1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the parser class for .ll files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "LLParser.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/None.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/AsmParser/SlotMapping.h" 20 #include "llvm/BinaryFormat/Dwarf.h" 21 #include "llvm/IR/Argument.h" 22 #include "llvm/IR/AutoUpgrade.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/CallingConv.h" 25 #include "llvm/IR/Comdat.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DebugInfoMetadata.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/GlobalIFunc.h" 31 #include "llvm/IR/GlobalObject.h" 32 #include "llvm/IR/InlineAsm.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/IR/ValueSymbolTable.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/MathExtras.h" 46 #include "llvm/Support/SaveAndRestore.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <cstring> 51 #include <iterator> 52 #include <vector> 53 54 using namespace llvm; 55 56 static std::string getTypeString(Type *T) { 57 std::string Result; 58 raw_string_ostream Tmp(Result); 59 Tmp << *T; 60 return Tmp.str(); 61 } 62 63 /// Run: module ::= toplevelentity* 64 bool LLParser::Run() { 65 // Prime the lexer. 66 Lex.Lex(); 67 68 if (Context.shouldDiscardValueNames()) 69 return Error( 70 Lex.getLoc(), 71 "Can't read textual IR with a Context that discards named Values"); 72 73 return ParseTopLevelEntities() || ValidateEndOfModule() || 74 ValidateEndOfIndex(); 75 } 76 77 bool LLParser::parseStandaloneConstantValue(Constant *&C, 78 const SlotMapping *Slots) { 79 restoreParsingState(Slots); 80 Lex.Lex(); 81 82 Type *Ty = nullptr; 83 if (ParseType(Ty) || parseConstantValue(Ty, C)) 84 return true; 85 if (Lex.getKind() != lltok::Eof) 86 return Error(Lex.getLoc(), "expected end of string"); 87 return false; 88 } 89 90 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 91 const SlotMapping *Slots) { 92 restoreParsingState(Slots); 93 Lex.Lex(); 94 95 Read = 0; 96 SMLoc Start = Lex.getLoc(); 97 Ty = nullptr; 98 if (ParseType(Ty)) 99 return true; 100 SMLoc End = Lex.getLoc(); 101 Read = End.getPointer() - Start.getPointer(); 102 103 return false; 104 } 105 106 void LLParser::restoreParsingState(const SlotMapping *Slots) { 107 if (!Slots) 108 return; 109 NumberedVals = Slots->GlobalValues; 110 NumberedMetadata = Slots->MetadataNodes; 111 for (const auto &I : Slots->NamedTypes) 112 NamedTypes.insert( 113 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 114 for (const auto &I : Slots->Types) 115 NumberedTypes.insert( 116 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 117 } 118 119 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 120 /// module. 121 bool LLParser::ValidateEndOfModule() { 122 if (!M) 123 return false; 124 // Handle any function attribute group forward references. 125 for (const auto &RAG : ForwardRefAttrGroups) { 126 Value *V = RAG.first; 127 const std::vector<unsigned> &Attrs = RAG.second; 128 AttrBuilder B; 129 130 for (const auto &Attr : Attrs) 131 B.merge(NumberedAttrBuilders[Attr]); 132 133 if (Function *Fn = dyn_cast<Function>(V)) { 134 AttributeList AS = Fn->getAttributes(); 135 AttrBuilder FnAttrs(AS.getFnAttributes()); 136 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 137 138 FnAttrs.merge(B); 139 140 // If the alignment was parsed as an attribute, move to the alignment 141 // field. 142 if (FnAttrs.hasAlignmentAttr()) { 143 Fn->setAlignment(FnAttrs.getAlignment()); 144 FnAttrs.removeAttribute(Attribute::Alignment); 145 } 146 147 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 148 AttributeSet::get(Context, FnAttrs)); 149 Fn->setAttributes(AS); 150 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 151 AttributeList AS = CI->getAttributes(); 152 AttrBuilder FnAttrs(AS.getFnAttributes()); 153 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 154 FnAttrs.merge(B); 155 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 156 AttributeSet::get(Context, FnAttrs)); 157 CI->setAttributes(AS); 158 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 159 AttributeList AS = II->getAttributes(); 160 AttrBuilder FnAttrs(AS.getFnAttributes()); 161 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 162 FnAttrs.merge(B); 163 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 164 AttributeSet::get(Context, FnAttrs)); 165 II->setAttributes(AS); 166 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) { 167 AttributeList AS = CBI->getAttributes(); 168 AttrBuilder FnAttrs(AS.getFnAttributes()); 169 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 170 FnAttrs.merge(B); 171 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 172 AttributeSet::get(Context, FnAttrs)); 173 CBI->setAttributes(AS); 174 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 175 AttrBuilder Attrs(GV->getAttributes()); 176 Attrs.merge(B); 177 GV->setAttributes(AttributeSet::get(Context,Attrs)); 178 } else { 179 llvm_unreachable("invalid object with forward attribute group reference"); 180 } 181 } 182 183 // If there are entries in ForwardRefBlockAddresses at this point, the 184 // function was never defined. 185 if (!ForwardRefBlockAddresses.empty()) 186 return Error(ForwardRefBlockAddresses.begin()->first.Loc, 187 "expected function name in blockaddress"); 188 189 for (const auto &NT : NumberedTypes) 190 if (NT.second.second.isValid()) 191 return Error(NT.second.second, 192 "use of undefined type '%" + Twine(NT.first) + "'"); 193 194 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 195 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 196 if (I->second.second.isValid()) 197 return Error(I->second.second, 198 "use of undefined type named '" + I->getKey() + "'"); 199 200 if (!ForwardRefComdats.empty()) 201 return Error(ForwardRefComdats.begin()->second, 202 "use of undefined comdat '$" + 203 ForwardRefComdats.begin()->first + "'"); 204 205 if (!ForwardRefVals.empty()) 206 return Error(ForwardRefVals.begin()->second.second, 207 "use of undefined value '@" + ForwardRefVals.begin()->first + 208 "'"); 209 210 if (!ForwardRefValIDs.empty()) 211 return Error(ForwardRefValIDs.begin()->second.second, 212 "use of undefined value '@" + 213 Twine(ForwardRefValIDs.begin()->first) + "'"); 214 215 if (!ForwardRefMDNodes.empty()) 216 return Error(ForwardRefMDNodes.begin()->second.second, 217 "use of undefined metadata '!" + 218 Twine(ForwardRefMDNodes.begin()->first) + "'"); 219 220 // Resolve metadata cycles. 221 for (auto &N : NumberedMetadata) { 222 if (N.second && !N.second->isResolved()) 223 N.second->resolveCycles(); 224 } 225 226 for (auto *Inst : InstsWithTBAATag) { 227 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 228 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 229 auto *UpgradedMD = UpgradeTBAANode(*MD); 230 if (MD != UpgradedMD) 231 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 232 } 233 234 // Look for intrinsic functions and CallInst that need to be upgraded 235 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 236 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 237 238 // Some types could be renamed during loading if several modules are 239 // loaded in the same LLVMContext (LTO scenario). In this case we should 240 // remangle intrinsics names as well. 241 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) { 242 Function *F = &*FI++; 243 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 244 F->replaceAllUsesWith(Remangled.getValue()); 245 F->eraseFromParent(); 246 } 247 } 248 249 if (UpgradeDebugInfo) 250 llvm::UpgradeDebugInfo(*M); 251 252 UpgradeModuleFlags(*M); 253 UpgradeSectionAttributes(*M); 254 255 if (!Slots) 256 return false; 257 // Initialize the slot mapping. 258 // Because by this point we've parsed and validated everything, we can "steal" 259 // the mapping from LLParser as it doesn't need it anymore. 260 Slots->GlobalValues = std::move(NumberedVals); 261 Slots->MetadataNodes = std::move(NumberedMetadata); 262 for (const auto &I : NamedTypes) 263 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 264 for (const auto &I : NumberedTypes) 265 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 266 267 return false; 268 } 269 270 /// Do final validity and sanity checks at the end of the index. 271 bool LLParser::ValidateEndOfIndex() { 272 if (!Index) 273 return false; 274 275 if (!ForwardRefValueInfos.empty()) 276 return Error(ForwardRefValueInfos.begin()->second.front().second, 277 "use of undefined summary '^" + 278 Twine(ForwardRefValueInfos.begin()->first) + "'"); 279 280 if (!ForwardRefAliasees.empty()) 281 return Error(ForwardRefAliasees.begin()->second.front().second, 282 "use of undefined summary '^" + 283 Twine(ForwardRefAliasees.begin()->first) + "'"); 284 285 if (!ForwardRefTypeIds.empty()) 286 return Error(ForwardRefTypeIds.begin()->second.front().second, 287 "use of undefined type id summary '^" + 288 Twine(ForwardRefTypeIds.begin()->first) + "'"); 289 290 return false; 291 } 292 293 //===----------------------------------------------------------------------===// 294 // Top-Level Entities 295 //===----------------------------------------------------------------------===// 296 297 bool LLParser::ParseTopLevelEntities() { 298 // If there is no Module, then parse just the summary index entries. 299 if (!M) { 300 while (true) { 301 switch (Lex.getKind()) { 302 case lltok::Eof: 303 return false; 304 case lltok::SummaryID: 305 if (ParseSummaryEntry()) 306 return true; 307 break; 308 case lltok::kw_source_filename: 309 if (ParseSourceFileName()) 310 return true; 311 break; 312 default: 313 // Skip everything else 314 Lex.Lex(); 315 } 316 } 317 } 318 while (true) { 319 switch (Lex.getKind()) { 320 default: return TokError("expected top-level entity"); 321 case lltok::Eof: return false; 322 case lltok::kw_declare: if (ParseDeclare()) return true; break; 323 case lltok::kw_define: if (ParseDefine()) return true; break; 324 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 325 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 326 case lltok::kw_source_filename: 327 if (ParseSourceFileName()) 328 return true; 329 break; 330 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 331 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 332 case lltok::LocalVar: if (ParseNamedType()) return true; break; 333 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 334 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 335 case lltok::ComdatVar: if (parseComdat()) return true; break; 336 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 337 case lltok::SummaryID: 338 if (ParseSummaryEntry()) 339 return true; 340 break; 341 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break; 342 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break; 343 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break; 344 case lltok::kw_uselistorder_bb: 345 if (ParseUseListOrderBB()) 346 return true; 347 break; 348 } 349 } 350 } 351 352 /// toplevelentity 353 /// ::= 'module' 'asm' STRINGCONSTANT 354 bool LLParser::ParseModuleAsm() { 355 assert(Lex.getKind() == lltok::kw_module); 356 Lex.Lex(); 357 358 std::string AsmStr; 359 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 360 ParseStringConstant(AsmStr)) return true; 361 362 M->appendModuleInlineAsm(AsmStr); 363 return false; 364 } 365 366 /// toplevelentity 367 /// ::= 'target' 'triple' '=' STRINGCONSTANT 368 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 369 bool LLParser::ParseTargetDefinition() { 370 assert(Lex.getKind() == lltok::kw_target); 371 std::string Str; 372 switch (Lex.Lex()) { 373 default: return TokError("unknown target property"); 374 case lltok::kw_triple: 375 Lex.Lex(); 376 if (ParseToken(lltok::equal, "expected '=' after target triple") || 377 ParseStringConstant(Str)) 378 return true; 379 M->setTargetTriple(Str); 380 return false; 381 case lltok::kw_datalayout: 382 Lex.Lex(); 383 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 384 ParseStringConstant(Str)) 385 return true; 386 if (DataLayoutStr.empty()) 387 M->setDataLayout(Str); 388 return false; 389 } 390 } 391 392 /// toplevelentity 393 /// ::= 'source_filename' '=' STRINGCONSTANT 394 bool LLParser::ParseSourceFileName() { 395 assert(Lex.getKind() == lltok::kw_source_filename); 396 Lex.Lex(); 397 if (ParseToken(lltok::equal, "expected '=' after source_filename") || 398 ParseStringConstant(SourceFileName)) 399 return true; 400 if (M) 401 M->setSourceFileName(SourceFileName); 402 return false; 403 } 404 405 /// toplevelentity 406 /// ::= 'deplibs' '=' '[' ']' 407 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 408 /// FIXME: Remove in 4.0. Currently parse, but ignore. 409 bool LLParser::ParseDepLibs() { 410 assert(Lex.getKind() == lltok::kw_deplibs); 411 Lex.Lex(); 412 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 413 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 414 return true; 415 416 if (EatIfPresent(lltok::rsquare)) 417 return false; 418 419 do { 420 std::string Str; 421 if (ParseStringConstant(Str)) return true; 422 } while (EatIfPresent(lltok::comma)); 423 424 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 425 } 426 427 /// ParseUnnamedType: 428 /// ::= LocalVarID '=' 'type' type 429 bool LLParser::ParseUnnamedType() { 430 LocTy TypeLoc = Lex.getLoc(); 431 unsigned TypeID = Lex.getUIntVal(); 432 Lex.Lex(); // eat LocalVarID; 433 434 if (ParseToken(lltok::equal, "expected '=' after name") || 435 ParseToken(lltok::kw_type, "expected 'type' after '='")) 436 return true; 437 438 Type *Result = nullptr; 439 if (ParseStructDefinition(TypeLoc, "", 440 NumberedTypes[TypeID], Result)) return true; 441 442 if (!isa<StructType>(Result)) { 443 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 444 if (Entry.first) 445 return Error(TypeLoc, "non-struct types may not be recursive"); 446 Entry.first = Result; 447 Entry.second = SMLoc(); 448 } 449 450 return false; 451 } 452 453 /// toplevelentity 454 /// ::= LocalVar '=' 'type' type 455 bool LLParser::ParseNamedType() { 456 std::string Name = Lex.getStrVal(); 457 LocTy NameLoc = Lex.getLoc(); 458 Lex.Lex(); // eat LocalVar. 459 460 if (ParseToken(lltok::equal, "expected '=' after name") || 461 ParseToken(lltok::kw_type, "expected 'type' after name")) 462 return true; 463 464 Type *Result = nullptr; 465 if (ParseStructDefinition(NameLoc, Name, 466 NamedTypes[Name], Result)) return true; 467 468 if (!isa<StructType>(Result)) { 469 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 470 if (Entry.first) 471 return Error(NameLoc, "non-struct types may not be recursive"); 472 Entry.first = Result; 473 Entry.second = SMLoc(); 474 } 475 476 return false; 477 } 478 479 /// toplevelentity 480 /// ::= 'declare' FunctionHeader 481 bool LLParser::ParseDeclare() { 482 assert(Lex.getKind() == lltok::kw_declare); 483 Lex.Lex(); 484 485 std::vector<std::pair<unsigned, MDNode *>> MDs; 486 while (Lex.getKind() == lltok::MetadataVar) { 487 unsigned MDK; 488 MDNode *N; 489 if (ParseMetadataAttachment(MDK, N)) 490 return true; 491 MDs.push_back({MDK, N}); 492 } 493 494 Function *F; 495 if (ParseFunctionHeader(F, false)) 496 return true; 497 for (auto &MD : MDs) 498 F->addMetadata(MD.first, *MD.second); 499 return false; 500 } 501 502 /// toplevelentity 503 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 504 bool LLParser::ParseDefine() { 505 assert(Lex.getKind() == lltok::kw_define); 506 Lex.Lex(); 507 508 Function *F; 509 return ParseFunctionHeader(F, true) || 510 ParseOptionalFunctionMetadata(*F) || 511 ParseFunctionBody(*F); 512 } 513 514 /// ParseGlobalType 515 /// ::= 'constant' 516 /// ::= 'global' 517 bool LLParser::ParseGlobalType(bool &IsConstant) { 518 if (Lex.getKind() == lltok::kw_constant) 519 IsConstant = true; 520 else if (Lex.getKind() == lltok::kw_global) 521 IsConstant = false; 522 else { 523 IsConstant = false; 524 return TokError("expected 'global' or 'constant'"); 525 } 526 Lex.Lex(); 527 return false; 528 } 529 530 bool LLParser::ParseOptionalUnnamedAddr( 531 GlobalVariable::UnnamedAddr &UnnamedAddr) { 532 if (EatIfPresent(lltok::kw_unnamed_addr)) 533 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 534 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 535 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 536 else 537 UnnamedAddr = GlobalValue::UnnamedAddr::None; 538 return false; 539 } 540 541 /// ParseUnnamedGlobal: 542 /// OptionalVisibility (ALIAS | IFUNC) ... 543 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 544 /// OptionalDLLStorageClass 545 /// ... -> global variable 546 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 547 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 548 /// OptionalDLLStorageClass 549 /// ... -> global variable 550 bool LLParser::ParseUnnamedGlobal() { 551 unsigned VarID = NumberedVals.size(); 552 std::string Name; 553 LocTy NameLoc = Lex.getLoc(); 554 555 // Handle the GlobalID form. 556 if (Lex.getKind() == lltok::GlobalID) { 557 if (Lex.getUIntVal() != VarID) 558 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 559 Twine(VarID) + "'"); 560 Lex.Lex(); // eat GlobalID; 561 562 if (ParseToken(lltok::equal, "expected '=' after name")) 563 return true; 564 } 565 566 bool HasLinkage; 567 unsigned Linkage, Visibility, DLLStorageClass; 568 bool DSOLocal; 569 GlobalVariable::ThreadLocalMode TLM; 570 GlobalVariable::UnnamedAddr UnnamedAddr; 571 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 572 DSOLocal) || 573 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 574 return true; 575 576 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 577 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 578 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 579 580 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 581 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 582 } 583 584 /// ParseNamedGlobal: 585 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 586 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 587 /// OptionalVisibility OptionalDLLStorageClass 588 /// ... -> global variable 589 bool LLParser::ParseNamedGlobal() { 590 assert(Lex.getKind() == lltok::GlobalVar); 591 LocTy NameLoc = Lex.getLoc(); 592 std::string Name = Lex.getStrVal(); 593 Lex.Lex(); 594 595 bool HasLinkage; 596 unsigned Linkage, Visibility, DLLStorageClass; 597 bool DSOLocal; 598 GlobalVariable::ThreadLocalMode TLM; 599 GlobalVariable::UnnamedAddr UnnamedAddr; 600 if (ParseToken(lltok::equal, "expected '=' in global variable") || 601 ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 602 DSOLocal) || 603 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 604 return true; 605 606 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 607 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 608 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 609 610 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 611 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 612 } 613 614 bool LLParser::parseComdat() { 615 assert(Lex.getKind() == lltok::ComdatVar); 616 std::string Name = Lex.getStrVal(); 617 LocTy NameLoc = Lex.getLoc(); 618 Lex.Lex(); 619 620 if (ParseToken(lltok::equal, "expected '=' here")) 621 return true; 622 623 if (ParseToken(lltok::kw_comdat, "expected comdat keyword")) 624 return TokError("expected comdat type"); 625 626 Comdat::SelectionKind SK; 627 switch (Lex.getKind()) { 628 default: 629 return TokError("unknown selection kind"); 630 case lltok::kw_any: 631 SK = Comdat::Any; 632 break; 633 case lltok::kw_exactmatch: 634 SK = Comdat::ExactMatch; 635 break; 636 case lltok::kw_largest: 637 SK = Comdat::Largest; 638 break; 639 case lltok::kw_noduplicates: 640 SK = Comdat::NoDuplicates; 641 break; 642 case lltok::kw_samesize: 643 SK = Comdat::SameSize; 644 break; 645 } 646 Lex.Lex(); 647 648 // See if the comdat was forward referenced, if so, use the comdat. 649 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 650 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 651 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 652 return Error(NameLoc, "redefinition of comdat '$" + Name + "'"); 653 654 Comdat *C; 655 if (I != ComdatSymTab.end()) 656 C = &I->second; 657 else 658 C = M->getOrInsertComdat(Name); 659 C->setSelectionKind(SK); 660 661 return false; 662 } 663 664 // MDString: 665 // ::= '!' STRINGCONSTANT 666 bool LLParser::ParseMDString(MDString *&Result) { 667 std::string Str; 668 if (ParseStringConstant(Str)) return true; 669 Result = MDString::get(Context, Str); 670 return false; 671 } 672 673 // MDNode: 674 // ::= '!' MDNodeNumber 675 bool LLParser::ParseMDNodeID(MDNode *&Result) { 676 // !{ ..., !42, ... } 677 LocTy IDLoc = Lex.getLoc(); 678 unsigned MID = 0; 679 if (ParseUInt32(MID)) 680 return true; 681 682 // If not a forward reference, just return it now. 683 if (NumberedMetadata.count(MID)) { 684 Result = NumberedMetadata[MID]; 685 return false; 686 } 687 688 // Otherwise, create MDNode forward reference. 689 auto &FwdRef = ForwardRefMDNodes[MID]; 690 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 691 692 Result = FwdRef.first.get(); 693 NumberedMetadata[MID].reset(Result); 694 return false; 695 } 696 697 /// ParseNamedMetadata: 698 /// !foo = !{ !1, !2 } 699 bool LLParser::ParseNamedMetadata() { 700 assert(Lex.getKind() == lltok::MetadataVar); 701 std::string Name = Lex.getStrVal(); 702 Lex.Lex(); 703 704 if (ParseToken(lltok::equal, "expected '=' here") || 705 ParseToken(lltok::exclaim, "Expected '!' here") || 706 ParseToken(lltok::lbrace, "Expected '{' here")) 707 return true; 708 709 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 710 if (Lex.getKind() != lltok::rbrace) 711 do { 712 MDNode *N = nullptr; 713 // Parse DIExpressions inline as a special case. They are still MDNodes, 714 // so they can still appear in named metadata. Remove this logic if they 715 // become plain Metadata. 716 if (Lex.getKind() == lltok::MetadataVar && 717 Lex.getStrVal() == "DIExpression") { 718 if (ParseDIExpression(N, /*IsDistinct=*/false)) 719 return true; 720 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 721 ParseMDNodeID(N)) { 722 return true; 723 } 724 NMD->addOperand(N); 725 } while (EatIfPresent(lltok::comma)); 726 727 return ParseToken(lltok::rbrace, "expected end of metadata node"); 728 } 729 730 /// ParseStandaloneMetadata: 731 /// !42 = !{...} 732 bool LLParser::ParseStandaloneMetadata() { 733 assert(Lex.getKind() == lltok::exclaim); 734 Lex.Lex(); 735 unsigned MetadataID = 0; 736 737 MDNode *Init; 738 if (ParseUInt32(MetadataID) || 739 ParseToken(lltok::equal, "expected '=' here")) 740 return true; 741 742 // Detect common error, from old metadata syntax. 743 if (Lex.getKind() == lltok::Type) 744 return TokError("unexpected type in metadata definition"); 745 746 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 747 if (Lex.getKind() == lltok::MetadataVar) { 748 if (ParseSpecializedMDNode(Init, IsDistinct)) 749 return true; 750 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 751 ParseMDTuple(Init, IsDistinct)) 752 return true; 753 754 // See if this was forward referenced, if so, handle it. 755 auto FI = ForwardRefMDNodes.find(MetadataID); 756 if (FI != ForwardRefMDNodes.end()) { 757 FI->second.first->replaceAllUsesWith(Init); 758 ForwardRefMDNodes.erase(FI); 759 760 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 761 } else { 762 if (NumberedMetadata.count(MetadataID)) 763 return TokError("Metadata id is already used"); 764 NumberedMetadata[MetadataID].reset(Init); 765 } 766 767 return false; 768 } 769 770 // Skips a single module summary entry. 771 bool LLParser::SkipModuleSummaryEntry() { 772 // Each module summary entry consists of a tag for the entry 773 // type, followed by a colon, then the fields surrounded by nested sets of 774 // parentheses. The "tag:" looks like a Label. Once parsing support is 775 // in place we will look for the tokens corresponding to the expected tags. 776 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module && 777 Lex.getKind() != lltok::kw_typeid) 778 return TokError( 779 "Expected 'gv', 'module', or 'typeid' at the start of summary entry"); 780 Lex.Lex(); 781 if (ParseToken(lltok::colon, "expected ':' at start of summary entry") || 782 ParseToken(lltok::lparen, "expected '(' at start of summary entry")) 783 return true; 784 // Now walk through the parenthesized entry, until the number of open 785 // parentheses goes back down to 0 (the first '(' was parsed above). 786 unsigned NumOpenParen = 1; 787 do { 788 switch (Lex.getKind()) { 789 case lltok::lparen: 790 NumOpenParen++; 791 break; 792 case lltok::rparen: 793 NumOpenParen--; 794 break; 795 case lltok::Eof: 796 return TokError("found end of file while parsing summary entry"); 797 default: 798 // Skip everything in between parentheses. 799 break; 800 } 801 Lex.Lex(); 802 } while (NumOpenParen > 0); 803 return false; 804 } 805 806 /// SummaryEntry 807 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry 808 bool LLParser::ParseSummaryEntry() { 809 assert(Lex.getKind() == lltok::SummaryID); 810 unsigned SummaryID = Lex.getUIntVal(); 811 812 // For summary entries, colons should be treated as distinct tokens, 813 // not an indication of the end of a label token. 814 Lex.setIgnoreColonInIdentifiers(true); 815 816 Lex.Lex(); 817 if (ParseToken(lltok::equal, "expected '=' here")) 818 return true; 819 820 // If we don't have an index object, skip the summary entry. 821 if (!Index) 822 return SkipModuleSummaryEntry(); 823 824 bool result = false; 825 switch (Lex.getKind()) { 826 case lltok::kw_gv: 827 result = ParseGVEntry(SummaryID); 828 break; 829 case lltok::kw_module: 830 result = ParseModuleEntry(SummaryID); 831 break; 832 case lltok::kw_typeid: 833 result = ParseTypeIdEntry(SummaryID); 834 break; 835 case lltok::kw_typeidCompatibleVTable: 836 result = ParseTypeIdCompatibleVtableEntry(SummaryID); 837 break; 838 default: 839 result = Error(Lex.getLoc(), "unexpected summary kind"); 840 break; 841 } 842 Lex.setIgnoreColonInIdentifiers(false); 843 return result; 844 } 845 846 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 847 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 848 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 849 } 850 851 // If there was an explicit dso_local, update GV. In the absence of an explicit 852 // dso_local we keep the default value. 853 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { 854 if (DSOLocal) 855 GV.setDSOLocal(true); 856 } 857 858 /// parseIndirectSymbol: 859 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 860 /// OptionalVisibility OptionalDLLStorageClass 861 /// OptionalThreadLocal OptionalUnnamedAddr 862 /// 'alias|ifunc' IndirectSymbol IndirectSymbolAttr* 863 /// 864 /// IndirectSymbol 865 /// ::= TypeAndValue 866 /// 867 /// IndirectSymbolAttr 868 /// ::= ',' 'partition' StringConstant 869 /// 870 /// Everything through OptionalUnnamedAddr has already been parsed. 871 /// 872 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc, 873 unsigned L, unsigned Visibility, 874 unsigned DLLStorageClass, bool DSOLocal, 875 GlobalVariable::ThreadLocalMode TLM, 876 GlobalVariable::UnnamedAddr UnnamedAddr) { 877 bool IsAlias; 878 if (Lex.getKind() == lltok::kw_alias) 879 IsAlias = true; 880 else if (Lex.getKind() == lltok::kw_ifunc) 881 IsAlias = false; 882 else 883 llvm_unreachable("Not an alias or ifunc!"); 884 Lex.Lex(); 885 886 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 887 888 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 889 return Error(NameLoc, "invalid linkage type for alias"); 890 891 if (!isValidVisibilityForLinkage(Visibility, L)) 892 return Error(NameLoc, 893 "symbol with local linkage must have default visibility"); 894 895 Type *Ty; 896 LocTy ExplicitTypeLoc = Lex.getLoc(); 897 if (ParseType(Ty) || 898 ParseToken(lltok::comma, "expected comma after alias or ifunc's type")) 899 return true; 900 901 Constant *Aliasee; 902 LocTy AliaseeLoc = Lex.getLoc(); 903 if (Lex.getKind() != lltok::kw_bitcast && 904 Lex.getKind() != lltok::kw_getelementptr && 905 Lex.getKind() != lltok::kw_addrspacecast && 906 Lex.getKind() != lltok::kw_inttoptr) { 907 if (ParseGlobalTypeAndValue(Aliasee)) 908 return true; 909 } else { 910 // The bitcast dest type is not present, it is implied by the dest type. 911 ValID ID; 912 if (ParseValID(ID)) 913 return true; 914 if (ID.Kind != ValID::t_Constant) 915 return Error(AliaseeLoc, "invalid aliasee"); 916 Aliasee = ID.ConstantVal; 917 } 918 919 Type *AliaseeType = Aliasee->getType(); 920 auto *PTy = dyn_cast<PointerType>(AliaseeType); 921 if (!PTy) 922 return Error(AliaseeLoc, "An alias or ifunc must have pointer type"); 923 unsigned AddrSpace = PTy->getAddressSpace(); 924 925 if (IsAlias && Ty != PTy->getElementType()) 926 return Error( 927 ExplicitTypeLoc, 928 "explicit pointee type doesn't match operand's pointee type"); 929 930 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) 931 return Error( 932 ExplicitTypeLoc, 933 "explicit pointee type should be a function type"); 934 935 GlobalValue *GVal = nullptr; 936 937 // See if the alias was forward referenced, if so, prepare to replace the 938 // forward reference. 939 if (!Name.empty()) { 940 GVal = M->getNamedValue(Name); 941 if (GVal) { 942 if (!ForwardRefVals.erase(Name)) 943 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 944 } 945 } else { 946 auto I = ForwardRefValIDs.find(NumberedVals.size()); 947 if (I != ForwardRefValIDs.end()) { 948 GVal = I->second.first; 949 ForwardRefValIDs.erase(I); 950 } 951 } 952 953 // Okay, create the alias but do not insert it into the module yet. 954 std::unique_ptr<GlobalIndirectSymbol> GA; 955 if (IsAlias) 956 GA.reset(GlobalAlias::create(Ty, AddrSpace, 957 (GlobalValue::LinkageTypes)Linkage, Name, 958 Aliasee, /*Parent*/ nullptr)); 959 else 960 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 961 (GlobalValue::LinkageTypes)Linkage, Name, 962 Aliasee, /*Parent*/ nullptr)); 963 GA->setThreadLocalMode(TLM); 964 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 965 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 966 GA->setUnnamedAddr(UnnamedAddr); 967 maybeSetDSOLocal(DSOLocal, *GA); 968 969 // At this point we've parsed everything except for the IndirectSymbolAttrs. 970 // Now parse them if there are any. 971 while (Lex.getKind() == lltok::comma) { 972 Lex.Lex(); 973 974 if (Lex.getKind() == lltok::kw_partition) { 975 Lex.Lex(); 976 GA->setPartition(Lex.getStrVal()); 977 if (ParseToken(lltok::StringConstant, "expected partition string")) 978 return true; 979 } else { 980 return TokError("unknown alias or ifunc property!"); 981 } 982 } 983 984 if (Name.empty()) 985 NumberedVals.push_back(GA.get()); 986 987 if (GVal) { 988 // Verify that types agree. 989 if (GVal->getType() != GA->getType()) 990 return Error( 991 ExplicitTypeLoc, 992 "forward reference and definition of alias have different types"); 993 994 // If they agree, just RAUW the old value with the alias and remove the 995 // forward ref info. 996 GVal->replaceAllUsesWith(GA.get()); 997 GVal->eraseFromParent(); 998 } 999 1000 // Insert into the module, we know its name won't collide now. 1001 if (IsAlias) 1002 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 1003 else 1004 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 1005 assert(GA->getName() == Name && "Should not be a name conflict!"); 1006 1007 // The module owns this now 1008 GA.release(); 1009 1010 return false; 1011 } 1012 1013 /// ParseGlobal 1014 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 1015 /// OptionalVisibility OptionalDLLStorageClass 1016 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 1017 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 1018 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 1019 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 1020 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 1021 /// Const OptionalAttrs 1022 /// 1023 /// Everything up to and including OptionalUnnamedAddr has been parsed 1024 /// already. 1025 /// 1026 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 1027 unsigned Linkage, bool HasLinkage, 1028 unsigned Visibility, unsigned DLLStorageClass, 1029 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 1030 GlobalVariable::UnnamedAddr UnnamedAddr) { 1031 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 1032 return Error(NameLoc, 1033 "symbol with local linkage must have default visibility"); 1034 1035 unsigned AddrSpace; 1036 bool IsConstant, IsExternallyInitialized; 1037 LocTy IsExternallyInitializedLoc; 1038 LocTy TyLoc; 1039 1040 Type *Ty = nullptr; 1041 if (ParseOptionalAddrSpace(AddrSpace) || 1042 ParseOptionalToken(lltok::kw_externally_initialized, 1043 IsExternallyInitialized, 1044 &IsExternallyInitializedLoc) || 1045 ParseGlobalType(IsConstant) || 1046 ParseType(Ty, TyLoc)) 1047 return true; 1048 1049 // If the linkage is specified and is external, then no initializer is 1050 // present. 1051 Constant *Init = nullptr; 1052 if (!HasLinkage || 1053 !GlobalValue::isValidDeclarationLinkage( 1054 (GlobalValue::LinkageTypes)Linkage)) { 1055 if (ParseGlobalValue(Ty, Init)) 1056 return true; 1057 } 1058 1059 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 1060 return Error(TyLoc, "invalid type for global variable"); 1061 1062 GlobalValue *GVal = nullptr; 1063 1064 // See if the global was forward referenced, if so, use the global. 1065 if (!Name.empty()) { 1066 GVal = M->getNamedValue(Name); 1067 if (GVal) { 1068 if (!ForwardRefVals.erase(Name)) 1069 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 1070 } 1071 } else { 1072 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1073 if (I != ForwardRefValIDs.end()) { 1074 GVal = I->second.first; 1075 ForwardRefValIDs.erase(I); 1076 } 1077 } 1078 1079 GlobalVariable *GV; 1080 if (!GVal) { 1081 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 1082 Name, nullptr, GlobalVariable::NotThreadLocal, 1083 AddrSpace); 1084 } else { 1085 if (GVal->getValueType() != Ty) 1086 return Error(TyLoc, 1087 "forward reference and definition of global have different types"); 1088 1089 GV = cast<GlobalVariable>(GVal); 1090 1091 // Move the forward-reference to the correct spot in the module. 1092 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 1093 } 1094 1095 if (Name.empty()) 1096 NumberedVals.push_back(GV); 1097 1098 // Set the parsed properties on the global. 1099 if (Init) 1100 GV->setInitializer(Init); 1101 GV->setConstant(IsConstant); 1102 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 1103 maybeSetDSOLocal(DSOLocal, *GV); 1104 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1105 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1106 GV->setExternallyInitialized(IsExternallyInitialized); 1107 GV->setThreadLocalMode(TLM); 1108 GV->setUnnamedAddr(UnnamedAddr); 1109 1110 // Parse attributes on the global. 1111 while (Lex.getKind() == lltok::comma) { 1112 Lex.Lex(); 1113 1114 if (Lex.getKind() == lltok::kw_section) { 1115 Lex.Lex(); 1116 GV->setSection(Lex.getStrVal()); 1117 if (ParseToken(lltok::StringConstant, "expected global section string")) 1118 return true; 1119 } else if (Lex.getKind() == lltok::kw_partition) { 1120 Lex.Lex(); 1121 GV->setPartition(Lex.getStrVal()); 1122 if (ParseToken(lltok::StringConstant, "expected partition string")) 1123 return true; 1124 } else if (Lex.getKind() == lltok::kw_align) { 1125 unsigned Alignment; 1126 if (ParseOptionalAlignment(Alignment)) return true; 1127 GV->setAlignment(Alignment); 1128 } else if (Lex.getKind() == lltok::MetadataVar) { 1129 if (ParseGlobalObjectMetadataAttachment(*GV)) 1130 return true; 1131 } else { 1132 Comdat *C; 1133 if (parseOptionalComdat(Name, C)) 1134 return true; 1135 if (C) 1136 GV->setComdat(C); 1137 else 1138 return TokError("unknown global variable property!"); 1139 } 1140 } 1141 1142 AttrBuilder Attrs; 1143 LocTy BuiltinLoc; 1144 std::vector<unsigned> FwdRefAttrGrps; 1145 if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 1146 return true; 1147 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 1148 GV->setAttributes(AttributeSet::get(Context, Attrs)); 1149 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 1150 } 1151 1152 return false; 1153 } 1154 1155 /// ParseUnnamedAttrGrp 1156 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 1157 bool LLParser::ParseUnnamedAttrGrp() { 1158 assert(Lex.getKind() == lltok::kw_attributes); 1159 LocTy AttrGrpLoc = Lex.getLoc(); 1160 Lex.Lex(); 1161 1162 if (Lex.getKind() != lltok::AttrGrpID) 1163 return TokError("expected attribute group id"); 1164 1165 unsigned VarID = Lex.getUIntVal(); 1166 std::vector<unsigned> unused; 1167 LocTy BuiltinLoc; 1168 Lex.Lex(); 1169 1170 if (ParseToken(lltok::equal, "expected '=' here") || 1171 ParseToken(lltok::lbrace, "expected '{' here") || 1172 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 1173 BuiltinLoc) || 1174 ParseToken(lltok::rbrace, "expected end of attribute group")) 1175 return true; 1176 1177 if (!NumberedAttrBuilders[VarID].hasAttributes()) 1178 return Error(AttrGrpLoc, "attribute group has no attributes"); 1179 1180 return false; 1181 } 1182 1183 /// ParseFnAttributeValuePairs 1184 /// ::= <attr> | <attr> '=' <value> 1185 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B, 1186 std::vector<unsigned> &FwdRefAttrGrps, 1187 bool inAttrGrp, LocTy &BuiltinLoc) { 1188 bool HaveError = false; 1189 1190 B.clear(); 1191 1192 while (true) { 1193 lltok::Kind Token = Lex.getKind(); 1194 if (Token == lltok::kw_builtin) 1195 BuiltinLoc = Lex.getLoc(); 1196 switch (Token) { 1197 default: 1198 if (!inAttrGrp) return HaveError; 1199 return Error(Lex.getLoc(), "unterminated attribute group"); 1200 case lltok::rbrace: 1201 // Finished. 1202 return false; 1203 1204 case lltok::AttrGrpID: { 1205 // Allow a function to reference an attribute group: 1206 // 1207 // define void @foo() #1 { ... } 1208 if (inAttrGrp) 1209 HaveError |= 1210 Error(Lex.getLoc(), 1211 "cannot have an attribute group reference in an attribute group"); 1212 1213 unsigned AttrGrpNum = Lex.getUIntVal(); 1214 if (inAttrGrp) break; 1215 1216 // Save the reference to the attribute group. We'll fill it in later. 1217 FwdRefAttrGrps.push_back(AttrGrpNum); 1218 break; 1219 } 1220 // Target-dependent attributes: 1221 case lltok::StringConstant: { 1222 if (ParseStringAttribute(B)) 1223 return true; 1224 continue; 1225 } 1226 1227 // Target-independent attributes: 1228 case lltok::kw_align: { 1229 // As a hack, we allow function alignment to be initially parsed as an 1230 // attribute on a function declaration/definition or added to an attribute 1231 // group and later moved to the alignment field. 1232 unsigned Alignment; 1233 if (inAttrGrp) { 1234 Lex.Lex(); 1235 if (ParseToken(lltok::equal, "expected '=' here") || 1236 ParseUInt32(Alignment)) 1237 return true; 1238 } else { 1239 if (ParseOptionalAlignment(Alignment)) 1240 return true; 1241 } 1242 B.addAlignmentAttr(Alignment); 1243 continue; 1244 } 1245 case lltok::kw_alignstack: { 1246 unsigned Alignment; 1247 if (inAttrGrp) { 1248 Lex.Lex(); 1249 if (ParseToken(lltok::equal, "expected '=' here") || 1250 ParseUInt32(Alignment)) 1251 return true; 1252 } else { 1253 if (ParseOptionalStackAlignment(Alignment)) 1254 return true; 1255 } 1256 B.addStackAlignmentAttr(Alignment); 1257 continue; 1258 } 1259 case lltok::kw_allocsize: { 1260 unsigned ElemSizeArg; 1261 Optional<unsigned> NumElemsArg; 1262 // inAttrGrp doesn't matter; we only support allocsize(a[, b]) 1263 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1264 return true; 1265 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1266 continue; 1267 } 1268 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 1269 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 1270 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 1271 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 1272 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 1273 case lltok::kw_inaccessiblememonly: 1274 B.addAttribute(Attribute::InaccessibleMemOnly); break; 1275 case lltok::kw_inaccessiblemem_or_argmemonly: 1276 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break; 1277 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 1278 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 1279 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 1280 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 1281 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 1282 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 1283 case lltok::kw_noimplicitfloat: 1284 B.addAttribute(Attribute::NoImplicitFloat); break; 1285 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1286 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1287 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1288 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1289 case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break; 1290 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1291 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1292 case lltok::kw_optforfuzzing: 1293 B.addAttribute(Attribute::OptForFuzzing); break; 1294 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1295 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1296 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1297 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1298 case lltok::kw_returns_twice: 1299 B.addAttribute(Attribute::ReturnsTwice); break; 1300 case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break; 1301 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1302 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1303 case lltok::kw_sspstrong: 1304 B.addAttribute(Attribute::StackProtectStrong); break; 1305 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1306 case lltok::kw_shadowcallstack: 1307 B.addAttribute(Attribute::ShadowCallStack); break; 1308 case lltok::kw_sanitize_address: 1309 B.addAttribute(Attribute::SanitizeAddress); break; 1310 case lltok::kw_sanitize_hwaddress: 1311 B.addAttribute(Attribute::SanitizeHWAddress); break; 1312 case lltok::kw_sanitize_thread: 1313 B.addAttribute(Attribute::SanitizeThread); break; 1314 case lltok::kw_sanitize_memory: 1315 B.addAttribute(Attribute::SanitizeMemory); break; 1316 case lltok::kw_speculative_load_hardening: 1317 B.addAttribute(Attribute::SpeculativeLoadHardening); 1318 break; 1319 case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break; 1320 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1321 case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break; 1322 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1323 1324 // Error handling. 1325 case lltok::kw_inreg: 1326 case lltok::kw_signext: 1327 case lltok::kw_zeroext: 1328 HaveError |= 1329 Error(Lex.getLoc(), 1330 "invalid use of attribute on a function"); 1331 break; 1332 case lltok::kw_byval: 1333 case lltok::kw_dereferenceable: 1334 case lltok::kw_dereferenceable_or_null: 1335 case lltok::kw_inalloca: 1336 case lltok::kw_nest: 1337 case lltok::kw_noalias: 1338 case lltok::kw_nocapture: 1339 case lltok::kw_nonnull: 1340 case lltok::kw_returned: 1341 case lltok::kw_sret: 1342 case lltok::kw_swifterror: 1343 case lltok::kw_swiftself: 1344 case lltok::kw_immarg: 1345 HaveError |= 1346 Error(Lex.getLoc(), 1347 "invalid use of parameter-only attribute on a function"); 1348 break; 1349 } 1350 1351 Lex.Lex(); 1352 } 1353 } 1354 1355 //===----------------------------------------------------------------------===// 1356 // GlobalValue Reference/Resolution Routines. 1357 //===----------------------------------------------------------------------===// 1358 1359 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1360 const std::string &Name) { 1361 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1362 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, 1363 PTy->getAddressSpace(), Name, M); 1364 else 1365 return new GlobalVariable(*M, PTy->getElementType(), false, 1366 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1367 nullptr, GlobalVariable::NotThreadLocal, 1368 PTy->getAddressSpace()); 1369 } 1370 1371 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty, 1372 Value *Val, bool IsCall) { 1373 if (Val->getType() == Ty) 1374 return Val; 1375 // For calls we also accept variables in the program address space. 1376 Type *SuggestedTy = Ty; 1377 if (IsCall && isa<PointerType>(Ty)) { 1378 Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo( 1379 M->getDataLayout().getProgramAddressSpace()); 1380 SuggestedTy = TyInProgAS; 1381 if (Val->getType() == TyInProgAS) 1382 return Val; 1383 } 1384 if (Ty->isLabelTy()) 1385 Error(Loc, "'" + Name + "' is not a basic block"); 1386 else 1387 Error(Loc, "'" + Name + "' defined with type '" + 1388 getTypeString(Val->getType()) + "' but expected '" + 1389 getTypeString(SuggestedTy) + "'"); 1390 return nullptr; 1391 } 1392 1393 /// GetGlobalVal - Get a value with the specified name or ID, creating a 1394 /// forward reference record if needed. This can return null if the value 1395 /// exists but does not have the right type. 1396 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 1397 LocTy Loc, bool IsCall) { 1398 PointerType *PTy = dyn_cast<PointerType>(Ty); 1399 if (!PTy) { 1400 Error(Loc, "global variable reference must have pointer type"); 1401 return nullptr; 1402 } 1403 1404 // Look this name up in the normal function symbol table. 1405 GlobalValue *Val = 1406 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1407 1408 // If this is a forward reference for the value, see if we already created a 1409 // forward ref record. 1410 if (!Val) { 1411 auto I = ForwardRefVals.find(Name); 1412 if (I != ForwardRefVals.end()) 1413 Val = I->second.first; 1414 } 1415 1416 // If we have the value in the symbol table or fwd-ref table, return it. 1417 if (Val) 1418 return cast_or_null<GlobalValue>( 1419 checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall)); 1420 1421 // Otherwise, create a new forward reference for this value and remember it. 1422 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1423 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1424 return FwdVal; 1425 } 1426 1427 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc, 1428 bool IsCall) { 1429 PointerType *PTy = dyn_cast<PointerType>(Ty); 1430 if (!PTy) { 1431 Error(Loc, "global variable reference must have pointer type"); 1432 return nullptr; 1433 } 1434 1435 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1436 1437 // If this is a forward reference for the value, see if we already created a 1438 // forward ref record. 1439 if (!Val) { 1440 auto I = ForwardRefValIDs.find(ID); 1441 if (I != ForwardRefValIDs.end()) 1442 Val = I->second.first; 1443 } 1444 1445 // If we have the value in the symbol table or fwd-ref table, return it. 1446 if (Val) 1447 return cast_or_null<GlobalValue>( 1448 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall)); 1449 1450 // Otherwise, create a new forward reference for this value and remember it. 1451 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1452 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1453 return FwdVal; 1454 } 1455 1456 //===----------------------------------------------------------------------===// 1457 // Comdat Reference/Resolution Routines. 1458 //===----------------------------------------------------------------------===// 1459 1460 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1461 // Look this name up in the comdat symbol table. 1462 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1463 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1464 if (I != ComdatSymTab.end()) 1465 return &I->second; 1466 1467 // Otherwise, create a new forward reference for this value and remember it. 1468 Comdat *C = M->getOrInsertComdat(Name); 1469 ForwardRefComdats[Name] = Loc; 1470 return C; 1471 } 1472 1473 //===----------------------------------------------------------------------===// 1474 // Helper Routines. 1475 //===----------------------------------------------------------------------===// 1476 1477 /// ParseToken - If the current token has the specified kind, eat it and return 1478 /// success. Otherwise, emit the specified error and return failure. 1479 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 1480 if (Lex.getKind() != T) 1481 return TokError(ErrMsg); 1482 Lex.Lex(); 1483 return false; 1484 } 1485 1486 /// ParseStringConstant 1487 /// ::= StringConstant 1488 bool LLParser::ParseStringConstant(std::string &Result) { 1489 if (Lex.getKind() != lltok::StringConstant) 1490 return TokError("expected string constant"); 1491 Result = Lex.getStrVal(); 1492 Lex.Lex(); 1493 return false; 1494 } 1495 1496 /// ParseUInt32 1497 /// ::= uint32 1498 bool LLParser::ParseUInt32(uint32_t &Val) { 1499 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1500 return TokError("expected integer"); 1501 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1502 if (Val64 != unsigned(Val64)) 1503 return TokError("expected 32-bit integer (too large)"); 1504 Val = Val64; 1505 Lex.Lex(); 1506 return false; 1507 } 1508 1509 /// ParseUInt64 1510 /// ::= uint64 1511 bool LLParser::ParseUInt64(uint64_t &Val) { 1512 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1513 return TokError("expected integer"); 1514 Val = Lex.getAPSIntVal().getLimitedValue(); 1515 Lex.Lex(); 1516 return false; 1517 } 1518 1519 /// ParseTLSModel 1520 /// := 'localdynamic' 1521 /// := 'initialexec' 1522 /// := 'localexec' 1523 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1524 switch (Lex.getKind()) { 1525 default: 1526 return TokError("expected localdynamic, initialexec or localexec"); 1527 case lltok::kw_localdynamic: 1528 TLM = GlobalVariable::LocalDynamicTLSModel; 1529 break; 1530 case lltok::kw_initialexec: 1531 TLM = GlobalVariable::InitialExecTLSModel; 1532 break; 1533 case lltok::kw_localexec: 1534 TLM = GlobalVariable::LocalExecTLSModel; 1535 break; 1536 } 1537 1538 Lex.Lex(); 1539 return false; 1540 } 1541 1542 /// ParseOptionalThreadLocal 1543 /// := /*empty*/ 1544 /// := 'thread_local' 1545 /// := 'thread_local' '(' tlsmodel ')' 1546 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1547 TLM = GlobalVariable::NotThreadLocal; 1548 if (!EatIfPresent(lltok::kw_thread_local)) 1549 return false; 1550 1551 TLM = GlobalVariable::GeneralDynamicTLSModel; 1552 if (Lex.getKind() == lltok::lparen) { 1553 Lex.Lex(); 1554 return ParseTLSModel(TLM) || 1555 ParseToken(lltok::rparen, "expected ')' after thread local model"); 1556 } 1557 return false; 1558 } 1559 1560 /// ParseOptionalAddrSpace 1561 /// := /*empty*/ 1562 /// := 'addrspace' '(' uint32 ')' 1563 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) { 1564 AddrSpace = DefaultAS; 1565 if (!EatIfPresent(lltok::kw_addrspace)) 1566 return false; 1567 return ParseToken(lltok::lparen, "expected '(' in address space") || 1568 ParseUInt32(AddrSpace) || 1569 ParseToken(lltok::rparen, "expected ')' in address space"); 1570 } 1571 1572 /// ParseStringAttribute 1573 /// := StringConstant 1574 /// := StringConstant '=' StringConstant 1575 bool LLParser::ParseStringAttribute(AttrBuilder &B) { 1576 std::string Attr = Lex.getStrVal(); 1577 Lex.Lex(); 1578 std::string Val; 1579 if (EatIfPresent(lltok::equal) && ParseStringConstant(Val)) 1580 return true; 1581 B.addAttribute(Attr, Val); 1582 return false; 1583 } 1584 1585 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes. 1586 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) { 1587 bool HaveError = false; 1588 1589 B.clear(); 1590 1591 while (true) { 1592 lltok::Kind Token = Lex.getKind(); 1593 switch (Token) { 1594 default: // End of attributes. 1595 return HaveError; 1596 case lltok::StringConstant: { 1597 if (ParseStringAttribute(B)) 1598 return true; 1599 continue; 1600 } 1601 case lltok::kw_align: { 1602 unsigned Alignment; 1603 if (ParseOptionalAlignment(Alignment)) 1604 return true; 1605 B.addAlignmentAttr(Alignment); 1606 continue; 1607 } 1608 case lltok::kw_byval: { 1609 Type *Ty; 1610 if (ParseByValWithOptionalType(Ty)) 1611 return true; 1612 B.addByValAttr(Ty); 1613 continue; 1614 } 1615 case lltok::kw_dereferenceable: { 1616 uint64_t Bytes; 1617 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1618 return true; 1619 B.addDereferenceableAttr(Bytes); 1620 continue; 1621 } 1622 case lltok::kw_dereferenceable_or_null: { 1623 uint64_t Bytes; 1624 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1625 return true; 1626 B.addDereferenceableOrNullAttr(Bytes); 1627 continue; 1628 } 1629 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break; 1630 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1631 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1632 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1633 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1634 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1635 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1636 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1637 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1638 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1639 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break; 1640 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break; 1641 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break; 1642 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1643 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1644 case lltok::kw_immarg: B.addAttribute(Attribute::ImmArg); break; 1645 1646 case lltok::kw_alignstack: 1647 case lltok::kw_alwaysinline: 1648 case lltok::kw_argmemonly: 1649 case lltok::kw_builtin: 1650 case lltok::kw_inlinehint: 1651 case lltok::kw_jumptable: 1652 case lltok::kw_minsize: 1653 case lltok::kw_naked: 1654 case lltok::kw_nobuiltin: 1655 case lltok::kw_noduplicate: 1656 case lltok::kw_noimplicitfloat: 1657 case lltok::kw_noinline: 1658 case lltok::kw_nonlazybind: 1659 case lltok::kw_noredzone: 1660 case lltok::kw_noreturn: 1661 case lltok::kw_nocf_check: 1662 case lltok::kw_nounwind: 1663 case lltok::kw_optforfuzzing: 1664 case lltok::kw_optnone: 1665 case lltok::kw_optsize: 1666 case lltok::kw_returns_twice: 1667 case lltok::kw_sanitize_address: 1668 case lltok::kw_sanitize_hwaddress: 1669 case lltok::kw_sanitize_memory: 1670 case lltok::kw_sanitize_thread: 1671 case lltok::kw_speculative_load_hardening: 1672 case lltok::kw_ssp: 1673 case lltok::kw_sspreq: 1674 case lltok::kw_sspstrong: 1675 case lltok::kw_safestack: 1676 case lltok::kw_shadowcallstack: 1677 case lltok::kw_strictfp: 1678 case lltok::kw_uwtable: 1679 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1680 break; 1681 } 1682 1683 Lex.Lex(); 1684 } 1685 } 1686 1687 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes. 1688 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) { 1689 bool HaveError = false; 1690 1691 B.clear(); 1692 1693 while (true) { 1694 lltok::Kind Token = Lex.getKind(); 1695 switch (Token) { 1696 default: // End of attributes. 1697 return HaveError; 1698 case lltok::StringConstant: { 1699 if (ParseStringAttribute(B)) 1700 return true; 1701 continue; 1702 } 1703 case lltok::kw_dereferenceable: { 1704 uint64_t Bytes; 1705 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1706 return true; 1707 B.addDereferenceableAttr(Bytes); 1708 continue; 1709 } 1710 case lltok::kw_dereferenceable_or_null: { 1711 uint64_t Bytes; 1712 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1713 return true; 1714 B.addDereferenceableOrNullAttr(Bytes); 1715 continue; 1716 } 1717 case lltok::kw_align: { 1718 unsigned Alignment; 1719 if (ParseOptionalAlignment(Alignment)) 1720 return true; 1721 B.addAlignmentAttr(Alignment); 1722 continue; 1723 } 1724 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1725 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1726 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1727 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1728 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1729 1730 // Error handling. 1731 case lltok::kw_byval: 1732 case lltok::kw_inalloca: 1733 case lltok::kw_nest: 1734 case lltok::kw_nocapture: 1735 case lltok::kw_returned: 1736 case lltok::kw_sret: 1737 case lltok::kw_swifterror: 1738 case lltok::kw_swiftself: 1739 case lltok::kw_immarg: 1740 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1741 break; 1742 1743 case lltok::kw_alignstack: 1744 case lltok::kw_alwaysinline: 1745 case lltok::kw_argmemonly: 1746 case lltok::kw_builtin: 1747 case lltok::kw_cold: 1748 case lltok::kw_inlinehint: 1749 case lltok::kw_jumptable: 1750 case lltok::kw_minsize: 1751 case lltok::kw_naked: 1752 case lltok::kw_nobuiltin: 1753 case lltok::kw_noduplicate: 1754 case lltok::kw_noimplicitfloat: 1755 case lltok::kw_noinline: 1756 case lltok::kw_nonlazybind: 1757 case lltok::kw_noredzone: 1758 case lltok::kw_noreturn: 1759 case lltok::kw_nocf_check: 1760 case lltok::kw_nounwind: 1761 case lltok::kw_optforfuzzing: 1762 case lltok::kw_optnone: 1763 case lltok::kw_optsize: 1764 case lltok::kw_returns_twice: 1765 case lltok::kw_sanitize_address: 1766 case lltok::kw_sanitize_hwaddress: 1767 case lltok::kw_sanitize_memory: 1768 case lltok::kw_sanitize_thread: 1769 case lltok::kw_speculative_load_hardening: 1770 case lltok::kw_ssp: 1771 case lltok::kw_sspreq: 1772 case lltok::kw_sspstrong: 1773 case lltok::kw_safestack: 1774 case lltok::kw_shadowcallstack: 1775 case lltok::kw_strictfp: 1776 case lltok::kw_uwtable: 1777 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1778 break; 1779 1780 case lltok::kw_readnone: 1781 case lltok::kw_readonly: 1782 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type"); 1783 } 1784 1785 Lex.Lex(); 1786 } 1787 } 1788 1789 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1790 HasLinkage = true; 1791 switch (Kind) { 1792 default: 1793 HasLinkage = false; 1794 return GlobalValue::ExternalLinkage; 1795 case lltok::kw_private: 1796 return GlobalValue::PrivateLinkage; 1797 case lltok::kw_internal: 1798 return GlobalValue::InternalLinkage; 1799 case lltok::kw_weak: 1800 return GlobalValue::WeakAnyLinkage; 1801 case lltok::kw_weak_odr: 1802 return GlobalValue::WeakODRLinkage; 1803 case lltok::kw_linkonce: 1804 return GlobalValue::LinkOnceAnyLinkage; 1805 case lltok::kw_linkonce_odr: 1806 return GlobalValue::LinkOnceODRLinkage; 1807 case lltok::kw_available_externally: 1808 return GlobalValue::AvailableExternallyLinkage; 1809 case lltok::kw_appending: 1810 return GlobalValue::AppendingLinkage; 1811 case lltok::kw_common: 1812 return GlobalValue::CommonLinkage; 1813 case lltok::kw_extern_weak: 1814 return GlobalValue::ExternalWeakLinkage; 1815 case lltok::kw_external: 1816 return GlobalValue::ExternalLinkage; 1817 } 1818 } 1819 1820 /// ParseOptionalLinkage 1821 /// ::= /*empty*/ 1822 /// ::= 'private' 1823 /// ::= 'internal' 1824 /// ::= 'weak' 1825 /// ::= 'weak_odr' 1826 /// ::= 'linkonce' 1827 /// ::= 'linkonce_odr' 1828 /// ::= 'available_externally' 1829 /// ::= 'appending' 1830 /// ::= 'common' 1831 /// ::= 'extern_weak' 1832 /// ::= 'external' 1833 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1834 unsigned &Visibility, 1835 unsigned &DLLStorageClass, 1836 bool &DSOLocal) { 1837 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1838 if (HasLinkage) 1839 Lex.Lex(); 1840 ParseOptionalDSOLocal(DSOLocal); 1841 ParseOptionalVisibility(Visibility); 1842 ParseOptionalDLLStorageClass(DLLStorageClass); 1843 1844 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 1845 return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 1846 } 1847 1848 return false; 1849 } 1850 1851 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) { 1852 switch (Lex.getKind()) { 1853 default: 1854 DSOLocal = false; 1855 break; 1856 case lltok::kw_dso_local: 1857 DSOLocal = true; 1858 Lex.Lex(); 1859 break; 1860 case lltok::kw_dso_preemptable: 1861 DSOLocal = false; 1862 Lex.Lex(); 1863 break; 1864 } 1865 } 1866 1867 /// ParseOptionalVisibility 1868 /// ::= /*empty*/ 1869 /// ::= 'default' 1870 /// ::= 'hidden' 1871 /// ::= 'protected' 1872 /// 1873 void LLParser::ParseOptionalVisibility(unsigned &Res) { 1874 switch (Lex.getKind()) { 1875 default: 1876 Res = GlobalValue::DefaultVisibility; 1877 return; 1878 case lltok::kw_default: 1879 Res = GlobalValue::DefaultVisibility; 1880 break; 1881 case lltok::kw_hidden: 1882 Res = GlobalValue::HiddenVisibility; 1883 break; 1884 case lltok::kw_protected: 1885 Res = GlobalValue::ProtectedVisibility; 1886 break; 1887 } 1888 Lex.Lex(); 1889 } 1890 1891 /// ParseOptionalDLLStorageClass 1892 /// ::= /*empty*/ 1893 /// ::= 'dllimport' 1894 /// ::= 'dllexport' 1895 /// 1896 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) { 1897 switch (Lex.getKind()) { 1898 default: 1899 Res = GlobalValue::DefaultStorageClass; 1900 return; 1901 case lltok::kw_dllimport: 1902 Res = GlobalValue::DLLImportStorageClass; 1903 break; 1904 case lltok::kw_dllexport: 1905 Res = GlobalValue::DLLExportStorageClass; 1906 break; 1907 } 1908 Lex.Lex(); 1909 } 1910 1911 /// ParseOptionalCallingConv 1912 /// ::= /*empty*/ 1913 /// ::= 'ccc' 1914 /// ::= 'fastcc' 1915 /// ::= 'intel_ocl_bicc' 1916 /// ::= 'coldcc' 1917 /// ::= 'x86_stdcallcc' 1918 /// ::= 'x86_fastcallcc' 1919 /// ::= 'x86_thiscallcc' 1920 /// ::= 'x86_vectorcallcc' 1921 /// ::= 'arm_apcscc' 1922 /// ::= 'arm_aapcscc' 1923 /// ::= 'arm_aapcs_vfpcc' 1924 /// ::= 'aarch64_vector_pcs' 1925 /// ::= 'msp430_intrcc' 1926 /// ::= 'avr_intrcc' 1927 /// ::= 'avr_signalcc' 1928 /// ::= 'ptx_kernel' 1929 /// ::= 'ptx_device' 1930 /// ::= 'spir_func' 1931 /// ::= 'spir_kernel' 1932 /// ::= 'x86_64_sysvcc' 1933 /// ::= 'win64cc' 1934 /// ::= 'webkit_jscc' 1935 /// ::= 'anyregcc' 1936 /// ::= 'preserve_mostcc' 1937 /// ::= 'preserve_allcc' 1938 /// ::= 'ghccc' 1939 /// ::= 'swiftcc' 1940 /// ::= 'x86_intrcc' 1941 /// ::= 'hhvmcc' 1942 /// ::= 'hhvm_ccc' 1943 /// ::= 'cxx_fast_tlscc' 1944 /// ::= 'amdgpu_vs' 1945 /// ::= 'amdgpu_ls' 1946 /// ::= 'amdgpu_hs' 1947 /// ::= 'amdgpu_es' 1948 /// ::= 'amdgpu_gs' 1949 /// ::= 'amdgpu_ps' 1950 /// ::= 'amdgpu_cs' 1951 /// ::= 'amdgpu_kernel' 1952 /// ::= 'cc' UINT 1953 /// 1954 bool LLParser::ParseOptionalCallingConv(unsigned &CC) { 1955 switch (Lex.getKind()) { 1956 default: CC = CallingConv::C; return false; 1957 case lltok::kw_ccc: CC = CallingConv::C; break; 1958 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1959 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1960 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1961 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1962 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 1963 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1964 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1965 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1966 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1967 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1968 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break; 1969 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1970 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 1971 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 1972 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1973 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1974 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1975 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1976 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1977 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1978 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 1979 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1980 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1981 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1982 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1983 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1984 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 1985 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 1986 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 1987 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 1988 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 1989 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 1990 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 1991 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 1992 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 1993 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 1994 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 1995 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 1996 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 1997 case lltok::kw_cc: { 1998 Lex.Lex(); 1999 return ParseUInt32(CC); 2000 } 2001 } 2002 2003 Lex.Lex(); 2004 return false; 2005 } 2006 2007 /// ParseMetadataAttachment 2008 /// ::= !dbg !42 2009 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 2010 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 2011 2012 std::string Name = Lex.getStrVal(); 2013 Kind = M->getMDKindID(Name); 2014 Lex.Lex(); 2015 2016 return ParseMDNode(MD); 2017 } 2018 2019 /// ParseInstructionMetadata 2020 /// ::= !dbg !42 (',' !dbg !57)* 2021 bool LLParser::ParseInstructionMetadata(Instruction &Inst) { 2022 do { 2023 if (Lex.getKind() != lltok::MetadataVar) 2024 return TokError("expected metadata after comma"); 2025 2026 unsigned MDK; 2027 MDNode *N; 2028 if (ParseMetadataAttachment(MDK, N)) 2029 return true; 2030 2031 Inst.setMetadata(MDK, N); 2032 if (MDK == LLVMContext::MD_tbaa) 2033 InstsWithTBAATag.push_back(&Inst); 2034 2035 // If this is the end of the list, we're done. 2036 } while (EatIfPresent(lltok::comma)); 2037 return false; 2038 } 2039 2040 /// ParseGlobalObjectMetadataAttachment 2041 /// ::= !dbg !57 2042 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) { 2043 unsigned MDK; 2044 MDNode *N; 2045 if (ParseMetadataAttachment(MDK, N)) 2046 return true; 2047 2048 GO.addMetadata(MDK, *N); 2049 return false; 2050 } 2051 2052 /// ParseOptionalFunctionMetadata 2053 /// ::= (!dbg !57)* 2054 bool LLParser::ParseOptionalFunctionMetadata(Function &F) { 2055 while (Lex.getKind() == lltok::MetadataVar) 2056 if (ParseGlobalObjectMetadataAttachment(F)) 2057 return true; 2058 return false; 2059 } 2060 2061 /// ParseOptionalAlignment 2062 /// ::= /* empty */ 2063 /// ::= 'align' 4 2064 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { 2065 Alignment = 0; 2066 if (!EatIfPresent(lltok::kw_align)) 2067 return false; 2068 LocTy AlignLoc = Lex.getLoc(); 2069 if (ParseUInt32(Alignment)) return true; 2070 if (!isPowerOf2_32(Alignment)) 2071 return Error(AlignLoc, "alignment is not a power of two"); 2072 if (Alignment > Value::MaximumAlignment) 2073 return Error(AlignLoc, "huge alignments are not supported yet"); 2074 return false; 2075 } 2076 2077 /// ParseOptionalDerefAttrBytes 2078 /// ::= /* empty */ 2079 /// ::= AttrKind '(' 4 ')' 2080 /// 2081 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 2082 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind, 2083 uint64_t &Bytes) { 2084 assert((AttrKind == lltok::kw_dereferenceable || 2085 AttrKind == lltok::kw_dereferenceable_or_null) && 2086 "contract!"); 2087 2088 Bytes = 0; 2089 if (!EatIfPresent(AttrKind)) 2090 return false; 2091 LocTy ParenLoc = Lex.getLoc(); 2092 if (!EatIfPresent(lltok::lparen)) 2093 return Error(ParenLoc, "expected '('"); 2094 LocTy DerefLoc = Lex.getLoc(); 2095 if (ParseUInt64(Bytes)) return true; 2096 ParenLoc = Lex.getLoc(); 2097 if (!EatIfPresent(lltok::rparen)) 2098 return Error(ParenLoc, "expected ')'"); 2099 if (!Bytes) 2100 return Error(DerefLoc, "dereferenceable bytes must be non-zero"); 2101 return false; 2102 } 2103 2104 /// ParseOptionalCommaAlign 2105 /// ::= 2106 /// ::= ',' align 4 2107 /// 2108 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2109 /// end. 2110 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, 2111 bool &AteExtraComma) { 2112 AteExtraComma = false; 2113 while (EatIfPresent(lltok::comma)) { 2114 // Metadata at the end is an early exit. 2115 if (Lex.getKind() == lltok::MetadataVar) { 2116 AteExtraComma = true; 2117 return false; 2118 } 2119 2120 if (Lex.getKind() != lltok::kw_align) 2121 return Error(Lex.getLoc(), "expected metadata or 'align'"); 2122 2123 if (ParseOptionalAlignment(Alignment)) return true; 2124 } 2125 2126 return false; 2127 } 2128 2129 /// ParseOptionalCommaAddrSpace 2130 /// ::= 2131 /// ::= ',' addrspace(1) 2132 /// 2133 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2134 /// end. 2135 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace, 2136 LocTy &Loc, 2137 bool &AteExtraComma) { 2138 AteExtraComma = false; 2139 while (EatIfPresent(lltok::comma)) { 2140 // Metadata at the end is an early exit. 2141 if (Lex.getKind() == lltok::MetadataVar) { 2142 AteExtraComma = true; 2143 return false; 2144 } 2145 2146 Loc = Lex.getLoc(); 2147 if (Lex.getKind() != lltok::kw_addrspace) 2148 return Error(Lex.getLoc(), "expected metadata or 'addrspace'"); 2149 2150 if (ParseOptionalAddrSpace(AddrSpace)) 2151 return true; 2152 } 2153 2154 return false; 2155 } 2156 2157 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 2158 Optional<unsigned> &HowManyArg) { 2159 Lex.Lex(); 2160 2161 auto StartParen = Lex.getLoc(); 2162 if (!EatIfPresent(lltok::lparen)) 2163 return Error(StartParen, "expected '('"); 2164 2165 if (ParseUInt32(BaseSizeArg)) 2166 return true; 2167 2168 if (EatIfPresent(lltok::comma)) { 2169 auto HowManyAt = Lex.getLoc(); 2170 unsigned HowMany; 2171 if (ParseUInt32(HowMany)) 2172 return true; 2173 if (HowMany == BaseSizeArg) 2174 return Error(HowManyAt, 2175 "'allocsize' indices can't refer to the same parameter"); 2176 HowManyArg = HowMany; 2177 } else 2178 HowManyArg = None; 2179 2180 auto EndParen = Lex.getLoc(); 2181 if (!EatIfPresent(lltok::rparen)) 2182 return Error(EndParen, "expected ')'"); 2183 return false; 2184 } 2185 2186 /// ParseScopeAndOrdering 2187 /// if isAtomic: ::= SyncScope? AtomicOrdering 2188 /// else: ::= 2189 /// 2190 /// This sets Scope and Ordering to the parsed values. 2191 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID, 2192 AtomicOrdering &Ordering) { 2193 if (!isAtomic) 2194 return false; 2195 2196 return ParseScope(SSID) || ParseOrdering(Ordering); 2197 } 2198 2199 /// ParseScope 2200 /// ::= syncscope("singlethread" | "<target scope>")? 2201 /// 2202 /// This sets synchronization scope ID to the ID of the parsed value. 2203 bool LLParser::ParseScope(SyncScope::ID &SSID) { 2204 SSID = SyncScope::System; 2205 if (EatIfPresent(lltok::kw_syncscope)) { 2206 auto StartParenAt = Lex.getLoc(); 2207 if (!EatIfPresent(lltok::lparen)) 2208 return Error(StartParenAt, "Expected '(' in syncscope"); 2209 2210 std::string SSN; 2211 auto SSNAt = Lex.getLoc(); 2212 if (ParseStringConstant(SSN)) 2213 return Error(SSNAt, "Expected synchronization scope name"); 2214 2215 auto EndParenAt = Lex.getLoc(); 2216 if (!EatIfPresent(lltok::rparen)) 2217 return Error(EndParenAt, "Expected ')' in syncscope"); 2218 2219 SSID = Context.getOrInsertSyncScopeID(SSN); 2220 } 2221 2222 return false; 2223 } 2224 2225 /// ParseOrdering 2226 /// ::= AtomicOrdering 2227 /// 2228 /// This sets Ordering to the parsed value. 2229 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) { 2230 switch (Lex.getKind()) { 2231 default: return TokError("Expected ordering on atomic instruction"); 2232 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2233 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2234 // Not specified yet: 2235 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2236 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2237 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2238 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2239 case lltok::kw_seq_cst: 2240 Ordering = AtomicOrdering::SequentiallyConsistent; 2241 break; 2242 } 2243 Lex.Lex(); 2244 return false; 2245 } 2246 2247 /// ParseOptionalStackAlignment 2248 /// ::= /* empty */ 2249 /// ::= 'alignstack' '(' 4 ')' 2250 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 2251 Alignment = 0; 2252 if (!EatIfPresent(lltok::kw_alignstack)) 2253 return false; 2254 LocTy ParenLoc = Lex.getLoc(); 2255 if (!EatIfPresent(lltok::lparen)) 2256 return Error(ParenLoc, "expected '('"); 2257 LocTy AlignLoc = Lex.getLoc(); 2258 if (ParseUInt32(Alignment)) return true; 2259 ParenLoc = Lex.getLoc(); 2260 if (!EatIfPresent(lltok::rparen)) 2261 return Error(ParenLoc, "expected ')'"); 2262 if (!isPowerOf2_32(Alignment)) 2263 return Error(AlignLoc, "stack alignment is not a power of two"); 2264 return false; 2265 } 2266 2267 /// ParseIndexList - This parses the index list for an insert/extractvalue 2268 /// instruction. This sets AteExtraComma in the case where we eat an extra 2269 /// comma at the end of the line and find that it is followed by metadata. 2270 /// Clients that don't allow metadata can call the version of this function that 2271 /// only takes one argument. 2272 /// 2273 /// ParseIndexList 2274 /// ::= (',' uint32)+ 2275 /// 2276 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 2277 bool &AteExtraComma) { 2278 AteExtraComma = false; 2279 2280 if (Lex.getKind() != lltok::comma) 2281 return TokError("expected ',' as start of index list"); 2282 2283 while (EatIfPresent(lltok::comma)) { 2284 if (Lex.getKind() == lltok::MetadataVar) { 2285 if (Indices.empty()) return TokError("expected index"); 2286 AteExtraComma = true; 2287 return false; 2288 } 2289 unsigned Idx = 0; 2290 if (ParseUInt32(Idx)) return true; 2291 Indices.push_back(Idx); 2292 } 2293 2294 return false; 2295 } 2296 2297 //===----------------------------------------------------------------------===// 2298 // Type Parsing. 2299 //===----------------------------------------------------------------------===// 2300 2301 /// ParseType - Parse a type. 2302 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2303 SMLoc TypeLoc = Lex.getLoc(); 2304 switch (Lex.getKind()) { 2305 default: 2306 return TokError(Msg); 2307 case lltok::Type: 2308 // Type ::= 'float' | 'void' (etc) 2309 Result = Lex.getTyVal(); 2310 Lex.Lex(); 2311 break; 2312 case lltok::lbrace: 2313 // Type ::= StructType 2314 if (ParseAnonStructType(Result, false)) 2315 return true; 2316 break; 2317 case lltok::lsquare: 2318 // Type ::= '[' ... ']' 2319 Lex.Lex(); // eat the lsquare. 2320 if (ParseArrayVectorType(Result, false)) 2321 return true; 2322 break; 2323 case lltok::less: // Either vector or packed struct. 2324 // Type ::= '<' ... '>' 2325 Lex.Lex(); 2326 if (Lex.getKind() == lltok::lbrace) { 2327 if (ParseAnonStructType(Result, true) || 2328 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 2329 return true; 2330 } else if (ParseArrayVectorType(Result, true)) 2331 return true; 2332 break; 2333 case lltok::LocalVar: { 2334 // Type ::= %foo 2335 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2336 2337 // If the type hasn't been defined yet, create a forward definition and 2338 // remember where that forward def'n was seen (in case it never is defined). 2339 if (!Entry.first) { 2340 Entry.first = StructType::create(Context, Lex.getStrVal()); 2341 Entry.second = Lex.getLoc(); 2342 } 2343 Result = Entry.first; 2344 Lex.Lex(); 2345 break; 2346 } 2347 2348 case lltok::LocalVarID: { 2349 // Type ::= %4 2350 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2351 2352 // If the type hasn't been defined yet, create a forward definition and 2353 // remember where that forward def'n was seen (in case it never is defined). 2354 if (!Entry.first) { 2355 Entry.first = StructType::create(Context); 2356 Entry.second = Lex.getLoc(); 2357 } 2358 Result = Entry.first; 2359 Lex.Lex(); 2360 break; 2361 } 2362 } 2363 2364 // Parse the type suffixes. 2365 while (true) { 2366 switch (Lex.getKind()) { 2367 // End of type. 2368 default: 2369 if (!AllowVoid && Result->isVoidTy()) 2370 return Error(TypeLoc, "void type only allowed for function results"); 2371 return false; 2372 2373 // Type ::= Type '*' 2374 case lltok::star: 2375 if (Result->isLabelTy()) 2376 return TokError("basic block pointers are invalid"); 2377 if (Result->isVoidTy()) 2378 return TokError("pointers to void are invalid - use i8* instead"); 2379 if (!PointerType::isValidElementType(Result)) 2380 return TokError("pointer to this type is invalid"); 2381 Result = PointerType::getUnqual(Result); 2382 Lex.Lex(); 2383 break; 2384 2385 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2386 case lltok::kw_addrspace: { 2387 if (Result->isLabelTy()) 2388 return TokError("basic block pointers are invalid"); 2389 if (Result->isVoidTy()) 2390 return TokError("pointers to void are invalid; use i8* instead"); 2391 if (!PointerType::isValidElementType(Result)) 2392 return TokError("pointer to this type is invalid"); 2393 unsigned AddrSpace; 2394 if (ParseOptionalAddrSpace(AddrSpace) || 2395 ParseToken(lltok::star, "expected '*' in address space")) 2396 return true; 2397 2398 Result = PointerType::get(Result, AddrSpace); 2399 break; 2400 } 2401 2402 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2403 case lltok::lparen: 2404 if (ParseFunctionType(Result)) 2405 return true; 2406 break; 2407 } 2408 } 2409 } 2410 2411 /// ParseParameterList 2412 /// ::= '(' ')' 2413 /// ::= '(' Arg (',' Arg)* ')' 2414 /// Arg 2415 /// ::= Type OptionalAttributes Value OptionalAttributes 2416 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2417 PerFunctionState &PFS, bool IsMustTailCall, 2418 bool InVarArgsFunc) { 2419 if (ParseToken(lltok::lparen, "expected '(' in call")) 2420 return true; 2421 2422 while (Lex.getKind() != lltok::rparen) { 2423 // If this isn't the first argument, we need a comma. 2424 if (!ArgList.empty() && 2425 ParseToken(lltok::comma, "expected ',' in argument list")) 2426 return true; 2427 2428 // Parse an ellipsis if this is a musttail call in a variadic function. 2429 if (Lex.getKind() == lltok::dotdotdot) { 2430 const char *Msg = "unexpected ellipsis in argument list for "; 2431 if (!IsMustTailCall) 2432 return TokError(Twine(Msg) + "non-musttail call"); 2433 if (!InVarArgsFunc) 2434 return TokError(Twine(Msg) + "musttail call in non-varargs function"); 2435 Lex.Lex(); // Lex the '...', it is purely for readability. 2436 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2437 } 2438 2439 // Parse the argument. 2440 LocTy ArgLoc; 2441 Type *ArgTy = nullptr; 2442 AttrBuilder ArgAttrs; 2443 Value *V; 2444 if (ParseType(ArgTy, ArgLoc)) 2445 return true; 2446 2447 if (ArgTy->isMetadataTy()) { 2448 if (ParseMetadataAsValue(V, PFS)) 2449 return true; 2450 } else { 2451 // Otherwise, handle normal operands. 2452 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS)) 2453 return true; 2454 } 2455 ArgList.push_back(ParamInfo( 2456 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2457 } 2458 2459 if (IsMustTailCall && InVarArgsFunc) 2460 return TokError("expected '...' at end of argument list for musttail call " 2461 "in varargs function"); 2462 2463 Lex.Lex(); // Lex the ')'. 2464 return false; 2465 } 2466 2467 /// ParseByValWithOptionalType 2468 /// ::= byval 2469 /// ::= byval(<ty>) 2470 bool LLParser::ParseByValWithOptionalType(Type *&Result) { 2471 Result = nullptr; 2472 if (!EatIfPresent(lltok::kw_byval)) 2473 return true; 2474 if (!EatIfPresent(lltok::lparen)) 2475 return false; 2476 if (ParseType(Result)) 2477 return true; 2478 if (!EatIfPresent(lltok::rparen)) 2479 return Error(Lex.getLoc(), "expected ')'"); 2480 return false; 2481 } 2482 2483 /// ParseOptionalOperandBundles 2484 /// ::= /*empty*/ 2485 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2486 /// 2487 /// OperandBundle 2488 /// ::= bundle-tag '(' ')' 2489 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2490 /// 2491 /// bundle-tag ::= String Constant 2492 bool LLParser::ParseOptionalOperandBundles( 2493 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2494 LocTy BeginLoc = Lex.getLoc(); 2495 if (!EatIfPresent(lltok::lsquare)) 2496 return false; 2497 2498 while (Lex.getKind() != lltok::rsquare) { 2499 // If this isn't the first operand bundle, we need a comma. 2500 if (!BundleList.empty() && 2501 ParseToken(lltok::comma, "expected ',' in input list")) 2502 return true; 2503 2504 std::string Tag; 2505 if (ParseStringConstant(Tag)) 2506 return true; 2507 2508 if (ParseToken(lltok::lparen, "expected '(' in operand bundle")) 2509 return true; 2510 2511 std::vector<Value *> Inputs; 2512 while (Lex.getKind() != lltok::rparen) { 2513 // If this isn't the first input, we need a comma. 2514 if (!Inputs.empty() && 2515 ParseToken(lltok::comma, "expected ',' in input list")) 2516 return true; 2517 2518 Type *Ty = nullptr; 2519 Value *Input = nullptr; 2520 if (ParseType(Ty) || ParseValue(Ty, Input, PFS)) 2521 return true; 2522 Inputs.push_back(Input); 2523 } 2524 2525 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2526 2527 Lex.Lex(); // Lex the ')'. 2528 } 2529 2530 if (BundleList.empty()) 2531 return Error(BeginLoc, "operand bundle set must not be empty"); 2532 2533 Lex.Lex(); // Lex the ']'. 2534 return false; 2535 } 2536 2537 /// ParseArgumentList - Parse the argument list for a function type or function 2538 /// prototype. 2539 /// ::= '(' ArgTypeListI ')' 2540 /// ArgTypeListI 2541 /// ::= /*empty*/ 2542 /// ::= '...' 2543 /// ::= ArgTypeList ',' '...' 2544 /// ::= ArgType (',' ArgType)* 2545 /// 2546 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2547 bool &isVarArg){ 2548 isVarArg = false; 2549 assert(Lex.getKind() == lltok::lparen); 2550 Lex.Lex(); // eat the (. 2551 2552 if (Lex.getKind() == lltok::rparen) { 2553 // empty 2554 } else if (Lex.getKind() == lltok::dotdotdot) { 2555 isVarArg = true; 2556 Lex.Lex(); 2557 } else { 2558 LocTy TypeLoc = Lex.getLoc(); 2559 Type *ArgTy = nullptr; 2560 AttrBuilder Attrs; 2561 std::string Name; 2562 2563 if (ParseType(ArgTy) || 2564 ParseOptionalParamAttrs(Attrs)) return true; 2565 2566 if (ArgTy->isVoidTy()) 2567 return Error(TypeLoc, "argument can not have void type"); 2568 2569 if (Lex.getKind() == lltok::LocalVar) { 2570 Name = Lex.getStrVal(); 2571 Lex.Lex(); 2572 } 2573 2574 if (!FunctionType::isValidArgumentType(ArgTy)) 2575 return Error(TypeLoc, "invalid type for function argument"); 2576 2577 ArgList.emplace_back(TypeLoc, ArgTy, 2578 AttributeSet::get(ArgTy->getContext(), Attrs), 2579 std::move(Name)); 2580 2581 while (EatIfPresent(lltok::comma)) { 2582 // Handle ... at end of arg list. 2583 if (EatIfPresent(lltok::dotdotdot)) { 2584 isVarArg = true; 2585 break; 2586 } 2587 2588 // Otherwise must be an argument type. 2589 TypeLoc = Lex.getLoc(); 2590 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true; 2591 2592 if (ArgTy->isVoidTy()) 2593 return Error(TypeLoc, "argument can not have void type"); 2594 2595 if (Lex.getKind() == lltok::LocalVar) { 2596 Name = Lex.getStrVal(); 2597 Lex.Lex(); 2598 } else { 2599 Name = ""; 2600 } 2601 2602 if (!ArgTy->isFirstClassType()) 2603 return Error(TypeLoc, "invalid type for function argument"); 2604 2605 ArgList.emplace_back(TypeLoc, ArgTy, 2606 AttributeSet::get(ArgTy->getContext(), Attrs), 2607 std::move(Name)); 2608 } 2609 } 2610 2611 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2612 } 2613 2614 /// ParseFunctionType 2615 /// ::= Type ArgumentList OptionalAttrs 2616 bool LLParser::ParseFunctionType(Type *&Result) { 2617 assert(Lex.getKind() == lltok::lparen); 2618 2619 if (!FunctionType::isValidReturnType(Result)) 2620 return TokError("invalid function return type"); 2621 2622 SmallVector<ArgInfo, 8> ArgList; 2623 bool isVarArg; 2624 if (ParseArgumentList(ArgList, isVarArg)) 2625 return true; 2626 2627 // Reject names on the arguments lists. 2628 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2629 if (!ArgList[i].Name.empty()) 2630 return Error(ArgList[i].Loc, "argument name invalid in function type"); 2631 if (ArgList[i].Attrs.hasAttributes()) 2632 return Error(ArgList[i].Loc, 2633 "argument attributes invalid in function type"); 2634 } 2635 2636 SmallVector<Type*, 16> ArgListTy; 2637 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2638 ArgListTy.push_back(ArgList[i].Ty); 2639 2640 Result = FunctionType::get(Result, ArgListTy, isVarArg); 2641 return false; 2642 } 2643 2644 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 2645 /// other structs. 2646 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 2647 SmallVector<Type*, 8> Elts; 2648 if (ParseStructBody(Elts)) return true; 2649 2650 Result = StructType::get(Context, Elts, Packed); 2651 return false; 2652 } 2653 2654 /// ParseStructDefinition - Parse a struct in a 'type' definition. 2655 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 2656 std::pair<Type*, LocTy> &Entry, 2657 Type *&ResultTy) { 2658 // If the type was already defined, diagnose the redefinition. 2659 if (Entry.first && !Entry.second.isValid()) 2660 return Error(TypeLoc, "redefinition of type"); 2661 2662 // If we have opaque, just return without filling in the definition for the 2663 // struct. This counts as a definition as far as the .ll file goes. 2664 if (EatIfPresent(lltok::kw_opaque)) { 2665 // This type is being defined, so clear the location to indicate this. 2666 Entry.second = SMLoc(); 2667 2668 // If this type number has never been uttered, create it. 2669 if (!Entry.first) 2670 Entry.first = StructType::create(Context, Name); 2671 ResultTy = Entry.first; 2672 return false; 2673 } 2674 2675 // If the type starts with '<', then it is either a packed struct or a vector. 2676 bool isPacked = EatIfPresent(lltok::less); 2677 2678 // If we don't have a struct, then we have a random type alias, which we 2679 // accept for compatibility with old files. These types are not allowed to be 2680 // forward referenced and not allowed to be recursive. 2681 if (Lex.getKind() != lltok::lbrace) { 2682 if (Entry.first) 2683 return Error(TypeLoc, "forward references to non-struct type"); 2684 2685 ResultTy = nullptr; 2686 if (isPacked) 2687 return ParseArrayVectorType(ResultTy, true); 2688 return ParseType(ResultTy); 2689 } 2690 2691 // This type is being defined, so clear the location to indicate this. 2692 Entry.second = SMLoc(); 2693 2694 // If this type number has never been uttered, create it. 2695 if (!Entry.first) 2696 Entry.first = StructType::create(Context, Name); 2697 2698 StructType *STy = cast<StructType>(Entry.first); 2699 2700 SmallVector<Type*, 8> Body; 2701 if (ParseStructBody(Body) || 2702 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 2703 return true; 2704 2705 STy->setBody(Body, isPacked); 2706 ResultTy = STy; 2707 return false; 2708 } 2709 2710 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2711 /// StructType 2712 /// ::= '{' '}' 2713 /// ::= '{' Type (',' Type)* '}' 2714 /// ::= '<' '{' '}' '>' 2715 /// ::= '<' '{' Type (',' Type)* '}' '>' 2716 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 2717 assert(Lex.getKind() == lltok::lbrace); 2718 Lex.Lex(); // Consume the '{' 2719 2720 // Handle the empty struct. 2721 if (EatIfPresent(lltok::rbrace)) 2722 return false; 2723 2724 LocTy EltTyLoc = Lex.getLoc(); 2725 Type *Ty = nullptr; 2726 if (ParseType(Ty)) return true; 2727 Body.push_back(Ty); 2728 2729 if (!StructType::isValidElementType(Ty)) 2730 return Error(EltTyLoc, "invalid element type for struct"); 2731 2732 while (EatIfPresent(lltok::comma)) { 2733 EltTyLoc = Lex.getLoc(); 2734 if (ParseType(Ty)) return true; 2735 2736 if (!StructType::isValidElementType(Ty)) 2737 return Error(EltTyLoc, "invalid element type for struct"); 2738 2739 Body.push_back(Ty); 2740 } 2741 2742 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 2743 } 2744 2745 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 2746 /// token has already been consumed. 2747 /// Type 2748 /// ::= '[' APSINTVAL 'x' Types ']' 2749 /// ::= '<' APSINTVAL 'x' Types '>' 2750 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 2751 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2752 Lex.getAPSIntVal().getBitWidth() > 64) 2753 return TokError("expected number in address space"); 2754 2755 LocTy SizeLoc = Lex.getLoc(); 2756 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2757 Lex.Lex(); 2758 2759 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 2760 return true; 2761 2762 LocTy TypeLoc = Lex.getLoc(); 2763 Type *EltTy = nullptr; 2764 if (ParseType(EltTy)) return true; 2765 2766 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 2767 "expected end of sequential type")) 2768 return true; 2769 2770 if (isVector) { 2771 if (Size == 0) 2772 return Error(SizeLoc, "zero element vector is illegal"); 2773 if ((unsigned)Size != Size) 2774 return Error(SizeLoc, "size too large for vector"); 2775 if (!VectorType::isValidElementType(EltTy)) 2776 return Error(TypeLoc, "invalid vector element type"); 2777 Result = VectorType::get(EltTy, unsigned(Size)); 2778 } else { 2779 if (!ArrayType::isValidElementType(EltTy)) 2780 return Error(TypeLoc, "invalid array element type"); 2781 Result = ArrayType::get(EltTy, Size); 2782 } 2783 return false; 2784 } 2785 2786 //===----------------------------------------------------------------------===// 2787 // Function Semantic Analysis. 2788 //===----------------------------------------------------------------------===// 2789 2790 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2791 int functionNumber) 2792 : P(p), F(f), FunctionNumber(functionNumber) { 2793 2794 // Insert unnamed arguments into the NumberedVals list. 2795 for (Argument &A : F.args()) 2796 if (!A.hasName()) 2797 NumberedVals.push_back(&A); 2798 } 2799 2800 LLParser::PerFunctionState::~PerFunctionState() { 2801 // If there were any forward referenced non-basicblock values, delete them. 2802 2803 for (const auto &P : ForwardRefVals) { 2804 if (isa<BasicBlock>(P.second.first)) 2805 continue; 2806 P.second.first->replaceAllUsesWith( 2807 UndefValue::get(P.second.first->getType())); 2808 P.second.first->deleteValue(); 2809 } 2810 2811 for (const auto &P : ForwardRefValIDs) { 2812 if (isa<BasicBlock>(P.second.first)) 2813 continue; 2814 P.second.first->replaceAllUsesWith( 2815 UndefValue::get(P.second.first->getType())); 2816 P.second.first->deleteValue(); 2817 } 2818 } 2819 2820 bool LLParser::PerFunctionState::FinishFunction() { 2821 if (!ForwardRefVals.empty()) 2822 return P.Error(ForwardRefVals.begin()->second.second, 2823 "use of undefined value '%" + ForwardRefVals.begin()->first + 2824 "'"); 2825 if (!ForwardRefValIDs.empty()) 2826 return P.Error(ForwardRefValIDs.begin()->second.second, 2827 "use of undefined value '%" + 2828 Twine(ForwardRefValIDs.begin()->first) + "'"); 2829 return false; 2830 } 2831 2832 /// GetVal - Get a value with the specified name or ID, creating a 2833 /// forward reference record if needed. This can return null if the value 2834 /// exists but does not have the right type. 2835 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty, 2836 LocTy Loc, bool IsCall) { 2837 // Look this name up in the normal function symbol table. 2838 Value *Val = F.getValueSymbolTable()->lookup(Name); 2839 2840 // If this is a forward reference for the value, see if we already created a 2841 // forward ref record. 2842 if (!Val) { 2843 auto I = ForwardRefVals.find(Name); 2844 if (I != ForwardRefVals.end()) 2845 Val = I->second.first; 2846 } 2847 2848 // If we have the value in the symbol table or fwd-ref table, return it. 2849 if (Val) 2850 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall); 2851 2852 // Don't make placeholders with invalid type. 2853 if (!Ty->isFirstClassType()) { 2854 P.Error(Loc, "invalid use of a non-first-class type"); 2855 return nullptr; 2856 } 2857 2858 // Otherwise, create a new forward reference for this value and remember it. 2859 Value *FwdVal; 2860 if (Ty->isLabelTy()) { 2861 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2862 } else { 2863 FwdVal = new Argument(Ty, Name); 2864 } 2865 2866 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2867 return FwdVal; 2868 } 2869 2870 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc, 2871 bool IsCall) { 2872 // Look this name up in the normal function symbol table. 2873 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2874 2875 // If this is a forward reference for the value, see if we already created a 2876 // forward ref record. 2877 if (!Val) { 2878 auto I = ForwardRefValIDs.find(ID); 2879 if (I != ForwardRefValIDs.end()) 2880 Val = I->second.first; 2881 } 2882 2883 // If we have the value in the symbol table or fwd-ref table, return it. 2884 if (Val) 2885 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall); 2886 2887 if (!Ty->isFirstClassType()) { 2888 P.Error(Loc, "invalid use of a non-first-class type"); 2889 return nullptr; 2890 } 2891 2892 // Otherwise, create a new forward reference for this value and remember it. 2893 Value *FwdVal; 2894 if (Ty->isLabelTy()) { 2895 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2896 } else { 2897 FwdVal = new Argument(Ty); 2898 } 2899 2900 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2901 return FwdVal; 2902 } 2903 2904 /// SetInstName - After an instruction is parsed and inserted into its 2905 /// basic block, this installs its name. 2906 bool LLParser::PerFunctionState::SetInstName(int NameID, 2907 const std::string &NameStr, 2908 LocTy NameLoc, Instruction *Inst) { 2909 // If this instruction has void type, it cannot have a name or ID specified. 2910 if (Inst->getType()->isVoidTy()) { 2911 if (NameID != -1 || !NameStr.empty()) 2912 return P.Error(NameLoc, "instructions returning void cannot have a name"); 2913 return false; 2914 } 2915 2916 // If this was a numbered instruction, verify that the instruction is the 2917 // expected value and resolve any forward references. 2918 if (NameStr.empty()) { 2919 // If neither a name nor an ID was specified, just use the next ID. 2920 if (NameID == -1) 2921 NameID = NumberedVals.size(); 2922 2923 if (unsigned(NameID) != NumberedVals.size()) 2924 return P.Error(NameLoc, "instruction expected to be numbered '%" + 2925 Twine(NumberedVals.size()) + "'"); 2926 2927 auto FI = ForwardRefValIDs.find(NameID); 2928 if (FI != ForwardRefValIDs.end()) { 2929 Value *Sentinel = FI->second.first; 2930 if (Sentinel->getType() != Inst->getType()) 2931 return P.Error(NameLoc, "instruction forward referenced with type '" + 2932 getTypeString(FI->second.first->getType()) + "'"); 2933 2934 Sentinel->replaceAllUsesWith(Inst); 2935 Sentinel->deleteValue(); 2936 ForwardRefValIDs.erase(FI); 2937 } 2938 2939 NumberedVals.push_back(Inst); 2940 return false; 2941 } 2942 2943 // Otherwise, the instruction had a name. Resolve forward refs and set it. 2944 auto FI = ForwardRefVals.find(NameStr); 2945 if (FI != ForwardRefVals.end()) { 2946 Value *Sentinel = FI->second.first; 2947 if (Sentinel->getType() != Inst->getType()) 2948 return P.Error(NameLoc, "instruction forward referenced with type '" + 2949 getTypeString(FI->second.first->getType()) + "'"); 2950 2951 Sentinel->replaceAllUsesWith(Inst); 2952 Sentinel->deleteValue(); 2953 ForwardRefVals.erase(FI); 2954 } 2955 2956 // Set the name on the instruction. 2957 Inst->setName(NameStr); 2958 2959 if (Inst->getName() != NameStr) 2960 return P.Error(NameLoc, "multiple definition of local value named '" + 2961 NameStr + "'"); 2962 return false; 2963 } 2964 2965 /// GetBB - Get a basic block with the specified name or ID, creating a 2966 /// forward reference record if needed. 2967 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 2968 LocTy Loc) { 2969 return dyn_cast_or_null<BasicBlock>( 2970 GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 2971 } 2972 2973 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 2974 return dyn_cast_or_null<BasicBlock>( 2975 GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 2976 } 2977 2978 /// DefineBB - Define the specified basic block, which is either named or 2979 /// unnamed. If there is an error, this returns null otherwise it returns 2980 /// the block being defined. 2981 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 2982 int NameID, LocTy Loc) { 2983 BasicBlock *BB; 2984 if (Name.empty()) { 2985 if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) { 2986 P.Error(Loc, "label expected to be numbered '" + 2987 Twine(NumberedVals.size()) + "'"); 2988 return nullptr; 2989 } 2990 BB = GetBB(NumberedVals.size(), Loc); 2991 if (!BB) { 2992 P.Error(Loc, "unable to create block numbered '" + 2993 Twine(NumberedVals.size()) + "'"); 2994 return nullptr; 2995 } 2996 } else { 2997 BB = GetBB(Name, Loc); 2998 if (!BB) { 2999 P.Error(Loc, "unable to create block named '" + Name + "'"); 3000 return nullptr; 3001 } 3002 } 3003 3004 // Move the block to the end of the function. Forward ref'd blocks are 3005 // inserted wherever they happen to be referenced. 3006 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 3007 3008 // Remove the block from forward ref sets. 3009 if (Name.empty()) { 3010 ForwardRefValIDs.erase(NumberedVals.size()); 3011 NumberedVals.push_back(BB); 3012 } else { 3013 // BB forward references are already in the function symbol table. 3014 ForwardRefVals.erase(Name); 3015 } 3016 3017 return BB; 3018 } 3019 3020 //===----------------------------------------------------------------------===// 3021 // Constants. 3022 //===----------------------------------------------------------------------===// 3023 3024 /// ParseValID - Parse an abstract value that doesn't necessarily have a 3025 /// type implied. For example, if we parse "4" we don't know what integer type 3026 /// it has. The value will later be combined with its type and checked for 3027 /// sanity. PFS is used to convert function-local operands of metadata (since 3028 /// metadata operands are not just parsed here but also converted to values). 3029 /// PFS can be null when we are not parsing metadata values inside a function. 3030 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 3031 ID.Loc = Lex.getLoc(); 3032 switch (Lex.getKind()) { 3033 default: return TokError("expected value token"); 3034 case lltok::GlobalID: // @42 3035 ID.UIntVal = Lex.getUIntVal(); 3036 ID.Kind = ValID::t_GlobalID; 3037 break; 3038 case lltok::GlobalVar: // @foo 3039 ID.StrVal = Lex.getStrVal(); 3040 ID.Kind = ValID::t_GlobalName; 3041 break; 3042 case lltok::LocalVarID: // %42 3043 ID.UIntVal = Lex.getUIntVal(); 3044 ID.Kind = ValID::t_LocalID; 3045 break; 3046 case lltok::LocalVar: // %foo 3047 ID.StrVal = Lex.getStrVal(); 3048 ID.Kind = ValID::t_LocalName; 3049 break; 3050 case lltok::APSInt: 3051 ID.APSIntVal = Lex.getAPSIntVal(); 3052 ID.Kind = ValID::t_APSInt; 3053 break; 3054 case lltok::APFloat: 3055 ID.APFloatVal = Lex.getAPFloatVal(); 3056 ID.Kind = ValID::t_APFloat; 3057 break; 3058 case lltok::kw_true: 3059 ID.ConstantVal = ConstantInt::getTrue(Context); 3060 ID.Kind = ValID::t_Constant; 3061 break; 3062 case lltok::kw_false: 3063 ID.ConstantVal = ConstantInt::getFalse(Context); 3064 ID.Kind = ValID::t_Constant; 3065 break; 3066 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 3067 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 3068 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 3069 case lltok::kw_none: ID.Kind = ValID::t_None; break; 3070 3071 case lltok::lbrace: { 3072 // ValID ::= '{' ConstVector '}' 3073 Lex.Lex(); 3074 SmallVector<Constant*, 16> Elts; 3075 if (ParseGlobalValueVector(Elts) || 3076 ParseToken(lltok::rbrace, "expected end of struct constant")) 3077 return true; 3078 3079 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 3080 ID.UIntVal = Elts.size(); 3081 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3082 Elts.size() * sizeof(Elts[0])); 3083 ID.Kind = ValID::t_ConstantStruct; 3084 return false; 3085 } 3086 case lltok::less: { 3087 // ValID ::= '<' ConstVector '>' --> Vector. 3088 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 3089 Lex.Lex(); 3090 bool isPackedStruct = EatIfPresent(lltok::lbrace); 3091 3092 SmallVector<Constant*, 16> Elts; 3093 LocTy FirstEltLoc = Lex.getLoc(); 3094 if (ParseGlobalValueVector(Elts) || 3095 (isPackedStruct && 3096 ParseToken(lltok::rbrace, "expected end of packed struct")) || 3097 ParseToken(lltok::greater, "expected end of constant")) 3098 return true; 3099 3100 if (isPackedStruct) { 3101 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 3102 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3103 Elts.size() * sizeof(Elts[0])); 3104 ID.UIntVal = Elts.size(); 3105 ID.Kind = ValID::t_PackedConstantStruct; 3106 return false; 3107 } 3108 3109 if (Elts.empty()) 3110 return Error(ID.Loc, "constant vector must not be empty"); 3111 3112 if (!Elts[0]->getType()->isIntegerTy() && 3113 !Elts[0]->getType()->isFloatingPointTy() && 3114 !Elts[0]->getType()->isPointerTy()) 3115 return Error(FirstEltLoc, 3116 "vector elements must have integer, pointer or floating point type"); 3117 3118 // Verify that all the vector elements have the same type. 3119 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 3120 if (Elts[i]->getType() != Elts[0]->getType()) 3121 return Error(FirstEltLoc, 3122 "vector element #" + Twine(i) + 3123 " is not of type '" + getTypeString(Elts[0]->getType())); 3124 3125 ID.ConstantVal = ConstantVector::get(Elts); 3126 ID.Kind = ValID::t_Constant; 3127 return false; 3128 } 3129 case lltok::lsquare: { // Array Constant 3130 Lex.Lex(); 3131 SmallVector<Constant*, 16> Elts; 3132 LocTy FirstEltLoc = Lex.getLoc(); 3133 if (ParseGlobalValueVector(Elts) || 3134 ParseToken(lltok::rsquare, "expected end of array constant")) 3135 return true; 3136 3137 // Handle empty element. 3138 if (Elts.empty()) { 3139 // Use undef instead of an array because it's inconvenient to determine 3140 // the element type at this point, there being no elements to examine. 3141 ID.Kind = ValID::t_EmptyArray; 3142 return false; 3143 } 3144 3145 if (!Elts[0]->getType()->isFirstClassType()) 3146 return Error(FirstEltLoc, "invalid array element type: " + 3147 getTypeString(Elts[0]->getType())); 3148 3149 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 3150 3151 // Verify all elements are correct type! 3152 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 3153 if (Elts[i]->getType() != Elts[0]->getType()) 3154 return Error(FirstEltLoc, 3155 "array element #" + Twine(i) + 3156 " is not of type '" + getTypeString(Elts[0]->getType())); 3157 } 3158 3159 ID.ConstantVal = ConstantArray::get(ATy, Elts); 3160 ID.Kind = ValID::t_Constant; 3161 return false; 3162 } 3163 case lltok::kw_c: // c "foo" 3164 Lex.Lex(); 3165 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 3166 false); 3167 if (ParseToken(lltok::StringConstant, "expected string")) return true; 3168 ID.Kind = ValID::t_Constant; 3169 return false; 3170 3171 case lltok::kw_asm: { 3172 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 3173 // STRINGCONSTANT 3174 bool HasSideEffect, AlignStack, AsmDialect; 3175 Lex.Lex(); 3176 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 3177 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 3178 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 3179 ParseStringConstant(ID.StrVal) || 3180 ParseToken(lltok::comma, "expected comma in inline asm expression") || 3181 ParseToken(lltok::StringConstant, "expected constraint string")) 3182 return true; 3183 ID.StrVal2 = Lex.getStrVal(); 3184 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 3185 (unsigned(AsmDialect)<<2); 3186 ID.Kind = ValID::t_InlineAsm; 3187 return false; 3188 } 3189 3190 case lltok::kw_blockaddress: { 3191 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 3192 Lex.Lex(); 3193 3194 ValID Fn, Label; 3195 3196 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 3197 ParseValID(Fn) || 3198 ParseToken(lltok::comma, "expected comma in block address expression")|| 3199 ParseValID(Label) || 3200 ParseToken(lltok::rparen, "expected ')' in block address expression")) 3201 return true; 3202 3203 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3204 return Error(Fn.Loc, "expected function name in blockaddress"); 3205 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 3206 return Error(Label.Loc, "expected basic block name in blockaddress"); 3207 3208 // Try to find the function (but skip it if it's forward-referenced). 3209 GlobalValue *GV = nullptr; 3210 if (Fn.Kind == ValID::t_GlobalID) { 3211 if (Fn.UIntVal < NumberedVals.size()) 3212 GV = NumberedVals[Fn.UIntVal]; 3213 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3214 GV = M->getNamedValue(Fn.StrVal); 3215 } 3216 Function *F = nullptr; 3217 if (GV) { 3218 // Confirm that it's actually a function with a definition. 3219 if (!isa<Function>(GV)) 3220 return Error(Fn.Loc, "expected function name in blockaddress"); 3221 F = cast<Function>(GV); 3222 if (F->isDeclaration()) 3223 return Error(Fn.Loc, "cannot take blockaddress inside a declaration"); 3224 } 3225 3226 if (!F) { 3227 // Make a global variable as a placeholder for this reference. 3228 GlobalValue *&FwdRef = 3229 ForwardRefBlockAddresses.insert(std::make_pair( 3230 std::move(Fn), 3231 std::map<ValID, GlobalValue *>())) 3232 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 3233 .first->second; 3234 if (!FwdRef) 3235 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 3236 GlobalValue::InternalLinkage, nullptr, ""); 3237 ID.ConstantVal = FwdRef; 3238 ID.Kind = ValID::t_Constant; 3239 return false; 3240 } 3241 3242 // We found the function; now find the basic block. Don't use PFS, since we 3243 // might be inside a constant expression. 3244 BasicBlock *BB; 3245 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 3246 if (Label.Kind == ValID::t_LocalID) 3247 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc); 3248 else 3249 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc); 3250 if (!BB) 3251 return Error(Label.Loc, "referenced value is not a basic block"); 3252 } else { 3253 if (Label.Kind == ValID::t_LocalID) 3254 return Error(Label.Loc, "cannot take address of numeric label after " 3255 "the function is defined"); 3256 BB = dyn_cast_or_null<BasicBlock>( 3257 F->getValueSymbolTable()->lookup(Label.StrVal)); 3258 if (!BB) 3259 return Error(Label.Loc, "referenced value is not a basic block"); 3260 } 3261 3262 ID.ConstantVal = BlockAddress::get(F, BB); 3263 ID.Kind = ValID::t_Constant; 3264 return false; 3265 } 3266 3267 case lltok::kw_trunc: 3268 case lltok::kw_zext: 3269 case lltok::kw_sext: 3270 case lltok::kw_fptrunc: 3271 case lltok::kw_fpext: 3272 case lltok::kw_bitcast: 3273 case lltok::kw_addrspacecast: 3274 case lltok::kw_uitofp: 3275 case lltok::kw_sitofp: 3276 case lltok::kw_fptoui: 3277 case lltok::kw_fptosi: 3278 case lltok::kw_inttoptr: 3279 case lltok::kw_ptrtoint: { 3280 unsigned Opc = Lex.getUIntVal(); 3281 Type *DestTy = nullptr; 3282 Constant *SrcVal; 3283 Lex.Lex(); 3284 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3285 ParseGlobalTypeAndValue(SrcVal) || 3286 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3287 ParseType(DestTy) || 3288 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3289 return true; 3290 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3291 return Error(ID.Loc, "invalid cast opcode for cast from '" + 3292 getTypeString(SrcVal->getType()) + "' to '" + 3293 getTypeString(DestTy) + "'"); 3294 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3295 SrcVal, DestTy); 3296 ID.Kind = ValID::t_Constant; 3297 return false; 3298 } 3299 case lltok::kw_extractvalue: { 3300 Lex.Lex(); 3301 Constant *Val; 3302 SmallVector<unsigned, 4> Indices; 3303 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 3304 ParseGlobalTypeAndValue(Val) || 3305 ParseIndexList(Indices) || 3306 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 3307 return true; 3308 3309 if (!Val->getType()->isAggregateType()) 3310 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 3311 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 3312 return Error(ID.Loc, "invalid indices for extractvalue"); 3313 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 3314 ID.Kind = ValID::t_Constant; 3315 return false; 3316 } 3317 case lltok::kw_insertvalue: { 3318 Lex.Lex(); 3319 Constant *Val0, *Val1; 3320 SmallVector<unsigned, 4> Indices; 3321 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 3322 ParseGlobalTypeAndValue(Val0) || 3323 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 3324 ParseGlobalTypeAndValue(Val1) || 3325 ParseIndexList(Indices) || 3326 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 3327 return true; 3328 if (!Val0->getType()->isAggregateType()) 3329 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 3330 Type *IndexedType = 3331 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3332 if (!IndexedType) 3333 return Error(ID.Loc, "invalid indices for insertvalue"); 3334 if (IndexedType != Val1->getType()) 3335 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3336 getTypeString(Val1->getType()) + 3337 "' instead of '" + getTypeString(IndexedType) + 3338 "'"); 3339 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3340 ID.Kind = ValID::t_Constant; 3341 return false; 3342 } 3343 case lltok::kw_icmp: 3344 case lltok::kw_fcmp: { 3345 unsigned PredVal, Opc = Lex.getUIntVal(); 3346 Constant *Val0, *Val1; 3347 Lex.Lex(); 3348 if (ParseCmpPredicate(PredVal, Opc) || 3349 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3350 ParseGlobalTypeAndValue(Val0) || 3351 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 3352 ParseGlobalTypeAndValue(Val1) || 3353 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3354 return true; 3355 3356 if (Val0->getType() != Val1->getType()) 3357 return Error(ID.Loc, "compare operands must have the same type"); 3358 3359 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3360 3361 if (Opc == Instruction::FCmp) { 3362 if (!Val0->getType()->isFPOrFPVectorTy()) 3363 return Error(ID.Loc, "fcmp requires floating point operands"); 3364 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3365 } else { 3366 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3367 if (!Val0->getType()->isIntOrIntVectorTy() && 3368 !Val0->getType()->isPtrOrPtrVectorTy()) 3369 return Error(ID.Loc, "icmp requires pointer or integer operands"); 3370 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3371 } 3372 ID.Kind = ValID::t_Constant; 3373 return false; 3374 } 3375 3376 // Unary Operators. 3377 case lltok::kw_fneg: { 3378 unsigned Opc = Lex.getUIntVal(); 3379 Constant *Val; 3380 Lex.Lex(); 3381 if (ParseToken(lltok::lparen, "expected '(' in unary constantexpr") || 3382 ParseGlobalTypeAndValue(Val) || 3383 ParseToken(lltok::rparen, "expected ')' in unary constantexpr")) 3384 return true; 3385 3386 // Check that the type is valid for the operator. 3387 switch (Opc) { 3388 case Instruction::FNeg: 3389 if (!Val->getType()->isFPOrFPVectorTy()) 3390 return Error(ID.Loc, "constexpr requires fp operands"); 3391 break; 3392 default: llvm_unreachable("Unknown unary operator!"); 3393 } 3394 unsigned Flags = 0; 3395 Constant *C = ConstantExpr::get(Opc, Val, Flags); 3396 ID.ConstantVal = C; 3397 ID.Kind = ValID::t_Constant; 3398 return false; 3399 } 3400 // Binary Operators. 3401 case lltok::kw_add: 3402 case lltok::kw_fadd: 3403 case lltok::kw_sub: 3404 case lltok::kw_fsub: 3405 case lltok::kw_mul: 3406 case lltok::kw_fmul: 3407 case lltok::kw_udiv: 3408 case lltok::kw_sdiv: 3409 case lltok::kw_fdiv: 3410 case lltok::kw_urem: 3411 case lltok::kw_srem: 3412 case lltok::kw_frem: 3413 case lltok::kw_shl: 3414 case lltok::kw_lshr: 3415 case lltok::kw_ashr: { 3416 bool NUW = false; 3417 bool NSW = false; 3418 bool Exact = false; 3419 unsigned Opc = Lex.getUIntVal(); 3420 Constant *Val0, *Val1; 3421 Lex.Lex(); 3422 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3423 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3424 if (EatIfPresent(lltok::kw_nuw)) 3425 NUW = true; 3426 if (EatIfPresent(lltok::kw_nsw)) { 3427 NSW = true; 3428 if (EatIfPresent(lltok::kw_nuw)) 3429 NUW = true; 3430 } 3431 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3432 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3433 if (EatIfPresent(lltok::kw_exact)) 3434 Exact = true; 3435 } 3436 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3437 ParseGlobalTypeAndValue(Val0) || 3438 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 3439 ParseGlobalTypeAndValue(Val1) || 3440 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3441 return true; 3442 if (Val0->getType() != Val1->getType()) 3443 return Error(ID.Loc, "operands of constexpr must have same type"); 3444 // Check that the type is valid for the operator. 3445 switch (Opc) { 3446 case Instruction::Add: 3447 case Instruction::Sub: 3448 case Instruction::Mul: 3449 case Instruction::UDiv: 3450 case Instruction::SDiv: 3451 case Instruction::URem: 3452 case Instruction::SRem: 3453 case Instruction::Shl: 3454 case Instruction::AShr: 3455 case Instruction::LShr: 3456 if (!Val0->getType()->isIntOrIntVectorTy()) 3457 return Error(ID.Loc, "constexpr requires integer operands"); 3458 break; 3459 case Instruction::FAdd: 3460 case Instruction::FSub: 3461 case Instruction::FMul: 3462 case Instruction::FDiv: 3463 case Instruction::FRem: 3464 if (!Val0->getType()->isFPOrFPVectorTy()) 3465 return Error(ID.Loc, "constexpr requires fp operands"); 3466 break; 3467 default: llvm_unreachable("Unknown binary operator!"); 3468 } 3469 unsigned Flags = 0; 3470 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3471 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3472 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3473 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3474 ID.ConstantVal = C; 3475 ID.Kind = ValID::t_Constant; 3476 return false; 3477 } 3478 3479 // Logical Operations 3480 case lltok::kw_and: 3481 case lltok::kw_or: 3482 case lltok::kw_xor: { 3483 unsigned Opc = Lex.getUIntVal(); 3484 Constant *Val0, *Val1; 3485 Lex.Lex(); 3486 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3487 ParseGlobalTypeAndValue(Val0) || 3488 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 3489 ParseGlobalTypeAndValue(Val1) || 3490 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3491 return true; 3492 if (Val0->getType() != Val1->getType()) 3493 return Error(ID.Loc, "operands of constexpr must have same type"); 3494 if (!Val0->getType()->isIntOrIntVectorTy()) 3495 return Error(ID.Loc, 3496 "constexpr requires integer or integer vector operands"); 3497 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3498 ID.Kind = ValID::t_Constant; 3499 return false; 3500 } 3501 3502 case lltok::kw_getelementptr: 3503 case lltok::kw_shufflevector: 3504 case lltok::kw_insertelement: 3505 case lltok::kw_extractelement: 3506 case lltok::kw_select: { 3507 unsigned Opc = Lex.getUIntVal(); 3508 SmallVector<Constant*, 16> Elts; 3509 bool InBounds = false; 3510 Type *Ty; 3511 Lex.Lex(); 3512 3513 if (Opc == Instruction::GetElementPtr) 3514 InBounds = EatIfPresent(lltok::kw_inbounds); 3515 3516 if (ParseToken(lltok::lparen, "expected '(' in constantexpr")) 3517 return true; 3518 3519 LocTy ExplicitTypeLoc = Lex.getLoc(); 3520 if (Opc == Instruction::GetElementPtr) { 3521 if (ParseType(Ty) || 3522 ParseToken(lltok::comma, "expected comma after getelementptr's type")) 3523 return true; 3524 } 3525 3526 Optional<unsigned> InRangeOp; 3527 if (ParseGlobalValueVector( 3528 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3529 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 3530 return true; 3531 3532 if (Opc == Instruction::GetElementPtr) { 3533 if (Elts.size() == 0 || 3534 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 3535 return Error(ID.Loc, "base of getelementptr must be a pointer"); 3536 3537 Type *BaseType = Elts[0]->getType(); 3538 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3539 if (Ty != BasePointerType->getElementType()) 3540 return Error( 3541 ExplicitTypeLoc, 3542 "explicit pointee type doesn't match operand's pointee type"); 3543 3544 unsigned GEPWidth = 3545 BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0; 3546 3547 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3548 for (Constant *Val : Indices) { 3549 Type *ValTy = Val->getType(); 3550 if (!ValTy->isIntOrIntVectorTy()) 3551 return Error(ID.Loc, "getelementptr index must be an integer"); 3552 if (ValTy->isVectorTy()) { 3553 unsigned ValNumEl = ValTy->getVectorNumElements(); 3554 if (GEPWidth && (ValNumEl != GEPWidth)) 3555 return Error( 3556 ID.Loc, 3557 "getelementptr vector index has a wrong number of elements"); 3558 // GEPWidth may have been unknown because the base is a scalar, 3559 // but it is known now. 3560 GEPWidth = ValNumEl; 3561 } 3562 } 3563 3564 SmallPtrSet<Type*, 4> Visited; 3565 if (!Indices.empty() && !Ty->isSized(&Visited)) 3566 return Error(ID.Loc, "base element of getelementptr must be sized"); 3567 3568 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3569 return Error(ID.Loc, "invalid getelementptr indices"); 3570 3571 if (InRangeOp) { 3572 if (*InRangeOp == 0) 3573 return Error(ID.Loc, 3574 "inrange keyword may not appear on pointer operand"); 3575 --*InRangeOp; 3576 } 3577 3578 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3579 InBounds, InRangeOp); 3580 } else if (Opc == Instruction::Select) { 3581 if (Elts.size() != 3) 3582 return Error(ID.Loc, "expected three operands to select"); 3583 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3584 Elts[2])) 3585 return Error(ID.Loc, Reason); 3586 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3587 } else if (Opc == Instruction::ShuffleVector) { 3588 if (Elts.size() != 3) 3589 return Error(ID.Loc, "expected three operands to shufflevector"); 3590 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3591 return Error(ID.Loc, "invalid operands to shufflevector"); 3592 ID.ConstantVal = 3593 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 3594 } else if (Opc == Instruction::ExtractElement) { 3595 if (Elts.size() != 2) 3596 return Error(ID.Loc, "expected two operands to extractelement"); 3597 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3598 return Error(ID.Loc, "invalid extractelement operands"); 3599 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3600 } else { 3601 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3602 if (Elts.size() != 3) 3603 return Error(ID.Loc, "expected three operands to insertelement"); 3604 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3605 return Error(ID.Loc, "invalid insertelement operands"); 3606 ID.ConstantVal = 3607 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3608 } 3609 3610 ID.Kind = ValID::t_Constant; 3611 return false; 3612 } 3613 } 3614 3615 Lex.Lex(); 3616 return false; 3617 } 3618 3619 /// ParseGlobalValue - Parse a global value with the specified type. 3620 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 3621 C = nullptr; 3622 ValID ID; 3623 Value *V = nullptr; 3624 bool Parsed = ParseValID(ID) || 3625 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false); 3626 if (V && !(C = dyn_cast<Constant>(V))) 3627 return Error(ID.Loc, "global values must be constants"); 3628 return Parsed; 3629 } 3630 3631 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 3632 Type *Ty = nullptr; 3633 return ParseType(Ty) || 3634 ParseGlobalValue(Ty, V); 3635 } 3636 3637 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3638 C = nullptr; 3639 3640 LocTy KwLoc = Lex.getLoc(); 3641 if (!EatIfPresent(lltok::kw_comdat)) 3642 return false; 3643 3644 if (EatIfPresent(lltok::lparen)) { 3645 if (Lex.getKind() != lltok::ComdatVar) 3646 return TokError("expected comdat variable"); 3647 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3648 Lex.Lex(); 3649 if (ParseToken(lltok::rparen, "expected ')' after comdat var")) 3650 return true; 3651 } else { 3652 if (GlobalName.empty()) 3653 return TokError("comdat cannot be unnamed"); 3654 C = getComdat(GlobalName, KwLoc); 3655 } 3656 3657 return false; 3658 } 3659 3660 /// ParseGlobalValueVector 3661 /// ::= /*empty*/ 3662 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 3663 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 3664 Optional<unsigned> *InRangeOp) { 3665 // Empty list. 3666 if (Lex.getKind() == lltok::rbrace || 3667 Lex.getKind() == lltok::rsquare || 3668 Lex.getKind() == lltok::greater || 3669 Lex.getKind() == lltok::rparen) 3670 return false; 3671 3672 do { 3673 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 3674 *InRangeOp = Elts.size(); 3675 3676 Constant *C; 3677 if (ParseGlobalTypeAndValue(C)) return true; 3678 Elts.push_back(C); 3679 } while (EatIfPresent(lltok::comma)); 3680 3681 return false; 3682 } 3683 3684 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) { 3685 SmallVector<Metadata *, 16> Elts; 3686 if (ParseMDNodeVector(Elts)) 3687 return true; 3688 3689 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3690 return false; 3691 } 3692 3693 /// MDNode: 3694 /// ::= !{ ... } 3695 /// ::= !7 3696 /// ::= !DILocation(...) 3697 bool LLParser::ParseMDNode(MDNode *&N) { 3698 if (Lex.getKind() == lltok::MetadataVar) 3699 return ParseSpecializedMDNode(N); 3700 3701 return ParseToken(lltok::exclaim, "expected '!' here") || 3702 ParseMDNodeTail(N); 3703 } 3704 3705 bool LLParser::ParseMDNodeTail(MDNode *&N) { 3706 // !{ ... } 3707 if (Lex.getKind() == lltok::lbrace) 3708 return ParseMDTuple(N); 3709 3710 // !42 3711 return ParseMDNodeID(N); 3712 } 3713 3714 namespace { 3715 3716 /// Structure to represent an optional metadata field. 3717 template <class FieldTy> struct MDFieldImpl { 3718 typedef MDFieldImpl ImplTy; 3719 FieldTy Val; 3720 bool Seen; 3721 3722 void assign(FieldTy Val) { 3723 Seen = true; 3724 this->Val = std::move(Val); 3725 } 3726 3727 explicit MDFieldImpl(FieldTy Default) 3728 : Val(std::move(Default)), Seen(false) {} 3729 }; 3730 3731 /// Structure to represent an optional metadata field that 3732 /// can be of either type (A or B) and encapsulates the 3733 /// MD<typeofA>Field and MD<typeofB>Field structs, so not 3734 /// to reimplement the specifics for representing each Field. 3735 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl { 3736 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy; 3737 FieldTypeA A; 3738 FieldTypeB B; 3739 bool Seen; 3740 3741 enum { 3742 IsInvalid = 0, 3743 IsTypeA = 1, 3744 IsTypeB = 2 3745 } WhatIs; 3746 3747 void assign(FieldTypeA A) { 3748 Seen = true; 3749 this->A = std::move(A); 3750 WhatIs = IsTypeA; 3751 } 3752 3753 void assign(FieldTypeB B) { 3754 Seen = true; 3755 this->B = std::move(B); 3756 WhatIs = IsTypeB; 3757 } 3758 3759 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) 3760 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), 3761 WhatIs(IsInvalid) {} 3762 }; 3763 3764 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3765 uint64_t Max; 3766 3767 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3768 : ImplTy(Default), Max(Max) {} 3769 }; 3770 3771 struct LineField : public MDUnsignedField { 3772 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3773 }; 3774 3775 struct ColumnField : public MDUnsignedField { 3776 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3777 }; 3778 3779 struct DwarfTagField : public MDUnsignedField { 3780 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3781 DwarfTagField(dwarf::Tag DefaultTag) 3782 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3783 }; 3784 3785 struct DwarfMacinfoTypeField : public MDUnsignedField { 3786 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 3787 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 3788 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 3789 }; 3790 3791 struct DwarfAttEncodingField : public MDUnsignedField { 3792 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3793 }; 3794 3795 struct DwarfVirtualityField : public MDUnsignedField { 3796 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3797 }; 3798 3799 struct DwarfLangField : public MDUnsignedField { 3800 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3801 }; 3802 3803 struct DwarfCCField : public MDUnsignedField { 3804 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 3805 }; 3806 3807 struct EmissionKindField : public MDUnsignedField { 3808 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 3809 }; 3810 3811 struct NameTableKindField : public MDUnsignedField { 3812 NameTableKindField() 3813 : MDUnsignedField( 3814 0, (unsigned) 3815 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {} 3816 }; 3817 3818 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 3819 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 3820 }; 3821 3822 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> { 3823 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {} 3824 }; 3825 3826 struct MDSignedField : public MDFieldImpl<int64_t> { 3827 int64_t Min; 3828 int64_t Max; 3829 3830 MDSignedField(int64_t Default = 0) 3831 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3832 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3833 : ImplTy(Default), Min(Min), Max(Max) {} 3834 }; 3835 3836 struct MDBoolField : public MDFieldImpl<bool> { 3837 MDBoolField(bool Default = false) : ImplTy(Default) {} 3838 }; 3839 3840 struct MDField : public MDFieldImpl<Metadata *> { 3841 bool AllowNull; 3842 3843 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3844 }; 3845 3846 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 3847 MDConstant() : ImplTy(nullptr) {} 3848 }; 3849 3850 struct MDStringField : public MDFieldImpl<MDString *> { 3851 bool AllowEmpty; 3852 MDStringField(bool AllowEmpty = true) 3853 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3854 }; 3855 3856 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3857 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3858 }; 3859 3860 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 3861 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 3862 }; 3863 3864 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> { 3865 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) 3866 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} 3867 3868 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, 3869 bool AllowNull = true) 3870 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} 3871 3872 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3873 bool isMDField() const { return WhatIs == IsTypeB; } 3874 int64_t getMDSignedValue() const { 3875 assert(isMDSignedField() && "Wrong field type"); 3876 return A.Val; 3877 } 3878 Metadata *getMDFieldValue() const { 3879 assert(isMDField() && "Wrong field type"); 3880 return B.Val; 3881 } 3882 }; 3883 3884 struct MDSignedOrUnsignedField 3885 : MDEitherFieldImpl<MDSignedField, MDUnsignedField> { 3886 MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {} 3887 3888 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3889 bool isMDUnsignedField() const { return WhatIs == IsTypeB; } 3890 int64_t getMDSignedValue() const { 3891 assert(isMDSignedField() && "Wrong field type"); 3892 return A.Val; 3893 } 3894 uint64_t getMDUnsignedValue() const { 3895 assert(isMDUnsignedField() && "Wrong field type"); 3896 return B.Val; 3897 } 3898 }; 3899 3900 } // end anonymous namespace 3901 3902 namespace llvm { 3903 3904 template <> 3905 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3906 MDUnsignedField &Result) { 3907 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3908 return TokError("expected unsigned integer"); 3909 3910 auto &U = Lex.getAPSIntVal(); 3911 if (U.ugt(Result.Max)) 3912 return TokError("value for '" + Name + "' too large, limit is " + 3913 Twine(Result.Max)); 3914 Result.assign(U.getZExtValue()); 3915 assert(Result.Val <= Result.Max && "Expected value in range"); 3916 Lex.Lex(); 3917 return false; 3918 } 3919 3920 template <> 3921 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) { 3922 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3923 } 3924 template <> 3925 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 3926 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3927 } 3928 3929 template <> 3930 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 3931 if (Lex.getKind() == lltok::APSInt) 3932 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3933 3934 if (Lex.getKind() != lltok::DwarfTag) 3935 return TokError("expected DWARF tag"); 3936 3937 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 3938 if (Tag == dwarf::DW_TAG_invalid) 3939 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 3940 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 3941 3942 Result.assign(Tag); 3943 Lex.Lex(); 3944 return false; 3945 } 3946 3947 template <> 3948 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3949 DwarfMacinfoTypeField &Result) { 3950 if (Lex.getKind() == lltok::APSInt) 3951 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3952 3953 if (Lex.getKind() != lltok::DwarfMacinfo) 3954 return TokError("expected DWARF macinfo type"); 3955 3956 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 3957 if (Macinfo == dwarf::DW_MACINFO_invalid) 3958 return TokError( 3959 "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'"); 3960 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 3961 3962 Result.assign(Macinfo); 3963 Lex.Lex(); 3964 return false; 3965 } 3966 3967 template <> 3968 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3969 DwarfVirtualityField &Result) { 3970 if (Lex.getKind() == lltok::APSInt) 3971 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3972 3973 if (Lex.getKind() != lltok::DwarfVirtuality) 3974 return TokError("expected DWARF virtuality code"); 3975 3976 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 3977 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 3978 return TokError("invalid DWARF virtuality code" + Twine(" '") + 3979 Lex.getStrVal() + "'"); 3980 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 3981 Result.assign(Virtuality); 3982 Lex.Lex(); 3983 return false; 3984 } 3985 3986 template <> 3987 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 3988 if (Lex.getKind() == lltok::APSInt) 3989 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3990 3991 if (Lex.getKind() != lltok::DwarfLang) 3992 return TokError("expected DWARF language"); 3993 3994 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 3995 if (!Lang) 3996 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 3997 "'"); 3998 assert(Lang <= Result.Max && "Expected valid DWARF language"); 3999 Result.assign(Lang); 4000 Lex.Lex(); 4001 return false; 4002 } 4003 4004 template <> 4005 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 4006 if (Lex.getKind() == lltok::APSInt) 4007 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4008 4009 if (Lex.getKind() != lltok::DwarfCC) 4010 return TokError("expected DWARF calling convention"); 4011 4012 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 4013 if (!CC) 4014 return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() + 4015 "'"); 4016 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 4017 Result.assign(CC); 4018 Lex.Lex(); 4019 return false; 4020 } 4021 4022 template <> 4023 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) { 4024 if (Lex.getKind() == lltok::APSInt) 4025 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4026 4027 if (Lex.getKind() != lltok::EmissionKind) 4028 return TokError("expected emission kind"); 4029 4030 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 4031 if (!Kind) 4032 return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 4033 "'"); 4034 assert(*Kind <= Result.Max && "Expected valid emission kind"); 4035 Result.assign(*Kind); 4036 Lex.Lex(); 4037 return false; 4038 } 4039 4040 template <> 4041 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4042 NameTableKindField &Result) { 4043 if (Lex.getKind() == lltok::APSInt) 4044 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4045 4046 if (Lex.getKind() != lltok::NameTableKind) 4047 return TokError("expected nameTable kind"); 4048 4049 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal()); 4050 if (!Kind) 4051 return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() + 4052 "'"); 4053 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind"); 4054 Result.assign((unsigned)*Kind); 4055 Lex.Lex(); 4056 return false; 4057 } 4058 4059 template <> 4060 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4061 DwarfAttEncodingField &Result) { 4062 if (Lex.getKind() == lltok::APSInt) 4063 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4064 4065 if (Lex.getKind() != lltok::DwarfAttEncoding) 4066 return TokError("expected DWARF type attribute encoding"); 4067 4068 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 4069 if (!Encoding) 4070 return TokError("invalid DWARF type attribute encoding" + Twine(" '") + 4071 Lex.getStrVal() + "'"); 4072 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 4073 Result.assign(Encoding); 4074 Lex.Lex(); 4075 return false; 4076 } 4077 4078 /// DIFlagField 4079 /// ::= uint32 4080 /// ::= DIFlagVector 4081 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 4082 template <> 4083 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 4084 4085 // Parser for a single flag. 4086 auto parseFlag = [&](DINode::DIFlags &Val) { 4087 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4088 uint32_t TempVal = static_cast<uint32_t>(Val); 4089 bool Res = ParseUInt32(TempVal); 4090 Val = static_cast<DINode::DIFlags>(TempVal); 4091 return Res; 4092 } 4093 4094 if (Lex.getKind() != lltok::DIFlag) 4095 return TokError("expected debug info flag"); 4096 4097 Val = DINode::getFlag(Lex.getStrVal()); 4098 if (!Val) 4099 return TokError(Twine("invalid debug info flag flag '") + 4100 Lex.getStrVal() + "'"); 4101 Lex.Lex(); 4102 return false; 4103 }; 4104 4105 // Parse the flags and combine them together. 4106 DINode::DIFlags Combined = DINode::FlagZero; 4107 do { 4108 DINode::DIFlags Val; 4109 if (parseFlag(Val)) 4110 return true; 4111 Combined |= Val; 4112 } while (EatIfPresent(lltok::bar)); 4113 4114 Result.assign(Combined); 4115 return false; 4116 } 4117 4118 /// DISPFlagField 4119 /// ::= uint32 4120 /// ::= DISPFlagVector 4121 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32 4122 template <> 4123 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) { 4124 4125 // Parser for a single flag. 4126 auto parseFlag = [&](DISubprogram::DISPFlags &Val) { 4127 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4128 uint32_t TempVal = static_cast<uint32_t>(Val); 4129 bool Res = ParseUInt32(TempVal); 4130 Val = static_cast<DISubprogram::DISPFlags>(TempVal); 4131 return Res; 4132 } 4133 4134 if (Lex.getKind() != lltok::DISPFlag) 4135 return TokError("expected debug info flag"); 4136 4137 Val = DISubprogram::getFlag(Lex.getStrVal()); 4138 if (!Val) 4139 return TokError(Twine("invalid subprogram debug info flag '") + 4140 Lex.getStrVal() + "'"); 4141 Lex.Lex(); 4142 return false; 4143 }; 4144 4145 // Parse the flags and combine them together. 4146 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero; 4147 do { 4148 DISubprogram::DISPFlags Val; 4149 if (parseFlag(Val)) 4150 return true; 4151 Combined |= Val; 4152 } while (EatIfPresent(lltok::bar)); 4153 4154 Result.assign(Combined); 4155 return false; 4156 } 4157 4158 template <> 4159 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4160 MDSignedField &Result) { 4161 if (Lex.getKind() != lltok::APSInt) 4162 return TokError("expected signed integer"); 4163 4164 auto &S = Lex.getAPSIntVal(); 4165 if (S < Result.Min) 4166 return TokError("value for '" + Name + "' too small, limit is " + 4167 Twine(Result.Min)); 4168 if (S > Result.Max) 4169 return TokError("value for '" + Name + "' too large, limit is " + 4170 Twine(Result.Max)); 4171 Result.assign(S.getExtValue()); 4172 assert(Result.Val >= Result.Min && "Expected value in range"); 4173 assert(Result.Val <= Result.Max && "Expected value in range"); 4174 Lex.Lex(); 4175 return false; 4176 } 4177 4178 template <> 4179 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 4180 switch (Lex.getKind()) { 4181 default: 4182 return TokError("expected 'true' or 'false'"); 4183 case lltok::kw_true: 4184 Result.assign(true); 4185 break; 4186 case lltok::kw_false: 4187 Result.assign(false); 4188 break; 4189 } 4190 Lex.Lex(); 4191 return false; 4192 } 4193 4194 template <> 4195 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) { 4196 if (Lex.getKind() == lltok::kw_null) { 4197 if (!Result.AllowNull) 4198 return TokError("'" + Name + "' cannot be null"); 4199 Lex.Lex(); 4200 Result.assign(nullptr); 4201 return false; 4202 } 4203 4204 Metadata *MD; 4205 if (ParseMetadata(MD, nullptr)) 4206 return true; 4207 4208 Result.assign(MD); 4209 return false; 4210 } 4211 4212 template <> 4213 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4214 MDSignedOrMDField &Result) { 4215 // Try to parse a signed int. 4216 if (Lex.getKind() == lltok::APSInt) { 4217 MDSignedField Res = Result.A; 4218 if (!ParseMDField(Loc, Name, Res)) { 4219 Result.assign(Res); 4220 return false; 4221 } 4222 return true; 4223 } 4224 4225 // Otherwise, try to parse as an MDField. 4226 MDField Res = Result.B; 4227 if (!ParseMDField(Loc, Name, Res)) { 4228 Result.assign(Res); 4229 return false; 4230 } 4231 4232 return true; 4233 } 4234 4235 template <> 4236 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4237 MDSignedOrUnsignedField &Result) { 4238 if (Lex.getKind() != lltok::APSInt) 4239 return false; 4240 4241 if (Lex.getAPSIntVal().isSigned()) { 4242 MDSignedField Res = Result.A; 4243 if (ParseMDField(Loc, Name, Res)) 4244 return true; 4245 Result.assign(Res); 4246 return false; 4247 } 4248 4249 MDUnsignedField Res = Result.B; 4250 if (ParseMDField(Loc, Name, Res)) 4251 return true; 4252 Result.assign(Res); 4253 return false; 4254 } 4255 4256 template <> 4257 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 4258 LocTy ValueLoc = Lex.getLoc(); 4259 std::string S; 4260 if (ParseStringConstant(S)) 4261 return true; 4262 4263 if (!Result.AllowEmpty && S.empty()) 4264 return Error(ValueLoc, "'" + Name + "' cannot be empty"); 4265 4266 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 4267 return false; 4268 } 4269 4270 template <> 4271 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 4272 SmallVector<Metadata *, 4> MDs; 4273 if (ParseMDNodeVector(MDs)) 4274 return true; 4275 4276 Result.assign(std::move(MDs)); 4277 return false; 4278 } 4279 4280 template <> 4281 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4282 ChecksumKindField &Result) { 4283 Optional<DIFile::ChecksumKind> CSKind = 4284 DIFile::getChecksumKind(Lex.getStrVal()); 4285 4286 if (Lex.getKind() != lltok::ChecksumKind || !CSKind) 4287 return TokError( 4288 "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'"); 4289 4290 Result.assign(*CSKind); 4291 Lex.Lex(); 4292 return false; 4293 } 4294 4295 } // end namespace llvm 4296 4297 template <class ParserTy> 4298 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) { 4299 do { 4300 if (Lex.getKind() != lltok::LabelStr) 4301 return TokError("expected field label here"); 4302 4303 if (parseField()) 4304 return true; 4305 } while (EatIfPresent(lltok::comma)); 4306 4307 return false; 4308 } 4309 4310 template <class ParserTy> 4311 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) { 4312 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4313 Lex.Lex(); 4314 4315 if (ParseToken(lltok::lparen, "expected '(' here")) 4316 return true; 4317 if (Lex.getKind() != lltok::rparen) 4318 if (ParseMDFieldsImplBody(parseField)) 4319 return true; 4320 4321 ClosingLoc = Lex.getLoc(); 4322 return ParseToken(lltok::rparen, "expected ')' here"); 4323 } 4324 4325 template <class FieldTy> 4326 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) { 4327 if (Result.Seen) 4328 return TokError("field '" + Name + "' cannot be specified more than once"); 4329 4330 LocTy Loc = Lex.getLoc(); 4331 Lex.Lex(); 4332 return ParseMDField(Loc, Name, Result); 4333 } 4334 4335 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 4336 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4337 4338 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 4339 if (Lex.getStrVal() == #CLASS) \ 4340 return Parse##CLASS(N, IsDistinct); 4341 #include "llvm/IR/Metadata.def" 4342 4343 return TokError("expected metadata type"); 4344 } 4345 4346 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 4347 #define NOP_FIELD(NAME, TYPE, INIT) 4348 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 4349 if (!NAME.Seen) \ 4350 return Error(ClosingLoc, "missing required field '" #NAME "'"); 4351 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 4352 if (Lex.getStrVal() == #NAME) \ 4353 return ParseMDField(#NAME, NAME); 4354 #define PARSE_MD_FIELDS() \ 4355 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 4356 do { \ 4357 LocTy ClosingLoc; \ 4358 if (ParseMDFieldsImpl([&]() -> bool { \ 4359 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 4360 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \ 4361 }, ClosingLoc)) \ 4362 return true; \ 4363 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 4364 } while (false) 4365 #define GET_OR_DISTINCT(CLASS, ARGS) \ 4366 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 4367 4368 /// ParseDILocationFields: 4369 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6, 4370 /// isImplicitCode: true) 4371 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) { 4372 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4373 OPTIONAL(line, LineField, ); \ 4374 OPTIONAL(column, ColumnField, ); \ 4375 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4376 OPTIONAL(inlinedAt, MDField, ); \ 4377 OPTIONAL(isImplicitCode, MDBoolField, (false)); 4378 PARSE_MD_FIELDS(); 4379 #undef VISIT_MD_FIELDS 4380 4381 Result = 4382 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val, 4383 inlinedAt.Val, isImplicitCode.Val)); 4384 return false; 4385 } 4386 4387 /// ParseGenericDINode: 4388 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 4389 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) { 4390 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4391 REQUIRED(tag, DwarfTagField, ); \ 4392 OPTIONAL(header, MDStringField, ); \ 4393 OPTIONAL(operands, MDFieldList, ); 4394 PARSE_MD_FIELDS(); 4395 #undef VISIT_MD_FIELDS 4396 4397 Result = GET_OR_DISTINCT(GenericDINode, 4398 (Context, tag.Val, header.Val, operands.Val)); 4399 return false; 4400 } 4401 4402 /// ParseDISubrange: 4403 /// ::= !DISubrange(count: 30, lowerBound: 2) 4404 /// ::= !DISubrange(count: !node, lowerBound: 2) 4405 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) { 4406 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4407 REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ 4408 OPTIONAL(lowerBound, MDSignedField, ); 4409 PARSE_MD_FIELDS(); 4410 #undef VISIT_MD_FIELDS 4411 4412 if (count.isMDSignedField()) 4413 Result = GET_OR_DISTINCT( 4414 DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val)); 4415 else if (count.isMDField()) 4416 Result = GET_OR_DISTINCT( 4417 DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val)); 4418 else 4419 return true; 4420 4421 return false; 4422 } 4423 4424 /// ParseDIEnumerator: 4425 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind") 4426 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) { 4427 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4428 REQUIRED(name, MDStringField, ); \ 4429 REQUIRED(value, MDSignedOrUnsignedField, ); \ 4430 OPTIONAL(isUnsigned, MDBoolField, (false)); 4431 PARSE_MD_FIELDS(); 4432 #undef VISIT_MD_FIELDS 4433 4434 if (isUnsigned.Val && value.isMDSignedField()) 4435 return TokError("unsigned enumerator with negative value"); 4436 4437 int64_t Value = value.isMDSignedField() 4438 ? value.getMDSignedValue() 4439 : static_cast<int64_t>(value.getMDUnsignedValue()); 4440 Result = 4441 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val)); 4442 4443 return false; 4444 } 4445 4446 /// ParseDIBasicType: 4447 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32, 4448 /// encoding: DW_ATE_encoding, flags: 0) 4449 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) { 4450 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4451 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 4452 OPTIONAL(name, MDStringField, ); \ 4453 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4454 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4455 OPTIONAL(encoding, DwarfAttEncodingField, ); \ 4456 OPTIONAL(flags, DIFlagField, ); 4457 PARSE_MD_FIELDS(); 4458 #undef VISIT_MD_FIELDS 4459 4460 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 4461 align.Val, encoding.Val, flags.Val)); 4462 return false; 4463 } 4464 4465 /// ParseDIDerivedType: 4466 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 4467 /// line: 7, scope: !1, baseType: !2, size: 32, 4468 /// align: 32, offset: 0, flags: 0, extraData: !3, 4469 /// dwarfAddressSpace: 3) 4470 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) { 4471 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4472 REQUIRED(tag, DwarfTagField, ); \ 4473 OPTIONAL(name, MDStringField, ); \ 4474 OPTIONAL(file, MDField, ); \ 4475 OPTIONAL(line, LineField, ); \ 4476 OPTIONAL(scope, MDField, ); \ 4477 REQUIRED(baseType, MDField, ); \ 4478 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4479 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4480 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4481 OPTIONAL(flags, DIFlagField, ); \ 4482 OPTIONAL(extraData, MDField, ); \ 4483 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); 4484 PARSE_MD_FIELDS(); 4485 #undef VISIT_MD_FIELDS 4486 4487 Optional<unsigned> DWARFAddressSpace; 4488 if (dwarfAddressSpace.Val != UINT32_MAX) 4489 DWARFAddressSpace = dwarfAddressSpace.Val; 4490 4491 Result = GET_OR_DISTINCT(DIDerivedType, 4492 (Context, tag.Val, name.Val, file.Val, line.Val, 4493 scope.Val, baseType.Val, size.Val, align.Val, 4494 offset.Val, DWARFAddressSpace, flags.Val, 4495 extraData.Val)); 4496 return false; 4497 } 4498 4499 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) { 4500 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4501 REQUIRED(tag, DwarfTagField, ); \ 4502 OPTIONAL(name, MDStringField, ); \ 4503 OPTIONAL(file, MDField, ); \ 4504 OPTIONAL(line, LineField, ); \ 4505 OPTIONAL(scope, MDField, ); \ 4506 OPTIONAL(baseType, MDField, ); \ 4507 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4508 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4509 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4510 OPTIONAL(flags, DIFlagField, ); \ 4511 OPTIONAL(elements, MDField, ); \ 4512 OPTIONAL(runtimeLang, DwarfLangField, ); \ 4513 OPTIONAL(vtableHolder, MDField, ); \ 4514 OPTIONAL(templateParams, MDField, ); \ 4515 OPTIONAL(identifier, MDStringField, ); \ 4516 OPTIONAL(discriminator, MDField, ); 4517 PARSE_MD_FIELDS(); 4518 #undef VISIT_MD_FIELDS 4519 4520 // If this has an identifier try to build an ODR type. 4521 if (identifier.Val) 4522 if (auto *CT = DICompositeType::buildODRType( 4523 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 4524 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 4525 elements.Val, runtimeLang.Val, vtableHolder.Val, 4526 templateParams.Val, discriminator.Val)) { 4527 Result = CT; 4528 return false; 4529 } 4530 4531 // Create a new node, and save it in the context if it belongs in the type 4532 // map. 4533 Result = GET_OR_DISTINCT( 4534 DICompositeType, 4535 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 4536 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 4537 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val, 4538 discriminator.Val)); 4539 return false; 4540 } 4541 4542 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) { 4543 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4544 OPTIONAL(flags, DIFlagField, ); \ 4545 OPTIONAL(cc, DwarfCCField, ); \ 4546 REQUIRED(types, MDField, ); 4547 PARSE_MD_FIELDS(); 4548 #undef VISIT_MD_FIELDS 4549 4550 Result = GET_OR_DISTINCT(DISubroutineType, 4551 (Context, flags.Val, cc.Val, types.Val)); 4552 return false; 4553 } 4554 4555 /// ParseDIFileType: 4556 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir", 4557 /// checksumkind: CSK_MD5, 4558 /// checksum: "000102030405060708090a0b0c0d0e0f", 4559 /// source: "source file contents") 4560 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) { 4561 // The default constructed value for checksumkind is required, but will never 4562 // be used, as the parser checks if the field was actually Seen before using 4563 // the Val. 4564 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4565 REQUIRED(filename, MDStringField, ); \ 4566 REQUIRED(directory, MDStringField, ); \ 4567 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \ 4568 OPTIONAL(checksum, MDStringField, ); \ 4569 OPTIONAL(source, MDStringField, ); 4570 PARSE_MD_FIELDS(); 4571 #undef VISIT_MD_FIELDS 4572 4573 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum; 4574 if (checksumkind.Seen && checksum.Seen) 4575 OptChecksum.emplace(checksumkind.Val, checksum.Val); 4576 else if (checksumkind.Seen || checksum.Seen) 4577 return Lex.Error("'checksumkind' and 'checksum' must be provided together"); 4578 4579 Optional<MDString *> OptSource; 4580 if (source.Seen) 4581 OptSource = source.Val; 4582 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val, 4583 OptChecksum, OptSource)); 4584 return false; 4585 } 4586 4587 /// ParseDICompileUnit: 4588 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 4589 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 4590 /// splitDebugFilename: "abc.debug", 4591 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 4592 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd) 4593 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) { 4594 if (!IsDistinct) 4595 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 4596 4597 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4598 REQUIRED(language, DwarfLangField, ); \ 4599 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 4600 OPTIONAL(producer, MDStringField, ); \ 4601 OPTIONAL(isOptimized, MDBoolField, ); \ 4602 OPTIONAL(flags, MDStringField, ); \ 4603 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 4604 OPTIONAL(splitDebugFilename, MDStringField, ); \ 4605 OPTIONAL(emissionKind, EmissionKindField, ); \ 4606 OPTIONAL(enums, MDField, ); \ 4607 OPTIONAL(retainedTypes, MDField, ); \ 4608 OPTIONAL(globals, MDField, ); \ 4609 OPTIONAL(imports, MDField, ); \ 4610 OPTIONAL(macros, MDField, ); \ 4611 OPTIONAL(dwoId, MDUnsignedField, ); \ 4612 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 4613 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 4614 OPTIONAL(nameTableKind, NameTableKindField, ); \ 4615 OPTIONAL(debugBaseAddress, MDBoolField, = false); 4616 PARSE_MD_FIELDS(); 4617 #undef VISIT_MD_FIELDS 4618 4619 Result = DICompileUnit::getDistinct( 4620 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 4621 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 4622 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 4623 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val, 4624 debugBaseAddress.Val); 4625 return false; 4626 } 4627 4628 /// ParseDISubprogram: 4629 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 4630 /// file: !1, line: 7, type: !2, isLocal: false, 4631 /// isDefinition: true, scopeLine: 8, containingType: !3, 4632 /// virtuality: DW_VIRTUALTIY_pure_virtual, 4633 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 4634 /// spFlags: 10, isOptimized: false, templateParams: !4, 4635 /// declaration: !5, retainedNodes: !6, thrownTypes: !7) 4636 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) { 4637 auto Loc = Lex.getLoc(); 4638 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4639 OPTIONAL(scope, MDField, ); \ 4640 OPTIONAL(name, MDStringField, ); \ 4641 OPTIONAL(linkageName, MDStringField, ); \ 4642 OPTIONAL(file, MDField, ); \ 4643 OPTIONAL(line, LineField, ); \ 4644 OPTIONAL(type, MDField, ); \ 4645 OPTIONAL(isLocal, MDBoolField, ); \ 4646 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4647 OPTIONAL(scopeLine, LineField, ); \ 4648 OPTIONAL(containingType, MDField, ); \ 4649 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 4650 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 4651 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 4652 OPTIONAL(flags, DIFlagField, ); \ 4653 OPTIONAL(spFlags, DISPFlagField, ); \ 4654 OPTIONAL(isOptimized, MDBoolField, ); \ 4655 OPTIONAL(unit, MDField, ); \ 4656 OPTIONAL(templateParams, MDField, ); \ 4657 OPTIONAL(declaration, MDField, ); \ 4658 OPTIONAL(retainedNodes, MDField, ); \ 4659 OPTIONAL(thrownTypes, MDField, ); 4660 PARSE_MD_FIELDS(); 4661 #undef VISIT_MD_FIELDS 4662 4663 // An explicit spFlags field takes precedence over individual fields in 4664 // older IR versions. 4665 DISubprogram::DISPFlags SPFlags = 4666 spFlags.Seen ? spFlags.Val 4667 : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val, 4668 isOptimized.Val, virtuality.Val); 4669 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct) 4670 return Lex.Error( 4671 Loc, 4672 "missing 'distinct', required for !DISubprogram that is a Definition"); 4673 Result = GET_OR_DISTINCT( 4674 DISubprogram, 4675 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 4676 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val, 4677 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val, 4678 declaration.Val, retainedNodes.Val, thrownTypes.Val)); 4679 return false; 4680 } 4681 4682 /// ParseDILexicalBlock: 4683 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 4684 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 4685 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4686 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4687 OPTIONAL(file, MDField, ); \ 4688 OPTIONAL(line, LineField, ); \ 4689 OPTIONAL(column, ColumnField, ); 4690 PARSE_MD_FIELDS(); 4691 #undef VISIT_MD_FIELDS 4692 4693 Result = GET_OR_DISTINCT( 4694 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 4695 return false; 4696 } 4697 4698 /// ParseDILexicalBlockFile: 4699 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 4700 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 4701 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4702 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4703 OPTIONAL(file, MDField, ); \ 4704 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 4705 PARSE_MD_FIELDS(); 4706 #undef VISIT_MD_FIELDS 4707 4708 Result = GET_OR_DISTINCT(DILexicalBlockFile, 4709 (Context, scope.Val, file.Val, discriminator.Val)); 4710 return false; 4711 } 4712 4713 /// ParseDICommonBlock: 4714 /// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9) 4715 bool LLParser::ParseDICommonBlock(MDNode *&Result, bool IsDistinct) { 4716 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4717 REQUIRED(scope, MDField, ); \ 4718 OPTIONAL(declaration, MDField, ); \ 4719 OPTIONAL(name, MDStringField, ); \ 4720 OPTIONAL(file, MDField, ); \ 4721 OPTIONAL(line, LineField, ); 4722 PARSE_MD_FIELDS(); 4723 #undef VISIT_MD_FIELDS 4724 4725 Result = GET_OR_DISTINCT(DICommonBlock, 4726 (Context, scope.Val, declaration.Val, name.Val, 4727 file.Val, line.Val)); 4728 return false; 4729 } 4730 4731 /// ParseDINamespace: 4732 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 4733 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) { 4734 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4735 REQUIRED(scope, MDField, ); \ 4736 OPTIONAL(name, MDStringField, ); \ 4737 OPTIONAL(exportSymbols, MDBoolField, ); 4738 PARSE_MD_FIELDS(); 4739 #undef VISIT_MD_FIELDS 4740 4741 Result = GET_OR_DISTINCT(DINamespace, 4742 (Context, scope.Val, name.Val, exportSymbols.Val)); 4743 return false; 4744 } 4745 4746 /// ParseDIMacro: 4747 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue") 4748 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) { 4749 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4750 REQUIRED(type, DwarfMacinfoTypeField, ); \ 4751 OPTIONAL(line, LineField, ); \ 4752 REQUIRED(name, MDStringField, ); \ 4753 OPTIONAL(value, MDStringField, ); 4754 PARSE_MD_FIELDS(); 4755 #undef VISIT_MD_FIELDS 4756 4757 Result = GET_OR_DISTINCT(DIMacro, 4758 (Context, type.Val, line.Val, name.Val, value.Val)); 4759 return false; 4760 } 4761 4762 /// ParseDIMacroFile: 4763 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 4764 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) { 4765 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4766 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 4767 OPTIONAL(line, LineField, ); \ 4768 REQUIRED(file, MDField, ); \ 4769 OPTIONAL(nodes, MDField, ); 4770 PARSE_MD_FIELDS(); 4771 #undef VISIT_MD_FIELDS 4772 4773 Result = GET_OR_DISTINCT(DIMacroFile, 4774 (Context, type.Val, line.Val, file.Val, nodes.Val)); 4775 return false; 4776 } 4777 4778 /// ParseDIModule: 4779 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG", 4780 /// includePath: "/usr/include", isysroot: "/") 4781 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) { 4782 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4783 REQUIRED(scope, MDField, ); \ 4784 REQUIRED(name, MDStringField, ); \ 4785 OPTIONAL(configMacros, MDStringField, ); \ 4786 OPTIONAL(includePath, MDStringField, ); \ 4787 OPTIONAL(isysroot, MDStringField, ); 4788 PARSE_MD_FIELDS(); 4789 #undef VISIT_MD_FIELDS 4790 4791 Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val, 4792 configMacros.Val, includePath.Val, isysroot.Val)); 4793 return false; 4794 } 4795 4796 /// ParseDITemplateTypeParameter: 4797 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1) 4798 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 4799 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4800 OPTIONAL(name, MDStringField, ); \ 4801 REQUIRED(type, MDField, ); 4802 PARSE_MD_FIELDS(); 4803 #undef VISIT_MD_FIELDS 4804 4805 Result = 4806 GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val)); 4807 return false; 4808 } 4809 4810 /// ParseDITemplateValueParameter: 4811 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 4812 /// name: "V", type: !1, value: i32 7) 4813 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 4814 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4815 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 4816 OPTIONAL(name, MDStringField, ); \ 4817 OPTIONAL(type, MDField, ); \ 4818 REQUIRED(value, MDField, ); 4819 PARSE_MD_FIELDS(); 4820 #undef VISIT_MD_FIELDS 4821 4822 Result = GET_OR_DISTINCT(DITemplateValueParameter, 4823 (Context, tag.Val, name.Val, type.Val, value.Val)); 4824 return false; 4825 } 4826 4827 /// ParseDIGlobalVariable: 4828 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 4829 /// file: !1, line: 7, type: !2, isLocal: false, 4830 /// isDefinition: true, templateParams: !3, 4831 /// declaration: !4, align: 8) 4832 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 4833 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4834 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 4835 OPTIONAL(scope, MDField, ); \ 4836 OPTIONAL(linkageName, MDStringField, ); \ 4837 OPTIONAL(file, MDField, ); \ 4838 OPTIONAL(line, LineField, ); \ 4839 OPTIONAL(type, MDField, ); \ 4840 OPTIONAL(isLocal, MDBoolField, ); \ 4841 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4842 OPTIONAL(templateParams, MDField, ); \ 4843 OPTIONAL(declaration, MDField, ); \ 4844 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4845 PARSE_MD_FIELDS(); 4846 #undef VISIT_MD_FIELDS 4847 4848 Result = 4849 GET_OR_DISTINCT(DIGlobalVariable, 4850 (Context, scope.Val, name.Val, linkageName.Val, file.Val, 4851 line.Val, type.Val, isLocal.Val, isDefinition.Val, 4852 declaration.Val, templateParams.Val, align.Val)); 4853 return false; 4854 } 4855 4856 /// ParseDILocalVariable: 4857 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 4858 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4859 /// align: 8) 4860 /// ::= !DILocalVariable(scope: !0, name: "foo", 4861 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4862 /// align: 8) 4863 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) { 4864 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4865 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4866 OPTIONAL(name, MDStringField, ); \ 4867 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 4868 OPTIONAL(file, MDField, ); \ 4869 OPTIONAL(line, LineField, ); \ 4870 OPTIONAL(type, MDField, ); \ 4871 OPTIONAL(flags, DIFlagField, ); \ 4872 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4873 PARSE_MD_FIELDS(); 4874 #undef VISIT_MD_FIELDS 4875 4876 Result = GET_OR_DISTINCT(DILocalVariable, 4877 (Context, scope.Val, name.Val, file.Val, line.Val, 4878 type.Val, arg.Val, flags.Val, align.Val)); 4879 return false; 4880 } 4881 4882 /// ParseDILabel: 4883 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7) 4884 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) { 4885 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4886 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4887 REQUIRED(name, MDStringField, ); \ 4888 REQUIRED(file, MDField, ); \ 4889 REQUIRED(line, LineField, ); 4890 PARSE_MD_FIELDS(); 4891 #undef VISIT_MD_FIELDS 4892 4893 Result = GET_OR_DISTINCT(DILabel, 4894 (Context, scope.Val, name.Val, file.Val, line.Val)); 4895 return false; 4896 } 4897 4898 /// ParseDIExpression: 4899 /// ::= !DIExpression(0, 7, -1) 4900 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) { 4901 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4902 Lex.Lex(); 4903 4904 if (ParseToken(lltok::lparen, "expected '(' here")) 4905 return true; 4906 4907 SmallVector<uint64_t, 8> Elements; 4908 if (Lex.getKind() != lltok::rparen) 4909 do { 4910 if (Lex.getKind() == lltok::DwarfOp) { 4911 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 4912 Lex.Lex(); 4913 Elements.push_back(Op); 4914 continue; 4915 } 4916 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 4917 } 4918 4919 if (Lex.getKind() == lltok::DwarfAttEncoding) { 4920 if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) { 4921 Lex.Lex(); 4922 Elements.push_back(Op); 4923 continue; 4924 } 4925 return TokError(Twine("invalid DWARF attribute encoding '") + Lex.getStrVal() + "'"); 4926 } 4927 4928 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4929 return TokError("expected unsigned integer"); 4930 4931 auto &U = Lex.getAPSIntVal(); 4932 if (U.ugt(UINT64_MAX)) 4933 return TokError("element too large, limit is " + Twine(UINT64_MAX)); 4934 Elements.push_back(U.getZExtValue()); 4935 Lex.Lex(); 4936 } while (EatIfPresent(lltok::comma)); 4937 4938 if (ParseToken(lltok::rparen, "expected ')' here")) 4939 return true; 4940 4941 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 4942 return false; 4943 } 4944 4945 /// ParseDIGlobalVariableExpression: 4946 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 4947 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result, 4948 bool IsDistinct) { 4949 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4950 REQUIRED(var, MDField, ); \ 4951 REQUIRED(expr, MDField, ); 4952 PARSE_MD_FIELDS(); 4953 #undef VISIT_MD_FIELDS 4954 4955 Result = 4956 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 4957 return false; 4958 } 4959 4960 /// ParseDIObjCProperty: 4961 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 4962 /// getter: "getFoo", attributes: 7, type: !2) 4963 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 4964 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4965 OPTIONAL(name, MDStringField, ); \ 4966 OPTIONAL(file, MDField, ); \ 4967 OPTIONAL(line, LineField, ); \ 4968 OPTIONAL(setter, MDStringField, ); \ 4969 OPTIONAL(getter, MDStringField, ); \ 4970 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 4971 OPTIONAL(type, MDField, ); 4972 PARSE_MD_FIELDS(); 4973 #undef VISIT_MD_FIELDS 4974 4975 Result = GET_OR_DISTINCT(DIObjCProperty, 4976 (Context, name.Val, file.Val, line.Val, setter.Val, 4977 getter.Val, attributes.Val, type.Val)); 4978 return false; 4979 } 4980 4981 /// ParseDIImportedEntity: 4982 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 4983 /// line: 7, name: "foo") 4984 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 4985 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4986 REQUIRED(tag, DwarfTagField, ); \ 4987 REQUIRED(scope, MDField, ); \ 4988 OPTIONAL(entity, MDField, ); \ 4989 OPTIONAL(file, MDField, ); \ 4990 OPTIONAL(line, LineField, ); \ 4991 OPTIONAL(name, MDStringField, ); 4992 PARSE_MD_FIELDS(); 4993 #undef VISIT_MD_FIELDS 4994 4995 Result = GET_OR_DISTINCT( 4996 DIImportedEntity, 4997 (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val)); 4998 return false; 4999 } 5000 5001 #undef PARSE_MD_FIELD 5002 #undef NOP_FIELD 5003 #undef REQUIRE_FIELD 5004 #undef DECLARE_FIELD 5005 5006 /// ParseMetadataAsValue 5007 /// ::= metadata i32 %local 5008 /// ::= metadata i32 @global 5009 /// ::= metadata i32 7 5010 /// ::= metadata !0 5011 /// ::= metadata !{...} 5012 /// ::= metadata !"string" 5013 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 5014 // Note: the type 'metadata' has already been parsed. 5015 Metadata *MD; 5016 if (ParseMetadata(MD, &PFS)) 5017 return true; 5018 5019 V = MetadataAsValue::get(Context, MD); 5020 return false; 5021 } 5022 5023 /// ParseValueAsMetadata 5024 /// ::= i32 %local 5025 /// ::= i32 @global 5026 /// ::= i32 7 5027 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 5028 PerFunctionState *PFS) { 5029 Type *Ty; 5030 LocTy Loc; 5031 if (ParseType(Ty, TypeMsg, Loc)) 5032 return true; 5033 if (Ty->isMetadataTy()) 5034 return Error(Loc, "invalid metadata-value-metadata roundtrip"); 5035 5036 Value *V; 5037 if (ParseValue(Ty, V, PFS)) 5038 return true; 5039 5040 MD = ValueAsMetadata::get(V); 5041 return false; 5042 } 5043 5044 /// ParseMetadata 5045 /// ::= i32 %local 5046 /// ::= i32 @global 5047 /// ::= i32 7 5048 /// ::= !42 5049 /// ::= !{...} 5050 /// ::= !"string" 5051 /// ::= !DILocation(...) 5052 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) { 5053 if (Lex.getKind() == lltok::MetadataVar) { 5054 MDNode *N; 5055 if (ParseSpecializedMDNode(N)) 5056 return true; 5057 MD = N; 5058 return false; 5059 } 5060 5061 // ValueAsMetadata: 5062 // <type> <value> 5063 if (Lex.getKind() != lltok::exclaim) 5064 return ParseValueAsMetadata(MD, "expected metadata operand", PFS); 5065 5066 // '!'. 5067 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 5068 Lex.Lex(); 5069 5070 // MDString: 5071 // ::= '!' STRINGCONSTANT 5072 if (Lex.getKind() == lltok::StringConstant) { 5073 MDString *S; 5074 if (ParseMDString(S)) 5075 return true; 5076 MD = S; 5077 return false; 5078 } 5079 5080 // MDNode: 5081 // !{ ... } 5082 // !7 5083 MDNode *N; 5084 if (ParseMDNodeTail(N)) 5085 return true; 5086 MD = N; 5087 return false; 5088 } 5089 5090 //===----------------------------------------------------------------------===// 5091 // Function Parsing. 5092 //===----------------------------------------------------------------------===// 5093 5094 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 5095 PerFunctionState *PFS, bool IsCall) { 5096 if (Ty->isFunctionTy()) 5097 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 5098 5099 switch (ID.Kind) { 5100 case ValID::t_LocalID: 5101 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 5102 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5103 return V == nullptr; 5104 case ValID::t_LocalName: 5105 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 5106 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall); 5107 return V == nullptr; 5108 case ValID::t_InlineAsm: { 5109 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 5110 return Error(ID.Loc, "invalid type for inline asm constraint string"); 5111 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, 5112 (ID.UIntVal >> 1) & 1, 5113 (InlineAsm::AsmDialect(ID.UIntVal >> 2))); 5114 return false; 5115 } 5116 case ValID::t_GlobalName: 5117 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall); 5118 return V == nullptr; 5119 case ValID::t_GlobalID: 5120 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5121 return V == nullptr; 5122 case ValID::t_APSInt: 5123 if (!Ty->isIntegerTy()) 5124 return Error(ID.Loc, "integer constant must have integer type"); 5125 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 5126 V = ConstantInt::get(Context, ID.APSIntVal); 5127 return false; 5128 case ValID::t_APFloat: 5129 if (!Ty->isFloatingPointTy() || 5130 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 5131 return Error(ID.Loc, "floating point constant invalid for type"); 5132 5133 // The lexer has no type info, so builds all half, float, and double FP 5134 // constants as double. Fix this here. Long double does not need this. 5135 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 5136 bool Ignored; 5137 if (Ty->isHalfTy()) 5138 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 5139 &Ignored); 5140 else if (Ty->isFloatTy()) 5141 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 5142 &Ignored); 5143 } 5144 V = ConstantFP::get(Context, ID.APFloatVal); 5145 5146 if (V->getType() != Ty) 5147 return Error(ID.Loc, "floating point constant does not have type '" + 5148 getTypeString(Ty) + "'"); 5149 5150 return false; 5151 case ValID::t_Null: 5152 if (!Ty->isPointerTy()) 5153 return Error(ID.Loc, "null must be a pointer type"); 5154 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 5155 return false; 5156 case ValID::t_Undef: 5157 // FIXME: LabelTy should not be a first-class type. 5158 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5159 return Error(ID.Loc, "invalid type for undef constant"); 5160 V = UndefValue::get(Ty); 5161 return false; 5162 case ValID::t_EmptyArray: 5163 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 5164 return Error(ID.Loc, "invalid empty array initializer"); 5165 V = UndefValue::get(Ty); 5166 return false; 5167 case ValID::t_Zero: 5168 // FIXME: LabelTy should not be a first-class type. 5169 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5170 return Error(ID.Loc, "invalid type for null constant"); 5171 V = Constant::getNullValue(Ty); 5172 return false; 5173 case ValID::t_None: 5174 if (!Ty->isTokenTy()) 5175 return Error(ID.Loc, "invalid type for none constant"); 5176 V = Constant::getNullValue(Ty); 5177 return false; 5178 case ValID::t_Constant: 5179 if (ID.ConstantVal->getType() != Ty) 5180 return Error(ID.Loc, "constant expression type mismatch"); 5181 5182 V = ID.ConstantVal; 5183 return false; 5184 case ValID::t_ConstantStruct: 5185 case ValID::t_PackedConstantStruct: 5186 if (StructType *ST = dyn_cast<StructType>(Ty)) { 5187 if (ST->getNumElements() != ID.UIntVal) 5188 return Error(ID.Loc, 5189 "initializer with struct type has wrong # elements"); 5190 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 5191 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 5192 5193 // Verify that the elements are compatible with the structtype. 5194 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 5195 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 5196 return Error(ID.Loc, "element " + Twine(i) + 5197 " of struct initializer doesn't match struct element type"); 5198 5199 V = ConstantStruct::get( 5200 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 5201 } else 5202 return Error(ID.Loc, "constant expression type mismatch"); 5203 return false; 5204 } 5205 llvm_unreachable("Invalid ValID"); 5206 } 5207 5208 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 5209 C = nullptr; 5210 ValID ID; 5211 auto Loc = Lex.getLoc(); 5212 if (ParseValID(ID, /*PFS=*/nullptr)) 5213 return true; 5214 switch (ID.Kind) { 5215 case ValID::t_APSInt: 5216 case ValID::t_APFloat: 5217 case ValID::t_Undef: 5218 case ValID::t_Constant: 5219 case ValID::t_ConstantStruct: 5220 case ValID::t_PackedConstantStruct: { 5221 Value *V; 5222 if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false)) 5223 return true; 5224 assert(isa<Constant>(V) && "Expected a constant value"); 5225 C = cast<Constant>(V); 5226 return false; 5227 } 5228 case ValID::t_Null: 5229 C = Constant::getNullValue(Ty); 5230 return false; 5231 default: 5232 return Error(Loc, "expected a constant value"); 5233 } 5234 } 5235 5236 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 5237 V = nullptr; 5238 ValID ID; 5239 return ParseValID(ID, PFS) || 5240 ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false); 5241 } 5242 5243 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 5244 Type *Ty = nullptr; 5245 return ParseType(Ty) || 5246 ParseValue(Ty, V, PFS); 5247 } 5248 5249 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 5250 PerFunctionState &PFS) { 5251 Value *V; 5252 Loc = Lex.getLoc(); 5253 if (ParseTypeAndValue(V, PFS)) return true; 5254 if (!isa<BasicBlock>(V)) 5255 return Error(Loc, "expected a basic block"); 5256 BB = cast<BasicBlock>(V); 5257 return false; 5258 } 5259 5260 /// FunctionHeader 5261 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 5262 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 5263 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign 5264 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 5265 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 5266 // Parse the linkage. 5267 LocTy LinkageLoc = Lex.getLoc(); 5268 unsigned Linkage; 5269 unsigned Visibility; 5270 unsigned DLLStorageClass; 5271 bool DSOLocal; 5272 AttrBuilder RetAttrs; 5273 unsigned CC; 5274 bool HasLinkage; 5275 Type *RetType = nullptr; 5276 LocTy RetTypeLoc = Lex.getLoc(); 5277 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 5278 DSOLocal) || 5279 ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5280 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 5281 return true; 5282 5283 // Verify that the linkage is ok. 5284 switch ((GlobalValue::LinkageTypes)Linkage) { 5285 case GlobalValue::ExternalLinkage: 5286 break; // always ok. 5287 case GlobalValue::ExternalWeakLinkage: 5288 if (isDefine) 5289 return Error(LinkageLoc, "invalid linkage for function definition"); 5290 break; 5291 case GlobalValue::PrivateLinkage: 5292 case GlobalValue::InternalLinkage: 5293 case GlobalValue::AvailableExternallyLinkage: 5294 case GlobalValue::LinkOnceAnyLinkage: 5295 case GlobalValue::LinkOnceODRLinkage: 5296 case GlobalValue::WeakAnyLinkage: 5297 case GlobalValue::WeakODRLinkage: 5298 if (!isDefine) 5299 return Error(LinkageLoc, "invalid linkage for function declaration"); 5300 break; 5301 case GlobalValue::AppendingLinkage: 5302 case GlobalValue::CommonLinkage: 5303 return Error(LinkageLoc, "invalid function linkage type"); 5304 } 5305 5306 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 5307 return Error(LinkageLoc, 5308 "symbol with local linkage must have default visibility"); 5309 5310 if (!FunctionType::isValidReturnType(RetType)) 5311 return Error(RetTypeLoc, "invalid function return type"); 5312 5313 LocTy NameLoc = Lex.getLoc(); 5314 5315 std::string FunctionName; 5316 if (Lex.getKind() == lltok::GlobalVar) { 5317 FunctionName = Lex.getStrVal(); 5318 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 5319 unsigned NameID = Lex.getUIntVal(); 5320 5321 if (NameID != NumberedVals.size()) 5322 return TokError("function expected to be numbered '%" + 5323 Twine(NumberedVals.size()) + "'"); 5324 } else { 5325 return TokError("expected function name"); 5326 } 5327 5328 Lex.Lex(); 5329 5330 if (Lex.getKind() != lltok::lparen) 5331 return TokError("expected '(' in function argument list"); 5332 5333 SmallVector<ArgInfo, 8> ArgList; 5334 bool isVarArg; 5335 AttrBuilder FuncAttrs; 5336 std::vector<unsigned> FwdRefAttrGrps; 5337 LocTy BuiltinLoc; 5338 std::string Section; 5339 std::string Partition; 5340 unsigned Alignment; 5341 std::string GC; 5342 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 5343 unsigned AddrSpace = 0; 5344 Constant *Prefix = nullptr; 5345 Constant *Prologue = nullptr; 5346 Constant *PersonalityFn = nullptr; 5347 Comdat *C; 5348 5349 if (ParseArgumentList(ArgList, isVarArg) || 5350 ParseOptionalUnnamedAddr(UnnamedAddr) || 5351 ParseOptionalProgramAddrSpace(AddrSpace) || 5352 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 5353 BuiltinLoc) || 5354 (EatIfPresent(lltok::kw_section) && 5355 ParseStringConstant(Section)) || 5356 (EatIfPresent(lltok::kw_partition) && 5357 ParseStringConstant(Partition)) || 5358 parseOptionalComdat(FunctionName, C) || 5359 ParseOptionalAlignment(Alignment) || 5360 (EatIfPresent(lltok::kw_gc) && 5361 ParseStringConstant(GC)) || 5362 (EatIfPresent(lltok::kw_prefix) && 5363 ParseGlobalTypeAndValue(Prefix)) || 5364 (EatIfPresent(lltok::kw_prologue) && 5365 ParseGlobalTypeAndValue(Prologue)) || 5366 (EatIfPresent(lltok::kw_personality) && 5367 ParseGlobalTypeAndValue(PersonalityFn))) 5368 return true; 5369 5370 if (FuncAttrs.contains(Attribute::Builtin)) 5371 return Error(BuiltinLoc, "'builtin' attribute not valid on function"); 5372 5373 // If the alignment was parsed as an attribute, move to the alignment field. 5374 if (FuncAttrs.hasAlignmentAttr()) { 5375 Alignment = FuncAttrs.getAlignment(); 5376 FuncAttrs.removeAttribute(Attribute::Alignment); 5377 } 5378 5379 // Okay, if we got here, the function is syntactically valid. Convert types 5380 // and do semantic checks. 5381 std::vector<Type*> ParamTypeList; 5382 SmallVector<AttributeSet, 8> Attrs; 5383 5384 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5385 ParamTypeList.push_back(ArgList[i].Ty); 5386 Attrs.push_back(ArgList[i].Attrs); 5387 } 5388 5389 AttributeList PAL = 5390 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 5391 AttributeSet::get(Context, RetAttrs), Attrs); 5392 5393 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 5394 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 5395 5396 FunctionType *FT = 5397 FunctionType::get(RetType, ParamTypeList, isVarArg); 5398 PointerType *PFT = PointerType::get(FT, AddrSpace); 5399 5400 Fn = nullptr; 5401 if (!FunctionName.empty()) { 5402 // If this was a definition of a forward reference, remove the definition 5403 // from the forward reference table and fill in the forward ref. 5404 auto FRVI = ForwardRefVals.find(FunctionName); 5405 if (FRVI != ForwardRefVals.end()) { 5406 Fn = M->getFunction(FunctionName); 5407 if (!Fn) 5408 return Error(FRVI->second.second, "invalid forward reference to " 5409 "function as global value!"); 5410 if (Fn->getType() != PFT) 5411 return Error(FRVI->second.second, "invalid forward reference to " 5412 "function '" + FunctionName + "' with wrong type: " 5413 "expected '" + getTypeString(PFT) + "' but was '" + 5414 getTypeString(Fn->getType()) + "'"); 5415 ForwardRefVals.erase(FRVI); 5416 } else if ((Fn = M->getFunction(FunctionName))) { 5417 // Reject redefinitions. 5418 return Error(NameLoc, "invalid redefinition of function '" + 5419 FunctionName + "'"); 5420 } else if (M->getNamedValue(FunctionName)) { 5421 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 5422 } 5423 5424 } else { 5425 // If this is a definition of a forward referenced function, make sure the 5426 // types agree. 5427 auto I = ForwardRefValIDs.find(NumberedVals.size()); 5428 if (I != ForwardRefValIDs.end()) { 5429 Fn = cast<Function>(I->second.first); 5430 if (Fn->getType() != PFT) 5431 return Error(NameLoc, "type of definition and forward reference of '@" + 5432 Twine(NumberedVals.size()) + "' disagree: " 5433 "expected '" + getTypeString(PFT) + "' but was '" + 5434 getTypeString(Fn->getType()) + "'"); 5435 ForwardRefValIDs.erase(I); 5436 } 5437 } 5438 5439 if (!Fn) 5440 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace, 5441 FunctionName, M); 5442 else // Move the forward-reference to the correct spot in the module. 5443 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 5444 5445 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS"); 5446 5447 if (FunctionName.empty()) 5448 NumberedVals.push_back(Fn); 5449 5450 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 5451 maybeSetDSOLocal(DSOLocal, *Fn); 5452 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 5453 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 5454 Fn->setCallingConv(CC); 5455 Fn->setAttributes(PAL); 5456 Fn->setUnnamedAddr(UnnamedAddr); 5457 Fn->setAlignment(Alignment); 5458 Fn->setSection(Section); 5459 Fn->setPartition(Partition); 5460 Fn->setComdat(C); 5461 Fn->setPersonalityFn(PersonalityFn); 5462 if (!GC.empty()) Fn->setGC(GC); 5463 Fn->setPrefixData(Prefix); 5464 Fn->setPrologueData(Prologue); 5465 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 5466 5467 // Add all of the arguments we parsed to the function. 5468 Function::arg_iterator ArgIt = Fn->arg_begin(); 5469 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 5470 // If the argument has a name, insert it into the argument symbol table. 5471 if (ArgList[i].Name.empty()) continue; 5472 5473 // Set the name, if it conflicted, it will be auto-renamed. 5474 ArgIt->setName(ArgList[i].Name); 5475 5476 if (ArgIt->getName() != ArgList[i].Name) 5477 return Error(ArgList[i].Loc, "redefinition of argument '%" + 5478 ArgList[i].Name + "'"); 5479 } 5480 5481 if (isDefine) 5482 return false; 5483 5484 // Check the declaration has no block address forward references. 5485 ValID ID; 5486 if (FunctionName.empty()) { 5487 ID.Kind = ValID::t_GlobalID; 5488 ID.UIntVal = NumberedVals.size() - 1; 5489 } else { 5490 ID.Kind = ValID::t_GlobalName; 5491 ID.StrVal = FunctionName; 5492 } 5493 auto Blocks = ForwardRefBlockAddresses.find(ID); 5494 if (Blocks != ForwardRefBlockAddresses.end()) 5495 return Error(Blocks->first.Loc, 5496 "cannot take blockaddress inside a declaration"); 5497 return false; 5498 } 5499 5500 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 5501 ValID ID; 5502 if (FunctionNumber == -1) { 5503 ID.Kind = ValID::t_GlobalName; 5504 ID.StrVal = F.getName(); 5505 } else { 5506 ID.Kind = ValID::t_GlobalID; 5507 ID.UIntVal = FunctionNumber; 5508 } 5509 5510 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 5511 if (Blocks == P.ForwardRefBlockAddresses.end()) 5512 return false; 5513 5514 for (const auto &I : Blocks->second) { 5515 const ValID &BBID = I.first; 5516 GlobalValue *GV = I.second; 5517 5518 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 5519 "Expected local id or name"); 5520 BasicBlock *BB; 5521 if (BBID.Kind == ValID::t_LocalName) 5522 BB = GetBB(BBID.StrVal, BBID.Loc); 5523 else 5524 BB = GetBB(BBID.UIntVal, BBID.Loc); 5525 if (!BB) 5526 return P.Error(BBID.Loc, "referenced value is not a basic block"); 5527 5528 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 5529 GV->eraseFromParent(); 5530 } 5531 5532 P.ForwardRefBlockAddresses.erase(Blocks); 5533 return false; 5534 } 5535 5536 /// ParseFunctionBody 5537 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 5538 bool LLParser::ParseFunctionBody(Function &Fn) { 5539 if (Lex.getKind() != lltok::lbrace) 5540 return TokError("expected '{' in function body"); 5541 Lex.Lex(); // eat the {. 5542 5543 int FunctionNumber = -1; 5544 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 5545 5546 PerFunctionState PFS(*this, Fn, FunctionNumber); 5547 5548 // Resolve block addresses and allow basic blocks to be forward-declared 5549 // within this function. 5550 if (PFS.resolveForwardRefBlockAddresses()) 5551 return true; 5552 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 5553 5554 // We need at least one basic block. 5555 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 5556 return TokError("function body requires at least one basic block"); 5557 5558 while (Lex.getKind() != lltok::rbrace && 5559 Lex.getKind() != lltok::kw_uselistorder) 5560 if (ParseBasicBlock(PFS)) return true; 5561 5562 while (Lex.getKind() != lltok::rbrace) 5563 if (ParseUseListOrder(&PFS)) 5564 return true; 5565 5566 // Eat the }. 5567 Lex.Lex(); 5568 5569 // Verify function is ok. 5570 return PFS.FinishFunction(); 5571 } 5572 5573 /// ParseBasicBlock 5574 /// ::= (LabelStr|LabelID)? Instruction* 5575 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 5576 // If this basic block starts out with a name, remember it. 5577 std::string Name; 5578 int NameID = -1; 5579 LocTy NameLoc = Lex.getLoc(); 5580 if (Lex.getKind() == lltok::LabelStr) { 5581 Name = Lex.getStrVal(); 5582 Lex.Lex(); 5583 } else if (Lex.getKind() == lltok::LabelID) { 5584 NameID = Lex.getUIntVal(); 5585 Lex.Lex(); 5586 } 5587 5588 BasicBlock *BB = PFS.DefineBB(Name, NameID, NameLoc); 5589 if (!BB) 5590 return true; 5591 5592 std::string NameStr; 5593 5594 // Parse the instructions in this block until we get a terminator. 5595 Instruction *Inst; 5596 do { 5597 // This instruction may have three possibilities for a name: a) none 5598 // specified, b) name specified "%foo =", c) number specified: "%4 =". 5599 LocTy NameLoc = Lex.getLoc(); 5600 int NameID = -1; 5601 NameStr = ""; 5602 5603 if (Lex.getKind() == lltok::LocalVarID) { 5604 NameID = Lex.getUIntVal(); 5605 Lex.Lex(); 5606 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 5607 return true; 5608 } else if (Lex.getKind() == lltok::LocalVar) { 5609 NameStr = Lex.getStrVal(); 5610 Lex.Lex(); 5611 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 5612 return true; 5613 } 5614 5615 switch (ParseInstruction(Inst, BB, PFS)) { 5616 default: llvm_unreachable("Unknown ParseInstruction result!"); 5617 case InstError: return true; 5618 case InstNormal: 5619 BB->getInstList().push_back(Inst); 5620 5621 // With a normal result, we check to see if the instruction is followed by 5622 // a comma and metadata. 5623 if (EatIfPresent(lltok::comma)) 5624 if (ParseInstructionMetadata(*Inst)) 5625 return true; 5626 break; 5627 case InstExtraComma: 5628 BB->getInstList().push_back(Inst); 5629 5630 // If the instruction parser ate an extra comma at the end of it, it 5631 // *must* be followed by metadata. 5632 if (ParseInstructionMetadata(*Inst)) 5633 return true; 5634 break; 5635 } 5636 5637 // Set the name on the instruction. 5638 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 5639 } while (!Inst->isTerminator()); 5640 5641 return false; 5642 } 5643 5644 //===----------------------------------------------------------------------===// 5645 // Instruction Parsing. 5646 //===----------------------------------------------------------------------===// 5647 5648 /// ParseInstruction - Parse one of the many different instructions. 5649 /// 5650 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 5651 PerFunctionState &PFS) { 5652 lltok::Kind Token = Lex.getKind(); 5653 if (Token == lltok::Eof) 5654 return TokError("found end of file when expecting more instructions"); 5655 LocTy Loc = Lex.getLoc(); 5656 unsigned KeywordVal = Lex.getUIntVal(); 5657 Lex.Lex(); // Eat the keyword. 5658 5659 switch (Token) { 5660 default: return Error(Loc, "expected instruction opcode"); 5661 // Terminator Instructions. 5662 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 5663 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 5664 case lltok::kw_br: return ParseBr(Inst, PFS); 5665 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 5666 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 5667 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 5668 case lltok::kw_resume: return ParseResume(Inst, PFS); 5669 case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS); 5670 case lltok::kw_catchret: return ParseCatchRet(Inst, PFS); 5671 case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS); 5672 case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS); 5673 case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS); 5674 case lltok::kw_callbr: return ParseCallBr(Inst, PFS); 5675 // Unary Operators. 5676 case lltok::kw_fneg: { 5677 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5678 int Res = ParseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/true); 5679 if (Res != 0) 5680 return Res; 5681 if (FMF.any()) 5682 Inst->setFastMathFlags(FMF); 5683 return false; 5684 } 5685 // Binary Operators. 5686 case lltok::kw_add: 5687 case lltok::kw_sub: 5688 case lltok::kw_mul: 5689 case lltok::kw_shl: { 5690 bool NUW = EatIfPresent(lltok::kw_nuw); 5691 bool NSW = EatIfPresent(lltok::kw_nsw); 5692 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 5693 5694 if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true; 5695 5696 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 5697 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 5698 return false; 5699 } 5700 case lltok::kw_fadd: 5701 case lltok::kw_fsub: 5702 case lltok::kw_fmul: 5703 case lltok::kw_fdiv: 5704 case lltok::kw_frem: { 5705 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5706 int Res = ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/true); 5707 if (Res != 0) 5708 return Res; 5709 if (FMF.any()) 5710 Inst->setFastMathFlags(FMF); 5711 return 0; 5712 } 5713 5714 case lltok::kw_sdiv: 5715 case lltok::kw_udiv: 5716 case lltok::kw_lshr: 5717 case lltok::kw_ashr: { 5718 bool Exact = EatIfPresent(lltok::kw_exact); 5719 5720 if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true; 5721 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 5722 return false; 5723 } 5724 5725 case lltok::kw_urem: 5726 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 5727 /*IsFP*/false); 5728 case lltok::kw_and: 5729 case lltok::kw_or: 5730 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 5731 case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal); 5732 case lltok::kw_fcmp: { 5733 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5734 int Res = ParseCompare(Inst, PFS, KeywordVal); 5735 if (Res != 0) 5736 return Res; 5737 if (FMF.any()) 5738 Inst->setFastMathFlags(FMF); 5739 return 0; 5740 } 5741 5742 // Casts. 5743 case lltok::kw_trunc: 5744 case lltok::kw_zext: 5745 case lltok::kw_sext: 5746 case lltok::kw_fptrunc: 5747 case lltok::kw_fpext: 5748 case lltok::kw_bitcast: 5749 case lltok::kw_addrspacecast: 5750 case lltok::kw_uitofp: 5751 case lltok::kw_sitofp: 5752 case lltok::kw_fptoui: 5753 case lltok::kw_fptosi: 5754 case lltok::kw_inttoptr: 5755 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 5756 // Other. 5757 case lltok::kw_select: { 5758 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5759 int Res = ParseSelect(Inst, PFS); 5760 if (Res != 0) 5761 return Res; 5762 if (FMF.any()) { 5763 if (!Inst->getType()->isFPOrFPVectorTy()) 5764 return Error(Loc, "fast-math-flags specified for select without " 5765 "floating-point scalar or vector return type"); 5766 Inst->setFastMathFlags(FMF); 5767 } 5768 return 0; 5769 } 5770 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 5771 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 5772 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 5773 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 5774 case lltok::kw_phi: return ParsePHI(Inst, PFS); 5775 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 5776 // Call. 5777 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None); 5778 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail); 5779 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail); 5780 case lltok::kw_notail: return ParseCall(Inst, PFS, CallInst::TCK_NoTail); 5781 // Memory. 5782 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 5783 case lltok::kw_load: return ParseLoad(Inst, PFS); 5784 case lltok::kw_store: return ParseStore(Inst, PFS); 5785 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 5786 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 5787 case lltok::kw_fence: return ParseFence(Inst, PFS); 5788 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 5789 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 5790 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 5791 } 5792 } 5793 5794 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 5795 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 5796 if (Opc == Instruction::FCmp) { 5797 switch (Lex.getKind()) { 5798 default: return TokError("expected fcmp predicate (e.g. 'oeq')"); 5799 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 5800 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 5801 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 5802 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 5803 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 5804 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 5805 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 5806 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 5807 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 5808 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 5809 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 5810 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 5811 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 5812 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 5813 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 5814 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 5815 } 5816 } else { 5817 switch (Lex.getKind()) { 5818 default: return TokError("expected icmp predicate (e.g. 'eq')"); 5819 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 5820 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 5821 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 5822 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 5823 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 5824 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 5825 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 5826 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 5827 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 5828 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 5829 } 5830 } 5831 Lex.Lex(); 5832 return false; 5833 } 5834 5835 //===----------------------------------------------------------------------===// 5836 // Terminator Instructions. 5837 //===----------------------------------------------------------------------===// 5838 5839 /// ParseRet - Parse a return instruction. 5840 /// ::= 'ret' void (',' !dbg, !1)* 5841 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 5842 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 5843 PerFunctionState &PFS) { 5844 SMLoc TypeLoc = Lex.getLoc(); 5845 Type *Ty = nullptr; 5846 if (ParseType(Ty, true /*void allowed*/)) return true; 5847 5848 Type *ResType = PFS.getFunction().getReturnType(); 5849 5850 if (Ty->isVoidTy()) { 5851 if (!ResType->isVoidTy()) 5852 return Error(TypeLoc, "value doesn't match function result type '" + 5853 getTypeString(ResType) + "'"); 5854 5855 Inst = ReturnInst::Create(Context); 5856 return false; 5857 } 5858 5859 Value *RV; 5860 if (ParseValue(Ty, RV, PFS)) return true; 5861 5862 if (ResType != RV->getType()) 5863 return Error(TypeLoc, "value doesn't match function result type '" + 5864 getTypeString(ResType) + "'"); 5865 5866 Inst = ReturnInst::Create(Context, RV); 5867 return false; 5868 } 5869 5870 /// ParseBr 5871 /// ::= 'br' TypeAndValue 5872 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5873 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 5874 LocTy Loc, Loc2; 5875 Value *Op0; 5876 BasicBlock *Op1, *Op2; 5877 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 5878 5879 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 5880 Inst = BranchInst::Create(BB); 5881 return false; 5882 } 5883 5884 if (Op0->getType() != Type::getInt1Ty(Context)) 5885 return Error(Loc, "branch condition must have 'i1' type"); 5886 5887 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 5888 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 5889 ParseToken(lltok::comma, "expected ',' after true destination") || 5890 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 5891 return true; 5892 5893 Inst = BranchInst::Create(Op1, Op2, Op0); 5894 return false; 5895 } 5896 5897 /// ParseSwitch 5898 /// Instruction 5899 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 5900 /// JumpTable 5901 /// ::= (TypeAndValue ',' TypeAndValue)* 5902 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5903 LocTy CondLoc, BBLoc; 5904 Value *Cond; 5905 BasicBlock *DefaultBB; 5906 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 5907 ParseToken(lltok::comma, "expected ',' after switch condition") || 5908 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 5909 ParseToken(lltok::lsquare, "expected '[' with switch table")) 5910 return true; 5911 5912 if (!Cond->getType()->isIntegerTy()) 5913 return Error(CondLoc, "switch condition must have integer type"); 5914 5915 // Parse the jump table pairs. 5916 SmallPtrSet<Value*, 32> SeenCases; 5917 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 5918 while (Lex.getKind() != lltok::rsquare) { 5919 Value *Constant; 5920 BasicBlock *DestBB; 5921 5922 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 5923 ParseToken(lltok::comma, "expected ',' after case value") || 5924 ParseTypeAndBasicBlock(DestBB, PFS)) 5925 return true; 5926 5927 if (!SeenCases.insert(Constant).second) 5928 return Error(CondLoc, "duplicate case value in switch"); 5929 if (!isa<ConstantInt>(Constant)) 5930 return Error(CondLoc, "case value is not a constant integer"); 5931 5932 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 5933 } 5934 5935 Lex.Lex(); // Eat the ']'. 5936 5937 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 5938 for (unsigned i = 0, e = Table.size(); i != e; ++i) 5939 SI->addCase(Table[i].first, Table[i].second); 5940 Inst = SI; 5941 return false; 5942 } 5943 5944 /// ParseIndirectBr 5945 /// Instruction 5946 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 5947 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 5948 LocTy AddrLoc; 5949 Value *Address; 5950 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 5951 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 5952 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 5953 return true; 5954 5955 if (!Address->getType()->isPointerTy()) 5956 return Error(AddrLoc, "indirectbr address must have pointer type"); 5957 5958 // Parse the destination list. 5959 SmallVector<BasicBlock*, 16> DestList; 5960 5961 if (Lex.getKind() != lltok::rsquare) { 5962 BasicBlock *DestBB; 5963 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5964 return true; 5965 DestList.push_back(DestBB); 5966 5967 while (EatIfPresent(lltok::comma)) { 5968 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5969 return true; 5970 DestList.push_back(DestBB); 5971 } 5972 } 5973 5974 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 5975 return true; 5976 5977 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 5978 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 5979 IBI->addDestination(DestList[i]); 5980 Inst = IBI; 5981 return false; 5982 } 5983 5984 /// ParseInvoke 5985 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 5986 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 5987 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 5988 LocTy CallLoc = Lex.getLoc(); 5989 AttrBuilder RetAttrs, FnAttrs; 5990 std::vector<unsigned> FwdRefAttrGrps; 5991 LocTy NoBuiltinLoc; 5992 unsigned CC; 5993 unsigned InvokeAddrSpace; 5994 Type *RetType = nullptr; 5995 LocTy RetTypeLoc; 5996 ValID CalleeID; 5997 SmallVector<ParamInfo, 16> ArgList; 5998 SmallVector<OperandBundleDef, 2> BundleList; 5999 6000 BasicBlock *NormalBB, *UnwindBB; 6001 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6002 ParseOptionalProgramAddrSpace(InvokeAddrSpace) || 6003 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6004 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 6005 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6006 NoBuiltinLoc) || 6007 ParseOptionalOperandBundles(BundleList, PFS) || 6008 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 6009 ParseTypeAndBasicBlock(NormalBB, PFS) || 6010 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 6011 ParseTypeAndBasicBlock(UnwindBB, PFS)) 6012 return true; 6013 6014 // If RetType is a non-function pointer type, then this is the short syntax 6015 // for the call, which means that RetType is just the return type. Infer the 6016 // rest of the function argument types from the arguments that are present. 6017 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6018 if (!Ty) { 6019 // Pull out the types of all of the arguments... 6020 std::vector<Type*> ParamTypes; 6021 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6022 ParamTypes.push_back(ArgList[i].V->getType()); 6023 6024 if (!FunctionType::isValidReturnType(RetType)) 6025 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6026 6027 Ty = FunctionType::get(RetType, ParamTypes, false); 6028 } 6029 6030 CalleeID.FTy = Ty; 6031 6032 // Look up the callee. 6033 Value *Callee; 6034 if (ConvertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID, 6035 Callee, &PFS, /*IsCall=*/true)) 6036 return true; 6037 6038 // Set up the Attribute for the function. 6039 SmallVector<Value *, 8> Args; 6040 SmallVector<AttributeSet, 8> ArgAttrs; 6041 6042 // Loop through FunctionType's arguments and ensure they are specified 6043 // correctly. Also, gather any parameter attributes. 6044 FunctionType::param_iterator I = Ty->param_begin(); 6045 FunctionType::param_iterator E = Ty->param_end(); 6046 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6047 Type *ExpectedTy = nullptr; 6048 if (I != E) { 6049 ExpectedTy = *I++; 6050 } else if (!Ty->isVarArg()) { 6051 return Error(ArgList[i].Loc, "too many arguments specified"); 6052 } 6053 6054 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6055 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6056 getTypeString(ExpectedTy) + "'"); 6057 Args.push_back(ArgList[i].V); 6058 ArgAttrs.push_back(ArgList[i].Attrs); 6059 } 6060 6061 if (I != E) 6062 return Error(CallLoc, "not enough parameters specified for call"); 6063 6064 if (FnAttrs.hasAlignmentAttr()) 6065 return Error(CallLoc, "invoke instructions may not have an alignment"); 6066 6067 // Finish off the Attribute and check them 6068 AttributeList PAL = 6069 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6070 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6071 6072 InvokeInst *II = 6073 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 6074 II->setCallingConv(CC); 6075 II->setAttributes(PAL); 6076 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 6077 Inst = II; 6078 return false; 6079 } 6080 6081 /// ParseResume 6082 /// ::= 'resume' TypeAndValue 6083 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 6084 Value *Exn; LocTy ExnLoc; 6085 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 6086 return true; 6087 6088 ResumeInst *RI = ResumeInst::Create(Exn); 6089 Inst = RI; 6090 return false; 6091 } 6092 6093 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args, 6094 PerFunctionState &PFS) { 6095 if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 6096 return true; 6097 6098 while (Lex.getKind() != lltok::rsquare) { 6099 // If this isn't the first argument, we need a comma. 6100 if (!Args.empty() && 6101 ParseToken(lltok::comma, "expected ',' in argument list")) 6102 return true; 6103 6104 // Parse the argument. 6105 LocTy ArgLoc; 6106 Type *ArgTy = nullptr; 6107 if (ParseType(ArgTy, ArgLoc)) 6108 return true; 6109 6110 Value *V; 6111 if (ArgTy->isMetadataTy()) { 6112 if (ParseMetadataAsValue(V, PFS)) 6113 return true; 6114 } else { 6115 if (ParseValue(ArgTy, V, PFS)) 6116 return true; 6117 } 6118 Args.push_back(V); 6119 } 6120 6121 Lex.Lex(); // Lex the ']'. 6122 return false; 6123 } 6124 6125 /// ParseCleanupRet 6126 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 6127 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 6128 Value *CleanupPad = nullptr; 6129 6130 if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret")) 6131 return true; 6132 6133 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 6134 return true; 6135 6136 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 6137 return true; 6138 6139 BasicBlock *UnwindBB = nullptr; 6140 if (Lex.getKind() == lltok::kw_to) { 6141 Lex.Lex(); 6142 if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 6143 return true; 6144 } else { 6145 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 6146 return true; 6147 } 6148 } 6149 6150 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 6151 return false; 6152 } 6153 6154 /// ParseCatchRet 6155 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 6156 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 6157 Value *CatchPad = nullptr; 6158 6159 if (ParseToken(lltok::kw_from, "expected 'from' after catchret")) 6160 return true; 6161 6162 if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS)) 6163 return true; 6164 6165 BasicBlock *BB; 6166 if (ParseToken(lltok::kw_to, "expected 'to' in catchret") || 6167 ParseTypeAndBasicBlock(BB, PFS)) 6168 return true; 6169 6170 Inst = CatchReturnInst::Create(CatchPad, BB); 6171 return false; 6172 } 6173 6174 /// ParseCatchSwitch 6175 /// ::= 'catchswitch' within Parent 6176 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6177 Value *ParentPad; 6178 6179 if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch")) 6180 return true; 6181 6182 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6183 Lex.getKind() != lltok::LocalVarID) 6184 return TokError("expected scope value for catchswitch"); 6185 6186 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6187 return true; 6188 6189 if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 6190 return true; 6191 6192 SmallVector<BasicBlock *, 32> Table; 6193 do { 6194 BasicBlock *DestBB; 6195 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6196 return true; 6197 Table.push_back(DestBB); 6198 } while (EatIfPresent(lltok::comma)); 6199 6200 if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 6201 return true; 6202 6203 if (ParseToken(lltok::kw_unwind, 6204 "expected 'unwind' after catchswitch scope")) 6205 return true; 6206 6207 BasicBlock *UnwindBB = nullptr; 6208 if (EatIfPresent(lltok::kw_to)) { 6209 if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 6210 return true; 6211 } else { 6212 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) 6213 return true; 6214 } 6215 6216 auto *CatchSwitch = 6217 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 6218 for (BasicBlock *DestBB : Table) 6219 CatchSwitch->addHandler(DestBB); 6220 Inst = CatchSwitch; 6221 return false; 6222 } 6223 6224 /// ParseCatchPad 6225 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 6226 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 6227 Value *CatchSwitch = nullptr; 6228 6229 if (ParseToken(lltok::kw_within, "expected 'within' after catchpad")) 6230 return true; 6231 6232 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 6233 return TokError("expected scope value for catchpad"); 6234 6235 if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 6236 return true; 6237 6238 SmallVector<Value *, 8> Args; 6239 if (ParseExceptionArgs(Args, PFS)) 6240 return true; 6241 6242 Inst = CatchPadInst::Create(CatchSwitch, Args); 6243 return false; 6244 } 6245 6246 /// ParseCleanupPad 6247 /// ::= 'cleanuppad' within Parent ParamList 6248 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 6249 Value *ParentPad = nullptr; 6250 6251 if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 6252 return true; 6253 6254 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6255 Lex.getKind() != lltok::LocalVarID) 6256 return TokError("expected scope value for cleanuppad"); 6257 6258 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6259 return true; 6260 6261 SmallVector<Value *, 8> Args; 6262 if (ParseExceptionArgs(Args, PFS)) 6263 return true; 6264 6265 Inst = CleanupPadInst::Create(ParentPad, Args); 6266 return false; 6267 } 6268 6269 //===----------------------------------------------------------------------===// 6270 // Unary Operators. 6271 //===----------------------------------------------------------------------===// 6272 6273 /// ParseUnaryOp 6274 /// ::= UnaryOp TypeAndValue ',' Value 6275 /// 6276 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6277 /// operand is allowed. 6278 bool LLParser::ParseUnaryOp(Instruction *&Inst, PerFunctionState &PFS, 6279 unsigned Opc, bool IsFP) { 6280 LocTy Loc; Value *LHS; 6281 if (ParseTypeAndValue(LHS, Loc, PFS)) 6282 return true; 6283 6284 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6285 : LHS->getType()->isIntOrIntVectorTy(); 6286 6287 if (!Valid) 6288 return Error(Loc, "invalid operand type for instruction"); 6289 6290 Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 6291 return false; 6292 } 6293 6294 /// ParseCallBr 6295 /// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList 6296 /// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue 6297 /// '[' LabelList ']' 6298 bool LLParser::ParseCallBr(Instruction *&Inst, PerFunctionState &PFS) { 6299 LocTy CallLoc = Lex.getLoc(); 6300 AttrBuilder RetAttrs, FnAttrs; 6301 std::vector<unsigned> FwdRefAttrGrps; 6302 LocTy NoBuiltinLoc; 6303 unsigned CC; 6304 Type *RetType = nullptr; 6305 LocTy RetTypeLoc; 6306 ValID CalleeID; 6307 SmallVector<ParamInfo, 16> ArgList; 6308 SmallVector<OperandBundleDef, 2> BundleList; 6309 6310 BasicBlock *DefaultDest; 6311 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6312 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6313 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 6314 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6315 NoBuiltinLoc) || 6316 ParseOptionalOperandBundles(BundleList, PFS) || 6317 ParseToken(lltok::kw_to, "expected 'to' in callbr") || 6318 ParseTypeAndBasicBlock(DefaultDest, PFS) || 6319 ParseToken(lltok::lsquare, "expected '[' in callbr")) 6320 return true; 6321 6322 // Parse the destination list. 6323 SmallVector<BasicBlock *, 16> IndirectDests; 6324 6325 if (Lex.getKind() != lltok::rsquare) { 6326 BasicBlock *DestBB; 6327 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6328 return true; 6329 IndirectDests.push_back(DestBB); 6330 6331 while (EatIfPresent(lltok::comma)) { 6332 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6333 return true; 6334 IndirectDests.push_back(DestBB); 6335 } 6336 } 6337 6338 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 6339 return true; 6340 6341 // If RetType is a non-function pointer type, then this is the short syntax 6342 // for the call, which means that RetType is just the return type. Infer the 6343 // rest of the function argument types from the arguments that are present. 6344 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6345 if (!Ty) { 6346 // Pull out the types of all of the arguments... 6347 std::vector<Type *> ParamTypes; 6348 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6349 ParamTypes.push_back(ArgList[i].V->getType()); 6350 6351 if (!FunctionType::isValidReturnType(RetType)) 6352 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6353 6354 Ty = FunctionType::get(RetType, ParamTypes, false); 6355 } 6356 6357 CalleeID.FTy = Ty; 6358 6359 // Look up the callee. 6360 Value *Callee; 6361 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS, 6362 /*IsCall=*/true)) 6363 return true; 6364 6365 if (isa<InlineAsm>(Callee) && !Ty->getReturnType()->isVoidTy()) 6366 return Error(RetTypeLoc, "asm-goto outputs not supported"); 6367 6368 // Set up the Attribute for the function. 6369 SmallVector<Value *, 8> Args; 6370 SmallVector<AttributeSet, 8> ArgAttrs; 6371 6372 // Loop through FunctionType's arguments and ensure they are specified 6373 // correctly. Also, gather any parameter attributes. 6374 FunctionType::param_iterator I = Ty->param_begin(); 6375 FunctionType::param_iterator E = Ty->param_end(); 6376 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6377 Type *ExpectedTy = nullptr; 6378 if (I != E) { 6379 ExpectedTy = *I++; 6380 } else if (!Ty->isVarArg()) { 6381 return Error(ArgList[i].Loc, "too many arguments specified"); 6382 } 6383 6384 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6385 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6386 getTypeString(ExpectedTy) + "'"); 6387 Args.push_back(ArgList[i].V); 6388 ArgAttrs.push_back(ArgList[i].Attrs); 6389 } 6390 6391 if (I != E) 6392 return Error(CallLoc, "not enough parameters specified for call"); 6393 6394 if (FnAttrs.hasAlignmentAttr()) 6395 return Error(CallLoc, "callbr instructions may not have an alignment"); 6396 6397 // Finish off the Attribute and check them 6398 AttributeList PAL = 6399 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6400 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6401 6402 CallBrInst *CBI = 6403 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args, 6404 BundleList); 6405 CBI->setCallingConv(CC); 6406 CBI->setAttributes(PAL); 6407 ForwardRefAttrGroups[CBI] = FwdRefAttrGrps; 6408 Inst = CBI; 6409 return false; 6410 } 6411 6412 //===----------------------------------------------------------------------===// 6413 // Binary Operators. 6414 //===----------------------------------------------------------------------===// 6415 6416 /// ParseArithmetic 6417 /// ::= ArithmeticOps TypeAndValue ',' Value 6418 /// 6419 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6420 /// operand is allowed. 6421 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 6422 unsigned Opc, bool IsFP) { 6423 LocTy Loc; Value *LHS, *RHS; 6424 if (ParseTypeAndValue(LHS, Loc, PFS) || 6425 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 6426 ParseValue(LHS->getType(), RHS, PFS)) 6427 return true; 6428 6429 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6430 : LHS->getType()->isIntOrIntVectorTy(); 6431 6432 if (!Valid) 6433 return Error(Loc, "invalid operand type for instruction"); 6434 6435 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6436 return false; 6437 } 6438 6439 /// ParseLogical 6440 /// ::= ArithmeticOps TypeAndValue ',' Value { 6441 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 6442 unsigned Opc) { 6443 LocTy Loc; Value *LHS, *RHS; 6444 if (ParseTypeAndValue(LHS, Loc, PFS) || 6445 ParseToken(lltok::comma, "expected ',' in logical operation") || 6446 ParseValue(LHS->getType(), RHS, PFS)) 6447 return true; 6448 6449 if (!LHS->getType()->isIntOrIntVectorTy()) 6450 return Error(Loc,"instruction requires integer or integer vector operands"); 6451 6452 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6453 return false; 6454 } 6455 6456 /// ParseCompare 6457 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 6458 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 6459 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 6460 unsigned Opc) { 6461 // Parse the integer/fp comparison predicate. 6462 LocTy Loc; 6463 unsigned Pred; 6464 Value *LHS, *RHS; 6465 if (ParseCmpPredicate(Pred, Opc) || 6466 ParseTypeAndValue(LHS, Loc, PFS) || 6467 ParseToken(lltok::comma, "expected ',' after compare value") || 6468 ParseValue(LHS->getType(), RHS, PFS)) 6469 return true; 6470 6471 if (Opc == Instruction::FCmp) { 6472 if (!LHS->getType()->isFPOrFPVectorTy()) 6473 return Error(Loc, "fcmp requires floating point operands"); 6474 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6475 } else { 6476 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 6477 if (!LHS->getType()->isIntOrIntVectorTy() && 6478 !LHS->getType()->isPtrOrPtrVectorTy()) 6479 return Error(Loc, "icmp requires integer operands"); 6480 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6481 } 6482 return false; 6483 } 6484 6485 //===----------------------------------------------------------------------===// 6486 // Other Instructions. 6487 //===----------------------------------------------------------------------===// 6488 6489 6490 /// ParseCast 6491 /// ::= CastOpc TypeAndValue 'to' Type 6492 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 6493 unsigned Opc) { 6494 LocTy Loc; 6495 Value *Op; 6496 Type *DestTy = nullptr; 6497 if (ParseTypeAndValue(Op, Loc, PFS) || 6498 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 6499 ParseType(DestTy)) 6500 return true; 6501 6502 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 6503 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 6504 return Error(Loc, "invalid cast opcode for cast from '" + 6505 getTypeString(Op->getType()) + "' to '" + 6506 getTypeString(DestTy) + "'"); 6507 } 6508 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 6509 return false; 6510 } 6511 6512 /// ParseSelect 6513 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6514 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 6515 LocTy Loc; 6516 Value *Op0, *Op1, *Op2; 6517 if (ParseTypeAndValue(Op0, Loc, PFS) || 6518 ParseToken(lltok::comma, "expected ',' after select condition") || 6519 ParseTypeAndValue(Op1, PFS) || 6520 ParseToken(lltok::comma, "expected ',' after select value") || 6521 ParseTypeAndValue(Op2, PFS)) 6522 return true; 6523 6524 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 6525 return Error(Loc, Reason); 6526 6527 Inst = SelectInst::Create(Op0, Op1, Op2); 6528 return false; 6529 } 6530 6531 /// ParseVA_Arg 6532 /// ::= 'va_arg' TypeAndValue ',' Type 6533 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 6534 Value *Op; 6535 Type *EltTy = nullptr; 6536 LocTy TypeLoc; 6537 if (ParseTypeAndValue(Op, PFS) || 6538 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 6539 ParseType(EltTy, TypeLoc)) 6540 return true; 6541 6542 if (!EltTy->isFirstClassType()) 6543 return Error(TypeLoc, "va_arg requires operand with first class type"); 6544 6545 Inst = new VAArgInst(Op, EltTy); 6546 return false; 6547 } 6548 6549 /// ParseExtractElement 6550 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 6551 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 6552 LocTy Loc; 6553 Value *Op0, *Op1; 6554 if (ParseTypeAndValue(Op0, Loc, PFS) || 6555 ParseToken(lltok::comma, "expected ',' after extract value") || 6556 ParseTypeAndValue(Op1, PFS)) 6557 return true; 6558 6559 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 6560 return Error(Loc, "invalid extractelement operands"); 6561 6562 Inst = ExtractElementInst::Create(Op0, Op1); 6563 return false; 6564 } 6565 6566 /// ParseInsertElement 6567 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6568 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 6569 LocTy Loc; 6570 Value *Op0, *Op1, *Op2; 6571 if (ParseTypeAndValue(Op0, Loc, PFS) || 6572 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6573 ParseTypeAndValue(Op1, PFS) || 6574 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6575 ParseTypeAndValue(Op2, PFS)) 6576 return true; 6577 6578 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 6579 return Error(Loc, "invalid insertelement operands"); 6580 6581 Inst = InsertElementInst::Create(Op0, Op1, Op2); 6582 return false; 6583 } 6584 6585 /// ParseShuffleVector 6586 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6587 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 6588 LocTy Loc; 6589 Value *Op0, *Op1, *Op2; 6590 if (ParseTypeAndValue(Op0, Loc, PFS) || 6591 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 6592 ParseTypeAndValue(Op1, PFS) || 6593 ParseToken(lltok::comma, "expected ',' after shuffle value") || 6594 ParseTypeAndValue(Op2, PFS)) 6595 return true; 6596 6597 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 6598 return Error(Loc, "invalid shufflevector operands"); 6599 6600 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 6601 return false; 6602 } 6603 6604 /// ParsePHI 6605 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 6606 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 6607 Type *Ty = nullptr; LocTy TypeLoc; 6608 Value *Op0, *Op1; 6609 6610 if (ParseType(Ty, TypeLoc) || 6611 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 6612 ParseValue(Ty, Op0, PFS) || 6613 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6614 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 6615 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 6616 return true; 6617 6618 bool AteExtraComma = false; 6619 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 6620 6621 while (true) { 6622 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 6623 6624 if (!EatIfPresent(lltok::comma)) 6625 break; 6626 6627 if (Lex.getKind() == lltok::MetadataVar) { 6628 AteExtraComma = true; 6629 break; 6630 } 6631 6632 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 6633 ParseValue(Ty, Op0, PFS) || 6634 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6635 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 6636 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 6637 return true; 6638 } 6639 6640 if (!Ty->isFirstClassType()) 6641 return Error(TypeLoc, "phi node must have first class type"); 6642 6643 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 6644 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 6645 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 6646 Inst = PN; 6647 return AteExtraComma ? InstExtraComma : InstNormal; 6648 } 6649 6650 /// ParseLandingPad 6651 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 6652 /// Clause 6653 /// ::= 'catch' TypeAndValue 6654 /// ::= 'filter' 6655 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 6656 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 6657 Type *Ty = nullptr; LocTy TyLoc; 6658 6659 if (ParseType(Ty, TyLoc)) 6660 return true; 6661 6662 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 6663 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 6664 6665 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 6666 LandingPadInst::ClauseType CT; 6667 if (EatIfPresent(lltok::kw_catch)) 6668 CT = LandingPadInst::Catch; 6669 else if (EatIfPresent(lltok::kw_filter)) 6670 CT = LandingPadInst::Filter; 6671 else 6672 return TokError("expected 'catch' or 'filter' clause type"); 6673 6674 Value *V; 6675 LocTy VLoc; 6676 if (ParseTypeAndValue(V, VLoc, PFS)) 6677 return true; 6678 6679 // A 'catch' type expects a non-array constant. A filter clause expects an 6680 // array constant. 6681 if (CT == LandingPadInst::Catch) { 6682 if (isa<ArrayType>(V->getType())) 6683 Error(VLoc, "'catch' clause has an invalid type"); 6684 } else { 6685 if (!isa<ArrayType>(V->getType())) 6686 Error(VLoc, "'filter' clause has an invalid type"); 6687 } 6688 6689 Constant *CV = dyn_cast<Constant>(V); 6690 if (!CV) 6691 return Error(VLoc, "clause argument must be a constant"); 6692 LP->addClause(CV); 6693 } 6694 6695 Inst = LP.release(); 6696 return false; 6697 } 6698 6699 /// ParseCall 6700 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 6701 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6702 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 6703 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6704 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 6705 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6706 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 6707 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6708 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 6709 CallInst::TailCallKind TCK) { 6710 AttrBuilder RetAttrs, FnAttrs; 6711 std::vector<unsigned> FwdRefAttrGrps; 6712 LocTy BuiltinLoc; 6713 unsigned CallAddrSpace; 6714 unsigned CC; 6715 Type *RetType = nullptr; 6716 LocTy RetTypeLoc; 6717 ValID CalleeID; 6718 SmallVector<ParamInfo, 16> ArgList; 6719 SmallVector<OperandBundleDef, 2> BundleList; 6720 LocTy CallLoc = Lex.getLoc(); 6721 6722 if (TCK != CallInst::TCK_None && 6723 ParseToken(lltok::kw_call, 6724 "expected 'tail call', 'musttail call', or 'notail call'")) 6725 return true; 6726 6727 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6728 6729 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6730 ParseOptionalProgramAddrSpace(CallAddrSpace) || 6731 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6732 ParseValID(CalleeID) || 6733 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 6734 PFS.getFunction().isVarArg()) || 6735 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 6736 ParseOptionalOperandBundles(BundleList, PFS)) 6737 return true; 6738 6739 if (FMF.any() && !RetType->isFPOrFPVectorTy()) 6740 return Error(CallLoc, "fast-math-flags specified for call without " 6741 "floating-point scalar or vector return type"); 6742 6743 // If RetType is a non-function pointer type, then this is the short syntax 6744 // for the call, which means that RetType is just the return type. Infer the 6745 // rest of the function argument types from the arguments that are present. 6746 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6747 if (!Ty) { 6748 // Pull out the types of all of the arguments... 6749 std::vector<Type*> ParamTypes; 6750 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6751 ParamTypes.push_back(ArgList[i].V->getType()); 6752 6753 if (!FunctionType::isValidReturnType(RetType)) 6754 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6755 6756 Ty = FunctionType::get(RetType, ParamTypes, false); 6757 } 6758 6759 CalleeID.FTy = Ty; 6760 6761 // Look up the callee. 6762 Value *Callee; 6763 if (ConvertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee, 6764 &PFS, /*IsCall=*/true)) 6765 return true; 6766 6767 // Set up the Attribute for the function. 6768 SmallVector<AttributeSet, 8> Attrs; 6769 6770 SmallVector<Value*, 8> Args; 6771 6772 // Loop through FunctionType's arguments and ensure they are specified 6773 // correctly. Also, gather any parameter attributes. 6774 FunctionType::param_iterator I = Ty->param_begin(); 6775 FunctionType::param_iterator E = Ty->param_end(); 6776 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6777 Type *ExpectedTy = nullptr; 6778 if (I != E) { 6779 ExpectedTy = *I++; 6780 } else if (!Ty->isVarArg()) { 6781 return Error(ArgList[i].Loc, "too many arguments specified"); 6782 } 6783 6784 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6785 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6786 getTypeString(ExpectedTy) + "'"); 6787 Args.push_back(ArgList[i].V); 6788 Attrs.push_back(ArgList[i].Attrs); 6789 } 6790 6791 if (I != E) 6792 return Error(CallLoc, "not enough parameters specified for call"); 6793 6794 if (FnAttrs.hasAlignmentAttr()) 6795 return Error(CallLoc, "call instructions may not have an alignment"); 6796 6797 // Finish off the Attribute and check them 6798 AttributeList PAL = 6799 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6800 AttributeSet::get(Context, RetAttrs), Attrs); 6801 6802 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 6803 CI->setTailCallKind(TCK); 6804 CI->setCallingConv(CC); 6805 if (FMF.any()) 6806 CI->setFastMathFlags(FMF); 6807 CI->setAttributes(PAL); 6808 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 6809 Inst = CI; 6810 return false; 6811 } 6812 6813 //===----------------------------------------------------------------------===// 6814 // Memory Instructions. 6815 //===----------------------------------------------------------------------===// 6816 6817 /// ParseAlloc 6818 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 6819 /// (',' 'align' i32)? (',', 'addrspace(n))? 6820 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 6821 Value *Size = nullptr; 6822 LocTy SizeLoc, TyLoc, ASLoc; 6823 unsigned Alignment = 0; 6824 unsigned AddrSpace = 0; 6825 Type *Ty = nullptr; 6826 6827 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 6828 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 6829 6830 if (ParseType(Ty, TyLoc)) return true; 6831 6832 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 6833 return Error(TyLoc, "invalid type for alloca"); 6834 6835 bool AteExtraComma = false; 6836 if (EatIfPresent(lltok::comma)) { 6837 if (Lex.getKind() == lltok::kw_align) { 6838 if (ParseOptionalAlignment(Alignment)) 6839 return true; 6840 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 6841 return true; 6842 } else if (Lex.getKind() == lltok::kw_addrspace) { 6843 ASLoc = Lex.getLoc(); 6844 if (ParseOptionalAddrSpace(AddrSpace)) 6845 return true; 6846 } else if (Lex.getKind() == lltok::MetadataVar) { 6847 AteExtraComma = true; 6848 } else { 6849 if (ParseTypeAndValue(Size, SizeLoc, PFS)) 6850 return true; 6851 if (EatIfPresent(lltok::comma)) { 6852 if (Lex.getKind() == lltok::kw_align) { 6853 if (ParseOptionalAlignment(Alignment)) 6854 return true; 6855 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 6856 return true; 6857 } else if (Lex.getKind() == lltok::kw_addrspace) { 6858 ASLoc = Lex.getLoc(); 6859 if (ParseOptionalAddrSpace(AddrSpace)) 6860 return true; 6861 } else if (Lex.getKind() == lltok::MetadataVar) { 6862 AteExtraComma = true; 6863 } 6864 } 6865 } 6866 } 6867 6868 if (Size && !Size->getType()->isIntegerTy()) 6869 return Error(SizeLoc, "element count must have integer type"); 6870 6871 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, Alignment); 6872 AI->setUsedWithInAlloca(IsInAlloca); 6873 AI->setSwiftError(IsSwiftError); 6874 Inst = AI; 6875 return AteExtraComma ? InstExtraComma : InstNormal; 6876 } 6877 6878 /// ParseLoad 6879 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 6880 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 6881 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6882 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 6883 Value *Val; LocTy Loc; 6884 unsigned Alignment = 0; 6885 bool AteExtraComma = false; 6886 bool isAtomic = false; 6887 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6888 SyncScope::ID SSID = SyncScope::System; 6889 6890 if (Lex.getKind() == lltok::kw_atomic) { 6891 isAtomic = true; 6892 Lex.Lex(); 6893 } 6894 6895 bool isVolatile = false; 6896 if (Lex.getKind() == lltok::kw_volatile) { 6897 isVolatile = true; 6898 Lex.Lex(); 6899 } 6900 6901 Type *Ty; 6902 LocTy ExplicitTypeLoc = Lex.getLoc(); 6903 if (ParseType(Ty) || 6904 ParseToken(lltok::comma, "expected comma after load's type") || 6905 ParseTypeAndValue(Val, Loc, PFS) || 6906 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 6907 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6908 return true; 6909 6910 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 6911 return Error(Loc, "load operand must be a pointer to a first class type"); 6912 if (isAtomic && !Alignment) 6913 return Error(Loc, "atomic load must have explicit non-zero alignment"); 6914 if (Ordering == AtomicOrdering::Release || 6915 Ordering == AtomicOrdering::AcquireRelease) 6916 return Error(Loc, "atomic load cannot use Release ordering"); 6917 6918 if (Ty != cast<PointerType>(Val->getType())->getElementType()) 6919 return Error(ExplicitTypeLoc, 6920 "explicit pointee type doesn't match operand's pointee type"); 6921 6922 Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID); 6923 return AteExtraComma ? InstExtraComma : InstNormal; 6924 } 6925 6926 /// ParseStore 6927 6928 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 6929 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 6930 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6931 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 6932 Value *Val, *Ptr; LocTy Loc, PtrLoc; 6933 unsigned Alignment = 0; 6934 bool AteExtraComma = false; 6935 bool isAtomic = false; 6936 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6937 SyncScope::ID SSID = SyncScope::System; 6938 6939 if (Lex.getKind() == lltok::kw_atomic) { 6940 isAtomic = true; 6941 Lex.Lex(); 6942 } 6943 6944 bool isVolatile = false; 6945 if (Lex.getKind() == lltok::kw_volatile) { 6946 isVolatile = true; 6947 Lex.Lex(); 6948 } 6949 6950 if (ParseTypeAndValue(Val, Loc, PFS) || 6951 ParseToken(lltok::comma, "expected ',' after store operand") || 6952 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6953 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 6954 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6955 return true; 6956 6957 if (!Ptr->getType()->isPointerTy()) 6958 return Error(PtrLoc, "store operand must be a pointer"); 6959 if (!Val->getType()->isFirstClassType()) 6960 return Error(Loc, "store operand must be a first class value"); 6961 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6962 return Error(Loc, "stored value and pointer type do not match"); 6963 if (isAtomic && !Alignment) 6964 return Error(Loc, "atomic store must have explicit non-zero alignment"); 6965 if (Ordering == AtomicOrdering::Acquire || 6966 Ordering == AtomicOrdering::AcquireRelease) 6967 return Error(Loc, "atomic store cannot use Acquire ordering"); 6968 6969 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID); 6970 return AteExtraComma ? InstExtraComma : InstNormal; 6971 } 6972 6973 /// ParseCmpXchg 6974 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 6975 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering 6976 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 6977 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 6978 bool AteExtraComma = false; 6979 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 6980 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 6981 SyncScope::ID SSID = SyncScope::System; 6982 bool isVolatile = false; 6983 bool isWeak = false; 6984 6985 if (EatIfPresent(lltok::kw_weak)) 6986 isWeak = true; 6987 6988 if (EatIfPresent(lltok::kw_volatile)) 6989 isVolatile = true; 6990 6991 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6992 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 6993 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 6994 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 6995 ParseTypeAndValue(New, NewLoc, PFS) || 6996 ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 6997 ParseOrdering(FailureOrdering)) 6998 return true; 6999 7000 if (SuccessOrdering == AtomicOrdering::Unordered || 7001 FailureOrdering == AtomicOrdering::Unordered) 7002 return TokError("cmpxchg cannot be unordered"); 7003 if (isStrongerThan(FailureOrdering, SuccessOrdering)) 7004 return TokError("cmpxchg failure argument shall be no stronger than the " 7005 "success argument"); 7006 if (FailureOrdering == AtomicOrdering::Release || 7007 FailureOrdering == AtomicOrdering::AcquireRelease) 7008 return TokError( 7009 "cmpxchg failure ordering cannot include release semantics"); 7010 if (!Ptr->getType()->isPointerTy()) 7011 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 7012 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 7013 return Error(CmpLoc, "compare value and pointer type do not match"); 7014 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 7015 return Error(NewLoc, "new value and pointer type do not match"); 7016 if (!New->getType()->isFirstClassType()) 7017 return Error(NewLoc, "cmpxchg operand must be a first class value"); 7018 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 7019 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID); 7020 CXI->setVolatile(isVolatile); 7021 CXI->setWeak(isWeak); 7022 Inst = CXI; 7023 return AteExtraComma ? InstExtraComma : InstNormal; 7024 } 7025 7026 /// ParseAtomicRMW 7027 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 7028 /// 'singlethread'? AtomicOrdering 7029 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 7030 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 7031 bool AteExtraComma = false; 7032 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7033 SyncScope::ID SSID = SyncScope::System; 7034 bool isVolatile = false; 7035 bool IsFP = false; 7036 AtomicRMWInst::BinOp Operation; 7037 7038 if (EatIfPresent(lltok::kw_volatile)) 7039 isVolatile = true; 7040 7041 switch (Lex.getKind()) { 7042 default: return TokError("expected binary operation in atomicrmw"); 7043 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 7044 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 7045 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 7046 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 7047 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 7048 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 7049 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 7050 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 7051 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 7052 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 7053 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 7054 case lltok::kw_fadd: 7055 Operation = AtomicRMWInst::FAdd; 7056 IsFP = true; 7057 break; 7058 case lltok::kw_fsub: 7059 Operation = AtomicRMWInst::FSub; 7060 IsFP = true; 7061 break; 7062 } 7063 Lex.Lex(); // Eat the operation. 7064 7065 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 7066 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 7067 ParseTypeAndValue(Val, ValLoc, PFS) || 7068 ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7069 return true; 7070 7071 if (Ordering == AtomicOrdering::Unordered) 7072 return TokError("atomicrmw cannot be unordered"); 7073 if (!Ptr->getType()->isPointerTy()) 7074 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 7075 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 7076 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 7077 7078 if (Operation == AtomicRMWInst::Xchg) { 7079 if (!Val->getType()->isIntegerTy() && 7080 !Val->getType()->isFloatingPointTy()) { 7081 return Error(ValLoc, "atomicrmw " + 7082 AtomicRMWInst::getOperationName(Operation) + 7083 " operand must be an integer or floating point type"); 7084 } 7085 } else if (IsFP) { 7086 if (!Val->getType()->isFloatingPointTy()) { 7087 return Error(ValLoc, "atomicrmw " + 7088 AtomicRMWInst::getOperationName(Operation) + 7089 " operand must be a floating point type"); 7090 } 7091 } else { 7092 if (!Val->getType()->isIntegerTy()) { 7093 return Error(ValLoc, "atomicrmw " + 7094 AtomicRMWInst::getOperationName(Operation) + 7095 " operand must be an integer"); 7096 } 7097 } 7098 7099 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 7100 if (Size < 8 || (Size & (Size - 1))) 7101 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 7102 " integer"); 7103 7104 AtomicRMWInst *RMWI = 7105 new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 7106 RMWI->setVolatile(isVolatile); 7107 Inst = RMWI; 7108 return AteExtraComma ? InstExtraComma : InstNormal; 7109 } 7110 7111 /// ParseFence 7112 /// ::= 'fence' 'singlethread'? AtomicOrdering 7113 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 7114 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7115 SyncScope::ID SSID = SyncScope::System; 7116 if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7117 return true; 7118 7119 if (Ordering == AtomicOrdering::Unordered) 7120 return TokError("fence cannot be unordered"); 7121 if (Ordering == AtomicOrdering::Monotonic) 7122 return TokError("fence cannot be monotonic"); 7123 7124 Inst = new FenceInst(Context, Ordering, SSID); 7125 return InstNormal; 7126 } 7127 7128 /// ParseGetElementPtr 7129 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 7130 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 7131 Value *Ptr = nullptr; 7132 Value *Val = nullptr; 7133 LocTy Loc, EltLoc; 7134 7135 bool InBounds = EatIfPresent(lltok::kw_inbounds); 7136 7137 Type *Ty = nullptr; 7138 LocTy ExplicitTypeLoc = Lex.getLoc(); 7139 if (ParseType(Ty) || 7140 ParseToken(lltok::comma, "expected comma after getelementptr's type") || 7141 ParseTypeAndValue(Ptr, Loc, PFS)) 7142 return true; 7143 7144 Type *BaseType = Ptr->getType(); 7145 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 7146 if (!BasePointerType) 7147 return Error(Loc, "base of getelementptr must be a pointer"); 7148 7149 if (Ty != BasePointerType->getElementType()) 7150 return Error(ExplicitTypeLoc, 7151 "explicit pointee type doesn't match operand's pointee type"); 7152 7153 SmallVector<Value*, 16> Indices; 7154 bool AteExtraComma = false; 7155 // GEP returns a vector of pointers if at least one of parameters is a vector. 7156 // All vector parameters should have the same vector width. 7157 unsigned GEPWidth = BaseType->isVectorTy() ? 7158 BaseType->getVectorNumElements() : 0; 7159 7160 while (EatIfPresent(lltok::comma)) { 7161 if (Lex.getKind() == lltok::MetadataVar) { 7162 AteExtraComma = true; 7163 break; 7164 } 7165 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 7166 if (!Val->getType()->isIntOrIntVectorTy()) 7167 return Error(EltLoc, "getelementptr index must be an integer"); 7168 7169 if (Val->getType()->isVectorTy()) { 7170 unsigned ValNumEl = Val->getType()->getVectorNumElements(); 7171 if (GEPWidth && GEPWidth != ValNumEl) 7172 return Error(EltLoc, 7173 "getelementptr vector index has a wrong number of elements"); 7174 GEPWidth = ValNumEl; 7175 } 7176 Indices.push_back(Val); 7177 } 7178 7179 SmallPtrSet<Type*, 4> Visited; 7180 if (!Indices.empty() && !Ty->isSized(&Visited)) 7181 return Error(Loc, "base element of getelementptr must be sized"); 7182 7183 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 7184 return Error(Loc, "invalid getelementptr indices"); 7185 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 7186 if (InBounds) 7187 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 7188 return AteExtraComma ? InstExtraComma : InstNormal; 7189 } 7190 7191 /// ParseExtractValue 7192 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 7193 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 7194 Value *Val; LocTy Loc; 7195 SmallVector<unsigned, 4> Indices; 7196 bool AteExtraComma; 7197 if (ParseTypeAndValue(Val, Loc, PFS) || 7198 ParseIndexList(Indices, AteExtraComma)) 7199 return true; 7200 7201 if (!Val->getType()->isAggregateType()) 7202 return Error(Loc, "extractvalue operand must be aggregate type"); 7203 7204 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 7205 return Error(Loc, "invalid indices for extractvalue"); 7206 Inst = ExtractValueInst::Create(Val, Indices); 7207 return AteExtraComma ? InstExtraComma : InstNormal; 7208 } 7209 7210 /// ParseInsertValue 7211 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 7212 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 7213 Value *Val0, *Val1; LocTy Loc0, Loc1; 7214 SmallVector<unsigned, 4> Indices; 7215 bool AteExtraComma; 7216 if (ParseTypeAndValue(Val0, Loc0, PFS) || 7217 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 7218 ParseTypeAndValue(Val1, Loc1, PFS) || 7219 ParseIndexList(Indices, AteExtraComma)) 7220 return true; 7221 7222 if (!Val0->getType()->isAggregateType()) 7223 return Error(Loc0, "insertvalue operand must be aggregate type"); 7224 7225 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 7226 if (!IndexedType) 7227 return Error(Loc0, "invalid indices for insertvalue"); 7228 if (IndexedType != Val1->getType()) 7229 return Error(Loc1, "insertvalue operand and field disagree in type: '" + 7230 getTypeString(Val1->getType()) + "' instead of '" + 7231 getTypeString(IndexedType) + "'"); 7232 Inst = InsertValueInst::Create(Val0, Val1, Indices); 7233 return AteExtraComma ? InstExtraComma : InstNormal; 7234 } 7235 7236 //===----------------------------------------------------------------------===// 7237 // Embedded metadata. 7238 //===----------------------------------------------------------------------===// 7239 7240 /// ParseMDNodeVector 7241 /// ::= { Element (',' Element)* } 7242 /// Element 7243 /// ::= 'null' | TypeAndValue 7244 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 7245 if (ParseToken(lltok::lbrace, "expected '{' here")) 7246 return true; 7247 7248 // Check for an empty list. 7249 if (EatIfPresent(lltok::rbrace)) 7250 return false; 7251 7252 do { 7253 // Null is a special case since it is typeless. 7254 if (EatIfPresent(lltok::kw_null)) { 7255 Elts.push_back(nullptr); 7256 continue; 7257 } 7258 7259 Metadata *MD; 7260 if (ParseMetadata(MD, nullptr)) 7261 return true; 7262 Elts.push_back(MD); 7263 } while (EatIfPresent(lltok::comma)); 7264 7265 return ParseToken(lltok::rbrace, "expected end of metadata node"); 7266 } 7267 7268 //===----------------------------------------------------------------------===// 7269 // Use-list order directives. 7270 //===----------------------------------------------------------------------===// 7271 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 7272 SMLoc Loc) { 7273 if (V->use_empty()) 7274 return Error(Loc, "value has no uses"); 7275 7276 unsigned NumUses = 0; 7277 SmallDenseMap<const Use *, unsigned, 16> Order; 7278 for (const Use &U : V->uses()) { 7279 if (++NumUses > Indexes.size()) 7280 break; 7281 Order[&U] = Indexes[NumUses - 1]; 7282 } 7283 if (NumUses < 2) 7284 return Error(Loc, "value only has one use"); 7285 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 7286 return Error(Loc, 7287 "wrong number of indexes, expected " + Twine(V->getNumUses())); 7288 7289 V->sortUseList([&](const Use &L, const Use &R) { 7290 return Order.lookup(&L) < Order.lookup(&R); 7291 }); 7292 return false; 7293 } 7294 7295 /// ParseUseListOrderIndexes 7296 /// ::= '{' uint32 (',' uint32)+ '}' 7297 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 7298 SMLoc Loc = Lex.getLoc(); 7299 if (ParseToken(lltok::lbrace, "expected '{' here")) 7300 return true; 7301 if (Lex.getKind() == lltok::rbrace) 7302 return Lex.Error("expected non-empty list of uselistorder indexes"); 7303 7304 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 7305 // indexes should be distinct numbers in the range [0, size-1], and should 7306 // not be in order. 7307 unsigned Offset = 0; 7308 unsigned Max = 0; 7309 bool IsOrdered = true; 7310 assert(Indexes.empty() && "Expected empty order vector"); 7311 do { 7312 unsigned Index; 7313 if (ParseUInt32(Index)) 7314 return true; 7315 7316 // Update consistency checks. 7317 Offset += Index - Indexes.size(); 7318 Max = std::max(Max, Index); 7319 IsOrdered &= Index == Indexes.size(); 7320 7321 Indexes.push_back(Index); 7322 } while (EatIfPresent(lltok::comma)); 7323 7324 if (ParseToken(lltok::rbrace, "expected '}' here")) 7325 return true; 7326 7327 if (Indexes.size() < 2) 7328 return Error(Loc, "expected >= 2 uselistorder indexes"); 7329 if (Offset != 0 || Max >= Indexes.size()) 7330 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)"); 7331 if (IsOrdered) 7332 return Error(Loc, "expected uselistorder indexes to change the order"); 7333 7334 return false; 7335 } 7336 7337 /// ParseUseListOrder 7338 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 7339 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) { 7340 SMLoc Loc = Lex.getLoc(); 7341 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 7342 return true; 7343 7344 Value *V; 7345 SmallVector<unsigned, 16> Indexes; 7346 if (ParseTypeAndValue(V, PFS) || 7347 ParseToken(lltok::comma, "expected comma in uselistorder directive") || 7348 ParseUseListOrderIndexes(Indexes)) 7349 return true; 7350 7351 return sortUseListOrder(V, Indexes, Loc); 7352 } 7353 7354 /// ParseUseListOrderBB 7355 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 7356 bool LLParser::ParseUseListOrderBB() { 7357 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 7358 SMLoc Loc = Lex.getLoc(); 7359 Lex.Lex(); 7360 7361 ValID Fn, Label; 7362 SmallVector<unsigned, 16> Indexes; 7363 if (ParseValID(Fn) || 7364 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7365 ParseValID(Label) || 7366 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7367 ParseUseListOrderIndexes(Indexes)) 7368 return true; 7369 7370 // Check the function. 7371 GlobalValue *GV; 7372 if (Fn.Kind == ValID::t_GlobalName) 7373 GV = M->getNamedValue(Fn.StrVal); 7374 else if (Fn.Kind == ValID::t_GlobalID) 7375 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 7376 else 7377 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 7378 if (!GV) 7379 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb"); 7380 auto *F = dyn_cast<Function>(GV); 7381 if (!F) 7382 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 7383 if (F->isDeclaration()) 7384 return Error(Fn.Loc, "invalid declaration in uselistorder_bb"); 7385 7386 // Check the basic block. 7387 if (Label.Kind == ValID::t_LocalID) 7388 return Error(Label.Loc, "invalid numeric label in uselistorder_bb"); 7389 if (Label.Kind != ValID::t_LocalName) 7390 return Error(Label.Loc, "expected basic block name in uselistorder_bb"); 7391 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 7392 if (!V) 7393 return Error(Label.Loc, "invalid basic block in uselistorder_bb"); 7394 if (!isa<BasicBlock>(V)) 7395 return Error(Label.Loc, "expected basic block in uselistorder_bb"); 7396 7397 return sortUseListOrder(V, Indexes, Loc); 7398 } 7399 7400 /// ModuleEntry 7401 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')' 7402 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')' 7403 bool LLParser::ParseModuleEntry(unsigned ID) { 7404 assert(Lex.getKind() == lltok::kw_module); 7405 Lex.Lex(); 7406 7407 std::string Path; 7408 if (ParseToken(lltok::colon, "expected ':' here") || 7409 ParseToken(lltok::lparen, "expected '(' here") || 7410 ParseToken(lltok::kw_path, "expected 'path' here") || 7411 ParseToken(lltok::colon, "expected ':' here") || 7412 ParseStringConstant(Path) || 7413 ParseToken(lltok::comma, "expected ',' here") || 7414 ParseToken(lltok::kw_hash, "expected 'hash' here") || 7415 ParseToken(lltok::colon, "expected ':' here") || 7416 ParseToken(lltok::lparen, "expected '(' here")) 7417 return true; 7418 7419 ModuleHash Hash; 7420 if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") || 7421 ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") || 7422 ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") || 7423 ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") || 7424 ParseUInt32(Hash[4])) 7425 return true; 7426 7427 if (ParseToken(lltok::rparen, "expected ')' here") || 7428 ParseToken(lltok::rparen, "expected ')' here")) 7429 return true; 7430 7431 auto ModuleEntry = Index->addModule(Path, ID, Hash); 7432 ModuleIdMap[ID] = ModuleEntry->first(); 7433 7434 return false; 7435 } 7436 7437 /// TypeIdEntry 7438 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')' 7439 bool LLParser::ParseTypeIdEntry(unsigned ID) { 7440 assert(Lex.getKind() == lltok::kw_typeid); 7441 Lex.Lex(); 7442 7443 std::string Name; 7444 if (ParseToken(lltok::colon, "expected ':' here") || 7445 ParseToken(lltok::lparen, "expected '(' here") || 7446 ParseToken(lltok::kw_name, "expected 'name' here") || 7447 ParseToken(lltok::colon, "expected ':' here") || 7448 ParseStringConstant(Name)) 7449 return true; 7450 7451 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name); 7452 if (ParseToken(lltok::comma, "expected ',' here") || 7453 ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here")) 7454 return true; 7455 7456 // Check if this ID was forward referenced, and if so, update the 7457 // corresponding GUIDs. 7458 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7459 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7460 for (auto TIDRef : FwdRefTIDs->second) { 7461 assert(!*TIDRef.first && 7462 "Forward referenced type id GUID expected to be 0"); 7463 *TIDRef.first = GlobalValue::getGUID(Name); 7464 } 7465 ForwardRefTypeIds.erase(FwdRefTIDs); 7466 } 7467 7468 return false; 7469 } 7470 7471 /// TypeIdSummary 7472 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')' 7473 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) { 7474 if (ParseToken(lltok::kw_summary, "expected 'summary' here") || 7475 ParseToken(lltok::colon, "expected ':' here") || 7476 ParseToken(lltok::lparen, "expected '(' here") || 7477 ParseTypeTestResolution(TIS.TTRes)) 7478 return true; 7479 7480 if (EatIfPresent(lltok::comma)) { 7481 // Expect optional wpdResolutions field 7482 if (ParseOptionalWpdResolutions(TIS.WPDRes)) 7483 return true; 7484 } 7485 7486 if (ParseToken(lltok::rparen, "expected ')' here")) 7487 return true; 7488 7489 return false; 7490 } 7491 7492 static ValueInfo EmptyVI = 7493 ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8); 7494 7495 /// TypeIdCompatibleVtableEntry 7496 /// ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ',' 7497 /// TypeIdCompatibleVtableInfo 7498 /// ')' 7499 bool LLParser::ParseTypeIdCompatibleVtableEntry(unsigned ID) { 7500 assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable); 7501 Lex.Lex(); 7502 7503 std::string Name; 7504 if (ParseToken(lltok::colon, "expected ':' here") || 7505 ParseToken(lltok::lparen, "expected '(' here") || 7506 ParseToken(lltok::kw_name, "expected 'name' here") || 7507 ParseToken(lltok::colon, "expected ':' here") || 7508 ParseStringConstant(Name)) 7509 return true; 7510 7511 TypeIdCompatibleVtableInfo &TI = 7512 Index->getOrInsertTypeIdCompatibleVtableSummary(Name); 7513 if (ParseToken(lltok::comma, "expected ',' here") || 7514 ParseToken(lltok::kw_summary, "expected 'summary' here") || 7515 ParseToken(lltok::colon, "expected ':' here") || 7516 ParseToken(lltok::lparen, "expected '(' here")) 7517 return true; 7518 7519 IdToIndexMapType IdToIndexMap; 7520 // Parse each call edge 7521 do { 7522 uint64_t Offset; 7523 if (ParseToken(lltok::lparen, "expected '(' here") || 7524 ParseToken(lltok::kw_offset, "expected 'offset' here") || 7525 ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) || 7526 ParseToken(lltok::comma, "expected ',' here")) 7527 return true; 7528 7529 LocTy Loc = Lex.getLoc(); 7530 unsigned GVId; 7531 ValueInfo VI; 7532 if (ParseGVReference(VI, GVId)) 7533 return true; 7534 7535 // Keep track of the TypeIdCompatibleVtableInfo array index needing a 7536 // forward reference. We will save the location of the ValueInfo needing an 7537 // update, but can only do so once the std::vector is finalized. 7538 if (VI == EmptyVI) 7539 IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc)); 7540 TI.push_back({Offset, VI}); 7541 7542 if (ParseToken(lltok::rparen, "expected ')' in call")) 7543 return true; 7544 } while (EatIfPresent(lltok::comma)); 7545 7546 // Now that the TI vector is finalized, it is safe to save the locations 7547 // of any forward GV references that need updating later. 7548 for (auto I : IdToIndexMap) { 7549 for (auto P : I.second) { 7550 assert(TI[P.first].VTableVI == EmptyVI && 7551 "Forward referenced ValueInfo expected to be empty"); 7552 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 7553 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 7554 FwdRef.first->second.push_back( 7555 std::make_pair(&TI[P.first].VTableVI, P.second)); 7556 } 7557 } 7558 7559 if (ParseToken(lltok::rparen, "expected ')' here") || 7560 ParseToken(lltok::rparen, "expected ')' here")) 7561 return true; 7562 7563 // Check if this ID was forward referenced, and if so, update the 7564 // corresponding GUIDs. 7565 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7566 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7567 for (auto TIDRef : FwdRefTIDs->second) { 7568 assert(!*TIDRef.first && 7569 "Forward referenced type id GUID expected to be 0"); 7570 *TIDRef.first = GlobalValue::getGUID(Name); 7571 } 7572 ForwardRefTypeIds.erase(FwdRefTIDs); 7573 } 7574 7575 return false; 7576 } 7577 7578 /// TypeTestResolution 7579 /// ::= 'typeTestRes' ':' '(' 'kind' ':' 7580 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ',' 7581 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]? 7582 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]? 7583 /// [',' 'inlinesBits' ':' UInt64]? ')' 7584 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) { 7585 if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") || 7586 ParseToken(lltok::colon, "expected ':' here") || 7587 ParseToken(lltok::lparen, "expected '(' here") || 7588 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7589 ParseToken(lltok::colon, "expected ':' here")) 7590 return true; 7591 7592 switch (Lex.getKind()) { 7593 case lltok::kw_unsat: 7594 TTRes.TheKind = TypeTestResolution::Unsat; 7595 break; 7596 case lltok::kw_byteArray: 7597 TTRes.TheKind = TypeTestResolution::ByteArray; 7598 break; 7599 case lltok::kw_inline: 7600 TTRes.TheKind = TypeTestResolution::Inline; 7601 break; 7602 case lltok::kw_single: 7603 TTRes.TheKind = TypeTestResolution::Single; 7604 break; 7605 case lltok::kw_allOnes: 7606 TTRes.TheKind = TypeTestResolution::AllOnes; 7607 break; 7608 default: 7609 return Error(Lex.getLoc(), "unexpected TypeTestResolution kind"); 7610 } 7611 Lex.Lex(); 7612 7613 if (ParseToken(lltok::comma, "expected ',' here") || 7614 ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") || 7615 ParseToken(lltok::colon, "expected ':' here") || 7616 ParseUInt32(TTRes.SizeM1BitWidth)) 7617 return true; 7618 7619 // Parse optional fields 7620 while (EatIfPresent(lltok::comma)) { 7621 switch (Lex.getKind()) { 7622 case lltok::kw_alignLog2: 7623 Lex.Lex(); 7624 if (ParseToken(lltok::colon, "expected ':'") || 7625 ParseUInt64(TTRes.AlignLog2)) 7626 return true; 7627 break; 7628 case lltok::kw_sizeM1: 7629 Lex.Lex(); 7630 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1)) 7631 return true; 7632 break; 7633 case lltok::kw_bitMask: { 7634 unsigned Val; 7635 Lex.Lex(); 7636 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val)) 7637 return true; 7638 assert(Val <= 0xff); 7639 TTRes.BitMask = (uint8_t)Val; 7640 break; 7641 } 7642 case lltok::kw_inlineBits: 7643 Lex.Lex(); 7644 if (ParseToken(lltok::colon, "expected ':'") || 7645 ParseUInt64(TTRes.InlineBits)) 7646 return true; 7647 break; 7648 default: 7649 return Error(Lex.getLoc(), "expected optional TypeTestResolution field"); 7650 } 7651 } 7652 7653 if (ParseToken(lltok::rparen, "expected ')' here")) 7654 return true; 7655 7656 return false; 7657 } 7658 7659 /// OptionalWpdResolutions 7660 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')' 7661 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')' 7662 bool LLParser::ParseOptionalWpdResolutions( 7663 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) { 7664 if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") || 7665 ParseToken(lltok::colon, "expected ':' here") || 7666 ParseToken(lltok::lparen, "expected '(' here")) 7667 return true; 7668 7669 do { 7670 uint64_t Offset; 7671 WholeProgramDevirtResolution WPDRes; 7672 if (ParseToken(lltok::lparen, "expected '(' here") || 7673 ParseToken(lltok::kw_offset, "expected 'offset' here") || 7674 ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) || 7675 ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) || 7676 ParseToken(lltok::rparen, "expected ')' here")) 7677 return true; 7678 WPDResMap[Offset] = WPDRes; 7679 } while (EatIfPresent(lltok::comma)); 7680 7681 if (ParseToken(lltok::rparen, "expected ')' here")) 7682 return true; 7683 7684 return false; 7685 } 7686 7687 /// WpdRes 7688 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir' 7689 /// [',' OptionalResByArg]? ')' 7690 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl' 7691 /// ',' 'singleImplName' ':' STRINGCONSTANT ',' 7692 /// [',' OptionalResByArg]? ')' 7693 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel' 7694 /// [',' OptionalResByArg]? ')' 7695 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) { 7696 if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") || 7697 ParseToken(lltok::colon, "expected ':' here") || 7698 ParseToken(lltok::lparen, "expected '(' here") || 7699 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7700 ParseToken(lltok::colon, "expected ':' here")) 7701 return true; 7702 7703 switch (Lex.getKind()) { 7704 case lltok::kw_indir: 7705 WPDRes.TheKind = WholeProgramDevirtResolution::Indir; 7706 break; 7707 case lltok::kw_singleImpl: 7708 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl; 7709 break; 7710 case lltok::kw_branchFunnel: 7711 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel; 7712 break; 7713 default: 7714 return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind"); 7715 } 7716 Lex.Lex(); 7717 7718 // Parse optional fields 7719 while (EatIfPresent(lltok::comma)) { 7720 switch (Lex.getKind()) { 7721 case lltok::kw_singleImplName: 7722 Lex.Lex(); 7723 if (ParseToken(lltok::colon, "expected ':' here") || 7724 ParseStringConstant(WPDRes.SingleImplName)) 7725 return true; 7726 break; 7727 case lltok::kw_resByArg: 7728 if (ParseOptionalResByArg(WPDRes.ResByArg)) 7729 return true; 7730 break; 7731 default: 7732 return Error(Lex.getLoc(), 7733 "expected optional WholeProgramDevirtResolution field"); 7734 } 7735 } 7736 7737 if (ParseToken(lltok::rparen, "expected ')' here")) 7738 return true; 7739 7740 return false; 7741 } 7742 7743 /// OptionalResByArg 7744 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')' 7745 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':' 7746 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' | 7747 /// 'virtualConstProp' ) 7748 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]? 7749 /// [',' 'bit' ':' UInt32]? ')' 7750 bool LLParser::ParseOptionalResByArg( 7751 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg> 7752 &ResByArg) { 7753 if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") || 7754 ParseToken(lltok::colon, "expected ':' here") || 7755 ParseToken(lltok::lparen, "expected '(' here")) 7756 return true; 7757 7758 do { 7759 std::vector<uint64_t> Args; 7760 if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") || 7761 ParseToken(lltok::kw_byArg, "expected 'byArg here") || 7762 ParseToken(lltok::colon, "expected ':' here") || 7763 ParseToken(lltok::lparen, "expected '(' here") || 7764 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7765 ParseToken(lltok::colon, "expected ':' here")) 7766 return true; 7767 7768 WholeProgramDevirtResolution::ByArg ByArg; 7769 switch (Lex.getKind()) { 7770 case lltok::kw_indir: 7771 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir; 7772 break; 7773 case lltok::kw_uniformRetVal: 7774 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 7775 break; 7776 case lltok::kw_uniqueRetVal: 7777 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 7778 break; 7779 case lltok::kw_virtualConstProp: 7780 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 7781 break; 7782 default: 7783 return Error(Lex.getLoc(), 7784 "unexpected WholeProgramDevirtResolution::ByArg kind"); 7785 } 7786 Lex.Lex(); 7787 7788 // Parse optional fields 7789 while (EatIfPresent(lltok::comma)) { 7790 switch (Lex.getKind()) { 7791 case lltok::kw_info: 7792 Lex.Lex(); 7793 if (ParseToken(lltok::colon, "expected ':' here") || 7794 ParseUInt64(ByArg.Info)) 7795 return true; 7796 break; 7797 case lltok::kw_byte: 7798 Lex.Lex(); 7799 if (ParseToken(lltok::colon, "expected ':' here") || 7800 ParseUInt32(ByArg.Byte)) 7801 return true; 7802 break; 7803 case lltok::kw_bit: 7804 Lex.Lex(); 7805 if (ParseToken(lltok::colon, "expected ':' here") || 7806 ParseUInt32(ByArg.Bit)) 7807 return true; 7808 break; 7809 default: 7810 return Error(Lex.getLoc(), 7811 "expected optional whole program devirt field"); 7812 } 7813 } 7814 7815 if (ParseToken(lltok::rparen, "expected ')' here")) 7816 return true; 7817 7818 ResByArg[Args] = ByArg; 7819 } while (EatIfPresent(lltok::comma)); 7820 7821 if (ParseToken(lltok::rparen, "expected ')' here")) 7822 return true; 7823 7824 return false; 7825 } 7826 7827 /// OptionalResByArg 7828 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')' 7829 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) { 7830 if (ParseToken(lltok::kw_args, "expected 'args' here") || 7831 ParseToken(lltok::colon, "expected ':' here") || 7832 ParseToken(lltok::lparen, "expected '(' here")) 7833 return true; 7834 7835 do { 7836 uint64_t Val; 7837 if (ParseUInt64(Val)) 7838 return true; 7839 Args.push_back(Val); 7840 } while (EatIfPresent(lltok::comma)); 7841 7842 if (ParseToken(lltok::rparen, "expected ')' here")) 7843 return true; 7844 7845 return false; 7846 } 7847 7848 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8; 7849 7850 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) { 7851 bool ReadOnly = Fwd->isReadOnly(); 7852 bool WriteOnly = Fwd->isWriteOnly(); 7853 assert(!(ReadOnly && WriteOnly)); 7854 *Fwd = Resolved; 7855 if (ReadOnly) 7856 Fwd->setReadOnly(); 7857 if (WriteOnly) 7858 Fwd->setWriteOnly(); 7859 } 7860 7861 /// Stores the given Name/GUID and associated summary into the Index. 7862 /// Also updates any forward references to the associated entry ID. 7863 void LLParser::AddGlobalValueToIndex( 7864 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage, 7865 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) { 7866 // First create the ValueInfo utilizing the Name or GUID. 7867 ValueInfo VI; 7868 if (GUID != 0) { 7869 assert(Name.empty()); 7870 VI = Index->getOrInsertValueInfo(GUID); 7871 } else { 7872 assert(!Name.empty()); 7873 if (M) { 7874 auto *GV = M->getNamedValue(Name); 7875 assert(GV); 7876 VI = Index->getOrInsertValueInfo(GV); 7877 } else { 7878 assert( 7879 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) && 7880 "Need a source_filename to compute GUID for local"); 7881 GUID = GlobalValue::getGUID( 7882 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName)); 7883 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name)); 7884 } 7885 } 7886 7887 // Resolve forward references from calls/refs 7888 auto FwdRefVIs = ForwardRefValueInfos.find(ID); 7889 if (FwdRefVIs != ForwardRefValueInfos.end()) { 7890 for (auto VIRef : FwdRefVIs->second) { 7891 assert(VIRef.first->getRef() == FwdVIRef && 7892 "Forward referenced ValueInfo expected to be empty"); 7893 resolveFwdRef(VIRef.first, VI); 7894 } 7895 ForwardRefValueInfos.erase(FwdRefVIs); 7896 } 7897 7898 // Resolve forward references from aliases 7899 auto FwdRefAliasees = ForwardRefAliasees.find(ID); 7900 if (FwdRefAliasees != ForwardRefAliasees.end()) { 7901 for (auto AliaseeRef : FwdRefAliasees->second) { 7902 assert(!AliaseeRef.first->hasAliasee() && 7903 "Forward referencing alias already has aliasee"); 7904 assert(Summary && "Aliasee must be a definition"); 7905 AliaseeRef.first->setAliasee(VI, Summary.get()); 7906 } 7907 ForwardRefAliasees.erase(FwdRefAliasees); 7908 } 7909 7910 // Add the summary if one was provided. 7911 if (Summary) 7912 Index->addGlobalValueSummary(VI, std::move(Summary)); 7913 7914 // Save the associated ValueInfo for use in later references by ID. 7915 if (ID == NumberedValueInfos.size()) 7916 NumberedValueInfos.push_back(VI); 7917 else { 7918 // Handle non-continuous numbers (to make test simplification easier). 7919 if (ID > NumberedValueInfos.size()) 7920 NumberedValueInfos.resize(ID + 1); 7921 NumberedValueInfos[ID] = VI; 7922 } 7923 } 7924 7925 /// ParseGVEntry 7926 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64) 7927 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')' 7928 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')' 7929 bool LLParser::ParseGVEntry(unsigned ID) { 7930 assert(Lex.getKind() == lltok::kw_gv); 7931 Lex.Lex(); 7932 7933 if (ParseToken(lltok::colon, "expected ':' here") || 7934 ParseToken(lltok::lparen, "expected '(' here")) 7935 return true; 7936 7937 std::string Name; 7938 GlobalValue::GUID GUID = 0; 7939 switch (Lex.getKind()) { 7940 case lltok::kw_name: 7941 Lex.Lex(); 7942 if (ParseToken(lltok::colon, "expected ':' here") || 7943 ParseStringConstant(Name)) 7944 return true; 7945 // Can't create GUID/ValueInfo until we have the linkage. 7946 break; 7947 case lltok::kw_guid: 7948 Lex.Lex(); 7949 if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID)) 7950 return true; 7951 break; 7952 default: 7953 return Error(Lex.getLoc(), "expected name or guid tag"); 7954 } 7955 7956 if (!EatIfPresent(lltok::comma)) { 7957 // No summaries. Wrap up. 7958 if (ParseToken(lltok::rparen, "expected ')' here")) 7959 return true; 7960 // This was created for a call to an external or indirect target. 7961 // A GUID with no summary came from a VALUE_GUID record, dummy GUID 7962 // created for indirect calls with VP. A Name with no GUID came from 7963 // an external definition. We pass ExternalLinkage since that is only 7964 // used when the GUID must be computed from Name, and in that case 7965 // the symbol must have external linkage. 7966 AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID, 7967 nullptr); 7968 return false; 7969 } 7970 7971 // Have a list of summaries 7972 if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") || 7973 ParseToken(lltok::colon, "expected ':' here")) 7974 return true; 7975 7976 do { 7977 if (ParseToken(lltok::lparen, "expected '(' here")) 7978 return true; 7979 switch (Lex.getKind()) { 7980 case lltok::kw_function: 7981 if (ParseFunctionSummary(Name, GUID, ID)) 7982 return true; 7983 break; 7984 case lltok::kw_variable: 7985 if (ParseVariableSummary(Name, GUID, ID)) 7986 return true; 7987 break; 7988 case lltok::kw_alias: 7989 if (ParseAliasSummary(Name, GUID, ID)) 7990 return true; 7991 break; 7992 default: 7993 return Error(Lex.getLoc(), "expected summary type"); 7994 } 7995 if (ParseToken(lltok::rparen, "expected ')' here")) 7996 return true; 7997 } while (EatIfPresent(lltok::comma)); 7998 7999 if (ParseToken(lltok::rparen, "expected ')' here")) 8000 return true; 8001 8002 return false; 8003 } 8004 8005 /// FunctionSummary 8006 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8007 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]? 8008 /// [',' OptionalTypeIdInfo]? [',' OptionalRefs]? ')' 8009 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID, 8010 unsigned ID) { 8011 assert(Lex.getKind() == lltok::kw_function); 8012 Lex.Lex(); 8013 8014 StringRef ModulePath; 8015 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8016 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 8017 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8018 unsigned InstCount; 8019 std::vector<FunctionSummary::EdgeTy> Calls; 8020 FunctionSummary::TypeIdInfo TypeIdInfo; 8021 std::vector<ValueInfo> Refs; 8022 // Default is all-zeros (conservative values). 8023 FunctionSummary::FFlags FFlags = {}; 8024 if (ParseToken(lltok::colon, "expected ':' here") || 8025 ParseToken(lltok::lparen, "expected '(' here") || 8026 ParseModuleReference(ModulePath) || 8027 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 8028 ParseToken(lltok::comma, "expected ',' here") || 8029 ParseToken(lltok::kw_insts, "expected 'insts' here") || 8030 ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount)) 8031 return true; 8032 8033 // Parse optional fields 8034 while (EatIfPresent(lltok::comma)) { 8035 switch (Lex.getKind()) { 8036 case lltok::kw_funcFlags: 8037 if (ParseOptionalFFlags(FFlags)) 8038 return true; 8039 break; 8040 case lltok::kw_calls: 8041 if (ParseOptionalCalls(Calls)) 8042 return true; 8043 break; 8044 case lltok::kw_typeIdInfo: 8045 if (ParseOptionalTypeIdInfo(TypeIdInfo)) 8046 return true; 8047 break; 8048 case lltok::kw_refs: 8049 if (ParseOptionalRefs(Refs)) 8050 return true; 8051 break; 8052 default: 8053 return Error(Lex.getLoc(), "expected optional function summary field"); 8054 } 8055 } 8056 8057 if (ParseToken(lltok::rparen, "expected ')' here")) 8058 return true; 8059 8060 auto FS = llvm::make_unique<FunctionSummary>( 8061 GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs), 8062 std::move(Calls), std::move(TypeIdInfo.TypeTests), 8063 std::move(TypeIdInfo.TypeTestAssumeVCalls), 8064 std::move(TypeIdInfo.TypeCheckedLoadVCalls), 8065 std::move(TypeIdInfo.TypeTestAssumeConstVCalls), 8066 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls)); 8067 8068 FS->setModulePath(ModulePath); 8069 8070 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8071 ID, std::move(FS)); 8072 8073 return false; 8074 } 8075 8076 /// VariableSummary 8077 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8078 /// [',' OptionalRefs]? ')' 8079 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID, 8080 unsigned ID) { 8081 assert(Lex.getKind() == lltok::kw_variable); 8082 Lex.Lex(); 8083 8084 StringRef ModulePath; 8085 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8086 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 8087 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8088 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false, 8089 /* WriteOnly */ false); 8090 std::vector<ValueInfo> Refs; 8091 VTableFuncList VTableFuncs; 8092 if (ParseToken(lltok::colon, "expected ':' here") || 8093 ParseToken(lltok::lparen, "expected '(' here") || 8094 ParseModuleReference(ModulePath) || 8095 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 8096 ParseToken(lltok::comma, "expected ',' here") || 8097 ParseGVarFlags(GVarFlags)) 8098 return true; 8099 8100 // Parse optional fields 8101 while (EatIfPresent(lltok::comma)) { 8102 switch (Lex.getKind()) { 8103 case lltok::kw_vTableFuncs: 8104 if (ParseOptionalVTableFuncs(VTableFuncs)) 8105 return true; 8106 break; 8107 case lltok::kw_refs: 8108 if (ParseOptionalRefs(Refs)) 8109 return true; 8110 break; 8111 default: 8112 return Error(Lex.getLoc(), "expected optional variable summary field"); 8113 } 8114 } 8115 8116 if (ParseToken(lltok::rparen, "expected ')' here")) 8117 return true; 8118 8119 auto GS = 8120 llvm::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs)); 8121 8122 GS->setModulePath(ModulePath); 8123 GS->setVTableFuncs(std::move(VTableFuncs)); 8124 8125 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8126 ID, std::move(GS)); 8127 8128 return false; 8129 } 8130 8131 /// AliasSummary 8132 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ',' 8133 /// 'aliasee' ':' GVReference ')' 8134 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID, 8135 unsigned ID) { 8136 assert(Lex.getKind() == lltok::kw_alias); 8137 LocTy Loc = Lex.getLoc(); 8138 Lex.Lex(); 8139 8140 StringRef ModulePath; 8141 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8142 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 8143 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8144 if (ParseToken(lltok::colon, "expected ':' here") || 8145 ParseToken(lltok::lparen, "expected '(' here") || 8146 ParseModuleReference(ModulePath) || 8147 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 8148 ParseToken(lltok::comma, "expected ',' here") || 8149 ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") || 8150 ParseToken(lltok::colon, "expected ':' here")) 8151 return true; 8152 8153 ValueInfo AliaseeVI; 8154 unsigned GVId; 8155 if (ParseGVReference(AliaseeVI, GVId)) 8156 return true; 8157 8158 if (ParseToken(lltok::rparen, "expected ')' here")) 8159 return true; 8160 8161 auto AS = llvm::make_unique<AliasSummary>(GVFlags); 8162 8163 AS->setModulePath(ModulePath); 8164 8165 // Record forward reference if the aliasee is not parsed yet. 8166 if (AliaseeVI.getRef() == FwdVIRef) { 8167 auto FwdRef = ForwardRefAliasees.insert( 8168 std::make_pair(GVId, std::vector<std::pair<AliasSummary *, LocTy>>())); 8169 FwdRef.first->second.push_back(std::make_pair(AS.get(), Loc)); 8170 } else { 8171 auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath); 8172 assert(Summary && "Aliasee must be a definition"); 8173 AS->setAliasee(AliaseeVI, Summary); 8174 } 8175 8176 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8177 ID, std::move(AS)); 8178 8179 return false; 8180 } 8181 8182 /// Flag 8183 /// ::= [0|1] 8184 bool LLParser::ParseFlag(unsigned &Val) { 8185 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 8186 return TokError("expected integer"); 8187 Val = (unsigned)Lex.getAPSIntVal().getBoolValue(); 8188 Lex.Lex(); 8189 return false; 8190 } 8191 8192 /// OptionalFFlags 8193 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]? 8194 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]? 8195 /// [',' 'returnDoesNotAlias' ':' Flag]? ')' 8196 /// [',' 'noInline' ':' Flag]? ')' 8197 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) { 8198 assert(Lex.getKind() == lltok::kw_funcFlags); 8199 Lex.Lex(); 8200 8201 if (ParseToken(lltok::colon, "expected ':' in funcFlags") | 8202 ParseToken(lltok::lparen, "expected '(' in funcFlags")) 8203 return true; 8204 8205 do { 8206 unsigned Val = 0; 8207 switch (Lex.getKind()) { 8208 case lltok::kw_readNone: 8209 Lex.Lex(); 8210 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8211 return true; 8212 FFlags.ReadNone = Val; 8213 break; 8214 case lltok::kw_readOnly: 8215 Lex.Lex(); 8216 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8217 return true; 8218 FFlags.ReadOnly = Val; 8219 break; 8220 case lltok::kw_noRecurse: 8221 Lex.Lex(); 8222 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8223 return true; 8224 FFlags.NoRecurse = Val; 8225 break; 8226 case lltok::kw_returnDoesNotAlias: 8227 Lex.Lex(); 8228 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8229 return true; 8230 FFlags.ReturnDoesNotAlias = Val; 8231 break; 8232 case lltok::kw_noInline: 8233 Lex.Lex(); 8234 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8235 return true; 8236 FFlags.NoInline = Val; 8237 break; 8238 default: 8239 return Error(Lex.getLoc(), "expected function flag type"); 8240 } 8241 } while (EatIfPresent(lltok::comma)); 8242 8243 if (ParseToken(lltok::rparen, "expected ')' in funcFlags")) 8244 return true; 8245 8246 return false; 8247 } 8248 8249 /// OptionalCalls 8250 /// := 'calls' ':' '(' Call [',' Call]* ')' 8251 /// Call ::= '(' 'callee' ':' GVReference 8252 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')' 8253 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) { 8254 assert(Lex.getKind() == lltok::kw_calls); 8255 Lex.Lex(); 8256 8257 if (ParseToken(lltok::colon, "expected ':' in calls") | 8258 ParseToken(lltok::lparen, "expected '(' in calls")) 8259 return true; 8260 8261 IdToIndexMapType IdToIndexMap; 8262 // Parse each call edge 8263 do { 8264 ValueInfo VI; 8265 if (ParseToken(lltok::lparen, "expected '(' in call") || 8266 ParseToken(lltok::kw_callee, "expected 'callee' in call") || 8267 ParseToken(lltok::colon, "expected ':'")) 8268 return true; 8269 8270 LocTy Loc = Lex.getLoc(); 8271 unsigned GVId; 8272 if (ParseGVReference(VI, GVId)) 8273 return true; 8274 8275 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 8276 unsigned RelBF = 0; 8277 if (EatIfPresent(lltok::comma)) { 8278 // Expect either hotness or relbf 8279 if (EatIfPresent(lltok::kw_hotness)) { 8280 if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness)) 8281 return true; 8282 } else { 8283 if (ParseToken(lltok::kw_relbf, "expected relbf") || 8284 ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF)) 8285 return true; 8286 } 8287 } 8288 // Keep track of the Call array index needing a forward reference. 8289 // We will save the location of the ValueInfo needing an update, but 8290 // can only do so once the std::vector is finalized. 8291 if (VI.getRef() == FwdVIRef) 8292 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc)); 8293 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)}); 8294 8295 if (ParseToken(lltok::rparen, "expected ')' in call")) 8296 return true; 8297 } while (EatIfPresent(lltok::comma)); 8298 8299 // Now that the Calls vector is finalized, it is safe to save the locations 8300 // of any forward GV references that need updating later. 8301 for (auto I : IdToIndexMap) { 8302 for (auto P : I.second) { 8303 assert(Calls[P.first].first.getRef() == FwdVIRef && 8304 "Forward referenced ValueInfo expected to be empty"); 8305 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 8306 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 8307 FwdRef.first->second.push_back( 8308 std::make_pair(&Calls[P.first].first, P.second)); 8309 } 8310 } 8311 8312 if (ParseToken(lltok::rparen, "expected ')' in calls")) 8313 return true; 8314 8315 return false; 8316 } 8317 8318 /// Hotness 8319 /// := ('unknown'|'cold'|'none'|'hot'|'critical') 8320 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) { 8321 switch (Lex.getKind()) { 8322 case lltok::kw_unknown: 8323 Hotness = CalleeInfo::HotnessType::Unknown; 8324 break; 8325 case lltok::kw_cold: 8326 Hotness = CalleeInfo::HotnessType::Cold; 8327 break; 8328 case lltok::kw_none: 8329 Hotness = CalleeInfo::HotnessType::None; 8330 break; 8331 case lltok::kw_hot: 8332 Hotness = CalleeInfo::HotnessType::Hot; 8333 break; 8334 case lltok::kw_critical: 8335 Hotness = CalleeInfo::HotnessType::Critical; 8336 break; 8337 default: 8338 return Error(Lex.getLoc(), "invalid call edge hotness"); 8339 } 8340 Lex.Lex(); 8341 return false; 8342 } 8343 8344 /// OptionalVTableFuncs 8345 /// := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')' 8346 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')' 8347 bool LLParser::ParseOptionalVTableFuncs(VTableFuncList &VTableFuncs) { 8348 assert(Lex.getKind() == lltok::kw_vTableFuncs); 8349 Lex.Lex(); 8350 8351 if (ParseToken(lltok::colon, "expected ':' in vTableFuncs") | 8352 ParseToken(lltok::lparen, "expected '(' in vTableFuncs")) 8353 return true; 8354 8355 IdToIndexMapType IdToIndexMap; 8356 // Parse each virtual function pair 8357 do { 8358 ValueInfo VI; 8359 if (ParseToken(lltok::lparen, "expected '(' in vTableFunc") || 8360 ParseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") || 8361 ParseToken(lltok::colon, "expected ':'")) 8362 return true; 8363 8364 LocTy Loc = Lex.getLoc(); 8365 unsigned GVId; 8366 if (ParseGVReference(VI, GVId)) 8367 return true; 8368 8369 uint64_t Offset; 8370 if (ParseToken(lltok::comma, "expected comma") || 8371 ParseToken(lltok::kw_offset, "expected offset") || 8372 ParseToken(lltok::colon, "expected ':'") || ParseUInt64(Offset)) 8373 return true; 8374 8375 // Keep track of the VTableFuncs array index needing a forward reference. 8376 // We will save the location of the ValueInfo needing an update, but 8377 // can only do so once the std::vector is finalized. 8378 if (VI == EmptyVI) 8379 IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc)); 8380 VTableFuncs.push_back({VI, Offset}); 8381 8382 if (ParseToken(lltok::rparen, "expected ')' in vTableFunc")) 8383 return true; 8384 } while (EatIfPresent(lltok::comma)); 8385 8386 // Now that the VTableFuncs vector is finalized, it is safe to save the 8387 // locations of any forward GV references that need updating later. 8388 for (auto I : IdToIndexMap) { 8389 for (auto P : I.second) { 8390 assert(VTableFuncs[P.first].FuncVI == EmptyVI && 8391 "Forward referenced ValueInfo expected to be empty"); 8392 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 8393 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 8394 FwdRef.first->second.push_back( 8395 std::make_pair(&VTableFuncs[P.first].FuncVI, P.second)); 8396 } 8397 } 8398 8399 if (ParseToken(lltok::rparen, "expected ')' in vTableFuncs")) 8400 return true; 8401 8402 return false; 8403 } 8404 8405 /// OptionalRefs 8406 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')' 8407 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) { 8408 assert(Lex.getKind() == lltok::kw_refs); 8409 Lex.Lex(); 8410 8411 if (ParseToken(lltok::colon, "expected ':' in refs") | 8412 ParseToken(lltok::lparen, "expected '(' in refs")) 8413 return true; 8414 8415 struct ValueContext { 8416 ValueInfo VI; 8417 unsigned GVId; 8418 LocTy Loc; 8419 }; 8420 std::vector<ValueContext> VContexts; 8421 // Parse each ref edge 8422 do { 8423 ValueContext VC; 8424 VC.Loc = Lex.getLoc(); 8425 if (ParseGVReference(VC.VI, VC.GVId)) 8426 return true; 8427 VContexts.push_back(VC); 8428 } while (EatIfPresent(lltok::comma)); 8429 8430 // Sort value contexts so that ones with writeonly 8431 // and readonly ValueInfo are at the end of VContexts vector. 8432 // See FunctionSummary::specialRefCounts() 8433 llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) { 8434 return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier(); 8435 }); 8436 8437 IdToIndexMapType IdToIndexMap; 8438 for (auto &VC : VContexts) { 8439 // Keep track of the Refs array index needing a forward reference. 8440 // We will save the location of the ValueInfo needing an update, but 8441 // can only do so once the std::vector is finalized. 8442 if (VC.VI.getRef() == FwdVIRef) 8443 IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc)); 8444 Refs.push_back(VC.VI); 8445 } 8446 8447 // Now that the Refs vector is finalized, it is safe to save the locations 8448 // of any forward GV references that need updating later. 8449 for (auto I : IdToIndexMap) { 8450 for (auto P : I.second) { 8451 assert(Refs[P.first].getRef() == FwdVIRef && 8452 "Forward referenced ValueInfo expected to be empty"); 8453 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 8454 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 8455 FwdRef.first->second.push_back(std::make_pair(&Refs[P.first], P.second)); 8456 } 8457 } 8458 8459 if (ParseToken(lltok::rparen, "expected ')' in refs")) 8460 return true; 8461 8462 return false; 8463 } 8464 8465 /// OptionalTypeIdInfo 8466 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]? 8467 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]? 8468 /// [',' TypeCheckedLoadConstVCalls]? ')' 8469 bool LLParser::ParseOptionalTypeIdInfo( 8470 FunctionSummary::TypeIdInfo &TypeIdInfo) { 8471 assert(Lex.getKind() == lltok::kw_typeIdInfo); 8472 Lex.Lex(); 8473 8474 if (ParseToken(lltok::colon, "expected ':' here") || 8475 ParseToken(lltok::lparen, "expected '(' in typeIdInfo")) 8476 return true; 8477 8478 do { 8479 switch (Lex.getKind()) { 8480 case lltok::kw_typeTests: 8481 if (ParseTypeTests(TypeIdInfo.TypeTests)) 8482 return true; 8483 break; 8484 case lltok::kw_typeTestAssumeVCalls: 8485 if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls, 8486 TypeIdInfo.TypeTestAssumeVCalls)) 8487 return true; 8488 break; 8489 case lltok::kw_typeCheckedLoadVCalls: 8490 if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls, 8491 TypeIdInfo.TypeCheckedLoadVCalls)) 8492 return true; 8493 break; 8494 case lltok::kw_typeTestAssumeConstVCalls: 8495 if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls, 8496 TypeIdInfo.TypeTestAssumeConstVCalls)) 8497 return true; 8498 break; 8499 case lltok::kw_typeCheckedLoadConstVCalls: 8500 if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls, 8501 TypeIdInfo.TypeCheckedLoadConstVCalls)) 8502 return true; 8503 break; 8504 default: 8505 return Error(Lex.getLoc(), "invalid typeIdInfo list type"); 8506 } 8507 } while (EatIfPresent(lltok::comma)); 8508 8509 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo")) 8510 return true; 8511 8512 return false; 8513 } 8514 8515 /// TypeTests 8516 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64) 8517 /// [',' (SummaryID | UInt64)]* ')' 8518 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) { 8519 assert(Lex.getKind() == lltok::kw_typeTests); 8520 Lex.Lex(); 8521 8522 if (ParseToken(lltok::colon, "expected ':' here") || 8523 ParseToken(lltok::lparen, "expected '(' in typeIdInfo")) 8524 return true; 8525 8526 IdToIndexMapType IdToIndexMap; 8527 do { 8528 GlobalValue::GUID GUID = 0; 8529 if (Lex.getKind() == lltok::SummaryID) { 8530 unsigned ID = Lex.getUIntVal(); 8531 LocTy Loc = Lex.getLoc(); 8532 // Keep track of the TypeTests array index needing a forward reference. 8533 // We will save the location of the GUID needing an update, but 8534 // can only do so once the std::vector is finalized. 8535 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc)); 8536 Lex.Lex(); 8537 } else if (ParseUInt64(GUID)) 8538 return true; 8539 TypeTests.push_back(GUID); 8540 } while (EatIfPresent(lltok::comma)); 8541 8542 // Now that the TypeTests vector is finalized, it is safe to save the 8543 // locations of any forward GV references that need updating later. 8544 for (auto I : IdToIndexMap) { 8545 for (auto P : I.second) { 8546 assert(TypeTests[P.first] == 0 && 8547 "Forward referenced type id GUID expected to be 0"); 8548 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8549 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8550 FwdRef.first->second.push_back( 8551 std::make_pair(&TypeTests[P.first], P.second)); 8552 } 8553 } 8554 8555 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo")) 8556 return true; 8557 8558 return false; 8559 } 8560 8561 /// VFuncIdList 8562 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')' 8563 bool LLParser::ParseVFuncIdList( 8564 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) { 8565 assert(Lex.getKind() == Kind); 8566 Lex.Lex(); 8567 8568 if (ParseToken(lltok::colon, "expected ':' here") || 8569 ParseToken(lltok::lparen, "expected '(' here")) 8570 return true; 8571 8572 IdToIndexMapType IdToIndexMap; 8573 do { 8574 FunctionSummary::VFuncId VFuncId; 8575 if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size())) 8576 return true; 8577 VFuncIdList.push_back(VFuncId); 8578 } while (EatIfPresent(lltok::comma)); 8579 8580 if (ParseToken(lltok::rparen, "expected ')' here")) 8581 return true; 8582 8583 // Now that the VFuncIdList vector is finalized, it is safe to save the 8584 // locations of any forward GV references that need updating later. 8585 for (auto I : IdToIndexMap) { 8586 for (auto P : I.second) { 8587 assert(VFuncIdList[P.first].GUID == 0 && 8588 "Forward referenced type id GUID expected to be 0"); 8589 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8590 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8591 FwdRef.first->second.push_back( 8592 std::make_pair(&VFuncIdList[P.first].GUID, P.second)); 8593 } 8594 } 8595 8596 return false; 8597 } 8598 8599 /// ConstVCallList 8600 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')' 8601 bool LLParser::ParseConstVCallList( 8602 lltok::Kind Kind, 8603 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) { 8604 assert(Lex.getKind() == Kind); 8605 Lex.Lex(); 8606 8607 if (ParseToken(lltok::colon, "expected ':' here") || 8608 ParseToken(lltok::lparen, "expected '(' here")) 8609 return true; 8610 8611 IdToIndexMapType IdToIndexMap; 8612 do { 8613 FunctionSummary::ConstVCall ConstVCall; 8614 if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size())) 8615 return true; 8616 ConstVCallList.push_back(ConstVCall); 8617 } while (EatIfPresent(lltok::comma)); 8618 8619 if (ParseToken(lltok::rparen, "expected ')' here")) 8620 return true; 8621 8622 // Now that the ConstVCallList vector is finalized, it is safe to save the 8623 // locations of any forward GV references that need updating later. 8624 for (auto I : IdToIndexMap) { 8625 for (auto P : I.second) { 8626 assert(ConstVCallList[P.first].VFunc.GUID == 0 && 8627 "Forward referenced type id GUID expected to be 0"); 8628 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8629 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8630 FwdRef.first->second.push_back( 8631 std::make_pair(&ConstVCallList[P.first].VFunc.GUID, P.second)); 8632 } 8633 } 8634 8635 return false; 8636 } 8637 8638 /// ConstVCall 8639 /// ::= '(' VFuncId ',' Args ')' 8640 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall, 8641 IdToIndexMapType &IdToIndexMap, unsigned Index) { 8642 if (ParseToken(lltok::lparen, "expected '(' here") || 8643 ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index)) 8644 return true; 8645 8646 if (EatIfPresent(lltok::comma)) 8647 if (ParseArgs(ConstVCall.Args)) 8648 return true; 8649 8650 if (ParseToken(lltok::rparen, "expected ')' here")) 8651 return true; 8652 8653 return false; 8654 } 8655 8656 /// VFuncId 8657 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ',' 8658 /// 'offset' ':' UInt64 ')' 8659 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId, 8660 IdToIndexMapType &IdToIndexMap, unsigned Index) { 8661 assert(Lex.getKind() == lltok::kw_vFuncId); 8662 Lex.Lex(); 8663 8664 if (ParseToken(lltok::colon, "expected ':' here") || 8665 ParseToken(lltok::lparen, "expected '(' here")) 8666 return true; 8667 8668 if (Lex.getKind() == lltok::SummaryID) { 8669 VFuncId.GUID = 0; 8670 unsigned ID = Lex.getUIntVal(); 8671 LocTy Loc = Lex.getLoc(); 8672 // Keep track of the array index needing a forward reference. 8673 // We will save the location of the GUID needing an update, but 8674 // can only do so once the caller's std::vector is finalized. 8675 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc)); 8676 Lex.Lex(); 8677 } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") || 8678 ParseToken(lltok::colon, "expected ':' here") || 8679 ParseUInt64(VFuncId.GUID)) 8680 return true; 8681 8682 if (ParseToken(lltok::comma, "expected ',' here") || 8683 ParseToken(lltok::kw_offset, "expected 'offset' here") || 8684 ParseToken(lltok::colon, "expected ':' here") || 8685 ParseUInt64(VFuncId.Offset) || 8686 ParseToken(lltok::rparen, "expected ')' here")) 8687 return true; 8688 8689 return false; 8690 } 8691 8692 /// GVFlags 8693 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ',' 8694 /// 'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ',' 8695 /// 'dsoLocal' ':' Flag ',' 'canAutoHide' ':' Flag ')' 8696 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) { 8697 assert(Lex.getKind() == lltok::kw_flags); 8698 Lex.Lex(); 8699 8700 if (ParseToken(lltok::colon, "expected ':' here") || 8701 ParseToken(lltok::lparen, "expected '(' here")) 8702 return true; 8703 8704 do { 8705 unsigned Flag = 0; 8706 switch (Lex.getKind()) { 8707 case lltok::kw_linkage: 8708 Lex.Lex(); 8709 if (ParseToken(lltok::colon, "expected ':'")) 8710 return true; 8711 bool HasLinkage; 8712 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 8713 assert(HasLinkage && "Linkage not optional in summary entry"); 8714 Lex.Lex(); 8715 break; 8716 case lltok::kw_notEligibleToImport: 8717 Lex.Lex(); 8718 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag)) 8719 return true; 8720 GVFlags.NotEligibleToImport = Flag; 8721 break; 8722 case lltok::kw_live: 8723 Lex.Lex(); 8724 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag)) 8725 return true; 8726 GVFlags.Live = Flag; 8727 break; 8728 case lltok::kw_dsoLocal: 8729 Lex.Lex(); 8730 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag)) 8731 return true; 8732 GVFlags.DSOLocal = Flag; 8733 break; 8734 case lltok::kw_canAutoHide: 8735 Lex.Lex(); 8736 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag)) 8737 return true; 8738 GVFlags.CanAutoHide = Flag; 8739 break; 8740 default: 8741 return Error(Lex.getLoc(), "expected gv flag type"); 8742 } 8743 } while (EatIfPresent(lltok::comma)); 8744 8745 if (ParseToken(lltok::rparen, "expected ')' here")) 8746 return true; 8747 8748 return false; 8749 } 8750 8751 /// GVarFlags 8752 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag 8753 /// ',' 'writeonly' ':' Flag ')' 8754 bool LLParser::ParseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) { 8755 assert(Lex.getKind() == lltok::kw_varFlags); 8756 Lex.Lex(); 8757 8758 if (ParseToken(lltok::colon, "expected ':' here") || 8759 ParseToken(lltok::lparen, "expected '(' here")) 8760 return true; 8761 8762 auto ParseRest = [this](unsigned int &Val) { 8763 Lex.Lex(); 8764 if (ParseToken(lltok::colon, "expected ':'")) 8765 return true; 8766 return ParseFlag(Val); 8767 }; 8768 8769 do { 8770 unsigned Flag = 0; 8771 switch (Lex.getKind()) { 8772 case lltok::kw_readonly: 8773 if (ParseRest(Flag)) 8774 return true; 8775 GVarFlags.MaybeReadOnly = Flag; 8776 break; 8777 case lltok::kw_writeonly: 8778 if (ParseRest(Flag)) 8779 return true; 8780 GVarFlags.MaybeWriteOnly = Flag; 8781 break; 8782 default: 8783 return Error(Lex.getLoc(), "expected gvar flag type"); 8784 } 8785 } while (EatIfPresent(lltok::comma)); 8786 return ParseToken(lltok::rparen, "expected ')' here"); 8787 } 8788 8789 /// ModuleReference 8790 /// ::= 'module' ':' UInt 8791 bool LLParser::ParseModuleReference(StringRef &ModulePath) { 8792 // Parse module id. 8793 if (ParseToken(lltok::kw_module, "expected 'module' here") || 8794 ParseToken(lltok::colon, "expected ':' here") || 8795 ParseToken(lltok::SummaryID, "expected module ID")) 8796 return true; 8797 8798 unsigned ModuleID = Lex.getUIntVal(); 8799 auto I = ModuleIdMap.find(ModuleID); 8800 // We should have already parsed all module IDs 8801 assert(I != ModuleIdMap.end()); 8802 ModulePath = I->second; 8803 return false; 8804 } 8805 8806 /// GVReference 8807 /// ::= SummaryID 8808 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) { 8809 bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly); 8810 if (!ReadOnly) 8811 WriteOnly = EatIfPresent(lltok::kw_writeonly); 8812 if (ParseToken(lltok::SummaryID, "expected GV ID")) 8813 return true; 8814 8815 GVId = Lex.getUIntVal(); 8816 // Check if we already have a VI for this GV 8817 if (GVId < NumberedValueInfos.size()) { 8818 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef); 8819 VI = NumberedValueInfos[GVId]; 8820 } else 8821 // We will create a forward reference to the stored location. 8822 VI = ValueInfo(false, FwdVIRef); 8823 8824 if (ReadOnly) 8825 VI.setReadOnly(); 8826 if (WriteOnly) 8827 VI.setWriteOnly(); 8828 return false; 8829 } 8830