1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "LLParser.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/AsmParser/SlotMapping.h"
20 #include "llvm/BinaryFormat/Dwarf.h"
21 #include "llvm/IR/Argument.h"
22 #include "llvm/IR/AutoUpgrade.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/CallingConv.h"
25 #include "llvm/IR/Comdat.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugInfoMetadata.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalIFunc.h"
31 #include "llvm/IR/GlobalObject.h"
32 #include "llvm/IR/InlineAsm.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/IR/ValueSymbolTable.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/MathExtras.h"
46 #include "llvm/Support/SaveAndRestore.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstring>
51 #include <iterator>
52 #include <vector>
53 
54 using namespace llvm;
55 
56 static std::string getTypeString(Type *T) {
57   std::string Result;
58   raw_string_ostream Tmp(Result);
59   Tmp << *T;
60   return Tmp.str();
61 }
62 
63 /// Run: module ::= toplevelentity*
64 bool LLParser::Run() {
65   // Prime the lexer.
66   Lex.Lex();
67 
68   if (Context.shouldDiscardValueNames())
69     return Error(
70         Lex.getLoc(),
71         "Can't read textual IR with a Context that discards named Values");
72 
73   return ParseTopLevelEntities() || ValidateEndOfModule() ||
74          ValidateEndOfIndex();
75 }
76 
77 bool LLParser::parseStandaloneConstantValue(Constant *&C,
78                                             const SlotMapping *Slots) {
79   restoreParsingState(Slots);
80   Lex.Lex();
81 
82   Type *Ty = nullptr;
83   if (ParseType(Ty) || parseConstantValue(Ty, C))
84     return true;
85   if (Lex.getKind() != lltok::Eof)
86     return Error(Lex.getLoc(), "expected end of string");
87   return false;
88 }
89 
90 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
91                                     const SlotMapping *Slots) {
92   restoreParsingState(Slots);
93   Lex.Lex();
94 
95   Read = 0;
96   SMLoc Start = Lex.getLoc();
97   Ty = nullptr;
98   if (ParseType(Ty))
99     return true;
100   SMLoc End = Lex.getLoc();
101   Read = End.getPointer() - Start.getPointer();
102 
103   return false;
104 }
105 
106 void LLParser::restoreParsingState(const SlotMapping *Slots) {
107   if (!Slots)
108     return;
109   NumberedVals = Slots->GlobalValues;
110   NumberedMetadata = Slots->MetadataNodes;
111   for (const auto &I : Slots->NamedTypes)
112     NamedTypes.insert(
113         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
114   for (const auto &I : Slots->Types)
115     NumberedTypes.insert(
116         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
117 }
118 
119 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
120 /// module.
121 bool LLParser::ValidateEndOfModule() {
122   if (!M)
123     return false;
124   // Handle any function attribute group forward references.
125   for (const auto &RAG : ForwardRefAttrGroups) {
126     Value *V = RAG.first;
127     const std::vector<unsigned> &Attrs = RAG.second;
128     AttrBuilder B;
129 
130     for (const auto &Attr : Attrs)
131       B.merge(NumberedAttrBuilders[Attr]);
132 
133     if (Function *Fn = dyn_cast<Function>(V)) {
134       AttributeList AS = Fn->getAttributes();
135       AttrBuilder FnAttrs(AS.getFnAttributes());
136       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
137 
138       FnAttrs.merge(B);
139 
140       // If the alignment was parsed as an attribute, move to the alignment
141       // field.
142       if (FnAttrs.hasAlignmentAttr()) {
143         Fn->setAlignment(FnAttrs.getAlignment());
144         FnAttrs.removeAttribute(Attribute::Alignment);
145       }
146 
147       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
148                             AttributeSet::get(Context, FnAttrs));
149       Fn->setAttributes(AS);
150     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
151       AttributeList AS = CI->getAttributes();
152       AttrBuilder FnAttrs(AS.getFnAttributes());
153       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
154       FnAttrs.merge(B);
155       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
156                             AttributeSet::get(Context, FnAttrs));
157       CI->setAttributes(AS);
158     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
159       AttributeList AS = II->getAttributes();
160       AttrBuilder FnAttrs(AS.getFnAttributes());
161       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
162       FnAttrs.merge(B);
163       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
164                             AttributeSet::get(Context, FnAttrs));
165       II->setAttributes(AS);
166     } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
167       AttributeList AS = CBI->getAttributes();
168       AttrBuilder FnAttrs(AS.getFnAttributes());
169       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
170       FnAttrs.merge(B);
171       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
172                             AttributeSet::get(Context, FnAttrs));
173       CBI->setAttributes(AS);
174     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
175       AttrBuilder Attrs(GV->getAttributes());
176       Attrs.merge(B);
177       GV->setAttributes(AttributeSet::get(Context,Attrs));
178     } else {
179       llvm_unreachable("invalid object with forward attribute group reference");
180     }
181   }
182 
183   // If there are entries in ForwardRefBlockAddresses at this point, the
184   // function was never defined.
185   if (!ForwardRefBlockAddresses.empty())
186     return Error(ForwardRefBlockAddresses.begin()->first.Loc,
187                  "expected function name in blockaddress");
188 
189   for (const auto &NT : NumberedTypes)
190     if (NT.second.second.isValid())
191       return Error(NT.second.second,
192                    "use of undefined type '%" + Twine(NT.first) + "'");
193 
194   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
195        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
196     if (I->second.second.isValid())
197       return Error(I->second.second,
198                    "use of undefined type named '" + I->getKey() + "'");
199 
200   if (!ForwardRefComdats.empty())
201     return Error(ForwardRefComdats.begin()->second,
202                  "use of undefined comdat '$" +
203                      ForwardRefComdats.begin()->first + "'");
204 
205   if (!ForwardRefVals.empty())
206     return Error(ForwardRefVals.begin()->second.second,
207                  "use of undefined value '@" + ForwardRefVals.begin()->first +
208                  "'");
209 
210   if (!ForwardRefValIDs.empty())
211     return Error(ForwardRefValIDs.begin()->second.second,
212                  "use of undefined value '@" +
213                  Twine(ForwardRefValIDs.begin()->first) + "'");
214 
215   if (!ForwardRefMDNodes.empty())
216     return Error(ForwardRefMDNodes.begin()->second.second,
217                  "use of undefined metadata '!" +
218                  Twine(ForwardRefMDNodes.begin()->first) + "'");
219 
220   // Resolve metadata cycles.
221   for (auto &N : NumberedMetadata) {
222     if (N.second && !N.second->isResolved())
223       N.second->resolveCycles();
224   }
225 
226   for (auto *Inst : InstsWithTBAATag) {
227     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
228     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
229     auto *UpgradedMD = UpgradeTBAANode(*MD);
230     if (MD != UpgradedMD)
231       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
232   }
233 
234   // Look for intrinsic functions and CallInst that need to be upgraded
235   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
236     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
237 
238   // Some types could be renamed during loading if several modules are
239   // loaded in the same LLVMContext (LTO scenario). In this case we should
240   // remangle intrinsics names as well.
241   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
242     Function *F = &*FI++;
243     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
244       F->replaceAllUsesWith(Remangled.getValue());
245       F->eraseFromParent();
246     }
247   }
248 
249   if (UpgradeDebugInfo)
250     llvm::UpgradeDebugInfo(*M);
251 
252   UpgradeModuleFlags(*M);
253   UpgradeSectionAttributes(*M);
254 
255   if (!Slots)
256     return false;
257   // Initialize the slot mapping.
258   // Because by this point we've parsed and validated everything, we can "steal"
259   // the mapping from LLParser as it doesn't need it anymore.
260   Slots->GlobalValues = std::move(NumberedVals);
261   Slots->MetadataNodes = std::move(NumberedMetadata);
262   for (const auto &I : NamedTypes)
263     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
264   for (const auto &I : NumberedTypes)
265     Slots->Types.insert(std::make_pair(I.first, I.second.first));
266 
267   return false;
268 }
269 
270 /// Do final validity and sanity checks at the end of the index.
271 bool LLParser::ValidateEndOfIndex() {
272   if (!Index)
273     return false;
274 
275   if (!ForwardRefValueInfos.empty())
276     return Error(ForwardRefValueInfos.begin()->second.front().second,
277                  "use of undefined summary '^" +
278                      Twine(ForwardRefValueInfos.begin()->first) + "'");
279 
280   if (!ForwardRefAliasees.empty())
281     return Error(ForwardRefAliasees.begin()->second.front().second,
282                  "use of undefined summary '^" +
283                      Twine(ForwardRefAliasees.begin()->first) + "'");
284 
285   if (!ForwardRefTypeIds.empty())
286     return Error(ForwardRefTypeIds.begin()->second.front().second,
287                  "use of undefined type id summary '^" +
288                      Twine(ForwardRefTypeIds.begin()->first) + "'");
289 
290   return false;
291 }
292 
293 //===----------------------------------------------------------------------===//
294 // Top-Level Entities
295 //===----------------------------------------------------------------------===//
296 
297 bool LLParser::ParseTopLevelEntities() {
298   // If there is no Module, then parse just the summary index entries.
299   if (!M) {
300     while (true) {
301       switch (Lex.getKind()) {
302       case lltok::Eof:
303         return false;
304       case lltok::SummaryID:
305         if (ParseSummaryEntry())
306           return true;
307         break;
308       case lltok::kw_source_filename:
309         if (ParseSourceFileName())
310           return true;
311         break;
312       default:
313         // Skip everything else
314         Lex.Lex();
315       }
316     }
317   }
318   while (true) {
319     switch (Lex.getKind()) {
320     default:         return TokError("expected top-level entity");
321     case lltok::Eof: return false;
322     case lltok::kw_declare: if (ParseDeclare()) return true; break;
323     case lltok::kw_define:  if (ParseDefine()) return true; break;
324     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
325     case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
326     case lltok::kw_source_filename:
327       if (ParseSourceFileName())
328         return true;
329       break;
330     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
331     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
332     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
333     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
334     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
335     case lltok::ComdatVar:  if (parseComdat()) return true; break;
336     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
337     case lltok::SummaryID:
338       if (ParseSummaryEntry())
339         return true;
340       break;
341     case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
342     case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
343     case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
344     case lltok::kw_uselistorder_bb:
345       if (ParseUseListOrderBB())
346         return true;
347       break;
348     }
349   }
350 }
351 
352 /// toplevelentity
353 ///   ::= 'module' 'asm' STRINGCONSTANT
354 bool LLParser::ParseModuleAsm() {
355   assert(Lex.getKind() == lltok::kw_module);
356   Lex.Lex();
357 
358   std::string AsmStr;
359   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
360       ParseStringConstant(AsmStr)) return true;
361 
362   M->appendModuleInlineAsm(AsmStr);
363   return false;
364 }
365 
366 /// toplevelentity
367 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
368 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
369 bool LLParser::ParseTargetDefinition() {
370   assert(Lex.getKind() == lltok::kw_target);
371   std::string Str;
372   switch (Lex.Lex()) {
373   default: return TokError("unknown target property");
374   case lltok::kw_triple:
375     Lex.Lex();
376     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
377         ParseStringConstant(Str))
378       return true;
379     M->setTargetTriple(Str);
380     return false;
381   case lltok::kw_datalayout:
382     Lex.Lex();
383     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
384         ParseStringConstant(Str))
385       return true;
386     if (DataLayoutStr.empty())
387       M->setDataLayout(Str);
388     return false;
389   }
390 }
391 
392 /// toplevelentity
393 ///   ::= 'source_filename' '=' STRINGCONSTANT
394 bool LLParser::ParseSourceFileName() {
395   assert(Lex.getKind() == lltok::kw_source_filename);
396   Lex.Lex();
397   if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
398       ParseStringConstant(SourceFileName))
399     return true;
400   if (M)
401     M->setSourceFileName(SourceFileName);
402   return false;
403 }
404 
405 /// toplevelentity
406 ///   ::= 'deplibs' '=' '[' ']'
407 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
408 /// FIXME: Remove in 4.0. Currently parse, but ignore.
409 bool LLParser::ParseDepLibs() {
410   assert(Lex.getKind() == lltok::kw_deplibs);
411   Lex.Lex();
412   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
413       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
414     return true;
415 
416   if (EatIfPresent(lltok::rsquare))
417     return false;
418 
419   do {
420     std::string Str;
421     if (ParseStringConstant(Str)) return true;
422   } while (EatIfPresent(lltok::comma));
423 
424   return ParseToken(lltok::rsquare, "expected ']' at end of list");
425 }
426 
427 /// ParseUnnamedType:
428 ///   ::= LocalVarID '=' 'type' type
429 bool LLParser::ParseUnnamedType() {
430   LocTy TypeLoc = Lex.getLoc();
431   unsigned TypeID = Lex.getUIntVal();
432   Lex.Lex(); // eat LocalVarID;
433 
434   if (ParseToken(lltok::equal, "expected '=' after name") ||
435       ParseToken(lltok::kw_type, "expected 'type' after '='"))
436     return true;
437 
438   Type *Result = nullptr;
439   if (ParseStructDefinition(TypeLoc, "",
440                             NumberedTypes[TypeID], Result)) return true;
441 
442   if (!isa<StructType>(Result)) {
443     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
444     if (Entry.first)
445       return Error(TypeLoc, "non-struct types may not be recursive");
446     Entry.first = Result;
447     Entry.second = SMLoc();
448   }
449 
450   return false;
451 }
452 
453 /// toplevelentity
454 ///   ::= LocalVar '=' 'type' type
455 bool LLParser::ParseNamedType() {
456   std::string Name = Lex.getStrVal();
457   LocTy NameLoc = Lex.getLoc();
458   Lex.Lex();  // eat LocalVar.
459 
460   if (ParseToken(lltok::equal, "expected '=' after name") ||
461       ParseToken(lltok::kw_type, "expected 'type' after name"))
462     return true;
463 
464   Type *Result = nullptr;
465   if (ParseStructDefinition(NameLoc, Name,
466                             NamedTypes[Name], Result)) return true;
467 
468   if (!isa<StructType>(Result)) {
469     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
470     if (Entry.first)
471       return Error(NameLoc, "non-struct types may not be recursive");
472     Entry.first = Result;
473     Entry.second = SMLoc();
474   }
475 
476   return false;
477 }
478 
479 /// toplevelentity
480 ///   ::= 'declare' FunctionHeader
481 bool LLParser::ParseDeclare() {
482   assert(Lex.getKind() == lltok::kw_declare);
483   Lex.Lex();
484 
485   std::vector<std::pair<unsigned, MDNode *>> MDs;
486   while (Lex.getKind() == lltok::MetadataVar) {
487     unsigned MDK;
488     MDNode *N;
489     if (ParseMetadataAttachment(MDK, N))
490       return true;
491     MDs.push_back({MDK, N});
492   }
493 
494   Function *F;
495   if (ParseFunctionHeader(F, false))
496     return true;
497   for (auto &MD : MDs)
498     F->addMetadata(MD.first, *MD.second);
499   return false;
500 }
501 
502 /// toplevelentity
503 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
504 bool LLParser::ParseDefine() {
505   assert(Lex.getKind() == lltok::kw_define);
506   Lex.Lex();
507 
508   Function *F;
509   return ParseFunctionHeader(F, true) ||
510          ParseOptionalFunctionMetadata(*F) ||
511          ParseFunctionBody(*F);
512 }
513 
514 /// ParseGlobalType
515 ///   ::= 'constant'
516 ///   ::= 'global'
517 bool LLParser::ParseGlobalType(bool &IsConstant) {
518   if (Lex.getKind() == lltok::kw_constant)
519     IsConstant = true;
520   else if (Lex.getKind() == lltok::kw_global)
521     IsConstant = false;
522   else {
523     IsConstant = false;
524     return TokError("expected 'global' or 'constant'");
525   }
526   Lex.Lex();
527   return false;
528 }
529 
530 bool LLParser::ParseOptionalUnnamedAddr(
531     GlobalVariable::UnnamedAddr &UnnamedAddr) {
532   if (EatIfPresent(lltok::kw_unnamed_addr))
533     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
534   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
535     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
536   else
537     UnnamedAddr = GlobalValue::UnnamedAddr::None;
538   return false;
539 }
540 
541 /// ParseUnnamedGlobal:
542 ///   OptionalVisibility (ALIAS | IFUNC) ...
543 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
544 ///   OptionalDLLStorageClass
545 ///                                                     ...   -> global variable
546 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
547 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
548 ///                OptionalDLLStorageClass
549 ///                                                     ...   -> global variable
550 bool LLParser::ParseUnnamedGlobal() {
551   unsigned VarID = NumberedVals.size();
552   std::string Name;
553   LocTy NameLoc = Lex.getLoc();
554 
555   // Handle the GlobalID form.
556   if (Lex.getKind() == lltok::GlobalID) {
557     if (Lex.getUIntVal() != VarID)
558       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
559                    Twine(VarID) + "'");
560     Lex.Lex(); // eat GlobalID;
561 
562     if (ParseToken(lltok::equal, "expected '=' after name"))
563       return true;
564   }
565 
566   bool HasLinkage;
567   unsigned Linkage, Visibility, DLLStorageClass;
568   bool DSOLocal;
569   GlobalVariable::ThreadLocalMode TLM;
570   GlobalVariable::UnnamedAddr UnnamedAddr;
571   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
572                            DSOLocal) ||
573       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
574     return true;
575 
576   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
577     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
578                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
579 
580   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
581                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
582 }
583 
584 /// ParseNamedGlobal:
585 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
586 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
587 ///                 OptionalVisibility OptionalDLLStorageClass
588 ///                                                     ...   -> global variable
589 bool LLParser::ParseNamedGlobal() {
590   assert(Lex.getKind() == lltok::GlobalVar);
591   LocTy NameLoc = Lex.getLoc();
592   std::string Name = Lex.getStrVal();
593   Lex.Lex();
594 
595   bool HasLinkage;
596   unsigned Linkage, Visibility, DLLStorageClass;
597   bool DSOLocal;
598   GlobalVariable::ThreadLocalMode TLM;
599   GlobalVariable::UnnamedAddr UnnamedAddr;
600   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
601       ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
602                            DSOLocal) ||
603       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
604     return true;
605 
606   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
607     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
608                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
609 
610   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
611                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
612 }
613 
614 bool LLParser::parseComdat() {
615   assert(Lex.getKind() == lltok::ComdatVar);
616   std::string Name = Lex.getStrVal();
617   LocTy NameLoc = Lex.getLoc();
618   Lex.Lex();
619 
620   if (ParseToken(lltok::equal, "expected '=' here"))
621     return true;
622 
623   if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
624     return TokError("expected comdat type");
625 
626   Comdat::SelectionKind SK;
627   switch (Lex.getKind()) {
628   default:
629     return TokError("unknown selection kind");
630   case lltok::kw_any:
631     SK = Comdat::Any;
632     break;
633   case lltok::kw_exactmatch:
634     SK = Comdat::ExactMatch;
635     break;
636   case lltok::kw_largest:
637     SK = Comdat::Largest;
638     break;
639   case lltok::kw_noduplicates:
640     SK = Comdat::NoDuplicates;
641     break;
642   case lltok::kw_samesize:
643     SK = Comdat::SameSize;
644     break;
645   }
646   Lex.Lex();
647 
648   // See if the comdat was forward referenced, if so, use the comdat.
649   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
650   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
651   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
652     return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
653 
654   Comdat *C;
655   if (I != ComdatSymTab.end())
656     C = &I->second;
657   else
658     C = M->getOrInsertComdat(Name);
659   C->setSelectionKind(SK);
660 
661   return false;
662 }
663 
664 // MDString:
665 //   ::= '!' STRINGCONSTANT
666 bool LLParser::ParseMDString(MDString *&Result) {
667   std::string Str;
668   if (ParseStringConstant(Str)) return true;
669   Result = MDString::get(Context, Str);
670   return false;
671 }
672 
673 // MDNode:
674 //   ::= '!' MDNodeNumber
675 bool LLParser::ParseMDNodeID(MDNode *&Result) {
676   // !{ ..., !42, ... }
677   LocTy IDLoc = Lex.getLoc();
678   unsigned MID = 0;
679   if (ParseUInt32(MID))
680     return true;
681 
682   // If not a forward reference, just return it now.
683   if (NumberedMetadata.count(MID)) {
684     Result = NumberedMetadata[MID];
685     return false;
686   }
687 
688   // Otherwise, create MDNode forward reference.
689   auto &FwdRef = ForwardRefMDNodes[MID];
690   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
691 
692   Result = FwdRef.first.get();
693   NumberedMetadata[MID].reset(Result);
694   return false;
695 }
696 
697 /// ParseNamedMetadata:
698 ///   !foo = !{ !1, !2 }
699 bool LLParser::ParseNamedMetadata() {
700   assert(Lex.getKind() == lltok::MetadataVar);
701   std::string Name = Lex.getStrVal();
702   Lex.Lex();
703 
704   if (ParseToken(lltok::equal, "expected '=' here") ||
705       ParseToken(lltok::exclaim, "Expected '!' here") ||
706       ParseToken(lltok::lbrace, "Expected '{' here"))
707     return true;
708 
709   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
710   if (Lex.getKind() != lltok::rbrace)
711     do {
712       MDNode *N = nullptr;
713       // Parse DIExpressions inline as a special case. They are still MDNodes,
714       // so they can still appear in named metadata. Remove this logic if they
715       // become plain Metadata.
716       if (Lex.getKind() == lltok::MetadataVar &&
717           Lex.getStrVal() == "DIExpression") {
718         if (ParseDIExpression(N, /*IsDistinct=*/false))
719           return true;
720       } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
721                  ParseMDNodeID(N)) {
722         return true;
723       }
724       NMD->addOperand(N);
725     } while (EatIfPresent(lltok::comma));
726 
727   return ParseToken(lltok::rbrace, "expected end of metadata node");
728 }
729 
730 /// ParseStandaloneMetadata:
731 ///   !42 = !{...}
732 bool LLParser::ParseStandaloneMetadata() {
733   assert(Lex.getKind() == lltok::exclaim);
734   Lex.Lex();
735   unsigned MetadataID = 0;
736 
737   MDNode *Init;
738   if (ParseUInt32(MetadataID) ||
739       ParseToken(lltok::equal, "expected '=' here"))
740     return true;
741 
742   // Detect common error, from old metadata syntax.
743   if (Lex.getKind() == lltok::Type)
744     return TokError("unexpected type in metadata definition");
745 
746   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
747   if (Lex.getKind() == lltok::MetadataVar) {
748     if (ParseSpecializedMDNode(Init, IsDistinct))
749       return true;
750   } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
751              ParseMDTuple(Init, IsDistinct))
752     return true;
753 
754   // See if this was forward referenced, if so, handle it.
755   auto FI = ForwardRefMDNodes.find(MetadataID);
756   if (FI != ForwardRefMDNodes.end()) {
757     FI->second.first->replaceAllUsesWith(Init);
758     ForwardRefMDNodes.erase(FI);
759 
760     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
761   } else {
762     if (NumberedMetadata.count(MetadataID))
763       return TokError("Metadata id is already used");
764     NumberedMetadata[MetadataID].reset(Init);
765   }
766 
767   return false;
768 }
769 
770 // Skips a single module summary entry.
771 bool LLParser::SkipModuleSummaryEntry() {
772   // Each module summary entry consists of a tag for the entry
773   // type, followed by a colon, then the fields surrounded by nested sets of
774   // parentheses. The "tag:" looks like a Label. Once parsing support is
775   // in place we will look for the tokens corresponding to the expected tags.
776   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
777       Lex.getKind() != lltok::kw_typeid)
778     return TokError(
779         "Expected 'gv', 'module', or 'typeid' at the start of summary entry");
780   Lex.Lex();
781   if (ParseToken(lltok::colon, "expected ':' at start of summary entry") ||
782       ParseToken(lltok::lparen, "expected '(' at start of summary entry"))
783     return true;
784   // Now walk through the parenthesized entry, until the number of open
785   // parentheses goes back down to 0 (the first '(' was parsed above).
786   unsigned NumOpenParen = 1;
787   do {
788     switch (Lex.getKind()) {
789     case lltok::lparen:
790       NumOpenParen++;
791       break;
792     case lltok::rparen:
793       NumOpenParen--;
794       break;
795     case lltok::Eof:
796       return TokError("found end of file while parsing summary entry");
797     default:
798       // Skip everything in between parentheses.
799       break;
800     }
801     Lex.Lex();
802   } while (NumOpenParen > 0);
803   return false;
804 }
805 
806 /// SummaryEntry
807 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
808 bool LLParser::ParseSummaryEntry() {
809   assert(Lex.getKind() == lltok::SummaryID);
810   unsigned SummaryID = Lex.getUIntVal();
811 
812   // For summary entries, colons should be treated as distinct tokens,
813   // not an indication of the end of a label token.
814   Lex.setIgnoreColonInIdentifiers(true);
815 
816   Lex.Lex();
817   if (ParseToken(lltok::equal, "expected '=' here"))
818     return true;
819 
820   // If we don't have an index object, skip the summary entry.
821   if (!Index)
822     return SkipModuleSummaryEntry();
823 
824   bool result = false;
825   switch (Lex.getKind()) {
826   case lltok::kw_gv:
827     result = ParseGVEntry(SummaryID);
828     break;
829   case lltok::kw_module:
830     result = ParseModuleEntry(SummaryID);
831     break;
832   case lltok::kw_typeid:
833     result = ParseTypeIdEntry(SummaryID);
834     break;
835   default:
836     result = Error(Lex.getLoc(), "unexpected summary kind");
837     break;
838   }
839   Lex.setIgnoreColonInIdentifiers(false);
840   return result;
841 }
842 
843 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
844   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
845          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
846 }
847 
848 // If there was an explicit dso_local, update GV. In the absence of an explicit
849 // dso_local we keep the default value.
850 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
851   if (DSOLocal)
852     GV.setDSOLocal(true);
853 }
854 
855 /// parseIndirectSymbol:
856 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
857 ///                     OptionalVisibility OptionalDLLStorageClass
858 ///                     OptionalThreadLocal OptionalUnnamedAddr
859 ///                     'alias|ifunc' IndirectSymbol IndirectSymbolAttr*
860 ///
861 /// IndirectSymbol
862 ///   ::= TypeAndValue
863 ///
864 /// IndirectSymbolAttr
865 ///   ::= ',' 'partition' StringConstant
866 ///
867 /// Everything through OptionalUnnamedAddr has already been parsed.
868 ///
869 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
870                                    unsigned L, unsigned Visibility,
871                                    unsigned DLLStorageClass, bool DSOLocal,
872                                    GlobalVariable::ThreadLocalMode TLM,
873                                    GlobalVariable::UnnamedAddr UnnamedAddr) {
874   bool IsAlias;
875   if (Lex.getKind() == lltok::kw_alias)
876     IsAlias = true;
877   else if (Lex.getKind() == lltok::kw_ifunc)
878     IsAlias = false;
879   else
880     llvm_unreachable("Not an alias or ifunc!");
881   Lex.Lex();
882 
883   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
884 
885   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
886     return Error(NameLoc, "invalid linkage type for alias");
887 
888   if (!isValidVisibilityForLinkage(Visibility, L))
889     return Error(NameLoc,
890                  "symbol with local linkage must have default visibility");
891 
892   Type *Ty;
893   LocTy ExplicitTypeLoc = Lex.getLoc();
894   if (ParseType(Ty) ||
895       ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
896     return true;
897 
898   Constant *Aliasee;
899   LocTy AliaseeLoc = Lex.getLoc();
900   if (Lex.getKind() != lltok::kw_bitcast &&
901       Lex.getKind() != lltok::kw_getelementptr &&
902       Lex.getKind() != lltok::kw_addrspacecast &&
903       Lex.getKind() != lltok::kw_inttoptr) {
904     if (ParseGlobalTypeAndValue(Aliasee))
905       return true;
906   } else {
907     // The bitcast dest type is not present, it is implied by the dest type.
908     ValID ID;
909     if (ParseValID(ID))
910       return true;
911     if (ID.Kind != ValID::t_Constant)
912       return Error(AliaseeLoc, "invalid aliasee");
913     Aliasee = ID.ConstantVal;
914   }
915 
916   Type *AliaseeType = Aliasee->getType();
917   auto *PTy = dyn_cast<PointerType>(AliaseeType);
918   if (!PTy)
919     return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
920   unsigned AddrSpace = PTy->getAddressSpace();
921 
922   if (IsAlias && Ty != PTy->getElementType())
923     return Error(
924         ExplicitTypeLoc,
925         "explicit pointee type doesn't match operand's pointee type");
926 
927   if (!IsAlias && !PTy->getElementType()->isFunctionTy())
928     return Error(
929         ExplicitTypeLoc,
930         "explicit pointee type should be a function type");
931 
932   GlobalValue *GVal = nullptr;
933 
934   // See if the alias was forward referenced, if so, prepare to replace the
935   // forward reference.
936   if (!Name.empty()) {
937     GVal = M->getNamedValue(Name);
938     if (GVal) {
939       if (!ForwardRefVals.erase(Name))
940         return Error(NameLoc, "redefinition of global '@" + Name + "'");
941     }
942   } else {
943     auto I = ForwardRefValIDs.find(NumberedVals.size());
944     if (I != ForwardRefValIDs.end()) {
945       GVal = I->second.first;
946       ForwardRefValIDs.erase(I);
947     }
948   }
949 
950   // Okay, create the alias but do not insert it into the module yet.
951   std::unique_ptr<GlobalIndirectSymbol> GA;
952   if (IsAlias)
953     GA.reset(GlobalAlias::create(Ty, AddrSpace,
954                                  (GlobalValue::LinkageTypes)Linkage, Name,
955                                  Aliasee, /*Parent*/ nullptr));
956   else
957     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
958                                  (GlobalValue::LinkageTypes)Linkage, Name,
959                                  Aliasee, /*Parent*/ nullptr));
960   GA->setThreadLocalMode(TLM);
961   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
962   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
963   GA->setUnnamedAddr(UnnamedAddr);
964   maybeSetDSOLocal(DSOLocal, *GA);
965 
966   // At this point we've parsed everything except for the IndirectSymbolAttrs.
967   // Now parse them if there are any.
968   while (Lex.getKind() == lltok::comma) {
969     Lex.Lex();
970 
971     if (Lex.getKind() == lltok::kw_partition) {
972       Lex.Lex();
973       GA->setPartition(Lex.getStrVal());
974       if (ParseToken(lltok::StringConstant, "expected partition string"))
975         return true;
976     } else {
977       return TokError("unknown alias or ifunc property!");
978     }
979   }
980 
981   if (Name.empty())
982     NumberedVals.push_back(GA.get());
983 
984   if (GVal) {
985     // Verify that types agree.
986     if (GVal->getType() != GA->getType())
987       return Error(
988           ExplicitTypeLoc,
989           "forward reference and definition of alias have different types");
990 
991     // If they agree, just RAUW the old value with the alias and remove the
992     // forward ref info.
993     GVal->replaceAllUsesWith(GA.get());
994     GVal->eraseFromParent();
995   }
996 
997   // Insert into the module, we know its name won't collide now.
998   if (IsAlias)
999     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
1000   else
1001     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
1002   assert(GA->getName() == Name && "Should not be a name conflict!");
1003 
1004   // The module owns this now
1005   GA.release();
1006 
1007   return false;
1008 }
1009 
1010 /// ParseGlobal
1011 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1012 ///       OptionalVisibility OptionalDLLStorageClass
1013 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1014 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1015 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1016 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1017 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1018 ///       Const OptionalAttrs
1019 ///
1020 /// Everything up to and including OptionalUnnamedAddr has been parsed
1021 /// already.
1022 ///
1023 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
1024                            unsigned Linkage, bool HasLinkage,
1025                            unsigned Visibility, unsigned DLLStorageClass,
1026                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1027                            GlobalVariable::UnnamedAddr UnnamedAddr) {
1028   if (!isValidVisibilityForLinkage(Visibility, Linkage))
1029     return Error(NameLoc,
1030                  "symbol with local linkage must have default visibility");
1031 
1032   unsigned AddrSpace;
1033   bool IsConstant, IsExternallyInitialized;
1034   LocTy IsExternallyInitializedLoc;
1035   LocTy TyLoc;
1036 
1037   Type *Ty = nullptr;
1038   if (ParseOptionalAddrSpace(AddrSpace) ||
1039       ParseOptionalToken(lltok::kw_externally_initialized,
1040                          IsExternallyInitialized,
1041                          &IsExternallyInitializedLoc) ||
1042       ParseGlobalType(IsConstant) ||
1043       ParseType(Ty, TyLoc))
1044     return true;
1045 
1046   // If the linkage is specified and is external, then no initializer is
1047   // present.
1048   Constant *Init = nullptr;
1049   if (!HasLinkage ||
1050       !GlobalValue::isValidDeclarationLinkage(
1051           (GlobalValue::LinkageTypes)Linkage)) {
1052     if (ParseGlobalValue(Ty, Init))
1053       return true;
1054   }
1055 
1056   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1057     return Error(TyLoc, "invalid type for global variable");
1058 
1059   GlobalValue *GVal = nullptr;
1060 
1061   // See if the global was forward referenced, if so, use the global.
1062   if (!Name.empty()) {
1063     GVal = M->getNamedValue(Name);
1064     if (GVal) {
1065       if (!ForwardRefVals.erase(Name))
1066         return Error(NameLoc, "redefinition of global '@" + Name + "'");
1067     }
1068   } else {
1069     auto I = ForwardRefValIDs.find(NumberedVals.size());
1070     if (I != ForwardRefValIDs.end()) {
1071       GVal = I->second.first;
1072       ForwardRefValIDs.erase(I);
1073     }
1074   }
1075 
1076   GlobalVariable *GV;
1077   if (!GVal) {
1078     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
1079                             Name, nullptr, GlobalVariable::NotThreadLocal,
1080                             AddrSpace);
1081   } else {
1082     if (GVal->getValueType() != Ty)
1083       return Error(TyLoc,
1084             "forward reference and definition of global have different types");
1085 
1086     GV = cast<GlobalVariable>(GVal);
1087 
1088     // Move the forward-reference to the correct spot in the module.
1089     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
1090   }
1091 
1092   if (Name.empty())
1093     NumberedVals.push_back(GV);
1094 
1095   // Set the parsed properties on the global.
1096   if (Init)
1097     GV->setInitializer(Init);
1098   GV->setConstant(IsConstant);
1099   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1100   maybeSetDSOLocal(DSOLocal, *GV);
1101   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1102   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1103   GV->setExternallyInitialized(IsExternallyInitialized);
1104   GV->setThreadLocalMode(TLM);
1105   GV->setUnnamedAddr(UnnamedAddr);
1106 
1107   // Parse attributes on the global.
1108   while (Lex.getKind() == lltok::comma) {
1109     Lex.Lex();
1110 
1111     if (Lex.getKind() == lltok::kw_section) {
1112       Lex.Lex();
1113       GV->setSection(Lex.getStrVal());
1114       if (ParseToken(lltok::StringConstant, "expected global section string"))
1115         return true;
1116     } else if (Lex.getKind() == lltok::kw_partition) {
1117       Lex.Lex();
1118       GV->setPartition(Lex.getStrVal());
1119       if (ParseToken(lltok::StringConstant, "expected partition string"))
1120         return true;
1121     } else if (Lex.getKind() == lltok::kw_align) {
1122       unsigned Alignment;
1123       if (ParseOptionalAlignment(Alignment)) return true;
1124       GV->setAlignment(Alignment);
1125     } else if (Lex.getKind() == lltok::MetadataVar) {
1126       if (ParseGlobalObjectMetadataAttachment(*GV))
1127         return true;
1128     } else {
1129       Comdat *C;
1130       if (parseOptionalComdat(Name, C))
1131         return true;
1132       if (C)
1133         GV->setComdat(C);
1134       else
1135         return TokError("unknown global variable property!");
1136     }
1137   }
1138 
1139   AttrBuilder Attrs;
1140   LocTy BuiltinLoc;
1141   std::vector<unsigned> FwdRefAttrGrps;
1142   if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1143     return true;
1144   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1145     GV->setAttributes(AttributeSet::get(Context, Attrs));
1146     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1147   }
1148 
1149   return false;
1150 }
1151 
1152 /// ParseUnnamedAttrGrp
1153 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1154 bool LLParser::ParseUnnamedAttrGrp() {
1155   assert(Lex.getKind() == lltok::kw_attributes);
1156   LocTy AttrGrpLoc = Lex.getLoc();
1157   Lex.Lex();
1158 
1159   if (Lex.getKind() != lltok::AttrGrpID)
1160     return TokError("expected attribute group id");
1161 
1162   unsigned VarID = Lex.getUIntVal();
1163   std::vector<unsigned> unused;
1164   LocTy BuiltinLoc;
1165   Lex.Lex();
1166 
1167   if (ParseToken(lltok::equal, "expected '=' here") ||
1168       ParseToken(lltok::lbrace, "expected '{' here") ||
1169       ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1170                                  BuiltinLoc) ||
1171       ParseToken(lltok::rbrace, "expected end of attribute group"))
1172     return true;
1173 
1174   if (!NumberedAttrBuilders[VarID].hasAttributes())
1175     return Error(AttrGrpLoc, "attribute group has no attributes");
1176 
1177   return false;
1178 }
1179 
1180 /// ParseFnAttributeValuePairs
1181 ///   ::= <attr> | <attr> '=' <value>
1182 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
1183                                           std::vector<unsigned> &FwdRefAttrGrps,
1184                                           bool inAttrGrp, LocTy &BuiltinLoc) {
1185   bool HaveError = false;
1186 
1187   B.clear();
1188 
1189   while (true) {
1190     lltok::Kind Token = Lex.getKind();
1191     if (Token == lltok::kw_builtin)
1192       BuiltinLoc = Lex.getLoc();
1193     switch (Token) {
1194     default:
1195       if (!inAttrGrp) return HaveError;
1196       return Error(Lex.getLoc(), "unterminated attribute group");
1197     case lltok::rbrace:
1198       // Finished.
1199       return false;
1200 
1201     case lltok::AttrGrpID: {
1202       // Allow a function to reference an attribute group:
1203       //
1204       //   define void @foo() #1 { ... }
1205       if (inAttrGrp)
1206         HaveError |=
1207           Error(Lex.getLoc(),
1208               "cannot have an attribute group reference in an attribute group");
1209 
1210       unsigned AttrGrpNum = Lex.getUIntVal();
1211       if (inAttrGrp) break;
1212 
1213       // Save the reference to the attribute group. We'll fill it in later.
1214       FwdRefAttrGrps.push_back(AttrGrpNum);
1215       break;
1216     }
1217     // Target-dependent attributes:
1218     case lltok::StringConstant: {
1219       if (ParseStringAttribute(B))
1220         return true;
1221       continue;
1222     }
1223 
1224     // Target-independent attributes:
1225     case lltok::kw_align: {
1226       // As a hack, we allow function alignment to be initially parsed as an
1227       // attribute on a function declaration/definition or added to an attribute
1228       // group and later moved to the alignment field.
1229       unsigned Alignment;
1230       if (inAttrGrp) {
1231         Lex.Lex();
1232         if (ParseToken(lltok::equal, "expected '=' here") ||
1233             ParseUInt32(Alignment))
1234           return true;
1235       } else {
1236         if (ParseOptionalAlignment(Alignment))
1237           return true;
1238       }
1239       B.addAlignmentAttr(Alignment);
1240       continue;
1241     }
1242     case lltok::kw_alignstack: {
1243       unsigned Alignment;
1244       if (inAttrGrp) {
1245         Lex.Lex();
1246         if (ParseToken(lltok::equal, "expected '=' here") ||
1247             ParseUInt32(Alignment))
1248           return true;
1249       } else {
1250         if (ParseOptionalStackAlignment(Alignment))
1251           return true;
1252       }
1253       B.addStackAlignmentAttr(Alignment);
1254       continue;
1255     }
1256     case lltok::kw_allocsize: {
1257       unsigned ElemSizeArg;
1258       Optional<unsigned> NumElemsArg;
1259       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1260       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1261         return true;
1262       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1263       continue;
1264     }
1265     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1266     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1267     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1268     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1269     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1270     case lltok::kw_inaccessiblememonly:
1271       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1272     case lltok::kw_inaccessiblemem_or_argmemonly:
1273       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1274     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1275     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1276     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1277     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1278     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1279     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1280     case lltok::kw_noimplicitfloat:
1281       B.addAttribute(Attribute::NoImplicitFloat); break;
1282     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1283     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1284     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1285     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1286     case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break;
1287     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1288     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1289     case lltok::kw_optforfuzzing:
1290       B.addAttribute(Attribute::OptForFuzzing); break;
1291     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1292     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1293     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1294     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1295     case lltok::kw_returns_twice:
1296       B.addAttribute(Attribute::ReturnsTwice); break;
1297     case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1298     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1299     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1300     case lltok::kw_sspstrong:
1301       B.addAttribute(Attribute::StackProtectStrong); break;
1302     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1303     case lltok::kw_shadowcallstack:
1304       B.addAttribute(Attribute::ShadowCallStack); break;
1305     case lltok::kw_sanitize_address:
1306       B.addAttribute(Attribute::SanitizeAddress); break;
1307     case lltok::kw_sanitize_hwaddress:
1308       B.addAttribute(Attribute::SanitizeHWAddress); break;
1309     case lltok::kw_sanitize_thread:
1310       B.addAttribute(Attribute::SanitizeThread); break;
1311     case lltok::kw_sanitize_memory:
1312       B.addAttribute(Attribute::SanitizeMemory); break;
1313     case lltok::kw_speculative_load_hardening:
1314       B.addAttribute(Attribute::SpeculativeLoadHardening);
1315       break;
1316     case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1317     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1318     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1319 
1320     // Error handling.
1321     case lltok::kw_inreg:
1322     case lltok::kw_signext:
1323     case lltok::kw_zeroext:
1324       HaveError |=
1325         Error(Lex.getLoc(),
1326               "invalid use of attribute on a function");
1327       break;
1328     case lltok::kw_byval:
1329     case lltok::kw_dereferenceable:
1330     case lltok::kw_dereferenceable_or_null:
1331     case lltok::kw_inalloca:
1332     case lltok::kw_nest:
1333     case lltok::kw_noalias:
1334     case lltok::kw_nocapture:
1335     case lltok::kw_nonnull:
1336     case lltok::kw_returned:
1337     case lltok::kw_sret:
1338     case lltok::kw_swifterror:
1339     case lltok::kw_swiftself:
1340     case lltok::kw_immarg:
1341       HaveError |=
1342         Error(Lex.getLoc(),
1343               "invalid use of parameter-only attribute on a function");
1344       break;
1345     }
1346 
1347     Lex.Lex();
1348   }
1349 }
1350 
1351 //===----------------------------------------------------------------------===//
1352 // GlobalValue Reference/Resolution Routines.
1353 //===----------------------------------------------------------------------===//
1354 
1355 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1356                                               const std::string &Name) {
1357   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1358     return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1359                             PTy->getAddressSpace(), Name, M);
1360   else
1361     return new GlobalVariable(*M, PTy->getElementType(), false,
1362                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1363                               nullptr, GlobalVariable::NotThreadLocal,
1364                               PTy->getAddressSpace());
1365 }
1366 
1367 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1368                                         Value *Val, bool IsCall) {
1369   if (Val->getType() == Ty)
1370     return Val;
1371   // For calls we also accept variables in the program address space.
1372   Type *SuggestedTy = Ty;
1373   if (IsCall && isa<PointerType>(Ty)) {
1374     Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo(
1375         M->getDataLayout().getProgramAddressSpace());
1376     SuggestedTy = TyInProgAS;
1377     if (Val->getType() == TyInProgAS)
1378       return Val;
1379   }
1380   if (Ty->isLabelTy())
1381     Error(Loc, "'" + Name + "' is not a basic block");
1382   else
1383     Error(Loc, "'" + Name + "' defined with type '" +
1384                    getTypeString(Val->getType()) + "' but expected '" +
1385                    getTypeString(SuggestedTy) + "'");
1386   return nullptr;
1387 }
1388 
1389 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1390 /// forward reference record if needed.  This can return null if the value
1391 /// exists but does not have the right type.
1392 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1393                                     LocTy Loc, bool IsCall) {
1394   PointerType *PTy = dyn_cast<PointerType>(Ty);
1395   if (!PTy) {
1396     Error(Loc, "global variable reference must have pointer type");
1397     return nullptr;
1398   }
1399 
1400   // Look this name up in the normal function symbol table.
1401   GlobalValue *Val =
1402     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1403 
1404   // If this is a forward reference for the value, see if we already created a
1405   // forward ref record.
1406   if (!Val) {
1407     auto I = ForwardRefVals.find(Name);
1408     if (I != ForwardRefVals.end())
1409       Val = I->second.first;
1410   }
1411 
1412   // If we have the value in the symbol table or fwd-ref table, return it.
1413   if (Val)
1414     return cast_or_null<GlobalValue>(
1415         checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall));
1416 
1417   // Otherwise, create a new forward reference for this value and remember it.
1418   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1419   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1420   return FwdVal;
1421 }
1422 
1423 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc,
1424                                     bool IsCall) {
1425   PointerType *PTy = dyn_cast<PointerType>(Ty);
1426   if (!PTy) {
1427     Error(Loc, "global variable reference must have pointer type");
1428     return nullptr;
1429   }
1430 
1431   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1432 
1433   // If this is a forward reference for the value, see if we already created a
1434   // forward ref record.
1435   if (!Val) {
1436     auto I = ForwardRefValIDs.find(ID);
1437     if (I != ForwardRefValIDs.end())
1438       Val = I->second.first;
1439   }
1440 
1441   // If we have the value in the symbol table or fwd-ref table, return it.
1442   if (Val)
1443     return cast_or_null<GlobalValue>(
1444         checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall));
1445 
1446   // Otherwise, create a new forward reference for this value and remember it.
1447   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1448   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1449   return FwdVal;
1450 }
1451 
1452 //===----------------------------------------------------------------------===//
1453 // Comdat Reference/Resolution Routines.
1454 //===----------------------------------------------------------------------===//
1455 
1456 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1457   // Look this name up in the comdat symbol table.
1458   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1459   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1460   if (I != ComdatSymTab.end())
1461     return &I->second;
1462 
1463   // Otherwise, create a new forward reference for this value and remember it.
1464   Comdat *C = M->getOrInsertComdat(Name);
1465   ForwardRefComdats[Name] = Loc;
1466   return C;
1467 }
1468 
1469 //===----------------------------------------------------------------------===//
1470 // Helper Routines.
1471 //===----------------------------------------------------------------------===//
1472 
1473 /// ParseToken - If the current token has the specified kind, eat it and return
1474 /// success.  Otherwise, emit the specified error and return failure.
1475 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1476   if (Lex.getKind() != T)
1477     return TokError(ErrMsg);
1478   Lex.Lex();
1479   return false;
1480 }
1481 
1482 /// ParseStringConstant
1483 ///   ::= StringConstant
1484 bool LLParser::ParseStringConstant(std::string &Result) {
1485   if (Lex.getKind() != lltok::StringConstant)
1486     return TokError("expected string constant");
1487   Result = Lex.getStrVal();
1488   Lex.Lex();
1489   return false;
1490 }
1491 
1492 /// ParseUInt32
1493 ///   ::= uint32
1494 bool LLParser::ParseUInt32(uint32_t &Val) {
1495   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1496     return TokError("expected integer");
1497   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1498   if (Val64 != unsigned(Val64))
1499     return TokError("expected 32-bit integer (too large)");
1500   Val = Val64;
1501   Lex.Lex();
1502   return false;
1503 }
1504 
1505 /// ParseUInt64
1506 ///   ::= uint64
1507 bool LLParser::ParseUInt64(uint64_t &Val) {
1508   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1509     return TokError("expected integer");
1510   Val = Lex.getAPSIntVal().getLimitedValue();
1511   Lex.Lex();
1512   return false;
1513 }
1514 
1515 /// ParseTLSModel
1516 ///   := 'localdynamic'
1517 ///   := 'initialexec'
1518 ///   := 'localexec'
1519 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1520   switch (Lex.getKind()) {
1521     default:
1522       return TokError("expected localdynamic, initialexec or localexec");
1523     case lltok::kw_localdynamic:
1524       TLM = GlobalVariable::LocalDynamicTLSModel;
1525       break;
1526     case lltok::kw_initialexec:
1527       TLM = GlobalVariable::InitialExecTLSModel;
1528       break;
1529     case lltok::kw_localexec:
1530       TLM = GlobalVariable::LocalExecTLSModel;
1531       break;
1532   }
1533 
1534   Lex.Lex();
1535   return false;
1536 }
1537 
1538 /// ParseOptionalThreadLocal
1539 ///   := /*empty*/
1540 ///   := 'thread_local'
1541 ///   := 'thread_local' '(' tlsmodel ')'
1542 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1543   TLM = GlobalVariable::NotThreadLocal;
1544   if (!EatIfPresent(lltok::kw_thread_local))
1545     return false;
1546 
1547   TLM = GlobalVariable::GeneralDynamicTLSModel;
1548   if (Lex.getKind() == lltok::lparen) {
1549     Lex.Lex();
1550     return ParseTLSModel(TLM) ||
1551       ParseToken(lltok::rparen, "expected ')' after thread local model");
1552   }
1553   return false;
1554 }
1555 
1556 /// ParseOptionalAddrSpace
1557 ///   := /*empty*/
1558 ///   := 'addrspace' '(' uint32 ')'
1559 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1560   AddrSpace = DefaultAS;
1561   if (!EatIfPresent(lltok::kw_addrspace))
1562     return false;
1563   return ParseToken(lltok::lparen, "expected '(' in address space") ||
1564          ParseUInt32(AddrSpace) ||
1565          ParseToken(lltok::rparen, "expected ')' in address space");
1566 }
1567 
1568 /// ParseStringAttribute
1569 ///   := StringConstant
1570 ///   := StringConstant '=' StringConstant
1571 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1572   std::string Attr = Lex.getStrVal();
1573   Lex.Lex();
1574   std::string Val;
1575   if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1576     return true;
1577   B.addAttribute(Attr, Val);
1578   return false;
1579 }
1580 
1581 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1582 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1583   bool HaveError = false;
1584 
1585   B.clear();
1586 
1587   while (true) {
1588     lltok::Kind Token = Lex.getKind();
1589     switch (Token) {
1590     default:  // End of attributes.
1591       return HaveError;
1592     case lltok::StringConstant: {
1593       if (ParseStringAttribute(B))
1594         return true;
1595       continue;
1596     }
1597     case lltok::kw_align: {
1598       unsigned Alignment;
1599       if (ParseOptionalAlignment(Alignment))
1600         return true;
1601       B.addAlignmentAttr(Alignment);
1602       continue;
1603     }
1604     case lltok::kw_byval: {
1605       Type *Ty;
1606       if (ParseByValWithOptionalType(Ty))
1607         return true;
1608       B.addByValAttr(Ty);
1609       continue;
1610     }
1611     case lltok::kw_dereferenceable: {
1612       uint64_t Bytes;
1613       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1614         return true;
1615       B.addDereferenceableAttr(Bytes);
1616       continue;
1617     }
1618     case lltok::kw_dereferenceable_or_null: {
1619       uint64_t Bytes;
1620       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1621         return true;
1622       B.addDereferenceableOrNullAttr(Bytes);
1623       continue;
1624     }
1625     case lltok::kw_inalloca:        B.addAttribute(Attribute::InAlloca); break;
1626     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1627     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1628     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1629     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1630     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1631     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1632     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1633     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1634     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1635     case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1636     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1637     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1638     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
1639     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1640     case lltok::kw_immarg:          B.addAttribute(Attribute::ImmArg); break;
1641 
1642     case lltok::kw_alignstack:
1643     case lltok::kw_alwaysinline:
1644     case lltok::kw_argmemonly:
1645     case lltok::kw_builtin:
1646     case lltok::kw_inlinehint:
1647     case lltok::kw_jumptable:
1648     case lltok::kw_minsize:
1649     case lltok::kw_naked:
1650     case lltok::kw_nobuiltin:
1651     case lltok::kw_noduplicate:
1652     case lltok::kw_noimplicitfloat:
1653     case lltok::kw_noinline:
1654     case lltok::kw_nonlazybind:
1655     case lltok::kw_noredzone:
1656     case lltok::kw_noreturn:
1657     case lltok::kw_nocf_check:
1658     case lltok::kw_nounwind:
1659     case lltok::kw_optforfuzzing:
1660     case lltok::kw_optnone:
1661     case lltok::kw_optsize:
1662     case lltok::kw_returns_twice:
1663     case lltok::kw_sanitize_address:
1664     case lltok::kw_sanitize_hwaddress:
1665     case lltok::kw_sanitize_memory:
1666     case lltok::kw_sanitize_thread:
1667     case lltok::kw_speculative_load_hardening:
1668     case lltok::kw_ssp:
1669     case lltok::kw_sspreq:
1670     case lltok::kw_sspstrong:
1671     case lltok::kw_safestack:
1672     case lltok::kw_shadowcallstack:
1673     case lltok::kw_strictfp:
1674     case lltok::kw_uwtable:
1675       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1676       break;
1677     }
1678 
1679     Lex.Lex();
1680   }
1681 }
1682 
1683 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1684 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1685   bool HaveError = false;
1686 
1687   B.clear();
1688 
1689   while (true) {
1690     lltok::Kind Token = Lex.getKind();
1691     switch (Token) {
1692     default:  // End of attributes.
1693       return HaveError;
1694     case lltok::StringConstant: {
1695       if (ParseStringAttribute(B))
1696         return true;
1697       continue;
1698     }
1699     case lltok::kw_dereferenceable: {
1700       uint64_t Bytes;
1701       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1702         return true;
1703       B.addDereferenceableAttr(Bytes);
1704       continue;
1705     }
1706     case lltok::kw_dereferenceable_or_null: {
1707       uint64_t Bytes;
1708       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1709         return true;
1710       B.addDereferenceableOrNullAttr(Bytes);
1711       continue;
1712     }
1713     case lltok::kw_align: {
1714       unsigned Alignment;
1715       if (ParseOptionalAlignment(Alignment))
1716         return true;
1717       B.addAlignmentAttr(Alignment);
1718       continue;
1719     }
1720     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1721     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1722     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1723     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1724     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1725 
1726     // Error handling.
1727     case lltok::kw_byval:
1728     case lltok::kw_inalloca:
1729     case lltok::kw_nest:
1730     case lltok::kw_nocapture:
1731     case lltok::kw_returned:
1732     case lltok::kw_sret:
1733     case lltok::kw_swifterror:
1734     case lltok::kw_swiftself:
1735     case lltok::kw_immarg:
1736       HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1737       break;
1738 
1739     case lltok::kw_alignstack:
1740     case lltok::kw_alwaysinline:
1741     case lltok::kw_argmemonly:
1742     case lltok::kw_builtin:
1743     case lltok::kw_cold:
1744     case lltok::kw_inlinehint:
1745     case lltok::kw_jumptable:
1746     case lltok::kw_minsize:
1747     case lltok::kw_naked:
1748     case lltok::kw_nobuiltin:
1749     case lltok::kw_noduplicate:
1750     case lltok::kw_noimplicitfloat:
1751     case lltok::kw_noinline:
1752     case lltok::kw_nonlazybind:
1753     case lltok::kw_noredzone:
1754     case lltok::kw_noreturn:
1755     case lltok::kw_nocf_check:
1756     case lltok::kw_nounwind:
1757     case lltok::kw_optforfuzzing:
1758     case lltok::kw_optnone:
1759     case lltok::kw_optsize:
1760     case lltok::kw_returns_twice:
1761     case lltok::kw_sanitize_address:
1762     case lltok::kw_sanitize_hwaddress:
1763     case lltok::kw_sanitize_memory:
1764     case lltok::kw_sanitize_thread:
1765     case lltok::kw_speculative_load_hardening:
1766     case lltok::kw_ssp:
1767     case lltok::kw_sspreq:
1768     case lltok::kw_sspstrong:
1769     case lltok::kw_safestack:
1770     case lltok::kw_shadowcallstack:
1771     case lltok::kw_strictfp:
1772     case lltok::kw_uwtable:
1773       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1774       break;
1775 
1776     case lltok::kw_readnone:
1777     case lltok::kw_readonly:
1778       HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1779     }
1780 
1781     Lex.Lex();
1782   }
1783 }
1784 
1785 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1786   HasLinkage = true;
1787   switch (Kind) {
1788   default:
1789     HasLinkage = false;
1790     return GlobalValue::ExternalLinkage;
1791   case lltok::kw_private:
1792     return GlobalValue::PrivateLinkage;
1793   case lltok::kw_internal:
1794     return GlobalValue::InternalLinkage;
1795   case lltok::kw_weak:
1796     return GlobalValue::WeakAnyLinkage;
1797   case lltok::kw_weak_odr:
1798     return GlobalValue::WeakODRLinkage;
1799   case lltok::kw_linkonce:
1800     return GlobalValue::LinkOnceAnyLinkage;
1801   case lltok::kw_linkonce_odr:
1802     return GlobalValue::LinkOnceODRLinkage;
1803   case lltok::kw_available_externally:
1804     return GlobalValue::AvailableExternallyLinkage;
1805   case lltok::kw_appending:
1806     return GlobalValue::AppendingLinkage;
1807   case lltok::kw_common:
1808     return GlobalValue::CommonLinkage;
1809   case lltok::kw_extern_weak:
1810     return GlobalValue::ExternalWeakLinkage;
1811   case lltok::kw_external:
1812     return GlobalValue::ExternalLinkage;
1813   }
1814 }
1815 
1816 /// ParseOptionalLinkage
1817 ///   ::= /*empty*/
1818 ///   ::= 'private'
1819 ///   ::= 'internal'
1820 ///   ::= 'weak'
1821 ///   ::= 'weak_odr'
1822 ///   ::= 'linkonce'
1823 ///   ::= 'linkonce_odr'
1824 ///   ::= 'available_externally'
1825 ///   ::= 'appending'
1826 ///   ::= 'common'
1827 ///   ::= 'extern_weak'
1828 ///   ::= 'external'
1829 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1830                                     unsigned &Visibility,
1831                                     unsigned &DLLStorageClass,
1832                                     bool &DSOLocal) {
1833   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1834   if (HasLinkage)
1835     Lex.Lex();
1836   ParseOptionalDSOLocal(DSOLocal);
1837   ParseOptionalVisibility(Visibility);
1838   ParseOptionalDLLStorageClass(DLLStorageClass);
1839 
1840   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1841     return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1842   }
1843 
1844   return false;
1845 }
1846 
1847 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) {
1848   switch (Lex.getKind()) {
1849   default:
1850     DSOLocal = false;
1851     break;
1852   case lltok::kw_dso_local:
1853     DSOLocal = true;
1854     Lex.Lex();
1855     break;
1856   case lltok::kw_dso_preemptable:
1857     DSOLocal = false;
1858     Lex.Lex();
1859     break;
1860   }
1861 }
1862 
1863 /// ParseOptionalVisibility
1864 ///   ::= /*empty*/
1865 ///   ::= 'default'
1866 ///   ::= 'hidden'
1867 ///   ::= 'protected'
1868 ///
1869 void LLParser::ParseOptionalVisibility(unsigned &Res) {
1870   switch (Lex.getKind()) {
1871   default:
1872     Res = GlobalValue::DefaultVisibility;
1873     return;
1874   case lltok::kw_default:
1875     Res = GlobalValue::DefaultVisibility;
1876     break;
1877   case lltok::kw_hidden:
1878     Res = GlobalValue::HiddenVisibility;
1879     break;
1880   case lltok::kw_protected:
1881     Res = GlobalValue::ProtectedVisibility;
1882     break;
1883   }
1884   Lex.Lex();
1885 }
1886 
1887 /// ParseOptionalDLLStorageClass
1888 ///   ::= /*empty*/
1889 ///   ::= 'dllimport'
1890 ///   ::= 'dllexport'
1891 ///
1892 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1893   switch (Lex.getKind()) {
1894   default:
1895     Res = GlobalValue::DefaultStorageClass;
1896     return;
1897   case lltok::kw_dllimport:
1898     Res = GlobalValue::DLLImportStorageClass;
1899     break;
1900   case lltok::kw_dllexport:
1901     Res = GlobalValue::DLLExportStorageClass;
1902     break;
1903   }
1904   Lex.Lex();
1905 }
1906 
1907 /// ParseOptionalCallingConv
1908 ///   ::= /*empty*/
1909 ///   ::= 'ccc'
1910 ///   ::= 'fastcc'
1911 ///   ::= 'intel_ocl_bicc'
1912 ///   ::= 'coldcc'
1913 ///   ::= 'x86_stdcallcc'
1914 ///   ::= 'x86_fastcallcc'
1915 ///   ::= 'x86_thiscallcc'
1916 ///   ::= 'x86_vectorcallcc'
1917 ///   ::= 'arm_apcscc'
1918 ///   ::= 'arm_aapcscc'
1919 ///   ::= 'arm_aapcs_vfpcc'
1920 ///   ::= 'aarch64_vector_pcs'
1921 ///   ::= 'msp430_intrcc'
1922 ///   ::= 'avr_intrcc'
1923 ///   ::= 'avr_signalcc'
1924 ///   ::= 'ptx_kernel'
1925 ///   ::= 'ptx_device'
1926 ///   ::= 'spir_func'
1927 ///   ::= 'spir_kernel'
1928 ///   ::= 'x86_64_sysvcc'
1929 ///   ::= 'win64cc'
1930 ///   ::= 'webkit_jscc'
1931 ///   ::= 'anyregcc'
1932 ///   ::= 'preserve_mostcc'
1933 ///   ::= 'preserve_allcc'
1934 ///   ::= 'ghccc'
1935 ///   ::= 'swiftcc'
1936 ///   ::= 'x86_intrcc'
1937 ///   ::= 'hhvmcc'
1938 ///   ::= 'hhvm_ccc'
1939 ///   ::= 'cxx_fast_tlscc'
1940 ///   ::= 'amdgpu_vs'
1941 ///   ::= 'amdgpu_ls'
1942 ///   ::= 'amdgpu_hs'
1943 ///   ::= 'amdgpu_es'
1944 ///   ::= 'amdgpu_gs'
1945 ///   ::= 'amdgpu_ps'
1946 ///   ::= 'amdgpu_cs'
1947 ///   ::= 'amdgpu_kernel'
1948 ///   ::= 'cc' UINT
1949 ///
1950 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
1951   switch (Lex.getKind()) {
1952   default:                       CC = CallingConv::C; return false;
1953   case lltok::kw_ccc:            CC = CallingConv::C; break;
1954   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1955   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1956   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1957   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1958   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
1959   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1960   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1961   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1962   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1963   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1964   case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
1965   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1966   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
1967   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
1968   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1969   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1970   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1971   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1972   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1973   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1974   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
1975   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
1976   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
1977   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1978   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1979   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
1980   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
1981   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
1982   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
1983   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
1984   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
1985   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
1986   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
1987   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
1988   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
1989   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
1990   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
1991   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
1992   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
1993   case lltok::kw_cc: {
1994       Lex.Lex();
1995       return ParseUInt32(CC);
1996     }
1997   }
1998 
1999   Lex.Lex();
2000   return false;
2001 }
2002 
2003 /// ParseMetadataAttachment
2004 ///   ::= !dbg !42
2005 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
2006   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
2007 
2008   std::string Name = Lex.getStrVal();
2009   Kind = M->getMDKindID(Name);
2010   Lex.Lex();
2011 
2012   return ParseMDNode(MD);
2013 }
2014 
2015 /// ParseInstructionMetadata
2016 ///   ::= !dbg !42 (',' !dbg !57)*
2017 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
2018   do {
2019     if (Lex.getKind() != lltok::MetadataVar)
2020       return TokError("expected metadata after comma");
2021 
2022     unsigned MDK;
2023     MDNode *N;
2024     if (ParseMetadataAttachment(MDK, N))
2025       return true;
2026 
2027     Inst.setMetadata(MDK, N);
2028     if (MDK == LLVMContext::MD_tbaa)
2029       InstsWithTBAATag.push_back(&Inst);
2030 
2031     // If this is the end of the list, we're done.
2032   } while (EatIfPresent(lltok::comma));
2033   return false;
2034 }
2035 
2036 /// ParseGlobalObjectMetadataAttachment
2037 ///   ::= !dbg !57
2038 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
2039   unsigned MDK;
2040   MDNode *N;
2041   if (ParseMetadataAttachment(MDK, N))
2042     return true;
2043 
2044   GO.addMetadata(MDK, *N);
2045   return false;
2046 }
2047 
2048 /// ParseOptionalFunctionMetadata
2049 ///   ::= (!dbg !57)*
2050 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
2051   while (Lex.getKind() == lltok::MetadataVar)
2052     if (ParseGlobalObjectMetadataAttachment(F))
2053       return true;
2054   return false;
2055 }
2056 
2057 /// ParseOptionalAlignment
2058 ///   ::= /* empty */
2059 ///   ::= 'align' 4
2060 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
2061   Alignment = 0;
2062   if (!EatIfPresent(lltok::kw_align))
2063     return false;
2064   LocTy AlignLoc = Lex.getLoc();
2065   if (ParseUInt32(Alignment)) return true;
2066   if (!isPowerOf2_32(Alignment))
2067     return Error(AlignLoc, "alignment is not a power of two");
2068   if (Alignment > Value::MaximumAlignment)
2069     return Error(AlignLoc, "huge alignments are not supported yet");
2070   return false;
2071 }
2072 
2073 /// ParseOptionalDerefAttrBytes
2074 ///   ::= /* empty */
2075 ///   ::= AttrKind '(' 4 ')'
2076 ///
2077 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2078 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2079                                            uint64_t &Bytes) {
2080   assert((AttrKind == lltok::kw_dereferenceable ||
2081           AttrKind == lltok::kw_dereferenceable_or_null) &&
2082          "contract!");
2083 
2084   Bytes = 0;
2085   if (!EatIfPresent(AttrKind))
2086     return false;
2087   LocTy ParenLoc = Lex.getLoc();
2088   if (!EatIfPresent(lltok::lparen))
2089     return Error(ParenLoc, "expected '('");
2090   LocTy DerefLoc = Lex.getLoc();
2091   if (ParseUInt64(Bytes)) return true;
2092   ParenLoc = Lex.getLoc();
2093   if (!EatIfPresent(lltok::rparen))
2094     return Error(ParenLoc, "expected ')'");
2095   if (!Bytes)
2096     return Error(DerefLoc, "dereferenceable bytes must be non-zero");
2097   return false;
2098 }
2099 
2100 /// ParseOptionalCommaAlign
2101 ///   ::=
2102 ///   ::= ',' align 4
2103 ///
2104 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2105 /// end.
2106 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
2107                                        bool &AteExtraComma) {
2108   AteExtraComma = false;
2109   while (EatIfPresent(lltok::comma)) {
2110     // Metadata at the end is an early exit.
2111     if (Lex.getKind() == lltok::MetadataVar) {
2112       AteExtraComma = true;
2113       return false;
2114     }
2115 
2116     if (Lex.getKind() != lltok::kw_align)
2117       return Error(Lex.getLoc(), "expected metadata or 'align'");
2118 
2119     if (ParseOptionalAlignment(Alignment)) return true;
2120   }
2121 
2122   return false;
2123 }
2124 
2125 /// ParseOptionalCommaAddrSpace
2126 ///   ::=
2127 ///   ::= ',' addrspace(1)
2128 ///
2129 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2130 /// end.
2131 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace,
2132                                            LocTy &Loc,
2133                                            bool &AteExtraComma) {
2134   AteExtraComma = false;
2135   while (EatIfPresent(lltok::comma)) {
2136     // Metadata at the end is an early exit.
2137     if (Lex.getKind() == lltok::MetadataVar) {
2138       AteExtraComma = true;
2139       return false;
2140     }
2141 
2142     Loc = Lex.getLoc();
2143     if (Lex.getKind() != lltok::kw_addrspace)
2144       return Error(Lex.getLoc(), "expected metadata or 'addrspace'");
2145 
2146     if (ParseOptionalAddrSpace(AddrSpace))
2147       return true;
2148   }
2149 
2150   return false;
2151 }
2152 
2153 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2154                                        Optional<unsigned> &HowManyArg) {
2155   Lex.Lex();
2156 
2157   auto StartParen = Lex.getLoc();
2158   if (!EatIfPresent(lltok::lparen))
2159     return Error(StartParen, "expected '('");
2160 
2161   if (ParseUInt32(BaseSizeArg))
2162     return true;
2163 
2164   if (EatIfPresent(lltok::comma)) {
2165     auto HowManyAt = Lex.getLoc();
2166     unsigned HowMany;
2167     if (ParseUInt32(HowMany))
2168       return true;
2169     if (HowMany == BaseSizeArg)
2170       return Error(HowManyAt,
2171                    "'allocsize' indices can't refer to the same parameter");
2172     HowManyArg = HowMany;
2173   } else
2174     HowManyArg = None;
2175 
2176   auto EndParen = Lex.getLoc();
2177   if (!EatIfPresent(lltok::rparen))
2178     return Error(EndParen, "expected ')'");
2179   return false;
2180 }
2181 
2182 /// ParseScopeAndOrdering
2183 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2184 ///   else: ::=
2185 ///
2186 /// This sets Scope and Ordering to the parsed values.
2187 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID,
2188                                      AtomicOrdering &Ordering) {
2189   if (!isAtomic)
2190     return false;
2191 
2192   return ParseScope(SSID) || ParseOrdering(Ordering);
2193 }
2194 
2195 /// ParseScope
2196 ///   ::= syncscope("singlethread" | "<target scope>")?
2197 ///
2198 /// This sets synchronization scope ID to the ID of the parsed value.
2199 bool LLParser::ParseScope(SyncScope::ID &SSID) {
2200   SSID = SyncScope::System;
2201   if (EatIfPresent(lltok::kw_syncscope)) {
2202     auto StartParenAt = Lex.getLoc();
2203     if (!EatIfPresent(lltok::lparen))
2204       return Error(StartParenAt, "Expected '(' in syncscope");
2205 
2206     std::string SSN;
2207     auto SSNAt = Lex.getLoc();
2208     if (ParseStringConstant(SSN))
2209       return Error(SSNAt, "Expected synchronization scope name");
2210 
2211     auto EndParenAt = Lex.getLoc();
2212     if (!EatIfPresent(lltok::rparen))
2213       return Error(EndParenAt, "Expected ')' in syncscope");
2214 
2215     SSID = Context.getOrInsertSyncScopeID(SSN);
2216   }
2217 
2218   return false;
2219 }
2220 
2221 /// ParseOrdering
2222 ///   ::= AtomicOrdering
2223 ///
2224 /// This sets Ordering to the parsed value.
2225 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
2226   switch (Lex.getKind()) {
2227   default: return TokError("Expected ordering on atomic instruction");
2228   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2229   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2230   // Not specified yet:
2231   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2232   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2233   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2234   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2235   case lltok::kw_seq_cst:
2236     Ordering = AtomicOrdering::SequentiallyConsistent;
2237     break;
2238   }
2239   Lex.Lex();
2240   return false;
2241 }
2242 
2243 /// ParseOptionalStackAlignment
2244 ///   ::= /* empty */
2245 ///   ::= 'alignstack' '(' 4 ')'
2246 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
2247   Alignment = 0;
2248   if (!EatIfPresent(lltok::kw_alignstack))
2249     return false;
2250   LocTy ParenLoc = Lex.getLoc();
2251   if (!EatIfPresent(lltok::lparen))
2252     return Error(ParenLoc, "expected '('");
2253   LocTy AlignLoc = Lex.getLoc();
2254   if (ParseUInt32(Alignment)) return true;
2255   ParenLoc = Lex.getLoc();
2256   if (!EatIfPresent(lltok::rparen))
2257     return Error(ParenLoc, "expected ')'");
2258   if (!isPowerOf2_32(Alignment))
2259     return Error(AlignLoc, "stack alignment is not a power of two");
2260   return false;
2261 }
2262 
2263 /// ParseIndexList - This parses the index list for an insert/extractvalue
2264 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2265 /// comma at the end of the line and find that it is followed by metadata.
2266 /// Clients that don't allow metadata can call the version of this function that
2267 /// only takes one argument.
2268 ///
2269 /// ParseIndexList
2270 ///    ::=  (',' uint32)+
2271 ///
2272 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
2273                               bool &AteExtraComma) {
2274   AteExtraComma = false;
2275 
2276   if (Lex.getKind() != lltok::comma)
2277     return TokError("expected ',' as start of index list");
2278 
2279   while (EatIfPresent(lltok::comma)) {
2280     if (Lex.getKind() == lltok::MetadataVar) {
2281       if (Indices.empty()) return TokError("expected index");
2282       AteExtraComma = true;
2283       return false;
2284     }
2285     unsigned Idx = 0;
2286     if (ParseUInt32(Idx)) return true;
2287     Indices.push_back(Idx);
2288   }
2289 
2290   return false;
2291 }
2292 
2293 //===----------------------------------------------------------------------===//
2294 // Type Parsing.
2295 //===----------------------------------------------------------------------===//
2296 
2297 /// ParseType - Parse a type.
2298 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2299   SMLoc TypeLoc = Lex.getLoc();
2300   switch (Lex.getKind()) {
2301   default:
2302     return TokError(Msg);
2303   case lltok::Type:
2304     // Type ::= 'float' | 'void' (etc)
2305     Result = Lex.getTyVal();
2306     Lex.Lex();
2307     break;
2308   case lltok::lbrace:
2309     // Type ::= StructType
2310     if (ParseAnonStructType(Result, false))
2311       return true;
2312     break;
2313   case lltok::lsquare:
2314     // Type ::= '[' ... ']'
2315     Lex.Lex(); // eat the lsquare.
2316     if (ParseArrayVectorType(Result, false))
2317       return true;
2318     break;
2319   case lltok::less: // Either vector or packed struct.
2320     // Type ::= '<' ... '>'
2321     Lex.Lex();
2322     if (Lex.getKind() == lltok::lbrace) {
2323       if (ParseAnonStructType(Result, true) ||
2324           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
2325         return true;
2326     } else if (ParseArrayVectorType(Result, true))
2327       return true;
2328     break;
2329   case lltok::LocalVar: {
2330     // Type ::= %foo
2331     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2332 
2333     // If the type hasn't been defined yet, create a forward definition and
2334     // remember where that forward def'n was seen (in case it never is defined).
2335     if (!Entry.first) {
2336       Entry.first = StructType::create(Context, Lex.getStrVal());
2337       Entry.second = Lex.getLoc();
2338     }
2339     Result = Entry.first;
2340     Lex.Lex();
2341     break;
2342   }
2343 
2344   case lltok::LocalVarID: {
2345     // Type ::= %4
2346     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2347 
2348     // If the type hasn't been defined yet, create a forward definition and
2349     // remember where that forward def'n was seen (in case it never is defined).
2350     if (!Entry.first) {
2351       Entry.first = StructType::create(Context);
2352       Entry.second = Lex.getLoc();
2353     }
2354     Result = Entry.first;
2355     Lex.Lex();
2356     break;
2357   }
2358   }
2359 
2360   // Parse the type suffixes.
2361   while (true) {
2362     switch (Lex.getKind()) {
2363     // End of type.
2364     default:
2365       if (!AllowVoid && Result->isVoidTy())
2366         return Error(TypeLoc, "void type only allowed for function results");
2367       return false;
2368 
2369     // Type ::= Type '*'
2370     case lltok::star:
2371       if (Result->isLabelTy())
2372         return TokError("basic block pointers are invalid");
2373       if (Result->isVoidTy())
2374         return TokError("pointers to void are invalid - use i8* instead");
2375       if (!PointerType::isValidElementType(Result))
2376         return TokError("pointer to this type is invalid");
2377       Result = PointerType::getUnqual(Result);
2378       Lex.Lex();
2379       break;
2380 
2381     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2382     case lltok::kw_addrspace: {
2383       if (Result->isLabelTy())
2384         return TokError("basic block pointers are invalid");
2385       if (Result->isVoidTy())
2386         return TokError("pointers to void are invalid; use i8* instead");
2387       if (!PointerType::isValidElementType(Result))
2388         return TokError("pointer to this type is invalid");
2389       unsigned AddrSpace;
2390       if (ParseOptionalAddrSpace(AddrSpace) ||
2391           ParseToken(lltok::star, "expected '*' in address space"))
2392         return true;
2393 
2394       Result = PointerType::get(Result, AddrSpace);
2395       break;
2396     }
2397 
2398     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2399     case lltok::lparen:
2400       if (ParseFunctionType(Result))
2401         return true;
2402       break;
2403     }
2404   }
2405 }
2406 
2407 /// ParseParameterList
2408 ///    ::= '(' ')'
2409 ///    ::= '(' Arg (',' Arg)* ')'
2410 ///  Arg
2411 ///    ::= Type OptionalAttributes Value OptionalAttributes
2412 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2413                                   PerFunctionState &PFS, bool IsMustTailCall,
2414                                   bool InVarArgsFunc) {
2415   if (ParseToken(lltok::lparen, "expected '(' in call"))
2416     return true;
2417 
2418   while (Lex.getKind() != lltok::rparen) {
2419     // If this isn't the first argument, we need a comma.
2420     if (!ArgList.empty() &&
2421         ParseToken(lltok::comma, "expected ',' in argument list"))
2422       return true;
2423 
2424     // Parse an ellipsis if this is a musttail call in a variadic function.
2425     if (Lex.getKind() == lltok::dotdotdot) {
2426       const char *Msg = "unexpected ellipsis in argument list for ";
2427       if (!IsMustTailCall)
2428         return TokError(Twine(Msg) + "non-musttail call");
2429       if (!InVarArgsFunc)
2430         return TokError(Twine(Msg) + "musttail call in non-varargs function");
2431       Lex.Lex();  // Lex the '...', it is purely for readability.
2432       return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2433     }
2434 
2435     // Parse the argument.
2436     LocTy ArgLoc;
2437     Type *ArgTy = nullptr;
2438     AttrBuilder ArgAttrs;
2439     Value *V;
2440     if (ParseType(ArgTy, ArgLoc))
2441       return true;
2442 
2443     if (ArgTy->isMetadataTy()) {
2444       if (ParseMetadataAsValue(V, PFS))
2445         return true;
2446     } else {
2447       // Otherwise, handle normal operands.
2448       if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2449         return true;
2450     }
2451     ArgList.push_back(ParamInfo(
2452         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2453   }
2454 
2455   if (IsMustTailCall && InVarArgsFunc)
2456     return TokError("expected '...' at end of argument list for musttail call "
2457                     "in varargs function");
2458 
2459   Lex.Lex();  // Lex the ')'.
2460   return false;
2461 }
2462 
2463 /// ParseByValWithOptionalType
2464 ///   ::= byval
2465 ///   ::= byval(<ty>)
2466 bool LLParser::ParseByValWithOptionalType(Type *&Result) {
2467   Result = nullptr;
2468   if (!EatIfPresent(lltok::kw_byval))
2469     return true;
2470   if (!EatIfPresent(lltok::lparen))
2471     return false;
2472   if (ParseType(Result))
2473     return true;
2474   if (!EatIfPresent(lltok::rparen))
2475     return Error(Lex.getLoc(), "expected ')'");
2476   return false;
2477 }
2478 
2479 /// ParseOptionalOperandBundles
2480 ///    ::= /*empty*/
2481 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2482 ///
2483 /// OperandBundle
2484 ///    ::= bundle-tag '(' ')'
2485 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2486 ///
2487 /// bundle-tag ::= String Constant
2488 bool LLParser::ParseOptionalOperandBundles(
2489     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2490   LocTy BeginLoc = Lex.getLoc();
2491   if (!EatIfPresent(lltok::lsquare))
2492     return false;
2493 
2494   while (Lex.getKind() != lltok::rsquare) {
2495     // If this isn't the first operand bundle, we need a comma.
2496     if (!BundleList.empty() &&
2497         ParseToken(lltok::comma, "expected ',' in input list"))
2498       return true;
2499 
2500     std::string Tag;
2501     if (ParseStringConstant(Tag))
2502       return true;
2503 
2504     if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2505       return true;
2506 
2507     std::vector<Value *> Inputs;
2508     while (Lex.getKind() != lltok::rparen) {
2509       // If this isn't the first input, we need a comma.
2510       if (!Inputs.empty() &&
2511           ParseToken(lltok::comma, "expected ',' in input list"))
2512         return true;
2513 
2514       Type *Ty = nullptr;
2515       Value *Input = nullptr;
2516       if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2517         return true;
2518       Inputs.push_back(Input);
2519     }
2520 
2521     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2522 
2523     Lex.Lex(); // Lex the ')'.
2524   }
2525 
2526   if (BundleList.empty())
2527     return Error(BeginLoc, "operand bundle set must not be empty");
2528 
2529   Lex.Lex(); // Lex the ']'.
2530   return false;
2531 }
2532 
2533 /// ParseArgumentList - Parse the argument list for a function type or function
2534 /// prototype.
2535 ///   ::= '(' ArgTypeListI ')'
2536 /// ArgTypeListI
2537 ///   ::= /*empty*/
2538 ///   ::= '...'
2539 ///   ::= ArgTypeList ',' '...'
2540 ///   ::= ArgType (',' ArgType)*
2541 ///
2542 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2543                                  bool &isVarArg){
2544   isVarArg = false;
2545   assert(Lex.getKind() == lltok::lparen);
2546   Lex.Lex(); // eat the (.
2547 
2548   if (Lex.getKind() == lltok::rparen) {
2549     // empty
2550   } else if (Lex.getKind() == lltok::dotdotdot) {
2551     isVarArg = true;
2552     Lex.Lex();
2553   } else {
2554     LocTy TypeLoc = Lex.getLoc();
2555     Type *ArgTy = nullptr;
2556     AttrBuilder Attrs;
2557     std::string Name;
2558 
2559     if (ParseType(ArgTy) ||
2560         ParseOptionalParamAttrs(Attrs)) return true;
2561 
2562     if (ArgTy->isVoidTy())
2563       return Error(TypeLoc, "argument can not have void type");
2564 
2565     if (Lex.getKind() == lltok::LocalVar) {
2566       Name = Lex.getStrVal();
2567       Lex.Lex();
2568     }
2569 
2570     if (!FunctionType::isValidArgumentType(ArgTy))
2571       return Error(TypeLoc, "invalid type for function argument");
2572 
2573     ArgList.emplace_back(TypeLoc, ArgTy,
2574                          AttributeSet::get(ArgTy->getContext(), Attrs),
2575                          std::move(Name));
2576 
2577     while (EatIfPresent(lltok::comma)) {
2578       // Handle ... at end of arg list.
2579       if (EatIfPresent(lltok::dotdotdot)) {
2580         isVarArg = true;
2581         break;
2582       }
2583 
2584       // Otherwise must be an argument type.
2585       TypeLoc = Lex.getLoc();
2586       if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2587 
2588       if (ArgTy->isVoidTy())
2589         return Error(TypeLoc, "argument can not have void type");
2590 
2591       if (Lex.getKind() == lltok::LocalVar) {
2592         Name = Lex.getStrVal();
2593         Lex.Lex();
2594       } else {
2595         Name = "";
2596       }
2597 
2598       if (!ArgTy->isFirstClassType())
2599         return Error(TypeLoc, "invalid type for function argument");
2600 
2601       ArgList.emplace_back(TypeLoc, ArgTy,
2602                            AttributeSet::get(ArgTy->getContext(), Attrs),
2603                            std::move(Name));
2604     }
2605   }
2606 
2607   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2608 }
2609 
2610 /// ParseFunctionType
2611 ///  ::= Type ArgumentList OptionalAttrs
2612 bool LLParser::ParseFunctionType(Type *&Result) {
2613   assert(Lex.getKind() == lltok::lparen);
2614 
2615   if (!FunctionType::isValidReturnType(Result))
2616     return TokError("invalid function return type");
2617 
2618   SmallVector<ArgInfo, 8> ArgList;
2619   bool isVarArg;
2620   if (ParseArgumentList(ArgList, isVarArg))
2621     return true;
2622 
2623   // Reject names on the arguments lists.
2624   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2625     if (!ArgList[i].Name.empty())
2626       return Error(ArgList[i].Loc, "argument name invalid in function type");
2627     if (ArgList[i].Attrs.hasAttributes())
2628       return Error(ArgList[i].Loc,
2629                    "argument attributes invalid in function type");
2630   }
2631 
2632   SmallVector<Type*, 16> ArgListTy;
2633   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2634     ArgListTy.push_back(ArgList[i].Ty);
2635 
2636   Result = FunctionType::get(Result, ArgListTy, isVarArg);
2637   return false;
2638 }
2639 
2640 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2641 /// other structs.
2642 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2643   SmallVector<Type*, 8> Elts;
2644   if (ParseStructBody(Elts)) return true;
2645 
2646   Result = StructType::get(Context, Elts, Packed);
2647   return false;
2648 }
2649 
2650 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2651 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2652                                      std::pair<Type*, LocTy> &Entry,
2653                                      Type *&ResultTy) {
2654   // If the type was already defined, diagnose the redefinition.
2655   if (Entry.first && !Entry.second.isValid())
2656     return Error(TypeLoc, "redefinition of type");
2657 
2658   // If we have opaque, just return without filling in the definition for the
2659   // struct.  This counts as a definition as far as the .ll file goes.
2660   if (EatIfPresent(lltok::kw_opaque)) {
2661     // This type is being defined, so clear the location to indicate this.
2662     Entry.second = SMLoc();
2663 
2664     // If this type number has never been uttered, create it.
2665     if (!Entry.first)
2666       Entry.first = StructType::create(Context, Name);
2667     ResultTy = Entry.first;
2668     return false;
2669   }
2670 
2671   // If the type starts with '<', then it is either a packed struct or a vector.
2672   bool isPacked = EatIfPresent(lltok::less);
2673 
2674   // If we don't have a struct, then we have a random type alias, which we
2675   // accept for compatibility with old files.  These types are not allowed to be
2676   // forward referenced and not allowed to be recursive.
2677   if (Lex.getKind() != lltok::lbrace) {
2678     if (Entry.first)
2679       return Error(TypeLoc, "forward references to non-struct type");
2680 
2681     ResultTy = nullptr;
2682     if (isPacked)
2683       return ParseArrayVectorType(ResultTy, true);
2684     return ParseType(ResultTy);
2685   }
2686 
2687   // This type is being defined, so clear the location to indicate this.
2688   Entry.second = SMLoc();
2689 
2690   // If this type number has never been uttered, create it.
2691   if (!Entry.first)
2692     Entry.first = StructType::create(Context, Name);
2693 
2694   StructType *STy = cast<StructType>(Entry.first);
2695 
2696   SmallVector<Type*, 8> Body;
2697   if (ParseStructBody(Body) ||
2698       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2699     return true;
2700 
2701   STy->setBody(Body, isPacked);
2702   ResultTy = STy;
2703   return false;
2704 }
2705 
2706 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2707 ///   StructType
2708 ///     ::= '{' '}'
2709 ///     ::= '{' Type (',' Type)* '}'
2710 ///     ::= '<' '{' '}' '>'
2711 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2712 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2713   assert(Lex.getKind() == lltok::lbrace);
2714   Lex.Lex(); // Consume the '{'
2715 
2716   // Handle the empty struct.
2717   if (EatIfPresent(lltok::rbrace))
2718     return false;
2719 
2720   LocTy EltTyLoc = Lex.getLoc();
2721   Type *Ty = nullptr;
2722   if (ParseType(Ty)) return true;
2723   Body.push_back(Ty);
2724 
2725   if (!StructType::isValidElementType(Ty))
2726     return Error(EltTyLoc, "invalid element type for struct");
2727 
2728   while (EatIfPresent(lltok::comma)) {
2729     EltTyLoc = Lex.getLoc();
2730     if (ParseType(Ty)) return true;
2731 
2732     if (!StructType::isValidElementType(Ty))
2733       return Error(EltTyLoc, "invalid element type for struct");
2734 
2735     Body.push_back(Ty);
2736   }
2737 
2738   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2739 }
2740 
2741 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2742 /// token has already been consumed.
2743 ///   Type
2744 ///     ::= '[' APSINTVAL 'x' Types ']'
2745 ///     ::= '<' APSINTVAL 'x' Types '>'
2746 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2747   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2748       Lex.getAPSIntVal().getBitWidth() > 64)
2749     return TokError("expected number in address space");
2750 
2751   LocTy SizeLoc = Lex.getLoc();
2752   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2753   Lex.Lex();
2754 
2755   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2756       return true;
2757 
2758   LocTy TypeLoc = Lex.getLoc();
2759   Type *EltTy = nullptr;
2760   if (ParseType(EltTy)) return true;
2761 
2762   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2763                  "expected end of sequential type"))
2764     return true;
2765 
2766   if (isVector) {
2767     if (Size == 0)
2768       return Error(SizeLoc, "zero element vector is illegal");
2769     if ((unsigned)Size != Size)
2770       return Error(SizeLoc, "size too large for vector");
2771     if (!VectorType::isValidElementType(EltTy))
2772       return Error(TypeLoc, "invalid vector element type");
2773     Result = VectorType::get(EltTy, unsigned(Size));
2774   } else {
2775     if (!ArrayType::isValidElementType(EltTy))
2776       return Error(TypeLoc, "invalid array element type");
2777     Result = ArrayType::get(EltTy, Size);
2778   }
2779   return false;
2780 }
2781 
2782 //===----------------------------------------------------------------------===//
2783 // Function Semantic Analysis.
2784 //===----------------------------------------------------------------------===//
2785 
2786 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2787                                              int functionNumber)
2788   : P(p), F(f), FunctionNumber(functionNumber) {
2789 
2790   // Insert unnamed arguments into the NumberedVals list.
2791   for (Argument &A : F.args())
2792     if (!A.hasName())
2793       NumberedVals.push_back(&A);
2794 }
2795 
2796 LLParser::PerFunctionState::~PerFunctionState() {
2797   // If there were any forward referenced non-basicblock values, delete them.
2798 
2799   for (const auto &P : ForwardRefVals) {
2800     if (isa<BasicBlock>(P.second.first))
2801       continue;
2802     P.second.first->replaceAllUsesWith(
2803         UndefValue::get(P.second.first->getType()));
2804     P.second.first->deleteValue();
2805   }
2806 
2807   for (const auto &P : ForwardRefValIDs) {
2808     if (isa<BasicBlock>(P.second.first))
2809       continue;
2810     P.second.first->replaceAllUsesWith(
2811         UndefValue::get(P.second.first->getType()));
2812     P.second.first->deleteValue();
2813   }
2814 }
2815 
2816 bool LLParser::PerFunctionState::FinishFunction() {
2817   if (!ForwardRefVals.empty())
2818     return P.Error(ForwardRefVals.begin()->second.second,
2819                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2820                    "'");
2821   if (!ForwardRefValIDs.empty())
2822     return P.Error(ForwardRefValIDs.begin()->second.second,
2823                    "use of undefined value '%" +
2824                    Twine(ForwardRefValIDs.begin()->first) + "'");
2825   return false;
2826 }
2827 
2828 /// GetVal - Get a value with the specified name or ID, creating a
2829 /// forward reference record if needed.  This can return null if the value
2830 /// exists but does not have the right type.
2831 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2832                                           LocTy Loc, bool IsCall) {
2833   // Look this name up in the normal function symbol table.
2834   Value *Val = F.getValueSymbolTable()->lookup(Name);
2835 
2836   // If this is a forward reference for the value, see if we already created a
2837   // forward ref record.
2838   if (!Val) {
2839     auto I = ForwardRefVals.find(Name);
2840     if (I != ForwardRefVals.end())
2841       Val = I->second.first;
2842   }
2843 
2844   // If we have the value in the symbol table or fwd-ref table, return it.
2845   if (Val)
2846     return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall);
2847 
2848   // Don't make placeholders with invalid type.
2849   if (!Ty->isFirstClassType()) {
2850     P.Error(Loc, "invalid use of a non-first-class type");
2851     return nullptr;
2852   }
2853 
2854   // Otherwise, create a new forward reference for this value and remember it.
2855   Value *FwdVal;
2856   if (Ty->isLabelTy()) {
2857     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2858   } else {
2859     FwdVal = new Argument(Ty, Name);
2860   }
2861 
2862   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2863   return FwdVal;
2864 }
2865 
2866 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc,
2867                                           bool IsCall) {
2868   // Look this name up in the normal function symbol table.
2869   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2870 
2871   // If this is a forward reference for the value, see if we already created a
2872   // forward ref record.
2873   if (!Val) {
2874     auto I = ForwardRefValIDs.find(ID);
2875     if (I != ForwardRefValIDs.end())
2876       Val = I->second.first;
2877   }
2878 
2879   // If we have the value in the symbol table or fwd-ref table, return it.
2880   if (Val)
2881     return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall);
2882 
2883   if (!Ty->isFirstClassType()) {
2884     P.Error(Loc, "invalid use of a non-first-class type");
2885     return nullptr;
2886   }
2887 
2888   // Otherwise, create a new forward reference for this value and remember it.
2889   Value *FwdVal;
2890   if (Ty->isLabelTy()) {
2891     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2892   } else {
2893     FwdVal = new Argument(Ty);
2894   }
2895 
2896   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2897   return FwdVal;
2898 }
2899 
2900 /// SetInstName - After an instruction is parsed and inserted into its
2901 /// basic block, this installs its name.
2902 bool LLParser::PerFunctionState::SetInstName(int NameID,
2903                                              const std::string &NameStr,
2904                                              LocTy NameLoc, Instruction *Inst) {
2905   // If this instruction has void type, it cannot have a name or ID specified.
2906   if (Inst->getType()->isVoidTy()) {
2907     if (NameID != -1 || !NameStr.empty())
2908       return P.Error(NameLoc, "instructions returning void cannot have a name");
2909     return false;
2910   }
2911 
2912   // If this was a numbered instruction, verify that the instruction is the
2913   // expected value and resolve any forward references.
2914   if (NameStr.empty()) {
2915     // If neither a name nor an ID was specified, just use the next ID.
2916     if (NameID == -1)
2917       NameID = NumberedVals.size();
2918 
2919     if (unsigned(NameID) != NumberedVals.size())
2920       return P.Error(NameLoc, "instruction expected to be numbered '%" +
2921                      Twine(NumberedVals.size()) + "'");
2922 
2923     auto FI = ForwardRefValIDs.find(NameID);
2924     if (FI != ForwardRefValIDs.end()) {
2925       Value *Sentinel = FI->second.first;
2926       if (Sentinel->getType() != Inst->getType())
2927         return P.Error(NameLoc, "instruction forward referenced with type '" +
2928                        getTypeString(FI->second.first->getType()) + "'");
2929 
2930       Sentinel->replaceAllUsesWith(Inst);
2931       Sentinel->deleteValue();
2932       ForwardRefValIDs.erase(FI);
2933     }
2934 
2935     NumberedVals.push_back(Inst);
2936     return false;
2937   }
2938 
2939   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2940   auto FI = ForwardRefVals.find(NameStr);
2941   if (FI != ForwardRefVals.end()) {
2942     Value *Sentinel = FI->second.first;
2943     if (Sentinel->getType() != Inst->getType())
2944       return P.Error(NameLoc, "instruction forward referenced with type '" +
2945                      getTypeString(FI->second.first->getType()) + "'");
2946 
2947     Sentinel->replaceAllUsesWith(Inst);
2948     Sentinel->deleteValue();
2949     ForwardRefVals.erase(FI);
2950   }
2951 
2952   // Set the name on the instruction.
2953   Inst->setName(NameStr);
2954 
2955   if (Inst->getName() != NameStr)
2956     return P.Error(NameLoc, "multiple definition of local value named '" +
2957                    NameStr + "'");
2958   return false;
2959 }
2960 
2961 /// GetBB - Get a basic block with the specified name or ID, creating a
2962 /// forward reference record if needed.
2963 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2964                                               LocTy Loc) {
2965   return dyn_cast_or_null<BasicBlock>(
2966       GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
2967 }
2968 
2969 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
2970   return dyn_cast_or_null<BasicBlock>(
2971       GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
2972 }
2973 
2974 /// DefineBB - Define the specified basic block, which is either named or
2975 /// unnamed.  If there is an error, this returns null otherwise it returns
2976 /// the block being defined.
2977 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
2978                                                  int NameID, LocTy Loc) {
2979   BasicBlock *BB;
2980   if (Name.empty()) {
2981     if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
2982       P.Error(Loc, "label expected to be numbered '" +
2983                        Twine(NumberedVals.size()) + "'");
2984       return nullptr;
2985     }
2986     BB = GetBB(NumberedVals.size(), Loc);
2987     if (!BB) {
2988       P.Error(Loc, "unable to create block numbered '" +
2989                        Twine(NumberedVals.size()) + "'");
2990       return nullptr;
2991     }
2992   } else {
2993     BB = GetBB(Name, Loc);
2994     if (!BB) {
2995       P.Error(Loc, "unable to create block named '" + Name + "'");
2996       return nullptr;
2997     }
2998   }
2999 
3000   // Move the block to the end of the function.  Forward ref'd blocks are
3001   // inserted wherever they happen to be referenced.
3002   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
3003 
3004   // Remove the block from forward ref sets.
3005   if (Name.empty()) {
3006     ForwardRefValIDs.erase(NumberedVals.size());
3007     NumberedVals.push_back(BB);
3008   } else {
3009     // BB forward references are already in the function symbol table.
3010     ForwardRefVals.erase(Name);
3011   }
3012 
3013   return BB;
3014 }
3015 
3016 //===----------------------------------------------------------------------===//
3017 // Constants.
3018 //===----------------------------------------------------------------------===//
3019 
3020 /// ParseValID - Parse an abstract value that doesn't necessarily have a
3021 /// type implied.  For example, if we parse "4" we don't know what integer type
3022 /// it has.  The value will later be combined with its type and checked for
3023 /// sanity.  PFS is used to convert function-local operands of metadata (since
3024 /// metadata operands are not just parsed here but also converted to values).
3025 /// PFS can be null when we are not parsing metadata values inside a function.
3026 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
3027   ID.Loc = Lex.getLoc();
3028   switch (Lex.getKind()) {
3029   default: return TokError("expected value token");
3030   case lltok::GlobalID:  // @42
3031     ID.UIntVal = Lex.getUIntVal();
3032     ID.Kind = ValID::t_GlobalID;
3033     break;
3034   case lltok::GlobalVar:  // @foo
3035     ID.StrVal = Lex.getStrVal();
3036     ID.Kind = ValID::t_GlobalName;
3037     break;
3038   case lltok::LocalVarID:  // %42
3039     ID.UIntVal = Lex.getUIntVal();
3040     ID.Kind = ValID::t_LocalID;
3041     break;
3042   case lltok::LocalVar:  // %foo
3043     ID.StrVal = Lex.getStrVal();
3044     ID.Kind = ValID::t_LocalName;
3045     break;
3046   case lltok::APSInt:
3047     ID.APSIntVal = Lex.getAPSIntVal();
3048     ID.Kind = ValID::t_APSInt;
3049     break;
3050   case lltok::APFloat:
3051     ID.APFloatVal = Lex.getAPFloatVal();
3052     ID.Kind = ValID::t_APFloat;
3053     break;
3054   case lltok::kw_true:
3055     ID.ConstantVal = ConstantInt::getTrue(Context);
3056     ID.Kind = ValID::t_Constant;
3057     break;
3058   case lltok::kw_false:
3059     ID.ConstantVal = ConstantInt::getFalse(Context);
3060     ID.Kind = ValID::t_Constant;
3061     break;
3062   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3063   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3064   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3065   case lltok::kw_none: ID.Kind = ValID::t_None; break;
3066 
3067   case lltok::lbrace: {
3068     // ValID ::= '{' ConstVector '}'
3069     Lex.Lex();
3070     SmallVector<Constant*, 16> Elts;
3071     if (ParseGlobalValueVector(Elts) ||
3072         ParseToken(lltok::rbrace, "expected end of struct constant"))
3073       return true;
3074 
3075     ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
3076     ID.UIntVal = Elts.size();
3077     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3078            Elts.size() * sizeof(Elts[0]));
3079     ID.Kind = ValID::t_ConstantStruct;
3080     return false;
3081   }
3082   case lltok::less: {
3083     // ValID ::= '<' ConstVector '>'         --> Vector.
3084     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3085     Lex.Lex();
3086     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3087 
3088     SmallVector<Constant*, 16> Elts;
3089     LocTy FirstEltLoc = Lex.getLoc();
3090     if (ParseGlobalValueVector(Elts) ||
3091         (isPackedStruct &&
3092          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
3093         ParseToken(lltok::greater, "expected end of constant"))
3094       return true;
3095 
3096     if (isPackedStruct) {
3097       ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
3098       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3099              Elts.size() * sizeof(Elts[0]));
3100       ID.UIntVal = Elts.size();
3101       ID.Kind = ValID::t_PackedConstantStruct;
3102       return false;
3103     }
3104 
3105     if (Elts.empty())
3106       return Error(ID.Loc, "constant vector must not be empty");
3107 
3108     if (!Elts[0]->getType()->isIntegerTy() &&
3109         !Elts[0]->getType()->isFloatingPointTy() &&
3110         !Elts[0]->getType()->isPointerTy())
3111       return Error(FirstEltLoc,
3112             "vector elements must have integer, pointer or floating point type");
3113 
3114     // Verify that all the vector elements have the same type.
3115     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3116       if (Elts[i]->getType() != Elts[0]->getType())
3117         return Error(FirstEltLoc,
3118                      "vector element #" + Twine(i) +
3119                     " is not of type '" + getTypeString(Elts[0]->getType()));
3120 
3121     ID.ConstantVal = ConstantVector::get(Elts);
3122     ID.Kind = ValID::t_Constant;
3123     return false;
3124   }
3125   case lltok::lsquare: {   // Array Constant
3126     Lex.Lex();
3127     SmallVector<Constant*, 16> Elts;
3128     LocTy FirstEltLoc = Lex.getLoc();
3129     if (ParseGlobalValueVector(Elts) ||
3130         ParseToken(lltok::rsquare, "expected end of array constant"))
3131       return true;
3132 
3133     // Handle empty element.
3134     if (Elts.empty()) {
3135       // Use undef instead of an array because it's inconvenient to determine
3136       // the element type at this point, there being no elements to examine.
3137       ID.Kind = ValID::t_EmptyArray;
3138       return false;
3139     }
3140 
3141     if (!Elts[0]->getType()->isFirstClassType())
3142       return Error(FirstEltLoc, "invalid array element type: " +
3143                    getTypeString(Elts[0]->getType()));
3144 
3145     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3146 
3147     // Verify all elements are correct type!
3148     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3149       if (Elts[i]->getType() != Elts[0]->getType())
3150         return Error(FirstEltLoc,
3151                      "array element #" + Twine(i) +
3152                      " is not of type '" + getTypeString(Elts[0]->getType()));
3153     }
3154 
3155     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3156     ID.Kind = ValID::t_Constant;
3157     return false;
3158   }
3159   case lltok::kw_c:  // c "foo"
3160     Lex.Lex();
3161     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3162                                                   false);
3163     if (ParseToken(lltok::StringConstant, "expected string")) return true;
3164     ID.Kind = ValID::t_Constant;
3165     return false;
3166 
3167   case lltok::kw_asm: {
3168     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3169     //             STRINGCONSTANT
3170     bool HasSideEffect, AlignStack, AsmDialect;
3171     Lex.Lex();
3172     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3173         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3174         ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3175         ParseStringConstant(ID.StrVal) ||
3176         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
3177         ParseToken(lltok::StringConstant, "expected constraint string"))
3178       return true;
3179     ID.StrVal2 = Lex.getStrVal();
3180     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
3181       (unsigned(AsmDialect)<<2);
3182     ID.Kind = ValID::t_InlineAsm;
3183     return false;
3184   }
3185 
3186   case lltok::kw_blockaddress: {
3187     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3188     Lex.Lex();
3189 
3190     ValID Fn, Label;
3191 
3192     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
3193         ParseValID(Fn) ||
3194         ParseToken(lltok::comma, "expected comma in block address expression")||
3195         ParseValID(Label) ||
3196         ParseToken(lltok::rparen, "expected ')' in block address expression"))
3197       return true;
3198 
3199     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3200       return Error(Fn.Loc, "expected function name in blockaddress");
3201     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3202       return Error(Label.Loc, "expected basic block name in blockaddress");
3203 
3204     // Try to find the function (but skip it if it's forward-referenced).
3205     GlobalValue *GV = nullptr;
3206     if (Fn.Kind == ValID::t_GlobalID) {
3207       if (Fn.UIntVal < NumberedVals.size())
3208         GV = NumberedVals[Fn.UIntVal];
3209     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3210       GV = M->getNamedValue(Fn.StrVal);
3211     }
3212     Function *F = nullptr;
3213     if (GV) {
3214       // Confirm that it's actually a function with a definition.
3215       if (!isa<Function>(GV))
3216         return Error(Fn.Loc, "expected function name in blockaddress");
3217       F = cast<Function>(GV);
3218       if (F->isDeclaration())
3219         return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
3220     }
3221 
3222     if (!F) {
3223       // Make a global variable as a placeholder for this reference.
3224       GlobalValue *&FwdRef =
3225           ForwardRefBlockAddresses.insert(std::make_pair(
3226                                               std::move(Fn),
3227                                               std::map<ValID, GlobalValue *>()))
3228               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3229               .first->second;
3230       if (!FwdRef)
3231         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3232                                     GlobalValue::InternalLinkage, nullptr, "");
3233       ID.ConstantVal = FwdRef;
3234       ID.Kind = ValID::t_Constant;
3235       return false;
3236     }
3237 
3238     // We found the function; now find the basic block.  Don't use PFS, since we
3239     // might be inside a constant expression.
3240     BasicBlock *BB;
3241     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3242       if (Label.Kind == ValID::t_LocalID)
3243         BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
3244       else
3245         BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
3246       if (!BB)
3247         return Error(Label.Loc, "referenced value is not a basic block");
3248     } else {
3249       if (Label.Kind == ValID::t_LocalID)
3250         return Error(Label.Loc, "cannot take address of numeric label after "
3251                                 "the function is defined");
3252       BB = dyn_cast_or_null<BasicBlock>(
3253           F->getValueSymbolTable()->lookup(Label.StrVal));
3254       if (!BB)
3255         return Error(Label.Loc, "referenced value is not a basic block");
3256     }
3257 
3258     ID.ConstantVal = BlockAddress::get(F, BB);
3259     ID.Kind = ValID::t_Constant;
3260     return false;
3261   }
3262 
3263   case lltok::kw_trunc:
3264   case lltok::kw_zext:
3265   case lltok::kw_sext:
3266   case lltok::kw_fptrunc:
3267   case lltok::kw_fpext:
3268   case lltok::kw_bitcast:
3269   case lltok::kw_addrspacecast:
3270   case lltok::kw_uitofp:
3271   case lltok::kw_sitofp:
3272   case lltok::kw_fptoui:
3273   case lltok::kw_fptosi:
3274   case lltok::kw_inttoptr:
3275   case lltok::kw_ptrtoint: {
3276     unsigned Opc = Lex.getUIntVal();
3277     Type *DestTy = nullptr;
3278     Constant *SrcVal;
3279     Lex.Lex();
3280     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3281         ParseGlobalTypeAndValue(SrcVal) ||
3282         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3283         ParseType(DestTy) ||
3284         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3285       return true;
3286     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3287       return Error(ID.Loc, "invalid cast opcode for cast from '" +
3288                    getTypeString(SrcVal->getType()) + "' to '" +
3289                    getTypeString(DestTy) + "'");
3290     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3291                                                  SrcVal, DestTy);
3292     ID.Kind = ValID::t_Constant;
3293     return false;
3294   }
3295   case lltok::kw_extractvalue: {
3296     Lex.Lex();
3297     Constant *Val;
3298     SmallVector<unsigned, 4> Indices;
3299     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
3300         ParseGlobalTypeAndValue(Val) ||
3301         ParseIndexList(Indices) ||
3302         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3303       return true;
3304 
3305     if (!Val->getType()->isAggregateType())
3306       return Error(ID.Loc, "extractvalue operand must be aggregate type");
3307     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3308       return Error(ID.Loc, "invalid indices for extractvalue");
3309     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3310     ID.Kind = ValID::t_Constant;
3311     return false;
3312   }
3313   case lltok::kw_insertvalue: {
3314     Lex.Lex();
3315     Constant *Val0, *Val1;
3316     SmallVector<unsigned, 4> Indices;
3317     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
3318         ParseGlobalTypeAndValue(Val0) ||
3319         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
3320         ParseGlobalTypeAndValue(Val1) ||
3321         ParseIndexList(Indices) ||
3322         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3323       return true;
3324     if (!Val0->getType()->isAggregateType())
3325       return Error(ID.Loc, "insertvalue operand must be aggregate type");
3326     Type *IndexedType =
3327         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3328     if (!IndexedType)
3329       return Error(ID.Loc, "invalid indices for insertvalue");
3330     if (IndexedType != Val1->getType())
3331       return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3332                                getTypeString(Val1->getType()) +
3333                                "' instead of '" + getTypeString(IndexedType) +
3334                                "'");
3335     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3336     ID.Kind = ValID::t_Constant;
3337     return false;
3338   }
3339   case lltok::kw_icmp:
3340   case lltok::kw_fcmp: {
3341     unsigned PredVal, Opc = Lex.getUIntVal();
3342     Constant *Val0, *Val1;
3343     Lex.Lex();
3344     if (ParseCmpPredicate(PredVal, Opc) ||
3345         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3346         ParseGlobalTypeAndValue(Val0) ||
3347         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
3348         ParseGlobalTypeAndValue(Val1) ||
3349         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3350       return true;
3351 
3352     if (Val0->getType() != Val1->getType())
3353       return Error(ID.Loc, "compare operands must have the same type");
3354 
3355     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3356 
3357     if (Opc == Instruction::FCmp) {
3358       if (!Val0->getType()->isFPOrFPVectorTy())
3359         return Error(ID.Loc, "fcmp requires floating point operands");
3360       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3361     } else {
3362       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3363       if (!Val0->getType()->isIntOrIntVectorTy() &&
3364           !Val0->getType()->isPtrOrPtrVectorTy())
3365         return Error(ID.Loc, "icmp requires pointer or integer operands");
3366       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3367     }
3368     ID.Kind = ValID::t_Constant;
3369     return false;
3370   }
3371 
3372   // Unary Operators.
3373   case lltok::kw_fneg: {
3374     unsigned Opc = Lex.getUIntVal();
3375     Constant *Val;
3376     Lex.Lex();
3377     if (ParseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3378         ParseGlobalTypeAndValue(Val) ||
3379         ParseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3380       return true;
3381 
3382     // Check that the type is valid for the operator.
3383     switch (Opc) {
3384     case Instruction::FNeg:
3385       if (!Val->getType()->isFPOrFPVectorTy())
3386         return Error(ID.Loc, "constexpr requires fp operands");
3387       break;
3388     default: llvm_unreachable("Unknown unary operator!");
3389     }
3390     unsigned Flags = 0;
3391     Constant *C = ConstantExpr::get(Opc, Val, Flags);
3392     ID.ConstantVal = C;
3393     ID.Kind = ValID::t_Constant;
3394     return false;
3395   }
3396   // Binary Operators.
3397   case lltok::kw_add:
3398   case lltok::kw_fadd:
3399   case lltok::kw_sub:
3400   case lltok::kw_fsub:
3401   case lltok::kw_mul:
3402   case lltok::kw_fmul:
3403   case lltok::kw_udiv:
3404   case lltok::kw_sdiv:
3405   case lltok::kw_fdiv:
3406   case lltok::kw_urem:
3407   case lltok::kw_srem:
3408   case lltok::kw_frem:
3409   case lltok::kw_shl:
3410   case lltok::kw_lshr:
3411   case lltok::kw_ashr: {
3412     bool NUW = false;
3413     bool NSW = false;
3414     bool Exact = false;
3415     unsigned Opc = Lex.getUIntVal();
3416     Constant *Val0, *Val1;
3417     Lex.Lex();
3418     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3419         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3420       if (EatIfPresent(lltok::kw_nuw))
3421         NUW = true;
3422       if (EatIfPresent(lltok::kw_nsw)) {
3423         NSW = true;
3424         if (EatIfPresent(lltok::kw_nuw))
3425           NUW = true;
3426       }
3427     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3428                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3429       if (EatIfPresent(lltok::kw_exact))
3430         Exact = true;
3431     }
3432     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3433         ParseGlobalTypeAndValue(Val0) ||
3434         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
3435         ParseGlobalTypeAndValue(Val1) ||
3436         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3437       return true;
3438     if (Val0->getType() != Val1->getType())
3439       return Error(ID.Loc, "operands of constexpr must have same type");
3440     // Check that the type is valid for the operator.
3441     switch (Opc) {
3442     case Instruction::Add:
3443     case Instruction::Sub:
3444     case Instruction::Mul:
3445     case Instruction::UDiv:
3446     case Instruction::SDiv:
3447     case Instruction::URem:
3448     case Instruction::SRem:
3449     case Instruction::Shl:
3450     case Instruction::AShr:
3451     case Instruction::LShr:
3452       if (!Val0->getType()->isIntOrIntVectorTy())
3453         return Error(ID.Loc, "constexpr requires integer operands");
3454       break;
3455     case Instruction::FAdd:
3456     case Instruction::FSub:
3457     case Instruction::FMul:
3458     case Instruction::FDiv:
3459     case Instruction::FRem:
3460       if (!Val0->getType()->isFPOrFPVectorTy())
3461         return Error(ID.Loc, "constexpr requires fp operands");
3462       break;
3463     default: llvm_unreachable("Unknown binary operator!");
3464     }
3465     unsigned Flags = 0;
3466     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3467     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3468     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3469     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3470     ID.ConstantVal = C;
3471     ID.Kind = ValID::t_Constant;
3472     return false;
3473   }
3474 
3475   // Logical Operations
3476   case lltok::kw_and:
3477   case lltok::kw_or:
3478   case lltok::kw_xor: {
3479     unsigned Opc = Lex.getUIntVal();
3480     Constant *Val0, *Val1;
3481     Lex.Lex();
3482     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3483         ParseGlobalTypeAndValue(Val0) ||
3484         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3485         ParseGlobalTypeAndValue(Val1) ||
3486         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3487       return true;
3488     if (Val0->getType() != Val1->getType())
3489       return Error(ID.Loc, "operands of constexpr must have same type");
3490     if (!Val0->getType()->isIntOrIntVectorTy())
3491       return Error(ID.Loc,
3492                    "constexpr requires integer or integer vector operands");
3493     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3494     ID.Kind = ValID::t_Constant;
3495     return false;
3496   }
3497 
3498   case lltok::kw_getelementptr:
3499   case lltok::kw_shufflevector:
3500   case lltok::kw_insertelement:
3501   case lltok::kw_extractelement:
3502   case lltok::kw_select: {
3503     unsigned Opc = Lex.getUIntVal();
3504     SmallVector<Constant*, 16> Elts;
3505     bool InBounds = false;
3506     Type *Ty;
3507     Lex.Lex();
3508 
3509     if (Opc == Instruction::GetElementPtr)
3510       InBounds = EatIfPresent(lltok::kw_inbounds);
3511 
3512     if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3513       return true;
3514 
3515     LocTy ExplicitTypeLoc = Lex.getLoc();
3516     if (Opc == Instruction::GetElementPtr) {
3517       if (ParseType(Ty) ||
3518           ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3519         return true;
3520     }
3521 
3522     Optional<unsigned> InRangeOp;
3523     if (ParseGlobalValueVector(
3524             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3525         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3526       return true;
3527 
3528     if (Opc == Instruction::GetElementPtr) {
3529       if (Elts.size() == 0 ||
3530           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3531         return Error(ID.Loc, "base of getelementptr must be a pointer");
3532 
3533       Type *BaseType = Elts[0]->getType();
3534       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3535       if (Ty != BasePointerType->getElementType())
3536         return Error(
3537             ExplicitTypeLoc,
3538             "explicit pointee type doesn't match operand's pointee type");
3539 
3540       unsigned GEPWidth =
3541           BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0;
3542 
3543       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3544       for (Constant *Val : Indices) {
3545         Type *ValTy = Val->getType();
3546         if (!ValTy->isIntOrIntVectorTy())
3547           return Error(ID.Loc, "getelementptr index must be an integer");
3548         if (ValTy->isVectorTy()) {
3549           unsigned ValNumEl = ValTy->getVectorNumElements();
3550           if (GEPWidth && (ValNumEl != GEPWidth))
3551             return Error(
3552                 ID.Loc,
3553                 "getelementptr vector index has a wrong number of elements");
3554           // GEPWidth may have been unknown because the base is a scalar,
3555           // but it is known now.
3556           GEPWidth = ValNumEl;
3557         }
3558       }
3559 
3560       SmallPtrSet<Type*, 4> Visited;
3561       if (!Indices.empty() && !Ty->isSized(&Visited))
3562         return Error(ID.Loc, "base element of getelementptr must be sized");
3563 
3564       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3565         return Error(ID.Loc, "invalid getelementptr indices");
3566 
3567       if (InRangeOp) {
3568         if (*InRangeOp == 0)
3569           return Error(ID.Loc,
3570                        "inrange keyword may not appear on pointer operand");
3571         --*InRangeOp;
3572       }
3573 
3574       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3575                                                       InBounds, InRangeOp);
3576     } else if (Opc == Instruction::Select) {
3577       if (Elts.size() != 3)
3578         return Error(ID.Loc, "expected three operands to select");
3579       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3580                                                               Elts[2]))
3581         return Error(ID.Loc, Reason);
3582       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3583     } else if (Opc == Instruction::ShuffleVector) {
3584       if (Elts.size() != 3)
3585         return Error(ID.Loc, "expected three operands to shufflevector");
3586       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3587         return Error(ID.Loc, "invalid operands to shufflevector");
3588       ID.ConstantVal =
3589                  ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
3590     } else if (Opc == Instruction::ExtractElement) {
3591       if (Elts.size() != 2)
3592         return Error(ID.Loc, "expected two operands to extractelement");
3593       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3594         return Error(ID.Loc, "invalid extractelement operands");
3595       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3596     } else {
3597       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3598       if (Elts.size() != 3)
3599       return Error(ID.Loc, "expected three operands to insertelement");
3600       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3601         return Error(ID.Loc, "invalid insertelement operands");
3602       ID.ConstantVal =
3603                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3604     }
3605 
3606     ID.Kind = ValID::t_Constant;
3607     return false;
3608   }
3609   }
3610 
3611   Lex.Lex();
3612   return false;
3613 }
3614 
3615 /// ParseGlobalValue - Parse a global value with the specified type.
3616 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3617   C = nullptr;
3618   ValID ID;
3619   Value *V = nullptr;
3620   bool Parsed = ParseValID(ID) ||
3621                 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3622   if (V && !(C = dyn_cast<Constant>(V)))
3623     return Error(ID.Loc, "global values must be constants");
3624   return Parsed;
3625 }
3626 
3627 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3628   Type *Ty = nullptr;
3629   return ParseType(Ty) ||
3630          ParseGlobalValue(Ty, V);
3631 }
3632 
3633 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3634   C = nullptr;
3635 
3636   LocTy KwLoc = Lex.getLoc();
3637   if (!EatIfPresent(lltok::kw_comdat))
3638     return false;
3639 
3640   if (EatIfPresent(lltok::lparen)) {
3641     if (Lex.getKind() != lltok::ComdatVar)
3642       return TokError("expected comdat variable");
3643     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3644     Lex.Lex();
3645     if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3646       return true;
3647   } else {
3648     if (GlobalName.empty())
3649       return TokError("comdat cannot be unnamed");
3650     C = getComdat(GlobalName, KwLoc);
3651   }
3652 
3653   return false;
3654 }
3655 
3656 /// ParseGlobalValueVector
3657 ///   ::= /*empty*/
3658 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3659 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3660                                       Optional<unsigned> *InRangeOp) {
3661   // Empty list.
3662   if (Lex.getKind() == lltok::rbrace ||
3663       Lex.getKind() == lltok::rsquare ||
3664       Lex.getKind() == lltok::greater ||
3665       Lex.getKind() == lltok::rparen)
3666     return false;
3667 
3668   do {
3669     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3670       *InRangeOp = Elts.size();
3671 
3672     Constant *C;
3673     if (ParseGlobalTypeAndValue(C)) return true;
3674     Elts.push_back(C);
3675   } while (EatIfPresent(lltok::comma));
3676 
3677   return false;
3678 }
3679 
3680 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3681   SmallVector<Metadata *, 16> Elts;
3682   if (ParseMDNodeVector(Elts))
3683     return true;
3684 
3685   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3686   return false;
3687 }
3688 
3689 /// MDNode:
3690 ///  ::= !{ ... }
3691 ///  ::= !7
3692 ///  ::= !DILocation(...)
3693 bool LLParser::ParseMDNode(MDNode *&N) {
3694   if (Lex.getKind() == lltok::MetadataVar)
3695     return ParseSpecializedMDNode(N);
3696 
3697   return ParseToken(lltok::exclaim, "expected '!' here") ||
3698          ParseMDNodeTail(N);
3699 }
3700 
3701 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3702   // !{ ... }
3703   if (Lex.getKind() == lltok::lbrace)
3704     return ParseMDTuple(N);
3705 
3706   // !42
3707   return ParseMDNodeID(N);
3708 }
3709 
3710 namespace {
3711 
3712 /// Structure to represent an optional metadata field.
3713 template <class FieldTy> struct MDFieldImpl {
3714   typedef MDFieldImpl ImplTy;
3715   FieldTy Val;
3716   bool Seen;
3717 
3718   void assign(FieldTy Val) {
3719     Seen = true;
3720     this->Val = std::move(Val);
3721   }
3722 
3723   explicit MDFieldImpl(FieldTy Default)
3724       : Val(std::move(Default)), Seen(false) {}
3725 };
3726 
3727 /// Structure to represent an optional metadata field that
3728 /// can be of either type (A or B) and encapsulates the
3729 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3730 /// to reimplement the specifics for representing each Field.
3731 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3732   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3733   FieldTypeA A;
3734   FieldTypeB B;
3735   bool Seen;
3736 
3737   enum {
3738     IsInvalid = 0,
3739     IsTypeA = 1,
3740     IsTypeB = 2
3741   } WhatIs;
3742 
3743   void assign(FieldTypeA A) {
3744     Seen = true;
3745     this->A = std::move(A);
3746     WhatIs = IsTypeA;
3747   }
3748 
3749   void assign(FieldTypeB B) {
3750     Seen = true;
3751     this->B = std::move(B);
3752     WhatIs = IsTypeB;
3753   }
3754 
3755   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3756       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3757         WhatIs(IsInvalid) {}
3758 };
3759 
3760 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3761   uint64_t Max;
3762 
3763   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3764       : ImplTy(Default), Max(Max) {}
3765 };
3766 
3767 struct LineField : public MDUnsignedField {
3768   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3769 };
3770 
3771 struct ColumnField : public MDUnsignedField {
3772   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3773 };
3774 
3775 struct DwarfTagField : public MDUnsignedField {
3776   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3777   DwarfTagField(dwarf::Tag DefaultTag)
3778       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3779 };
3780 
3781 struct DwarfMacinfoTypeField : public MDUnsignedField {
3782   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3783   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3784     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3785 };
3786 
3787 struct DwarfAttEncodingField : public MDUnsignedField {
3788   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3789 };
3790 
3791 struct DwarfVirtualityField : public MDUnsignedField {
3792   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3793 };
3794 
3795 struct DwarfLangField : public MDUnsignedField {
3796   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3797 };
3798 
3799 struct DwarfCCField : public MDUnsignedField {
3800   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3801 };
3802 
3803 struct EmissionKindField : public MDUnsignedField {
3804   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3805 };
3806 
3807 struct NameTableKindField : public MDUnsignedField {
3808   NameTableKindField()
3809       : MDUnsignedField(
3810             0, (unsigned)
3811                    DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
3812 };
3813 
3814 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3815   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3816 };
3817 
3818 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
3819   DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
3820 };
3821 
3822 struct MDSignedField : public MDFieldImpl<int64_t> {
3823   int64_t Min;
3824   int64_t Max;
3825 
3826   MDSignedField(int64_t Default = 0)
3827       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3828   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3829       : ImplTy(Default), Min(Min), Max(Max) {}
3830 };
3831 
3832 struct MDBoolField : public MDFieldImpl<bool> {
3833   MDBoolField(bool Default = false) : ImplTy(Default) {}
3834 };
3835 
3836 struct MDField : public MDFieldImpl<Metadata *> {
3837   bool AllowNull;
3838 
3839   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3840 };
3841 
3842 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3843   MDConstant() : ImplTy(nullptr) {}
3844 };
3845 
3846 struct MDStringField : public MDFieldImpl<MDString *> {
3847   bool AllowEmpty;
3848   MDStringField(bool AllowEmpty = true)
3849       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3850 };
3851 
3852 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3853   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3854 };
3855 
3856 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
3857   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3858 };
3859 
3860 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
3861   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
3862       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
3863 
3864   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
3865                     bool AllowNull = true)
3866       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
3867 
3868   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3869   bool isMDField() const { return WhatIs == IsTypeB; }
3870   int64_t getMDSignedValue() const {
3871     assert(isMDSignedField() && "Wrong field type");
3872     return A.Val;
3873   }
3874   Metadata *getMDFieldValue() const {
3875     assert(isMDField() && "Wrong field type");
3876     return B.Val;
3877   }
3878 };
3879 
3880 struct MDSignedOrUnsignedField
3881     : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
3882   MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
3883 
3884   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3885   bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
3886   int64_t getMDSignedValue() const {
3887     assert(isMDSignedField() && "Wrong field type");
3888     return A.Val;
3889   }
3890   uint64_t getMDUnsignedValue() const {
3891     assert(isMDUnsignedField() && "Wrong field type");
3892     return B.Val;
3893   }
3894 };
3895 
3896 } // end anonymous namespace
3897 
3898 namespace llvm {
3899 
3900 template <>
3901 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3902                             MDUnsignedField &Result) {
3903   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3904     return TokError("expected unsigned integer");
3905 
3906   auto &U = Lex.getAPSIntVal();
3907   if (U.ugt(Result.Max))
3908     return TokError("value for '" + Name + "' too large, limit is " +
3909                     Twine(Result.Max));
3910   Result.assign(U.getZExtValue());
3911   assert(Result.Val <= Result.Max && "Expected value in range");
3912   Lex.Lex();
3913   return false;
3914 }
3915 
3916 template <>
3917 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3918   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3919 }
3920 template <>
3921 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3922   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3923 }
3924 
3925 template <>
3926 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3927   if (Lex.getKind() == lltok::APSInt)
3928     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3929 
3930   if (Lex.getKind() != lltok::DwarfTag)
3931     return TokError("expected DWARF tag");
3932 
3933   unsigned Tag = dwarf::getTag(Lex.getStrVal());
3934   if (Tag == dwarf::DW_TAG_invalid)
3935     return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3936   assert(Tag <= Result.Max && "Expected valid DWARF tag");
3937 
3938   Result.assign(Tag);
3939   Lex.Lex();
3940   return false;
3941 }
3942 
3943 template <>
3944 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3945                             DwarfMacinfoTypeField &Result) {
3946   if (Lex.getKind() == lltok::APSInt)
3947     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3948 
3949   if (Lex.getKind() != lltok::DwarfMacinfo)
3950     return TokError("expected DWARF macinfo type");
3951 
3952   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
3953   if (Macinfo == dwarf::DW_MACINFO_invalid)
3954     return TokError(
3955         "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
3956   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
3957 
3958   Result.assign(Macinfo);
3959   Lex.Lex();
3960   return false;
3961 }
3962 
3963 template <>
3964 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3965                             DwarfVirtualityField &Result) {
3966   if (Lex.getKind() == lltok::APSInt)
3967     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3968 
3969   if (Lex.getKind() != lltok::DwarfVirtuality)
3970     return TokError("expected DWARF virtuality code");
3971 
3972   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
3973   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
3974     return TokError("invalid DWARF virtuality code" + Twine(" '") +
3975                     Lex.getStrVal() + "'");
3976   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
3977   Result.assign(Virtuality);
3978   Lex.Lex();
3979   return false;
3980 }
3981 
3982 template <>
3983 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
3984   if (Lex.getKind() == lltok::APSInt)
3985     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3986 
3987   if (Lex.getKind() != lltok::DwarfLang)
3988     return TokError("expected DWARF language");
3989 
3990   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
3991   if (!Lang)
3992     return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
3993                     "'");
3994   assert(Lang <= Result.Max && "Expected valid DWARF language");
3995   Result.assign(Lang);
3996   Lex.Lex();
3997   return false;
3998 }
3999 
4000 template <>
4001 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4002   if (Lex.getKind() == lltok::APSInt)
4003     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4004 
4005   if (Lex.getKind() != lltok::DwarfCC)
4006     return TokError("expected DWARF calling convention");
4007 
4008   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
4009   if (!CC)
4010     return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() +
4011                     "'");
4012   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4013   Result.assign(CC);
4014   Lex.Lex();
4015   return false;
4016 }
4017 
4018 template <>
4019 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
4020   if (Lex.getKind() == lltok::APSInt)
4021     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4022 
4023   if (Lex.getKind() != lltok::EmissionKind)
4024     return TokError("expected emission kind");
4025 
4026   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4027   if (!Kind)
4028     return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4029                     "'");
4030   assert(*Kind <= Result.Max && "Expected valid emission kind");
4031   Result.assign(*Kind);
4032   Lex.Lex();
4033   return false;
4034 }
4035 
4036 template <>
4037 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4038                             NameTableKindField &Result) {
4039   if (Lex.getKind() == lltok::APSInt)
4040     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4041 
4042   if (Lex.getKind() != lltok::NameTableKind)
4043     return TokError("expected nameTable kind");
4044 
4045   auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4046   if (!Kind)
4047     return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4048                     "'");
4049   assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4050   Result.assign((unsigned)*Kind);
4051   Lex.Lex();
4052   return false;
4053 }
4054 
4055 template <>
4056 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4057                             DwarfAttEncodingField &Result) {
4058   if (Lex.getKind() == lltok::APSInt)
4059     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4060 
4061   if (Lex.getKind() != lltok::DwarfAttEncoding)
4062     return TokError("expected DWARF type attribute encoding");
4063 
4064   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4065   if (!Encoding)
4066     return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
4067                     Lex.getStrVal() + "'");
4068   assert(Encoding <= Result.Max && "Expected valid DWARF language");
4069   Result.assign(Encoding);
4070   Lex.Lex();
4071   return false;
4072 }
4073 
4074 /// DIFlagField
4075 ///  ::= uint32
4076 ///  ::= DIFlagVector
4077 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4078 template <>
4079 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4080 
4081   // Parser for a single flag.
4082   auto parseFlag = [&](DINode::DIFlags &Val) {
4083     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4084       uint32_t TempVal = static_cast<uint32_t>(Val);
4085       bool Res = ParseUInt32(TempVal);
4086       Val = static_cast<DINode::DIFlags>(TempVal);
4087       return Res;
4088     }
4089 
4090     if (Lex.getKind() != lltok::DIFlag)
4091       return TokError("expected debug info flag");
4092 
4093     Val = DINode::getFlag(Lex.getStrVal());
4094     if (!Val)
4095       return TokError(Twine("invalid debug info flag flag '") +
4096                       Lex.getStrVal() + "'");
4097     Lex.Lex();
4098     return false;
4099   };
4100 
4101   // Parse the flags and combine them together.
4102   DINode::DIFlags Combined = DINode::FlagZero;
4103   do {
4104     DINode::DIFlags Val;
4105     if (parseFlag(Val))
4106       return true;
4107     Combined |= Val;
4108   } while (EatIfPresent(lltok::bar));
4109 
4110   Result.assign(Combined);
4111   return false;
4112 }
4113 
4114 /// DISPFlagField
4115 ///  ::= uint32
4116 ///  ::= DISPFlagVector
4117 ///  ::= DISPFlagVector '|' DISPFlag* '|' uint32
4118 template <>
4119 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4120 
4121   // Parser for a single flag.
4122   auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4123     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4124       uint32_t TempVal = static_cast<uint32_t>(Val);
4125       bool Res = ParseUInt32(TempVal);
4126       Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4127       return Res;
4128     }
4129 
4130     if (Lex.getKind() != lltok::DISPFlag)
4131       return TokError("expected debug info flag");
4132 
4133     Val = DISubprogram::getFlag(Lex.getStrVal());
4134     if (!Val)
4135       return TokError(Twine("invalid subprogram debug info flag '") +
4136                       Lex.getStrVal() + "'");
4137     Lex.Lex();
4138     return false;
4139   };
4140 
4141   // Parse the flags and combine them together.
4142   DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4143   do {
4144     DISubprogram::DISPFlags Val;
4145     if (parseFlag(Val))
4146       return true;
4147     Combined |= Val;
4148   } while (EatIfPresent(lltok::bar));
4149 
4150   Result.assign(Combined);
4151   return false;
4152 }
4153 
4154 template <>
4155 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4156                             MDSignedField &Result) {
4157   if (Lex.getKind() != lltok::APSInt)
4158     return TokError("expected signed integer");
4159 
4160   auto &S = Lex.getAPSIntVal();
4161   if (S < Result.Min)
4162     return TokError("value for '" + Name + "' too small, limit is " +
4163                     Twine(Result.Min));
4164   if (S > Result.Max)
4165     return TokError("value for '" + Name + "' too large, limit is " +
4166                     Twine(Result.Max));
4167   Result.assign(S.getExtValue());
4168   assert(Result.Val >= Result.Min && "Expected value in range");
4169   assert(Result.Val <= Result.Max && "Expected value in range");
4170   Lex.Lex();
4171   return false;
4172 }
4173 
4174 template <>
4175 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4176   switch (Lex.getKind()) {
4177   default:
4178     return TokError("expected 'true' or 'false'");
4179   case lltok::kw_true:
4180     Result.assign(true);
4181     break;
4182   case lltok::kw_false:
4183     Result.assign(false);
4184     break;
4185   }
4186   Lex.Lex();
4187   return false;
4188 }
4189 
4190 template <>
4191 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4192   if (Lex.getKind() == lltok::kw_null) {
4193     if (!Result.AllowNull)
4194       return TokError("'" + Name + "' cannot be null");
4195     Lex.Lex();
4196     Result.assign(nullptr);
4197     return false;
4198   }
4199 
4200   Metadata *MD;
4201   if (ParseMetadata(MD, nullptr))
4202     return true;
4203 
4204   Result.assign(MD);
4205   return false;
4206 }
4207 
4208 template <>
4209 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4210                             MDSignedOrMDField &Result) {
4211   // Try to parse a signed int.
4212   if (Lex.getKind() == lltok::APSInt) {
4213     MDSignedField Res = Result.A;
4214     if (!ParseMDField(Loc, Name, Res)) {
4215       Result.assign(Res);
4216       return false;
4217     }
4218     return true;
4219   }
4220 
4221   // Otherwise, try to parse as an MDField.
4222   MDField Res = Result.B;
4223   if (!ParseMDField(Loc, Name, Res)) {
4224     Result.assign(Res);
4225     return false;
4226   }
4227 
4228   return true;
4229 }
4230 
4231 template <>
4232 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4233                             MDSignedOrUnsignedField &Result) {
4234   if (Lex.getKind() != lltok::APSInt)
4235     return false;
4236 
4237   if (Lex.getAPSIntVal().isSigned()) {
4238     MDSignedField Res = Result.A;
4239     if (ParseMDField(Loc, Name, Res))
4240       return true;
4241     Result.assign(Res);
4242     return false;
4243   }
4244 
4245   MDUnsignedField Res = Result.B;
4246   if (ParseMDField(Loc, Name, Res))
4247     return true;
4248   Result.assign(Res);
4249   return false;
4250 }
4251 
4252 template <>
4253 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4254   LocTy ValueLoc = Lex.getLoc();
4255   std::string S;
4256   if (ParseStringConstant(S))
4257     return true;
4258 
4259   if (!Result.AllowEmpty && S.empty())
4260     return Error(ValueLoc, "'" + Name + "' cannot be empty");
4261 
4262   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4263   return false;
4264 }
4265 
4266 template <>
4267 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4268   SmallVector<Metadata *, 4> MDs;
4269   if (ParseMDNodeVector(MDs))
4270     return true;
4271 
4272   Result.assign(std::move(MDs));
4273   return false;
4274 }
4275 
4276 template <>
4277 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4278                             ChecksumKindField &Result) {
4279   Optional<DIFile::ChecksumKind> CSKind =
4280       DIFile::getChecksumKind(Lex.getStrVal());
4281 
4282   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4283     return TokError(
4284         "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'");
4285 
4286   Result.assign(*CSKind);
4287   Lex.Lex();
4288   return false;
4289 }
4290 
4291 } // end namespace llvm
4292 
4293 template <class ParserTy>
4294 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
4295   do {
4296     if (Lex.getKind() != lltok::LabelStr)
4297       return TokError("expected field label here");
4298 
4299     if (parseField())
4300       return true;
4301   } while (EatIfPresent(lltok::comma));
4302 
4303   return false;
4304 }
4305 
4306 template <class ParserTy>
4307 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
4308   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4309   Lex.Lex();
4310 
4311   if (ParseToken(lltok::lparen, "expected '(' here"))
4312     return true;
4313   if (Lex.getKind() != lltok::rparen)
4314     if (ParseMDFieldsImplBody(parseField))
4315       return true;
4316 
4317   ClosingLoc = Lex.getLoc();
4318   return ParseToken(lltok::rparen, "expected ')' here");
4319 }
4320 
4321 template <class FieldTy>
4322 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
4323   if (Result.Seen)
4324     return TokError("field '" + Name + "' cannot be specified more than once");
4325 
4326   LocTy Loc = Lex.getLoc();
4327   Lex.Lex();
4328   return ParseMDField(Loc, Name, Result);
4329 }
4330 
4331 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4332   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4333 
4334 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4335   if (Lex.getStrVal() == #CLASS)                                               \
4336     return Parse##CLASS(N, IsDistinct);
4337 #include "llvm/IR/Metadata.def"
4338 
4339   return TokError("expected metadata type");
4340 }
4341 
4342 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4343 #define NOP_FIELD(NAME, TYPE, INIT)
4344 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4345   if (!NAME.Seen)                                                              \
4346     return Error(ClosingLoc, "missing required field '" #NAME "'");
4347 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4348   if (Lex.getStrVal() == #NAME)                                                \
4349     return ParseMDField(#NAME, NAME);
4350 #define PARSE_MD_FIELDS()                                                      \
4351   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4352   do {                                                                         \
4353     LocTy ClosingLoc;                                                          \
4354     if (ParseMDFieldsImpl([&]() -> bool {                                      \
4355       VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                          \
4356       return TokError(Twine("invalid field '") + Lex.getStrVal() + "'");       \
4357     }, ClosingLoc))                                                            \
4358       return true;                                                             \
4359     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4360   } while (false)
4361 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4362   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4363 
4364 /// ParseDILocationFields:
4365 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4366 ///   isImplicitCode: true)
4367 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
4368 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4369   OPTIONAL(line, LineField, );                                                 \
4370   OPTIONAL(column, ColumnField, );                                             \
4371   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4372   OPTIONAL(inlinedAt, MDField, );                                              \
4373   OPTIONAL(isImplicitCode, MDBoolField, (false));
4374   PARSE_MD_FIELDS();
4375 #undef VISIT_MD_FIELDS
4376 
4377   Result =
4378       GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4379                                    inlinedAt.Val, isImplicitCode.Val));
4380   return false;
4381 }
4382 
4383 /// ParseGenericDINode:
4384 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4385 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
4386 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4387   REQUIRED(tag, DwarfTagField, );                                              \
4388   OPTIONAL(header, MDStringField, );                                           \
4389   OPTIONAL(operands, MDFieldList, );
4390   PARSE_MD_FIELDS();
4391 #undef VISIT_MD_FIELDS
4392 
4393   Result = GET_OR_DISTINCT(GenericDINode,
4394                            (Context, tag.Val, header.Val, operands.Val));
4395   return false;
4396 }
4397 
4398 /// ParseDISubrange:
4399 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4400 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4401 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
4402 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4403   REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4404   OPTIONAL(lowerBound, MDSignedField, );
4405   PARSE_MD_FIELDS();
4406 #undef VISIT_MD_FIELDS
4407 
4408   if (count.isMDSignedField())
4409     Result = GET_OR_DISTINCT(
4410         DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val));
4411   else if (count.isMDField())
4412     Result = GET_OR_DISTINCT(
4413         DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val));
4414   else
4415     return true;
4416 
4417   return false;
4418 }
4419 
4420 /// ParseDIEnumerator:
4421 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4422 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4423 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4424   REQUIRED(name, MDStringField, );                                             \
4425   REQUIRED(value, MDSignedOrUnsignedField, );                                  \
4426   OPTIONAL(isUnsigned, MDBoolField, (false));
4427   PARSE_MD_FIELDS();
4428 #undef VISIT_MD_FIELDS
4429 
4430   if (isUnsigned.Val && value.isMDSignedField())
4431     return TokError("unsigned enumerator with negative value");
4432 
4433   int64_t Value = value.isMDSignedField()
4434                       ? value.getMDSignedValue()
4435                       : static_cast<int64_t>(value.getMDUnsignedValue());
4436   Result =
4437       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4438 
4439   return false;
4440 }
4441 
4442 /// ParseDIBasicType:
4443 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4444 ///                    encoding: DW_ATE_encoding, flags: 0)
4445 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
4446 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4447   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4448   OPTIONAL(name, MDStringField, );                                             \
4449   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4450   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4451   OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
4452   OPTIONAL(flags, DIFlagField, );
4453   PARSE_MD_FIELDS();
4454 #undef VISIT_MD_FIELDS
4455 
4456   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4457                                          align.Val, encoding.Val, flags.Val));
4458   return false;
4459 }
4460 
4461 /// ParseDIDerivedType:
4462 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4463 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4464 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4465 ///                      dwarfAddressSpace: 3)
4466 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4467 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4468   REQUIRED(tag, DwarfTagField, );                                              \
4469   OPTIONAL(name, MDStringField, );                                             \
4470   OPTIONAL(file, MDField, );                                                   \
4471   OPTIONAL(line, LineField, );                                                 \
4472   OPTIONAL(scope, MDField, );                                                  \
4473   REQUIRED(baseType, MDField, );                                               \
4474   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4475   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4476   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4477   OPTIONAL(flags, DIFlagField, );                                              \
4478   OPTIONAL(extraData, MDField, );                                              \
4479   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4480   PARSE_MD_FIELDS();
4481 #undef VISIT_MD_FIELDS
4482 
4483   Optional<unsigned> DWARFAddressSpace;
4484   if (dwarfAddressSpace.Val != UINT32_MAX)
4485     DWARFAddressSpace = dwarfAddressSpace.Val;
4486 
4487   Result = GET_OR_DISTINCT(DIDerivedType,
4488                            (Context, tag.Val, name.Val, file.Val, line.Val,
4489                             scope.Val, baseType.Val, size.Val, align.Val,
4490                             offset.Val, DWARFAddressSpace, flags.Val,
4491                             extraData.Val));
4492   return false;
4493 }
4494 
4495 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
4496 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4497   REQUIRED(tag, DwarfTagField, );                                              \
4498   OPTIONAL(name, MDStringField, );                                             \
4499   OPTIONAL(file, MDField, );                                                   \
4500   OPTIONAL(line, LineField, );                                                 \
4501   OPTIONAL(scope, MDField, );                                                  \
4502   OPTIONAL(baseType, MDField, );                                               \
4503   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4504   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4505   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4506   OPTIONAL(flags, DIFlagField, );                                              \
4507   OPTIONAL(elements, MDField, );                                               \
4508   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4509   OPTIONAL(vtableHolder, MDField, );                                           \
4510   OPTIONAL(templateParams, MDField, );                                         \
4511   OPTIONAL(identifier, MDStringField, );                                       \
4512   OPTIONAL(discriminator, MDField, );
4513   PARSE_MD_FIELDS();
4514 #undef VISIT_MD_FIELDS
4515 
4516   // If this has an identifier try to build an ODR type.
4517   if (identifier.Val)
4518     if (auto *CT = DICompositeType::buildODRType(
4519             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4520             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4521             elements.Val, runtimeLang.Val, vtableHolder.Val,
4522             templateParams.Val, discriminator.Val)) {
4523       Result = CT;
4524       return false;
4525     }
4526 
4527   // Create a new node, and save it in the context if it belongs in the type
4528   // map.
4529   Result = GET_OR_DISTINCT(
4530       DICompositeType,
4531       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4532        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4533        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4534        discriminator.Val));
4535   return false;
4536 }
4537 
4538 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4539 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4540   OPTIONAL(flags, DIFlagField, );                                              \
4541   OPTIONAL(cc, DwarfCCField, );                                                \
4542   REQUIRED(types, MDField, );
4543   PARSE_MD_FIELDS();
4544 #undef VISIT_MD_FIELDS
4545 
4546   Result = GET_OR_DISTINCT(DISubroutineType,
4547                            (Context, flags.Val, cc.Val, types.Val));
4548   return false;
4549 }
4550 
4551 /// ParseDIFileType:
4552 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4553 ///                   checksumkind: CSK_MD5,
4554 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
4555 ///                   source: "source file contents")
4556 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
4557   // The default constructed value for checksumkind is required, but will never
4558   // be used, as the parser checks if the field was actually Seen before using
4559   // the Val.
4560 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4561   REQUIRED(filename, MDStringField, );                                         \
4562   REQUIRED(directory, MDStringField, );                                        \
4563   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
4564   OPTIONAL(checksum, MDStringField, );                                         \
4565   OPTIONAL(source, MDStringField, );
4566   PARSE_MD_FIELDS();
4567 #undef VISIT_MD_FIELDS
4568 
4569   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4570   if (checksumkind.Seen && checksum.Seen)
4571     OptChecksum.emplace(checksumkind.Val, checksum.Val);
4572   else if (checksumkind.Seen || checksum.Seen)
4573     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4574 
4575   Optional<MDString *> OptSource;
4576   if (source.Seen)
4577     OptSource = source.Val;
4578   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4579                                     OptChecksum, OptSource));
4580   return false;
4581 }
4582 
4583 /// ParseDICompileUnit:
4584 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4585 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4586 ///                      splitDebugFilename: "abc.debug",
4587 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4588 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd)
4589 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4590   if (!IsDistinct)
4591     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4592 
4593 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4594   REQUIRED(language, DwarfLangField, );                                        \
4595   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4596   OPTIONAL(producer, MDStringField, );                                         \
4597   OPTIONAL(isOptimized, MDBoolField, );                                        \
4598   OPTIONAL(flags, MDStringField, );                                            \
4599   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4600   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4601   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4602   OPTIONAL(enums, MDField, );                                                  \
4603   OPTIONAL(retainedTypes, MDField, );                                          \
4604   OPTIONAL(globals, MDField, );                                                \
4605   OPTIONAL(imports, MDField, );                                                \
4606   OPTIONAL(macros, MDField, );                                                 \
4607   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4608   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
4609   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
4610   OPTIONAL(nameTableKind, NameTableKindField, );                               \
4611   OPTIONAL(debugBaseAddress, MDBoolField, = false);
4612   PARSE_MD_FIELDS();
4613 #undef VISIT_MD_FIELDS
4614 
4615   Result = DICompileUnit::getDistinct(
4616       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4617       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4618       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4619       splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
4620       debugBaseAddress.Val);
4621   return false;
4622 }
4623 
4624 /// ParseDISubprogram:
4625 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4626 ///                     file: !1, line: 7, type: !2, isLocal: false,
4627 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4628 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4629 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4630 ///                     spFlags: 10, isOptimized: false, templateParams: !4,
4631 ///                     declaration: !5, retainedNodes: !6, thrownTypes: !7)
4632 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
4633   auto Loc = Lex.getLoc();
4634 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4635   OPTIONAL(scope, MDField, );                                                  \
4636   OPTIONAL(name, MDStringField, );                                             \
4637   OPTIONAL(linkageName, MDStringField, );                                      \
4638   OPTIONAL(file, MDField, );                                                   \
4639   OPTIONAL(line, LineField, );                                                 \
4640   OPTIONAL(type, MDField, );                                                   \
4641   OPTIONAL(isLocal, MDBoolField, );                                            \
4642   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4643   OPTIONAL(scopeLine, LineField, );                                            \
4644   OPTIONAL(containingType, MDField, );                                         \
4645   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4646   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4647   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4648   OPTIONAL(flags, DIFlagField, );                                              \
4649   OPTIONAL(spFlags, DISPFlagField, );                                          \
4650   OPTIONAL(isOptimized, MDBoolField, );                                        \
4651   OPTIONAL(unit, MDField, );                                                   \
4652   OPTIONAL(templateParams, MDField, );                                         \
4653   OPTIONAL(declaration, MDField, );                                            \
4654   OPTIONAL(retainedNodes, MDField, );                                          \
4655   OPTIONAL(thrownTypes, MDField, );
4656   PARSE_MD_FIELDS();
4657 #undef VISIT_MD_FIELDS
4658 
4659   // An explicit spFlags field takes precedence over individual fields in
4660   // older IR versions.
4661   DISubprogram::DISPFlags SPFlags =
4662       spFlags.Seen ? spFlags.Val
4663                    : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
4664                                              isOptimized.Val, virtuality.Val);
4665   if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
4666     return Lex.Error(
4667         Loc,
4668         "missing 'distinct', required for !DISubprogram that is a Definition");
4669   Result = GET_OR_DISTINCT(
4670       DISubprogram,
4671       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4672        type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
4673        thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
4674        declaration.Val, retainedNodes.Val, thrownTypes.Val));
4675   return false;
4676 }
4677 
4678 /// ParseDILexicalBlock:
4679 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4680 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4681 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4682   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4683   OPTIONAL(file, MDField, );                                                   \
4684   OPTIONAL(line, LineField, );                                                 \
4685   OPTIONAL(column, ColumnField, );
4686   PARSE_MD_FIELDS();
4687 #undef VISIT_MD_FIELDS
4688 
4689   Result = GET_OR_DISTINCT(
4690       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4691   return false;
4692 }
4693 
4694 /// ParseDILexicalBlockFile:
4695 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4696 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4697 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4698   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4699   OPTIONAL(file, MDField, );                                                   \
4700   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4701   PARSE_MD_FIELDS();
4702 #undef VISIT_MD_FIELDS
4703 
4704   Result = GET_OR_DISTINCT(DILexicalBlockFile,
4705                            (Context, scope.Val, file.Val, discriminator.Val));
4706   return false;
4707 }
4708 
4709 /// ParseDICommonBlock:
4710 ///   ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
4711 bool LLParser::ParseDICommonBlock(MDNode *&Result, bool IsDistinct) {
4712 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4713   REQUIRED(scope, MDField, );                                                  \
4714   OPTIONAL(declaration, MDField, );                                            \
4715   OPTIONAL(name, MDStringField, );                                             \
4716   OPTIONAL(file, MDField, );                                                   \
4717   OPTIONAL(line, LineField, );
4718   PARSE_MD_FIELDS();
4719 #undef VISIT_MD_FIELDS
4720 
4721   Result = GET_OR_DISTINCT(DICommonBlock,
4722                            (Context, scope.Val, declaration.Val, name.Val,
4723                             file.Val, line.Val));
4724   return false;
4725 }
4726 
4727 /// ParseDINamespace:
4728 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4729 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
4730 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4731   REQUIRED(scope, MDField, );                                                  \
4732   OPTIONAL(name, MDStringField, );                                             \
4733   OPTIONAL(exportSymbols, MDBoolField, );
4734   PARSE_MD_FIELDS();
4735 #undef VISIT_MD_FIELDS
4736 
4737   Result = GET_OR_DISTINCT(DINamespace,
4738                            (Context, scope.Val, name.Val, exportSymbols.Val));
4739   return false;
4740 }
4741 
4742 /// ParseDIMacro:
4743 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
4744 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
4745 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4746   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
4747   OPTIONAL(line, LineField, );                                                 \
4748   REQUIRED(name, MDStringField, );                                             \
4749   OPTIONAL(value, MDStringField, );
4750   PARSE_MD_FIELDS();
4751 #undef VISIT_MD_FIELDS
4752 
4753   Result = GET_OR_DISTINCT(DIMacro,
4754                            (Context, type.Val, line.Val, name.Val, value.Val));
4755   return false;
4756 }
4757 
4758 /// ParseDIMacroFile:
4759 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4760 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4761 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4762   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
4763   OPTIONAL(line, LineField, );                                                 \
4764   REQUIRED(file, MDField, );                                                   \
4765   OPTIONAL(nodes, MDField, );
4766   PARSE_MD_FIELDS();
4767 #undef VISIT_MD_FIELDS
4768 
4769   Result = GET_OR_DISTINCT(DIMacroFile,
4770                            (Context, type.Val, line.Val, file.Val, nodes.Val));
4771   return false;
4772 }
4773 
4774 /// ParseDIModule:
4775 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
4776 ///                 includePath: "/usr/include", isysroot: "/")
4777 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4778 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4779   REQUIRED(scope, MDField, );                                                  \
4780   REQUIRED(name, MDStringField, );                                             \
4781   OPTIONAL(configMacros, MDStringField, );                                     \
4782   OPTIONAL(includePath, MDStringField, );                                      \
4783   OPTIONAL(isysroot, MDStringField, );
4784   PARSE_MD_FIELDS();
4785 #undef VISIT_MD_FIELDS
4786 
4787   Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val,
4788                            configMacros.Val, includePath.Val, isysroot.Val));
4789   return false;
4790 }
4791 
4792 /// ParseDITemplateTypeParameter:
4793 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1)
4794 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4795 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4796   OPTIONAL(name, MDStringField, );                                             \
4797   REQUIRED(type, MDField, );
4798   PARSE_MD_FIELDS();
4799 #undef VISIT_MD_FIELDS
4800 
4801   Result =
4802       GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val));
4803   return false;
4804 }
4805 
4806 /// ParseDITemplateValueParameter:
4807 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4808 ///                                 name: "V", type: !1, value: i32 7)
4809 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4810 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4811   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
4812   OPTIONAL(name, MDStringField, );                                             \
4813   OPTIONAL(type, MDField, );                                                   \
4814   REQUIRED(value, MDField, );
4815   PARSE_MD_FIELDS();
4816 #undef VISIT_MD_FIELDS
4817 
4818   Result = GET_OR_DISTINCT(DITemplateValueParameter,
4819                            (Context, tag.Val, name.Val, type.Val, value.Val));
4820   return false;
4821 }
4822 
4823 /// ParseDIGlobalVariable:
4824 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4825 ///                         file: !1, line: 7, type: !2, isLocal: false,
4826 ///                         isDefinition: true, templateParams: !3,
4827 ///                         declaration: !4, align: 8)
4828 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4829 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4830   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
4831   OPTIONAL(scope, MDField, );                                                  \
4832   OPTIONAL(linkageName, MDStringField, );                                      \
4833   OPTIONAL(file, MDField, );                                                   \
4834   OPTIONAL(line, LineField, );                                                 \
4835   OPTIONAL(type, MDField, );                                                   \
4836   OPTIONAL(isLocal, MDBoolField, );                                            \
4837   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4838   OPTIONAL(templateParams, MDField, );                                         \
4839   OPTIONAL(declaration, MDField, );                                            \
4840   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4841   PARSE_MD_FIELDS();
4842 #undef VISIT_MD_FIELDS
4843 
4844   Result =
4845       GET_OR_DISTINCT(DIGlobalVariable,
4846                       (Context, scope.Val, name.Val, linkageName.Val, file.Val,
4847                        line.Val, type.Val, isLocal.Val, isDefinition.Val,
4848                        declaration.Val, templateParams.Val, align.Val));
4849   return false;
4850 }
4851 
4852 /// ParseDILocalVariable:
4853 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4854 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4855 ///                        align: 8)
4856 ///   ::= !DILocalVariable(scope: !0, name: "foo",
4857 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4858 ///                        align: 8)
4859 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4860 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4861   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4862   OPTIONAL(name, MDStringField, );                                             \
4863   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
4864   OPTIONAL(file, MDField, );                                                   \
4865   OPTIONAL(line, LineField, );                                                 \
4866   OPTIONAL(type, MDField, );                                                   \
4867   OPTIONAL(flags, DIFlagField, );                                              \
4868   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4869   PARSE_MD_FIELDS();
4870 #undef VISIT_MD_FIELDS
4871 
4872   Result = GET_OR_DISTINCT(DILocalVariable,
4873                            (Context, scope.Val, name.Val, file.Val, line.Val,
4874                             type.Val, arg.Val, flags.Val, align.Val));
4875   return false;
4876 }
4877 
4878 /// ParseDILabel:
4879 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
4880 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) {
4881 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4882   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4883   REQUIRED(name, MDStringField, );                                             \
4884   REQUIRED(file, MDField, );                                                   \
4885   REQUIRED(line, LineField, );
4886   PARSE_MD_FIELDS();
4887 #undef VISIT_MD_FIELDS
4888 
4889   Result = GET_OR_DISTINCT(DILabel,
4890                            (Context, scope.Val, name.Val, file.Val, line.Val));
4891   return false;
4892 }
4893 
4894 /// ParseDIExpression:
4895 ///   ::= !DIExpression(0, 7, -1)
4896 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
4897   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4898   Lex.Lex();
4899 
4900   if (ParseToken(lltok::lparen, "expected '(' here"))
4901     return true;
4902 
4903   SmallVector<uint64_t, 8> Elements;
4904   if (Lex.getKind() != lltok::rparen)
4905     do {
4906       if (Lex.getKind() == lltok::DwarfOp) {
4907         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
4908           Lex.Lex();
4909           Elements.push_back(Op);
4910           continue;
4911         }
4912         return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
4913       }
4914 
4915       if (Lex.getKind() == lltok::DwarfAttEncoding) {
4916         if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
4917           Lex.Lex();
4918           Elements.push_back(Op);
4919           continue;
4920         }
4921         return TokError(Twine("invalid DWARF attribute encoding '") + Lex.getStrVal() + "'");
4922       }
4923 
4924       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4925         return TokError("expected unsigned integer");
4926 
4927       auto &U = Lex.getAPSIntVal();
4928       if (U.ugt(UINT64_MAX))
4929         return TokError("element too large, limit is " + Twine(UINT64_MAX));
4930       Elements.push_back(U.getZExtValue());
4931       Lex.Lex();
4932     } while (EatIfPresent(lltok::comma));
4933 
4934   if (ParseToken(lltok::rparen, "expected ')' here"))
4935     return true;
4936 
4937   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
4938   return false;
4939 }
4940 
4941 /// ParseDIGlobalVariableExpression:
4942 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
4943 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result,
4944                                                bool IsDistinct) {
4945 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4946   REQUIRED(var, MDField, );                                                    \
4947   REQUIRED(expr, MDField, );
4948   PARSE_MD_FIELDS();
4949 #undef VISIT_MD_FIELDS
4950 
4951   Result =
4952       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
4953   return false;
4954 }
4955 
4956 /// ParseDIObjCProperty:
4957 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
4958 ///                       getter: "getFoo", attributes: 7, type: !2)
4959 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
4960 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4961   OPTIONAL(name, MDStringField, );                                             \
4962   OPTIONAL(file, MDField, );                                                   \
4963   OPTIONAL(line, LineField, );                                                 \
4964   OPTIONAL(setter, MDStringField, );                                           \
4965   OPTIONAL(getter, MDStringField, );                                           \
4966   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
4967   OPTIONAL(type, MDField, );
4968   PARSE_MD_FIELDS();
4969 #undef VISIT_MD_FIELDS
4970 
4971   Result = GET_OR_DISTINCT(DIObjCProperty,
4972                            (Context, name.Val, file.Val, line.Val, setter.Val,
4973                             getter.Val, attributes.Val, type.Val));
4974   return false;
4975 }
4976 
4977 /// ParseDIImportedEntity:
4978 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
4979 ///                         line: 7, name: "foo")
4980 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
4981 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4982   REQUIRED(tag, DwarfTagField, );                                              \
4983   REQUIRED(scope, MDField, );                                                  \
4984   OPTIONAL(entity, MDField, );                                                 \
4985   OPTIONAL(file, MDField, );                                                   \
4986   OPTIONAL(line, LineField, );                                                 \
4987   OPTIONAL(name, MDStringField, );
4988   PARSE_MD_FIELDS();
4989 #undef VISIT_MD_FIELDS
4990 
4991   Result = GET_OR_DISTINCT(
4992       DIImportedEntity,
4993       (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
4994   return false;
4995 }
4996 
4997 #undef PARSE_MD_FIELD
4998 #undef NOP_FIELD
4999 #undef REQUIRE_FIELD
5000 #undef DECLARE_FIELD
5001 
5002 /// ParseMetadataAsValue
5003 ///  ::= metadata i32 %local
5004 ///  ::= metadata i32 @global
5005 ///  ::= metadata i32 7
5006 ///  ::= metadata !0
5007 ///  ::= metadata !{...}
5008 ///  ::= metadata !"string"
5009 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5010   // Note: the type 'metadata' has already been parsed.
5011   Metadata *MD;
5012   if (ParseMetadata(MD, &PFS))
5013     return true;
5014 
5015   V = MetadataAsValue::get(Context, MD);
5016   return false;
5017 }
5018 
5019 /// ParseValueAsMetadata
5020 ///  ::= i32 %local
5021 ///  ::= i32 @global
5022 ///  ::= i32 7
5023 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
5024                                     PerFunctionState *PFS) {
5025   Type *Ty;
5026   LocTy Loc;
5027   if (ParseType(Ty, TypeMsg, Loc))
5028     return true;
5029   if (Ty->isMetadataTy())
5030     return Error(Loc, "invalid metadata-value-metadata roundtrip");
5031 
5032   Value *V;
5033   if (ParseValue(Ty, V, PFS))
5034     return true;
5035 
5036   MD = ValueAsMetadata::get(V);
5037   return false;
5038 }
5039 
5040 /// ParseMetadata
5041 ///  ::= i32 %local
5042 ///  ::= i32 @global
5043 ///  ::= i32 7
5044 ///  ::= !42
5045 ///  ::= !{...}
5046 ///  ::= !"string"
5047 ///  ::= !DILocation(...)
5048 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
5049   if (Lex.getKind() == lltok::MetadataVar) {
5050     MDNode *N;
5051     if (ParseSpecializedMDNode(N))
5052       return true;
5053     MD = N;
5054     return false;
5055   }
5056 
5057   // ValueAsMetadata:
5058   // <type> <value>
5059   if (Lex.getKind() != lltok::exclaim)
5060     return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
5061 
5062   // '!'.
5063   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5064   Lex.Lex();
5065 
5066   // MDString:
5067   //   ::= '!' STRINGCONSTANT
5068   if (Lex.getKind() == lltok::StringConstant) {
5069     MDString *S;
5070     if (ParseMDString(S))
5071       return true;
5072     MD = S;
5073     return false;
5074   }
5075 
5076   // MDNode:
5077   // !{ ... }
5078   // !7
5079   MDNode *N;
5080   if (ParseMDNodeTail(N))
5081     return true;
5082   MD = N;
5083   return false;
5084 }
5085 
5086 //===----------------------------------------------------------------------===//
5087 // Function Parsing.
5088 //===----------------------------------------------------------------------===//
5089 
5090 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5091                                    PerFunctionState *PFS, bool IsCall) {
5092   if (Ty->isFunctionTy())
5093     return Error(ID.Loc, "functions are not values, refer to them as pointers");
5094 
5095   switch (ID.Kind) {
5096   case ValID::t_LocalID:
5097     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5098     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5099     return V == nullptr;
5100   case ValID::t_LocalName:
5101     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5102     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall);
5103     return V == nullptr;
5104   case ValID::t_InlineAsm: {
5105     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5106       return Error(ID.Loc, "invalid type for inline asm constraint string");
5107     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
5108                        (ID.UIntVal >> 1) & 1,
5109                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
5110     return false;
5111   }
5112   case ValID::t_GlobalName:
5113     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall);
5114     return V == nullptr;
5115   case ValID::t_GlobalID:
5116     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5117     return V == nullptr;
5118   case ValID::t_APSInt:
5119     if (!Ty->isIntegerTy())
5120       return Error(ID.Loc, "integer constant must have integer type");
5121     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5122     V = ConstantInt::get(Context, ID.APSIntVal);
5123     return false;
5124   case ValID::t_APFloat:
5125     if (!Ty->isFloatingPointTy() ||
5126         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5127       return Error(ID.Loc, "floating point constant invalid for type");
5128 
5129     // The lexer has no type info, so builds all half, float, and double FP
5130     // constants as double.  Fix this here.  Long double does not need this.
5131     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5132       bool Ignored;
5133       if (Ty->isHalfTy())
5134         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5135                               &Ignored);
5136       else if (Ty->isFloatTy())
5137         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5138                               &Ignored);
5139     }
5140     V = ConstantFP::get(Context, ID.APFloatVal);
5141 
5142     if (V->getType() != Ty)
5143       return Error(ID.Loc, "floating point constant does not have type '" +
5144                    getTypeString(Ty) + "'");
5145 
5146     return false;
5147   case ValID::t_Null:
5148     if (!Ty->isPointerTy())
5149       return Error(ID.Loc, "null must be a pointer type");
5150     V = ConstantPointerNull::get(cast<PointerType>(Ty));
5151     return false;
5152   case ValID::t_Undef:
5153     // FIXME: LabelTy should not be a first-class type.
5154     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5155       return Error(ID.Loc, "invalid type for undef constant");
5156     V = UndefValue::get(Ty);
5157     return false;
5158   case ValID::t_EmptyArray:
5159     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5160       return Error(ID.Loc, "invalid empty array initializer");
5161     V = UndefValue::get(Ty);
5162     return false;
5163   case ValID::t_Zero:
5164     // FIXME: LabelTy should not be a first-class type.
5165     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5166       return Error(ID.Loc, "invalid type for null constant");
5167     V = Constant::getNullValue(Ty);
5168     return false;
5169   case ValID::t_None:
5170     if (!Ty->isTokenTy())
5171       return Error(ID.Loc, "invalid type for none constant");
5172     V = Constant::getNullValue(Ty);
5173     return false;
5174   case ValID::t_Constant:
5175     if (ID.ConstantVal->getType() != Ty)
5176       return Error(ID.Loc, "constant expression type mismatch");
5177 
5178     V = ID.ConstantVal;
5179     return false;
5180   case ValID::t_ConstantStruct:
5181   case ValID::t_PackedConstantStruct:
5182     if (StructType *ST = dyn_cast<StructType>(Ty)) {
5183       if (ST->getNumElements() != ID.UIntVal)
5184         return Error(ID.Loc,
5185                      "initializer with struct type has wrong # elements");
5186       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5187         return Error(ID.Loc, "packed'ness of initializer and type don't match");
5188 
5189       // Verify that the elements are compatible with the structtype.
5190       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5191         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5192           return Error(ID.Loc, "element " + Twine(i) +
5193                     " of struct initializer doesn't match struct element type");
5194 
5195       V = ConstantStruct::get(
5196           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5197     } else
5198       return Error(ID.Loc, "constant expression type mismatch");
5199     return false;
5200   }
5201   llvm_unreachable("Invalid ValID");
5202 }
5203 
5204 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5205   C = nullptr;
5206   ValID ID;
5207   auto Loc = Lex.getLoc();
5208   if (ParseValID(ID, /*PFS=*/nullptr))
5209     return true;
5210   switch (ID.Kind) {
5211   case ValID::t_APSInt:
5212   case ValID::t_APFloat:
5213   case ValID::t_Undef:
5214   case ValID::t_Constant:
5215   case ValID::t_ConstantStruct:
5216   case ValID::t_PackedConstantStruct: {
5217     Value *V;
5218     if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
5219       return true;
5220     assert(isa<Constant>(V) && "Expected a constant value");
5221     C = cast<Constant>(V);
5222     return false;
5223   }
5224   case ValID::t_Null:
5225     C = Constant::getNullValue(Ty);
5226     return false;
5227   default:
5228     return Error(Loc, "expected a constant value");
5229   }
5230 }
5231 
5232 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5233   V = nullptr;
5234   ValID ID;
5235   return ParseValID(ID, PFS) ||
5236          ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
5237 }
5238 
5239 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5240   Type *Ty = nullptr;
5241   return ParseType(Ty) ||
5242          ParseValue(Ty, V, PFS);
5243 }
5244 
5245 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5246                                       PerFunctionState &PFS) {
5247   Value *V;
5248   Loc = Lex.getLoc();
5249   if (ParseTypeAndValue(V, PFS)) return true;
5250   if (!isa<BasicBlock>(V))
5251     return Error(Loc, "expected a basic block");
5252   BB = cast<BasicBlock>(V);
5253   return false;
5254 }
5255 
5256 /// FunctionHeader
5257 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5258 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5259 ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5260 ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5261 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
5262   // Parse the linkage.
5263   LocTy LinkageLoc = Lex.getLoc();
5264   unsigned Linkage;
5265   unsigned Visibility;
5266   unsigned DLLStorageClass;
5267   bool DSOLocal;
5268   AttrBuilder RetAttrs;
5269   unsigned CC;
5270   bool HasLinkage;
5271   Type *RetType = nullptr;
5272   LocTy RetTypeLoc = Lex.getLoc();
5273   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5274                            DSOLocal) ||
5275       ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5276       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
5277     return true;
5278 
5279   // Verify that the linkage is ok.
5280   switch ((GlobalValue::LinkageTypes)Linkage) {
5281   case GlobalValue::ExternalLinkage:
5282     break; // always ok.
5283   case GlobalValue::ExternalWeakLinkage:
5284     if (isDefine)
5285       return Error(LinkageLoc, "invalid linkage for function definition");
5286     break;
5287   case GlobalValue::PrivateLinkage:
5288   case GlobalValue::InternalLinkage:
5289   case GlobalValue::AvailableExternallyLinkage:
5290   case GlobalValue::LinkOnceAnyLinkage:
5291   case GlobalValue::LinkOnceODRLinkage:
5292   case GlobalValue::WeakAnyLinkage:
5293   case GlobalValue::WeakODRLinkage:
5294     if (!isDefine)
5295       return Error(LinkageLoc, "invalid linkage for function declaration");
5296     break;
5297   case GlobalValue::AppendingLinkage:
5298   case GlobalValue::CommonLinkage:
5299     return Error(LinkageLoc, "invalid function linkage type");
5300   }
5301 
5302   if (!isValidVisibilityForLinkage(Visibility, Linkage))
5303     return Error(LinkageLoc,
5304                  "symbol with local linkage must have default visibility");
5305 
5306   if (!FunctionType::isValidReturnType(RetType))
5307     return Error(RetTypeLoc, "invalid function return type");
5308 
5309   LocTy NameLoc = Lex.getLoc();
5310 
5311   std::string FunctionName;
5312   if (Lex.getKind() == lltok::GlobalVar) {
5313     FunctionName = Lex.getStrVal();
5314   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
5315     unsigned NameID = Lex.getUIntVal();
5316 
5317     if (NameID != NumberedVals.size())
5318       return TokError("function expected to be numbered '%" +
5319                       Twine(NumberedVals.size()) + "'");
5320   } else {
5321     return TokError("expected function name");
5322   }
5323 
5324   Lex.Lex();
5325 
5326   if (Lex.getKind() != lltok::lparen)
5327     return TokError("expected '(' in function argument list");
5328 
5329   SmallVector<ArgInfo, 8> ArgList;
5330   bool isVarArg;
5331   AttrBuilder FuncAttrs;
5332   std::vector<unsigned> FwdRefAttrGrps;
5333   LocTy BuiltinLoc;
5334   std::string Section;
5335   std::string Partition;
5336   unsigned Alignment;
5337   std::string GC;
5338   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5339   unsigned AddrSpace = 0;
5340   Constant *Prefix = nullptr;
5341   Constant *Prologue = nullptr;
5342   Constant *PersonalityFn = nullptr;
5343   Comdat *C;
5344 
5345   if (ParseArgumentList(ArgList, isVarArg) ||
5346       ParseOptionalUnnamedAddr(UnnamedAddr) ||
5347       ParseOptionalProgramAddrSpace(AddrSpace) ||
5348       ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5349                                  BuiltinLoc) ||
5350       (EatIfPresent(lltok::kw_section) &&
5351        ParseStringConstant(Section)) ||
5352       (EatIfPresent(lltok::kw_partition) &&
5353        ParseStringConstant(Partition)) ||
5354       parseOptionalComdat(FunctionName, C) ||
5355       ParseOptionalAlignment(Alignment) ||
5356       (EatIfPresent(lltok::kw_gc) &&
5357        ParseStringConstant(GC)) ||
5358       (EatIfPresent(lltok::kw_prefix) &&
5359        ParseGlobalTypeAndValue(Prefix)) ||
5360       (EatIfPresent(lltok::kw_prologue) &&
5361        ParseGlobalTypeAndValue(Prologue)) ||
5362       (EatIfPresent(lltok::kw_personality) &&
5363        ParseGlobalTypeAndValue(PersonalityFn)))
5364     return true;
5365 
5366   if (FuncAttrs.contains(Attribute::Builtin))
5367     return Error(BuiltinLoc, "'builtin' attribute not valid on function");
5368 
5369   // If the alignment was parsed as an attribute, move to the alignment field.
5370   if (FuncAttrs.hasAlignmentAttr()) {
5371     Alignment = FuncAttrs.getAlignment();
5372     FuncAttrs.removeAttribute(Attribute::Alignment);
5373   }
5374 
5375   // Okay, if we got here, the function is syntactically valid.  Convert types
5376   // and do semantic checks.
5377   std::vector<Type*> ParamTypeList;
5378   SmallVector<AttributeSet, 8> Attrs;
5379 
5380   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5381     ParamTypeList.push_back(ArgList[i].Ty);
5382     Attrs.push_back(ArgList[i].Attrs);
5383   }
5384 
5385   AttributeList PAL =
5386       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5387                          AttributeSet::get(Context, RetAttrs), Attrs);
5388 
5389   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
5390     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
5391 
5392   FunctionType *FT =
5393     FunctionType::get(RetType, ParamTypeList, isVarArg);
5394   PointerType *PFT = PointerType::get(FT, AddrSpace);
5395 
5396   Fn = nullptr;
5397   if (!FunctionName.empty()) {
5398     // If this was a definition of a forward reference, remove the definition
5399     // from the forward reference table and fill in the forward ref.
5400     auto FRVI = ForwardRefVals.find(FunctionName);
5401     if (FRVI != ForwardRefVals.end()) {
5402       Fn = M->getFunction(FunctionName);
5403       if (!Fn)
5404         return Error(FRVI->second.second, "invalid forward reference to "
5405                      "function as global value!");
5406       if (Fn->getType() != PFT)
5407         return Error(FRVI->second.second, "invalid forward reference to "
5408                      "function '" + FunctionName + "' with wrong type: "
5409                      "expected '" + getTypeString(PFT) + "' but was '" +
5410                      getTypeString(Fn->getType()) + "'");
5411       ForwardRefVals.erase(FRVI);
5412     } else if ((Fn = M->getFunction(FunctionName))) {
5413       // Reject redefinitions.
5414       return Error(NameLoc, "invalid redefinition of function '" +
5415                    FunctionName + "'");
5416     } else if (M->getNamedValue(FunctionName)) {
5417       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5418     }
5419 
5420   } else {
5421     // If this is a definition of a forward referenced function, make sure the
5422     // types agree.
5423     auto I = ForwardRefValIDs.find(NumberedVals.size());
5424     if (I != ForwardRefValIDs.end()) {
5425       Fn = cast<Function>(I->second.first);
5426       if (Fn->getType() != PFT)
5427         return Error(NameLoc, "type of definition and forward reference of '@" +
5428                      Twine(NumberedVals.size()) + "' disagree: "
5429                      "expected '" + getTypeString(PFT) + "' but was '" +
5430                      getTypeString(Fn->getType()) + "'");
5431       ForwardRefValIDs.erase(I);
5432     }
5433   }
5434 
5435   if (!Fn)
5436     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5437                           FunctionName, M);
5438   else // Move the forward-reference to the correct spot in the module.
5439     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
5440 
5441   assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5442 
5443   if (FunctionName.empty())
5444     NumberedVals.push_back(Fn);
5445 
5446   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5447   maybeSetDSOLocal(DSOLocal, *Fn);
5448   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5449   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5450   Fn->setCallingConv(CC);
5451   Fn->setAttributes(PAL);
5452   Fn->setUnnamedAddr(UnnamedAddr);
5453   Fn->setAlignment(Alignment);
5454   Fn->setSection(Section);
5455   Fn->setPartition(Partition);
5456   Fn->setComdat(C);
5457   Fn->setPersonalityFn(PersonalityFn);
5458   if (!GC.empty()) Fn->setGC(GC);
5459   Fn->setPrefixData(Prefix);
5460   Fn->setPrologueData(Prologue);
5461   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5462 
5463   // Add all of the arguments we parsed to the function.
5464   Function::arg_iterator ArgIt = Fn->arg_begin();
5465   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5466     // If the argument has a name, insert it into the argument symbol table.
5467     if (ArgList[i].Name.empty()) continue;
5468 
5469     // Set the name, if it conflicted, it will be auto-renamed.
5470     ArgIt->setName(ArgList[i].Name);
5471 
5472     if (ArgIt->getName() != ArgList[i].Name)
5473       return Error(ArgList[i].Loc, "redefinition of argument '%" +
5474                    ArgList[i].Name + "'");
5475   }
5476 
5477   if (isDefine)
5478     return false;
5479 
5480   // Check the declaration has no block address forward references.
5481   ValID ID;
5482   if (FunctionName.empty()) {
5483     ID.Kind = ValID::t_GlobalID;
5484     ID.UIntVal = NumberedVals.size() - 1;
5485   } else {
5486     ID.Kind = ValID::t_GlobalName;
5487     ID.StrVal = FunctionName;
5488   }
5489   auto Blocks = ForwardRefBlockAddresses.find(ID);
5490   if (Blocks != ForwardRefBlockAddresses.end())
5491     return Error(Blocks->first.Loc,
5492                  "cannot take blockaddress inside a declaration");
5493   return false;
5494 }
5495 
5496 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5497   ValID ID;
5498   if (FunctionNumber == -1) {
5499     ID.Kind = ValID::t_GlobalName;
5500     ID.StrVal = F.getName();
5501   } else {
5502     ID.Kind = ValID::t_GlobalID;
5503     ID.UIntVal = FunctionNumber;
5504   }
5505 
5506   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5507   if (Blocks == P.ForwardRefBlockAddresses.end())
5508     return false;
5509 
5510   for (const auto &I : Blocks->second) {
5511     const ValID &BBID = I.first;
5512     GlobalValue *GV = I.second;
5513 
5514     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5515            "Expected local id or name");
5516     BasicBlock *BB;
5517     if (BBID.Kind == ValID::t_LocalName)
5518       BB = GetBB(BBID.StrVal, BBID.Loc);
5519     else
5520       BB = GetBB(BBID.UIntVal, BBID.Loc);
5521     if (!BB)
5522       return P.Error(BBID.Loc, "referenced value is not a basic block");
5523 
5524     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
5525     GV->eraseFromParent();
5526   }
5527 
5528   P.ForwardRefBlockAddresses.erase(Blocks);
5529   return false;
5530 }
5531 
5532 /// ParseFunctionBody
5533 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
5534 bool LLParser::ParseFunctionBody(Function &Fn) {
5535   if (Lex.getKind() != lltok::lbrace)
5536     return TokError("expected '{' in function body");
5537   Lex.Lex();  // eat the {.
5538 
5539   int FunctionNumber = -1;
5540   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5541 
5542   PerFunctionState PFS(*this, Fn, FunctionNumber);
5543 
5544   // Resolve block addresses and allow basic blocks to be forward-declared
5545   // within this function.
5546   if (PFS.resolveForwardRefBlockAddresses())
5547     return true;
5548   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5549 
5550   // We need at least one basic block.
5551   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
5552     return TokError("function body requires at least one basic block");
5553 
5554   while (Lex.getKind() != lltok::rbrace &&
5555          Lex.getKind() != lltok::kw_uselistorder)
5556     if (ParseBasicBlock(PFS)) return true;
5557 
5558   while (Lex.getKind() != lltok::rbrace)
5559     if (ParseUseListOrder(&PFS))
5560       return true;
5561 
5562   // Eat the }.
5563   Lex.Lex();
5564 
5565   // Verify function is ok.
5566   return PFS.FinishFunction();
5567 }
5568 
5569 /// ParseBasicBlock
5570 ///   ::= (LabelStr|LabelID)? Instruction*
5571 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
5572   // If this basic block starts out with a name, remember it.
5573   std::string Name;
5574   int NameID = -1;
5575   LocTy NameLoc = Lex.getLoc();
5576   if (Lex.getKind() == lltok::LabelStr) {
5577     Name = Lex.getStrVal();
5578     Lex.Lex();
5579   } else if (Lex.getKind() == lltok::LabelID) {
5580     NameID = Lex.getUIntVal();
5581     Lex.Lex();
5582   }
5583 
5584   BasicBlock *BB = PFS.DefineBB(Name, NameID, NameLoc);
5585   if (!BB)
5586     return true;
5587 
5588   std::string NameStr;
5589 
5590   // Parse the instructions in this block until we get a terminator.
5591   Instruction *Inst;
5592   do {
5593     // This instruction may have three possibilities for a name: a) none
5594     // specified, b) name specified "%foo =", c) number specified: "%4 =".
5595     LocTy NameLoc = Lex.getLoc();
5596     int NameID = -1;
5597     NameStr = "";
5598 
5599     if (Lex.getKind() == lltok::LocalVarID) {
5600       NameID = Lex.getUIntVal();
5601       Lex.Lex();
5602       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
5603         return true;
5604     } else if (Lex.getKind() == lltok::LocalVar) {
5605       NameStr = Lex.getStrVal();
5606       Lex.Lex();
5607       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
5608         return true;
5609     }
5610 
5611     switch (ParseInstruction(Inst, BB, PFS)) {
5612     default: llvm_unreachable("Unknown ParseInstruction result!");
5613     case InstError: return true;
5614     case InstNormal:
5615       BB->getInstList().push_back(Inst);
5616 
5617       // With a normal result, we check to see if the instruction is followed by
5618       // a comma and metadata.
5619       if (EatIfPresent(lltok::comma))
5620         if (ParseInstructionMetadata(*Inst))
5621           return true;
5622       break;
5623     case InstExtraComma:
5624       BB->getInstList().push_back(Inst);
5625 
5626       // If the instruction parser ate an extra comma at the end of it, it
5627       // *must* be followed by metadata.
5628       if (ParseInstructionMetadata(*Inst))
5629         return true;
5630       break;
5631     }
5632 
5633     // Set the name on the instruction.
5634     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
5635   } while (!Inst->isTerminator());
5636 
5637   return false;
5638 }
5639 
5640 //===----------------------------------------------------------------------===//
5641 // Instruction Parsing.
5642 //===----------------------------------------------------------------------===//
5643 
5644 /// ParseInstruction - Parse one of the many different instructions.
5645 ///
5646 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
5647                                PerFunctionState &PFS) {
5648   lltok::Kind Token = Lex.getKind();
5649   if (Token == lltok::Eof)
5650     return TokError("found end of file when expecting more instructions");
5651   LocTy Loc = Lex.getLoc();
5652   unsigned KeywordVal = Lex.getUIntVal();
5653   Lex.Lex();  // Eat the keyword.
5654 
5655   switch (Token) {
5656   default:                    return Error(Loc, "expected instruction opcode");
5657   // Terminator Instructions.
5658   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5659   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
5660   case lltok::kw_br:          return ParseBr(Inst, PFS);
5661   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
5662   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
5663   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
5664   case lltok::kw_resume:      return ParseResume(Inst, PFS);
5665   case lltok::kw_cleanupret:  return ParseCleanupRet(Inst, PFS);
5666   case lltok::kw_catchret:    return ParseCatchRet(Inst, PFS);
5667   case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
5668   case lltok::kw_catchpad:    return ParseCatchPad(Inst, PFS);
5669   case lltok::kw_cleanuppad:  return ParseCleanupPad(Inst, PFS);
5670   case lltok::kw_callbr:      return ParseCallBr(Inst, PFS);
5671   // Unary Operators.
5672   case lltok::kw_fneg: {
5673     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5674     int Res = ParseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/true);
5675     if (Res != 0)
5676       return Res;
5677     if (FMF.any())
5678       Inst->setFastMathFlags(FMF);
5679     return false;
5680   }
5681   // Binary Operators.
5682   case lltok::kw_add:
5683   case lltok::kw_sub:
5684   case lltok::kw_mul:
5685   case lltok::kw_shl: {
5686     bool NUW = EatIfPresent(lltok::kw_nuw);
5687     bool NSW = EatIfPresent(lltok::kw_nsw);
5688     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5689 
5690     if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true;
5691 
5692     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5693     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5694     return false;
5695   }
5696   case lltok::kw_fadd:
5697   case lltok::kw_fsub:
5698   case lltok::kw_fmul:
5699   case lltok::kw_fdiv:
5700   case lltok::kw_frem: {
5701     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5702     int Res = ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/true);
5703     if (Res != 0)
5704       return Res;
5705     if (FMF.any())
5706       Inst->setFastMathFlags(FMF);
5707     return 0;
5708   }
5709 
5710   case lltok::kw_sdiv:
5711   case lltok::kw_udiv:
5712   case lltok::kw_lshr:
5713   case lltok::kw_ashr: {
5714     bool Exact = EatIfPresent(lltok::kw_exact);
5715 
5716     if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true;
5717     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5718     return false;
5719   }
5720 
5721   case lltok::kw_urem:
5722   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal,
5723                                                 /*IsFP*/false);
5724   case lltok::kw_and:
5725   case lltok::kw_or:
5726   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
5727   case lltok::kw_icmp:   return ParseCompare(Inst, PFS, KeywordVal);
5728   case lltok::kw_fcmp: {
5729     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5730     int Res = ParseCompare(Inst, PFS, KeywordVal);
5731     if (Res != 0)
5732       return Res;
5733     if (FMF.any())
5734       Inst->setFastMathFlags(FMF);
5735     return 0;
5736   }
5737 
5738   // Casts.
5739   case lltok::kw_trunc:
5740   case lltok::kw_zext:
5741   case lltok::kw_sext:
5742   case lltok::kw_fptrunc:
5743   case lltok::kw_fpext:
5744   case lltok::kw_bitcast:
5745   case lltok::kw_addrspacecast:
5746   case lltok::kw_uitofp:
5747   case lltok::kw_sitofp:
5748   case lltok::kw_fptoui:
5749   case lltok::kw_fptosi:
5750   case lltok::kw_inttoptr:
5751   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
5752   // Other.
5753   case lltok::kw_select: {
5754     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5755     int Res = ParseSelect(Inst, PFS);
5756     if (Res != 0)
5757       return Res;
5758     if (FMF.any()) {
5759       if (!Inst->getType()->isFPOrFPVectorTy())
5760         return Error(Loc, "fast-math-flags specified for select without "
5761                           "floating-point scalar or vector return type");
5762       Inst->setFastMathFlags(FMF);
5763     }
5764     return 0;
5765   }
5766   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
5767   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
5768   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
5769   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
5770   case lltok::kw_phi:            return ParsePHI(Inst, PFS);
5771   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
5772   // Call.
5773   case lltok::kw_call:     return ParseCall(Inst, PFS, CallInst::TCK_None);
5774   case lltok::kw_tail:     return ParseCall(Inst, PFS, CallInst::TCK_Tail);
5775   case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
5776   case lltok::kw_notail:   return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
5777   // Memory.
5778   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
5779   case lltok::kw_load:           return ParseLoad(Inst, PFS);
5780   case lltok::kw_store:          return ParseStore(Inst, PFS);
5781   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
5782   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
5783   case lltok::kw_fence:          return ParseFence(Inst, PFS);
5784   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
5785   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
5786   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
5787   }
5788 }
5789 
5790 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
5791 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
5792   if (Opc == Instruction::FCmp) {
5793     switch (Lex.getKind()) {
5794     default: return TokError("expected fcmp predicate (e.g. 'oeq')");
5795     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
5796     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
5797     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
5798     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
5799     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
5800     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
5801     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
5802     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
5803     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
5804     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
5805     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
5806     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
5807     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
5808     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
5809     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
5810     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
5811     }
5812   } else {
5813     switch (Lex.getKind()) {
5814     default: return TokError("expected icmp predicate (e.g. 'eq')");
5815     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
5816     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
5817     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
5818     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
5819     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
5820     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
5821     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
5822     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
5823     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
5824     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
5825     }
5826   }
5827   Lex.Lex();
5828   return false;
5829 }
5830 
5831 //===----------------------------------------------------------------------===//
5832 // Terminator Instructions.
5833 //===----------------------------------------------------------------------===//
5834 
5835 /// ParseRet - Parse a return instruction.
5836 ///   ::= 'ret' void (',' !dbg, !1)*
5837 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
5838 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
5839                         PerFunctionState &PFS) {
5840   SMLoc TypeLoc = Lex.getLoc();
5841   Type *Ty = nullptr;
5842   if (ParseType(Ty, true /*void allowed*/)) return true;
5843 
5844   Type *ResType = PFS.getFunction().getReturnType();
5845 
5846   if (Ty->isVoidTy()) {
5847     if (!ResType->isVoidTy())
5848       return Error(TypeLoc, "value doesn't match function result type '" +
5849                    getTypeString(ResType) + "'");
5850 
5851     Inst = ReturnInst::Create(Context);
5852     return false;
5853   }
5854 
5855   Value *RV;
5856   if (ParseValue(Ty, RV, PFS)) return true;
5857 
5858   if (ResType != RV->getType())
5859     return Error(TypeLoc, "value doesn't match function result type '" +
5860                  getTypeString(ResType) + "'");
5861 
5862   Inst = ReturnInst::Create(Context, RV);
5863   return false;
5864 }
5865 
5866 /// ParseBr
5867 ///   ::= 'br' TypeAndValue
5868 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5869 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
5870   LocTy Loc, Loc2;
5871   Value *Op0;
5872   BasicBlock *Op1, *Op2;
5873   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
5874 
5875   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
5876     Inst = BranchInst::Create(BB);
5877     return false;
5878   }
5879 
5880   if (Op0->getType() != Type::getInt1Ty(Context))
5881     return Error(Loc, "branch condition must have 'i1' type");
5882 
5883   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
5884       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
5885       ParseToken(lltok::comma, "expected ',' after true destination") ||
5886       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
5887     return true;
5888 
5889   Inst = BranchInst::Create(Op1, Op2, Op0);
5890   return false;
5891 }
5892 
5893 /// ParseSwitch
5894 ///  Instruction
5895 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
5896 ///  JumpTable
5897 ///    ::= (TypeAndValue ',' TypeAndValue)*
5898 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5899   LocTy CondLoc, BBLoc;
5900   Value *Cond;
5901   BasicBlock *DefaultBB;
5902   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
5903       ParseToken(lltok::comma, "expected ',' after switch condition") ||
5904       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
5905       ParseToken(lltok::lsquare, "expected '[' with switch table"))
5906     return true;
5907 
5908   if (!Cond->getType()->isIntegerTy())
5909     return Error(CondLoc, "switch condition must have integer type");
5910 
5911   // Parse the jump table pairs.
5912   SmallPtrSet<Value*, 32> SeenCases;
5913   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
5914   while (Lex.getKind() != lltok::rsquare) {
5915     Value *Constant;
5916     BasicBlock *DestBB;
5917 
5918     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
5919         ParseToken(lltok::comma, "expected ',' after case value") ||
5920         ParseTypeAndBasicBlock(DestBB, PFS))
5921       return true;
5922 
5923     if (!SeenCases.insert(Constant).second)
5924       return Error(CondLoc, "duplicate case value in switch");
5925     if (!isa<ConstantInt>(Constant))
5926       return Error(CondLoc, "case value is not a constant integer");
5927 
5928     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
5929   }
5930 
5931   Lex.Lex();  // Eat the ']'.
5932 
5933   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
5934   for (unsigned i = 0, e = Table.size(); i != e; ++i)
5935     SI->addCase(Table[i].first, Table[i].second);
5936   Inst = SI;
5937   return false;
5938 }
5939 
5940 /// ParseIndirectBr
5941 ///  Instruction
5942 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
5943 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
5944   LocTy AddrLoc;
5945   Value *Address;
5946   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
5947       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
5948       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
5949     return true;
5950 
5951   if (!Address->getType()->isPointerTy())
5952     return Error(AddrLoc, "indirectbr address must have pointer type");
5953 
5954   // Parse the destination list.
5955   SmallVector<BasicBlock*, 16> DestList;
5956 
5957   if (Lex.getKind() != lltok::rsquare) {
5958     BasicBlock *DestBB;
5959     if (ParseTypeAndBasicBlock(DestBB, PFS))
5960       return true;
5961     DestList.push_back(DestBB);
5962 
5963     while (EatIfPresent(lltok::comma)) {
5964       if (ParseTypeAndBasicBlock(DestBB, PFS))
5965         return true;
5966       DestList.push_back(DestBB);
5967     }
5968   }
5969 
5970   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
5971     return true;
5972 
5973   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
5974   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
5975     IBI->addDestination(DestList[i]);
5976   Inst = IBI;
5977   return false;
5978 }
5979 
5980 /// ParseInvoke
5981 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
5982 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
5983 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
5984   LocTy CallLoc = Lex.getLoc();
5985   AttrBuilder RetAttrs, FnAttrs;
5986   std::vector<unsigned> FwdRefAttrGrps;
5987   LocTy NoBuiltinLoc;
5988   unsigned CC;
5989   unsigned InvokeAddrSpace;
5990   Type *RetType = nullptr;
5991   LocTy RetTypeLoc;
5992   ValID CalleeID;
5993   SmallVector<ParamInfo, 16> ArgList;
5994   SmallVector<OperandBundleDef, 2> BundleList;
5995 
5996   BasicBlock *NormalBB, *UnwindBB;
5997   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5998       ParseOptionalProgramAddrSpace(InvokeAddrSpace) ||
5999       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6000       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
6001       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6002                                  NoBuiltinLoc) ||
6003       ParseOptionalOperandBundles(BundleList, PFS) ||
6004       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
6005       ParseTypeAndBasicBlock(NormalBB, PFS) ||
6006       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
6007       ParseTypeAndBasicBlock(UnwindBB, PFS))
6008     return true;
6009 
6010   // If RetType is a non-function pointer type, then this is the short syntax
6011   // for the call, which means that RetType is just the return type.  Infer the
6012   // rest of the function argument types from the arguments that are present.
6013   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6014   if (!Ty) {
6015     // Pull out the types of all of the arguments...
6016     std::vector<Type*> ParamTypes;
6017     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6018       ParamTypes.push_back(ArgList[i].V->getType());
6019 
6020     if (!FunctionType::isValidReturnType(RetType))
6021       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6022 
6023     Ty = FunctionType::get(RetType, ParamTypes, false);
6024   }
6025 
6026   CalleeID.FTy = Ty;
6027 
6028   // Look up the callee.
6029   Value *Callee;
6030   if (ConvertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
6031                           Callee, &PFS, /*IsCall=*/true))
6032     return true;
6033 
6034   // Set up the Attribute for the function.
6035   SmallVector<Value *, 8> Args;
6036   SmallVector<AttributeSet, 8> ArgAttrs;
6037 
6038   // Loop through FunctionType's arguments and ensure they are specified
6039   // correctly.  Also, gather any parameter attributes.
6040   FunctionType::param_iterator I = Ty->param_begin();
6041   FunctionType::param_iterator E = Ty->param_end();
6042   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6043     Type *ExpectedTy = nullptr;
6044     if (I != E) {
6045       ExpectedTy = *I++;
6046     } else if (!Ty->isVarArg()) {
6047       return Error(ArgList[i].Loc, "too many arguments specified");
6048     }
6049 
6050     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6051       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6052                    getTypeString(ExpectedTy) + "'");
6053     Args.push_back(ArgList[i].V);
6054     ArgAttrs.push_back(ArgList[i].Attrs);
6055   }
6056 
6057   if (I != E)
6058     return Error(CallLoc, "not enough parameters specified for call");
6059 
6060   if (FnAttrs.hasAlignmentAttr())
6061     return Error(CallLoc, "invoke instructions may not have an alignment");
6062 
6063   // Finish off the Attribute and check them
6064   AttributeList PAL =
6065       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6066                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6067 
6068   InvokeInst *II =
6069       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
6070   II->setCallingConv(CC);
6071   II->setAttributes(PAL);
6072   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
6073   Inst = II;
6074   return false;
6075 }
6076 
6077 /// ParseResume
6078 ///   ::= 'resume' TypeAndValue
6079 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
6080   Value *Exn; LocTy ExnLoc;
6081   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
6082     return true;
6083 
6084   ResumeInst *RI = ResumeInst::Create(Exn);
6085   Inst = RI;
6086   return false;
6087 }
6088 
6089 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
6090                                   PerFunctionState &PFS) {
6091   if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
6092     return true;
6093 
6094   while (Lex.getKind() != lltok::rsquare) {
6095     // If this isn't the first argument, we need a comma.
6096     if (!Args.empty() &&
6097         ParseToken(lltok::comma, "expected ',' in argument list"))
6098       return true;
6099 
6100     // Parse the argument.
6101     LocTy ArgLoc;
6102     Type *ArgTy = nullptr;
6103     if (ParseType(ArgTy, ArgLoc))
6104       return true;
6105 
6106     Value *V;
6107     if (ArgTy->isMetadataTy()) {
6108       if (ParseMetadataAsValue(V, PFS))
6109         return true;
6110     } else {
6111       if (ParseValue(ArgTy, V, PFS))
6112         return true;
6113     }
6114     Args.push_back(V);
6115   }
6116 
6117   Lex.Lex();  // Lex the ']'.
6118   return false;
6119 }
6120 
6121 /// ParseCleanupRet
6122 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6123 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6124   Value *CleanupPad = nullptr;
6125 
6126   if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6127     return true;
6128 
6129   if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6130     return true;
6131 
6132   if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6133     return true;
6134 
6135   BasicBlock *UnwindBB = nullptr;
6136   if (Lex.getKind() == lltok::kw_to) {
6137     Lex.Lex();
6138     if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6139       return true;
6140   } else {
6141     if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
6142       return true;
6143     }
6144   }
6145 
6146   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6147   return false;
6148 }
6149 
6150 /// ParseCatchRet
6151 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
6152 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6153   Value *CatchPad = nullptr;
6154 
6155   if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
6156     return true;
6157 
6158   if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
6159     return true;
6160 
6161   BasicBlock *BB;
6162   if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
6163       ParseTypeAndBasicBlock(BB, PFS))
6164       return true;
6165 
6166   Inst = CatchReturnInst::Create(CatchPad, BB);
6167   return false;
6168 }
6169 
6170 /// ParseCatchSwitch
6171 ///   ::= 'catchswitch' within Parent
6172 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6173   Value *ParentPad;
6174 
6175   if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6176     return true;
6177 
6178   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6179       Lex.getKind() != lltok::LocalVarID)
6180     return TokError("expected scope value for catchswitch");
6181 
6182   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6183     return true;
6184 
6185   if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6186     return true;
6187 
6188   SmallVector<BasicBlock *, 32> Table;
6189   do {
6190     BasicBlock *DestBB;
6191     if (ParseTypeAndBasicBlock(DestBB, PFS))
6192       return true;
6193     Table.push_back(DestBB);
6194   } while (EatIfPresent(lltok::comma));
6195 
6196   if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6197     return true;
6198 
6199   if (ParseToken(lltok::kw_unwind,
6200                  "expected 'unwind' after catchswitch scope"))
6201     return true;
6202 
6203   BasicBlock *UnwindBB = nullptr;
6204   if (EatIfPresent(lltok::kw_to)) {
6205     if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6206       return true;
6207   } else {
6208     if (ParseTypeAndBasicBlock(UnwindBB, PFS))
6209       return true;
6210   }
6211 
6212   auto *CatchSwitch =
6213       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6214   for (BasicBlock *DestBB : Table)
6215     CatchSwitch->addHandler(DestBB);
6216   Inst = CatchSwitch;
6217   return false;
6218 }
6219 
6220 /// ParseCatchPad
6221 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6222 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6223   Value *CatchSwitch = nullptr;
6224 
6225   if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
6226     return true;
6227 
6228   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6229     return TokError("expected scope value for catchpad");
6230 
6231   if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6232     return true;
6233 
6234   SmallVector<Value *, 8> Args;
6235   if (ParseExceptionArgs(Args, PFS))
6236     return true;
6237 
6238   Inst = CatchPadInst::Create(CatchSwitch, Args);
6239   return false;
6240 }
6241 
6242 /// ParseCleanupPad
6243 ///   ::= 'cleanuppad' within Parent ParamList
6244 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6245   Value *ParentPad = nullptr;
6246 
6247   if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6248     return true;
6249 
6250   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6251       Lex.getKind() != lltok::LocalVarID)
6252     return TokError("expected scope value for cleanuppad");
6253 
6254   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6255     return true;
6256 
6257   SmallVector<Value *, 8> Args;
6258   if (ParseExceptionArgs(Args, PFS))
6259     return true;
6260 
6261   Inst = CleanupPadInst::Create(ParentPad, Args);
6262   return false;
6263 }
6264 
6265 //===----------------------------------------------------------------------===//
6266 // Unary Operators.
6267 //===----------------------------------------------------------------------===//
6268 
6269 /// ParseUnaryOp
6270 ///  ::= UnaryOp TypeAndValue ',' Value
6271 ///
6272 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6273 /// operand is allowed.
6274 bool LLParser::ParseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6275                             unsigned Opc, bool IsFP) {
6276   LocTy Loc; Value *LHS;
6277   if (ParseTypeAndValue(LHS, Loc, PFS))
6278     return true;
6279 
6280   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6281                     : LHS->getType()->isIntOrIntVectorTy();
6282 
6283   if (!Valid)
6284     return Error(Loc, "invalid operand type for instruction");
6285 
6286   Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6287   return false;
6288 }
6289 
6290 /// ParseCallBr
6291 ///   ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6292 ///       OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6293 ///       '[' LabelList ']'
6294 bool LLParser::ParseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6295   LocTy CallLoc = Lex.getLoc();
6296   AttrBuilder RetAttrs, FnAttrs;
6297   std::vector<unsigned> FwdRefAttrGrps;
6298   LocTy NoBuiltinLoc;
6299   unsigned CC;
6300   Type *RetType = nullptr;
6301   LocTy RetTypeLoc;
6302   ValID CalleeID;
6303   SmallVector<ParamInfo, 16> ArgList;
6304   SmallVector<OperandBundleDef, 2> BundleList;
6305 
6306   BasicBlock *DefaultDest;
6307   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6308       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6309       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
6310       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6311                                  NoBuiltinLoc) ||
6312       ParseOptionalOperandBundles(BundleList, PFS) ||
6313       ParseToken(lltok::kw_to, "expected 'to' in callbr") ||
6314       ParseTypeAndBasicBlock(DefaultDest, PFS) ||
6315       ParseToken(lltok::lsquare, "expected '[' in callbr"))
6316     return true;
6317 
6318   // Parse the destination list.
6319   SmallVector<BasicBlock *, 16> IndirectDests;
6320 
6321   if (Lex.getKind() != lltok::rsquare) {
6322     BasicBlock *DestBB;
6323     if (ParseTypeAndBasicBlock(DestBB, PFS))
6324       return true;
6325     IndirectDests.push_back(DestBB);
6326 
6327     while (EatIfPresent(lltok::comma)) {
6328       if (ParseTypeAndBasicBlock(DestBB, PFS))
6329         return true;
6330       IndirectDests.push_back(DestBB);
6331     }
6332   }
6333 
6334   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
6335     return true;
6336 
6337   // If RetType is a non-function pointer type, then this is the short syntax
6338   // for the call, which means that RetType is just the return type.  Infer the
6339   // rest of the function argument types from the arguments that are present.
6340   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6341   if (!Ty) {
6342     // Pull out the types of all of the arguments...
6343     std::vector<Type *> ParamTypes;
6344     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6345       ParamTypes.push_back(ArgList[i].V->getType());
6346 
6347     if (!FunctionType::isValidReturnType(RetType))
6348       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6349 
6350     Ty = FunctionType::get(RetType, ParamTypes, false);
6351   }
6352 
6353   CalleeID.FTy = Ty;
6354 
6355   // Look up the callee.
6356   Value *Callee;
6357   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
6358                           /*IsCall=*/true))
6359     return true;
6360 
6361   if (isa<InlineAsm>(Callee) && !Ty->getReturnType()->isVoidTy())
6362     return Error(RetTypeLoc, "asm-goto outputs not supported");
6363 
6364   // Set up the Attribute for the function.
6365   SmallVector<Value *, 8> Args;
6366   SmallVector<AttributeSet, 8> ArgAttrs;
6367 
6368   // Loop through FunctionType's arguments and ensure they are specified
6369   // correctly.  Also, gather any parameter attributes.
6370   FunctionType::param_iterator I = Ty->param_begin();
6371   FunctionType::param_iterator E = Ty->param_end();
6372   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6373     Type *ExpectedTy = nullptr;
6374     if (I != E) {
6375       ExpectedTy = *I++;
6376     } else if (!Ty->isVarArg()) {
6377       return Error(ArgList[i].Loc, "too many arguments specified");
6378     }
6379 
6380     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6381       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6382                                        getTypeString(ExpectedTy) + "'");
6383     Args.push_back(ArgList[i].V);
6384     ArgAttrs.push_back(ArgList[i].Attrs);
6385   }
6386 
6387   if (I != E)
6388     return Error(CallLoc, "not enough parameters specified for call");
6389 
6390   if (FnAttrs.hasAlignmentAttr())
6391     return Error(CallLoc, "callbr instructions may not have an alignment");
6392 
6393   // Finish off the Attribute and check them
6394   AttributeList PAL =
6395       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6396                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6397 
6398   CallBrInst *CBI =
6399       CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
6400                          BundleList);
6401   CBI->setCallingConv(CC);
6402   CBI->setAttributes(PAL);
6403   ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
6404   Inst = CBI;
6405   return false;
6406 }
6407 
6408 //===----------------------------------------------------------------------===//
6409 // Binary Operators.
6410 //===----------------------------------------------------------------------===//
6411 
6412 /// ParseArithmetic
6413 ///  ::= ArithmeticOps TypeAndValue ',' Value
6414 ///
6415 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6416 /// operand is allowed.
6417 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6418                                unsigned Opc, bool IsFP) {
6419   LocTy Loc; Value *LHS, *RHS;
6420   if (ParseTypeAndValue(LHS, Loc, PFS) ||
6421       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6422       ParseValue(LHS->getType(), RHS, PFS))
6423     return true;
6424 
6425   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6426                     : LHS->getType()->isIntOrIntVectorTy();
6427 
6428   if (!Valid)
6429     return Error(Loc, "invalid operand type for instruction");
6430 
6431   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6432   return false;
6433 }
6434 
6435 /// ParseLogical
6436 ///  ::= ArithmeticOps TypeAndValue ',' Value {
6437 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
6438                             unsigned Opc) {
6439   LocTy Loc; Value *LHS, *RHS;
6440   if (ParseTypeAndValue(LHS, Loc, PFS) ||
6441       ParseToken(lltok::comma, "expected ',' in logical operation") ||
6442       ParseValue(LHS->getType(), RHS, PFS))
6443     return true;
6444 
6445   if (!LHS->getType()->isIntOrIntVectorTy())
6446     return Error(Loc,"instruction requires integer or integer vector operands");
6447 
6448   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6449   return false;
6450 }
6451 
6452 /// ParseCompare
6453 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
6454 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
6455 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
6456                             unsigned Opc) {
6457   // Parse the integer/fp comparison predicate.
6458   LocTy Loc;
6459   unsigned Pred;
6460   Value *LHS, *RHS;
6461   if (ParseCmpPredicate(Pred, Opc) ||
6462       ParseTypeAndValue(LHS, Loc, PFS) ||
6463       ParseToken(lltok::comma, "expected ',' after compare value") ||
6464       ParseValue(LHS->getType(), RHS, PFS))
6465     return true;
6466 
6467   if (Opc == Instruction::FCmp) {
6468     if (!LHS->getType()->isFPOrFPVectorTy())
6469       return Error(Loc, "fcmp requires floating point operands");
6470     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6471   } else {
6472     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
6473     if (!LHS->getType()->isIntOrIntVectorTy() &&
6474         !LHS->getType()->isPtrOrPtrVectorTy())
6475       return Error(Loc, "icmp requires integer operands");
6476     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6477   }
6478   return false;
6479 }
6480 
6481 //===----------------------------------------------------------------------===//
6482 // Other Instructions.
6483 //===----------------------------------------------------------------------===//
6484 
6485 
6486 /// ParseCast
6487 ///   ::= CastOpc TypeAndValue 'to' Type
6488 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
6489                          unsigned Opc) {
6490   LocTy Loc;
6491   Value *Op;
6492   Type *DestTy = nullptr;
6493   if (ParseTypeAndValue(Op, Loc, PFS) ||
6494       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
6495       ParseType(DestTy))
6496     return true;
6497 
6498   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
6499     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
6500     return Error(Loc, "invalid cast opcode for cast from '" +
6501                  getTypeString(Op->getType()) + "' to '" +
6502                  getTypeString(DestTy) + "'");
6503   }
6504   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
6505   return false;
6506 }
6507 
6508 /// ParseSelect
6509 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6510 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
6511   LocTy Loc;
6512   Value *Op0, *Op1, *Op2;
6513   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6514       ParseToken(lltok::comma, "expected ',' after select condition") ||
6515       ParseTypeAndValue(Op1, PFS) ||
6516       ParseToken(lltok::comma, "expected ',' after select value") ||
6517       ParseTypeAndValue(Op2, PFS))
6518     return true;
6519 
6520   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
6521     return Error(Loc, Reason);
6522 
6523   Inst = SelectInst::Create(Op0, Op1, Op2);
6524   return false;
6525 }
6526 
6527 /// ParseVA_Arg
6528 ///   ::= 'va_arg' TypeAndValue ',' Type
6529 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
6530   Value *Op;
6531   Type *EltTy = nullptr;
6532   LocTy TypeLoc;
6533   if (ParseTypeAndValue(Op, PFS) ||
6534       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
6535       ParseType(EltTy, TypeLoc))
6536     return true;
6537 
6538   if (!EltTy->isFirstClassType())
6539     return Error(TypeLoc, "va_arg requires operand with first class type");
6540 
6541   Inst = new VAArgInst(Op, EltTy);
6542   return false;
6543 }
6544 
6545 /// ParseExtractElement
6546 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
6547 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
6548   LocTy Loc;
6549   Value *Op0, *Op1;
6550   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6551       ParseToken(lltok::comma, "expected ',' after extract value") ||
6552       ParseTypeAndValue(Op1, PFS))
6553     return true;
6554 
6555   if (!ExtractElementInst::isValidOperands(Op0, Op1))
6556     return Error(Loc, "invalid extractelement operands");
6557 
6558   Inst = ExtractElementInst::Create(Op0, Op1);
6559   return false;
6560 }
6561 
6562 /// ParseInsertElement
6563 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6564 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
6565   LocTy Loc;
6566   Value *Op0, *Op1, *Op2;
6567   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6568       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6569       ParseTypeAndValue(Op1, PFS) ||
6570       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6571       ParseTypeAndValue(Op2, PFS))
6572     return true;
6573 
6574   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
6575     return Error(Loc, "invalid insertelement operands");
6576 
6577   Inst = InsertElementInst::Create(Op0, Op1, Op2);
6578   return false;
6579 }
6580 
6581 /// ParseShuffleVector
6582 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6583 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
6584   LocTy Loc;
6585   Value *Op0, *Op1, *Op2;
6586   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6587       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
6588       ParseTypeAndValue(Op1, PFS) ||
6589       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
6590       ParseTypeAndValue(Op2, PFS))
6591     return true;
6592 
6593   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
6594     return Error(Loc, "invalid shufflevector operands");
6595 
6596   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
6597   return false;
6598 }
6599 
6600 /// ParsePHI
6601 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
6602 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
6603   Type *Ty = nullptr;  LocTy TypeLoc;
6604   Value *Op0, *Op1;
6605 
6606   if (ParseType(Ty, TypeLoc) ||
6607       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6608       ParseValue(Ty, Op0, PFS) ||
6609       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6610       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6611       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6612     return true;
6613 
6614   bool AteExtraComma = false;
6615   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
6616 
6617   while (true) {
6618     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
6619 
6620     if (!EatIfPresent(lltok::comma))
6621       break;
6622 
6623     if (Lex.getKind() == lltok::MetadataVar) {
6624       AteExtraComma = true;
6625       break;
6626     }
6627 
6628     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6629         ParseValue(Ty, Op0, PFS) ||
6630         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6631         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6632         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6633       return true;
6634   }
6635 
6636   if (!Ty->isFirstClassType())
6637     return Error(TypeLoc, "phi node must have first class type");
6638 
6639   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
6640   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
6641     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
6642   Inst = PN;
6643   return AteExtraComma ? InstExtraComma : InstNormal;
6644 }
6645 
6646 /// ParseLandingPad
6647 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
6648 /// Clause
6649 ///   ::= 'catch' TypeAndValue
6650 ///   ::= 'filter'
6651 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
6652 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
6653   Type *Ty = nullptr; LocTy TyLoc;
6654 
6655   if (ParseType(Ty, TyLoc))
6656     return true;
6657 
6658   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
6659   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
6660 
6661   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
6662     LandingPadInst::ClauseType CT;
6663     if (EatIfPresent(lltok::kw_catch))
6664       CT = LandingPadInst::Catch;
6665     else if (EatIfPresent(lltok::kw_filter))
6666       CT = LandingPadInst::Filter;
6667     else
6668       return TokError("expected 'catch' or 'filter' clause type");
6669 
6670     Value *V;
6671     LocTy VLoc;
6672     if (ParseTypeAndValue(V, VLoc, PFS))
6673       return true;
6674 
6675     // A 'catch' type expects a non-array constant. A filter clause expects an
6676     // array constant.
6677     if (CT == LandingPadInst::Catch) {
6678       if (isa<ArrayType>(V->getType()))
6679         Error(VLoc, "'catch' clause has an invalid type");
6680     } else {
6681       if (!isa<ArrayType>(V->getType()))
6682         Error(VLoc, "'filter' clause has an invalid type");
6683     }
6684 
6685     Constant *CV = dyn_cast<Constant>(V);
6686     if (!CV)
6687       return Error(VLoc, "clause argument must be a constant");
6688     LP->addClause(CV);
6689   }
6690 
6691   Inst = LP.release();
6692   return false;
6693 }
6694 
6695 /// ParseCall
6696 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
6697 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6698 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
6699 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6700 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
6701 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6702 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
6703 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6704 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
6705                          CallInst::TailCallKind TCK) {
6706   AttrBuilder RetAttrs, FnAttrs;
6707   std::vector<unsigned> FwdRefAttrGrps;
6708   LocTy BuiltinLoc;
6709   unsigned CallAddrSpace;
6710   unsigned CC;
6711   Type *RetType = nullptr;
6712   LocTy RetTypeLoc;
6713   ValID CalleeID;
6714   SmallVector<ParamInfo, 16> ArgList;
6715   SmallVector<OperandBundleDef, 2> BundleList;
6716   LocTy CallLoc = Lex.getLoc();
6717 
6718   if (TCK != CallInst::TCK_None &&
6719       ParseToken(lltok::kw_call,
6720                  "expected 'tail call', 'musttail call', or 'notail call'"))
6721     return true;
6722 
6723   FastMathFlags FMF = EatFastMathFlagsIfPresent();
6724 
6725   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6726       ParseOptionalProgramAddrSpace(CallAddrSpace) ||
6727       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6728       ParseValID(CalleeID) ||
6729       ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
6730                          PFS.getFunction().isVarArg()) ||
6731       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
6732       ParseOptionalOperandBundles(BundleList, PFS))
6733     return true;
6734 
6735   if (FMF.any() && !RetType->isFPOrFPVectorTy())
6736     return Error(CallLoc, "fast-math-flags specified for call without "
6737                           "floating-point scalar or vector return type");
6738 
6739   // If RetType is a non-function pointer type, then this is the short syntax
6740   // for the call, which means that RetType is just the return type.  Infer the
6741   // rest of the function argument types from the arguments that are present.
6742   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6743   if (!Ty) {
6744     // Pull out the types of all of the arguments...
6745     std::vector<Type*> ParamTypes;
6746     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6747       ParamTypes.push_back(ArgList[i].V->getType());
6748 
6749     if (!FunctionType::isValidReturnType(RetType))
6750       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6751 
6752     Ty = FunctionType::get(RetType, ParamTypes, false);
6753   }
6754 
6755   CalleeID.FTy = Ty;
6756 
6757   // Look up the callee.
6758   Value *Callee;
6759   if (ConvertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
6760                           &PFS, /*IsCall=*/true))
6761     return true;
6762 
6763   // Set up the Attribute for the function.
6764   SmallVector<AttributeSet, 8> Attrs;
6765 
6766   SmallVector<Value*, 8> Args;
6767 
6768   // Loop through FunctionType's arguments and ensure they are specified
6769   // correctly.  Also, gather any parameter attributes.
6770   FunctionType::param_iterator I = Ty->param_begin();
6771   FunctionType::param_iterator E = Ty->param_end();
6772   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6773     Type *ExpectedTy = nullptr;
6774     if (I != E) {
6775       ExpectedTy = *I++;
6776     } else if (!Ty->isVarArg()) {
6777       return Error(ArgList[i].Loc, "too many arguments specified");
6778     }
6779 
6780     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6781       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6782                    getTypeString(ExpectedTy) + "'");
6783     Args.push_back(ArgList[i].V);
6784     Attrs.push_back(ArgList[i].Attrs);
6785   }
6786 
6787   if (I != E)
6788     return Error(CallLoc, "not enough parameters specified for call");
6789 
6790   if (FnAttrs.hasAlignmentAttr())
6791     return Error(CallLoc, "call instructions may not have an alignment");
6792 
6793   // Finish off the Attribute and check them
6794   AttributeList PAL =
6795       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6796                          AttributeSet::get(Context, RetAttrs), Attrs);
6797 
6798   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
6799   CI->setTailCallKind(TCK);
6800   CI->setCallingConv(CC);
6801   if (FMF.any())
6802     CI->setFastMathFlags(FMF);
6803   CI->setAttributes(PAL);
6804   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
6805   Inst = CI;
6806   return false;
6807 }
6808 
6809 //===----------------------------------------------------------------------===//
6810 // Memory Instructions.
6811 //===----------------------------------------------------------------------===//
6812 
6813 /// ParseAlloc
6814 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
6815 ///       (',' 'align' i32)? (',', 'addrspace(n))?
6816 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
6817   Value *Size = nullptr;
6818   LocTy SizeLoc, TyLoc, ASLoc;
6819   unsigned Alignment = 0;
6820   unsigned AddrSpace = 0;
6821   Type *Ty = nullptr;
6822 
6823   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
6824   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
6825 
6826   if (ParseType(Ty, TyLoc)) return true;
6827 
6828   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
6829     return Error(TyLoc, "invalid type for alloca");
6830 
6831   bool AteExtraComma = false;
6832   if (EatIfPresent(lltok::comma)) {
6833     if (Lex.getKind() == lltok::kw_align) {
6834       if (ParseOptionalAlignment(Alignment))
6835         return true;
6836       if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6837         return true;
6838     } else if (Lex.getKind() == lltok::kw_addrspace) {
6839       ASLoc = Lex.getLoc();
6840       if (ParseOptionalAddrSpace(AddrSpace))
6841         return true;
6842     } else if (Lex.getKind() == lltok::MetadataVar) {
6843       AteExtraComma = true;
6844     } else {
6845       if (ParseTypeAndValue(Size, SizeLoc, PFS))
6846         return true;
6847       if (EatIfPresent(lltok::comma)) {
6848         if (Lex.getKind() == lltok::kw_align) {
6849           if (ParseOptionalAlignment(Alignment))
6850             return true;
6851           if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6852             return true;
6853         } else if (Lex.getKind() == lltok::kw_addrspace) {
6854           ASLoc = Lex.getLoc();
6855           if (ParseOptionalAddrSpace(AddrSpace))
6856             return true;
6857         } else if (Lex.getKind() == lltok::MetadataVar) {
6858           AteExtraComma = true;
6859         }
6860       }
6861     }
6862   }
6863 
6864   if (Size && !Size->getType()->isIntegerTy())
6865     return Error(SizeLoc, "element count must have integer type");
6866 
6867   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, Alignment);
6868   AI->setUsedWithInAlloca(IsInAlloca);
6869   AI->setSwiftError(IsSwiftError);
6870   Inst = AI;
6871   return AteExtraComma ? InstExtraComma : InstNormal;
6872 }
6873 
6874 /// ParseLoad
6875 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
6876 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
6877 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6878 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
6879   Value *Val; LocTy Loc;
6880   unsigned Alignment = 0;
6881   bool AteExtraComma = false;
6882   bool isAtomic = false;
6883   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6884   SyncScope::ID SSID = SyncScope::System;
6885 
6886   if (Lex.getKind() == lltok::kw_atomic) {
6887     isAtomic = true;
6888     Lex.Lex();
6889   }
6890 
6891   bool isVolatile = false;
6892   if (Lex.getKind() == lltok::kw_volatile) {
6893     isVolatile = true;
6894     Lex.Lex();
6895   }
6896 
6897   Type *Ty;
6898   LocTy ExplicitTypeLoc = Lex.getLoc();
6899   if (ParseType(Ty) ||
6900       ParseToken(lltok::comma, "expected comma after load's type") ||
6901       ParseTypeAndValue(Val, Loc, PFS) ||
6902       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6903       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6904     return true;
6905 
6906   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
6907     return Error(Loc, "load operand must be a pointer to a first class type");
6908   if (isAtomic && !Alignment)
6909     return Error(Loc, "atomic load must have explicit non-zero alignment");
6910   if (Ordering == AtomicOrdering::Release ||
6911       Ordering == AtomicOrdering::AcquireRelease)
6912     return Error(Loc, "atomic load cannot use Release ordering");
6913 
6914   if (Ty != cast<PointerType>(Val->getType())->getElementType())
6915     return Error(ExplicitTypeLoc,
6916                  "explicit pointee type doesn't match operand's pointee type");
6917 
6918   Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID);
6919   return AteExtraComma ? InstExtraComma : InstNormal;
6920 }
6921 
6922 /// ParseStore
6923 
6924 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
6925 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
6926 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6927 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
6928   Value *Val, *Ptr; LocTy Loc, PtrLoc;
6929   unsigned Alignment = 0;
6930   bool AteExtraComma = false;
6931   bool isAtomic = false;
6932   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6933   SyncScope::ID SSID = SyncScope::System;
6934 
6935   if (Lex.getKind() == lltok::kw_atomic) {
6936     isAtomic = true;
6937     Lex.Lex();
6938   }
6939 
6940   bool isVolatile = false;
6941   if (Lex.getKind() == lltok::kw_volatile) {
6942     isVolatile = true;
6943     Lex.Lex();
6944   }
6945 
6946   if (ParseTypeAndValue(Val, Loc, PFS) ||
6947       ParseToken(lltok::comma, "expected ',' after store operand") ||
6948       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6949       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6950       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6951     return true;
6952 
6953   if (!Ptr->getType()->isPointerTy())
6954     return Error(PtrLoc, "store operand must be a pointer");
6955   if (!Val->getType()->isFirstClassType())
6956     return Error(Loc, "store operand must be a first class value");
6957   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6958     return Error(Loc, "stored value and pointer type do not match");
6959   if (isAtomic && !Alignment)
6960     return Error(Loc, "atomic store must have explicit non-zero alignment");
6961   if (Ordering == AtomicOrdering::Acquire ||
6962       Ordering == AtomicOrdering::AcquireRelease)
6963     return Error(Loc, "atomic store cannot use Acquire ordering");
6964 
6965   Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID);
6966   return AteExtraComma ? InstExtraComma : InstNormal;
6967 }
6968 
6969 /// ParseCmpXchg
6970 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
6971 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
6972 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
6973   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
6974   bool AteExtraComma = false;
6975   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
6976   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
6977   SyncScope::ID SSID = SyncScope::System;
6978   bool isVolatile = false;
6979   bool isWeak = false;
6980 
6981   if (EatIfPresent(lltok::kw_weak))
6982     isWeak = true;
6983 
6984   if (EatIfPresent(lltok::kw_volatile))
6985     isVolatile = true;
6986 
6987   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6988       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
6989       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
6990       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
6991       ParseTypeAndValue(New, NewLoc, PFS) ||
6992       ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
6993       ParseOrdering(FailureOrdering))
6994     return true;
6995 
6996   if (SuccessOrdering == AtomicOrdering::Unordered ||
6997       FailureOrdering == AtomicOrdering::Unordered)
6998     return TokError("cmpxchg cannot be unordered");
6999   if (isStrongerThan(FailureOrdering, SuccessOrdering))
7000     return TokError("cmpxchg failure argument shall be no stronger than the "
7001                     "success argument");
7002   if (FailureOrdering == AtomicOrdering::Release ||
7003       FailureOrdering == AtomicOrdering::AcquireRelease)
7004     return TokError(
7005         "cmpxchg failure ordering cannot include release semantics");
7006   if (!Ptr->getType()->isPointerTy())
7007     return Error(PtrLoc, "cmpxchg operand must be a pointer");
7008   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
7009     return Error(CmpLoc, "compare value and pointer type do not match");
7010   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
7011     return Error(NewLoc, "new value and pointer type do not match");
7012   if (!New->getType()->isFirstClassType())
7013     return Error(NewLoc, "cmpxchg operand must be a first class value");
7014   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
7015       Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID);
7016   CXI->setVolatile(isVolatile);
7017   CXI->setWeak(isWeak);
7018   Inst = CXI;
7019   return AteExtraComma ? InstExtraComma : InstNormal;
7020 }
7021 
7022 /// ParseAtomicRMW
7023 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
7024 ///       'singlethread'? AtomicOrdering
7025 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
7026   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
7027   bool AteExtraComma = false;
7028   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7029   SyncScope::ID SSID = SyncScope::System;
7030   bool isVolatile = false;
7031   bool IsFP = false;
7032   AtomicRMWInst::BinOp Operation;
7033 
7034   if (EatIfPresent(lltok::kw_volatile))
7035     isVolatile = true;
7036 
7037   switch (Lex.getKind()) {
7038   default: return TokError("expected binary operation in atomicrmw");
7039   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
7040   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
7041   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
7042   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
7043   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
7044   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
7045   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
7046   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
7047   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
7048   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
7049   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
7050   case lltok::kw_fadd:
7051     Operation = AtomicRMWInst::FAdd;
7052     IsFP = true;
7053     break;
7054   case lltok::kw_fsub:
7055     Operation = AtomicRMWInst::FSub;
7056     IsFP = true;
7057     break;
7058   }
7059   Lex.Lex();  // Eat the operation.
7060 
7061   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7062       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
7063       ParseTypeAndValue(Val, ValLoc, PFS) ||
7064       ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7065     return true;
7066 
7067   if (Ordering == AtomicOrdering::Unordered)
7068     return TokError("atomicrmw cannot be unordered");
7069   if (!Ptr->getType()->isPointerTy())
7070     return Error(PtrLoc, "atomicrmw operand must be a pointer");
7071   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
7072     return Error(ValLoc, "atomicrmw value and pointer type do not match");
7073 
7074   if (Operation == AtomicRMWInst::Xchg) {
7075     if (!Val->getType()->isIntegerTy() &&
7076         !Val->getType()->isFloatingPointTy()) {
7077       return Error(ValLoc, "atomicrmw " +
7078                    AtomicRMWInst::getOperationName(Operation) +
7079                    " operand must be an integer or floating point type");
7080     }
7081   } else if (IsFP) {
7082     if (!Val->getType()->isFloatingPointTy()) {
7083       return Error(ValLoc, "atomicrmw " +
7084                    AtomicRMWInst::getOperationName(Operation) +
7085                    " operand must be a floating point type");
7086     }
7087   } else {
7088     if (!Val->getType()->isIntegerTy()) {
7089       return Error(ValLoc, "atomicrmw " +
7090                    AtomicRMWInst::getOperationName(Operation) +
7091                    " operand must be an integer");
7092     }
7093   }
7094 
7095   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
7096   if (Size < 8 || (Size & (Size - 1)))
7097     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7098                          " integer");
7099 
7100   AtomicRMWInst *RMWI =
7101     new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
7102   RMWI->setVolatile(isVolatile);
7103   Inst = RMWI;
7104   return AteExtraComma ? InstExtraComma : InstNormal;
7105 }
7106 
7107 /// ParseFence
7108 ///   ::= 'fence' 'singlethread'? AtomicOrdering
7109 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
7110   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7111   SyncScope::ID SSID = SyncScope::System;
7112   if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7113     return true;
7114 
7115   if (Ordering == AtomicOrdering::Unordered)
7116     return TokError("fence cannot be unordered");
7117   if (Ordering == AtomicOrdering::Monotonic)
7118     return TokError("fence cannot be monotonic");
7119 
7120   Inst = new FenceInst(Context, Ordering, SSID);
7121   return InstNormal;
7122 }
7123 
7124 /// ParseGetElementPtr
7125 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7126 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7127   Value *Ptr = nullptr;
7128   Value *Val = nullptr;
7129   LocTy Loc, EltLoc;
7130 
7131   bool InBounds = EatIfPresent(lltok::kw_inbounds);
7132 
7133   Type *Ty = nullptr;
7134   LocTy ExplicitTypeLoc = Lex.getLoc();
7135   if (ParseType(Ty) ||
7136       ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
7137       ParseTypeAndValue(Ptr, Loc, PFS))
7138     return true;
7139 
7140   Type *BaseType = Ptr->getType();
7141   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7142   if (!BasePointerType)
7143     return Error(Loc, "base of getelementptr must be a pointer");
7144 
7145   if (Ty != BasePointerType->getElementType())
7146     return Error(ExplicitTypeLoc,
7147                  "explicit pointee type doesn't match operand's pointee type");
7148 
7149   SmallVector<Value*, 16> Indices;
7150   bool AteExtraComma = false;
7151   // GEP returns a vector of pointers if at least one of parameters is a vector.
7152   // All vector parameters should have the same vector width.
7153   unsigned GEPWidth = BaseType->isVectorTy() ?
7154     BaseType->getVectorNumElements() : 0;
7155 
7156   while (EatIfPresent(lltok::comma)) {
7157     if (Lex.getKind() == lltok::MetadataVar) {
7158       AteExtraComma = true;
7159       break;
7160     }
7161     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
7162     if (!Val->getType()->isIntOrIntVectorTy())
7163       return Error(EltLoc, "getelementptr index must be an integer");
7164 
7165     if (Val->getType()->isVectorTy()) {
7166       unsigned ValNumEl = Val->getType()->getVectorNumElements();
7167       if (GEPWidth && GEPWidth != ValNumEl)
7168         return Error(EltLoc,
7169           "getelementptr vector index has a wrong number of elements");
7170       GEPWidth = ValNumEl;
7171     }
7172     Indices.push_back(Val);
7173   }
7174 
7175   SmallPtrSet<Type*, 4> Visited;
7176   if (!Indices.empty() && !Ty->isSized(&Visited))
7177     return Error(Loc, "base element of getelementptr must be sized");
7178 
7179   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7180     return Error(Loc, "invalid getelementptr indices");
7181   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7182   if (InBounds)
7183     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7184   return AteExtraComma ? InstExtraComma : InstNormal;
7185 }
7186 
7187 /// ParseExtractValue
7188 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
7189 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7190   Value *Val; LocTy Loc;
7191   SmallVector<unsigned, 4> Indices;
7192   bool AteExtraComma;
7193   if (ParseTypeAndValue(Val, Loc, PFS) ||
7194       ParseIndexList(Indices, AteExtraComma))
7195     return true;
7196 
7197   if (!Val->getType()->isAggregateType())
7198     return Error(Loc, "extractvalue operand must be aggregate type");
7199 
7200   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7201     return Error(Loc, "invalid indices for extractvalue");
7202   Inst = ExtractValueInst::Create(Val, Indices);
7203   return AteExtraComma ? InstExtraComma : InstNormal;
7204 }
7205 
7206 /// ParseInsertValue
7207 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7208 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7209   Value *Val0, *Val1; LocTy Loc0, Loc1;
7210   SmallVector<unsigned, 4> Indices;
7211   bool AteExtraComma;
7212   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
7213       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
7214       ParseTypeAndValue(Val1, Loc1, PFS) ||
7215       ParseIndexList(Indices, AteExtraComma))
7216     return true;
7217 
7218   if (!Val0->getType()->isAggregateType())
7219     return Error(Loc0, "insertvalue operand must be aggregate type");
7220 
7221   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7222   if (!IndexedType)
7223     return Error(Loc0, "invalid indices for insertvalue");
7224   if (IndexedType != Val1->getType())
7225     return Error(Loc1, "insertvalue operand and field disagree in type: '" +
7226                            getTypeString(Val1->getType()) + "' instead of '" +
7227                            getTypeString(IndexedType) + "'");
7228   Inst = InsertValueInst::Create(Val0, Val1, Indices);
7229   return AteExtraComma ? InstExtraComma : InstNormal;
7230 }
7231 
7232 //===----------------------------------------------------------------------===//
7233 // Embedded metadata.
7234 //===----------------------------------------------------------------------===//
7235 
7236 /// ParseMDNodeVector
7237 ///   ::= { Element (',' Element)* }
7238 /// Element
7239 ///   ::= 'null' | TypeAndValue
7240 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7241   if (ParseToken(lltok::lbrace, "expected '{' here"))
7242     return true;
7243 
7244   // Check for an empty list.
7245   if (EatIfPresent(lltok::rbrace))
7246     return false;
7247 
7248   do {
7249     // Null is a special case since it is typeless.
7250     if (EatIfPresent(lltok::kw_null)) {
7251       Elts.push_back(nullptr);
7252       continue;
7253     }
7254 
7255     Metadata *MD;
7256     if (ParseMetadata(MD, nullptr))
7257       return true;
7258     Elts.push_back(MD);
7259   } while (EatIfPresent(lltok::comma));
7260 
7261   return ParseToken(lltok::rbrace, "expected end of metadata node");
7262 }
7263 
7264 //===----------------------------------------------------------------------===//
7265 // Use-list order directives.
7266 //===----------------------------------------------------------------------===//
7267 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7268                                 SMLoc Loc) {
7269   if (V->use_empty())
7270     return Error(Loc, "value has no uses");
7271 
7272   unsigned NumUses = 0;
7273   SmallDenseMap<const Use *, unsigned, 16> Order;
7274   for (const Use &U : V->uses()) {
7275     if (++NumUses > Indexes.size())
7276       break;
7277     Order[&U] = Indexes[NumUses - 1];
7278   }
7279   if (NumUses < 2)
7280     return Error(Loc, "value only has one use");
7281   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7282     return Error(Loc,
7283                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
7284 
7285   V->sortUseList([&](const Use &L, const Use &R) {
7286     return Order.lookup(&L) < Order.lookup(&R);
7287   });
7288   return false;
7289 }
7290 
7291 /// ParseUseListOrderIndexes
7292 ///   ::= '{' uint32 (',' uint32)+ '}'
7293 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7294   SMLoc Loc = Lex.getLoc();
7295   if (ParseToken(lltok::lbrace, "expected '{' here"))
7296     return true;
7297   if (Lex.getKind() == lltok::rbrace)
7298     return Lex.Error("expected non-empty list of uselistorder indexes");
7299 
7300   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
7301   // indexes should be distinct numbers in the range [0, size-1], and should
7302   // not be in order.
7303   unsigned Offset = 0;
7304   unsigned Max = 0;
7305   bool IsOrdered = true;
7306   assert(Indexes.empty() && "Expected empty order vector");
7307   do {
7308     unsigned Index;
7309     if (ParseUInt32(Index))
7310       return true;
7311 
7312     // Update consistency checks.
7313     Offset += Index - Indexes.size();
7314     Max = std::max(Max, Index);
7315     IsOrdered &= Index == Indexes.size();
7316 
7317     Indexes.push_back(Index);
7318   } while (EatIfPresent(lltok::comma));
7319 
7320   if (ParseToken(lltok::rbrace, "expected '}' here"))
7321     return true;
7322 
7323   if (Indexes.size() < 2)
7324     return Error(Loc, "expected >= 2 uselistorder indexes");
7325   if (Offset != 0 || Max >= Indexes.size())
7326     return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
7327   if (IsOrdered)
7328     return Error(Loc, "expected uselistorder indexes to change the order");
7329 
7330   return false;
7331 }
7332 
7333 /// ParseUseListOrder
7334 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7335 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
7336   SMLoc Loc = Lex.getLoc();
7337   if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7338     return true;
7339 
7340   Value *V;
7341   SmallVector<unsigned, 16> Indexes;
7342   if (ParseTypeAndValue(V, PFS) ||
7343       ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
7344       ParseUseListOrderIndexes(Indexes))
7345     return true;
7346 
7347   return sortUseListOrder(V, Indexes, Loc);
7348 }
7349 
7350 /// ParseUseListOrderBB
7351 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
7352 bool LLParser::ParseUseListOrderBB() {
7353   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7354   SMLoc Loc = Lex.getLoc();
7355   Lex.Lex();
7356 
7357   ValID Fn, Label;
7358   SmallVector<unsigned, 16> Indexes;
7359   if (ParseValID(Fn) ||
7360       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7361       ParseValID(Label) ||
7362       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7363       ParseUseListOrderIndexes(Indexes))
7364     return true;
7365 
7366   // Check the function.
7367   GlobalValue *GV;
7368   if (Fn.Kind == ValID::t_GlobalName)
7369     GV = M->getNamedValue(Fn.StrVal);
7370   else if (Fn.Kind == ValID::t_GlobalID)
7371     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7372   else
7373     return Error(Fn.Loc, "expected function name in uselistorder_bb");
7374   if (!GV)
7375     return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
7376   auto *F = dyn_cast<Function>(GV);
7377   if (!F)
7378     return Error(Fn.Loc, "expected function name in uselistorder_bb");
7379   if (F->isDeclaration())
7380     return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
7381 
7382   // Check the basic block.
7383   if (Label.Kind == ValID::t_LocalID)
7384     return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
7385   if (Label.Kind != ValID::t_LocalName)
7386     return Error(Label.Loc, "expected basic block name in uselistorder_bb");
7387   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7388   if (!V)
7389     return Error(Label.Loc, "invalid basic block in uselistorder_bb");
7390   if (!isa<BasicBlock>(V))
7391     return Error(Label.Loc, "expected basic block in uselistorder_bb");
7392 
7393   return sortUseListOrder(V, Indexes, Loc);
7394 }
7395 
7396 /// ModuleEntry
7397 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
7398 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
7399 bool LLParser::ParseModuleEntry(unsigned ID) {
7400   assert(Lex.getKind() == lltok::kw_module);
7401   Lex.Lex();
7402 
7403   std::string Path;
7404   if (ParseToken(lltok::colon, "expected ':' here") ||
7405       ParseToken(lltok::lparen, "expected '(' here") ||
7406       ParseToken(lltok::kw_path, "expected 'path' here") ||
7407       ParseToken(lltok::colon, "expected ':' here") ||
7408       ParseStringConstant(Path) ||
7409       ParseToken(lltok::comma, "expected ',' here") ||
7410       ParseToken(lltok::kw_hash, "expected 'hash' here") ||
7411       ParseToken(lltok::colon, "expected ':' here") ||
7412       ParseToken(lltok::lparen, "expected '(' here"))
7413     return true;
7414 
7415   ModuleHash Hash;
7416   if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") ||
7417       ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") ||
7418       ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") ||
7419       ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") ||
7420       ParseUInt32(Hash[4]))
7421     return true;
7422 
7423   if (ParseToken(lltok::rparen, "expected ')' here") ||
7424       ParseToken(lltok::rparen, "expected ')' here"))
7425     return true;
7426 
7427   auto ModuleEntry = Index->addModule(Path, ID, Hash);
7428   ModuleIdMap[ID] = ModuleEntry->first();
7429 
7430   return false;
7431 }
7432 
7433 /// TypeIdEntry
7434 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
7435 bool LLParser::ParseTypeIdEntry(unsigned ID) {
7436   assert(Lex.getKind() == lltok::kw_typeid);
7437   Lex.Lex();
7438 
7439   std::string Name;
7440   if (ParseToken(lltok::colon, "expected ':' here") ||
7441       ParseToken(lltok::lparen, "expected '(' here") ||
7442       ParseToken(lltok::kw_name, "expected 'name' here") ||
7443       ParseToken(lltok::colon, "expected ':' here") ||
7444       ParseStringConstant(Name))
7445     return true;
7446 
7447   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
7448   if (ParseToken(lltok::comma, "expected ',' here") ||
7449       ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here"))
7450     return true;
7451 
7452   // Check if this ID was forward referenced, and if so, update the
7453   // corresponding GUIDs.
7454   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7455   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7456     for (auto TIDRef : FwdRefTIDs->second) {
7457       assert(!*TIDRef.first &&
7458              "Forward referenced type id GUID expected to be 0");
7459       *TIDRef.first = GlobalValue::getGUID(Name);
7460     }
7461     ForwardRefTypeIds.erase(FwdRefTIDs);
7462   }
7463 
7464   return false;
7465 }
7466 
7467 /// TypeIdSummary
7468 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
7469 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) {
7470   if (ParseToken(lltok::kw_summary, "expected 'summary' here") ||
7471       ParseToken(lltok::colon, "expected ':' here") ||
7472       ParseToken(lltok::lparen, "expected '(' here") ||
7473       ParseTypeTestResolution(TIS.TTRes))
7474     return true;
7475 
7476   if (EatIfPresent(lltok::comma)) {
7477     // Expect optional wpdResolutions field
7478     if (ParseOptionalWpdResolutions(TIS.WPDRes))
7479       return true;
7480   }
7481 
7482   if (ParseToken(lltok::rparen, "expected ')' here"))
7483     return true;
7484 
7485   return false;
7486 }
7487 
7488 /// TypeTestResolution
7489 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
7490 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
7491 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
7492 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
7493 ///         [',' 'inlinesBits' ':' UInt64]? ')'
7494 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) {
7495   if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
7496       ParseToken(lltok::colon, "expected ':' here") ||
7497       ParseToken(lltok::lparen, "expected '(' here") ||
7498       ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7499       ParseToken(lltok::colon, "expected ':' here"))
7500     return true;
7501 
7502   switch (Lex.getKind()) {
7503   case lltok::kw_unsat:
7504     TTRes.TheKind = TypeTestResolution::Unsat;
7505     break;
7506   case lltok::kw_byteArray:
7507     TTRes.TheKind = TypeTestResolution::ByteArray;
7508     break;
7509   case lltok::kw_inline:
7510     TTRes.TheKind = TypeTestResolution::Inline;
7511     break;
7512   case lltok::kw_single:
7513     TTRes.TheKind = TypeTestResolution::Single;
7514     break;
7515   case lltok::kw_allOnes:
7516     TTRes.TheKind = TypeTestResolution::AllOnes;
7517     break;
7518   default:
7519     return Error(Lex.getLoc(), "unexpected TypeTestResolution kind");
7520   }
7521   Lex.Lex();
7522 
7523   if (ParseToken(lltok::comma, "expected ',' here") ||
7524       ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
7525       ParseToken(lltok::colon, "expected ':' here") ||
7526       ParseUInt32(TTRes.SizeM1BitWidth))
7527     return true;
7528 
7529   // Parse optional fields
7530   while (EatIfPresent(lltok::comma)) {
7531     switch (Lex.getKind()) {
7532     case lltok::kw_alignLog2:
7533       Lex.Lex();
7534       if (ParseToken(lltok::colon, "expected ':'") ||
7535           ParseUInt64(TTRes.AlignLog2))
7536         return true;
7537       break;
7538     case lltok::kw_sizeM1:
7539       Lex.Lex();
7540       if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1))
7541         return true;
7542       break;
7543     case lltok::kw_bitMask: {
7544       unsigned Val;
7545       Lex.Lex();
7546       if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val))
7547         return true;
7548       assert(Val <= 0xff);
7549       TTRes.BitMask = (uint8_t)Val;
7550       break;
7551     }
7552     case lltok::kw_inlineBits:
7553       Lex.Lex();
7554       if (ParseToken(lltok::colon, "expected ':'") ||
7555           ParseUInt64(TTRes.InlineBits))
7556         return true;
7557       break;
7558     default:
7559       return Error(Lex.getLoc(), "expected optional TypeTestResolution field");
7560     }
7561   }
7562 
7563   if (ParseToken(lltok::rparen, "expected ')' here"))
7564     return true;
7565 
7566   return false;
7567 }
7568 
7569 /// OptionalWpdResolutions
7570 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
7571 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
7572 bool LLParser::ParseOptionalWpdResolutions(
7573     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
7574   if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
7575       ParseToken(lltok::colon, "expected ':' here") ||
7576       ParseToken(lltok::lparen, "expected '(' here"))
7577     return true;
7578 
7579   do {
7580     uint64_t Offset;
7581     WholeProgramDevirtResolution WPDRes;
7582     if (ParseToken(lltok::lparen, "expected '(' here") ||
7583         ParseToken(lltok::kw_offset, "expected 'offset' here") ||
7584         ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) ||
7585         ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) ||
7586         ParseToken(lltok::rparen, "expected ')' here"))
7587       return true;
7588     WPDResMap[Offset] = WPDRes;
7589   } while (EatIfPresent(lltok::comma));
7590 
7591   if (ParseToken(lltok::rparen, "expected ')' here"))
7592     return true;
7593 
7594   return false;
7595 }
7596 
7597 /// WpdRes
7598 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
7599 ///         [',' OptionalResByArg]? ')'
7600 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
7601 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
7602 ///         [',' OptionalResByArg]? ')'
7603 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
7604 ///         [',' OptionalResByArg]? ')'
7605 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) {
7606   if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
7607       ParseToken(lltok::colon, "expected ':' here") ||
7608       ParseToken(lltok::lparen, "expected '(' here") ||
7609       ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7610       ParseToken(lltok::colon, "expected ':' here"))
7611     return true;
7612 
7613   switch (Lex.getKind()) {
7614   case lltok::kw_indir:
7615     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
7616     break;
7617   case lltok::kw_singleImpl:
7618     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
7619     break;
7620   case lltok::kw_branchFunnel:
7621     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
7622     break;
7623   default:
7624     return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
7625   }
7626   Lex.Lex();
7627 
7628   // Parse optional fields
7629   while (EatIfPresent(lltok::comma)) {
7630     switch (Lex.getKind()) {
7631     case lltok::kw_singleImplName:
7632       Lex.Lex();
7633       if (ParseToken(lltok::colon, "expected ':' here") ||
7634           ParseStringConstant(WPDRes.SingleImplName))
7635         return true;
7636       break;
7637     case lltok::kw_resByArg:
7638       if (ParseOptionalResByArg(WPDRes.ResByArg))
7639         return true;
7640       break;
7641     default:
7642       return Error(Lex.getLoc(),
7643                    "expected optional WholeProgramDevirtResolution field");
7644     }
7645   }
7646 
7647   if (ParseToken(lltok::rparen, "expected ')' here"))
7648     return true;
7649 
7650   return false;
7651 }
7652 
7653 /// OptionalResByArg
7654 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
7655 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
7656 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
7657 ///                  'virtualConstProp' )
7658 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
7659 ///                [',' 'bit' ':' UInt32]? ')'
7660 bool LLParser::ParseOptionalResByArg(
7661     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
7662         &ResByArg) {
7663   if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
7664       ParseToken(lltok::colon, "expected ':' here") ||
7665       ParseToken(lltok::lparen, "expected '(' here"))
7666     return true;
7667 
7668   do {
7669     std::vector<uint64_t> Args;
7670     if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") ||
7671         ParseToken(lltok::kw_byArg, "expected 'byArg here") ||
7672         ParseToken(lltok::colon, "expected ':' here") ||
7673         ParseToken(lltok::lparen, "expected '(' here") ||
7674         ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7675         ParseToken(lltok::colon, "expected ':' here"))
7676       return true;
7677 
7678     WholeProgramDevirtResolution::ByArg ByArg;
7679     switch (Lex.getKind()) {
7680     case lltok::kw_indir:
7681       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
7682       break;
7683     case lltok::kw_uniformRetVal:
7684       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
7685       break;
7686     case lltok::kw_uniqueRetVal:
7687       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
7688       break;
7689     case lltok::kw_virtualConstProp:
7690       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
7691       break;
7692     default:
7693       return Error(Lex.getLoc(),
7694                    "unexpected WholeProgramDevirtResolution::ByArg kind");
7695     }
7696     Lex.Lex();
7697 
7698     // Parse optional fields
7699     while (EatIfPresent(lltok::comma)) {
7700       switch (Lex.getKind()) {
7701       case lltok::kw_info:
7702         Lex.Lex();
7703         if (ParseToken(lltok::colon, "expected ':' here") ||
7704             ParseUInt64(ByArg.Info))
7705           return true;
7706         break;
7707       case lltok::kw_byte:
7708         Lex.Lex();
7709         if (ParseToken(lltok::colon, "expected ':' here") ||
7710             ParseUInt32(ByArg.Byte))
7711           return true;
7712         break;
7713       case lltok::kw_bit:
7714         Lex.Lex();
7715         if (ParseToken(lltok::colon, "expected ':' here") ||
7716             ParseUInt32(ByArg.Bit))
7717           return true;
7718         break;
7719       default:
7720         return Error(Lex.getLoc(),
7721                      "expected optional whole program devirt field");
7722       }
7723     }
7724 
7725     if (ParseToken(lltok::rparen, "expected ')' here"))
7726       return true;
7727 
7728     ResByArg[Args] = ByArg;
7729   } while (EatIfPresent(lltok::comma));
7730 
7731   if (ParseToken(lltok::rparen, "expected ')' here"))
7732     return true;
7733 
7734   return false;
7735 }
7736 
7737 /// OptionalResByArg
7738 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
7739 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) {
7740   if (ParseToken(lltok::kw_args, "expected 'args' here") ||
7741       ParseToken(lltok::colon, "expected ':' here") ||
7742       ParseToken(lltok::lparen, "expected '(' here"))
7743     return true;
7744 
7745   do {
7746     uint64_t Val;
7747     if (ParseUInt64(Val))
7748       return true;
7749     Args.push_back(Val);
7750   } while (EatIfPresent(lltok::comma));
7751 
7752   if (ParseToken(lltok::rparen, "expected ')' here"))
7753     return true;
7754 
7755   return false;
7756 }
7757 
7758 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
7759 
7760 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
7761   bool ReadOnly = Fwd->isReadOnly();
7762   *Fwd = Resolved;
7763   if (ReadOnly)
7764     Fwd->setReadOnly();
7765 }
7766 
7767 /// Stores the given Name/GUID and associated summary into the Index.
7768 /// Also updates any forward references to the associated entry ID.
7769 void LLParser::AddGlobalValueToIndex(
7770     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
7771     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
7772   // First create the ValueInfo utilizing the Name or GUID.
7773   ValueInfo VI;
7774   if (GUID != 0) {
7775     assert(Name.empty());
7776     VI = Index->getOrInsertValueInfo(GUID);
7777   } else {
7778     assert(!Name.empty());
7779     if (M) {
7780       auto *GV = M->getNamedValue(Name);
7781       assert(GV);
7782       VI = Index->getOrInsertValueInfo(GV);
7783     } else {
7784       assert(
7785           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
7786           "Need a source_filename to compute GUID for local");
7787       GUID = GlobalValue::getGUID(
7788           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
7789       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
7790     }
7791   }
7792 
7793   // Resolve forward references from calls/refs
7794   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
7795   if (FwdRefVIs != ForwardRefValueInfos.end()) {
7796     for (auto VIRef : FwdRefVIs->second) {
7797       assert(VIRef.first->getRef() == FwdVIRef &&
7798              "Forward referenced ValueInfo expected to be empty");
7799       resolveFwdRef(VIRef.first, VI);
7800     }
7801     ForwardRefValueInfos.erase(FwdRefVIs);
7802   }
7803 
7804   // Resolve forward references from aliases
7805   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
7806   if (FwdRefAliasees != ForwardRefAliasees.end()) {
7807     for (auto AliaseeRef : FwdRefAliasees->second) {
7808       assert(!AliaseeRef.first->hasAliasee() &&
7809              "Forward referencing alias already has aliasee");
7810       assert(Summary && "Aliasee must be a definition");
7811       AliaseeRef.first->setAliasee(VI, Summary.get());
7812     }
7813     ForwardRefAliasees.erase(FwdRefAliasees);
7814   }
7815 
7816   // Add the summary if one was provided.
7817   if (Summary)
7818     Index->addGlobalValueSummary(VI, std::move(Summary));
7819 
7820   // Save the associated ValueInfo for use in later references by ID.
7821   if (ID == NumberedValueInfos.size())
7822     NumberedValueInfos.push_back(VI);
7823   else {
7824     // Handle non-continuous numbers (to make test simplification easier).
7825     if (ID > NumberedValueInfos.size())
7826       NumberedValueInfos.resize(ID + 1);
7827     NumberedValueInfos[ID] = VI;
7828   }
7829 }
7830 
7831 /// ParseGVEntry
7832 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
7833 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
7834 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
7835 bool LLParser::ParseGVEntry(unsigned ID) {
7836   assert(Lex.getKind() == lltok::kw_gv);
7837   Lex.Lex();
7838 
7839   if (ParseToken(lltok::colon, "expected ':' here") ||
7840       ParseToken(lltok::lparen, "expected '(' here"))
7841     return true;
7842 
7843   std::string Name;
7844   GlobalValue::GUID GUID = 0;
7845   switch (Lex.getKind()) {
7846   case lltok::kw_name:
7847     Lex.Lex();
7848     if (ParseToken(lltok::colon, "expected ':' here") ||
7849         ParseStringConstant(Name))
7850       return true;
7851     // Can't create GUID/ValueInfo until we have the linkage.
7852     break;
7853   case lltok::kw_guid:
7854     Lex.Lex();
7855     if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID))
7856       return true;
7857     break;
7858   default:
7859     return Error(Lex.getLoc(), "expected name or guid tag");
7860   }
7861 
7862   if (!EatIfPresent(lltok::comma)) {
7863     // No summaries. Wrap up.
7864     if (ParseToken(lltok::rparen, "expected ')' here"))
7865       return true;
7866     // This was created for a call to an external or indirect target.
7867     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
7868     // created for indirect calls with VP. A Name with no GUID came from
7869     // an external definition. We pass ExternalLinkage since that is only
7870     // used when the GUID must be computed from Name, and in that case
7871     // the symbol must have external linkage.
7872     AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
7873                           nullptr);
7874     return false;
7875   }
7876 
7877   // Have a list of summaries
7878   if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") ||
7879       ParseToken(lltok::colon, "expected ':' here"))
7880     return true;
7881 
7882   do {
7883     if (ParseToken(lltok::lparen, "expected '(' here"))
7884       return true;
7885     switch (Lex.getKind()) {
7886     case lltok::kw_function:
7887       if (ParseFunctionSummary(Name, GUID, ID))
7888         return true;
7889       break;
7890     case lltok::kw_variable:
7891       if (ParseVariableSummary(Name, GUID, ID))
7892         return true;
7893       break;
7894     case lltok::kw_alias:
7895       if (ParseAliasSummary(Name, GUID, ID))
7896         return true;
7897       break;
7898     default:
7899       return Error(Lex.getLoc(), "expected summary type");
7900     }
7901     if (ParseToken(lltok::rparen, "expected ')' here"))
7902       return true;
7903   } while (EatIfPresent(lltok::comma));
7904 
7905   if (ParseToken(lltok::rparen, "expected ')' here"))
7906     return true;
7907 
7908   return false;
7909 }
7910 
7911 /// FunctionSummary
7912 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
7913 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
7914 ///         [',' OptionalTypeIdInfo]? [',' OptionalRefs]? ')'
7915 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
7916                                     unsigned ID) {
7917   assert(Lex.getKind() == lltok::kw_function);
7918   Lex.Lex();
7919 
7920   StringRef ModulePath;
7921   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
7922       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
7923       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
7924   unsigned InstCount;
7925   std::vector<FunctionSummary::EdgeTy> Calls;
7926   FunctionSummary::TypeIdInfo TypeIdInfo;
7927   std::vector<ValueInfo> Refs;
7928   // Default is all-zeros (conservative values).
7929   FunctionSummary::FFlags FFlags = {};
7930   if (ParseToken(lltok::colon, "expected ':' here") ||
7931       ParseToken(lltok::lparen, "expected '(' here") ||
7932       ParseModuleReference(ModulePath) ||
7933       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
7934       ParseToken(lltok::comma, "expected ',' here") ||
7935       ParseToken(lltok::kw_insts, "expected 'insts' here") ||
7936       ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount))
7937     return true;
7938 
7939   // Parse optional fields
7940   while (EatIfPresent(lltok::comma)) {
7941     switch (Lex.getKind()) {
7942     case lltok::kw_funcFlags:
7943       if (ParseOptionalFFlags(FFlags))
7944         return true;
7945       break;
7946     case lltok::kw_calls:
7947       if (ParseOptionalCalls(Calls))
7948         return true;
7949       break;
7950     case lltok::kw_typeIdInfo:
7951       if (ParseOptionalTypeIdInfo(TypeIdInfo))
7952         return true;
7953       break;
7954     case lltok::kw_refs:
7955       if (ParseOptionalRefs(Refs))
7956         return true;
7957       break;
7958     default:
7959       return Error(Lex.getLoc(), "expected optional function summary field");
7960     }
7961   }
7962 
7963   if (ParseToken(lltok::rparen, "expected ')' here"))
7964     return true;
7965 
7966   auto FS = llvm::make_unique<FunctionSummary>(
7967       GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
7968       std::move(Calls), std::move(TypeIdInfo.TypeTests),
7969       std::move(TypeIdInfo.TypeTestAssumeVCalls),
7970       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
7971       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
7972       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls));
7973 
7974   FS->setModulePath(ModulePath);
7975 
7976   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
7977                         ID, std::move(FS));
7978 
7979   return false;
7980 }
7981 
7982 /// VariableSummary
7983 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
7984 ///         [',' OptionalRefs]? ')'
7985 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID,
7986                                     unsigned ID) {
7987   assert(Lex.getKind() == lltok::kw_variable);
7988   Lex.Lex();
7989 
7990   StringRef ModulePath;
7991   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
7992       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
7993       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
7994   GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false);
7995   std::vector<ValueInfo> Refs;
7996   if (ParseToken(lltok::colon, "expected ':' here") ||
7997       ParseToken(lltok::lparen, "expected '(' here") ||
7998       ParseModuleReference(ModulePath) ||
7999       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8000       ParseToken(lltok::comma, "expected ',' here") ||
8001       ParseGVarFlags(GVarFlags))
8002     return true;
8003 
8004   // Parse optional refs field
8005   if (EatIfPresent(lltok::comma)) {
8006     if (ParseOptionalRefs(Refs))
8007       return true;
8008   }
8009 
8010   if (ParseToken(lltok::rparen, "expected ')' here"))
8011     return true;
8012 
8013   auto GS =
8014       llvm::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
8015 
8016   GS->setModulePath(ModulePath);
8017 
8018   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8019                         ID, std::move(GS));
8020 
8021   return false;
8022 }
8023 
8024 /// AliasSummary
8025 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
8026 ///         'aliasee' ':' GVReference ')'
8027 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID,
8028                                  unsigned ID) {
8029   assert(Lex.getKind() == lltok::kw_alias);
8030   LocTy Loc = Lex.getLoc();
8031   Lex.Lex();
8032 
8033   StringRef ModulePath;
8034   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8035       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8036       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8037   if (ParseToken(lltok::colon, "expected ':' here") ||
8038       ParseToken(lltok::lparen, "expected '(' here") ||
8039       ParseModuleReference(ModulePath) ||
8040       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8041       ParseToken(lltok::comma, "expected ',' here") ||
8042       ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
8043       ParseToken(lltok::colon, "expected ':' here"))
8044     return true;
8045 
8046   ValueInfo AliaseeVI;
8047   unsigned GVId;
8048   if (ParseGVReference(AliaseeVI, GVId))
8049     return true;
8050 
8051   if (ParseToken(lltok::rparen, "expected ')' here"))
8052     return true;
8053 
8054   auto AS = llvm::make_unique<AliasSummary>(GVFlags);
8055 
8056   AS->setModulePath(ModulePath);
8057 
8058   // Record forward reference if the aliasee is not parsed yet.
8059   if (AliaseeVI.getRef() == FwdVIRef) {
8060     auto FwdRef = ForwardRefAliasees.insert(
8061         std::make_pair(GVId, std::vector<std::pair<AliasSummary *, LocTy>>()));
8062     FwdRef.first->second.push_back(std::make_pair(AS.get(), Loc));
8063   } else {
8064     auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
8065     assert(Summary && "Aliasee must be a definition");
8066     AS->setAliasee(AliaseeVI, Summary);
8067   }
8068 
8069   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8070                         ID, std::move(AS));
8071 
8072   return false;
8073 }
8074 
8075 /// Flag
8076 ///   ::= [0|1]
8077 bool LLParser::ParseFlag(unsigned &Val) {
8078   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
8079     return TokError("expected integer");
8080   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
8081   Lex.Lex();
8082   return false;
8083 }
8084 
8085 /// OptionalFFlags
8086 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8087 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8088 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
8089 ///        [',' 'noInline' ':' Flag]? ')'
8090 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8091   assert(Lex.getKind() == lltok::kw_funcFlags);
8092   Lex.Lex();
8093 
8094   if (ParseToken(lltok::colon, "expected ':' in funcFlags") |
8095       ParseToken(lltok::lparen, "expected '(' in funcFlags"))
8096     return true;
8097 
8098   do {
8099     unsigned Val = 0;
8100     switch (Lex.getKind()) {
8101     case lltok::kw_readNone:
8102       Lex.Lex();
8103       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8104         return true;
8105       FFlags.ReadNone = Val;
8106       break;
8107     case lltok::kw_readOnly:
8108       Lex.Lex();
8109       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8110         return true;
8111       FFlags.ReadOnly = Val;
8112       break;
8113     case lltok::kw_noRecurse:
8114       Lex.Lex();
8115       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8116         return true;
8117       FFlags.NoRecurse = Val;
8118       break;
8119     case lltok::kw_returnDoesNotAlias:
8120       Lex.Lex();
8121       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8122         return true;
8123       FFlags.ReturnDoesNotAlias = Val;
8124       break;
8125     case lltok::kw_noInline:
8126       Lex.Lex();
8127       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8128         return true;
8129       FFlags.NoInline = Val;
8130       break;
8131     default:
8132       return Error(Lex.getLoc(), "expected function flag type");
8133     }
8134   } while (EatIfPresent(lltok::comma));
8135 
8136   if (ParseToken(lltok::rparen, "expected ')' in funcFlags"))
8137     return true;
8138 
8139   return false;
8140 }
8141 
8142 /// OptionalCalls
8143 ///   := 'calls' ':' '(' Call [',' Call]* ')'
8144 /// Call ::= '(' 'callee' ':' GVReference
8145 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
8146 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
8147   assert(Lex.getKind() == lltok::kw_calls);
8148   Lex.Lex();
8149 
8150   if (ParseToken(lltok::colon, "expected ':' in calls") |
8151       ParseToken(lltok::lparen, "expected '(' in calls"))
8152     return true;
8153 
8154   IdToIndexMapType IdToIndexMap;
8155   // Parse each call edge
8156   do {
8157     ValueInfo VI;
8158     if (ParseToken(lltok::lparen, "expected '(' in call") ||
8159         ParseToken(lltok::kw_callee, "expected 'callee' in call") ||
8160         ParseToken(lltok::colon, "expected ':'"))
8161       return true;
8162 
8163     LocTy Loc = Lex.getLoc();
8164     unsigned GVId;
8165     if (ParseGVReference(VI, GVId))
8166       return true;
8167 
8168     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
8169     unsigned RelBF = 0;
8170     if (EatIfPresent(lltok::comma)) {
8171       // Expect either hotness or relbf
8172       if (EatIfPresent(lltok::kw_hotness)) {
8173         if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness))
8174           return true;
8175       } else {
8176         if (ParseToken(lltok::kw_relbf, "expected relbf") ||
8177             ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF))
8178           return true;
8179       }
8180     }
8181     // Keep track of the Call array index needing a forward reference.
8182     // We will save the location of the ValueInfo needing an update, but
8183     // can only do so once the std::vector is finalized.
8184     if (VI.getRef() == FwdVIRef)
8185       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
8186     Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
8187 
8188     if (ParseToken(lltok::rparen, "expected ')' in call"))
8189       return true;
8190   } while (EatIfPresent(lltok::comma));
8191 
8192   // Now that the Calls vector is finalized, it is safe to save the locations
8193   // of any forward GV references that need updating later.
8194   for (auto I : IdToIndexMap) {
8195     for (auto P : I.second) {
8196       assert(Calls[P.first].first.getRef() == FwdVIRef &&
8197              "Forward referenced ValueInfo expected to be empty");
8198       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8199           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8200       FwdRef.first->second.push_back(
8201           std::make_pair(&Calls[P.first].first, P.second));
8202     }
8203   }
8204 
8205   if (ParseToken(lltok::rparen, "expected ')' in calls"))
8206     return true;
8207 
8208   return false;
8209 }
8210 
8211 /// Hotness
8212 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
8213 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) {
8214   switch (Lex.getKind()) {
8215   case lltok::kw_unknown:
8216     Hotness = CalleeInfo::HotnessType::Unknown;
8217     break;
8218   case lltok::kw_cold:
8219     Hotness = CalleeInfo::HotnessType::Cold;
8220     break;
8221   case lltok::kw_none:
8222     Hotness = CalleeInfo::HotnessType::None;
8223     break;
8224   case lltok::kw_hot:
8225     Hotness = CalleeInfo::HotnessType::Hot;
8226     break;
8227   case lltok::kw_critical:
8228     Hotness = CalleeInfo::HotnessType::Critical;
8229     break;
8230   default:
8231     return Error(Lex.getLoc(), "invalid call edge hotness");
8232   }
8233   Lex.Lex();
8234   return false;
8235 }
8236 
8237 /// OptionalRefs
8238 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
8239 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) {
8240   assert(Lex.getKind() == lltok::kw_refs);
8241   Lex.Lex();
8242 
8243   if (ParseToken(lltok::colon, "expected ':' in refs") |
8244       ParseToken(lltok::lparen, "expected '(' in refs"))
8245     return true;
8246 
8247   struct ValueContext {
8248     ValueInfo VI;
8249     unsigned GVId;
8250     LocTy Loc;
8251   };
8252   std::vector<ValueContext> VContexts;
8253   // Parse each ref edge
8254   do {
8255     ValueContext VC;
8256     VC.Loc = Lex.getLoc();
8257     if (ParseGVReference(VC.VI, VC.GVId))
8258       return true;
8259     VContexts.push_back(VC);
8260   } while (EatIfPresent(lltok::comma));
8261 
8262   // Sort value contexts so that ones with readonly ValueInfo are at the end
8263   // of VContexts vector. This is needed to match immutableRefCount() behavior.
8264   llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
8265     return VC1.VI.isReadOnly() < VC2.VI.isReadOnly();
8266   });
8267 
8268   IdToIndexMapType IdToIndexMap;
8269   for (auto &VC : VContexts) {
8270     // Keep track of the Refs array index needing a forward reference.
8271     // We will save the location of the ValueInfo needing an update, but
8272     // can only do so once the std::vector is finalized.
8273     if (VC.VI.getRef() == FwdVIRef)
8274       IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
8275     Refs.push_back(VC.VI);
8276   }
8277 
8278   // Now that the Refs vector is finalized, it is safe to save the locations
8279   // of any forward GV references that need updating later.
8280   for (auto I : IdToIndexMap) {
8281     for (auto P : I.second) {
8282       assert(Refs[P.first].getRef() == FwdVIRef &&
8283              "Forward referenced ValueInfo expected to be empty");
8284       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8285           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8286       FwdRef.first->second.push_back(std::make_pair(&Refs[P.first], P.second));
8287     }
8288   }
8289 
8290   if (ParseToken(lltok::rparen, "expected ')' in refs"))
8291     return true;
8292 
8293   return false;
8294 }
8295 
8296 /// OptionalTypeIdInfo
8297 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
8298 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
8299 ///         [',' TypeCheckedLoadConstVCalls]? ')'
8300 bool LLParser::ParseOptionalTypeIdInfo(
8301     FunctionSummary::TypeIdInfo &TypeIdInfo) {
8302   assert(Lex.getKind() == lltok::kw_typeIdInfo);
8303   Lex.Lex();
8304 
8305   if (ParseToken(lltok::colon, "expected ':' here") ||
8306       ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8307     return true;
8308 
8309   do {
8310     switch (Lex.getKind()) {
8311     case lltok::kw_typeTests:
8312       if (ParseTypeTests(TypeIdInfo.TypeTests))
8313         return true;
8314       break;
8315     case lltok::kw_typeTestAssumeVCalls:
8316       if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
8317                            TypeIdInfo.TypeTestAssumeVCalls))
8318         return true;
8319       break;
8320     case lltok::kw_typeCheckedLoadVCalls:
8321       if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
8322                            TypeIdInfo.TypeCheckedLoadVCalls))
8323         return true;
8324       break;
8325     case lltok::kw_typeTestAssumeConstVCalls:
8326       if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
8327                               TypeIdInfo.TypeTestAssumeConstVCalls))
8328         return true;
8329       break;
8330     case lltok::kw_typeCheckedLoadConstVCalls:
8331       if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
8332                               TypeIdInfo.TypeCheckedLoadConstVCalls))
8333         return true;
8334       break;
8335     default:
8336       return Error(Lex.getLoc(), "invalid typeIdInfo list type");
8337     }
8338   } while (EatIfPresent(lltok::comma));
8339 
8340   if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8341     return true;
8342 
8343   return false;
8344 }
8345 
8346 /// TypeTests
8347 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
8348 ///         [',' (SummaryID | UInt64)]* ')'
8349 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
8350   assert(Lex.getKind() == lltok::kw_typeTests);
8351   Lex.Lex();
8352 
8353   if (ParseToken(lltok::colon, "expected ':' here") ||
8354       ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8355     return true;
8356 
8357   IdToIndexMapType IdToIndexMap;
8358   do {
8359     GlobalValue::GUID GUID = 0;
8360     if (Lex.getKind() == lltok::SummaryID) {
8361       unsigned ID = Lex.getUIntVal();
8362       LocTy Loc = Lex.getLoc();
8363       // Keep track of the TypeTests array index needing a forward reference.
8364       // We will save the location of the GUID needing an update, but
8365       // can only do so once the std::vector is finalized.
8366       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
8367       Lex.Lex();
8368     } else if (ParseUInt64(GUID))
8369       return true;
8370     TypeTests.push_back(GUID);
8371   } while (EatIfPresent(lltok::comma));
8372 
8373   // Now that the TypeTests vector is finalized, it is safe to save the
8374   // locations of any forward GV references that need updating later.
8375   for (auto I : IdToIndexMap) {
8376     for (auto P : I.second) {
8377       assert(TypeTests[P.first] == 0 &&
8378              "Forward referenced type id GUID expected to be 0");
8379       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8380           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8381       FwdRef.first->second.push_back(
8382           std::make_pair(&TypeTests[P.first], P.second));
8383     }
8384   }
8385 
8386   if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8387     return true;
8388 
8389   return false;
8390 }
8391 
8392 /// VFuncIdList
8393 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
8394 bool LLParser::ParseVFuncIdList(
8395     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
8396   assert(Lex.getKind() == Kind);
8397   Lex.Lex();
8398 
8399   if (ParseToken(lltok::colon, "expected ':' here") ||
8400       ParseToken(lltok::lparen, "expected '(' here"))
8401     return true;
8402 
8403   IdToIndexMapType IdToIndexMap;
8404   do {
8405     FunctionSummary::VFuncId VFuncId;
8406     if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
8407       return true;
8408     VFuncIdList.push_back(VFuncId);
8409   } while (EatIfPresent(lltok::comma));
8410 
8411   if (ParseToken(lltok::rparen, "expected ')' here"))
8412     return true;
8413 
8414   // Now that the VFuncIdList vector is finalized, it is safe to save the
8415   // locations of any forward GV references that need updating later.
8416   for (auto I : IdToIndexMap) {
8417     for (auto P : I.second) {
8418       assert(VFuncIdList[P.first].GUID == 0 &&
8419              "Forward referenced type id GUID expected to be 0");
8420       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8421           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8422       FwdRef.first->second.push_back(
8423           std::make_pair(&VFuncIdList[P.first].GUID, P.second));
8424     }
8425   }
8426 
8427   return false;
8428 }
8429 
8430 /// ConstVCallList
8431 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
8432 bool LLParser::ParseConstVCallList(
8433     lltok::Kind Kind,
8434     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
8435   assert(Lex.getKind() == Kind);
8436   Lex.Lex();
8437 
8438   if (ParseToken(lltok::colon, "expected ':' here") ||
8439       ParseToken(lltok::lparen, "expected '(' here"))
8440     return true;
8441 
8442   IdToIndexMapType IdToIndexMap;
8443   do {
8444     FunctionSummary::ConstVCall ConstVCall;
8445     if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
8446       return true;
8447     ConstVCallList.push_back(ConstVCall);
8448   } while (EatIfPresent(lltok::comma));
8449 
8450   if (ParseToken(lltok::rparen, "expected ')' here"))
8451     return true;
8452 
8453   // Now that the ConstVCallList vector is finalized, it is safe to save the
8454   // locations of any forward GV references that need updating later.
8455   for (auto I : IdToIndexMap) {
8456     for (auto P : I.second) {
8457       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
8458              "Forward referenced type id GUID expected to be 0");
8459       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8460           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8461       FwdRef.first->second.push_back(
8462           std::make_pair(&ConstVCallList[P.first].VFunc.GUID, P.second));
8463     }
8464   }
8465 
8466   return false;
8467 }
8468 
8469 /// ConstVCall
8470 ///   ::= '(' VFuncId ',' Args ')'
8471 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
8472                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
8473   if (ParseToken(lltok::lparen, "expected '(' here") ||
8474       ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
8475     return true;
8476 
8477   if (EatIfPresent(lltok::comma))
8478     if (ParseArgs(ConstVCall.Args))
8479       return true;
8480 
8481   if (ParseToken(lltok::rparen, "expected ')' here"))
8482     return true;
8483 
8484   return false;
8485 }
8486 
8487 /// VFuncId
8488 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
8489 ///         'offset' ':' UInt64 ')'
8490 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId,
8491                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
8492   assert(Lex.getKind() == lltok::kw_vFuncId);
8493   Lex.Lex();
8494 
8495   if (ParseToken(lltok::colon, "expected ':' here") ||
8496       ParseToken(lltok::lparen, "expected '(' here"))
8497     return true;
8498 
8499   if (Lex.getKind() == lltok::SummaryID) {
8500     VFuncId.GUID = 0;
8501     unsigned ID = Lex.getUIntVal();
8502     LocTy Loc = Lex.getLoc();
8503     // Keep track of the array index needing a forward reference.
8504     // We will save the location of the GUID needing an update, but
8505     // can only do so once the caller's std::vector is finalized.
8506     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
8507     Lex.Lex();
8508   } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") ||
8509              ParseToken(lltok::colon, "expected ':' here") ||
8510              ParseUInt64(VFuncId.GUID))
8511     return true;
8512 
8513   if (ParseToken(lltok::comma, "expected ',' here") ||
8514       ParseToken(lltok::kw_offset, "expected 'offset' here") ||
8515       ParseToken(lltok::colon, "expected ':' here") ||
8516       ParseUInt64(VFuncId.Offset) ||
8517       ParseToken(lltok::rparen, "expected ')' here"))
8518     return true;
8519 
8520   return false;
8521 }
8522 
8523 /// GVFlags
8524 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
8525 ///         'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ','
8526 ///         'dsoLocal' ':' Flag ',' 'canAutoHide' ':' Flag ')'
8527 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
8528   assert(Lex.getKind() == lltok::kw_flags);
8529   Lex.Lex();
8530 
8531   if (ParseToken(lltok::colon, "expected ':' here") ||
8532       ParseToken(lltok::lparen, "expected '(' here"))
8533     return true;
8534 
8535   do {
8536     unsigned Flag = 0;
8537     switch (Lex.getKind()) {
8538     case lltok::kw_linkage:
8539       Lex.Lex();
8540       if (ParseToken(lltok::colon, "expected ':'"))
8541         return true;
8542       bool HasLinkage;
8543       GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
8544       assert(HasLinkage && "Linkage not optional in summary entry");
8545       Lex.Lex();
8546       break;
8547     case lltok::kw_notEligibleToImport:
8548       Lex.Lex();
8549       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8550         return true;
8551       GVFlags.NotEligibleToImport = Flag;
8552       break;
8553     case lltok::kw_live:
8554       Lex.Lex();
8555       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8556         return true;
8557       GVFlags.Live = Flag;
8558       break;
8559     case lltok::kw_dsoLocal:
8560       Lex.Lex();
8561       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8562         return true;
8563       GVFlags.DSOLocal = Flag;
8564       break;
8565     case lltok::kw_canAutoHide:
8566       Lex.Lex();
8567       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
8568         return true;
8569       GVFlags.CanAutoHide = Flag;
8570       break;
8571     default:
8572       return Error(Lex.getLoc(), "expected gv flag type");
8573     }
8574   } while (EatIfPresent(lltok::comma));
8575 
8576   if (ParseToken(lltok::rparen, "expected ')' here"))
8577     return true;
8578 
8579   return false;
8580 }
8581 
8582 /// GVarFlags
8583 ///   ::= 'varFlags' ':' '(' 'readonly' ':' Flag ')'
8584 bool LLParser::ParseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
8585   assert(Lex.getKind() == lltok::kw_varFlags);
8586   Lex.Lex();
8587 
8588   unsigned Flag = 0;
8589   if (ParseToken(lltok::colon, "expected ':' here") ||
8590       ParseToken(lltok::lparen, "expected '(' here") ||
8591       ParseToken(lltok::kw_readonly, "expected 'readonly' here") ||
8592       ParseToken(lltok::colon, "expected ':' here"))
8593     return true;
8594 
8595   ParseFlag(Flag);
8596   GVarFlags.ReadOnly = Flag;
8597 
8598   if (ParseToken(lltok::rparen, "expected ')' here"))
8599     return true;
8600   return false;
8601 }
8602 
8603 /// ModuleReference
8604 ///   ::= 'module' ':' UInt
8605 bool LLParser::ParseModuleReference(StringRef &ModulePath) {
8606   // Parse module id.
8607   if (ParseToken(lltok::kw_module, "expected 'module' here") ||
8608       ParseToken(lltok::colon, "expected ':' here") ||
8609       ParseToken(lltok::SummaryID, "expected module ID"))
8610     return true;
8611 
8612   unsigned ModuleID = Lex.getUIntVal();
8613   auto I = ModuleIdMap.find(ModuleID);
8614   // We should have already parsed all module IDs
8615   assert(I != ModuleIdMap.end());
8616   ModulePath = I->second;
8617   return false;
8618 }
8619 
8620 /// GVReference
8621 ///   ::= SummaryID
8622 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) {
8623   bool ReadOnly = EatIfPresent(lltok::kw_readonly);
8624   if (ParseToken(lltok::SummaryID, "expected GV ID"))
8625     return true;
8626 
8627   GVId = Lex.getUIntVal();
8628   // Check if we already have a VI for this GV
8629   if (GVId < NumberedValueInfos.size()) {
8630     assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
8631     VI = NumberedValueInfos[GVId];
8632   } else
8633     // We will create a forward reference to the stored location.
8634     VI = ValueInfo(false, FwdVIRef);
8635 
8636   if (ReadOnly)
8637     VI.setReadOnly();
8638   return false;
8639 }
8640