardRefValIDs.end()) 1543 Val = I->second.first; 1544 } 1545 1546 // If we have the value in the symbol table or fwd-ref table, return it. 1547 if (Val) 1548 return cast_or_null<GlobalValue>( 1549 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall)); 1550 1551 // Otherwise, create a new forward reference for this value and remember it. 1552 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1553 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1554 return FwdVal; 1555 } 1556 1557 //===----------------------------------------------------------------------===// 1558 // Comdat Reference/Resolution Routines. 1559 //===----------------------------------------------------------------------===// 1560 1561 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1562 // Look this name up in the comdat symbol table. 1563 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1564 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1565 if (I != ComdatSymTab.end()) 1566 return &I->second; 1567 1568 // Otherwise, create a new forward reference for this value and remember it. 1569 Comdat *C = M->getOrInsertComdat(Name); 1570 ForwardRefComdats[Name] = Loc; 1571 return C; 1572 } 1573 1574 //===----------------------------------------------------------------------===// 1575 // Helper Routines. 1576 //===----------------------------------------------------------------------===// 1577 1578 /// parseToken - If the current token has the specified kind, eat it and return 1579 /// success. Otherwise, emit the specified error and return failure. 1580 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) { 1581 if (Lex.getKind() != T) 1582 return tokError(ErrMsg); 1583 Lex.Lex(); 1584 return false; 1585 } 1586 1587 /// parseStringConstant 1588 /// ::= StringConstant 1589 bool LLParser::parseStringConstant(std::string &Result) { 1590 if (Lex.getKind() != lltok::StringConstant) 1591 return tokError("expected string constant"); 1592 Result = Lex.getStrVal(); 1593 Lex.Lex(); 1594 return false; 1595 } 1596 1597 /// parseUInt32 1598 /// ::= uint32 1599 bool LLParser::parseUInt32(uint32_t &Val) { 1600 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1601 return tokError("expected integer"); 1602 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1603 if (Val64 != unsigned(Val64)) 1604 return tokError("expected 32-bit integer (too large)"); 1605 Val = Val64; 1606 Lex.Lex(); 1607 return false; 1608 } 1609 1610 /// parseUInt64 1611 /// ::= uint64 1612 bool LLParser::parseUInt64(uint64_t &Val) { 1613 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1614 return tokError("expected integer"); 1615 Val = Lex.getAPSIntVal().getLimitedValue(); 1616 Lex.Lex(); 1617 return false; 1618 } 1619 1620 /// parseTLSModel 1621 /// := 'localdynamic' 1622 /// := 'initialexec' 1623 /// := 'localexec' 1624 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1625 switch (Lex.getKind()) { 1626 default: 1627 return tokError("expected localdynamic, initialexec or localexec"); 1628 case lltok::kw_localdynamic: 1629 TLM = GlobalVariable::LocalDynamicTLSModel; 1630 break; 1631 case lltok::kw_initialexec: 1632 TLM = GlobalVariable::InitialExecTLSModel; 1633 break; 1634 case lltok::kw_localexec: 1635 TLM = GlobalVariable::LocalExecTLSModel; 1636 break; 1637 } 1638 1639 Lex.Lex(); 1640 return false; 1641 } 1642 1643 /// parseOptionalThreadLocal 1644 /// := /*empty*/ 1645 /// := 'thread_local' 1646 /// := 'thread_local' '(' tlsmodel ')' 1647 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1648 TLM = GlobalVariable::NotThreadLocal; 1649 if (!EatIfPresent(lltok::kw_thread_local)) 1650 return false; 1651 1652 TLM = GlobalVariable::GeneralDynamicTLSModel; 1653 if (Lex.getKind() == lltok::lparen) { 1654 Lex.Lex(); 1655 return parseTLSModel(TLM) || 1656 parseToken(lltok::rparen, "expected ')' after thread local model"); 1657 } 1658 return false; 1659 } 1660 1661 /// parseOptionalAddrSpace 1662 /// := /*empty*/ 1663 /// := 'addrspace' '(' uint32 ')' 1664 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) { 1665 AddrSpace = DefaultAS; 1666 if (!EatIfPresent(lltok::kw_addrspace)) 1667 return false; 1668 return parseToken(lltok::lparen, "expected '(' in address space") || 1669 parseUInt32(AddrSpace) || 1670 parseToken(lltok::rparen, "expected ')' in address space"); 1671 } 1672 1673 /// parseStringAttribute 1674 /// := StringConstant 1675 /// := StringConstant '=' StringConstant 1676 bool LLParser::parseStringAttribute(AttrBuilder &B) { 1677 std::string Attr = Lex.getStrVal(); 1678 Lex.Lex(); 1679 std::string Val; 1680 if (EatIfPresent(lltok::equal) && parseStringConstant(Val)) 1681 return true; 1682 B.addAttribute(Attr, Val); 1683 return false; 1684 } 1685 1686 /// parseOptionalParamAttrs - parse a potentially empty list of parameter 1687 /// attributes. 1688 bool LLParser::parseOptionalParamAttrs(AttrBuilder &B) { 1689 bool HaveError = false; 1690 1691 B.clear(); 1692 1693 while (true) { 1694 lltok::Kind Token = Lex.getKind(); 1695 switch (Token) { 1696 default: // End of attributes. 1697 return HaveError; 1698 case lltok::StringConstant: { 1699 if (parseStringAttribute(B)) 1700 return true; 1701 continue; 1702 } 1703 case lltok::kw_align: { 1704 MaybeAlign Alignment; 1705 if (parseOptionalAlignment(Alignment, true)) 1706 return true; 1707 B.addAlignmentAttr(Alignment); 1708 continue; 1709 } 1710 case lltok::kw_byval: { 1711 Type *Ty; 1712 if (parseRequiredTypeAttr(Ty, lltok::kw_byval)) 1713 return true; 1714 B.addByValAttr(Ty); 1715 continue; 1716 } 1717 case lltok::kw_sret: { 1718 Type *Ty; 1719 if (parseRequiredTypeAttr(Ty, lltok::kw_sret)) 1720 return true; 1721 B.addStructRetAttr(Ty); 1722 continue; 1723 } 1724 case lltok::kw_preallocated: { 1725 Type *Ty; 1726 if (parsePreallocated(Ty)) 1727 return true; 1728 B.addPreallocatedAttr(Ty); 1729 continue; 1730 } 1731 case lltok::kw_dereferenceable: { 1732 uint64_t Bytes; 1733 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1734 return true; 1735 B.addDereferenceableAttr(Bytes); 1736 continue; 1737 } 1738 case lltok::kw_dereferenceable_or_null: { 1739 uint64_t Bytes; 1740 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1741 return true; 1742 B.addDereferenceableOrNullAttr(Bytes); 1743 continue; 1744 } 1745 case lltok::kw_byref: { 1746 Type *Ty; 1747 if (parseByRef(Ty)) 1748 return true; 1749 B.addByRefAttr(Ty); 1750 continue; 1751 } 1752 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break; 1753 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1754 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1755 case lltok::kw_noundef: 1756 B.addAttribute(Attribute::NoUndef); 1757 break; 1758 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1759 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1760 case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break; 1761 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1762 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1763 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1764 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1765 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1766 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break; 1767 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break; 1768 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1769 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1770 case lltok::kw_immarg: B.addAttribute(Attribute::ImmArg); break; 1771 1772 case lltok::kw_alignstack: 1773 case lltok::kw_alwaysinline: 1774 case lltok::kw_argmemonly: 1775 case lltok::kw_builtin: 1776 case lltok::kw_inlinehint: 1777 case lltok::kw_jumptable: 1778 case lltok::kw_minsize: 1779 case lltok::kw_mustprogress: 1780 case lltok::kw_naked: 1781 case lltok::kw_nobuiltin: 1782 case lltok::kw_noduplicate: 1783 case lltok::kw_noimplicitfloat: 1784 case lltok::kw_noinline: 1785 case lltok::kw_nonlazybind: 1786 case lltok::kw_nomerge: 1787 case lltok::kw_noprofile: 1788 case lltok::kw_noredzone: 1789 case lltok::kw_noreturn: 1790 case lltok::kw_nocf_check: 1791 case lltok::kw_nounwind: 1792 case lltok::kw_optforfuzzing: 1793 case lltok::kw_optnone: 1794 case lltok::kw_optsize: 1795 case lltok::kw_returns_twice: 1796 case lltok::kw_sanitize_address: 1797 case lltok::kw_sanitize_hwaddress: 1798 case lltok::kw_sanitize_memtag: 1799 case lltok::kw_sanitize_memory: 1800 case lltok::kw_sanitize_thread: 1801 case lltok::kw_speculative_load_hardening: 1802 case lltok::kw_ssp: 1803 case lltok::kw_sspreq: 1804 case lltok::kw_sspstrong: 1805 case lltok::kw_safestack: 1806 case lltok::kw_shadowcallstack: 1807 case lltok::kw_strictfp: 1808 case lltok::kw_uwtable: 1809 HaveError |= 1810 error(Lex.getLoc(), "invalid use of function-only attribute"); 1811 break; 1812 } 1813 1814 Lex.Lex(); 1815 } 1816 } 1817 1818 /// parseOptionalReturnAttrs - parse a potentially empty list of return 1819 /// attributes. 1820 bool LLParser::parseOptionalReturnAttrs(AttrBuilder &B) { 1821 bool HaveError = false; 1822 1823 B.clear(); 1824 1825 while (true) { 1826 lltok::Kind Token = Lex.getKind(); 1827 switch (Token) { 1828 default: // End of attributes. 1829 return HaveError; 1830 case lltok::StringConstant: { 1831 if (parseStringAttribute(B)) 1832 return true; 1833 continue; 1834 } 1835 case lltok::kw_dereferenceable: { 1836 uint64_t Bytes; 1837 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1838 return true; 1839 B.addDereferenceableAttr(Bytes); 1840 continue; 1841 } 1842 case lltok::kw_dereferenceable_or_null: { 1843 uint64_t Bytes; 1844 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1845 return true; 1846 B.addDereferenceableOrNullAttr(Bytes); 1847 continue; 1848 } 1849 case lltok::kw_align: { 1850 MaybeAlign Alignment; 1851 if (parseOptionalAlignment(Alignment)) 1852 return true; 1853 B.addAlignmentAttr(Alignment); 1854 continue; 1855 } 1856 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1857 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1858 case lltok::kw_noundef: 1859 B.addAttribute(Attribute::NoUndef); 1860 break; 1861 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1862 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1863 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1864 1865 // error handling. 1866 case lltok::kw_byval: 1867 case lltok::kw_inalloca: 1868 case lltok::kw_nest: 1869 case lltok::kw_nocapture: 1870 case lltok::kw_returned: 1871 case lltok::kw_sret: 1872 case lltok::kw_swifterror: 1873 case lltok::kw_swiftself: 1874 case lltok::kw_immarg: 1875 case lltok::kw_byref: 1876 HaveError |= 1877 error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1878 break; 1879 1880 case lltok::kw_alignstack: 1881 case lltok::kw_alwaysinline: 1882 case lltok::kw_argmemonly: 1883 case lltok::kw_builtin: 1884 case lltok::kw_cold: 1885 case lltok::kw_inlinehint: 1886 case lltok::kw_jumptable: 1887 case lltok::kw_minsize: 1888 case lltok::kw_mustprogress: 1889 case lltok::kw_naked: 1890 case lltok::kw_nobuiltin: 1891 case lltok::kw_noduplicate: 1892 case lltok::kw_noimplicitfloat: 1893 case lltok::kw_noinline: 1894 case lltok::kw_nonlazybind: 1895 case lltok::kw_nomerge: 1896 case lltok::kw_noprofile: 1897 case lltok::kw_noredzone: 1898 case lltok::kw_noreturn: 1899 case lltok::kw_nocf_check: 1900 case lltok::kw_nounwind: 1901 case lltok::kw_optforfuzzing: 1902 case lltok::kw_optnone: 1903 case lltok::kw_optsize: 1904 case lltok::kw_returns_twice: 1905 case lltok::kw_sanitize_address: 1906 case lltok::kw_sanitize_hwaddress: 1907 case lltok::kw_sanitize_memtag: 1908 case lltok::kw_sanitize_memory: 1909 case lltok::kw_sanitize_thread: 1910 case lltok::kw_speculative_load_hardening: 1911 case lltok::kw_ssp: 1912 case lltok::kw_sspreq: 1913 case lltok::kw_sspstrong: 1914 case lltok::kw_safestack: 1915 case lltok::kw_shadowcallstack: 1916 case lltok::kw_strictfp: 1917 case lltok::kw_uwtable: 1918 HaveError |= 1919 error(Lex.getLoc(), "invalid use of function-only attribute"); 1920 break; 1921 case lltok::kw_readnone: 1922 case lltok::kw_readonly: 1923 HaveError |= 1924 error(Lex.getLoc(), "invalid use of attribute on return type"); 1925 break; 1926 case lltok::kw_preallocated: 1927 HaveError |= 1928 error(Lex.getLoc(), 1929 "invalid use of parameter-only/call site-only attribute"); 1930 break; 1931 } 1932 1933 Lex.Lex(); 1934 } 1935 } 1936 1937 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1938 HasLinkage = true; 1939 switch (Kind) { 1940 default: 1941 HasLinkage = false; 1942 return GlobalValue::ExternalLinkage; 1943 case lltok::kw_private: 1944 return GlobalValue::PrivateLinkage; 1945 case lltok::kw_internal: 1946 return GlobalValue::InternalLinkage; 1947 case lltok::kw_weak: 1948 return GlobalValue::WeakAnyLinkage; 1949 case lltok::kw_weak_odr: 1950 return GlobalValue::WeakODRLinkage; 1951 case lltok::kw_linkonce: 1952 return GlobalValue::LinkOnceAnyLinkage; 1953 case lltok::kw_linkonce_odr: 1954 return GlobalValue::LinkOnceODRLinkage; 1955 case lltok::kw_available_externally: 1956 return GlobalValue::AvailableExternallyLinkage; 1957 case lltok::kw_appending: 1958 return GlobalValue::AppendingLinkage; 1959 case lltok::kw_common: 1960 return GlobalValue::CommonLinkage; 1961 case lltok::kw_extern_weak: 1962 return GlobalValue::ExternalWeakLinkage; 1963 case lltok::kw_external: 1964 return GlobalValue::ExternalLinkage; 1965 } 1966 } 1967 1968 /// parseOptionalLinkage 1969 /// ::= /*empty*/ 1970 /// ::= 'private' 1971 /// ::= 'internal' 1972 /// ::= 'weak' 1973 /// ::= 'weak_odr' 1974 /// ::= 'linkonce' 1975 /// ::= 'linkonce_odr' 1976 /// ::= 'available_externally' 1977 /// ::= 'appending' 1978 /// ::= 'common' 1979 /// ::= 'extern_weak' 1980 /// ::= 'external' 1981 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1982 unsigned &Visibility, 1983 unsigned &DLLStorageClass, bool &DSOLocal) { 1984 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1985 if (HasLinkage) 1986 Lex.Lex(); 1987 parseOptionalDSOLocal(DSOLocal); 1988 parseOptionalVisibility(Visibility); 1989 parseOptionalDLLStorageClass(DLLStorageClass); 1990 1991 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 1992 return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 1993 } 1994 1995 return false; 1996 } 1997 1998 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) { 1999 switch (Lex.getKind()) { 2000 default: 2001 DSOLocal = false; 2002 break; 2003 case lltok::kw_dso_local: 2004 DSOLocal = true; 2005 Lex.Lex(); 2006 break; 2007 case lltok::kw_dso_preemptable: 2008 DSOLocal = false; 2009 Lex.Lex(); 2010 break; 2011 } 2012 } 2013 2014 /// parseOptionalVisibility 2015 /// ::= /*empty*/ 2016 /// ::= 'default' 2017 /// ::= 'hidden' 2018 /// ::= 'protected' 2019 /// 2020 void LLParser::parseOptionalVisibility(unsigned &Res) { 2021 switch (Lex.getKind()) { 2022 default: 2023 Res = GlobalValue::DefaultVisibility; 2024 return; 2025 case lltok::kw_default: 2026 Res = GlobalValue::DefaultVisibility; 2027 break; 2028 case lltok::kw_hidden: 2029 Res = GlobalValue::HiddenVisibility; 2030 break; 2031 case lltok::kw_protected: 2032 Res = GlobalValue::ProtectedVisibility; 2033 break; 2034 } 2035 Lex.Lex(); 2036 } 2037 2038 /// parseOptionalDLLStorageClass 2039 /// ::= /*empty*/ 2040 /// ::= 'dllimport' 2041 /// ::= 'dllexport' 2042 /// 2043 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) { 2044 switch (Lex.getKind()) { 2045 default: 2046 Res = GlobalValue::DefaultStorageClass; 2047 return; 2048 case lltok::kw_dllimport: 2049 Res = GlobalValue::DLLImportStorageClass; 2050 break; 2051 case lltok::kw_dllexport: 2052 Res = GlobalValue::DLLExportStorageClass; 2053 break; 2054 } 2055 Lex.Lex(); 2056 } 2057 2058 /// parseOptionalCallingConv 2059 /// ::= /*empty*/ 2060 /// ::= 'ccc' 2061 /// ::= 'fastcc' 2062 /// ::= 'intel_ocl_bicc' 2063 /// ::= 'coldcc' 2064 /// ::= 'cfguard_checkcc' 2065 /// ::= 'x86_stdcallcc' 2066 /// ::= 'x86_fastcallcc' 2067 /// ::= 'x86_thiscallcc' 2068 /// ::= 'x86_vectorcallcc' 2069 /// ::= 'arm_apcscc' 2070 /// ::= 'arm_aapcscc' 2071 /// ::= 'arm_aapcs_vfpcc' 2072 /// ::= 'aarch64_vector_pcs' 2073 /// ::= 'aarch64_sve_vector_pcs' 2074 /// ::= 'msp430_intrcc' 2075 /// ::= 'avr_intrcc' 2076 /// ::= 'avr_signalcc' 2077 /// ::= 'ptx_kernel' 2078 /// ::= 'ptx_device' 2079 /// ::= 'spir_func' 2080 /// ::= 'spir_kernel' 2081 /// ::= 'x86_64_sysvcc' 2082 /// ::= 'win64cc' 2083 /// ::= 'webkit_jscc' 2084 /// ::= 'anyregcc' 2085 /// ::= 'preserve_mostcc' 2086 /// ::= 'preserve_allcc' 2087 /// ::= 'ghccc' 2088 /// ::= 'swiftcc' 2089 /// ::= 'x86_intrcc' 2090 /// ::= 'hhvmcc' 2091 /// ::= 'hhvm_ccc' 2092 /// ::= 'cxx_fast_tlscc' 2093 /// ::= 'amdgpu_vs' 2094 /// ::= 'amdgpu_ls' 2095 /// ::= 'amdgpu_hs' 2096 /// ::= 'amdgpu_es' 2097 /// ::= 'amdgpu_gs' 2098 /// ::= 'amdgpu_ps' 2099 /// ::= 'amdgpu_cs' 2100 /// ::= 'amdgpu_kernel' 2101 /// ::= 'tailcc' 2102 /// ::= 'cc' UINT 2103 /// 2104 bool LLParser::parseOptionalCallingConv(unsigned &CC) { 2105 switch (Lex.getKind()) { 2106 default: CC = CallingConv::C; return false; 2107 case lltok::kw_ccc: CC = CallingConv::C; break; 2108 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 2109 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 2110 case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break; 2111 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 2112 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 2113 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 2114 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 2115 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 2116 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 2117 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 2118 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 2119 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break; 2120 case lltok::kw_aarch64_sve_vector_pcs: 2121 CC = CallingConv::AArch64_SVE_VectorCall; 2122 break; 2123 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 2124 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 2125 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 2126 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 2127 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 2128 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 2129 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 2130 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 2131 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 2132 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 2133 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 2134 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 2135 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 2136 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 2137 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 2138 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 2139 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 2140 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 2141 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 2142 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 2143 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 2144 case lltok::kw_amdgpu_gfx: CC = CallingConv::AMDGPU_Gfx; break; 2145 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 2146 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 2147 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 2148 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 2149 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 2150 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 2151 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 2152 case lltok::kw_tailcc: CC = CallingConv::Tail; break; 2153 case lltok::kw_cc: { 2154 Lex.Lex(); 2155 return parseUInt32(CC); 2156 } 2157 } 2158 2159 Lex.Lex(); 2160 return false; 2161 } 2162 2163 /// parseMetadataAttachment 2164 /// ::= !dbg !42 2165 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 2166 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 2167 2168 std::string Name = Lex.getStrVal(); 2169 Kind = M->getMDKindID(Name); 2170 Lex.Lex(); 2171 2172 return parseMDNode(MD); 2173 } 2174 2175 /// parseInstructionMetadata 2176 /// ::= !dbg !42 (',' !dbg !57)* 2177 bool LLParser::parseInstructionMetadata(Instruction &Inst) { 2178 do { 2179 if (Lex.getKind() != lltok::MetadataVar) 2180 return tokError("expected metadata after comma"); 2181 2182 unsigned MDK; 2183 MDNode *N; 2184 if (parseMetadataAttachment(MDK, N)) 2185 return true; 2186 2187 Inst.setMetadata(MDK, N); 2188 if (MDK == LLVMContext::MD_tbaa) 2189 InstsWithTBAATag.push_back(&Inst); 2190 2191 // If this is the end of the list, we're done. 2192 } while (EatIfPresent(lltok::comma)); 2193 return false; 2194 } 2195 2196 /// parseGlobalObjectMetadataAttachment 2197 /// ::= !dbg !57 2198 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) { 2199 unsigned MDK; 2200 MDNode *N; 2201 if (parseMetadataAttachment(MDK, N)) 2202 return true; 2203 2204 GO.addMetadata(MDK, *N); 2205 return false; 2206 } 2207 2208 /// parseOptionalFunctionMetadata 2209 /// ::= (!dbg !57)* 2210 bool LLParser::parseOptionalFunctionMetadata(Function &F) { 2211 while (Lex.getKind() == lltok::MetadataVar) 2212 if (parseGlobalObjectMetadataAttachment(F)) 2213 return true; 2214 return false; 2215 } 2216 2217 /// parseOptionalAlignment 2218 /// ::= /* empty */ 2219 /// ::= 'align' 4 2220 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) { 2221 Alignment = None; 2222 if (!EatIfPresent(lltok::kw_align)) 2223 return false; 2224 LocTy AlignLoc = Lex.getLoc(); 2225 uint32_t Value = 0; 2226 2227 LocTy ParenLoc = Lex.getLoc(); 2228 bool HaveParens = false; 2229 if (AllowParens) { 2230 if (EatIfPresent(lltok::lparen)) 2231 HaveParens = true; 2232 } 2233 2234 if (parseUInt32(Value)) 2235 return true; 2236 2237 if (HaveParens && !EatIfPresent(lltok::rparen)) 2238 return error(ParenLoc, "expected ')'"); 2239 2240 if (!isPowerOf2_32(Value)) 2241 return error(AlignLoc, "alignment is not a power of two"); 2242 if (Value > Value::MaximumAlignment) 2243 return error(AlignLoc, "huge alignments are not supported yet"); 2244 Alignment = Align(Value); 2245 return false; 2246 } 2247 2248 /// parseOptionalDerefAttrBytes 2249 /// ::= /* empty */ 2250 /// ::= AttrKind '(' 4 ')' 2251 /// 2252 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 2253 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind, 2254 uint64_t &Bytes) { 2255 assert((AttrKind == lltok::kw_dereferenceable || 2256 AttrKind == lltok::kw_dereferenceable_or_null) && 2257 "contract!"); 2258 2259 Bytes = 0; 2260 if (!EatIfPresent(AttrKind)) 2261 return false; 2262 LocTy ParenLoc = Lex.getLoc(); 2263 if (!EatIfPresent(lltok::lparen)) 2264 return error(ParenLoc, "expected '('"); 2265 LocTy DerefLoc = Lex.getLoc(); 2266 if (parseUInt64(Bytes)) 2267 return true; 2268 ParenLoc = Lex.getLoc(); 2269 if (!EatIfPresent(lltok::rparen)) 2270 return error(ParenLoc, "expected ')'"); 2271 if (!Bytes) 2272 return error(DerefLoc, "dereferenceable bytes must be non-zero"); 2273 return false; 2274 } 2275 2276 /// parseOptionalCommaAlign 2277 /// ::= 2278 /// ::= ',' align 4 2279 /// 2280 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2281 /// end. 2282 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment, 2283 bool &AteExtraComma) { 2284 AteExtraComma = false; 2285 while (EatIfPresent(lltok::comma)) { 2286 // Metadata at the end is an early exit. 2287 if (Lex.getKind() == lltok::MetadataVar) { 2288 AteExtraComma = true; 2289 return false; 2290 } 2291 2292 if (Lex.getKind() != lltok::kw_align) 2293 return error(Lex.getLoc(), "expected metadata or 'align'"); 2294 2295 if (parseOptionalAlignment(Alignment)) 2296 return true; 2297 } 2298 2299 return false; 2300 } 2301 2302 /// parseOptionalCommaAddrSpace 2303 /// ::= 2304 /// ::= ',' addrspace(1) 2305 /// 2306 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2307 /// end. 2308 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc, 2309 bool &AteExtraComma) { 2310 AteExtraComma = false; 2311 while (EatIfPresent(lltok::comma)) { 2312 // Metadata at the end is an early exit. 2313 if (Lex.getKind() == lltok::MetadataVar) { 2314 AteExtraComma = true; 2315 return false; 2316 } 2317 2318 Loc = Lex.getLoc(); 2319 if (Lex.getKind() != lltok::kw_addrspace) 2320 return error(Lex.getLoc(), "expected metadata or 'addrspace'"); 2321 2322 if (parseOptionalAddrSpace(AddrSpace)) 2323 return true; 2324 } 2325 2326 return false; 2327 } 2328 2329 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 2330 Optional<unsigned> &HowManyArg) { 2331 Lex.Lex(); 2332 2333 auto StartParen = Lex.getLoc(); 2334 if (!EatIfPresent(lltok::lparen)) 2335 return error(StartParen, "expected '('"); 2336 2337 if (parseUInt32(BaseSizeArg)) 2338 return true; 2339 2340 if (EatIfPresent(lltok::comma)) { 2341 auto HowManyAt = Lex.getLoc(); 2342 unsigned HowMany; 2343 if (parseUInt32(HowMany)) 2344 return true; 2345 if (HowMany == BaseSizeArg) 2346 return error(HowManyAt, 2347 "'allocsize' indices can't refer to the same parameter"); 2348 HowManyArg = HowMany; 2349 } else 2350 HowManyArg = None; 2351 2352 auto EndParen = Lex.getLoc(); 2353 if (!EatIfPresent(lltok::rparen)) 2354 return error(EndParen, "expected ')'"); 2355 return false; 2356 } 2357 2358 /// parseScopeAndOrdering 2359 /// if isAtomic: ::= SyncScope? AtomicOrdering 2360 /// else: ::= 2361 /// 2362 /// This sets Scope and Ordering to the parsed values. 2363 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID, 2364 AtomicOrdering &Ordering) { 2365 if (!IsAtomic) 2366 return false; 2367 2368 return parseScope(SSID) || parseOrdering(Ordering); 2369 } 2370 2371 /// parseScope 2372 /// ::= syncscope("singlethread" | "<target scope>")? 2373 /// 2374 /// This sets synchronization scope ID to the ID of the parsed value. 2375 bool LLParser::parseScope(SyncScope::ID &SSID) { 2376 SSID = SyncScope::System; 2377 if (EatIfPresent(lltok::kw_syncscope)) { 2378 auto StartParenAt = Lex.getLoc(); 2379 if (!EatIfPresent(lltok::lparen)) 2380 return error(StartParenAt, "Expected '(' in syncscope"); 2381 2382 std::string SSN; 2383 auto SSNAt = Lex.getLoc(); 2384 if (parseStringConstant(SSN)) 2385 return error(SSNAt, "Expected synchronization scope name"); 2386 2387 auto EndParenAt = Lex.getLoc(); 2388 if (!EatIfPresent(lltok::rparen)) 2389 return error(EndParenAt, "Expected ')' in syncscope"); 2390 2391 SSID = Context.getOrInsertSyncScopeID(SSN); 2392 } 2393 2394 return false; 2395 } 2396 2397 /// parseOrdering 2398 /// ::= AtomicOrdering 2399 /// 2400 /// This sets Ordering to the parsed value. 2401 bool LLParser::parseOrdering(AtomicOrdering &Ordering) { 2402 switch (Lex.getKind()) { 2403 default: 2404 return tokError("Expected ordering on atomic instruction"); 2405 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2406 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2407 // Not specified yet: 2408 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2409 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2410 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2411 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2412 case lltok::kw_seq_cst: 2413 Ordering = AtomicOrdering::SequentiallyConsistent; 2414 break; 2415 } 2416 Lex.Lex(); 2417 return false; 2418 } 2419 2420 /// parseOptionalStackAlignment 2421 /// ::= /* empty */ 2422 /// ::= 'alignstack' '(' 4 ')' 2423 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) { 2424 Alignment = 0; 2425 if (!EatIfPresent(lltok::kw_alignstack)) 2426 return false; 2427 LocTy ParenLoc = Lex.getLoc(); 2428 if (!EatIfPresent(lltok::lparen)) 2429 return error(ParenLoc, "expected '('"); 2430 LocTy AlignLoc = Lex.getLoc(); 2431 if (parseUInt32(Alignment)) 2432 return true; 2433 ParenLoc = Lex.getLoc(); 2434 if (!EatIfPresent(lltok::rparen)) 2435 return error(ParenLoc, "expected ')'"); 2436 if (!isPowerOf2_32(Alignment)) 2437 return error(AlignLoc, "stack alignment is not a power of two"); 2438 return false; 2439 } 2440 2441 /// parseIndexList - This parses the index list for an insert/extractvalue 2442 /// instruction. This sets AteExtraComma in the case where we eat an extra 2443 /// comma at the end of the line and find that it is followed by metadata. 2444 /// Clients that don't allow metadata can call the version of this function that 2445 /// only takes one argument. 2446 /// 2447 /// parseIndexList 2448 /// ::= (',' uint32)+ 2449 /// 2450 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices, 2451 bool &AteExtraComma) { 2452 AteExtraComma = false; 2453 2454 if (Lex.getKind() != lltok::comma) 2455 return tokError("expected ',' as start of index list"); 2456 2457 while (EatIfPresent(lltok::comma)) { 2458 if (Lex.getKind() == lltok::MetadataVar) { 2459 if (Indices.empty()) 2460 return tokError("expected index"); 2461 AteExtraComma = true; 2462 return false; 2463 } 2464 unsigned Idx = 0; 2465 if (parseUInt32(Idx)) 2466 return true; 2467 Indices.push_back(Idx); 2468 } 2469 2470 return false; 2471 } 2472 2473 //===----------------------------------------------------------------------===// 2474 // Type Parsing. 2475 //===----------------------------------------------------------------------===// 2476 2477 /// parseType - parse a type. 2478 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2479 SMLoc TypeLoc = Lex.getLoc(); 2480 switch (Lex.getKind()) { 2481 default: 2482 return tokError(Msg); 2483 case lltok::Type: 2484 // Type ::= 'float' | 'void' (etc) 2485 Result = Lex.getTyVal(); 2486 Lex.Lex(); 2487 break; 2488 case lltok::lbrace: 2489 // Type ::= StructType 2490 if (parseAnonStructType(Result, false)) 2491 return true; 2492 break; 2493 case lltok::lsquare: 2494 // Type ::= '[' ... ']' 2495 Lex.Lex(); // eat the lsquare. 2496 if (parseArrayVectorType(Result, false)) 2497 return true; 2498 break; 2499 case lltok::less: // Either vector or packed struct. 2500 // Type ::= '<' ... '>' 2501 Lex.Lex(); 2502 if (Lex.getKind() == lltok::lbrace) { 2503 if (parseAnonStructType(Result, true) || 2504 parseToken(lltok::greater, "expected '>' at end of packed struct")) 2505 return true; 2506 } else if (parseArrayVectorType(Result, true)) 2507 return true; 2508 break; 2509 case lltok::LocalVar: { 2510 // Type ::= %foo 2511 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2512 2513 // If the type hasn't been defined yet, create a forward definition and 2514 // remember where that forward def'n was seen (in case it never is defined). 2515 if (!Entry.first) { 2516 Entry.first = StructType::create(Context, Lex.getStrVal()); 2517 Entry.second = Lex.getLoc(); 2518 } 2519 Result = Entry.first; 2520 Lex.Lex(); 2521 break; 2522 } 2523 2524 case lltok::LocalVarID: { 2525 // Type ::= %4 2526 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2527 2528 // If the type hasn't been defined yet, create a forward definition and 2529 // remember where that forward def'n was seen (in case it never is defined). 2530 if (!Entry.first) { 2531 Entry.first = StructType::create(Context); 2532 Entry.second = Lex.getLoc(); 2533 } 2534 Result = Entry.first; 2535 Lex.Lex(); 2536 break; 2537 } 2538 } 2539 2540 // parse the type suffixes. 2541 while (true) { 2542 switch (Lex.getKind()) { 2543 // End of type. 2544 default: 2545 if (!AllowVoid && Result->isVoidTy()) 2546 return error(TypeLoc, "void type only allowed for function results"); 2547 return false; 2548 2549 // Type ::= Type '*' 2550 case lltok::star: 2551 if (Result->isLabelTy()) 2552 return tokError("basic block pointers are invalid"); 2553 if (Result->isVoidTy()) 2554 return tokError("pointers to void are invalid - use i8* instead"); 2555 if (!PointerType::isValidElementType(Result)) 2556 return tokError("pointer to this type is invalid"); 2557 Result = PointerType::getUnqual(Result); 2558 Lex.Lex(); 2559 break; 2560 2561 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2562 case lltok::kw_addrspace: { 2563 if (Result->isLabelTy()) 2564 return tokError("basic block pointers are invalid"); 2565 if (Result->isVoidTy()) 2566 return tokError("pointers to void are invalid; use i8* instead"); 2567 if (!PointerType::isValidElementType(Result)) 2568 return tokError("pointer to this type is invalid"); 2569 unsigned AddrSpace; 2570 if (parseOptionalAddrSpace(AddrSpace) || 2571 parseToken(lltok::star, "expected '*' in address space")) 2572 return true; 2573 2574 Result = PointerType::get(Result, AddrSpace); 2575 break; 2576 } 2577 2578 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2579 case lltok::lparen: 2580 if (parseFunctionType(Result)) 2581 return true; 2582 break; 2583 } 2584 } 2585 } 2586 2587 /// parseParameterList 2588 /// ::= '(' ')' 2589 /// ::= '(' Arg (',' Arg)* ')' 2590 /// Arg 2591 /// ::= Type OptionalAttributes Value OptionalAttributes 2592 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2593 PerFunctionState &PFS, bool IsMustTailCall, 2594 bool InVarArgsFunc) { 2595 if (parseToken(lltok::lparen, "expected '(' in call")) 2596 return true; 2597 2598 while (Lex.getKind() != lltok::rparen) { 2599 // If this isn't the first argument, we need a comma. 2600 if (!ArgList.empty() && 2601 parseToken(lltok::comma, "expected ',' in argument list")) 2602 return true; 2603 2604 // parse an ellipsis if this is a musttail call in a variadic function. 2605 if (Lex.getKind() == lltok::dotdotdot) { 2606 const char *Msg = "unexpected ellipsis in argument list for "; 2607 if (!IsMustTailCall) 2608 return tokError(Twine(Msg) + "non-musttail call"); 2609 if (!InVarArgsFunc) 2610 return tokError(Twine(Msg) + "musttail call in non-varargs function"); 2611 Lex.Lex(); // Lex the '...', it is purely for readability. 2612 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 2613 } 2614 2615 // parse the argument. 2616 LocTy ArgLoc; 2617 Type *ArgTy = nullptr; 2618 AttrBuilder ArgAttrs; 2619 Value *V; 2620 if (parseType(ArgTy, ArgLoc)) 2621 return true; 2622 2623 if (ArgTy->isMetadataTy()) { 2624 if (parseMetadataAsValue(V, PFS)) 2625 return true; 2626 } else { 2627 // Otherwise, handle normal operands. 2628 if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS)) 2629 return true; 2630 } 2631 ArgList.push_back(ParamInfo( 2632 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2633 } 2634 2635 if (IsMustTailCall && InVarArgsFunc) 2636 return tokError("expected '...' at end of argument list for musttail call " 2637 "in varargs function"); 2638 2639 Lex.Lex(); // Lex the ')'. 2640 return false; 2641 } 2642 2643 /// parseRequiredTypeAttr 2644 /// ::= attrname(<ty>) 2645 bool LLParser::parseRequiredTypeAttr(Type *&Result, lltok::Kind AttrName) { 2646 Result = nullptr; 2647 if (!EatIfPresent(AttrName)) 2648 return true; 2649 if (!EatIfPresent(lltok::lparen)) 2650 return error(Lex.getLoc(), "expected '('"); 2651 if (parseType(Result)) 2652 return true; 2653 if (!EatIfPresent(lltok::rparen)) 2654 return error(Lex.getLoc(), "expected ')'"); 2655 return false; 2656 } 2657 2658 /// parsePreallocated 2659 /// ::= preallocated(<ty>) 2660 bool LLParser::parsePreallocated(Type *&Result) { 2661 return parseRequiredTypeAttr(Result, lltok::kw_preallocated); 2662 } 2663 2664 /// parseByRef 2665 /// ::= byref(<type>) 2666 bool LLParser::parseByRef(Type *&Result) { 2667 return parseRequiredTypeAttr(Result, lltok::kw_byref); 2668 } 2669 2670 /// parseOptionalOperandBundles 2671 /// ::= /*empty*/ 2672 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2673 /// 2674 /// OperandBundle 2675 /// ::= bundle-tag '(' ')' 2676 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2677 /// 2678 /// bundle-tag ::= String Constant 2679 bool LLParser::parseOptionalOperandBundles( 2680 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2681 LocTy BeginLoc = Lex.getLoc(); 2682 if (!EatIfPresent(lltok::lsquare)) 2683 return false; 2684 2685 while (Lex.getKind() != lltok::rsquare) { 2686 // If this isn't the first operand bundle, we need a comma. 2687 if (!BundleList.empty() && 2688 parseToken(lltok::comma, "expected ',' in input list")) 2689 return true; 2690 2691 std::string Tag; 2692 if (parseStringConstant(Tag)) 2693 return true; 2694 2695 if (parseToken(lltok::lparen, "expected '(' in operand bundle")) 2696 return true; 2697 2698 std::vector<Value *> Inputs; 2699 while (Lex.getKind() != lltok::rparen) { 2700 // If this isn't the first input, we need a comma. 2701 if (!Inputs.empty() && 2702 parseToken(lltok::comma, "expected ',' in input list")) 2703 return true; 2704 2705 Type *Ty = nullptr; 2706 Value *Input = nullptr; 2707 if (parseType(Ty) || parseValue(Ty, Input, PFS)) 2708 return true; 2709 Inputs.push_back(Input); 2710 } 2711 2712 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2713 2714 Lex.Lex(); // Lex the ')'. 2715 } 2716 2717 if (BundleList.empty()) 2718 return error(BeginLoc, "operand bundle set must not be empty"); 2719 2720 Lex.Lex(); // Lex the ']'. 2721 return false; 2722 } 2723 2724 /// parseArgumentList - parse the argument list for a function type or function 2725 /// prototype. 2726 /// ::= '(' ArgTypeListI ')' 2727 /// ArgTypeListI 2728 /// ::= /*empty*/ 2729 /// ::= '...' 2730 /// ::= ArgTypeList ',' '...' 2731 /// ::= ArgType (',' ArgType)* 2732 /// 2733 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2734 bool &IsVarArg) { 2735 unsigned CurValID = 0; 2736 IsVarArg = false; 2737 assert(Lex.getKind() == lltok::lparen); 2738 Lex.Lex(); // eat the (. 2739 2740 if (Lex.getKind() == lltok::rparen) { 2741 // empty 2742 } else if (Lex.getKind() == lltok::dotdotdot) { 2743 IsVarArg = true; 2744 Lex.Lex(); 2745 } else { 2746 LocTy TypeLoc = Lex.getLoc(); 2747 Type *ArgTy = nullptr; 2748 AttrBuilder Attrs; 2749 std::string Name; 2750 2751 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) 2752 return true; 2753 2754 if (ArgTy->isVoidTy()) 2755 return error(TypeLoc, "argument can not have void type"); 2756 2757 if (Lex.getKind() == lltok::LocalVar) { 2758 Name = Lex.getStrVal(); 2759 Lex.Lex(); 2760 } else if (Lex.getKind() == lltok::LocalVarID) { 2761 if (Lex.getUIntVal() != CurValID) 2762 return error(TypeLoc, "argument expected to be numbered '%" + 2763 Twine(CurValID) + "'"); 2764 ++CurValID; 2765 Lex.Lex(); 2766 } 2767 2768 if (!FunctionType::isValidArgumentType(ArgTy)) 2769 return error(TypeLoc, "invalid type for function argument"); 2770 2771 ArgList.emplace_back(TypeLoc, ArgTy, 2772 AttributeSet::get(ArgTy->getContext(), Attrs), 2773 std::move(Name)); 2774 2775 while (EatIfPresent(lltok::comma)) { 2776 // Handle ... at end of arg list. 2777 if (EatIfPresent(lltok::dotdotdot)) { 2778 IsVarArg = true; 2779 break; 2780 } 2781 2782 // Otherwise must be an argument type. 2783 TypeLoc = Lex.getLoc(); 2784 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) 2785 return true; 2786 2787 if (ArgTy->isVoidTy()) 2788 return error(TypeLoc, "argument can not have void type"); 2789 2790 if (Lex.getKind() == lltok::LocalVar) { 2791 Name = Lex.getStrVal(); 2792 Lex.Lex(); 2793 } else { 2794 if (Lex.getKind() == lltok::LocalVarID) { 2795 if (Lex.getUIntVal() != CurValID) 2796 return error(TypeLoc, "argument expected to be numbered '%" + 2797 Twine(CurValID) + "'"); 2798 Lex.Lex(); 2799 } 2800 ++CurValID; 2801 Name = ""; 2802 } 2803 2804 if (!ArgTy->isFirstClassType()) 2805 return error(TypeLoc, "invalid type for function argument"); 2806 2807 ArgList.emplace_back(TypeLoc, ArgTy, 2808 AttributeSet::get(ArgTy->getContext(), Attrs), 2809 std::move(Name)); 2810 } 2811 } 2812 2813 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 2814 } 2815 2816 /// parseFunctionType 2817 /// ::= Type ArgumentList OptionalAttrs 2818 bool LLParser::parseFunctionType(Type *&Result) { 2819 assert(Lex.getKind() == lltok::lparen); 2820 2821 if (!FunctionType::isValidReturnType(Result)) 2822 return tokError("invalid function return type"); 2823 2824 SmallVector<ArgInfo, 8> ArgList; 2825 bool IsVarArg; 2826 if (parseArgumentList(ArgList, IsVarArg)) 2827 return true; 2828 2829 // Reject names on the arguments lists. 2830 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2831 if (!ArgList[i].Name.empty()) 2832 return error(ArgList[i].Loc, "argument name invalid in function type"); 2833 if (ArgList[i].Attrs.hasAttributes()) 2834 return error(ArgList[i].Loc, 2835 "argument attributes invalid in function type"); 2836 } 2837 2838 SmallVector<Type*, 16> ArgListTy; 2839 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2840 ArgListTy.push_back(ArgList[i].Ty); 2841 2842 Result = FunctionType::get(Result, ArgListTy, IsVarArg); 2843 return false; 2844 } 2845 2846 /// parseAnonStructType - parse an anonymous struct type, which is inlined into 2847 /// other structs. 2848 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) { 2849 SmallVector<Type*, 8> Elts; 2850 if (parseStructBody(Elts)) 2851 return true; 2852 2853 Result = StructType::get(Context, Elts, Packed); 2854 return false; 2855 } 2856 2857 /// parseStructDefinition - parse a struct in a 'type' definition. 2858 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name, 2859 std::pair<Type *, LocTy> &Entry, 2860 Type *&ResultTy) { 2861 // If the type was already defined, diagnose the redefinition. 2862 if (Entry.first && !Entry.second.isValid()) 2863 return error(TypeLoc, "redefinition of type"); 2864 2865 // If we have opaque, just return without filling in the definition for the 2866 // struct. This counts as a definition as far as the .ll file goes. 2867 if (EatIfPresent(lltok::kw_opaque)) { 2868 // This type is being defined, so clear the location to indicate this. 2869 Entry.second = SMLoc(); 2870 2871 // If this type number has never been uttered, create it. 2872 if (!Entry.first) 2873 Entry.first = StructType::create(Context, Name); 2874 ResultTy = Entry.first; 2875 return false; 2876 } 2877 2878 // If the type starts with '<', then it is either a packed struct or a vector. 2879 bool isPacked = EatIfPresent(lltok::less); 2880 2881 // If we don't have a struct, then we have a random type alias, which we 2882 // accept for compatibility with old files. These types are not allowed to be 2883 // forward referenced and not allowed to be recursive. 2884 if (Lex.getKind() != lltok::lbrace) { 2885 if (Entry.first) 2886 return error(TypeLoc, "forward references to non-struct type"); 2887 2888 ResultTy = nullptr; 2889 if (isPacked) 2890 return parseArrayVectorType(ResultTy, true); 2891 return parseType(ResultTy); 2892 } 2893 2894 // This type is being defined, so clear the location to indicate this. 2895 Entry.second = SMLoc(); 2896 2897 // If this type number has never been uttered, create it. 2898 if (!Entry.first) 2899 Entry.first = StructType::create(Context, Name); 2900 2901 StructType *STy = cast<StructType>(Entry.first); 2902 2903 SmallVector<Type*, 8> Body; 2904 if (parseStructBody(Body) || 2905 (isPacked && parseToken(lltok::greater, "expected '>' in packed struct"))) 2906 return true; 2907 2908 STy->setBody(Body, isPacked); 2909 ResultTy = STy; 2910 return false; 2911 } 2912 2913 /// parseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2914 /// StructType 2915 /// ::= '{' '}' 2916 /// ::= '{' Type (',' Type)* '}' 2917 /// ::= '<' '{' '}' '>' 2918 /// ::= '<' '{' Type (',' Type)* '}' '>' 2919 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) { 2920 assert(Lex.getKind() == lltok::lbrace); 2921 Lex.Lex(); // Consume the '{' 2922 2923 // Handle the empty struct. 2924 if (EatIfPresent(lltok::rbrace)) 2925 return false; 2926 2927 LocTy EltTyLoc = Lex.getLoc(); 2928 Type *Ty = nullptr; 2929 if (parseType(Ty)) 2930 return true; 2931 Body.push_back(Ty); 2932 2933 if (!StructType::isValidElementType(Ty)) 2934 return error(EltTyLoc, "invalid element type for struct"); 2935 2936 while (EatIfPresent(lltok::comma)) { 2937 EltTyLoc = Lex.getLoc(); 2938 if (parseType(Ty)) 2939 return true; 2940 2941 if (!StructType::isValidElementType(Ty)) 2942 return error(EltTyLoc, "invalid element type for struct"); 2943 2944 Body.push_back(Ty); 2945 } 2946 2947 return parseToken(lltok::rbrace, "expected '}' at end of struct"); 2948 } 2949 2950 /// parseArrayVectorType - parse an array or vector type, assuming the first 2951 /// token has already been consumed. 2952 /// Type 2953 /// ::= '[' APSINTVAL 'x' Types ']' 2954 /// ::= '<' APSINTVAL 'x' Types '>' 2955 /// ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>' 2956 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) { 2957 bool Scalable = false; 2958 2959 if (IsVector && Lex.getKind() == lltok::kw_vscale) { 2960 Lex.Lex(); // consume the 'vscale' 2961 if (parseToken(lltok::kw_x, "expected 'x' after vscale")) 2962 return true; 2963 2964 Scalable = true; 2965 } 2966 2967 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2968 Lex.getAPSIntVal().getBitWidth() > 64) 2969 return tokError("expected number in address space"); 2970 2971 LocTy SizeLoc = Lex.getLoc(); 2972 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2973 Lex.Lex(); 2974 2975 if (parseToken(lltok::kw_x, "expected 'x' after element count")) 2976 return true; 2977 2978 LocTy TypeLoc = Lex.getLoc(); 2979 Type *EltTy = nullptr; 2980 if (parseType(EltTy)) 2981 return true; 2982 2983 if (parseToken(IsVector ? lltok::greater : lltok::rsquare, 2984 "expected end of sequential type")) 2985 return true; 2986 2987 if (IsVector) { 2988 if (Size == 0) 2989 return error(SizeLoc, "zero element vector is illegal"); 2990 if ((unsigned)Size != Size) 2991 return error(SizeLoc, "size too large for vector"); 2992 if (!VectorType::isValidElementType(EltTy)) 2993 return error(TypeLoc, "invalid vector element type"); 2994 Result = VectorType::get(EltTy, unsigned(Size), Scalable); 2995 } else { 2996 if (!ArrayType::isValidElementType(EltTy)) 2997 return error(TypeLoc, "invalid array element type"); 2998 Result = ArrayType::get(EltTy, Size); 2999 } 3000 return false; 3001 } 3002 3003 //===----------------------------------------------------------------------===// 3004 // Function Semantic Analysis. 3005 //===----------------------------------------------------------------------===// 3006 3007 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 3008 int functionNumber) 3009 : P(p), F(f), FunctionNumber(functionNumber) { 3010 3011 // Insert unnamed arguments into the NumberedVals list. 3012 for (Argument &A : F.args()) 3013 if (!A.hasName()) 3014 NumberedVals.push_back(&A); 3015 } 3016 3017 LLParser::PerFunctionState::~PerFunctionState() { 3018 // If there were any forward referenced non-basicblock values, delete them. 3019 3020 for (const auto &P : ForwardRefVals) { 3021 if (isa<BasicBlock>(P.second.first)) 3022 continue; 3023 P.second.first->replaceAllUsesWith( 3024 UndefValue::get(P.second.first->getType())); 3025 P.second.first->deleteValue(); 3026 } 3027 3028 for (const auto &P : ForwardRefValIDs) { 3029 if (isa<BasicBlock>(P.second.first)) 3030 continue; 3031 P.second.first->replaceAllUsesWith( 3032 UndefValue::get(P.second.first->getType())); 3033 P.second.first->deleteValue(); 3034 } 3035 } 3036 3037 bool LLParser::PerFunctionState::finishFunction() { 3038 if (!ForwardRefVals.empty()) 3039 return P.error(ForwardRefVals.begin()->second.second, 3040 "use of undefined value '%" + ForwardRefVals.begin()->first + 3041 "'"); 3042 if (!ForwardRefValIDs.empty()) 3043 return P.error(ForwardRefValIDs.begin()->second.second, 3044 "use of undefined value '%" + 3045 Twine(ForwardRefValIDs.begin()->first) + "'"); 3046 return false; 3047 } 3048 3049 /// getVal - Get a value with the specified name or ID, creating a 3050 /// forward reference record if needed. This can return null if the value 3051 /// exists but does not have the right type. 3052 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty, 3053 LocTy Loc, bool IsCall) { 3054 // Look this name up in the normal function symbol table. 3055 Value *Val = F.getValueSymbolTable()->lookup(Name); 3056 3057 // If this is a forward reference for the value, see if we already created a 3058 // forward ref record. 3059 if (!Val) { 3060 auto I = ForwardRefVals.find(Name); 3061 if (I != ForwardRefVals.end()) 3062 Val = I->second.first; 3063 } 3064 3065 // If we have the value in the symbol table or fwd-ref table, return it. 3066 if (Val) 3067 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall); 3068 3069 // Don't make placeholders with invalid type. 3070 if (!Ty->isFirstClassType()) { 3071 P.error(Loc, "invalid use of a non-first-class type"); 3072 return nullptr; 3073 } 3074 3075 // Otherwise, create a new forward reference for this value and remember it. 3076 Value *FwdVal; 3077 if (Ty->isLabelTy()) { 3078 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 3079 } else { 3080 FwdVal = new Argument(Ty, Name); 3081 } 3082 3083 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 3084 return FwdVal; 3085 } 3086 3087 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc, 3088 bool IsCall) { 3089 // Look this name up in the normal function symbol table. 3090 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 3091 3092 // If this is a forward reference for the value, see if we already created a 3093 // forward ref record. 3094 if (!Val) { 3095 auto I = ForwardRefValIDs.find(ID); 3096 if (I != ForwardRefValIDs.end()) 3097 Val = I->second.first; 3098 } 3099 3100 // If we have the value in the symbol table or fwd-ref table, return it. 3101 if (Val) 3102 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall); 3103 3104 if (!Ty->isFirstClassType()) { 3105 P.error(Loc, "invalid use of a non-first-class type"); 3106 return nullptr; 3107 } 3108 3109 // Otherwise, create a new forward reference for this value and remember it. 3110 Value *FwdVal; 3111 if (Ty->isLabelTy()) { 3112 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 3113 } else { 3114 FwdVal = new Argument(Ty); 3115 } 3116 3117 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 3118 return FwdVal; 3119 } 3120 3121 /// setInstName - After an instruction is parsed and inserted into its 3122 /// basic block, this installs its name. 3123 bool LLParser::PerFunctionState::setInstName(int NameID, 3124 const std::string &NameStr, 3125 LocTy NameLoc, Instruction *Inst) { 3126 // If this instruction has void type, it cannot have a name or ID specified. 3127 if (Inst->getType()->isVoidTy()) { 3128 if (NameID != -1 || !NameStr.empty()) 3129 return P.error(NameLoc, "instructions returning void cannot have a name"); 3130 return false; 3131 } 3132 3133 // If this was a numbered instruction, verify that the instruction is the 3134 // expected value and resolve any forward references. 3135 if (NameStr.empty()) { 3136 // If neither a name nor an ID was specified, just use the next ID. 3137 if (NameID == -1) 3138 NameID = NumberedVals.size(); 3139 3140 if (unsigned(NameID) != NumberedVals.size()) 3141 return P.error(NameLoc, "instruction expected to be numbered '%" + 3142 Twine(NumberedVals.size()) + "'"); 3143 3144 auto FI = ForwardRefValIDs.find(NameID); 3145 if (FI != ForwardRefValIDs.end()) { 3146 Value *Sentinel = FI->second.first; 3147 if (Sentinel->getType() != Inst->getType()) 3148 return P.error(NameLoc, "instruction forward referenced with type '" + 3149 getTypeString(FI->second.first->getType()) + 3150 "'"); 3151 3152 Sentinel->replaceAllUsesWith(Inst); 3153 Sentinel->deleteValue(); 3154 ForwardRefValIDs.erase(FI); 3155 } 3156 3157 NumberedVals.push_back(Inst); 3158 return false; 3159 } 3160 3161 // Otherwise, the instruction had a name. Resolve forward refs and set it. 3162 auto FI = ForwardRefVals.find(NameStr); 3163 if (FI != ForwardRefVals.end()) { 3164 Value *Sentinel = FI->second.first; 3165 if (Sentinel->getType() != Inst->getType()) 3166 return P.error(NameLoc, "instruction forward referenced with type '" + 3167 getTypeString(FI->second.first->getType()) + 3168 "'"); 3169 3170 Sentinel->replaceAllUsesWith(Inst); 3171 Sentinel->deleteValue(); 3172 ForwardRefVals.erase(FI); 3173 } 3174 3175 // Set the name on the instruction. 3176 Inst->setName(NameStr); 3177 3178 if (Inst->getName() != NameStr) 3179 return P.error(NameLoc, "multiple definition of local value named '" + 3180 NameStr + "'"); 3181 return false; 3182 } 3183 3184 /// getBB - Get a basic block with the specified name or ID, creating a 3185 /// forward reference record if needed. 3186 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name, 3187 LocTy Loc) { 3188 return dyn_cast_or_null<BasicBlock>( 3189 getVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 3190 } 3191 3192 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) { 3193 return dyn_cast_or_null<BasicBlock>( 3194 getVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 3195 } 3196 3197 /// defineBB - Define the specified basic block, which is either named or 3198 /// unnamed. If there is an error, this returns null otherwise it returns 3199 /// the block being defined. 3200 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name, 3201 int NameID, LocTy Loc) { 3202 BasicBlock *BB; 3203 if (Name.empty()) { 3204 if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) { 3205 P.error(Loc, "label expected to be numbered '" + 3206 Twine(NumberedVals.size()) + "'"); 3207 return nullptr; 3208 } 3209 BB = getBB(NumberedVals.size(), Loc); 3210 if (!BB) { 3211 P.error(Loc, "unable to create block numbered '" + 3212 Twine(NumberedVals.size()) + "'"); 3213 return nullptr; 3214 } 3215 } else { 3216 BB = getBB(Name, Loc); 3217 if (!BB) { 3218 P.error(Loc, "unable to create block named '" + Name + "'"); 3219 return nullptr; 3220 } 3221 } 3222 3223 // Move the block to the end of the function. Forward ref'd blocks are 3224 // inserted wherever they happen to be referenced. 3225 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 3226 3227 // Remove the block from forward ref sets. 3228 if (Name.empty()) { 3229 ForwardRefValIDs.erase(NumberedVals.size()); 3230 NumberedVals.push_back(BB); 3231 } else { 3232 // BB forward references are already in the function symbol table. 3233 ForwardRefVals.erase(Name); 3234 } 3235 3236 return BB; 3237 } 3238 3239 //===----------------------------------------------------------------------===// 3240 // Constants. 3241 //===----------------------------------------------------------------------===// 3242 3243 /// parseValID - parse an abstract value that doesn't necessarily have a 3244 /// type implied. For example, if we parse "4" we don't know what integer type 3245 /// it has. The value will later be combined with its type and checked for 3246 /// sanity. PFS is used to convert function-local operands of metadata (since 3247 /// metadata operands are not just parsed here but also converted to values). 3248 /// PFS can be null when we are not parsing metadata values inside a function. 3249 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS) { 3250 ID.Loc = Lex.getLoc(); 3251 switch (Lex.getKind()) { 3252 default: 3253 return tokError("expected value token"); 3254 case lltok::GlobalID: // @42 3255 ID.UIntVal = Lex.getUIntVal(); 3256 ID.Kind = ValID::t_GlobalID; 3257 break; 3258 case lltok::GlobalVar: // @foo 3259 ID.StrVal = Lex.getStrVal(); 3260 ID.Kind = ValID::t_GlobalName; 3261 break; 3262 case lltok::LocalVarID: // %42 3263 ID.UIntVal = Lex.getUIntVal(); 3264 ID.Kind = ValID::t_LocalID; 3265 break; 3266 case lltok::LocalVar: // %foo 3267 ID.StrVal = Lex.getStrVal(); 3268 ID.Kind = ValID::t_LocalName; 3269 break; 3270 case lltok::APSInt: 3271 ID.APSIntVal = Lex.getAPSIntVal(); 3272 ID.Kind = ValID::t_APSInt; 3273 break; 3274 case lltok::APFloat: 3275 ID.APFloatVal = Lex.getAPFloatVal(); 3276 ID.Kind = ValID::t_APFloat; 3277 break; 3278 case lltok::kw_true: 3279 ID.ConstantVal = ConstantInt::getTrue(Context); 3280 ID.Kind = ValID::t_Constant; 3281 break; 3282 case lltok::kw_false: 3283 ID.ConstantVal = ConstantInt::getFalse(Context); 3284 ID.Kind = ValID::t_Constant; 3285 break; 3286 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 3287 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 3288 case lltok::kw_poison: ID.Kind = ValID::t_Poison; break; 3289 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 3290 case lltok::kw_none: ID.Kind = ValID::t_None; break; 3291 3292 case lltok::lbrace: { 3293 // ValID ::= '{' ConstVector '}' 3294 Lex.Lex(); 3295 SmallVector<Constant*, 16> Elts; 3296 if (parseGlobalValueVector(Elts) || 3297 parseToken(lltok::rbrace, "expected end of struct constant")) 3298 return true; 3299 3300 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3301 ID.UIntVal = Elts.size(); 3302 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3303 Elts.size() * sizeof(Elts[0])); 3304 ID.Kind = ValID::t_ConstantStruct; 3305 return false; 3306 } 3307 case lltok::less: { 3308 // ValID ::= '<' ConstVector '>' --> Vector. 3309 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 3310 Lex.Lex(); 3311 bool isPackedStruct = EatIfPresent(lltok::lbrace); 3312 3313 SmallVector<Constant*, 16> Elts; 3314 LocTy FirstEltLoc = Lex.getLoc(); 3315 if (parseGlobalValueVector(Elts) || 3316 (isPackedStruct && 3317 parseToken(lltok::rbrace, "expected end of packed struct")) || 3318 parseToken(lltok::greater, "expected end of constant")) 3319 return true; 3320 3321 if (isPackedStruct) { 3322 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3323 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3324 Elts.size() * sizeof(Elts[0])); 3325 ID.UIntVal = Elts.size(); 3326 ID.Kind = ValID::t_PackedConstantStruct; 3327 return false; 3328 } 3329 3330 if (Elts.empty()) 3331 return error(ID.Loc, "constant vector must not be empty"); 3332 3333 if (!Elts[0]->getType()->isIntegerTy() && 3334 !Elts[0]->getType()->isFloatingPointTy() && 3335 !Elts[0]->getType()->isPointerTy()) 3336 return error( 3337 FirstEltLoc, 3338 "vector elements must have integer, pointer or floating point type"); 3339 3340 // Verify that all the vector elements have the same type. 3341 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 3342 if (Elts[i]->getType() != Elts[0]->getType()) 3343 return error(FirstEltLoc, "vector element #" + Twine(i) + 3344 " is not of type '" + 3345 getTypeString(Elts[0]->getType())); 3346 3347 ID.ConstantVal = ConstantVector::get(Elts); 3348 ID.Kind = ValID::t_Constant; 3349 return false; 3350 } 3351 case lltok::lsquare: { // Array Constant 3352 Lex.Lex(); 3353 SmallVector<Constant*, 16> Elts; 3354 LocTy FirstEltLoc = Lex.getLoc(); 3355 if (parseGlobalValueVector(Elts) || 3356 parseToken(lltok::rsquare, "expected end of array constant")) 3357 return true; 3358 3359 // Handle empty element. 3360 if (Elts.empty()) { 3361 // Use undef instead of an array because it's inconvenient to determine 3362 // the element type at this point, there being no elements to examine. 3363 ID.Kind = ValID::t_EmptyArray; 3364 return false; 3365 } 3366 3367 if (!Elts[0]->getType()->isFirstClassType()) 3368 return error(FirstEltLoc, "invalid array element type: " + 3369 getTypeString(Elts[0]->getType())); 3370 3371 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 3372 3373 // Verify all elements are correct type! 3374 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 3375 if (Elts[i]->getType() != Elts[0]->getType()) 3376 return error(FirstEltLoc, "array element #" + Twine(i) + 3377 " is not of type '" + 3378 getTypeString(Elts[0]->getType())); 3379 } 3380 3381 ID.ConstantVal = ConstantArray::get(ATy, Elts); 3382 ID.Kind = ValID::t_Constant; 3383 return false; 3384 } 3385 case lltok::kw_c: // c "foo" 3386 Lex.Lex(); 3387 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 3388 false); 3389 if (parseToken(lltok::StringConstant, "expected string")) 3390 return true; 3391 ID.Kind = ValID::t_Constant; 3392 return false; 3393 3394 case lltok::kw_asm: { 3395 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 3396 // STRINGCONSTANT 3397 bool HasSideEffect, AlignStack, AsmDialect; 3398 Lex.Lex(); 3399 if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 3400 parseOptionalToken(lltok::kw_alignstack, AlignStack) || 3401 parseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 3402 parseStringConstant(ID.StrVal) || 3403 parseToken(lltok::comma, "expected comma in inline asm expression") || 3404 parseToken(lltok::StringConstant, "expected constraint string")) 3405 return true; 3406 ID.StrVal2 = Lex.getStrVal(); 3407 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 3408 (unsigned(AsmDialect)<<2); 3409 ID.Kind = ValID::t_InlineAsm; 3410 return false; 3411 } 3412 3413 case lltok::kw_blockaddress: { 3414 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 3415 Lex.Lex(); 3416 3417 ValID Fn, Label; 3418 3419 if (parseToken(lltok::lparen, "expected '(' in block address expression") || 3420 parseValID(Fn) || 3421 parseToken(lltok::comma, 3422 "expected comma in block address expression") || 3423 parseValID(Label) || 3424 parseToken(lltok::rparen, "expected ')' in block address expression")) 3425 return true; 3426 3427 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3428 return error(Fn.Loc, "expected function name in blockaddress"); 3429 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 3430 return error(Label.Loc, "expected basic block name in blockaddress"); 3431 3432 // Try to find the function (but skip it if it's forward-referenced). 3433 GlobalValue *GV = nullptr; 3434 if (Fn.Kind == ValID::t_GlobalID) { 3435 if (Fn.UIntVal < NumberedVals.size()) 3436 GV = NumberedVals[Fn.UIntVal]; 3437 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3438 GV = M->getNamedValue(Fn.StrVal); 3439 } 3440 Function *F = nullptr; 3441 if (GV) { 3442 // Confirm that it's actually a function with a definition. 3443 if (!isa<Function>(GV)) 3444 return error(Fn.Loc, "expected function name in blockaddress"); 3445 F = cast<Function>(GV); 3446 if (F->isDeclaration()) 3447 return error(Fn.Loc, "cannot take blockaddress inside a declaration"); 3448 } 3449 3450 if (!F) { 3451 // Make a global variable as a placeholder for this reference. 3452 GlobalValue *&FwdRef = 3453 ForwardRefBlockAddresses.insert(std::make_pair( 3454 std::move(Fn), 3455 std::map<ValID, GlobalValue *>())) 3456 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 3457 .first->second; 3458 if (!FwdRef) 3459 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 3460 GlobalValue::InternalLinkage, nullptr, ""); 3461 ID.ConstantVal = FwdRef; 3462 ID.Kind = ValID::t_Constant; 3463 return false; 3464 } 3465 3466 // We found the function; now find the basic block. Don't use PFS, since we 3467 // might be inside a constant expression. 3468 BasicBlock *BB; 3469 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 3470 if (Label.Kind == ValID::t_LocalID) 3471 BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc); 3472 else 3473 BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc); 3474 if (!BB) 3475 return error(Label.Loc, "referenced value is not a basic block"); 3476 } else { 3477 if (Label.Kind == ValID::t_LocalID) 3478 return error(Label.Loc, "cannot take address of numeric label after " 3479 "the function is defined"); 3480 BB = dyn_cast_or_null<BasicBlock>( 3481 F->getValueSymbolTable()->lookup(Label.StrVal)); 3482 if (!BB) 3483 return error(Label.Loc, "referenced value is not a basic block"); 3484 } 3485 3486 ID.ConstantVal = BlockAddress::get(F, BB); 3487 ID.Kind = ValID::t_Constant; 3488 return false; 3489 } 3490 3491 case lltok::kw_dso_local_equivalent: { 3492 // ValID ::= 'dso_local_equivalent' @foo 3493 Lex.Lex(); 3494 3495 ValID Fn; 3496 3497 if (parseValID(Fn)) 3498 return true; 3499 3500 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3501 return error(Fn.Loc, 3502 "expected global value name in dso_local_equivalent"); 3503 3504 // Try to find the function (but skip it if it's forward-referenced). 3505 GlobalValue *GV = nullptr; 3506 if (Fn.Kind == ValID::t_GlobalID) { 3507 if (Fn.UIntVal < NumberedVals.size()) 3508 GV = NumberedVals[Fn.UIntVal]; 3509 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3510 GV = M->getNamedValue(Fn.StrVal); 3511 } 3512 3513 assert(GV && "Could not find a corresponding global variable"); 3514 3515 if (!GV->getValueType()->isFunctionTy()) 3516 return error(Fn.Loc, "expected a function, alias to function, or ifunc " 3517 "in dso_local_equivalent"); 3518 3519 ID.ConstantVal = DSOLocalEquivalent::get(GV); 3520 ID.Kind = ValID::t_Constant; 3521 return false; 3522 } 3523 3524 case lltok::kw_trunc: 3525 case lltok::kw_zext: 3526 case lltok::kw_sext: 3527 case lltok::kw_fptrunc: 3528 case lltok::kw_fpext: 3529 case lltok::kw_bitcast: 3530 case lltok::kw_addrspacecast: 3531 case lltok::kw_uitofp: 3532 case lltok::kw_sitofp: 3533 case lltok::kw_fptoui: 3534 case lltok::kw_fptosi: 3535 case lltok::kw_inttoptr: 3536 case lltok::kw_ptrtoint: { 3537 unsigned Opc = Lex.getUIntVal(); 3538 Type *DestTy = nullptr; 3539 Constant *SrcVal; 3540 Lex.Lex(); 3541 if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3542 parseGlobalTypeAndValue(SrcVal) || 3543 parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3544 parseType(DestTy) || 3545 parseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3546 return true; 3547 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3548 return error(ID.Loc, "invalid cast opcode for cast from '" + 3549 getTypeString(SrcVal->getType()) + "' to '" + 3550 getTypeString(DestTy) + "'"); 3551 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3552 SrcVal, DestTy); 3553 ID.Kind = ValID::t_Constant; 3554 return false; 3555 } 3556 case lltok::kw_extractvalue: { 3557 Lex.Lex(); 3558 Constant *Val; 3559 SmallVector<unsigned, 4> Indices; 3560 if (parseToken(lltok::lparen, 3561 "expected '(' in extractvalue constantexpr") || 3562 parseGlobalTypeAndValue(Val) || parseIndexList(Indices) || 3563 parseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 3564 return true; 3565 3566 if (!Val->getType()->isAggregateType()) 3567 return error(ID.Loc, "extractvalue operand must be aggregate type"); 3568 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 3569 return error(ID.Loc, "invalid indices for extractvalue"); 3570 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 3571 ID.Kind = ValID::t_Constant; 3572 return false; 3573 } 3574 case lltok::kw_insertvalue: { 3575 Lex.Lex(); 3576 Constant *Val0, *Val1; 3577 SmallVector<unsigned, 4> Indices; 3578 if (parseToken(lltok::lparen, "expected '(' in insertvalue constantexpr") || 3579 parseGlobalTypeAndValue(Val0) || 3580 parseToken(lltok::comma, 3581 "expected comma in insertvalue constantexpr") || 3582 parseGlobalTypeAndValue(Val1) || parseIndexList(Indices) || 3583 parseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 3584 return true; 3585 if (!Val0->getType()->isAggregateType()) 3586 return error(ID.Loc, "insertvalue operand must be aggregate type"); 3587 Type *IndexedType = 3588 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3589 if (!IndexedType) 3590 return error(ID.Loc, "invalid indices for insertvalue"); 3591 if (IndexedType != Val1->getType()) 3592 return error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3593 getTypeString(Val1->getType()) + 3594 "' instead of '" + getTypeString(IndexedType) + 3595 "'"); 3596 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3597 ID.Kind = ValID::t_Constant; 3598 return false; 3599 } 3600 case lltok::kw_icmp: 3601 case lltok::kw_fcmp: { 3602 unsigned PredVal, Opc = Lex.getUIntVal(); 3603 Constant *Val0, *Val1; 3604 Lex.Lex(); 3605 if (parseCmpPredicate(PredVal, Opc) || 3606 parseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3607 parseGlobalTypeAndValue(Val0) || 3608 parseToken(lltok::comma, "expected comma in compare constantexpr") || 3609 parseGlobalTypeAndValue(Val1) || 3610 parseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3611 return true; 3612 3613 if (Val0->getType() != Val1->getType()) 3614 return error(ID.Loc, "compare operands must have the same type"); 3615 3616 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3617 3618 if (Opc == Instruction::FCmp) { 3619 if (!Val0->getType()->isFPOrFPVectorTy()) 3620 return error(ID.Loc, "fcmp requires floating point operands"); 3621 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3622 } else { 3623 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3624 if (!Val0->getType()->isIntOrIntVectorTy() && 3625 !Val0->getType()->isPtrOrPtrVectorTy()) 3626 return error(ID.Loc, "icmp requires pointer or integer operands"); 3627 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3628 } 3629 ID.Kind = ValID::t_Constant; 3630 return false; 3631 } 3632 3633 // Unary Operators. 3634 case lltok::kw_fneg: { 3635 unsigned Opc = Lex.getUIntVal(); 3636 Constant *Val; 3637 Lex.Lex(); 3638 if (parseToken(lltok::lparen, "expected '(' in unary constantexpr") || 3639 parseGlobalTypeAndValue(Val) || 3640 parseToken(lltok::rparen, "expected ')' in unary constantexpr")) 3641 return true; 3642 3643 // Check that the type is valid for the operator. 3644 switch (Opc) { 3645 case Instruction::FNeg: 3646 if (!Val->getType()->isFPOrFPVectorTy()) 3647 return error(ID.Loc, "constexpr requires fp operands"); 3648 break; 3649 default: llvm_unreachable("Unknown unary operator!"); 3650 } 3651 unsigned Flags = 0; 3652 Constant *C = ConstantExpr::get(Opc, Val, Flags); 3653 ID.ConstantVal = C; 3654 ID.Kind = ValID::t_Constant; 3655 return false; 3656 } 3657 // Binary Operators. 3658 case lltok::kw_add: 3659 case lltok::kw_fadd: 3660 case lltok::kw_sub: 3661 case lltok::kw_fsub: 3662 case lltok::kw_mul: 3663 case lltok::kw_fmul: 3664 case lltok::kw_udiv: 3665 case lltok::kw_sdiv: 3666 case lltok::kw_fdiv: 3667 case lltok::kw_urem: 3668 case lltok::kw_srem: 3669 case lltok::kw_frem: 3670 case lltok::kw_shl: 3671 case lltok::kw_lshr: 3672 case lltok::kw_ashr: { 3673 bool NUW = false; 3674 bool NSW = false; 3675 bool Exact = false; 3676 unsigned Opc = Lex.getUIntVal(); 3677 Constant *Val0, *Val1; 3678 Lex.Lex(); 3679 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3680 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3681 if (EatIfPresent(lltok::kw_nuw)) 3682 NUW = true; 3683 if (EatIfPresent(lltok::kw_nsw)) { 3684 NSW = true; 3685 if (EatIfPresent(lltok::kw_nuw)) 3686 NUW = true; 3687 } 3688 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3689 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3690 if (EatIfPresent(lltok::kw_exact)) 3691 Exact = true; 3692 } 3693 if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3694 parseGlobalTypeAndValue(Val0) || 3695 parseToken(lltok::comma, "expected comma in binary constantexpr") || 3696 parseGlobalTypeAndValue(Val1) || 3697 parseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3698 return true; 3699 if (Val0->getType() != Val1->getType()) 3700 return error(ID.Loc, "operands of constexpr must have same type"); 3701 // Check that the type is valid for the operator. 3702 switch (Opc) { 3703 case Instruction::Add: 3704 case Instruction::Sub: 3705 case Instruction::Mul: 3706 case Instruction::UDiv: 3707 case Instruction::SDiv: 3708 case Instruction::URem: 3709 case Instruction::SRem: 3710 case Instruction::Shl: 3711 case Instruction::AShr: 3712 case Instruction::LShr: 3713 if (!Val0->getType()->isIntOrIntVectorTy()) 3714 return error(ID.Loc, "constexpr requires integer operands"); 3715 break; 3716 case Instruction::FAdd: 3717 case Instruction::FSub: 3718 case Instruction::FMul: 3719 case Instruction::FDiv: 3720 case Instruction::FRem: 3721 if (!Val0->getType()->isFPOrFPVectorTy()) 3722 return error(ID.Loc, "constexpr requires fp operands"); 3723 break; 3724 default: llvm_unreachable("Unknown binary operator!"); 3725 } 3726 unsigned Flags = 0; 3727 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3728 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3729 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3730 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3731 ID.ConstantVal = C; 3732 ID.Kind = ValID::t_Constant; 3733 return false; 3734 } 3735 3736 // Logical Operations 3737 case lltok::kw_and: 3738 case lltok::kw_or: 3739 case lltok::kw_xor: { 3740 unsigned Opc = Lex.getUIntVal(); 3741 Constant *Val0, *Val1; 3742 Lex.Lex(); 3743 if (parseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3744 parseGlobalTypeAndValue(Val0) || 3745 parseToken(lltok::comma, "expected comma in logical constantexpr") || 3746 parseGlobalTypeAndValue(Val1) || 3747 parseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3748 return true; 3749 if (Val0->getType() != Val1->getType()) 3750 return error(ID.Loc, "operands of constexpr must have same type"); 3751 if (!Val0->getType()->isIntOrIntVectorTy()) 3752 return error(ID.Loc, 3753 "constexpr requires integer or integer vector operands"); 3754 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3755 ID.Kind = ValID::t_Constant; 3756 return false; 3757 } 3758 3759 case lltok::kw_getelementptr: 3760 case lltok::kw_shufflevector: 3761 case lltok::kw_insertelement: 3762 case lltok::kw_extractelement: 3763 case lltok::kw_select: { 3764 unsigned Opc = Lex.getUIntVal(); 3765 SmallVector<Constant*, 16> Elts; 3766 bool InBounds = false; 3767 Type *Ty; 3768 Lex.Lex(); 3769 3770 if (Opc == Instruction::GetElementPtr) 3771 InBounds = EatIfPresent(lltok::kw_inbounds); 3772 3773 if (parseToken(lltok::lparen, "expected '(' in constantexpr")) 3774 return true; 3775 3776 LocTy ExplicitTypeLoc = Lex.getLoc(); 3777 if (Opc == Instruction::GetElementPtr) { 3778 if (parseType(Ty) || 3779 parseToken(lltok::comma, "expected comma after getelementptr's type")) 3780 return true; 3781 } 3782 3783 Optional<unsigned> InRangeOp; 3784 if (parseGlobalValueVector( 3785 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3786 parseToken(lltok::rparen, "expected ')' in constantexpr")) 3787 return true; 3788 3789 if (Opc == Instruction::GetElementPtr) { 3790 if (Elts.size() == 0 || 3791 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 3792 return error(ID.Loc, "base of getelementptr must be a pointer"); 3793 3794 Type *BaseType = Elts[0]->getType(); 3795 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3796 if (Ty != BasePointerType->getElementType()) 3797 return error( 3798 ExplicitTypeLoc, 3799 "explicit pointee type doesn't match operand's pointee type"); 3800 3801 unsigned GEPWidth = 3802 BaseType->isVectorTy() 3803 ? cast<FixedVectorType>(BaseType)->getNumElements() 3804 : 0; 3805 3806 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3807 for (Constant *Val : Indices) { 3808 Type *ValTy = Val->getType(); 3809 if (!ValTy->isIntOrIntVectorTy()) 3810 return error(ID.Loc, "getelementptr index must be an integer"); 3811 if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) { 3812 unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements(); 3813 if (GEPWidth && (ValNumEl != GEPWidth)) 3814 return error( 3815 ID.Loc, 3816 "getelementptr vector index has a wrong number of elements"); 3817 // GEPWidth may have been unknown because the base is a scalar, 3818 // but it is known now. 3819 GEPWidth = ValNumEl; 3820 } 3821 } 3822 3823 SmallPtrSet<Type*, 4> Visited; 3824 if (!Indices.empty() && !Ty->isSized(&Visited)) 3825 return error(ID.Loc, "base element of getelementptr must be sized"); 3826 3827 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3828 return error(ID.Loc, "invalid getelementptr indices"); 3829 3830 if (InRangeOp) { 3831 if (*InRangeOp == 0) 3832 return error(ID.Loc, 3833 "inrange keyword may not appear on pointer operand"); 3834 --*InRangeOp; 3835 } 3836 3837 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3838 InBounds, InRangeOp); 3839 } else if (Opc == Instruction::Select) { 3840 if (Elts.size() != 3) 3841 return error(ID.Loc, "expected three operands to select"); 3842 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3843 Elts[2])) 3844 return error(ID.Loc, Reason); 3845 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3846 } else if (Opc == Instruction::ShuffleVector) { 3847 if (Elts.size() != 3) 3848 return error(ID.Loc, "expected three operands to shufflevector"); 3849 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3850 return error(ID.Loc, "invalid operands to shufflevector"); 3851 SmallVector<int, 16> Mask; 3852 ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask); 3853 ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask); 3854 } else if (Opc == Instruction::ExtractElement) { 3855 if (Elts.size() != 2) 3856 return error(ID.Loc, "expected two operands to extractelement"); 3857 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3858 return error(ID.Loc, "invalid extractelement operands"); 3859 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3860 } else { 3861 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3862 if (Elts.size() != 3) 3863 return error(ID.Loc, "expected three operands to insertelement"); 3864 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3865 return error(ID.Loc, "invalid insertelement operands"); 3866 ID.ConstantVal = 3867 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3868 } 3869 3870 ID.Kind = ValID::t_Constant; 3871 return false; 3872 } 3873 } 3874 3875 Lex.Lex(); 3876 return false; 3877 } 3878 3879 /// parseGlobalValue - parse a global value with the specified type. 3880 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) { 3881 C = nullptr; 3882 ValID ID; 3883 Value *V = nullptr; 3884 bool Parsed = parseValID(ID) || 3885 convertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false); 3886 if (V && !(C = dyn_cast<Constant>(V))) 3887 return error(ID.Loc, "global values must be constants"); 3888 return Parsed; 3889 } 3890 3891 bool LLParser::parseGlobalTypeAndValue(Constant *&V) { 3892 Type *Ty = nullptr; 3893 return parseType(Ty) || parseGlobalValue(Ty, V); 3894 } 3895 3896 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3897 C = nullptr; 3898 3899 LocTy KwLoc = Lex.getLoc(); 3900 if (!EatIfPresent(lltok::kw_comdat)) 3901 return false; 3902 3903 if (EatIfPresent(lltok::lparen)) { 3904 if (Lex.getKind() != lltok::ComdatVar) 3905 return tokError("expected comdat variable"); 3906 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3907 Lex.Lex(); 3908 if (parseToken(lltok::rparen, "expected ')' after comdat var")) 3909 return true; 3910 } else { 3911 if (GlobalName.empty()) 3912 return tokError("comdat cannot be unnamed"); 3913 C = getComdat(std::string(GlobalName), KwLoc); 3914 } 3915 3916 return false; 3917 } 3918 3919 /// parseGlobalValueVector 3920 /// ::= /*empty*/ 3921 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 3922 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 3923 Optional<unsigned> *InRangeOp) { 3924 // Empty list. 3925 if (Lex.getKind() == lltok::rbrace || 3926 Lex.getKind() == lltok::rsquare || 3927 Lex.getKind() == lltok::greater || 3928 Lex.getKind() == lltok::rparen) 3929 return false; 3930 3931 do { 3932 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 3933 *InRangeOp = Elts.size(); 3934 3935 Constant *C; 3936 if (parseGlobalTypeAndValue(C)) 3937 return true; 3938 Elts.push_back(C); 3939 } while (EatIfPresent(lltok::comma)); 3940 3941 return false; 3942 } 3943 3944 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) { 3945 SmallVector<Metadata *, 16> Elts; 3946 if (parseMDNodeVector(Elts)) 3947 return true; 3948 3949 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3950 return false; 3951 } 3952 3953 /// MDNode: 3954 /// ::= !{ ... } 3955 /// ::= !7 3956 /// ::= !DILocation(...) 3957 bool LLParser::parseMDNode(MDNode *&N) { 3958 if (Lex.getKind() == lltok::MetadataVar) 3959 return parseSpecializedMDNode(N); 3960 3961 return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N); 3962 } 3963 3964 bool LLParser::parseMDNodeTail(MDNode *&N) { 3965 // !{ ... } 3966 if (Lex.getKind() == lltok::lbrace) 3967 return parseMDTuple(N); 3968 3969 // !42 3970 return parseMDNodeID(N); 3971 } 3972 3973 namespace { 3974 3975 /// Structure to represent an optional metadata field. 3976 template <class FieldTy> struct MDFieldImpl { 3977 typedef MDFieldImpl ImplTy; 3978 FieldTy Val; 3979 bool Seen; 3980 3981 void assign(FieldTy Val) { 3982 Seen = true; 3983 this->Val = std::move(Val); 3984 } 3985 3986 explicit MDFieldImpl(FieldTy Default) 3987 : Val(std::move(Default)), Seen(false) {} 3988 }; 3989 3990 /// Structure to represent an optional metadata field that 3991 /// can be of either type (A or B) and encapsulates the 3992 /// MD<typeofA>Field and MD<typeofB>Field structs, so not 3993 /// to reimplement the specifics for representing each Field. 3994 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl { 3995 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy; 3996 FieldTypeA A; 3997 FieldTypeB B; 3998 bool Seen; 3999 4000 enum { 4001 IsInvalid = 0, 4002 IsTypeA = 1, 4003 IsTypeB = 2 4004 } WhatIs; 4005 4006 void assign(FieldTypeA A) { 4007 Seen = true; 4008 this->A = std::move(A); 4009 WhatIs = IsTypeA; 4010 } 4011 4012 void assign(FieldTypeB B) { 4013 Seen = true; 4014 this->B = std::move(B); 4015 WhatIs = IsTypeB; 4016 } 4017 4018 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) 4019 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), 4020 WhatIs(IsInvalid) {} 4021 }; 4022 4023 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 4024 uint64_t Max; 4025 4026 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 4027 : ImplTy(Default), Max(Max) {} 4028 }; 4029 4030 struct LineField : public MDUnsignedField { 4031 LineField() : MDUnsignedField(0, UINT32_MAX) {} 4032 }; 4033 4034 struct ColumnField : public MDUnsignedField { 4035 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 4036 }; 4037 4038 struct DwarfTagField : public MDUnsignedField { 4039 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 4040 DwarfTagField(dwarf::Tag DefaultTag) 4041 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 4042 }; 4043 4044 struct DwarfMacinfoTypeField : public MDUnsignedField { 4045 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 4046 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 4047 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 4048 }; 4049 4050 struct DwarfAttEncodingField : public MDUnsignedField { 4051 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 4052 }; 4053 4054 struct DwarfVirtualityField : public MDUnsignedField { 4055 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 4056 }; 4057 4058 struct DwarfLangField : public MDUnsignedField { 4059 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 4060 }; 4061 4062 struct DwarfCCField : public MDUnsignedField { 4063 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 4064 }; 4065 4066 struct EmissionKindField : public MDUnsignedField { 4067 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 4068 }; 4069 4070 struct NameTableKindField : public MDUnsignedField { 4071 NameTableKindField() 4072 : MDUnsignedField( 4073 0, (unsigned) 4074 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {} 4075 }; 4076 4077 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 4078 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 4079 }; 4080 4081 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> { 4082 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {} 4083 }; 4084 4085 struct MDAPSIntField : public MDFieldImpl<APSInt> { 4086 MDAPSIntField() : ImplTy(APSInt()) {} 4087 }; 4088 4089 struct MDSignedField : public MDFieldImpl<int64_t> { 4090 int64_t Min; 4091 int64_t Max; 4092 4093 MDSignedField(int64_t Default = 0) 4094 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 4095 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 4096 : ImplTy(Default), Min(Min), Max(Max) {} 4097 }; 4098 4099 struct MDBoolField : public MDFieldImpl<bool> { 4100 MDBoolField(bool Default = false) : ImplTy(Default) {} 4101 }; 4102 4103 struct MDField : public MDFieldImpl<Metadata *> { 4104 bool AllowNull; 4105 4106 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 4107 }; 4108 4109 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 4110 MDConstant() : ImplTy(nullptr) {} 4111 }; 4112 4113 struct MDStringField : public MDFieldImpl<MDString *> { 4114 bool AllowEmpty; 4115 MDStringField(bool AllowEmpty = true) 4116 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 4117 }; 4118 4119 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 4120 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 4121 }; 4122 4123 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 4124 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 4125 }; 4126 4127 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> { 4128 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) 4129 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} 4130 4131 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, 4132 bool AllowNull = true) 4133 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} 4134 4135 bool isMDSignedField() const { return WhatIs == IsTypeA; } 4136 bool isMDField() const { return WhatIs == IsTypeB; } 4137 int64_t getMDSignedValue() const { 4138 assert(isMDSignedField() && "Wrong field type"); 4139 return A.Val; 4140 } 4141 Metadata *getMDFieldValue() const { 4142 assert(isMDField() && "Wrong field type"); 4143 return B.Val; 4144 } 4145 }; 4146 4147 struct MDSignedOrUnsignedField 4148 : MDEitherFieldImpl<MDSignedField, MDUnsignedField> { 4149 MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {} 4150 4151 bool isMDSignedField() const { return WhatIs == IsTypeA; } 4152 bool isMDUnsignedField() const { return WhatIs == IsTypeB; } 4153 int64_t getMDSignedValue() const { 4154 assert(isMDSignedField() && "Wrong field type"); 4155 return A.Val; 4156 } 4157 uint64_t getMDUnsignedValue() const { 4158 assert(isMDUnsignedField() && "Wrong field type"); 4159 return B.Val; 4160 } 4161 }; 4162 4163 } // end anonymous namespace 4164 4165 namespace llvm { 4166 4167 template <> 4168 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) { 4169 if (Lex.getKind() != lltok::APSInt) 4170 return tokError("expected integer"); 4171 4172 Result.assign(Lex.getAPSIntVal()); 4173 Lex.Lex(); 4174 return false; 4175 } 4176 4177 template <> 4178 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4179 MDUnsignedField &Result) { 4180 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4181 return tokError("expected unsigned integer"); 4182 4183 auto &U = Lex.getAPSIntVal(); 4184 if (U.ugt(Result.Max)) 4185 return tokError("value for '" + Name + "' too large, limit is " + 4186 Twine(Result.Max)); 4187 Result.assign(U.getZExtValue()); 4188 assert(Result.Val <= Result.Max && "Expected value in range"); 4189 Lex.Lex(); 4190 return false; 4191 } 4192 4193 template <> 4194 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) { 4195 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4196 } 4197 template <> 4198 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 4199 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4200 } 4201 4202 template <> 4203 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 4204 if (Lex.getKind() == lltok::APSInt) 4205 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4206 4207 if (Lex.getKind() != lltok::DwarfTag) 4208 return tokError("expected DWARF tag"); 4209 4210 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 4211 if (Tag == dwarf::DW_TAG_invalid) 4212 return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 4213 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 4214 4215 Result.assign(Tag); 4216 Lex.Lex(); 4217 return false; 4218 } 4219 4220 template <> 4221 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4222 DwarfMacinfoTypeField &Result) { 4223 if (Lex.getKind() == lltok::APSInt) 4224 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4225 4226 if (Lex.getKind() != lltok::DwarfMacinfo) 4227 return tokError("expected DWARF macinfo type"); 4228 4229 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 4230 if (Macinfo == dwarf::DW_MACINFO_invalid) 4231 return tokError("invalid DWARF macinfo type" + Twine(" '") + 4232 Lex.getStrVal() + "'"); 4233 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 4234 4235 Result.assign(Macinfo); 4236 Lex.Lex(); 4237 return false; 4238 } 4239 4240 template <> 4241 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4242 DwarfVirtualityField &Result) { 4243 if (Lex.getKind() == lltok::APSInt) 4244 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4245 4246 if (Lex.getKind() != lltok::DwarfVirtuality) 4247 return tokError("expected DWARF virtuality code"); 4248 4249 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 4250 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 4251 return tokError("invalid DWARF virtuality code" + Twine(" '") + 4252 Lex.getStrVal() + "'"); 4253 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 4254 Result.assign(Virtuality); 4255 Lex.Lex(); 4256 return false; 4257 } 4258 4259 template <> 4260 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 4261 if (Lex.getKind() == lltok::APSInt) 4262 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4263 4264 if (Lex.getKind() != lltok::DwarfLang) 4265 return tokError("expected DWARF language"); 4266 4267 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 4268 if (!Lang) 4269 return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 4270 "'"); 4271 assert(Lang <= Result.Max && "Expected valid DWARF language"); 4272 Result.assign(Lang); 4273 Lex.Lex(); 4274 return false; 4275 } 4276 4277 template <> 4278 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 4279 if (Lex.getKind() == lltok::APSInt) 4280 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4281 4282 if (Lex.getKind() != lltok::DwarfCC) 4283 return tokError("expected DWARF calling convention"); 4284 4285 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 4286 if (!CC) 4287 return tokError("invalid DWARF calling convention" + Twine(" '") + 4288 Lex.getStrVal() + "'"); 4289 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 4290 Result.assign(CC); 4291 Lex.Lex(); 4292 return false; 4293 } 4294 4295 template <> 4296 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4297 EmissionKindField &Result) { 4298 if (Lex.getKind() == lltok::APSInt) 4299 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4300 4301 if (Lex.getKind() != lltok::EmissionKind) 4302 return tokError("expected emission kind"); 4303 4304 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 4305 if (!Kind) 4306 return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 4307 "'"); 4308 assert(*Kind <= Result.Max && "Expected valid emission kind"); 4309 Result.assign(*Kind); 4310 Lex.Lex(); 4311 return false; 4312 } 4313 4314 template <> 4315 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4316 NameTableKindField &Result) { 4317 if (Lex.getKind() == lltok::APSInt) 4318 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4319 4320 if (Lex.getKind() != lltok::NameTableKind) 4321 return tokError("expected nameTable kind"); 4322 4323 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal()); 4324 if (!Kind) 4325 return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() + 4326 "'"); 4327 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind"); 4328 Result.assign((unsigned)*Kind); 4329 Lex.Lex(); 4330 return false; 4331 } 4332 4333 template <> 4334 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4335 DwarfAttEncodingField &Result) { 4336 if (Lex.getKind() == lltok::APSInt) 4337 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4338 4339 if (Lex.getKind() != lltok::DwarfAttEncoding) 4340 return tokError("expected DWARF type attribute encoding"); 4341 4342 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 4343 if (!Encoding) 4344 return tokError("invalid DWARF type attribute encoding" + Twine(" '") + 4345 Lex.getStrVal() + "'"); 4346 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 4347 Result.assign(Encoding); 4348 Lex.Lex(); 4349 return false; 4350 } 4351 4352 /// DIFlagField 4353 /// ::= uint32 4354 /// ::= DIFlagVector 4355 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 4356 template <> 4357 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 4358 4359 // parser for a single flag. 4360 auto parseFlag = [&](DINode::DIFlags &Val) { 4361 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4362 uint32_t TempVal = static_cast<uint32_t>(Val); 4363 bool Res = parseUInt32(TempVal); 4364 Val = static_cast<DINode::DIFlags>(TempVal); 4365 return Res; 4366 } 4367 4368 if (Lex.getKind() != lltok::DIFlag) 4369 return tokError("expected debug info flag"); 4370 4371 Val = DINode::getFlag(Lex.getStrVal()); 4372 if (!Val) 4373 return tokError(Twine("invalid debug info flag flag '") + 4374 Lex.getStrVal() + "'"); 4375 Lex.Lex(); 4376 return false; 4377 }; 4378 4379 // parse the flags and combine them together. 4380 DINode::DIFlags Combined = DINode::FlagZero; 4381 do { 4382 DINode::DIFlags Val; 4383 if (parseFlag(Val)) 4384 return true; 4385 Combined |= Val; 4386 } while (EatIfPresent(lltok::bar)); 4387 4388 Result.assign(Combined); 4389 return false; 4390 } 4391 4392 /// DISPFlagField 4393 /// ::= uint32 4394 /// ::= DISPFlagVector 4395 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32 4396 template <> 4397 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) { 4398 4399 // parser for a single flag. 4400 auto parseFlag = [&](DISubprogram::DISPFlags &Val) { 4401 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4402 uint32_t TempVal = static_cast<uint32_t>(Val); 4403 bool Res = parseUInt32(TempVal); 4404 Val = static_cast<DISubprogram::DISPFlags>(TempVal); 4405 return Res; 4406 } 4407 4408 if (Lex.getKind() != lltok::DISPFlag) 4409 return tokError("expected debug info flag"); 4410 4411 Val = DISubprogram::getFlag(Lex.getStrVal()); 4412 if (!Val) 4413 return tokError(Twine("invalid subprogram debug info flag '") + 4414 Lex.getStrVal() + "'"); 4415 Lex.Lex(); 4416 return false; 4417 }; 4418 4419 // parse the flags and combine them together. 4420 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero; 4421 do { 4422 DISubprogram::DISPFlags Val; 4423 if (parseFlag(Val)) 4424 return true; 4425 Combined |= Val; 4426 } while (EatIfPresent(lltok::bar)); 4427 4428 Result.assign(Combined); 4429 return false; 4430 } 4431 4432 template <> 4433 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) { 4434 if (Lex.getKind() != lltok::APSInt) 4435 return tokError("expected signed integer"); 4436 4437 auto &S = Lex.getAPSIntVal(); 4438 if (S < Result.Min) 4439 return tokError("value for '" + Name + "' too small, limit is " + 4440 Twine(Result.Min)); 4441 if (S > Result.Max) 4442 return tokError("value for '" + Name + "' too large, limit is " + 4443 Twine(Result.Max)); 4444 Result.assign(S.getExtValue()); 4445 assert(Result.Val >= Result.Min && "Expected value in range"); 4446 assert(Result.Val <= Result.Max && "Expected value in range"); 4447 Lex.Lex(); 4448 return false; 4449 } 4450 4451 template <> 4452 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 4453 switch (Lex.getKind()) { 4454 default: 4455 return tokError("expected 'true' or 'false'"); 4456 case lltok::kw_true: 4457 Result.assign(true); 4458 break; 4459 case lltok::kw_false: 4460 Result.assign(false); 4461 break; 4462 } 4463 Lex.Lex(); 4464 return false; 4465 } 4466 4467 template <> 4468 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) { 4469 if (Lex.getKind() == lltok::kw_null) { 4470 if (!Result.AllowNull) 4471 return tokError("'" + Name + "' cannot be null"); 4472 Lex.Lex(); 4473 Result.assign(nullptr); 4474 return false; 4475 } 4476 4477 Metadata *MD; 4478 if (parseMetadata(MD, nullptr)) 4479 return true; 4480 4481 Result.assign(MD); 4482 return false; 4483 } 4484 4485 template <> 4486 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4487 MDSignedOrMDField &Result) { 4488 // Try to parse a signed int. 4489 if (Lex.getKind() == lltok::APSInt) { 4490 MDSignedField Res = Result.A; 4491 if (!parseMDField(Loc, Name, Res)) { 4492 Result.assign(Res); 4493 return false; 4494 } 4495 return true; 4496 } 4497 4498 // Otherwise, try to parse as an MDField. 4499 MDField Res = Result.B; 4500 if (!parseMDField(Loc, Name, Res)) { 4501 Result.assign(Res); 4502 return false; 4503 } 4504 4505 return true; 4506 } 4507 4508 template <> 4509 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 4510 LocTy ValueLoc = Lex.getLoc(); 4511 std::string S; 4512 if (parseStringConstant(S)) 4513 return true; 4514 4515 if (!Result.AllowEmpty && S.empty()) 4516 return error(ValueLoc, "'" + Name + "' cannot be empty"); 4517 4518 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 4519 return false; 4520 } 4521 4522 template <> 4523 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 4524 SmallVector<Metadata *, 4> MDs; 4525 if (parseMDNodeVector(MDs)) 4526 return true; 4527 4528 Result.assign(std::move(MDs)); 4529 return false; 4530 } 4531 4532 template <> 4533 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4534 ChecksumKindField &Result) { 4535 Optional<DIFile::ChecksumKind> CSKind = 4536 DIFile::getChecksumKind(Lex.getStrVal()); 4537 4538 if (Lex.getKind() != lltok::ChecksumKind || !CSKind) 4539 return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() + 4540 "'"); 4541 4542 Result.assign(*CSKind); 4543 Lex.Lex(); 4544 return false; 4545 } 4546 4547 } // end namespace llvm 4548 4549 template <class ParserTy> 4550 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) { 4551 do { 4552 if (Lex.getKind() != lltok::LabelStr) 4553 return tokError("expected field label here"); 4554 4555 if (ParseField()) 4556 return true; 4557 } while (EatIfPresent(lltok::comma)); 4558 4559 return false; 4560 } 4561 4562 template <class ParserTy> 4563 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) { 4564 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4565 Lex.Lex(); 4566 4567 if (parseToken(lltok::lparen, "expected '(' here")) 4568 return true; 4569 if (Lex.getKind() != lltok::rparen) 4570 if (parseMDFieldsImplBody(ParseField)) 4571 return true; 4572 4573 ClosingLoc = Lex.getLoc(); 4574 return parseToken(lltok::rparen, "expected ')' here"); 4575 } 4576 4577 template <class FieldTy> 4578 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) { 4579 if (Result.Seen) 4580 return tokError("field '" + Name + "' cannot be specified more than once"); 4581 4582 LocTy Loc = Lex.getLoc(); 4583 Lex.Lex(); 4584 return parseMDField(Loc, Name, Result); 4585 } 4586 4587 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 4588 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4589 4590 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 4591 if (Lex.getStrVal() == #CLASS) \ 4592 return parse##CLASS(N, IsDistinct); 4593 #include "llvm/IR/Metadata.def" 4594 4595 return tokError("expected metadata type"); 4596 } 4597 4598 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 4599 #define NOP_FIELD(NAME, TYPE, INIT) 4600 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 4601 if (!NAME.Seen) \ 4602 return error(ClosingLoc, "missing required field '" #NAME "'"); 4603 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 4604 if (Lex.getStrVal() == #NAME) \ 4605 return parseMDField(#NAME, NAME); 4606 #define PARSE_MD_FIELDS() \ 4607 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 4608 do { \ 4609 LocTy ClosingLoc; \ 4610 if (parseMDFieldsImpl( \ 4611 [&]() -> bool { \ 4612 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 4613 return tokError(Twine("invalid field '") + Lex.getStrVal() + \ 4614 "'"); \ 4615 }, \ 4616 ClosingLoc)) \ 4617 return true; \ 4618 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 4619 } while (false) 4620 #define GET_OR_DISTINCT(CLASS, ARGS) \ 4621 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 4622 4623 /// parseDILocationFields: 4624 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6, 4625 /// isImplicitCode: true) 4626 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) { 4627 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4628 OPTIONAL(line, LineField, ); \ 4629 OPTIONAL(column, ColumnField, ); \ 4630 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4631 OPTIONAL(inlinedAt, MDField, ); \ 4632 OPTIONAL(isImplicitCode, MDBoolField, (false)); 4633 PARSE_MD_FIELDS(); 4634 #undef VISIT_MD_FIELDS 4635 4636 Result = 4637 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val, 4638 inlinedAt.Val, isImplicitCode.Val)); 4639 return false; 4640 } 4641 4642 /// parseGenericDINode: 4643 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 4644 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) { 4645 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4646 REQUIRED(tag, DwarfTagField, ); \ 4647 OPTIONAL(header, MDStringField, ); \ 4648 OPTIONAL(operands, MDFieldList, ); 4649 PARSE_MD_FIELDS(); 4650 #undef VISIT_MD_FIELDS 4651 4652 Result = GET_OR_DISTINCT(GenericDINode, 4653 (Context, tag.Val, header.Val, operands.Val)); 4654 return false; 4655 } 4656 4657 /// parseDISubrange: 4658 /// ::= !DISubrange(count: 30, lowerBound: 2) 4659 /// ::= !DISubrange(count: !node, lowerBound: 2) 4660 /// ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3) 4661 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) { 4662 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4663 OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ 4664 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 4665 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 4666 OPTIONAL(stride, MDSignedOrMDField, ); 4667 PARSE_MD_FIELDS(); 4668 #undef VISIT_MD_FIELDS 4669 4670 Metadata *Count = nullptr; 4671 Metadata *LowerBound = nullptr; 4672 Metadata *UpperBound = nullptr; 4673 Metadata *Stride = nullptr; 4674 if (count.isMDSignedField()) 4675 Count = ConstantAsMetadata::get(ConstantInt::getSigned( 4676 Type::getInt64Ty(Context), count.getMDSignedValue())); 4677 else if (count.isMDField()) 4678 Count = count.getMDFieldValue(); 4679 4680 auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 4681 if (Bound.isMDSignedField()) 4682 return ConstantAsMetadata::get(ConstantInt::getSigned( 4683 Type::getInt64Ty(Context), Bound.getMDSignedValue())); 4684 if (Bound.isMDField()) 4685 return Bound.getMDFieldValue(); 4686 return nullptr; 4687 }; 4688 4689 LowerBound = convToMetadata(lowerBound); 4690 UpperBound = convToMetadata(upperBound); 4691 Stride = convToMetadata(stride); 4692 4693 Result = GET_OR_DISTINCT(DISubrange, 4694 (Context, Count, LowerBound, UpperBound, Stride)); 4695 4696 return false; 4697 } 4698 4699 /// parseDIGenericSubrange: 4700 /// ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride: 4701 /// !node3) 4702 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) { 4703 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4704 OPTIONAL(count, MDSignedOrMDField, ); \ 4705 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 4706 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 4707 OPTIONAL(stride, MDSignedOrMDField, ); 4708 PARSE_MD_FIELDS(); 4709 #undef VISIT_MD_FIELDS 4710 4711 auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 4712 if (Bound.isMDSignedField()) 4713 return DIExpression::get( 4714 Context, {dwarf::DW_OP_consts, 4715 static_cast<uint64_t>(Bound.getMDSignedValue())}); 4716 if (Bound.isMDField()) 4717 return Bound.getMDFieldValue(); 4718 return nullptr; 4719 }; 4720 4721 Metadata *Count = ConvToMetadata(count); 4722 Metadata *LowerBound = ConvToMetadata(lowerBound); 4723 Metadata *UpperBound = ConvToMetadata(upperBound); 4724 Metadata *Stride = ConvToMetadata(stride); 4725 4726 Result = GET_OR_DISTINCT(DIGenericSubrange, 4727 (Context, Count, LowerBound, UpperBound, Stride)); 4728 4729 return false; 4730 } 4731 4732 /// parseDIEnumerator: 4733 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind") 4734 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) { 4735 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4736 REQUIRED(name, MDStringField, ); \ 4737 REQUIRED(value, MDAPSIntField, ); \ 4738 OPTIONAL(isUnsigned, MDBoolField, (false)); 4739 PARSE_MD_FIELDS(); 4740 #undef VISIT_MD_FIELDS 4741 4742 if (isUnsigned.Val && value.Val.isNegative()) 4743 return tokError("unsigned enumerator with negative value"); 4744 4745 APSInt Value(value.Val); 4746 // Add a leading zero so that unsigned values with the msb set are not 4747 // mistaken for negative values when used for signed enumerators. 4748 if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet()) 4749 Value = Value.zext(Value.getBitWidth() + 1); 4750 4751 Result = 4752 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val)); 4753 4754 return false; 4755 } 4756 4757 /// parseDIBasicType: 4758 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32, 4759 /// encoding: DW_ATE_encoding, flags: 0) 4760 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) { 4761 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4762 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 4763 OPTIONAL(name, MDStringField, ); \ 4764 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4765 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4766 OPTIONAL(encoding, DwarfAttEncodingField, ); \ 4767 OPTIONAL(flags, DIFlagField, ); 4768 PARSE_MD_FIELDS(); 4769 #undef VISIT_MD_FIELDS 4770 4771 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 4772 align.Val, encoding.Val, flags.Val)); 4773 return false; 4774 } 4775 4776 /// parseDIStringType: 4777 /// ::= !DIStringType(name: "character(4)", size: 32, align: 32) 4778 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) { 4779 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4780 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type)); \ 4781 OPTIONAL(name, MDStringField, ); \ 4782 OPTIONAL(stringLength, MDField, ); \ 4783 OPTIONAL(stringLengthExpression, MDField, ); \ 4784 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4785 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4786 OPTIONAL(encoding, DwarfAttEncodingField, ); 4787 PARSE_MD_FIELDS(); 4788 #undef VISIT_MD_FIELDS 4789 4790 Result = GET_OR_DISTINCT(DIStringType, 4791 (Context, tag.Val, name.Val, stringLength.Val, 4792 stringLengthExpression.Val, size.Val, align.Val, 4793 encoding.Val)); 4794 return false; 4795 } 4796 4797 /// parseDIDerivedType: 4798 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 4799 /// line: 7, scope: !1, baseType: !2, size: 32, 4800 /// align: 32, offset: 0, flags: 0, extraData: !3, 4801 /// dwarfAddressSpace: 3) 4802 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) { 4803 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4804 REQUIRED(tag, DwarfTagField, ); \ 4805 OPTIONAL(name, MDStringField, ); \ 4806 OPTIONAL(file, MDField, ); \ 4807 OPTIONAL(line, LineField, ); \ 4808 OPTIONAL(scope, MDField, ); \ 4809 REQUIRED(baseType, MDField, ); \ 4810 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4811 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4812 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4813 OPTIONAL(flags, DIFlagField, ); \ 4814 OPTIONAL(extraData, MDField, ); \ 4815 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); 4816 PARSE_MD_FIELDS(); 4817 #undef VISIT_MD_FIELDS 4818 4819 Optional<unsigned> DWARFAddressSpace; 4820 if (dwarfAddressSpace.Val != UINT32_MAX) 4821 DWARFAddressSpace = dwarfAddressSpace.Val; 4822 4823 Result = GET_OR_DISTINCT(DIDerivedType, 4824 (Context, tag.Val, name.Val, file.Val, line.Val, 4825 scope.Val, baseType.Val, size.Val, align.Val, 4826 offset.Val, DWARFAddressSpace, flags.Val, 4827 extraData.Val)); 4828 return false; 4829 } 4830 4831 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) { 4832 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4833 REQUIRED(tag, DwarfTagField, ); \ 4834 OPTIONAL(name, MDStringField, ); \ 4835 OPTIONAL(file, MDField, ); \ 4836 OPTIONAL(line, LineField, ); \ 4837 OPTIONAL(scope, MDField, ); \ 4838 OPTIONAL(baseType, MDField, ); \ 4839 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4840 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4841 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4842 OPTIONAL(flags, DIFlagField, ); \ 4843 OPTIONAL(elements, MDField, ); \ 4844 OPTIONAL(runtimeLang, DwarfLangField, ); \ 4845 OPTIONAL(vtableHolder, MDField, ); \ 4846 OPTIONAL(templateParams, MDField, ); \ 4847 OPTIONAL(identifier, MDStringField, ); \ 4848 OPTIONAL(discriminator, MDField, ); \ 4849 OPTIONAL(dataLocation, MDField, ); \ 4850 OPTIONAL(associated, MDField, ); \ 4851 OPTIONAL(allocated, MDField, ); \ 4852 OPTIONAL(rank, MDSignedOrMDField, ); 4853 PARSE_MD_FIELDS(); 4854 #undef VISIT_MD_FIELDS 4855 4856 Metadata *Rank = nullptr; 4857 if (rank.isMDSignedField()) 4858 Rank = ConstantAsMetadata::get(ConstantInt::getSigned( 4859 Type::getInt64Ty(Context), rank.getMDSignedValue())); 4860 else if (rank.isMDField()) 4861 Rank = rank.getMDFieldValue(); 4862 4863 // If this has an identifier try to build an ODR type. 4864 if (identifier.Val) 4865 if (auto *CT = DICompositeType::buildODRType( 4866 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 4867 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 4868 elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val, 4869 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, 4870 Rank)) { 4871 Result = CT; 4872 return false; 4873 } 4874 4875 // Create a new node, and save it in the context if it belongs in the type 4876 // map. 4877 Result = GET_OR_DISTINCT( 4878 DICompositeType, 4879 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 4880 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 4881 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val, 4882 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, 4883 Rank)); 4884 return false; 4885 } 4886 4887 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) { 4888 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4889 OPTIONAL(flags, DIFlagField, ); \ 4890 OPTIONAL(cc, DwarfCCField, ); \ 4891 REQUIRED(types, MDField, ); 4892 PARSE_MD_FIELDS(); 4893 #undef VISIT_MD_FIELDS 4894 4895 Result = GET_OR_DISTINCT(DISubroutineType, 4896 (Context, flags.Val, cc.Val, types.Val)); 4897 return false; 4898 } 4899 4900 /// parseDIFileType: 4901 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir", 4902 /// checksumkind: CSK_MD5, 4903 /// checksum: "000102030405060708090a0b0c0d0e0f", 4904 /// source: "source file contents") 4905 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) { 4906 // The default constructed value for checksumkind is required, but will never 4907 // be used, as the parser checks if the field was actually Seen before using 4908 // the Val. 4909 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4910 REQUIRED(filename, MDStringField, ); \ 4911 REQUIRED(directory, MDStringField, ); \ 4912 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \ 4913 OPTIONAL(checksum, MDStringField, ); \ 4914 OPTIONAL(source, MDStringField, ); 4915 PARSE_MD_FIELDS(); 4916 #undef VISIT_MD_FIELDS 4917 4918 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum; 4919 if (checksumkind.Seen && checksum.Seen) 4920 OptChecksum.emplace(checksumkind.Val, checksum.Val); 4921 else if (checksumkind.Seen || checksum.Seen) 4922 return Lex.Error("'checksumkind' and 'checksum' must be provided together"); 4923 4924 Optional<MDString *> OptSource; 4925 if (source.Seen) 4926 OptSource = source.Val; 4927 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val, 4928 OptChecksum, OptSource)); 4929 return false; 4930 } 4931 4932 /// parseDICompileUnit: 4933 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 4934 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 4935 /// splitDebugFilename: "abc.debug", 4936 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 4937 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd, 4938 /// sysroot: "/", sdk: "MacOSX.sdk") 4939 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) { 4940 if (!IsDistinct) 4941 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 4942 4943 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4944 REQUIRED(language, DwarfLangField, ); \ 4945 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 4946 OPTIONAL(producer, MDStringField, ); \ 4947 OPTIONAL(isOptimized, MDBoolField, ); \ 4948 OPTIONAL(flags, MDStringField, ); \ 4949 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 4950 OPTIONAL(splitDebugFilename, MDStringField, ); \ 4951 OPTIONAL(emissionKind, EmissionKindField, ); \ 4952 OPTIONAL(enums, MDField, ); \ 4953 OPTIONAL(retainedTypes, MDField, ); \ 4954 OPTIONAL(globals, MDField, ); \ 4955 OPTIONAL(imports, MDField, ); \ 4956 OPTIONAL(macros, MDField, ); \ 4957 OPTIONAL(dwoId, MDUnsignedField, ); \ 4958 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 4959 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 4960 OPTIONAL(nameTableKind, NameTableKindField, ); \ 4961 OPTIONAL(rangesBaseAddress, MDBoolField, = false); \ 4962 OPTIONAL(sysroot, MDStringField, ); \ 4963 OPTIONAL(sdk, MDStringField, ); 4964 PARSE_MD_FIELDS(); 4965 #undef VISIT_MD_FIELDS 4966 4967 Result = DICompileUnit::getDistinct( 4968 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 4969 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 4970 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 4971 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val, 4972 rangesBaseAddress.Val, sysroot.Val, sdk.Val); 4973 return false; 4974 } 4975 4976 /// parseDISubprogram: 4977 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 4978 /// file: !1, line: 7, type: !2, isLocal: false, 4979 /// isDefinition: true, scopeLine: 8, containingType: !3, 4980 /// virtuality: DW_VIRTUALTIY_pure_virtual, 4981 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 4982 /// spFlags: 10, isOptimized: false, templateParams: !4, 4983 /// declaration: !5, retainedNodes: !6, thrownTypes: !7) 4984 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) { 4985 auto Loc = Lex.getLoc(); 4986 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4987 OPTIONAL(scope, MDField, ); \ 4988 OPTIONAL(name, MDStringField, ); \ 4989 OPTIONAL(linkageName, MDStringField, ); \ 4990 OPTIONAL(file, MDField, ); \ 4991 OPTIONAL(line, LineField, ); \ 4992 OPTIONAL(type, MDField, ); \ 4993 OPTIONAL(isLocal, MDBoolField, ); \ 4994 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4995 OPTIONAL(scopeLine, LineField, ); \ 4996 OPTIONAL(containingType, MDField, ); \ 4997 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 4998 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 4999 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 5000 OPTIONAL(flags, DIFlagField, ); \ 5001 OPTIONAL(spFlags, DISPFlagField, ); \ 5002 OPTIONAL(isOptimized, MDBoolField, ); \ 5003 OPTIONAL(unit, MDField, ); \ 5004 OPTIONAL(templateParams, MDField, ); \ 5005 OPTIONAL(declaration, MDField, ); \ 5006 OPTIONAL(retainedNodes, MDField, ); \ 5007 OPTIONAL(thrownTypes, MDField, ); 5008 PARSE_MD_FIELDS(); 5009 #undef VISIT_MD_FIELDS 5010 5011 // An explicit spFlags field takes precedence over individual fields in 5012 // older IR versions. 5013 DISubprogram::DISPFlags SPFlags = 5014 spFlags.Seen ? spFlags.Val 5015 : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val, 5016 isOptimized.Val, virtuality.Val); 5017 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct) 5018 return Lex.Error( 5019 Loc, 5020 "missing 'distinct', required for !DISubprogram that is a Definition"); 5021 Result = GET_OR_DISTINCT( 5022 DISubprogram, 5023 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 5024 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val, 5025 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val, 5026 declaration.Val, retainedNodes.Val, thrownTypes.Val)); 5027 return false; 5028 } 5029 5030 /// parseDILexicalBlock: 5031 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 5032 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 5033 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5034 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5035 OPTIONAL(file, MDField, ); \ 5036 OPTIONAL(line, LineField, ); \ 5037 OPTIONAL(column, ColumnField, ); 5038 PARSE_MD_FIELDS(); 5039 #undef VISIT_MD_FIELDS 5040 5041 Result = GET_OR_DISTINCT( 5042 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 5043 return false; 5044 } 5045 5046 /// parseDILexicalBlockFile: 5047 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 5048 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 5049 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5050 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5051 OPTIONAL(file, MDField, ); \ 5052 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 5053 PARSE_MD_FIELDS(); 5054 #undef VISIT_MD_FIELDS 5055 5056 Result = GET_OR_DISTINCT(DILexicalBlockFile, 5057 (Context, scope.Val, file.Val, discriminator.Val)); 5058 return false; 5059 } 5060 5061 /// parseDICommonBlock: 5062 /// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9) 5063 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) { 5064 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5065 REQUIRED(scope, MDField, ); \ 5066 OPTIONAL(declaration, MDField, ); \ 5067 OPTIONAL(name, MDStringField, ); \ 5068 OPTIONAL(file, MDField, ); \ 5069 OPTIONAL(line, LineField, ); 5070 PARSE_MD_FIELDS(); 5071 #undef VISIT_MD_FIELDS 5072 5073 Result = GET_OR_DISTINCT(DICommonBlock, 5074 (Context, scope.Val, declaration.Val, name.Val, 5075 file.Val, line.Val)); 5076 return false; 5077 } 5078 5079 /// parseDINamespace: 5080 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 5081 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) { 5082 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5083 REQUIRED(scope, MDField, ); \ 5084 OPTIONAL(name, MDStringField, ); \ 5085 OPTIONAL(exportSymbols, MDBoolField, ); 5086 PARSE_MD_FIELDS(); 5087 #undef VISIT_MD_FIELDS 5088 5089 Result = GET_OR_DISTINCT(DINamespace, 5090 (Context, scope.Val, name.Val, exportSymbols.Val)); 5091 return false; 5092 } 5093 5094 /// parseDIMacro: 5095 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: 5096 /// "SomeValue") 5097 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) { 5098 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5099 REQUIRED(type, DwarfMacinfoTypeField, ); \ 5100 OPTIONAL(line, LineField, ); \ 5101 REQUIRED(name, MDStringField, ); \ 5102 OPTIONAL(value, MDStringField, ); 5103 PARSE_MD_FIELDS(); 5104 #undef VISIT_MD_FIELDS 5105 5106 Result = GET_OR_DISTINCT(DIMacro, 5107 (Context, type.Val, line.Val, name.Val, value.Val)); 5108 return false; 5109 } 5110 5111 /// parseDIMacroFile: 5112 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 5113 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) { 5114 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5115 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 5116 OPTIONAL(line, LineField, ); \ 5117 REQUIRED(file, MDField, ); \ 5118 OPTIONAL(nodes, MDField, ); 5119 PARSE_MD_FIELDS(); 5120 #undef VISIT_MD_FIELDS 5121 5122 Result = GET_OR_DISTINCT(DIMacroFile, 5123 (Context, type.Val, line.Val, file.Val, nodes.Val)); 5124 return false; 5125 } 5126 5127 /// parseDIModule: 5128 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: 5129 /// "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes", 5130 /// file: !1, line: 4, isDecl: false) 5131 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) { 5132 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5133 REQUIRED(scope, MDField, ); \ 5134 REQUIRED(name, MDStringField, ); \ 5135 OPTIONAL(configMacros, MDStringField, ); \ 5136 OPTIONAL(includePath, MDStringField, ); \ 5137 OPTIONAL(apinotes, MDStringField, ); \ 5138 OPTIONAL(file, MDField, ); \ 5139 OPTIONAL(line, LineField, ); \ 5140 OPTIONAL(isDecl, MDBoolField, ); 5141 PARSE_MD_FIELDS(); 5142 #undef VISIT_MD_FIELDS 5143 5144 Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val, 5145 configMacros.Val, includePath.Val, 5146 apinotes.Val, line.Val, isDecl.Val)); 5147 return false; 5148 } 5149 5150 /// parseDITemplateTypeParameter: 5151 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false) 5152 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 5153 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5154 OPTIONAL(name, MDStringField, ); \ 5155 REQUIRED(type, MDField, ); \ 5156 OPTIONAL(defaulted, MDBoolField, ); 5157 PARSE_MD_FIELDS(); 5158 #undef VISIT_MD_FIELDS 5159 5160 Result = GET_OR_DISTINCT(DITemplateTypeParameter, 5161 (Context, name.Val, type.Val, defaulted.Val)); 5162 return false; 5163 } 5164 5165 /// parseDITemplateValueParameter: 5166 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 5167 /// name: "V", type: !1, defaulted: false, 5168 /// value: i32 7) 5169 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 5170 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5171 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 5172 OPTIONAL(name, MDStringField, ); \ 5173 OPTIONAL(type, MDField, ); \ 5174 OPTIONAL(defaulted, MDBoolField, ); \ 5175 REQUIRED(value, MDField, ); 5176 5177 PARSE_MD_FIELDS(); 5178 #undef VISIT_MD_FIELDS 5179 5180 Result = GET_OR_DISTINCT( 5181 DITemplateValueParameter, 5182 (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val)); 5183 return false; 5184 } 5185 5186 /// parseDIGlobalVariable: 5187 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 5188 /// file: !1, line: 7, type: !2, isLocal: false, 5189 /// isDefinition: true, templateParams: !3, 5190 /// declaration: !4, align: 8) 5191 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 5192 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5193 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 5194 OPTIONAL(scope, MDField, ); \ 5195 OPTIONAL(linkageName, MDStringField, ); \ 5196 OPTIONAL(file, MDField, ); \ 5197 OPTIONAL(line, LineField, ); \ 5198 OPTIONAL(type, MDField, ); \ 5199 OPTIONAL(isLocal, MDBoolField, ); \ 5200 OPTIONAL(isDefinition, MDBoolField, (true)); \ 5201 OPTIONAL(templateParams, MDField, ); \ 5202 OPTIONAL(declaration, MDField, ); \ 5203 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 5204 PARSE_MD_FIELDS(); 5205 #undef VISIT_MD_FIELDS 5206 5207 Result = 5208 GET_OR_DISTINCT(DIGlobalVariable, 5209 (Context, scope.Val, name.Val, linkageName.Val, file.Val, 5210 line.Val, type.Val, isLocal.Val, isDefinition.Val, 5211 declaration.Val, templateParams.Val, align.Val)); 5212 return false; 5213 } 5214 5215 /// parseDILocalVariable: 5216 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 5217 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 5218 /// align: 8) 5219 /// ::= !DILocalVariable(scope: !0, name: "foo", 5220 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 5221 /// align: 8) 5222 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) { 5223 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5224 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5225 OPTIONAL(name, MDStringField, ); \ 5226 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 5227 OPTIONAL(file, MDField, ); \ 5228 OPTIONAL(line, LineField, ); \ 5229 OPTIONAL(type, MDField, ); \ 5230 OPTIONAL(flags, DIFlagField, ); \ 5231 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 5232 PARSE_MD_FIELDS(); 5233 #undef VISIT_MD_FIELDS 5234 5235 Result = GET_OR_DISTINCT(DILocalVariable, 5236 (Context, scope.Val, name.Val, file.Val, line.Val, 5237 type.Val, arg.Val, flags.Val, align.Val)); 5238 return false; 5239 } 5240 5241 /// parseDILabel: 5242 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7) 5243 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) { 5244 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5245 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5246 REQUIRED(name, MDStringField, ); \ 5247 REQUIRED(file, MDField, ); \ 5248 REQUIRED(line, LineField, ); 5249 PARSE_MD_FIELDS(); 5250 #undef VISIT_MD_FIELDS 5251 5252 Result = GET_OR_DISTINCT(DILabel, 5253 (Context, scope.Val, name.Val, file.Val, line.Val)); 5254 return false; 5255 } 5256 5257 /// parseDIExpression: 5258 /// ::= !DIExpression(0, 7, -1) 5259 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) { 5260 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5261 Lex.Lex(); 5262 5263 if (parseToken(lltok::lparen, "expected '(' here")) 5264 return true; 5265 5266 SmallVector<uint64_t, 8> Elements; 5267 if (Lex.getKind() != lltok::rparen) 5268 do { 5269 if (Lex.getKind() == lltok::DwarfOp) { 5270 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 5271 Lex.Lex(); 5272 Elements.push_back(Op); 5273 continue; 5274 } 5275 return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 5276 } 5277 5278 if (Lex.getKind() == lltok::DwarfAttEncoding) { 5279 if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) { 5280 Lex.Lex(); 5281 Elements.push_back(Op); 5282 continue; 5283 } 5284 return tokError(Twine("invalid DWARF attribute encoding '") + 5285 Lex.getStrVal() + "'"); 5286 } 5287 5288 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 5289 return tokError("expected unsigned integer"); 5290 5291 auto &U = Lex.getAPSIntVal(); 5292 if (U.ugt(UINT64_MAX)) 5293 return tokError("element too large, limit is " + Twine(UINT64_MAX)); 5294 Elements.push_back(U.getZExtValue()); 5295 Lex.Lex(); 5296 } while (EatIfPresent(lltok::comma)); 5297 5298 if (parseToken(lltok::rparen, "expected ')' here")) 5299 return true; 5300 5301 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 5302 return false; 5303 } 5304 5305 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct) { 5306 return parseDIArgList(Result, IsDistinct, nullptr); 5307 } 5308 /// ParseDIArgList: 5309 /// ::= !DIArgList(i32 7, i64 %0) 5310 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct, 5311 PerFunctionState *PFS) { 5312 assert(PFS && "Expected valid function state"); 5313 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5314 Lex.Lex(); 5315 5316 if (parseToken(lltok::lparen, "expected '(' here")) 5317 return true; 5318 5319 SmallVector<ValueAsMetadata *, 4> Args; 5320 if (Lex.getKind() != lltok::rparen) 5321 do { 5322 Metadata *MD; 5323 if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS)) 5324 return true; 5325 Args.push_back(dyn_cast<ValueAsMetadata>(MD)); 5326 } while (EatIfPresent(lltok::comma)); 5327 5328 if (parseToken(lltok::rparen, "expected ')' here")) 5329 return true; 5330 5331 Result = GET_OR_DISTINCT(DIArgList, (Context, Args)); 5332 return false; 5333 } 5334 5335 /// parseDIGlobalVariableExpression: 5336 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 5337 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result, 5338 bool IsDistinct) { 5339 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5340 REQUIRED(var, MDField, ); \ 5341 REQUIRED(expr, MDField, ); 5342 PARSE_MD_FIELDS(); 5343 #undef VISIT_MD_FIELDS 5344 5345 Result = 5346 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 5347 return false; 5348 } 5349 5350 /// parseDIObjCProperty: 5351 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 5352 /// getter: "getFoo", attributes: 7, type: !2) 5353 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 5354 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5355 OPTIONAL(name, MDStringField, ); \ 5356 OPTIONAL(file, MDField, ); \ 5357 OPTIONAL(line, LineField, ); \ 5358 OPTIONAL(setter, MDStringField, ); \ 5359 OPTIONAL(getter, MDStringField, ); \ 5360 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 5361 OPTIONAL(type, MDField, ); 5362 PARSE_MD_FIELDS(); 5363 #undef VISIT_MD_FIELDS 5364 5365 Result = GET_OR_DISTINCT(DIObjCProperty, 5366 (Context, name.Val, file.Val, line.Val, setter.Val, 5367 getter.Val, attributes.Val, type.Val)); 5368 return false; 5369 } 5370 5371 /// parseDIImportedEntity: 5372 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 5373 /// line: 7, name: "foo") 5374 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 5375 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5376 REQUIRED(tag, DwarfTagField, ); \ 5377 REQUIRED(scope, MDField, ); \ 5378 OPTIONAL(entity, MDField, ); \ 5379 OPTIONAL(file, MDField, ); \ 5380 OPTIONAL(line, LineField, ); \ 5381 OPTIONAL(name, MDStringField, ); 5382 PARSE_MD_FIELDS(); 5383 #undef VISIT_MD_FIELDS 5384 5385 Result = GET_OR_DISTINCT( 5386 DIImportedEntity, 5387 (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val)); 5388 return false; 5389 } 5390 5391 #undef PARSE_MD_FIELD 5392 #undef NOP_FIELD 5393 #undef REQUIRE_FIELD 5394 #undef DECLARE_FIELD 5395 5396 /// parseMetadataAsValue 5397 /// ::= metadata i32 %local 5398 /// ::= metadata i32 @global 5399 /// ::= metadata i32 7 5400 /// ::= metadata !0 5401 /// ::= metadata !{...} 5402 /// ::= metadata !"string" 5403 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 5404 // Note: the type 'metadata' has already been parsed. 5405 Metadata *MD; 5406 if (parseMetadata(MD, &PFS)) 5407 return true; 5408 5409 V = MetadataAsValue::get(Context, MD); 5410 return false; 5411 } 5412 5413 /// parseValueAsMetadata 5414 /// ::= i32 %local 5415 /// ::= i32 @global 5416 /// ::= i32 7 5417 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 5418 PerFunctionState *PFS) { 5419 Type *Ty; 5420 LocTy Loc; 5421 if (parseType(Ty, TypeMsg, Loc)) 5422 return true; 5423 if (Ty->isMetadataTy()) 5424 return error(Loc, "invalid metadata-value-metadata roundtrip"); 5425 5426 Value *V; 5427 if (parseValue(Ty, V, PFS)) 5428 return true; 5429 5430 MD = ValueAsMetadata::get(V); 5431 return false; 5432 } 5433 5434 /// parseMetadata 5435 /// ::= i32 %local 5436 /// ::= i32 @global 5437 /// ::= i32 7 5438 /// ::= !42 5439 /// ::= !{...} 5440 /// ::= !"string" 5441 /// ::= !DILocation(...) 5442 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) { 5443 if (Lex.getKind() == lltok::MetadataVar) { 5444 MDNode *N; 5445 // DIArgLists are a special case, as they are a list of ValueAsMetadata and 5446 // so parsing this requires a Function State. 5447 if (Lex.getStrVal() == "DIArgList") { 5448 if (parseDIArgList(N, false, PFS)) 5449 return true; 5450 } else if (parseSpecializedMDNode(N)) { 5451 return true; 5452 } 5453 MD = N; 5454 return false; 5455 } 5456 5457 // ValueAsMetadata: 5458 // <type> <value> 5459 if (Lex.getKind() != lltok::exclaim) 5460 return parseValueAsMetadata(MD, "expected metadata operand", PFS); 5461 5462 // '!'. 5463 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 5464 Lex.Lex(); 5465 5466 // MDString: 5467 // ::= '!' STRINGCONSTANT 5468 if (Lex.getKind() == lltok::StringConstant) { 5469 MDString *S; 5470 if (parseMDString(S)) 5471 return true; 5472 MD = S; 5473 return false; 5474 } 5475 5476 // MDNode: 5477 // !{ ... } 5478 // !7 5479 MDNode *N; 5480 if (parseMDNodeTail(N)) 5481 return true; 5482 MD = N; 5483 return false; 5484 } 5485 5486 //===----------------------------------------------------------------------===// 5487 // Function Parsing. 5488 //===----------------------------------------------------------------------===// 5489 5490 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V, 5491 PerFunctionState *PFS, bool IsCall) { 5492 if (Ty->isFunctionTy()) 5493 return error(ID.Loc, "functions are not values, refer to them as pointers"); 5494 5495 switch (ID.Kind) { 5496 case ValID::t_LocalID: 5497 if (!PFS) 5498 return error(ID.Loc, "invalid use of function-local name"); 5499 V = PFS->getVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5500 return V == nullptr; 5501 case ValID::t_LocalName: 5502 if (!PFS) 5503 return error(ID.Loc, "invalid use of function-local name"); 5504 V = PFS->getVal(ID.StrVal, Ty, ID.Loc, IsCall); 5505 return V == nullptr; 5506 case ValID::t_InlineAsm: { 5507 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 5508 return error(ID.Loc, "invalid type for inline asm constraint string"); 5509 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, 5510 (ID.UIntVal >> 1) & 1, 5511 (InlineAsm::AsmDialect(ID.UIntVal >> 2))); 5512 return false; 5513 } 5514 case ValID::t_GlobalName: 5515 V = getGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall); 5516 return V == nullptr; 5517 case ValID::t_GlobalID: 5518 V = getGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5519 return V == nullptr; 5520 case ValID::t_APSInt: 5521 if (!Ty->isIntegerTy()) 5522 return error(ID.Loc, "integer constant must have integer type"); 5523 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 5524 V = ConstantInt::get(Context, ID.APSIntVal); 5525 return false; 5526 case ValID::t_APFloat: 5527 if (!Ty->isFloatingPointTy() || 5528 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 5529 return error(ID.Loc, "floating point constant invalid for type"); 5530 5531 // The lexer has no type info, so builds all half, bfloat, float, and double 5532 // FP constants as double. Fix this here. Long double does not need this. 5533 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 5534 // Check for signaling before potentially converting and losing that info. 5535 bool IsSNAN = ID.APFloatVal.isSignaling(); 5536 bool Ignored; 5537 if (Ty->isHalfTy()) 5538 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 5539 &Ignored); 5540 else if (Ty->isBFloatTy()) 5541 ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven, 5542 &Ignored); 5543 else if (Ty->isFloatTy()) 5544 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 5545 &Ignored); 5546 if (IsSNAN) { 5547 // The convert call above may quiet an SNaN, so manufacture another 5548 // SNaN. The bitcast works because the payload (significand) parameter 5549 // is truncated to fit. 5550 APInt Payload = ID.APFloatVal.bitcastToAPInt(); 5551 ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(), 5552 ID.APFloatVal.isNegative(), &Payload); 5553 } 5554 } 5555 V = ConstantFP::get(Context, ID.APFloatVal); 5556 5557 if (V->getType() != Ty) 5558 return error(ID.Loc, "floating point constant does not have type '" + 5559 getTypeString(Ty) + "'"); 5560 5561 return false; 5562 case ValID::t_Null: 5563 if (!Ty->isPointerTy()) 5564 return error(ID.Loc, "null must be a pointer type"); 5565 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 5566 return false; 5567 case ValID::t_Undef: 5568 // FIXME: LabelTy should not be a first-class type. 5569 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5570 return error(ID.Loc, "invalid type for undef constant"); 5571 V = UndefValue::get(Ty); 5572 return false; 5573 case ValID::t_EmptyArray: 5574 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 5575 return error(ID.Loc, "invalid empty array initializer"); 5576 V = UndefValue::get(Ty); 5577 return false; 5578 case ValID::t_Zero: 5579 // FIXME: LabelTy should not be a first-class type. 5580 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5581 return error(ID.Loc, "invalid type for null constant"); 5582 V = Constant::getNullValue(Ty); 5583 return false; 5584 case ValID::t_None: 5585 if (!Ty->isTokenTy()) 5586 return error(ID.Loc, "invalid type for none constant"); 5587 V = Constant::getNullValue(Ty); 5588 return false; 5589 case ValID::t_Poison: 5590 // FIXME: LabelTy should not be a first-class type. 5591 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5592 return error(ID.Loc, "invalid type for poison constant"); 5593 V = PoisonValue::get(Ty); 5594 return false; 5595 case ValID::t_Constant: 5596 if (ID.ConstantVal->getType() != Ty) 5597 return error(ID.Loc, "constant expression type mismatch"); 5598 V = ID.ConstantVal; 5599 return false; 5600 case ValID::t_ConstantStruct: 5601 case ValID::t_PackedConstantStruct: 5602 if (StructType *ST = dyn_cast<StructType>(Ty)) { 5603 if (ST->getNumElements() != ID.UIntVal) 5604 return error(ID.Loc, 5605 "initializer with struct type has wrong # elements"); 5606 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 5607 return error(ID.Loc, "packed'ness of initializer and type don't match"); 5608 5609 // Verify that the elements are compatible with the structtype. 5610 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 5611 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 5612 return error( 5613 ID.Loc, 5614 "element " + Twine(i) + 5615 " of struct initializer doesn't match struct element type"); 5616 5617 V = ConstantStruct::get( 5618 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 5619 } else 5620 return error(ID.Loc, "constant expression type mismatch"); 5621 return false; 5622 } 5623 llvm_unreachable("Invalid ValID"); 5624 } 5625 5626 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 5627 C = nullptr; 5628 ValID ID; 5629 auto Loc = Lex.getLoc(); 5630 if (parseValID(ID, /*PFS=*/nullptr)) 5631 return true; 5632 switch (ID.Kind) { 5633 case ValID::t_APSInt: 5634 case ValID::t_APFloat: 5635 case ValID::t_Undef: 5636 case ValID::t_Constant: 5637 case ValID::t_ConstantStruct: 5638 case ValID::t_PackedConstantStruct: { 5639 Value *V; 5640 if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false)) 5641 return true; 5642 assert(isa<Constant>(V) && "Expected a constant value"); 5643 C = cast<Constant>(V); 5644 return false; 5645 } 5646 case ValID::t_Null: 5647 C = Constant::getNullValue(Ty); 5648 return false; 5649 default: 5650 return error(Loc, "expected a constant value"); 5651 } 5652 } 5653 5654 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 5655 V = nullptr; 5656 ValID ID; 5657 return parseValID(ID, PFS) || 5658 convertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false); 5659 } 5660 5661 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) { 5662 Type *Ty = nullptr; 5663 return parseType(Ty) || parseValue(Ty, V, PFS); 5664 } 5665 5666 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 5667 PerFunctionState &PFS) { 5668 Value *V; 5669 Loc = Lex.getLoc(); 5670 if (parseTypeAndValue(V, PFS)) 5671 return true; 5672 if (!isa<BasicBlock>(V)) 5673 return error(Loc, "expected a basic block"); 5674 BB = cast<BasicBlock>(V); 5675 return false; 5676 } 5677 5678 /// FunctionHeader 5679 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 5680 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 5681 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign 5682 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 5683 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) { 5684 // parse the linkage. 5685 LocTy LinkageLoc = Lex.getLoc(); 5686 unsigned Linkage; 5687 unsigned Visibility; 5688 unsigned DLLStorageClass; 5689 bool DSOLocal; 5690 AttrBuilder RetAttrs; 5691 unsigned CC; 5692 bool HasLinkage; 5693 Type *RetType = nullptr; 5694 LocTy RetTypeLoc = Lex.getLoc(); 5695 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 5696 DSOLocal) || 5697 parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 5698 parseType(RetType, RetTypeLoc, true /*void allowed*/)) 5699 return true; 5700 5701 // Verify that the linkage is ok. 5702 switch ((GlobalValue::LinkageTypes)Linkage) { 5703 case GlobalValue::ExternalLinkage: 5704 break; // always ok. 5705 case GlobalValue::ExternalWeakLinkage: 5706 if (IsDefine) 5707 return error(LinkageLoc, "invalid linkage for function definition"); 5708 break; 5709 case GlobalValue::PrivateLinkage: 5710 case GlobalValue::InternalLinkage: 5711 case GlobalValue::AvailableExternallyLinkage: 5712 case GlobalValue::LinkOnceAnyLinkage: 5713 case GlobalValue::LinkOnceODRLinkage: 5714 case GlobalValue::WeakAnyLinkage: 5715 case GlobalValue::WeakODRLinkage: 5716 if (!IsDefine) 5717 return error(LinkageLoc, "invalid linkage for function declaration"); 5718 break; 5719 case GlobalValue::AppendingLinkage: 5720 case GlobalValue::CommonLinkage: 5721 return error(LinkageLoc, "invalid function linkage type"); 5722 } 5723 5724 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 5725 return error(LinkageLoc, 5726 "symbol with local linkage must have default visibility"); 5727 5728 if (!FunctionType::isValidReturnType(RetType)) 5729 return error(RetTypeLoc, "invalid function return type"); 5730 5731 LocTy NameLoc = Lex.getLoc(); 5732 5733 std::string FunctionName; 5734 if (Lex.getKind() == lltok::GlobalVar) { 5735 FunctionName = Lex.getStrVal(); 5736 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 5737 unsigned NameID = Lex.getUIntVal(); 5738 5739 if (NameID != NumberedVals.size()) 5740 return tokError("function expected to be numbered '%" + 5741 Twine(NumberedVals.size()) + "'"); 5742 } else { 5743 return tokError("expected function name"); 5744 } 5745 5746 Lex.Lex(); 5747 5748 if (Lex.getKind() != lltok::lparen) 5749 return tokError("expected '(' in function argument list"); 5750 5751 SmallVector<ArgInfo, 8> ArgList; 5752 bool IsVarArg; 5753 AttrBuilder FuncAttrs; 5754 std::vector<unsigned> FwdRefAttrGrps; 5755 LocTy BuiltinLoc; 5756 std::string Section; 5757 std::string Partition; 5758 MaybeAlign Alignment; 5759 std::string GC; 5760 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 5761 unsigned AddrSpace = 0; 5762 Constant *Prefix = nullptr; 5763 Constant *Prologue = nullptr; 5764 Constant *PersonalityFn = nullptr; 5765 Comdat *C; 5766 5767 if (parseArgumentList(ArgList, IsVarArg) || 5768 parseOptionalUnnamedAddr(UnnamedAddr) || 5769 parseOptionalProgramAddrSpace(AddrSpace) || 5770 parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 5771 BuiltinLoc) || 5772 (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) || 5773 (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) || 5774 parseOptionalComdat(FunctionName, C) || 5775 parseOptionalAlignment(Alignment) || 5776 (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) || 5777 (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) || 5778 (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) || 5779 (EatIfPresent(lltok::kw_personality) && 5780 parseGlobalTypeAndValue(PersonalityFn))) 5781 return true; 5782 5783 if (FuncAttrs.contains(Attribute::Builtin)) 5784 return error(BuiltinLoc, "'builtin' attribute not valid on function"); 5785 5786 // If the alignment was parsed as an attribute, move to the alignment field. 5787 if (FuncAttrs.hasAlignmentAttr()) { 5788 Alignment = FuncAttrs.getAlignment(); 5789 FuncAttrs.removeAttribute(Attribute::Alignment); 5790 } 5791 5792 // Okay, if we got here, the function is syntactically valid. Convert types 5793 // and do semantic checks. 5794 std::vector<Type*> ParamTypeList; 5795 SmallVector<AttributeSet, 8> Attrs; 5796 5797 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5798 ParamTypeList.push_back(ArgList[i].Ty); 5799 Attrs.push_back(ArgList[i].Attrs); 5800 } 5801 5802 AttributeList PAL = 5803 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 5804 AttributeSet::get(Context, RetAttrs), Attrs); 5805 5806 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 5807 return error(RetTypeLoc, "functions with 'sret' argument must return void"); 5808 5809 FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg); 5810 PointerType *PFT = PointerType::get(FT, AddrSpace); 5811 5812 Fn = nullptr; 5813 if (!FunctionName.empty()) { 5814 // If this was a definition of a forward reference, remove the definition 5815 // from the forward reference table and fill in the forward ref. 5816 auto FRVI = ForwardRefVals.find(FunctionName); 5817 if (FRVI != ForwardRefVals.end()) { 5818 Fn = M->getFunction(FunctionName); 5819 if (!Fn) 5820 return error(FRVI->second.second, "invalid forward reference to " 5821 "function as global value!"); 5822 if (Fn->getType() != PFT) 5823 return error(FRVI->second.second, 5824 "invalid forward reference to " 5825 "function '" + 5826 FunctionName + 5827 "' with wrong type: " 5828 "expected '" + 5829 getTypeString(PFT) + "' but was '" + 5830 getTypeString(Fn->getType()) + "'"); 5831 ForwardRefVals.erase(FRVI); 5832 } else if ((Fn = M->getFunction(FunctionName))) { 5833 // Reject redefinitions. 5834 return error(NameLoc, 5835 "invalid redefinition of function '" + FunctionName + "'"); 5836 } else if (M->getNamedValue(FunctionName)) { 5837 return error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 5838 } 5839 5840 } else { 5841 // If this is a definition of a forward referenced function, make sure the 5842 // types agree. 5843 auto I = ForwardRefValIDs.find(NumberedVals.size()); 5844 if (I != ForwardRefValIDs.end()) { 5845 Fn = cast<Function>(I->second.first); 5846 if (Fn->getType() != PFT) 5847 return error(NameLoc, "type of definition and forward reference of '@" + 5848 Twine(NumberedVals.size()) + 5849 "' disagree: " 5850 "expected '" + 5851 getTypeString(PFT) + "' but was '" + 5852 getTypeString(Fn->getType()) + "'"); 5853 ForwardRefValIDs.erase(I); 5854 } 5855 } 5856 5857 if (!Fn) 5858 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace, 5859 FunctionName, M); 5860 else // Move the forward-reference to the correct spot in the module. 5861 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 5862 5863 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS"); 5864 5865 if (FunctionName.empty()) 5866 NumberedVals.push_back(Fn); 5867 5868 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 5869 maybeSetDSOLocal(DSOLocal, *Fn); 5870 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 5871 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 5872 Fn->setCallingConv(CC); 5873 Fn->setAttributes(PAL); 5874 Fn->setUnnamedAddr(UnnamedAddr); 5875 Fn->setAlignment(MaybeAlign(Alignment)); 5876 Fn->setSection(Section); 5877 Fn->setPartition(Partition); 5878 Fn->setComdat(C); 5879 Fn->setPersonalityFn(PersonalityFn); 5880 if (!GC.empty()) Fn->setGC(GC); 5881 Fn->setPrefixData(Prefix); 5882 Fn->setPrologueData(Prologue); 5883 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 5884 5885 // Add all of the arguments we parsed to the function. 5886 Function::arg_iterator ArgIt = Fn->arg_begin(); 5887 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 5888 // If the argument has a name, insert it into the argument symbol table. 5889 if (ArgList[i].Name.empty()) continue; 5890 5891 // Set the name, if it conflicted, it will be auto-renamed. 5892 ArgIt->setName(ArgList[i].Name); 5893 5894 if (ArgIt->getName() != ArgList[i].Name) 5895 return error(ArgList[i].Loc, 5896 "redefinition of argument '%" + ArgList[i].Name + "'"); 5897 } 5898 5899 if (IsDefine) 5900 return false; 5901 5902 // Check the declaration has no block address forward references. 5903 ValID ID; 5904 if (FunctionName.empty()) { 5905 ID.Kind = ValID::t_GlobalID; 5906 ID.UIntVal = NumberedVals.size() - 1; 5907 } else { 5908 ID.Kind = ValID::t_GlobalName; 5909 ID.StrVal = FunctionName; 5910 } 5911 auto Blocks = ForwardRefBlockAddresses.find(ID); 5912 if (Blocks != ForwardRefBlockAddresses.end()) 5913 return error(Blocks->first.Loc, 5914 "cannot take blockaddress inside a declaration"); 5915 return false; 5916 } 5917 5918 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 5919 ValID ID; 5920 if (FunctionNumber == -1) { 5921 ID.Kind = ValID::t_GlobalName; 5922 ID.StrVal = std::string(F.getName()); 5923 } else { 5924 ID.Kind = ValID::t_GlobalID; 5925 ID.UIntVal = FunctionNumber; 5926 } 5927 5928 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 5929 if (Blocks == P.ForwardRefBlockAddresses.end()) 5930 return false; 5931 5932 for (const auto &I : Blocks->second) { 5933 const ValID &BBID = I.first; 5934 GlobalValue *GV = I.second; 5935 5936 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 5937 "Expected local id or name"); 5938 BasicBlock *BB; 5939 if (BBID.Kind == ValID::t_LocalName) 5940 BB = getBB(BBID.StrVal, BBID.Loc); 5941 else 5942 BB = getBB(BBID.UIntVal, BBID.Loc); 5943 if (!BB) 5944 return P.error(BBID.Loc, "referenced value is not a basic block"); 5945 5946 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 5947 GV->eraseFromParent(); 5948 } 5949 5950 P.ForwardRefBlockAddresses.erase(Blocks); 5951 return false; 5952 } 5953 5954 /// parseFunctionBody 5955 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 5956 bool LLParser::parseFunctionBody(Function &Fn) { 5957 if (Lex.getKind() != lltok::lbrace) 5958 return tokError("expected '{' in function body"); 5959 Lex.Lex(); // eat the {. 5960 5961 int FunctionNumber = -1; 5962 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 5963 5964 PerFunctionState PFS(*this, Fn, FunctionNumber); 5965 5966 // Resolve block addresses and allow basic blocks to be forward-declared 5967 // within this function. 5968 if (PFS.resolveForwardRefBlockAddresses()) 5969 return true; 5970 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 5971 5972 // We need at least one basic block. 5973 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 5974 return tokError("function body requires at least one basic block"); 5975 5976 while (Lex.getKind() != lltok::rbrace && 5977 Lex.getKind() != lltok::kw_uselistorder) 5978 if (parseBasicBlock(PFS)) 5979 return true; 5980 5981 while (Lex.getKind() != lltok::rbrace) 5982 if (parseUseListOrder(&PFS)) 5983 return true; 5984 5985 // Eat the }. 5986 Lex.Lex(); 5987 5988 // Verify function is ok. 5989 return PFS.finishFunction(); 5990 } 5991 5992 /// parseBasicBlock 5993 /// ::= (LabelStr|LabelID)? Instruction* 5994 bool LLParser::parseBasicBlock(PerFunctionState &PFS) { 5995 // If this basic block starts out with a name, remember it. 5996 std::string Name; 5997 int NameID = -1; 5998 LocTy NameLoc = Lex.getLoc(); 5999 if (Lex.getKind() == lltok::LabelStr) { 6000 Name = Lex.getStrVal(); 6001 Lex.Lex(); 6002 } else if (Lex.getKind() == lltok::LabelID) { 6003 NameID = Lex.getUIntVal(); 6004 Lex.Lex(); 6005 } 6006 6007 BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc); 6008 if (!BB) 6009 return true; 6010 6011 std::string NameStr; 6012 6013 // parse the instructions in this block until we get a terminator. 6014 Instruction *Inst; 6015 do { 6016 // This instruction may have three possibilities for a name: a) none 6017 // specified, b) name specified "%foo =", c) number specified: "%4 =". 6018 LocTy NameLoc = Lex.getLoc(); 6019 int NameID = -1; 6020 NameStr = ""; 6021 6022 if (Lex.getKind() == lltok::LocalVarID) { 6023 NameID = Lex.getUIntVal(); 6024 Lex.Lex(); 6025 if (parseToken(lltok::equal, "expected '=' after instruction id")) 6026 return true; 6027 } else if (Lex.getKind() == lltok::LocalVar) { 6028 NameStr = Lex.getStrVal(); 6029 Lex.Lex(); 6030 if (parseToken(lltok::equal, "expected '=' after instruction name")) 6031 return true; 6032 } 6033 6034 switch (parseInstruction(Inst, BB, PFS)) { 6035 default: 6036 llvm_unreachable("Unknown parseInstruction result!"); 6037 case InstError: return true; 6038 case InstNormal: 6039 BB->getInstList().push_back(Inst); 6040 6041 // With a normal result, we check to see if the instruction is followed by 6042 // a comma and metadata. 6043 if (EatIfPresent(lltok::comma)) 6044 if (parseInstructionMetadata(*Inst)) 6045 return true; 6046 break; 6047 case InstExtraComma: 6048 BB->getInstList().push_back(Inst); 6049 6050 // If the instruction parser ate an extra comma at the end of it, it 6051 // *must* be followed by metadata. 6052 if (parseInstructionMetadata(*Inst)) 6053 return true; 6054 break; 6055 } 6056 6057 // Set the name on the instruction. 6058 if (PFS.setInstName(NameID, NameStr, NameLoc, Inst)) 6059 return true; 6060 } while (!Inst->isTerminator()); 6061 6062 return false; 6063 } 6064 6065 //===----------------------------------------------------------------------===// 6066 // Instruction Parsing. 6067 //===----------------------------------------------------------------------===// 6068 6069 /// parseInstruction - parse one of the many different instructions. 6070 /// 6071 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB, 6072 PerFunctionState &PFS) { 6073 lltok::Kind Token = Lex.getKind(); 6074 if (Token == lltok::Eof) 6075 return tokError("found end of file when expecting more instructions"); 6076 LocTy Loc = Lex.getLoc(); 6077 unsigned KeywordVal = Lex.getUIntVal(); 6078 Lex.Lex(); // Eat the keyword. 6079 6080 switch (Token) { 6081 default: 6082 return error(Loc, "expected instruction opcode"); 6083 // Terminator Instructions. 6084 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 6085 case lltok::kw_ret: 6086 return parseRet(Inst, BB, PFS); 6087 case lltok::kw_br: 6088 return parseBr(Inst, PFS); 6089 case lltok::kw_switch: 6090 return parseSwitch(Inst, PFS); 6091 case lltok::kw_indirectbr: 6092 return parseIndirectBr(Inst, PFS); 6093 case lltok::kw_invoke: 6094 return parseInvoke(Inst, PFS); 6095 case lltok::kw_resume: 6096 return parseResume(Inst, PFS); 6097 case lltok::kw_cleanupret: 6098 return parseCleanupRet(Inst, PFS); 6099 case lltok::kw_catchret: 6100 return parseCatchRet(Inst, PFS); 6101 case lltok::kw_catchswitch: 6102 return parseCatchSwitch(Inst, PFS); 6103 case lltok::kw_catchpad: 6104 return parseCatchPad(Inst, PFS); 6105 case lltok::kw_cleanuppad: 6106 return parseCleanupPad(Inst, PFS); 6107 case lltok::kw_callbr: 6108 return parseCallBr(Inst, PFS); 6109 // Unary Operators. 6110 case lltok::kw_fneg: { 6111 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6112 int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true); 6113 if (Res != 0) 6114 return Res; 6115 if (FMF.any()) 6116 Inst->setFastMathFlags(FMF); 6117 return false; 6118 } 6119 // Binary Operators. 6120 case lltok::kw_add: 6121 case lltok::kw_sub: 6122 case lltok::kw_mul: 6123 case lltok::kw_shl: { 6124 bool NUW = EatIfPresent(lltok::kw_nuw); 6125 bool NSW = EatIfPresent(lltok::kw_nsw); 6126 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 6127 6128 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 6129 return true; 6130 6131 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 6132 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 6133 return false; 6134 } 6135 case lltok::kw_fadd: 6136 case lltok::kw_fsub: 6137 case lltok::kw_fmul: 6138 case lltok::kw_fdiv: 6139 case lltok::kw_frem: { 6140 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6141 int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true); 6142 if (Res != 0) 6143 return Res; 6144 if (FMF.any()) 6145 Inst->setFastMathFlags(FMF); 6146 return 0; 6147 } 6148 6149 case lltok::kw_sdiv: 6150 case lltok::kw_udiv: 6151 case lltok::kw_lshr: 6152 case lltok::kw_ashr: { 6153 bool Exact = EatIfPresent(lltok::kw_exact); 6154 6155 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 6156 return true; 6157 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 6158 return false; 6159 } 6160 6161 case lltok::kw_urem: 6162 case lltok::kw_srem: 6163 return parseArithmetic(Inst, PFS, KeywordVal, 6164 /*IsFP*/ false); 6165 case lltok::kw_and: 6166 case lltok::kw_or: 6167 case lltok::kw_xor: 6168 return parseLogical(Inst, PFS, KeywordVal); 6169 case lltok::kw_icmp: 6170 return parseCompare(Inst, PFS, KeywordVal); 6171 case lltok::kw_fcmp: { 6172 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6173 int Res = parseCompare(Inst, PFS, KeywordVal); 6174 if (Res != 0) 6175 return Res; 6176 if (FMF.any()) 6177 Inst->setFastMathFlags(FMF); 6178 return 0; 6179 } 6180 6181 // Casts. 6182 case lltok::kw_trunc: 6183 case lltok::kw_zext: 6184 case lltok::kw_sext: 6185 case lltok::kw_fptrunc: 6186 case lltok::kw_fpext: 6187 case lltok::kw_bitcast: 6188 case lltok::kw_addrspacecast: 6189 case lltok::kw_uitofp: 6190 case lltok::kw_sitofp: 6191 case lltok::kw_fptoui: 6192 case lltok::kw_fptosi: 6193 case lltok::kw_inttoptr: 6194 case lltok::kw_ptrtoint: 6195 return parseCast(Inst, PFS, KeywordVal); 6196 // Other. 6197 case lltok::kw_select: { 6198 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6199 int Res = parseSelect(Inst, PFS); 6200 if (Res != 0) 6201 return Res; 6202 if (FMF.any()) { 6203 if (!isa<FPMathOperator>(Inst)) 6204 return error(Loc, "fast-math-flags specified for select without " 6205 "floating-point scalar or vector return type"); 6206 Inst->setFastMathFlags(FMF); 6207 } 6208 return 0; 6209 } 6210 case lltok::kw_va_arg: 6211 return parseVAArg(Inst, PFS); 6212 case lltok::kw_extractelement: 6213 return parseExtractElement(Inst, PFS); 6214 case lltok::kw_insertelement: 6215 return parseInsertElement(Inst, PFS); 6216 case lltok::kw_shufflevector: 6217 return parseShuffleVector(Inst, PFS); 6218 case lltok::kw_phi: { 6219 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6220 int Res = parsePHI(Inst, PFS); 6221 if (Res != 0) 6222 return Res; 6223 if (FMF.any()) { 6224 if (!isa<FPMathOperator>(Inst)) 6225 return error(Loc, "fast-math-flags specified for phi without " 6226 "floating-point scalar or vector return type"); 6227 Inst->setFastMathFlags(FMF); 6228 } 6229 return 0; 6230 } 6231 case lltok::kw_landingpad: 6232 return parseLandingPad(Inst, PFS); 6233 case lltok::kw_freeze: 6234 return parseFreeze(Inst, PFS); 6235 // Call. 6236 case lltok::kw_call: 6237 return parseCall(Inst, PFS, CallInst::TCK_None); 6238 case lltok::kw_tail: 6239 return parseCall(Inst, PFS, CallInst::TCK_Tail); 6240 case lltok::kw_musttail: 6241 return parseCall(Inst, PFS, CallInst::TCK_MustTail); 6242 case lltok::kw_notail: 6243 return parseCall(Inst, PFS, CallInst::TCK_NoTail); 6244 // Memory. 6245 case lltok::kw_alloca: 6246 return parseAlloc(Inst, PFS); 6247 case lltok::kw_load: 6248 return parseLoad(Inst, PFS); 6249 case lltok::kw_store: 6250 return parseStore(Inst, PFS); 6251 case lltok::kw_cmpxchg: 6252 return parseCmpXchg(Inst, PFS); 6253 case lltok::kw_atomicrmw: 6254 return parseAtomicRMW(Inst, PFS); 6255 case lltok::kw_fence: 6256 return parseFence(Inst, PFS); 6257 case lltok::kw_getelementptr: 6258 return parseGetElementPtr(Inst, PFS); 6259 case lltok::kw_extractvalue: 6260 return parseExtractValue(Inst, PFS); 6261 case lltok::kw_insertvalue: 6262 return parseInsertValue(Inst, PFS); 6263 } 6264 } 6265 6266 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind. 6267 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) { 6268 if (Opc == Instruction::FCmp) { 6269 switch (Lex.getKind()) { 6270 default: 6271 return tokError("expected fcmp predicate (e.g. 'oeq')"); 6272 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 6273 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 6274 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 6275 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 6276 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 6277 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 6278 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 6279 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 6280 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 6281 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 6282 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 6283 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 6284 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 6285 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 6286 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 6287 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 6288 } 6289 } else { 6290 switch (Lex.getKind()) { 6291 default: 6292 return tokError("expected icmp predicate (e.g. 'eq')"); 6293 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 6294 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 6295 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 6296 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 6297 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 6298 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 6299 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 6300 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 6301 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 6302 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 6303 } 6304 } 6305 Lex.Lex(); 6306 return false; 6307 } 6308 6309 //===----------------------------------------------------------------------===// 6310 // Terminator Instructions. 6311 //===----------------------------------------------------------------------===// 6312 6313 /// parseRet - parse a return instruction. 6314 /// ::= 'ret' void (',' !dbg, !1)* 6315 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 6316 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB, 6317 PerFunctionState &PFS) { 6318 SMLoc TypeLoc = Lex.getLoc(); 6319 Type *Ty = nullptr; 6320 if (parseType(Ty, true /*void allowed*/)) 6321 return true; 6322 6323 Type *ResType = PFS.getFunction().getReturnType(); 6324 6325 if (Ty->isVoidTy()) { 6326 if (!ResType->isVoidTy()) 6327 return error(TypeLoc, "value doesn't match function result type '" + 6328 getTypeString(ResType) + "'"); 6329 6330 Inst = ReturnInst::Create(Context); 6331 return false; 6332 } 6333 6334 Value *RV; 6335 if (parseValue(Ty, RV, PFS)) 6336 return true; 6337 6338 if (ResType != RV->getType()) 6339 return error(TypeLoc, "value doesn't match function result type '" + 6340 getTypeString(ResType) + "'"); 6341 6342 Inst = ReturnInst::Create(Context, RV); 6343 return false; 6344 } 6345 6346 /// parseBr 6347 /// ::= 'br' TypeAndValue 6348 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6349 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) { 6350 LocTy Loc, Loc2; 6351 Value *Op0; 6352 BasicBlock *Op1, *Op2; 6353 if (parseTypeAndValue(Op0, Loc, PFS)) 6354 return true; 6355 6356 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 6357 Inst = BranchInst::Create(BB); 6358 return false; 6359 } 6360 6361 if (Op0->getType() != Type::getInt1Ty(Context)) 6362 return error(Loc, "branch condition must have 'i1' type"); 6363 6364 if (parseToken(lltok::comma, "expected ',' after branch condition") || 6365 parseTypeAndBasicBlock(Op1, Loc, PFS) || 6366 parseToken(lltok::comma, "expected ',' after true destination") || 6367 parseTypeAndBasicBlock(Op2, Loc2, PFS)) 6368 return true; 6369 6370 Inst = BranchInst::Create(Op1, Op2, Op0); 6371 return false; 6372 } 6373 6374 /// parseSwitch 6375 /// Instruction 6376 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 6377 /// JumpTable 6378 /// ::= (TypeAndValue ',' TypeAndValue)* 6379 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6380 LocTy CondLoc, BBLoc; 6381 Value *Cond; 6382 BasicBlock *DefaultBB; 6383 if (parseTypeAndValue(Cond, CondLoc, PFS) || 6384 parseToken(lltok::comma, "expected ',' after switch condition") || 6385 parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 6386 parseToken(lltok::lsquare, "expected '[' with switch table")) 6387 return true; 6388 6389 if (!Cond->getType()->isIntegerTy()) 6390 return error(CondLoc, "switch condition must have integer type"); 6391 6392 // parse the jump table pairs. 6393 SmallPtrSet<Value*, 32> SeenCases; 6394 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 6395 while (Lex.getKind() != lltok::rsquare) { 6396 Value *Constant; 6397 BasicBlock *DestBB; 6398 6399 if (parseTypeAndValue(Constant, CondLoc, PFS) || 6400 parseToken(lltok::comma, "expected ',' after case value") || 6401 parseTypeAndBasicBlock(DestBB, PFS)) 6402 return true; 6403 6404 if (!SeenCases.insert(Constant).second) 6405 return error(CondLoc, "duplicate case value in switch"); 6406 if (!isa<ConstantInt>(Constant)) 6407 return error(CondLoc, "case value is not a constant integer"); 6408 6409 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 6410 } 6411 6412 Lex.Lex(); // Eat the ']'. 6413 6414 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 6415 for (unsigned i = 0, e = Table.size(); i != e; ++i) 6416 SI->addCase(Table[i].first, Table[i].second); 6417 Inst = SI; 6418 return false; 6419 } 6420 6421 /// parseIndirectBr 6422 /// Instruction 6423 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 6424 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 6425 LocTy AddrLoc; 6426 Value *Address; 6427 if (parseTypeAndValue(Address, AddrLoc, PFS) || 6428 parseToken(lltok::comma, "expected ',' after indirectbr address") || 6429 parseToken(lltok::lsquare, "expected '[' with indirectbr")) 6430 return true; 6431 6432 if (!Address->getType()->isPointerTy()) 6433 return error(AddrLoc, "indirectbr address must have pointer type"); 6434 6435 // parse the destination list. 6436 SmallVector<BasicBlock*, 16> DestList; 6437 6438 if (Lex.getKind() != lltok::rsquare) { 6439 BasicBlock *DestBB; 6440 if (parseTypeAndBasicBlock(DestBB, PFS)) 6441 return true; 6442 DestList.push_back(DestBB); 6443 6444 while (EatIfPresent(lltok::comma)) { 6445 if (parseTypeAndBasicBlock(DestBB, PFS)) 6446 return true; 6447 DestList.push_back(DestBB); 6448 } 6449 } 6450 6451 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 6452 return true; 6453 6454 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 6455 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 6456 IBI->addDestination(DestList[i]); 6457 Inst = IBI; 6458 return false; 6459 } 6460 6461 /// parseInvoke 6462 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 6463 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 6464 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 6465 LocTy CallLoc = Lex.getLoc(); 6466 AttrBuilder RetAttrs, FnAttrs; 6467 std::vector<unsigned> FwdRefAttrGrps; 6468 LocTy NoBuiltinLoc; 6469 unsigned CC; 6470 unsigned InvokeAddrSpace; 6471 Type *RetType = nullptr; 6472 LocTy RetTypeLoc; 6473 ValID CalleeID; 6474 SmallVector<ParamInfo, 16> ArgList; 6475 SmallVector<OperandBundleDef, 2> BundleList; 6476 6477 BasicBlock *NormalBB, *UnwindBB; 6478 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6479 parseOptionalProgramAddrSpace(InvokeAddrSpace) || 6480 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6481 parseValID(CalleeID) || parseParameterList(ArgList, PFS) || 6482 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6483 NoBuiltinLoc) || 6484 parseOptionalOperandBundles(BundleList, PFS) || 6485 parseToken(lltok::kw_to, "expected 'to' in invoke") || 6486 parseTypeAndBasicBlock(NormalBB, PFS) || 6487 parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 6488 parseTypeAndBasicBlock(UnwindBB, PFS)) 6489 return true; 6490 6491 // If RetType is a non-function pointer type, then this is the short syntax 6492 // for the call, which means that RetType is just the return type. Infer the 6493 // rest of the function argument types from the arguments that are present. 6494 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6495 if (!Ty) { 6496 // Pull out the types of all of the arguments... 6497 std::vector<Type*> ParamTypes; 6498 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6499 ParamTypes.push_back(ArgList[i].V->getType()); 6500 6501 if (!FunctionType::isValidReturnType(RetType)) 6502 return error(RetTypeLoc, "Invalid result type for LLVM function"); 6503 6504 Ty = FunctionType::get(RetType, ParamTypes, false); 6505 } 6506 6507 CalleeID.FTy = Ty; 6508 6509 // Look up the callee. 6510 Value *Callee; 6511 if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID, 6512 Callee, &PFS, /*IsCall=*/true)) 6513 return true; 6514 6515 // Set up the Attribute for the function. 6516 SmallVector<Value *, 8> Args; 6517 SmallVector<AttributeSet, 8> ArgAttrs; 6518 6519 // Loop through FunctionType's arguments and ensure they are specified 6520 // correctly. Also, gather any parameter attributes. 6521 FunctionType::param_iterator I = Ty->param_begin(); 6522 FunctionType::param_iterator E = Ty->param_end(); 6523 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6524 Type *ExpectedTy = nullptr; 6525 if (I != E) { 6526 ExpectedTy = *I++; 6527 } else if (!Ty->isVarArg()) { 6528 return error(ArgList[i].Loc, "too many arguments specified"); 6529 } 6530 6531 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6532 return error(ArgList[i].Loc, "argument is not of expected type '" + 6533 getTypeString(ExpectedTy) + "'"); 6534 Args.push_back(ArgList[i].V); 6535 ArgAttrs.push_back(ArgList[i].Attrs); 6536 } 6537 6538 if (I != E) 6539 return error(CallLoc, "not enough parameters specified for call"); 6540 6541 if (FnAttrs.hasAlignmentAttr()) 6542 return error(CallLoc, "invoke instructions may not have an alignment"); 6543 6544 // Finish off the Attribute and check them 6545 AttributeList PAL = 6546 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6547 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6548 6549 InvokeInst *II = 6550 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 6551 II->setCallingConv(CC); 6552 II->setAttributes(PAL); 6553 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 6554 Inst = II; 6555 return false; 6556 } 6557 6558 /// parseResume 6559 /// ::= 'resume' TypeAndValue 6560 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) { 6561 Value *Exn; LocTy ExnLoc; 6562 if (parseTypeAndValue(Exn, ExnLoc, PFS)) 6563 return true; 6564 6565 ResumeInst *RI = ResumeInst::Create(Exn); 6566 Inst = RI; 6567 return false; 6568 } 6569 6570 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args, 6571 PerFunctionState &PFS) { 6572 if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 6573 return true; 6574 6575 while (Lex.getKind() != lltok::rsquare) { 6576 // If this isn't the first argument, we need a comma. 6577 if (!Args.empty() && 6578 parseToken(lltok::comma, "expected ',' in argument list")) 6579 return true; 6580 6581 // parse the argument. 6582 LocTy ArgLoc; 6583 Type *ArgTy = nullptr; 6584 if (parseType(ArgTy, ArgLoc)) 6585 return true; 6586 6587 Value *V; 6588 if (ArgTy->isMetadataTy()) { 6589 if (parseMetadataAsValue(V, PFS)) 6590 return true; 6591 } else { 6592 if (parseValue(ArgTy, V, PFS)) 6593 return true; 6594 } 6595 Args.push_back(V); 6596 } 6597 6598 Lex.Lex(); // Lex the ']'. 6599 return false; 6600 } 6601 6602 /// parseCleanupRet 6603 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 6604 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 6605 Value *CleanupPad = nullptr; 6606 6607 if (parseToken(lltok::kw_from, "expected 'from' after cleanupret")) 6608 return true; 6609 6610 if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 6611 return true; 6612 6613 if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 6614 return true; 6615 6616 BasicBlock *UnwindBB = nullptr; 6617 if (Lex.getKind() == lltok::kw_to) { 6618 Lex.Lex(); 6619 if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 6620 return true; 6621 } else { 6622 if (parseTypeAndBasicBlock(UnwindBB, PFS)) { 6623 return true; 6624 } 6625 } 6626 6627 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 6628 return false; 6629 } 6630 6631 /// parseCatchRet 6632 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 6633 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 6634 Value *CatchPad = nullptr; 6635 6636 if (parseToken(lltok::kw_from, "expected 'from' after catchret")) 6637 return true; 6638 6639 if (parseValue(Type::getTokenTy(Context), CatchPad, PFS)) 6640 return true; 6641 6642 BasicBlock *BB; 6643 if (parseToken(lltok::kw_to, "expected 'to' in catchret") || 6644 parseTypeAndBasicBlock(BB, PFS)) 6645 return true; 6646 6647 Inst = CatchReturnInst::Create(CatchPad, BB); 6648 return false; 6649 } 6650 6651 /// parseCatchSwitch 6652 /// ::= 'catchswitch' within Parent 6653 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6654 Value *ParentPad; 6655 6656 if (parseToken(lltok::kw_within, "expected 'within' after catchswitch")) 6657 return true; 6658 6659 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6660 Lex.getKind() != lltok::LocalVarID) 6661 return tokError("expected scope value for catchswitch"); 6662 6663 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6664 return true; 6665 6666 if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 6667 return true; 6668 6669 SmallVector<BasicBlock *, 32> Table; 6670 do { 6671 BasicBlock *DestBB; 6672 if (parseTypeAndBasicBlock(DestBB, PFS)) 6673 return true; 6674 Table.push_back(DestBB); 6675 } while (EatIfPresent(lltok::comma)); 6676 6677 if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 6678 return true; 6679 6680 if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope")) 6681 return true; 6682 6683 BasicBlock *UnwindBB = nullptr; 6684 if (EatIfPresent(lltok::kw_to)) { 6685 if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 6686 return true; 6687 } else { 6688 if (parseTypeAndBasicBlock(UnwindBB, PFS)) 6689 return true; 6690 } 6691 6692 auto *CatchSwitch = 6693 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 6694 for (BasicBlock *DestBB : Table) 6695 CatchSwitch->addHandler(DestBB); 6696 Inst = CatchSwitch; 6697 return false; 6698 } 6699 6700 /// parseCatchPad 6701 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 6702 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 6703 Value *CatchSwitch = nullptr; 6704 6705 if (parseToken(lltok::kw_within, "expected 'within' after catchpad")) 6706 return true; 6707 6708 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 6709 return tokError("expected scope value for catchpad"); 6710 6711 if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 6712 return true; 6713 6714 SmallVector<Value *, 8> Args; 6715 if (parseExceptionArgs(Args, PFS)) 6716 return true; 6717 6718 Inst = CatchPadInst::Create(CatchSwitch, Args); 6719 return false; 6720 } 6721 6722 /// parseCleanupPad 6723 /// ::= 'cleanuppad' within Parent ParamList 6724 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 6725 Value *ParentPad = nullptr; 6726 6727 if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 6728 return true; 6729 6730 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6731 Lex.getKind() != lltok::LocalVarID) 6732 return tokError("expected scope value for cleanuppad"); 6733 6734 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6735 return true; 6736 6737 SmallVector<Value *, 8> Args; 6738 if (parseExceptionArgs(Args, PFS)) 6739 return true; 6740 6741 Inst = CleanupPadInst::Create(ParentPad, Args); 6742 return false; 6743 } 6744 6745 //===----------------------------------------------------------------------===// 6746 // Unary Operators. 6747 //===----------------------------------------------------------------------===// 6748 6749 /// parseUnaryOp 6750 /// ::= UnaryOp TypeAndValue ',' Value 6751 /// 6752 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6753 /// operand is allowed. 6754 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS, 6755 unsigned Opc, bool IsFP) { 6756 LocTy Loc; Value *LHS; 6757 if (parseTypeAndValue(LHS, Loc, PFS)) 6758 return true; 6759 6760 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6761 : LHS->getType()->isIntOrIntVectorTy(); 6762 6763 if (!Valid) 6764 return error(Loc, "invalid operand type for instruction"); 6765 6766 Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 6767 return false; 6768 } 6769 6770 /// parseCallBr 6771 /// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList 6772 /// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue 6773 /// '[' LabelList ']' 6774 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) { 6775 LocTy CallLoc = Lex.getLoc(); 6776 AttrBuilder RetAttrs, FnAttrs; 6777 std::vector<unsigned> FwdRefAttrGrps; 6778 LocTy NoBuiltinLoc; 6779 unsigned CC; 6780 Type *RetType = nullptr; 6781 LocTy RetTypeLoc; 6782 ValID CalleeID; 6783 SmallVector<ParamInfo, 16> ArgList; 6784 SmallVector<OperandBundleDef, 2> BundleList; 6785 6786 BasicBlock *DefaultDest; 6787 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6788 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6789 parseValID(CalleeID) || parseParameterList(ArgList, PFS) || 6790 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6791 NoBuiltinLoc) || 6792 parseOptionalOperandBundles(BundleList, PFS) || 6793 parseToken(lltok::kw_to, "expected 'to' in callbr") || 6794 parseTypeAndBasicBlock(DefaultDest, PFS) || 6795 parseToken(lltok::lsquare, "expected '[' in callbr")) 6796 return true; 6797 6798 // parse the destination list. 6799 SmallVector<BasicBlock *, 16> IndirectDests; 6800 6801 if (Lex.getKind() != lltok::rsquare) { 6802 BasicBlock *DestBB; 6803 if (parseTypeAndBasicBlock(DestBB, PFS)) 6804 return true; 6805 IndirectDests.push_back(DestBB); 6806 6807 while (EatIfPresent(lltok::comma)) { 6808 if (parseTypeAndBasicBlock(DestBB, PFS)) 6809 return true; 6810 IndirectDests.push_back(DestBB); 6811 } 6812 } 6813 6814 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 6815 return true; 6816 6817 // If RetType is a non-function pointer type, then this is the short syntax 6818 // for the call, which means that RetType is just the return type. Infer the 6819 // rest of the function argument types from the arguments that are present. 6820 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6821 if (!Ty) { 6822 // Pull out the types of all of the arguments... 6823 std::vector<Type *> ParamTypes; 6824 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6825 ParamTypes.push_back(ArgList[i].V->getType()); 6826 6827 if (!FunctionType::isValidReturnType(RetType)) 6828 return error(RetTypeLoc, "Invalid result type for LLVM function"); 6829 6830 Ty = FunctionType::get(RetType, ParamTypes, false); 6831 } 6832 6833 CalleeID.FTy = Ty; 6834 6835 // Look up the callee. 6836 Value *Callee; 6837 if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS, 6838 /*IsCall=*/true)) 6839 return true; 6840 6841 // Set up the Attribute for the function. 6842 SmallVector<Value *, 8> Args; 6843 SmallVector<AttributeSet, 8> ArgAttrs; 6844 6845 // Loop through FunctionType's arguments and ensure they are specified 6846 // correctly. Also, gather any parameter attributes. 6847 FunctionType::param_iterator I = Ty->param_begin(); 6848 FunctionType::param_iterator E = Ty->param_end(); 6849 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6850 Type *ExpectedTy = nullptr; 6851 if (I != E) { 6852 ExpectedTy = *I++; 6853 } else if (!Ty->isVarArg()) { 6854 return error(ArgList[i].Loc, "too many arguments specified"); 6855 } 6856 6857 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6858 return error(ArgList[i].Loc, "argument is not of expected type '" + 6859 getTypeString(ExpectedTy) + "'"); 6860 Args.push_back(ArgList[i].V); 6861 ArgAttrs.push_back(ArgList[i].Attrs); 6862 } 6863 6864 if (I != E) 6865 return error(CallLoc, "not enough parameters specified for call"); 6866 6867 if (FnAttrs.hasAlignmentAttr()) 6868 return error(CallLoc, "callbr instructions may not have an alignment"); 6869 6870 // Finish off the Attribute and check them 6871 AttributeList PAL = 6872 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6873 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6874 6875 CallBrInst *CBI = 6876 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args, 6877 BundleList); 6878 CBI->setCallingConv(CC); 6879 CBI->setAttributes(PAL); 6880 ForwardRefAttrGroups[CBI] = FwdRefAttrGrps; 6881 Inst = CBI; 6882 return false; 6883 } 6884 6885 //===----------------------------------------------------------------------===// 6886 // Binary Operators. 6887 //===----------------------------------------------------------------------===// 6888 6889 /// parseArithmetic 6890 /// ::= ArithmeticOps TypeAndValue ',' Value 6891 /// 6892 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6893 /// operand is allowed. 6894 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 6895 unsigned Opc, bool IsFP) { 6896 LocTy Loc; Value *LHS, *RHS; 6897 if (parseTypeAndValue(LHS, Loc, PFS) || 6898 parseToken(lltok::comma, "expected ',' in arithmetic operation") || 6899 parseValue(LHS->getType(), RHS, PFS)) 6900 return true; 6901 6902 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6903 : LHS->getType()->isIntOrIntVectorTy(); 6904 6905 if (!Valid) 6906 return error(Loc, "invalid operand type for instruction"); 6907 6908 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6909 return false; 6910 } 6911 6912 /// parseLogical 6913 /// ::= ArithmeticOps TypeAndValue ',' Value { 6914 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS, 6915 unsigned Opc) { 6916 LocTy Loc; Value *LHS, *RHS; 6917 if (parseTypeAndValue(LHS, Loc, PFS) || 6918 parseToken(lltok::comma, "expected ',' in logical operation") || 6919 parseValue(LHS->getType(), RHS, PFS)) 6920 return true; 6921 6922 if (!LHS->getType()->isIntOrIntVectorTy()) 6923 return error(Loc, 6924 "instruction requires integer or integer vector operands"); 6925 6926 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6927 return false; 6928 } 6929 6930 /// parseCompare 6931 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 6932 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 6933 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS, 6934 unsigned Opc) { 6935 // parse the integer/fp comparison predicate. 6936 LocTy Loc; 6937 unsigned Pred; 6938 Value *LHS, *RHS; 6939 if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) || 6940 parseToken(lltok::comma, "expected ',' after compare value") || 6941 parseValue(LHS->getType(), RHS, PFS)) 6942 return true; 6943 6944 if (Opc == Instruction::FCmp) { 6945 if (!LHS->getType()->isFPOrFPVectorTy()) 6946 return error(Loc, "fcmp requires floating point operands"); 6947 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6948 } else { 6949 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 6950 if (!LHS->getType()->isIntOrIntVectorTy() && 6951 !LHS->getType()->isPtrOrPtrVectorTy()) 6952 return error(Loc, "icmp requires integer operands"); 6953 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6954 } 6955 return false; 6956 } 6957 6958 //===----------------------------------------------------------------------===// 6959 // Other Instructions. 6960 //===----------------------------------------------------------------------===// 6961 6962 /// parseCast 6963 /// ::= CastOpc TypeAndValue 'to' Type 6964 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS, 6965 unsigned Opc) { 6966 LocTy Loc; 6967 Value *Op; 6968 Type *DestTy = nullptr; 6969 if (parseTypeAndValue(Op, Loc, PFS) || 6970 parseToken(lltok::kw_to, "expected 'to' after cast value") || 6971 parseType(DestTy)) 6972 return true; 6973 6974 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 6975 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 6976 return error(Loc, "invalid cast opcode for cast from '" + 6977 getTypeString(Op->getType()) + "' to '" + 6978 getTypeString(DestTy) + "'"); 6979 } 6980 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 6981 return false; 6982 } 6983 6984 /// parseSelect 6985 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6986 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) { 6987 LocTy Loc; 6988 Value *Op0, *Op1, *Op2; 6989 if (parseTypeAndValue(Op0, Loc, PFS) || 6990 parseToken(lltok::comma, "expected ',' after select condition") || 6991 parseTypeAndValue(Op1, PFS) || 6992 parseToken(lltok::comma, "expected ',' after select value") || 6993 parseTypeAndValue(Op2, PFS)) 6994 return true; 6995 6996 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 6997 return error(Loc, Reason); 6998 6999 Inst = SelectInst::Create(Op0, Op1, Op2); 7000 return false; 7001 } 7002 7003 /// parseVAArg 7004 /// ::= 'va_arg' TypeAndValue ',' Type 7005 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) { 7006 Value *Op; 7007 Type *EltTy = nullptr; 7008 LocTy TypeLoc; 7009 if (parseTypeAndValue(Op, PFS) || 7010 parseToken(lltok::comma, "expected ',' after vaarg operand") || 7011 parseType(EltTy, TypeLoc)) 7012 return true; 7013 7014 if (!EltTy->isFirstClassType()) 7015 return error(TypeLoc, "va_arg requires operand with first class type"); 7016 7017 Inst = new VAArgInst(Op, EltTy); 7018 return false; 7019 } 7020 7021 /// parseExtractElement 7022 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 7023 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 7024 LocTy Loc; 7025 Value *Op0, *Op1; 7026 if (parseTypeAndValue(Op0, Loc, PFS) || 7027 parseToken(lltok::comma, "expected ',' after extract value") || 7028 parseTypeAndValue(Op1, PFS)) 7029 return true; 7030 7031 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 7032 return error(Loc, "invalid extractelement operands"); 7033 7034 Inst = ExtractElementInst::Create(Op0, Op1); 7035 return false; 7036 } 7037 7038 /// parseInsertElement 7039 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 7040 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 7041 LocTy Loc; 7042 Value *Op0, *Op1, *Op2; 7043 if (parseTypeAndValue(Op0, Loc, PFS) || 7044 parseToken(lltok::comma, "expected ',' after insertelement value") || 7045 parseTypeAndValue(Op1, PFS) || 7046 parseToken(lltok::comma, "expected ',' after insertelement value") || 7047 parseTypeAndValue(Op2, PFS)) 7048 return true; 7049 7050 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 7051 return error(Loc, "invalid insertelement operands"); 7052 7053 Inst = InsertElementInst::Create(Op0, Op1, Op2); 7054 return false; 7055 } 7056 7057 /// parseShuffleVector 7058 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 7059 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 7060 LocTy Loc; 7061 Value *Op0, *Op1, *Op2; 7062 if (parseTypeAndValue(Op0, Loc, PFS) || 7063 parseToken(lltok::comma, "expected ',' after shuffle mask") || 7064 parseTypeAndValue(Op1, PFS) || 7065 parseToken(lltok::comma, "expected ',' after shuffle value") || 7066 parseTypeAndValue(Op2, PFS)) 7067 return true; 7068 7069 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 7070 return error(Loc, "invalid shufflevector operands"); 7071 7072 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 7073 return false; 7074 } 7075 7076 /// parsePHI 7077 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 7078 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) { 7079 Type *Ty = nullptr; LocTy TypeLoc; 7080 Value *Op0, *Op1; 7081 7082 if (parseType(Ty, TypeLoc) || 7083 parseToken(lltok::lsquare, "expected '[' in phi value list") || 7084 parseValue(Ty, Op0, PFS) || 7085 parseToken(lltok::comma, "expected ',' after insertelement value") || 7086 parseValue(Type::getLabelTy(Context), Op1, PFS) || 7087 parseToken(lltok::rsquare, "expected ']' in phi value list")) 7088 return true; 7089 7090 bool AteExtraComma = false; 7091 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 7092 7093 while (true) { 7094 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 7095 7096 if (!EatIfPresent(lltok::comma)) 7097 break; 7098 7099 if (Lex.getKind() == lltok::MetadataVar) { 7100 AteExtraComma = true; 7101 break; 7102 } 7103 7104 if (parseToken(lltok::lsquare, "expected '[' in phi value list") || 7105 parseValue(Ty, Op0, PFS) || 7106 parseToken(lltok::comma, "expected ',' after insertelement value") || 7107 parseValue(Type::getLabelTy(Context), Op1, PFS) || 7108 parseToken(lltok::rsquare, "expected ']' in phi value list")) 7109 return true; 7110 } 7111 7112 if (!Ty->isFirstClassType()) 7113 return error(TypeLoc, "phi node must have first class type"); 7114 7115 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 7116 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 7117 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 7118 Inst = PN; 7119 return AteExtraComma ? InstExtraComma : InstNormal; 7120 } 7121 7122 /// parseLandingPad 7123 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 7124 /// Clause 7125 /// ::= 'catch' TypeAndValue 7126 /// ::= 'filter' 7127 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 7128 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 7129 Type *Ty = nullptr; LocTy TyLoc; 7130 7131 if (parseType(Ty, TyLoc)) 7132 return true; 7133 7134 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 7135 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 7136 7137 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 7138 LandingPadInst::ClauseType CT; 7139 if (EatIfPresent(lltok::kw_catch)) 7140 CT = LandingPadInst::Catch; 7141 else if (EatIfPresent(lltok::kw_filter)) 7142 CT = LandingPadInst::Filter; 7143 else 7144 return tokError("expected 'catch' or 'filter' clause type"); 7145 7146 Value *V; 7147 LocTy VLoc; 7148 if (parseTypeAndValue(V, VLoc, PFS)) 7149 return true; 7150 7151 // A 'catch' type expects a non-array constant. A filter clause expects an 7152 // array constant. 7153 if (CT == LandingPadInst::Catch) { 7154 if (isa<ArrayType>(V->getType())) 7155 error(VLoc, "'catch' clause has an invalid type"); 7156 } else { 7157 if (!isa<ArrayType>(V->getType())) 7158 error(VLoc, "'filter' clause has an invalid type"); 7159 } 7160 7161 Constant *CV = dyn_cast<Constant>(V); 7162 if (!CV) 7163 return error(VLoc, "clause argument must be a constant"); 7164 LP->addClause(CV); 7165 } 7166 7167 Inst = LP.release(); 7168 return false; 7169 } 7170 7171 /// parseFreeze 7172 /// ::= 'freeze' Type Value 7173 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) { 7174 LocTy Loc; 7175 Value *Op; 7176 if (parseTypeAndValue(Op, Loc, PFS)) 7177 return true; 7178 7179 Inst = new FreezeInst(Op); 7180 return false; 7181 } 7182 7183 /// parseCall 7184 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 7185 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7186 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 7187 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7188 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 7189 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7190 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 7191 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7192 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS, 7193 CallInst::TailCallKind TCK) { 7194 AttrBuilder RetAttrs, FnAttrs; 7195 std::vector<unsigned> FwdRefAttrGrps; 7196 LocTy BuiltinLoc; 7197 unsigned CallAddrSpace; 7198 unsigned CC; 7199 Type *RetType = nullptr; 7200 LocTy RetTypeLoc; 7201 ValID CalleeID; 7202 SmallVector<ParamInfo, 16> ArgList; 7203 SmallVector<OperandBundleDef, 2> BundleList; 7204 LocTy CallLoc = Lex.getLoc(); 7205 7206 if (TCK != CallInst::TCK_None && 7207 parseToken(lltok::kw_call, 7208 "expected 'tail call', 'musttail call', or 'notail call'")) 7209 return true; 7210 7211 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 7212 7213 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 7214 parseOptionalProgramAddrSpace(CallAddrSpace) || 7215 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 7216 parseValID(CalleeID) || 7217 parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 7218 PFS.getFunction().isVarArg()) || 7219 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 7220 parseOptionalOperandBundles(BundleList, PFS)) 7221 return true; 7222 7223 // If RetType is a non-function pointer type, then this is the short syntax 7224 // for the call, which means that RetType is just the return type. Infer the 7225 // rest of the function argument types from the arguments that are present. 7226 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 7227 if (!Ty) { 7228 // Pull out the types of all of the arguments... 7229 std::vector<Type*> ParamTypes; 7230 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 7231 ParamTypes.push_back(ArgList[i].V->getType()); 7232 7233 if (!FunctionType::isValidReturnType(RetType)) 7234 return error(RetTypeLoc, "Invalid result type for LLVM function"); 7235 7236 Ty = FunctionType::get(RetType, ParamTypes, false); 7237 } 7238 7239 CalleeID.FTy = Ty; 7240 7241 // Look up the callee. 7242 Value *Callee; 7243 if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee, 7244 &PFS, /*IsCall=*/true)) 7245 return true; 7246 7247 // Set up the Attribute for the function. 7248 SmallVector<AttributeSet, 8> Attrs; 7249 7250 SmallVector<Value*, 8> Args; 7251 7252 // Loop through FunctionType's arguments and ensure they are specified 7253 // correctly. Also, gather any parameter attributes. 7254 FunctionType::param_iterator I = Ty->param_begin(); 7255 FunctionType::param_iterator E = Ty->param_end(); 7256 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 7257 Type *ExpectedTy = nullptr; 7258 if (I != E) { 7259 ExpectedTy = *I++; 7260 } else if (!Ty->isVarArg()) { 7261 return error(ArgList[i].Loc, "too many arguments specified"); 7262 } 7263 7264 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 7265 return error(ArgList[i].Loc, "argument is not of expected type '" + 7266 getTypeString(ExpectedTy) + "'"); 7267 Args.push_back(ArgList[i].V); 7268 Attrs.push_back(ArgList[i].Attrs); 7269 } 7270 7271 if (I != E) 7272 return error(CallLoc, "not enough parameters specified for call"); 7273 7274 if (FnAttrs.hasAlignmentAttr()) 7275 return error(CallLoc, "call instructions may not have an alignment"); 7276 7277 // Finish off the Attribute and check them 7278 AttributeList PAL = 7279 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 7280 AttributeSet::get(Context, RetAttrs), Attrs); 7281 7282 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 7283 CI->setTailCallKind(TCK); 7284 CI->setCallingConv(CC); 7285 if (FMF.any()) { 7286 if (!isa<FPMathOperator>(CI)) { 7287 CI->deleteValue(); 7288 return error(CallLoc, "fast-math-flags specified for call without " 7289 "floating-point scalar or vector return type"); 7290 } 7291 CI->setFastMathFlags(FMF); 7292 } 7293 CI->setAttributes(PAL); 7294 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 7295 Inst = CI; 7296 return false; 7297 } 7298 7299 //===----------------------------------------------------------------------===// 7300 // Memory Instructions. 7301 //===----------------------------------------------------------------------===// 7302 7303 /// parseAlloc 7304 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 7305 /// (',' 'align' i32)? (',', 'addrspace(n))? 7306 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 7307 Value *Size = nullptr; 7308 LocTy SizeLoc, TyLoc, ASLoc; 7309 MaybeAlign Alignment; 7310 unsigned AddrSpace = 0; 7311 Type *Ty = nullptr; 7312 7313 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 7314 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 7315 7316 if (parseType(Ty, TyLoc)) 7317 return true; 7318 7319 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 7320 return error(TyLoc, "invalid type for alloca"); 7321 7322 bool AteExtraComma = false; 7323 if (EatIfPresent(lltok::comma)) { 7324 if (Lex.getKind() == lltok::kw_align) { 7325 if (parseOptionalAlignment(Alignment)) 7326 return true; 7327 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7328 return true; 7329 } else if (Lex.getKind() == lltok::kw_addrspace) { 7330 ASLoc = Lex.getLoc(); 7331 if (parseOptionalAddrSpace(AddrSpace)) 7332 return true; 7333 } else if (Lex.getKind() == lltok::MetadataVar) { 7334 AteExtraComma = true; 7335 } else { 7336 if (parseTypeAndValue(Size, SizeLoc, PFS)) 7337 return true; 7338 if (EatIfPresent(lltok::comma)) { 7339 if (Lex.getKind() == lltok::kw_align) { 7340 if (parseOptionalAlignment(Alignment)) 7341 return true; 7342 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7343 return true; 7344 } else if (Lex.getKind() == lltok::kw_addrspace) { 7345 ASLoc = Lex.getLoc(); 7346 if (parseOptionalAddrSpace(AddrSpace)) 7347 return true; 7348 } else if (Lex.getKind() == lltok::MetadataVar) { 7349 AteExtraComma = true; 7350 } 7351 } 7352 } 7353 } 7354 7355 if (Size && !Size->getType()->isIntegerTy()) 7356 return error(SizeLoc, "element count must have integer type"); 7357 7358 SmallPtrSet<Type *, 4> Visited; 7359 if (!Alignment && !Ty->isSized(&Visited)) 7360 return error(TyLoc, "Cannot allocate unsized type"); 7361 if (!Alignment) 7362 Alignment = M->getDataLayout().getPrefTypeAlign(Ty); 7363 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment); 7364 AI->setUsedWithInAlloca(IsInAlloca); 7365 AI->setSwiftError(IsSwiftError); 7366 Inst = AI; 7367 return AteExtraComma ? InstExtraComma : InstNormal; 7368 } 7369 7370 /// parseLoad 7371 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 7372 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 7373 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7374 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) { 7375 Value *Val; LocTy Loc; 7376 MaybeAlign Alignment; 7377 bool AteExtraComma = false; 7378 bool isAtomic = false; 7379 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7380 SyncScope::ID SSID = SyncScope::System; 7381 7382 if (Lex.getKind() == lltok::kw_atomic) { 7383 isAtomic = true; 7384 Lex.Lex(); 7385 } 7386 7387 bool isVolatile = false; 7388 if (Lex.getKind() == lltok::kw_volatile) { 7389 isVolatile = true; 7390 Lex.Lex(); 7391 } 7392 7393 Type *Ty; 7394 LocTy ExplicitTypeLoc = Lex.getLoc(); 7395 if (parseType(Ty) || 7396 parseToken(lltok::comma, "expected comma after load's type") || 7397 parseTypeAndValue(Val, Loc, PFS) || 7398 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 7399 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7400 return true; 7401 7402 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 7403 return error(Loc, "load operand must be a pointer to a first class type"); 7404 if (isAtomic && !Alignment) 7405 return error(Loc, "atomic load must have explicit non-zero alignment"); 7406 if (Ordering == AtomicOrdering::Release || 7407 Ordering == AtomicOrdering::AcquireRelease) 7408 return error(Loc, "atomic load cannot use Release ordering"); 7409 7410 if (Ty != cast<PointerType>(Val->getType())->getElementType()) 7411 return error(ExplicitTypeLoc, 7412 "explicit pointee type doesn't match operand's pointee type"); 7413 SmallPtrSet<Type *, 4> Visited; 7414 if (!Alignment && !Ty->isSized(&Visited)) 7415 return error(ExplicitTypeLoc, "loading unsized types is not allowed"); 7416 if (!Alignment) 7417 Alignment = M->getDataLayout().getABITypeAlign(Ty); 7418 Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID); 7419 return AteExtraComma ? InstExtraComma : InstNormal; 7420 } 7421 7422 /// parseStore 7423 7424 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 7425 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 7426 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7427 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) { 7428 Value *Val, *Ptr; LocTy Loc, PtrLoc; 7429 MaybeAlign Alignment; 7430 bool AteExtraComma = false; 7431 bool isAtomic = false; 7432 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7433 SyncScope::ID SSID = SyncScope::System; 7434 7435 if (Lex.getKind() == lltok::kw_atomic) { 7436 isAtomic = true; 7437 Lex.Lex(); 7438 } 7439 7440 bool isVolatile = false; 7441 if (Lex.getKind() == lltok::kw_volatile) { 7442 isVolatile = true; 7443 Lex.Lex(); 7444 } 7445 7446 if (parseTypeAndValue(Val, Loc, PFS) || 7447 parseToken(lltok::comma, "expected ',' after store operand") || 7448 parseTypeAndValue(Ptr, PtrLoc, PFS) || 7449 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 7450 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7451 return true; 7452 7453 if (!Ptr->getType()->isPointerTy()) 7454 return error(PtrLoc, "store operand must be a pointer"); 7455 if (!Val->getType()->isFirstClassType()) 7456 return error(Loc, "store operand must be a first class value"); 7457 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 7458 return error(Loc, "stored value and pointer type do not match"); 7459 if (isAtomic && !Alignment) 7460 return error(Loc, "atomic store must have explicit non-zero alignment"); 7461 if (Ordering == AtomicOrdering::Acquire || 7462 Ordering == AtomicOrdering::AcquireRelease) 7463 return error(Loc, "atomic store cannot use Acquire ordering"); 7464 SmallPtrSet<Type *, 4> Visited; 7465 if (!Alignment && !Val->getType()->isSized(&Visited)) 7466 return error(Loc, "storing unsized types is not allowed"); 7467 if (!Alignment) 7468 Alignment = M->getDataLayout().getABITypeAlign(Val->getType()); 7469 7470 Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID); 7471 return AteExtraComma ? InstExtraComma : InstNormal; 7472 } 7473 7474 /// parseCmpXchg 7475 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 7476 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ',' 7477 /// 'Align'? 7478 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 7479 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 7480 bool AteExtraComma = false; 7481 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 7482 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 7483 SyncScope::ID SSID = SyncScope::System; 7484 bool isVolatile = false; 7485 bool isWeak = false; 7486 MaybeAlign Alignment; 7487 7488 if (EatIfPresent(lltok::kw_weak)) 7489 isWeak = true; 7490 7491 if (EatIfPresent(lltok::kw_volatile)) 7492 isVolatile = true; 7493 7494 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 7495 parseToken(lltok::comma, "expected ',' after cmpxchg address") || 7496 parseTypeAndValue(Cmp, CmpLoc, PFS) || 7497 parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 7498 parseTypeAndValue(New, NewLoc, PFS) || 7499 parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 7500 parseOrdering(FailureOrdering) || 7501 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7502 return true; 7503 7504 if (SuccessOrdering == AtomicOrdering::Unordered || 7505 FailureOrdering == AtomicOrdering::Unordered) 7506 return tokError("cmpxchg cannot be unordered"); 7507 if (isStrongerThan(FailureOrdering, SuccessOrdering)) 7508 return tokError("cmpxchg failure argument shall be no stronger than the " 7509 "success argument"); 7510 if (FailureOrdering == AtomicOrdering::Release || 7511 FailureOrdering == AtomicOrdering::AcquireRelease) 7512 return tokError( 7513 "cmpxchg failure ordering cannot include release semantics"); 7514 if (!Ptr->getType()->isPointerTy()) 7515 return error(PtrLoc, "cmpxchg operand must be a pointer"); 7516 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 7517 return error(CmpLoc, "compare value and pointer type do not match"); 7518 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 7519 return error(NewLoc, "new value and pointer type do not match"); 7520 if (!New->getType()->isFirstClassType()) 7521 return error(NewLoc, "cmpxchg operand must be a first class value"); 7522 7523 const Align DefaultAlignment( 7524 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7525 Cmp->getType())); 7526 7527 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 7528 Ptr, Cmp, New, Alignment.getValueOr(DefaultAlignment), SuccessOrdering, 7529 FailureOrdering, SSID); 7530 CXI->setVolatile(isVolatile); 7531 CXI->setWeak(isWeak); 7532 7533 Inst = CXI; 7534 return AteExtraComma ? InstExtraComma : InstNormal; 7535 } 7536 7537 /// parseAtomicRMW 7538 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 7539 /// 'singlethread'? AtomicOrdering 7540 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 7541 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 7542 bool AteExtraComma = false; 7543 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7544 SyncScope::ID SSID = SyncScope::System; 7545 bool isVolatile = false; 7546 bool IsFP = false; 7547 AtomicRMWInst::BinOp Operation; 7548 MaybeAlign Alignment; 7549 7550 if (EatIfPresent(lltok::kw_volatile)) 7551 isVolatile = true; 7552 7553 switch (Lex.getKind()) { 7554 default: 7555 return tokError("expected binary operation in atomicrmw"); 7556 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 7557 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 7558 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 7559 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 7560 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 7561 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 7562 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 7563 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 7564 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 7565 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 7566 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 7567 case lltok::kw_fadd: 7568 Operation = AtomicRMWInst::FAdd; 7569 IsFP = true; 7570 break; 7571 case lltok::kw_fsub: 7572 Operation = AtomicRMWInst::FSub; 7573 IsFP = true; 7574 break; 7575 } 7576 Lex.Lex(); // Eat the operation. 7577 7578 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 7579 parseToken(lltok::comma, "expected ',' after atomicrmw address") || 7580 parseTypeAndValue(Val, ValLoc, PFS) || 7581 parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) || 7582 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7583 return true; 7584 7585 if (Ordering == AtomicOrdering::Unordered) 7586 return tokError("atomicrmw cannot be unordered"); 7587 if (!Ptr->getType()->isPointerTy()) 7588 return error(PtrLoc, "atomicrmw operand must be a pointer"); 7589 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 7590 return error(ValLoc, "atomicrmw value and pointer type do not match"); 7591 7592 if (Operation == AtomicRMWInst::Xchg) { 7593 if (!Val->getType()->isIntegerTy() && 7594 !Val->getType()->isFloatingPointTy()) { 7595 return error(ValLoc, 7596 "atomicrmw " + AtomicRMWInst::getOperationName(Operation) + 7597 " operand must be an integer or floating point type"); 7598 } 7599 } else if (IsFP) { 7600 if (!Val->getType()->isFloatingPointTy()) { 7601 return error(ValLoc, "atomicrmw " + 7602 AtomicRMWInst::getOperationName(Operation) + 7603 " operand must be a floating point type"); 7604 } 7605 } else { 7606 if (!Val->getType()->isIntegerTy()) { 7607 return error(ValLoc, "atomicrmw " + 7608 AtomicRMWInst::getOperationName(Operation) + 7609 " operand must be an integer"); 7610 } 7611 } 7612 7613 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 7614 if (Size < 8 || (Size & (Size - 1))) 7615 return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 7616 " integer"); 7617 const Align DefaultAlignment( 7618 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7619 Val->getType())); 7620 AtomicRMWInst *RMWI = 7621 new AtomicRMWInst(Operation, Ptr, Val, 7622 Alignment.getValueOr(DefaultAlignment), Ordering, SSID); 7623 RMWI->setVolatile(isVolatile); 7624 Inst = RMWI; 7625 return AteExtraComma ? InstExtraComma : InstNormal; 7626 } 7627 7628 /// parseFence 7629 /// ::= 'fence' 'singlethread'? AtomicOrdering 7630 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) { 7631 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7632 SyncScope::ID SSID = SyncScope::System; 7633 if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7634 return true; 7635 7636 if (Ordering == AtomicOrdering::Unordered) 7637 return tokError("fence cannot be unordered"); 7638 if (Ordering == AtomicOrdering::Monotonic) 7639 return tokError("fence cannot be monotonic"); 7640 7641 Inst = new FenceInst(Context, Ordering, SSID); 7642 return InstNormal; 7643 } 7644 7645 /// parseGetElementPtr 7646 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 7647 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 7648 Value *Ptr = nullptr; 7649 Value *Val = nullptr; 7650 LocTy Loc, EltLoc; 7651 7652 bool InBounds = EatIfPresent(lltok::kw_inbounds); 7653 7654 Type *Ty = nullptr; 7655 LocTy ExplicitTypeLoc = Lex.getLoc(); 7656 if (parseType(Ty) || 7657 parseToken(lltok::comma, "expected comma after getelementptr's type") || 7658 parseTypeAndValue(Ptr, Loc, PFS)) 7659 return true; 7660 7661 Type *BaseType = Ptr->getType(); 7662 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 7663 if (!BasePointerType) 7664 return error(Loc, "base of getelementptr must be a pointer"); 7665 7666 if (Ty != BasePointerType->getElementType()) 7667 return error(ExplicitTypeLoc, 7668 "explicit pointee type doesn't match operand's pointee type"); 7669 7670 SmallVector<Value*, 16> Indices; 7671 bool AteExtraComma = false; 7672 // GEP returns a vector of pointers if at least one of parameters is a vector. 7673 // All vector parameters should have the same vector width. 7674 ElementCount GEPWidth = BaseType->isVectorTy() 7675 ? cast<VectorType>(BaseType)->getElementCount() 7676 : ElementCount::getFixed(0); 7677 7678 while (EatIfPresent(lltok::comma)) { 7679 if (Lex.getKind() == lltok::MetadataVar) { 7680 AteExtraComma = true; 7681 break; 7682 } 7683 if (parseTypeAndValue(Val, EltLoc, PFS)) 7684 return true; 7685 if (!Val->getType()->isIntOrIntVectorTy()) 7686 return error(EltLoc, "getelementptr index must be an integer"); 7687 7688 if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) { 7689 ElementCount ValNumEl = ValVTy->getElementCount(); 7690 if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl) 7691 return error( 7692 EltLoc, 7693 "getelementptr vector index has a wrong number of elements"); 7694 GEPWidth = ValNumEl; 7695 } 7696 Indices.push_back(Val); 7697 } 7698 7699 SmallPtrSet<Type*, 4> Visited; 7700 if (!Indices.empty() && !Ty->isSized(&Visited)) 7701 return error(Loc, "base element of getelementptr must be sized"); 7702 7703 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 7704 return error(Loc, "invalid getelementptr indices"); 7705 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 7706 if (InBounds) 7707 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 7708 return AteExtraComma ? InstExtraComma : InstNormal; 7709 } 7710 7711 /// parseExtractValue 7712 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 7713 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 7714 Value *Val; LocTy Loc; 7715 SmallVector<unsigned, 4> Indices; 7716 bool AteExtraComma; 7717 if (parseTypeAndValue(Val, Loc, PFS) || 7718 parseIndexList(Indices, AteExtraComma)) 7719 return true; 7720 7721 if (!Val->getType()->isAggregateType()) 7722 return error(Loc, "extractvalue operand must be aggregate type"); 7723 7724 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 7725 return error(Loc, "invalid indices for extractvalue"); 7726 Inst = ExtractValueInst::Create(Val, Indices); 7727 return AteExtraComma ? InstExtraComma : InstNormal; 7728 } 7729 7730 /// parseInsertValue 7731 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 7732 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 7733 Value *Val0, *Val1; LocTy Loc0, Loc1; 7734 SmallVector<unsigned, 4> Indices; 7735 bool AteExtraComma; 7736 if (parseTypeAndValue(Val0, Loc0, PFS) || 7737 parseToken(lltok::comma, "expected comma after insertvalue operand") || 7738 parseTypeAndValue(Val1, Loc1, PFS) || 7739 parseIndexList(Indices, AteExtraComma)) 7740 return true; 7741 7742 if (!Val0->getType()->isAggregateType()) 7743 return error(Loc0, "insertvalue operand must be aggregate type"); 7744 7745 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 7746 if (!IndexedType) 7747 return error(Loc0, "invalid indices for insertvalue"); 7748 if (IndexedType != Val1->getType()) 7749 return error(Loc1, "insertvalue operand and field disagree in type: '" + 7750 getTypeString(Val1->getType()) + "' instead of '" + 7751 getTypeString(IndexedType) + "'"); 7752 Inst = InsertValueInst::Create(Val0, Val1, Indices); 7753 return AteExtraComma ? InstExtraComma : InstNormal; 7754 } 7755 7756 //===----------------------------------------------------------------------===// 7757 // Embedded metadata. 7758 //===----------------------------------------------------------------------===// 7759 7760 /// parseMDNodeVector 7761 /// ::= { Element (',' Element)* } 7762 /// Element 7763 /// ::= 'null' | TypeAndValue 7764 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 7765 if (parseToken(lltok::lbrace, "expected '{' here")) 7766 return true; 7767 7768 // Check for an empty list. 7769 if (EatIfPresent(lltok::rbrace)) 7770 return false; 7771 7772 do { 7773 // Null is a special case since it is typeless. 7774 if (EatIfPresent(lltok::kw_null)) { 7775 Elts.push_back(nullptr); 7776 continue; 7777 } 7778 7779 Metadata *MD; 7780 if (parseMetadata(MD, nullptr)) 7781 return true; 7782 Elts.push_back(MD); 7783 } while (EatIfPresent(lltok::comma)); 7784 7785 return parseToken(lltok::rbrace, "expected end of metadata node"); 7786 } 7787 7788 //===----------------------------------------------------------------------===// 7789 // Use-list order directives. 7790 //===----------------------------------------------------------------------===// 7791 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 7792 SMLoc Loc) { 7793 if (V->use_empty()) 7794 return error(Loc, "value has no uses"); 7795 7796 unsigned NumUses = 0; 7797 SmallDenseMap<const Use *, unsigned, 16> Order; 7798 for (const Use &U : V->uses()) { 7799 if (++NumUses > Indexes.size()) 7800 break; 7801 Order[&U] = Indexes[NumUses - 1]; 7802 } 7803 if (NumUses < 2) 7804 return error(Loc, "value only has one use"); 7805 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 7806 return error(Loc, 7807 "wrong number of indexes, expected " + Twine(V->getNumUses())); 7808 7809 V->sortUseList([&](const Use &L, const Use &R) { 7810 return Order.lookup(&L) < Order.lookup(&R); 7811 }); 7812 return false; 7813 } 7814 7815 /// parseUseListOrderIndexes 7816 /// ::= '{' uint32 (',' uint32)+ '}' 7817 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 7818 SMLoc Loc = Lex.getLoc(); 7819 if (parseToken(lltok::lbrace, "expected '{' here")) 7820 return true; 7821 if (Lex.getKind() == lltok::rbrace) 7822 return Lex.Error("expected non-empty list of uselistorder indexes"); 7823 7824 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 7825 // indexes should be distinct numbers in the range [0, size-1], and should 7826 // not be in order. 7827 unsigned Offset = 0; 7828 unsigned Max = 0; 7829 bool IsOrdered = true; 7830 assert(Indexes.empty() && "Expected empty order vector"); 7831 do { 7832 unsigned Index; 7833 if (parseUInt32(Index)) 7834 return true; 7835 7836 // Update consistency checks. 7837 Offset += Index - Indexes.size(); 7838 Max = std::max(Max, Index); 7839 IsOrdered &= Index == Indexes.size(); 7840 7841 Indexes.push_back(Index); 7842 } while (EatIfPresent(lltok::comma)); 7843 7844 if (parseToken(lltok::rbrace, "expected '}' here")) 7845 return true; 7846 7847 if (Indexes.size() < 2) 7848 return error(Loc, "expected >= 2 uselistorder indexes"); 7849 if (Offset != 0 || Max >= Indexes.size()) 7850 return error(Loc, 7851 "expected distinct uselistorder indexes in range [0, size)"); 7852 if (IsOrdered) 7853 return error(Loc, "expected uselistorder indexes to change the order"); 7854 7855 return false; 7856 } 7857 7858 /// parseUseListOrder 7859 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 7860 bool LLParser::parseUseListOrder(PerFunctionState *PFS) { 7861 SMLoc Loc = Lex.getLoc(); 7862 if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 7863 return true; 7864 7865 Value *V; 7866 SmallVector<unsigned, 16> Indexes; 7867 if (parseTypeAndValue(V, PFS) || 7868 parseToken(lltok::comma, "expected comma in uselistorder directive") || 7869 parseUseListOrderIndexes(Indexes)) 7870 return true; 7871 7872 return sortUseListOrder(V, Indexes, Loc); 7873 } 7874 7875 /// parseUseListOrderBB 7876 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 7877 bool LLParser::parseUseListOrderBB() { 7878 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 7879 SMLoc Loc = Lex.getLoc(); 7880 Lex.Lex(); 7881 7882 ValID Fn, Label; 7883 SmallVector<unsigned, 16> Indexes; 7884 if (parseValID(Fn) || 7885 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7886 parseValID(Label) || 7887 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7888 parseUseListOrderIndexes(Indexes)) 7889 return true; 7890 7891 // Check the function. 7892 GlobalValue *GV; 7893 if (Fn.Kind == ValID::t_GlobalName) 7894 GV = M->getNamedValue(Fn.StrVal); 7895 else if (Fn.Kind == ValID::t_GlobalID) 7896 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 7897 else 7898 return error(Fn.Loc, "expected function name in uselistorder_bb"); 7899 if (!GV) 7900 return error(Fn.Loc, 7901 "invalid function forward reference in uselistorder_bb"); 7902 auto *F = dyn_cast<Function>(GV); 7903 if (!F) 7904 return error(Fn.Loc, "expected function name in uselistorder_bb"); 7905 if (F->isDeclaration()) 7906 return error(Fn.Loc, "invalid declaration in uselistorder_bb"); 7907 7908 // Check the basic block. 7909 if (Label.Kind == ValID::t_LocalID) 7910 return error(Label.Loc, "invalid numeric label in uselistorder_bb"); 7911 if (Label.Kind != ValID::t_LocalName) 7912 return error(Label.Loc, "expected basic block name in uselistorder_bb"); 7913 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 7914 if (!V) 7915 return error(Label.Loc, "invalid basic block in uselistorder_bb"); 7916 if (!isa<BasicBlock>(V)) 7917 return error(Label.Loc, "expected basic block in uselistorder_bb"); 7918 7919 return sortUseListOrder(V, Indexes, Loc); 7920 } 7921 7922 /// ModuleEntry 7923 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')' 7924 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')' 7925 bool LLParser::parseModuleEntry(unsigned ID) { 7926 assert(Lex.getKind() == lltok::kw_module); 7927 Lex.Lex(); 7928 7929 std::string Path; 7930 if (parseToken(lltok::colon, "expected ':' here") || 7931 parseToken(lltok::lparen, "expected '(' here") || 7932 parseToken(lltok::kw_path, "expected 'path' here") || 7933 parseToken(lltok::colon, "expected ':' here") || 7934 parseStringConstant(Path) || 7935 parseToken(lltok::comma, "expected ',' here") || 7936 parseToken(lltok::kw_hash, "expected 'hash' here") || 7937 parseToken(lltok::colon, "expected ':' here") || 7938 parseToken(lltok::lparen, "expected '(' here")) 7939 return true; 7940 7941 ModuleHash Hash; 7942 if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") || 7943 parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") || 7944 parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") || 7945 parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") || 7946 parseUInt32(Hash[4])) 7947 return true; 7948 7949 if (parseToken(lltok::rparen, "expected ')' here") || 7950 parseToken(lltok::rparen, "expected ')' here")) 7951 return true; 7952 7953 auto ModuleEntry = Index->addModule(Path, ID, Hash); 7954 ModuleIdMap[ID] = ModuleEntry->first(); 7955 7956 return false; 7957 } 7958 7959 /// TypeIdEntry 7960 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')' 7961 bool LLParser::parseTypeIdEntry(unsigned ID) { 7962 assert(Lex.getKind() == lltok::kw_typeid); 7963 Lex.Lex(); 7964 7965 std::string Name; 7966 if (parseToken(lltok::colon, "expected ':' here") || 7967 parseToken(lltok::lparen, "expected '(' here") || 7968 parseToken(lltok::kw_name, "expected 'name' here") || 7969 parseToken(lltok::colon, "expected ':' here") || 7970 parseStringConstant(Name)) 7971 return true; 7972 7973 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name); 7974 if (parseToken(lltok::comma, "expected ',' here") || 7975 parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here")) 7976 return true; 7977 7978 // Check if this ID was forward referenced, and if so, update the 7979 // corresponding GUIDs. 7980 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7981 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7982 for (auto TIDRef : FwdRefTIDs->second) { 7983 assert(!*TIDRef.first && 7984 "Forward referenced type id GUID expected to be 0"); 7985 *TIDRef.first = GlobalValue::getGUID(Name); 7986 } 7987 ForwardRefTypeIds.erase(FwdRefTIDs); 7988 } 7989 7990 return false; 7991 } 7992 7993 /// TypeIdSummary 7994 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')' 7995 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) { 7996 if (parseToken(lltok::kw_summary, "expected 'summary' here") || 7997 parseToken(lltok::colon, "expected ':' here") || 7998 parseToken(lltok::lparen, "expected '(' here") || 7999 parseTypeTestResolution(TIS.TTRes)) 8000 return true; 8001 8002 if (EatIfPresent(lltok::comma)) { 8003 // Expect optional wpdResolutions field 8004 if (parseOptionalWpdResolutions(TIS.WPDRes)) 8005 return true; 8006 } 8007 8008 if (parseToken(lltok::rparen, "expected ')' here")) 8009 return true; 8010 8011 return false; 8012 } 8013 8014 static ValueInfo EmptyVI = 8015 ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8); 8016 8017 /// TypeIdCompatibleVtableEntry 8018 /// ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ',' 8019 /// TypeIdCompatibleVtableInfo 8020 /// ')' 8021 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) { 8022 assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable); 8023 Lex.Lex(); 8024 8025 std::string Name; 8026 if (parseToken(lltok::colon, "expected ':' here") || 8027 parseToken(lltok::lparen, "expected '(' here") || 8028 parseToken(lltok::kw_name, "expected 'name' here") || 8029 parseToken(lltok::colon, "expected ':' here") || 8030 parseStringConstant(Name)) 8031 return true; 8032 8033 TypeIdCompatibleVtableInfo &TI = 8034 Index->getOrInsertTypeIdCompatibleVtableSummary(Name); 8035 if (parseToken(lltok::comma, "expected ',' here") || 8036 parseToken(lltok::kw_summary, "expected 'summary' here") || 8037 parseToken(lltok::colon, "expected ':' here") || 8038 parseToken(lltok::lparen, "expected '(' here")) 8039 return true; 8040 8041 IdToIndexMapType IdToIndexMap; 8042 // parse each call edge 8043 do { 8044 uint64_t Offset; 8045 if (parseToken(lltok::lparen, "expected '(' here") || 8046 parseToken(lltok::kw_offset, "expected 'offset' here") || 8047 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 8048 parseToken(lltok::comma, "expected ',' here")) 8049 return true; 8050 8051 LocTy Loc = Lex.getLoc(); 8052 unsigned GVId; 8053 ValueInfo VI; 8054 if (parseGVReference(VI, GVId)) 8055 return true; 8056 8057 // Keep track of the TypeIdCompatibleVtableInfo array index needing a 8058 // forward reference. We will save the location of the ValueInfo needing an 8059 // update, but can only do so once the std::vector is finalized. 8060 if (VI == EmptyVI) 8061 IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc)); 8062 TI.push_back({Offset, VI}); 8063 8064 if (parseToken(lltok::rparen, "expected ')' in call")) 8065 return true; 8066 } while (EatIfPresent(lltok::comma)); 8067 8068 // Now that the TI vector is finalized, it is safe to save the locations 8069 // of any forward GV references that need updating later. 8070 for (auto I : IdToIndexMap) { 8071 auto &Infos = ForwardRefValueInfos[I.first]; 8072 for (auto P : I.second) { 8073 assert(TI[P.first].VTableVI == EmptyVI && 8074 "Forward referenced ValueInfo expected to be empty"); 8075 Infos.emplace_back(&TI[P.first].VTableVI, P.second); 8076 } 8077 } 8078 8079 if (parseToken(lltok::rparen, "expected ')' here") || 8080 parseToken(lltok::rparen, "expected ')' here")) 8081 return true; 8082 8083 // Check if this ID was forward referenced, and if so, update the 8084 // corresponding GUIDs. 8085 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 8086 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 8087 for (auto TIDRef : FwdRefTIDs->second) { 8088 assert(!*TIDRef.first && 8089 "Forward referenced type id GUID expected to be 0"); 8090 *TIDRef.first = GlobalValue::getGUID(Name); 8091 } 8092 ForwardRefTypeIds.erase(FwdRefTIDs); 8093 } 8094 8095 return false; 8096 } 8097 8098 /// TypeTestResolution 8099 /// ::= 'typeTestRes' ':' '(' 'kind' ':' 8100 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ',' 8101 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]? 8102 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]? 8103 /// [',' 'inlinesBits' ':' UInt64]? ')' 8104 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) { 8105 if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") || 8106 parseToken(lltok::colon, "expected ':' here") || 8107 parseToken(lltok::lparen, "expected '(' here") || 8108 parseToken(lltok::kw_kind, "expected 'kind' here") || 8109 parseToken(lltok::colon, "expected ':' here")) 8110 return true; 8111 8112 switch (Lex.getKind()) { 8113 case lltok::kw_unknown: 8114 TTRes.TheKind = TypeTestResolution::Unknown; 8115 break; 8116 case lltok::kw_unsat: 8117 TTRes.TheKind = TypeTestResolution::Unsat; 8118 break; 8119 case lltok::kw_byteArray: 8120 TTRes.TheKind = TypeTestResolution::ByteArray; 8121 break; 8122 case lltok::kw_inline: 8123 TTRes.TheKind = TypeTestResolution::Inline; 8124 break; 8125 case lltok::kw_single: 8126 TTRes.TheKind = TypeTestResolution::Single; 8127 break; 8128 case lltok::kw_allOnes: 8129 TTRes.TheKind = TypeTestResolution::AllOnes; 8130 break; 8131 default: 8132 return error(Lex.getLoc(), "unexpected TypeTestResolution kind"); 8133 } 8134 Lex.Lex(); 8135 8136 if (parseToken(lltok::comma, "expected ',' here") || 8137 parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") || 8138 parseToken(lltok::colon, "expected ':' here") || 8139 parseUInt32(TTRes.SizeM1BitWidth)) 8140 return true; 8141 8142 // parse optional fields 8143 while (EatIfPresent(lltok::comma)) { 8144 switch (Lex.getKind()) { 8145 case lltok::kw_alignLog2: 8146 Lex.Lex(); 8147 if (parseToken(lltok::colon, "expected ':'") || 8148 parseUInt64(TTRes.AlignLog2)) 8149 return true; 8150 break; 8151 case lltok::kw_sizeM1: 8152 Lex.Lex(); 8153 if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1)) 8154 return true; 8155 break; 8156 case lltok::kw_bitMask: { 8157 unsigned Val; 8158 Lex.Lex(); 8159 if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val)) 8160 return true; 8161 assert(Val <= 0xff); 8162 TTRes.BitMask = (uint8_t)Val; 8163 break; 8164 } 8165 case lltok::kw_inlineBits: 8166 Lex.Lex(); 8167 if (parseToken(lltok::colon, "expected ':'") || 8168 parseUInt64(TTRes.InlineBits)) 8169 return true; 8170 break; 8171 default: 8172 return error(Lex.getLoc(), "expected optional TypeTestResolution field"); 8173 } 8174 } 8175 8176 if (parseToken(lltok::rparen, "expected ')' here")) 8177 return true; 8178 8179 return false; 8180 } 8181 8182 /// OptionalWpdResolutions 8183 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')' 8184 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')' 8185 bool LLParser::parseOptionalWpdResolutions( 8186 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) { 8187 if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") || 8188 parseToken(lltok::colon, "expected ':' here") || 8189 parseToken(lltok::lparen, "expected '(' here")) 8190 return true; 8191 8192 do { 8193 uint64_t Offset; 8194 WholeProgramDevirtResolution WPDRes; 8195 if (parseToken(lltok::lparen, "expected '(' here") || 8196 parseToken(lltok::kw_offset, "expected 'offset' here") || 8197 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 8198 parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) || 8199 parseToken(lltok::rparen, "expected ')' here")) 8200 return true; 8201 WPDResMap[Offset] = WPDRes; 8202 } while (EatIfPresent(lltok::comma)); 8203 8204 if (parseToken(lltok::rparen, "expected ')' here")) 8205 return true; 8206 8207 return false; 8208 } 8209 8210 /// WpdRes 8211 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir' 8212 /// [',' OptionalResByArg]? ')' 8213 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl' 8214 /// ',' 'singleImplName' ':' STRINGCONSTANT ',' 8215 /// [',' OptionalResByArg]? ')' 8216 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel' 8217 /// [',' OptionalResByArg]? ')' 8218 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) { 8219 if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") || 8220 parseToken(lltok::colon, "expected ':' here") || 8221 parseToken(lltok::lparen, "expected '(' here") || 8222 parseToken(lltok::kw_kind, "expected 'kind' here") || 8223 parseToken(lltok::colon, "expected ':' here")) 8224 return true; 8225 8226 switch (Lex.getKind()) { 8227 case lltok::kw_indir: 8228 WPDRes.TheKind = WholeProgramDevirtResolution::Indir; 8229 break; 8230 case lltok::kw_singleImpl: 8231 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl; 8232 break; 8233 case lltok::kw_branchFunnel: 8234 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel; 8235 break; 8236 default: 8237 return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind"); 8238 } 8239 Lex.Lex(); 8240 8241 // parse optional fields 8242 while (EatIfPresent(lltok::comma)) { 8243 switch (Lex.getKind()) { 8244 case lltok::kw_singleImplName: 8245 Lex.Lex(); 8246 if (parseToken(lltok::colon, "expected ':' here") || 8247 parseStringConstant(WPDRes.SingleImplName)) 8248 return true; 8249 break; 8250 case lltok::kw_resByArg: 8251 if (parseOptionalResByArg(WPDRes.ResByArg)) 8252 return true; 8253 break; 8254 default: 8255 return error(Lex.getLoc(), 8256 "expected optional WholeProgramDevirtResolution field"); 8257 } 8258 } 8259 8260 if (parseToken(lltok::rparen, "expected ')' here")) 8261 return true; 8262 8263 return false; 8264 } 8265 8266 /// OptionalResByArg 8267 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')' 8268 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':' 8269 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' | 8270 /// 'virtualConstProp' ) 8271 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]? 8272 /// [',' 'bit' ':' UInt32]? ')' 8273 bool LLParser::parseOptionalResByArg( 8274 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg> 8275 &ResByArg) { 8276 if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") || 8277 parseToken(lltok::colon, "expected ':' here") || 8278 parseToken(lltok::lparen, "expected '(' here")) 8279 return true; 8280 8281 do { 8282 std::vector<uint64_t> Args; 8283 if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") || 8284 parseToken(lltok::kw_byArg, "expected 'byArg here") || 8285 parseToken(lltok::colon, "expected ':' here") || 8286 parseToken(lltok::lparen, "expected '(' here") || 8287 parseToken(lltok::kw_kind, "expected 'kind' here") || 8288 parseToken(lltok::colon, "expected ':' here")) 8289 return true; 8290 8291 WholeProgramDevirtResolution::ByArg ByArg; 8292 switch (Lex.getKind()) { 8293 case lltok::kw_indir: 8294 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir; 8295 break; 8296 case lltok::kw_uniformRetVal: 8297 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 8298 break; 8299 case lltok::kw_uniqueRetVal: 8300 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 8301 break; 8302 case lltok::kw_virtualConstProp: 8303 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 8304 break; 8305 default: 8306 return error(Lex.getLoc(), 8307 "unexpected WholeProgramDevirtResolution::ByArg kind"); 8308 } 8309 Lex.Lex(); 8310 8311 // parse optional fields 8312 while (EatIfPresent(lltok::comma)) { 8313 switch (Lex.getKind()) { 8314 case lltok::kw_info: 8315 Lex.Lex(); 8316 if (parseToken(lltok::colon, "expected ':' here") || 8317 parseUInt64(ByArg.Info)) 8318 return true; 8319 break; 8320 case lltok::kw_byte: 8321 Lex.Lex(); 8322 if (parseToken(lltok::colon, "expected ':' here") || 8323 parseUInt32(ByArg.Byte)) 8324 return true; 8325 break; 8326 case lltok::kw_bit: 8327 Lex.Lex(); 8328 if (parseToken(lltok::colon, "expected ':' here") || 8329 parseUInt32(ByArg.Bit)) 8330 return true; 8331 break; 8332 default: 8333 return error(Lex.getLoc(), 8334 "expected optional whole program devirt field"); 8335 } 8336 } 8337 8338 if (parseToken(lltok::rparen, "expected ')' here")) 8339 return true; 8340 8341 ResByArg[Args] = ByArg; 8342 } while (EatIfPresent(lltok::comma)); 8343 8344 if (parseToken(lltok::rparen, "expected ')' here")) 8345 return true; 8346 8347 return false; 8348 } 8349 8350 /// OptionalResByArg 8351 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')' 8352 bool LLParser::parseArgs(std::vector<uint64_t> &Args) { 8353 if (parseToken(lltok::kw_args, "expected 'args' here") || 8354 parseToken(lltok::colon, "expected ':' here") || 8355 parseToken(lltok::lparen, "expected '(' here")) 8356 return true; 8357 8358 do { 8359 uint64_t Val; 8360 if (parseUInt64(Val)) 8361 return true; 8362 Args.push_back(Val); 8363 } while (EatIfPresent(lltok::comma)); 8364 8365 if (parseToken(lltok::rparen, "expected ')' here")) 8366 return true; 8367 8368 return false; 8369 } 8370 8371 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8; 8372 8373 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) { 8374 bool ReadOnly = Fwd->isReadOnly(); 8375 bool WriteOnly = Fwd->isWriteOnly(); 8376 assert(!(ReadOnly && WriteOnly)); 8377 *Fwd = Resolved; 8378 if (ReadOnly) 8379 Fwd->setReadOnly(); 8380 if (WriteOnly) 8381 Fwd->setWriteOnly(); 8382 } 8383 8384 /// Stores the given Name/GUID and associated summary into the Index. 8385 /// Also updates any forward references to the associated entry ID. 8386 void LLParser::addGlobalValueToIndex( 8387 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage, 8388 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) { 8389 // First create the ValueInfo utilizing the Name or GUID. 8390 ValueInfo VI; 8391 if (GUID != 0) { 8392 assert(Name.empty()); 8393 VI = Index->getOrInsertValueInfo(GUID); 8394 } else { 8395 assert(!Name.empty()); 8396 if (M) { 8397 auto *GV = M->getNamedValue(Name); 8398 assert(GV); 8399 VI = Index->getOrInsertValueInfo(GV); 8400 } else { 8401 assert( 8402 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) && 8403 "Need a source_filename to compute GUID for local"); 8404 GUID = GlobalValue::getGUID( 8405 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName)); 8406 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name)); 8407 } 8408 } 8409 8410 // Resolve forward references from calls/refs 8411 auto FwdRefVIs = ForwardRefValueInfos.find(ID); 8412 if (FwdRefVIs != ForwardRefValueInfos.end()) { 8413 for (auto VIRef : FwdRefVIs->second) { 8414 assert(VIRef.first->getRef() == FwdVIRef && 8415 "Forward referenced ValueInfo expected to be empty"); 8416 resolveFwdRef(VIRef.first, VI); 8417 } 8418 ForwardRefValueInfos.erase(FwdRefVIs); 8419 } 8420 8421 // Resolve forward references from aliases 8422 auto FwdRefAliasees = ForwardRefAliasees.find(ID); 8423 if (FwdRefAliasees != ForwardRefAliasees.end()) { 8424 for (auto AliaseeRef : FwdRefAliasees->second) { 8425 assert(!AliaseeRef.first->hasAliasee() && 8426 "Forward referencing alias already has aliasee"); 8427 assert(Summary && "Aliasee must be a definition"); 8428 AliaseeRef.first->setAliasee(VI, Summary.get()); 8429 } 8430 ForwardRefAliasees.erase(FwdRefAliasees); 8431 } 8432 8433 // Add the summary if one was provided. 8434 if (Summary) 8435 Index->addGlobalValueSummary(VI, std::move(Summary)); 8436 8437 // Save the associated ValueInfo for use in later references by ID. 8438 if (ID == NumberedValueInfos.size()) 8439 NumberedValueInfos.push_back(VI); 8440 else { 8441 // Handle non-continuous numbers (to make test simplification easier). 8442 if (ID > NumberedValueInfos.size()) 8443 NumberedValueInfos.resize(ID + 1); 8444 NumberedValueInfos[ID] = VI; 8445 } 8446 } 8447 8448 /// parseSummaryIndexFlags 8449 /// ::= 'flags' ':' UInt64 8450 bool LLParser::parseSummaryIndexFlags() { 8451 assert(Lex.getKind() == lltok::kw_flags); 8452 Lex.Lex(); 8453 8454 if (parseToken(lltok::colon, "expected ':' here")) 8455 return true; 8456 uint64_t Flags; 8457 if (parseUInt64(Flags)) 8458 return true; 8459 if (Index) 8460 Index->setFlags(Flags); 8461 return false; 8462 } 8463 8464 /// parseBlockCount 8465 /// ::= 'blockcount' ':' UInt64 8466 bool LLParser::parseBlockCount() { 8467 assert(Lex.getKind() == lltok::kw_blockcount); 8468 Lex.Lex(); 8469 8470 if (parseToken(lltok::colon, "expected ':' here")) 8471 return true; 8472 uint64_t BlockCount; 8473 if (parseUInt64(BlockCount)) 8474 return true; 8475 if (Index) 8476 Index->setBlockCount(BlockCount); 8477 return false; 8478 } 8479 8480 /// parseGVEntry 8481 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64) 8482 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')' 8483 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')' 8484 bool LLParser::parseGVEntry(unsigned ID) { 8485 assert(Lex.getKind() == lltok::kw_gv); 8486 Lex.Lex(); 8487 8488 if (parseToken(lltok::colon, "expected ':' here") || 8489 parseToken(lltok::lparen, "expected '(' here")) 8490 return true; 8491 8492 std::string Name; 8493 GlobalValue::GUID GUID = 0; 8494 switch (Lex.getKind()) { 8495 case lltok::kw_name: 8496 Lex.Lex(); 8497 if (parseToken(lltok::colon, "expected ':' here") || 8498 parseStringConstant(Name)) 8499 return true; 8500 // Can't create GUID/ValueInfo until we have the linkage. 8501 break; 8502 case lltok::kw_guid: 8503 Lex.Lex(); 8504 if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID)) 8505 return true; 8506 break; 8507 default: 8508 return error(Lex.getLoc(), "expected name or guid tag"); 8509 } 8510 8511 if (!EatIfPresent(lltok::comma)) { 8512 // No summaries. Wrap up. 8513 if (parseToken(lltok::rparen, "expected ')' here")) 8514 return true; 8515 // This was created for a call to an external or indirect target. 8516 // A GUID with no summary came from a VALUE_GUID record, dummy GUID 8517 // created for indirect calls with VP. A Name with no GUID came from 8518 // an external definition. We pass ExternalLinkage since that is only 8519 // used when the GUID must be computed from Name, and in that case 8520 // the symbol must have external linkage. 8521 addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID, 8522 nullptr); 8523 return false; 8524 } 8525 8526 // Have a list of summaries 8527 if (parseToken(lltok::kw_summaries, "expected 'summaries' here") || 8528 parseToken(lltok::colon, "expected ':' here") || 8529 parseToken(lltok::lparen, "expected '(' here")) 8530 return true; 8531 do { 8532 switch (Lex.getKind()) { 8533 case lltok::kw_function: 8534 if (parseFunctionSummary(Name, GUID, ID)) 8535 return true; 8536 break; 8537 case lltok::kw_variable: 8538 if (parseVariableSummary(Name, GUID, ID)) 8539 return true; 8540 break; 8541 case lltok::kw_alias: 8542 if (parseAliasSummary(Name, GUID, ID)) 8543 return true; 8544 break; 8545 default: 8546 return error(Lex.getLoc(), "expected summary type"); 8547 } 8548 } while (EatIfPresent(lltok::comma)); 8549 8550 if (parseToken(lltok::rparen, "expected ')' here") || 8551 parseToken(lltok::rparen, "expected ')' here")) 8552 return true; 8553 8554 return false; 8555 } 8556 8557 /// FunctionSummary 8558 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8559 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]? 8560 /// [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]? 8561 /// [',' OptionalRefs]? ')' 8562 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID, 8563 unsigned ID) { 8564 assert(Lex.getKind() == lltok::kw_function); 8565 Lex.Lex(); 8566 8567 StringRef ModulePath; 8568 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8569 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8570 /*NotEligibleToImport=*/false, 8571 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8572 unsigned InstCount; 8573 std::vector<FunctionSummary::EdgeTy> Calls; 8574 FunctionSummary::TypeIdInfo TypeIdInfo; 8575 std::vector<FunctionSummary::ParamAccess> ParamAccesses; 8576 std::vector<ValueInfo> Refs; 8577 // Default is all-zeros (conservative values). 8578 FunctionSummary::FFlags FFlags = {}; 8579 if (parseToken(lltok::colon, "expected ':' here") || 8580 parseToken(lltok::lparen, "expected '(' here") || 8581 parseModuleReference(ModulePath) || 8582 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8583 parseToken(lltok::comma, "expected ',' here") || 8584 parseToken(lltok::kw_insts, "expected 'insts' here") || 8585 parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount)) 8586 return true; 8587 8588 // parse optional fields 8589 while (EatIfPresent(lltok::comma)) { 8590 switch (Lex.getKind()) { 8591 case lltok::kw_funcFlags: 8592 if (parseOptionalFFlags(FFlags)) 8593 return true; 8594 break; 8595 case lltok::kw_calls: 8596 if (parseOptionalCalls(Calls)) 8597 return true; 8598 break; 8599 case lltok::kw_typeIdInfo: 8600 if (parseOptionalTypeIdInfo(TypeIdInfo)) 8601 return true; 8602 break; 8603 case lltok::kw_refs: 8604 if (parseOptionalRefs(Refs)) 8605 return true; 8606 break; 8607 case lltok::kw_params: 8608 if (parseOptionalParamAccesses(ParamAccesses)) 8609 return true; 8610 break; 8611 default: 8612 return error(Lex.getLoc(), "expected optional function summary field"); 8613 } 8614 } 8615 8616 if (parseToken(lltok::rparen, "expected ')' here")) 8617 return true; 8618 8619 auto FS = std::make_unique<FunctionSummary>( 8620 GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs), 8621 std::move(Calls), std::move(TypeIdInfo.TypeTests), 8622 std::move(TypeIdInfo.TypeTestAssumeVCalls), 8623 std::move(TypeIdInfo.TypeCheckedLoadVCalls), 8624 std::move(TypeIdInfo.TypeTestAssumeConstVCalls), 8625 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls), 8626 std::move(ParamAccesses)); 8627 8628 FS->setModulePath(ModulePath); 8629 8630 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8631 ID, std::move(FS)); 8632 8633 return false; 8634 } 8635 8636 /// VariableSummary 8637 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8638 /// [',' OptionalRefs]? ')' 8639 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID, 8640 unsigned ID) { 8641 assert(Lex.getKind() == lltok::kw_variable); 8642 Lex.Lex(); 8643 8644 StringRef ModulePath; 8645 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8646 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8647 /*NotEligibleToImport=*/false, 8648 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8649 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false, 8650 /* WriteOnly */ false, 8651 /* Constant */ false, 8652 GlobalObject::VCallVisibilityPublic); 8653 std::vector<ValueInfo> Refs; 8654 VTableFuncList VTableFuncs; 8655 if (parseToken(lltok::colon, "expected ':' here") || 8656 parseToken(lltok::lparen, "expected '(' here") || 8657 parseModuleReference(ModulePath) || 8658 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8659 parseToken(lltok::comma, "expected ',' here") || 8660 parseGVarFlags(GVarFlags)) 8661 return true; 8662 8663 // parse optional fields 8664 while (EatIfPresent(lltok::comma)) { 8665 switch (Lex.getKind()) { 8666 case lltok::kw_vTableFuncs: 8667 if (parseOptionalVTableFuncs(VTableFuncs)) 8668 return true; 8669 break; 8670 case lltok::kw_refs: 8671 if (parseOptionalRefs(Refs)) 8672 return true; 8673 break; 8674 default: 8675 return error(Lex.getLoc(), "expected optional variable summary field"); 8676 } 8677 } 8678 8679 if (parseToken(lltok::rparen, "expected ')' here")) 8680 return true; 8681 8682 auto GS = 8683 std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs)); 8684 8685 GS->setModulePath(ModulePath); 8686 GS->setVTableFuncs(std::move(VTableFuncs)); 8687 8688 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8689 ID, std::move(GS)); 8690 8691 return false; 8692 } 8693 8694 /// AliasSummary 8695 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ',' 8696 /// 'aliasee' ':' GVReference ')' 8697 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID, 8698 unsigned ID) { 8699 assert(Lex.getKind() == lltok::kw_alias); 8700 LocTy Loc = Lex.getLoc(); 8701 Lex.Lex(); 8702 8703 StringRef ModulePath; 8704 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8705 GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility, 8706 /*NotEligibleToImport=*/false, 8707 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8708 if (parseToken(lltok::colon, "expected ':' here") || 8709 parseToken(lltok::lparen, "expected '(' here") || 8710 parseModuleReference(ModulePath) || 8711 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8712 parseToken(lltok::comma, "expected ',' here") || 8713 parseToken(lltok::kw_aliasee, "expected 'aliasee' here") || 8714 parseToken(lltok::colon, "expected ':' here")) 8715 return true; 8716 8717 ValueInfo AliaseeVI; 8718 unsigned GVId; 8719 if (parseGVReference(AliaseeVI, GVId)) 8720 return true; 8721 8722 if (parseToken(lltok::rparen, "expected ')' here")) 8723 return true; 8724 8725 auto AS = std::make_unique<AliasSummary>(GVFlags); 8726 8727 AS->setModulePath(ModulePath); 8728 8729 // Record forward reference if the aliasee is not parsed yet. 8730 if (AliaseeVI.getRef() == FwdVIRef) { 8731 ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc); 8732 } else { 8733 auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath); 8734 assert(Summary && "Aliasee must be a definition"); 8735 AS->setAliasee(AliaseeVI, Summary); 8736 } 8737 8738 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8739 ID, std::move(AS)); 8740 8741 return false; 8742 } 8743 8744 /// Flag 8745 /// ::= [0|1] 8746 bool LLParser::parseFlag(unsigned &Val) { 8747 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 8748 return tokError("expected integer"); 8749 Val = (unsigned)Lex.getAPSIntVal().getBoolValue(); 8750 Lex.Lex(); 8751 return false; 8752 } 8753 8754 /// OptionalFFlags 8755 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]? 8756 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]? 8757 /// [',' 'returnDoesNotAlias' ':' Flag]? ')' 8758 /// [',' 'noInline' ':' Flag]? ')' 8759 /// [',' 'alwaysInline' ':' Flag]? ')' 8760 8761 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) { 8762 assert(Lex.getKind() == lltok::kw_funcFlags); 8763 Lex.Lex(); 8764 8765 if (parseToken(lltok::colon, "expected ':' in funcFlags") | 8766 parseToken(lltok::lparen, "expected '(' in funcFlags")) 8767 return true; 8768 8769 do { 8770 unsigned Val = 0; 8771 switch (Lex.getKind()) { 8772 case lltok::kw_readNone: 8773 Lex.Lex(); 8774 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8775 return true; 8776 FFlags.ReadNone = Val; 8777 break; 8778 case lltok::kw_readOnly: 8779 Lex.Lex(); 8780 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8781 return true; 8782 FFlags.ReadOnly = Val; 8783 break; 8784 case lltok::kw_noRecurse: 8785 Lex.Lex(); 8786 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8787 return true; 8788 FFlags.NoRecurse = Val; 8789 break; 8790 case lltok::kw_returnDoesNotAlias: 8791 Lex.Lex(); 8792 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8793 return true; 8794 FFlags.ReturnDoesNotAlias = Val; 8795 break; 8796 case lltok::kw_noInline: 8797 Lex.Lex(); 8798 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8799 return true; 8800 FFlags.NoInline = Val; 8801 break; 8802 case lltok::kw_alwaysInline: 8803 Lex.Lex(); 8804 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8805 return true; 8806 FFlags.AlwaysInline = Val; 8807 break; 8808 default: 8809 return error(Lex.getLoc(), "expected function flag type"); 8810 } 8811 } while (EatIfPresent(lltok::comma)); 8812 8813 if (parseToken(lltok::rparen, "expected ')' in funcFlags")) 8814 return true; 8815 8816 return false; 8817 } 8818 8819 /// OptionalCalls 8820 /// := 'calls' ':' '(' Call [',' Call]* ')' 8821 /// Call ::= '(' 'callee' ':' GVReference 8822 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')' 8823 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) { 8824 assert(Lex.getKind() == lltok::kw_calls); 8825 Lex.Lex(); 8826 8827 if (parseToken(lltok::colon, "expected ':' in calls") | 8828 parseToken(lltok::lparen, "expected '(' in calls")) 8829 return true; 8830 8831 IdToIndexMapType IdToIndexMap; 8832 // parse each call edge 8833 do { 8834 ValueInfo VI; 8835 if (parseToken(lltok::lparen, "expected '(' in call") || 8836 parseToken(lltok::kw_callee, "expected 'callee' in call") || 8837 parseToken(lltok::colon, "expected ':'")) 8838 return true; 8839 8840 LocTy Loc = Lex.getLoc(); 8841 unsigned GVId; 8842 if (parseGVReference(VI, GVId)) 8843 return true; 8844 8845 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 8846 unsigned RelBF = 0; 8847 if (EatIfPresent(lltok::comma)) { 8848 // Expect either hotness or relbf 8849 if (EatIfPresent(lltok::kw_hotness)) { 8850 if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness)) 8851 return true; 8852 } else { 8853 if (parseToken(lltok::kw_relbf, "expected relbf") || 8854 parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF)) 8855 return true; 8856 } 8857 } 8858 // Keep track of the Call array index needing a forward reference. 8859 // We will save the location of the ValueInfo needing an update, but 8860 // can only do so once the std::vector is finalized. 8861 if (VI.getRef() == FwdVIRef) 8862 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc)); 8863 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)}); 8864 8865 if (parseToken(lltok::rparen, "expected ')' in call")) 8866 return true; 8867 } while (EatIfPresent(lltok::comma)); 8868 8869 // Now that the Calls vector is finalized, it is safe to save the locations 8870 // of any forward GV references that need updating later. 8871 for (auto I : IdToIndexMap) { 8872 auto &Infos = ForwardRefValueInfos[I.first]; 8873 for (auto P : I.second) { 8874 assert(Calls[P.first].first.getRef() == FwdVIRef && 8875 "Forward referenced ValueInfo expected to be empty"); 8876 Infos.emplace_back(&Calls[P.first].first, P.second); 8877 } 8878 } 8879 8880 if (parseToken(lltok::rparen, "expected ')' in calls")) 8881 return true; 8882 8883 return false; 8884 } 8885 8886 /// Hotness 8887 /// := ('unknown'|'cold'|'none'|'hot'|'critical') 8888 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) { 8889 switch (Lex.getKind()) { 8890 case lltok::kw_unknown: 8891 Hotness = CalleeInfo::HotnessType::Unknown; 8892 break; 8893 case lltok::kw_cold: 8894 Hotness = CalleeInfo::HotnessType::Cold; 8895 break; 8896 case lltok::kw_none: 8897 Hotness = CalleeInfo::HotnessType::None; 8898 break; 8899 case lltok::kw_hot: 8900 Hotness = CalleeInfo::HotnessType::Hot; 8901 break; 8902 case lltok::kw_critical: 8903 Hotness = CalleeInfo::HotnessType::Critical; 8904 break; 8905 default: 8906 return error(Lex.getLoc(), "invalid call edge hotness"); 8907 } 8908 Lex.Lex(); 8909 return false; 8910 } 8911 8912 /// OptionalVTableFuncs 8913 /// := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')' 8914 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')' 8915 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) { 8916 assert(Lex.getKind() == lltok::kw_vTableFuncs); 8917 Lex.Lex(); 8918 8919 if (parseToken(lltok::colon, "expected ':' in vTableFuncs") | 8920 parseToken(lltok::lparen, "expected '(' in vTableFuncs")) 8921 return true; 8922 8923 IdToIndexMapType IdToIndexMap; 8924 // parse each virtual function pair 8925 do { 8926 ValueInfo VI; 8927 if (parseToken(lltok::lparen, "expected '(' in vTableFunc") || 8928 parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") || 8929 parseToken(lltok::colon, "expected ':'")) 8930 return true; 8931 8932 LocTy Loc = Lex.getLoc(); 8933 unsigned GVId; 8934 if (parseGVReference(VI, GVId)) 8935 return true; 8936 8937 uint64_t Offset; 8938 if (parseToken(lltok::comma, "expected comma") || 8939 parseToken(lltok::kw_offset, "expected offset") || 8940 parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset)) 8941 return true; 8942 8943 // Keep track of the VTableFuncs array index needing a forward reference. 8944 // We will save the location of the ValueInfo needing an update, but 8945 // can only do so once the std::vector is finalized. 8946 if (VI == EmptyVI) 8947 IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc)); 8948 VTableFuncs.push_back({VI, Offset}); 8949 8950 if (parseToken(lltok::rparen, "expected ')' in vTableFunc")) 8951 return true; 8952 } while (EatIfPresent(lltok::comma)); 8953 8954 // Now that the VTableFuncs vector is finalized, it is safe to save the 8955 // locations of any forward GV references that need updating later. 8956 for (auto I : IdToIndexMap) { 8957 auto &Infos = ForwardRefValueInfos[I.first]; 8958 for (auto P : I.second) { 8959 assert(VTableFuncs[P.first].FuncVI == EmptyVI && 8960 "Forward referenced ValueInfo expected to be empty"); 8961 Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second); 8962 } 8963 } 8964 8965 if (parseToken(lltok::rparen, "expected ')' in vTableFuncs")) 8966 return true; 8967 8968 return false; 8969 } 8970 8971 /// ParamNo := 'param' ':' UInt64 8972 bool LLParser::parseParamNo(uint64_t &ParamNo) { 8973 if (parseToken(lltok::kw_param, "expected 'param' here") || 8974 parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo)) 8975 return true; 8976 return false; 8977 } 8978 8979 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']' 8980 bool LLParser::parseParamAccessOffset(ConstantRange &Range) { 8981 APSInt Lower; 8982 APSInt Upper; 8983 auto ParseAPSInt = [&](APSInt &Val) { 8984 if (Lex.getKind() != lltok::APSInt) 8985 return tokError("expected integer"); 8986 Val = Lex.getAPSIntVal(); 8987 Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 8988 Val.setIsSigned(true); 8989 Lex.Lex(); 8990 return false; 8991 }; 8992 if (parseToken(lltok::kw_offset, "expected 'offset' here") || 8993 parseToken(lltok::colon, "expected ':' here") || 8994 parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) || 8995 parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) || 8996 parseToken(lltok::rsquare, "expected ']' here")) 8997 return true; 8998 8999 ++Upper; 9000 Range = 9001 (Lower == Upper && !Lower.isMaxValue()) 9002 ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth) 9003 : ConstantRange(Lower, Upper); 9004 9005 return false; 9006 } 9007 9008 /// ParamAccessCall 9009 /// := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')' 9010 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call, 9011 IdLocListType &IdLocList) { 9012 if (parseToken(lltok::lparen, "expected '(' here") || 9013 parseToken(lltok::kw_callee, "expected 'callee' here") || 9014 parseToken(lltok::colon, "expected ':' here")) 9015 return true; 9016 9017 unsigned GVId; 9018 ValueInfo VI; 9019 LocTy Loc = Lex.getLoc(); 9020 if (parseGVReference(VI, GVId)) 9021 return true; 9022 9023 Call.Callee = VI; 9024 IdLocList.emplace_back(GVId, Loc); 9025 9026 if (parseToken(lltok::comma, "expected ',' here") || 9027 parseParamNo(Call.ParamNo) || 9028 parseToken(lltok::comma, "expected ',' here") || 9029 parseParamAccessOffset(Call.Offsets)) 9030 return true; 9031 9032 if (parseToken(lltok::rparen, "expected ')' here")) 9033 return true; 9034 9035 return false; 9036 } 9037 9038 /// ParamAccess 9039 /// := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')' 9040 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')' 9041 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param, 9042 IdLocListType &IdLocList) { 9043 if (parseToken(lltok::lparen, "expected '(' here") || 9044 parseParamNo(Param.ParamNo) || 9045 parseToken(lltok::comma, "expected ',' here") || 9046 parseParamAccessOffset(Param.Use)) 9047 return true; 9048 9049 if (EatIfPresent(lltok::comma)) { 9050 if (parseToken(lltok::kw_calls, "expected 'calls' here") || 9051 parseToken(lltok::colon, "expected ':' here") || 9052 parseToken(lltok::lparen, "expected '(' here")) 9053 return true; 9054 do { 9055 FunctionSummary::ParamAccess::Call Call; 9056 if (parseParamAccessCall(Call, IdLocList)) 9057 return true; 9058 Param.Calls.push_back(Call); 9059 } while (EatIfPresent(lltok::comma)); 9060 9061 if (parseToken(lltok::rparen, "expected ')' here")) 9062 return true; 9063 } 9064 9065 if (parseToken(lltok::rparen, "expected ')' here")) 9066 return true; 9067 9068 return false; 9069 } 9070 9071 /// OptionalParamAccesses 9072 /// := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')' 9073 bool LLParser::parseOptionalParamAccesses( 9074 std::vector<FunctionSummary::ParamAccess> &Params) { 9075 assert(Lex.getKind() == lltok::kw_params); 9076 Lex.Lex(); 9077 9078 if (parseToken(lltok::colon, "expected ':' here") || 9079 parseToken(lltok::lparen, "expected '(' here")) 9080 return true; 9081 9082 IdLocListType VContexts; 9083 size_t CallsNum = 0; 9084 do { 9085 FunctionSummary::ParamAccess ParamAccess; 9086 if (parseParamAccess(ParamAccess, VContexts)) 9087 return true; 9088 CallsNum += ParamAccess.Calls.size(); 9089 assert(VContexts.size() == CallsNum); 9090 Params.emplace_back(std::move(ParamAccess)); 9091 } while (EatIfPresent(lltok::comma)); 9092 9093 if (parseToken(lltok::rparen, "expected ')' here")) 9094 return true; 9095 9096 // Now that the Params is finalized, it is safe to save the locations 9097 // of any forward GV references that need updating later. 9098 IdLocListType::const_iterator ItContext = VContexts.begin(); 9099 for (auto &PA : Params) { 9100 for (auto &C : PA.Calls) { 9101 if (C.Callee.getRef() == FwdVIRef) 9102 ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee, 9103 ItContext->second); 9104 ++ItContext; 9105 } 9106 } 9107 assert(ItContext == VContexts.end()); 9108 9109 return false; 9110 } 9111 9112 /// OptionalRefs 9113 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')' 9114 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) { 9115 assert(Lex.getKind() == lltok::kw_refs); 9116 Lex.Lex(); 9117 9118 if (parseToken(lltok::colon, "expected ':' in refs") || 9119 parseToken(lltok::lparen, "expected '(' in refs")) 9120 return true; 9121 9122 struct ValueContext { 9123 ValueInfo VI; 9124 unsigned GVId; 9125 LocTy Loc; 9126 }; 9127 std::vector<ValueContext> VContexts; 9128 // parse each ref edge 9129 do { 9130 ValueContext VC; 9131 VC.Loc = Lex.getLoc(); 9132 if (parseGVReference(VC.VI, VC.GVId)) 9133 return true; 9134 VContexts.push_back(VC); 9135 } while (EatIfPresent(lltok::comma)); 9136 9137 // Sort value contexts so that ones with writeonly 9138 // and readonly ValueInfo are at the end of VContexts vector. 9139 // See FunctionSummary::specialRefCounts() 9140 llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) { 9141 return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier(); 9142 }); 9143 9144 IdToIndexMapType IdToIndexMap; 9145 for (auto &VC : VContexts) { 9146 // Keep track of the Refs array index needing a forward reference. 9147 // We will save the location of the ValueInfo needing an update, but 9148 // can only do so once the std::vector is finalized. 9149 if (VC.VI.getRef() == FwdVIRef) 9150 IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc)); 9151 Refs.push_back(VC.VI); 9152 } 9153 9154 // Now that the Refs vector is finalized, it is safe to save the locations 9155 // of any forward GV references that need updating later. 9156 for (auto I : IdToIndexMap) { 9157 auto &Infos = ForwardRefValueInfos[I.first]; 9158 for (auto P : I.second) { 9159 assert(Refs[P.first].getRef() == FwdVIRef && 9160 "Forward referenced ValueInfo expected to be empty"); 9161 Infos.emplace_back(&Refs[P.first], P.second); 9162 } 9163 } 9164 9165 if (parseToken(lltok::rparen, "expected ')' in refs")) 9166 return true; 9167 9168 return false; 9169 } 9170 9171 /// OptionalTypeIdInfo 9172 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]? 9173 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]? 9174 /// [',' TypeCheckedLoadConstVCalls]? ')' 9175 bool LLParser::parseOptionalTypeIdInfo( 9176 FunctionSummary::TypeIdInfo &TypeIdInfo) { 9177 assert(Lex.getKind() == lltok::kw_typeIdInfo); 9178 Lex.Lex(); 9179 9180 if (parseToken(lltok::colon, "expected ':' here") || 9181 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 9182 return true; 9183 9184 do { 9185 switch (Lex.getKind()) { 9186 case lltok::kw_typeTests: 9187 if (parseTypeTests(TypeIdInfo.TypeTests)) 9188 return true; 9189 break; 9190 case lltok::kw_typeTestAssumeVCalls: 9191 if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls, 9192 TypeIdInfo.TypeTestAssumeVCalls)) 9193 return true; 9194 break; 9195 case lltok::kw_typeCheckedLoadVCalls: 9196 if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls, 9197 TypeIdInfo.TypeCheckedLoadVCalls)) 9198 return true; 9199 break; 9200 case lltok::kw_typeTestAssumeConstVCalls: 9201 if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls, 9202 TypeIdInfo.TypeTestAssumeConstVCalls)) 9203 return true; 9204 break; 9205 case lltok::kw_typeCheckedLoadConstVCalls: 9206 if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls, 9207 TypeIdInfo.TypeCheckedLoadConstVCalls)) 9208 return true; 9209 break; 9210 default: 9211 return error(Lex.getLoc(), "invalid typeIdInfo list type"); 9212 } 9213 } while (EatIfPresent(lltok::comma)); 9214 9215 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 9216 return true; 9217 9218 return false; 9219 } 9220 9221 /// TypeTests 9222 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64) 9223 /// [',' (SummaryID | UInt64)]* ')' 9224 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) { 9225 assert(Lex.getKind() == lltok::kw_typeTests); 9226 Lex.Lex(); 9227 9228 if (parseToken(lltok::colon, "expected ':' here") || 9229 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 9230 return true; 9231 9232 IdToIndexMapType IdToIndexMap; 9233 do { 9234 GlobalValue::GUID GUID = 0; 9235 if (Lex.getKind() == lltok::SummaryID) { 9236 unsigned ID = Lex.getUIntVal(); 9237 LocTy Loc = Lex.getLoc(); 9238 // Keep track of the TypeTests array index needing a forward reference. 9239 // We will save the location of the GUID needing an update, but 9240 // can only do so once the std::vector is finalized. 9241 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc)); 9242 Lex.Lex(); 9243 } else if (parseUInt64(GUID)) 9244 return true; 9245 TypeTests.push_back(GUID); 9246 } while (EatIfPresent(lltok::comma)); 9247 9248 // Now that the TypeTests vector is finalized, it is safe to save the 9249 // locations of any forward GV references that need updating later. 9250 for (auto I : IdToIndexMap) { 9251 auto &Ids = ForwardRefTypeIds[I.first]; 9252 for (auto P : I.second) { 9253 assert(TypeTests[P.first] == 0 && 9254 "Forward referenced type id GUID expected to be 0"); 9255 Ids.emplace_back(&TypeTests[P.first], P.second); 9256 } 9257 } 9258 9259 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 9260 return true; 9261 9262 return false; 9263 } 9264 9265 /// VFuncIdList 9266 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')' 9267 bool LLParser::parseVFuncIdList( 9268 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) { 9269 assert(Lex.getKind() == Kind); 9270 Lex.Lex(); 9271 9272 if (parseToken(lltok::colon, "expected ':' here") || 9273 parseToken(lltok::lparen, "expected '(' here")) 9274 return true; 9275 9276 IdToIndexMapType IdToIndexMap; 9277 do { 9278 FunctionSummary::VFuncId VFuncId; 9279 if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size())) 9280 return true; 9281 VFuncIdList.push_back(VFuncId); 9282 } while (EatIfPresent(lltok::comma)); 9283 9284 if (parseToken(lltok::rparen, "expected ')' here")) 9285 return true; 9286 9287 // Now that the VFuncIdList vector is finalized, it is safe to save the 9288 // locations of any forward GV references that need updating later. 9289 for (auto I : IdToIndexMap) { 9290 auto &Ids = ForwardRefTypeIds[I.first]; 9291 for (auto P : I.second) { 9292 assert(VFuncIdList[P.first].GUID == 0 && 9293 "Forward referenced type id GUID expected to be 0"); 9294 Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second); 9295 } 9296 } 9297 9298 return false; 9299 } 9300 9301 /// ConstVCallList 9302 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')' 9303 bool LLParser::parseConstVCallList( 9304 lltok::Kind Kind, 9305 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) { 9306 assert(Lex.getKind() == Kind); 9307 Lex.Lex(); 9308 9309 if (parseToken(lltok::colon, "expected ':' here") || 9310 parseToken(lltok::lparen, "expected '(' here")) 9311 return true; 9312 9313 IdToIndexMapType IdToIndexMap; 9314 do { 9315 FunctionSummary::ConstVCall ConstVCall; 9316 if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size())) 9317 return true; 9318 ConstVCallList.push_back(ConstVCall); 9319 } while (EatIfPresent(lltok::comma)); 9320 9321 if (parseToken(lltok::rparen, "expected ')' here")) 9322 return true; 9323 9324 // Now that the ConstVCallList vector is finalized, it is safe to save the 9325 // locations of any forward GV references that need updating later. 9326 for (auto I : IdToIndexMap) { 9327 auto &Ids = ForwardRefTypeIds[I.first]; 9328 for (auto P : I.second) { 9329 assert(ConstVCallList[P.first].VFunc.GUID == 0 && 9330 "Forward referenced type id GUID expected to be 0"); 9331 Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second); 9332 } 9333 } 9334 9335 return false; 9336 } 9337 9338 /// ConstVCall 9339 /// ::= '(' VFuncId ',' Args ')' 9340 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall, 9341 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9342 if (parseToken(lltok::lparen, "expected '(' here") || 9343 parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index)) 9344 return true; 9345 9346 if (EatIfPresent(lltok::comma)) 9347 if (parseArgs(ConstVCall.Args)) 9348 return true; 9349 9350 if (parseToken(lltok::rparen, "expected ')' here")) 9351 return true; 9352 9353 return false; 9354 } 9355 9356 /// VFuncId 9357 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ',' 9358 /// 'offset' ':' UInt64 ')' 9359 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId, 9360 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9361 assert(Lex.getKind() == lltok::kw_vFuncId); 9362 Lex.Lex(); 9363 9364 if (parseToken(lltok::colon, "expected ':' here") || 9365 parseToken(lltok::lparen, "expected '(' here")) 9366 return true; 9367 9368 if (Lex.getKind() == lltok::SummaryID) { 9369 VFuncId.GUID = 0; 9370 unsigned ID = Lex.getUIntVal(); 9371 LocTy Loc = Lex.getLoc(); 9372 // Keep track of the array index needing a forward reference. 9373 // We will save the location of the GUID needing an update, but 9374 // can only do so once the caller's std::vector is finalized. 9375 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc)); 9376 Lex.Lex(); 9377 } else if (parseToken(lltok::kw_guid, "expected 'guid' here") || 9378 parseToken(lltok::colon, "expected ':' here") || 9379 parseUInt64(VFuncId.GUID)) 9380 return true; 9381 9382 if (parseToken(lltok::comma, "expected ',' here") || 9383 parseToken(lltok::kw_offset, "expected 'offset' here") || 9384 parseToken(lltok::colon, "expected ':' here") || 9385 parseUInt64(VFuncId.Offset) || 9386 parseToken(lltok::rparen, "expected ')' here")) 9387 return true; 9388 9389 return false; 9390 } 9391 9392 /// GVFlags 9393 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ',' 9394 /// 'visibility' ':' Flag 'notEligibleToImport' ':' Flag ',' 9395 /// 'live' ':' Flag ',' 'dsoLocal' ':' Flag ',' 9396 /// 'canAutoHide' ':' Flag ',' ')' 9397 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) { 9398 assert(Lex.getKind() == lltok::kw_flags); 9399 Lex.Lex(); 9400 9401 if (parseToken(lltok::colon, "expected ':' here") || 9402 parseToken(lltok::lparen, "expected '(' here")) 9403 return true; 9404 9405 do { 9406 unsigned Flag = 0; 9407 switch (Lex.getKind()) { 9408 case lltok::kw_linkage: 9409 Lex.Lex(); 9410 if (parseToken(lltok::colon, "expected ':'")) 9411 return true; 9412 bool HasLinkage; 9413 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 9414 assert(HasLinkage && "Linkage not optional in summary entry"); 9415 Lex.Lex(); 9416 break; 9417 case lltok::kw_visibility: 9418 Lex.Lex(); 9419 if (parseToken(lltok::colon, "expected ':'")) 9420 return true; 9421 parseOptionalVisibility(Flag); 9422 GVFlags.Visibility = Flag; 9423 break; 9424 case lltok::kw_notEligibleToImport: 9425 Lex.Lex(); 9426 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9427 return true; 9428 GVFlags.NotEligibleToImport = Flag; 9429 break; 9430 case lltok::kw_live: 9431 Lex.Lex(); 9432 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9433 return true; 9434 GVFlags.Live = Flag; 9435 break; 9436 case lltok::kw_dsoLocal: 9437 Lex.Lex(); 9438 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9439 return true; 9440 GVFlags.DSOLocal = Flag; 9441 break; 9442 case lltok::kw_canAutoHide: 9443 Lex.Lex(); 9444 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9445 return true; 9446 GVFlags.CanAutoHide = Flag; 9447 break; 9448 default: 9449 return error(Lex.getLoc(), "expected gv flag type"); 9450 } 9451 } while (EatIfPresent(lltok::comma)); 9452 9453 if (parseToken(lltok::rparen, "expected ')' here")) 9454 return true; 9455 9456 return false; 9457 } 9458 9459 /// GVarFlags 9460 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag 9461 /// ',' 'writeonly' ':' Flag 9462 /// ',' 'constant' ':' Flag ')' 9463 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) { 9464 assert(Lex.getKind() == lltok::kw_varFlags); 9465 Lex.Lex(); 9466 9467 if (parseToken(lltok::colon, "expected ':' here") || 9468 parseToken(lltok::lparen, "expected '(' here")) 9469 return true; 9470 9471 auto ParseRest = [this](unsigned int &Val) { 9472 Lex.Lex(); 9473 if (parseToken(lltok::colon, "expected ':'")) 9474 return true; 9475 return parseFlag(Val); 9476 }; 9477 9478 do { 9479 unsigned Flag = 0; 9480 switch (Lex.getKind()) { 9481 case lltok::kw_readonly: 9482 if (ParseRest(Flag)) 9483 return true; 9484 GVarFlags.MaybeReadOnly = Flag; 9485 break; 9486 case lltok::kw_writeonly: 9487 if (ParseRest(Flag)) 9488 return true; 9489 GVarFlags.MaybeWriteOnly = Flag; 9490 break; 9491 case lltok::kw_constant: 9492 if (ParseRest(Flag)) 9493 return true; 9494 GVarFlags.Constant = Flag; 9495 break; 9496 case lltok::kw_vcall_visibility: 9497 if (ParseRest(Flag)) 9498 return true; 9499 GVarFlags.VCallVisibility = Flag; 9500 break; 9501 default: 9502 return error(Lex.getLoc(), "expected gvar flag type"); 9503 } 9504 } while (EatIfPresent(lltok::comma)); 9505 return parseToken(lltok::rparen, "expected ')' here"); 9506 } 9507 9508 /// ModuleReference 9509 /// ::= 'module' ':' UInt 9510 bool LLParser::parseModuleReference(StringRef &ModulePath) { 9511 // parse module id. 9512 if (parseToken(lltok::kw_module, "expected 'module' here") || 9513 parseToken(lltok::colon, "expected ':' here") || 9514 parseToken(lltok::SummaryID, "expected module ID")) 9515 return true; 9516 9517 unsigned ModuleID = Lex.getUIntVal(); 9518 auto I = ModuleIdMap.find(ModuleID); 9519 // We should have already parsed all module IDs 9520 assert(I != ModuleIdMap.end()); 9521 ModulePath = I->second; 9522 return false; 9523 } 9524 9525 /// GVReference 9526 /// ::= SummaryID 9527 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) { 9528 bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly); 9529 if (!ReadOnly) 9530 WriteOnly = EatIfPresent(lltok::kw_writeonly); 9531 if (parseToken(lltok::SummaryID, "expected GV ID")) 9532 return true; 9533 9534 GVId = Lex.getUIntVal(); 9535 // Check if we already have a VI for this GV 9536 if (GVId < NumberedValueInfos.size()) { 9537 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef); 9538 VI = NumberedValueInfos[GVId]; 9539 } else 9540 // We will create a forward reference to the stored location. 9541 VI = ValueInfo(false, FwdVIRef); 9542 9543 if (ReadOnly) 9544 VI.setReadOnly(); 9545 if (WriteOnly) 9546 VI.setWriteOnly(); 9547 return false; 9548 } 9549