1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "LLParser.h"
14 #include "llvm/ADT/DenseMap.h"
15 #include "llvm/ADT/None.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/AsmParser/SlotMapping.h"
20 #include "llvm/BinaryFormat/Dwarf.h"
21 #include "llvm/IR/Argument.h"
22 #include "llvm/IR/AutoUpgrade.h"
23 #include "llvm/IR/BasicBlock.h"
24 #include "llvm/IR/CallingConv.h"
25 #include "llvm/IR/Comdat.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DebugInfoMetadata.h"
28 #include "llvm/IR/DerivedTypes.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/GlobalIFunc.h"
31 #include "llvm/IR/GlobalObject.h"
32 #include "llvm/IR/InlineAsm.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Operator.h"
40 #include "llvm/IR/Type.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/IR/ValueSymbolTable.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/MathExtras.h"
46 #include "llvm/Support/SaveAndRestore.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstring>
51 #include <iterator>
52 #include <vector>
53 
54 using namespace llvm;
55 
56 static std::string getTypeString(Type *T) {
57   std::string Result;
58   raw_string_ostream Tmp(Result);
59   Tmp << *T;
60   return Tmp.str();
61 }
62 
63 /// Run: module ::= toplevelentity*
64 bool LLParser::Run() {
65   // Prime the lexer.
66   Lex.Lex();
67 
68   if (Context.shouldDiscardValueNames())
69     return Error(
70         Lex.getLoc(),
71         "Can't read textual IR with a Context that discards named Values");
72 
73   return ParseTopLevelEntities() || ValidateEndOfModule() ||
74          ValidateEndOfIndex();
75 }
76 
77 bool LLParser::parseStandaloneConstantValue(Constant *&C,
78                                             const SlotMapping *Slots) {
79   restoreParsingState(Slots);
80   Lex.Lex();
81 
82   Type *Ty = nullptr;
83   if (ParseType(Ty) || parseConstantValue(Ty, C))
84     return true;
85   if (Lex.getKind() != lltok::Eof)
86     return Error(Lex.getLoc(), "expected end of string");
87   return false;
88 }
89 
90 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
91                                     const SlotMapping *Slots) {
92   restoreParsingState(Slots);
93   Lex.Lex();
94 
95   Read = 0;
96   SMLoc Start = Lex.getLoc();
97   Ty = nullptr;
98   if (ParseType(Ty))
99     return true;
100   SMLoc End = Lex.getLoc();
101   Read = End.getPointer() - Start.getPointer();
102 
103   return false;
104 }
105 
106 void LLParser::restoreParsingState(const SlotMapping *Slots) {
107   if (!Slots)
108     return;
109   NumberedVals = Slots->GlobalValues;
110   NumberedMetadata = Slots->MetadataNodes;
111   for (const auto &I : Slots->NamedTypes)
112     NamedTypes.insert(
113         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
114   for (const auto &I : Slots->Types)
115     NumberedTypes.insert(
116         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
117 }
118 
119 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
120 /// module.
121 bool LLParser::ValidateEndOfModule() {
122   if (!M)
123     return false;
124   // Handle any function attribute group forward references.
125   for (const auto &RAG : ForwardRefAttrGroups) {
126     Value *V = RAG.first;
127     const std::vector<unsigned> &Attrs = RAG.second;
128     AttrBuilder B;
129 
130     for (const auto &Attr : Attrs)
131       B.merge(NumberedAttrBuilders[Attr]);
132 
133     if (Function *Fn = dyn_cast<Function>(V)) {
134       AttributeList AS = Fn->getAttributes();
135       AttrBuilder FnAttrs(AS.getFnAttributes());
136       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
137 
138       FnAttrs.merge(B);
139 
140       // If the alignment was parsed as an attribute, move to the alignment
141       // field.
142       if (FnAttrs.hasAlignmentAttr()) {
143         Fn->setAlignment(FnAttrs.getAlignment());
144         FnAttrs.removeAttribute(Attribute::Alignment);
145       }
146 
147       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
148                             AttributeSet::get(Context, FnAttrs));
149       Fn->setAttributes(AS);
150     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
151       AttributeList AS = CI->getAttributes();
152       AttrBuilder FnAttrs(AS.getFnAttributes());
153       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
154       FnAttrs.merge(B);
155       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
156                             AttributeSet::get(Context, FnAttrs));
157       CI->setAttributes(AS);
158     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
159       AttributeList AS = II->getAttributes();
160       AttrBuilder FnAttrs(AS.getFnAttributes());
161       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
162       FnAttrs.merge(B);
163       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
164                             AttributeSet::get(Context, FnAttrs));
165       II->setAttributes(AS);
166     } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
167       AttributeList AS = CBI->getAttributes();
168       AttrBuilder FnAttrs(AS.getFnAttributes());
169       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
170       FnAttrs.merge(B);
171       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
172                             AttributeSet::get(Context, FnAttrs));
173       CBI->setAttributes(AS);
174     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
175       AttrBuilder Attrs(GV->getAttributes());
176       Attrs.merge(B);
177       GV->setAttributes(AttributeSet::get(Context,Attrs));
178     } else {
179       llvm_unreachable("invalid object with forward attribute group reference");
180     }
181   }
182 
183   // If there are entries in ForwardRefBlockAddresses at this point, the
184   // function was never defined.
185   if (!ForwardRefBlockAddresses.empty())
186     return Error(ForwardRefBlockAddresses.begin()->first.Loc,
187                  "expected function name in blockaddress");
188 
189   for (const auto &NT : NumberedTypes)
190     if (NT.second.second.isValid())
191       return Error(NT.second.second,
192                    "use of undefined type '%" + Twine(NT.first) + "'");
193 
194   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
195        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
196     if (I->second.second.isValid())
197       return Error(I->second.second,
198                    "use of undefined type named '" + I->getKey() + "'");
199 
200   if (!ForwardRefComdats.empty())
201     return Error(ForwardRefComdats.begin()->second,
202                  "use of undefined comdat '$" +
203                      ForwardRefComdats.begin()->first + "'");
204 
205   if (!ForwardRefVals.empty())
206     return Error(ForwardRefVals.begin()->second.second,
207                  "use of undefined value '@" + ForwardRefVals.begin()->first +
208                  "'");
209 
210   if (!ForwardRefValIDs.empty())
211     return Error(ForwardRefValIDs.begin()->second.second,
212                  "use of undefined value '@" +
213                  Twine(ForwardRefValIDs.begin()->first) + "'");
214 
215   if (!ForwardRefMDNodes.empty())
216     return Error(ForwardRefMDNodes.begin()->second.second,
217                  "use of undefined metadata '!" +
218                  Twine(ForwardRefMDNodes.begin()->first) + "'");
219 
220   // Resolve metadata cycles.
221   for (auto &N : NumberedMetadata) {
222     if (N.second && !N.second->isResolved())
223       N.second->resolveCycles();
224   }
225 
226   for (auto *Inst : InstsWithTBAATag) {
227     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
228     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
229     auto *UpgradedMD = UpgradeTBAANode(*MD);
230     if (MD != UpgradedMD)
231       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
232   }
233 
234   // Look for intrinsic functions and CallInst that need to be upgraded
235   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
236     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
237 
238   // Some types could be renamed during loading if several modules are
239   // loaded in the same LLVMContext (LTO scenario). In this case we should
240   // remangle intrinsics names as well.
241   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
242     Function *F = &*FI++;
243     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
244       F->replaceAllUsesWith(Remangled.getValue());
245       F->eraseFromParent();
246     }
247   }
248 
249   if (UpgradeDebugInfo)
250     llvm::UpgradeDebugInfo(*M);
251 
252   UpgradeModuleFlags(*M);
253   UpgradeSectionAttributes(*M);
254 
255   if (!Slots)
256     return false;
257   // Initialize the slot mapping.
258   // Because by this point we've parsed and validated everything, we can "steal"
259   // the mapping from LLParser as it doesn't need it anymore.
260   Slots->GlobalValues = std::move(NumberedVals);
261   Slots->MetadataNodes = std::move(NumberedMetadata);
262   for (const auto &I : NamedTypes)
263     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
264   for (const auto &I : NumberedTypes)
265     Slots->Types.insert(std::make_pair(I.first, I.second.first));
266 
267   return false;
268 }
269 
270 /// Do final validity and sanity checks at the end of the index.
271 bool LLParser::ValidateEndOfIndex() {
272   if (!Index)
273     return false;
274 
275   if (!ForwardRefValueInfos.empty())
276     return Error(ForwardRefValueInfos.begin()->second.front().second,
277                  "use of undefined summary '^" +
278                      Twine(ForwardRefValueInfos.begin()->first) + "'");
279 
280   if (!ForwardRefAliasees.empty())
281     return Error(ForwardRefAliasees.begin()->second.front().second,
282                  "use of undefined summary '^" +
283                      Twine(ForwardRefAliasees.begin()->first) + "'");
284 
285   if (!ForwardRefTypeIds.empty())
286     return Error(ForwardRefTypeIds.begin()->second.front().second,
287                  "use of undefined type id summary '^" +
288                      Twine(ForwardRefTypeIds.begin()->first) + "'");
289 
290   return false;
291 }
292 
293 //===----------------------------------------------------------------------===//
294 // Top-Level Entities
295 //===----------------------------------------------------------------------===//
296 
297 bool LLParser::ParseTopLevelEntities() {
298   // If there is no Module, then parse just the summary index entries.
299   if (!M) {
300     while (true) {
301       switch (Lex.getKind()) {
302       case lltok::Eof:
303         return false;
304       case lltok::SummaryID:
305         if (ParseSummaryEntry())
306           return true;
307         break;
308       case lltok::kw_source_filename:
309         if (ParseSourceFileName())
310           return true;
311         break;
312       default:
313         // Skip everything else
314         Lex.Lex();
315       }
316     }
317   }
318   while (true) {
319     switch (Lex.getKind()) {
320     default:         return TokError("expected top-level entity");
321     case lltok::Eof: return false;
322     case lltok::kw_declare: if (ParseDeclare()) return true; break;
323     case lltok::kw_define:  if (ParseDefine()) return true; break;
324     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
325     case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
326     case lltok::kw_source_filename:
327       if (ParseSourceFileName())
328         return true;
329       break;
330     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
331     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
332     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
333     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
334     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
335     case lltok::ComdatVar:  if (parseComdat()) return true; break;
336     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
337     case lltok::SummaryID:
338       if (ParseSummaryEntry())
339         return true;
340       break;
341     case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
342     case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
343     case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
344     case lltok::kw_uselistorder_bb:
345       if (ParseUseListOrderBB())
346         return true;
347       break;
348     }
349   }
350 }
351 
352 /// toplevelentity
353 ///   ::= 'module' 'asm' STRINGCONSTANT
354 bool LLParser::ParseModuleAsm() {
355   assert(Lex.getKind() == lltok::kw_module);
356   Lex.Lex();
357 
358   std::string AsmStr;
359   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
360       ParseStringConstant(AsmStr)) return true;
361 
362   M->appendModuleInlineAsm(AsmStr);
363   return false;
364 }
365 
366 /// toplevelentity
367 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
368 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
369 bool LLParser::ParseTargetDefinition() {
370   assert(Lex.getKind() == lltok::kw_target);
371   std::string Str;
372   switch (Lex.Lex()) {
373   default: return TokError("unknown target property");
374   case lltok::kw_triple:
375     Lex.Lex();
376     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
377         ParseStringConstant(Str))
378       return true;
379     M->setTargetTriple(Str);
380     return false;
381   case lltok::kw_datalayout:
382     Lex.Lex();
383     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
384         ParseStringConstant(Str))
385       return true;
386     if (DataLayoutStr.empty())
387       M->setDataLayout(Str);
388     return false;
389   }
390 }
391 
392 /// toplevelentity
393 ///   ::= 'source_filename' '=' STRINGCONSTANT
394 bool LLParser::ParseSourceFileName() {
395   assert(Lex.getKind() == lltok::kw_source_filename);
396   Lex.Lex();
397   if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
398       ParseStringConstant(SourceFileName))
399     return true;
400   if (M)
401     M->setSourceFileName(SourceFileName);
402   return false;
403 }
404 
405 /// toplevelentity
406 ///   ::= 'deplibs' '=' '[' ']'
407 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
408 /// FIXME: Remove in 4.0. Currently parse, but ignore.
409 bool LLParser::ParseDepLibs() {
410   assert(Lex.getKind() == lltok::kw_deplibs);
411   Lex.Lex();
412   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
413       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
414     return true;
415 
416   if (EatIfPresent(lltok::rsquare))
417     return false;
418 
419   do {
420     std::string Str;
421     if (ParseStringConstant(Str)) return true;
422   } while (EatIfPresent(lltok::comma));
423 
424   return ParseToken(lltok::rsquare, "expected ']' at end of list");
425 }
426 
427 /// ParseUnnamedType:
428 ///   ::= LocalVarID '=' 'type' type
429 bool LLParser::ParseUnnamedType() {
430   LocTy TypeLoc = Lex.getLoc();
431   unsigned TypeID = Lex.getUIntVal();
432   Lex.Lex(); // eat LocalVarID;
433 
434   if (ParseToken(lltok::equal, "expected '=' after name") ||
435       ParseToken(lltok::kw_type, "expected 'type' after '='"))
436     return true;
437 
438   Type *Result = nullptr;
439   if (ParseStructDefinition(TypeLoc, "",
440                             NumberedTypes[TypeID], Result)) return true;
441 
442   if (!isa<StructType>(Result)) {
443     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
444     if (Entry.first)
445       return Error(TypeLoc, "non-struct types may not be recursive");
446     Entry.first = Result;
447     Entry.second = SMLoc();
448   }
449 
450   return false;
451 }
452 
453 /// toplevelentity
454 ///   ::= LocalVar '=' 'type' type
455 bool LLParser::ParseNamedType() {
456   std::string Name = Lex.getStrVal();
457   LocTy NameLoc = Lex.getLoc();
458   Lex.Lex();  // eat LocalVar.
459 
460   if (ParseToken(lltok::equal, "expected '=' after name") ||
461       ParseToken(lltok::kw_type, "expected 'type' after name"))
462     return true;
463 
464   Type *Result = nullptr;
465   if (ParseStructDefinition(NameLoc, Name,
466                             NamedTypes[Name], Result)) return true;
467 
468   if (!isa<StructType>(Result)) {
469     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
470     if (Entry.first)
471       return Error(NameLoc, "non-struct types may not be recursive");
472     Entry.first = Result;
473     Entry.second = SMLoc();
474   }
475 
476   return false;
477 }
478 
479 /// toplevelentity
480 ///   ::= 'declare' FunctionHeader
481 bool LLParser::ParseDeclare() {
482   assert(Lex.getKind() == lltok::kw_declare);
483   Lex.Lex();
484 
485   std::vector<std::pair<unsigned, MDNode *>> MDs;
486   while (Lex.getKind() == lltok::MetadataVar) {
487     unsigned MDK;
488     MDNode *N;
489     if (ParseMetadataAttachment(MDK, N))
490       return true;
491     MDs.push_back({MDK, N});
492   }
493 
494   Function *F;
495   if (ParseFunctionHeader(F, false))
496     return true;
497   for (auto &MD : MDs)
498     F->addMetadata(MD.first, *MD.second);
499   return false;
500 }
501 
502 /// toplevelentity
503 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
504 bool LLParser::ParseDefine() {
505   assert(Lex.getKind() == lltok::kw_define);
506   Lex.Lex();
507 
508   Function *F;
509   return ParseFunctionHeader(F, true) ||
510          ParseOptionalFunctionMetadata(*F) ||
511          ParseFunctionBody(*F);
512 }
513 
514 /// ParseGlobalType
515 ///   ::= 'constant'
516 ///   ::= 'global'
517 bool LLParser::ParseGlobalType(bool &IsConstant) {
518   if (Lex.getKind() == lltok::kw_constant)
519     IsConstant = true;
520   else if (Lex.getKind() == lltok::kw_global)
521     IsConstant = false;
522   else {
523     IsConstant = false;
524     return TokError("expected 'global' or 'constant'");
525   }
526   Lex.Lex();
527   return false;
528 }
529 
530 bool LLParser::ParseOptionalUnnamedAddr(
531     GlobalVariable::UnnamedAddr &UnnamedAddr) {
532   if (EatIfPresent(lltok::kw_unnamed_addr))
533     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
534   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
535     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
536   else
537     UnnamedAddr = GlobalValue::UnnamedAddr::None;
538   return false;
539 }
540 
541 /// ParseUnnamedGlobal:
542 ///   OptionalVisibility (ALIAS | IFUNC) ...
543 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
544 ///   OptionalDLLStorageClass
545 ///                                                     ...   -> global variable
546 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
547 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
548 ///                OptionalDLLStorageClass
549 ///                                                     ...   -> global variable
550 bool LLParser::ParseUnnamedGlobal() {
551   unsigned VarID = NumberedVals.size();
552   std::string Name;
553   LocTy NameLoc = Lex.getLoc();
554 
555   // Handle the GlobalID form.
556   if (Lex.getKind() == lltok::GlobalID) {
557     if (Lex.getUIntVal() != VarID)
558       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
559                    Twine(VarID) + "'");
560     Lex.Lex(); // eat GlobalID;
561 
562     if (ParseToken(lltok::equal, "expected '=' after name"))
563       return true;
564   }
565 
566   bool HasLinkage;
567   unsigned Linkage, Visibility, DLLStorageClass;
568   bool DSOLocal;
569   GlobalVariable::ThreadLocalMode TLM;
570   GlobalVariable::UnnamedAddr UnnamedAddr;
571   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
572                            DSOLocal) ||
573       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
574     return true;
575 
576   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
577     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
578                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
579 
580   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
581                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
582 }
583 
584 /// ParseNamedGlobal:
585 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
586 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
587 ///                 OptionalVisibility OptionalDLLStorageClass
588 ///                                                     ...   -> global variable
589 bool LLParser::ParseNamedGlobal() {
590   assert(Lex.getKind() == lltok::GlobalVar);
591   LocTy NameLoc = Lex.getLoc();
592   std::string Name = Lex.getStrVal();
593   Lex.Lex();
594 
595   bool HasLinkage;
596   unsigned Linkage, Visibility, DLLStorageClass;
597   bool DSOLocal;
598   GlobalVariable::ThreadLocalMode TLM;
599   GlobalVariable::UnnamedAddr UnnamedAddr;
600   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
601       ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
602                            DSOLocal) ||
603       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
604     return true;
605 
606   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
607     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
608                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
609 
610   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
611                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
612 }
613 
614 bool LLParser::parseComdat() {
615   assert(Lex.getKind() == lltok::ComdatVar);
616   std::string Name = Lex.getStrVal();
617   LocTy NameLoc = Lex.getLoc();
618   Lex.Lex();
619 
620   if (ParseToken(lltok::equal, "expected '=' here"))
621     return true;
622 
623   if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
624     return TokError("expected comdat type");
625 
626   Comdat::SelectionKind SK;
627   switch (Lex.getKind()) {
628   default:
629     return TokError("unknown selection kind");
630   case lltok::kw_any:
631     SK = Comdat::Any;
632     break;
633   case lltok::kw_exactmatch:
634     SK = Comdat::ExactMatch;
635     break;
636   case lltok::kw_largest:
637     SK = Comdat::Largest;
638     break;
639   case lltok::kw_noduplicates:
640     SK = Comdat::NoDuplicates;
641     break;
642   case lltok::kw_samesize:
643     SK = Comdat::SameSize;
644     break;
645   }
646   Lex.Lex();
647 
648   // See if the comdat was forward referenced, if so, use the comdat.
649   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
650   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
651   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
652     return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
653 
654   Comdat *C;
655   if (I != ComdatSymTab.end())
656     C = &I->second;
657   else
658     C = M->getOrInsertComdat(Name);
659   C->setSelectionKind(SK);
660 
661   return false;
662 }
663 
664 // MDString:
665 //   ::= '!' STRINGCONSTANT
666 bool LLParser::ParseMDString(MDString *&Result) {
667   std::string Str;
668   if (ParseStringConstant(Str)) return true;
669   Result = MDString::get(Context, Str);
670   return false;
671 }
672 
673 // MDNode:
674 //   ::= '!' MDNodeNumber
675 bool LLParser::ParseMDNodeID(MDNode *&Result) {
676   // !{ ..., !42, ... }
677   LocTy IDLoc = Lex.getLoc();
678   unsigned MID = 0;
679   if (ParseUInt32(MID))
680     return true;
681 
682   // If not a forward reference, just return it now.
683   if (NumberedMetadata.count(MID)) {
684     Result = NumberedMetadata[MID];
685     return false;
686   }
687 
688   // Otherwise, create MDNode forward reference.
689   auto &FwdRef = ForwardRefMDNodes[MID];
690   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
691 
692   Result = FwdRef.first.get();
693   NumberedMetadata[MID].reset(Result);
694   return false;
695 }
696 
697 /// ParseNamedMetadata:
698 ///   !foo = !{ !1, !2 }
699 bool LLParser::ParseNamedMetadata() {
700   assert(Lex.getKind() == lltok::MetadataVar);
701   std::string Name = Lex.getStrVal();
702   Lex.Lex();
703 
704   if (ParseToken(lltok::equal, "expected '=' here") ||
705       ParseToken(lltok::exclaim, "Expected '!' here") ||
706       ParseToken(lltok::lbrace, "Expected '{' here"))
707     return true;
708 
709   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
710   if (Lex.getKind() != lltok::rbrace)
711     do {
712       MDNode *N = nullptr;
713       // Parse DIExpressions inline as a special case. They are still MDNodes,
714       // so they can still appear in named metadata. Remove this logic if they
715       // become plain Metadata.
716       if (Lex.getKind() == lltok::MetadataVar &&
717           Lex.getStrVal() == "DIExpression") {
718         if (ParseDIExpression(N, /*IsDistinct=*/false))
719           return true;
720       } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
721                  ParseMDNodeID(N)) {
722         return true;
723       }
724       NMD->addOperand(N);
725     } while (EatIfPresent(lltok::comma));
726 
727   return ParseToken(lltok::rbrace, "expected end of metadata node");
728 }
729 
730 /// ParseStandaloneMetadata:
731 ///   !42 = !{...}
732 bool LLParser::ParseStandaloneMetadata() {
733   assert(Lex.getKind() == lltok::exclaim);
734   Lex.Lex();
735   unsigned MetadataID = 0;
736 
737   MDNode *Init;
738   if (ParseUInt32(MetadataID) ||
739       ParseToken(lltok::equal, "expected '=' here"))
740     return true;
741 
742   // Detect common error, from old metadata syntax.
743   if (Lex.getKind() == lltok::Type)
744     return TokError("unexpected type in metadata definition");
745 
746   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
747   if (Lex.getKind() == lltok::MetadataVar) {
748     if (ParseSpecializedMDNode(Init, IsDistinct))
749       return true;
750   } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
751              ParseMDTuple(Init, IsDistinct))
752     return true;
753 
754   // See if this was forward referenced, if so, handle it.
755   auto FI = ForwardRefMDNodes.find(MetadataID);
756   if (FI != ForwardRefMDNodes.end()) {
757     FI->second.first->replaceAllUsesWith(Init);
758     ForwardRefMDNodes.erase(FI);
759 
760     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
761   } else {
762     if (NumberedMetadata.count(MetadataID))
763       return TokError("Metadata id is already used");
764     NumberedMetadata[MetadataID].reset(Init);
765   }
766 
767   return false;
768 }
769 
770 // Skips a single module summary entry.
771 bool LLParser::SkipModuleSummaryEntry() {
772   // Each module summary entry consists of a tag for the entry
773   // type, followed by a colon, then the fields surrounded by nested sets of
774   // parentheses. The "tag:" looks like a Label. Once parsing support is
775   // in place we will look for the tokens corresponding to the expected tags.
776   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
777       Lex.getKind() != lltok::kw_typeid)
778     return TokError(
779         "Expected 'gv', 'module', or 'typeid' at the start of summary entry");
780   Lex.Lex();
781   if (ParseToken(lltok::colon, "expected ':' at start of summary entry") ||
782       ParseToken(lltok::lparen, "expected '(' at start of summary entry"))
783     return true;
784   // Now walk through the parenthesized entry, until the number of open
785   // parentheses goes back down to 0 (the first '(' was parsed above).
786   unsigned NumOpenParen = 1;
787   do {
788     switch (Lex.getKind()) {
789     case lltok::lparen:
790       NumOpenParen++;
791       break;
792     case lltok::rparen:
793       NumOpenParen--;
794       break;
795     case lltok::Eof:
796       return TokError("found end of file while parsing summary entry");
797     default:
798       // Skip everything in between parentheses.
799       break;
800     }
801     Lex.Lex();
802   } while (NumOpenParen > 0);
803   return false;
804 }
805 
806 /// SummaryEntry
807 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
808 bool LLParser::ParseSummaryEntry() {
809   assert(Lex.getKind() == lltok::SummaryID);
810   unsigned SummaryID = Lex.getUIntVal();
811 
812   // For summary entries, colons should be treated as distinct tokens,
813   // not an indication of the end of a label token.
814   Lex.setIgnoreColonInIdentifiers(true);
815 
816   Lex.Lex();
817   if (ParseToken(lltok::equal, "expected '=' here"))
818     return true;
819 
820   // If we don't have an index object, skip the summary entry.
821   if (!Index)
822     return SkipModuleSummaryEntry();
823 
824   switch (Lex.getKind()) {
825   case lltok::kw_gv:
826     return ParseGVEntry(SummaryID);
827   case lltok::kw_module:
828     return ParseModuleEntry(SummaryID);
829   case lltok::kw_typeid:
830     return ParseTypeIdEntry(SummaryID);
831     break;
832   default:
833     return Error(Lex.getLoc(), "unexpected summary kind");
834   }
835   Lex.setIgnoreColonInIdentifiers(false);
836   return false;
837 }
838 
839 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
840   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
841          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
842 }
843 
844 // If there was an explicit dso_local, update GV. In the absence of an explicit
845 // dso_local we keep the default value.
846 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
847   if (DSOLocal)
848     GV.setDSOLocal(true);
849 }
850 
851 /// parseIndirectSymbol:
852 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
853 ///                     OptionalVisibility OptionalDLLStorageClass
854 ///                     OptionalThreadLocal OptionalUnnamedAddr
855 //                      'alias|ifunc' IndirectSymbol
856 ///
857 /// IndirectSymbol
858 ///   ::= TypeAndValue
859 ///
860 /// Everything through OptionalUnnamedAddr has already been parsed.
861 ///
862 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
863                                    unsigned L, unsigned Visibility,
864                                    unsigned DLLStorageClass, bool DSOLocal,
865                                    GlobalVariable::ThreadLocalMode TLM,
866                                    GlobalVariable::UnnamedAddr UnnamedAddr) {
867   bool IsAlias;
868   if (Lex.getKind() == lltok::kw_alias)
869     IsAlias = true;
870   else if (Lex.getKind() == lltok::kw_ifunc)
871     IsAlias = false;
872   else
873     llvm_unreachable("Not an alias or ifunc!");
874   Lex.Lex();
875 
876   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
877 
878   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
879     return Error(NameLoc, "invalid linkage type for alias");
880 
881   if (!isValidVisibilityForLinkage(Visibility, L))
882     return Error(NameLoc,
883                  "symbol with local linkage must have default visibility");
884 
885   Type *Ty;
886   LocTy ExplicitTypeLoc = Lex.getLoc();
887   if (ParseType(Ty) ||
888       ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
889     return true;
890 
891   Constant *Aliasee;
892   LocTy AliaseeLoc = Lex.getLoc();
893   if (Lex.getKind() != lltok::kw_bitcast &&
894       Lex.getKind() != lltok::kw_getelementptr &&
895       Lex.getKind() != lltok::kw_addrspacecast &&
896       Lex.getKind() != lltok::kw_inttoptr) {
897     if (ParseGlobalTypeAndValue(Aliasee))
898       return true;
899   } else {
900     // The bitcast dest type is not present, it is implied by the dest type.
901     ValID ID;
902     if (ParseValID(ID))
903       return true;
904     if (ID.Kind != ValID::t_Constant)
905       return Error(AliaseeLoc, "invalid aliasee");
906     Aliasee = ID.ConstantVal;
907   }
908 
909   Type *AliaseeType = Aliasee->getType();
910   auto *PTy = dyn_cast<PointerType>(AliaseeType);
911   if (!PTy)
912     return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
913   unsigned AddrSpace = PTy->getAddressSpace();
914 
915   if (IsAlias && Ty != PTy->getElementType())
916     return Error(
917         ExplicitTypeLoc,
918         "explicit pointee type doesn't match operand's pointee type");
919 
920   if (!IsAlias && !PTy->getElementType()->isFunctionTy())
921     return Error(
922         ExplicitTypeLoc,
923         "explicit pointee type should be a function type");
924 
925   GlobalValue *GVal = nullptr;
926 
927   // See if the alias was forward referenced, if so, prepare to replace the
928   // forward reference.
929   if (!Name.empty()) {
930     GVal = M->getNamedValue(Name);
931     if (GVal) {
932       if (!ForwardRefVals.erase(Name))
933         return Error(NameLoc, "redefinition of global '@" + Name + "'");
934     }
935   } else {
936     auto I = ForwardRefValIDs.find(NumberedVals.size());
937     if (I != ForwardRefValIDs.end()) {
938       GVal = I->second.first;
939       ForwardRefValIDs.erase(I);
940     }
941   }
942 
943   // Okay, create the alias but do not insert it into the module yet.
944   std::unique_ptr<GlobalIndirectSymbol> GA;
945   if (IsAlias)
946     GA.reset(GlobalAlias::create(Ty, AddrSpace,
947                                  (GlobalValue::LinkageTypes)Linkage, Name,
948                                  Aliasee, /*Parent*/ nullptr));
949   else
950     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
951                                  (GlobalValue::LinkageTypes)Linkage, Name,
952                                  Aliasee, /*Parent*/ nullptr));
953   GA->setThreadLocalMode(TLM);
954   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
955   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
956   GA->setUnnamedAddr(UnnamedAddr);
957   maybeSetDSOLocal(DSOLocal, *GA);
958 
959   if (Name.empty())
960     NumberedVals.push_back(GA.get());
961 
962   if (GVal) {
963     // Verify that types agree.
964     if (GVal->getType() != GA->getType())
965       return Error(
966           ExplicitTypeLoc,
967           "forward reference and definition of alias have different types");
968 
969     // If they agree, just RAUW the old value with the alias and remove the
970     // forward ref info.
971     GVal->replaceAllUsesWith(GA.get());
972     GVal->eraseFromParent();
973   }
974 
975   // Insert into the module, we know its name won't collide now.
976   if (IsAlias)
977     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
978   else
979     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
980   assert(GA->getName() == Name && "Should not be a name conflict!");
981 
982   // The module owns this now
983   GA.release();
984 
985   return false;
986 }
987 
988 /// ParseGlobal
989 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
990 ///       OptionalVisibility OptionalDLLStorageClass
991 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
992 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
993 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
994 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
995 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
996 ///       Const OptionalAttrs
997 ///
998 /// Everything up to and including OptionalUnnamedAddr has been parsed
999 /// already.
1000 ///
1001 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
1002                            unsigned Linkage, bool HasLinkage,
1003                            unsigned Visibility, unsigned DLLStorageClass,
1004                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1005                            GlobalVariable::UnnamedAddr UnnamedAddr) {
1006   if (!isValidVisibilityForLinkage(Visibility, Linkage))
1007     return Error(NameLoc,
1008                  "symbol with local linkage must have default visibility");
1009 
1010   unsigned AddrSpace;
1011   bool IsConstant, IsExternallyInitialized;
1012   LocTy IsExternallyInitializedLoc;
1013   LocTy TyLoc;
1014 
1015   Type *Ty = nullptr;
1016   if (ParseOptionalAddrSpace(AddrSpace) ||
1017       ParseOptionalToken(lltok::kw_externally_initialized,
1018                          IsExternallyInitialized,
1019                          &IsExternallyInitializedLoc) ||
1020       ParseGlobalType(IsConstant) ||
1021       ParseType(Ty, TyLoc))
1022     return true;
1023 
1024   // If the linkage is specified and is external, then no initializer is
1025   // present.
1026   Constant *Init = nullptr;
1027   if (!HasLinkage ||
1028       !GlobalValue::isValidDeclarationLinkage(
1029           (GlobalValue::LinkageTypes)Linkage)) {
1030     if (ParseGlobalValue(Ty, Init))
1031       return true;
1032   }
1033 
1034   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1035     return Error(TyLoc, "invalid type for global variable");
1036 
1037   GlobalValue *GVal = nullptr;
1038 
1039   // See if the global was forward referenced, if so, use the global.
1040   if (!Name.empty()) {
1041     GVal = M->getNamedValue(Name);
1042     if (GVal) {
1043       if (!ForwardRefVals.erase(Name))
1044         return Error(NameLoc, "redefinition of global '@" + Name + "'");
1045     }
1046   } else {
1047     auto I = ForwardRefValIDs.find(NumberedVals.size());
1048     if (I != ForwardRefValIDs.end()) {
1049       GVal = I->second.first;
1050       ForwardRefValIDs.erase(I);
1051     }
1052   }
1053 
1054   GlobalVariable *GV;
1055   if (!GVal) {
1056     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
1057                             Name, nullptr, GlobalVariable::NotThreadLocal,
1058                             AddrSpace);
1059   } else {
1060     if (GVal->getValueType() != Ty)
1061       return Error(TyLoc,
1062             "forward reference and definition of global have different types");
1063 
1064     GV = cast<GlobalVariable>(GVal);
1065 
1066     // Move the forward-reference to the correct spot in the module.
1067     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
1068   }
1069 
1070   if (Name.empty())
1071     NumberedVals.push_back(GV);
1072 
1073   // Set the parsed properties on the global.
1074   if (Init)
1075     GV->setInitializer(Init);
1076   GV->setConstant(IsConstant);
1077   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1078   maybeSetDSOLocal(DSOLocal, *GV);
1079   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1080   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1081   GV->setExternallyInitialized(IsExternallyInitialized);
1082   GV->setThreadLocalMode(TLM);
1083   GV->setUnnamedAddr(UnnamedAddr);
1084 
1085   // Parse attributes on the global.
1086   while (Lex.getKind() == lltok::comma) {
1087     Lex.Lex();
1088 
1089     if (Lex.getKind() == lltok::kw_section) {
1090       Lex.Lex();
1091       GV->setSection(Lex.getStrVal());
1092       if (ParseToken(lltok::StringConstant, "expected global section string"))
1093         return true;
1094     } else if (Lex.getKind() == lltok::kw_align) {
1095       unsigned Alignment;
1096       if (ParseOptionalAlignment(Alignment)) return true;
1097       GV->setAlignment(Alignment);
1098     } else if (Lex.getKind() == lltok::MetadataVar) {
1099       if (ParseGlobalObjectMetadataAttachment(*GV))
1100         return true;
1101     } else {
1102       Comdat *C;
1103       if (parseOptionalComdat(Name, C))
1104         return true;
1105       if (C)
1106         GV->setComdat(C);
1107       else
1108         return TokError("unknown global variable property!");
1109     }
1110   }
1111 
1112   AttrBuilder Attrs;
1113   LocTy BuiltinLoc;
1114   std::vector<unsigned> FwdRefAttrGrps;
1115   if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1116     return true;
1117   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1118     GV->setAttributes(AttributeSet::get(Context, Attrs));
1119     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1120   }
1121 
1122   return false;
1123 }
1124 
1125 /// ParseUnnamedAttrGrp
1126 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1127 bool LLParser::ParseUnnamedAttrGrp() {
1128   assert(Lex.getKind() == lltok::kw_attributes);
1129   LocTy AttrGrpLoc = Lex.getLoc();
1130   Lex.Lex();
1131 
1132   if (Lex.getKind() != lltok::AttrGrpID)
1133     return TokError("expected attribute group id");
1134 
1135   unsigned VarID = Lex.getUIntVal();
1136   std::vector<unsigned> unused;
1137   LocTy BuiltinLoc;
1138   Lex.Lex();
1139 
1140   if (ParseToken(lltok::equal, "expected '=' here") ||
1141       ParseToken(lltok::lbrace, "expected '{' here") ||
1142       ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1143                                  BuiltinLoc) ||
1144       ParseToken(lltok::rbrace, "expected end of attribute group"))
1145     return true;
1146 
1147   if (!NumberedAttrBuilders[VarID].hasAttributes())
1148     return Error(AttrGrpLoc, "attribute group has no attributes");
1149 
1150   return false;
1151 }
1152 
1153 /// ParseFnAttributeValuePairs
1154 ///   ::= <attr> | <attr> '=' <value>
1155 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
1156                                           std::vector<unsigned> &FwdRefAttrGrps,
1157                                           bool inAttrGrp, LocTy &BuiltinLoc) {
1158   bool HaveError = false;
1159 
1160   B.clear();
1161 
1162   while (true) {
1163     lltok::Kind Token = Lex.getKind();
1164     if (Token == lltok::kw_builtin)
1165       BuiltinLoc = Lex.getLoc();
1166     switch (Token) {
1167     default:
1168       if (!inAttrGrp) return HaveError;
1169       return Error(Lex.getLoc(), "unterminated attribute group");
1170     case lltok::rbrace:
1171       // Finished.
1172       return false;
1173 
1174     case lltok::AttrGrpID: {
1175       // Allow a function to reference an attribute group:
1176       //
1177       //   define void @foo() #1 { ... }
1178       if (inAttrGrp)
1179         HaveError |=
1180           Error(Lex.getLoc(),
1181               "cannot have an attribute group reference in an attribute group");
1182 
1183       unsigned AttrGrpNum = Lex.getUIntVal();
1184       if (inAttrGrp) break;
1185 
1186       // Save the reference to the attribute group. We'll fill it in later.
1187       FwdRefAttrGrps.push_back(AttrGrpNum);
1188       break;
1189     }
1190     // Target-dependent attributes:
1191     case lltok::StringConstant: {
1192       if (ParseStringAttribute(B))
1193         return true;
1194       continue;
1195     }
1196 
1197     // Target-independent attributes:
1198     case lltok::kw_align: {
1199       // As a hack, we allow function alignment to be initially parsed as an
1200       // attribute on a function declaration/definition or added to an attribute
1201       // group and later moved to the alignment field.
1202       unsigned Alignment;
1203       if (inAttrGrp) {
1204         Lex.Lex();
1205         if (ParseToken(lltok::equal, "expected '=' here") ||
1206             ParseUInt32(Alignment))
1207           return true;
1208       } else {
1209         if (ParseOptionalAlignment(Alignment))
1210           return true;
1211       }
1212       B.addAlignmentAttr(Alignment);
1213       continue;
1214     }
1215     case lltok::kw_alignstack: {
1216       unsigned Alignment;
1217       if (inAttrGrp) {
1218         Lex.Lex();
1219         if (ParseToken(lltok::equal, "expected '=' here") ||
1220             ParseUInt32(Alignment))
1221           return true;
1222       } else {
1223         if (ParseOptionalStackAlignment(Alignment))
1224           return true;
1225       }
1226       B.addStackAlignmentAttr(Alignment);
1227       continue;
1228     }
1229     case lltok::kw_allocsize: {
1230       unsigned ElemSizeArg;
1231       Optional<unsigned> NumElemsArg;
1232       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1233       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1234         return true;
1235       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1236       continue;
1237     }
1238     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1239     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1240     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1241     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1242     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1243     case lltok::kw_inaccessiblememonly:
1244       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1245     case lltok::kw_inaccessiblemem_or_argmemonly:
1246       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1247     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1248     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1249     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1250     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1251     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1252     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1253     case lltok::kw_noimplicitfloat:
1254       B.addAttribute(Attribute::NoImplicitFloat); break;
1255     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1256     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1257     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1258     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1259     case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break;
1260     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1261     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1262     case lltok::kw_optforfuzzing:
1263       B.addAttribute(Attribute::OptForFuzzing); break;
1264     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1265     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1266     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1267     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1268     case lltok::kw_returns_twice:
1269       B.addAttribute(Attribute::ReturnsTwice); break;
1270     case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1271     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1272     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1273     case lltok::kw_sspstrong:
1274       B.addAttribute(Attribute::StackProtectStrong); break;
1275     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1276     case lltok::kw_shadowcallstack:
1277       B.addAttribute(Attribute::ShadowCallStack); break;
1278     case lltok::kw_sanitize_address:
1279       B.addAttribute(Attribute::SanitizeAddress); break;
1280     case lltok::kw_sanitize_hwaddress:
1281       B.addAttribute(Attribute::SanitizeHWAddress); break;
1282     case lltok::kw_sanitize_thread:
1283       B.addAttribute(Attribute::SanitizeThread); break;
1284     case lltok::kw_sanitize_memory:
1285       B.addAttribute(Attribute::SanitizeMemory); break;
1286     case lltok::kw_speculative_load_hardening:
1287       B.addAttribute(Attribute::SpeculativeLoadHardening);
1288       break;
1289     case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1290     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1291     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1292 
1293     // Error handling.
1294     case lltok::kw_inreg:
1295     case lltok::kw_signext:
1296     case lltok::kw_zeroext:
1297       HaveError |=
1298         Error(Lex.getLoc(),
1299               "invalid use of attribute on a function");
1300       break;
1301     case lltok::kw_byval:
1302     case lltok::kw_dereferenceable:
1303     case lltok::kw_dereferenceable_or_null:
1304     case lltok::kw_inalloca:
1305     case lltok::kw_nest:
1306     case lltok::kw_noalias:
1307     case lltok::kw_nocapture:
1308     case lltok::kw_nonnull:
1309     case lltok::kw_returned:
1310     case lltok::kw_sret:
1311     case lltok::kw_swifterror:
1312     case lltok::kw_swiftself:
1313       HaveError |=
1314         Error(Lex.getLoc(),
1315               "invalid use of parameter-only attribute on a function");
1316       break;
1317     }
1318 
1319     Lex.Lex();
1320   }
1321 }
1322 
1323 //===----------------------------------------------------------------------===//
1324 // GlobalValue Reference/Resolution Routines.
1325 //===----------------------------------------------------------------------===//
1326 
1327 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1328                                               const std::string &Name) {
1329   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1330     return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1331                             PTy->getAddressSpace(), Name, M);
1332   else
1333     return new GlobalVariable(*M, PTy->getElementType(), false,
1334                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1335                               nullptr, GlobalVariable::NotThreadLocal,
1336                               PTy->getAddressSpace());
1337 }
1338 
1339 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1340                                         Value *Val, bool IsCall) {
1341   if (Val->getType() == Ty)
1342     return Val;
1343   // For calls we also accept variables in the program address space.
1344   Type *SuggestedTy = Ty;
1345   if (IsCall && isa<PointerType>(Ty)) {
1346     Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo(
1347         M->getDataLayout().getProgramAddressSpace());
1348     SuggestedTy = TyInProgAS;
1349     if (Val->getType() == TyInProgAS)
1350       return Val;
1351   }
1352   if (Ty->isLabelTy())
1353     Error(Loc, "'" + Name + "' is not a basic block");
1354   else
1355     Error(Loc, "'" + Name + "' defined with type '" +
1356                    getTypeString(Val->getType()) + "' but expected '" +
1357                    getTypeString(SuggestedTy) + "'");
1358   return nullptr;
1359 }
1360 
1361 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1362 /// forward reference record if needed.  This can return null if the value
1363 /// exists but does not have the right type.
1364 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1365                                     LocTy Loc, bool IsCall) {
1366   PointerType *PTy = dyn_cast<PointerType>(Ty);
1367   if (!PTy) {
1368     Error(Loc, "global variable reference must have pointer type");
1369     return nullptr;
1370   }
1371 
1372   // Look this name up in the normal function symbol table.
1373   GlobalValue *Val =
1374     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1375 
1376   // If this is a forward reference for the value, see if we already created a
1377   // forward ref record.
1378   if (!Val) {
1379     auto I = ForwardRefVals.find(Name);
1380     if (I != ForwardRefVals.end())
1381       Val = I->second.first;
1382   }
1383 
1384   // If we have the value in the symbol table or fwd-ref table, return it.
1385   if (Val)
1386     return cast_or_null<GlobalValue>(
1387         checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall));
1388 
1389   // Otherwise, create a new forward reference for this value and remember it.
1390   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1391   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1392   return FwdVal;
1393 }
1394 
1395 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc,
1396                                     bool IsCall) {
1397   PointerType *PTy = dyn_cast<PointerType>(Ty);
1398   if (!PTy) {
1399     Error(Loc, "global variable reference must have pointer type");
1400     return nullptr;
1401   }
1402 
1403   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1404 
1405   // If this is a forward reference for the value, see if we already created a
1406   // forward ref record.
1407   if (!Val) {
1408     auto I = ForwardRefValIDs.find(ID);
1409     if (I != ForwardRefValIDs.end())
1410       Val = I->second.first;
1411   }
1412 
1413   // If we have the value in the symbol table or fwd-ref table, return it.
1414   if (Val)
1415     return cast_or_null<GlobalValue>(
1416         checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall));
1417 
1418   // Otherwise, create a new forward reference for this value and remember it.
1419   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1420   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1421   return FwdVal;
1422 }
1423 
1424 //===----------------------------------------------------------------------===//
1425 // Comdat Reference/Resolution Routines.
1426 //===----------------------------------------------------------------------===//
1427 
1428 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1429   // Look this name up in the comdat symbol table.
1430   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1431   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1432   if (I != ComdatSymTab.end())
1433     return &I->second;
1434 
1435   // Otherwise, create a new forward reference for this value and remember it.
1436   Comdat *C = M->getOrInsertComdat(Name);
1437   ForwardRefComdats[Name] = Loc;
1438   return C;
1439 }
1440 
1441 //===----------------------------------------------------------------------===//
1442 // Helper Routines.
1443 //===----------------------------------------------------------------------===//
1444 
1445 /// ParseToken - If the current token has the specified kind, eat it and return
1446 /// success.  Otherwise, emit the specified error and return failure.
1447 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1448   if (Lex.getKind() != T)
1449     return TokError(ErrMsg);
1450   Lex.Lex();
1451   return false;
1452 }
1453 
1454 /// ParseStringConstant
1455 ///   ::= StringConstant
1456 bool LLParser::ParseStringConstant(std::string &Result) {
1457   if (Lex.getKind() != lltok::StringConstant)
1458     return TokError("expected string constant");
1459   Result = Lex.getStrVal();
1460   Lex.Lex();
1461   return false;
1462 }
1463 
1464 /// ParseUInt32
1465 ///   ::= uint32
1466 bool LLParser::ParseUInt32(uint32_t &Val) {
1467   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1468     return TokError("expected integer");
1469   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1470   if (Val64 != unsigned(Val64))
1471     return TokError("expected 32-bit integer (too large)");
1472   Val = Val64;
1473   Lex.Lex();
1474   return false;
1475 }
1476 
1477 /// ParseUInt64
1478 ///   ::= uint64
1479 bool LLParser::ParseUInt64(uint64_t &Val) {
1480   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1481     return TokError("expected integer");
1482   Val = Lex.getAPSIntVal().getLimitedValue();
1483   Lex.Lex();
1484   return false;
1485 }
1486 
1487 /// ParseTLSModel
1488 ///   := 'localdynamic'
1489 ///   := 'initialexec'
1490 ///   := 'localexec'
1491 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1492   switch (Lex.getKind()) {
1493     default:
1494       return TokError("expected localdynamic, initialexec or localexec");
1495     case lltok::kw_localdynamic:
1496       TLM = GlobalVariable::LocalDynamicTLSModel;
1497       break;
1498     case lltok::kw_initialexec:
1499       TLM = GlobalVariable::InitialExecTLSModel;
1500       break;
1501     case lltok::kw_localexec:
1502       TLM = GlobalVariable::LocalExecTLSModel;
1503       break;
1504   }
1505 
1506   Lex.Lex();
1507   return false;
1508 }
1509 
1510 /// ParseOptionalThreadLocal
1511 ///   := /*empty*/
1512 ///   := 'thread_local'
1513 ///   := 'thread_local' '(' tlsmodel ')'
1514 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1515   TLM = GlobalVariable::NotThreadLocal;
1516   if (!EatIfPresent(lltok::kw_thread_local))
1517     return false;
1518 
1519   TLM = GlobalVariable::GeneralDynamicTLSModel;
1520   if (Lex.getKind() == lltok::lparen) {
1521     Lex.Lex();
1522     return ParseTLSModel(TLM) ||
1523       ParseToken(lltok::rparen, "expected ')' after thread local model");
1524   }
1525   return false;
1526 }
1527 
1528 /// ParseOptionalAddrSpace
1529 ///   := /*empty*/
1530 ///   := 'addrspace' '(' uint32 ')'
1531 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1532   AddrSpace = DefaultAS;
1533   if (!EatIfPresent(lltok::kw_addrspace))
1534     return false;
1535   return ParseToken(lltok::lparen, "expected '(' in address space") ||
1536          ParseUInt32(AddrSpace) ||
1537          ParseToken(lltok::rparen, "expected ')' in address space");
1538 }
1539 
1540 /// ParseStringAttribute
1541 ///   := StringConstant
1542 ///   := StringConstant '=' StringConstant
1543 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1544   std::string Attr = Lex.getStrVal();
1545   Lex.Lex();
1546   std::string Val;
1547   if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1548     return true;
1549   B.addAttribute(Attr, Val);
1550   return false;
1551 }
1552 
1553 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1554 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1555   bool HaveError = false;
1556 
1557   B.clear();
1558 
1559   while (true) {
1560     lltok::Kind Token = Lex.getKind();
1561     switch (Token) {
1562     default:  // End of attributes.
1563       return HaveError;
1564     case lltok::StringConstant: {
1565       if (ParseStringAttribute(B))
1566         return true;
1567       continue;
1568     }
1569     case lltok::kw_align: {
1570       unsigned Alignment;
1571       if (ParseOptionalAlignment(Alignment))
1572         return true;
1573       B.addAlignmentAttr(Alignment);
1574       continue;
1575     }
1576     case lltok::kw_byval:           B.addAttribute(Attribute::ByVal); break;
1577     case lltok::kw_dereferenceable: {
1578       uint64_t Bytes;
1579       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1580         return true;
1581       B.addDereferenceableAttr(Bytes);
1582       continue;
1583     }
1584     case lltok::kw_dereferenceable_or_null: {
1585       uint64_t Bytes;
1586       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1587         return true;
1588       B.addDereferenceableOrNullAttr(Bytes);
1589       continue;
1590     }
1591     case lltok::kw_inalloca:        B.addAttribute(Attribute::InAlloca); break;
1592     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1593     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1594     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1595     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1596     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1597     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1598     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1599     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1600     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1601     case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1602     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1603     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1604     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
1605     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1606 
1607     case lltok::kw_alignstack:
1608     case lltok::kw_alwaysinline:
1609     case lltok::kw_argmemonly:
1610     case lltok::kw_builtin:
1611     case lltok::kw_inlinehint:
1612     case lltok::kw_jumptable:
1613     case lltok::kw_minsize:
1614     case lltok::kw_naked:
1615     case lltok::kw_nobuiltin:
1616     case lltok::kw_noduplicate:
1617     case lltok::kw_noimplicitfloat:
1618     case lltok::kw_noinline:
1619     case lltok::kw_nonlazybind:
1620     case lltok::kw_noredzone:
1621     case lltok::kw_noreturn:
1622     case lltok::kw_nocf_check:
1623     case lltok::kw_nounwind:
1624     case lltok::kw_optforfuzzing:
1625     case lltok::kw_optnone:
1626     case lltok::kw_optsize:
1627     case lltok::kw_returns_twice:
1628     case lltok::kw_sanitize_address:
1629     case lltok::kw_sanitize_hwaddress:
1630     case lltok::kw_sanitize_memory:
1631     case lltok::kw_sanitize_thread:
1632     case lltok::kw_speculative_load_hardening:
1633     case lltok::kw_ssp:
1634     case lltok::kw_sspreq:
1635     case lltok::kw_sspstrong:
1636     case lltok::kw_safestack:
1637     case lltok::kw_shadowcallstack:
1638     case lltok::kw_strictfp:
1639     case lltok::kw_uwtable:
1640       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1641       break;
1642     }
1643 
1644     Lex.Lex();
1645   }
1646 }
1647 
1648 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1649 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1650   bool HaveError = false;
1651 
1652   B.clear();
1653 
1654   while (true) {
1655     lltok::Kind Token = Lex.getKind();
1656     switch (Token) {
1657     default:  // End of attributes.
1658       return HaveError;
1659     case lltok::StringConstant: {
1660       if (ParseStringAttribute(B))
1661         return true;
1662       continue;
1663     }
1664     case lltok::kw_dereferenceable: {
1665       uint64_t Bytes;
1666       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1667         return true;
1668       B.addDereferenceableAttr(Bytes);
1669       continue;
1670     }
1671     case lltok::kw_dereferenceable_or_null: {
1672       uint64_t Bytes;
1673       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1674         return true;
1675       B.addDereferenceableOrNullAttr(Bytes);
1676       continue;
1677     }
1678     case lltok::kw_align: {
1679       unsigned Alignment;
1680       if (ParseOptionalAlignment(Alignment))
1681         return true;
1682       B.addAlignmentAttr(Alignment);
1683       continue;
1684     }
1685     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1686     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1687     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1688     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1689     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1690 
1691     // Error handling.
1692     case lltok::kw_byval:
1693     case lltok::kw_inalloca:
1694     case lltok::kw_nest:
1695     case lltok::kw_nocapture:
1696     case lltok::kw_returned:
1697     case lltok::kw_sret:
1698     case lltok::kw_swifterror:
1699     case lltok::kw_swiftself:
1700       HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1701       break;
1702 
1703     case lltok::kw_alignstack:
1704     case lltok::kw_alwaysinline:
1705     case lltok::kw_argmemonly:
1706     case lltok::kw_builtin:
1707     case lltok::kw_cold:
1708     case lltok::kw_inlinehint:
1709     case lltok::kw_jumptable:
1710     case lltok::kw_minsize:
1711     case lltok::kw_naked:
1712     case lltok::kw_nobuiltin:
1713     case lltok::kw_noduplicate:
1714     case lltok::kw_noimplicitfloat:
1715     case lltok::kw_noinline:
1716     case lltok::kw_nonlazybind:
1717     case lltok::kw_noredzone:
1718     case lltok::kw_noreturn:
1719     case lltok::kw_nocf_check:
1720     case lltok::kw_nounwind:
1721     case lltok::kw_optforfuzzing:
1722     case lltok::kw_optnone:
1723     case lltok::kw_optsize:
1724     case lltok::kw_returns_twice:
1725     case lltok::kw_sanitize_address:
1726     case lltok::kw_sanitize_hwaddress:
1727     case lltok::kw_sanitize_memory:
1728     case lltok::kw_sanitize_thread:
1729     case lltok::kw_speculative_load_hardening:
1730     case lltok::kw_ssp:
1731     case lltok::kw_sspreq:
1732     case lltok::kw_sspstrong:
1733     case lltok::kw_safestack:
1734     case lltok::kw_shadowcallstack:
1735     case lltok::kw_strictfp:
1736     case lltok::kw_uwtable:
1737       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1738       break;
1739 
1740     case lltok::kw_readnone:
1741     case lltok::kw_readonly:
1742       HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1743     }
1744 
1745     Lex.Lex();
1746   }
1747 }
1748 
1749 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1750   HasLinkage = true;
1751   switch (Kind) {
1752   default:
1753     HasLinkage = false;
1754     return GlobalValue::ExternalLinkage;
1755   case lltok::kw_private:
1756     return GlobalValue::PrivateLinkage;
1757   case lltok::kw_internal:
1758     return GlobalValue::InternalLinkage;
1759   case lltok::kw_weak:
1760     return GlobalValue::WeakAnyLinkage;
1761   case lltok::kw_weak_odr:
1762     return GlobalValue::WeakODRLinkage;
1763   case lltok::kw_linkonce:
1764     return GlobalValue::LinkOnceAnyLinkage;
1765   case lltok::kw_linkonce_odr:
1766     return GlobalValue::LinkOnceODRLinkage;
1767   case lltok::kw_available_externally:
1768     return GlobalValue::AvailableExternallyLinkage;
1769   case lltok::kw_appending:
1770     return GlobalValue::AppendingLinkage;
1771   case lltok::kw_common:
1772     return GlobalValue::CommonLinkage;
1773   case lltok::kw_extern_weak:
1774     return GlobalValue::ExternalWeakLinkage;
1775   case lltok::kw_external:
1776     return GlobalValue::ExternalLinkage;
1777   }
1778 }
1779 
1780 /// ParseOptionalLinkage
1781 ///   ::= /*empty*/
1782 ///   ::= 'private'
1783 ///   ::= 'internal'
1784 ///   ::= 'weak'
1785 ///   ::= 'weak_odr'
1786 ///   ::= 'linkonce'
1787 ///   ::= 'linkonce_odr'
1788 ///   ::= 'available_externally'
1789 ///   ::= 'appending'
1790 ///   ::= 'common'
1791 ///   ::= 'extern_weak'
1792 ///   ::= 'external'
1793 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1794                                     unsigned &Visibility,
1795                                     unsigned &DLLStorageClass,
1796                                     bool &DSOLocal) {
1797   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1798   if (HasLinkage)
1799     Lex.Lex();
1800   ParseOptionalDSOLocal(DSOLocal);
1801   ParseOptionalVisibility(Visibility);
1802   ParseOptionalDLLStorageClass(DLLStorageClass);
1803 
1804   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1805     return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1806   }
1807 
1808   return false;
1809 }
1810 
1811 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) {
1812   switch (Lex.getKind()) {
1813   default:
1814     DSOLocal = false;
1815     break;
1816   case lltok::kw_dso_local:
1817     DSOLocal = true;
1818     Lex.Lex();
1819     break;
1820   case lltok::kw_dso_preemptable:
1821     DSOLocal = false;
1822     Lex.Lex();
1823     break;
1824   }
1825 }
1826 
1827 /// ParseOptionalVisibility
1828 ///   ::= /*empty*/
1829 ///   ::= 'default'
1830 ///   ::= 'hidden'
1831 ///   ::= 'protected'
1832 ///
1833 void LLParser::ParseOptionalVisibility(unsigned &Res) {
1834   switch (Lex.getKind()) {
1835   default:
1836     Res = GlobalValue::DefaultVisibility;
1837     return;
1838   case lltok::kw_default:
1839     Res = GlobalValue::DefaultVisibility;
1840     break;
1841   case lltok::kw_hidden:
1842     Res = GlobalValue::HiddenVisibility;
1843     break;
1844   case lltok::kw_protected:
1845     Res = GlobalValue::ProtectedVisibility;
1846     break;
1847   }
1848   Lex.Lex();
1849 }
1850 
1851 /// ParseOptionalDLLStorageClass
1852 ///   ::= /*empty*/
1853 ///   ::= 'dllimport'
1854 ///   ::= 'dllexport'
1855 ///
1856 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1857   switch (Lex.getKind()) {
1858   default:
1859     Res = GlobalValue::DefaultStorageClass;
1860     return;
1861   case lltok::kw_dllimport:
1862     Res = GlobalValue::DLLImportStorageClass;
1863     break;
1864   case lltok::kw_dllexport:
1865     Res = GlobalValue::DLLExportStorageClass;
1866     break;
1867   }
1868   Lex.Lex();
1869 }
1870 
1871 /// ParseOptionalCallingConv
1872 ///   ::= /*empty*/
1873 ///   ::= 'ccc'
1874 ///   ::= 'fastcc'
1875 ///   ::= 'intel_ocl_bicc'
1876 ///   ::= 'coldcc'
1877 ///   ::= 'x86_stdcallcc'
1878 ///   ::= 'x86_fastcallcc'
1879 ///   ::= 'x86_thiscallcc'
1880 ///   ::= 'x86_vectorcallcc'
1881 ///   ::= 'arm_apcscc'
1882 ///   ::= 'arm_aapcscc'
1883 ///   ::= 'arm_aapcs_vfpcc'
1884 ///   ::= 'aarch64_vector_pcs'
1885 ///   ::= 'msp430_intrcc'
1886 ///   ::= 'avr_intrcc'
1887 ///   ::= 'avr_signalcc'
1888 ///   ::= 'ptx_kernel'
1889 ///   ::= 'ptx_device'
1890 ///   ::= 'spir_func'
1891 ///   ::= 'spir_kernel'
1892 ///   ::= 'x86_64_sysvcc'
1893 ///   ::= 'win64cc'
1894 ///   ::= 'webkit_jscc'
1895 ///   ::= 'anyregcc'
1896 ///   ::= 'preserve_mostcc'
1897 ///   ::= 'preserve_allcc'
1898 ///   ::= 'ghccc'
1899 ///   ::= 'swiftcc'
1900 ///   ::= 'x86_intrcc'
1901 ///   ::= 'hhvmcc'
1902 ///   ::= 'hhvm_ccc'
1903 ///   ::= 'cxx_fast_tlscc'
1904 ///   ::= 'amdgpu_vs'
1905 ///   ::= 'amdgpu_ls'
1906 ///   ::= 'amdgpu_hs'
1907 ///   ::= 'amdgpu_es'
1908 ///   ::= 'amdgpu_gs'
1909 ///   ::= 'amdgpu_ps'
1910 ///   ::= 'amdgpu_cs'
1911 ///   ::= 'amdgpu_kernel'
1912 ///   ::= 'cc' UINT
1913 ///
1914 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
1915   switch (Lex.getKind()) {
1916   default:                       CC = CallingConv::C; return false;
1917   case lltok::kw_ccc:            CC = CallingConv::C; break;
1918   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1919   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1920   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1921   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1922   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
1923   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1924   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1925   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1926   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1927   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1928   case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
1929   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1930   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
1931   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
1932   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1933   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1934   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1935   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1936   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1937   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1938   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
1939   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
1940   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
1941   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1942   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1943   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
1944   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
1945   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
1946   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
1947   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
1948   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
1949   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
1950   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
1951   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
1952   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
1953   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
1954   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
1955   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
1956   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
1957   case lltok::kw_cc: {
1958       Lex.Lex();
1959       return ParseUInt32(CC);
1960     }
1961   }
1962 
1963   Lex.Lex();
1964   return false;
1965 }
1966 
1967 /// ParseMetadataAttachment
1968 ///   ::= !dbg !42
1969 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
1970   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
1971 
1972   std::string Name = Lex.getStrVal();
1973   Kind = M->getMDKindID(Name);
1974   Lex.Lex();
1975 
1976   return ParseMDNode(MD);
1977 }
1978 
1979 /// ParseInstructionMetadata
1980 ///   ::= !dbg !42 (',' !dbg !57)*
1981 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
1982   do {
1983     if (Lex.getKind() != lltok::MetadataVar)
1984       return TokError("expected metadata after comma");
1985 
1986     unsigned MDK;
1987     MDNode *N;
1988     if (ParseMetadataAttachment(MDK, N))
1989       return true;
1990 
1991     Inst.setMetadata(MDK, N);
1992     if (MDK == LLVMContext::MD_tbaa)
1993       InstsWithTBAATag.push_back(&Inst);
1994 
1995     // If this is the end of the list, we're done.
1996   } while (EatIfPresent(lltok::comma));
1997   return false;
1998 }
1999 
2000 /// ParseGlobalObjectMetadataAttachment
2001 ///   ::= !dbg !57
2002 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
2003   unsigned MDK;
2004   MDNode *N;
2005   if (ParseMetadataAttachment(MDK, N))
2006     return true;
2007 
2008   GO.addMetadata(MDK, *N);
2009   return false;
2010 }
2011 
2012 /// ParseOptionalFunctionMetadata
2013 ///   ::= (!dbg !57)*
2014 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
2015   while (Lex.getKind() == lltok::MetadataVar)
2016     if (ParseGlobalObjectMetadataAttachment(F))
2017       return true;
2018   return false;
2019 }
2020 
2021 /// ParseOptionalAlignment
2022 ///   ::= /* empty */
2023 ///   ::= 'align' 4
2024 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
2025   Alignment = 0;
2026   if (!EatIfPresent(lltok::kw_align))
2027     return false;
2028   LocTy AlignLoc = Lex.getLoc();
2029   if (ParseUInt32(Alignment)) return true;
2030   if (!isPowerOf2_32(Alignment))
2031     return Error(AlignLoc, "alignment is not a power of two");
2032   if (Alignment > Value::MaximumAlignment)
2033     return Error(AlignLoc, "huge alignments are not supported yet");
2034   return false;
2035 }
2036 
2037 /// ParseOptionalDerefAttrBytes
2038 ///   ::= /* empty */
2039 ///   ::= AttrKind '(' 4 ')'
2040 ///
2041 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2042 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2043                                            uint64_t &Bytes) {
2044   assert((AttrKind == lltok::kw_dereferenceable ||
2045           AttrKind == lltok::kw_dereferenceable_or_null) &&
2046          "contract!");
2047 
2048   Bytes = 0;
2049   if (!EatIfPresent(AttrKind))
2050     return false;
2051   LocTy ParenLoc = Lex.getLoc();
2052   if (!EatIfPresent(lltok::lparen))
2053     return Error(ParenLoc, "expected '('");
2054   LocTy DerefLoc = Lex.getLoc();
2055   if (ParseUInt64(Bytes)) return true;
2056   ParenLoc = Lex.getLoc();
2057   if (!EatIfPresent(lltok::rparen))
2058     return Error(ParenLoc, "expected ')'");
2059   if (!Bytes)
2060     return Error(DerefLoc, "dereferenceable bytes must be non-zero");
2061   return false;
2062 }
2063 
2064 /// ParseOptionalCommaAlign
2065 ///   ::=
2066 ///   ::= ',' align 4
2067 ///
2068 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2069 /// end.
2070 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
2071                                        bool &AteExtraComma) {
2072   AteExtraComma = false;
2073   while (EatIfPresent(lltok::comma)) {
2074     // Metadata at the end is an early exit.
2075     if (Lex.getKind() == lltok::MetadataVar) {
2076       AteExtraComma = true;
2077       return false;
2078     }
2079 
2080     if (Lex.getKind() != lltok::kw_align)
2081       return Error(Lex.getLoc(), "expected metadata or 'align'");
2082 
2083     if (ParseOptionalAlignment(Alignment)) return true;
2084   }
2085 
2086   return false;
2087 }
2088 
2089 /// ParseOptionalCommaAddrSpace
2090 ///   ::=
2091 ///   ::= ',' addrspace(1)
2092 ///
2093 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2094 /// end.
2095 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace,
2096                                            LocTy &Loc,
2097                                            bool &AteExtraComma) {
2098   AteExtraComma = false;
2099   while (EatIfPresent(lltok::comma)) {
2100     // Metadata at the end is an early exit.
2101     if (Lex.getKind() == lltok::MetadataVar) {
2102       AteExtraComma = true;
2103       return false;
2104     }
2105 
2106     Loc = Lex.getLoc();
2107     if (Lex.getKind() != lltok::kw_addrspace)
2108       return Error(Lex.getLoc(), "expected metadata or 'addrspace'");
2109 
2110     if (ParseOptionalAddrSpace(AddrSpace))
2111       return true;
2112   }
2113 
2114   return false;
2115 }
2116 
2117 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2118                                        Optional<unsigned> &HowManyArg) {
2119   Lex.Lex();
2120 
2121   auto StartParen = Lex.getLoc();
2122   if (!EatIfPresent(lltok::lparen))
2123     return Error(StartParen, "expected '('");
2124 
2125   if (ParseUInt32(BaseSizeArg))
2126     return true;
2127 
2128   if (EatIfPresent(lltok::comma)) {
2129     auto HowManyAt = Lex.getLoc();
2130     unsigned HowMany;
2131     if (ParseUInt32(HowMany))
2132       return true;
2133     if (HowMany == BaseSizeArg)
2134       return Error(HowManyAt,
2135                    "'allocsize' indices can't refer to the same parameter");
2136     HowManyArg = HowMany;
2137   } else
2138     HowManyArg = None;
2139 
2140   auto EndParen = Lex.getLoc();
2141   if (!EatIfPresent(lltok::rparen))
2142     return Error(EndParen, "expected ')'");
2143   return false;
2144 }
2145 
2146 /// ParseScopeAndOrdering
2147 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2148 ///   else: ::=
2149 ///
2150 /// This sets Scope and Ordering to the parsed values.
2151 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID,
2152                                      AtomicOrdering &Ordering) {
2153   if (!isAtomic)
2154     return false;
2155 
2156   return ParseScope(SSID) || ParseOrdering(Ordering);
2157 }
2158 
2159 /// ParseScope
2160 ///   ::= syncscope("singlethread" | "<target scope>")?
2161 ///
2162 /// This sets synchronization scope ID to the ID of the parsed value.
2163 bool LLParser::ParseScope(SyncScope::ID &SSID) {
2164   SSID = SyncScope::System;
2165   if (EatIfPresent(lltok::kw_syncscope)) {
2166     auto StartParenAt = Lex.getLoc();
2167     if (!EatIfPresent(lltok::lparen))
2168       return Error(StartParenAt, "Expected '(' in syncscope");
2169 
2170     std::string SSN;
2171     auto SSNAt = Lex.getLoc();
2172     if (ParseStringConstant(SSN))
2173       return Error(SSNAt, "Expected synchronization scope name");
2174 
2175     auto EndParenAt = Lex.getLoc();
2176     if (!EatIfPresent(lltok::rparen))
2177       return Error(EndParenAt, "Expected ')' in syncscope");
2178 
2179     SSID = Context.getOrInsertSyncScopeID(SSN);
2180   }
2181 
2182   return false;
2183 }
2184 
2185 /// ParseOrdering
2186 ///   ::= AtomicOrdering
2187 ///
2188 /// This sets Ordering to the parsed value.
2189 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
2190   switch (Lex.getKind()) {
2191   default: return TokError("Expected ordering on atomic instruction");
2192   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2193   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2194   // Not specified yet:
2195   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2196   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2197   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2198   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2199   case lltok::kw_seq_cst:
2200     Ordering = AtomicOrdering::SequentiallyConsistent;
2201     break;
2202   }
2203   Lex.Lex();
2204   return false;
2205 }
2206 
2207 /// ParseOptionalStackAlignment
2208 ///   ::= /* empty */
2209 ///   ::= 'alignstack' '(' 4 ')'
2210 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
2211   Alignment = 0;
2212   if (!EatIfPresent(lltok::kw_alignstack))
2213     return false;
2214   LocTy ParenLoc = Lex.getLoc();
2215   if (!EatIfPresent(lltok::lparen))
2216     return Error(ParenLoc, "expected '('");
2217   LocTy AlignLoc = Lex.getLoc();
2218   if (ParseUInt32(Alignment)) return true;
2219   ParenLoc = Lex.getLoc();
2220   if (!EatIfPresent(lltok::rparen))
2221     return Error(ParenLoc, "expected ')'");
2222   if (!isPowerOf2_32(Alignment))
2223     return Error(AlignLoc, "stack alignment is not a power of two");
2224   return false;
2225 }
2226 
2227 /// ParseIndexList - This parses the index list for an insert/extractvalue
2228 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2229 /// comma at the end of the line and find that it is followed by metadata.
2230 /// Clients that don't allow metadata can call the version of this function that
2231 /// only takes one argument.
2232 ///
2233 /// ParseIndexList
2234 ///    ::=  (',' uint32)+
2235 ///
2236 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
2237                               bool &AteExtraComma) {
2238   AteExtraComma = false;
2239 
2240   if (Lex.getKind() != lltok::comma)
2241     return TokError("expected ',' as start of index list");
2242 
2243   while (EatIfPresent(lltok::comma)) {
2244     if (Lex.getKind() == lltok::MetadataVar) {
2245       if (Indices.empty()) return TokError("expected index");
2246       AteExtraComma = true;
2247       return false;
2248     }
2249     unsigned Idx = 0;
2250     if (ParseUInt32(Idx)) return true;
2251     Indices.push_back(Idx);
2252   }
2253 
2254   return false;
2255 }
2256 
2257 //===----------------------------------------------------------------------===//
2258 // Type Parsing.
2259 //===----------------------------------------------------------------------===//
2260 
2261 /// ParseType - Parse a type.
2262 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2263   SMLoc TypeLoc = Lex.getLoc();
2264   switch (Lex.getKind()) {
2265   default:
2266     return TokError(Msg);
2267   case lltok::Type:
2268     // Type ::= 'float' | 'void' (etc)
2269     Result = Lex.getTyVal();
2270     Lex.Lex();
2271     break;
2272   case lltok::lbrace:
2273     // Type ::= StructType
2274     if (ParseAnonStructType(Result, false))
2275       return true;
2276     break;
2277   case lltok::lsquare:
2278     // Type ::= '[' ... ']'
2279     Lex.Lex(); // eat the lsquare.
2280     if (ParseArrayVectorType(Result, false))
2281       return true;
2282     break;
2283   case lltok::less: // Either vector or packed struct.
2284     // Type ::= '<' ... '>'
2285     Lex.Lex();
2286     if (Lex.getKind() == lltok::lbrace) {
2287       if (ParseAnonStructType(Result, true) ||
2288           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
2289         return true;
2290     } else if (ParseArrayVectorType(Result, true))
2291       return true;
2292     break;
2293   case lltok::LocalVar: {
2294     // Type ::= %foo
2295     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2296 
2297     // If the type hasn't been defined yet, create a forward definition and
2298     // remember where that forward def'n was seen (in case it never is defined).
2299     if (!Entry.first) {
2300       Entry.first = StructType::create(Context, Lex.getStrVal());
2301       Entry.second = Lex.getLoc();
2302     }
2303     Result = Entry.first;
2304     Lex.Lex();
2305     break;
2306   }
2307 
2308   case lltok::LocalVarID: {
2309     // Type ::= %4
2310     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2311 
2312     // If the type hasn't been defined yet, create a forward definition and
2313     // remember where that forward def'n was seen (in case it never is defined).
2314     if (!Entry.first) {
2315       Entry.first = StructType::create(Context);
2316       Entry.second = Lex.getLoc();
2317     }
2318     Result = Entry.first;
2319     Lex.Lex();
2320     break;
2321   }
2322   }
2323 
2324   // Parse the type suffixes.
2325   while (true) {
2326     switch (Lex.getKind()) {
2327     // End of type.
2328     default:
2329       if (!AllowVoid && Result->isVoidTy())
2330         return Error(TypeLoc, "void type only allowed for function results");
2331       return false;
2332 
2333     // Type ::= Type '*'
2334     case lltok::star:
2335       if (Result->isLabelTy())
2336         return TokError("basic block pointers are invalid");
2337       if (Result->isVoidTy())
2338         return TokError("pointers to void are invalid - use i8* instead");
2339       if (!PointerType::isValidElementType(Result))
2340         return TokError("pointer to this type is invalid");
2341       Result = PointerType::getUnqual(Result);
2342       Lex.Lex();
2343       break;
2344 
2345     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2346     case lltok::kw_addrspace: {
2347       if (Result->isLabelTy())
2348         return TokError("basic block pointers are invalid");
2349       if (Result->isVoidTy())
2350         return TokError("pointers to void are invalid; use i8* instead");
2351       if (!PointerType::isValidElementType(Result))
2352         return TokError("pointer to this type is invalid");
2353       unsigned AddrSpace;
2354       if (ParseOptionalAddrSpace(AddrSpace) ||
2355           ParseToken(lltok::star, "expected '*' in address space"))
2356         return true;
2357 
2358       Result = PointerType::get(Result, AddrSpace);
2359       break;
2360     }
2361 
2362     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2363     case lltok::lparen:
2364       if (ParseFunctionType(Result))
2365         return true;
2366       break;
2367     }
2368   }
2369 }
2370 
2371 /// ParseParameterList
2372 ///    ::= '(' ')'
2373 ///    ::= '(' Arg (',' Arg)* ')'
2374 ///  Arg
2375 ///    ::= Type OptionalAttributes Value OptionalAttributes
2376 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2377                                   PerFunctionState &PFS, bool IsMustTailCall,
2378                                   bool InVarArgsFunc) {
2379   if (ParseToken(lltok::lparen, "expected '(' in call"))
2380     return true;
2381 
2382   while (Lex.getKind() != lltok::rparen) {
2383     // If this isn't the first argument, we need a comma.
2384     if (!ArgList.empty() &&
2385         ParseToken(lltok::comma, "expected ',' in argument list"))
2386       return true;
2387 
2388     // Parse an ellipsis if this is a musttail call in a variadic function.
2389     if (Lex.getKind() == lltok::dotdotdot) {
2390       const char *Msg = "unexpected ellipsis in argument list for ";
2391       if (!IsMustTailCall)
2392         return TokError(Twine(Msg) + "non-musttail call");
2393       if (!InVarArgsFunc)
2394         return TokError(Twine(Msg) + "musttail call in non-varargs function");
2395       Lex.Lex();  // Lex the '...', it is purely for readability.
2396       return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2397     }
2398 
2399     // Parse the argument.
2400     LocTy ArgLoc;
2401     Type *ArgTy = nullptr;
2402     AttrBuilder ArgAttrs;
2403     Value *V;
2404     if (ParseType(ArgTy, ArgLoc))
2405       return true;
2406 
2407     if (ArgTy->isMetadataTy()) {
2408       if (ParseMetadataAsValue(V, PFS))
2409         return true;
2410     } else {
2411       // Otherwise, handle normal operands.
2412       if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2413         return true;
2414     }
2415     ArgList.push_back(ParamInfo(
2416         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2417   }
2418 
2419   if (IsMustTailCall && InVarArgsFunc)
2420     return TokError("expected '...' at end of argument list for musttail call "
2421                     "in varargs function");
2422 
2423   Lex.Lex();  // Lex the ')'.
2424   return false;
2425 }
2426 
2427 /// ParseOptionalOperandBundles
2428 ///    ::= /*empty*/
2429 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2430 ///
2431 /// OperandBundle
2432 ///    ::= bundle-tag '(' ')'
2433 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2434 ///
2435 /// bundle-tag ::= String Constant
2436 bool LLParser::ParseOptionalOperandBundles(
2437     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2438   LocTy BeginLoc = Lex.getLoc();
2439   if (!EatIfPresent(lltok::lsquare))
2440     return false;
2441 
2442   while (Lex.getKind() != lltok::rsquare) {
2443     // If this isn't the first operand bundle, we need a comma.
2444     if (!BundleList.empty() &&
2445         ParseToken(lltok::comma, "expected ',' in input list"))
2446       return true;
2447 
2448     std::string Tag;
2449     if (ParseStringConstant(Tag))
2450       return true;
2451 
2452     if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2453       return true;
2454 
2455     std::vector<Value *> Inputs;
2456     while (Lex.getKind() != lltok::rparen) {
2457       // If this isn't the first input, we need a comma.
2458       if (!Inputs.empty() &&
2459           ParseToken(lltok::comma, "expected ',' in input list"))
2460         return true;
2461 
2462       Type *Ty = nullptr;
2463       Value *Input = nullptr;
2464       if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2465         return true;
2466       Inputs.push_back(Input);
2467     }
2468 
2469     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2470 
2471     Lex.Lex(); // Lex the ')'.
2472   }
2473 
2474   if (BundleList.empty())
2475     return Error(BeginLoc, "operand bundle set must not be empty");
2476 
2477   Lex.Lex(); // Lex the ']'.
2478   return false;
2479 }
2480 
2481 /// ParseArgumentList - Parse the argument list for a function type or function
2482 /// prototype.
2483 ///   ::= '(' ArgTypeListI ')'
2484 /// ArgTypeListI
2485 ///   ::= /*empty*/
2486 ///   ::= '...'
2487 ///   ::= ArgTypeList ',' '...'
2488 ///   ::= ArgType (',' ArgType)*
2489 ///
2490 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2491                                  bool &isVarArg){
2492   isVarArg = false;
2493   assert(Lex.getKind() == lltok::lparen);
2494   Lex.Lex(); // eat the (.
2495 
2496   if (Lex.getKind() == lltok::rparen) {
2497     // empty
2498   } else if (Lex.getKind() == lltok::dotdotdot) {
2499     isVarArg = true;
2500     Lex.Lex();
2501   } else {
2502     LocTy TypeLoc = Lex.getLoc();
2503     Type *ArgTy = nullptr;
2504     AttrBuilder Attrs;
2505     std::string Name;
2506 
2507     if (ParseType(ArgTy) ||
2508         ParseOptionalParamAttrs(Attrs)) return true;
2509 
2510     if (ArgTy->isVoidTy())
2511       return Error(TypeLoc, "argument can not have void type");
2512 
2513     if (Lex.getKind() == lltok::LocalVar) {
2514       Name = Lex.getStrVal();
2515       Lex.Lex();
2516     }
2517 
2518     if (!FunctionType::isValidArgumentType(ArgTy))
2519       return Error(TypeLoc, "invalid type for function argument");
2520 
2521     ArgList.emplace_back(TypeLoc, ArgTy,
2522                          AttributeSet::get(ArgTy->getContext(), Attrs),
2523                          std::move(Name));
2524 
2525     while (EatIfPresent(lltok::comma)) {
2526       // Handle ... at end of arg list.
2527       if (EatIfPresent(lltok::dotdotdot)) {
2528         isVarArg = true;
2529         break;
2530       }
2531 
2532       // Otherwise must be an argument type.
2533       TypeLoc = Lex.getLoc();
2534       if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2535 
2536       if (ArgTy->isVoidTy())
2537         return Error(TypeLoc, "argument can not have void type");
2538 
2539       if (Lex.getKind() == lltok::LocalVar) {
2540         Name = Lex.getStrVal();
2541         Lex.Lex();
2542       } else {
2543         Name = "";
2544       }
2545 
2546       if (!ArgTy->isFirstClassType())
2547         return Error(TypeLoc, "invalid type for function argument");
2548 
2549       ArgList.emplace_back(TypeLoc, ArgTy,
2550                            AttributeSet::get(ArgTy->getContext(), Attrs),
2551                            std::move(Name));
2552     }
2553   }
2554 
2555   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2556 }
2557 
2558 /// ParseFunctionType
2559 ///  ::= Type ArgumentList OptionalAttrs
2560 bool LLParser::ParseFunctionType(Type *&Result) {
2561   assert(Lex.getKind() == lltok::lparen);
2562 
2563   if (!FunctionType::isValidReturnType(Result))
2564     return TokError("invalid function return type");
2565 
2566   SmallVector<ArgInfo, 8> ArgList;
2567   bool isVarArg;
2568   if (ParseArgumentList(ArgList, isVarArg))
2569     return true;
2570 
2571   // Reject names on the arguments lists.
2572   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2573     if (!ArgList[i].Name.empty())
2574       return Error(ArgList[i].Loc, "argument name invalid in function type");
2575     if (ArgList[i].Attrs.hasAttributes())
2576       return Error(ArgList[i].Loc,
2577                    "argument attributes invalid in function type");
2578   }
2579 
2580   SmallVector<Type*, 16> ArgListTy;
2581   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2582     ArgListTy.push_back(ArgList[i].Ty);
2583 
2584   Result = FunctionType::get(Result, ArgListTy, isVarArg);
2585   return false;
2586 }
2587 
2588 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2589 /// other structs.
2590 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2591   SmallVector<Type*, 8> Elts;
2592   if (ParseStructBody(Elts)) return true;
2593 
2594   Result = StructType::get(Context, Elts, Packed);
2595   return false;
2596 }
2597 
2598 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2599 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2600                                      std::pair<Type*, LocTy> &Entry,
2601                                      Type *&ResultTy) {
2602   // If the type was already defined, diagnose the redefinition.
2603   if (Entry.first && !Entry.second.isValid())
2604     return Error(TypeLoc, "redefinition of type");
2605 
2606   // If we have opaque, just return without filling in the definition for the
2607   // struct.  This counts as a definition as far as the .ll file goes.
2608   if (EatIfPresent(lltok::kw_opaque)) {
2609     // This type is being defined, so clear the location to indicate this.
2610     Entry.second = SMLoc();
2611 
2612     // If this type number has never been uttered, create it.
2613     if (!Entry.first)
2614       Entry.first = StructType::create(Context, Name);
2615     ResultTy = Entry.first;
2616     return false;
2617   }
2618 
2619   // If the type starts with '<', then it is either a packed struct or a vector.
2620   bool isPacked = EatIfPresent(lltok::less);
2621 
2622   // If we don't have a struct, then we have a random type alias, which we
2623   // accept for compatibility with old files.  These types are not allowed to be
2624   // forward referenced and not allowed to be recursive.
2625   if (Lex.getKind() != lltok::lbrace) {
2626     if (Entry.first)
2627       return Error(TypeLoc, "forward references to non-struct type");
2628 
2629     ResultTy = nullptr;
2630     if (isPacked)
2631       return ParseArrayVectorType(ResultTy, true);
2632     return ParseType(ResultTy);
2633   }
2634 
2635   // This type is being defined, so clear the location to indicate this.
2636   Entry.second = SMLoc();
2637 
2638   // If this type number has never been uttered, create it.
2639   if (!Entry.first)
2640     Entry.first = StructType::create(Context, Name);
2641 
2642   StructType *STy = cast<StructType>(Entry.first);
2643 
2644   SmallVector<Type*, 8> Body;
2645   if (ParseStructBody(Body) ||
2646       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2647     return true;
2648 
2649   STy->setBody(Body, isPacked);
2650   ResultTy = STy;
2651   return false;
2652 }
2653 
2654 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2655 ///   StructType
2656 ///     ::= '{' '}'
2657 ///     ::= '{' Type (',' Type)* '}'
2658 ///     ::= '<' '{' '}' '>'
2659 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2660 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2661   assert(Lex.getKind() == lltok::lbrace);
2662   Lex.Lex(); // Consume the '{'
2663 
2664   // Handle the empty struct.
2665   if (EatIfPresent(lltok::rbrace))
2666     return false;
2667 
2668   LocTy EltTyLoc = Lex.getLoc();
2669   Type *Ty = nullptr;
2670   if (ParseType(Ty)) return true;
2671   Body.push_back(Ty);
2672 
2673   if (!StructType::isValidElementType(Ty))
2674     return Error(EltTyLoc, "invalid element type for struct");
2675 
2676   while (EatIfPresent(lltok::comma)) {
2677     EltTyLoc = Lex.getLoc();
2678     if (ParseType(Ty)) return true;
2679 
2680     if (!StructType::isValidElementType(Ty))
2681       return Error(EltTyLoc, "invalid element type for struct");
2682 
2683     Body.push_back(Ty);
2684   }
2685 
2686   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2687 }
2688 
2689 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2690 /// token has already been consumed.
2691 ///   Type
2692 ///     ::= '[' APSINTVAL 'x' Types ']'
2693 ///     ::= '<' APSINTVAL 'x' Types '>'
2694 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2695   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2696       Lex.getAPSIntVal().getBitWidth() > 64)
2697     return TokError("expected number in address space");
2698 
2699   LocTy SizeLoc = Lex.getLoc();
2700   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2701   Lex.Lex();
2702 
2703   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2704       return true;
2705 
2706   LocTy TypeLoc = Lex.getLoc();
2707   Type *EltTy = nullptr;
2708   if (ParseType(EltTy)) return true;
2709 
2710   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2711                  "expected end of sequential type"))
2712     return true;
2713 
2714   if (isVector) {
2715     if (Size == 0)
2716       return Error(SizeLoc, "zero element vector is illegal");
2717     if ((unsigned)Size != Size)
2718       return Error(SizeLoc, "size too large for vector");
2719     if (!VectorType::isValidElementType(EltTy))
2720       return Error(TypeLoc, "invalid vector element type");
2721     Result = VectorType::get(EltTy, unsigned(Size));
2722   } else {
2723     if (!ArrayType::isValidElementType(EltTy))
2724       return Error(TypeLoc, "invalid array element type");
2725     Result = ArrayType::get(EltTy, Size);
2726   }
2727   return false;
2728 }
2729 
2730 //===----------------------------------------------------------------------===//
2731 // Function Semantic Analysis.
2732 //===----------------------------------------------------------------------===//
2733 
2734 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2735                                              int functionNumber)
2736   : P(p), F(f), FunctionNumber(functionNumber) {
2737 
2738   // Insert unnamed arguments into the NumberedVals list.
2739   for (Argument &A : F.args())
2740     if (!A.hasName())
2741       NumberedVals.push_back(&A);
2742 }
2743 
2744 LLParser::PerFunctionState::~PerFunctionState() {
2745   // If there were any forward referenced non-basicblock values, delete them.
2746 
2747   for (const auto &P : ForwardRefVals) {
2748     if (isa<BasicBlock>(P.second.first))
2749       continue;
2750     P.second.first->replaceAllUsesWith(
2751         UndefValue::get(P.second.first->getType()));
2752     P.second.first->deleteValue();
2753   }
2754 
2755   for (const auto &P : ForwardRefValIDs) {
2756     if (isa<BasicBlock>(P.second.first))
2757       continue;
2758     P.second.first->replaceAllUsesWith(
2759         UndefValue::get(P.second.first->getType()));
2760     P.second.first->deleteValue();
2761   }
2762 }
2763 
2764 bool LLParser::PerFunctionState::FinishFunction() {
2765   if (!ForwardRefVals.empty())
2766     return P.Error(ForwardRefVals.begin()->second.second,
2767                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2768                    "'");
2769   if (!ForwardRefValIDs.empty())
2770     return P.Error(ForwardRefValIDs.begin()->second.second,
2771                    "use of undefined value '%" +
2772                    Twine(ForwardRefValIDs.begin()->first) + "'");
2773   return false;
2774 }
2775 
2776 /// GetVal - Get a value with the specified name or ID, creating a
2777 /// forward reference record if needed.  This can return null if the value
2778 /// exists but does not have the right type.
2779 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2780                                           LocTy Loc, bool IsCall) {
2781   // Look this name up in the normal function symbol table.
2782   Value *Val = F.getValueSymbolTable()->lookup(Name);
2783 
2784   // If this is a forward reference for the value, see if we already created a
2785   // forward ref record.
2786   if (!Val) {
2787     auto I = ForwardRefVals.find(Name);
2788     if (I != ForwardRefVals.end())
2789       Val = I->second.first;
2790   }
2791 
2792   // If we have the value in the symbol table or fwd-ref table, return it.
2793   if (Val)
2794     return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall);
2795 
2796   // Don't make placeholders with invalid type.
2797   if (!Ty->isFirstClassType()) {
2798     P.Error(Loc, "invalid use of a non-first-class type");
2799     return nullptr;
2800   }
2801 
2802   // Otherwise, create a new forward reference for this value and remember it.
2803   Value *FwdVal;
2804   if (Ty->isLabelTy()) {
2805     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2806   } else {
2807     FwdVal = new Argument(Ty, Name);
2808   }
2809 
2810   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2811   return FwdVal;
2812 }
2813 
2814 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc,
2815                                           bool IsCall) {
2816   // Look this name up in the normal function symbol table.
2817   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2818 
2819   // If this is a forward reference for the value, see if we already created a
2820   // forward ref record.
2821   if (!Val) {
2822     auto I = ForwardRefValIDs.find(ID);
2823     if (I != ForwardRefValIDs.end())
2824       Val = I->second.first;
2825   }
2826 
2827   // If we have the value in the symbol table or fwd-ref table, return it.
2828   if (Val)
2829     return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall);
2830 
2831   if (!Ty->isFirstClassType()) {
2832     P.Error(Loc, "invalid use of a non-first-class type");
2833     return nullptr;
2834   }
2835 
2836   // Otherwise, create a new forward reference for this value and remember it.
2837   Value *FwdVal;
2838   if (Ty->isLabelTy()) {
2839     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2840   } else {
2841     FwdVal = new Argument(Ty);
2842   }
2843 
2844   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2845   return FwdVal;
2846 }
2847 
2848 /// SetInstName - After an instruction is parsed and inserted into its
2849 /// basic block, this installs its name.
2850 bool LLParser::PerFunctionState::SetInstName(int NameID,
2851                                              const std::string &NameStr,
2852                                              LocTy NameLoc, Instruction *Inst) {
2853   // If this instruction has void type, it cannot have a name or ID specified.
2854   if (Inst->getType()->isVoidTy()) {
2855     if (NameID != -1 || !NameStr.empty())
2856       return P.Error(NameLoc, "instructions returning void cannot have a name");
2857     return false;
2858   }
2859 
2860   // If this was a numbered instruction, verify that the instruction is the
2861   // expected value and resolve any forward references.
2862   if (NameStr.empty()) {
2863     // If neither a name nor an ID was specified, just use the next ID.
2864     if (NameID == -1)
2865       NameID = NumberedVals.size();
2866 
2867     if (unsigned(NameID) != NumberedVals.size())
2868       return P.Error(NameLoc, "instruction expected to be numbered '%" +
2869                      Twine(NumberedVals.size()) + "'");
2870 
2871     auto FI = ForwardRefValIDs.find(NameID);
2872     if (FI != ForwardRefValIDs.end()) {
2873       Value *Sentinel = FI->second.first;
2874       if (Sentinel->getType() != Inst->getType())
2875         return P.Error(NameLoc, "instruction forward referenced with type '" +
2876                        getTypeString(FI->second.first->getType()) + "'");
2877 
2878       Sentinel->replaceAllUsesWith(Inst);
2879       Sentinel->deleteValue();
2880       ForwardRefValIDs.erase(FI);
2881     }
2882 
2883     NumberedVals.push_back(Inst);
2884     return false;
2885   }
2886 
2887   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2888   auto FI = ForwardRefVals.find(NameStr);
2889   if (FI != ForwardRefVals.end()) {
2890     Value *Sentinel = FI->second.first;
2891     if (Sentinel->getType() != Inst->getType())
2892       return P.Error(NameLoc, "instruction forward referenced with type '" +
2893                      getTypeString(FI->second.first->getType()) + "'");
2894 
2895     Sentinel->replaceAllUsesWith(Inst);
2896     Sentinel->deleteValue();
2897     ForwardRefVals.erase(FI);
2898   }
2899 
2900   // Set the name on the instruction.
2901   Inst->setName(NameStr);
2902 
2903   if (Inst->getName() != NameStr)
2904     return P.Error(NameLoc, "multiple definition of local value named '" +
2905                    NameStr + "'");
2906   return false;
2907 }
2908 
2909 /// GetBB - Get a basic block with the specified name or ID, creating a
2910 /// forward reference record if needed.
2911 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2912                                               LocTy Loc) {
2913   return dyn_cast_or_null<BasicBlock>(
2914       GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
2915 }
2916 
2917 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
2918   return dyn_cast_or_null<BasicBlock>(
2919       GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
2920 }
2921 
2922 /// DefineBB - Define the specified basic block, which is either named or
2923 /// unnamed.  If there is an error, this returns null otherwise it returns
2924 /// the block being defined.
2925 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
2926                                                  LocTy Loc) {
2927   BasicBlock *BB;
2928   if (Name.empty())
2929     BB = GetBB(NumberedVals.size(), Loc);
2930   else
2931     BB = GetBB(Name, Loc);
2932   if (!BB) return nullptr; // Already diagnosed error.
2933 
2934   // Move the block to the end of the function.  Forward ref'd blocks are
2935   // inserted wherever they happen to be referenced.
2936   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2937 
2938   // Remove the block from forward ref sets.
2939   if (Name.empty()) {
2940     ForwardRefValIDs.erase(NumberedVals.size());
2941     NumberedVals.push_back(BB);
2942   } else {
2943     // BB forward references are already in the function symbol table.
2944     ForwardRefVals.erase(Name);
2945   }
2946 
2947   return BB;
2948 }
2949 
2950 //===----------------------------------------------------------------------===//
2951 // Constants.
2952 //===----------------------------------------------------------------------===//
2953 
2954 /// ParseValID - Parse an abstract value that doesn't necessarily have a
2955 /// type implied.  For example, if we parse "4" we don't know what integer type
2956 /// it has.  The value will later be combined with its type and checked for
2957 /// sanity.  PFS is used to convert function-local operands of metadata (since
2958 /// metadata operands are not just parsed here but also converted to values).
2959 /// PFS can be null when we are not parsing metadata values inside a function.
2960 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
2961   ID.Loc = Lex.getLoc();
2962   switch (Lex.getKind()) {
2963   default: return TokError("expected value token");
2964   case lltok::GlobalID:  // @42
2965     ID.UIntVal = Lex.getUIntVal();
2966     ID.Kind = ValID::t_GlobalID;
2967     break;
2968   case lltok::GlobalVar:  // @foo
2969     ID.StrVal = Lex.getStrVal();
2970     ID.Kind = ValID::t_GlobalName;
2971     break;
2972   case lltok::LocalVarID:  // %42
2973     ID.UIntVal = Lex.getUIntVal();
2974     ID.Kind = ValID::t_LocalID;
2975     break;
2976   case lltok::LocalVar:  // %foo
2977     ID.StrVal = Lex.getStrVal();
2978     ID.Kind = ValID::t_LocalName;
2979     break;
2980   case lltok::APSInt:
2981     ID.APSIntVal = Lex.getAPSIntVal();
2982     ID.Kind = ValID::t_APSInt;
2983     break;
2984   case lltok::APFloat:
2985     ID.APFloatVal = Lex.getAPFloatVal();
2986     ID.Kind = ValID::t_APFloat;
2987     break;
2988   case lltok::kw_true:
2989     ID.ConstantVal = ConstantInt::getTrue(Context);
2990     ID.Kind = ValID::t_Constant;
2991     break;
2992   case lltok::kw_false:
2993     ID.ConstantVal = ConstantInt::getFalse(Context);
2994     ID.Kind = ValID::t_Constant;
2995     break;
2996   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2997   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2998   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2999   case lltok::kw_none: ID.Kind = ValID::t_None; break;
3000 
3001   case lltok::lbrace: {
3002     // ValID ::= '{' ConstVector '}'
3003     Lex.Lex();
3004     SmallVector<Constant*, 16> Elts;
3005     if (ParseGlobalValueVector(Elts) ||
3006         ParseToken(lltok::rbrace, "expected end of struct constant"))
3007       return true;
3008 
3009     ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
3010     ID.UIntVal = Elts.size();
3011     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3012            Elts.size() * sizeof(Elts[0]));
3013     ID.Kind = ValID::t_ConstantStruct;
3014     return false;
3015   }
3016   case lltok::less: {
3017     // ValID ::= '<' ConstVector '>'         --> Vector.
3018     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3019     Lex.Lex();
3020     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3021 
3022     SmallVector<Constant*, 16> Elts;
3023     LocTy FirstEltLoc = Lex.getLoc();
3024     if (ParseGlobalValueVector(Elts) ||
3025         (isPackedStruct &&
3026          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
3027         ParseToken(lltok::greater, "expected end of constant"))
3028       return true;
3029 
3030     if (isPackedStruct) {
3031       ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
3032       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3033              Elts.size() * sizeof(Elts[0]));
3034       ID.UIntVal = Elts.size();
3035       ID.Kind = ValID::t_PackedConstantStruct;
3036       return false;
3037     }
3038 
3039     if (Elts.empty())
3040       return Error(ID.Loc, "constant vector must not be empty");
3041 
3042     if (!Elts[0]->getType()->isIntegerTy() &&
3043         !Elts[0]->getType()->isFloatingPointTy() &&
3044         !Elts[0]->getType()->isPointerTy())
3045       return Error(FirstEltLoc,
3046             "vector elements must have integer, pointer or floating point type");
3047 
3048     // Verify that all the vector elements have the same type.
3049     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3050       if (Elts[i]->getType() != Elts[0]->getType())
3051         return Error(FirstEltLoc,
3052                      "vector element #" + Twine(i) +
3053                     " is not of type '" + getTypeString(Elts[0]->getType()));
3054 
3055     ID.ConstantVal = ConstantVector::get(Elts);
3056     ID.Kind = ValID::t_Constant;
3057     return false;
3058   }
3059   case lltok::lsquare: {   // Array Constant
3060     Lex.Lex();
3061     SmallVector<Constant*, 16> Elts;
3062     LocTy FirstEltLoc = Lex.getLoc();
3063     if (ParseGlobalValueVector(Elts) ||
3064         ParseToken(lltok::rsquare, "expected end of array constant"))
3065       return true;
3066 
3067     // Handle empty element.
3068     if (Elts.empty()) {
3069       // Use undef instead of an array because it's inconvenient to determine
3070       // the element type at this point, there being no elements to examine.
3071       ID.Kind = ValID::t_EmptyArray;
3072       return false;
3073     }
3074 
3075     if (!Elts[0]->getType()->isFirstClassType())
3076       return Error(FirstEltLoc, "invalid array element type: " +
3077                    getTypeString(Elts[0]->getType()));
3078 
3079     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3080 
3081     // Verify all elements are correct type!
3082     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3083       if (Elts[i]->getType() != Elts[0]->getType())
3084         return Error(FirstEltLoc,
3085                      "array element #" + Twine(i) +
3086                      " is not of type '" + getTypeString(Elts[0]->getType()));
3087     }
3088 
3089     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3090     ID.Kind = ValID::t_Constant;
3091     return false;
3092   }
3093   case lltok::kw_c:  // c "foo"
3094     Lex.Lex();
3095     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3096                                                   false);
3097     if (ParseToken(lltok::StringConstant, "expected string")) return true;
3098     ID.Kind = ValID::t_Constant;
3099     return false;
3100 
3101   case lltok::kw_asm: {
3102     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3103     //             STRINGCONSTANT
3104     bool HasSideEffect, AlignStack, AsmDialect;
3105     Lex.Lex();
3106     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3107         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3108         ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3109         ParseStringConstant(ID.StrVal) ||
3110         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
3111         ParseToken(lltok::StringConstant, "expected constraint string"))
3112       return true;
3113     ID.StrVal2 = Lex.getStrVal();
3114     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
3115       (unsigned(AsmDialect)<<2);
3116     ID.Kind = ValID::t_InlineAsm;
3117     return false;
3118   }
3119 
3120   case lltok::kw_blockaddress: {
3121     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3122     Lex.Lex();
3123 
3124     ValID Fn, Label;
3125 
3126     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
3127         ParseValID(Fn) ||
3128         ParseToken(lltok::comma, "expected comma in block address expression")||
3129         ParseValID(Label) ||
3130         ParseToken(lltok::rparen, "expected ')' in block address expression"))
3131       return true;
3132 
3133     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3134       return Error(Fn.Loc, "expected function name in blockaddress");
3135     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3136       return Error(Label.Loc, "expected basic block name in blockaddress");
3137 
3138     // Try to find the function (but skip it if it's forward-referenced).
3139     GlobalValue *GV = nullptr;
3140     if (Fn.Kind == ValID::t_GlobalID) {
3141       if (Fn.UIntVal < NumberedVals.size())
3142         GV = NumberedVals[Fn.UIntVal];
3143     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3144       GV = M->getNamedValue(Fn.StrVal);
3145     }
3146     Function *F = nullptr;
3147     if (GV) {
3148       // Confirm that it's actually a function with a definition.
3149       if (!isa<Function>(GV))
3150         return Error(Fn.Loc, "expected function name in blockaddress");
3151       F = cast<Function>(GV);
3152       if (F->isDeclaration())
3153         return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
3154     }
3155 
3156     if (!F) {
3157       // Make a global variable as a placeholder for this reference.
3158       GlobalValue *&FwdRef =
3159           ForwardRefBlockAddresses.insert(std::make_pair(
3160                                               std::move(Fn),
3161                                               std::map<ValID, GlobalValue *>()))
3162               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3163               .first->second;
3164       if (!FwdRef)
3165         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3166                                     GlobalValue::InternalLinkage, nullptr, "");
3167       ID.ConstantVal = FwdRef;
3168       ID.Kind = ValID::t_Constant;
3169       return false;
3170     }
3171 
3172     // We found the function; now find the basic block.  Don't use PFS, since we
3173     // might be inside a constant expression.
3174     BasicBlock *BB;
3175     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3176       if (Label.Kind == ValID::t_LocalID)
3177         BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
3178       else
3179         BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
3180       if (!BB)
3181         return Error(Label.Loc, "referenced value is not a basic block");
3182     } else {
3183       if (Label.Kind == ValID::t_LocalID)
3184         return Error(Label.Loc, "cannot take address of numeric label after "
3185                                 "the function is defined");
3186       BB = dyn_cast_or_null<BasicBlock>(
3187           F->getValueSymbolTable()->lookup(Label.StrVal));
3188       if (!BB)
3189         return Error(Label.Loc, "referenced value is not a basic block");
3190     }
3191 
3192     ID.ConstantVal = BlockAddress::get(F, BB);
3193     ID.Kind = ValID::t_Constant;
3194     return false;
3195   }
3196 
3197   case lltok::kw_trunc:
3198   case lltok::kw_zext:
3199   case lltok::kw_sext:
3200   case lltok::kw_fptrunc:
3201   case lltok::kw_fpext:
3202   case lltok::kw_bitcast:
3203   case lltok::kw_addrspacecast:
3204   case lltok::kw_uitofp:
3205   case lltok::kw_sitofp:
3206   case lltok::kw_fptoui:
3207   case lltok::kw_fptosi:
3208   case lltok::kw_inttoptr:
3209   case lltok::kw_ptrtoint: {
3210     unsigned Opc = Lex.getUIntVal();
3211     Type *DestTy = nullptr;
3212     Constant *SrcVal;
3213     Lex.Lex();
3214     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3215         ParseGlobalTypeAndValue(SrcVal) ||
3216         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3217         ParseType(DestTy) ||
3218         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3219       return true;
3220     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3221       return Error(ID.Loc, "invalid cast opcode for cast from '" +
3222                    getTypeString(SrcVal->getType()) + "' to '" +
3223                    getTypeString(DestTy) + "'");
3224     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3225                                                  SrcVal, DestTy);
3226     ID.Kind = ValID::t_Constant;
3227     return false;
3228   }
3229   case lltok::kw_extractvalue: {
3230     Lex.Lex();
3231     Constant *Val;
3232     SmallVector<unsigned, 4> Indices;
3233     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
3234         ParseGlobalTypeAndValue(Val) ||
3235         ParseIndexList(Indices) ||
3236         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3237       return true;
3238 
3239     if (!Val->getType()->isAggregateType())
3240       return Error(ID.Loc, "extractvalue operand must be aggregate type");
3241     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3242       return Error(ID.Loc, "invalid indices for extractvalue");
3243     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3244     ID.Kind = ValID::t_Constant;
3245     return false;
3246   }
3247   case lltok::kw_insertvalue: {
3248     Lex.Lex();
3249     Constant *Val0, *Val1;
3250     SmallVector<unsigned, 4> Indices;
3251     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
3252         ParseGlobalTypeAndValue(Val0) ||
3253         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
3254         ParseGlobalTypeAndValue(Val1) ||
3255         ParseIndexList(Indices) ||
3256         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3257       return true;
3258     if (!Val0->getType()->isAggregateType())
3259       return Error(ID.Loc, "insertvalue operand must be aggregate type");
3260     Type *IndexedType =
3261         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3262     if (!IndexedType)
3263       return Error(ID.Loc, "invalid indices for insertvalue");
3264     if (IndexedType != Val1->getType())
3265       return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3266                                getTypeString(Val1->getType()) +
3267                                "' instead of '" + getTypeString(IndexedType) +
3268                                "'");
3269     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3270     ID.Kind = ValID::t_Constant;
3271     return false;
3272   }
3273   case lltok::kw_icmp:
3274   case lltok::kw_fcmp: {
3275     unsigned PredVal, Opc = Lex.getUIntVal();
3276     Constant *Val0, *Val1;
3277     Lex.Lex();
3278     if (ParseCmpPredicate(PredVal, Opc) ||
3279         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3280         ParseGlobalTypeAndValue(Val0) ||
3281         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
3282         ParseGlobalTypeAndValue(Val1) ||
3283         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3284       return true;
3285 
3286     if (Val0->getType() != Val1->getType())
3287       return Error(ID.Loc, "compare operands must have the same type");
3288 
3289     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3290 
3291     if (Opc == Instruction::FCmp) {
3292       if (!Val0->getType()->isFPOrFPVectorTy())
3293         return Error(ID.Loc, "fcmp requires floating point operands");
3294       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3295     } else {
3296       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3297       if (!Val0->getType()->isIntOrIntVectorTy() &&
3298           !Val0->getType()->isPtrOrPtrVectorTy())
3299         return Error(ID.Loc, "icmp requires pointer or integer operands");
3300       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3301     }
3302     ID.Kind = ValID::t_Constant;
3303     return false;
3304   }
3305 
3306   // Unary Operators.
3307   case lltok::kw_fneg: {
3308     unsigned Opc = Lex.getUIntVal();
3309     Constant *Val;
3310     Lex.Lex();
3311     if (ParseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3312         ParseGlobalTypeAndValue(Val) ||
3313         ParseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3314       return true;
3315 
3316     // Check that the type is valid for the operator.
3317     switch (Opc) {
3318     case Instruction::FNeg:
3319       if (!Val->getType()->isFPOrFPVectorTy())
3320         return Error(ID.Loc, "constexpr requires fp operands");
3321       break;
3322     default: llvm_unreachable("Unknown unary operator!");
3323     }
3324     unsigned Flags = 0;
3325     Constant *C = ConstantExpr::get(Opc, Val, Flags);
3326     ID.ConstantVal = C;
3327     ID.Kind = ValID::t_Constant;
3328     return false;
3329   }
3330   // Binary Operators.
3331   case lltok::kw_add:
3332   case lltok::kw_fadd:
3333   case lltok::kw_sub:
3334   case lltok::kw_fsub:
3335   case lltok::kw_mul:
3336   case lltok::kw_fmul:
3337   case lltok::kw_udiv:
3338   case lltok::kw_sdiv:
3339   case lltok::kw_fdiv:
3340   case lltok::kw_urem:
3341   case lltok::kw_srem:
3342   case lltok::kw_frem:
3343   case lltok::kw_shl:
3344   case lltok::kw_lshr:
3345   case lltok::kw_ashr: {
3346     bool NUW = false;
3347     bool NSW = false;
3348     bool Exact = false;
3349     unsigned Opc = Lex.getUIntVal();
3350     Constant *Val0, *Val1;
3351     Lex.Lex();
3352     LocTy ModifierLoc = Lex.getLoc();
3353     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3354         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3355       if (EatIfPresent(lltok::kw_nuw))
3356         NUW = true;
3357       if (EatIfPresent(lltok::kw_nsw)) {
3358         NSW = true;
3359         if (EatIfPresent(lltok::kw_nuw))
3360           NUW = true;
3361       }
3362     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3363                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3364       if (EatIfPresent(lltok::kw_exact))
3365         Exact = true;
3366     }
3367     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3368         ParseGlobalTypeAndValue(Val0) ||
3369         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
3370         ParseGlobalTypeAndValue(Val1) ||
3371         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3372       return true;
3373     if (Val0->getType() != Val1->getType())
3374       return Error(ID.Loc, "operands of constexpr must have same type");
3375     if (!Val0->getType()->isIntOrIntVectorTy()) {
3376       if (NUW)
3377         return Error(ModifierLoc, "nuw only applies to integer operations");
3378       if (NSW)
3379         return Error(ModifierLoc, "nsw only applies to integer operations");
3380     }
3381     // Check that the type is valid for the operator.
3382     switch (Opc) {
3383     case Instruction::Add:
3384     case Instruction::Sub:
3385     case Instruction::Mul:
3386     case Instruction::UDiv:
3387     case Instruction::SDiv:
3388     case Instruction::URem:
3389     case Instruction::SRem:
3390     case Instruction::Shl:
3391     case Instruction::AShr:
3392     case Instruction::LShr:
3393       if (!Val0->getType()->isIntOrIntVectorTy())
3394         return Error(ID.Loc, "constexpr requires integer operands");
3395       break;
3396     case Instruction::FAdd:
3397     case Instruction::FSub:
3398     case Instruction::FMul:
3399     case Instruction::FDiv:
3400     case Instruction::FRem:
3401       if (!Val0->getType()->isFPOrFPVectorTy())
3402         return Error(ID.Loc, "constexpr requires fp operands");
3403       break;
3404     default: llvm_unreachable("Unknown binary operator!");
3405     }
3406     unsigned Flags = 0;
3407     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3408     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3409     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3410     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3411     ID.ConstantVal = C;
3412     ID.Kind = ValID::t_Constant;
3413     return false;
3414   }
3415 
3416   // Logical Operations
3417   case lltok::kw_and:
3418   case lltok::kw_or:
3419   case lltok::kw_xor: {
3420     unsigned Opc = Lex.getUIntVal();
3421     Constant *Val0, *Val1;
3422     Lex.Lex();
3423     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3424         ParseGlobalTypeAndValue(Val0) ||
3425         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3426         ParseGlobalTypeAndValue(Val1) ||
3427         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3428       return true;
3429     if (Val0->getType() != Val1->getType())
3430       return Error(ID.Loc, "operands of constexpr must have same type");
3431     if (!Val0->getType()->isIntOrIntVectorTy())
3432       return Error(ID.Loc,
3433                    "constexpr requires integer or integer vector operands");
3434     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3435     ID.Kind = ValID::t_Constant;
3436     return false;
3437   }
3438 
3439   case lltok::kw_getelementptr:
3440   case lltok::kw_shufflevector:
3441   case lltok::kw_insertelement:
3442   case lltok::kw_extractelement:
3443   case lltok::kw_select: {
3444     unsigned Opc = Lex.getUIntVal();
3445     SmallVector<Constant*, 16> Elts;
3446     bool InBounds = false;
3447     Type *Ty;
3448     Lex.Lex();
3449 
3450     if (Opc == Instruction::GetElementPtr)
3451       InBounds = EatIfPresent(lltok::kw_inbounds);
3452 
3453     if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3454       return true;
3455 
3456     LocTy ExplicitTypeLoc = Lex.getLoc();
3457     if (Opc == Instruction::GetElementPtr) {
3458       if (ParseType(Ty) ||
3459           ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3460         return true;
3461     }
3462 
3463     Optional<unsigned> InRangeOp;
3464     if (ParseGlobalValueVector(
3465             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3466         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3467       return true;
3468 
3469     if (Opc == Instruction::GetElementPtr) {
3470       if (Elts.size() == 0 ||
3471           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3472         return Error(ID.Loc, "base of getelementptr must be a pointer");
3473 
3474       Type *BaseType = Elts[0]->getType();
3475       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3476       if (Ty != BasePointerType->getElementType())
3477         return Error(
3478             ExplicitTypeLoc,
3479             "explicit pointee type doesn't match operand's pointee type");
3480 
3481       unsigned GEPWidth =
3482           BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0;
3483 
3484       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3485       for (Constant *Val : Indices) {
3486         Type *ValTy = Val->getType();
3487         if (!ValTy->isIntOrIntVectorTy())
3488           return Error(ID.Loc, "getelementptr index must be an integer");
3489         if (ValTy->isVectorTy()) {
3490           unsigned ValNumEl = ValTy->getVectorNumElements();
3491           if (GEPWidth && (ValNumEl != GEPWidth))
3492             return Error(
3493                 ID.Loc,
3494                 "getelementptr vector index has a wrong number of elements");
3495           // GEPWidth may have been unknown because the base is a scalar,
3496           // but it is known now.
3497           GEPWidth = ValNumEl;
3498         }
3499       }
3500 
3501       SmallPtrSet<Type*, 4> Visited;
3502       if (!Indices.empty() && !Ty->isSized(&Visited))
3503         return Error(ID.Loc, "base element of getelementptr must be sized");
3504 
3505       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3506         return Error(ID.Loc, "invalid getelementptr indices");
3507 
3508       if (InRangeOp) {
3509         if (*InRangeOp == 0)
3510           return Error(ID.Loc,
3511                        "inrange keyword may not appear on pointer operand");
3512         --*InRangeOp;
3513       }
3514 
3515       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3516                                                       InBounds, InRangeOp);
3517     } else if (Opc == Instruction::Select) {
3518       if (Elts.size() != 3)
3519         return Error(ID.Loc, "expected three operands to select");
3520       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3521                                                               Elts[2]))
3522         return Error(ID.Loc, Reason);
3523       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3524     } else if (Opc == Instruction::ShuffleVector) {
3525       if (Elts.size() != 3)
3526         return Error(ID.Loc, "expected three operands to shufflevector");
3527       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3528         return Error(ID.Loc, "invalid operands to shufflevector");
3529       ID.ConstantVal =
3530                  ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
3531     } else if (Opc == Instruction::ExtractElement) {
3532       if (Elts.size() != 2)
3533         return Error(ID.Loc, "expected two operands to extractelement");
3534       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3535         return Error(ID.Loc, "invalid extractelement operands");
3536       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3537     } else {
3538       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3539       if (Elts.size() != 3)
3540       return Error(ID.Loc, "expected three operands to insertelement");
3541       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3542         return Error(ID.Loc, "invalid insertelement operands");
3543       ID.ConstantVal =
3544                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3545     }
3546 
3547     ID.Kind = ValID::t_Constant;
3548     return false;
3549   }
3550   }
3551 
3552   Lex.Lex();
3553   return false;
3554 }
3555 
3556 /// ParseGlobalValue - Parse a global value with the specified type.
3557 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3558   C = nullptr;
3559   ValID ID;
3560   Value *V = nullptr;
3561   bool Parsed = ParseValID(ID) ||
3562                 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3563   if (V && !(C = dyn_cast<Constant>(V)))
3564     return Error(ID.Loc, "global values must be constants");
3565   return Parsed;
3566 }
3567 
3568 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3569   Type *Ty = nullptr;
3570   return ParseType(Ty) ||
3571          ParseGlobalValue(Ty, V);
3572 }
3573 
3574 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3575   C = nullptr;
3576 
3577   LocTy KwLoc = Lex.getLoc();
3578   if (!EatIfPresent(lltok::kw_comdat))
3579     return false;
3580 
3581   if (EatIfPresent(lltok::lparen)) {
3582     if (Lex.getKind() != lltok::ComdatVar)
3583       return TokError("expected comdat variable");
3584     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3585     Lex.Lex();
3586     if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3587       return true;
3588   } else {
3589     if (GlobalName.empty())
3590       return TokError("comdat cannot be unnamed");
3591     C = getComdat(GlobalName, KwLoc);
3592   }
3593 
3594   return false;
3595 }
3596 
3597 /// ParseGlobalValueVector
3598 ///   ::= /*empty*/
3599 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3600 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3601                                       Optional<unsigned> *InRangeOp) {
3602   // Empty list.
3603   if (Lex.getKind() == lltok::rbrace ||
3604       Lex.getKind() == lltok::rsquare ||
3605       Lex.getKind() == lltok::greater ||
3606       Lex.getKind() == lltok::rparen)
3607     return false;
3608 
3609   do {
3610     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3611       *InRangeOp = Elts.size();
3612 
3613     Constant *C;
3614     if (ParseGlobalTypeAndValue(C)) return true;
3615     Elts.push_back(C);
3616   } while (EatIfPresent(lltok::comma));
3617 
3618   return false;
3619 }
3620 
3621 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3622   SmallVector<Metadata *, 16> Elts;
3623   if (ParseMDNodeVector(Elts))
3624     return true;
3625 
3626   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3627   return false;
3628 }
3629 
3630 /// MDNode:
3631 ///  ::= !{ ... }
3632 ///  ::= !7
3633 ///  ::= !DILocation(...)
3634 bool LLParser::ParseMDNode(MDNode *&N) {
3635   if (Lex.getKind() == lltok::MetadataVar)
3636     return ParseSpecializedMDNode(N);
3637 
3638   return ParseToken(lltok::exclaim, "expected '!' here") ||
3639          ParseMDNodeTail(N);
3640 }
3641 
3642 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3643   // !{ ... }
3644   if (Lex.getKind() == lltok::lbrace)
3645     return ParseMDTuple(N);
3646 
3647   // !42
3648   return ParseMDNodeID(N);
3649 }
3650 
3651 namespace {
3652 
3653 /// Structure to represent an optional metadata field.
3654 template <class FieldTy> struct MDFieldImpl {
3655   typedef MDFieldImpl ImplTy;
3656   FieldTy Val;
3657   bool Seen;
3658 
3659   void assign(FieldTy Val) {
3660     Seen = true;
3661     this->Val = std::move(Val);
3662   }
3663 
3664   explicit MDFieldImpl(FieldTy Default)
3665       : Val(std::move(Default)), Seen(false) {}
3666 };
3667 
3668 /// Structure to represent an optional metadata field that
3669 /// can be of either type (A or B) and encapsulates the
3670 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3671 /// to reimplement the specifics for representing each Field.
3672 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3673   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3674   FieldTypeA A;
3675   FieldTypeB B;
3676   bool Seen;
3677 
3678   enum {
3679     IsInvalid = 0,
3680     IsTypeA = 1,
3681     IsTypeB = 2
3682   } WhatIs;
3683 
3684   void assign(FieldTypeA A) {
3685     Seen = true;
3686     this->A = std::move(A);
3687     WhatIs = IsTypeA;
3688   }
3689 
3690   void assign(FieldTypeB B) {
3691     Seen = true;
3692     this->B = std::move(B);
3693     WhatIs = IsTypeB;
3694   }
3695 
3696   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3697       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3698         WhatIs(IsInvalid) {}
3699 };
3700 
3701 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3702   uint64_t Max;
3703 
3704   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3705       : ImplTy(Default), Max(Max) {}
3706 };
3707 
3708 struct LineField : public MDUnsignedField {
3709   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3710 };
3711 
3712 struct ColumnField : public MDUnsignedField {
3713   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3714 };
3715 
3716 struct DwarfTagField : public MDUnsignedField {
3717   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3718   DwarfTagField(dwarf::Tag DefaultTag)
3719       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3720 };
3721 
3722 struct DwarfMacinfoTypeField : public MDUnsignedField {
3723   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3724   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3725     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3726 };
3727 
3728 struct DwarfAttEncodingField : public MDUnsignedField {
3729   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3730 };
3731 
3732 struct DwarfVirtualityField : public MDUnsignedField {
3733   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3734 };
3735 
3736 struct DwarfLangField : public MDUnsignedField {
3737   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3738 };
3739 
3740 struct DwarfCCField : public MDUnsignedField {
3741   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3742 };
3743 
3744 struct EmissionKindField : public MDUnsignedField {
3745   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3746 };
3747 
3748 struct NameTableKindField : public MDUnsignedField {
3749   NameTableKindField()
3750       : MDUnsignedField(
3751             0, (unsigned)
3752                    DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
3753 };
3754 
3755 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3756   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3757 };
3758 
3759 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
3760   DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
3761 };
3762 
3763 struct MDSignedField : public MDFieldImpl<int64_t> {
3764   int64_t Min;
3765   int64_t Max;
3766 
3767   MDSignedField(int64_t Default = 0)
3768       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3769   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3770       : ImplTy(Default), Min(Min), Max(Max) {}
3771 };
3772 
3773 struct MDBoolField : public MDFieldImpl<bool> {
3774   MDBoolField(bool Default = false) : ImplTy(Default) {}
3775 };
3776 
3777 struct MDField : public MDFieldImpl<Metadata *> {
3778   bool AllowNull;
3779 
3780   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3781 };
3782 
3783 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3784   MDConstant() : ImplTy(nullptr) {}
3785 };
3786 
3787 struct MDStringField : public MDFieldImpl<MDString *> {
3788   bool AllowEmpty;
3789   MDStringField(bool AllowEmpty = true)
3790       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3791 };
3792 
3793 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3794   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3795 };
3796 
3797 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
3798   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3799 };
3800 
3801 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
3802   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
3803       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
3804 
3805   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
3806                     bool AllowNull = true)
3807       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
3808 
3809   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3810   bool isMDField() const { return WhatIs == IsTypeB; }
3811   int64_t getMDSignedValue() const {
3812     assert(isMDSignedField() && "Wrong field type");
3813     return A.Val;
3814   }
3815   Metadata *getMDFieldValue() const {
3816     assert(isMDField() && "Wrong field type");
3817     return B.Val;
3818   }
3819 };
3820 
3821 struct MDSignedOrUnsignedField
3822     : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
3823   MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
3824 
3825   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3826   bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
3827   int64_t getMDSignedValue() const {
3828     assert(isMDSignedField() && "Wrong field type");
3829     return A.Val;
3830   }
3831   uint64_t getMDUnsignedValue() const {
3832     assert(isMDUnsignedField() && "Wrong field type");
3833     return B.Val;
3834   }
3835 };
3836 
3837 } // end anonymous namespace
3838 
3839 namespace llvm {
3840 
3841 template <>
3842 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3843                             MDUnsignedField &Result) {
3844   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3845     return TokError("expected unsigned integer");
3846 
3847   auto &U = Lex.getAPSIntVal();
3848   if (U.ugt(Result.Max))
3849     return TokError("value for '" + Name + "' too large, limit is " +
3850                     Twine(Result.Max));
3851   Result.assign(U.getZExtValue());
3852   assert(Result.Val <= Result.Max && "Expected value in range");
3853   Lex.Lex();
3854   return false;
3855 }
3856 
3857 template <>
3858 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3859   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3860 }
3861 template <>
3862 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3863   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3864 }
3865 
3866 template <>
3867 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3868   if (Lex.getKind() == lltok::APSInt)
3869     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3870 
3871   if (Lex.getKind() != lltok::DwarfTag)
3872     return TokError("expected DWARF tag");
3873 
3874   unsigned Tag = dwarf::getTag(Lex.getStrVal());
3875   if (Tag == dwarf::DW_TAG_invalid)
3876     return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3877   assert(Tag <= Result.Max && "Expected valid DWARF tag");
3878 
3879   Result.assign(Tag);
3880   Lex.Lex();
3881   return false;
3882 }
3883 
3884 template <>
3885 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3886                             DwarfMacinfoTypeField &Result) {
3887   if (Lex.getKind() == lltok::APSInt)
3888     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3889 
3890   if (Lex.getKind() != lltok::DwarfMacinfo)
3891     return TokError("expected DWARF macinfo type");
3892 
3893   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
3894   if (Macinfo == dwarf::DW_MACINFO_invalid)
3895     return TokError(
3896         "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
3897   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
3898 
3899   Result.assign(Macinfo);
3900   Lex.Lex();
3901   return false;
3902 }
3903 
3904 template <>
3905 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3906                             DwarfVirtualityField &Result) {
3907   if (Lex.getKind() == lltok::APSInt)
3908     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3909 
3910   if (Lex.getKind() != lltok::DwarfVirtuality)
3911     return TokError("expected DWARF virtuality code");
3912 
3913   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
3914   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
3915     return TokError("invalid DWARF virtuality code" + Twine(" '") +
3916                     Lex.getStrVal() + "'");
3917   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
3918   Result.assign(Virtuality);
3919   Lex.Lex();
3920   return false;
3921 }
3922 
3923 template <>
3924 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
3925   if (Lex.getKind() == lltok::APSInt)
3926     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3927 
3928   if (Lex.getKind() != lltok::DwarfLang)
3929     return TokError("expected DWARF language");
3930 
3931   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
3932   if (!Lang)
3933     return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
3934                     "'");
3935   assert(Lang <= Result.Max && "Expected valid DWARF language");
3936   Result.assign(Lang);
3937   Lex.Lex();
3938   return false;
3939 }
3940 
3941 template <>
3942 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
3943   if (Lex.getKind() == lltok::APSInt)
3944     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3945 
3946   if (Lex.getKind() != lltok::DwarfCC)
3947     return TokError("expected DWARF calling convention");
3948 
3949   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
3950   if (!CC)
3951     return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() +
3952                     "'");
3953   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
3954   Result.assign(CC);
3955   Lex.Lex();
3956   return false;
3957 }
3958 
3959 template <>
3960 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
3961   if (Lex.getKind() == lltok::APSInt)
3962     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3963 
3964   if (Lex.getKind() != lltok::EmissionKind)
3965     return TokError("expected emission kind");
3966 
3967   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
3968   if (!Kind)
3969     return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
3970                     "'");
3971   assert(*Kind <= Result.Max && "Expected valid emission kind");
3972   Result.assign(*Kind);
3973   Lex.Lex();
3974   return false;
3975 }
3976 
3977 template <>
3978 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3979                             NameTableKindField &Result) {
3980   if (Lex.getKind() == lltok::APSInt)
3981     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3982 
3983   if (Lex.getKind() != lltok::NameTableKind)
3984     return TokError("expected nameTable kind");
3985 
3986   auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
3987   if (!Kind)
3988     return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
3989                     "'");
3990   assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
3991   Result.assign((unsigned)*Kind);
3992   Lex.Lex();
3993   return false;
3994 }
3995 
3996 template <>
3997 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3998                             DwarfAttEncodingField &Result) {
3999   if (Lex.getKind() == lltok::APSInt)
4000     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4001 
4002   if (Lex.getKind() != lltok::DwarfAttEncoding)
4003     return TokError("expected DWARF type attribute encoding");
4004 
4005   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4006   if (!Encoding)
4007     return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
4008                     Lex.getStrVal() + "'");
4009   assert(Encoding <= Result.Max && "Expected valid DWARF language");
4010   Result.assign(Encoding);
4011   Lex.Lex();
4012   return false;
4013 }
4014 
4015 /// DIFlagField
4016 ///  ::= uint32
4017 ///  ::= DIFlagVector
4018 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4019 template <>
4020 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4021 
4022   // Parser for a single flag.
4023   auto parseFlag = [&](DINode::DIFlags &Val) {
4024     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4025       uint32_t TempVal = static_cast<uint32_t>(Val);
4026       bool Res = ParseUInt32(TempVal);
4027       Val = static_cast<DINode::DIFlags>(TempVal);
4028       return Res;
4029     }
4030 
4031     if (Lex.getKind() != lltok::DIFlag)
4032       return TokError("expected debug info flag");
4033 
4034     Val = DINode::getFlag(Lex.getStrVal());
4035     if (!Val)
4036       return TokError(Twine("invalid debug info flag flag '") +
4037                       Lex.getStrVal() + "'");
4038     Lex.Lex();
4039     return false;
4040   };
4041 
4042   // Parse the flags and combine them together.
4043   DINode::DIFlags Combined = DINode::FlagZero;
4044   do {
4045     DINode::DIFlags Val;
4046     if (parseFlag(Val))
4047       return true;
4048     Combined |= Val;
4049   } while (EatIfPresent(lltok::bar));
4050 
4051   Result.assign(Combined);
4052   return false;
4053 }
4054 
4055 /// DISPFlagField
4056 ///  ::= uint32
4057 ///  ::= DISPFlagVector
4058 ///  ::= DISPFlagVector '|' DISPFlag* '|' uint32
4059 template <>
4060 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4061 
4062   // Parser for a single flag.
4063   auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4064     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4065       uint32_t TempVal = static_cast<uint32_t>(Val);
4066       bool Res = ParseUInt32(TempVal);
4067       Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4068       return Res;
4069     }
4070 
4071     if (Lex.getKind() != lltok::DISPFlag)
4072       return TokError("expected debug info flag");
4073 
4074     Val = DISubprogram::getFlag(Lex.getStrVal());
4075     if (!Val)
4076       return TokError(Twine("invalid subprogram debug info flag '") +
4077                       Lex.getStrVal() + "'");
4078     Lex.Lex();
4079     return false;
4080   };
4081 
4082   // Parse the flags and combine them together.
4083   DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4084   do {
4085     DISubprogram::DISPFlags Val;
4086     if (parseFlag(Val))
4087       return true;
4088     Combined |= Val;
4089   } while (EatIfPresent(lltok::bar));
4090 
4091   Result.assign(Combined);
4092   return false;
4093 }
4094 
4095 template <>
4096 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4097                             MDSignedField &Result) {
4098   if (Lex.getKind() != lltok::APSInt)
4099     return TokError("expected signed integer");
4100 
4101   auto &S = Lex.getAPSIntVal();
4102   if (S < Result.Min)
4103     return TokError("value for '" + Name + "' too small, limit is " +
4104                     Twine(Result.Min));
4105   if (S > Result.Max)
4106     return TokError("value for '" + Name + "' too large, limit is " +
4107                     Twine(Result.Max));
4108   Result.assign(S.getExtValue());
4109   assert(Result.Val >= Result.Min && "Expected value in range");
4110   assert(Result.Val <= Result.Max && "Expected value in range");
4111   Lex.Lex();
4112   return false;
4113 }
4114 
4115 template <>
4116 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4117   switch (Lex.getKind()) {
4118   default:
4119     return TokError("expected 'true' or 'false'");
4120   case lltok::kw_true:
4121     Result.assign(true);
4122     break;
4123   case lltok::kw_false:
4124     Result.assign(false);
4125     break;
4126   }
4127   Lex.Lex();
4128   return false;
4129 }
4130 
4131 template <>
4132 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4133   if (Lex.getKind() == lltok::kw_null) {
4134     if (!Result.AllowNull)
4135       return TokError("'" + Name + "' cannot be null");
4136     Lex.Lex();
4137     Result.assign(nullptr);
4138     return false;
4139   }
4140 
4141   Metadata *MD;
4142   if (ParseMetadata(MD, nullptr))
4143     return true;
4144 
4145   Result.assign(MD);
4146   return false;
4147 }
4148 
4149 template <>
4150 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4151                             MDSignedOrMDField &Result) {
4152   // Try to parse a signed int.
4153   if (Lex.getKind() == lltok::APSInt) {
4154     MDSignedField Res = Result.A;
4155     if (!ParseMDField(Loc, Name, Res)) {
4156       Result.assign(Res);
4157       return false;
4158     }
4159     return true;
4160   }
4161 
4162   // Otherwise, try to parse as an MDField.
4163   MDField Res = Result.B;
4164   if (!ParseMDField(Loc, Name, Res)) {
4165     Result.assign(Res);
4166     return false;
4167   }
4168 
4169   return true;
4170 }
4171 
4172 template <>
4173 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4174                             MDSignedOrUnsignedField &Result) {
4175   if (Lex.getKind() != lltok::APSInt)
4176     return false;
4177 
4178   if (Lex.getAPSIntVal().isSigned()) {
4179     MDSignedField Res = Result.A;
4180     if (ParseMDField(Loc, Name, Res))
4181       return true;
4182     Result.assign(Res);
4183     return false;
4184   }
4185 
4186   MDUnsignedField Res = Result.B;
4187   if (ParseMDField(Loc, Name, Res))
4188     return true;
4189   Result.assign(Res);
4190   return false;
4191 }
4192 
4193 template <>
4194 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4195   LocTy ValueLoc = Lex.getLoc();
4196   std::string S;
4197   if (ParseStringConstant(S))
4198     return true;
4199 
4200   if (!Result.AllowEmpty && S.empty())
4201     return Error(ValueLoc, "'" + Name + "' cannot be empty");
4202 
4203   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4204   return false;
4205 }
4206 
4207 template <>
4208 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4209   SmallVector<Metadata *, 4> MDs;
4210   if (ParseMDNodeVector(MDs))
4211     return true;
4212 
4213   Result.assign(std::move(MDs));
4214   return false;
4215 }
4216 
4217 template <>
4218 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4219                             ChecksumKindField &Result) {
4220   Optional<DIFile::ChecksumKind> CSKind =
4221       DIFile::getChecksumKind(Lex.getStrVal());
4222 
4223   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4224     return TokError(
4225         "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'");
4226 
4227   Result.assign(*CSKind);
4228   Lex.Lex();
4229   return false;
4230 }
4231 
4232 } // end namespace llvm
4233 
4234 template <class ParserTy>
4235 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
4236   do {
4237     if (Lex.getKind() != lltok::LabelStr)
4238       return TokError("expected field label here");
4239 
4240     if (parseField())
4241       return true;
4242   } while (EatIfPresent(lltok::comma));
4243 
4244   return false;
4245 }
4246 
4247 template <class ParserTy>
4248 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
4249   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4250   Lex.Lex();
4251 
4252   if (ParseToken(lltok::lparen, "expected '(' here"))
4253     return true;
4254   if (Lex.getKind() != lltok::rparen)
4255     if (ParseMDFieldsImplBody(parseField))
4256       return true;
4257 
4258   ClosingLoc = Lex.getLoc();
4259   return ParseToken(lltok::rparen, "expected ')' here");
4260 }
4261 
4262 template <class FieldTy>
4263 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
4264   if (Result.Seen)
4265     return TokError("field '" + Name + "' cannot be specified more than once");
4266 
4267   LocTy Loc = Lex.getLoc();
4268   Lex.Lex();
4269   return ParseMDField(Loc, Name, Result);
4270 }
4271 
4272 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4273   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4274 
4275 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4276   if (Lex.getStrVal() == #CLASS)                                               \
4277     return Parse##CLASS(N, IsDistinct);
4278 #include "llvm/IR/Metadata.def"
4279 
4280   return TokError("expected metadata type");
4281 }
4282 
4283 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4284 #define NOP_FIELD(NAME, TYPE, INIT)
4285 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4286   if (!NAME.Seen)                                                              \
4287     return Error(ClosingLoc, "missing required field '" #NAME "'");
4288 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4289   if (Lex.getStrVal() == #NAME)                                                \
4290     return ParseMDField(#NAME, NAME);
4291 #define PARSE_MD_FIELDS()                                                      \
4292   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4293   do {                                                                         \
4294     LocTy ClosingLoc;                                                          \
4295     if (ParseMDFieldsImpl([&]() -> bool {                                      \
4296       VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                          \
4297       return TokError(Twine("invalid field '") + Lex.getStrVal() + "'");       \
4298     }, ClosingLoc))                                                            \
4299       return true;                                                             \
4300     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4301   } while (false)
4302 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4303   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4304 
4305 /// ParseDILocationFields:
4306 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4307 ///   isImplicitCode: true)
4308 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
4309 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4310   OPTIONAL(line, LineField, );                                                 \
4311   OPTIONAL(column, ColumnField, );                                             \
4312   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4313   OPTIONAL(inlinedAt, MDField, );                                              \
4314   OPTIONAL(isImplicitCode, MDBoolField, (false));
4315   PARSE_MD_FIELDS();
4316 #undef VISIT_MD_FIELDS
4317 
4318   Result =
4319       GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4320                                    inlinedAt.Val, isImplicitCode.Val));
4321   return false;
4322 }
4323 
4324 /// ParseGenericDINode:
4325 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4326 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
4327 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4328   REQUIRED(tag, DwarfTagField, );                                              \
4329   OPTIONAL(header, MDStringField, );                                           \
4330   OPTIONAL(operands, MDFieldList, );
4331   PARSE_MD_FIELDS();
4332 #undef VISIT_MD_FIELDS
4333 
4334   Result = GET_OR_DISTINCT(GenericDINode,
4335                            (Context, tag.Val, header.Val, operands.Val));
4336   return false;
4337 }
4338 
4339 /// ParseDISubrange:
4340 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4341 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4342 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
4343 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4344   REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4345   OPTIONAL(lowerBound, MDSignedField, );
4346   PARSE_MD_FIELDS();
4347 #undef VISIT_MD_FIELDS
4348 
4349   if (count.isMDSignedField())
4350     Result = GET_OR_DISTINCT(
4351         DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val));
4352   else if (count.isMDField())
4353     Result = GET_OR_DISTINCT(
4354         DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val));
4355   else
4356     return true;
4357 
4358   return false;
4359 }
4360 
4361 /// ParseDIEnumerator:
4362 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4363 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4364 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4365   REQUIRED(name, MDStringField, );                                             \
4366   REQUIRED(value, MDSignedOrUnsignedField, );                                  \
4367   OPTIONAL(isUnsigned, MDBoolField, (false));
4368   PARSE_MD_FIELDS();
4369 #undef VISIT_MD_FIELDS
4370 
4371   if (isUnsigned.Val && value.isMDSignedField())
4372     return TokError("unsigned enumerator with negative value");
4373 
4374   int64_t Value = value.isMDSignedField()
4375                       ? value.getMDSignedValue()
4376                       : static_cast<int64_t>(value.getMDUnsignedValue());
4377   Result =
4378       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4379 
4380   return false;
4381 }
4382 
4383 /// ParseDIBasicType:
4384 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4385 ///                    encoding: DW_ATE_encoding, flags: 0)
4386 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
4387 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4388   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4389   OPTIONAL(name, MDStringField, );                                             \
4390   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4391   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4392   OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
4393   OPTIONAL(flags, DIFlagField, );
4394   PARSE_MD_FIELDS();
4395 #undef VISIT_MD_FIELDS
4396 
4397   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4398                                          align.Val, encoding.Val, flags.Val));
4399   return false;
4400 }
4401 
4402 /// ParseDIDerivedType:
4403 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4404 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4405 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4406 ///                      dwarfAddressSpace: 3)
4407 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4408 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4409   REQUIRED(tag, DwarfTagField, );                                              \
4410   OPTIONAL(name, MDStringField, );                                             \
4411   OPTIONAL(file, MDField, );                                                   \
4412   OPTIONAL(line, LineField, );                                                 \
4413   OPTIONAL(scope, MDField, );                                                  \
4414   REQUIRED(baseType, MDField, );                                               \
4415   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4416   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4417   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4418   OPTIONAL(flags, DIFlagField, );                                              \
4419   OPTIONAL(extraData, MDField, );                                              \
4420   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4421   PARSE_MD_FIELDS();
4422 #undef VISIT_MD_FIELDS
4423 
4424   Optional<unsigned> DWARFAddressSpace;
4425   if (dwarfAddressSpace.Val != UINT32_MAX)
4426     DWARFAddressSpace = dwarfAddressSpace.Val;
4427 
4428   Result = GET_OR_DISTINCT(DIDerivedType,
4429                            (Context, tag.Val, name.Val, file.Val, line.Val,
4430                             scope.Val, baseType.Val, size.Val, align.Val,
4431                             offset.Val, DWARFAddressSpace, flags.Val,
4432                             extraData.Val));
4433   return false;
4434 }
4435 
4436 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
4437 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4438   REQUIRED(tag, DwarfTagField, );                                              \
4439   OPTIONAL(name, MDStringField, );                                             \
4440   OPTIONAL(file, MDField, );                                                   \
4441   OPTIONAL(line, LineField, );                                                 \
4442   OPTIONAL(scope, MDField, );                                                  \
4443   OPTIONAL(baseType, MDField, );                                               \
4444   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4445   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4446   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4447   OPTIONAL(flags, DIFlagField, );                                              \
4448   OPTIONAL(elements, MDField, );                                               \
4449   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4450   OPTIONAL(vtableHolder, MDField, );                                           \
4451   OPTIONAL(templateParams, MDField, );                                         \
4452   OPTIONAL(identifier, MDStringField, );                                       \
4453   OPTIONAL(discriminator, MDField, );
4454   PARSE_MD_FIELDS();
4455 #undef VISIT_MD_FIELDS
4456 
4457   // If this has an identifier try to build an ODR type.
4458   if (identifier.Val)
4459     if (auto *CT = DICompositeType::buildODRType(
4460             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4461             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4462             elements.Val, runtimeLang.Val, vtableHolder.Val,
4463             templateParams.Val, discriminator.Val)) {
4464       Result = CT;
4465       return false;
4466     }
4467 
4468   // Create a new node, and save it in the context if it belongs in the type
4469   // map.
4470   Result = GET_OR_DISTINCT(
4471       DICompositeType,
4472       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4473        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4474        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4475        discriminator.Val));
4476   return false;
4477 }
4478 
4479 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4480 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4481   OPTIONAL(flags, DIFlagField, );                                              \
4482   OPTIONAL(cc, DwarfCCField, );                                                \
4483   REQUIRED(types, MDField, );
4484   PARSE_MD_FIELDS();
4485 #undef VISIT_MD_FIELDS
4486 
4487   Result = GET_OR_DISTINCT(DISubroutineType,
4488                            (Context, flags.Val, cc.Val, types.Val));
4489   return false;
4490 }
4491 
4492 /// ParseDIFileType:
4493 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4494 ///                   checksumkind: CSK_MD5,
4495 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
4496 ///                   source: "source file contents")
4497 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
4498   // The default constructed value for checksumkind is required, but will never
4499   // be used, as the parser checks if the field was actually Seen before using
4500   // the Val.
4501 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4502   REQUIRED(filename, MDStringField, );                                         \
4503   REQUIRED(directory, MDStringField, );                                        \
4504   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
4505   OPTIONAL(checksum, MDStringField, );                                         \
4506   OPTIONAL(source, MDStringField, );
4507   PARSE_MD_FIELDS();
4508 #undef VISIT_MD_FIELDS
4509 
4510   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4511   if (checksumkind.Seen && checksum.Seen)
4512     OptChecksum.emplace(checksumkind.Val, checksum.Val);
4513   else if (checksumkind.Seen || checksum.Seen)
4514     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4515 
4516   Optional<MDString *> OptSource;
4517   if (source.Seen)
4518     OptSource = source.Val;
4519   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4520                                     OptChecksum, OptSource));
4521   return false;
4522 }
4523 
4524 /// ParseDICompileUnit:
4525 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4526 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4527 ///                      splitDebugFilename: "abc.debug",
4528 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4529 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd)
4530 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4531   if (!IsDistinct)
4532     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4533 
4534 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4535   REQUIRED(language, DwarfLangField, );                                        \
4536   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4537   OPTIONAL(producer, MDStringField, );                                         \
4538   OPTIONAL(isOptimized, MDBoolField, );                                        \
4539   OPTIONAL(flags, MDStringField, );                                            \
4540   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4541   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4542   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4543   OPTIONAL(enums, MDField, );                                                  \
4544   OPTIONAL(retainedTypes, MDField, );                                          \
4545   OPTIONAL(globals, MDField, );                                                \
4546   OPTIONAL(imports, MDField, );                                                \
4547   OPTIONAL(macros, MDField, );                                                 \
4548   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4549   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
4550   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
4551   OPTIONAL(nameTableKind, NameTableKindField, );                               \
4552   OPTIONAL(debugBaseAddress, MDBoolField, = false);
4553   PARSE_MD_FIELDS();
4554 #undef VISIT_MD_FIELDS
4555 
4556   Result = DICompileUnit::getDistinct(
4557       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4558       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4559       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4560       splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
4561       debugBaseAddress.Val);
4562   return false;
4563 }
4564 
4565 /// ParseDISubprogram:
4566 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4567 ///                     file: !1, line: 7, type: !2, isLocal: false,
4568 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4569 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4570 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4571 ///                     spFlags: 10, isOptimized: false, templateParams: !4,
4572 ///                     declaration: !5, retainedNodes: !6, thrownTypes: !7)
4573 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
4574   auto Loc = Lex.getLoc();
4575 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4576   OPTIONAL(scope, MDField, );                                                  \
4577   OPTIONAL(name, MDStringField, );                                             \
4578   OPTIONAL(linkageName, MDStringField, );                                      \
4579   OPTIONAL(file, MDField, );                                                   \
4580   OPTIONAL(line, LineField, );                                                 \
4581   OPTIONAL(type, MDField, );                                                   \
4582   OPTIONAL(isLocal, MDBoolField, );                                            \
4583   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4584   OPTIONAL(scopeLine, LineField, );                                            \
4585   OPTIONAL(containingType, MDField, );                                         \
4586   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4587   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4588   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4589   OPTIONAL(flags, DIFlagField, );                                              \
4590   OPTIONAL(spFlags, DISPFlagField, );                                          \
4591   OPTIONAL(isOptimized, MDBoolField, );                                        \
4592   OPTIONAL(unit, MDField, );                                                   \
4593   OPTIONAL(templateParams, MDField, );                                         \
4594   OPTIONAL(declaration, MDField, );                                            \
4595   OPTIONAL(retainedNodes, MDField, );                                          \
4596   OPTIONAL(thrownTypes, MDField, );
4597   PARSE_MD_FIELDS();
4598 #undef VISIT_MD_FIELDS
4599 
4600   // An explicit spFlags field takes precedence over individual fields in
4601   // older IR versions.
4602   DISubprogram::DISPFlags SPFlags =
4603       spFlags.Seen ? spFlags.Val
4604                    : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
4605                                              isOptimized.Val, virtuality.Val);
4606   if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
4607     return Lex.Error(
4608         Loc,
4609         "missing 'distinct', required for !DISubprogram that is a Definition");
4610   Result = GET_OR_DISTINCT(
4611       DISubprogram,
4612       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4613        type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
4614        thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
4615        declaration.Val, retainedNodes.Val, thrownTypes.Val));
4616   return false;
4617 }
4618 
4619 /// ParseDILexicalBlock:
4620 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4621 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4622 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4623   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4624   OPTIONAL(file, MDField, );                                                   \
4625   OPTIONAL(line, LineField, );                                                 \
4626   OPTIONAL(column, ColumnField, );
4627   PARSE_MD_FIELDS();
4628 #undef VISIT_MD_FIELDS
4629 
4630   Result = GET_OR_DISTINCT(
4631       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4632   return false;
4633 }
4634 
4635 /// ParseDILexicalBlockFile:
4636 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4637 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4638 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4639   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4640   OPTIONAL(file, MDField, );                                                   \
4641   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4642   PARSE_MD_FIELDS();
4643 #undef VISIT_MD_FIELDS
4644 
4645   Result = GET_OR_DISTINCT(DILexicalBlockFile,
4646                            (Context, scope.Val, file.Val, discriminator.Val));
4647   return false;
4648 }
4649 
4650 /// ParseDINamespace:
4651 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4652 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
4653 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4654   REQUIRED(scope, MDField, );                                                  \
4655   OPTIONAL(name, MDStringField, );                                             \
4656   OPTIONAL(exportSymbols, MDBoolField, );
4657   PARSE_MD_FIELDS();
4658 #undef VISIT_MD_FIELDS
4659 
4660   Result = GET_OR_DISTINCT(DINamespace,
4661                            (Context, scope.Val, name.Val, exportSymbols.Val));
4662   return false;
4663 }
4664 
4665 /// ParseDIMacro:
4666 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
4667 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
4668 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4669   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
4670   OPTIONAL(line, LineField, );                                                 \
4671   REQUIRED(name, MDStringField, );                                             \
4672   OPTIONAL(value, MDStringField, );
4673   PARSE_MD_FIELDS();
4674 #undef VISIT_MD_FIELDS
4675 
4676   Result = GET_OR_DISTINCT(DIMacro,
4677                            (Context, type.Val, line.Val, name.Val, value.Val));
4678   return false;
4679 }
4680 
4681 /// ParseDIMacroFile:
4682 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4683 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4684 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4685   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
4686   OPTIONAL(line, LineField, );                                                 \
4687   REQUIRED(file, MDField, );                                                   \
4688   OPTIONAL(nodes, MDField, );
4689   PARSE_MD_FIELDS();
4690 #undef VISIT_MD_FIELDS
4691 
4692   Result = GET_OR_DISTINCT(DIMacroFile,
4693                            (Context, type.Val, line.Val, file.Val, nodes.Val));
4694   return false;
4695 }
4696 
4697 /// ParseDIModule:
4698 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
4699 ///                 includePath: "/usr/include", isysroot: "/")
4700 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4701 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4702   REQUIRED(scope, MDField, );                                                  \
4703   REQUIRED(name, MDStringField, );                                             \
4704   OPTIONAL(configMacros, MDStringField, );                                     \
4705   OPTIONAL(includePath, MDStringField, );                                      \
4706   OPTIONAL(isysroot, MDStringField, );
4707   PARSE_MD_FIELDS();
4708 #undef VISIT_MD_FIELDS
4709 
4710   Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val,
4711                            configMacros.Val, includePath.Val, isysroot.Val));
4712   return false;
4713 }
4714 
4715 /// ParseDITemplateTypeParameter:
4716 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1)
4717 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4718 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4719   OPTIONAL(name, MDStringField, );                                             \
4720   REQUIRED(type, MDField, );
4721   PARSE_MD_FIELDS();
4722 #undef VISIT_MD_FIELDS
4723 
4724   Result =
4725       GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val));
4726   return false;
4727 }
4728 
4729 /// ParseDITemplateValueParameter:
4730 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4731 ///                                 name: "V", type: !1, value: i32 7)
4732 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4733 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4734   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
4735   OPTIONAL(name, MDStringField, );                                             \
4736   OPTIONAL(type, MDField, );                                                   \
4737   REQUIRED(value, MDField, );
4738   PARSE_MD_FIELDS();
4739 #undef VISIT_MD_FIELDS
4740 
4741   Result = GET_OR_DISTINCT(DITemplateValueParameter,
4742                            (Context, tag.Val, name.Val, type.Val, value.Val));
4743   return false;
4744 }
4745 
4746 /// ParseDIGlobalVariable:
4747 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4748 ///                         file: !1, line: 7, type: !2, isLocal: false,
4749 ///                         isDefinition: true, templateParams: !3,
4750 ///                         declaration: !4, align: 8)
4751 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4752 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4753   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
4754   OPTIONAL(scope, MDField, );                                                  \
4755   OPTIONAL(linkageName, MDStringField, );                                      \
4756   OPTIONAL(file, MDField, );                                                   \
4757   OPTIONAL(line, LineField, );                                                 \
4758   OPTIONAL(type, MDField, );                                                   \
4759   OPTIONAL(isLocal, MDBoolField, );                                            \
4760   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4761   OPTIONAL(templateParams, MDField, );                                         \
4762   OPTIONAL(declaration, MDField, );                                            \
4763   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4764   PARSE_MD_FIELDS();
4765 #undef VISIT_MD_FIELDS
4766 
4767   Result =
4768       GET_OR_DISTINCT(DIGlobalVariable,
4769                       (Context, scope.Val, name.Val, linkageName.Val, file.Val,
4770                        line.Val, type.Val, isLocal.Val, isDefinition.Val,
4771                        declaration.Val, templateParams.Val, align.Val));
4772   return false;
4773 }
4774 
4775 /// ParseDILocalVariable:
4776 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4777 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4778 ///                        align: 8)
4779 ///   ::= !DILocalVariable(scope: !0, name: "foo",
4780 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4781 ///                        align: 8)
4782 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4783 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4784   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4785   OPTIONAL(name, MDStringField, );                                             \
4786   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
4787   OPTIONAL(file, MDField, );                                                   \
4788   OPTIONAL(line, LineField, );                                                 \
4789   OPTIONAL(type, MDField, );                                                   \
4790   OPTIONAL(flags, DIFlagField, );                                              \
4791   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4792   PARSE_MD_FIELDS();
4793 #undef VISIT_MD_FIELDS
4794 
4795   Result = GET_OR_DISTINCT(DILocalVariable,
4796                            (Context, scope.Val, name.Val, file.Val, line.Val,
4797                             type.Val, arg.Val, flags.Val, align.Val));
4798   return false;
4799 }
4800 
4801 /// ParseDILabel:
4802 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
4803 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) {
4804 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4805   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4806   REQUIRED(name, MDStringField, );                                             \
4807   REQUIRED(file, MDField, );                                                   \
4808   REQUIRED(line, LineField, );
4809   PARSE_MD_FIELDS();
4810 #undef VISIT_MD_FIELDS
4811 
4812   Result = GET_OR_DISTINCT(DILabel,
4813                            (Context, scope.Val, name.Val, file.Val, line.Val));
4814   return false;
4815 }
4816 
4817 /// ParseDIExpression:
4818 ///   ::= !DIExpression(0, 7, -1)
4819 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
4820   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4821   Lex.Lex();
4822 
4823   if (ParseToken(lltok::lparen, "expected '(' here"))
4824     return true;
4825 
4826   SmallVector<uint64_t, 8> Elements;
4827   if (Lex.getKind() != lltok::rparen)
4828     do {
4829       if (Lex.getKind() == lltok::DwarfOp) {
4830         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
4831           Lex.Lex();
4832           Elements.push_back(Op);
4833           continue;
4834         }
4835         return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
4836       }
4837 
4838       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4839         return TokError("expected unsigned integer");
4840 
4841       auto &U = Lex.getAPSIntVal();
4842       if (U.ugt(UINT64_MAX))
4843         return TokError("element too large, limit is " + Twine(UINT64_MAX));
4844       Elements.push_back(U.getZExtValue());
4845       Lex.Lex();
4846     } while (EatIfPresent(lltok::comma));
4847 
4848   if (ParseToken(lltok::rparen, "expected ')' here"))
4849     return true;
4850 
4851   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
4852   return false;
4853 }
4854 
4855 /// ParseDIGlobalVariableExpression:
4856 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
4857 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result,
4858                                                bool IsDistinct) {
4859 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4860   REQUIRED(var, MDField, );                                                    \
4861   REQUIRED(expr, MDField, );
4862   PARSE_MD_FIELDS();
4863 #undef VISIT_MD_FIELDS
4864 
4865   Result =
4866       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
4867   return false;
4868 }
4869 
4870 /// ParseDIObjCProperty:
4871 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
4872 ///                       getter: "getFoo", attributes: 7, type: !2)
4873 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
4874 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4875   OPTIONAL(name, MDStringField, );                                             \
4876   OPTIONAL(file, MDField, );                                                   \
4877   OPTIONAL(line, LineField, );                                                 \
4878   OPTIONAL(setter, MDStringField, );                                           \
4879   OPTIONAL(getter, MDStringField, );                                           \
4880   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
4881   OPTIONAL(type, MDField, );
4882   PARSE_MD_FIELDS();
4883 #undef VISIT_MD_FIELDS
4884 
4885   Result = GET_OR_DISTINCT(DIObjCProperty,
4886                            (Context, name.Val, file.Val, line.Val, setter.Val,
4887                             getter.Val, attributes.Val, type.Val));
4888   return false;
4889 }
4890 
4891 /// ParseDIImportedEntity:
4892 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
4893 ///                         line: 7, name: "foo")
4894 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
4895 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4896   REQUIRED(tag, DwarfTagField, );                                              \
4897   REQUIRED(scope, MDField, );                                                  \
4898   OPTIONAL(entity, MDField, );                                                 \
4899   OPTIONAL(file, MDField, );                                                   \
4900   OPTIONAL(line, LineField, );                                                 \
4901   OPTIONAL(name, MDStringField, );
4902   PARSE_MD_FIELDS();
4903 #undef VISIT_MD_FIELDS
4904 
4905   Result = GET_OR_DISTINCT(
4906       DIImportedEntity,
4907       (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
4908   return false;
4909 }
4910 
4911 #undef PARSE_MD_FIELD
4912 #undef NOP_FIELD
4913 #undef REQUIRE_FIELD
4914 #undef DECLARE_FIELD
4915 
4916 /// ParseMetadataAsValue
4917 ///  ::= metadata i32 %local
4918 ///  ::= metadata i32 @global
4919 ///  ::= metadata i32 7
4920 ///  ::= metadata !0
4921 ///  ::= metadata !{...}
4922 ///  ::= metadata !"string"
4923 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
4924   // Note: the type 'metadata' has already been parsed.
4925   Metadata *MD;
4926   if (ParseMetadata(MD, &PFS))
4927     return true;
4928 
4929   V = MetadataAsValue::get(Context, MD);
4930   return false;
4931 }
4932 
4933 /// ParseValueAsMetadata
4934 ///  ::= i32 %local
4935 ///  ::= i32 @global
4936 ///  ::= i32 7
4937 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
4938                                     PerFunctionState *PFS) {
4939   Type *Ty;
4940   LocTy Loc;
4941   if (ParseType(Ty, TypeMsg, Loc))
4942     return true;
4943   if (Ty->isMetadataTy())
4944     return Error(Loc, "invalid metadata-value-metadata roundtrip");
4945 
4946   Value *V;
4947   if (ParseValue(Ty, V, PFS))
4948     return true;
4949 
4950   MD = ValueAsMetadata::get(V);
4951   return false;
4952 }
4953 
4954 /// ParseMetadata
4955 ///  ::= i32 %local
4956 ///  ::= i32 @global
4957 ///  ::= i32 7
4958 ///  ::= !42
4959 ///  ::= !{...}
4960 ///  ::= !"string"
4961 ///  ::= !DILocation(...)
4962 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
4963   if (Lex.getKind() == lltok::MetadataVar) {
4964     MDNode *N;
4965     if (ParseSpecializedMDNode(N))
4966       return true;
4967     MD = N;
4968     return false;
4969   }
4970 
4971   // ValueAsMetadata:
4972   // <type> <value>
4973   if (Lex.getKind() != lltok::exclaim)
4974     return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
4975 
4976   // '!'.
4977   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
4978   Lex.Lex();
4979 
4980   // MDString:
4981   //   ::= '!' STRINGCONSTANT
4982   if (Lex.getKind() == lltok::StringConstant) {
4983     MDString *S;
4984     if (ParseMDString(S))
4985       return true;
4986     MD = S;
4987     return false;
4988   }
4989 
4990   // MDNode:
4991   // !{ ... }
4992   // !7
4993   MDNode *N;
4994   if (ParseMDNodeTail(N))
4995     return true;
4996   MD = N;
4997   return false;
4998 }
4999 
5000 //===----------------------------------------------------------------------===//
5001 // Function Parsing.
5002 //===----------------------------------------------------------------------===//
5003 
5004 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5005                                    PerFunctionState *PFS, bool IsCall) {
5006   if (Ty->isFunctionTy())
5007     return Error(ID.Loc, "functions are not values, refer to them as pointers");
5008 
5009   switch (ID.Kind) {
5010   case ValID::t_LocalID:
5011     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5012     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5013     return V == nullptr;
5014   case ValID::t_LocalName:
5015     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5016     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall);
5017     return V == nullptr;
5018   case ValID::t_InlineAsm: {
5019     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5020       return Error(ID.Loc, "invalid type for inline asm constraint string");
5021     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
5022                        (ID.UIntVal >> 1) & 1,
5023                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
5024     return false;
5025   }
5026   case ValID::t_GlobalName:
5027     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall);
5028     return V == nullptr;
5029   case ValID::t_GlobalID:
5030     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5031     return V == nullptr;
5032   case ValID::t_APSInt:
5033     if (!Ty->isIntegerTy())
5034       return Error(ID.Loc, "integer constant must have integer type");
5035     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5036     V = ConstantInt::get(Context, ID.APSIntVal);
5037     return false;
5038   case ValID::t_APFloat:
5039     if (!Ty->isFloatingPointTy() ||
5040         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5041       return Error(ID.Loc, "floating point constant invalid for type");
5042 
5043     // The lexer has no type info, so builds all half, float, and double FP
5044     // constants as double.  Fix this here.  Long double does not need this.
5045     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5046       bool Ignored;
5047       if (Ty->isHalfTy())
5048         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5049                               &Ignored);
5050       else if (Ty->isFloatTy())
5051         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5052                               &Ignored);
5053     }
5054     V = ConstantFP::get(Context, ID.APFloatVal);
5055 
5056     if (V->getType() != Ty)
5057       return Error(ID.Loc, "floating point constant does not have type '" +
5058                    getTypeString(Ty) + "'");
5059 
5060     return false;
5061   case ValID::t_Null:
5062     if (!Ty->isPointerTy())
5063       return Error(ID.Loc, "null must be a pointer type");
5064     V = ConstantPointerNull::get(cast<PointerType>(Ty));
5065     return false;
5066   case ValID::t_Undef:
5067     // FIXME: LabelTy should not be a first-class type.
5068     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5069       return Error(ID.Loc, "invalid type for undef constant");
5070     V = UndefValue::get(Ty);
5071     return false;
5072   case ValID::t_EmptyArray:
5073     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5074       return Error(ID.Loc, "invalid empty array initializer");
5075     V = UndefValue::get(Ty);
5076     return false;
5077   case ValID::t_Zero:
5078     // FIXME: LabelTy should not be a first-class type.
5079     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5080       return Error(ID.Loc, "invalid type for null constant");
5081     V = Constant::getNullValue(Ty);
5082     return false;
5083   case ValID::t_None:
5084     if (!Ty->isTokenTy())
5085       return Error(ID.Loc, "invalid type for none constant");
5086     V = Constant::getNullValue(Ty);
5087     return false;
5088   case ValID::t_Constant:
5089     if (ID.ConstantVal->getType() != Ty)
5090       return Error(ID.Loc, "constant expression type mismatch");
5091 
5092     V = ID.ConstantVal;
5093     return false;
5094   case ValID::t_ConstantStruct:
5095   case ValID::t_PackedConstantStruct:
5096     if (StructType *ST = dyn_cast<StructType>(Ty)) {
5097       if (ST->getNumElements() != ID.UIntVal)
5098         return Error(ID.Loc,
5099                      "initializer with struct type has wrong # elements");
5100       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5101         return Error(ID.Loc, "packed'ness of initializer and type don't match");
5102 
5103       // Verify that the elements are compatible with the structtype.
5104       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5105         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5106           return Error(ID.Loc, "element " + Twine(i) +
5107                     " of struct initializer doesn't match struct element type");
5108 
5109       V = ConstantStruct::get(
5110           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5111     } else
5112       return Error(ID.Loc, "constant expression type mismatch");
5113     return false;
5114   }
5115   llvm_unreachable("Invalid ValID");
5116 }
5117 
5118 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5119   C = nullptr;
5120   ValID ID;
5121   auto Loc = Lex.getLoc();
5122   if (ParseValID(ID, /*PFS=*/nullptr))
5123     return true;
5124   switch (ID.Kind) {
5125   case ValID::t_APSInt:
5126   case ValID::t_APFloat:
5127   case ValID::t_Undef:
5128   case ValID::t_Constant:
5129   case ValID::t_ConstantStruct:
5130   case ValID::t_PackedConstantStruct: {
5131     Value *V;
5132     if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
5133       return true;
5134     assert(isa<Constant>(V) && "Expected a constant value");
5135     C = cast<Constant>(V);
5136     return false;
5137   }
5138   case ValID::t_Null:
5139     C = Constant::getNullValue(Ty);
5140     return false;
5141   default:
5142     return Error(Loc, "expected a constant value");
5143   }
5144 }
5145 
5146 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5147   V = nullptr;
5148   ValID ID;
5149   return ParseValID(ID, PFS) ||
5150          ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
5151 }
5152 
5153 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5154   Type *Ty = nullptr;
5155   return ParseType(Ty) ||
5156          ParseValue(Ty, V, PFS);
5157 }
5158 
5159 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5160                                       PerFunctionState &PFS) {
5161   Value *V;
5162   Loc = Lex.getLoc();
5163   if (ParseTypeAndValue(V, PFS)) return true;
5164   if (!isa<BasicBlock>(V))
5165     return Error(Loc, "expected a basic block");
5166   BB = cast<BasicBlock>(V);
5167   return false;
5168 }
5169 
5170 /// FunctionHeader
5171 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5172 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5173 ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5174 ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5175 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
5176   // Parse the linkage.
5177   LocTy LinkageLoc = Lex.getLoc();
5178   unsigned Linkage;
5179   unsigned Visibility;
5180   unsigned DLLStorageClass;
5181   bool DSOLocal;
5182   AttrBuilder RetAttrs;
5183   unsigned CC;
5184   bool HasLinkage;
5185   Type *RetType = nullptr;
5186   LocTy RetTypeLoc = Lex.getLoc();
5187   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5188                            DSOLocal) ||
5189       ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5190       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
5191     return true;
5192 
5193   // Verify that the linkage is ok.
5194   switch ((GlobalValue::LinkageTypes)Linkage) {
5195   case GlobalValue::ExternalLinkage:
5196     break; // always ok.
5197   case GlobalValue::ExternalWeakLinkage:
5198     if (isDefine)
5199       return Error(LinkageLoc, "invalid linkage for function definition");
5200     break;
5201   case GlobalValue::PrivateLinkage:
5202   case GlobalValue::InternalLinkage:
5203   case GlobalValue::AvailableExternallyLinkage:
5204   case GlobalValue::LinkOnceAnyLinkage:
5205   case GlobalValue::LinkOnceODRLinkage:
5206   case GlobalValue::WeakAnyLinkage:
5207   case GlobalValue::WeakODRLinkage:
5208     if (!isDefine)
5209       return Error(LinkageLoc, "invalid linkage for function declaration");
5210     break;
5211   case GlobalValue::AppendingLinkage:
5212   case GlobalValue::CommonLinkage:
5213     return Error(LinkageLoc, "invalid function linkage type");
5214   }
5215 
5216   if (!isValidVisibilityForLinkage(Visibility, Linkage))
5217     return Error(LinkageLoc,
5218                  "symbol with local linkage must have default visibility");
5219 
5220   if (!FunctionType::isValidReturnType(RetType))
5221     return Error(RetTypeLoc, "invalid function return type");
5222 
5223   LocTy NameLoc = Lex.getLoc();
5224 
5225   std::string FunctionName;
5226   if (Lex.getKind() == lltok::GlobalVar) {
5227     FunctionName = Lex.getStrVal();
5228   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
5229     unsigned NameID = Lex.getUIntVal();
5230 
5231     if (NameID != NumberedVals.size())
5232       return TokError("function expected to be numbered '%" +
5233                       Twine(NumberedVals.size()) + "'");
5234   } else {
5235     return TokError("expected function name");
5236   }
5237 
5238   Lex.Lex();
5239 
5240   if (Lex.getKind() != lltok::lparen)
5241     return TokError("expected '(' in function argument list");
5242 
5243   SmallVector<ArgInfo, 8> ArgList;
5244   bool isVarArg;
5245   AttrBuilder FuncAttrs;
5246   std::vector<unsigned> FwdRefAttrGrps;
5247   LocTy BuiltinLoc;
5248   std::string Section;
5249   unsigned Alignment;
5250   std::string GC;
5251   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5252   unsigned AddrSpace = 0;
5253   Constant *Prefix = nullptr;
5254   Constant *Prologue = nullptr;
5255   Constant *PersonalityFn = nullptr;
5256   Comdat *C;
5257 
5258   if (ParseArgumentList(ArgList, isVarArg) ||
5259       ParseOptionalUnnamedAddr(UnnamedAddr) ||
5260       ParseOptionalProgramAddrSpace(AddrSpace) ||
5261       ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5262                                  BuiltinLoc) ||
5263       (EatIfPresent(lltok::kw_section) &&
5264        ParseStringConstant(Section)) ||
5265       parseOptionalComdat(FunctionName, C) ||
5266       ParseOptionalAlignment(Alignment) ||
5267       (EatIfPresent(lltok::kw_gc) &&
5268        ParseStringConstant(GC)) ||
5269       (EatIfPresent(lltok::kw_prefix) &&
5270        ParseGlobalTypeAndValue(Prefix)) ||
5271       (EatIfPresent(lltok::kw_prologue) &&
5272        ParseGlobalTypeAndValue(Prologue)) ||
5273       (EatIfPresent(lltok::kw_personality) &&
5274        ParseGlobalTypeAndValue(PersonalityFn)))
5275     return true;
5276 
5277   if (FuncAttrs.contains(Attribute::Builtin))
5278     return Error(BuiltinLoc, "'builtin' attribute not valid on function");
5279 
5280   // If the alignment was parsed as an attribute, move to the alignment field.
5281   if (FuncAttrs.hasAlignmentAttr()) {
5282     Alignment = FuncAttrs.getAlignment();
5283     FuncAttrs.removeAttribute(Attribute::Alignment);
5284   }
5285 
5286   // Okay, if we got here, the function is syntactically valid.  Convert types
5287   // and do semantic checks.
5288   std::vector<Type*> ParamTypeList;
5289   SmallVector<AttributeSet, 8> Attrs;
5290 
5291   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5292     ParamTypeList.push_back(ArgList[i].Ty);
5293     Attrs.push_back(ArgList[i].Attrs);
5294   }
5295 
5296   AttributeList PAL =
5297       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5298                          AttributeSet::get(Context, RetAttrs), Attrs);
5299 
5300   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
5301     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
5302 
5303   FunctionType *FT =
5304     FunctionType::get(RetType, ParamTypeList, isVarArg);
5305   PointerType *PFT = PointerType::get(FT, AddrSpace);
5306 
5307   Fn = nullptr;
5308   if (!FunctionName.empty()) {
5309     // If this was a definition of a forward reference, remove the definition
5310     // from the forward reference table and fill in the forward ref.
5311     auto FRVI = ForwardRefVals.find(FunctionName);
5312     if (FRVI != ForwardRefVals.end()) {
5313       Fn = M->getFunction(FunctionName);
5314       if (!Fn)
5315         return Error(FRVI->second.second, "invalid forward reference to "
5316                      "function as global value!");
5317       if (Fn->getType() != PFT)
5318         return Error(FRVI->second.second, "invalid forward reference to "
5319                      "function '" + FunctionName + "' with wrong type: "
5320                      "expected '" + getTypeString(PFT) + "' but was '" +
5321                      getTypeString(Fn->getType()) + "'");
5322       ForwardRefVals.erase(FRVI);
5323     } else if ((Fn = M->getFunction(FunctionName))) {
5324       // Reject redefinitions.
5325       return Error(NameLoc, "invalid redefinition of function '" +
5326                    FunctionName + "'");
5327     } else if (M->getNamedValue(FunctionName)) {
5328       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5329     }
5330 
5331   } else {
5332     // If this is a definition of a forward referenced function, make sure the
5333     // types agree.
5334     auto I = ForwardRefValIDs.find(NumberedVals.size());
5335     if (I != ForwardRefValIDs.end()) {
5336       Fn = cast<Function>(I->second.first);
5337       if (Fn->getType() != PFT)
5338         return Error(NameLoc, "type of definition and forward reference of '@" +
5339                      Twine(NumberedVals.size()) + "' disagree: "
5340                      "expected '" + getTypeString(PFT) + "' but was '" +
5341                      getTypeString(Fn->getType()) + "'");
5342       ForwardRefValIDs.erase(I);
5343     }
5344   }
5345 
5346   if (!Fn)
5347     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5348                           FunctionName, M);
5349   else // Move the forward-reference to the correct spot in the module.
5350     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
5351 
5352   assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5353 
5354   if (FunctionName.empty())
5355     NumberedVals.push_back(Fn);
5356 
5357   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5358   maybeSetDSOLocal(DSOLocal, *Fn);
5359   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5360   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5361   Fn->setCallingConv(CC);
5362   Fn->setAttributes(PAL);
5363   Fn->setUnnamedAddr(UnnamedAddr);
5364   Fn->setAlignment(Alignment);
5365   Fn->setSection(Section);
5366   Fn->setComdat(C);
5367   Fn->setPersonalityFn(PersonalityFn);
5368   if (!GC.empty()) Fn->setGC(GC);
5369   Fn->setPrefixData(Prefix);
5370   Fn->setPrologueData(Prologue);
5371   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5372 
5373   // Add all of the arguments we parsed to the function.
5374   Function::arg_iterator ArgIt = Fn->arg_begin();
5375   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5376     // If the argument has a name, insert it into the argument symbol table.
5377     if (ArgList[i].Name.empty()) continue;
5378 
5379     // Set the name, if it conflicted, it will be auto-renamed.
5380     ArgIt->setName(ArgList[i].Name);
5381 
5382     if (ArgIt->getName() != ArgList[i].Name)
5383       return Error(ArgList[i].Loc, "redefinition of argument '%" +
5384                    ArgList[i].Name + "'");
5385   }
5386 
5387   if (isDefine)
5388     return false;
5389 
5390   // Check the declaration has no block address forward references.
5391   ValID ID;
5392   if (FunctionName.empty()) {
5393     ID.Kind = ValID::t_GlobalID;
5394     ID.UIntVal = NumberedVals.size() - 1;
5395   } else {
5396     ID.Kind = ValID::t_GlobalName;
5397     ID.StrVal = FunctionName;
5398   }
5399   auto Blocks = ForwardRefBlockAddresses.find(ID);
5400   if (Blocks != ForwardRefBlockAddresses.end())
5401     return Error(Blocks->first.Loc,
5402                  "cannot take blockaddress inside a declaration");
5403   return false;
5404 }
5405 
5406 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5407   ValID ID;
5408   if (FunctionNumber == -1) {
5409     ID.Kind = ValID::t_GlobalName;
5410     ID.StrVal = F.getName();
5411   } else {
5412     ID.Kind = ValID::t_GlobalID;
5413     ID.UIntVal = FunctionNumber;
5414   }
5415 
5416   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5417   if (Blocks == P.ForwardRefBlockAddresses.end())
5418     return false;
5419 
5420   for (const auto &I : Blocks->second) {
5421     const ValID &BBID = I.first;
5422     GlobalValue *GV = I.second;
5423 
5424     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5425            "Expected local id or name");
5426     BasicBlock *BB;
5427     if (BBID.Kind == ValID::t_LocalName)
5428       BB = GetBB(BBID.StrVal, BBID.Loc);
5429     else
5430       BB = GetBB(BBID.UIntVal, BBID.Loc);
5431     if (!BB)
5432       return P.Error(BBID.Loc, "referenced value is not a basic block");
5433 
5434     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
5435     GV->eraseFromParent();
5436   }
5437 
5438   P.ForwardRefBlockAddresses.erase(Blocks);
5439   return false;
5440 }
5441 
5442 /// ParseFunctionBody
5443 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
5444 bool LLParser::ParseFunctionBody(Function &Fn) {
5445   if (Lex.getKind() != lltok::lbrace)
5446     return TokError("expected '{' in function body");
5447   Lex.Lex();  // eat the {.
5448 
5449   int FunctionNumber = -1;
5450   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5451 
5452   PerFunctionState PFS(*this, Fn, FunctionNumber);
5453 
5454   // Resolve block addresses and allow basic blocks to be forward-declared
5455   // within this function.
5456   if (PFS.resolveForwardRefBlockAddresses())
5457     return true;
5458   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5459 
5460   // We need at least one basic block.
5461   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
5462     return TokError("function body requires at least one basic block");
5463 
5464   while (Lex.getKind() != lltok::rbrace &&
5465          Lex.getKind() != lltok::kw_uselistorder)
5466     if (ParseBasicBlock(PFS)) return true;
5467 
5468   while (Lex.getKind() != lltok::rbrace)
5469     if (ParseUseListOrder(&PFS))
5470       return true;
5471 
5472   // Eat the }.
5473   Lex.Lex();
5474 
5475   // Verify function is ok.
5476   return PFS.FinishFunction();
5477 }
5478 
5479 /// ParseBasicBlock
5480 ///   ::= LabelStr? Instruction*
5481 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
5482   // If this basic block starts out with a name, remember it.
5483   std::string Name;
5484   LocTy NameLoc = Lex.getLoc();
5485   if (Lex.getKind() == lltok::LabelStr) {
5486     Name = Lex.getStrVal();
5487     Lex.Lex();
5488   }
5489 
5490   BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
5491   if (!BB)
5492     return Error(NameLoc,
5493                  "unable to create block named '" + Name + "'");
5494 
5495   std::string NameStr;
5496 
5497   // Parse the instructions in this block until we get a terminator.
5498   Instruction *Inst;
5499   do {
5500     // This instruction may have three possibilities for a name: a) none
5501     // specified, b) name specified "%foo =", c) number specified: "%4 =".
5502     LocTy NameLoc = Lex.getLoc();
5503     int NameID = -1;
5504     NameStr = "";
5505 
5506     if (Lex.getKind() == lltok::LocalVarID) {
5507       NameID = Lex.getUIntVal();
5508       Lex.Lex();
5509       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
5510         return true;
5511     } else if (Lex.getKind() == lltok::LocalVar) {
5512       NameStr = Lex.getStrVal();
5513       Lex.Lex();
5514       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
5515         return true;
5516     }
5517 
5518     switch (ParseInstruction(Inst, BB, PFS)) {
5519     default: llvm_unreachable("Unknown ParseInstruction result!");
5520     case InstError: return true;
5521     case InstNormal:
5522       BB->getInstList().push_back(Inst);
5523 
5524       // With a normal result, we check to see if the instruction is followed by
5525       // a comma and metadata.
5526       if (EatIfPresent(lltok::comma))
5527         if (ParseInstructionMetadata(*Inst))
5528           return true;
5529       break;
5530     case InstExtraComma:
5531       BB->getInstList().push_back(Inst);
5532 
5533       // If the instruction parser ate an extra comma at the end of it, it
5534       // *must* be followed by metadata.
5535       if (ParseInstructionMetadata(*Inst))
5536         return true;
5537       break;
5538     }
5539 
5540     // Set the name on the instruction.
5541     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
5542   } while (!Inst->isTerminator());
5543 
5544   return false;
5545 }
5546 
5547 //===----------------------------------------------------------------------===//
5548 // Instruction Parsing.
5549 //===----------------------------------------------------------------------===//
5550 
5551 /// ParseInstruction - Parse one of the many different instructions.
5552 ///
5553 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
5554                                PerFunctionState &PFS) {
5555   lltok::Kind Token = Lex.getKind();
5556   if (Token == lltok::Eof)
5557     return TokError("found end of file when expecting more instructions");
5558   LocTy Loc = Lex.getLoc();
5559   unsigned KeywordVal = Lex.getUIntVal();
5560   Lex.Lex();  // Eat the keyword.
5561 
5562   switch (Token) {
5563   default:                    return Error(Loc, "expected instruction opcode");
5564   // Terminator Instructions.
5565   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5566   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
5567   case lltok::kw_br:          return ParseBr(Inst, PFS);
5568   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
5569   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
5570   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
5571   case lltok::kw_resume:      return ParseResume(Inst, PFS);
5572   case lltok::kw_cleanupret:  return ParseCleanupRet(Inst, PFS);
5573   case lltok::kw_catchret:    return ParseCatchRet(Inst, PFS);
5574   case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
5575   case lltok::kw_catchpad:    return ParseCatchPad(Inst, PFS);
5576   case lltok::kw_cleanuppad:  return ParseCleanupPad(Inst, PFS);
5577   case lltok::kw_callbr:      return ParseCallBr(Inst, PFS);
5578   // Unary Operators.
5579   case lltok::kw_fneg: {
5580     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5581     int Res = ParseUnaryOp(Inst, PFS, KeywordVal, 2);
5582     if (Res != 0)
5583       return Res;
5584     if (FMF.any())
5585       Inst->setFastMathFlags(FMF);
5586     return false;
5587   }
5588   // Binary Operators.
5589   case lltok::kw_add:
5590   case lltok::kw_sub:
5591   case lltok::kw_mul:
5592   case lltok::kw_shl: {
5593     bool NUW = EatIfPresent(lltok::kw_nuw);
5594     bool NSW = EatIfPresent(lltok::kw_nsw);
5595     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5596 
5597     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
5598 
5599     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5600     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5601     return false;
5602   }
5603   case lltok::kw_fadd:
5604   case lltok::kw_fsub:
5605   case lltok::kw_fmul:
5606   case lltok::kw_fdiv:
5607   case lltok::kw_frem: {
5608     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5609     int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2);
5610     if (Res != 0)
5611       return Res;
5612     if (FMF.any())
5613       Inst->setFastMathFlags(FMF);
5614     return 0;
5615   }
5616 
5617   case lltok::kw_sdiv:
5618   case lltok::kw_udiv:
5619   case lltok::kw_lshr:
5620   case lltok::kw_ashr: {
5621     bool Exact = EatIfPresent(lltok::kw_exact);
5622 
5623     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
5624     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5625     return false;
5626   }
5627 
5628   case lltok::kw_urem:
5629   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
5630   case lltok::kw_and:
5631   case lltok::kw_or:
5632   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
5633   case lltok::kw_icmp:   return ParseCompare(Inst, PFS, KeywordVal);
5634   case lltok::kw_fcmp: {
5635     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5636     int Res = ParseCompare(Inst, PFS, KeywordVal);
5637     if (Res != 0)
5638       return Res;
5639     if (FMF.any())
5640       Inst->setFastMathFlags(FMF);
5641     return 0;
5642   }
5643 
5644   // Casts.
5645   case lltok::kw_trunc:
5646   case lltok::kw_zext:
5647   case lltok::kw_sext:
5648   case lltok::kw_fptrunc:
5649   case lltok::kw_fpext:
5650   case lltok::kw_bitcast:
5651   case lltok::kw_addrspacecast:
5652   case lltok::kw_uitofp:
5653   case lltok::kw_sitofp:
5654   case lltok::kw_fptoui:
5655   case lltok::kw_fptosi:
5656   case lltok::kw_inttoptr:
5657   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
5658   // Other.
5659   case lltok::kw_select:         return ParseSelect(Inst, PFS);
5660   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
5661   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
5662   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
5663   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
5664   case lltok::kw_phi:            return ParsePHI(Inst, PFS);
5665   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
5666   // Call.
5667   case lltok::kw_call:     return ParseCall(Inst, PFS, CallInst::TCK_None);
5668   case lltok::kw_tail:     return ParseCall(Inst, PFS, CallInst::TCK_Tail);
5669   case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
5670   case lltok::kw_notail:   return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
5671   // Memory.
5672   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
5673   case lltok::kw_load:           return ParseLoad(Inst, PFS);
5674   case lltok::kw_store:          return ParseStore(Inst, PFS);
5675   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
5676   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
5677   case lltok::kw_fence:          return ParseFence(Inst, PFS);
5678   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
5679   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
5680   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
5681   }
5682 }
5683 
5684 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
5685 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
5686   if (Opc == Instruction::FCmp) {
5687     switch (Lex.getKind()) {
5688     default: return TokError("expected fcmp predicate (e.g. 'oeq')");
5689     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
5690     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
5691     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
5692     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
5693     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
5694     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
5695     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
5696     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
5697     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
5698     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
5699     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
5700     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
5701     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
5702     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
5703     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
5704     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
5705     }
5706   } else {
5707     switch (Lex.getKind()) {
5708     default: return TokError("expected icmp predicate (e.g. 'eq')");
5709     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
5710     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
5711     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
5712     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
5713     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
5714     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
5715     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
5716     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
5717     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
5718     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
5719     }
5720   }
5721   Lex.Lex();
5722   return false;
5723 }
5724 
5725 //===----------------------------------------------------------------------===//
5726 // Terminator Instructions.
5727 //===----------------------------------------------------------------------===//
5728 
5729 /// ParseRet - Parse a return instruction.
5730 ///   ::= 'ret' void (',' !dbg, !1)*
5731 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
5732 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
5733                         PerFunctionState &PFS) {
5734   SMLoc TypeLoc = Lex.getLoc();
5735   Type *Ty = nullptr;
5736   if (ParseType(Ty, true /*void allowed*/)) return true;
5737 
5738   Type *ResType = PFS.getFunction().getReturnType();
5739 
5740   if (Ty->isVoidTy()) {
5741     if (!ResType->isVoidTy())
5742       return Error(TypeLoc, "value doesn't match function result type '" +
5743                    getTypeString(ResType) + "'");
5744 
5745     Inst = ReturnInst::Create(Context);
5746     return false;
5747   }
5748 
5749   Value *RV;
5750   if (ParseValue(Ty, RV, PFS)) return true;
5751 
5752   if (ResType != RV->getType())
5753     return Error(TypeLoc, "value doesn't match function result type '" +
5754                  getTypeString(ResType) + "'");
5755 
5756   Inst = ReturnInst::Create(Context, RV);
5757   return false;
5758 }
5759 
5760 /// ParseBr
5761 ///   ::= 'br' TypeAndValue
5762 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5763 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
5764   LocTy Loc, Loc2;
5765   Value *Op0;
5766   BasicBlock *Op1, *Op2;
5767   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
5768 
5769   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
5770     Inst = BranchInst::Create(BB);
5771     return false;
5772   }
5773 
5774   if (Op0->getType() != Type::getInt1Ty(Context))
5775     return Error(Loc, "branch condition must have 'i1' type");
5776 
5777   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
5778       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
5779       ParseToken(lltok::comma, "expected ',' after true destination") ||
5780       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
5781     return true;
5782 
5783   Inst = BranchInst::Create(Op1, Op2, Op0);
5784   return false;
5785 }
5786 
5787 /// ParseSwitch
5788 ///  Instruction
5789 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
5790 ///  JumpTable
5791 ///    ::= (TypeAndValue ',' TypeAndValue)*
5792 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5793   LocTy CondLoc, BBLoc;
5794   Value *Cond;
5795   BasicBlock *DefaultBB;
5796   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
5797       ParseToken(lltok::comma, "expected ',' after switch condition") ||
5798       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
5799       ParseToken(lltok::lsquare, "expected '[' with switch table"))
5800     return true;
5801 
5802   if (!Cond->getType()->isIntegerTy())
5803     return Error(CondLoc, "switch condition must have integer type");
5804 
5805   // Parse the jump table pairs.
5806   SmallPtrSet<Value*, 32> SeenCases;
5807   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
5808   while (Lex.getKind() != lltok::rsquare) {
5809     Value *Constant;
5810     BasicBlock *DestBB;
5811 
5812     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
5813         ParseToken(lltok::comma, "expected ',' after case value") ||
5814         ParseTypeAndBasicBlock(DestBB, PFS))
5815       return true;
5816 
5817     if (!SeenCases.insert(Constant).second)
5818       return Error(CondLoc, "duplicate case value in switch");
5819     if (!isa<ConstantInt>(Constant))
5820       return Error(CondLoc, "case value is not a constant integer");
5821 
5822     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
5823   }
5824 
5825   Lex.Lex();  // Eat the ']'.
5826 
5827   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
5828   for (unsigned i = 0, e = Table.size(); i != e; ++i)
5829     SI->addCase(Table[i].first, Table[i].second);
5830   Inst = SI;
5831   return false;
5832 }
5833 
5834 /// ParseIndirectBr
5835 ///  Instruction
5836 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
5837 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
5838   LocTy AddrLoc;
5839   Value *Address;
5840   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
5841       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
5842       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
5843     return true;
5844 
5845   if (!Address->getType()->isPointerTy())
5846     return Error(AddrLoc, "indirectbr address must have pointer type");
5847 
5848   // Parse the destination list.
5849   SmallVector<BasicBlock*, 16> DestList;
5850 
5851   if (Lex.getKind() != lltok::rsquare) {
5852     BasicBlock *DestBB;
5853     if (ParseTypeAndBasicBlock(DestBB, PFS))
5854       return true;
5855     DestList.push_back(DestBB);
5856 
5857     while (EatIfPresent(lltok::comma)) {
5858       if (ParseTypeAndBasicBlock(DestBB, PFS))
5859         return true;
5860       DestList.push_back(DestBB);
5861     }
5862   }
5863 
5864   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
5865     return true;
5866 
5867   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
5868   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
5869     IBI->addDestination(DestList[i]);
5870   Inst = IBI;
5871   return false;
5872 }
5873 
5874 /// ParseInvoke
5875 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
5876 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
5877 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
5878   LocTy CallLoc = Lex.getLoc();
5879   AttrBuilder RetAttrs, FnAttrs;
5880   std::vector<unsigned> FwdRefAttrGrps;
5881   LocTy NoBuiltinLoc;
5882   unsigned CC;
5883   unsigned InvokeAddrSpace;
5884   Type *RetType = nullptr;
5885   LocTy RetTypeLoc;
5886   ValID CalleeID;
5887   SmallVector<ParamInfo, 16> ArgList;
5888   SmallVector<OperandBundleDef, 2> BundleList;
5889 
5890   BasicBlock *NormalBB, *UnwindBB;
5891   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5892       ParseOptionalProgramAddrSpace(InvokeAddrSpace) ||
5893       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
5894       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
5895       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
5896                                  NoBuiltinLoc) ||
5897       ParseOptionalOperandBundles(BundleList, PFS) ||
5898       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
5899       ParseTypeAndBasicBlock(NormalBB, PFS) ||
5900       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
5901       ParseTypeAndBasicBlock(UnwindBB, PFS))
5902     return true;
5903 
5904   // If RetType is a non-function pointer type, then this is the short syntax
5905   // for the call, which means that RetType is just the return type.  Infer the
5906   // rest of the function argument types from the arguments that are present.
5907   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
5908   if (!Ty) {
5909     // Pull out the types of all of the arguments...
5910     std::vector<Type*> ParamTypes;
5911     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
5912       ParamTypes.push_back(ArgList[i].V->getType());
5913 
5914     if (!FunctionType::isValidReturnType(RetType))
5915       return Error(RetTypeLoc, "Invalid result type for LLVM function");
5916 
5917     Ty = FunctionType::get(RetType, ParamTypes, false);
5918   }
5919 
5920   CalleeID.FTy = Ty;
5921 
5922   // Look up the callee.
5923   Value *Callee;
5924   if (ConvertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
5925                           Callee, &PFS, /*IsCall=*/true))
5926     return true;
5927 
5928   // Set up the Attribute for the function.
5929   SmallVector<Value *, 8> Args;
5930   SmallVector<AttributeSet, 8> ArgAttrs;
5931 
5932   // Loop through FunctionType's arguments and ensure they are specified
5933   // correctly.  Also, gather any parameter attributes.
5934   FunctionType::param_iterator I = Ty->param_begin();
5935   FunctionType::param_iterator E = Ty->param_end();
5936   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5937     Type *ExpectedTy = nullptr;
5938     if (I != E) {
5939       ExpectedTy = *I++;
5940     } else if (!Ty->isVarArg()) {
5941       return Error(ArgList[i].Loc, "too many arguments specified");
5942     }
5943 
5944     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
5945       return Error(ArgList[i].Loc, "argument is not of expected type '" +
5946                    getTypeString(ExpectedTy) + "'");
5947     Args.push_back(ArgList[i].V);
5948     ArgAttrs.push_back(ArgList[i].Attrs);
5949   }
5950 
5951   if (I != E)
5952     return Error(CallLoc, "not enough parameters specified for call");
5953 
5954   if (FnAttrs.hasAlignmentAttr())
5955     return Error(CallLoc, "invoke instructions may not have an alignment");
5956 
5957   // Finish off the Attribute and check them
5958   AttributeList PAL =
5959       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
5960                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
5961 
5962   InvokeInst *II =
5963       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
5964   II->setCallingConv(CC);
5965   II->setAttributes(PAL);
5966   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
5967   Inst = II;
5968   return false;
5969 }
5970 
5971 /// ParseResume
5972 ///   ::= 'resume' TypeAndValue
5973 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
5974   Value *Exn; LocTy ExnLoc;
5975   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
5976     return true;
5977 
5978   ResumeInst *RI = ResumeInst::Create(Exn);
5979   Inst = RI;
5980   return false;
5981 }
5982 
5983 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
5984                                   PerFunctionState &PFS) {
5985   if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
5986     return true;
5987 
5988   while (Lex.getKind() != lltok::rsquare) {
5989     // If this isn't the first argument, we need a comma.
5990     if (!Args.empty() &&
5991         ParseToken(lltok::comma, "expected ',' in argument list"))
5992       return true;
5993 
5994     // Parse the argument.
5995     LocTy ArgLoc;
5996     Type *ArgTy = nullptr;
5997     if (ParseType(ArgTy, ArgLoc))
5998       return true;
5999 
6000     Value *V;
6001     if (ArgTy->isMetadataTy()) {
6002       if (ParseMetadataAsValue(V, PFS))
6003         return true;
6004     } else {
6005       if (ParseValue(ArgTy, V, PFS))
6006         return true;
6007     }
6008     Args.push_back(V);
6009   }
6010 
6011   Lex.Lex();  // Lex the ']'.
6012   return false;
6013 }
6014 
6015 /// ParseCleanupRet
6016 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6017 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6018   Value *CleanupPad = nullptr;
6019 
6020   if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6021     return true;
6022 
6023   if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6024     return true;
6025 
6026   if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6027     return true;
6028 
6029   BasicBlock *UnwindBB = nullptr;
6030   if (Lex.getKind() == lltok::kw_to) {
6031     Lex.Lex();
6032     if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6033       return true;
6034   } else {
6035     if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
6036       return true;
6037     }
6038   }
6039 
6040   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6041   return false;
6042 }
6043 
6044 /// ParseCatchRet
6045 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
6046 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6047   Value *CatchPad = nullptr;
6048 
6049   if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
6050     return true;
6051 
6052   if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
6053     return true;
6054 
6055   BasicBlock *BB;
6056   if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
6057       ParseTypeAndBasicBlock(BB, PFS))
6058       return true;
6059 
6060   Inst = CatchReturnInst::Create(CatchPad, BB);
6061   return false;
6062 }
6063 
6064 /// ParseCatchSwitch
6065 ///   ::= 'catchswitch' within Parent
6066 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6067   Value *ParentPad;
6068 
6069   if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6070     return true;
6071 
6072   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6073       Lex.getKind() != lltok::LocalVarID)
6074     return TokError("expected scope value for catchswitch");
6075 
6076   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6077     return true;
6078 
6079   if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6080     return true;
6081 
6082   SmallVector<BasicBlock *, 32> Table;
6083   do {
6084     BasicBlock *DestBB;
6085     if (ParseTypeAndBasicBlock(DestBB, PFS))
6086       return true;
6087     Table.push_back(DestBB);
6088   } while (EatIfPresent(lltok::comma));
6089 
6090   if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6091     return true;
6092 
6093   if (ParseToken(lltok::kw_unwind,
6094                  "expected 'unwind' after catchswitch scope"))
6095     return true;
6096 
6097   BasicBlock *UnwindBB = nullptr;
6098   if (EatIfPresent(lltok::kw_to)) {
6099     if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6100       return true;
6101   } else {
6102     if (ParseTypeAndBasicBlock(UnwindBB, PFS))
6103       return true;
6104   }
6105 
6106   auto *CatchSwitch =
6107       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6108   for (BasicBlock *DestBB : Table)
6109     CatchSwitch->addHandler(DestBB);
6110   Inst = CatchSwitch;
6111   return false;
6112 }
6113 
6114 /// ParseCatchPad
6115 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6116 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6117   Value *CatchSwitch = nullptr;
6118 
6119   if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
6120     return true;
6121 
6122   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6123     return TokError("expected scope value for catchpad");
6124 
6125   if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6126     return true;
6127 
6128   SmallVector<Value *, 8> Args;
6129   if (ParseExceptionArgs(Args, PFS))
6130     return true;
6131 
6132   Inst = CatchPadInst::Create(CatchSwitch, Args);
6133   return false;
6134 }
6135 
6136 /// ParseCleanupPad
6137 ///   ::= 'cleanuppad' within Parent ParamList
6138 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6139   Value *ParentPad = nullptr;
6140 
6141   if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6142     return true;
6143 
6144   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6145       Lex.getKind() != lltok::LocalVarID)
6146     return TokError("expected scope value for cleanuppad");
6147 
6148   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6149     return true;
6150 
6151   SmallVector<Value *, 8> Args;
6152   if (ParseExceptionArgs(Args, PFS))
6153     return true;
6154 
6155   Inst = CleanupPadInst::Create(ParentPad, Args);
6156   return false;
6157 }
6158 
6159 //===----------------------------------------------------------------------===//
6160 // Unary Operators.
6161 //===----------------------------------------------------------------------===//
6162 
6163 /// ParseUnaryOp
6164 ///  ::= UnaryOp TypeAndValue ',' Value
6165 ///
6166 /// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
6167 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
6168 bool LLParser::ParseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6169                             unsigned Opc, unsigned OperandType) {
6170   LocTy Loc; Value *LHS;
6171   if (ParseTypeAndValue(LHS, Loc, PFS))
6172     return true;
6173 
6174   bool Valid;
6175   switch (OperandType) {
6176   default: llvm_unreachable("Unknown operand type!");
6177   case 0: // int or FP.
6178     Valid = LHS->getType()->isIntOrIntVectorTy() ||
6179             LHS->getType()->isFPOrFPVectorTy();
6180     break;
6181   case 1:
6182     Valid = LHS->getType()->isIntOrIntVectorTy();
6183     break;
6184   case 2:
6185     Valid = LHS->getType()->isFPOrFPVectorTy();
6186     break;
6187   }
6188 
6189   if (!Valid)
6190     return Error(Loc, "invalid operand type for instruction");
6191 
6192   Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6193   return false;
6194 }
6195 
6196 /// ParseCallBr
6197 ///   ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6198 ///       OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6199 ///       '[' LabelList ']'
6200 bool LLParser::ParseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6201   LocTy CallLoc = Lex.getLoc();
6202   AttrBuilder RetAttrs, FnAttrs;
6203   std::vector<unsigned> FwdRefAttrGrps;
6204   LocTy NoBuiltinLoc;
6205   unsigned CC;
6206   Type *RetType = nullptr;
6207   LocTy RetTypeLoc;
6208   ValID CalleeID;
6209   SmallVector<ParamInfo, 16> ArgList;
6210   SmallVector<OperandBundleDef, 2> BundleList;
6211 
6212   BasicBlock *DefaultDest;
6213   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6214       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6215       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
6216       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6217                                  NoBuiltinLoc) ||
6218       ParseOptionalOperandBundles(BundleList, PFS) ||
6219       ParseToken(lltok::kw_to, "expected 'to' in callbr") ||
6220       ParseTypeAndBasicBlock(DefaultDest, PFS) ||
6221       ParseToken(lltok::lsquare, "expected '[' in callbr"))
6222     return true;
6223 
6224   // Parse the destination list.
6225   SmallVector<BasicBlock *, 16> IndirectDests;
6226 
6227   if (Lex.getKind() != lltok::rsquare) {
6228     BasicBlock *DestBB;
6229     if (ParseTypeAndBasicBlock(DestBB, PFS))
6230       return true;
6231     IndirectDests.push_back(DestBB);
6232 
6233     while (EatIfPresent(lltok::comma)) {
6234       if (ParseTypeAndBasicBlock(DestBB, PFS))
6235         return true;
6236       IndirectDests.push_back(DestBB);
6237     }
6238   }
6239 
6240   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
6241     return true;
6242 
6243   // If RetType is a non-function pointer type, then this is the short syntax
6244   // for the call, which means that RetType is just the return type.  Infer the
6245   // rest of the function argument types from the arguments that are present.
6246   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6247   if (!Ty) {
6248     // Pull out the types of all of the arguments...
6249     std::vector<Type *> ParamTypes;
6250     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6251       ParamTypes.push_back(ArgList[i].V->getType());
6252 
6253     if (!FunctionType::isValidReturnType(RetType))
6254       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6255 
6256     Ty = FunctionType::get(RetType, ParamTypes, false);
6257   }
6258 
6259   CalleeID.FTy = Ty;
6260 
6261   // Look up the callee.
6262   Value *Callee;
6263   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
6264                           /*IsCall=*/true))
6265     return true;
6266 
6267   if (isa<InlineAsm>(Callee) && !Ty->getReturnType()->isVoidTy())
6268     return Error(RetTypeLoc, "asm-goto outputs not supported");
6269 
6270   // Set up the Attribute for the function.
6271   SmallVector<Value *, 8> Args;
6272   SmallVector<AttributeSet, 8> ArgAttrs;
6273 
6274   // Loop through FunctionType's arguments and ensure they are specified
6275   // correctly.  Also, gather any parameter attributes.
6276   FunctionType::param_iterator I = Ty->param_begin();
6277   FunctionType::param_iterator E = Ty->param_end();
6278   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6279     Type *ExpectedTy = nullptr;
6280     if (I != E) {
6281       ExpectedTy = *I++;
6282     } else if (!Ty->isVarArg()) {
6283       return Error(ArgList[i].Loc, "too many arguments specified");
6284     }
6285 
6286     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6287       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6288                                        getTypeString(ExpectedTy) + "'");
6289     Args.push_back(ArgList[i].V);
6290     ArgAttrs.push_back(ArgList[i].Attrs);
6291   }
6292 
6293   if (I != E)
6294     return Error(CallLoc, "not enough parameters specified for call");
6295 
6296   if (FnAttrs.hasAlignmentAttr())
6297     return Error(CallLoc, "callbr instructions may not have an alignment");
6298 
6299   // Finish off the Attribute and check them
6300   AttributeList PAL =
6301       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6302                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6303 
6304   CallBrInst *CBI =
6305       CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
6306                          BundleList);
6307   CBI->setCallingConv(CC);
6308   CBI->setAttributes(PAL);
6309   ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
6310   Inst = CBI;
6311   return false;
6312 }
6313 
6314 //===----------------------------------------------------------------------===//
6315 // Binary Operators.
6316 //===----------------------------------------------------------------------===//
6317 
6318 /// ParseArithmetic
6319 ///  ::= ArithmeticOps TypeAndValue ',' Value
6320 ///
6321 /// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
6322 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
6323 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6324                                unsigned Opc, unsigned OperandType) {
6325   LocTy Loc; Value *LHS, *RHS;
6326   if (ParseTypeAndValue(LHS, Loc, PFS) ||
6327       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6328       ParseValue(LHS->getType(), RHS, PFS))
6329     return true;
6330 
6331   bool Valid;
6332   switch (OperandType) {
6333   default: llvm_unreachable("Unknown operand type!");
6334   case 0: // int or FP.
6335     Valid = LHS->getType()->isIntOrIntVectorTy() ||
6336             LHS->getType()->isFPOrFPVectorTy();
6337     break;
6338   case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
6339   case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
6340   }
6341 
6342   if (!Valid)
6343     return Error(Loc, "invalid operand type for instruction");
6344 
6345   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6346   return false;
6347 }
6348 
6349 /// ParseLogical
6350 ///  ::= ArithmeticOps TypeAndValue ',' Value {
6351 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
6352                             unsigned Opc) {
6353   LocTy Loc; Value *LHS, *RHS;
6354   if (ParseTypeAndValue(LHS, Loc, PFS) ||
6355       ParseToken(lltok::comma, "expected ',' in logical operation") ||
6356       ParseValue(LHS->getType(), RHS, PFS))
6357     return true;
6358 
6359   if (!LHS->getType()->isIntOrIntVectorTy())
6360     return Error(Loc,"instruction requires integer or integer vector operands");
6361 
6362   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6363   return false;
6364 }
6365 
6366 /// ParseCompare
6367 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
6368 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
6369 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
6370                             unsigned Opc) {
6371   // Parse the integer/fp comparison predicate.
6372   LocTy Loc;
6373   unsigned Pred;
6374   Value *LHS, *RHS;
6375   if (ParseCmpPredicate(Pred, Opc) ||
6376       ParseTypeAndValue(LHS, Loc, PFS) ||
6377       ParseToken(lltok::comma, "expected ',' after compare value") ||
6378       ParseValue(LHS->getType(), RHS, PFS))
6379     return true;
6380 
6381   if (Opc == Instruction::FCmp) {
6382     if (!LHS->getType()->isFPOrFPVectorTy())
6383       return Error(Loc, "fcmp requires floating point operands");
6384     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6385   } else {
6386     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
6387     if (!LHS->getType()->isIntOrIntVectorTy() &&
6388         !LHS->getType()->isPtrOrPtrVectorTy())
6389       return Error(Loc, "icmp requires integer operands");
6390     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6391   }
6392   return false;
6393 }
6394 
6395 //===----------------------------------------------------------------------===//
6396 // Other Instructions.
6397 //===----------------------------------------------------------------------===//
6398 
6399 
6400 /// ParseCast
6401 ///   ::= CastOpc TypeAndValue 'to' Type
6402 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
6403                          unsigned Opc) {
6404   LocTy Loc;
6405   Value *Op;
6406   Type *DestTy = nullptr;
6407   if (ParseTypeAndValue(Op, Loc, PFS) ||
6408       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
6409       ParseType(DestTy))
6410     return true;
6411 
6412   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
6413     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
6414     return Error(Loc, "invalid cast opcode for cast from '" +
6415                  getTypeString(Op->getType()) + "' to '" +
6416                  getTypeString(DestTy) + "'");
6417   }
6418   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
6419   return false;
6420 }
6421 
6422 /// ParseSelect
6423 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6424 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
6425   LocTy Loc;
6426   Value *Op0, *Op1, *Op2;
6427   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6428       ParseToken(lltok::comma, "expected ',' after select condition") ||
6429       ParseTypeAndValue(Op1, PFS) ||
6430       ParseToken(lltok::comma, "expected ',' after select value") ||
6431       ParseTypeAndValue(Op2, PFS))
6432     return true;
6433 
6434   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
6435     return Error(Loc, Reason);
6436 
6437   Inst = SelectInst::Create(Op0, Op1, Op2);
6438   return false;
6439 }
6440 
6441 /// ParseVA_Arg
6442 ///   ::= 'va_arg' TypeAndValue ',' Type
6443 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
6444   Value *Op;
6445   Type *EltTy = nullptr;
6446   LocTy TypeLoc;
6447   if (ParseTypeAndValue(Op, PFS) ||
6448       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
6449       ParseType(EltTy, TypeLoc))
6450     return true;
6451 
6452   if (!EltTy->isFirstClassType())
6453     return Error(TypeLoc, "va_arg requires operand with first class type");
6454 
6455   Inst = new VAArgInst(Op, EltTy);
6456   return false;
6457 }
6458 
6459 /// ParseExtractElement
6460 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
6461 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
6462   LocTy Loc;
6463   Value *Op0, *Op1;
6464   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6465       ParseToken(lltok::comma, "expected ',' after extract value") ||
6466       ParseTypeAndValue(Op1, PFS))
6467     return true;
6468 
6469   if (!ExtractElementInst::isValidOperands(Op0, Op1))
6470     return Error(Loc, "invalid extractelement operands");
6471 
6472   Inst = ExtractElementInst::Create(Op0, Op1);
6473   return false;
6474 }
6475 
6476 /// ParseInsertElement
6477 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6478 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
6479   LocTy Loc;
6480   Value *Op0, *Op1, *Op2;
6481   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6482       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6483       ParseTypeAndValue(Op1, PFS) ||
6484       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6485       ParseTypeAndValue(Op2, PFS))
6486     return true;
6487 
6488   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
6489     return Error(Loc, "invalid insertelement operands");
6490 
6491   Inst = InsertElementInst::Create(Op0, Op1, Op2);
6492   return false;
6493 }
6494 
6495 /// ParseShuffleVector
6496 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6497 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
6498   LocTy Loc;
6499   Value *Op0, *Op1, *Op2;
6500   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6501       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
6502       ParseTypeAndValue(Op1, PFS) ||
6503       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
6504       ParseTypeAndValue(Op2, PFS))
6505     return true;
6506 
6507   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
6508     return Error(Loc, "invalid shufflevector operands");
6509 
6510   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
6511   return false;
6512 }
6513 
6514 /// ParsePHI
6515 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
6516 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
6517   Type *Ty = nullptr;  LocTy TypeLoc;
6518   Value *Op0, *Op1;
6519 
6520   if (ParseType(Ty, TypeLoc) ||
6521       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6522       ParseValue(Ty, Op0, PFS) ||
6523       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6524       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6525       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6526     return true;
6527 
6528   bool AteExtraComma = false;
6529   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
6530 
6531   while (true) {
6532     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
6533 
6534     if (!EatIfPresent(lltok::comma))
6535       break;
6536 
6537     if (Lex.getKind() == lltok::MetadataVar) {
6538       AteExtraComma = true;
6539       break;
6540     }
6541 
6542     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6543         ParseValue(Ty, Op0, PFS) ||
6544         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6545         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6546         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6547       return true;
6548   }
6549 
6550   if (!Ty->isFirstClassType())
6551     return Error(TypeLoc, "phi node must have first class type");
6552 
6553   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
6554   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
6555     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
6556   Inst = PN;
6557   return AteExtraComma ? InstExtraComma : InstNormal;
6558 }
6559 
6560 /// ParseLandingPad
6561 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
6562 /// Clause
6563 ///   ::= 'catch' TypeAndValue
6564 ///   ::= 'filter'
6565 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
6566 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
6567   Type *Ty = nullptr; LocTy TyLoc;
6568 
6569   if (ParseType(Ty, TyLoc))
6570     return true;
6571 
6572   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
6573   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
6574 
6575   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
6576     LandingPadInst::ClauseType CT;
6577     if (EatIfPresent(lltok::kw_catch))
6578       CT = LandingPadInst::Catch;
6579     else if (EatIfPresent(lltok::kw_filter))
6580       CT = LandingPadInst::Filter;
6581     else
6582       return TokError("expected 'catch' or 'filter' clause type");
6583 
6584     Value *V;
6585     LocTy VLoc;
6586     if (ParseTypeAndValue(V, VLoc, PFS))
6587       return true;
6588 
6589     // A 'catch' type expects a non-array constant. A filter clause expects an
6590     // array constant.
6591     if (CT == LandingPadInst::Catch) {
6592       if (isa<ArrayType>(V->getType()))
6593         Error(VLoc, "'catch' clause has an invalid type");
6594     } else {
6595       if (!isa<ArrayType>(V->getType()))
6596         Error(VLoc, "'filter' clause has an invalid type");
6597     }
6598 
6599     Constant *CV = dyn_cast<Constant>(V);
6600     if (!CV)
6601       return Error(VLoc, "clause argument must be a constant");
6602     LP->addClause(CV);
6603   }
6604 
6605   Inst = LP.release();
6606   return false;
6607 }
6608 
6609 /// ParseCall
6610 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
6611 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6612 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
6613 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6614 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
6615 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6616 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
6617 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6618 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
6619                          CallInst::TailCallKind TCK) {
6620   AttrBuilder RetAttrs, FnAttrs;
6621   std::vector<unsigned> FwdRefAttrGrps;
6622   LocTy BuiltinLoc;
6623   unsigned CallAddrSpace;
6624   unsigned CC;
6625   Type *RetType = nullptr;
6626   LocTy RetTypeLoc;
6627   ValID CalleeID;
6628   SmallVector<ParamInfo, 16> ArgList;
6629   SmallVector<OperandBundleDef, 2> BundleList;
6630   LocTy CallLoc = Lex.getLoc();
6631 
6632   if (TCK != CallInst::TCK_None &&
6633       ParseToken(lltok::kw_call,
6634                  "expected 'tail call', 'musttail call', or 'notail call'"))
6635     return true;
6636 
6637   FastMathFlags FMF = EatFastMathFlagsIfPresent();
6638 
6639   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6640       ParseOptionalProgramAddrSpace(CallAddrSpace) ||
6641       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6642       ParseValID(CalleeID) ||
6643       ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
6644                          PFS.getFunction().isVarArg()) ||
6645       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
6646       ParseOptionalOperandBundles(BundleList, PFS))
6647     return true;
6648 
6649   if (FMF.any() && !RetType->isFPOrFPVectorTy())
6650     return Error(CallLoc, "fast-math-flags specified for call without "
6651                           "floating-point scalar or vector return type");
6652 
6653   // If RetType is a non-function pointer type, then this is the short syntax
6654   // for the call, which means that RetType is just the return type.  Infer the
6655   // rest of the function argument types from the arguments that are present.
6656   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6657   if (!Ty) {
6658     // Pull out the types of all of the arguments...
6659     std::vector<Type*> ParamTypes;
6660     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6661       ParamTypes.push_back(ArgList[i].V->getType());
6662 
6663     if (!FunctionType::isValidReturnType(RetType))
6664       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6665 
6666     Ty = FunctionType::get(RetType, ParamTypes, false);
6667   }
6668 
6669   CalleeID.FTy = Ty;
6670 
6671   // Look up the callee.
6672   Value *Callee;
6673   if (ConvertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
6674                           &PFS, /*IsCall=*/true))
6675     return true;
6676 
6677   // Set up the Attribute for the function.
6678   SmallVector<AttributeSet, 8> Attrs;
6679 
6680   SmallVector<Value*, 8> Args;
6681 
6682   // Loop through FunctionType's arguments and ensure they are specified
6683   // correctly.  Also, gather any parameter attributes.
6684   FunctionType::param_iterator I = Ty->param_begin();
6685   FunctionType::param_iterator E = Ty->param_end();
6686   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6687     Type *ExpectedTy = nullptr;
6688     if (I != E) {
6689       ExpectedTy = *I++;
6690     } else if (!Ty->isVarArg()) {
6691       return Error(ArgList[i].Loc, "too many arguments specified");
6692     }
6693 
6694     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6695       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6696                    getTypeString(ExpectedTy) + "'");
6697     Args.push_back(ArgList[i].V);
6698     Attrs.push_back(ArgList[i].Attrs);
6699   }
6700 
6701   if (I != E)
6702     return Error(CallLoc, "not enough parameters specified for call");
6703 
6704   if (FnAttrs.hasAlignmentAttr())
6705     return Error(CallLoc, "call instructions may not have an alignment");
6706 
6707   // Finish off the Attribute and check them
6708   AttributeList PAL =
6709       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6710                          AttributeSet::get(Context, RetAttrs), Attrs);
6711 
6712   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
6713   CI->setTailCallKind(TCK);
6714   CI->setCallingConv(CC);
6715   if (FMF.any())
6716     CI->setFastMathFlags(FMF);
6717   CI->setAttributes(PAL);
6718   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
6719   Inst = CI;
6720   return false;
6721 }
6722 
6723 //===----------------------------------------------------------------------===//
6724 // Memory Instructions.
6725 //===----------------------------------------------------------------------===//
6726 
6727 /// ParseAlloc
6728 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
6729 ///       (',' 'align' i32)? (',', 'addrspace(n))?
6730 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
6731   Value *Size = nullptr;
6732   LocTy SizeLoc, TyLoc, ASLoc;
6733   unsigned Alignment = 0;
6734   unsigned AddrSpace = 0;
6735   Type *Ty = nullptr;
6736 
6737   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
6738   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
6739 
6740   if (ParseType(Ty, TyLoc)) return true;
6741 
6742   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
6743     return Error(TyLoc, "invalid type for alloca");
6744 
6745   bool AteExtraComma = false;
6746   if (EatIfPresent(lltok::comma)) {
6747     if (Lex.getKind() == lltok::kw_align) {
6748       if (ParseOptionalAlignment(Alignment))
6749         return true;
6750       if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6751         return true;
6752     } else if (Lex.getKind() == lltok::kw_addrspace) {
6753       ASLoc = Lex.getLoc();
6754       if (ParseOptionalAddrSpace(AddrSpace))
6755         return true;
6756     } else if (Lex.getKind() == lltok::MetadataVar) {
6757       AteExtraComma = true;
6758     } else {
6759       if (ParseTypeAndValue(Size, SizeLoc, PFS))
6760         return true;
6761       if (EatIfPresent(lltok::comma)) {
6762         if (Lex.getKind() == lltok::kw_align) {
6763           if (ParseOptionalAlignment(Alignment))
6764             return true;
6765           if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6766             return true;
6767         } else if (Lex.getKind() == lltok::kw_addrspace) {
6768           ASLoc = Lex.getLoc();
6769           if (ParseOptionalAddrSpace(AddrSpace))
6770             return true;
6771         } else if (Lex.getKind() == lltok::MetadataVar) {
6772           AteExtraComma = true;
6773         }
6774       }
6775     }
6776   }
6777 
6778   if (Size && !Size->getType()->isIntegerTy())
6779     return Error(SizeLoc, "element count must have integer type");
6780 
6781   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, Alignment);
6782   AI->setUsedWithInAlloca(IsInAlloca);
6783   AI->setSwiftError(IsSwiftError);
6784   Inst = AI;
6785   return AteExtraComma ? InstExtraComma : InstNormal;
6786 }
6787 
6788 /// ParseLoad
6789 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
6790 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
6791 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6792 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
6793   Value *Val; LocTy Loc;
6794   unsigned Alignment = 0;
6795   bool AteExtraComma = false;
6796   bool isAtomic = false;
6797   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6798   SyncScope::ID SSID = SyncScope::System;
6799 
6800   if (Lex.getKind() == lltok::kw_atomic) {
6801     isAtomic = true;
6802     Lex.Lex();
6803   }
6804 
6805   bool isVolatile = false;
6806   if (Lex.getKind() == lltok::kw_volatile) {
6807     isVolatile = true;
6808     Lex.Lex();
6809   }
6810 
6811   Type *Ty;
6812   LocTy ExplicitTypeLoc = Lex.getLoc();
6813   if (ParseType(Ty) ||
6814       ParseToken(lltok::comma, "expected comma after load's type") ||
6815       ParseTypeAndValue(Val, Loc, PFS) ||
6816       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6817       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6818     return true;
6819 
6820   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
6821     return Error(Loc, "load operand must be a pointer to a first class type");
6822   if (isAtomic && !Alignment)
6823     return Error(Loc, "atomic load must have explicit non-zero alignment");
6824   if (Ordering == AtomicOrdering::Release ||
6825       Ordering == AtomicOrdering::AcquireRelease)
6826     return Error(Loc, "atomic load cannot use Release ordering");
6827 
6828   if (Ty != cast<PointerType>(Val->getType())->getElementType())
6829     return Error(ExplicitTypeLoc,
6830                  "explicit pointee type doesn't match operand's pointee type");
6831 
6832   Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID);
6833   return AteExtraComma ? InstExtraComma : InstNormal;
6834 }
6835 
6836 /// ParseStore
6837 
6838 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
6839 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
6840 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6841 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
6842   Value *Val, *Ptr; LocTy Loc, PtrLoc;
6843   unsigned Alignment = 0;
6844   bool AteExtraComma = false;
6845   bool isAtomic = false;
6846   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6847   SyncScope::ID SSID = SyncScope::System;
6848 
6849   if (Lex.getKind() == lltok::kw_atomic) {
6850     isAtomic = true;
6851     Lex.Lex();
6852   }
6853 
6854   bool isVolatile = false;
6855   if (Lex.getKind() == lltok::kw_volatile) {
6856     isVolatile = true;
6857     Lex.Lex();
6858   }
6859 
6860   if (ParseTypeAndValue(Val, Loc, PFS) ||
6861       ParseToken(lltok::comma, "expected ',' after store operand") ||
6862       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6863       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
6864       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6865     return true;
6866 
6867   if (!Ptr->getType()->isPointerTy())
6868     return Error(PtrLoc, "store operand must be a pointer");
6869   if (!Val->getType()->isFirstClassType())
6870     return Error(Loc, "store operand must be a first class value");
6871   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6872     return Error(Loc, "stored value and pointer type do not match");
6873   if (isAtomic && !Alignment)
6874     return Error(Loc, "atomic store must have explicit non-zero alignment");
6875   if (Ordering == AtomicOrdering::Acquire ||
6876       Ordering == AtomicOrdering::AcquireRelease)
6877     return Error(Loc, "atomic store cannot use Acquire ordering");
6878 
6879   Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID);
6880   return AteExtraComma ? InstExtraComma : InstNormal;
6881 }
6882 
6883 /// ParseCmpXchg
6884 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
6885 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
6886 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
6887   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
6888   bool AteExtraComma = false;
6889   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
6890   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
6891   SyncScope::ID SSID = SyncScope::System;
6892   bool isVolatile = false;
6893   bool isWeak = false;
6894 
6895   if (EatIfPresent(lltok::kw_weak))
6896     isWeak = true;
6897 
6898   if (EatIfPresent(lltok::kw_volatile))
6899     isVolatile = true;
6900 
6901   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6902       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
6903       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
6904       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
6905       ParseTypeAndValue(New, NewLoc, PFS) ||
6906       ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
6907       ParseOrdering(FailureOrdering))
6908     return true;
6909 
6910   if (SuccessOrdering == AtomicOrdering::Unordered ||
6911       FailureOrdering == AtomicOrdering::Unordered)
6912     return TokError("cmpxchg cannot be unordered");
6913   if (isStrongerThan(FailureOrdering, SuccessOrdering))
6914     return TokError("cmpxchg failure argument shall be no stronger than the "
6915                     "success argument");
6916   if (FailureOrdering == AtomicOrdering::Release ||
6917       FailureOrdering == AtomicOrdering::AcquireRelease)
6918     return TokError(
6919         "cmpxchg failure ordering cannot include release semantics");
6920   if (!Ptr->getType()->isPointerTy())
6921     return Error(PtrLoc, "cmpxchg operand must be a pointer");
6922   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
6923     return Error(CmpLoc, "compare value and pointer type do not match");
6924   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
6925     return Error(NewLoc, "new value and pointer type do not match");
6926   if (!New->getType()->isFirstClassType())
6927     return Error(NewLoc, "cmpxchg operand must be a first class value");
6928   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
6929       Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID);
6930   CXI->setVolatile(isVolatile);
6931   CXI->setWeak(isWeak);
6932   Inst = CXI;
6933   return AteExtraComma ? InstExtraComma : InstNormal;
6934 }
6935 
6936 /// ParseAtomicRMW
6937 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
6938 ///       'singlethread'? AtomicOrdering
6939 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
6940   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
6941   bool AteExtraComma = false;
6942   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6943   SyncScope::ID SSID = SyncScope::System;
6944   bool isVolatile = false;
6945   bool IsFP = false;
6946   AtomicRMWInst::BinOp Operation;
6947 
6948   if (EatIfPresent(lltok::kw_volatile))
6949     isVolatile = true;
6950 
6951   switch (Lex.getKind()) {
6952   default: return TokError("expected binary operation in atomicrmw");
6953   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
6954   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
6955   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
6956   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
6957   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
6958   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
6959   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
6960   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
6961   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
6962   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
6963   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
6964   case lltok::kw_fadd:
6965     Operation = AtomicRMWInst::FAdd;
6966     IsFP = true;
6967     break;
6968   case lltok::kw_fsub:
6969     Operation = AtomicRMWInst::FSub;
6970     IsFP = true;
6971     break;
6972   }
6973   Lex.Lex();  // Eat the operation.
6974 
6975   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6976       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
6977       ParseTypeAndValue(Val, ValLoc, PFS) ||
6978       ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
6979     return true;
6980 
6981   if (Ordering == AtomicOrdering::Unordered)
6982     return TokError("atomicrmw cannot be unordered");
6983   if (!Ptr->getType()->isPointerTy())
6984     return Error(PtrLoc, "atomicrmw operand must be a pointer");
6985   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6986     return Error(ValLoc, "atomicrmw value and pointer type do not match");
6987 
6988   if (Operation == AtomicRMWInst::Xchg) {
6989     if (!Val->getType()->isIntegerTy() &&
6990         !Val->getType()->isFloatingPointTy()) {
6991       return Error(ValLoc, "atomicrmw " +
6992                    AtomicRMWInst::getOperationName(Operation) +
6993                    " operand must be an integer or floating point type");
6994     }
6995   } else if (IsFP) {
6996     if (!Val->getType()->isFloatingPointTy()) {
6997       return Error(ValLoc, "atomicrmw " +
6998                    AtomicRMWInst::getOperationName(Operation) +
6999                    " operand must be a floating point type");
7000     }
7001   } else {
7002     if (!Val->getType()->isIntegerTy()) {
7003       return Error(ValLoc, "atomicrmw " +
7004                    AtomicRMWInst::getOperationName(Operation) +
7005                    " operand must be an integer");
7006     }
7007   }
7008 
7009   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
7010   if (Size < 8 || (Size & (Size - 1)))
7011     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7012                          " integer");
7013 
7014   AtomicRMWInst *RMWI =
7015     new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID);
7016   RMWI->setVolatile(isVolatile);
7017   Inst = RMWI;
7018   return AteExtraComma ? InstExtraComma : InstNormal;
7019 }
7020 
7021 /// ParseFence
7022 ///   ::= 'fence' 'singlethread'? AtomicOrdering
7023 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
7024   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7025   SyncScope::ID SSID = SyncScope::System;
7026   if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7027     return true;
7028 
7029   if (Ordering == AtomicOrdering::Unordered)
7030     return TokError("fence cannot be unordered");
7031   if (Ordering == AtomicOrdering::Monotonic)
7032     return TokError("fence cannot be monotonic");
7033 
7034   Inst = new FenceInst(Context, Ordering, SSID);
7035   return InstNormal;
7036 }
7037 
7038 /// ParseGetElementPtr
7039 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7040 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7041   Value *Ptr = nullptr;
7042   Value *Val = nullptr;
7043   LocTy Loc, EltLoc;
7044 
7045   bool InBounds = EatIfPresent(lltok::kw_inbounds);
7046 
7047   Type *Ty = nullptr;
7048   LocTy ExplicitTypeLoc = Lex.getLoc();
7049   if (ParseType(Ty) ||
7050       ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
7051       ParseTypeAndValue(Ptr, Loc, PFS))
7052     return true;
7053 
7054   Type *BaseType = Ptr->getType();
7055   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7056   if (!BasePointerType)
7057     return Error(Loc, "base of getelementptr must be a pointer");
7058 
7059   if (Ty != BasePointerType->getElementType())
7060     return Error(ExplicitTypeLoc,
7061                  "explicit pointee type doesn't match operand's pointee type");
7062 
7063   SmallVector<Value*, 16> Indices;
7064   bool AteExtraComma = false;
7065   // GEP returns a vector of pointers if at least one of parameters is a vector.
7066   // All vector parameters should have the same vector width.
7067   unsigned GEPWidth = BaseType->isVectorTy() ?
7068     BaseType->getVectorNumElements() : 0;
7069 
7070   while (EatIfPresent(lltok::comma)) {
7071     if (Lex.getKind() == lltok::MetadataVar) {
7072       AteExtraComma = true;
7073       break;
7074     }
7075     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
7076     if (!Val->getType()->isIntOrIntVectorTy())
7077       return Error(EltLoc, "getelementptr index must be an integer");
7078 
7079     if (Val->getType()->isVectorTy()) {
7080       unsigned ValNumEl = Val->getType()->getVectorNumElements();
7081       if (GEPWidth && GEPWidth != ValNumEl)
7082         return Error(EltLoc,
7083           "getelementptr vector index has a wrong number of elements");
7084       GEPWidth = ValNumEl;
7085     }
7086     Indices.push_back(Val);
7087   }
7088 
7089   SmallPtrSet<Type*, 4> Visited;
7090   if (!Indices.empty() && !Ty->isSized(&Visited))
7091     return Error(Loc, "base element of getelementptr must be sized");
7092 
7093   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7094     return Error(Loc, "invalid getelementptr indices");
7095   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7096   if (InBounds)
7097     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7098   return AteExtraComma ? InstExtraComma : InstNormal;
7099 }
7100 
7101 /// ParseExtractValue
7102 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
7103 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7104   Value *Val; LocTy Loc;
7105   SmallVector<unsigned, 4> Indices;
7106   bool AteExtraComma;
7107   if (ParseTypeAndValue(Val, Loc, PFS) ||
7108       ParseIndexList(Indices, AteExtraComma))
7109     return true;
7110 
7111   if (!Val->getType()->isAggregateType())
7112     return Error(Loc, "extractvalue operand must be aggregate type");
7113 
7114   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7115     return Error(Loc, "invalid indices for extractvalue");
7116   Inst = ExtractValueInst::Create(Val, Indices);
7117   return AteExtraComma ? InstExtraComma : InstNormal;
7118 }
7119 
7120 /// ParseInsertValue
7121 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7122 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7123   Value *Val0, *Val1; LocTy Loc0, Loc1;
7124   SmallVector<unsigned, 4> Indices;
7125   bool AteExtraComma;
7126   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
7127       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
7128       ParseTypeAndValue(Val1, Loc1, PFS) ||
7129       ParseIndexList(Indices, AteExtraComma))
7130     return true;
7131 
7132   if (!Val0->getType()->isAggregateType())
7133     return Error(Loc0, "insertvalue operand must be aggregate type");
7134 
7135   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7136   if (!IndexedType)
7137     return Error(Loc0, "invalid indices for insertvalue");
7138   if (IndexedType != Val1->getType())
7139     return Error(Loc1, "insertvalue operand and field disagree in type: '" +
7140                            getTypeString(Val1->getType()) + "' instead of '" +
7141                            getTypeString(IndexedType) + "'");
7142   Inst = InsertValueInst::Create(Val0, Val1, Indices);
7143   return AteExtraComma ? InstExtraComma : InstNormal;
7144 }
7145 
7146 //===----------------------------------------------------------------------===//
7147 // Embedded metadata.
7148 //===----------------------------------------------------------------------===//
7149 
7150 /// ParseMDNodeVector
7151 ///   ::= { Element (',' Element)* }
7152 /// Element
7153 ///   ::= 'null' | TypeAndValue
7154 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7155   if (ParseToken(lltok::lbrace, "expected '{' here"))
7156     return true;
7157 
7158   // Check for an empty list.
7159   if (EatIfPresent(lltok::rbrace))
7160     return false;
7161 
7162   do {
7163     // Null is a special case since it is typeless.
7164     if (EatIfPresent(lltok::kw_null)) {
7165       Elts.push_back(nullptr);
7166       continue;
7167     }
7168 
7169     Metadata *MD;
7170     if (ParseMetadata(MD, nullptr))
7171       return true;
7172     Elts.push_back(MD);
7173   } while (EatIfPresent(lltok::comma));
7174 
7175   return ParseToken(lltok::rbrace, "expected end of metadata node");
7176 }
7177 
7178 //===----------------------------------------------------------------------===//
7179 // Use-list order directives.
7180 //===----------------------------------------------------------------------===//
7181 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7182                                 SMLoc Loc) {
7183   if (V->use_empty())
7184     return Error(Loc, "value has no uses");
7185 
7186   unsigned NumUses = 0;
7187   SmallDenseMap<const Use *, unsigned, 16> Order;
7188   for (const Use &U : V->uses()) {
7189     if (++NumUses > Indexes.size())
7190       break;
7191     Order[&U] = Indexes[NumUses - 1];
7192   }
7193   if (NumUses < 2)
7194     return Error(Loc, "value only has one use");
7195   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7196     return Error(Loc,
7197                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
7198 
7199   V->sortUseList([&](const Use &L, const Use &R) {
7200     return Order.lookup(&L) < Order.lookup(&R);
7201   });
7202   return false;
7203 }
7204 
7205 /// ParseUseListOrderIndexes
7206 ///   ::= '{' uint32 (',' uint32)+ '}'
7207 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7208   SMLoc Loc = Lex.getLoc();
7209   if (ParseToken(lltok::lbrace, "expected '{' here"))
7210     return true;
7211   if (Lex.getKind() == lltok::rbrace)
7212     return Lex.Error("expected non-empty list of uselistorder indexes");
7213 
7214   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
7215   // indexes should be distinct numbers in the range [0, size-1], and should
7216   // not be in order.
7217   unsigned Offset = 0;
7218   unsigned Max = 0;
7219   bool IsOrdered = true;
7220   assert(Indexes.empty() && "Expected empty order vector");
7221   do {
7222     unsigned Index;
7223     if (ParseUInt32(Index))
7224       return true;
7225 
7226     // Update consistency checks.
7227     Offset += Index - Indexes.size();
7228     Max = std::max(Max, Index);
7229     IsOrdered &= Index == Indexes.size();
7230 
7231     Indexes.push_back(Index);
7232   } while (EatIfPresent(lltok::comma));
7233 
7234   if (ParseToken(lltok::rbrace, "expected '}' here"))
7235     return true;
7236 
7237   if (Indexes.size() < 2)
7238     return Error(Loc, "expected >= 2 uselistorder indexes");
7239   if (Offset != 0 || Max >= Indexes.size())
7240     return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
7241   if (IsOrdered)
7242     return Error(Loc, "expected uselistorder indexes to change the order");
7243 
7244   return false;
7245 }
7246 
7247 /// ParseUseListOrder
7248 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7249 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
7250   SMLoc Loc = Lex.getLoc();
7251   if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7252     return true;
7253 
7254   Value *V;
7255   SmallVector<unsigned, 16> Indexes;
7256   if (ParseTypeAndValue(V, PFS) ||
7257       ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
7258       ParseUseListOrderIndexes(Indexes))
7259     return true;
7260 
7261   return sortUseListOrder(V, Indexes, Loc);
7262 }
7263 
7264 /// ParseUseListOrderBB
7265 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
7266 bool LLParser::ParseUseListOrderBB() {
7267   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7268   SMLoc Loc = Lex.getLoc();
7269   Lex.Lex();
7270 
7271   ValID Fn, Label;
7272   SmallVector<unsigned, 16> Indexes;
7273   if (ParseValID(Fn) ||
7274       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7275       ParseValID(Label) ||
7276       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7277       ParseUseListOrderIndexes(Indexes))
7278     return true;
7279 
7280   // Check the function.
7281   GlobalValue *GV;
7282   if (Fn.Kind == ValID::t_GlobalName)
7283     GV = M->getNamedValue(Fn.StrVal);
7284   else if (Fn.Kind == ValID::t_GlobalID)
7285     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7286   else
7287     return Error(Fn.Loc, "expected function name in uselistorder_bb");
7288   if (!GV)
7289     return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
7290   auto *F = dyn_cast<Function>(GV);
7291   if (!F)
7292     return Error(Fn.Loc, "expected function name in uselistorder_bb");
7293   if (F->isDeclaration())
7294     return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
7295 
7296   // Check the basic block.
7297   if (Label.Kind == ValID::t_LocalID)
7298     return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
7299   if (Label.Kind != ValID::t_LocalName)
7300     return Error(Label.Loc, "expected basic block name in uselistorder_bb");
7301   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7302   if (!V)
7303     return Error(Label.Loc, "invalid basic block in uselistorder_bb");
7304   if (!isa<BasicBlock>(V))
7305     return Error(Label.Loc, "expected basic block in uselistorder_bb");
7306 
7307   return sortUseListOrder(V, Indexes, Loc);
7308 }
7309 
7310 /// ModuleEntry
7311 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
7312 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
7313 bool LLParser::ParseModuleEntry(unsigned ID) {
7314   assert(Lex.getKind() == lltok::kw_module);
7315   Lex.Lex();
7316 
7317   std::string Path;
7318   if (ParseToken(lltok::colon, "expected ':' here") ||
7319       ParseToken(lltok::lparen, "expected '(' here") ||
7320       ParseToken(lltok::kw_path, "expected 'path' here") ||
7321       ParseToken(lltok::colon, "expected ':' here") ||
7322       ParseStringConstant(Path) ||
7323       ParseToken(lltok::comma, "expected ',' here") ||
7324       ParseToken(lltok::kw_hash, "expected 'hash' here") ||
7325       ParseToken(lltok::colon, "expected ':' here") ||
7326       ParseToken(lltok::lparen, "expected '(' here"))
7327     return true;
7328 
7329   ModuleHash Hash;
7330   if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") ||
7331       ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") ||
7332       ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") ||
7333       ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") ||
7334       ParseUInt32(Hash[4]))
7335     return true;
7336 
7337   if (ParseToken(lltok::rparen, "expected ')' here") ||
7338       ParseToken(lltok::rparen, "expected ')' here"))
7339     return true;
7340 
7341   auto ModuleEntry = Index->addModule(Path, ID, Hash);
7342   ModuleIdMap[ID] = ModuleEntry->first();
7343 
7344   return false;
7345 }
7346 
7347 /// TypeIdEntry
7348 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
7349 bool LLParser::ParseTypeIdEntry(unsigned ID) {
7350   assert(Lex.getKind() == lltok::kw_typeid);
7351   Lex.Lex();
7352 
7353   std::string Name;
7354   if (ParseToken(lltok::colon, "expected ':' here") ||
7355       ParseToken(lltok::lparen, "expected '(' here") ||
7356       ParseToken(lltok::kw_name, "expected 'name' here") ||
7357       ParseToken(lltok::colon, "expected ':' here") ||
7358       ParseStringConstant(Name))
7359     return true;
7360 
7361   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
7362   if (ParseToken(lltok::comma, "expected ',' here") ||
7363       ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here"))
7364     return true;
7365 
7366   // Check if this ID was forward referenced, and if so, update the
7367   // corresponding GUIDs.
7368   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7369   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7370     for (auto TIDRef : FwdRefTIDs->second) {
7371       assert(!*TIDRef.first &&
7372              "Forward referenced type id GUID expected to be 0");
7373       *TIDRef.first = GlobalValue::getGUID(Name);
7374     }
7375     ForwardRefTypeIds.erase(FwdRefTIDs);
7376   }
7377 
7378   return false;
7379 }
7380 
7381 /// TypeIdSummary
7382 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
7383 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) {
7384   if (ParseToken(lltok::kw_summary, "expected 'summary' here") ||
7385       ParseToken(lltok::colon, "expected ':' here") ||
7386       ParseToken(lltok::lparen, "expected '(' here") ||
7387       ParseTypeTestResolution(TIS.TTRes))
7388     return true;
7389 
7390   if (EatIfPresent(lltok::comma)) {
7391     // Expect optional wpdResolutions field
7392     if (ParseOptionalWpdResolutions(TIS.WPDRes))
7393       return true;
7394   }
7395 
7396   if (ParseToken(lltok::rparen, "expected ')' here"))
7397     return true;
7398 
7399   return false;
7400 }
7401 
7402 /// TypeTestResolution
7403 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
7404 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
7405 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
7406 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
7407 ///         [',' 'inlinesBits' ':' UInt64]? ')'
7408 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) {
7409   if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
7410       ParseToken(lltok::colon, "expected ':' here") ||
7411       ParseToken(lltok::lparen, "expected '(' here") ||
7412       ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7413       ParseToken(lltok::colon, "expected ':' here"))
7414     return true;
7415 
7416   switch (Lex.getKind()) {
7417   case lltok::kw_unsat:
7418     TTRes.TheKind = TypeTestResolution::Unsat;
7419     break;
7420   case lltok::kw_byteArray:
7421     TTRes.TheKind = TypeTestResolution::ByteArray;
7422     break;
7423   case lltok::kw_inline:
7424     TTRes.TheKind = TypeTestResolution::Inline;
7425     break;
7426   case lltok::kw_single:
7427     TTRes.TheKind = TypeTestResolution::Single;
7428     break;
7429   case lltok::kw_allOnes:
7430     TTRes.TheKind = TypeTestResolution::AllOnes;
7431     break;
7432   default:
7433     return Error(Lex.getLoc(), "unexpected TypeTestResolution kind");
7434   }
7435   Lex.Lex();
7436 
7437   if (ParseToken(lltok::comma, "expected ',' here") ||
7438       ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
7439       ParseToken(lltok::colon, "expected ':' here") ||
7440       ParseUInt32(TTRes.SizeM1BitWidth))
7441     return true;
7442 
7443   // Parse optional fields
7444   while (EatIfPresent(lltok::comma)) {
7445     switch (Lex.getKind()) {
7446     case lltok::kw_alignLog2:
7447       Lex.Lex();
7448       if (ParseToken(lltok::colon, "expected ':'") ||
7449           ParseUInt64(TTRes.AlignLog2))
7450         return true;
7451       break;
7452     case lltok::kw_sizeM1:
7453       Lex.Lex();
7454       if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1))
7455         return true;
7456       break;
7457     case lltok::kw_bitMask: {
7458       unsigned Val;
7459       Lex.Lex();
7460       if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val))
7461         return true;
7462       assert(Val <= 0xff);
7463       TTRes.BitMask = (uint8_t)Val;
7464       break;
7465     }
7466     case lltok::kw_inlineBits:
7467       Lex.Lex();
7468       if (ParseToken(lltok::colon, "expected ':'") ||
7469           ParseUInt64(TTRes.InlineBits))
7470         return true;
7471       break;
7472     default:
7473       return Error(Lex.getLoc(), "expected optional TypeTestResolution field");
7474     }
7475   }
7476 
7477   if (ParseToken(lltok::rparen, "expected ')' here"))
7478     return true;
7479 
7480   return false;
7481 }
7482 
7483 /// OptionalWpdResolutions
7484 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
7485 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
7486 bool LLParser::ParseOptionalWpdResolutions(
7487     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
7488   if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
7489       ParseToken(lltok::colon, "expected ':' here") ||
7490       ParseToken(lltok::lparen, "expected '(' here"))
7491     return true;
7492 
7493   do {
7494     uint64_t Offset;
7495     WholeProgramDevirtResolution WPDRes;
7496     if (ParseToken(lltok::lparen, "expected '(' here") ||
7497         ParseToken(lltok::kw_offset, "expected 'offset' here") ||
7498         ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) ||
7499         ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) ||
7500         ParseToken(lltok::rparen, "expected ')' here"))
7501       return true;
7502     WPDResMap[Offset] = WPDRes;
7503   } while (EatIfPresent(lltok::comma));
7504 
7505   if (ParseToken(lltok::rparen, "expected ')' here"))
7506     return true;
7507 
7508   return false;
7509 }
7510 
7511 /// WpdRes
7512 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
7513 ///         [',' OptionalResByArg]? ')'
7514 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
7515 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
7516 ///         [',' OptionalResByArg]? ')'
7517 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
7518 ///         [',' OptionalResByArg]? ')'
7519 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) {
7520   if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
7521       ParseToken(lltok::colon, "expected ':' here") ||
7522       ParseToken(lltok::lparen, "expected '(' here") ||
7523       ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7524       ParseToken(lltok::colon, "expected ':' here"))
7525     return true;
7526 
7527   switch (Lex.getKind()) {
7528   case lltok::kw_indir:
7529     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
7530     break;
7531   case lltok::kw_singleImpl:
7532     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
7533     break;
7534   case lltok::kw_branchFunnel:
7535     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
7536     break;
7537   default:
7538     return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
7539   }
7540   Lex.Lex();
7541 
7542   // Parse optional fields
7543   while (EatIfPresent(lltok::comma)) {
7544     switch (Lex.getKind()) {
7545     case lltok::kw_singleImplName:
7546       Lex.Lex();
7547       if (ParseToken(lltok::colon, "expected ':' here") ||
7548           ParseStringConstant(WPDRes.SingleImplName))
7549         return true;
7550       break;
7551     case lltok::kw_resByArg:
7552       if (ParseOptionalResByArg(WPDRes.ResByArg))
7553         return true;
7554       break;
7555     default:
7556       return Error(Lex.getLoc(),
7557                    "expected optional WholeProgramDevirtResolution field");
7558     }
7559   }
7560 
7561   if (ParseToken(lltok::rparen, "expected ')' here"))
7562     return true;
7563 
7564   return false;
7565 }
7566 
7567 /// OptionalResByArg
7568 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
7569 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
7570 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
7571 ///                  'virtualConstProp' )
7572 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
7573 ///                [',' 'bit' ':' UInt32]? ')'
7574 bool LLParser::ParseOptionalResByArg(
7575     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
7576         &ResByArg) {
7577   if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
7578       ParseToken(lltok::colon, "expected ':' here") ||
7579       ParseToken(lltok::lparen, "expected '(' here"))
7580     return true;
7581 
7582   do {
7583     std::vector<uint64_t> Args;
7584     if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") ||
7585         ParseToken(lltok::kw_byArg, "expected 'byArg here") ||
7586         ParseToken(lltok::colon, "expected ':' here") ||
7587         ParseToken(lltok::lparen, "expected '(' here") ||
7588         ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7589         ParseToken(lltok::colon, "expected ':' here"))
7590       return true;
7591 
7592     WholeProgramDevirtResolution::ByArg ByArg;
7593     switch (Lex.getKind()) {
7594     case lltok::kw_indir:
7595       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
7596       break;
7597     case lltok::kw_uniformRetVal:
7598       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
7599       break;
7600     case lltok::kw_uniqueRetVal:
7601       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
7602       break;
7603     case lltok::kw_virtualConstProp:
7604       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
7605       break;
7606     default:
7607       return Error(Lex.getLoc(),
7608                    "unexpected WholeProgramDevirtResolution::ByArg kind");
7609     }
7610     Lex.Lex();
7611 
7612     // Parse optional fields
7613     while (EatIfPresent(lltok::comma)) {
7614       switch (Lex.getKind()) {
7615       case lltok::kw_info:
7616         Lex.Lex();
7617         if (ParseToken(lltok::colon, "expected ':' here") ||
7618             ParseUInt64(ByArg.Info))
7619           return true;
7620         break;
7621       case lltok::kw_byte:
7622         Lex.Lex();
7623         if (ParseToken(lltok::colon, "expected ':' here") ||
7624             ParseUInt32(ByArg.Byte))
7625           return true;
7626         break;
7627       case lltok::kw_bit:
7628         Lex.Lex();
7629         if (ParseToken(lltok::colon, "expected ':' here") ||
7630             ParseUInt32(ByArg.Bit))
7631           return true;
7632         break;
7633       default:
7634         return Error(Lex.getLoc(),
7635                      "expected optional whole program devirt field");
7636       }
7637     }
7638 
7639     if (ParseToken(lltok::rparen, "expected ')' here"))
7640       return true;
7641 
7642     ResByArg[Args] = ByArg;
7643   } while (EatIfPresent(lltok::comma));
7644 
7645   if (ParseToken(lltok::rparen, "expected ')' here"))
7646     return true;
7647 
7648   return false;
7649 }
7650 
7651 /// OptionalResByArg
7652 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
7653 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) {
7654   if (ParseToken(lltok::kw_args, "expected 'args' here") ||
7655       ParseToken(lltok::colon, "expected ':' here") ||
7656       ParseToken(lltok::lparen, "expected '(' here"))
7657     return true;
7658 
7659   do {
7660     uint64_t Val;
7661     if (ParseUInt64(Val))
7662       return true;
7663     Args.push_back(Val);
7664   } while (EatIfPresent(lltok::comma));
7665 
7666   if (ParseToken(lltok::rparen, "expected ')' here"))
7667     return true;
7668 
7669   return false;
7670 }
7671 
7672 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
7673 
7674 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
7675   bool ReadOnly = Fwd->isReadOnly();
7676   *Fwd = Resolved;
7677   if (ReadOnly)
7678     Fwd->setReadOnly();
7679 }
7680 
7681 /// Stores the given Name/GUID and associated summary into the Index.
7682 /// Also updates any forward references to the associated entry ID.
7683 void LLParser::AddGlobalValueToIndex(
7684     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
7685     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
7686   // First create the ValueInfo utilizing the Name or GUID.
7687   ValueInfo VI;
7688   if (GUID != 0) {
7689     assert(Name.empty());
7690     VI = Index->getOrInsertValueInfo(GUID);
7691   } else {
7692     assert(!Name.empty());
7693     if (M) {
7694       auto *GV = M->getNamedValue(Name);
7695       assert(GV);
7696       VI = Index->getOrInsertValueInfo(GV);
7697     } else {
7698       assert(
7699           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
7700           "Need a source_filename to compute GUID for local");
7701       GUID = GlobalValue::getGUID(
7702           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
7703       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
7704     }
7705   }
7706 
7707   // Add the summary if one was provided.
7708   if (Summary)
7709     Index->addGlobalValueSummary(VI, std::move(Summary));
7710 
7711   // Resolve forward references from calls/refs
7712   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
7713   if (FwdRefVIs != ForwardRefValueInfos.end()) {
7714     for (auto VIRef : FwdRefVIs->second) {
7715       assert(VIRef.first->getRef() == FwdVIRef &&
7716              "Forward referenced ValueInfo expected to be empty");
7717       resolveFwdRef(VIRef.first, VI);
7718     }
7719     ForwardRefValueInfos.erase(FwdRefVIs);
7720   }
7721 
7722   // Resolve forward references from aliases
7723   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
7724   if (FwdRefAliasees != ForwardRefAliasees.end()) {
7725     for (auto AliaseeRef : FwdRefAliasees->second) {
7726       assert(!AliaseeRef.first->hasAliasee() &&
7727              "Forward referencing alias already has aliasee");
7728       AliaseeRef.first->setAliasee(VI.getSummaryList().front().get());
7729     }
7730     ForwardRefAliasees.erase(FwdRefAliasees);
7731   }
7732 
7733   // Save the associated ValueInfo for use in later references by ID.
7734   if (ID == NumberedValueInfos.size())
7735     NumberedValueInfos.push_back(VI);
7736   else {
7737     // Handle non-continuous numbers (to make test simplification easier).
7738     if (ID > NumberedValueInfos.size())
7739       NumberedValueInfos.resize(ID + 1);
7740     NumberedValueInfos[ID] = VI;
7741   }
7742 }
7743 
7744 /// ParseGVEntry
7745 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
7746 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
7747 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
7748 bool LLParser::ParseGVEntry(unsigned ID) {
7749   assert(Lex.getKind() == lltok::kw_gv);
7750   Lex.Lex();
7751 
7752   if (ParseToken(lltok::colon, "expected ':' here") ||
7753       ParseToken(lltok::lparen, "expected '(' here"))
7754     return true;
7755 
7756   std::string Name;
7757   GlobalValue::GUID GUID = 0;
7758   switch (Lex.getKind()) {
7759   case lltok::kw_name:
7760     Lex.Lex();
7761     if (ParseToken(lltok::colon, "expected ':' here") ||
7762         ParseStringConstant(Name))
7763       return true;
7764     // Can't create GUID/ValueInfo until we have the linkage.
7765     break;
7766   case lltok::kw_guid:
7767     Lex.Lex();
7768     if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID))
7769       return true;
7770     break;
7771   default:
7772     return Error(Lex.getLoc(), "expected name or guid tag");
7773   }
7774 
7775   if (!EatIfPresent(lltok::comma)) {
7776     // No summaries. Wrap up.
7777     if (ParseToken(lltok::rparen, "expected ')' here"))
7778       return true;
7779     // This was created for a call to an external or indirect target.
7780     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
7781     // created for indirect calls with VP. A Name with no GUID came from
7782     // an external definition. We pass ExternalLinkage since that is only
7783     // used when the GUID must be computed from Name, and in that case
7784     // the symbol must have external linkage.
7785     AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
7786                           nullptr);
7787     return false;
7788   }
7789 
7790   // Have a list of summaries
7791   if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") ||
7792       ParseToken(lltok::colon, "expected ':' here"))
7793     return true;
7794 
7795   do {
7796     if (ParseToken(lltok::lparen, "expected '(' here"))
7797       return true;
7798     switch (Lex.getKind()) {
7799     case lltok::kw_function:
7800       if (ParseFunctionSummary(Name, GUID, ID))
7801         return true;
7802       break;
7803     case lltok::kw_variable:
7804       if (ParseVariableSummary(Name, GUID, ID))
7805         return true;
7806       break;
7807     case lltok::kw_alias:
7808       if (ParseAliasSummary(Name, GUID, ID))
7809         return true;
7810       break;
7811     default:
7812       return Error(Lex.getLoc(), "expected summary type");
7813     }
7814     if (ParseToken(lltok::rparen, "expected ')' here"))
7815       return true;
7816   } while (EatIfPresent(lltok::comma));
7817 
7818   if (ParseToken(lltok::rparen, "expected ')' here"))
7819     return true;
7820 
7821   return false;
7822 }
7823 
7824 /// FunctionSummary
7825 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
7826 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
7827 ///         [',' OptionalTypeIdInfo]? [',' OptionalRefs]? ')'
7828 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
7829                                     unsigned ID) {
7830   assert(Lex.getKind() == lltok::kw_function);
7831   Lex.Lex();
7832 
7833   StringRef ModulePath;
7834   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
7835       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
7836       /*Live=*/false, /*IsLocal=*/false);
7837   unsigned InstCount;
7838   std::vector<FunctionSummary::EdgeTy> Calls;
7839   FunctionSummary::TypeIdInfo TypeIdInfo;
7840   std::vector<ValueInfo> Refs;
7841   // Default is all-zeros (conservative values).
7842   FunctionSummary::FFlags FFlags = {};
7843   if (ParseToken(lltok::colon, "expected ':' here") ||
7844       ParseToken(lltok::lparen, "expected '(' here") ||
7845       ParseModuleReference(ModulePath) ||
7846       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
7847       ParseToken(lltok::comma, "expected ',' here") ||
7848       ParseToken(lltok::kw_insts, "expected 'insts' here") ||
7849       ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount))
7850     return true;
7851 
7852   // Parse optional fields
7853   while (EatIfPresent(lltok::comma)) {
7854     switch (Lex.getKind()) {
7855     case lltok::kw_funcFlags:
7856       if (ParseOptionalFFlags(FFlags))
7857         return true;
7858       break;
7859     case lltok::kw_calls:
7860       if (ParseOptionalCalls(Calls))
7861         return true;
7862       break;
7863     case lltok::kw_typeIdInfo:
7864       if (ParseOptionalTypeIdInfo(TypeIdInfo))
7865         return true;
7866       break;
7867     case lltok::kw_refs:
7868       if (ParseOptionalRefs(Refs))
7869         return true;
7870       break;
7871     default:
7872       return Error(Lex.getLoc(), "expected optional function summary field");
7873     }
7874   }
7875 
7876   if (ParseToken(lltok::rparen, "expected ')' here"))
7877     return true;
7878 
7879   auto FS = llvm::make_unique<FunctionSummary>(
7880       GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
7881       std::move(Calls), std::move(TypeIdInfo.TypeTests),
7882       std::move(TypeIdInfo.TypeTestAssumeVCalls),
7883       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
7884       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
7885       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls));
7886 
7887   FS->setModulePath(ModulePath);
7888 
7889   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
7890                         ID, std::move(FS));
7891 
7892   return false;
7893 }
7894 
7895 /// VariableSummary
7896 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
7897 ///         [',' OptionalRefs]? ')'
7898 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID,
7899                                     unsigned ID) {
7900   assert(Lex.getKind() == lltok::kw_variable);
7901   Lex.Lex();
7902 
7903   StringRef ModulePath;
7904   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
7905       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
7906       /*Live=*/false, /*IsLocal=*/false);
7907   GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false);
7908   std::vector<ValueInfo> Refs;
7909   if (ParseToken(lltok::colon, "expected ':' here") ||
7910       ParseToken(lltok::lparen, "expected '(' here") ||
7911       ParseModuleReference(ModulePath) ||
7912       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
7913       ParseToken(lltok::comma, "expected ',' here") ||
7914       ParseGVarFlags(GVarFlags))
7915     return true;
7916 
7917   // Parse optional refs field
7918   if (EatIfPresent(lltok::comma)) {
7919     if (ParseOptionalRefs(Refs))
7920       return true;
7921   }
7922 
7923   if (ParseToken(lltok::rparen, "expected ')' here"))
7924     return true;
7925 
7926   auto GS =
7927       llvm::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
7928 
7929   GS->setModulePath(ModulePath);
7930 
7931   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
7932                         ID, std::move(GS));
7933 
7934   return false;
7935 }
7936 
7937 /// AliasSummary
7938 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
7939 ///         'aliasee' ':' GVReference ')'
7940 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID,
7941                                  unsigned ID) {
7942   assert(Lex.getKind() == lltok::kw_alias);
7943   LocTy Loc = Lex.getLoc();
7944   Lex.Lex();
7945 
7946   StringRef ModulePath;
7947   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
7948       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
7949       /*Live=*/false, /*IsLocal=*/false);
7950   if (ParseToken(lltok::colon, "expected ':' here") ||
7951       ParseToken(lltok::lparen, "expected '(' here") ||
7952       ParseModuleReference(ModulePath) ||
7953       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
7954       ParseToken(lltok::comma, "expected ',' here") ||
7955       ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
7956       ParseToken(lltok::colon, "expected ':' here"))
7957     return true;
7958 
7959   ValueInfo AliaseeVI;
7960   unsigned GVId;
7961   if (ParseGVReference(AliaseeVI, GVId))
7962     return true;
7963 
7964   if (ParseToken(lltok::rparen, "expected ')' here"))
7965     return true;
7966 
7967   auto AS = llvm::make_unique<AliasSummary>(GVFlags);
7968 
7969   AS->setModulePath(ModulePath);
7970 
7971   // Record forward reference if the aliasee is not parsed yet.
7972   if (AliaseeVI.getRef() == FwdVIRef) {
7973     auto FwdRef = ForwardRefAliasees.insert(
7974         std::make_pair(GVId, std::vector<std::pair<AliasSummary *, LocTy>>()));
7975     FwdRef.first->second.push_back(std::make_pair(AS.get(), Loc));
7976   } else
7977     AS->setAliasee(AliaseeVI.getSummaryList().front().get());
7978 
7979   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
7980                         ID, std::move(AS));
7981 
7982   return false;
7983 }
7984 
7985 /// Flag
7986 ///   ::= [0|1]
7987 bool LLParser::ParseFlag(unsigned &Val) {
7988   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
7989     return TokError("expected integer");
7990   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
7991   Lex.Lex();
7992   return false;
7993 }
7994 
7995 /// OptionalFFlags
7996 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
7997 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
7998 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
7999 ///        [',' 'noInline' ':' Flag]? ')'
8000 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8001   assert(Lex.getKind() == lltok::kw_funcFlags);
8002   Lex.Lex();
8003 
8004   if (ParseToken(lltok::colon, "expected ':' in funcFlags") |
8005       ParseToken(lltok::lparen, "expected '(' in funcFlags"))
8006     return true;
8007 
8008   do {
8009     unsigned Val;
8010     switch (Lex.getKind()) {
8011     case lltok::kw_readNone:
8012       Lex.Lex();
8013       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8014         return true;
8015       FFlags.ReadNone = Val;
8016       break;
8017     case lltok::kw_readOnly:
8018       Lex.Lex();
8019       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8020         return true;
8021       FFlags.ReadOnly = Val;
8022       break;
8023     case lltok::kw_noRecurse:
8024       Lex.Lex();
8025       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8026         return true;
8027       FFlags.NoRecurse = Val;
8028       break;
8029     case lltok::kw_returnDoesNotAlias:
8030       Lex.Lex();
8031       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8032         return true;
8033       FFlags.ReturnDoesNotAlias = Val;
8034       break;
8035     case lltok::kw_noInline:
8036       Lex.Lex();
8037       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8038         return true;
8039       FFlags.NoInline = Val;
8040       break;
8041     default:
8042       return Error(Lex.getLoc(), "expected function flag type");
8043     }
8044   } while (EatIfPresent(lltok::comma));
8045 
8046   if (ParseToken(lltok::rparen, "expected ')' in funcFlags"))
8047     return true;
8048 
8049   return false;
8050 }
8051 
8052 /// OptionalCalls
8053 ///   := 'calls' ':' '(' Call [',' Call]* ')'
8054 /// Call ::= '(' 'callee' ':' GVReference
8055 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
8056 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
8057   assert(Lex.getKind() == lltok::kw_calls);
8058   Lex.Lex();
8059 
8060   if (ParseToken(lltok::colon, "expected ':' in calls") |
8061       ParseToken(lltok::lparen, "expected '(' in calls"))
8062     return true;
8063 
8064   IdToIndexMapType IdToIndexMap;
8065   // Parse each call edge
8066   do {
8067     ValueInfo VI;
8068     if (ParseToken(lltok::lparen, "expected '(' in call") ||
8069         ParseToken(lltok::kw_callee, "expected 'callee' in call") ||
8070         ParseToken(lltok::colon, "expected ':'"))
8071       return true;
8072 
8073     LocTy Loc = Lex.getLoc();
8074     unsigned GVId;
8075     if (ParseGVReference(VI, GVId))
8076       return true;
8077 
8078     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
8079     unsigned RelBF = 0;
8080     if (EatIfPresent(lltok::comma)) {
8081       // Expect either hotness or relbf
8082       if (EatIfPresent(lltok::kw_hotness)) {
8083         if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness))
8084           return true;
8085       } else {
8086         if (ParseToken(lltok::kw_relbf, "expected relbf") ||
8087             ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF))
8088           return true;
8089       }
8090     }
8091     // Keep track of the Call array index needing a forward reference.
8092     // We will save the location of the ValueInfo needing an update, but
8093     // can only do so once the std::vector is finalized.
8094     if (VI.getRef() == FwdVIRef)
8095       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
8096     Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
8097 
8098     if (ParseToken(lltok::rparen, "expected ')' in call"))
8099       return true;
8100   } while (EatIfPresent(lltok::comma));
8101 
8102   // Now that the Calls vector is finalized, it is safe to save the locations
8103   // of any forward GV references that need updating later.
8104   for (auto I : IdToIndexMap) {
8105     for (auto P : I.second) {
8106       assert(Calls[P.first].first.getRef() == FwdVIRef &&
8107              "Forward referenced ValueInfo expected to be empty");
8108       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8109           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8110       FwdRef.first->second.push_back(
8111           std::make_pair(&Calls[P.first].first, P.second));
8112     }
8113   }
8114 
8115   if (ParseToken(lltok::rparen, "expected ')' in calls"))
8116     return true;
8117 
8118   return false;
8119 }
8120 
8121 /// Hotness
8122 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
8123 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) {
8124   switch (Lex.getKind()) {
8125   case lltok::kw_unknown:
8126     Hotness = CalleeInfo::HotnessType::Unknown;
8127     break;
8128   case lltok::kw_cold:
8129     Hotness = CalleeInfo::HotnessType::Cold;
8130     break;
8131   case lltok::kw_none:
8132     Hotness = CalleeInfo::HotnessType::None;
8133     break;
8134   case lltok::kw_hot:
8135     Hotness = CalleeInfo::HotnessType::Hot;
8136     break;
8137   case lltok::kw_critical:
8138     Hotness = CalleeInfo::HotnessType::Critical;
8139     break;
8140   default:
8141     return Error(Lex.getLoc(), "invalid call edge hotness");
8142   }
8143   Lex.Lex();
8144   return false;
8145 }
8146 
8147 /// OptionalRefs
8148 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
8149 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) {
8150   assert(Lex.getKind() == lltok::kw_refs);
8151   Lex.Lex();
8152 
8153   if (ParseToken(lltok::colon, "expected ':' in refs") |
8154       ParseToken(lltok::lparen, "expected '(' in refs"))
8155     return true;
8156 
8157   struct ValueContext {
8158     ValueInfo VI;
8159     unsigned GVId;
8160     LocTy Loc;
8161   };
8162   std::vector<ValueContext> VContexts;
8163   // Parse each ref edge
8164   do {
8165     ValueContext VC;
8166     VC.Loc = Lex.getLoc();
8167     if (ParseGVReference(VC.VI, VC.GVId))
8168       return true;
8169     VContexts.push_back(VC);
8170   } while (EatIfPresent(lltok::comma));
8171 
8172   // Sort value contexts so that ones with readonly ValueInfo are at the end
8173   // of VContexts vector. This is needed to match immutableRefCount() behavior.
8174   llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
8175     return VC1.VI.isReadOnly() < VC2.VI.isReadOnly();
8176   });
8177 
8178   IdToIndexMapType IdToIndexMap;
8179   for (auto &VC : VContexts) {
8180     // Keep track of the Refs array index needing a forward reference.
8181     // We will save the location of the ValueInfo needing an update, but
8182     // can only do so once the std::vector is finalized.
8183     if (VC.VI.getRef() == FwdVIRef)
8184       IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
8185     Refs.push_back(VC.VI);
8186   }
8187 
8188   // Now that the Refs vector is finalized, it is safe to save the locations
8189   // of any forward GV references that need updating later.
8190   for (auto I : IdToIndexMap) {
8191     for (auto P : I.second) {
8192       assert(Refs[P.first].getRef() == FwdVIRef &&
8193              "Forward referenced ValueInfo expected to be empty");
8194       auto FwdRef = ForwardRefValueInfos.insert(std::make_pair(
8195           I.first, std::vector<std::pair<ValueInfo *, LocTy>>()));
8196       FwdRef.first->second.push_back(std::make_pair(&Refs[P.first], P.second));
8197     }
8198   }
8199 
8200   if (ParseToken(lltok::rparen, "expected ')' in refs"))
8201     return true;
8202 
8203   return false;
8204 }
8205 
8206 /// OptionalTypeIdInfo
8207 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
8208 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
8209 ///         [',' TypeCheckedLoadConstVCalls]? ')'
8210 bool LLParser::ParseOptionalTypeIdInfo(
8211     FunctionSummary::TypeIdInfo &TypeIdInfo) {
8212   assert(Lex.getKind() == lltok::kw_typeIdInfo);
8213   Lex.Lex();
8214 
8215   if (ParseToken(lltok::colon, "expected ':' here") ||
8216       ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8217     return true;
8218 
8219   do {
8220     switch (Lex.getKind()) {
8221     case lltok::kw_typeTests:
8222       if (ParseTypeTests(TypeIdInfo.TypeTests))
8223         return true;
8224       break;
8225     case lltok::kw_typeTestAssumeVCalls:
8226       if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
8227                            TypeIdInfo.TypeTestAssumeVCalls))
8228         return true;
8229       break;
8230     case lltok::kw_typeCheckedLoadVCalls:
8231       if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
8232                            TypeIdInfo.TypeCheckedLoadVCalls))
8233         return true;
8234       break;
8235     case lltok::kw_typeTestAssumeConstVCalls:
8236       if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
8237                               TypeIdInfo.TypeTestAssumeConstVCalls))
8238         return true;
8239       break;
8240     case lltok::kw_typeCheckedLoadConstVCalls:
8241       if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
8242                               TypeIdInfo.TypeCheckedLoadConstVCalls))
8243         return true;
8244       break;
8245     default:
8246       return Error(Lex.getLoc(), "invalid typeIdInfo list type");
8247     }
8248   } while (EatIfPresent(lltok::comma));
8249 
8250   if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8251     return true;
8252 
8253   return false;
8254 }
8255 
8256 /// TypeTests
8257 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
8258 ///         [',' (SummaryID | UInt64)]* ')'
8259 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
8260   assert(Lex.getKind() == lltok::kw_typeTests);
8261   Lex.Lex();
8262 
8263   if (ParseToken(lltok::colon, "expected ':' here") ||
8264       ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8265     return true;
8266 
8267   IdToIndexMapType IdToIndexMap;
8268   do {
8269     GlobalValue::GUID GUID = 0;
8270     if (Lex.getKind() == lltok::SummaryID) {
8271       unsigned ID = Lex.getUIntVal();
8272       LocTy Loc = Lex.getLoc();
8273       // Keep track of the TypeTests array index needing a forward reference.
8274       // We will save the location of the GUID needing an update, but
8275       // can only do so once the std::vector is finalized.
8276       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
8277       Lex.Lex();
8278     } else if (ParseUInt64(GUID))
8279       return true;
8280     TypeTests.push_back(GUID);
8281   } while (EatIfPresent(lltok::comma));
8282 
8283   // Now that the TypeTests vector is finalized, it is safe to save the
8284   // locations of any forward GV references that need updating later.
8285   for (auto I : IdToIndexMap) {
8286     for (auto P : I.second) {
8287       assert(TypeTests[P.first] == 0 &&
8288              "Forward referenced type id GUID expected to be 0");
8289       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8290           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8291       FwdRef.first->second.push_back(
8292           std::make_pair(&TypeTests[P.first], P.second));
8293     }
8294   }
8295 
8296   if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8297     return true;
8298 
8299   return false;
8300 }
8301 
8302 /// VFuncIdList
8303 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
8304 bool LLParser::ParseVFuncIdList(
8305     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
8306   assert(Lex.getKind() == Kind);
8307   Lex.Lex();
8308 
8309   if (ParseToken(lltok::colon, "expected ':' here") ||
8310       ParseToken(lltok::lparen, "expected '(' here"))
8311     return true;
8312 
8313   IdToIndexMapType IdToIndexMap;
8314   do {
8315     FunctionSummary::VFuncId VFuncId;
8316     if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
8317       return true;
8318     VFuncIdList.push_back(VFuncId);
8319   } while (EatIfPresent(lltok::comma));
8320 
8321   if (ParseToken(lltok::rparen, "expected ')' here"))
8322     return true;
8323 
8324   // Now that the VFuncIdList vector is finalized, it is safe to save the
8325   // locations of any forward GV references that need updating later.
8326   for (auto I : IdToIndexMap) {
8327     for (auto P : I.second) {
8328       assert(VFuncIdList[P.first].GUID == 0 &&
8329              "Forward referenced type id GUID expected to be 0");
8330       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8331           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8332       FwdRef.first->second.push_back(
8333           std::make_pair(&VFuncIdList[P.first].GUID, P.second));
8334     }
8335   }
8336 
8337   return false;
8338 }
8339 
8340 /// ConstVCallList
8341 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
8342 bool LLParser::ParseConstVCallList(
8343     lltok::Kind Kind,
8344     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
8345   assert(Lex.getKind() == Kind);
8346   Lex.Lex();
8347 
8348   if (ParseToken(lltok::colon, "expected ':' here") ||
8349       ParseToken(lltok::lparen, "expected '(' here"))
8350     return true;
8351 
8352   IdToIndexMapType IdToIndexMap;
8353   do {
8354     FunctionSummary::ConstVCall ConstVCall;
8355     if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
8356       return true;
8357     ConstVCallList.push_back(ConstVCall);
8358   } while (EatIfPresent(lltok::comma));
8359 
8360   if (ParseToken(lltok::rparen, "expected ')' here"))
8361     return true;
8362 
8363   // Now that the ConstVCallList vector is finalized, it is safe to save the
8364   // locations of any forward GV references that need updating later.
8365   for (auto I : IdToIndexMap) {
8366     for (auto P : I.second) {
8367       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
8368              "Forward referenced type id GUID expected to be 0");
8369       auto FwdRef = ForwardRefTypeIds.insert(std::make_pair(
8370           I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>()));
8371       FwdRef.first->second.push_back(
8372           std::make_pair(&ConstVCallList[P.first].VFunc.GUID, P.second));
8373     }
8374   }
8375 
8376   return false;
8377 }
8378 
8379 /// ConstVCall
8380 ///   ::= '(' VFuncId ',' Args ')'
8381 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
8382                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
8383   if (ParseToken(lltok::lparen, "expected '(' here") ||
8384       ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
8385     return true;
8386 
8387   if (EatIfPresent(lltok::comma))
8388     if (ParseArgs(ConstVCall.Args))
8389       return true;
8390 
8391   if (ParseToken(lltok::rparen, "expected ')' here"))
8392     return true;
8393 
8394   return false;
8395 }
8396 
8397 /// VFuncId
8398 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
8399 ///         'offset' ':' UInt64 ')'
8400 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId,
8401                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
8402   assert(Lex.getKind() == lltok::kw_vFuncId);
8403   Lex.Lex();
8404 
8405   if (ParseToken(lltok::colon, "expected ':' here") ||
8406       ParseToken(lltok::lparen, "expected '(' here"))
8407     return true;
8408 
8409   if (Lex.getKind() == lltok::SummaryID) {
8410     VFuncId.GUID = 0;
8411     unsigned ID = Lex.getUIntVal();
8412     LocTy Loc = Lex.getLoc();
8413     // Keep track of the array index needing a forward reference.
8414     // We will save the location of the GUID needing an update, but
8415     // can only do so once the caller's std::vector is finalized.
8416     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
8417     Lex.Lex();
8418   } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") ||
8419              ParseToken(lltok::colon, "expected ':' here") ||
8420              ParseUInt64(VFuncId.GUID))
8421     return true;
8422 
8423   if (ParseToken(lltok::comma, "expected ',' here") ||
8424       ParseToken(lltok::kw_offset, "expected 'offset' here") ||
8425       ParseToken(lltok::colon, "expected ':' here") ||
8426       ParseUInt64(VFuncId.Offset) ||
8427       ParseToken(lltok::rparen, "expected ')' here"))
8428     return true;
8429 
8430   return false;
8431 }
8432 
8433 /// GVFlags
8434 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
8435 ///         'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ','
8436 ///         'dsoLocal' ':' Flag ')'
8437 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
8438   assert(Lex.getKind() == lltok::kw_flags);
8439   Lex.Lex();
8440 
8441   bool HasLinkage;
8442   if (ParseToken(lltok::colon, "expected ':' here") ||
8443       ParseToken(lltok::lparen, "expected '(' here") ||
8444       ParseToken(lltok::kw_linkage, "expected 'linkage' here") ||
8445       ParseToken(lltok::colon, "expected ':' here"))
8446     return true;
8447 
8448   GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
8449   assert(HasLinkage && "Linkage not optional in summary entry");
8450   Lex.Lex();
8451 
8452   unsigned Flag;
8453   if (ParseToken(lltok::comma, "expected ',' here") ||
8454       ParseToken(lltok::kw_notEligibleToImport,
8455                  "expected 'notEligibleToImport' here") ||
8456       ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag))
8457     return true;
8458   GVFlags.NotEligibleToImport = Flag;
8459 
8460   if (ParseToken(lltok::comma, "expected ',' here") ||
8461       ParseToken(lltok::kw_live, "expected 'live' here") ||
8462       ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag))
8463     return true;
8464   GVFlags.Live = Flag;
8465 
8466   if (ParseToken(lltok::comma, "expected ',' here") ||
8467       ParseToken(lltok::kw_dsoLocal, "expected 'dsoLocal' here") ||
8468       ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag))
8469     return true;
8470   GVFlags.DSOLocal = Flag;
8471 
8472   if (ParseToken(lltok::rparen, "expected ')' here"))
8473     return true;
8474 
8475   return false;
8476 }
8477 
8478 /// GVarFlags
8479 ///   ::= 'varFlags' ':' '(' 'readonly' ':' Flag ')'
8480 bool LLParser::ParseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
8481   assert(Lex.getKind() == lltok::kw_varFlags);
8482   Lex.Lex();
8483 
8484   unsigned Flag;
8485   if (ParseToken(lltok::colon, "expected ':' here") ||
8486       ParseToken(lltok::lparen, "expected '(' here") ||
8487       ParseToken(lltok::kw_readonly, "expected 'readonly' here") ||
8488       ParseToken(lltok::colon, "expected ':' here"))
8489     return true;
8490 
8491   ParseFlag(Flag);
8492   GVarFlags.ReadOnly = Flag;
8493 
8494   if (ParseToken(lltok::rparen, "expected ')' here"))
8495     return true;
8496   return false;
8497 }
8498 
8499 /// ModuleReference
8500 ///   ::= 'module' ':' UInt
8501 bool LLParser::ParseModuleReference(StringRef &ModulePath) {
8502   // Parse module id.
8503   if (ParseToken(lltok::kw_module, "expected 'module' here") ||
8504       ParseToken(lltok::colon, "expected ':' here") ||
8505       ParseToken(lltok::SummaryID, "expected module ID"))
8506     return true;
8507 
8508   unsigned ModuleID = Lex.getUIntVal();
8509   auto I = ModuleIdMap.find(ModuleID);
8510   // We should have already parsed all module IDs
8511   assert(I != ModuleIdMap.end());
8512   ModulePath = I->second;
8513   return false;
8514 }
8515 
8516 /// GVReference
8517 ///   ::= SummaryID
8518 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) {
8519   bool ReadOnly = EatIfPresent(lltok::kw_readonly);
8520   if (ParseToken(lltok::SummaryID, "expected GV ID"))
8521     return true;
8522 
8523   GVId = Lex.getUIntVal();
8524   // Check if we already have a VI for this GV
8525   if (GVId < NumberedValueInfos.size()) {
8526     assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
8527     VI = NumberedValueInfos[GVId];
8528   } else
8529     // We will create a forward reference to the stored location.
8530     VI = ValueInfo(false, FwdVIRef);
8531 
8532   if (ReadOnly)
8533     VI.setReadOnly();
8534   return false;
8535 }
8536