1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the parser class for .ll files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "LLParser.h" 14 #include "LLToken.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/AsmParser/SlotMapping.h" 21 #include "llvm/BinaryFormat/Dwarf.h" 22 #include "llvm/IR/Argument.h" 23 #include "llvm/IR/AutoUpgrade.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallingConv.h" 26 #include "llvm/IR/Comdat.h" 27 #include "llvm/IR/ConstantRange.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DebugInfoMetadata.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/GlobalIFunc.h" 33 #include "llvm/IR/GlobalObject.h" 34 #include "llvm/IR/InlineAsm.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/IR/ValueSymbolTable.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/MathExtras.h" 44 #include "llvm/Support/SaveAndRestore.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include <algorithm> 47 #include <cassert> 48 #include <cstring> 49 #include <iterator> 50 #include <vector> 51 52 using namespace llvm; 53 54 static std::string getTypeString(Type *T) { 55 std::string Result; 56 raw_string_ostream Tmp(Result); 57 Tmp << *T; 58 return Tmp.str(); 59 } 60 61 /// Run: module ::= toplevelentity* 62 bool LLParser::Run(bool UpgradeDebugInfo, 63 DataLayoutCallbackTy DataLayoutCallback) { 64 // Prime the lexer. 65 Lex.Lex(); 66 67 if (Context.shouldDiscardValueNames()) 68 return error( 69 Lex.getLoc(), 70 "Can't read textual IR with a Context that discards named Values"); 71 72 if (M) { 73 if (parseTargetDefinitions()) 74 return true; 75 76 if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple())) 77 M->setDataLayout(*LayoutOverride); 78 } 79 80 return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) || 81 validateEndOfIndex(); 82 } 83 84 bool LLParser::parseStandaloneConstantValue(Constant *&C, 85 const SlotMapping *Slots) { 86 restoreParsingState(Slots); 87 Lex.Lex(); 88 89 Type *Ty = nullptr; 90 if (parseType(Ty) || parseConstantValue(Ty, C)) 91 return true; 92 if (Lex.getKind() != lltok::Eof) 93 return error(Lex.getLoc(), "expected end of string"); 94 return false; 95 } 96 97 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 98 const SlotMapping *Slots) { 99 restoreParsingState(Slots); 100 Lex.Lex(); 101 102 Read = 0; 103 SMLoc Start = Lex.getLoc(); 104 Ty = nullptr; 105 if (parseType(Ty)) 106 return true; 107 SMLoc End = Lex.getLoc(); 108 Read = End.getPointer() - Start.getPointer(); 109 110 return false; 111 } 112 113 void LLParser::restoreParsingState(const SlotMapping *Slots) { 114 if (!Slots) 115 return; 116 NumberedVals = Slots->GlobalValues; 117 NumberedMetadata = Slots->MetadataNodes; 118 for (const auto &I : Slots->NamedTypes) 119 NamedTypes.insert( 120 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 121 for (const auto &I : Slots->Types) 122 NumberedTypes.insert( 123 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 124 } 125 126 /// validateEndOfModule - Do final validity and sanity checks at the end of the 127 /// module. 128 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) { 129 if (!M) 130 return false; 131 // Handle any function attribute group forward references. 132 for (const auto &RAG : ForwardRefAttrGroups) { 133 Value *V = RAG.first; 134 const std::vector<unsigned> &Attrs = RAG.second; 135 AttrBuilder B; 136 137 for (const auto &Attr : Attrs) 138 B.merge(NumberedAttrBuilders[Attr]); 139 140 if (Function *Fn = dyn_cast<Function>(V)) { 141 AttributeList AS = Fn->getAttributes(); 142 AttrBuilder FnAttrs(AS.getFnAttributes()); 143 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 144 145 FnAttrs.merge(B); 146 147 // If the alignment was parsed as an attribute, move to the alignment 148 // field. 149 if (FnAttrs.hasAlignmentAttr()) { 150 Fn->setAlignment(FnAttrs.getAlignment()); 151 FnAttrs.removeAttribute(Attribute::Alignment); 152 } 153 154 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 155 AttributeSet::get(Context, FnAttrs)); 156 Fn->setAttributes(AS); 157 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 158 AttributeList AS = CI->getAttributes(); 159 AttrBuilder FnAttrs(AS.getFnAttributes()); 160 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 161 FnAttrs.merge(B); 162 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 163 AttributeSet::get(Context, FnAttrs)); 164 CI->setAttributes(AS); 165 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 166 AttributeList AS = II->getAttributes(); 167 AttrBuilder FnAttrs(AS.getFnAttributes()); 168 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 169 FnAttrs.merge(B); 170 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 171 AttributeSet::get(Context, FnAttrs)); 172 II->setAttributes(AS); 173 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) { 174 AttributeList AS = CBI->getAttributes(); 175 AttrBuilder FnAttrs(AS.getFnAttributes()); 176 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 177 FnAttrs.merge(B); 178 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 179 AttributeSet::get(Context, FnAttrs)); 180 CBI->setAttributes(AS); 181 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 182 AttrBuilder Attrs(GV->getAttributes()); 183 Attrs.merge(B); 184 GV->setAttributes(AttributeSet::get(Context,Attrs)); 185 } else { 186 llvm_unreachable("invalid object with forward attribute group reference"); 187 } 188 } 189 190 // If there are entries in ForwardRefBlockAddresses at this point, the 191 // function was never defined. 192 if (!ForwardRefBlockAddresses.empty()) 193 return error(ForwardRefBlockAddresses.begin()->first.Loc, 194 "expected function name in blockaddress"); 195 196 for (const auto &NT : NumberedTypes) 197 if (NT.second.second.isValid()) 198 return error(NT.second.second, 199 "use of undefined type '%" + Twine(NT.first) + "'"); 200 201 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 202 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 203 if (I->second.second.isValid()) 204 return error(I->second.second, 205 "use of undefined type named '" + I->getKey() + "'"); 206 207 if (!ForwardRefComdats.empty()) 208 return error(ForwardRefComdats.begin()->second, 209 "use of undefined comdat '$" + 210 ForwardRefComdats.begin()->first + "'"); 211 212 if (!ForwardRefVals.empty()) 213 return error(ForwardRefVals.begin()->second.second, 214 "use of undefined value '@" + ForwardRefVals.begin()->first + 215 "'"); 216 217 if (!ForwardRefValIDs.empty()) 218 return error(ForwardRefValIDs.begin()->second.second, 219 "use of undefined value '@" + 220 Twine(ForwardRefValIDs.begin()->first) + "'"); 221 222 if (!ForwardRefMDNodes.empty()) 223 return error(ForwardRefMDNodes.begin()->second.second, 224 "use of undefined metadata '!" + 225 Twine(ForwardRefMDNodes.begin()->first) + "'"); 226 227 // Resolve metadata cycles. 228 for (auto &N : NumberedMetadata) { 229 if (N.second && !N.second->isResolved()) 230 N.second->resolveCycles(); 231 } 232 233 for (auto *Inst : InstsWithTBAATag) { 234 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 235 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 236 auto *UpgradedMD = UpgradeTBAANode(*MD); 237 if (MD != UpgradedMD) 238 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 239 } 240 241 // Look for intrinsic functions and CallInst that need to be upgraded 242 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 243 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 244 245 // Some types could be renamed during loading if several modules are 246 // loaded in the same LLVMContext (LTO scenario). In this case we should 247 // remangle intrinsics names as well. 248 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) { 249 Function *F = &*FI++; 250 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 251 F->replaceAllUsesWith(Remangled.getValue()); 252 F->eraseFromParent(); 253 } 254 } 255 256 if (UpgradeDebugInfo) 257 llvm::UpgradeDebugInfo(*M); 258 259 UpgradeModuleFlags(*M); 260 UpgradeSectionAttributes(*M); 261 262 if (!Slots) 263 return false; 264 // Initialize the slot mapping. 265 // Because by this point we've parsed and validated everything, we can "steal" 266 // the mapping from LLParser as it doesn't need it anymore. 267 Slots->GlobalValues = std::move(NumberedVals); 268 Slots->MetadataNodes = std::move(NumberedMetadata); 269 for (const auto &I : NamedTypes) 270 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 271 for (const auto &I : NumberedTypes) 272 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 273 274 return false; 275 } 276 277 /// Do final validity and sanity checks at the end of the index. 278 bool LLParser::validateEndOfIndex() { 279 if (!Index) 280 return false; 281 282 if (!ForwardRefValueInfos.empty()) 283 return error(ForwardRefValueInfos.begin()->second.front().second, 284 "use of undefined summary '^" + 285 Twine(ForwardRefValueInfos.begin()->first) + "'"); 286 287 if (!ForwardRefAliasees.empty()) 288 return error(ForwardRefAliasees.begin()->second.front().second, 289 "use of undefined summary '^" + 290 Twine(ForwardRefAliasees.begin()->first) + "'"); 291 292 if (!ForwardRefTypeIds.empty()) 293 return error(ForwardRefTypeIds.begin()->second.front().second, 294 "use of undefined type id summary '^" + 295 Twine(ForwardRefTypeIds.begin()->first) + "'"); 296 297 return false; 298 } 299 300 //===----------------------------------------------------------------------===// 301 // Top-Level Entities 302 //===----------------------------------------------------------------------===// 303 304 bool LLParser::parseTargetDefinitions() { 305 while (true) { 306 switch (Lex.getKind()) { 307 case lltok::kw_target: 308 if (parseTargetDefinition()) 309 return true; 310 break; 311 case lltok::kw_source_filename: 312 if (parseSourceFileName()) 313 return true; 314 break; 315 default: 316 return false; 317 } 318 } 319 } 320 321 bool LLParser::parseTopLevelEntities() { 322 // If there is no Module, then parse just the summary index entries. 323 if (!M) { 324 while (true) { 325 switch (Lex.getKind()) { 326 case lltok::Eof: 327 return false; 328 case lltok::SummaryID: 329 if (parseSummaryEntry()) 330 return true; 331 break; 332 case lltok::kw_source_filename: 333 if (parseSourceFileName()) 334 return true; 335 break; 336 default: 337 // Skip everything else 338 Lex.Lex(); 339 } 340 } 341 } 342 while (true) { 343 switch (Lex.getKind()) { 344 default: 345 return tokError("expected top-level entity"); 346 case lltok::Eof: return false; 347 case lltok::kw_declare: 348 if (parseDeclare()) 349 return true; 350 break; 351 case lltok::kw_define: 352 if (parseDefine()) 353 return true; 354 break; 355 case lltok::kw_module: 356 if (parseModuleAsm()) 357 return true; 358 break; 359 case lltok::kw_deplibs: 360 if (parseDepLibs()) 361 return true; 362 break; 363 case lltok::LocalVarID: 364 if (parseUnnamedType()) 365 return true; 366 break; 367 case lltok::LocalVar: 368 if (parseNamedType()) 369 return true; 370 break; 371 case lltok::GlobalID: 372 if (parseUnnamedGlobal()) 373 return true; 374 break; 375 case lltok::GlobalVar: 376 if (parseNamedGlobal()) 377 return true; 378 break; 379 case lltok::ComdatVar: if (parseComdat()) return true; break; 380 case lltok::exclaim: 381 if (parseStandaloneMetadata()) 382 return true; 383 break; 384 case lltok::SummaryID: 385 if (parseSummaryEntry()) 386 return true; 387 break; 388 case lltok::MetadataVar: 389 if (parseNamedMetadata()) 390 return true; 391 break; 392 case lltok::kw_attributes: 393 if (parseUnnamedAttrGrp()) 394 return true; 395 break; 396 case lltok::kw_uselistorder: 397 if (parseUseListOrder()) 398 return true; 399 break; 400 case lltok::kw_uselistorder_bb: 401 if (parseUseListOrderBB()) 402 return true; 403 break; 404 } 405 } 406 } 407 408 /// toplevelentity 409 /// ::= 'module' 'asm' STRINGCONSTANT 410 bool LLParser::parseModuleAsm() { 411 assert(Lex.getKind() == lltok::kw_module); 412 Lex.Lex(); 413 414 std::string AsmStr; 415 if (parseToken(lltok::kw_asm, "expected 'module asm'") || 416 parseStringConstant(AsmStr)) 417 return true; 418 419 M->appendModuleInlineAsm(AsmStr); 420 return false; 421 } 422 423 /// toplevelentity 424 /// ::= 'target' 'triple' '=' STRINGCONSTANT 425 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 426 bool LLParser::parseTargetDefinition() { 427 assert(Lex.getKind() == lltok::kw_target); 428 std::string Str; 429 switch (Lex.Lex()) { 430 default: 431 return tokError("unknown target property"); 432 case lltok::kw_triple: 433 Lex.Lex(); 434 if (parseToken(lltok::equal, "expected '=' after target triple") || 435 parseStringConstant(Str)) 436 return true; 437 M->setTargetTriple(Str); 438 return false; 439 case lltok::kw_datalayout: 440 Lex.Lex(); 441 if (parseToken(lltok::equal, "expected '=' after target datalayout") || 442 parseStringConstant(Str)) 443 return true; 444 M->setDataLayout(Str); 445 return false; 446 } 447 } 448 449 /// toplevelentity 450 /// ::= 'source_filename' '=' STRINGCONSTANT 451 bool LLParser::parseSourceFileName() { 452 assert(Lex.getKind() == lltok::kw_source_filename); 453 Lex.Lex(); 454 if (parseToken(lltok::equal, "expected '=' after source_filename") || 455 parseStringConstant(SourceFileName)) 456 return true; 457 if (M) 458 M->setSourceFileName(SourceFileName); 459 return false; 460 } 461 462 /// toplevelentity 463 /// ::= 'deplibs' '=' '[' ']' 464 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 465 /// FIXME: Remove in 4.0. Currently parse, but ignore. 466 bool LLParser::parseDepLibs() { 467 assert(Lex.getKind() == lltok::kw_deplibs); 468 Lex.Lex(); 469 if (parseToken(lltok::equal, "expected '=' after deplibs") || 470 parseToken(lltok::lsquare, "expected '=' after deplibs")) 471 return true; 472 473 if (EatIfPresent(lltok::rsquare)) 474 return false; 475 476 do { 477 std::string Str; 478 if (parseStringConstant(Str)) 479 return true; 480 } while (EatIfPresent(lltok::comma)); 481 482 return parseToken(lltok::rsquare, "expected ']' at end of list"); 483 } 484 485 /// parseUnnamedType: 486 /// ::= LocalVarID '=' 'type' type 487 bool LLParser::parseUnnamedType() { 488 LocTy TypeLoc = Lex.getLoc(); 489 unsigned TypeID = Lex.getUIntVal(); 490 Lex.Lex(); // eat LocalVarID; 491 492 if (parseToken(lltok::equal, "expected '=' after name") || 493 parseToken(lltok::kw_type, "expected 'type' after '='")) 494 return true; 495 496 Type *Result = nullptr; 497 if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result)) 498 return true; 499 500 if (!isa<StructType>(Result)) { 501 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 502 if (Entry.first) 503 return error(TypeLoc, "non-struct types may not be recursive"); 504 Entry.first = Result; 505 Entry.second = SMLoc(); 506 } 507 508 return false; 509 } 510 511 /// toplevelentity 512 /// ::= LocalVar '=' 'type' type 513 bool LLParser::parseNamedType() { 514 std::string Name = Lex.getStrVal(); 515 LocTy NameLoc = Lex.getLoc(); 516 Lex.Lex(); // eat LocalVar. 517 518 if (parseToken(lltok::equal, "expected '=' after name") || 519 parseToken(lltok::kw_type, "expected 'type' after name")) 520 return true; 521 522 Type *Result = nullptr; 523 if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result)) 524 return true; 525 526 if (!isa<StructType>(Result)) { 527 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 528 if (Entry.first) 529 return error(NameLoc, "non-struct types may not be recursive"); 530 Entry.first = Result; 531 Entry.second = SMLoc(); 532 } 533 534 return false; 535 } 536 537 /// toplevelentity 538 /// ::= 'declare' FunctionHeader 539 bool LLParser::parseDeclare() { 540 assert(Lex.getKind() == lltok::kw_declare); 541 Lex.Lex(); 542 543 std::vector<std::pair<unsigned, MDNode *>> MDs; 544 while (Lex.getKind() == lltok::MetadataVar) { 545 unsigned MDK; 546 MDNode *N; 547 if (parseMetadataAttachment(MDK, N)) 548 return true; 549 MDs.push_back({MDK, N}); 550 } 551 552 Function *F; 553 if (parseFunctionHeader(F, false)) 554 return true; 555 for (auto &MD : MDs) 556 F->addMetadata(MD.first, *MD.second); 557 return false; 558 } 559 560 /// toplevelentity 561 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 562 bool LLParser::parseDefine() { 563 assert(Lex.getKind() == lltok::kw_define); 564 Lex.Lex(); 565 566 Function *F; 567 return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) || 568 parseFunctionBody(*F); 569 } 570 571 /// parseGlobalType 572 /// ::= 'constant' 573 /// ::= 'global' 574 bool LLParser::parseGlobalType(bool &IsConstant) { 575 if (Lex.getKind() == lltok::kw_constant) 576 IsConstant = true; 577 else if (Lex.getKind() == lltok::kw_global) 578 IsConstant = false; 579 else { 580 IsConstant = false; 581 return tokError("expected 'global' or 'constant'"); 582 } 583 Lex.Lex(); 584 return false; 585 } 586 587 bool LLParser::parseOptionalUnnamedAddr( 588 GlobalVariable::UnnamedAddr &UnnamedAddr) { 589 if (EatIfPresent(lltok::kw_unnamed_addr)) 590 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 591 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 592 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 593 else 594 UnnamedAddr = GlobalValue::UnnamedAddr::None; 595 return false; 596 } 597 598 /// parseUnnamedGlobal: 599 /// OptionalVisibility (ALIAS | IFUNC) ... 600 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 601 /// OptionalDLLStorageClass 602 /// ... -> global variable 603 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 604 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier 605 /// OptionalVisibility 606 /// OptionalDLLStorageClass 607 /// ... -> global variable 608 bool LLParser::parseUnnamedGlobal() { 609 unsigned VarID = NumberedVals.size(); 610 std::string Name; 611 LocTy NameLoc = Lex.getLoc(); 612 613 // Handle the GlobalID form. 614 if (Lex.getKind() == lltok::GlobalID) { 615 if (Lex.getUIntVal() != VarID) 616 return error(Lex.getLoc(), 617 "variable expected to be numbered '%" + Twine(VarID) + "'"); 618 Lex.Lex(); // eat GlobalID; 619 620 if (parseToken(lltok::equal, "expected '=' after name")) 621 return true; 622 } 623 624 bool HasLinkage; 625 unsigned Linkage, Visibility, DLLStorageClass; 626 bool DSOLocal; 627 GlobalVariable::ThreadLocalMode TLM; 628 GlobalVariable::UnnamedAddr UnnamedAddr; 629 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 630 DSOLocal) || 631 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 632 return true; 633 634 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 635 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 636 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 637 638 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 639 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 640 } 641 642 /// parseNamedGlobal: 643 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 644 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 645 /// OptionalVisibility OptionalDLLStorageClass 646 /// ... -> global variable 647 bool LLParser::parseNamedGlobal() { 648 assert(Lex.getKind() == lltok::GlobalVar); 649 LocTy NameLoc = Lex.getLoc(); 650 std::string Name = Lex.getStrVal(); 651 Lex.Lex(); 652 653 bool HasLinkage; 654 unsigned Linkage, Visibility, DLLStorageClass; 655 bool DSOLocal; 656 GlobalVariable::ThreadLocalMode TLM; 657 GlobalVariable::UnnamedAddr UnnamedAddr; 658 if (parseToken(lltok::equal, "expected '=' in global variable") || 659 parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 660 DSOLocal) || 661 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 662 return true; 663 664 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 665 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 666 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 667 668 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 669 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 670 } 671 672 bool LLParser::parseComdat() { 673 assert(Lex.getKind() == lltok::ComdatVar); 674 std::string Name = Lex.getStrVal(); 675 LocTy NameLoc = Lex.getLoc(); 676 Lex.Lex(); 677 678 if (parseToken(lltok::equal, "expected '=' here")) 679 return true; 680 681 if (parseToken(lltok::kw_comdat, "expected comdat keyword")) 682 return tokError("expected comdat type"); 683 684 Comdat::SelectionKind SK; 685 switch (Lex.getKind()) { 686 default: 687 return tokError("unknown selection kind"); 688 case lltok::kw_any: 689 SK = Comdat::Any; 690 break; 691 case lltok::kw_exactmatch: 692 SK = Comdat::ExactMatch; 693 break; 694 case lltok::kw_largest: 695 SK = Comdat::Largest; 696 break; 697 case lltok::kw_noduplicates: 698 SK = Comdat::NoDuplicates; 699 break; 700 case lltok::kw_samesize: 701 SK = Comdat::SameSize; 702 break; 703 } 704 Lex.Lex(); 705 706 // See if the comdat was forward referenced, if so, use the comdat. 707 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 708 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 709 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 710 return error(NameLoc, "redefinition of comdat '$" + Name + "'"); 711 712 Comdat *C; 713 if (I != ComdatSymTab.end()) 714 C = &I->second; 715 else 716 C = M->getOrInsertComdat(Name); 717 C->setSelectionKind(SK); 718 719 return false; 720 } 721 722 // MDString: 723 // ::= '!' STRINGCONSTANT 724 bool LLParser::parseMDString(MDString *&Result) { 725 std::string Str; 726 if (parseStringConstant(Str)) 727 return true; 728 Result = MDString::get(Context, Str); 729 return false; 730 } 731 732 // MDNode: 733 // ::= '!' MDNodeNumber 734 bool LLParser::parseMDNodeID(MDNode *&Result) { 735 // !{ ..., !42, ... } 736 LocTy IDLoc = Lex.getLoc(); 737 unsigned MID = 0; 738 if (parseUInt32(MID)) 739 return true; 740 741 // If not a forward reference, just return it now. 742 if (NumberedMetadata.count(MID)) { 743 Result = NumberedMetadata[MID]; 744 return false; 745 } 746 747 // Otherwise, create MDNode forward reference. 748 auto &FwdRef = ForwardRefMDNodes[MID]; 749 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 750 751 Result = FwdRef.first.get(); 752 NumberedMetadata[MID].reset(Result); 753 return false; 754 } 755 756 /// parseNamedMetadata: 757 /// !foo = !{ !1, !2 } 758 bool LLParser::parseNamedMetadata() { 759 assert(Lex.getKind() == lltok::MetadataVar); 760 std::string Name = Lex.getStrVal(); 761 Lex.Lex(); 762 763 if (parseToken(lltok::equal, "expected '=' here") || 764 parseToken(lltok::exclaim, "Expected '!' here") || 765 parseToken(lltok::lbrace, "Expected '{' here")) 766 return true; 767 768 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 769 if (Lex.getKind() != lltok::rbrace) 770 do { 771 MDNode *N = nullptr; 772 // parse DIExpressions inline as a special case. They are still MDNodes, 773 // so they can still appear in named metadata. Remove this logic if they 774 // become plain Metadata. 775 if (Lex.getKind() == lltok::MetadataVar && 776 Lex.getStrVal() == "DIExpression") { 777 if (parseDIExpression(N, /*IsDistinct=*/false)) 778 return true; 779 } else if (parseToken(lltok::exclaim, "Expected '!' here") || 780 parseMDNodeID(N)) { 781 return true; 782 } 783 NMD->addOperand(N); 784 } while (EatIfPresent(lltok::comma)); 785 786 return parseToken(lltok::rbrace, "expected end of metadata node"); 787 } 788 789 /// parseStandaloneMetadata: 790 /// !42 = !{...} 791 bool LLParser::parseStandaloneMetadata() { 792 assert(Lex.getKind() == lltok::exclaim); 793 Lex.Lex(); 794 unsigned MetadataID = 0; 795 796 MDNode *Init; 797 if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here")) 798 return true; 799 800 // Detect common error, from old metadata syntax. 801 if (Lex.getKind() == lltok::Type) 802 return tokError("unexpected type in metadata definition"); 803 804 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 805 if (Lex.getKind() == lltok::MetadataVar) { 806 if (parseSpecializedMDNode(Init, IsDistinct)) 807 return true; 808 } else if (parseToken(lltok::exclaim, "Expected '!' here") || 809 parseMDTuple(Init, IsDistinct)) 810 return true; 811 812 // See if this was forward referenced, if so, handle it. 813 auto FI = ForwardRefMDNodes.find(MetadataID); 814 if (FI != ForwardRefMDNodes.end()) { 815 FI->second.first->replaceAllUsesWith(Init); 816 ForwardRefMDNodes.erase(FI); 817 818 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 819 } else { 820 if (NumberedMetadata.count(MetadataID)) 821 return tokError("Metadata id is already used"); 822 NumberedMetadata[MetadataID].reset(Init); 823 } 824 825 return false; 826 } 827 828 // Skips a single module summary entry. 829 bool LLParser::skipModuleSummaryEntry() { 830 // Each module summary entry consists of a tag for the entry 831 // type, followed by a colon, then the fields which may be surrounded by 832 // nested sets of parentheses. The "tag:" looks like a Label. Once parsing 833 // support is in place we will look for the tokens corresponding to the 834 // expected tags. 835 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module && 836 Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags && 837 Lex.getKind() != lltok::kw_blockcount) 838 return tokError( 839 "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the " 840 "start of summary entry"); 841 if (Lex.getKind() == lltok::kw_flags) 842 return parseSummaryIndexFlags(); 843 if (Lex.getKind() == lltok::kw_blockcount) 844 return parseBlockCount(); 845 Lex.Lex(); 846 if (parseToken(lltok::colon, "expected ':' at start of summary entry") || 847 parseToken(lltok::lparen, "expected '(' at start of summary entry")) 848 return true; 849 // Now walk through the parenthesized entry, until the number of open 850 // parentheses goes back down to 0 (the first '(' was parsed above). 851 unsigned NumOpenParen = 1; 852 do { 853 switch (Lex.getKind()) { 854 case lltok::lparen: 855 NumOpenParen++; 856 break; 857 case lltok::rparen: 858 NumOpenParen--; 859 break; 860 case lltok::Eof: 861 return tokError("found end of file while parsing summary entry"); 862 default: 863 // Skip everything in between parentheses. 864 break; 865 } 866 Lex.Lex(); 867 } while (NumOpenParen > 0); 868 return false; 869 } 870 871 /// SummaryEntry 872 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry 873 bool LLParser::parseSummaryEntry() { 874 assert(Lex.getKind() == lltok::SummaryID); 875 unsigned SummaryID = Lex.getUIntVal(); 876 877 // For summary entries, colons should be treated as distinct tokens, 878 // not an indication of the end of a label token. 879 Lex.setIgnoreColonInIdentifiers(true); 880 881 Lex.Lex(); 882 if (parseToken(lltok::equal, "expected '=' here")) 883 return true; 884 885 // If we don't have an index object, skip the summary entry. 886 if (!Index) 887 return skipModuleSummaryEntry(); 888 889 bool result = false; 890 switch (Lex.getKind()) { 891 case lltok::kw_gv: 892 result = parseGVEntry(SummaryID); 893 break; 894 case lltok::kw_module: 895 result = parseModuleEntry(SummaryID); 896 break; 897 case lltok::kw_typeid: 898 result = parseTypeIdEntry(SummaryID); 899 break; 900 case lltok::kw_typeidCompatibleVTable: 901 result = parseTypeIdCompatibleVtableEntry(SummaryID); 902 break; 903 case lltok::kw_flags: 904 result = parseSummaryIndexFlags(); 905 break; 906 case lltok::kw_blockcount: 907 result = parseBlockCount(); 908 break; 909 default: 910 result = error(Lex.getLoc(), "unexpected summary kind"); 911 break; 912 } 913 Lex.setIgnoreColonInIdentifiers(false); 914 return result; 915 } 916 917 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 918 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 919 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 920 } 921 922 // If there was an explicit dso_local, update GV. In the absence of an explicit 923 // dso_local we keep the default value. 924 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { 925 if (DSOLocal) 926 GV.setDSOLocal(true); 927 } 928 929 /// parseIndirectSymbol: 930 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 931 /// OptionalVisibility OptionalDLLStorageClass 932 /// OptionalThreadLocal OptionalUnnamedAddr 933 /// 'alias|ifunc' IndirectSymbol IndirectSymbolAttr* 934 /// 935 /// IndirectSymbol 936 /// ::= TypeAndValue 937 /// 938 /// IndirectSymbolAttr 939 /// ::= ',' 'partition' StringConstant 940 /// 941 /// Everything through OptionalUnnamedAddr has already been parsed. 942 /// 943 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc, 944 unsigned L, unsigned Visibility, 945 unsigned DLLStorageClass, bool DSOLocal, 946 GlobalVariable::ThreadLocalMode TLM, 947 GlobalVariable::UnnamedAddr UnnamedAddr) { 948 bool IsAlias; 949 if (Lex.getKind() == lltok::kw_alias) 950 IsAlias = true; 951 else if (Lex.getKind() == lltok::kw_ifunc) 952 IsAlias = false; 953 else 954 llvm_unreachable("Not an alias or ifunc!"); 955 Lex.Lex(); 956 957 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 958 959 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 960 return error(NameLoc, "invalid linkage type for alias"); 961 962 if (!isValidVisibilityForLinkage(Visibility, L)) 963 return error(NameLoc, 964 "symbol with local linkage must have default visibility"); 965 966 Type *Ty; 967 LocTy ExplicitTypeLoc = Lex.getLoc(); 968 if (parseType(Ty) || 969 parseToken(lltok::comma, "expected comma after alias or ifunc's type")) 970 return true; 971 972 Constant *Aliasee; 973 LocTy AliaseeLoc = Lex.getLoc(); 974 if (Lex.getKind() != lltok::kw_bitcast && 975 Lex.getKind() != lltok::kw_getelementptr && 976 Lex.getKind() != lltok::kw_addrspacecast && 977 Lex.getKind() != lltok::kw_inttoptr) { 978 if (parseGlobalTypeAndValue(Aliasee)) 979 return true; 980 } else { 981 // The bitcast dest type is not present, it is implied by the dest type. 982 ValID ID; 983 if (parseValID(ID)) 984 return true; 985 if (ID.Kind != ValID::t_Constant) 986 return error(AliaseeLoc, "invalid aliasee"); 987 Aliasee = ID.ConstantVal; 988 } 989 990 Type *AliaseeType = Aliasee->getType(); 991 auto *PTy = dyn_cast<PointerType>(AliaseeType); 992 if (!PTy) 993 return error(AliaseeLoc, "An alias or ifunc must have pointer type"); 994 unsigned AddrSpace = PTy->getAddressSpace(); 995 996 if (IsAlias && Ty != PTy->getElementType()) 997 return error(ExplicitTypeLoc, 998 "explicit pointee type doesn't match operand's pointee type"); 999 1000 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) 1001 return error(ExplicitTypeLoc, 1002 "explicit pointee type should be a function type"); 1003 1004 GlobalValue *GVal = nullptr; 1005 1006 // See if the alias was forward referenced, if so, prepare to replace the 1007 // forward reference. 1008 if (!Name.empty()) { 1009 GVal = M->getNamedValue(Name); 1010 if (GVal) { 1011 if (!ForwardRefVals.erase(Name)) 1012 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1013 } 1014 } else { 1015 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1016 if (I != ForwardRefValIDs.end()) { 1017 GVal = I->second.first; 1018 ForwardRefValIDs.erase(I); 1019 } 1020 } 1021 1022 // Okay, create the alias but do not insert it into the module yet. 1023 std::unique_ptr<GlobalIndirectSymbol> GA; 1024 if (IsAlias) 1025 GA.reset(GlobalAlias::create(Ty, AddrSpace, 1026 (GlobalValue::LinkageTypes)Linkage, Name, 1027 Aliasee, /*Parent*/ nullptr)); 1028 else 1029 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 1030 (GlobalValue::LinkageTypes)Linkage, Name, 1031 Aliasee, /*Parent*/ nullptr)); 1032 GA->setThreadLocalMode(TLM); 1033 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1034 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1035 GA->setUnnamedAddr(UnnamedAddr); 1036 maybeSetDSOLocal(DSOLocal, *GA); 1037 1038 // At this point we've parsed everything except for the IndirectSymbolAttrs. 1039 // Now parse them if there are any. 1040 while (Lex.getKind() == lltok::comma) { 1041 Lex.Lex(); 1042 1043 if (Lex.getKind() == lltok::kw_partition) { 1044 Lex.Lex(); 1045 GA->setPartition(Lex.getStrVal()); 1046 if (parseToken(lltok::StringConstant, "expected partition string")) 1047 return true; 1048 } else { 1049 return tokError("unknown alias or ifunc property!"); 1050 } 1051 } 1052 1053 if (Name.empty()) 1054 NumberedVals.push_back(GA.get()); 1055 1056 if (GVal) { 1057 // Verify that types agree. 1058 if (GVal->getType() != GA->getType()) 1059 return error( 1060 ExplicitTypeLoc, 1061 "forward reference and definition of alias have different types"); 1062 1063 // If they agree, just RAUW the old value with the alias and remove the 1064 // forward ref info. 1065 GVal->replaceAllUsesWith(GA.get()); 1066 GVal->eraseFromParent(); 1067 } 1068 1069 // Insert into the module, we know its name won't collide now. 1070 if (IsAlias) 1071 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 1072 else 1073 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 1074 assert(GA->getName() == Name && "Should not be a name conflict!"); 1075 1076 // The module owns this now 1077 GA.release(); 1078 1079 return false; 1080 } 1081 1082 /// parseGlobal 1083 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 1084 /// OptionalVisibility OptionalDLLStorageClass 1085 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 1086 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 1087 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 1088 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 1089 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 1090 /// Const OptionalAttrs 1091 /// 1092 /// Everything up to and including OptionalUnnamedAddr has been parsed 1093 /// already. 1094 /// 1095 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc, 1096 unsigned Linkage, bool HasLinkage, 1097 unsigned Visibility, unsigned DLLStorageClass, 1098 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 1099 GlobalVariable::UnnamedAddr UnnamedAddr) { 1100 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 1101 return error(NameLoc, 1102 "symbol with local linkage must have default visibility"); 1103 1104 unsigned AddrSpace; 1105 bool IsConstant, IsExternallyInitialized; 1106 LocTy IsExternallyInitializedLoc; 1107 LocTy TyLoc; 1108 1109 Type *Ty = nullptr; 1110 if (parseOptionalAddrSpace(AddrSpace) || 1111 parseOptionalToken(lltok::kw_externally_initialized, 1112 IsExternallyInitialized, 1113 &IsExternallyInitializedLoc) || 1114 parseGlobalType(IsConstant) || parseType(Ty, TyLoc)) 1115 return true; 1116 1117 // If the linkage is specified and is external, then no initializer is 1118 // present. 1119 Constant *Init = nullptr; 1120 if (!HasLinkage || 1121 !GlobalValue::isValidDeclarationLinkage( 1122 (GlobalValue::LinkageTypes)Linkage)) { 1123 if (parseGlobalValue(Ty, Init)) 1124 return true; 1125 } 1126 1127 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 1128 return error(TyLoc, "invalid type for global variable"); 1129 1130 GlobalValue *GVal = nullptr; 1131 1132 // See if the global was forward referenced, if so, use the global. 1133 if (!Name.empty()) { 1134 GVal = M->getNamedValue(Name); 1135 if (GVal) { 1136 if (!ForwardRefVals.erase(Name)) 1137 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1138 } 1139 } else { 1140 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1141 if (I != ForwardRefValIDs.end()) { 1142 GVal = I->second.first; 1143 ForwardRefValIDs.erase(I); 1144 } 1145 } 1146 1147 GlobalVariable *GV; 1148 if (!GVal) { 1149 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 1150 Name, nullptr, GlobalVariable::NotThreadLocal, 1151 AddrSpace); 1152 } else { 1153 if (GVal->getValueType() != Ty) 1154 return error( 1155 TyLoc, 1156 "forward reference and definition of global have different types"); 1157 1158 GV = cast<GlobalVariable>(GVal); 1159 1160 // Move the forward-reference to the correct spot in the module. 1161 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 1162 } 1163 1164 if (Name.empty()) 1165 NumberedVals.push_back(GV); 1166 1167 // Set the parsed properties on the global. 1168 if (Init) 1169 GV->setInitializer(Init); 1170 GV->setConstant(IsConstant); 1171 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 1172 maybeSetDSOLocal(DSOLocal, *GV); 1173 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1174 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1175 GV->setExternallyInitialized(IsExternallyInitialized); 1176 GV->setThreadLocalMode(TLM); 1177 GV->setUnnamedAddr(UnnamedAddr); 1178 1179 // parse attributes on the global. 1180 while (Lex.getKind() == lltok::comma) { 1181 Lex.Lex(); 1182 1183 if (Lex.getKind() == lltok::kw_section) { 1184 Lex.Lex(); 1185 GV->setSection(Lex.getStrVal()); 1186 if (parseToken(lltok::StringConstant, "expected global section string")) 1187 return true; 1188 } else if (Lex.getKind() == lltok::kw_partition) { 1189 Lex.Lex(); 1190 GV->setPartition(Lex.getStrVal()); 1191 if (parseToken(lltok::StringConstant, "expected partition string")) 1192 return true; 1193 } else if (Lex.getKind() == lltok::kw_align) { 1194 MaybeAlign Alignment; 1195 if (parseOptionalAlignment(Alignment)) 1196 return true; 1197 GV->setAlignment(Alignment); 1198 } else if (Lex.getKind() == lltok::MetadataVar) { 1199 if (parseGlobalObjectMetadataAttachment(*GV)) 1200 return true; 1201 } else { 1202 Comdat *C; 1203 if (parseOptionalComdat(Name, C)) 1204 return true; 1205 if (C) 1206 GV->setComdat(C); 1207 else 1208 return tokError("unknown global variable property!"); 1209 } 1210 } 1211 1212 AttrBuilder Attrs; 1213 LocTy BuiltinLoc; 1214 std::vector<unsigned> FwdRefAttrGrps; 1215 if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 1216 return true; 1217 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 1218 GV->setAttributes(AttributeSet::get(Context, Attrs)); 1219 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 1220 } 1221 1222 return false; 1223 } 1224 1225 /// parseUnnamedAttrGrp 1226 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 1227 bool LLParser::parseUnnamedAttrGrp() { 1228 assert(Lex.getKind() == lltok::kw_attributes); 1229 LocTy AttrGrpLoc = Lex.getLoc(); 1230 Lex.Lex(); 1231 1232 if (Lex.getKind() != lltok::AttrGrpID) 1233 return tokError("expected attribute group id"); 1234 1235 unsigned VarID = Lex.getUIntVal(); 1236 std::vector<unsigned> unused; 1237 LocTy BuiltinLoc; 1238 Lex.Lex(); 1239 1240 if (parseToken(lltok::equal, "expected '=' here") || 1241 parseToken(lltok::lbrace, "expected '{' here") || 1242 parseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 1243 BuiltinLoc) || 1244 parseToken(lltok::rbrace, "expected end of attribute group")) 1245 return true; 1246 1247 if (!NumberedAttrBuilders[VarID].hasAttributes()) 1248 return error(AttrGrpLoc, "attribute group has no attributes"); 1249 1250 return false; 1251 } 1252 1253 /// parseFnAttributeValuePairs 1254 /// ::= <attr> | <attr> '=' <value> 1255 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B, 1256 std::vector<unsigned> &FwdRefAttrGrps, 1257 bool inAttrGrp, LocTy &BuiltinLoc) { 1258 bool HaveError = false; 1259 1260 B.clear(); 1261 1262 while (true) { 1263 lltok::Kind Token = Lex.getKind(); 1264 if (Token == lltok::kw_builtin) 1265 BuiltinLoc = Lex.getLoc(); 1266 switch (Token) { 1267 default: 1268 if (!inAttrGrp) return HaveError; 1269 return error(Lex.getLoc(), "unterminated attribute group"); 1270 case lltok::rbrace: 1271 // Finished. 1272 return false; 1273 1274 case lltok::AttrGrpID: { 1275 // Allow a function to reference an attribute group: 1276 // 1277 // define void @foo() #1 { ... } 1278 if (inAttrGrp) 1279 HaveError |= error( 1280 Lex.getLoc(), 1281 "cannot have an attribute group reference in an attribute group"); 1282 1283 unsigned AttrGrpNum = Lex.getUIntVal(); 1284 if (inAttrGrp) break; 1285 1286 // Save the reference to the attribute group. We'll fill it in later. 1287 FwdRefAttrGrps.push_back(AttrGrpNum); 1288 break; 1289 } 1290 // Target-dependent attributes: 1291 case lltok::StringConstant: { 1292 if (parseStringAttribute(B)) 1293 return true; 1294 continue; 1295 } 1296 1297 // Target-independent attributes: 1298 case lltok::kw_align: { 1299 // As a hack, we allow function alignment to be initially parsed as an 1300 // attribute on a function declaration/definition or added to an attribute 1301 // group and later moved to the alignment field. 1302 MaybeAlign Alignment; 1303 if (inAttrGrp) { 1304 Lex.Lex(); 1305 uint32_t Value = 0; 1306 if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value)) 1307 return true; 1308 Alignment = Align(Value); 1309 } else { 1310 if (parseOptionalAlignment(Alignment)) 1311 return true; 1312 } 1313 B.addAlignmentAttr(Alignment); 1314 continue; 1315 } 1316 case lltok::kw_alignstack: { 1317 unsigned Alignment; 1318 if (inAttrGrp) { 1319 Lex.Lex(); 1320 if (parseToken(lltok::equal, "expected '=' here") || 1321 parseUInt32(Alignment)) 1322 return true; 1323 } else { 1324 if (parseOptionalStackAlignment(Alignment)) 1325 return true; 1326 } 1327 B.addStackAlignmentAttr(Alignment); 1328 continue; 1329 } 1330 case lltok::kw_allocsize: { 1331 unsigned ElemSizeArg; 1332 Optional<unsigned> NumElemsArg; 1333 // inAttrGrp doesn't matter; we only support allocsize(a[, b]) 1334 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1335 return true; 1336 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1337 continue; 1338 } 1339 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 1340 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 1341 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 1342 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 1343 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 1344 case lltok::kw_inaccessiblememonly: 1345 B.addAttribute(Attribute::InaccessibleMemOnly); break; 1346 case lltok::kw_inaccessiblemem_or_argmemonly: 1347 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break; 1348 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 1349 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 1350 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 1351 case lltok::kw_mustprogress: 1352 B.addAttribute(Attribute::MustProgress); 1353 break; 1354 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 1355 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 1356 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 1357 case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break; 1358 case lltok::kw_noimplicitfloat: 1359 B.addAttribute(Attribute::NoImplicitFloat); break; 1360 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1361 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1362 case lltok::kw_nomerge: B.addAttribute(Attribute::NoMerge); break; 1363 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1364 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1365 case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break; 1366 case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break; 1367 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1368 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1369 case lltok::kw_null_pointer_is_valid: 1370 B.addAttribute(Attribute::NullPointerIsValid); break; 1371 case lltok::kw_optforfuzzing: 1372 B.addAttribute(Attribute::OptForFuzzing); break; 1373 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1374 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1375 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1376 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1377 case lltok::kw_returns_twice: 1378 B.addAttribute(Attribute::ReturnsTwice); break; 1379 case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break; 1380 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1381 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1382 case lltok::kw_sspstrong: 1383 B.addAttribute(Attribute::StackProtectStrong); break; 1384 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1385 case lltok::kw_shadowcallstack: 1386 B.addAttribute(Attribute::ShadowCallStack); break; 1387 case lltok::kw_sanitize_address: 1388 B.addAttribute(Attribute::SanitizeAddress); break; 1389 case lltok::kw_sanitize_hwaddress: 1390 B.addAttribute(Attribute::SanitizeHWAddress); break; 1391 case lltok::kw_sanitize_memtag: 1392 B.addAttribute(Attribute::SanitizeMemTag); break; 1393 case lltok::kw_sanitize_thread: 1394 B.addAttribute(Attribute::SanitizeThread); break; 1395 case lltok::kw_sanitize_memory: 1396 B.addAttribute(Attribute::SanitizeMemory); break; 1397 case lltok::kw_speculative_load_hardening: 1398 B.addAttribute(Attribute::SpeculativeLoadHardening); 1399 break; 1400 case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break; 1401 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1402 case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break; 1403 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1404 case lltok::kw_preallocated: { 1405 Type *Ty; 1406 if (parsePreallocated(Ty)) 1407 return true; 1408 B.addPreallocatedAttr(Ty); 1409 break; 1410 } 1411 1412 // error handling. 1413 case lltok::kw_inreg: 1414 case lltok::kw_signext: 1415 case lltok::kw_zeroext: 1416 HaveError |= 1417 error(Lex.getLoc(), "invalid use of attribute on a function"); 1418 break; 1419 case lltok::kw_byval: 1420 case lltok::kw_dereferenceable: 1421 case lltok::kw_dereferenceable_or_null: 1422 case lltok::kw_inalloca: 1423 case lltok::kw_nest: 1424 case lltok::kw_noalias: 1425 case lltok::kw_noundef: 1426 case lltok::kw_nocapture: 1427 case lltok::kw_nonnull: 1428 case lltok::kw_returned: 1429 case lltok::kw_sret: 1430 case lltok::kw_swifterror: 1431 case lltok::kw_swiftself: 1432 case lltok::kw_immarg: 1433 case lltok::kw_byref: 1434 HaveError |= 1435 error(Lex.getLoc(), 1436 "invalid use of parameter-only attribute on a function"); 1437 break; 1438 } 1439 1440 // parsePreallocated() consumes token 1441 if (Token != lltok::kw_preallocated) 1442 Lex.Lex(); 1443 } 1444 } 1445 1446 //===----------------------------------------------------------------------===// 1447 // GlobalValue Reference/Resolution Routines. 1448 //===----------------------------------------------------------------------===// 1449 1450 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1451 const std::string &Name) { 1452 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1453 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, 1454 PTy->getAddressSpace(), Name, M); 1455 else 1456 return new GlobalVariable(*M, PTy->getElementType(), false, 1457 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1458 nullptr, GlobalVariable::NotThreadLocal, 1459 PTy->getAddressSpace()); 1460 } 1461 1462 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty, 1463 Value *Val, bool IsCall) { 1464 if (Val->getType() == Ty) 1465 return Val; 1466 // For calls we also accept variables in the program address space. 1467 Type *SuggestedTy = Ty; 1468 if (IsCall && isa<PointerType>(Ty)) { 1469 Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo( 1470 M->getDataLayout().getProgramAddressSpace()); 1471 SuggestedTy = TyInProgAS; 1472 if (Val->getType() == TyInProgAS) 1473 return Val; 1474 } 1475 if (Ty->isLabelTy()) 1476 error(Loc, "'" + Name + "' is not a basic block"); 1477 else 1478 error(Loc, "'" + Name + "' defined with type '" + 1479 getTypeString(Val->getType()) + "' but expected '" + 1480 getTypeString(SuggestedTy) + "'"); 1481 return nullptr; 1482 } 1483 1484 /// getGlobalVal - Get a value with the specified name or ID, creating a 1485 /// forward reference record if needed. This can return null if the value 1486 /// exists but does not have the right type. 1487 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty, 1488 LocTy Loc, bool IsCall) { 1489 PointerType *PTy = dyn_cast<PointerType>(Ty); 1490 if (!PTy) { 1491 error(Loc, "global variable reference must have pointer type"); 1492 return nullptr; 1493 } 1494 1495 // Look this name up in the normal function symbol table. 1496 GlobalValue *Val = 1497 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1498 1499 // If this is a forward reference for the value, see if we already created a 1500 // forward ref record. 1501 if (!Val) { 1502 auto I = ForwardRefVals.find(Name); 1503 if (I != ForwardRefVals.end()) 1504 Val = I->second.first; 1505 } 1506 1507 // If we have the value in the symbol table or fwd-ref table, return it. 1508 if (Val) 1509 return cast_or_null<GlobalValue>( 1510 checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall)); 1511 1512 // Otherwise, create a new forward reference for this value and remember it. 1513 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1514 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1515 return FwdVal; 1516 } 1517 1518 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc, 1519 bool IsCall) { 1520 PointerType *PTy = dyn_cast<PointerType>(Ty); 1521 if (!PTy) { 1522 error(Loc, "global variable reference must have pointer type"); 1523 return nullptr; 1524 } 1525 1526 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1527 1528 // If this is a forward reference for the value, see if we already created a 1529 // forward ref record. 1530 if (!Val) { 1531 auto I = ForwardRefValIDs.find(ID); 1532 if (I != ForwardRefValIDs.end()) 1533 Val = I->second.first; 1534 } 1535 1536 // If we have the value in the symbol table or fwd-ref table, return it. 1537 if (Val) 1538 return cast_or_null<GlobalValue>( 1539 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall)); 1540 1541 // Otherwise, create a new forward reference for this value and remember it. 1542 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1543 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1544 return FwdVal; 1545 } 1546 1547 //===----------------------------------------------------------------------===// 1548 // Comdat Reference/Resolution Routines. 1549 //===----------------------------------------------------------------------===// 1550 1551 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1552 // Look this name up in the comdat symbol table. 1553 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1554 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1555 if (I != ComdatSymTab.end()) 1556 return &I->second; 1557 1558 // Otherwise, create a new forward reference for this value and remember it. 1559 Comdat *C = M->getOrInsertComdat(Name); 1560 ForwardRefComdats[Name] = Loc; 1561 return C; 1562 } 1563 1564 //===----------------------------------------------------------------------===// 1565 // Helper Routines. 1566 //===----------------------------------------------------------------------===// 1567 1568 /// parseToken - If the current token has the specified kind, eat it and return 1569 /// success. Otherwise, emit the specified error and return failure. 1570 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) { 1571 if (Lex.getKind() != T) 1572 return tokError(ErrMsg); 1573 Lex.Lex(); 1574 return false; 1575 } 1576 1577 /// parseStringConstant 1578 /// ::= StringConstant 1579 bool LLParser::parseStringConstant(std::string &Result) { 1580 if (Lex.getKind() != lltok::StringConstant) 1581 return tokError("expected string constant"); 1582 Result = Lex.getStrVal(); 1583 Lex.Lex(); 1584 return false; 1585 } 1586 1587 /// parseUInt32 1588 /// ::= uint32 1589 bool LLParser::parseUInt32(uint32_t &Val) { 1590 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1591 return tokError("expected integer"); 1592 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1593 if (Val64 != unsigned(Val64)) 1594 return tokError("expected 32-bit integer (too large)"); 1595 Val = Val64; 1596 Lex.Lex(); 1597 return false; 1598 } 1599 1600 /// parseUInt64 1601 /// ::= uint64 1602 bool LLParser::parseUInt64(uint64_t &Val) { 1603 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1604 return tokError("expected integer"); 1605 Val = Lex.getAPSIntVal().getLimitedValue(); 1606 Lex.Lex(); 1607 return false; 1608 } 1609 1610 /// parseTLSModel 1611 /// := 'localdynamic' 1612 /// := 'initialexec' 1613 /// := 'localexec' 1614 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1615 switch (Lex.getKind()) { 1616 default: 1617 return tokError("expected localdynamic, initialexec or localexec"); 1618 case lltok::kw_localdynamic: 1619 TLM = GlobalVariable::LocalDynamicTLSModel; 1620 break; 1621 case lltok::kw_initialexec: 1622 TLM = GlobalVariable::InitialExecTLSModel; 1623 break; 1624 case lltok::kw_localexec: 1625 TLM = GlobalVariable::LocalExecTLSModel; 1626 break; 1627 } 1628 1629 Lex.Lex(); 1630 return false; 1631 } 1632 1633 /// parseOptionalThreadLocal 1634 /// := /*empty*/ 1635 /// := 'thread_local' 1636 /// := 'thread_local' '(' tlsmodel ')' 1637 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1638 TLM = GlobalVariable::NotThreadLocal; 1639 if (!EatIfPresent(lltok::kw_thread_local)) 1640 return false; 1641 1642 TLM = GlobalVariable::GeneralDynamicTLSModel; 1643 if (Lex.getKind() == lltok::lparen) { 1644 Lex.Lex(); 1645 return parseTLSModel(TLM) || 1646 parseToken(lltok::rparen, "expected ')' after thread local model"); 1647 } 1648 return false; 1649 } 1650 1651 /// parseOptionalAddrSpace 1652 /// := /*empty*/ 1653 /// := 'addrspace' '(' uint32 ')' 1654 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) { 1655 AddrSpace = DefaultAS; 1656 if (!EatIfPresent(lltok::kw_addrspace)) 1657 return false; 1658 return parseToken(lltok::lparen, "expected '(' in address space") || 1659 parseUInt32(AddrSpace) || 1660 parseToken(lltok::rparen, "expected ')' in address space"); 1661 } 1662 1663 /// parseStringAttribute 1664 /// := StringConstant 1665 /// := StringConstant '=' StringConstant 1666 bool LLParser::parseStringAttribute(AttrBuilder &B) { 1667 std::string Attr = Lex.getStrVal(); 1668 Lex.Lex(); 1669 std::string Val; 1670 if (EatIfPresent(lltok::equal) && parseStringConstant(Val)) 1671 return true; 1672 B.addAttribute(Attr, Val); 1673 return false; 1674 } 1675 1676 /// parseOptionalParamAttrs - parse a potentially empty list of parameter 1677 /// attributes. 1678 bool LLParser::parseOptionalParamAttrs(AttrBuilder &B) { 1679 bool HaveError = false; 1680 1681 B.clear(); 1682 1683 while (true) { 1684 lltok::Kind Token = Lex.getKind(); 1685 switch (Token) { 1686 default: // End of attributes. 1687 return HaveError; 1688 case lltok::StringConstant: { 1689 if (parseStringAttribute(B)) 1690 return true; 1691 continue; 1692 } 1693 case lltok::kw_align: { 1694 MaybeAlign Alignment; 1695 if (parseOptionalAlignment(Alignment, true)) 1696 return true; 1697 B.addAlignmentAttr(Alignment); 1698 continue; 1699 } 1700 case lltok::kw_byval: { 1701 Type *Ty; 1702 if (parseOptionalTypeAttr(Ty, lltok::kw_byval)) 1703 return true; 1704 B.addByValAttr(Ty); 1705 continue; 1706 } 1707 case lltok::kw_sret: { 1708 Type *Ty; 1709 if (parseOptionalTypeAttr(Ty, lltok::kw_sret)) 1710 return true; 1711 B.addStructRetAttr(Ty); 1712 continue; 1713 } 1714 case lltok::kw_preallocated: { 1715 Type *Ty; 1716 if (parsePreallocated(Ty)) 1717 return true; 1718 B.addPreallocatedAttr(Ty); 1719 continue; 1720 } 1721 case lltok::kw_dereferenceable: { 1722 uint64_t Bytes; 1723 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1724 return true; 1725 B.addDereferenceableAttr(Bytes); 1726 continue; 1727 } 1728 case lltok::kw_dereferenceable_or_null: { 1729 uint64_t Bytes; 1730 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1731 return true; 1732 B.addDereferenceableOrNullAttr(Bytes); 1733 continue; 1734 } 1735 case lltok::kw_byref: { 1736 Type *Ty; 1737 if (parseByRef(Ty)) 1738 return true; 1739 B.addByRefAttr(Ty); 1740 continue; 1741 } 1742 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break; 1743 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1744 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1745 case lltok::kw_noundef: 1746 B.addAttribute(Attribute::NoUndef); 1747 break; 1748 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1749 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1750 case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break; 1751 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1752 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1753 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1754 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1755 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1756 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break; 1757 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break; 1758 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1759 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1760 case lltok::kw_immarg: B.addAttribute(Attribute::ImmArg); break; 1761 1762 case lltok::kw_alignstack: 1763 case lltok::kw_alwaysinline: 1764 case lltok::kw_argmemonly: 1765 case lltok::kw_builtin: 1766 case lltok::kw_inlinehint: 1767 case lltok::kw_jumptable: 1768 case lltok::kw_minsize: 1769 case lltok::kw_mustprogress: 1770 case lltok::kw_naked: 1771 case lltok::kw_nobuiltin: 1772 case lltok::kw_noduplicate: 1773 case lltok::kw_noimplicitfloat: 1774 case lltok::kw_noinline: 1775 case lltok::kw_nonlazybind: 1776 case lltok::kw_nomerge: 1777 case lltok::kw_noredzone: 1778 case lltok::kw_noreturn: 1779 case lltok::kw_nocf_check: 1780 case lltok::kw_nounwind: 1781 case lltok::kw_optforfuzzing: 1782 case lltok::kw_optnone: 1783 case lltok::kw_optsize: 1784 case lltok::kw_returns_twice: 1785 case lltok::kw_sanitize_address: 1786 case lltok::kw_sanitize_hwaddress: 1787 case lltok::kw_sanitize_memtag: 1788 case lltok::kw_sanitize_memory: 1789 case lltok::kw_sanitize_thread: 1790 case lltok::kw_speculative_load_hardening: 1791 case lltok::kw_ssp: 1792 case lltok::kw_sspreq: 1793 case lltok::kw_sspstrong: 1794 case lltok::kw_safestack: 1795 case lltok::kw_shadowcallstack: 1796 case lltok::kw_strictfp: 1797 case lltok::kw_uwtable: 1798 HaveError |= 1799 error(Lex.getLoc(), "invalid use of function-only attribute"); 1800 break; 1801 } 1802 1803 Lex.Lex(); 1804 } 1805 } 1806 1807 /// parseOptionalReturnAttrs - parse a potentially empty list of return 1808 /// attributes. 1809 bool LLParser::parseOptionalReturnAttrs(AttrBuilder &B) { 1810 bool HaveError = false; 1811 1812 B.clear(); 1813 1814 while (true) { 1815 lltok::Kind Token = Lex.getKind(); 1816 switch (Token) { 1817 default: // End of attributes. 1818 return HaveError; 1819 case lltok::StringConstant: { 1820 if (parseStringAttribute(B)) 1821 return true; 1822 continue; 1823 } 1824 case lltok::kw_dereferenceable: { 1825 uint64_t Bytes; 1826 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1827 return true; 1828 B.addDereferenceableAttr(Bytes); 1829 continue; 1830 } 1831 case lltok::kw_dereferenceable_or_null: { 1832 uint64_t Bytes; 1833 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1834 return true; 1835 B.addDereferenceableOrNullAttr(Bytes); 1836 continue; 1837 } 1838 case lltok::kw_align: { 1839 MaybeAlign Alignment; 1840 if (parseOptionalAlignment(Alignment)) 1841 return true; 1842 B.addAlignmentAttr(Alignment); 1843 continue; 1844 } 1845 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1846 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1847 case lltok::kw_noundef: 1848 B.addAttribute(Attribute::NoUndef); 1849 break; 1850 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1851 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1852 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1853 1854 // error handling. 1855 case lltok::kw_byval: 1856 case lltok::kw_inalloca: 1857 case lltok::kw_nest: 1858 case lltok::kw_nocapture: 1859 case lltok::kw_returned: 1860 case lltok::kw_sret: 1861 case lltok::kw_swifterror: 1862 case lltok::kw_swiftself: 1863 case lltok::kw_immarg: 1864 case lltok::kw_byref: 1865 HaveError |= 1866 error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1867 break; 1868 1869 case lltok::kw_alignstack: 1870 case lltok::kw_alwaysinline: 1871 case lltok::kw_argmemonly: 1872 case lltok::kw_builtin: 1873 case lltok::kw_cold: 1874 case lltok::kw_inlinehint: 1875 case lltok::kw_jumptable: 1876 case lltok::kw_minsize: 1877 case lltok::kw_mustprogress: 1878 case lltok::kw_naked: 1879 case lltok::kw_nobuiltin: 1880 case lltok::kw_noduplicate: 1881 case lltok::kw_noimplicitfloat: 1882 case lltok::kw_noinline: 1883 case lltok::kw_nonlazybind: 1884 case lltok::kw_nomerge: 1885 case lltok::kw_noredzone: 1886 case lltok::kw_noreturn: 1887 case lltok::kw_nocf_check: 1888 case lltok::kw_nounwind: 1889 case lltok::kw_optforfuzzing: 1890 case lltok::kw_optnone: 1891 case lltok::kw_optsize: 1892 case lltok::kw_returns_twice: 1893 case lltok::kw_sanitize_address: 1894 case lltok::kw_sanitize_hwaddress: 1895 case lltok::kw_sanitize_memtag: 1896 case lltok::kw_sanitize_memory: 1897 case lltok::kw_sanitize_thread: 1898 case lltok::kw_speculative_load_hardening: 1899 case lltok::kw_ssp: 1900 case lltok::kw_sspreq: 1901 case lltok::kw_sspstrong: 1902 case lltok::kw_safestack: 1903 case lltok::kw_shadowcallstack: 1904 case lltok::kw_strictfp: 1905 case lltok::kw_uwtable: 1906 HaveError |= 1907 error(Lex.getLoc(), "invalid use of function-only attribute"); 1908 break; 1909 case lltok::kw_readnone: 1910 case lltok::kw_readonly: 1911 HaveError |= 1912 error(Lex.getLoc(), "invalid use of attribute on return type"); 1913 break; 1914 case lltok::kw_preallocated: 1915 HaveError |= 1916 error(Lex.getLoc(), 1917 "invalid use of parameter-only/call site-only attribute"); 1918 break; 1919 } 1920 1921 Lex.Lex(); 1922 } 1923 } 1924 1925 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1926 HasLinkage = true; 1927 switch (Kind) { 1928 default: 1929 HasLinkage = false; 1930 return GlobalValue::ExternalLinkage; 1931 case lltok::kw_private: 1932 return GlobalValue::PrivateLinkage; 1933 case lltok::kw_internal: 1934 return GlobalValue::InternalLinkage; 1935 case lltok::kw_weak: 1936 return GlobalValue::WeakAnyLinkage; 1937 case lltok::kw_weak_odr: 1938 return GlobalValue::WeakODRLinkage; 1939 case lltok::kw_linkonce: 1940 return GlobalValue::LinkOnceAnyLinkage; 1941 case lltok::kw_linkonce_odr: 1942 return GlobalValue::LinkOnceODRLinkage; 1943 case lltok::kw_available_externally: 1944 return GlobalValue::AvailableExternallyLinkage; 1945 case lltok::kw_appending: 1946 return GlobalValue::AppendingLinkage; 1947 case lltok::kw_common: 1948 return GlobalValue::CommonLinkage; 1949 case lltok::kw_extern_weak: 1950 return GlobalValue::ExternalWeakLinkage; 1951 case lltok::kw_external: 1952 return GlobalValue::ExternalLinkage; 1953 } 1954 } 1955 1956 /// parseOptionalLinkage 1957 /// ::= /*empty*/ 1958 /// ::= 'private' 1959 /// ::= 'internal' 1960 /// ::= 'weak' 1961 /// ::= 'weak_odr' 1962 /// ::= 'linkonce' 1963 /// ::= 'linkonce_odr' 1964 /// ::= 'available_externally' 1965 /// ::= 'appending' 1966 /// ::= 'common' 1967 /// ::= 'extern_weak' 1968 /// ::= 'external' 1969 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1970 unsigned &Visibility, 1971 unsigned &DLLStorageClass, bool &DSOLocal) { 1972 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1973 if (HasLinkage) 1974 Lex.Lex(); 1975 parseOptionalDSOLocal(DSOLocal); 1976 parseOptionalVisibility(Visibility); 1977 parseOptionalDLLStorageClass(DLLStorageClass); 1978 1979 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 1980 return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 1981 } 1982 1983 return false; 1984 } 1985 1986 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) { 1987 switch (Lex.getKind()) { 1988 default: 1989 DSOLocal = false; 1990 break; 1991 case lltok::kw_dso_local: 1992 DSOLocal = true; 1993 Lex.Lex(); 1994 break; 1995 case lltok::kw_dso_preemptable: 1996 DSOLocal = false; 1997 Lex.Lex(); 1998 break; 1999 } 2000 } 2001 2002 /// parseOptionalVisibility 2003 /// ::= /*empty*/ 2004 /// ::= 'default' 2005 /// ::= 'hidden' 2006 /// ::= 'protected' 2007 /// 2008 void LLParser::parseOptionalVisibility(unsigned &Res) { 2009 switch (Lex.getKind()) { 2010 default: 2011 Res = GlobalValue::DefaultVisibility; 2012 return; 2013 case lltok::kw_default: 2014 Res = GlobalValue::DefaultVisibility; 2015 break; 2016 case lltok::kw_hidden: 2017 Res = GlobalValue::HiddenVisibility; 2018 break; 2019 case lltok::kw_protected: 2020 Res = GlobalValue::ProtectedVisibility; 2021 break; 2022 } 2023 Lex.Lex(); 2024 } 2025 2026 /// parseOptionalDLLStorageClass 2027 /// ::= /*empty*/ 2028 /// ::= 'dllimport' 2029 /// ::= 'dllexport' 2030 /// 2031 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) { 2032 switch (Lex.getKind()) { 2033 default: 2034 Res = GlobalValue::DefaultStorageClass; 2035 return; 2036 case lltok::kw_dllimport: 2037 Res = GlobalValue::DLLImportStorageClass; 2038 break; 2039 case lltok::kw_dllexport: 2040 Res = GlobalValue::DLLExportStorageClass; 2041 break; 2042 } 2043 Lex.Lex(); 2044 } 2045 2046 /// parseOptionalCallingConv 2047 /// ::= /*empty*/ 2048 /// ::= 'ccc' 2049 /// ::= 'fastcc' 2050 /// ::= 'intel_ocl_bicc' 2051 /// ::= 'coldcc' 2052 /// ::= 'cfguard_checkcc' 2053 /// ::= 'x86_stdcallcc' 2054 /// ::= 'x86_fastcallcc' 2055 /// ::= 'x86_thiscallcc' 2056 /// ::= 'x86_vectorcallcc' 2057 /// ::= 'arm_apcscc' 2058 /// ::= 'arm_aapcscc' 2059 /// ::= 'arm_aapcs_vfpcc' 2060 /// ::= 'aarch64_vector_pcs' 2061 /// ::= 'aarch64_sve_vector_pcs' 2062 /// ::= 'msp430_intrcc' 2063 /// ::= 'avr_intrcc' 2064 /// ::= 'avr_signalcc' 2065 /// ::= 'ptx_kernel' 2066 /// ::= 'ptx_device' 2067 /// ::= 'spir_func' 2068 /// ::= 'spir_kernel' 2069 /// ::= 'x86_64_sysvcc' 2070 /// ::= 'win64cc' 2071 /// ::= 'webkit_jscc' 2072 /// ::= 'anyregcc' 2073 /// ::= 'preserve_mostcc' 2074 /// ::= 'preserve_allcc' 2075 /// ::= 'ghccc' 2076 /// ::= 'swiftcc' 2077 /// ::= 'x86_intrcc' 2078 /// ::= 'hhvmcc' 2079 /// ::= 'hhvm_ccc' 2080 /// ::= 'cxx_fast_tlscc' 2081 /// ::= 'amdgpu_vs' 2082 /// ::= 'amdgpu_ls' 2083 /// ::= 'amdgpu_hs' 2084 /// ::= 'amdgpu_es' 2085 /// ::= 'amdgpu_gs' 2086 /// ::= 'amdgpu_ps' 2087 /// ::= 'amdgpu_cs' 2088 /// ::= 'amdgpu_kernel' 2089 /// ::= 'tailcc' 2090 /// ::= 'cc' UINT 2091 /// 2092 bool LLParser::parseOptionalCallingConv(unsigned &CC) { 2093 switch (Lex.getKind()) { 2094 default: CC = CallingConv::C; return false; 2095 case lltok::kw_ccc: CC = CallingConv::C; break; 2096 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 2097 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 2098 case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break; 2099 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 2100 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 2101 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 2102 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 2103 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 2104 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 2105 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 2106 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 2107 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break; 2108 case lltok::kw_aarch64_sve_vector_pcs: 2109 CC = CallingConv::AArch64_SVE_VectorCall; 2110 break; 2111 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 2112 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 2113 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 2114 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 2115 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 2116 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 2117 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 2118 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 2119 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 2120 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 2121 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 2122 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 2123 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 2124 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 2125 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 2126 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 2127 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 2128 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 2129 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 2130 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 2131 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 2132 case lltok::kw_amdgpu_gfx: CC = CallingConv::AMDGPU_Gfx; break; 2133 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 2134 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 2135 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 2136 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 2137 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 2138 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 2139 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 2140 case lltok::kw_tailcc: CC = CallingConv::Tail; break; 2141 case lltok::kw_cc: { 2142 Lex.Lex(); 2143 return parseUInt32(CC); 2144 } 2145 } 2146 2147 Lex.Lex(); 2148 return false; 2149 } 2150 2151 /// parseMetadataAttachment 2152 /// ::= !dbg !42 2153 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 2154 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 2155 2156 std::string Name = Lex.getStrVal(); 2157 Kind = M->getMDKindID(Name); 2158 Lex.Lex(); 2159 2160 return parseMDNode(MD); 2161 } 2162 2163 /// parseInstructionMetadata 2164 /// ::= !dbg !42 (',' !dbg !57)* 2165 bool LLParser::parseInstructionMetadata(Instruction &Inst) { 2166 do { 2167 if (Lex.getKind() != lltok::MetadataVar) 2168 return tokError("expected metadata after comma"); 2169 2170 unsigned MDK; 2171 MDNode *N; 2172 if (parseMetadataAttachment(MDK, N)) 2173 return true; 2174 2175 Inst.setMetadata(MDK, N); 2176 if (MDK == LLVMContext::MD_tbaa) 2177 InstsWithTBAATag.push_back(&Inst); 2178 2179 // If this is the end of the list, we're done. 2180 } while (EatIfPresent(lltok::comma)); 2181 return false; 2182 } 2183 2184 /// parseGlobalObjectMetadataAttachment 2185 /// ::= !dbg !57 2186 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) { 2187 unsigned MDK; 2188 MDNode *N; 2189 if (parseMetadataAttachment(MDK, N)) 2190 return true; 2191 2192 GO.addMetadata(MDK, *N); 2193 return false; 2194 } 2195 2196 /// parseOptionalFunctionMetadata 2197 /// ::= (!dbg !57)* 2198 bool LLParser::parseOptionalFunctionMetadata(Function &F) { 2199 while (Lex.getKind() == lltok::MetadataVar) 2200 if (parseGlobalObjectMetadataAttachment(F)) 2201 return true; 2202 return false; 2203 } 2204 2205 /// parseOptionalAlignment 2206 /// ::= /* empty */ 2207 /// ::= 'align' 4 2208 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) { 2209 Alignment = None; 2210 if (!EatIfPresent(lltok::kw_align)) 2211 return false; 2212 LocTy AlignLoc = Lex.getLoc(); 2213 uint32_t Value = 0; 2214 2215 LocTy ParenLoc = Lex.getLoc(); 2216 bool HaveParens = false; 2217 if (AllowParens) { 2218 if (EatIfPresent(lltok::lparen)) 2219 HaveParens = true; 2220 } 2221 2222 if (parseUInt32(Value)) 2223 return true; 2224 2225 if (HaveParens && !EatIfPresent(lltok::rparen)) 2226 return error(ParenLoc, "expected ')'"); 2227 2228 if (!isPowerOf2_32(Value)) 2229 return error(AlignLoc, "alignment is not a power of two"); 2230 if (Value > Value::MaximumAlignment) 2231 return error(AlignLoc, "huge alignments are not supported yet"); 2232 Alignment = Align(Value); 2233 return false; 2234 } 2235 2236 /// parseOptionalDerefAttrBytes 2237 /// ::= /* empty */ 2238 /// ::= AttrKind '(' 4 ')' 2239 /// 2240 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 2241 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind, 2242 uint64_t &Bytes) { 2243 assert((AttrKind == lltok::kw_dereferenceable || 2244 AttrKind == lltok::kw_dereferenceable_or_null) && 2245 "contract!"); 2246 2247 Bytes = 0; 2248 if (!EatIfPresent(AttrKind)) 2249 return false; 2250 LocTy ParenLoc = Lex.getLoc(); 2251 if (!EatIfPresent(lltok::lparen)) 2252 return error(ParenLoc, "expected '('"); 2253 LocTy DerefLoc = Lex.getLoc(); 2254 if (parseUInt64(Bytes)) 2255 return true; 2256 ParenLoc = Lex.getLoc(); 2257 if (!EatIfPresent(lltok::rparen)) 2258 return error(ParenLoc, "expected ')'"); 2259 if (!Bytes) 2260 return error(DerefLoc, "dereferenceable bytes must be non-zero"); 2261 return false; 2262 } 2263 2264 /// parseOptionalCommaAlign 2265 /// ::= 2266 /// ::= ',' align 4 2267 /// 2268 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2269 /// end. 2270 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment, 2271 bool &AteExtraComma) { 2272 AteExtraComma = false; 2273 while (EatIfPresent(lltok::comma)) { 2274 // Metadata at the end is an early exit. 2275 if (Lex.getKind() == lltok::MetadataVar) { 2276 AteExtraComma = true; 2277 return false; 2278 } 2279 2280 if (Lex.getKind() != lltok::kw_align) 2281 return error(Lex.getLoc(), "expected metadata or 'align'"); 2282 2283 if (parseOptionalAlignment(Alignment)) 2284 return true; 2285 } 2286 2287 return false; 2288 } 2289 2290 /// parseOptionalCommaAddrSpace 2291 /// ::= 2292 /// ::= ',' addrspace(1) 2293 /// 2294 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2295 /// end. 2296 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc, 2297 bool &AteExtraComma) { 2298 AteExtraComma = false; 2299 while (EatIfPresent(lltok::comma)) { 2300 // Metadata at the end is an early exit. 2301 if (Lex.getKind() == lltok::MetadataVar) { 2302 AteExtraComma = true; 2303 return false; 2304 } 2305 2306 Loc = Lex.getLoc(); 2307 if (Lex.getKind() != lltok::kw_addrspace) 2308 return error(Lex.getLoc(), "expected metadata or 'addrspace'"); 2309 2310 if (parseOptionalAddrSpace(AddrSpace)) 2311 return true; 2312 } 2313 2314 return false; 2315 } 2316 2317 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 2318 Optional<unsigned> &HowManyArg) { 2319 Lex.Lex(); 2320 2321 auto StartParen = Lex.getLoc(); 2322 if (!EatIfPresent(lltok::lparen)) 2323 return error(StartParen, "expected '('"); 2324 2325 if (parseUInt32(BaseSizeArg)) 2326 return true; 2327 2328 if (EatIfPresent(lltok::comma)) { 2329 auto HowManyAt = Lex.getLoc(); 2330 unsigned HowMany; 2331 if (parseUInt32(HowMany)) 2332 return true; 2333 if (HowMany == BaseSizeArg) 2334 return error(HowManyAt, 2335 "'allocsize' indices can't refer to the same parameter"); 2336 HowManyArg = HowMany; 2337 } else 2338 HowManyArg = None; 2339 2340 auto EndParen = Lex.getLoc(); 2341 if (!EatIfPresent(lltok::rparen)) 2342 return error(EndParen, "expected ')'"); 2343 return false; 2344 } 2345 2346 /// parseScopeAndOrdering 2347 /// if isAtomic: ::= SyncScope? AtomicOrdering 2348 /// else: ::= 2349 /// 2350 /// This sets Scope and Ordering to the parsed values. 2351 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID, 2352 AtomicOrdering &Ordering) { 2353 if (!IsAtomic) 2354 return false; 2355 2356 return parseScope(SSID) || parseOrdering(Ordering); 2357 } 2358 2359 /// parseScope 2360 /// ::= syncscope("singlethread" | "<target scope>")? 2361 /// 2362 /// This sets synchronization scope ID to the ID of the parsed value. 2363 bool LLParser::parseScope(SyncScope::ID &SSID) { 2364 SSID = SyncScope::System; 2365 if (EatIfPresent(lltok::kw_syncscope)) { 2366 auto StartParenAt = Lex.getLoc(); 2367 if (!EatIfPresent(lltok::lparen)) 2368 return error(StartParenAt, "Expected '(' in syncscope"); 2369 2370 std::string SSN; 2371 auto SSNAt = Lex.getLoc(); 2372 if (parseStringConstant(SSN)) 2373 return error(SSNAt, "Expected synchronization scope name"); 2374 2375 auto EndParenAt = Lex.getLoc(); 2376 if (!EatIfPresent(lltok::rparen)) 2377 return error(EndParenAt, "Expected ')' in syncscope"); 2378 2379 SSID = Context.getOrInsertSyncScopeID(SSN); 2380 } 2381 2382 return false; 2383 } 2384 2385 /// parseOrdering 2386 /// ::= AtomicOrdering 2387 /// 2388 /// This sets Ordering to the parsed value. 2389 bool LLParser::parseOrdering(AtomicOrdering &Ordering) { 2390 switch (Lex.getKind()) { 2391 default: 2392 return tokError("Expected ordering on atomic instruction"); 2393 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2394 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2395 // Not specified yet: 2396 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2397 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2398 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2399 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2400 case lltok::kw_seq_cst: 2401 Ordering = AtomicOrdering::SequentiallyConsistent; 2402 break; 2403 } 2404 Lex.Lex(); 2405 return false; 2406 } 2407 2408 /// parseOptionalStackAlignment 2409 /// ::= /* empty */ 2410 /// ::= 'alignstack' '(' 4 ')' 2411 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) { 2412 Alignment = 0; 2413 if (!EatIfPresent(lltok::kw_alignstack)) 2414 return false; 2415 LocTy ParenLoc = Lex.getLoc(); 2416 if (!EatIfPresent(lltok::lparen)) 2417 return error(ParenLoc, "expected '('"); 2418 LocTy AlignLoc = Lex.getLoc(); 2419 if (parseUInt32(Alignment)) 2420 return true; 2421 ParenLoc = Lex.getLoc(); 2422 if (!EatIfPresent(lltok::rparen)) 2423 return error(ParenLoc, "expected ')'"); 2424 if (!isPowerOf2_32(Alignment)) 2425 return error(AlignLoc, "stack alignment is not a power of two"); 2426 return false; 2427 } 2428 2429 /// parseIndexList - This parses the index list for an insert/extractvalue 2430 /// instruction. This sets AteExtraComma in the case where we eat an extra 2431 /// comma at the end of the line and find that it is followed by metadata. 2432 /// Clients that don't allow metadata can call the version of this function that 2433 /// only takes one argument. 2434 /// 2435 /// parseIndexList 2436 /// ::= (',' uint32)+ 2437 /// 2438 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices, 2439 bool &AteExtraComma) { 2440 AteExtraComma = false; 2441 2442 if (Lex.getKind() != lltok::comma) 2443 return tokError("expected ',' as start of index list"); 2444 2445 while (EatIfPresent(lltok::comma)) { 2446 if (Lex.getKind() == lltok::MetadataVar) { 2447 if (Indices.empty()) 2448 return tokError("expected index"); 2449 AteExtraComma = true; 2450 return false; 2451 } 2452 unsigned Idx = 0; 2453 if (parseUInt32(Idx)) 2454 return true; 2455 Indices.push_back(Idx); 2456 } 2457 2458 return false; 2459 } 2460 2461 //===----------------------------------------------------------------------===// 2462 // Type Parsing. 2463 //===----------------------------------------------------------------------===// 2464 2465 /// parseType - parse a type. 2466 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2467 SMLoc TypeLoc = Lex.getLoc(); 2468 switch (Lex.getKind()) { 2469 default: 2470 return tokError(Msg); 2471 case lltok::Type: 2472 // Type ::= 'float' | 'void' (etc) 2473 Result = Lex.getTyVal(); 2474 Lex.Lex(); 2475 break; 2476 case lltok::lbrace: 2477 // Type ::= StructType 2478 if (parseAnonStructType(Result, false)) 2479 return true; 2480 break; 2481 case lltok::lsquare: 2482 // Type ::= '[' ... ']' 2483 Lex.Lex(); // eat the lsquare. 2484 if (parseArrayVectorType(Result, false)) 2485 return true; 2486 break; 2487 case lltok::less: // Either vector or packed struct. 2488 // Type ::= '<' ... '>' 2489 Lex.Lex(); 2490 if (Lex.getKind() == lltok::lbrace) { 2491 if (parseAnonStructType(Result, true) || 2492 parseToken(lltok::greater, "expected '>' at end of packed struct")) 2493 return true; 2494 } else if (parseArrayVectorType(Result, true)) 2495 return true; 2496 break; 2497 case lltok::LocalVar: { 2498 // Type ::= %foo 2499 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2500 2501 // If the type hasn't been defined yet, create a forward definition and 2502 // remember where that forward def'n was seen (in case it never is defined). 2503 if (!Entry.first) { 2504 Entry.first = StructType::create(Context, Lex.getStrVal()); 2505 Entry.second = Lex.getLoc(); 2506 } 2507 Result = Entry.first; 2508 Lex.Lex(); 2509 break; 2510 } 2511 2512 case lltok::LocalVarID: { 2513 // Type ::= %4 2514 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2515 2516 // If the type hasn't been defined yet, create a forward definition and 2517 // remember where that forward def'n was seen (in case it never is defined). 2518 if (!Entry.first) { 2519 Entry.first = StructType::create(Context); 2520 Entry.second = Lex.getLoc(); 2521 } 2522 Result = Entry.first; 2523 Lex.Lex(); 2524 break; 2525 } 2526 } 2527 2528 // parse the type suffixes. 2529 while (true) { 2530 switch (Lex.getKind()) { 2531 // End of type. 2532 default: 2533 if (!AllowVoid && Result->isVoidTy()) 2534 return error(TypeLoc, "void type only allowed for function results"); 2535 return false; 2536 2537 // Type ::= Type '*' 2538 case lltok::star: 2539 if (Result->isLabelTy()) 2540 return tokError("basic block pointers are invalid"); 2541 if (Result->isVoidTy()) 2542 return tokError("pointers to void are invalid - use i8* instead"); 2543 if (!PointerType::isValidElementType(Result)) 2544 return tokError("pointer to this type is invalid"); 2545 Result = PointerType::getUnqual(Result); 2546 Lex.Lex(); 2547 break; 2548 2549 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2550 case lltok::kw_addrspace: { 2551 if (Result->isLabelTy()) 2552 return tokError("basic block pointers are invalid"); 2553 if (Result->isVoidTy()) 2554 return tokError("pointers to void are invalid; use i8* instead"); 2555 if (!PointerType::isValidElementType(Result)) 2556 return tokError("pointer to this type is invalid"); 2557 unsigned AddrSpace; 2558 if (parseOptionalAddrSpace(AddrSpace) || 2559 parseToken(lltok::star, "expected '*' in address space")) 2560 return true; 2561 2562 Result = PointerType::get(Result, AddrSpace); 2563 break; 2564 } 2565 2566 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2567 case lltok::lparen: 2568 if (parseFunctionType(Result)) 2569 return true; 2570 break; 2571 } 2572 } 2573 } 2574 2575 /// parseParameterList 2576 /// ::= '(' ')' 2577 /// ::= '(' Arg (',' Arg)* ')' 2578 /// Arg 2579 /// ::= Type OptionalAttributes Value OptionalAttributes 2580 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2581 PerFunctionState &PFS, bool IsMustTailCall, 2582 bool InVarArgsFunc) { 2583 if (parseToken(lltok::lparen, "expected '(' in call")) 2584 return true; 2585 2586 while (Lex.getKind() != lltok::rparen) { 2587 // If this isn't the first argument, we need a comma. 2588 if (!ArgList.empty() && 2589 parseToken(lltok::comma, "expected ',' in argument list")) 2590 return true; 2591 2592 // parse an ellipsis if this is a musttail call in a variadic function. 2593 if (Lex.getKind() == lltok::dotdotdot) { 2594 const char *Msg = "unexpected ellipsis in argument list for "; 2595 if (!IsMustTailCall) 2596 return tokError(Twine(Msg) + "non-musttail call"); 2597 if (!InVarArgsFunc) 2598 return tokError(Twine(Msg) + "musttail call in non-varargs function"); 2599 Lex.Lex(); // Lex the '...', it is purely for readability. 2600 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 2601 } 2602 2603 // parse the argument. 2604 LocTy ArgLoc; 2605 Type *ArgTy = nullptr; 2606 AttrBuilder ArgAttrs; 2607 Value *V; 2608 if (parseType(ArgTy, ArgLoc)) 2609 return true; 2610 2611 if (ArgTy->isMetadataTy()) { 2612 if (parseMetadataAsValue(V, PFS)) 2613 return true; 2614 } else { 2615 // Otherwise, handle normal operands. 2616 if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS)) 2617 return true; 2618 } 2619 ArgList.push_back(ParamInfo( 2620 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2621 } 2622 2623 if (IsMustTailCall && InVarArgsFunc) 2624 return tokError("expected '...' at end of argument list for musttail call " 2625 "in varargs function"); 2626 2627 Lex.Lex(); // Lex the ')'. 2628 return false; 2629 } 2630 2631 /// parseByValWithOptionalType 2632 /// ::= byval 2633 /// ::= byval(<ty>) 2634 bool LLParser::parseOptionalTypeAttr(Type *&Result, lltok::Kind AttrName) { 2635 Result = nullptr; 2636 if (!EatIfPresent(AttrName)) 2637 return true; 2638 if (!EatIfPresent(lltok::lparen)) 2639 return false; 2640 if (parseType(Result)) 2641 return true; 2642 if (!EatIfPresent(lltok::rparen)) 2643 return error(Lex.getLoc(), "expected ')'"); 2644 return false; 2645 } 2646 2647 /// parseRequiredTypeAttr 2648 /// ::= attrname(<ty>) 2649 bool LLParser::parseRequiredTypeAttr(Type *&Result, lltok::Kind AttrName) { 2650 Result = nullptr; 2651 if (!EatIfPresent(AttrName)) 2652 return true; 2653 if (!EatIfPresent(lltok::lparen)) 2654 return error(Lex.getLoc(), "expected '('"); 2655 if (parseType(Result)) 2656 return true; 2657 if (!EatIfPresent(lltok::rparen)) 2658 return error(Lex.getLoc(), "expected ')'"); 2659 return false; 2660 } 2661 2662 /// parsePreallocated 2663 /// ::= preallocated(<ty>) 2664 bool LLParser::parsePreallocated(Type *&Result) { 2665 return parseRequiredTypeAttr(Result, lltok::kw_preallocated); 2666 } 2667 2668 /// parseByRef 2669 /// ::= byref(<type>) 2670 bool LLParser::parseByRef(Type *&Result) { 2671 return parseRequiredTypeAttr(Result, lltok::kw_byref); 2672 } 2673 2674 /// parseOptionalOperandBundles 2675 /// ::= /*empty*/ 2676 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2677 /// 2678 /// OperandBundle 2679 /// ::= bundle-tag '(' ')' 2680 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2681 /// 2682 /// bundle-tag ::= String Constant 2683 bool LLParser::parseOptionalOperandBundles( 2684 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2685 LocTy BeginLoc = Lex.getLoc(); 2686 if (!EatIfPresent(lltok::lsquare)) 2687 return false; 2688 2689 while (Lex.getKind() != lltok::rsquare) { 2690 // If this isn't the first operand bundle, we need a comma. 2691 if (!BundleList.empty() && 2692 parseToken(lltok::comma, "expected ',' in input list")) 2693 return true; 2694 2695 std::string Tag; 2696 if (parseStringConstant(Tag)) 2697 return true; 2698 2699 if (parseToken(lltok::lparen, "expected '(' in operand bundle")) 2700 return true; 2701 2702 std::vector<Value *> Inputs; 2703 while (Lex.getKind() != lltok::rparen) { 2704 // If this isn't the first input, we need a comma. 2705 if (!Inputs.empty() && 2706 parseToken(lltok::comma, "expected ',' in input list")) 2707 return true; 2708 2709 Type *Ty = nullptr; 2710 Value *Input = nullptr; 2711 if (parseType(Ty) || parseValue(Ty, Input, PFS)) 2712 return true; 2713 Inputs.push_back(Input); 2714 } 2715 2716 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2717 2718 Lex.Lex(); // Lex the ')'. 2719 } 2720 2721 if (BundleList.empty()) 2722 return error(BeginLoc, "operand bundle set must not be empty"); 2723 2724 Lex.Lex(); // Lex the ']'. 2725 return false; 2726 } 2727 2728 /// parseArgumentList - parse the argument list for a function type or function 2729 /// prototype. 2730 /// ::= '(' ArgTypeListI ')' 2731 /// ArgTypeListI 2732 /// ::= /*empty*/ 2733 /// ::= '...' 2734 /// ::= ArgTypeList ',' '...' 2735 /// ::= ArgType (',' ArgType)* 2736 /// 2737 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2738 bool &IsVarArg) { 2739 unsigned CurValID = 0; 2740 IsVarArg = false; 2741 assert(Lex.getKind() == lltok::lparen); 2742 Lex.Lex(); // eat the (. 2743 2744 if (Lex.getKind() == lltok::rparen) { 2745 // empty 2746 } else if (Lex.getKind() == lltok::dotdotdot) { 2747 IsVarArg = true; 2748 Lex.Lex(); 2749 } else { 2750 LocTy TypeLoc = Lex.getLoc(); 2751 Type *ArgTy = nullptr; 2752 AttrBuilder Attrs; 2753 std::string Name; 2754 2755 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) 2756 return true; 2757 2758 if (ArgTy->isVoidTy()) 2759 return error(TypeLoc, "argument can not have void type"); 2760 2761 if (Lex.getKind() == lltok::LocalVar) { 2762 Name = Lex.getStrVal(); 2763 Lex.Lex(); 2764 } else if (Lex.getKind() == lltok::LocalVarID) { 2765 if (Lex.getUIntVal() != CurValID) 2766 return error(TypeLoc, "argument expected to be numbered '%" + 2767 Twine(CurValID) + "'"); 2768 ++CurValID; 2769 Lex.Lex(); 2770 } 2771 2772 if (!FunctionType::isValidArgumentType(ArgTy)) 2773 return error(TypeLoc, "invalid type for function argument"); 2774 2775 ArgList.emplace_back(TypeLoc, ArgTy, 2776 AttributeSet::get(ArgTy->getContext(), Attrs), 2777 std::move(Name)); 2778 2779 while (EatIfPresent(lltok::comma)) { 2780 // Handle ... at end of arg list. 2781 if (EatIfPresent(lltok::dotdotdot)) { 2782 IsVarArg = true; 2783 break; 2784 } 2785 2786 // Otherwise must be an argument type. 2787 TypeLoc = Lex.getLoc(); 2788 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) 2789 return true; 2790 2791 if (ArgTy->isVoidTy()) 2792 return error(TypeLoc, "argument can not have void type"); 2793 2794 if (Lex.getKind() == lltok::LocalVar) { 2795 Name = Lex.getStrVal(); 2796 Lex.Lex(); 2797 } else { 2798 if (Lex.getKind() == lltok::LocalVarID) { 2799 if (Lex.getUIntVal() != CurValID) 2800 return error(TypeLoc, "argument expected to be numbered '%" + 2801 Twine(CurValID) + "'"); 2802 Lex.Lex(); 2803 } 2804 ++CurValID; 2805 Name = ""; 2806 } 2807 2808 if (!ArgTy->isFirstClassType()) 2809 return error(TypeLoc, "invalid type for function argument"); 2810 2811 ArgList.emplace_back(TypeLoc, ArgTy, 2812 AttributeSet::get(ArgTy->getContext(), Attrs), 2813 std::move(Name)); 2814 } 2815 } 2816 2817 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 2818 } 2819 2820 /// parseFunctionType 2821 /// ::= Type ArgumentList OptionalAttrs 2822 bool LLParser::parseFunctionType(Type *&Result) { 2823 assert(Lex.getKind() == lltok::lparen); 2824 2825 if (!FunctionType::isValidReturnType(Result)) 2826 return tokError("invalid function return type"); 2827 2828 SmallVector<ArgInfo, 8> ArgList; 2829 bool IsVarArg; 2830 if (parseArgumentList(ArgList, IsVarArg)) 2831 return true; 2832 2833 // Reject names on the arguments lists. 2834 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2835 if (!ArgList[i].Name.empty()) 2836 return error(ArgList[i].Loc, "argument name invalid in function type"); 2837 if (ArgList[i].Attrs.hasAttributes()) 2838 return error(ArgList[i].Loc, 2839 "argument attributes invalid in function type"); 2840 } 2841 2842 SmallVector<Type*, 16> ArgListTy; 2843 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2844 ArgListTy.push_back(ArgList[i].Ty); 2845 2846 Result = FunctionType::get(Result, ArgListTy, IsVarArg); 2847 return false; 2848 } 2849 2850 /// parseAnonStructType - parse an anonymous struct type, which is inlined into 2851 /// other structs. 2852 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) { 2853 SmallVector<Type*, 8> Elts; 2854 if (parseStructBody(Elts)) 2855 return true; 2856 2857 Result = StructType::get(Context, Elts, Packed); 2858 return false; 2859 } 2860 2861 /// parseStructDefinition - parse a struct in a 'type' definition. 2862 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name, 2863 std::pair<Type *, LocTy> &Entry, 2864 Type *&ResultTy) { 2865 // If the type was already defined, diagnose the redefinition. 2866 if (Entry.first && !Entry.second.isValid()) 2867 return error(TypeLoc, "redefinition of type"); 2868 2869 // If we have opaque, just return without filling in the definition for the 2870 // struct. This counts as a definition as far as the .ll file goes. 2871 if (EatIfPresent(lltok::kw_opaque)) { 2872 // This type is being defined, so clear the location to indicate this. 2873 Entry.second = SMLoc(); 2874 2875 // If this type number has never been uttered, create it. 2876 if (!Entry.first) 2877 Entry.first = StructType::create(Context, Name); 2878 ResultTy = Entry.first; 2879 return false; 2880 } 2881 2882 // If the type starts with '<', then it is either a packed struct or a vector. 2883 bool isPacked = EatIfPresent(lltok::less); 2884 2885 // If we don't have a struct, then we have a random type alias, which we 2886 // accept for compatibility with old files. These types are not allowed to be 2887 // forward referenced and not allowed to be recursive. 2888 if (Lex.getKind() != lltok::lbrace) { 2889 if (Entry.first) 2890 return error(TypeLoc, "forward references to non-struct type"); 2891 2892 ResultTy = nullptr; 2893 if (isPacked) 2894 return parseArrayVectorType(ResultTy, true); 2895 return parseType(ResultTy); 2896 } 2897 2898 // This type is being defined, so clear the location to indicate this. 2899 Entry.second = SMLoc(); 2900 2901 // If this type number has never been uttered, create it. 2902 if (!Entry.first) 2903 Entry.first = StructType::create(Context, Name); 2904 2905 StructType *STy = cast<StructType>(Entry.first); 2906 2907 SmallVector<Type*, 8> Body; 2908 if (parseStructBody(Body) || 2909 (isPacked && parseToken(lltok::greater, "expected '>' in packed struct"))) 2910 return true; 2911 2912 STy->setBody(Body, isPacked); 2913 ResultTy = STy; 2914 return false; 2915 } 2916 2917 /// parseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2918 /// StructType 2919 /// ::= '{' '}' 2920 /// ::= '{' Type (',' Type)* '}' 2921 /// ::= '<' '{' '}' '>' 2922 /// ::= '<' '{' Type (',' Type)* '}' '>' 2923 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) { 2924 assert(Lex.getKind() == lltok::lbrace); 2925 Lex.Lex(); // Consume the '{' 2926 2927 // Handle the empty struct. 2928 if (EatIfPresent(lltok::rbrace)) 2929 return false; 2930 2931 LocTy EltTyLoc = Lex.getLoc(); 2932 Type *Ty = nullptr; 2933 if (parseType(Ty)) 2934 return true; 2935 Body.push_back(Ty); 2936 2937 if (!StructType::isValidElementType(Ty)) 2938 return error(EltTyLoc, "invalid element type for struct"); 2939 2940 while (EatIfPresent(lltok::comma)) { 2941 EltTyLoc = Lex.getLoc(); 2942 if (parseType(Ty)) 2943 return true; 2944 2945 if (!StructType::isValidElementType(Ty)) 2946 return error(EltTyLoc, "invalid element type for struct"); 2947 2948 Body.push_back(Ty); 2949 } 2950 2951 return parseToken(lltok::rbrace, "expected '}' at end of struct"); 2952 } 2953 2954 /// parseArrayVectorType - parse an array or vector type, assuming the first 2955 /// token has already been consumed. 2956 /// Type 2957 /// ::= '[' APSINTVAL 'x' Types ']' 2958 /// ::= '<' APSINTVAL 'x' Types '>' 2959 /// ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>' 2960 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) { 2961 bool Scalable = false; 2962 2963 if (IsVector && Lex.getKind() == lltok::kw_vscale) { 2964 Lex.Lex(); // consume the 'vscale' 2965 if (parseToken(lltok::kw_x, "expected 'x' after vscale")) 2966 return true; 2967 2968 Scalable = true; 2969 } 2970 2971 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2972 Lex.getAPSIntVal().getBitWidth() > 64) 2973 return tokError("expected number in address space"); 2974 2975 LocTy SizeLoc = Lex.getLoc(); 2976 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2977 Lex.Lex(); 2978 2979 if (parseToken(lltok::kw_x, "expected 'x' after element count")) 2980 return true; 2981 2982 LocTy TypeLoc = Lex.getLoc(); 2983 Type *EltTy = nullptr; 2984 if (parseType(EltTy)) 2985 return true; 2986 2987 if (parseToken(IsVector ? lltok::greater : lltok::rsquare, 2988 "expected end of sequential type")) 2989 return true; 2990 2991 if (IsVector) { 2992 if (Size == 0) 2993 return error(SizeLoc, "zero element vector is illegal"); 2994 if ((unsigned)Size != Size) 2995 return error(SizeLoc, "size too large for vector"); 2996 if (!VectorType::isValidElementType(EltTy)) 2997 return error(TypeLoc, "invalid vector element type"); 2998 Result = VectorType::get(EltTy, unsigned(Size), Scalable); 2999 } else { 3000 if (!ArrayType::isValidElementType(EltTy)) 3001 return error(TypeLoc, "invalid array element type"); 3002 Result = ArrayType::get(EltTy, Size); 3003 } 3004 return false; 3005 } 3006 3007 //===----------------------------------------------------------------------===// 3008 // Function Semantic Analysis. 3009 //===----------------------------------------------------------------------===// 3010 3011 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 3012 int functionNumber) 3013 : P(p), F(f), FunctionNumber(functionNumber) { 3014 3015 // Insert unnamed arguments into the NumberedVals list. 3016 for (Argument &A : F.args()) 3017 if (!A.hasName()) 3018 NumberedVals.push_back(&A); 3019 } 3020 3021 LLParser::PerFunctionState::~PerFunctionState() { 3022 // If there were any forward referenced non-basicblock values, delete them. 3023 3024 for (const auto &P : ForwardRefVals) { 3025 if (isa<BasicBlock>(P.second.first)) 3026 continue; 3027 P.second.first->replaceAllUsesWith( 3028 UndefValue::get(P.second.first->getType())); 3029 P.second.first->deleteValue(); 3030 } 3031 3032 for (const auto &P : ForwardRefValIDs) { 3033 if (isa<BasicBlock>(P.second.first)) 3034 continue; 3035 P.second.first->replaceAllUsesWith( 3036 UndefValue::get(P.second.first->getType())); 3037 P.second.first->deleteValue(); 3038 } 3039 } 3040 3041 bool LLParser::PerFunctionState::finishFunction() { 3042 if (!ForwardRefVals.empty()) 3043 return P.error(ForwardRefVals.begin()->second.second, 3044 "use of undefined value '%" + ForwardRefVals.begin()->first + 3045 "'"); 3046 if (!ForwardRefValIDs.empty()) 3047 return P.error(ForwardRefValIDs.begin()->second.second, 3048 "use of undefined value '%" + 3049 Twine(ForwardRefValIDs.begin()->first) + "'"); 3050 return false; 3051 } 3052 3053 /// getVal - Get a value with the specified name or ID, creating a 3054 /// forward reference record if needed. This can return null if the value 3055 /// exists but does not have the right type. 3056 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty, 3057 LocTy Loc, bool IsCall) { 3058 // Look this name up in the normal function symbol table. 3059 Value *Val = F.getValueSymbolTable()->lookup(Name); 3060 3061 // If this is a forward reference for the value, see if we already created a 3062 // forward ref record. 3063 if (!Val) { 3064 auto I = ForwardRefVals.find(Name); 3065 if (I != ForwardRefVals.end()) 3066 Val = I->second.first; 3067 } 3068 3069 // If we have the value in the symbol table or fwd-ref table, return it. 3070 if (Val) 3071 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall); 3072 3073 // Don't make placeholders with invalid type. 3074 if (!Ty->isFirstClassType()) { 3075 P.error(Loc, "invalid use of a non-first-class type"); 3076 return nullptr; 3077 } 3078 3079 // Otherwise, create a new forward reference for this value and remember it. 3080 Value *FwdVal; 3081 if (Ty->isLabelTy()) { 3082 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 3083 } else { 3084 FwdVal = new Argument(Ty, Name); 3085 } 3086 3087 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 3088 return FwdVal; 3089 } 3090 3091 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc, 3092 bool IsCall) { 3093 // Look this name up in the normal function symbol table. 3094 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 3095 3096 // If this is a forward reference for the value, see if we already created a 3097 // forward ref record. 3098 if (!Val) { 3099 auto I = ForwardRefValIDs.find(ID); 3100 if (I != ForwardRefValIDs.end()) 3101 Val = I->second.first; 3102 } 3103 3104 // If we have the value in the symbol table or fwd-ref table, return it. 3105 if (Val) 3106 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall); 3107 3108 if (!Ty->isFirstClassType()) { 3109 P.error(Loc, "invalid use of a non-first-class type"); 3110 return nullptr; 3111 } 3112 3113 // Otherwise, create a new forward reference for this value and remember it. 3114 Value *FwdVal; 3115 if (Ty->isLabelTy()) { 3116 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 3117 } else { 3118 FwdVal = new Argument(Ty); 3119 } 3120 3121 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 3122 return FwdVal; 3123 } 3124 3125 /// setInstName - After an instruction is parsed and inserted into its 3126 /// basic block, this installs its name. 3127 bool LLParser::PerFunctionState::setInstName(int NameID, 3128 const std::string &NameStr, 3129 LocTy NameLoc, Instruction *Inst) { 3130 // If this instruction has void type, it cannot have a name or ID specified. 3131 if (Inst->getType()->isVoidTy()) { 3132 if (NameID != -1 || !NameStr.empty()) 3133 return P.error(NameLoc, "instructions returning void cannot have a name"); 3134 return false; 3135 } 3136 3137 // If this was a numbered instruction, verify that the instruction is the 3138 // expected value and resolve any forward references. 3139 if (NameStr.empty()) { 3140 // If neither a name nor an ID was specified, just use the next ID. 3141 if (NameID == -1) 3142 NameID = NumberedVals.size(); 3143 3144 if (unsigned(NameID) != NumberedVals.size()) 3145 return P.error(NameLoc, "instruction expected to be numbered '%" + 3146 Twine(NumberedVals.size()) + "'"); 3147 3148 auto FI = ForwardRefValIDs.find(NameID); 3149 if (FI != ForwardRefValIDs.end()) { 3150 Value *Sentinel = FI->second.first; 3151 if (Sentinel->getType() != Inst->getType()) 3152 return P.error(NameLoc, "instruction forward referenced with type '" + 3153 getTypeString(FI->second.first->getType()) + 3154 "'"); 3155 3156 Sentinel->replaceAllUsesWith(Inst); 3157 Sentinel->deleteValue(); 3158 ForwardRefValIDs.erase(FI); 3159 } 3160 3161 NumberedVals.push_back(Inst); 3162 return false; 3163 } 3164 3165 // Otherwise, the instruction had a name. Resolve forward refs and set it. 3166 auto FI = ForwardRefVals.find(NameStr); 3167 if (FI != ForwardRefVals.end()) { 3168 Value *Sentinel = FI->second.first; 3169 if (Sentinel->getType() != Inst->getType()) 3170 return P.error(NameLoc, "instruction forward referenced with type '" + 3171 getTypeString(FI->second.first->getType()) + 3172 "'"); 3173 3174 Sentinel->replaceAllUsesWith(Inst); 3175 Sentinel->deleteValue(); 3176 ForwardRefVals.erase(FI); 3177 } 3178 3179 // Set the name on the instruction. 3180 Inst->setName(NameStr); 3181 3182 if (Inst->getName() != NameStr) 3183 return P.error(NameLoc, "multiple definition of local value named '" + 3184 NameStr + "'"); 3185 return false; 3186 } 3187 3188 /// getBB - Get a basic block with the specified name or ID, creating a 3189 /// forward reference record if needed. 3190 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name, 3191 LocTy Loc) { 3192 return dyn_cast_or_null<BasicBlock>( 3193 getVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 3194 } 3195 3196 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) { 3197 return dyn_cast_or_null<BasicBlock>( 3198 getVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 3199 } 3200 3201 /// defineBB - Define the specified basic block, which is either named or 3202 /// unnamed. If there is an error, this returns null otherwise it returns 3203 /// the block being defined. 3204 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name, 3205 int NameID, LocTy Loc) { 3206 BasicBlock *BB; 3207 if (Name.empty()) { 3208 if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) { 3209 P.error(Loc, "label expected to be numbered '" + 3210 Twine(NumberedVals.size()) + "'"); 3211 return nullptr; 3212 } 3213 BB = getBB(NumberedVals.size(), Loc); 3214 if (!BB) { 3215 P.error(Loc, "unable to create block numbered '" + 3216 Twine(NumberedVals.size()) + "'"); 3217 return nullptr; 3218 } 3219 } else { 3220 BB = getBB(Name, Loc); 3221 if (!BB) { 3222 P.error(Loc, "unable to create block named '" + Name + "'"); 3223 return nullptr; 3224 } 3225 } 3226 3227 // Move the block to the end of the function. Forward ref'd blocks are 3228 // inserted wherever they happen to be referenced. 3229 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 3230 3231 // Remove the block from forward ref sets. 3232 if (Name.empty()) { 3233 ForwardRefValIDs.erase(NumberedVals.size()); 3234 NumberedVals.push_back(BB); 3235 } else { 3236 // BB forward references are already in the function symbol table. 3237 ForwardRefVals.erase(Name); 3238 } 3239 3240 return BB; 3241 } 3242 3243 //===----------------------------------------------------------------------===// 3244 // Constants. 3245 //===----------------------------------------------------------------------===// 3246 3247 /// parseValID - parse an abstract value that doesn't necessarily have a 3248 /// type implied. For example, if we parse "4" we don't know what integer type 3249 /// it has. The value will later be combined with its type and checked for 3250 /// sanity. PFS is used to convert function-local operands of metadata (since 3251 /// metadata operands are not just parsed here but also converted to values). 3252 /// PFS can be null when we are not parsing metadata values inside a function. 3253 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS) { 3254 ID.Loc = Lex.getLoc(); 3255 switch (Lex.getKind()) { 3256 default: 3257 return tokError("expected value token"); 3258 case lltok::GlobalID: // @42 3259 ID.UIntVal = Lex.getUIntVal(); 3260 ID.Kind = ValID::t_GlobalID; 3261 break; 3262 case lltok::GlobalVar: // @foo 3263 ID.StrVal = Lex.getStrVal(); 3264 ID.Kind = ValID::t_GlobalName; 3265 break; 3266 case lltok::LocalVarID: // %42 3267 ID.UIntVal = Lex.getUIntVal(); 3268 ID.Kind = ValID::t_LocalID; 3269 break; 3270 case lltok::LocalVar: // %foo 3271 ID.StrVal = Lex.getStrVal(); 3272 ID.Kind = ValID::t_LocalName; 3273 break; 3274 case lltok::APSInt: 3275 ID.APSIntVal = Lex.getAPSIntVal(); 3276 ID.Kind = ValID::t_APSInt; 3277 break; 3278 case lltok::APFloat: 3279 ID.APFloatVal = Lex.getAPFloatVal(); 3280 ID.Kind = ValID::t_APFloat; 3281 break; 3282 case lltok::kw_true: 3283 ID.ConstantVal = ConstantInt::getTrue(Context); 3284 ID.Kind = ValID::t_Constant; 3285 break; 3286 case lltok::kw_false: 3287 ID.ConstantVal = ConstantInt::getFalse(Context); 3288 ID.Kind = ValID::t_Constant; 3289 break; 3290 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 3291 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 3292 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 3293 case lltok::kw_none: ID.Kind = ValID::t_None; break; 3294 3295 case lltok::lbrace: { 3296 // ValID ::= '{' ConstVector '}' 3297 Lex.Lex(); 3298 SmallVector<Constant*, 16> Elts; 3299 if (parseGlobalValueVector(Elts) || 3300 parseToken(lltok::rbrace, "expected end of struct constant")) 3301 return true; 3302 3303 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3304 ID.UIntVal = Elts.size(); 3305 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3306 Elts.size() * sizeof(Elts[0])); 3307 ID.Kind = ValID::t_ConstantStruct; 3308 return false; 3309 } 3310 case lltok::less: { 3311 // ValID ::= '<' ConstVector '>' --> Vector. 3312 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 3313 Lex.Lex(); 3314 bool isPackedStruct = EatIfPresent(lltok::lbrace); 3315 3316 SmallVector<Constant*, 16> Elts; 3317 LocTy FirstEltLoc = Lex.getLoc(); 3318 if (parseGlobalValueVector(Elts) || 3319 (isPackedStruct && 3320 parseToken(lltok::rbrace, "expected end of packed struct")) || 3321 parseToken(lltok::greater, "expected end of constant")) 3322 return true; 3323 3324 if (isPackedStruct) { 3325 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3326 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3327 Elts.size() * sizeof(Elts[0])); 3328 ID.UIntVal = Elts.size(); 3329 ID.Kind = ValID::t_PackedConstantStruct; 3330 return false; 3331 } 3332 3333 if (Elts.empty()) 3334 return error(ID.Loc, "constant vector must not be empty"); 3335 3336 if (!Elts[0]->getType()->isIntegerTy() && 3337 !Elts[0]->getType()->isFloatingPointTy() && 3338 !Elts[0]->getType()->isPointerTy()) 3339 return error( 3340 FirstEltLoc, 3341 "vector elements must have integer, pointer or floating point type"); 3342 3343 // Verify that all the vector elements have the same type. 3344 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 3345 if (Elts[i]->getType() != Elts[0]->getType()) 3346 return error(FirstEltLoc, "vector element #" + Twine(i) + 3347 " is not of type '" + 3348 getTypeString(Elts[0]->getType())); 3349 3350 ID.ConstantVal = ConstantVector::get(Elts); 3351 ID.Kind = ValID::t_Constant; 3352 return false; 3353 } 3354 case lltok::lsquare: { // Array Constant 3355 Lex.Lex(); 3356 SmallVector<Constant*, 16> Elts; 3357 LocTy FirstEltLoc = Lex.getLoc(); 3358 if (parseGlobalValueVector(Elts) || 3359 parseToken(lltok::rsquare, "expected end of array constant")) 3360 return true; 3361 3362 // Handle empty element. 3363 if (Elts.empty()) { 3364 // Use undef instead of an array because it's inconvenient to determine 3365 // the element type at this point, there being no elements to examine. 3366 ID.Kind = ValID::t_EmptyArray; 3367 return false; 3368 } 3369 3370 if (!Elts[0]->getType()->isFirstClassType()) 3371 return error(FirstEltLoc, "invalid array element type: " + 3372 getTypeString(Elts[0]->getType())); 3373 3374 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 3375 3376 // Verify all elements are correct type! 3377 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 3378 if (Elts[i]->getType() != Elts[0]->getType()) 3379 return error(FirstEltLoc, "array element #" + Twine(i) + 3380 " is not of type '" + 3381 getTypeString(Elts[0]->getType())); 3382 } 3383 3384 ID.ConstantVal = ConstantArray::get(ATy, Elts); 3385 ID.Kind = ValID::t_Constant; 3386 return false; 3387 } 3388 case lltok::kw_c: // c "foo" 3389 Lex.Lex(); 3390 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 3391 false); 3392 if (parseToken(lltok::StringConstant, "expected string")) 3393 return true; 3394 ID.Kind = ValID::t_Constant; 3395 return false; 3396 3397 case lltok::kw_asm: { 3398 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 3399 // STRINGCONSTANT 3400 bool HasSideEffect, AlignStack, AsmDialect; 3401 Lex.Lex(); 3402 if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 3403 parseOptionalToken(lltok::kw_alignstack, AlignStack) || 3404 parseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 3405 parseStringConstant(ID.StrVal) || 3406 parseToken(lltok::comma, "expected comma in inline asm expression") || 3407 parseToken(lltok::StringConstant, "expected constraint string")) 3408 return true; 3409 ID.StrVal2 = Lex.getStrVal(); 3410 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 3411 (unsigned(AsmDialect)<<2); 3412 ID.Kind = ValID::t_InlineAsm; 3413 return false; 3414 } 3415 3416 case lltok::kw_blockaddress: { 3417 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 3418 Lex.Lex(); 3419 3420 ValID Fn, Label; 3421 3422 if (parseToken(lltok::lparen, "expected '(' in block address expression") || 3423 parseValID(Fn) || 3424 parseToken(lltok::comma, 3425 "expected comma in block address expression") || 3426 parseValID(Label) || 3427 parseToken(lltok::rparen, "expected ')' in block address expression")) 3428 return true; 3429 3430 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3431 return error(Fn.Loc, "expected function name in blockaddress"); 3432 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 3433 return error(Label.Loc, "expected basic block name in blockaddress"); 3434 3435 // Try to find the function (but skip it if it's forward-referenced). 3436 GlobalValue *GV = nullptr; 3437 if (Fn.Kind == ValID::t_GlobalID) { 3438 if (Fn.UIntVal < NumberedVals.size()) 3439 GV = NumberedVals[Fn.UIntVal]; 3440 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3441 GV = M->getNamedValue(Fn.StrVal); 3442 } 3443 Function *F = nullptr; 3444 if (GV) { 3445 // Confirm that it's actually a function with a definition. 3446 if (!isa<Function>(GV)) 3447 return error(Fn.Loc, "expected function name in blockaddress"); 3448 F = cast<Function>(GV); 3449 if (F->isDeclaration()) 3450 return error(Fn.Loc, "cannot take blockaddress inside a declaration"); 3451 } 3452 3453 if (!F) { 3454 // Make a global variable as a placeholder for this reference. 3455 GlobalValue *&FwdRef = 3456 ForwardRefBlockAddresses.insert(std::make_pair( 3457 std::move(Fn), 3458 std::map<ValID, GlobalValue *>())) 3459 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 3460 .first->second; 3461 if (!FwdRef) 3462 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 3463 GlobalValue::InternalLinkage, nullptr, ""); 3464 ID.ConstantVal = FwdRef; 3465 ID.Kind = ValID::t_Constant; 3466 return false; 3467 } 3468 3469 // We found the function; now find the basic block. Don't use PFS, since we 3470 // might be inside a constant expression. 3471 BasicBlock *BB; 3472 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 3473 if (Label.Kind == ValID::t_LocalID) 3474 BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc); 3475 else 3476 BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc); 3477 if (!BB) 3478 return error(Label.Loc, "referenced value is not a basic block"); 3479 } else { 3480 if (Label.Kind == ValID::t_LocalID) 3481 return error(Label.Loc, "cannot take address of numeric label after " 3482 "the function is defined"); 3483 BB = dyn_cast_or_null<BasicBlock>( 3484 F->getValueSymbolTable()->lookup(Label.StrVal)); 3485 if (!BB) 3486 return error(Label.Loc, "referenced value is not a basic block"); 3487 } 3488 3489 ID.ConstantVal = BlockAddress::get(F, BB); 3490 ID.Kind = ValID::t_Constant; 3491 return false; 3492 } 3493 3494 case lltok::kw_trunc: 3495 case lltok::kw_zext: 3496 case lltok::kw_sext: 3497 case lltok::kw_fptrunc: 3498 case lltok::kw_fpext: 3499 case lltok::kw_bitcast: 3500 case lltok::kw_addrspacecast: 3501 case lltok::kw_uitofp: 3502 case lltok::kw_sitofp: 3503 case lltok::kw_fptoui: 3504 case lltok::kw_fptosi: 3505 case lltok::kw_inttoptr: 3506 case lltok::kw_ptrtoint: { 3507 unsigned Opc = Lex.getUIntVal(); 3508 Type *DestTy = nullptr; 3509 Constant *SrcVal; 3510 Lex.Lex(); 3511 if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3512 parseGlobalTypeAndValue(SrcVal) || 3513 parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3514 parseType(DestTy) || 3515 parseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3516 return true; 3517 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3518 return error(ID.Loc, "invalid cast opcode for cast from '" + 3519 getTypeString(SrcVal->getType()) + "' to '" + 3520 getTypeString(DestTy) + "'"); 3521 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3522 SrcVal, DestTy); 3523 ID.Kind = ValID::t_Constant; 3524 return false; 3525 } 3526 case lltok::kw_extractvalue: { 3527 Lex.Lex(); 3528 Constant *Val; 3529 SmallVector<unsigned, 4> Indices; 3530 if (parseToken(lltok::lparen, 3531 "expected '(' in extractvalue constantexpr") || 3532 parseGlobalTypeAndValue(Val) || parseIndexList(Indices) || 3533 parseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 3534 return true; 3535 3536 if (!Val->getType()->isAggregateType()) 3537 return error(ID.Loc, "extractvalue operand must be aggregate type"); 3538 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 3539 return error(ID.Loc, "invalid indices for extractvalue"); 3540 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 3541 ID.Kind = ValID::t_Constant; 3542 return false; 3543 } 3544 case lltok::kw_insertvalue: { 3545 Lex.Lex(); 3546 Constant *Val0, *Val1; 3547 SmallVector<unsigned, 4> Indices; 3548 if (parseToken(lltok::lparen, "expected '(' in insertvalue constantexpr") || 3549 parseGlobalTypeAndValue(Val0) || 3550 parseToken(lltok::comma, 3551 "expected comma in insertvalue constantexpr") || 3552 parseGlobalTypeAndValue(Val1) || parseIndexList(Indices) || 3553 parseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 3554 return true; 3555 if (!Val0->getType()->isAggregateType()) 3556 return error(ID.Loc, "insertvalue operand must be aggregate type"); 3557 Type *IndexedType = 3558 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3559 if (!IndexedType) 3560 return error(ID.Loc, "invalid indices for insertvalue"); 3561 if (IndexedType != Val1->getType()) 3562 return error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3563 getTypeString(Val1->getType()) + 3564 "' instead of '" + getTypeString(IndexedType) + 3565 "'"); 3566 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3567 ID.Kind = ValID::t_Constant; 3568 return false; 3569 } 3570 case lltok::kw_icmp: 3571 case lltok::kw_fcmp: { 3572 unsigned PredVal, Opc = Lex.getUIntVal(); 3573 Constant *Val0, *Val1; 3574 Lex.Lex(); 3575 if (parseCmpPredicate(PredVal, Opc) || 3576 parseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3577 parseGlobalTypeAndValue(Val0) || 3578 parseToken(lltok::comma, "expected comma in compare constantexpr") || 3579 parseGlobalTypeAndValue(Val1) || 3580 parseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3581 return true; 3582 3583 if (Val0->getType() != Val1->getType()) 3584 return error(ID.Loc, "compare operands must have the same type"); 3585 3586 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3587 3588 if (Opc == Instruction::FCmp) { 3589 if (!Val0->getType()->isFPOrFPVectorTy()) 3590 return error(ID.Loc, "fcmp requires floating point operands"); 3591 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3592 } else { 3593 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3594 if (!Val0->getType()->isIntOrIntVectorTy() && 3595 !Val0->getType()->isPtrOrPtrVectorTy()) 3596 return error(ID.Loc, "icmp requires pointer or integer operands"); 3597 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3598 } 3599 ID.Kind = ValID::t_Constant; 3600 return false; 3601 } 3602 3603 // Unary Operators. 3604 case lltok::kw_fneg: { 3605 unsigned Opc = Lex.getUIntVal(); 3606 Constant *Val; 3607 Lex.Lex(); 3608 if (parseToken(lltok::lparen, "expected '(' in unary constantexpr") || 3609 parseGlobalTypeAndValue(Val) || 3610 parseToken(lltok::rparen, "expected ')' in unary constantexpr")) 3611 return true; 3612 3613 // Check that the type is valid for the operator. 3614 switch (Opc) { 3615 case Instruction::FNeg: 3616 if (!Val->getType()->isFPOrFPVectorTy()) 3617 return error(ID.Loc, "constexpr requires fp operands"); 3618 break; 3619 default: llvm_unreachable("Unknown unary operator!"); 3620 } 3621 unsigned Flags = 0; 3622 Constant *C = ConstantExpr::get(Opc, Val, Flags); 3623 ID.ConstantVal = C; 3624 ID.Kind = ValID::t_Constant; 3625 return false; 3626 } 3627 // Binary Operators. 3628 case lltok::kw_add: 3629 case lltok::kw_fadd: 3630 case lltok::kw_sub: 3631 case lltok::kw_fsub: 3632 case lltok::kw_mul: 3633 case lltok::kw_fmul: 3634 case lltok::kw_udiv: 3635 case lltok::kw_sdiv: 3636 case lltok::kw_fdiv: 3637 case lltok::kw_urem: 3638 case lltok::kw_srem: 3639 case lltok::kw_frem: 3640 case lltok::kw_shl: 3641 case lltok::kw_lshr: 3642 case lltok::kw_ashr: { 3643 bool NUW = false; 3644 bool NSW = false; 3645 bool Exact = false; 3646 unsigned Opc = Lex.getUIntVal(); 3647 Constant *Val0, *Val1; 3648 Lex.Lex(); 3649 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3650 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3651 if (EatIfPresent(lltok::kw_nuw)) 3652 NUW = true; 3653 if (EatIfPresent(lltok::kw_nsw)) { 3654 NSW = true; 3655 if (EatIfPresent(lltok::kw_nuw)) 3656 NUW = true; 3657 } 3658 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3659 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3660 if (EatIfPresent(lltok::kw_exact)) 3661 Exact = true; 3662 } 3663 if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3664 parseGlobalTypeAndValue(Val0) || 3665 parseToken(lltok::comma, "expected comma in binary constantexpr") || 3666 parseGlobalTypeAndValue(Val1) || 3667 parseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3668 return true; 3669 if (Val0->getType() != Val1->getType()) 3670 return error(ID.Loc, "operands of constexpr must have same type"); 3671 // Check that the type is valid for the operator. 3672 switch (Opc) { 3673 case Instruction::Add: 3674 case Instruction::Sub: 3675 case Instruction::Mul: 3676 case Instruction::UDiv: 3677 case Instruction::SDiv: 3678 case Instruction::URem: 3679 case Instruction::SRem: 3680 case Instruction::Shl: 3681 case Instruction::AShr: 3682 case Instruction::LShr: 3683 if (!Val0->getType()->isIntOrIntVectorTy()) 3684 return error(ID.Loc, "constexpr requires integer operands"); 3685 break; 3686 case Instruction::FAdd: 3687 case Instruction::FSub: 3688 case Instruction::FMul: 3689 case Instruction::FDiv: 3690 case Instruction::FRem: 3691 if (!Val0->getType()->isFPOrFPVectorTy()) 3692 return error(ID.Loc, "constexpr requires fp operands"); 3693 break; 3694 default: llvm_unreachable("Unknown binary operator!"); 3695 } 3696 unsigned Flags = 0; 3697 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3698 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3699 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3700 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3701 ID.ConstantVal = C; 3702 ID.Kind = ValID::t_Constant; 3703 return false; 3704 } 3705 3706 // Logical Operations 3707 case lltok::kw_and: 3708 case lltok::kw_or: 3709 case lltok::kw_xor: { 3710 unsigned Opc = Lex.getUIntVal(); 3711 Constant *Val0, *Val1; 3712 Lex.Lex(); 3713 if (parseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3714 parseGlobalTypeAndValue(Val0) || 3715 parseToken(lltok::comma, "expected comma in logical constantexpr") || 3716 parseGlobalTypeAndValue(Val1) || 3717 parseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3718 return true; 3719 if (Val0->getType() != Val1->getType()) 3720 return error(ID.Loc, "operands of constexpr must have same type"); 3721 if (!Val0->getType()->isIntOrIntVectorTy()) 3722 return error(ID.Loc, 3723 "constexpr requires integer or integer vector operands"); 3724 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3725 ID.Kind = ValID::t_Constant; 3726 return false; 3727 } 3728 3729 case lltok::kw_getelementptr: 3730 case lltok::kw_shufflevector: 3731 case lltok::kw_insertelement: 3732 case lltok::kw_extractelement: 3733 case lltok::kw_select: { 3734 unsigned Opc = Lex.getUIntVal(); 3735 SmallVector<Constant*, 16> Elts; 3736 bool InBounds = false; 3737 Type *Ty; 3738 Lex.Lex(); 3739 3740 if (Opc == Instruction::GetElementPtr) 3741 InBounds = EatIfPresent(lltok::kw_inbounds); 3742 3743 if (parseToken(lltok::lparen, "expected '(' in constantexpr")) 3744 return true; 3745 3746 LocTy ExplicitTypeLoc = Lex.getLoc(); 3747 if (Opc == Instruction::GetElementPtr) { 3748 if (parseType(Ty) || 3749 parseToken(lltok::comma, "expected comma after getelementptr's type")) 3750 return true; 3751 } 3752 3753 Optional<unsigned> InRangeOp; 3754 if (parseGlobalValueVector( 3755 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3756 parseToken(lltok::rparen, "expected ')' in constantexpr")) 3757 return true; 3758 3759 if (Opc == Instruction::GetElementPtr) { 3760 if (Elts.size() == 0 || 3761 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 3762 return error(ID.Loc, "base of getelementptr must be a pointer"); 3763 3764 Type *BaseType = Elts[0]->getType(); 3765 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3766 if (Ty != BasePointerType->getElementType()) 3767 return error( 3768 ExplicitTypeLoc, 3769 "explicit pointee type doesn't match operand's pointee type"); 3770 3771 unsigned GEPWidth = 3772 BaseType->isVectorTy() 3773 ? cast<FixedVectorType>(BaseType)->getNumElements() 3774 : 0; 3775 3776 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3777 for (Constant *Val : Indices) { 3778 Type *ValTy = Val->getType(); 3779 if (!ValTy->isIntOrIntVectorTy()) 3780 return error(ID.Loc, "getelementptr index must be an integer"); 3781 if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) { 3782 unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements(); 3783 if (GEPWidth && (ValNumEl != GEPWidth)) 3784 return error( 3785 ID.Loc, 3786 "getelementptr vector index has a wrong number of elements"); 3787 // GEPWidth may have been unknown because the base is a scalar, 3788 // but it is known now. 3789 GEPWidth = ValNumEl; 3790 } 3791 } 3792 3793 SmallPtrSet<Type*, 4> Visited; 3794 if (!Indices.empty() && !Ty->isSized(&Visited)) 3795 return error(ID.Loc, "base element of getelementptr must be sized"); 3796 3797 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3798 return error(ID.Loc, "invalid getelementptr indices"); 3799 3800 if (InRangeOp) { 3801 if (*InRangeOp == 0) 3802 return error(ID.Loc, 3803 "inrange keyword may not appear on pointer operand"); 3804 --*InRangeOp; 3805 } 3806 3807 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3808 InBounds, InRangeOp); 3809 } else if (Opc == Instruction::Select) { 3810 if (Elts.size() != 3) 3811 return error(ID.Loc, "expected three operands to select"); 3812 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3813 Elts[2])) 3814 return error(ID.Loc, Reason); 3815 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3816 } else if (Opc == Instruction::ShuffleVector) { 3817 if (Elts.size() != 3) 3818 return error(ID.Loc, "expected three operands to shufflevector"); 3819 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3820 return error(ID.Loc, "invalid operands to shufflevector"); 3821 SmallVector<int, 16> Mask; 3822 ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask); 3823 ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask); 3824 } else if (Opc == Instruction::ExtractElement) { 3825 if (Elts.size() != 2) 3826 return error(ID.Loc, "expected two operands to extractelement"); 3827 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3828 return error(ID.Loc, "invalid extractelement operands"); 3829 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3830 } else { 3831 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3832 if (Elts.size() != 3) 3833 return error(ID.Loc, "expected three operands to insertelement"); 3834 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3835 return error(ID.Loc, "invalid insertelement operands"); 3836 ID.ConstantVal = 3837 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3838 } 3839 3840 ID.Kind = ValID::t_Constant; 3841 return false; 3842 } 3843 } 3844 3845 Lex.Lex(); 3846 return false; 3847 } 3848 3849 /// parseGlobalValue - parse a global value with the specified type. 3850 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) { 3851 C = nullptr; 3852 ValID ID; 3853 Value *V = nullptr; 3854 bool Parsed = parseValID(ID) || 3855 convertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false); 3856 if (V && !(C = dyn_cast<Constant>(V))) 3857 return error(ID.Loc, "global values must be constants"); 3858 return Parsed; 3859 } 3860 3861 bool LLParser::parseGlobalTypeAndValue(Constant *&V) { 3862 Type *Ty = nullptr; 3863 return parseType(Ty) || parseGlobalValue(Ty, V); 3864 } 3865 3866 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3867 C = nullptr; 3868 3869 LocTy KwLoc = Lex.getLoc(); 3870 if (!EatIfPresent(lltok::kw_comdat)) 3871 return false; 3872 3873 if (EatIfPresent(lltok::lparen)) { 3874 if (Lex.getKind() != lltok::ComdatVar) 3875 return tokError("expected comdat variable"); 3876 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3877 Lex.Lex(); 3878 if (parseToken(lltok::rparen, "expected ')' after comdat var")) 3879 return true; 3880 } else { 3881 if (GlobalName.empty()) 3882 return tokError("comdat cannot be unnamed"); 3883 C = getComdat(std::string(GlobalName), KwLoc); 3884 } 3885 3886 return false; 3887 } 3888 3889 /// parseGlobalValueVector 3890 /// ::= /*empty*/ 3891 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 3892 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 3893 Optional<unsigned> *InRangeOp) { 3894 // Empty list. 3895 if (Lex.getKind() == lltok::rbrace || 3896 Lex.getKind() == lltok::rsquare || 3897 Lex.getKind() == lltok::greater || 3898 Lex.getKind() == lltok::rparen) 3899 return false; 3900 3901 do { 3902 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 3903 *InRangeOp = Elts.size(); 3904 3905 Constant *C; 3906 if (parseGlobalTypeAndValue(C)) 3907 return true; 3908 Elts.push_back(C); 3909 } while (EatIfPresent(lltok::comma)); 3910 3911 return false; 3912 } 3913 3914 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) { 3915 SmallVector<Metadata *, 16> Elts; 3916 if (parseMDNodeVector(Elts)) 3917 return true; 3918 3919 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3920 return false; 3921 } 3922 3923 /// MDNode: 3924 /// ::= !{ ... } 3925 /// ::= !7 3926 /// ::= !DILocation(...) 3927 bool LLParser::parseMDNode(MDNode *&N) { 3928 if (Lex.getKind() == lltok::MetadataVar) 3929 return parseSpecializedMDNode(N); 3930 3931 return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N); 3932 } 3933 3934 bool LLParser::parseMDNodeTail(MDNode *&N) { 3935 // !{ ... } 3936 if (Lex.getKind() == lltok::lbrace) 3937 return parseMDTuple(N); 3938 3939 // !42 3940 return parseMDNodeID(N); 3941 } 3942 3943 namespace { 3944 3945 /// Structure to represent an optional metadata field. 3946 template <class FieldTy> struct MDFieldImpl { 3947 typedef MDFieldImpl ImplTy; 3948 FieldTy Val; 3949 bool Seen; 3950 3951 void assign(FieldTy Val) { 3952 Seen = true; 3953 this->Val = std::move(Val); 3954 } 3955 3956 explicit MDFieldImpl(FieldTy Default) 3957 : Val(std::move(Default)), Seen(false) {} 3958 }; 3959 3960 /// Structure to represent an optional metadata field that 3961 /// can be of either type (A or B) and encapsulates the 3962 /// MD<typeofA>Field and MD<typeofB>Field structs, so not 3963 /// to reimplement the specifics for representing each Field. 3964 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl { 3965 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy; 3966 FieldTypeA A; 3967 FieldTypeB B; 3968 bool Seen; 3969 3970 enum { 3971 IsInvalid = 0, 3972 IsTypeA = 1, 3973 IsTypeB = 2 3974 } WhatIs; 3975 3976 void assign(FieldTypeA A) { 3977 Seen = true; 3978 this->A = std::move(A); 3979 WhatIs = IsTypeA; 3980 } 3981 3982 void assign(FieldTypeB B) { 3983 Seen = true; 3984 this->B = std::move(B); 3985 WhatIs = IsTypeB; 3986 } 3987 3988 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) 3989 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), 3990 WhatIs(IsInvalid) {} 3991 }; 3992 3993 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3994 uint64_t Max; 3995 3996 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3997 : ImplTy(Default), Max(Max) {} 3998 }; 3999 4000 struct LineField : public MDUnsignedField { 4001 LineField() : MDUnsignedField(0, UINT32_MAX) {} 4002 }; 4003 4004 struct ColumnField : public MDUnsignedField { 4005 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 4006 }; 4007 4008 struct DwarfTagField : public MDUnsignedField { 4009 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 4010 DwarfTagField(dwarf::Tag DefaultTag) 4011 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 4012 }; 4013 4014 struct DwarfMacinfoTypeField : public MDUnsignedField { 4015 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 4016 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 4017 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 4018 }; 4019 4020 struct DwarfAttEncodingField : public MDUnsignedField { 4021 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 4022 }; 4023 4024 struct DwarfVirtualityField : public MDUnsignedField { 4025 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 4026 }; 4027 4028 struct DwarfLangField : public MDUnsignedField { 4029 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 4030 }; 4031 4032 struct DwarfCCField : public MDUnsignedField { 4033 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 4034 }; 4035 4036 struct EmissionKindField : public MDUnsignedField { 4037 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 4038 }; 4039 4040 struct NameTableKindField : public MDUnsignedField { 4041 NameTableKindField() 4042 : MDUnsignedField( 4043 0, (unsigned) 4044 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {} 4045 }; 4046 4047 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 4048 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 4049 }; 4050 4051 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> { 4052 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {} 4053 }; 4054 4055 struct MDAPSIntField : public MDFieldImpl<APSInt> { 4056 MDAPSIntField() : ImplTy(APSInt()) {} 4057 }; 4058 4059 struct MDSignedField : public MDFieldImpl<int64_t> { 4060 int64_t Min; 4061 int64_t Max; 4062 4063 MDSignedField(int64_t Default = 0) 4064 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 4065 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 4066 : ImplTy(Default), Min(Min), Max(Max) {} 4067 }; 4068 4069 struct MDBoolField : public MDFieldImpl<bool> { 4070 MDBoolField(bool Default = false) : ImplTy(Default) {} 4071 }; 4072 4073 struct MDField : public MDFieldImpl<Metadata *> { 4074 bool AllowNull; 4075 4076 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 4077 }; 4078 4079 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 4080 MDConstant() : ImplTy(nullptr) {} 4081 }; 4082 4083 struct MDStringField : public MDFieldImpl<MDString *> { 4084 bool AllowEmpty; 4085 MDStringField(bool AllowEmpty = true) 4086 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 4087 }; 4088 4089 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 4090 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 4091 }; 4092 4093 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 4094 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 4095 }; 4096 4097 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> { 4098 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) 4099 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} 4100 4101 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, 4102 bool AllowNull = true) 4103 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} 4104 4105 bool isMDSignedField() const { return WhatIs == IsTypeA; } 4106 bool isMDField() const { return WhatIs == IsTypeB; } 4107 int64_t getMDSignedValue() const { 4108 assert(isMDSignedField() && "Wrong field type"); 4109 return A.Val; 4110 } 4111 Metadata *getMDFieldValue() const { 4112 assert(isMDField() && "Wrong field type"); 4113 return B.Val; 4114 } 4115 }; 4116 4117 struct MDSignedOrUnsignedField 4118 : MDEitherFieldImpl<MDSignedField, MDUnsignedField> { 4119 MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {} 4120 4121 bool isMDSignedField() const { return WhatIs == IsTypeA; } 4122 bool isMDUnsignedField() const { return WhatIs == IsTypeB; } 4123 int64_t getMDSignedValue() const { 4124 assert(isMDSignedField() && "Wrong field type"); 4125 return A.Val; 4126 } 4127 uint64_t getMDUnsignedValue() const { 4128 assert(isMDUnsignedField() && "Wrong field type"); 4129 return B.Val; 4130 } 4131 }; 4132 4133 } // end anonymous namespace 4134 4135 namespace llvm { 4136 4137 template <> 4138 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) { 4139 if (Lex.getKind() != lltok::APSInt) 4140 return tokError("expected integer"); 4141 4142 Result.assign(Lex.getAPSIntVal()); 4143 Lex.Lex(); 4144 return false; 4145 } 4146 4147 template <> 4148 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4149 MDUnsignedField &Result) { 4150 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4151 return tokError("expected unsigned integer"); 4152 4153 auto &U = Lex.getAPSIntVal(); 4154 if (U.ugt(Result.Max)) 4155 return tokError("value for '" + Name + "' too large, limit is " + 4156 Twine(Result.Max)); 4157 Result.assign(U.getZExtValue()); 4158 assert(Result.Val <= Result.Max && "Expected value in range"); 4159 Lex.Lex(); 4160 return false; 4161 } 4162 4163 template <> 4164 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) { 4165 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4166 } 4167 template <> 4168 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 4169 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4170 } 4171 4172 template <> 4173 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 4174 if (Lex.getKind() == lltok::APSInt) 4175 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4176 4177 if (Lex.getKind() != lltok::DwarfTag) 4178 return tokError("expected DWARF tag"); 4179 4180 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 4181 if (Tag == dwarf::DW_TAG_invalid) 4182 return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 4183 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 4184 4185 Result.assign(Tag); 4186 Lex.Lex(); 4187 return false; 4188 } 4189 4190 template <> 4191 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4192 DwarfMacinfoTypeField &Result) { 4193 if (Lex.getKind() == lltok::APSInt) 4194 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4195 4196 if (Lex.getKind() != lltok::DwarfMacinfo) 4197 return tokError("expected DWARF macinfo type"); 4198 4199 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 4200 if (Macinfo == dwarf::DW_MACINFO_invalid) 4201 return tokError("invalid DWARF macinfo type" + Twine(" '") + 4202 Lex.getStrVal() + "'"); 4203 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 4204 4205 Result.assign(Macinfo); 4206 Lex.Lex(); 4207 return false; 4208 } 4209 4210 template <> 4211 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4212 DwarfVirtualityField &Result) { 4213 if (Lex.getKind() == lltok::APSInt) 4214 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4215 4216 if (Lex.getKind() != lltok::DwarfVirtuality) 4217 return tokError("expected DWARF virtuality code"); 4218 4219 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 4220 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 4221 return tokError("invalid DWARF virtuality code" + Twine(" '") + 4222 Lex.getStrVal() + "'"); 4223 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 4224 Result.assign(Virtuality); 4225 Lex.Lex(); 4226 return false; 4227 } 4228 4229 template <> 4230 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 4231 if (Lex.getKind() == lltok::APSInt) 4232 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4233 4234 if (Lex.getKind() != lltok::DwarfLang) 4235 return tokError("expected DWARF language"); 4236 4237 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 4238 if (!Lang) 4239 return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 4240 "'"); 4241 assert(Lang <= Result.Max && "Expected valid DWARF language"); 4242 Result.assign(Lang); 4243 Lex.Lex(); 4244 return false; 4245 } 4246 4247 template <> 4248 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 4249 if (Lex.getKind() == lltok::APSInt) 4250 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4251 4252 if (Lex.getKind() != lltok::DwarfCC) 4253 return tokError("expected DWARF calling convention"); 4254 4255 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 4256 if (!CC) 4257 return tokError("invalid DWARF calling convention" + Twine(" '") + 4258 Lex.getStrVal() + "'"); 4259 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 4260 Result.assign(CC); 4261 Lex.Lex(); 4262 return false; 4263 } 4264 4265 template <> 4266 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4267 EmissionKindField &Result) { 4268 if (Lex.getKind() == lltok::APSInt) 4269 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4270 4271 if (Lex.getKind() != lltok::EmissionKind) 4272 return tokError("expected emission kind"); 4273 4274 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 4275 if (!Kind) 4276 return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 4277 "'"); 4278 assert(*Kind <= Result.Max && "Expected valid emission kind"); 4279 Result.assign(*Kind); 4280 Lex.Lex(); 4281 return false; 4282 } 4283 4284 template <> 4285 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4286 NameTableKindField &Result) { 4287 if (Lex.getKind() == lltok::APSInt) 4288 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4289 4290 if (Lex.getKind() != lltok::NameTableKind) 4291 return tokError("expected nameTable kind"); 4292 4293 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal()); 4294 if (!Kind) 4295 return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() + 4296 "'"); 4297 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind"); 4298 Result.assign((unsigned)*Kind); 4299 Lex.Lex(); 4300 return false; 4301 } 4302 4303 template <> 4304 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4305 DwarfAttEncodingField &Result) { 4306 if (Lex.getKind() == lltok::APSInt) 4307 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4308 4309 if (Lex.getKind() != lltok::DwarfAttEncoding) 4310 return tokError("expected DWARF type attribute encoding"); 4311 4312 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 4313 if (!Encoding) 4314 return tokError("invalid DWARF type attribute encoding" + Twine(" '") + 4315 Lex.getStrVal() + "'"); 4316 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 4317 Result.assign(Encoding); 4318 Lex.Lex(); 4319 return false; 4320 } 4321 4322 /// DIFlagField 4323 /// ::= uint32 4324 /// ::= DIFlagVector 4325 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 4326 template <> 4327 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 4328 4329 // parser for a single flag. 4330 auto parseFlag = [&](DINode::DIFlags &Val) { 4331 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4332 uint32_t TempVal = static_cast<uint32_t>(Val); 4333 bool Res = parseUInt32(TempVal); 4334 Val = static_cast<DINode::DIFlags>(TempVal); 4335 return Res; 4336 } 4337 4338 if (Lex.getKind() != lltok::DIFlag) 4339 return tokError("expected debug info flag"); 4340 4341 Val = DINode::getFlag(Lex.getStrVal()); 4342 if (!Val) 4343 return tokError(Twine("invalid debug info flag flag '") + 4344 Lex.getStrVal() + "'"); 4345 Lex.Lex(); 4346 return false; 4347 }; 4348 4349 // parse the flags and combine them together. 4350 DINode::DIFlags Combined = DINode::FlagZero; 4351 do { 4352 DINode::DIFlags Val; 4353 if (parseFlag(Val)) 4354 return true; 4355 Combined |= Val; 4356 } while (EatIfPresent(lltok::bar)); 4357 4358 Result.assign(Combined); 4359 return false; 4360 } 4361 4362 /// DISPFlagField 4363 /// ::= uint32 4364 /// ::= DISPFlagVector 4365 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32 4366 template <> 4367 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) { 4368 4369 // parser for a single flag. 4370 auto parseFlag = [&](DISubprogram::DISPFlags &Val) { 4371 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4372 uint32_t TempVal = static_cast<uint32_t>(Val); 4373 bool Res = parseUInt32(TempVal); 4374 Val = static_cast<DISubprogram::DISPFlags>(TempVal); 4375 return Res; 4376 } 4377 4378 if (Lex.getKind() != lltok::DISPFlag) 4379 return tokError("expected debug info flag"); 4380 4381 Val = DISubprogram::getFlag(Lex.getStrVal()); 4382 if (!Val) 4383 return tokError(Twine("invalid subprogram debug info flag '") + 4384 Lex.getStrVal() + "'"); 4385 Lex.Lex(); 4386 return false; 4387 }; 4388 4389 // parse the flags and combine them together. 4390 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero; 4391 do { 4392 DISubprogram::DISPFlags Val; 4393 if (parseFlag(Val)) 4394 return true; 4395 Combined |= Val; 4396 } while (EatIfPresent(lltok::bar)); 4397 4398 Result.assign(Combined); 4399 return false; 4400 } 4401 4402 template <> 4403 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) { 4404 if (Lex.getKind() != lltok::APSInt) 4405 return tokError("expected signed integer"); 4406 4407 auto &S = Lex.getAPSIntVal(); 4408 if (S < Result.Min) 4409 return tokError("value for '" + Name + "' too small, limit is " + 4410 Twine(Result.Min)); 4411 if (S > Result.Max) 4412 return tokError("value for '" + Name + "' too large, limit is " + 4413 Twine(Result.Max)); 4414 Result.assign(S.getExtValue()); 4415 assert(Result.Val >= Result.Min && "Expected value in range"); 4416 assert(Result.Val <= Result.Max && "Expected value in range"); 4417 Lex.Lex(); 4418 return false; 4419 } 4420 4421 template <> 4422 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 4423 switch (Lex.getKind()) { 4424 default: 4425 return tokError("expected 'true' or 'false'"); 4426 case lltok::kw_true: 4427 Result.assign(true); 4428 break; 4429 case lltok::kw_false: 4430 Result.assign(false); 4431 break; 4432 } 4433 Lex.Lex(); 4434 return false; 4435 } 4436 4437 template <> 4438 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) { 4439 if (Lex.getKind() == lltok::kw_null) { 4440 if (!Result.AllowNull) 4441 return tokError("'" + Name + "' cannot be null"); 4442 Lex.Lex(); 4443 Result.assign(nullptr); 4444 return false; 4445 } 4446 4447 Metadata *MD; 4448 if (parseMetadata(MD, nullptr)) 4449 return true; 4450 4451 Result.assign(MD); 4452 return false; 4453 } 4454 4455 template <> 4456 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4457 MDSignedOrMDField &Result) { 4458 // Try to parse a signed int. 4459 if (Lex.getKind() == lltok::APSInt) { 4460 MDSignedField Res = Result.A; 4461 if (!parseMDField(Loc, Name, Res)) { 4462 Result.assign(Res); 4463 return false; 4464 } 4465 return true; 4466 } 4467 4468 // Otherwise, try to parse as an MDField. 4469 MDField Res = Result.B; 4470 if (!parseMDField(Loc, Name, Res)) { 4471 Result.assign(Res); 4472 return false; 4473 } 4474 4475 return true; 4476 } 4477 4478 template <> 4479 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 4480 LocTy ValueLoc = Lex.getLoc(); 4481 std::string S; 4482 if (parseStringConstant(S)) 4483 return true; 4484 4485 if (!Result.AllowEmpty && S.empty()) 4486 return error(ValueLoc, "'" + Name + "' cannot be empty"); 4487 4488 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 4489 return false; 4490 } 4491 4492 template <> 4493 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 4494 SmallVector<Metadata *, 4> MDs; 4495 if (parseMDNodeVector(MDs)) 4496 return true; 4497 4498 Result.assign(std::move(MDs)); 4499 return false; 4500 } 4501 4502 template <> 4503 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4504 ChecksumKindField &Result) { 4505 Optional<DIFile::ChecksumKind> CSKind = 4506 DIFile::getChecksumKind(Lex.getStrVal()); 4507 4508 if (Lex.getKind() != lltok::ChecksumKind || !CSKind) 4509 return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() + 4510 "'"); 4511 4512 Result.assign(*CSKind); 4513 Lex.Lex(); 4514 return false; 4515 } 4516 4517 } // end namespace llvm 4518 4519 template <class ParserTy> 4520 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) { 4521 do { 4522 if (Lex.getKind() != lltok::LabelStr) 4523 return tokError("expected field label here"); 4524 4525 if (ParseField()) 4526 return true; 4527 } while (EatIfPresent(lltok::comma)); 4528 4529 return false; 4530 } 4531 4532 template <class ParserTy> 4533 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) { 4534 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4535 Lex.Lex(); 4536 4537 if (parseToken(lltok::lparen, "expected '(' here")) 4538 return true; 4539 if (Lex.getKind() != lltok::rparen) 4540 if (parseMDFieldsImplBody(ParseField)) 4541 return true; 4542 4543 ClosingLoc = Lex.getLoc(); 4544 return parseToken(lltok::rparen, "expected ')' here"); 4545 } 4546 4547 template <class FieldTy> 4548 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) { 4549 if (Result.Seen) 4550 return tokError("field '" + Name + "' cannot be specified more than once"); 4551 4552 LocTy Loc = Lex.getLoc(); 4553 Lex.Lex(); 4554 return parseMDField(Loc, Name, Result); 4555 } 4556 4557 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 4558 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4559 4560 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 4561 if (Lex.getStrVal() == #CLASS) \ 4562 return parse##CLASS(N, IsDistinct); 4563 #include "llvm/IR/Metadata.def" 4564 4565 return tokError("expected metadata type"); 4566 } 4567 4568 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 4569 #define NOP_FIELD(NAME, TYPE, INIT) 4570 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 4571 if (!NAME.Seen) \ 4572 return error(ClosingLoc, "missing required field '" #NAME "'"); 4573 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 4574 if (Lex.getStrVal() == #NAME) \ 4575 return parseMDField(#NAME, NAME); 4576 #define PARSE_MD_FIELDS() \ 4577 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 4578 do { \ 4579 LocTy ClosingLoc; \ 4580 if (parseMDFieldsImpl( \ 4581 [&]() -> bool { \ 4582 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 4583 return tokError(Twine("invalid field '") + Lex.getStrVal() + \ 4584 "'"); \ 4585 }, \ 4586 ClosingLoc)) \ 4587 return true; \ 4588 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 4589 } while (false) 4590 #define GET_OR_DISTINCT(CLASS, ARGS) \ 4591 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 4592 4593 /// parseDILocationFields: 4594 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6, 4595 /// isImplicitCode: true) 4596 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) { 4597 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4598 OPTIONAL(line, LineField, ); \ 4599 OPTIONAL(column, ColumnField, ); \ 4600 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4601 OPTIONAL(inlinedAt, MDField, ); \ 4602 OPTIONAL(isImplicitCode, MDBoolField, (false)); 4603 PARSE_MD_FIELDS(); 4604 #undef VISIT_MD_FIELDS 4605 4606 Result = 4607 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val, 4608 inlinedAt.Val, isImplicitCode.Val)); 4609 return false; 4610 } 4611 4612 /// parseGenericDINode: 4613 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 4614 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) { 4615 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4616 REQUIRED(tag, DwarfTagField, ); \ 4617 OPTIONAL(header, MDStringField, ); \ 4618 OPTIONAL(operands, MDFieldList, ); 4619 PARSE_MD_FIELDS(); 4620 #undef VISIT_MD_FIELDS 4621 4622 Result = GET_OR_DISTINCT(GenericDINode, 4623 (Context, tag.Val, header.Val, operands.Val)); 4624 return false; 4625 } 4626 4627 /// parseDISubrange: 4628 /// ::= !DISubrange(count: 30, lowerBound: 2) 4629 /// ::= !DISubrange(count: !node, lowerBound: 2) 4630 /// ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3) 4631 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) { 4632 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4633 OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ 4634 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 4635 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 4636 OPTIONAL(stride, MDSignedOrMDField, ); 4637 PARSE_MD_FIELDS(); 4638 #undef VISIT_MD_FIELDS 4639 4640 Metadata *Count = nullptr; 4641 Metadata *LowerBound = nullptr; 4642 Metadata *UpperBound = nullptr; 4643 Metadata *Stride = nullptr; 4644 if (count.isMDSignedField()) 4645 Count = ConstantAsMetadata::get(ConstantInt::getSigned( 4646 Type::getInt64Ty(Context), count.getMDSignedValue())); 4647 else if (count.isMDField()) 4648 Count = count.getMDFieldValue(); 4649 4650 auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 4651 if (Bound.isMDSignedField()) 4652 return ConstantAsMetadata::get(ConstantInt::getSigned( 4653 Type::getInt64Ty(Context), Bound.getMDSignedValue())); 4654 if (Bound.isMDField()) 4655 return Bound.getMDFieldValue(); 4656 return nullptr; 4657 }; 4658 4659 LowerBound = convToMetadata(lowerBound); 4660 UpperBound = convToMetadata(upperBound); 4661 Stride = convToMetadata(stride); 4662 4663 Result = GET_OR_DISTINCT(DISubrange, 4664 (Context, Count, LowerBound, UpperBound, Stride)); 4665 4666 return false; 4667 } 4668 4669 /// parseDIGenericSubrange: 4670 /// ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride: 4671 /// !node3) 4672 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) { 4673 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4674 OPTIONAL(count, MDSignedOrMDField, ); \ 4675 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 4676 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 4677 OPTIONAL(stride, MDSignedOrMDField, ); 4678 PARSE_MD_FIELDS(); 4679 #undef VISIT_MD_FIELDS 4680 4681 auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 4682 if (Bound.isMDSignedField()) 4683 return DIExpression::get( 4684 Context, {dwarf::DW_OP_consts, 4685 static_cast<uint64_t>(Bound.getMDSignedValue())}); 4686 if (Bound.isMDField()) 4687 return Bound.getMDFieldValue(); 4688 return nullptr; 4689 }; 4690 4691 Metadata *Count = ConvToMetadata(count); 4692 Metadata *LowerBound = ConvToMetadata(lowerBound); 4693 Metadata *UpperBound = ConvToMetadata(upperBound); 4694 Metadata *Stride = ConvToMetadata(stride); 4695 4696 Result = GET_OR_DISTINCT(DIGenericSubrange, 4697 (Context, Count, LowerBound, UpperBound, Stride)); 4698 4699 return false; 4700 } 4701 4702 /// parseDIEnumerator: 4703 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind") 4704 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) { 4705 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4706 REQUIRED(name, MDStringField, ); \ 4707 REQUIRED(value, MDAPSIntField, ); \ 4708 OPTIONAL(isUnsigned, MDBoolField, (false)); 4709 PARSE_MD_FIELDS(); 4710 #undef VISIT_MD_FIELDS 4711 4712 if (isUnsigned.Val && value.Val.isNegative()) 4713 return tokError("unsigned enumerator with negative value"); 4714 4715 APSInt Value(value.Val); 4716 // Add a leading zero so that unsigned values with the msb set are not 4717 // mistaken for negative values when used for signed enumerators. 4718 if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet()) 4719 Value = Value.zext(Value.getBitWidth() + 1); 4720 4721 Result = 4722 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val)); 4723 4724 return false; 4725 } 4726 4727 /// parseDIBasicType: 4728 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32, 4729 /// encoding: DW_ATE_encoding, flags: 0) 4730 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) { 4731 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4732 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 4733 OPTIONAL(name, MDStringField, ); \ 4734 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4735 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4736 OPTIONAL(encoding, DwarfAttEncodingField, ); \ 4737 OPTIONAL(flags, DIFlagField, ); 4738 PARSE_MD_FIELDS(); 4739 #undef VISIT_MD_FIELDS 4740 4741 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 4742 align.Val, encoding.Val, flags.Val)); 4743 return false; 4744 } 4745 4746 /// parseDIStringType: 4747 /// ::= !DIStringType(name: "character(4)", size: 32, align: 32) 4748 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) { 4749 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4750 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type)); \ 4751 OPTIONAL(name, MDStringField, ); \ 4752 OPTIONAL(stringLength, MDField, ); \ 4753 OPTIONAL(stringLengthExpression, MDField, ); \ 4754 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4755 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4756 OPTIONAL(encoding, DwarfAttEncodingField, ); 4757 PARSE_MD_FIELDS(); 4758 #undef VISIT_MD_FIELDS 4759 4760 Result = GET_OR_DISTINCT(DIStringType, 4761 (Context, tag.Val, name.Val, stringLength.Val, 4762 stringLengthExpression.Val, size.Val, align.Val, 4763 encoding.Val)); 4764 return false; 4765 } 4766 4767 /// parseDIDerivedType: 4768 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 4769 /// line: 7, scope: !1, baseType: !2, size: 32, 4770 /// align: 32, offset: 0, flags: 0, extraData: !3, 4771 /// dwarfAddressSpace: 3) 4772 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) { 4773 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4774 REQUIRED(tag, DwarfTagField, ); \ 4775 OPTIONAL(name, MDStringField, ); \ 4776 OPTIONAL(file, MDField, ); \ 4777 OPTIONAL(line, LineField, ); \ 4778 OPTIONAL(scope, MDField, ); \ 4779 REQUIRED(baseType, MDField, ); \ 4780 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4781 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4782 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4783 OPTIONAL(flags, DIFlagField, ); \ 4784 OPTIONAL(extraData, MDField, ); \ 4785 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); 4786 PARSE_MD_FIELDS(); 4787 #undef VISIT_MD_FIELDS 4788 4789 Optional<unsigned> DWARFAddressSpace; 4790 if (dwarfAddressSpace.Val != UINT32_MAX) 4791 DWARFAddressSpace = dwarfAddressSpace.Val; 4792 4793 Result = GET_OR_DISTINCT(DIDerivedType, 4794 (Context, tag.Val, name.Val, file.Val, line.Val, 4795 scope.Val, baseType.Val, size.Val, align.Val, 4796 offset.Val, DWARFAddressSpace, flags.Val, 4797 extraData.Val)); 4798 return false; 4799 } 4800 4801 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) { 4802 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4803 REQUIRED(tag, DwarfTagField, ); \ 4804 OPTIONAL(name, MDStringField, ); \ 4805 OPTIONAL(file, MDField, ); \ 4806 OPTIONAL(line, LineField, ); \ 4807 OPTIONAL(scope, MDField, ); \ 4808 OPTIONAL(baseType, MDField, ); \ 4809 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4810 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4811 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4812 OPTIONAL(flags, DIFlagField, ); \ 4813 OPTIONAL(elements, MDField, ); \ 4814 OPTIONAL(runtimeLang, DwarfLangField, ); \ 4815 OPTIONAL(vtableHolder, MDField, ); \ 4816 OPTIONAL(templateParams, MDField, ); \ 4817 OPTIONAL(identifier, MDStringField, ); \ 4818 OPTIONAL(discriminator, MDField, ); \ 4819 OPTIONAL(dataLocation, MDField, ); \ 4820 OPTIONAL(associated, MDField, ); \ 4821 OPTIONAL(allocated, MDField, ); \ 4822 OPTIONAL(rank, MDSignedOrMDField, ); 4823 PARSE_MD_FIELDS(); 4824 #undef VISIT_MD_FIELDS 4825 4826 Metadata *Rank = nullptr; 4827 if (rank.isMDSignedField()) 4828 Rank = ConstantAsMetadata::get(ConstantInt::getSigned( 4829 Type::getInt64Ty(Context), rank.getMDSignedValue())); 4830 else if (rank.isMDField()) 4831 Rank = rank.getMDFieldValue(); 4832 4833 // If this has an identifier try to build an ODR type. 4834 if (identifier.Val) 4835 if (auto *CT = DICompositeType::buildODRType( 4836 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 4837 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 4838 elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val, 4839 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, 4840 Rank)) { 4841 Result = CT; 4842 return false; 4843 } 4844 4845 // Create a new node, and save it in the context if it belongs in the type 4846 // map. 4847 Result = GET_OR_DISTINCT( 4848 DICompositeType, 4849 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 4850 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 4851 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val, 4852 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, 4853 Rank)); 4854 return false; 4855 } 4856 4857 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) { 4858 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4859 OPTIONAL(flags, DIFlagField, ); \ 4860 OPTIONAL(cc, DwarfCCField, ); \ 4861 REQUIRED(types, MDField, ); 4862 PARSE_MD_FIELDS(); 4863 #undef VISIT_MD_FIELDS 4864 4865 Result = GET_OR_DISTINCT(DISubroutineType, 4866 (Context, flags.Val, cc.Val, types.Val)); 4867 return false; 4868 } 4869 4870 /// parseDIFileType: 4871 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir", 4872 /// checksumkind: CSK_MD5, 4873 /// checksum: "000102030405060708090a0b0c0d0e0f", 4874 /// source: "source file contents") 4875 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) { 4876 // The default constructed value for checksumkind is required, but will never 4877 // be used, as the parser checks if the field was actually Seen before using 4878 // the Val. 4879 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4880 REQUIRED(filename, MDStringField, ); \ 4881 REQUIRED(directory, MDStringField, ); \ 4882 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \ 4883 OPTIONAL(checksum, MDStringField, ); \ 4884 OPTIONAL(source, MDStringField, ); 4885 PARSE_MD_FIELDS(); 4886 #undef VISIT_MD_FIELDS 4887 4888 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum; 4889 if (checksumkind.Seen && checksum.Seen) 4890 OptChecksum.emplace(checksumkind.Val, checksum.Val); 4891 else if (checksumkind.Seen || checksum.Seen) 4892 return Lex.Error("'checksumkind' and 'checksum' must be provided together"); 4893 4894 Optional<MDString *> OptSource; 4895 if (source.Seen) 4896 OptSource = source.Val; 4897 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val, 4898 OptChecksum, OptSource)); 4899 return false; 4900 } 4901 4902 /// parseDICompileUnit: 4903 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 4904 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 4905 /// splitDebugFilename: "abc.debug", 4906 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 4907 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd, 4908 /// sysroot: "/", sdk: "MacOSX.sdk") 4909 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) { 4910 if (!IsDistinct) 4911 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 4912 4913 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4914 REQUIRED(language, DwarfLangField, ); \ 4915 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 4916 OPTIONAL(producer, MDStringField, ); \ 4917 OPTIONAL(isOptimized, MDBoolField, ); \ 4918 OPTIONAL(flags, MDStringField, ); \ 4919 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 4920 OPTIONAL(splitDebugFilename, MDStringField, ); \ 4921 OPTIONAL(emissionKind, EmissionKindField, ); \ 4922 OPTIONAL(enums, MDField, ); \ 4923 OPTIONAL(retainedTypes, MDField, ); \ 4924 OPTIONAL(globals, MDField, ); \ 4925 OPTIONAL(imports, MDField, ); \ 4926 OPTIONAL(macros, MDField, ); \ 4927 OPTIONAL(dwoId, MDUnsignedField, ); \ 4928 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 4929 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 4930 OPTIONAL(nameTableKind, NameTableKindField, ); \ 4931 OPTIONAL(rangesBaseAddress, MDBoolField, = false); \ 4932 OPTIONAL(sysroot, MDStringField, ); \ 4933 OPTIONAL(sdk, MDStringField, ); 4934 PARSE_MD_FIELDS(); 4935 #undef VISIT_MD_FIELDS 4936 4937 Result = DICompileUnit::getDistinct( 4938 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 4939 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 4940 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 4941 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val, 4942 rangesBaseAddress.Val, sysroot.Val, sdk.Val); 4943 return false; 4944 } 4945 4946 /// parseDISubprogram: 4947 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 4948 /// file: !1, line: 7, type: !2, isLocal: false, 4949 /// isDefinition: true, scopeLine: 8, containingType: !3, 4950 /// virtuality: DW_VIRTUALTIY_pure_virtual, 4951 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 4952 /// spFlags: 10, isOptimized: false, templateParams: !4, 4953 /// declaration: !5, retainedNodes: !6, thrownTypes: !7) 4954 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) { 4955 auto Loc = Lex.getLoc(); 4956 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4957 OPTIONAL(scope, MDField, ); \ 4958 OPTIONAL(name, MDStringField, ); \ 4959 OPTIONAL(linkageName, MDStringField, ); \ 4960 OPTIONAL(file, MDField, ); \ 4961 OPTIONAL(line, LineField, ); \ 4962 OPTIONAL(type, MDField, ); \ 4963 OPTIONAL(isLocal, MDBoolField, ); \ 4964 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4965 OPTIONAL(scopeLine, LineField, ); \ 4966 OPTIONAL(containingType, MDField, ); \ 4967 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 4968 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 4969 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 4970 OPTIONAL(flags, DIFlagField, ); \ 4971 OPTIONAL(spFlags, DISPFlagField, ); \ 4972 OPTIONAL(isOptimized, MDBoolField, ); \ 4973 OPTIONAL(unit, MDField, ); \ 4974 OPTIONAL(templateParams, MDField, ); \ 4975 OPTIONAL(declaration, MDField, ); \ 4976 OPTIONAL(retainedNodes, MDField, ); \ 4977 OPTIONAL(thrownTypes, MDField, ); 4978 PARSE_MD_FIELDS(); 4979 #undef VISIT_MD_FIELDS 4980 4981 // An explicit spFlags field takes precedence over individual fields in 4982 // older IR versions. 4983 DISubprogram::DISPFlags SPFlags = 4984 spFlags.Seen ? spFlags.Val 4985 : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val, 4986 isOptimized.Val, virtuality.Val); 4987 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct) 4988 return Lex.Error( 4989 Loc, 4990 "missing 'distinct', required for !DISubprogram that is a Definition"); 4991 Result = GET_OR_DISTINCT( 4992 DISubprogram, 4993 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 4994 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val, 4995 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val, 4996 declaration.Val, retainedNodes.Val, thrownTypes.Val)); 4997 return false; 4998 } 4999 5000 /// parseDILexicalBlock: 5001 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 5002 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 5003 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5004 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5005 OPTIONAL(file, MDField, ); \ 5006 OPTIONAL(line, LineField, ); \ 5007 OPTIONAL(column, ColumnField, ); 5008 PARSE_MD_FIELDS(); 5009 #undef VISIT_MD_FIELDS 5010 5011 Result = GET_OR_DISTINCT( 5012 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 5013 return false; 5014 } 5015 5016 /// parseDILexicalBlockFile: 5017 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 5018 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 5019 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5020 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5021 OPTIONAL(file, MDField, ); \ 5022 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 5023 PARSE_MD_FIELDS(); 5024 #undef VISIT_MD_FIELDS 5025 5026 Result = GET_OR_DISTINCT(DILexicalBlockFile, 5027 (Context, scope.Val, file.Val, discriminator.Val)); 5028 return false; 5029 } 5030 5031 /// parseDICommonBlock: 5032 /// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9) 5033 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) { 5034 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5035 REQUIRED(scope, MDField, ); \ 5036 OPTIONAL(declaration, MDField, ); \ 5037 OPTIONAL(name, MDStringField, ); \ 5038 OPTIONAL(file, MDField, ); \ 5039 OPTIONAL(line, LineField, ); 5040 PARSE_MD_FIELDS(); 5041 #undef VISIT_MD_FIELDS 5042 5043 Result = GET_OR_DISTINCT(DICommonBlock, 5044 (Context, scope.Val, declaration.Val, name.Val, 5045 file.Val, line.Val)); 5046 return false; 5047 } 5048 5049 /// parseDINamespace: 5050 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 5051 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) { 5052 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5053 REQUIRED(scope, MDField, ); \ 5054 OPTIONAL(name, MDStringField, ); \ 5055 OPTIONAL(exportSymbols, MDBoolField, ); 5056 PARSE_MD_FIELDS(); 5057 #undef VISIT_MD_FIELDS 5058 5059 Result = GET_OR_DISTINCT(DINamespace, 5060 (Context, scope.Val, name.Val, exportSymbols.Val)); 5061 return false; 5062 } 5063 5064 /// parseDIMacro: 5065 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: 5066 /// "SomeValue") 5067 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) { 5068 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5069 REQUIRED(type, DwarfMacinfoTypeField, ); \ 5070 OPTIONAL(line, LineField, ); \ 5071 REQUIRED(name, MDStringField, ); \ 5072 OPTIONAL(value, MDStringField, ); 5073 PARSE_MD_FIELDS(); 5074 #undef VISIT_MD_FIELDS 5075 5076 Result = GET_OR_DISTINCT(DIMacro, 5077 (Context, type.Val, line.Val, name.Val, value.Val)); 5078 return false; 5079 } 5080 5081 /// parseDIMacroFile: 5082 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 5083 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) { 5084 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5085 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 5086 OPTIONAL(line, LineField, ); \ 5087 REQUIRED(file, MDField, ); \ 5088 OPTIONAL(nodes, MDField, ); 5089 PARSE_MD_FIELDS(); 5090 #undef VISIT_MD_FIELDS 5091 5092 Result = GET_OR_DISTINCT(DIMacroFile, 5093 (Context, type.Val, line.Val, file.Val, nodes.Val)); 5094 return false; 5095 } 5096 5097 /// parseDIModule: 5098 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: 5099 /// "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes", 5100 /// file: !1, line: 4) 5101 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) { 5102 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5103 REQUIRED(scope, MDField, ); \ 5104 REQUIRED(name, MDStringField, ); \ 5105 OPTIONAL(configMacros, MDStringField, ); \ 5106 OPTIONAL(includePath, MDStringField, ); \ 5107 OPTIONAL(apinotes, MDStringField, ); \ 5108 OPTIONAL(file, MDField, ); \ 5109 OPTIONAL(line, LineField, ); 5110 PARSE_MD_FIELDS(); 5111 #undef VISIT_MD_FIELDS 5112 5113 Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val, 5114 configMacros.Val, includePath.Val, 5115 apinotes.Val, line.Val)); 5116 return false; 5117 } 5118 5119 /// parseDITemplateTypeParameter: 5120 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false) 5121 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 5122 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5123 OPTIONAL(name, MDStringField, ); \ 5124 REQUIRED(type, MDField, ); \ 5125 OPTIONAL(defaulted, MDBoolField, ); 5126 PARSE_MD_FIELDS(); 5127 #undef VISIT_MD_FIELDS 5128 5129 Result = GET_OR_DISTINCT(DITemplateTypeParameter, 5130 (Context, name.Val, type.Val, defaulted.Val)); 5131 return false; 5132 } 5133 5134 /// parseDITemplateValueParameter: 5135 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 5136 /// name: "V", type: !1, defaulted: false, 5137 /// value: i32 7) 5138 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 5139 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5140 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 5141 OPTIONAL(name, MDStringField, ); \ 5142 OPTIONAL(type, MDField, ); \ 5143 OPTIONAL(defaulted, MDBoolField, ); \ 5144 REQUIRED(value, MDField, ); 5145 5146 PARSE_MD_FIELDS(); 5147 #undef VISIT_MD_FIELDS 5148 5149 Result = GET_OR_DISTINCT( 5150 DITemplateValueParameter, 5151 (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val)); 5152 return false; 5153 } 5154 5155 /// parseDIGlobalVariable: 5156 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 5157 /// file: !1, line: 7, type: !2, isLocal: false, 5158 /// isDefinition: true, templateParams: !3, 5159 /// declaration: !4, align: 8) 5160 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 5161 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5162 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 5163 OPTIONAL(scope, MDField, ); \ 5164 OPTIONAL(linkageName, MDStringField, ); \ 5165 OPTIONAL(file, MDField, ); \ 5166 OPTIONAL(line, LineField, ); \ 5167 OPTIONAL(type, MDField, ); \ 5168 OPTIONAL(isLocal, MDBoolField, ); \ 5169 OPTIONAL(isDefinition, MDBoolField, (true)); \ 5170 OPTIONAL(templateParams, MDField, ); \ 5171 OPTIONAL(declaration, MDField, ); \ 5172 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 5173 PARSE_MD_FIELDS(); 5174 #undef VISIT_MD_FIELDS 5175 5176 Result = 5177 GET_OR_DISTINCT(DIGlobalVariable, 5178 (Context, scope.Val, name.Val, linkageName.Val, file.Val, 5179 line.Val, type.Val, isLocal.Val, isDefinition.Val, 5180 declaration.Val, templateParams.Val, align.Val)); 5181 return false; 5182 } 5183 5184 /// parseDILocalVariable: 5185 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 5186 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 5187 /// align: 8) 5188 /// ::= !DILocalVariable(scope: !0, name: "foo", 5189 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 5190 /// align: 8) 5191 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) { 5192 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5193 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5194 OPTIONAL(name, MDStringField, ); \ 5195 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 5196 OPTIONAL(file, MDField, ); \ 5197 OPTIONAL(line, LineField, ); \ 5198 OPTIONAL(type, MDField, ); \ 5199 OPTIONAL(flags, DIFlagField, ); \ 5200 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 5201 PARSE_MD_FIELDS(); 5202 #undef VISIT_MD_FIELDS 5203 5204 Result = GET_OR_DISTINCT(DILocalVariable, 5205 (Context, scope.Val, name.Val, file.Val, line.Val, 5206 type.Val, arg.Val, flags.Val, align.Val)); 5207 return false; 5208 } 5209 5210 /// parseDILabel: 5211 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7) 5212 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) { 5213 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5214 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5215 REQUIRED(name, MDStringField, ); \ 5216 REQUIRED(file, MDField, ); \ 5217 REQUIRED(line, LineField, ); 5218 PARSE_MD_FIELDS(); 5219 #undef VISIT_MD_FIELDS 5220 5221 Result = GET_OR_DISTINCT(DILabel, 5222 (Context, scope.Val, name.Val, file.Val, line.Val)); 5223 return false; 5224 } 5225 5226 /// parseDIExpression: 5227 /// ::= !DIExpression(0, 7, -1) 5228 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) { 5229 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5230 Lex.Lex(); 5231 5232 if (parseToken(lltok::lparen, "expected '(' here")) 5233 return true; 5234 5235 SmallVector<uint64_t, 8> Elements; 5236 if (Lex.getKind() != lltok::rparen) 5237 do { 5238 if (Lex.getKind() == lltok::DwarfOp) { 5239 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 5240 Lex.Lex(); 5241 Elements.push_back(Op); 5242 continue; 5243 } 5244 return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 5245 } 5246 5247 if (Lex.getKind() == lltok::DwarfAttEncoding) { 5248 if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) { 5249 Lex.Lex(); 5250 Elements.push_back(Op); 5251 continue; 5252 } 5253 return tokError(Twine("invalid DWARF attribute encoding '") + 5254 Lex.getStrVal() + "'"); 5255 } 5256 5257 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 5258 return tokError("expected unsigned integer"); 5259 5260 auto &U = Lex.getAPSIntVal(); 5261 if (U.ugt(UINT64_MAX)) 5262 return tokError("element too large, limit is " + Twine(UINT64_MAX)); 5263 Elements.push_back(U.getZExtValue()); 5264 Lex.Lex(); 5265 } while (EatIfPresent(lltok::comma)); 5266 5267 if (parseToken(lltok::rparen, "expected ')' here")) 5268 return true; 5269 5270 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 5271 return false; 5272 } 5273 5274 /// parseDIGlobalVariableExpression: 5275 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 5276 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result, 5277 bool IsDistinct) { 5278 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5279 REQUIRED(var, MDField, ); \ 5280 REQUIRED(expr, MDField, ); 5281 PARSE_MD_FIELDS(); 5282 #undef VISIT_MD_FIELDS 5283 5284 Result = 5285 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 5286 return false; 5287 } 5288 5289 /// parseDIObjCProperty: 5290 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 5291 /// getter: "getFoo", attributes: 7, type: !2) 5292 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 5293 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5294 OPTIONAL(name, MDStringField, ); \ 5295 OPTIONAL(file, MDField, ); \ 5296 OPTIONAL(line, LineField, ); \ 5297 OPTIONAL(setter, MDStringField, ); \ 5298 OPTIONAL(getter, MDStringField, ); \ 5299 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 5300 OPTIONAL(type, MDField, ); 5301 PARSE_MD_FIELDS(); 5302 #undef VISIT_MD_FIELDS 5303 5304 Result = GET_OR_DISTINCT(DIObjCProperty, 5305 (Context, name.Val, file.Val, line.Val, setter.Val, 5306 getter.Val, attributes.Val, type.Val)); 5307 return false; 5308 } 5309 5310 /// parseDIImportedEntity: 5311 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 5312 /// line: 7, name: "foo") 5313 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 5314 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5315 REQUIRED(tag, DwarfTagField, ); \ 5316 REQUIRED(scope, MDField, ); \ 5317 OPTIONAL(entity, MDField, ); \ 5318 OPTIONAL(file, MDField, ); \ 5319 OPTIONAL(line, LineField, ); \ 5320 OPTIONAL(name, MDStringField, ); 5321 PARSE_MD_FIELDS(); 5322 #undef VISIT_MD_FIELDS 5323 5324 Result = GET_OR_DISTINCT( 5325 DIImportedEntity, 5326 (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val)); 5327 return false; 5328 } 5329 5330 #undef PARSE_MD_FIELD 5331 #undef NOP_FIELD 5332 #undef REQUIRE_FIELD 5333 #undef DECLARE_FIELD 5334 5335 /// parseMetadataAsValue 5336 /// ::= metadata i32 %local 5337 /// ::= metadata i32 @global 5338 /// ::= metadata i32 7 5339 /// ::= metadata !0 5340 /// ::= metadata !{...} 5341 /// ::= metadata !"string" 5342 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 5343 // Note: the type 'metadata' has already been parsed. 5344 Metadata *MD; 5345 if (parseMetadata(MD, &PFS)) 5346 return true; 5347 5348 V = MetadataAsValue::get(Context, MD); 5349 return false; 5350 } 5351 5352 /// parseValueAsMetadata 5353 /// ::= i32 %local 5354 /// ::= i32 @global 5355 /// ::= i32 7 5356 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 5357 PerFunctionState *PFS) { 5358 Type *Ty; 5359 LocTy Loc; 5360 if (parseType(Ty, TypeMsg, Loc)) 5361 return true; 5362 if (Ty->isMetadataTy()) 5363 return error(Loc, "invalid metadata-value-metadata roundtrip"); 5364 5365 Value *V; 5366 if (parseValue(Ty, V, PFS)) 5367 return true; 5368 5369 MD = ValueAsMetadata::get(V); 5370 return false; 5371 } 5372 5373 /// parseMetadata 5374 /// ::= i32 %local 5375 /// ::= i32 @global 5376 /// ::= i32 7 5377 /// ::= !42 5378 /// ::= !{...} 5379 /// ::= !"string" 5380 /// ::= !DILocation(...) 5381 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) { 5382 if (Lex.getKind() == lltok::MetadataVar) { 5383 MDNode *N; 5384 if (parseSpecializedMDNode(N)) 5385 return true; 5386 MD = N; 5387 return false; 5388 } 5389 5390 // ValueAsMetadata: 5391 // <type> <value> 5392 if (Lex.getKind() != lltok::exclaim) 5393 return parseValueAsMetadata(MD, "expected metadata operand", PFS); 5394 5395 // '!'. 5396 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 5397 Lex.Lex(); 5398 5399 // MDString: 5400 // ::= '!' STRINGCONSTANT 5401 if (Lex.getKind() == lltok::StringConstant) { 5402 MDString *S; 5403 if (parseMDString(S)) 5404 return true; 5405 MD = S; 5406 return false; 5407 } 5408 5409 // MDNode: 5410 // !{ ... } 5411 // !7 5412 MDNode *N; 5413 if (parseMDNodeTail(N)) 5414 return true; 5415 MD = N; 5416 return false; 5417 } 5418 5419 //===----------------------------------------------------------------------===// 5420 // Function Parsing. 5421 //===----------------------------------------------------------------------===// 5422 5423 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V, 5424 PerFunctionState *PFS, bool IsCall) { 5425 if (Ty->isFunctionTy()) 5426 return error(ID.Loc, "functions are not values, refer to them as pointers"); 5427 5428 switch (ID.Kind) { 5429 case ValID::t_LocalID: 5430 if (!PFS) 5431 return error(ID.Loc, "invalid use of function-local name"); 5432 V = PFS->getVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5433 return V == nullptr; 5434 case ValID::t_LocalName: 5435 if (!PFS) 5436 return error(ID.Loc, "invalid use of function-local name"); 5437 V = PFS->getVal(ID.StrVal, Ty, ID.Loc, IsCall); 5438 return V == nullptr; 5439 case ValID::t_InlineAsm: { 5440 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 5441 return error(ID.Loc, "invalid type for inline asm constraint string"); 5442 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, 5443 (ID.UIntVal >> 1) & 1, 5444 (InlineAsm::AsmDialect(ID.UIntVal >> 2))); 5445 return false; 5446 } 5447 case ValID::t_GlobalName: 5448 V = getGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall); 5449 return V == nullptr; 5450 case ValID::t_GlobalID: 5451 V = getGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5452 return V == nullptr; 5453 case ValID::t_APSInt: 5454 if (!Ty->isIntegerTy()) 5455 return error(ID.Loc, "integer constant must have integer type"); 5456 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 5457 V = ConstantInt::get(Context, ID.APSIntVal); 5458 return false; 5459 case ValID::t_APFloat: 5460 if (!Ty->isFloatingPointTy() || 5461 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 5462 return error(ID.Loc, "floating point constant invalid for type"); 5463 5464 // The lexer has no type info, so builds all half, bfloat, float, and double 5465 // FP constants as double. Fix this here. Long double does not need this. 5466 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 5467 // Check for signaling before potentially converting and losing that info. 5468 bool IsSNAN = ID.APFloatVal.isSignaling(); 5469 bool Ignored; 5470 if (Ty->isHalfTy()) 5471 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 5472 &Ignored); 5473 else if (Ty->isBFloatTy()) 5474 ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven, 5475 &Ignored); 5476 else if (Ty->isFloatTy()) 5477 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 5478 &Ignored); 5479 if (IsSNAN) { 5480 // The convert call above may quiet an SNaN, so manufacture another 5481 // SNaN. The bitcast works because the payload (significand) parameter 5482 // is truncated to fit. 5483 APInt Payload = ID.APFloatVal.bitcastToAPInt(); 5484 ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(), 5485 ID.APFloatVal.isNegative(), &Payload); 5486 } 5487 } 5488 V = ConstantFP::get(Context, ID.APFloatVal); 5489 5490 if (V->getType() != Ty) 5491 return error(ID.Loc, "floating point constant does not have type '" + 5492 getTypeString(Ty) + "'"); 5493 5494 return false; 5495 case ValID::t_Null: 5496 if (!Ty->isPointerTy()) 5497 return error(ID.Loc, "null must be a pointer type"); 5498 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 5499 return false; 5500 case ValID::t_Undef: 5501 // FIXME: LabelTy should not be a first-class type. 5502 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5503 return error(ID.Loc, "invalid type for undef constant"); 5504 V = UndefValue::get(Ty); 5505 return false; 5506 case ValID::t_EmptyArray: 5507 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 5508 return error(ID.Loc, "invalid empty array initializer"); 5509 V = UndefValue::get(Ty); 5510 return false; 5511 case ValID::t_Zero: 5512 // FIXME: LabelTy should not be a first-class type. 5513 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5514 return error(ID.Loc, "invalid type for null constant"); 5515 V = Constant::getNullValue(Ty); 5516 return false; 5517 case ValID::t_None: 5518 if (!Ty->isTokenTy()) 5519 return error(ID.Loc, "invalid type for none constant"); 5520 V = Constant::getNullValue(Ty); 5521 return false; 5522 case ValID::t_Constant: 5523 if (ID.ConstantVal->getType() != Ty) 5524 return error(ID.Loc, "constant expression type mismatch"); 5525 5526 V = ID.ConstantVal; 5527 return false; 5528 case ValID::t_ConstantStruct: 5529 case ValID::t_PackedConstantStruct: 5530 if (StructType *ST = dyn_cast<StructType>(Ty)) { 5531 if (ST->getNumElements() != ID.UIntVal) 5532 return error(ID.Loc, 5533 "initializer with struct type has wrong # elements"); 5534 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 5535 return error(ID.Loc, "packed'ness of initializer and type don't match"); 5536 5537 // Verify that the elements are compatible with the structtype. 5538 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 5539 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 5540 return error( 5541 ID.Loc, 5542 "element " + Twine(i) + 5543 " of struct initializer doesn't match struct element type"); 5544 5545 V = ConstantStruct::get( 5546 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 5547 } else 5548 return error(ID.Loc, "constant expression type mismatch"); 5549 return false; 5550 } 5551 llvm_unreachable("Invalid ValID"); 5552 } 5553 5554 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 5555 C = nullptr; 5556 ValID ID; 5557 auto Loc = Lex.getLoc(); 5558 if (parseValID(ID, /*PFS=*/nullptr)) 5559 return true; 5560 switch (ID.Kind) { 5561 case ValID::t_APSInt: 5562 case ValID::t_APFloat: 5563 case ValID::t_Undef: 5564 case ValID::t_Constant: 5565 case ValID::t_ConstantStruct: 5566 case ValID::t_PackedConstantStruct: { 5567 Value *V; 5568 if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false)) 5569 return true; 5570 assert(isa<Constant>(V) && "Expected a constant value"); 5571 C = cast<Constant>(V); 5572 return false; 5573 } 5574 case ValID::t_Null: 5575 C = Constant::getNullValue(Ty); 5576 return false; 5577 default: 5578 return error(Loc, "expected a constant value"); 5579 } 5580 } 5581 5582 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 5583 V = nullptr; 5584 ValID ID; 5585 return parseValID(ID, PFS) || 5586 convertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false); 5587 } 5588 5589 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) { 5590 Type *Ty = nullptr; 5591 return parseType(Ty) || parseValue(Ty, V, PFS); 5592 } 5593 5594 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 5595 PerFunctionState &PFS) { 5596 Value *V; 5597 Loc = Lex.getLoc(); 5598 if (parseTypeAndValue(V, PFS)) 5599 return true; 5600 if (!isa<BasicBlock>(V)) 5601 return error(Loc, "expected a basic block"); 5602 BB = cast<BasicBlock>(V); 5603 return false; 5604 } 5605 5606 /// FunctionHeader 5607 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 5608 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 5609 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign 5610 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 5611 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) { 5612 // parse the linkage. 5613 LocTy LinkageLoc = Lex.getLoc(); 5614 unsigned Linkage; 5615 unsigned Visibility; 5616 unsigned DLLStorageClass; 5617 bool DSOLocal; 5618 AttrBuilder RetAttrs; 5619 unsigned CC; 5620 bool HasLinkage; 5621 Type *RetType = nullptr; 5622 LocTy RetTypeLoc = Lex.getLoc(); 5623 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 5624 DSOLocal) || 5625 parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 5626 parseType(RetType, RetTypeLoc, true /*void allowed*/)) 5627 return true; 5628 5629 // Verify that the linkage is ok. 5630 switch ((GlobalValue::LinkageTypes)Linkage) { 5631 case GlobalValue::ExternalLinkage: 5632 break; // always ok. 5633 case GlobalValue::ExternalWeakLinkage: 5634 if (IsDefine) 5635 return error(LinkageLoc, "invalid linkage for function definition"); 5636 break; 5637 case GlobalValue::PrivateLinkage: 5638 case GlobalValue::InternalLinkage: 5639 case GlobalValue::AvailableExternallyLinkage: 5640 case GlobalValue::LinkOnceAnyLinkage: 5641 case GlobalValue::LinkOnceODRLinkage: 5642 case GlobalValue::WeakAnyLinkage: 5643 case GlobalValue::WeakODRLinkage: 5644 if (!IsDefine) 5645 return error(LinkageLoc, "invalid linkage for function declaration"); 5646 break; 5647 case GlobalValue::AppendingLinkage: 5648 case GlobalValue::CommonLinkage: 5649 return error(LinkageLoc, "invalid function linkage type"); 5650 } 5651 5652 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 5653 return error(LinkageLoc, 5654 "symbol with local linkage must have default visibility"); 5655 5656 if (!FunctionType::isValidReturnType(RetType)) 5657 return error(RetTypeLoc, "invalid function return type"); 5658 5659 LocTy NameLoc = Lex.getLoc(); 5660 5661 std::string FunctionName; 5662 if (Lex.getKind() == lltok::GlobalVar) { 5663 FunctionName = Lex.getStrVal(); 5664 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 5665 unsigned NameID = Lex.getUIntVal(); 5666 5667 if (NameID != NumberedVals.size()) 5668 return tokError("function expected to be numbered '%" + 5669 Twine(NumberedVals.size()) + "'"); 5670 } else { 5671 return tokError("expected function name"); 5672 } 5673 5674 Lex.Lex(); 5675 5676 if (Lex.getKind() != lltok::lparen) 5677 return tokError("expected '(' in function argument list"); 5678 5679 SmallVector<ArgInfo, 8> ArgList; 5680 bool IsVarArg; 5681 AttrBuilder FuncAttrs; 5682 std::vector<unsigned> FwdRefAttrGrps; 5683 LocTy BuiltinLoc; 5684 std::string Section; 5685 std::string Partition; 5686 MaybeAlign Alignment; 5687 std::string GC; 5688 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 5689 unsigned AddrSpace = 0; 5690 Constant *Prefix = nullptr; 5691 Constant *Prologue = nullptr; 5692 Constant *PersonalityFn = nullptr; 5693 Comdat *C; 5694 5695 if (parseArgumentList(ArgList, IsVarArg) || 5696 parseOptionalUnnamedAddr(UnnamedAddr) || 5697 parseOptionalProgramAddrSpace(AddrSpace) || 5698 parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 5699 BuiltinLoc) || 5700 (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) || 5701 (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) || 5702 parseOptionalComdat(FunctionName, C) || 5703 parseOptionalAlignment(Alignment) || 5704 (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) || 5705 (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) || 5706 (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) || 5707 (EatIfPresent(lltok::kw_personality) && 5708 parseGlobalTypeAndValue(PersonalityFn))) 5709 return true; 5710 5711 if (FuncAttrs.contains(Attribute::Builtin)) 5712 return error(BuiltinLoc, "'builtin' attribute not valid on function"); 5713 5714 // If the alignment was parsed as an attribute, move to the alignment field. 5715 if (FuncAttrs.hasAlignmentAttr()) { 5716 Alignment = FuncAttrs.getAlignment(); 5717 FuncAttrs.removeAttribute(Attribute::Alignment); 5718 } 5719 5720 // Okay, if we got here, the function is syntactically valid. Convert types 5721 // and do semantic checks. 5722 std::vector<Type*> ParamTypeList; 5723 SmallVector<AttributeSet, 8> Attrs; 5724 5725 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5726 ParamTypeList.push_back(ArgList[i].Ty); 5727 Attrs.push_back(ArgList[i].Attrs); 5728 } 5729 5730 AttributeList PAL = 5731 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 5732 AttributeSet::get(Context, RetAttrs), Attrs); 5733 5734 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 5735 return error(RetTypeLoc, "functions with 'sret' argument must return void"); 5736 5737 FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg); 5738 PointerType *PFT = PointerType::get(FT, AddrSpace); 5739 5740 Fn = nullptr; 5741 if (!FunctionName.empty()) { 5742 // If this was a definition of a forward reference, remove the definition 5743 // from the forward reference table and fill in the forward ref. 5744 auto FRVI = ForwardRefVals.find(FunctionName); 5745 if (FRVI != ForwardRefVals.end()) { 5746 Fn = M->getFunction(FunctionName); 5747 if (!Fn) 5748 return error(FRVI->second.second, "invalid forward reference to " 5749 "function as global value!"); 5750 if (Fn->getType() != PFT) 5751 return error(FRVI->second.second, 5752 "invalid forward reference to " 5753 "function '" + 5754 FunctionName + 5755 "' with wrong type: " 5756 "expected '" + 5757 getTypeString(PFT) + "' but was '" + 5758 getTypeString(Fn->getType()) + "'"); 5759 ForwardRefVals.erase(FRVI); 5760 } else if ((Fn = M->getFunction(FunctionName))) { 5761 // Reject redefinitions. 5762 return error(NameLoc, 5763 "invalid redefinition of function '" + FunctionName + "'"); 5764 } else if (M->getNamedValue(FunctionName)) { 5765 return error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 5766 } 5767 5768 } else { 5769 // If this is a definition of a forward referenced function, make sure the 5770 // types agree. 5771 auto I = ForwardRefValIDs.find(NumberedVals.size()); 5772 if (I != ForwardRefValIDs.end()) { 5773 Fn = cast<Function>(I->second.first); 5774 if (Fn->getType() != PFT) 5775 return error(NameLoc, "type of definition and forward reference of '@" + 5776 Twine(NumberedVals.size()) + 5777 "' disagree: " 5778 "expected '" + 5779 getTypeString(PFT) + "' but was '" + 5780 getTypeString(Fn->getType()) + "'"); 5781 ForwardRefValIDs.erase(I); 5782 } 5783 } 5784 5785 if (!Fn) 5786 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace, 5787 FunctionName, M); 5788 else // Move the forward-reference to the correct spot in the module. 5789 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 5790 5791 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS"); 5792 5793 if (FunctionName.empty()) 5794 NumberedVals.push_back(Fn); 5795 5796 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 5797 maybeSetDSOLocal(DSOLocal, *Fn); 5798 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 5799 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 5800 Fn->setCallingConv(CC); 5801 Fn->setAttributes(PAL); 5802 Fn->setUnnamedAddr(UnnamedAddr); 5803 Fn->setAlignment(MaybeAlign(Alignment)); 5804 Fn->setSection(Section); 5805 Fn->setPartition(Partition); 5806 Fn->setComdat(C); 5807 Fn->setPersonalityFn(PersonalityFn); 5808 if (!GC.empty()) Fn->setGC(GC); 5809 Fn->setPrefixData(Prefix); 5810 Fn->setPrologueData(Prologue); 5811 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 5812 5813 // Add all of the arguments we parsed to the function. 5814 Function::arg_iterator ArgIt = Fn->arg_begin(); 5815 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 5816 // If the argument has a name, insert it into the argument symbol table. 5817 if (ArgList[i].Name.empty()) continue; 5818 5819 // Set the name, if it conflicted, it will be auto-renamed. 5820 ArgIt->setName(ArgList[i].Name); 5821 5822 if (ArgIt->getName() != ArgList[i].Name) 5823 return error(ArgList[i].Loc, 5824 "redefinition of argument '%" + ArgList[i].Name + "'"); 5825 } 5826 5827 if (IsDefine) 5828 return false; 5829 5830 // Check the declaration has no block address forward references. 5831 ValID ID; 5832 if (FunctionName.empty()) { 5833 ID.Kind = ValID::t_GlobalID; 5834 ID.UIntVal = NumberedVals.size() - 1; 5835 } else { 5836 ID.Kind = ValID::t_GlobalName; 5837 ID.StrVal = FunctionName; 5838 } 5839 auto Blocks = ForwardRefBlockAddresses.find(ID); 5840 if (Blocks != ForwardRefBlockAddresses.end()) 5841 return error(Blocks->first.Loc, 5842 "cannot take blockaddress inside a declaration"); 5843 return false; 5844 } 5845 5846 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 5847 ValID ID; 5848 if (FunctionNumber == -1) { 5849 ID.Kind = ValID::t_GlobalName; 5850 ID.StrVal = std::string(F.getName()); 5851 } else { 5852 ID.Kind = ValID::t_GlobalID; 5853 ID.UIntVal = FunctionNumber; 5854 } 5855 5856 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 5857 if (Blocks == P.ForwardRefBlockAddresses.end()) 5858 return false; 5859 5860 for (const auto &I : Blocks->second) { 5861 const ValID &BBID = I.first; 5862 GlobalValue *GV = I.second; 5863 5864 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 5865 "Expected local id or name"); 5866 BasicBlock *BB; 5867 if (BBID.Kind == ValID::t_LocalName) 5868 BB = getBB(BBID.StrVal, BBID.Loc); 5869 else 5870 BB = getBB(BBID.UIntVal, BBID.Loc); 5871 if (!BB) 5872 return P.error(BBID.Loc, "referenced value is not a basic block"); 5873 5874 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 5875 GV->eraseFromParent(); 5876 } 5877 5878 P.ForwardRefBlockAddresses.erase(Blocks); 5879 return false; 5880 } 5881 5882 /// parseFunctionBody 5883 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 5884 bool LLParser::parseFunctionBody(Function &Fn) { 5885 if (Lex.getKind() != lltok::lbrace) 5886 return tokError("expected '{' in function body"); 5887 Lex.Lex(); // eat the {. 5888 5889 int FunctionNumber = -1; 5890 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 5891 5892 PerFunctionState PFS(*this, Fn, FunctionNumber); 5893 5894 // Resolve block addresses and allow basic blocks to be forward-declared 5895 // within this function. 5896 if (PFS.resolveForwardRefBlockAddresses()) 5897 return true; 5898 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 5899 5900 // We need at least one basic block. 5901 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 5902 return tokError("function body requires at least one basic block"); 5903 5904 while (Lex.getKind() != lltok::rbrace && 5905 Lex.getKind() != lltok::kw_uselistorder) 5906 if (parseBasicBlock(PFS)) 5907 return true; 5908 5909 while (Lex.getKind() != lltok::rbrace) 5910 if (parseUseListOrder(&PFS)) 5911 return true; 5912 5913 // Eat the }. 5914 Lex.Lex(); 5915 5916 // Verify function is ok. 5917 return PFS.finishFunction(); 5918 } 5919 5920 /// parseBasicBlock 5921 /// ::= (LabelStr|LabelID)? Instruction* 5922 bool LLParser::parseBasicBlock(PerFunctionState &PFS) { 5923 // If this basic block starts out with a name, remember it. 5924 std::string Name; 5925 int NameID = -1; 5926 LocTy NameLoc = Lex.getLoc(); 5927 if (Lex.getKind() == lltok::LabelStr) { 5928 Name = Lex.getStrVal(); 5929 Lex.Lex(); 5930 } else if (Lex.getKind() == lltok::LabelID) { 5931 NameID = Lex.getUIntVal(); 5932 Lex.Lex(); 5933 } 5934 5935 BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc); 5936 if (!BB) 5937 return true; 5938 5939 std::string NameStr; 5940 5941 // parse the instructions in this block until we get a terminator. 5942 Instruction *Inst; 5943 do { 5944 // This instruction may have three possibilities for a name: a) none 5945 // specified, b) name specified "%foo =", c) number specified: "%4 =". 5946 LocTy NameLoc = Lex.getLoc(); 5947 int NameID = -1; 5948 NameStr = ""; 5949 5950 if (Lex.getKind() == lltok::LocalVarID) { 5951 NameID = Lex.getUIntVal(); 5952 Lex.Lex(); 5953 if (parseToken(lltok::equal, "expected '=' after instruction id")) 5954 return true; 5955 } else if (Lex.getKind() == lltok::LocalVar) { 5956 NameStr = Lex.getStrVal(); 5957 Lex.Lex(); 5958 if (parseToken(lltok::equal, "expected '=' after instruction name")) 5959 return true; 5960 } 5961 5962 switch (parseInstruction(Inst, BB, PFS)) { 5963 default: 5964 llvm_unreachable("Unknown parseInstruction result!"); 5965 case InstError: return true; 5966 case InstNormal: 5967 BB->getInstList().push_back(Inst); 5968 5969 // With a normal result, we check to see if the instruction is followed by 5970 // a comma and metadata. 5971 if (EatIfPresent(lltok::comma)) 5972 if (parseInstructionMetadata(*Inst)) 5973 return true; 5974 break; 5975 case InstExtraComma: 5976 BB->getInstList().push_back(Inst); 5977 5978 // If the instruction parser ate an extra comma at the end of it, it 5979 // *must* be followed by metadata. 5980 if (parseInstructionMetadata(*Inst)) 5981 return true; 5982 break; 5983 } 5984 5985 // Set the name on the instruction. 5986 if (PFS.setInstName(NameID, NameStr, NameLoc, Inst)) 5987 return true; 5988 } while (!Inst->isTerminator()); 5989 5990 return false; 5991 } 5992 5993 //===----------------------------------------------------------------------===// 5994 // Instruction Parsing. 5995 //===----------------------------------------------------------------------===// 5996 5997 /// parseInstruction - parse one of the many different instructions. 5998 /// 5999 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB, 6000 PerFunctionState &PFS) { 6001 lltok::Kind Token = Lex.getKind(); 6002 if (Token == lltok::Eof) 6003 return tokError("found end of file when expecting more instructions"); 6004 LocTy Loc = Lex.getLoc(); 6005 unsigned KeywordVal = Lex.getUIntVal(); 6006 Lex.Lex(); // Eat the keyword. 6007 6008 switch (Token) { 6009 default: 6010 return error(Loc, "expected instruction opcode"); 6011 // Terminator Instructions. 6012 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 6013 case lltok::kw_ret: 6014 return parseRet(Inst, BB, PFS); 6015 case lltok::kw_br: 6016 return parseBr(Inst, PFS); 6017 case lltok::kw_switch: 6018 return parseSwitch(Inst, PFS); 6019 case lltok::kw_indirectbr: 6020 return parseIndirectBr(Inst, PFS); 6021 case lltok::kw_invoke: 6022 return parseInvoke(Inst, PFS); 6023 case lltok::kw_resume: 6024 return parseResume(Inst, PFS); 6025 case lltok::kw_cleanupret: 6026 return parseCleanupRet(Inst, PFS); 6027 case lltok::kw_catchret: 6028 return parseCatchRet(Inst, PFS); 6029 case lltok::kw_catchswitch: 6030 return parseCatchSwitch(Inst, PFS); 6031 case lltok::kw_catchpad: 6032 return parseCatchPad(Inst, PFS); 6033 case lltok::kw_cleanuppad: 6034 return parseCleanupPad(Inst, PFS); 6035 case lltok::kw_callbr: 6036 return parseCallBr(Inst, PFS); 6037 // Unary Operators. 6038 case lltok::kw_fneg: { 6039 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6040 int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true); 6041 if (Res != 0) 6042 return Res; 6043 if (FMF.any()) 6044 Inst->setFastMathFlags(FMF); 6045 return false; 6046 } 6047 // Binary Operators. 6048 case lltok::kw_add: 6049 case lltok::kw_sub: 6050 case lltok::kw_mul: 6051 case lltok::kw_shl: { 6052 bool NUW = EatIfPresent(lltok::kw_nuw); 6053 bool NSW = EatIfPresent(lltok::kw_nsw); 6054 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 6055 6056 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 6057 return true; 6058 6059 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 6060 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 6061 return false; 6062 } 6063 case lltok::kw_fadd: 6064 case lltok::kw_fsub: 6065 case lltok::kw_fmul: 6066 case lltok::kw_fdiv: 6067 case lltok::kw_frem: { 6068 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6069 int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true); 6070 if (Res != 0) 6071 return Res; 6072 if (FMF.any()) 6073 Inst->setFastMathFlags(FMF); 6074 return 0; 6075 } 6076 6077 case lltok::kw_sdiv: 6078 case lltok::kw_udiv: 6079 case lltok::kw_lshr: 6080 case lltok::kw_ashr: { 6081 bool Exact = EatIfPresent(lltok::kw_exact); 6082 6083 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 6084 return true; 6085 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 6086 return false; 6087 } 6088 6089 case lltok::kw_urem: 6090 case lltok::kw_srem: 6091 return parseArithmetic(Inst, PFS, KeywordVal, 6092 /*IsFP*/ false); 6093 case lltok::kw_and: 6094 case lltok::kw_or: 6095 case lltok::kw_xor: 6096 return parseLogical(Inst, PFS, KeywordVal); 6097 case lltok::kw_icmp: 6098 return parseCompare(Inst, PFS, KeywordVal); 6099 case lltok::kw_fcmp: { 6100 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6101 int Res = parseCompare(Inst, PFS, KeywordVal); 6102 if (Res != 0) 6103 return Res; 6104 if (FMF.any()) 6105 Inst->setFastMathFlags(FMF); 6106 return 0; 6107 } 6108 6109 // Casts. 6110 case lltok::kw_trunc: 6111 case lltok::kw_zext: 6112 case lltok::kw_sext: 6113 case lltok::kw_fptrunc: 6114 case lltok::kw_fpext: 6115 case lltok::kw_bitcast: 6116 case lltok::kw_addrspacecast: 6117 case lltok::kw_uitofp: 6118 case lltok::kw_sitofp: 6119 case lltok::kw_fptoui: 6120 case lltok::kw_fptosi: 6121 case lltok::kw_inttoptr: 6122 case lltok::kw_ptrtoint: 6123 return parseCast(Inst, PFS, KeywordVal); 6124 // Other. 6125 case lltok::kw_select: { 6126 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6127 int Res = parseSelect(Inst, PFS); 6128 if (Res != 0) 6129 return Res; 6130 if (FMF.any()) { 6131 if (!isa<FPMathOperator>(Inst)) 6132 return error(Loc, "fast-math-flags specified for select without " 6133 "floating-point scalar or vector return type"); 6134 Inst->setFastMathFlags(FMF); 6135 } 6136 return 0; 6137 } 6138 case lltok::kw_va_arg: 6139 return parseVAArg(Inst, PFS); 6140 case lltok::kw_extractelement: 6141 return parseExtractElement(Inst, PFS); 6142 case lltok::kw_insertelement: 6143 return parseInsertElement(Inst, PFS); 6144 case lltok::kw_shufflevector: 6145 return parseShuffleVector(Inst, PFS); 6146 case lltok::kw_phi: { 6147 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6148 int Res = parsePHI(Inst, PFS); 6149 if (Res != 0) 6150 return Res; 6151 if (FMF.any()) { 6152 if (!isa<FPMathOperator>(Inst)) 6153 return error(Loc, "fast-math-flags specified for phi without " 6154 "floating-point scalar or vector return type"); 6155 Inst->setFastMathFlags(FMF); 6156 } 6157 return 0; 6158 } 6159 case lltok::kw_landingpad: 6160 return parseLandingPad(Inst, PFS); 6161 case lltok::kw_freeze: 6162 return parseFreeze(Inst, PFS); 6163 // Call. 6164 case lltok::kw_call: 6165 return parseCall(Inst, PFS, CallInst::TCK_None); 6166 case lltok::kw_tail: 6167 return parseCall(Inst, PFS, CallInst::TCK_Tail); 6168 case lltok::kw_musttail: 6169 return parseCall(Inst, PFS, CallInst::TCK_MustTail); 6170 case lltok::kw_notail: 6171 return parseCall(Inst, PFS, CallInst::TCK_NoTail); 6172 // Memory. 6173 case lltok::kw_alloca: 6174 return parseAlloc(Inst, PFS); 6175 case lltok::kw_load: 6176 return parseLoad(Inst, PFS); 6177 case lltok::kw_store: 6178 return parseStore(Inst, PFS); 6179 case lltok::kw_cmpxchg: 6180 return parseCmpXchg(Inst, PFS); 6181 case lltok::kw_atomicrmw: 6182 return parseAtomicRMW(Inst, PFS); 6183 case lltok::kw_fence: 6184 return parseFence(Inst, PFS); 6185 case lltok::kw_getelementptr: 6186 return parseGetElementPtr(Inst, PFS); 6187 case lltok::kw_extractvalue: 6188 return parseExtractValue(Inst, PFS); 6189 case lltok::kw_insertvalue: 6190 return parseInsertValue(Inst, PFS); 6191 } 6192 } 6193 6194 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind. 6195 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) { 6196 if (Opc == Instruction::FCmp) { 6197 switch (Lex.getKind()) { 6198 default: 6199 return tokError("expected fcmp predicate (e.g. 'oeq')"); 6200 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 6201 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 6202 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 6203 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 6204 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 6205 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 6206 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 6207 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 6208 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 6209 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 6210 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 6211 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 6212 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 6213 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 6214 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 6215 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 6216 } 6217 } else { 6218 switch (Lex.getKind()) { 6219 default: 6220 return tokError("expected icmp predicate (e.g. 'eq')"); 6221 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 6222 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 6223 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 6224 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 6225 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 6226 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 6227 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 6228 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 6229 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 6230 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 6231 } 6232 } 6233 Lex.Lex(); 6234 return false; 6235 } 6236 6237 //===----------------------------------------------------------------------===// 6238 // Terminator Instructions. 6239 //===----------------------------------------------------------------------===// 6240 6241 /// parseRet - parse a return instruction. 6242 /// ::= 'ret' void (',' !dbg, !1)* 6243 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 6244 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB, 6245 PerFunctionState &PFS) { 6246 SMLoc TypeLoc = Lex.getLoc(); 6247 Type *Ty = nullptr; 6248 if (parseType(Ty, true /*void allowed*/)) 6249 return true; 6250 6251 Type *ResType = PFS.getFunction().getReturnType(); 6252 6253 if (Ty->isVoidTy()) { 6254 if (!ResType->isVoidTy()) 6255 return error(TypeLoc, "value doesn't match function result type '" + 6256 getTypeString(ResType) + "'"); 6257 6258 Inst = ReturnInst::Create(Context); 6259 return false; 6260 } 6261 6262 Value *RV; 6263 if (parseValue(Ty, RV, PFS)) 6264 return true; 6265 6266 if (ResType != RV->getType()) 6267 return error(TypeLoc, "value doesn't match function result type '" + 6268 getTypeString(ResType) + "'"); 6269 6270 Inst = ReturnInst::Create(Context, RV); 6271 return false; 6272 } 6273 6274 /// parseBr 6275 /// ::= 'br' TypeAndValue 6276 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6277 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) { 6278 LocTy Loc, Loc2; 6279 Value *Op0; 6280 BasicBlock *Op1, *Op2; 6281 if (parseTypeAndValue(Op0, Loc, PFS)) 6282 return true; 6283 6284 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 6285 Inst = BranchInst::Create(BB); 6286 return false; 6287 } 6288 6289 if (Op0->getType() != Type::getInt1Ty(Context)) 6290 return error(Loc, "branch condition must have 'i1' type"); 6291 6292 if (parseToken(lltok::comma, "expected ',' after branch condition") || 6293 parseTypeAndBasicBlock(Op1, Loc, PFS) || 6294 parseToken(lltok::comma, "expected ',' after true destination") || 6295 parseTypeAndBasicBlock(Op2, Loc2, PFS)) 6296 return true; 6297 6298 Inst = BranchInst::Create(Op1, Op2, Op0); 6299 return false; 6300 } 6301 6302 /// parseSwitch 6303 /// Instruction 6304 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 6305 /// JumpTable 6306 /// ::= (TypeAndValue ',' TypeAndValue)* 6307 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6308 LocTy CondLoc, BBLoc; 6309 Value *Cond; 6310 BasicBlock *DefaultBB; 6311 if (parseTypeAndValue(Cond, CondLoc, PFS) || 6312 parseToken(lltok::comma, "expected ',' after switch condition") || 6313 parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 6314 parseToken(lltok::lsquare, "expected '[' with switch table")) 6315 return true; 6316 6317 if (!Cond->getType()->isIntegerTy()) 6318 return error(CondLoc, "switch condition must have integer type"); 6319 6320 // parse the jump table pairs. 6321 SmallPtrSet<Value*, 32> SeenCases; 6322 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 6323 while (Lex.getKind() != lltok::rsquare) { 6324 Value *Constant; 6325 BasicBlock *DestBB; 6326 6327 if (parseTypeAndValue(Constant, CondLoc, PFS) || 6328 parseToken(lltok::comma, "expected ',' after case value") || 6329 parseTypeAndBasicBlock(DestBB, PFS)) 6330 return true; 6331 6332 if (!SeenCases.insert(Constant).second) 6333 return error(CondLoc, "duplicate case value in switch"); 6334 if (!isa<ConstantInt>(Constant)) 6335 return error(CondLoc, "case value is not a constant integer"); 6336 6337 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 6338 } 6339 6340 Lex.Lex(); // Eat the ']'. 6341 6342 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 6343 for (unsigned i = 0, e = Table.size(); i != e; ++i) 6344 SI->addCase(Table[i].first, Table[i].second); 6345 Inst = SI; 6346 return false; 6347 } 6348 6349 /// parseIndirectBr 6350 /// Instruction 6351 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 6352 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 6353 LocTy AddrLoc; 6354 Value *Address; 6355 if (parseTypeAndValue(Address, AddrLoc, PFS) || 6356 parseToken(lltok::comma, "expected ',' after indirectbr address") || 6357 parseToken(lltok::lsquare, "expected '[' with indirectbr")) 6358 return true; 6359 6360 if (!Address->getType()->isPointerTy()) 6361 return error(AddrLoc, "indirectbr address must have pointer type"); 6362 6363 // parse the destination list. 6364 SmallVector<BasicBlock*, 16> DestList; 6365 6366 if (Lex.getKind() != lltok::rsquare) { 6367 BasicBlock *DestBB; 6368 if (parseTypeAndBasicBlock(DestBB, PFS)) 6369 return true; 6370 DestList.push_back(DestBB); 6371 6372 while (EatIfPresent(lltok::comma)) { 6373 if (parseTypeAndBasicBlock(DestBB, PFS)) 6374 return true; 6375 DestList.push_back(DestBB); 6376 } 6377 } 6378 6379 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 6380 return true; 6381 6382 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 6383 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 6384 IBI->addDestination(DestList[i]); 6385 Inst = IBI; 6386 return false; 6387 } 6388 6389 /// parseInvoke 6390 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 6391 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 6392 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 6393 LocTy CallLoc = Lex.getLoc(); 6394 AttrBuilder RetAttrs, FnAttrs; 6395 std::vector<unsigned> FwdRefAttrGrps; 6396 LocTy NoBuiltinLoc; 6397 unsigned CC; 6398 unsigned InvokeAddrSpace; 6399 Type *RetType = nullptr; 6400 LocTy RetTypeLoc; 6401 ValID CalleeID; 6402 SmallVector<ParamInfo, 16> ArgList; 6403 SmallVector<OperandBundleDef, 2> BundleList; 6404 6405 BasicBlock *NormalBB, *UnwindBB; 6406 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6407 parseOptionalProgramAddrSpace(InvokeAddrSpace) || 6408 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6409 parseValID(CalleeID) || parseParameterList(ArgList, PFS) || 6410 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6411 NoBuiltinLoc) || 6412 parseOptionalOperandBundles(BundleList, PFS) || 6413 parseToken(lltok::kw_to, "expected 'to' in invoke") || 6414 parseTypeAndBasicBlock(NormalBB, PFS) || 6415 parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 6416 parseTypeAndBasicBlock(UnwindBB, PFS)) 6417 return true; 6418 6419 // If RetType is a non-function pointer type, then this is the short syntax 6420 // for the call, which means that RetType is just the return type. Infer the 6421 // rest of the function argument types from the arguments that are present. 6422 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6423 if (!Ty) { 6424 // Pull out the types of all of the arguments... 6425 std::vector<Type*> ParamTypes; 6426 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6427 ParamTypes.push_back(ArgList[i].V->getType()); 6428 6429 if (!FunctionType::isValidReturnType(RetType)) 6430 return error(RetTypeLoc, "Invalid result type for LLVM function"); 6431 6432 Ty = FunctionType::get(RetType, ParamTypes, false); 6433 } 6434 6435 CalleeID.FTy = Ty; 6436 6437 // Look up the callee. 6438 Value *Callee; 6439 if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID, 6440 Callee, &PFS, /*IsCall=*/true)) 6441 return true; 6442 6443 // Set up the Attribute for the function. 6444 SmallVector<Value *, 8> Args; 6445 SmallVector<AttributeSet, 8> ArgAttrs; 6446 6447 // Loop through FunctionType's arguments and ensure they are specified 6448 // correctly. Also, gather any parameter attributes. 6449 FunctionType::param_iterator I = Ty->param_begin(); 6450 FunctionType::param_iterator E = Ty->param_end(); 6451 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6452 Type *ExpectedTy = nullptr; 6453 if (I != E) { 6454 ExpectedTy = *I++; 6455 } else if (!Ty->isVarArg()) { 6456 return error(ArgList[i].Loc, "too many arguments specified"); 6457 } 6458 6459 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6460 return error(ArgList[i].Loc, "argument is not of expected type '" + 6461 getTypeString(ExpectedTy) + "'"); 6462 Args.push_back(ArgList[i].V); 6463 ArgAttrs.push_back(ArgList[i].Attrs); 6464 } 6465 6466 if (I != E) 6467 return error(CallLoc, "not enough parameters specified for call"); 6468 6469 if (FnAttrs.hasAlignmentAttr()) 6470 return error(CallLoc, "invoke instructions may not have an alignment"); 6471 6472 // Finish off the Attribute and check them 6473 AttributeList PAL = 6474 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6475 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6476 6477 InvokeInst *II = 6478 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 6479 II->setCallingConv(CC); 6480 II->setAttributes(PAL); 6481 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 6482 Inst = II; 6483 return false; 6484 } 6485 6486 /// parseResume 6487 /// ::= 'resume' TypeAndValue 6488 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) { 6489 Value *Exn; LocTy ExnLoc; 6490 if (parseTypeAndValue(Exn, ExnLoc, PFS)) 6491 return true; 6492 6493 ResumeInst *RI = ResumeInst::Create(Exn); 6494 Inst = RI; 6495 return false; 6496 } 6497 6498 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args, 6499 PerFunctionState &PFS) { 6500 if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 6501 return true; 6502 6503 while (Lex.getKind() != lltok::rsquare) { 6504 // If this isn't the first argument, we need a comma. 6505 if (!Args.empty() && 6506 parseToken(lltok::comma, "expected ',' in argument list")) 6507 return true; 6508 6509 // parse the argument. 6510 LocTy ArgLoc; 6511 Type *ArgTy = nullptr; 6512 if (parseType(ArgTy, ArgLoc)) 6513 return true; 6514 6515 Value *V; 6516 if (ArgTy->isMetadataTy()) { 6517 if (parseMetadataAsValue(V, PFS)) 6518 return true; 6519 } else { 6520 if (parseValue(ArgTy, V, PFS)) 6521 return true; 6522 } 6523 Args.push_back(V); 6524 } 6525 6526 Lex.Lex(); // Lex the ']'. 6527 return false; 6528 } 6529 6530 /// parseCleanupRet 6531 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 6532 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 6533 Value *CleanupPad = nullptr; 6534 6535 if (parseToken(lltok::kw_from, "expected 'from' after cleanupret")) 6536 return true; 6537 6538 if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 6539 return true; 6540 6541 if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 6542 return true; 6543 6544 BasicBlock *UnwindBB = nullptr; 6545 if (Lex.getKind() == lltok::kw_to) { 6546 Lex.Lex(); 6547 if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 6548 return true; 6549 } else { 6550 if (parseTypeAndBasicBlock(UnwindBB, PFS)) { 6551 return true; 6552 } 6553 } 6554 6555 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 6556 return false; 6557 } 6558 6559 /// parseCatchRet 6560 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 6561 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 6562 Value *CatchPad = nullptr; 6563 6564 if (parseToken(lltok::kw_from, "expected 'from' after catchret")) 6565 return true; 6566 6567 if (parseValue(Type::getTokenTy(Context), CatchPad, PFS)) 6568 return true; 6569 6570 BasicBlock *BB; 6571 if (parseToken(lltok::kw_to, "expected 'to' in catchret") || 6572 parseTypeAndBasicBlock(BB, PFS)) 6573 return true; 6574 6575 Inst = CatchReturnInst::Create(CatchPad, BB); 6576 return false; 6577 } 6578 6579 /// parseCatchSwitch 6580 /// ::= 'catchswitch' within Parent 6581 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6582 Value *ParentPad; 6583 6584 if (parseToken(lltok::kw_within, "expected 'within' after catchswitch")) 6585 return true; 6586 6587 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6588 Lex.getKind() != lltok::LocalVarID) 6589 return tokError("expected scope value for catchswitch"); 6590 6591 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6592 return true; 6593 6594 if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 6595 return true; 6596 6597 SmallVector<BasicBlock *, 32> Table; 6598 do { 6599 BasicBlock *DestBB; 6600 if (parseTypeAndBasicBlock(DestBB, PFS)) 6601 return true; 6602 Table.push_back(DestBB); 6603 } while (EatIfPresent(lltok::comma)); 6604 6605 if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 6606 return true; 6607 6608 if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope")) 6609 return true; 6610 6611 BasicBlock *UnwindBB = nullptr; 6612 if (EatIfPresent(lltok::kw_to)) { 6613 if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 6614 return true; 6615 } else { 6616 if (parseTypeAndBasicBlock(UnwindBB, PFS)) 6617 return true; 6618 } 6619 6620 auto *CatchSwitch = 6621 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 6622 for (BasicBlock *DestBB : Table) 6623 CatchSwitch->addHandler(DestBB); 6624 Inst = CatchSwitch; 6625 return false; 6626 } 6627 6628 /// parseCatchPad 6629 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 6630 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 6631 Value *CatchSwitch = nullptr; 6632 6633 if (parseToken(lltok::kw_within, "expected 'within' after catchpad")) 6634 return true; 6635 6636 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 6637 return tokError("expected scope value for catchpad"); 6638 6639 if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 6640 return true; 6641 6642 SmallVector<Value *, 8> Args; 6643 if (parseExceptionArgs(Args, PFS)) 6644 return true; 6645 6646 Inst = CatchPadInst::Create(CatchSwitch, Args); 6647 return false; 6648 } 6649 6650 /// parseCleanupPad 6651 /// ::= 'cleanuppad' within Parent ParamList 6652 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 6653 Value *ParentPad = nullptr; 6654 6655 if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 6656 return true; 6657 6658 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6659 Lex.getKind() != lltok::LocalVarID) 6660 return tokError("expected scope value for cleanuppad"); 6661 6662 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6663 return true; 6664 6665 SmallVector<Value *, 8> Args; 6666 if (parseExceptionArgs(Args, PFS)) 6667 return true; 6668 6669 Inst = CleanupPadInst::Create(ParentPad, Args); 6670 return false; 6671 } 6672 6673 //===----------------------------------------------------------------------===// 6674 // Unary Operators. 6675 //===----------------------------------------------------------------------===// 6676 6677 /// parseUnaryOp 6678 /// ::= UnaryOp TypeAndValue ',' Value 6679 /// 6680 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6681 /// operand is allowed. 6682 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS, 6683 unsigned Opc, bool IsFP) { 6684 LocTy Loc; Value *LHS; 6685 if (parseTypeAndValue(LHS, Loc, PFS)) 6686 return true; 6687 6688 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6689 : LHS->getType()->isIntOrIntVectorTy(); 6690 6691 if (!Valid) 6692 return error(Loc, "invalid operand type for instruction"); 6693 6694 Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 6695 return false; 6696 } 6697 6698 /// parseCallBr 6699 /// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList 6700 /// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue 6701 /// '[' LabelList ']' 6702 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) { 6703 LocTy CallLoc = Lex.getLoc(); 6704 AttrBuilder RetAttrs, FnAttrs; 6705 std::vector<unsigned> FwdRefAttrGrps; 6706 LocTy NoBuiltinLoc; 6707 unsigned CC; 6708 Type *RetType = nullptr; 6709 LocTy RetTypeLoc; 6710 ValID CalleeID; 6711 SmallVector<ParamInfo, 16> ArgList; 6712 SmallVector<OperandBundleDef, 2> BundleList; 6713 6714 BasicBlock *DefaultDest; 6715 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6716 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6717 parseValID(CalleeID) || parseParameterList(ArgList, PFS) || 6718 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6719 NoBuiltinLoc) || 6720 parseOptionalOperandBundles(BundleList, PFS) || 6721 parseToken(lltok::kw_to, "expected 'to' in callbr") || 6722 parseTypeAndBasicBlock(DefaultDest, PFS) || 6723 parseToken(lltok::lsquare, "expected '[' in callbr")) 6724 return true; 6725 6726 // parse the destination list. 6727 SmallVector<BasicBlock *, 16> IndirectDests; 6728 6729 if (Lex.getKind() != lltok::rsquare) { 6730 BasicBlock *DestBB; 6731 if (parseTypeAndBasicBlock(DestBB, PFS)) 6732 return true; 6733 IndirectDests.push_back(DestBB); 6734 6735 while (EatIfPresent(lltok::comma)) { 6736 if (parseTypeAndBasicBlock(DestBB, PFS)) 6737 return true; 6738 IndirectDests.push_back(DestBB); 6739 } 6740 } 6741 6742 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 6743 return true; 6744 6745 // If RetType is a non-function pointer type, then this is the short syntax 6746 // for the call, which means that RetType is just the return type. Infer the 6747 // rest of the function argument types from the arguments that are present. 6748 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6749 if (!Ty) { 6750 // Pull out the types of all of the arguments... 6751 std::vector<Type *> ParamTypes; 6752 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6753 ParamTypes.push_back(ArgList[i].V->getType()); 6754 6755 if (!FunctionType::isValidReturnType(RetType)) 6756 return error(RetTypeLoc, "Invalid result type for LLVM function"); 6757 6758 Ty = FunctionType::get(RetType, ParamTypes, false); 6759 } 6760 6761 CalleeID.FTy = Ty; 6762 6763 // Look up the callee. 6764 Value *Callee; 6765 if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS, 6766 /*IsCall=*/true)) 6767 return true; 6768 6769 // Set up the Attribute for the function. 6770 SmallVector<Value *, 8> Args; 6771 SmallVector<AttributeSet, 8> ArgAttrs; 6772 6773 // Loop through FunctionType's arguments and ensure they are specified 6774 // correctly. Also, gather any parameter attributes. 6775 FunctionType::param_iterator I = Ty->param_begin(); 6776 FunctionType::param_iterator E = Ty->param_end(); 6777 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6778 Type *ExpectedTy = nullptr; 6779 if (I != E) { 6780 ExpectedTy = *I++; 6781 } else if (!Ty->isVarArg()) { 6782 return error(ArgList[i].Loc, "too many arguments specified"); 6783 } 6784 6785 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6786 return error(ArgList[i].Loc, "argument is not of expected type '" + 6787 getTypeString(ExpectedTy) + "'"); 6788 Args.push_back(ArgList[i].V); 6789 ArgAttrs.push_back(ArgList[i].Attrs); 6790 } 6791 6792 if (I != E) 6793 return error(CallLoc, "not enough parameters specified for call"); 6794 6795 if (FnAttrs.hasAlignmentAttr()) 6796 return error(CallLoc, "callbr instructions may not have an alignment"); 6797 6798 // Finish off the Attribute and check them 6799 AttributeList PAL = 6800 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6801 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6802 6803 CallBrInst *CBI = 6804 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args, 6805 BundleList); 6806 CBI->setCallingConv(CC); 6807 CBI->setAttributes(PAL); 6808 ForwardRefAttrGroups[CBI] = FwdRefAttrGrps; 6809 Inst = CBI; 6810 return false; 6811 } 6812 6813 //===----------------------------------------------------------------------===// 6814 // Binary Operators. 6815 //===----------------------------------------------------------------------===// 6816 6817 /// parseArithmetic 6818 /// ::= ArithmeticOps TypeAndValue ',' Value 6819 /// 6820 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6821 /// operand is allowed. 6822 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 6823 unsigned Opc, bool IsFP) { 6824 LocTy Loc; Value *LHS, *RHS; 6825 if (parseTypeAndValue(LHS, Loc, PFS) || 6826 parseToken(lltok::comma, "expected ',' in arithmetic operation") || 6827 parseValue(LHS->getType(), RHS, PFS)) 6828 return true; 6829 6830 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6831 : LHS->getType()->isIntOrIntVectorTy(); 6832 6833 if (!Valid) 6834 return error(Loc, "invalid operand type for instruction"); 6835 6836 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6837 return false; 6838 } 6839 6840 /// parseLogical 6841 /// ::= ArithmeticOps TypeAndValue ',' Value { 6842 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS, 6843 unsigned Opc) { 6844 LocTy Loc; Value *LHS, *RHS; 6845 if (parseTypeAndValue(LHS, Loc, PFS) || 6846 parseToken(lltok::comma, "expected ',' in logical operation") || 6847 parseValue(LHS->getType(), RHS, PFS)) 6848 return true; 6849 6850 if (!LHS->getType()->isIntOrIntVectorTy()) 6851 return error(Loc, 6852 "instruction requires integer or integer vector operands"); 6853 6854 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6855 return false; 6856 } 6857 6858 /// parseCompare 6859 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 6860 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 6861 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS, 6862 unsigned Opc) { 6863 // parse the integer/fp comparison predicate. 6864 LocTy Loc; 6865 unsigned Pred; 6866 Value *LHS, *RHS; 6867 if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) || 6868 parseToken(lltok::comma, "expected ',' after compare value") || 6869 parseValue(LHS->getType(), RHS, PFS)) 6870 return true; 6871 6872 if (Opc == Instruction::FCmp) { 6873 if (!LHS->getType()->isFPOrFPVectorTy()) 6874 return error(Loc, "fcmp requires floating point operands"); 6875 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6876 } else { 6877 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 6878 if (!LHS->getType()->isIntOrIntVectorTy() && 6879 !LHS->getType()->isPtrOrPtrVectorTy()) 6880 return error(Loc, "icmp requires integer operands"); 6881 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6882 } 6883 return false; 6884 } 6885 6886 //===----------------------------------------------------------------------===// 6887 // Other Instructions. 6888 //===----------------------------------------------------------------------===// 6889 6890 /// parseCast 6891 /// ::= CastOpc TypeAndValue 'to' Type 6892 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS, 6893 unsigned Opc) { 6894 LocTy Loc; 6895 Value *Op; 6896 Type *DestTy = nullptr; 6897 if (parseTypeAndValue(Op, Loc, PFS) || 6898 parseToken(lltok::kw_to, "expected 'to' after cast value") || 6899 parseType(DestTy)) 6900 return true; 6901 6902 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 6903 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 6904 return error(Loc, "invalid cast opcode for cast from '" + 6905 getTypeString(Op->getType()) + "' to '" + 6906 getTypeString(DestTy) + "'"); 6907 } 6908 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 6909 return false; 6910 } 6911 6912 /// parseSelect 6913 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6914 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) { 6915 LocTy Loc; 6916 Value *Op0, *Op1, *Op2; 6917 if (parseTypeAndValue(Op0, Loc, PFS) || 6918 parseToken(lltok::comma, "expected ',' after select condition") || 6919 parseTypeAndValue(Op1, PFS) || 6920 parseToken(lltok::comma, "expected ',' after select value") || 6921 parseTypeAndValue(Op2, PFS)) 6922 return true; 6923 6924 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 6925 return error(Loc, Reason); 6926 6927 Inst = SelectInst::Create(Op0, Op1, Op2); 6928 return false; 6929 } 6930 6931 /// parseVAArg 6932 /// ::= 'va_arg' TypeAndValue ',' Type 6933 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) { 6934 Value *Op; 6935 Type *EltTy = nullptr; 6936 LocTy TypeLoc; 6937 if (parseTypeAndValue(Op, PFS) || 6938 parseToken(lltok::comma, "expected ',' after vaarg operand") || 6939 parseType(EltTy, TypeLoc)) 6940 return true; 6941 6942 if (!EltTy->isFirstClassType()) 6943 return error(TypeLoc, "va_arg requires operand with first class type"); 6944 6945 Inst = new VAArgInst(Op, EltTy); 6946 return false; 6947 } 6948 6949 /// parseExtractElement 6950 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 6951 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 6952 LocTy Loc; 6953 Value *Op0, *Op1; 6954 if (parseTypeAndValue(Op0, Loc, PFS) || 6955 parseToken(lltok::comma, "expected ',' after extract value") || 6956 parseTypeAndValue(Op1, PFS)) 6957 return true; 6958 6959 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 6960 return error(Loc, "invalid extractelement operands"); 6961 6962 Inst = ExtractElementInst::Create(Op0, Op1); 6963 return false; 6964 } 6965 6966 /// parseInsertElement 6967 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6968 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 6969 LocTy Loc; 6970 Value *Op0, *Op1, *Op2; 6971 if (parseTypeAndValue(Op0, Loc, PFS) || 6972 parseToken(lltok::comma, "expected ',' after insertelement value") || 6973 parseTypeAndValue(Op1, PFS) || 6974 parseToken(lltok::comma, "expected ',' after insertelement value") || 6975 parseTypeAndValue(Op2, PFS)) 6976 return true; 6977 6978 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 6979 return error(Loc, "invalid insertelement operands"); 6980 6981 Inst = InsertElementInst::Create(Op0, Op1, Op2); 6982 return false; 6983 } 6984 6985 /// parseShuffleVector 6986 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6987 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 6988 LocTy Loc; 6989 Value *Op0, *Op1, *Op2; 6990 if (parseTypeAndValue(Op0, Loc, PFS) || 6991 parseToken(lltok::comma, "expected ',' after shuffle mask") || 6992 parseTypeAndValue(Op1, PFS) || 6993 parseToken(lltok::comma, "expected ',' after shuffle value") || 6994 parseTypeAndValue(Op2, PFS)) 6995 return true; 6996 6997 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 6998 return error(Loc, "invalid shufflevector operands"); 6999 7000 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 7001 return false; 7002 } 7003 7004 /// parsePHI 7005 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 7006 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) { 7007 Type *Ty = nullptr; LocTy TypeLoc; 7008 Value *Op0, *Op1; 7009 7010 if (parseType(Ty, TypeLoc) || 7011 parseToken(lltok::lsquare, "expected '[' in phi value list") || 7012 parseValue(Ty, Op0, PFS) || 7013 parseToken(lltok::comma, "expected ',' after insertelement value") || 7014 parseValue(Type::getLabelTy(Context), Op1, PFS) || 7015 parseToken(lltok::rsquare, "expected ']' in phi value list")) 7016 return true; 7017 7018 bool AteExtraComma = false; 7019 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 7020 7021 while (true) { 7022 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 7023 7024 if (!EatIfPresent(lltok::comma)) 7025 break; 7026 7027 if (Lex.getKind() == lltok::MetadataVar) { 7028 AteExtraComma = true; 7029 break; 7030 } 7031 7032 if (parseToken(lltok::lsquare, "expected '[' in phi value list") || 7033 parseValue(Ty, Op0, PFS) || 7034 parseToken(lltok::comma, "expected ',' after insertelement value") || 7035 parseValue(Type::getLabelTy(Context), Op1, PFS) || 7036 parseToken(lltok::rsquare, "expected ']' in phi value list")) 7037 return true; 7038 } 7039 7040 if (!Ty->isFirstClassType()) 7041 return error(TypeLoc, "phi node must have first class type"); 7042 7043 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 7044 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 7045 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 7046 Inst = PN; 7047 return AteExtraComma ? InstExtraComma : InstNormal; 7048 } 7049 7050 /// parseLandingPad 7051 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 7052 /// Clause 7053 /// ::= 'catch' TypeAndValue 7054 /// ::= 'filter' 7055 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 7056 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 7057 Type *Ty = nullptr; LocTy TyLoc; 7058 7059 if (parseType(Ty, TyLoc)) 7060 return true; 7061 7062 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 7063 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 7064 7065 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 7066 LandingPadInst::ClauseType CT; 7067 if (EatIfPresent(lltok::kw_catch)) 7068 CT = LandingPadInst::Catch; 7069 else if (EatIfPresent(lltok::kw_filter)) 7070 CT = LandingPadInst::Filter; 7071 else 7072 return tokError("expected 'catch' or 'filter' clause type"); 7073 7074 Value *V; 7075 LocTy VLoc; 7076 if (parseTypeAndValue(V, VLoc, PFS)) 7077 return true; 7078 7079 // A 'catch' type expects a non-array constant. A filter clause expects an 7080 // array constant. 7081 if (CT == LandingPadInst::Catch) { 7082 if (isa<ArrayType>(V->getType())) 7083 error(VLoc, "'catch' clause has an invalid type"); 7084 } else { 7085 if (!isa<ArrayType>(V->getType())) 7086 error(VLoc, "'filter' clause has an invalid type"); 7087 } 7088 7089 Constant *CV = dyn_cast<Constant>(V); 7090 if (!CV) 7091 return error(VLoc, "clause argument must be a constant"); 7092 LP->addClause(CV); 7093 } 7094 7095 Inst = LP.release(); 7096 return false; 7097 } 7098 7099 /// parseFreeze 7100 /// ::= 'freeze' Type Value 7101 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) { 7102 LocTy Loc; 7103 Value *Op; 7104 if (parseTypeAndValue(Op, Loc, PFS)) 7105 return true; 7106 7107 Inst = new FreezeInst(Op); 7108 return false; 7109 } 7110 7111 /// parseCall 7112 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 7113 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7114 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 7115 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7116 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 7117 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7118 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 7119 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7120 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS, 7121 CallInst::TailCallKind TCK) { 7122 AttrBuilder RetAttrs, FnAttrs; 7123 std::vector<unsigned> FwdRefAttrGrps; 7124 LocTy BuiltinLoc; 7125 unsigned CallAddrSpace; 7126 unsigned CC; 7127 Type *RetType = nullptr; 7128 LocTy RetTypeLoc; 7129 ValID CalleeID; 7130 SmallVector<ParamInfo, 16> ArgList; 7131 SmallVector<OperandBundleDef, 2> BundleList; 7132 LocTy CallLoc = Lex.getLoc(); 7133 7134 if (TCK != CallInst::TCK_None && 7135 parseToken(lltok::kw_call, 7136 "expected 'tail call', 'musttail call', or 'notail call'")) 7137 return true; 7138 7139 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 7140 7141 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 7142 parseOptionalProgramAddrSpace(CallAddrSpace) || 7143 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 7144 parseValID(CalleeID) || 7145 parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 7146 PFS.getFunction().isVarArg()) || 7147 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 7148 parseOptionalOperandBundles(BundleList, PFS)) 7149 return true; 7150 7151 // If RetType is a non-function pointer type, then this is the short syntax 7152 // for the call, which means that RetType is just the return type. Infer the 7153 // rest of the function argument types from the arguments that are present. 7154 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 7155 if (!Ty) { 7156 // Pull out the types of all of the arguments... 7157 std::vector<Type*> ParamTypes; 7158 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 7159 ParamTypes.push_back(ArgList[i].V->getType()); 7160 7161 if (!FunctionType::isValidReturnType(RetType)) 7162 return error(RetTypeLoc, "Invalid result type for LLVM function"); 7163 7164 Ty = FunctionType::get(RetType, ParamTypes, false); 7165 } 7166 7167 CalleeID.FTy = Ty; 7168 7169 // Look up the callee. 7170 Value *Callee; 7171 if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee, 7172 &PFS, /*IsCall=*/true)) 7173 return true; 7174 7175 // Set up the Attribute for the function. 7176 SmallVector<AttributeSet, 8> Attrs; 7177 7178 SmallVector<Value*, 8> Args; 7179 7180 // Loop through FunctionType's arguments and ensure they are specified 7181 // correctly. Also, gather any parameter attributes. 7182 FunctionType::param_iterator I = Ty->param_begin(); 7183 FunctionType::param_iterator E = Ty->param_end(); 7184 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 7185 Type *ExpectedTy = nullptr; 7186 if (I != E) { 7187 ExpectedTy = *I++; 7188 } else if (!Ty->isVarArg()) { 7189 return error(ArgList[i].Loc, "too many arguments specified"); 7190 } 7191 7192 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 7193 return error(ArgList[i].Loc, "argument is not of expected type '" + 7194 getTypeString(ExpectedTy) + "'"); 7195 Args.push_back(ArgList[i].V); 7196 Attrs.push_back(ArgList[i].Attrs); 7197 } 7198 7199 if (I != E) 7200 return error(CallLoc, "not enough parameters specified for call"); 7201 7202 if (FnAttrs.hasAlignmentAttr()) 7203 return error(CallLoc, "call instructions may not have an alignment"); 7204 7205 // Finish off the Attribute and check them 7206 AttributeList PAL = 7207 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 7208 AttributeSet::get(Context, RetAttrs), Attrs); 7209 7210 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 7211 CI->setTailCallKind(TCK); 7212 CI->setCallingConv(CC); 7213 if (FMF.any()) { 7214 if (!isa<FPMathOperator>(CI)) { 7215 CI->deleteValue(); 7216 return error(CallLoc, "fast-math-flags specified for call without " 7217 "floating-point scalar or vector return type"); 7218 } 7219 CI->setFastMathFlags(FMF); 7220 } 7221 CI->setAttributes(PAL); 7222 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 7223 Inst = CI; 7224 return false; 7225 } 7226 7227 //===----------------------------------------------------------------------===// 7228 // Memory Instructions. 7229 //===----------------------------------------------------------------------===// 7230 7231 /// parseAlloc 7232 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 7233 /// (',' 'align' i32)? (',', 'addrspace(n))? 7234 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 7235 Value *Size = nullptr; 7236 LocTy SizeLoc, TyLoc, ASLoc; 7237 MaybeAlign Alignment; 7238 unsigned AddrSpace = 0; 7239 Type *Ty = nullptr; 7240 7241 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 7242 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 7243 7244 if (parseType(Ty, TyLoc)) 7245 return true; 7246 7247 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 7248 return error(TyLoc, "invalid type for alloca"); 7249 7250 bool AteExtraComma = false; 7251 if (EatIfPresent(lltok::comma)) { 7252 if (Lex.getKind() == lltok::kw_align) { 7253 if (parseOptionalAlignment(Alignment)) 7254 return true; 7255 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7256 return true; 7257 } else if (Lex.getKind() == lltok::kw_addrspace) { 7258 ASLoc = Lex.getLoc(); 7259 if (parseOptionalAddrSpace(AddrSpace)) 7260 return true; 7261 } else if (Lex.getKind() == lltok::MetadataVar) { 7262 AteExtraComma = true; 7263 } else { 7264 if (parseTypeAndValue(Size, SizeLoc, PFS)) 7265 return true; 7266 if (EatIfPresent(lltok::comma)) { 7267 if (Lex.getKind() == lltok::kw_align) { 7268 if (parseOptionalAlignment(Alignment)) 7269 return true; 7270 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7271 return true; 7272 } else if (Lex.getKind() == lltok::kw_addrspace) { 7273 ASLoc = Lex.getLoc(); 7274 if (parseOptionalAddrSpace(AddrSpace)) 7275 return true; 7276 } else if (Lex.getKind() == lltok::MetadataVar) { 7277 AteExtraComma = true; 7278 } 7279 } 7280 } 7281 } 7282 7283 if (Size && !Size->getType()->isIntegerTy()) 7284 return error(SizeLoc, "element count must have integer type"); 7285 7286 SmallPtrSet<Type *, 4> Visited; 7287 if (!Alignment && !Ty->isSized(&Visited)) 7288 return error(TyLoc, "Cannot allocate unsized type"); 7289 if (!Alignment) 7290 Alignment = M->getDataLayout().getPrefTypeAlign(Ty); 7291 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment); 7292 AI->setUsedWithInAlloca(IsInAlloca); 7293 AI->setSwiftError(IsSwiftError); 7294 Inst = AI; 7295 return AteExtraComma ? InstExtraComma : InstNormal; 7296 } 7297 7298 /// parseLoad 7299 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 7300 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 7301 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7302 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) { 7303 Value *Val; LocTy Loc; 7304 MaybeAlign Alignment; 7305 bool AteExtraComma = false; 7306 bool isAtomic = false; 7307 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7308 SyncScope::ID SSID = SyncScope::System; 7309 7310 if (Lex.getKind() == lltok::kw_atomic) { 7311 isAtomic = true; 7312 Lex.Lex(); 7313 } 7314 7315 bool isVolatile = false; 7316 if (Lex.getKind() == lltok::kw_volatile) { 7317 isVolatile = true; 7318 Lex.Lex(); 7319 } 7320 7321 Type *Ty; 7322 LocTy ExplicitTypeLoc = Lex.getLoc(); 7323 if (parseType(Ty) || 7324 parseToken(lltok::comma, "expected comma after load's type") || 7325 parseTypeAndValue(Val, Loc, PFS) || 7326 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 7327 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7328 return true; 7329 7330 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 7331 return error(Loc, "load operand must be a pointer to a first class type"); 7332 if (isAtomic && !Alignment) 7333 return error(Loc, "atomic load must have explicit non-zero alignment"); 7334 if (Ordering == AtomicOrdering::Release || 7335 Ordering == AtomicOrdering::AcquireRelease) 7336 return error(Loc, "atomic load cannot use Release ordering"); 7337 7338 if (Ty != cast<PointerType>(Val->getType())->getElementType()) 7339 return error(ExplicitTypeLoc, 7340 "explicit pointee type doesn't match operand's pointee type"); 7341 SmallPtrSet<Type *, 4> Visited; 7342 if (!Alignment && !Ty->isSized(&Visited)) 7343 return error(ExplicitTypeLoc, "loading unsized types is not allowed"); 7344 if (!Alignment) 7345 Alignment = M->getDataLayout().getABITypeAlign(Ty); 7346 Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID); 7347 return AteExtraComma ? InstExtraComma : InstNormal; 7348 } 7349 7350 /// parseStore 7351 7352 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 7353 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 7354 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7355 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) { 7356 Value *Val, *Ptr; LocTy Loc, PtrLoc; 7357 MaybeAlign Alignment; 7358 bool AteExtraComma = false; 7359 bool isAtomic = false; 7360 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7361 SyncScope::ID SSID = SyncScope::System; 7362 7363 if (Lex.getKind() == lltok::kw_atomic) { 7364 isAtomic = true; 7365 Lex.Lex(); 7366 } 7367 7368 bool isVolatile = false; 7369 if (Lex.getKind() == lltok::kw_volatile) { 7370 isVolatile = true; 7371 Lex.Lex(); 7372 } 7373 7374 if (parseTypeAndValue(Val, Loc, PFS) || 7375 parseToken(lltok::comma, "expected ',' after store operand") || 7376 parseTypeAndValue(Ptr, PtrLoc, PFS) || 7377 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 7378 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7379 return true; 7380 7381 if (!Ptr->getType()->isPointerTy()) 7382 return error(PtrLoc, "store operand must be a pointer"); 7383 if (!Val->getType()->isFirstClassType()) 7384 return error(Loc, "store operand must be a first class value"); 7385 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 7386 return error(Loc, "stored value and pointer type do not match"); 7387 if (isAtomic && !Alignment) 7388 return error(Loc, "atomic store must have explicit non-zero alignment"); 7389 if (Ordering == AtomicOrdering::Acquire || 7390 Ordering == AtomicOrdering::AcquireRelease) 7391 return error(Loc, "atomic store cannot use Acquire ordering"); 7392 SmallPtrSet<Type *, 4> Visited; 7393 if (!Alignment && !Val->getType()->isSized(&Visited)) 7394 return error(Loc, "storing unsized types is not allowed"); 7395 if (!Alignment) 7396 Alignment = M->getDataLayout().getABITypeAlign(Val->getType()); 7397 7398 Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID); 7399 return AteExtraComma ? InstExtraComma : InstNormal; 7400 } 7401 7402 /// parseCmpXchg 7403 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 7404 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering 7405 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 7406 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 7407 bool AteExtraComma = false; 7408 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 7409 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 7410 SyncScope::ID SSID = SyncScope::System; 7411 bool isVolatile = false; 7412 bool isWeak = false; 7413 7414 if (EatIfPresent(lltok::kw_weak)) 7415 isWeak = true; 7416 7417 if (EatIfPresent(lltok::kw_volatile)) 7418 isVolatile = true; 7419 7420 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 7421 parseToken(lltok::comma, "expected ',' after cmpxchg address") || 7422 parseTypeAndValue(Cmp, CmpLoc, PFS) || 7423 parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 7424 parseTypeAndValue(New, NewLoc, PFS) || 7425 parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 7426 parseOrdering(FailureOrdering)) 7427 return true; 7428 7429 if (SuccessOrdering == AtomicOrdering::Unordered || 7430 FailureOrdering == AtomicOrdering::Unordered) 7431 return tokError("cmpxchg cannot be unordered"); 7432 if (isStrongerThan(FailureOrdering, SuccessOrdering)) 7433 return tokError("cmpxchg failure argument shall be no stronger than the " 7434 "success argument"); 7435 if (FailureOrdering == AtomicOrdering::Release || 7436 FailureOrdering == AtomicOrdering::AcquireRelease) 7437 return tokError( 7438 "cmpxchg failure ordering cannot include release semantics"); 7439 if (!Ptr->getType()->isPointerTy()) 7440 return error(PtrLoc, "cmpxchg operand must be a pointer"); 7441 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 7442 return error(CmpLoc, "compare value and pointer type do not match"); 7443 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 7444 return error(NewLoc, "new value and pointer type do not match"); 7445 if (!New->getType()->isFirstClassType()) 7446 return error(NewLoc, "cmpxchg operand must be a first class value"); 7447 7448 Align Alignment( 7449 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7450 Cmp->getType())); 7451 7452 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 7453 Ptr, Cmp, New, Alignment, SuccessOrdering, FailureOrdering, SSID); 7454 CXI->setVolatile(isVolatile); 7455 CXI->setWeak(isWeak); 7456 Inst = CXI; 7457 return AteExtraComma ? InstExtraComma : InstNormal; 7458 } 7459 7460 /// parseAtomicRMW 7461 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 7462 /// 'singlethread'? AtomicOrdering 7463 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 7464 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 7465 bool AteExtraComma = false; 7466 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7467 SyncScope::ID SSID = SyncScope::System; 7468 bool isVolatile = false; 7469 bool IsFP = false; 7470 AtomicRMWInst::BinOp Operation; 7471 7472 if (EatIfPresent(lltok::kw_volatile)) 7473 isVolatile = true; 7474 7475 switch (Lex.getKind()) { 7476 default: 7477 return tokError("expected binary operation in atomicrmw"); 7478 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 7479 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 7480 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 7481 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 7482 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 7483 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 7484 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 7485 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 7486 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 7487 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 7488 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 7489 case lltok::kw_fadd: 7490 Operation = AtomicRMWInst::FAdd; 7491 IsFP = true; 7492 break; 7493 case lltok::kw_fsub: 7494 Operation = AtomicRMWInst::FSub; 7495 IsFP = true; 7496 break; 7497 } 7498 Lex.Lex(); // Eat the operation. 7499 7500 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 7501 parseToken(lltok::comma, "expected ',' after atomicrmw address") || 7502 parseTypeAndValue(Val, ValLoc, PFS) || 7503 parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7504 return true; 7505 7506 if (Ordering == AtomicOrdering::Unordered) 7507 return tokError("atomicrmw cannot be unordered"); 7508 if (!Ptr->getType()->isPointerTy()) 7509 return error(PtrLoc, "atomicrmw operand must be a pointer"); 7510 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 7511 return error(ValLoc, "atomicrmw value and pointer type do not match"); 7512 7513 if (Operation == AtomicRMWInst::Xchg) { 7514 if (!Val->getType()->isIntegerTy() && 7515 !Val->getType()->isFloatingPointTy()) { 7516 return error(ValLoc, 7517 "atomicrmw " + AtomicRMWInst::getOperationName(Operation) + 7518 " operand must be an integer or floating point type"); 7519 } 7520 } else if (IsFP) { 7521 if (!Val->getType()->isFloatingPointTy()) { 7522 return error(ValLoc, "atomicrmw " + 7523 AtomicRMWInst::getOperationName(Operation) + 7524 " operand must be a floating point type"); 7525 } 7526 } else { 7527 if (!Val->getType()->isIntegerTy()) { 7528 return error(ValLoc, "atomicrmw " + 7529 AtomicRMWInst::getOperationName(Operation) + 7530 " operand must be an integer"); 7531 } 7532 } 7533 7534 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 7535 if (Size < 8 || (Size & (Size - 1))) 7536 return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 7537 " integer"); 7538 Align Alignment( 7539 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7540 Val->getType())); 7541 AtomicRMWInst *RMWI = 7542 new AtomicRMWInst(Operation, Ptr, Val, Alignment, Ordering, SSID); 7543 RMWI->setVolatile(isVolatile); 7544 Inst = RMWI; 7545 return AteExtraComma ? InstExtraComma : InstNormal; 7546 } 7547 7548 /// parseFence 7549 /// ::= 'fence' 'singlethread'? AtomicOrdering 7550 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) { 7551 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7552 SyncScope::ID SSID = SyncScope::System; 7553 if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7554 return true; 7555 7556 if (Ordering == AtomicOrdering::Unordered) 7557 return tokError("fence cannot be unordered"); 7558 if (Ordering == AtomicOrdering::Monotonic) 7559 return tokError("fence cannot be monotonic"); 7560 7561 Inst = new FenceInst(Context, Ordering, SSID); 7562 return InstNormal; 7563 } 7564 7565 /// parseGetElementPtr 7566 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 7567 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 7568 Value *Ptr = nullptr; 7569 Value *Val = nullptr; 7570 LocTy Loc, EltLoc; 7571 7572 bool InBounds = EatIfPresent(lltok::kw_inbounds); 7573 7574 Type *Ty = nullptr; 7575 LocTy ExplicitTypeLoc = Lex.getLoc(); 7576 if (parseType(Ty) || 7577 parseToken(lltok::comma, "expected comma after getelementptr's type") || 7578 parseTypeAndValue(Ptr, Loc, PFS)) 7579 return true; 7580 7581 Type *BaseType = Ptr->getType(); 7582 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 7583 if (!BasePointerType) 7584 return error(Loc, "base of getelementptr must be a pointer"); 7585 7586 if (Ty != BasePointerType->getElementType()) 7587 return error(ExplicitTypeLoc, 7588 "explicit pointee type doesn't match operand's pointee type"); 7589 7590 SmallVector<Value*, 16> Indices; 7591 bool AteExtraComma = false; 7592 // GEP returns a vector of pointers if at least one of parameters is a vector. 7593 // All vector parameters should have the same vector width. 7594 ElementCount GEPWidth = BaseType->isVectorTy() 7595 ? cast<VectorType>(BaseType)->getElementCount() 7596 : ElementCount::getFixed(0); 7597 7598 while (EatIfPresent(lltok::comma)) { 7599 if (Lex.getKind() == lltok::MetadataVar) { 7600 AteExtraComma = true; 7601 break; 7602 } 7603 if (parseTypeAndValue(Val, EltLoc, PFS)) 7604 return true; 7605 if (!Val->getType()->isIntOrIntVectorTy()) 7606 return error(EltLoc, "getelementptr index must be an integer"); 7607 7608 if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) { 7609 ElementCount ValNumEl = ValVTy->getElementCount(); 7610 if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl) 7611 return error( 7612 EltLoc, 7613 "getelementptr vector index has a wrong number of elements"); 7614 GEPWidth = ValNumEl; 7615 } 7616 Indices.push_back(Val); 7617 } 7618 7619 SmallPtrSet<Type*, 4> Visited; 7620 if (!Indices.empty() && !Ty->isSized(&Visited)) 7621 return error(Loc, "base element of getelementptr must be sized"); 7622 7623 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 7624 return error(Loc, "invalid getelementptr indices"); 7625 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 7626 if (InBounds) 7627 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 7628 return AteExtraComma ? InstExtraComma : InstNormal; 7629 } 7630 7631 /// parseExtractValue 7632 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 7633 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 7634 Value *Val; LocTy Loc; 7635 SmallVector<unsigned, 4> Indices; 7636 bool AteExtraComma; 7637 if (parseTypeAndValue(Val, Loc, PFS) || 7638 parseIndexList(Indices, AteExtraComma)) 7639 return true; 7640 7641 if (!Val->getType()->isAggregateType()) 7642 return error(Loc, "extractvalue operand must be aggregate type"); 7643 7644 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 7645 return error(Loc, "invalid indices for extractvalue"); 7646 Inst = ExtractValueInst::Create(Val, Indices); 7647 return AteExtraComma ? InstExtraComma : InstNormal; 7648 } 7649 7650 /// parseInsertValue 7651 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 7652 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 7653 Value *Val0, *Val1; LocTy Loc0, Loc1; 7654 SmallVector<unsigned, 4> Indices; 7655 bool AteExtraComma; 7656 if (parseTypeAndValue(Val0, Loc0, PFS) || 7657 parseToken(lltok::comma, "expected comma after insertvalue operand") || 7658 parseTypeAndValue(Val1, Loc1, PFS) || 7659 parseIndexList(Indices, AteExtraComma)) 7660 return true; 7661 7662 if (!Val0->getType()->isAggregateType()) 7663 return error(Loc0, "insertvalue operand must be aggregate type"); 7664 7665 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 7666 if (!IndexedType) 7667 return error(Loc0, "invalid indices for insertvalue"); 7668 if (IndexedType != Val1->getType()) 7669 return error(Loc1, "insertvalue operand and field disagree in type: '" + 7670 getTypeString(Val1->getType()) + "' instead of '" + 7671 getTypeString(IndexedType) + "'"); 7672 Inst = InsertValueInst::Create(Val0, Val1, Indices); 7673 return AteExtraComma ? InstExtraComma : InstNormal; 7674 } 7675 7676 //===----------------------------------------------------------------------===// 7677 // Embedded metadata. 7678 //===----------------------------------------------------------------------===// 7679 7680 /// parseMDNodeVector 7681 /// ::= { Element (',' Element)* } 7682 /// Element 7683 /// ::= 'null' | TypeAndValue 7684 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 7685 if (parseToken(lltok::lbrace, "expected '{' here")) 7686 return true; 7687 7688 // Check for an empty list. 7689 if (EatIfPresent(lltok::rbrace)) 7690 return false; 7691 7692 do { 7693 // Null is a special case since it is typeless. 7694 if (EatIfPresent(lltok::kw_null)) { 7695 Elts.push_back(nullptr); 7696 continue; 7697 } 7698 7699 Metadata *MD; 7700 if (parseMetadata(MD, nullptr)) 7701 return true; 7702 Elts.push_back(MD); 7703 } while (EatIfPresent(lltok::comma)); 7704 7705 return parseToken(lltok::rbrace, "expected end of metadata node"); 7706 } 7707 7708 //===----------------------------------------------------------------------===// 7709 // Use-list order directives. 7710 //===----------------------------------------------------------------------===// 7711 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 7712 SMLoc Loc) { 7713 if (V->use_empty()) 7714 return error(Loc, "value has no uses"); 7715 7716 unsigned NumUses = 0; 7717 SmallDenseMap<const Use *, unsigned, 16> Order; 7718 for (const Use &U : V->uses()) { 7719 if (++NumUses > Indexes.size()) 7720 break; 7721 Order[&U] = Indexes[NumUses - 1]; 7722 } 7723 if (NumUses < 2) 7724 return error(Loc, "value only has one use"); 7725 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 7726 return error(Loc, 7727 "wrong number of indexes, expected " + Twine(V->getNumUses())); 7728 7729 V->sortUseList([&](const Use &L, const Use &R) { 7730 return Order.lookup(&L) < Order.lookup(&R); 7731 }); 7732 return false; 7733 } 7734 7735 /// parseUseListOrderIndexes 7736 /// ::= '{' uint32 (',' uint32)+ '}' 7737 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 7738 SMLoc Loc = Lex.getLoc(); 7739 if (parseToken(lltok::lbrace, "expected '{' here")) 7740 return true; 7741 if (Lex.getKind() == lltok::rbrace) 7742 return Lex.Error("expected non-empty list of uselistorder indexes"); 7743 7744 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 7745 // indexes should be distinct numbers in the range [0, size-1], and should 7746 // not be in order. 7747 unsigned Offset = 0; 7748 unsigned Max = 0; 7749 bool IsOrdered = true; 7750 assert(Indexes.empty() && "Expected empty order vector"); 7751 do { 7752 unsigned Index; 7753 if (parseUInt32(Index)) 7754 return true; 7755 7756 // Update consistency checks. 7757 Offset += Index - Indexes.size(); 7758 Max = std::max(Max, Index); 7759 IsOrdered &= Index == Indexes.size(); 7760 7761 Indexes.push_back(Index); 7762 } while (EatIfPresent(lltok::comma)); 7763 7764 if (parseToken(lltok::rbrace, "expected '}' here")) 7765 return true; 7766 7767 if (Indexes.size() < 2) 7768 return error(Loc, "expected >= 2 uselistorder indexes"); 7769 if (Offset != 0 || Max >= Indexes.size()) 7770 return error(Loc, 7771 "expected distinct uselistorder indexes in range [0, size)"); 7772 if (IsOrdered) 7773 return error(Loc, "expected uselistorder indexes to change the order"); 7774 7775 return false; 7776 } 7777 7778 /// parseUseListOrder 7779 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 7780 bool LLParser::parseUseListOrder(PerFunctionState *PFS) { 7781 SMLoc Loc = Lex.getLoc(); 7782 if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 7783 return true; 7784 7785 Value *V; 7786 SmallVector<unsigned, 16> Indexes; 7787 if (parseTypeAndValue(V, PFS) || 7788 parseToken(lltok::comma, "expected comma in uselistorder directive") || 7789 parseUseListOrderIndexes(Indexes)) 7790 return true; 7791 7792 return sortUseListOrder(V, Indexes, Loc); 7793 } 7794 7795 /// parseUseListOrderBB 7796 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 7797 bool LLParser::parseUseListOrderBB() { 7798 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 7799 SMLoc Loc = Lex.getLoc(); 7800 Lex.Lex(); 7801 7802 ValID Fn, Label; 7803 SmallVector<unsigned, 16> Indexes; 7804 if (parseValID(Fn) || 7805 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7806 parseValID(Label) || 7807 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7808 parseUseListOrderIndexes(Indexes)) 7809 return true; 7810 7811 // Check the function. 7812 GlobalValue *GV; 7813 if (Fn.Kind == ValID::t_GlobalName) 7814 GV = M->getNamedValue(Fn.StrVal); 7815 else if (Fn.Kind == ValID::t_GlobalID) 7816 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 7817 else 7818 return error(Fn.Loc, "expected function name in uselistorder_bb"); 7819 if (!GV) 7820 return error(Fn.Loc, 7821 "invalid function forward reference in uselistorder_bb"); 7822 auto *F = dyn_cast<Function>(GV); 7823 if (!F) 7824 return error(Fn.Loc, "expected function name in uselistorder_bb"); 7825 if (F->isDeclaration()) 7826 return error(Fn.Loc, "invalid declaration in uselistorder_bb"); 7827 7828 // Check the basic block. 7829 if (Label.Kind == ValID::t_LocalID) 7830 return error(Label.Loc, "invalid numeric label in uselistorder_bb"); 7831 if (Label.Kind != ValID::t_LocalName) 7832 return error(Label.Loc, "expected basic block name in uselistorder_bb"); 7833 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 7834 if (!V) 7835 return error(Label.Loc, "invalid basic block in uselistorder_bb"); 7836 if (!isa<BasicBlock>(V)) 7837 return error(Label.Loc, "expected basic block in uselistorder_bb"); 7838 7839 return sortUseListOrder(V, Indexes, Loc); 7840 } 7841 7842 /// ModuleEntry 7843 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')' 7844 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')' 7845 bool LLParser::parseModuleEntry(unsigned ID) { 7846 assert(Lex.getKind() == lltok::kw_module); 7847 Lex.Lex(); 7848 7849 std::string Path; 7850 if (parseToken(lltok::colon, "expected ':' here") || 7851 parseToken(lltok::lparen, "expected '(' here") || 7852 parseToken(lltok::kw_path, "expected 'path' here") || 7853 parseToken(lltok::colon, "expected ':' here") || 7854 parseStringConstant(Path) || 7855 parseToken(lltok::comma, "expected ',' here") || 7856 parseToken(lltok::kw_hash, "expected 'hash' here") || 7857 parseToken(lltok::colon, "expected ':' here") || 7858 parseToken(lltok::lparen, "expected '(' here")) 7859 return true; 7860 7861 ModuleHash Hash; 7862 if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") || 7863 parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") || 7864 parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") || 7865 parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") || 7866 parseUInt32(Hash[4])) 7867 return true; 7868 7869 if (parseToken(lltok::rparen, "expected ')' here") || 7870 parseToken(lltok::rparen, "expected ')' here")) 7871 return true; 7872 7873 auto ModuleEntry = Index->addModule(Path, ID, Hash); 7874 ModuleIdMap[ID] = ModuleEntry->first(); 7875 7876 return false; 7877 } 7878 7879 /// TypeIdEntry 7880 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')' 7881 bool LLParser::parseTypeIdEntry(unsigned ID) { 7882 assert(Lex.getKind() == lltok::kw_typeid); 7883 Lex.Lex(); 7884 7885 std::string Name; 7886 if (parseToken(lltok::colon, "expected ':' here") || 7887 parseToken(lltok::lparen, "expected '(' here") || 7888 parseToken(lltok::kw_name, "expected 'name' here") || 7889 parseToken(lltok::colon, "expected ':' here") || 7890 parseStringConstant(Name)) 7891 return true; 7892 7893 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name); 7894 if (parseToken(lltok::comma, "expected ',' here") || 7895 parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here")) 7896 return true; 7897 7898 // Check if this ID was forward referenced, and if so, update the 7899 // corresponding GUIDs. 7900 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7901 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7902 for (auto TIDRef : FwdRefTIDs->second) { 7903 assert(!*TIDRef.first && 7904 "Forward referenced type id GUID expected to be 0"); 7905 *TIDRef.first = GlobalValue::getGUID(Name); 7906 } 7907 ForwardRefTypeIds.erase(FwdRefTIDs); 7908 } 7909 7910 return false; 7911 } 7912 7913 /// TypeIdSummary 7914 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')' 7915 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) { 7916 if (parseToken(lltok::kw_summary, "expected 'summary' here") || 7917 parseToken(lltok::colon, "expected ':' here") || 7918 parseToken(lltok::lparen, "expected '(' here") || 7919 parseTypeTestResolution(TIS.TTRes)) 7920 return true; 7921 7922 if (EatIfPresent(lltok::comma)) { 7923 // Expect optional wpdResolutions field 7924 if (parseOptionalWpdResolutions(TIS.WPDRes)) 7925 return true; 7926 } 7927 7928 if (parseToken(lltok::rparen, "expected ')' here")) 7929 return true; 7930 7931 return false; 7932 } 7933 7934 static ValueInfo EmptyVI = 7935 ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8); 7936 7937 /// TypeIdCompatibleVtableEntry 7938 /// ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ',' 7939 /// TypeIdCompatibleVtableInfo 7940 /// ')' 7941 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) { 7942 assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable); 7943 Lex.Lex(); 7944 7945 std::string Name; 7946 if (parseToken(lltok::colon, "expected ':' here") || 7947 parseToken(lltok::lparen, "expected '(' here") || 7948 parseToken(lltok::kw_name, "expected 'name' here") || 7949 parseToken(lltok::colon, "expected ':' here") || 7950 parseStringConstant(Name)) 7951 return true; 7952 7953 TypeIdCompatibleVtableInfo &TI = 7954 Index->getOrInsertTypeIdCompatibleVtableSummary(Name); 7955 if (parseToken(lltok::comma, "expected ',' here") || 7956 parseToken(lltok::kw_summary, "expected 'summary' here") || 7957 parseToken(lltok::colon, "expected ':' here") || 7958 parseToken(lltok::lparen, "expected '(' here")) 7959 return true; 7960 7961 IdToIndexMapType IdToIndexMap; 7962 // parse each call edge 7963 do { 7964 uint64_t Offset; 7965 if (parseToken(lltok::lparen, "expected '(' here") || 7966 parseToken(lltok::kw_offset, "expected 'offset' here") || 7967 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 7968 parseToken(lltok::comma, "expected ',' here")) 7969 return true; 7970 7971 LocTy Loc = Lex.getLoc(); 7972 unsigned GVId; 7973 ValueInfo VI; 7974 if (parseGVReference(VI, GVId)) 7975 return true; 7976 7977 // Keep track of the TypeIdCompatibleVtableInfo array index needing a 7978 // forward reference. We will save the location of the ValueInfo needing an 7979 // update, but can only do so once the std::vector is finalized. 7980 if (VI == EmptyVI) 7981 IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc)); 7982 TI.push_back({Offset, VI}); 7983 7984 if (parseToken(lltok::rparen, "expected ')' in call")) 7985 return true; 7986 } while (EatIfPresent(lltok::comma)); 7987 7988 // Now that the TI vector is finalized, it is safe to save the locations 7989 // of any forward GV references that need updating later. 7990 for (auto I : IdToIndexMap) { 7991 auto &Infos = ForwardRefValueInfos[I.first]; 7992 for (auto P : I.second) { 7993 assert(TI[P.first].VTableVI == EmptyVI && 7994 "Forward referenced ValueInfo expected to be empty"); 7995 Infos.emplace_back(&TI[P.first].VTableVI, P.second); 7996 } 7997 } 7998 7999 if (parseToken(lltok::rparen, "expected ')' here") || 8000 parseToken(lltok::rparen, "expected ')' here")) 8001 return true; 8002 8003 // Check if this ID was forward referenced, and if so, update the 8004 // corresponding GUIDs. 8005 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 8006 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 8007 for (auto TIDRef : FwdRefTIDs->second) { 8008 assert(!*TIDRef.first && 8009 "Forward referenced type id GUID expected to be 0"); 8010 *TIDRef.first = GlobalValue::getGUID(Name); 8011 } 8012 ForwardRefTypeIds.erase(FwdRefTIDs); 8013 } 8014 8015 return false; 8016 } 8017 8018 /// TypeTestResolution 8019 /// ::= 'typeTestRes' ':' '(' 'kind' ':' 8020 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ',' 8021 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]? 8022 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]? 8023 /// [',' 'inlinesBits' ':' UInt64]? ')' 8024 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) { 8025 if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") || 8026 parseToken(lltok::colon, "expected ':' here") || 8027 parseToken(lltok::lparen, "expected '(' here") || 8028 parseToken(lltok::kw_kind, "expected 'kind' here") || 8029 parseToken(lltok::colon, "expected ':' here")) 8030 return true; 8031 8032 switch (Lex.getKind()) { 8033 case lltok::kw_unknown: 8034 TTRes.TheKind = TypeTestResolution::Unknown; 8035 break; 8036 case lltok::kw_unsat: 8037 TTRes.TheKind = TypeTestResolution::Unsat; 8038 break; 8039 case lltok::kw_byteArray: 8040 TTRes.TheKind = TypeTestResolution::ByteArray; 8041 break; 8042 case lltok::kw_inline: 8043 TTRes.TheKind = TypeTestResolution::Inline; 8044 break; 8045 case lltok::kw_single: 8046 TTRes.TheKind = TypeTestResolution::Single; 8047 break; 8048 case lltok::kw_allOnes: 8049 TTRes.TheKind = TypeTestResolution::AllOnes; 8050 break; 8051 default: 8052 return error(Lex.getLoc(), "unexpected TypeTestResolution kind"); 8053 } 8054 Lex.Lex(); 8055 8056 if (parseToken(lltok::comma, "expected ',' here") || 8057 parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") || 8058 parseToken(lltok::colon, "expected ':' here") || 8059 parseUInt32(TTRes.SizeM1BitWidth)) 8060 return true; 8061 8062 // parse optional fields 8063 while (EatIfPresent(lltok::comma)) { 8064 switch (Lex.getKind()) { 8065 case lltok::kw_alignLog2: 8066 Lex.Lex(); 8067 if (parseToken(lltok::colon, "expected ':'") || 8068 parseUInt64(TTRes.AlignLog2)) 8069 return true; 8070 break; 8071 case lltok::kw_sizeM1: 8072 Lex.Lex(); 8073 if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1)) 8074 return true; 8075 break; 8076 case lltok::kw_bitMask: { 8077 unsigned Val; 8078 Lex.Lex(); 8079 if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val)) 8080 return true; 8081 assert(Val <= 0xff); 8082 TTRes.BitMask = (uint8_t)Val; 8083 break; 8084 } 8085 case lltok::kw_inlineBits: 8086 Lex.Lex(); 8087 if (parseToken(lltok::colon, "expected ':'") || 8088 parseUInt64(TTRes.InlineBits)) 8089 return true; 8090 break; 8091 default: 8092 return error(Lex.getLoc(), "expected optional TypeTestResolution field"); 8093 } 8094 } 8095 8096 if (parseToken(lltok::rparen, "expected ')' here")) 8097 return true; 8098 8099 return false; 8100 } 8101 8102 /// OptionalWpdResolutions 8103 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')' 8104 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')' 8105 bool LLParser::parseOptionalWpdResolutions( 8106 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) { 8107 if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") || 8108 parseToken(lltok::colon, "expected ':' here") || 8109 parseToken(lltok::lparen, "expected '(' here")) 8110 return true; 8111 8112 do { 8113 uint64_t Offset; 8114 WholeProgramDevirtResolution WPDRes; 8115 if (parseToken(lltok::lparen, "expected '(' here") || 8116 parseToken(lltok::kw_offset, "expected 'offset' here") || 8117 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 8118 parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) || 8119 parseToken(lltok::rparen, "expected ')' here")) 8120 return true; 8121 WPDResMap[Offset] = WPDRes; 8122 } while (EatIfPresent(lltok::comma)); 8123 8124 if (parseToken(lltok::rparen, "expected ')' here")) 8125 return true; 8126 8127 return false; 8128 } 8129 8130 /// WpdRes 8131 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir' 8132 /// [',' OptionalResByArg]? ')' 8133 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl' 8134 /// ',' 'singleImplName' ':' STRINGCONSTANT ',' 8135 /// [',' OptionalResByArg]? ')' 8136 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel' 8137 /// [',' OptionalResByArg]? ')' 8138 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) { 8139 if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") || 8140 parseToken(lltok::colon, "expected ':' here") || 8141 parseToken(lltok::lparen, "expected '(' here") || 8142 parseToken(lltok::kw_kind, "expected 'kind' here") || 8143 parseToken(lltok::colon, "expected ':' here")) 8144 return true; 8145 8146 switch (Lex.getKind()) { 8147 case lltok::kw_indir: 8148 WPDRes.TheKind = WholeProgramDevirtResolution::Indir; 8149 break; 8150 case lltok::kw_singleImpl: 8151 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl; 8152 break; 8153 case lltok::kw_branchFunnel: 8154 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel; 8155 break; 8156 default: 8157 return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind"); 8158 } 8159 Lex.Lex(); 8160 8161 // parse optional fields 8162 while (EatIfPresent(lltok::comma)) { 8163 switch (Lex.getKind()) { 8164 case lltok::kw_singleImplName: 8165 Lex.Lex(); 8166 if (parseToken(lltok::colon, "expected ':' here") || 8167 parseStringConstant(WPDRes.SingleImplName)) 8168 return true; 8169 break; 8170 case lltok::kw_resByArg: 8171 if (parseOptionalResByArg(WPDRes.ResByArg)) 8172 return true; 8173 break; 8174 default: 8175 return error(Lex.getLoc(), 8176 "expected optional WholeProgramDevirtResolution field"); 8177 } 8178 } 8179 8180 if (parseToken(lltok::rparen, "expected ')' here")) 8181 return true; 8182 8183 return false; 8184 } 8185 8186 /// OptionalResByArg 8187 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')' 8188 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':' 8189 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' | 8190 /// 'virtualConstProp' ) 8191 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]? 8192 /// [',' 'bit' ':' UInt32]? ')' 8193 bool LLParser::parseOptionalResByArg( 8194 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg> 8195 &ResByArg) { 8196 if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") || 8197 parseToken(lltok::colon, "expected ':' here") || 8198 parseToken(lltok::lparen, "expected '(' here")) 8199 return true; 8200 8201 do { 8202 std::vector<uint64_t> Args; 8203 if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") || 8204 parseToken(lltok::kw_byArg, "expected 'byArg here") || 8205 parseToken(lltok::colon, "expected ':' here") || 8206 parseToken(lltok::lparen, "expected '(' here") || 8207 parseToken(lltok::kw_kind, "expected 'kind' here") || 8208 parseToken(lltok::colon, "expected ':' here")) 8209 return true; 8210 8211 WholeProgramDevirtResolution::ByArg ByArg; 8212 switch (Lex.getKind()) { 8213 case lltok::kw_indir: 8214 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir; 8215 break; 8216 case lltok::kw_uniformRetVal: 8217 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 8218 break; 8219 case lltok::kw_uniqueRetVal: 8220 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 8221 break; 8222 case lltok::kw_virtualConstProp: 8223 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 8224 break; 8225 default: 8226 return error(Lex.getLoc(), 8227 "unexpected WholeProgramDevirtResolution::ByArg kind"); 8228 } 8229 Lex.Lex(); 8230 8231 // parse optional fields 8232 while (EatIfPresent(lltok::comma)) { 8233 switch (Lex.getKind()) { 8234 case lltok::kw_info: 8235 Lex.Lex(); 8236 if (parseToken(lltok::colon, "expected ':' here") || 8237 parseUInt64(ByArg.Info)) 8238 return true; 8239 break; 8240 case lltok::kw_byte: 8241 Lex.Lex(); 8242 if (parseToken(lltok::colon, "expected ':' here") || 8243 parseUInt32(ByArg.Byte)) 8244 return true; 8245 break; 8246 case lltok::kw_bit: 8247 Lex.Lex(); 8248 if (parseToken(lltok::colon, "expected ':' here") || 8249 parseUInt32(ByArg.Bit)) 8250 return true; 8251 break; 8252 default: 8253 return error(Lex.getLoc(), 8254 "expected optional whole program devirt field"); 8255 } 8256 } 8257 8258 if (parseToken(lltok::rparen, "expected ')' here")) 8259 return true; 8260 8261 ResByArg[Args] = ByArg; 8262 } while (EatIfPresent(lltok::comma)); 8263 8264 if (parseToken(lltok::rparen, "expected ')' here")) 8265 return true; 8266 8267 return false; 8268 } 8269 8270 /// OptionalResByArg 8271 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')' 8272 bool LLParser::parseArgs(std::vector<uint64_t> &Args) { 8273 if (parseToken(lltok::kw_args, "expected 'args' here") || 8274 parseToken(lltok::colon, "expected ':' here") || 8275 parseToken(lltok::lparen, "expected '(' here")) 8276 return true; 8277 8278 do { 8279 uint64_t Val; 8280 if (parseUInt64(Val)) 8281 return true; 8282 Args.push_back(Val); 8283 } while (EatIfPresent(lltok::comma)); 8284 8285 if (parseToken(lltok::rparen, "expected ')' here")) 8286 return true; 8287 8288 return false; 8289 } 8290 8291 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8; 8292 8293 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) { 8294 bool ReadOnly = Fwd->isReadOnly(); 8295 bool WriteOnly = Fwd->isWriteOnly(); 8296 assert(!(ReadOnly && WriteOnly)); 8297 *Fwd = Resolved; 8298 if (ReadOnly) 8299 Fwd->setReadOnly(); 8300 if (WriteOnly) 8301 Fwd->setWriteOnly(); 8302 } 8303 8304 /// Stores the given Name/GUID and associated summary into the Index. 8305 /// Also updates any forward references to the associated entry ID. 8306 void LLParser::addGlobalValueToIndex( 8307 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage, 8308 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) { 8309 // First create the ValueInfo utilizing the Name or GUID. 8310 ValueInfo VI; 8311 if (GUID != 0) { 8312 assert(Name.empty()); 8313 VI = Index->getOrInsertValueInfo(GUID); 8314 } else { 8315 assert(!Name.empty()); 8316 if (M) { 8317 auto *GV = M->getNamedValue(Name); 8318 assert(GV); 8319 VI = Index->getOrInsertValueInfo(GV); 8320 } else { 8321 assert( 8322 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) && 8323 "Need a source_filename to compute GUID for local"); 8324 GUID = GlobalValue::getGUID( 8325 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName)); 8326 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name)); 8327 } 8328 } 8329 8330 // Resolve forward references from calls/refs 8331 auto FwdRefVIs = ForwardRefValueInfos.find(ID); 8332 if (FwdRefVIs != ForwardRefValueInfos.end()) { 8333 for (auto VIRef : FwdRefVIs->second) { 8334 assert(VIRef.first->getRef() == FwdVIRef && 8335 "Forward referenced ValueInfo expected to be empty"); 8336 resolveFwdRef(VIRef.first, VI); 8337 } 8338 ForwardRefValueInfos.erase(FwdRefVIs); 8339 } 8340 8341 // Resolve forward references from aliases 8342 auto FwdRefAliasees = ForwardRefAliasees.find(ID); 8343 if (FwdRefAliasees != ForwardRefAliasees.end()) { 8344 for (auto AliaseeRef : FwdRefAliasees->second) { 8345 assert(!AliaseeRef.first->hasAliasee() && 8346 "Forward referencing alias already has aliasee"); 8347 assert(Summary && "Aliasee must be a definition"); 8348 AliaseeRef.first->setAliasee(VI, Summary.get()); 8349 } 8350 ForwardRefAliasees.erase(FwdRefAliasees); 8351 } 8352 8353 // Add the summary if one was provided. 8354 if (Summary) 8355 Index->addGlobalValueSummary(VI, std::move(Summary)); 8356 8357 // Save the associated ValueInfo for use in later references by ID. 8358 if (ID == NumberedValueInfos.size()) 8359 NumberedValueInfos.push_back(VI); 8360 else { 8361 // Handle non-continuous numbers (to make test simplification easier). 8362 if (ID > NumberedValueInfos.size()) 8363 NumberedValueInfos.resize(ID + 1); 8364 NumberedValueInfos[ID] = VI; 8365 } 8366 } 8367 8368 /// parseSummaryIndexFlags 8369 /// ::= 'flags' ':' UInt64 8370 bool LLParser::parseSummaryIndexFlags() { 8371 assert(Lex.getKind() == lltok::kw_flags); 8372 Lex.Lex(); 8373 8374 if (parseToken(lltok::colon, "expected ':' here")) 8375 return true; 8376 uint64_t Flags; 8377 if (parseUInt64(Flags)) 8378 return true; 8379 if (Index) 8380 Index->setFlags(Flags); 8381 return false; 8382 } 8383 8384 /// parseBlockCount 8385 /// ::= 'blockcount' ':' UInt64 8386 bool LLParser::parseBlockCount() { 8387 assert(Lex.getKind() == lltok::kw_blockcount); 8388 Lex.Lex(); 8389 8390 if (parseToken(lltok::colon, "expected ':' here")) 8391 return true; 8392 uint64_t BlockCount; 8393 if (parseUInt64(BlockCount)) 8394 return true; 8395 if (Index) 8396 Index->setBlockCount(BlockCount); 8397 return false; 8398 } 8399 8400 /// parseGVEntry 8401 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64) 8402 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')' 8403 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')' 8404 bool LLParser::parseGVEntry(unsigned ID) { 8405 assert(Lex.getKind() == lltok::kw_gv); 8406 Lex.Lex(); 8407 8408 if (parseToken(lltok::colon, "expected ':' here") || 8409 parseToken(lltok::lparen, "expected '(' here")) 8410 return true; 8411 8412 std::string Name; 8413 GlobalValue::GUID GUID = 0; 8414 switch (Lex.getKind()) { 8415 case lltok::kw_name: 8416 Lex.Lex(); 8417 if (parseToken(lltok::colon, "expected ':' here") || 8418 parseStringConstant(Name)) 8419 return true; 8420 // Can't create GUID/ValueInfo until we have the linkage. 8421 break; 8422 case lltok::kw_guid: 8423 Lex.Lex(); 8424 if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID)) 8425 return true; 8426 break; 8427 default: 8428 return error(Lex.getLoc(), "expected name or guid tag"); 8429 } 8430 8431 if (!EatIfPresent(lltok::comma)) { 8432 // No summaries. Wrap up. 8433 if (parseToken(lltok::rparen, "expected ')' here")) 8434 return true; 8435 // This was created for a call to an external or indirect target. 8436 // A GUID with no summary came from a VALUE_GUID record, dummy GUID 8437 // created for indirect calls with VP. A Name with no GUID came from 8438 // an external definition. We pass ExternalLinkage since that is only 8439 // used when the GUID must be computed from Name, and in that case 8440 // the symbol must have external linkage. 8441 addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID, 8442 nullptr); 8443 return false; 8444 } 8445 8446 // Have a list of summaries 8447 if (parseToken(lltok::kw_summaries, "expected 'summaries' here") || 8448 parseToken(lltok::colon, "expected ':' here") || 8449 parseToken(lltok::lparen, "expected '(' here")) 8450 return true; 8451 do { 8452 switch (Lex.getKind()) { 8453 case lltok::kw_function: 8454 if (parseFunctionSummary(Name, GUID, ID)) 8455 return true; 8456 break; 8457 case lltok::kw_variable: 8458 if (parseVariableSummary(Name, GUID, ID)) 8459 return true; 8460 break; 8461 case lltok::kw_alias: 8462 if (parseAliasSummary(Name, GUID, ID)) 8463 return true; 8464 break; 8465 default: 8466 return error(Lex.getLoc(), "expected summary type"); 8467 } 8468 } while (EatIfPresent(lltok::comma)); 8469 8470 if (parseToken(lltok::rparen, "expected ')' here") || 8471 parseToken(lltok::rparen, "expected ')' here")) 8472 return true; 8473 8474 return false; 8475 } 8476 8477 /// FunctionSummary 8478 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8479 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]? 8480 /// [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]? 8481 /// [',' OptionalRefs]? ')' 8482 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID, 8483 unsigned ID) { 8484 assert(Lex.getKind() == lltok::kw_function); 8485 Lex.Lex(); 8486 8487 StringRef ModulePath; 8488 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8489 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 8490 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8491 unsigned InstCount; 8492 std::vector<FunctionSummary::EdgeTy> Calls; 8493 FunctionSummary::TypeIdInfo TypeIdInfo; 8494 std::vector<FunctionSummary::ParamAccess> ParamAccesses; 8495 std::vector<ValueInfo> Refs; 8496 // Default is all-zeros (conservative values). 8497 FunctionSummary::FFlags FFlags = {}; 8498 if (parseToken(lltok::colon, "expected ':' here") || 8499 parseToken(lltok::lparen, "expected '(' here") || 8500 parseModuleReference(ModulePath) || 8501 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8502 parseToken(lltok::comma, "expected ',' here") || 8503 parseToken(lltok::kw_insts, "expected 'insts' here") || 8504 parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount)) 8505 return true; 8506 8507 // parse optional fields 8508 while (EatIfPresent(lltok::comma)) { 8509 switch (Lex.getKind()) { 8510 case lltok::kw_funcFlags: 8511 if (parseOptionalFFlags(FFlags)) 8512 return true; 8513 break; 8514 case lltok::kw_calls: 8515 if (parseOptionalCalls(Calls)) 8516 return true; 8517 break; 8518 case lltok::kw_typeIdInfo: 8519 if (parseOptionalTypeIdInfo(TypeIdInfo)) 8520 return true; 8521 break; 8522 case lltok::kw_refs: 8523 if (parseOptionalRefs(Refs)) 8524 return true; 8525 break; 8526 case lltok::kw_params: 8527 if (parseOptionalParamAccesses(ParamAccesses)) 8528 return true; 8529 break; 8530 default: 8531 return error(Lex.getLoc(), "expected optional function summary field"); 8532 } 8533 } 8534 8535 if (parseToken(lltok::rparen, "expected ')' here")) 8536 return true; 8537 8538 auto FS = std::make_unique<FunctionSummary>( 8539 GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs), 8540 std::move(Calls), std::move(TypeIdInfo.TypeTests), 8541 std::move(TypeIdInfo.TypeTestAssumeVCalls), 8542 std::move(TypeIdInfo.TypeCheckedLoadVCalls), 8543 std::move(TypeIdInfo.TypeTestAssumeConstVCalls), 8544 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls), 8545 std::move(ParamAccesses)); 8546 8547 FS->setModulePath(ModulePath); 8548 8549 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8550 ID, std::move(FS)); 8551 8552 return false; 8553 } 8554 8555 /// VariableSummary 8556 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8557 /// [',' OptionalRefs]? ')' 8558 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID, 8559 unsigned ID) { 8560 assert(Lex.getKind() == lltok::kw_variable); 8561 Lex.Lex(); 8562 8563 StringRef ModulePath; 8564 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8565 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 8566 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8567 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false, 8568 /* WriteOnly */ false, 8569 /* Constant */ false, 8570 GlobalObject::VCallVisibilityPublic); 8571 std::vector<ValueInfo> Refs; 8572 VTableFuncList VTableFuncs; 8573 if (parseToken(lltok::colon, "expected ':' here") || 8574 parseToken(lltok::lparen, "expected '(' here") || 8575 parseModuleReference(ModulePath) || 8576 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8577 parseToken(lltok::comma, "expected ',' here") || 8578 parseGVarFlags(GVarFlags)) 8579 return true; 8580 8581 // parse optional fields 8582 while (EatIfPresent(lltok::comma)) { 8583 switch (Lex.getKind()) { 8584 case lltok::kw_vTableFuncs: 8585 if (parseOptionalVTableFuncs(VTableFuncs)) 8586 return true; 8587 break; 8588 case lltok::kw_refs: 8589 if (parseOptionalRefs(Refs)) 8590 return true; 8591 break; 8592 default: 8593 return error(Lex.getLoc(), "expected optional variable summary field"); 8594 } 8595 } 8596 8597 if (parseToken(lltok::rparen, "expected ')' here")) 8598 return true; 8599 8600 auto GS = 8601 std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs)); 8602 8603 GS->setModulePath(ModulePath); 8604 GS->setVTableFuncs(std::move(VTableFuncs)); 8605 8606 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8607 ID, std::move(GS)); 8608 8609 return false; 8610 } 8611 8612 /// AliasSummary 8613 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ',' 8614 /// 'aliasee' ':' GVReference ')' 8615 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID, 8616 unsigned ID) { 8617 assert(Lex.getKind() == lltok::kw_alias); 8618 LocTy Loc = Lex.getLoc(); 8619 Lex.Lex(); 8620 8621 StringRef ModulePath; 8622 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8623 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 8624 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8625 if (parseToken(lltok::colon, "expected ':' here") || 8626 parseToken(lltok::lparen, "expected '(' here") || 8627 parseModuleReference(ModulePath) || 8628 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8629 parseToken(lltok::comma, "expected ',' here") || 8630 parseToken(lltok::kw_aliasee, "expected 'aliasee' here") || 8631 parseToken(lltok::colon, "expected ':' here")) 8632 return true; 8633 8634 ValueInfo AliaseeVI; 8635 unsigned GVId; 8636 if (parseGVReference(AliaseeVI, GVId)) 8637 return true; 8638 8639 if (parseToken(lltok::rparen, "expected ')' here")) 8640 return true; 8641 8642 auto AS = std::make_unique<AliasSummary>(GVFlags); 8643 8644 AS->setModulePath(ModulePath); 8645 8646 // Record forward reference if the aliasee is not parsed yet. 8647 if (AliaseeVI.getRef() == FwdVIRef) { 8648 ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc); 8649 } else { 8650 auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath); 8651 assert(Summary && "Aliasee must be a definition"); 8652 AS->setAliasee(AliaseeVI, Summary); 8653 } 8654 8655 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8656 ID, std::move(AS)); 8657 8658 return false; 8659 } 8660 8661 /// Flag 8662 /// ::= [0|1] 8663 bool LLParser::parseFlag(unsigned &Val) { 8664 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 8665 return tokError("expected integer"); 8666 Val = (unsigned)Lex.getAPSIntVal().getBoolValue(); 8667 Lex.Lex(); 8668 return false; 8669 } 8670 8671 /// OptionalFFlags 8672 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]? 8673 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]? 8674 /// [',' 'returnDoesNotAlias' ':' Flag]? ')' 8675 /// [',' 'noInline' ':' Flag]? ')' 8676 /// [',' 'alwaysInline' ':' Flag]? ')' 8677 8678 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) { 8679 assert(Lex.getKind() == lltok::kw_funcFlags); 8680 Lex.Lex(); 8681 8682 if (parseToken(lltok::colon, "expected ':' in funcFlags") | 8683 parseToken(lltok::lparen, "expected '(' in funcFlags")) 8684 return true; 8685 8686 do { 8687 unsigned Val = 0; 8688 switch (Lex.getKind()) { 8689 case lltok::kw_readNone: 8690 Lex.Lex(); 8691 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8692 return true; 8693 FFlags.ReadNone = Val; 8694 break; 8695 case lltok::kw_readOnly: 8696 Lex.Lex(); 8697 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8698 return true; 8699 FFlags.ReadOnly = Val; 8700 break; 8701 case lltok::kw_noRecurse: 8702 Lex.Lex(); 8703 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8704 return true; 8705 FFlags.NoRecurse = Val; 8706 break; 8707 case lltok::kw_returnDoesNotAlias: 8708 Lex.Lex(); 8709 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8710 return true; 8711 FFlags.ReturnDoesNotAlias = Val; 8712 break; 8713 case lltok::kw_noInline: 8714 Lex.Lex(); 8715 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8716 return true; 8717 FFlags.NoInline = Val; 8718 break; 8719 case lltok::kw_alwaysInline: 8720 Lex.Lex(); 8721 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8722 return true; 8723 FFlags.AlwaysInline = Val; 8724 break; 8725 default: 8726 return error(Lex.getLoc(), "expected function flag type"); 8727 } 8728 } while (EatIfPresent(lltok::comma)); 8729 8730 if (parseToken(lltok::rparen, "expected ')' in funcFlags")) 8731 return true; 8732 8733 return false; 8734 } 8735 8736 /// OptionalCalls 8737 /// := 'calls' ':' '(' Call [',' Call]* ')' 8738 /// Call ::= '(' 'callee' ':' GVReference 8739 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')' 8740 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) { 8741 assert(Lex.getKind() == lltok::kw_calls); 8742 Lex.Lex(); 8743 8744 if (parseToken(lltok::colon, "expected ':' in calls") | 8745 parseToken(lltok::lparen, "expected '(' in calls")) 8746 return true; 8747 8748 IdToIndexMapType IdToIndexMap; 8749 // parse each call edge 8750 do { 8751 ValueInfo VI; 8752 if (parseToken(lltok::lparen, "expected '(' in call") || 8753 parseToken(lltok::kw_callee, "expected 'callee' in call") || 8754 parseToken(lltok::colon, "expected ':'")) 8755 return true; 8756 8757 LocTy Loc = Lex.getLoc(); 8758 unsigned GVId; 8759 if (parseGVReference(VI, GVId)) 8760 return true; 8761 8762 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 8763 unsigned RelBF = 0; 8764 if (EatIfPresent(lltok::comma)) { 8765 // Expect either hotness or relbf 8766 if (EatIfPresent(lltok::kw_hotness)) { 8767 if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness)) 8768 return true; 8769 } else { 8770 if (parseToken(lltok::kw_relbf, "expected relbf") || 8771 parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF)) 8772 return true; 8773 } 8774 } 8775 // Keep track of the Call array index needing a forward reference. 8776 // We will save the location of the ValueInfo needing an update, but 8777 // can only do so once the std::vector is finalized. 8778 if (VI.getRef() == FwdVIRef) 8779 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc)); 8780 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)}); 8781 8782 if (parseToken(lltok::rparen, "expected ')' in call")) 8783 return true; 8784 } while (EatIfPresent(lltok::comma)); 8785 8786 // Now that the Calls vector is finalized, it is safe to save the locations 8787 // of any forward GV references that need updating later. 8788 for (auto I : IdToIndexMap) { 8789 auto &Infos = ForwardRefValueInfos[I.first]; 8790 for (auto P : I.second) { 8791 assert(Calls[P.first].first.getRef() == FwdVIRef && 8792 "Forward referenced ValueInfo expected to be empty"); 8793 Infos.emplace_back(&Calls[P.first].first, P.second); 8794 } 8795 } 8796 8797 if (parseToken(lltok::rparen, "expected ')' in calls")) 8798 return true; 8799 8800 return false; 8801 } 8802 8803 /// Hotness 8804 /// := ('unknown'|'cold'|'none'|'hot'|'critical') 8805 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) { 8806 switch (Lex.getKind()) { 8807 case lltok::kw_unknown: 8808 Hotness = CalleeInfo::HotnessType::Unknown; 8809 break; 8810 case lltok::kw_cold: 8811 Hotness = CalleeInfo::HotnessType::Cold; 8812 break; 8813 case lltok::kw_none: 8814 Hotness = CalleeInfo::HotnessType::None; 8815 break; 8816 case lltok::kw_hot: 8817 Hotness = CalleeInfo::HotnessType::Hot; 8818 break; 8819 case lltok::kw_critical: 8820 Hotness = CalleeInfo::HotnessType::Critical; 8821 break; 8822 default: 8823 return error(Lex.getLoc(), "invalid call edge hotness"); 8824 } 8825 Lex.Lex(); 8826 return false; 8827 } 8828 8829 /// OptionalVTableFuncs 8830 /// := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')' 8831 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')' 8832 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) { 8833 assert(Lex.getKind() == lltok::kw_vTableFuncs); 8834 Lex.Lex(); 8835 8836 if (parseToken(lltok::colon, "expected ':' in vTableFuncs") | 8837 parseToken(lltok::lparen, "expected '(' in vTableFuncs")) 8838 return true; 8839 8840 IdToIndexMapType IdToIndexMap; 8841 // parse each virtual function pair 8842 do { 8843 ValueInfo VI; 8844 if (parseToken(lltok::lparen, "expected '(' in vTableFunc") || 8845 parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") || 8846 parseToken(lltok::colon, "expected ':'")) 8847 return true; 8848 8849 LocTy Loc = Lex.getLoc(); 8850 unsigned GVId; 8851 if (parseGVReference(VI, GVId)) 8852 return true; 8853 8854 uint64_t Offset; 8855 if (parseToken(lltok::comma, "expected comma") || 8856 parseToken(lltok::kw_offset, "expected offset") || 8857 parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset)) 8858 return true; 8859 8860 // Keep track of the VTableFuncs array index needing a forward reference. 8861 // We will save the location of the ValueInfo needing an update, but 8862 // can only do so once the std::vector is finalized. 8863 if (VI == EmptyVI) 8864 IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc)); 8865 VTableFuncs.push_back({VI, Offset}); 8866 8867 if (parseToken(lltok::rparen, "expected ')' in vTableFunc")) 8868 return true; 8869 } while (EatIfPresent(lltok::comma)); 8870 8871 // Now that the VTableFuncs vector is finalized, it is safe to save the 8872 // locations of any forward GV references that need updating later. 8873 for (auto I : IdToIndexMap) { 8874 auto &Infos = ForwardRefValueInfos[I.first]; 8875 for (auto P : I.second) { 8876 assert(VTableFuncs[P.first].FuncVI == EmptyVI && 8877 "Forward referenced ValueInfo expected to be empty"); 8878 Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second); 8879 } 8880 } 8881 8882 if (parseToken(lltok::rparen, "expected ')' in vTableFuncs")) 8883 return true; 8884 8885 return false; 8886 } 8887 8888 /// ParamNo := 'param' ':' UInt64 8889 bool LLParser::parseParamNo(uint64_t &ParamNo) { 8890 if (parseToken(lltok::kw_param, "expected 'param' here") || 8891 parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo)) 8892 return true; 8893 return false; 8894 } 8895 8896 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']' 8897 bool LLParser::parseParamAccessOffset(ConstantRange &Range) { 8898 APSInt Lower; 8899 APSInt Upper; 8900 auto ParseAPSInt = [&](APSInt &Val) { 8901 if (Lex.getKind() != lltok::APSInt) 8902 return tokError("expected integer"); 8903 Val = Lex.getAPSIntVal(); 8904 Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 8905 Val.setIsSigned(true); 8906 Lex.Lex(); 8907 return false; 8908 }; 8909 if (parseToken(lltok::kw_offset, "expected 'offset' here") || 8910 parseToken(lltok::colon, "expected ':' here") || 8911 parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) || 8912 parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) || 8913 parseToken(lltok::rsquare, "expected ']' here")) 8914 return true; 8915 8916 ++Upper; 8917 Range = 8918 (Lower == Upper && !Lower.isMaxValue()) 8919 ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth) 8920 : ConstantRange(Lower, Upper); 8921 8922 return false; 8923 } 8924 8925 /// ParamAccessCall 8926 /// := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')' 8927 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call, 8928 IdLocListType &IdLocList) { 8929 if (parseToken(lltok::lparen, "expected '(' here") || 8930 parseToken(lltok::kw_callee, "expected 'callee' here") || 8931 parseToken(lltok::colon, "expected ':' here")) 8932 return true; 8933 8934 unsigned GVId; 8935 ValueInfo VI; 8936 LocTy Loc = Lex.getLoc(); 8937 if (parseGVReference(VI, GVId)) 8938 return true; 8939 8940 Call.Callee = VI; 8941 IdLocList.emplace_back(GVId, Loc); 8942 8943 if (parseToken(lltok::comma, "expected ',' here") || 8944 parseParamNo(Call.ParamNo) || 8945 parseToken(lltok::comma, "expected ',' here") || 8946 parseParamAccessOffset(Call.Offsets)) 8947 return true; 8948 8949 if (parseToken(lltok::rparen, "expected ')' here")) 8950 return true; 8951 8952 return false; 8953 } 8954 8955 /// ParamAccess 8956 /// := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')' 8957 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')' 8958 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param, 8959 IdLocListType &IdLocList) { 8960 if (parseToken(lltok::lparen, "expected '(' here") || 8961 parseParamNo(Param.ParamNo) || 8962 parseToken(lltok::comma, "expected ',' here") || 8963 parseParamAccessOffset(Param.Use)) 8964 return true; 8965 8966 if (EatIfPresent(lltok::comma)) { 8967 if (parseToken(lltok::kw_calls, "expected 'calls' here") || 8968 parseToken(lltok::colon, "expected ':' here") || 8969 parseToken(lltok::lparen, "expected '(' here")) 8970 return true; 8971 do { 8972 FunctionSummary::ParamAccess::Call Call; 8973 if (parseParamAccessCall(Call, IdLocList)) 8974 return true; 8975 Param.Calls.push_back(Call); 8976 } while (EatIfPresent(lltok::comma)); 8977 8978 if (parseToken(lltok::rparen, "expected ')' here")) 8979 return true; 8980 } 8981 8982 if (parseToken(lltok::rparen, "expected ')' here")) 8983 return true; 8984 8985 return false; 8986 } 8987 8988 /// OptionalParamAccesses 8989 /// := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')' 8990 bool LLParser::parseOptionalParamAccesses( 8991 std::vector<FunctionSummary::ParamAccess> &Params) { 8992 assert(Lex.getKind() == lltok::kw_params); 8993 Lex.Lex(); 8994 8995 if (parseToken(lltok::colon, "expected ':' here") || 8996 parseToken(lltok::lparen, "expected '(' here")) 8997 return true; 8998 8999 IdLocListType VContexts; 9000 size_t CallsNum = 0; 9001 do { 9002 FunctionSummary::ParamAccess ParamAccess; 9003 if (parseParamAccess(ParamAccess, VContexts)) 9004 return true; 9005 CallsNum += ParamAccess.Calls.size(); 9006 assert(VContexts.size() == CallsNum); 9007 Params.emplace_back(std::move(ParamAccess)); 9008 } while (EatIfPresent(lltok::comma)); 9009 9010 if (parseToken(lltok::rparen, "expected ')' here")) 9011 return true; 9012 9013 // Now that the Params is finalized, it is safe to save the locations 9014 // of any forward GV references that need updating later. 9015 IdLocListType::const_iterator ItContext = VContexts.begin(); 9016 for (auto &PA : Params) { 9017 for (auto &C : PA.Calls) { 9018 if (C.Callee.getRef() == FwdVIRef) 9019 ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee, 9020 ItContext->second); 9021 ++ItContext; 9022 } 9023 } 9024 assert(ItContext == VContexts.end()); 9025 9026 return false; 9027 } 9028 9029 /// OptionalRefs 9030 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')' 9031 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) { 9032 assert(Lex.getKind() == lltok::kw_refs); 9033 Lex.Lex(); 9034 9035 if (parseToken(lltok::colon, "expected ':' in refs") || 9036 parseToken(lltok::lparen, "expected '(' in refs")) 9037 return true; 9038 9039 struct ValueContext { 9040 ValueInfo VI; 9041 unsigned GVId; 9042 LocTy Loc; 9043 }; 9044 std::vector<ValueContext> VContexts; 9045 // parse each ref edge 9046 do { 9047 ValueContext VC; 9048 VC.Loc = Lex.getLoc(); 9049 if (parseGVReference(VC.VI, VC.GVId)) 9050 return true; 9051 VContexts.push_back(VC); 9052 } while (EatIfPresent(lltok::comma)); 9053 9054 // Sort value contexts so that ones with writeonly 9055 // and readonly ValueInfo are at the end of VContexts vector. 9056 // See FunctionSummary::specialRefCounts() 9057 llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) { 9058 return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier(); 9059 }); 9060 9061 IdToIndexMapType IdToIndexMap; 9062 for (auto &VC : VContexts) { 9063 // Keep track of the Refs array index needing a forward reference. 9064 // We will save the location of the ValueInfo needing an update, but 9065 // can only do so once the std::vector is finalized. 9066 if (VC.VI.getRef() == FwdVIRef) 9067 IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc)); 9068 Refs.push_back(VC.VI); 9069 } 9070 9071 // Now that the Refs vector is finalized, it is safe to save the locations 9072 // of any forward GV references that need updating later. 9073 for (auto I : IdToIndexMap) { 9074 auto &Infos = ForwardRefValueInfos[I.first]; 9075 for (auto P : I.second) { 9076 assert(Refs[P.first].getRef() == FwdVIRef && 9077 "Forward referenced ValueInfo expected to be empty"); 9078 Infos.emplace_back(&Refs[P.first], P.second); 9079 } 9080 } 9081 9082 if (parseToken(lltok::rparen, "expected ')' in refs")) 9083 return true; 9084 9085 return false; 9086 } 9087 9088 /// OptionalTypeIdInfo 9089 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]? 9090 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]? 9091 /// [',' TypeCheckedLoadConstVCalls]? ')' 9092 bool LLParser::parseOptionalTypeIdInfo( 9093 FunctionSummary::TypeIdInfo &TypeIdInfo) { 9094 assert(Lex.getKind() == lltok::kw_typeIdInfo); 9095 Lex.Lex(); 9096 9097 if (parseToken(lltok::colon, "expected ':' here") || 9098 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 9099 return true; 9100 9101 do { 9102 switch (Lex.getKind()) { 9103 case lltok::kw_typeTests: 9104 if (parseTypeTests(TypeIdInfo.TypeTests)) 9105 return true; 9106 break; 9107 case lltok::kw_typeTestAssumeVCalls: 9108 if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls, 9109 TypeIdInfo.TypeTestAssumeVCalls)) 9110 return true; 9111 break; 9112 case lltok::kw_typeCheckedLoadVCalls: 9113 if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls, 9114 TypeIdInfo.TypeCheckedLoadVCalls)) 9115 return true; 9116 break; 9117 case lltok::kw_typeTestAssumeConstVCalls: 9118 if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls, 9119 TypeIdInfo.TypeTestAssumeConstVCalls)) 9120 return true; 9121 break; 9122 case lltok::kw_typeCheckedLoadConstVCalls: 9123 if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls, 9124 TypeIdInfo.TypeCheckedLoadConstVCalls)) 9125 return true; 9126 break; 9127 default: 9128 return error(Lex.getLoc(), "invalid typeIdInfo list type"); 9129 } 9130 } while (EatIfPresent(lltok::comma)); 9131 9132 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 9133 return true; 9134 9135 return false; 9136 } 9137 9138 /// TypeTests 9139 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64) 9140 /// [',' (SummaryID | UInt64)]* ')' 9141 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) { 9142 assert(Lex.getKind() == lltok::kw_typeTests); 9143 Lex.Lex(); 9144 9145 if (parseToken(lltok::colon, "expected ':' here") || 9146 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 9147 return true; 9148 9149 IdToIndexMapType IdToIndexMap; 9150 do { 9151 GlobalValue::GUID GUID = 0; 9152 if (Lex.getKind() == lltok::SummaryID) { 9153 unsigned ID = Lex.getUIntVal(); 9154 LocTy Loc = Lex.getLoc(); 9155 // Keep track of the TypeTests array index needing a forward reference. 9156 // We will save the location of the GUID needing an update, but 9157 // can only do so once the std::vector is finalized. 9158 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc)); 9159 Lex.Lex(); 9160 } else if (parseUInt64(GUID)) 9161 return true; 9162 TypeTests.push_back(GUID); 9163 } while (EatIfPresent(lltok::comma)); 9164 9165 // Now that the TypeTests vector is finalized, it is safe to save the 9166 // locations of any forward GV references that need updating later. 9167 for (auto I : IdToIndexMap) { 9168 auto &Ids = ForwardRefTypeIds[I.first]; 9169 for (auto P : I.second) { 9170 assert(TypeTests[P.first] == 0 && 9171 "Forward referenced type id GUID expected to be 0"); 9172 Ids.emplace_back(&TypeTests[P.first], P.second); 9173 } 9174 } 9175 9176 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 9177 return true; 9178 9179 return false; 9180 } 9181 9182 /// VFuncIdList 9183 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')' 9184 bool LLParser::parseVFuncIdList( 9185 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) { 9186 assert(Lex.getKind() == Kind); 9187 Lex.Lex(); 9188 9189 if (parseToken(lltok::colon, "expected ':' here") || 9190 parseToken(lltok::lparen, "expected '(' here")) 9191 return true; 9192 9193 IdToIndexMapType IdToIndexMap; 9194 do { 9195 FunctionSummary::VFuncId VFuncId; 9196 if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size())) 9197 return true; 9198 VFuncIdList.push_back(VFuncId); 9199 } while (EatIfPresent(lltok::comma)); 9200 9201 if (parseToken(lltok::rparen, "expected ')' here")) 9202 return true; 9203 9204 // Now that the VFuncIdList vector is finalized, it is safe to save the 9205 // locations of any forward GV references that need updating later. 9206 for (auto I : IdToIndexMap) { 9207 auto &Ids = ForwardRefTypeIds[I.first]; 9208 for (auto P : I.second) { 9209 assert(VFuncIdList[P.first].GUID == 0 && 9210 "Forward referenced type id GUID expected to be 0"); 9211 Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second); 9212 } 9213 } 9214 9215 return false; 9216 } 9217 9218 /// ConstVCallList 9219 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')' 9220 bool LLParser::parseConstVCallList( 9221 lltok::Kind Kind, 9222 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) { 9223 assert(Lex.getKind() == Kind); 9224 Lex.Lex(); 9225 9226 if (parseToken(lltok::colon, "expected ':' here") || 9227 parseToken(lltok::lparen, "expected '(' here")) 9228 return true; 9229 9230 IdToIndexMapType IdToIndexMap; 9231 do { 9232 FunctionSummary::ConstVCall ConstVCall; 9233 if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size())) 9234 return true; 9235 ConstVCallList.push_back(ConstVCall); 9236 } while (EatIfPresent(lltok::comma)); 9237 9238 if (parseToken(lltok::rparen, "expected ')' here")) 9239 return true; 9240 9241 // Now that the ConstVCallList vector is finalized, it is safe to save the 9242 // locations of any forward GV references that need updating later. 9243 for (auto I : IdToIndexMap) { 9244 auto &Ids = ForwardRefTypeIds[I.first]; 9245 for (auto P : I.second) { 9246 assert(ConstVCallList[P.first].VFunc.GUID == 0 && 9247 "Forward referenced type id GUID expected to be 0"); 9248 Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second); 9249 } 9250 } 9251 9252 return false; 9253 } 9254 9255 /// ConstVCall 9256 /// ::= '(' VFuncId ',' Args ')' 9257 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall, 9258 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9259 if (parseToken(lltok::lparen, "expected '(' here") || 9260 parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index)) 9261 return true; 9262 9263 if (EatIfPresent(lltok::comma)) 9264 if (parseArgs(ConstVCall.Args)) 9265 return true; 9266 9267 if (parseToken(lltok::rparen, "expected ')' here")) 9268 return true; 9269 9270 return false; 9271 } 9272 9273 /// VFuncId 9274 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ',' 9275 /// 'offset' ':' UInt64 ')' 9276 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId, 9277 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9278 assert(Lex.getKind() == lltok::kw_vFuncId); 9279 Lex.Lex(); 9280 9281 if (parseToken(lltok::colon, "expected ':' here") || 9282 parseToken(lltok::lparen, "expected '(' here")) 9283 return true; 9284 9285 if (Lex.getKind() == lltok::SummaryID) { 9286 VFuncId.GUID = 0; 9287 unsigned ID = Lex.getUIntVal(); 9288 LocTy Loc = Lex.getLoc(); 9289 // Keep track of the array index needing a forward reference. 9290 // We will save the location of the GUID needing an update, but 9291 // can only do so once the caller's std::vector is finalized. 9292 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc)); 9293 Lex.Lex(); 9294 } else if (parseToken(lltok::kw_guid, "expected 'guid' here") || 9295 parseToken(lltok::colon, "expected ':' here") || 9296 parseUInt64(VFuncId.GUID)) 9297 return true; 9298 9299 if (parseToken(lltok::comma, "expected ',' here") || 9300 parseToken(lltok::kw_offset, "expected 'offset' here") || 9301 parseToken(lltok::colon, "expected ':' here") || 9302 parseUInt64(VFuncId.Offset) || 9303 parseToken(lltok::rparen, "expected ')' here")) 9304 return true; 9305 9306 return false; 9307 } 9308 9309 /// GVFlags 9310 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ',' 9311 /// 'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ',' 9312 /// 'dsoLocal' ':' Flag ',' 'canAutoHide' ':' Flag ')' 9313 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) { 9314 assert(Lex.getKind() == lltok::kw_flags); 9315 Lex.Lex(); 9316 9317 if (parseToken(lltok::colon, "expected ':' here") || 9318 parseToken(lltok::lparen, "expected '(' here")) 9319 return true; 9320 9321 do { 9322 unsigned Flag = 0; 9323 switch (Lex.getKind()) { 9324 case lltok::kw_linkage: 9325 Lex.Lex(); 9326 if (parseToken(lltok::colon, "expected ':'")) 9327 return true; 9328 bool HasLinkage; 9329 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 9330 assert(HasLinkage && "Linkage not optional in summary entry"); 9331 Lex.Lex(); 9332 break; 9333 case lltok::kw_notEligibleToImport: 9334 Lex.Lex(); 9335 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9336 return true; 9337 GVFlags.NotEligibleToImport = Flag; 9338 break; 9339 case lltok::kw_live: 9340 Lex.Lex(); 9341 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9342 return true; 9343 GVFlags.Live = Flag; 9344 break; 9345 case lltok::kw_dsoLocal: 9346 Lex.Lex(); 9347 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9348 return true; 9349 GVFlags.DSOLocal = Flag; 9350 break; 9351 case lltok::kw_canAutoHide: 9352 Lex.Lex(); 9353 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9354 return true; 9355 GVFlags.CanAutoHide = Flag; 9356 break; 9357 default: 9358 return error(Lex.getLoc(), "expected gv flag type"); 9359 } 9360 } while (EatIfPresent(lltok::comma)); 9361 9362 if (parseToken(lltok::rparen, "expected ')' here")) 9363 return true; 9364 9365 return false; 9366 } 9367 9368 /// GVarFlags 9369 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag 9370 /// ',' 'writeonly' ':' Flag 9371 /// ',' 'constant' ':' Flag ')' 9372 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) { 9373 assert(Lex.getKind() == lltok::kw_varFlags); 9374 Lex.Lex(); 9375 9376 if (parseToken(lltok::colon, "expected ':' here") || 9377 parseToken(lltok::lparen, "expected '(' here")) 9378 return true; 9379 9380 auto ParseRest = [this](unsigned int &Val) { 9381 Lex.Lex(); 9382 if (parseToken(lltok::colon, "expected ':'")) 9383 return true; 9384 return parseFlag(Val); 9385 }; 9386 9387 do { 9388 unsigned Flag = 0; 9389 switch (Lex.getKind()) { 9390 case lltok::kw_readonly: 9391 if (ParseRest(Flag)) 9392 return true; 9393 GVarFlags.MaybeReadOnly = Flag; 9394 break; 9395 case lltok::kw_writeonly: 9396 if (ParseRest(Flag)) 9397 return true; 9398 GVarFlags.MaybeWriteOnly = Flag; 9399 break; 9400 case lltok::kw_constant: 9401 if (ParseRest(Flag)) 9402 return true; 9403 GVarFlags.Constant = Flag; 9404 break; 9405 case lltok::kw_vcall_visibility: 9406 if (ParseRest(Flag)) 9407 return true; 9408 GVarFlags.VCallVisibility = Flag; 9409 break; 9410 default: 9411 return error(Lex.getLoc(), "expected gvar flag type"); 9412 } 9413 } while (EatIfPresent(lltok::comma)); 9414 return parseToken(lltok::rparen, "expected ')' here"); 9415 } 9416 9417 /// ModuleReference 9418 /// ::= 'module' ':' UInt 9419 bool LLParser::parseModuleReference(StringRef &ModulePath) { 9420 // parse module id. 9421 if (parseToken(lltok::kw_module, "expected 'module' here") || 9422 parseToken(lltok::colon, "expected ':' here") || 9423 parseToken(lltok::SummaryID, "expected module ID")) 9424 return true; 9425 9426 unsigned ModuleID = Lex.getUIntVal(); 9427 auto I = ModuleIdMap.find(ModuleID); 9428 // We should have already parsed all module IDs 9429 assert(I != ModuleIdMap.end()); 9430 ModulePath = I->second; 9431 return false; 9432 } 9433 9434 /// GVReference 9435 /// ::= SummaryID 9436 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) { 9437 bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly); 9438 if (!ReadOnly) 9439 WriteOnly = EatIfPresent(lltok::kw_writeonly); 9440 if (parseToken(lltok::SummaryID, "expected GV ID")) 9441 return true; 9442 9443 GVId = Lex.getUIntVal(); 9444 // Check if we already have a VI for this GV 9445 if (GVId < NumberedValueInfos.size()) { 9446 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef); 9447 VI = NumberedValueInfos[GVId]; 9448 } else 9449 // We will create a forward reference to the stored location. 9450 VI = ValueInfo(false, FwdVIRef); 9451 9452 if (ReadOnly) 9453 VI.setReadOnly(); 9454 if (WriteOnly) 9455 VI.setWriteOnly(); 9456 return false; 9457 } 9458