1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the parser class for .ll files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "LLParser.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/None.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/AsmParser/SlotMapping.h" 20 #include "llvm/BinaryFormat/Dwarf.h" 21 #include "llvm/IR/Argument.h" 22 #include "llvm/IR/AutoUpgrade.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/CallingConv.h" 25 #include "llvm/IR/Comdat.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DebugInfoMetadata.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/GlobalIFunc.h" 31 #include "llvm/IR/GlobalObject.h" 32 #include "llvm/IR/InlineAsm.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/IR/ValueSymbolTable.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/MathExtras.h" 46 #include "llvm/Support/SaveAndRestore.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <cstring> 51 #include <iterator> 52 #include <vector> 53 54 using namespace llvm; 55 56 static std::string getTypeString(Type *T) { 57 std::string Result; 58 raw_string_ostream Tmp(Result); 59 Tmp << *T; 60 return Tmp.str(); 61 } 62 63 /// Run: module ::= toplevelentity* 64 bool LLParser::Run() { 65 // Prime the lexer. 66 Lex.Lex(); 67 68 if (Context.shouldDiscardValueNames()) 69 return Error( 70 Lex.getLoc(), 71 "Can't read textual IR with a Context that discards named Values"); 72 73 return ParseTopLevelEntities() || ValidateEndOfModule() || 74 ValidateEndOfIndex(); 75 } 76 77 bool LLParser::parseStandaloneConstantValue(Constant *&C, 78 const SlotMapping *Slots) { 79 restoreParsingState(Slots); 80 Lex.Lex(); 81 82 Type *Ty = nullptr; 83 if (ParseType(Ty) || parseConstantValue(Ty, C)) 84 return true; 85 if (Lex.getKind() != lltok::Eof) 86 return Error(Lex.getLoc(), "expected end of string"); 87 return false; 88 } 89 90 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 91 const SlotMapping *Slots) { 92 restoreParsingState(Slots); 93 Lex.Lex(); 94 95 Read = 0; 96 SMLoc Start = Lex.getLoc(); 97 Ty = nullptr; 98 if (ParseType(Ty)) 99 return true; 100 SMLoc End = Lex.getLoc(); 101 Read = End.getPointer() - Start.getPointer(); 102 103 return false; 104 } 105 106 void LLParser::restoreParsingState(const SlotMapping *Slots) { 107 if (!Slots) 108 return; 109 NumberedVals = Slots->GlobalValues; 110 NumberedMetadata = Slots->MetadataNodes; 111 for (const auto &I : Slots->NamedTypes) 112 NamedTypes.insert( 113 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 114 for (const auto &I : Slots->Types) 115 NumberedTypes.insert( 116 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 117 } 118 119 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 120 /// module. 121 bool LLParser::ValidateEndOfModule() { 122 if (!M) 123 return false; 124 // Handle any function attribute group forward references. 125 for (const auto &RAG : ForwardRefAttrGroups) { 126 Value *V = RAG.first; 127 const std::vector<unsigned> &Attrs = RAG.second; 128 AttrBuilder B; 129 130 for (const auto &Attr : Attrs) 131 B.merge(NumberedAttrBuilders[Attr]); 132 133 if (Function *Fn = dyn_cast<Function>(V)) { 134 AttributeList AS = Fn->getAttributes(); 135 AttrBuilder FnAttrs(AS.getFnAttributes()); 136 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 137 138 FnAttrs.merge(B); 139 140 // If the alignment was parsed as an attribute, move to the alignment 141 // field. 142 if (FnAttrs.hasAlignmentAttr()) { 143 Fn->setAlignment(FnAttrs.getAlignment()); 144 FnAttrs.removeAttribute(Attribute::Alignment); 145 } 146 147 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 148 AttributeSet::get(Context, FnAttrs)); 149 Fn->setAttributes(AS); 150 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 151 AttributeList AS = CI->getAttributes(); 152 AttrBuilder FnAttrs(AS.getFnAttributes()); 153 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 154 FnAttrs.merge(B); 155 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 156 AttributeSet::get(Context, FnAttrs)); 157 CI->setAttributes(AS); 158 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 159 AttributeList AS = II->getAttributes(); 160 AttrBuilder FnAttrs(AS.getFnAttributes()); 161 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 162 FnAttrs.merge(B); 163 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 164 AttributeSet::get(Context, FnAttrs)); 165 II->setAttributes(AS); 166 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) { 167 AttributeList AS = CBI->getAttributes(); 168 AttrBuilder FnAttrs(AS.getFnAttributes()); 169 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 170 FnAttrs.merge(B); 171 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 172 AttributeSet::get(Context, FnAttrs)); 173 CBI->setAttributes(AS); 174 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 175 AttrBuilder Attrs(GV->getAttributes()); 176 Attrs.merge(B); 177 GV->setAttributes(AttributeSet::get(Context,Attrs)); 178 } else { 179 llvm_unreachable("invalid object with forward attribute group reference"); 180 } 181 } 182 183 // If there are entries in ForwardRefBlockAddresses at this point, the 184 // function was never defined. 185 if (!ForwardRefBlockAddresses.empty()) 186 return Error(ForwardRefBlockAddresses.begin()->first.Loc, 187 "expected function name in blockaddress"); 188 189 for (const auto &NT : NumberedTypes) 190 if (NT.second.second.isValid()) 191 return Error(NT.second.second, 192 "use of undefined type '%" + Twine(NT.first) + "'"); 193 194 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 195 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 196 if (I->second.second.isValid()) 197 return Error(I->second.second, 198 "use of undefined type named '" + I->getKey() + "'"); 199 200 if (!ForwardRefComdats.empty()) 201 return Error(ForwardRefComdats.begin()->second, 202 "use of undefined comdat '$" + 203 ForwardRefComdats.begin()->first + "'"); 204 205 if (!ForwardRefVals.empty()) 206 return Error(ForwardRefVals.begin()->second.second, 207 "use of undefined value '@" + ForwardRefVals.begin()->first + 208 "'"); 209 210 if (!ForwardRefValIDs.empty()) 211 return Error(ForwardRefValIDs.begin()->second.second, 212 "use of undefined value '@" + 213 Twine(ForwardRefValIDs.begin()->first) + "'"); 214 215 if (!ForwardRefMDNodes.empty()) 216 return Error(ForwardRefMDNodes.begin()->second.second, 217 "use of undefined metadata '!" + 218 Twine(ForwardRefMDNodes.begin()->first) + "'"); 219 220 // Resolve metadata cycles. 221 for (auto &N : NumberedMetadata) { 222 if (N.second && !N.second->isResolved()) 223 N.second->resolveCycles(); 224 } 225 226 for (auto *Inst : InstsWithTBAATag) { 227 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 228 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 229 auto *UpgradedMD = UpgradeTBAANode(*MD); 230 if (MD != UpgradedMD) 231 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 232 } 233 234 // Look for intrinsic functions and CallInst that need to be upgraded 235 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 236 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 237 238 // Some types could be renamed during loading if several modules are 239 // loaded in the same LLVMContext (LTO scenario). In this case we should 240 // remangle intrinsics names as well. 241 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) { 242 Function *F = &*FI++; 243 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 244 F->replaceAllUsesWith(Remangled.getValue()); 245 F->eraseFromParent(); 246 } 247 } 248 249 if (UpgradeDebugInfo) 250 llvm::UpgradeDebugInfo(*M); 251 252 UpgradeModuleFlags(*M); 253 UpgradeSectionAttributes(*M); 254 255 if (!Slots) 256 return false; 257 // Initialize the slot mapping. 258 // Because by this point we've parsed and validated everything, we can "steal" 259 // the mapping from LLParser as it doesn't need it anymore. 260 Slots->GlobalValues = std::move(NumberedVals); 261 Slots->MetadataNodes = std::move(NumberedMetadata); 262 for (const auto &I : NamedTypes) 263 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 264 for (const auto &I : NumberedTypes) 265 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 266 267 return false; 268 } 269 270 /// Do final validity and sanity checks at the end of the index. 271 bool LLParser::ValidateEndOfIndex() { 272 if (!Index) 273 return false; 274 275 if (!ForwardRefValueInfos.empty()) 276 return Error(ForwardRefValueInfos.begin()->second.front().second, 277 "use of undefined summary '^" + 278 Twine(ForwardRefValueInfos.begin()->first) + "'"); 279 280 if (!ForwardRefAliasees.empty()) 281 return Error(ForwardRefAliasees.begin()->second.front().second, 282 "use of undefined summary '^" + 283 Twine(ForwardRefAliasees.begin()->first) + "'"); 284 285 if (!ForwardRefTypeIds.empty()) 286 return Error(ForwardRefTypeIds.begin()->second.front().second, 287 "use of undefined type id summary '^" + 288 Twine(ForwardRefTypeIds.begin()->first) + "'"); 289 290 return false; 291 } 292 293 //===----------------------------------------------------------------------===// 294 // Top-Level Entities 295 //===----------------------------------------------------------------------===// 296 297 bool LLParser::ParseTopLevelEntities() { 298 // If there is no Module, then parse just the summary index entries. 299 if (!M) { 300 while (true) { 301 switch (Lex.getKind()) { 302 case lltok::Eof: 303 return false; 304 case lltok::SummaryID: 305 if (ParseSummaryEntry()) 306 return true; 307 break; 308 case lltok::kw_source_filename: 309 if (ParseSourceFileName()) 310 return true; 311 break; 312 default: 313 // Skip everything else 314 Lex.Lex(); 315 } 316 } 317 } 318 while (true) { 319 switch (Lex.getKind()) { 320 default: return TokError("expected top-level entity"); 321 case lltok::Eof: return false; 322 case lltok::kw_declare: if (ParseDeclare()) return true; break; 323 case lltok::kw_define: if (ParseDefine()) return true; break; 324 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 325 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 326 case lltok::kw_source_filename: 327 if (ParseSourceFileName()) 328 return true; 329 break; 330 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 331 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 332 case lltok::LocalVar: if (ParseNamedType()) return true; break; 333 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 334 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 335 case lltok::ComdatVar: if (parseComdat()) return true; break; 336 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 337 case lltok::SummaryID: 338 if (ParseSummaryEntry()) 339 return true; 340 break; 341 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break; 342 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break; 343 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break; 344 case lltok::kw_uselistorder_bb: 345 if (ParseUseListOrderBB()) 346 return true; 347 break; 348 } 349 } 350 } 351 352 /// toplevelentity 353 /// ::= 'module' 'asm' STRINGCONSTANT 354 bool LLParser::ParseModuleAsm() { 355 assert(Lex.getKind() == lltok::kw_module); 356 Lex.Lex(); 357 358 std::string AsmStr; 359 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 360 ParseStringConstant(AsmStr)) return true; 361 362 M->appendModuleInlineAsm(AsmStr); 363 return false; 364 } 365 366 /// toplevelentity 367 /// ::= 'target' 'triple' '=' STRINGCONSTANT 368 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 369 bool LLParser::ParseTargetDefinition() { 370 assert(Lex.getKind() == lltok::kw_target); 371 std::string Str; 372 switch (Lex.Lex()) { 373 default: return TokError("unknown target property"); 374 case lltok::kw_triple: 375 Lex.Lex(); 376 if (ParseToken(lltok::equal, "expected '=' after target triple") || 377 ParseStringConstant(Str)) 378 return true; 379 M->setTargetTriple(Str); 380 return false; 381 case lltok::kw_datalayout: 382 Lex.Lex(); 383 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 384 ParseStringConstant(Str)) 385 return true; 386 if (DataLayoutStr.empty()) 387 M->setDataLayout(Str); 388 return false; 389 } 390 } 391 392 /// toplevelentity 393 /// ::= 'source_filename' '=' STRINGCONSTANT 394 bool LLParser::ParseSourceFileName() { 395 assert(Lex.getKind() == lltok::kw_source_filename); 396 Lex.Lex(); 397 if (ParseToken(lltok::equal, "expected '=' after source_filename") || 398 ParseStringConstant(SourceFileName)) 399 return true; 400 if (M) 401 M->setSourceFileName(SourceFileName); 402 return false; 403 } 404 405 /// toplevelentity 406 /// ::= 'deplibs' '=' '[' ']' 407 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 408 /// FIXME: Remove in 4.0. Currently parse, but ignore. 409 bool LLParser::ParseDepLibs() { 410 assert(Lex.getKind() == lltok::kw_deplibs); 411 Lex.Lex(); 412 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 413 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 414 return true; 415 416 if (EatIfPresent(lltok::rsquare)) 417 return false; 418 419 do { 420 std::string Str; 421 if (ParseStringConstant(Str)) return true; 422 } while (EatIfPresent(lltok::comma)); 423 424 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 425 } 426 427 /// ParseUnnamedType: 428 /// ::= LocalVarID '=' 'type' type 429 bool LLParser::ParseUnnamedType() { 430 LocTy TypeLoc = Lex.getLoc(); 431 unsigned TypeID = Lex.getUIntVal(); 432 Lex.Lex(); // eat LocalVarID; 433 434 if (ParseToken(lltok::equal, "expected '=' after name") || 435 ParseToken(lltok::kw_type, "expected 'type' after '='")) 436 return true; 437 438 Type *Result = nullptr; 439 if (ParseStructDefinition(TypeLoc, "", 440 NumberedTypes[TypeID], Result)) return true; 441 442 if (!isa<StructType>(Result)) { 443 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 444 if (Entry.first) 445 return Error(TypeLoc, "non-struct types may not be recursive"); 446 Entry.first = Result; 447 Entry.second = SMLoc(); 448 } 449 450 return false; 451 } 452 453 /// toplevelentity 454 /// ::= LocalVar '=' 'type' type 455 bool LLParser::ParseNamedType() { 456 std::string Name = Lex.getStrVal(); 457 LocTy NameLoc = Lex.getLoc(); 458 Lex.Lex(); // eat LocalVar. 459 460 if (ParseToken(lltok::equal, "expected '=' after name") || 461 ParseToken(lltok::kw_type, "expected 'type' after name")) 462 return true; 463 464 Type *Result = nullptr; 465 if (ParseStructDefinition(NameLoc, Name, 466 NamedTypes[Name], Result)) return true; 467 468 if (!isa<StructType>(Result)) { 469 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 470 if (Entry.first) 471 return Error(NameLoc, "non-struct types may not be recursive"); 472 Entry.first = Result; 473 Entry.second = SMLoc(); 474 } 475 476 return false; 477 } 478 479 /// toplevelentity 480 /// ::= 'declare' FunctionHeader 481 bool LLParser::ParseDeclare() { 482 assert(Lex.getKind() == lltok::kw_declare); 483 Lex.Lex(); 484 485 std::vector<std::pair<unsigned, MDNode *>> MDs; 486 while (Lex.getKind() == lltok::MetadataVar) { 487 unsigned MDK; 488 MDNode *N; 489 if (ParseMetadataAttachment(MDK, N)) 490 return true; 491 MDs.push_back({MDK, N}); 492 } 493 494 Function *F; 495 if (ParseFunctionHeader(F, false)) 496 return true; 497 for (auto &MD : MDs) 498 F->addMetadata(MD.first, *MD.second); 499 return false; 500 } 501 502 /// toplevelentity 503 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 504 bool LLParser::ParseDefine() { 505 assert(Lex.getKind() == lltok::kw_define); 506 Lex.Lex(); 507 508 Function *F; 509 return ParseFunctionHeader(F, true) || 510 ParseOptionalFunctionMetadata(*F) || 511 ParseFunctionBody(*F); 512 } 513 514 /// ParseGlobalType 515 /// ::= 'constant' 516 /// ::= 'global' 517 bool LLParser::ParseGlobalType(bool &IsConstant) { 518 if (Lex.getKind() == lltok::kw_constant) 519 IsConstant = true; 520 else if (Lex.getKind() == lltok::kw_global) 521 IsConstant = false; 522 else { 523 IsConstant = false; 524 return TokError("expected 'global' or 'constant'"); 525 } 526 Lex.Lex(); 527 return false; 528 } 529 530 bool LLParser::ParseOptionalUnnamedAddr( 531 GlobalVariable::UnnamedAddr &UnnamedAddr) { 532 if (EatIfPresent(lltok::kw_unnamed_addr)) 533 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 534 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 535 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 536 else 537 UnnamedAddr = GlobalValue::UnnamedAddr::None; 538 return false; 539 } 540 541 /// ParseUnnamedGlobal: 542 /// OptionalVisibility (ALIAS | IFUNC) ... 543 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 544 /// OptionalDLLStorageClass 545 /// ... -> global variable 546 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 547 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 548 /// OptionalDLLStorageClass 549 /// ... -> global variable 550 bool LLParser::ParseUnnamedGlobal() { 551 unsigned VarID = NumberedVals.size(); 552 std::string Name; 553 LocTy NameLoc = Lex.getLoc(); 554 555 // Handle the GlobalID form. 556 if (Lex.getKind() == lltok::GlobalID) { 557 if (Lex.getUIntVal() != VarID) 558 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 559 Twine(VarID) + "'"); 560 Lex.Lex(); // eat GlobalID; 561 562 if (ParseToken(lltok::equal, "expected '=' after name")) 563 return true; 564 } 565 566 bool HasLinkage; 567 unsigned Linkage, Visibility, DLLStorageClass; 568 bool DSOLocal; 569 GlobalVariable::ThreadLocalMode TLM; 570 GlobalVariable::UnnamedAddr UnnamedAddr; 571 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 572 DSOLocal) || 573 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 574 return true; 575 576 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 577 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 578 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 579 580 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 581 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 582 } 583 584 /// ParseNamedGlobal: 585 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 586 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 587 /// OptionalVisibility OptionalDLLStorageClass 588 /// ... -> global variable 589 bool LLParser::ParseNamedGlobal() { 590 assert(Lex.getKind() == lltok::GlobalVar); 591 LocTy NameLoc = Lex.getLoc(); 592 std::string Name = Lex.getStrVal(); 593 Lex.Lex(); 594 595 bool HasLinkage; 596 unsigned Linkage, Visibility, DLLStorageClass; 597 bool DSOLocal; 598 GlobalVariable::ThreadLocalMode TLM; 599 GlobalVariable::UnnamedAddr UnnamedAddr; 600 if (ParseToken(lltok::equal, "expected '=' in global variable") || 601 ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 602 DSOLocal) || 603 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 604 return true; 605 606 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 607 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 608 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 609 610 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 611 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 612 } 613 614 bool LLParser::parseComdat() { 615 assert(Lex.getKind() == lltok::ComdatVar); 616 std::string Name = Lex.getStrVal(); 617 LocTy NameLoc = Lex.getLoc(); 618 Lex.Lex(); 619 620 if (ParseToken(lltok::equal, "expected '=' here")) 621 return true; 622 623 if (ParseToken(lltok::kw_comdat, "expected comdat keyword")) 624 return TokError("expected comdat type"); 625 626 Comdat::SelectionKind SK; 627 switch (Lex.getKind()) { 628 default: 629 return TokError("unknown selection kind"); 630 case lltok::kw_any: 631 SK = Comdat::Any; 632 break; 633 case lltok::kw_exactmatch: 634 SK = Comdat::ExactMatch; 635 break; 636 case lltok::kw_largest: 637 SK = Comdat::Largest; 638 break; 639 case lltok::kw_noduplicates: 640 SK = Comdat::NoDuplicates; 641 break; 642 case lltok::kw_samesize: 643 SK = Comdat::SameSize; 644 break; 645 } 646 Lex.Lex(); 647 648 // See if the comdat was forward referenced, if so, use the comdat. 649 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 650 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 651 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 652 return Error(NameLoc, "redefinition of comdat '$" + Name + "'"); 653 654 Comdat *C; 655 if (I != ComdatSymTab.end()) 656 C = &I->second; 657 else 658 C = M->getOrInsertComdat(Name); 659 C->setSelectionKind(SK); 660 661 return false; 662 } 663 664 // MDString: 665 // ::= '!' STRINGCONSTANT 666 bool LLParser::ParseMDString(MDString *&Result) { 667 std::string Str; 668 if (ParseStringConstant(Str)) return true; 669 Result = MDString::get(Context, Str); 670 return false; 671 } 672 673 // MDNode: 674 // ::= '!' MDNodeNumber 675 bool LLParser::ParseMDNodeID(MDNode *&Result) { 676 // !{ ..., !42, ... } 677 LocTy IDLoc = Lex.getLoc(); 678 unsigned MID = 0; 679 if (ParseUInt32(MID)) 680 return true; 681 682 // If not a forward reference, just return it now. 683 if (NumberedMetadata.count(MID)) { 684 Result = NumberedMetadata[MID]; 685 return false; 686 } 687 688 // Otherwise, create MDNode forward reference. 689 auto &FwdRef = ForwardRefMDNodes[MID]; 690 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 691 692 Result = FwdRef.first.get(); 693 NumberedMetadata[MID].reset(Result); 694 return false; 695 } 696 697 /// ParseNamedMetadata: 698 /// !foo = !{ !1, !2 } 699 bool LLParser::ParseNamedMetadata() { 700 assert(Lex.getKind() == lltok::MetadataVar); 701 std::string Name = Lex.getStrVal(); 702 Lex.Lex(); 703 704 if (ParseToken(lltok::equal, "expected '=' here") || 705 ParseToken(lltok::exclaim, "Expected '!' here") || 706 ParseToken(lltok::lbrace, "Expected '{' here")) 707 return true; 708 709 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 710 if (Lex.getKind() != lltok::rbrace) 711 do { 712 MDNode *N = nullptr; 713 // Parse DIExpressions inline as a special case. They are still MDNodes, 714 // so they can still appear in named metadata. Remove this logic if they 715 // become plain Metadata. 716 if (Lex.getKind() == lltok::MetadataVar && 717 Lex.getStrVal() == "DIExpression") { 718 if (ParseDIExpression(N, /*IsDistinct=*/false)) 719 return true; 720 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 721 ParseMDNodeID(N)) { 722 return true; 723 } 724 NMD->addOperand(N); 725 } while (EatIfPresent(lltok::comma)); 726 727 return ParseToken(lltok::rbrace, "expected end of metadata node"); 728 } 729 730 /// ParseStandaloneMetadata: 731 /// !42 = !{...} 732 bool LLParser::ParseStandaloneMetadata() { 733 assert(Lex.getKind() == lltok::exclaim); 734 Lex.Lex(); 735 unsigned MetadataID = 0; 736 737 MDNode *Init; 738 if (ParseUInt32(MetadataID) || 739 ParseToken(lltok::equal, "expected '=' here")) 740 return true; 741 742 // Detect common error, from old metadata syntax. 743 if (Lex.getKind() == lltok::Type) 744 return TokError("unexpected type in metadata definition"); 745 746 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 747 if (Lex.getKind() == lltok::MetadataVar) { 748 if (ParseSpecializedMDNode(Init, IsDistinct)) 749 return true; 750 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 751 ParseMDTuple(Init, IsDistinct)) 752 return true; 753 754 // See if this was forward referenced, if so, handle it. 755 auto FI = ForwardRefMDNodes.find(MetadataID); 756 if (FI != ForwardRefMDNodes.end()) { 757 FI->second.first->replaceAllUsesWith(Init); 758 ForwardRefMDNodes.erase(FI); 759 760 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 761 } else { 762 if (NumberedMetadata.count(MetadataID)) 763 return TokError("Metadata id is already used"); 764 NumberedMetadata[MetadataID].reset(Init); 765 } 766 767 return false; 768 } 769 770 // Skips a single module summary entry. 771 bool LLParser::SkipModuleSummaryEntry() { 772 // Each module summary entry consists of a tag for the entry 773 // type, followed by a colon, then the fields surrounded by nested sets of 774 // parentheses. The "tag:" looks like a Label. Once parsing support is 775 // in place we will look for the tokens corresponding to the expected tags. 776 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module && 777 Lex.getKind() != lltok::kw_typeid) 778 return TokError( 779 "Expected 'gv', 'module', or 'typeid' at the start of summary entry"); 780 Lex.Lex(); 781 if (ParseToken(lltok::colon, "expected ':' at start of summary entry") || 782 ParseToken(lltok::lparen, "expected '(' at start of summary entry")) 783 return true; 784 // Now walk through the parenthesized entry, until the number of open 785 // parentheses goes back down to 0 (the first '(' was parsed above). 786 unsigned NumOpenParen = 1; 787 do { 788 switch (Lex.getKind()) { 789 case lltok::lparen: 790 NumOpenParen++; 791 break; 792 case lltok::rparen: 793 NumOpenParen--; 794 break; 795 case lltok::Eof: 796 return TokError("found end of file while parsing summary entry"); 797 default: 798 // Skip everything in between parentheses. 799 break; 800 } 801 Lex.Lex(); 802 } while (NumOpenParen > 0); 803 return false; 804 } 805 806 /// SummaryEntry 807 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry 808 bool LLParser::ParseSummaryEntry() { 809 assert(Lex.getKind() == lltok::SummaryID); 810 unsigned SummaryID = Lex.getUIntVal(); 811 812 // For summary entries, colons should be treated as distinct tokens, 813 // not an indication of the end of a label token. 814 Lex.setIgnoreColonInIdentifiers(true); 815 816 Lex.Lex(); 817 if (ParseToken(lltok::equal, "expected '=' here")) 818 return true; 819 820 // If we don't have an index object, skip the summary entry. 821 if (!Index) 822 return SkipModuleSummaryEntry(); 823 824 switch (Lex.getKind()) { 825 case lltok::kw_gv: 826 return ParseGVEntry(SummaryID); 827 case lltok::kw_module: 828 return ParseModuleEntry(SummaryID); 829 case lltok::kw_typeid: 830 return ParseTypeIdEntry(SummaryID); 831 break; 832 default: 833 return Error(Lex.getLoc(), "unexpected summary kind"); 834 } 835 Lex.setIgnoreColonInIdentifiers(false); 836 return false; 837 } 838 839 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 840 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 841 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 842 } 843 844 // If there was an explicit dso_local, update GV. In the absence of an explicit 845 // dso_local we keep the default value. 846 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { 847 if (DSOLocal) 848 GV.setDSOLocal(true); 849 } 850 851 /// parseIndirectSymbol: 852 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 853 /// OptionalVisibility OptionalDLLStorageClass 854 /// OptionalThreadLocal OptionalUnnamedAddr 855 // 'alias|ifunc' IndirectSymbol 856 /// 857 /// IndirectSymbol 858 /// ::= TypeAndValue 859 /// 860 /// Everything through OptionalUnnamedAddr has already been parsed. 861 /// 862 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc, 863 unsigned L, unsigned Visibility, 864 unsigned DLLStorageClass, bool DSOLocal, 865 GlobalVariable::ThreadLocalMode TLM, 866 GlobalVariable::UnnamedAddr UnnamedAddr) { 867 bool IsAlias; 868 if (Lex.getKind() == lltok::kw_alias) 869 IsAlias = true; 870 else if (Lex.getKind() == lltok::kw_ifunc) 871 IsAlias = false; 872 else 873 llvm_unreachable("Not an alias or ifunc!"); 874 Lex.Lex(); 875 876 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 877 878 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 879 return Error(NameLoc, "invalid linkage type for alias"); 880 881 if (!isValidVisibilityForLinkage(Visibility, L)) 882 return Error(NameLoc, 883 "symbol with local linkage must have default visibility"); 884 885 Type *Ty; 886 LocTy ExplicitTypeLoc = Lex.getLoc(); 887 if (ParseType(Ty) || 888 ParseToken(lltok::comma, "expected comma after alias or ifunc's type")) 889 return true; 890 891 Constant *Aliasee; 892 LocTy AliaseeLoc = Lex.getLoc(); 893 if (Lex.getKind() != lltok::kw_bitcast && 894 Lex.getKind() != lltok::kw_getelementptr && 895 Lex.getKind() != lltok::kw_addrspacecast && 896 Lex.getKind() != lltok::kw_inttoptr) { 897 if (ParseGlobalTypeAndValue(Aliasee)) 898 return true; 899 } else { 900 // The bitcast dest type is not present, it is implied by the dest type. 901 ValID ID; 902 if (ParseValID(ID)) 903 return true; 904 if (ID.Kind != ValID::t_Constant) 905 return Error(AliaseeLoc, "invalid aliasee"); 906 Aliasee = ID.ConstantVal; 907 } 908 909 Type *AliaseeType = Aliasee->getType(); 910 auto *PTy = dyn_cast<PointerType>(AliaseeType); 911 if (!PTy) 912 return Error(AliaseeLoc, "An alias or ifunc must have pointer type"); 913 unsigned AddrSpace = PTy->getAddressSpace(); 914 915 if (IsAlias && Ty != PTy->getElementType()) 916 return Error( 917 ExplicitTypeLoc, 918 "explicit pointee type doesn't match operand's pointee type"); 919 920 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) 921 return Error( 922 ExplicitTypeLoc, 923 "explicit pointee type should be a function type"); 924 925 GlobalValue *GVal = nullptr; 926 927 // See if the alias was forward referenced, if so, prepare to replace the 928 // forward reference. 929 if (!Name.empty()) { 930 GVal = M->getNamedValue(Name); 931 if (GVal) { 932 if (!ForwardRefVals.erase(Name)) 933 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 934 } 935 } else { 936 auto I = ForwardRefValIDs.find(NumberedVals.size()); 937 if (I != ForwardRefValIDs.end()) { 938 GVal = I->second.first; 939 ForwardRefValIDs.erase(I); 940 } 941 } 942 943 // Okay, create the alias but do not insert it into the module yet. 944 std::unique_ptr<GlobalIndirectSymbol> GA; 945 if (IsAlias) 946 GA.reset(GlobalAlias::create(Ty, AddrSpace, 947 (GlobalValue::LinkageTypes)Linkage, Name, 948 Aliasee, /*Parent*/ nullptr)); 949 else 950 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 951 (GlobalValue::LinkageTypes)Linkage, Name, 952 Aliasee, /*Parent*/ nullptr)); 953 GA->setThreadLocalMode(TLM); 954 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 955 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 956 GA->setUnnamedAddr(UnnamedAddr); 957 maybeSetDSOLocal(DSOLocal, *GA); 958 959 if (Name.empty()) 960 NumberedVals.push_back(GA.get()); 961 962 if (GVal) { 963 // Verify that types agree. 964 if (GVal->getType() != GA->getType()) 965 return Error( 966 ExplicitTypeLoc, 967 "forward reference and definition of alias have different types"); 968 969 // If they agree, just RAUW the old value with the alias and remove the 970 // forward ref info. 971 GVal->replaceAllUsesWith(GA.get()); 972 GVal->eraseFromParent(); 973 } 974 975 // Insert into the module, we know its name won't collide now. 976 if (IsAlias) 977 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 978 else 979 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 980 assert(GA->getName() == Name && "Should not be a name conflict!"); 981 982 // The module owns this now 983 GA.release(); 984 985 return false; 986 } 987 988 /// ParseGlobal 989 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 990 /// OptionalVisibility OptionalDLLStorageClass 991 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 992 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 993 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 994 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 995 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 996 /// Const OptionalAttrs 997 /// 998 /// Everything up to and including OptionalUnnamedAddr has been parsed 999 /// already. 1000 /// 1001 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 1002 unsigned Linkage, bool HasLinkage, 1003 unsigned Visibility, unsigned DLLStorageClass, 1004 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 1005 GlobalVariable::UnnamedAddr UnnamedAddr) { 1006 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 1007 return Error(NameLoc, 1008 "symbol with local linkage must have default visibility"); 1009 1010 unsigned AddrSpace; 1011 bool IsConstant, IsExternallyInitialized; 1012 LocTy IsExternallyInitializedLoc; 1013 LocTy TyLoc; 1014 1015 Type *Ty = nullptr; 1016 if (ParseOptionalAddrSpace(AddrSpace) || 1017 ParseOptionalToken(lltok::kw_externally_initialized, 1018 IsExternallyInitialized, 1019 &IsExternallyInitializedLoc) || 1020 ParseGlobalType(IsConstant) || 1021 ParseType(Ty, TyLoc)) 1022 return true; 1023 1024 // If the linkage is specified and is external, then no initializer is 1025 // present. 1026 Constant *Init = nullptr; 1027 if (!HasLinkage || 1028 !GlobalValue::isValidDeclarationLinkage( 1029 (GlobalValue::LinkageTypes)Linkage)) { 1030 if (ParseGlobalValue(Ty, Init)) 1031 return true; 1032 } 1033 1034 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 1035 return Error(TyLoc, "invalid type for global variable"); 1036 1037 GlobalValue *GVal = nullptr; 1038 1039 // See if the global was forward referenced, if so, use the global. 1040 if (!Name.empty()) { 1041 GVal = M->getNamedValue(Name); 1042 if (GVal) { 1043 if (!ForwardRefVals.erase(Name)) 1044 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 1045 } 1046 } else { 1047 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1048 if (I != ForwardRefValIDs.end()) { 1049 GVal = I->second.first; 1050 ForwardRefValIDs.erase(I); 1051 } 1052 } 1053 1054 GlobalVariable *GV; 1055 if (!GVal) { 1056 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 1057 Name, nullptr, GlobalVariable::NotThreadLocal, 1058 AddrSpace); 1059 } else { 1060 if (GVal->getValueType() != Ty) 1061 return Error(TyLoc, 1062 "forward reference and definition of global have different types"); 1063 1064 GV = cast<GlobalVariable>(GVal); 1065 1066 // Move the forward-reference to the correct spot in the module. 1067 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 1068 } 1069 1070 if (Name.empty()) 1071 NumberedVals.push_back(GV); 1072 1073 // Set the parsed properties on the global. 1074 if (Init) 1075 GV->setInitializer(Init); 1076 GV->setConstant(IsConstant); 1077 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 1078 maybeSetDSOLocal(DSOLocal, *GV); 1079 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1080 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1081 GV->setExternallyInitialized(IsExternallyInitialized); 1082 GV->setThreadLocalMode(TLM); 1083 GV->setUnnamedAddr(UnnamedAddr); 1084 1085 // Parse attributes on the global. 1086 while (Lex.getKind() == lltok::comma) { 1087 Lex.Lex(); 1088 1089 if (Lex.getKind() == lltok::kw_section) { 1090 Lex.Lex(); 1091 GV->setSection(Lex.getStrVal()); 1092 if (ParseToken(lltok::StringConstant, "expected global section string")) 1093 return true; 1094 } else if (Lex.getKind() == lltok::kw_align) { 1095 unsigned Alignment; 1096 if (ParseOptionalAlignment(Alignment)) return true; 1097 GV->setAlignment(Alignment); 1098 } else if (Lex.getKind() == lltok::MetadataVar) { 1099 if (ParseGlobalObjectMetadataAttachment(*GV)) 1100 return true; 1101 } else { 1102 Comdat *C; 1103 if (parseOptionalComdat(Name, C)) 1104 return true; 1105 if (C) 1106 GV->setComdat(C); 1107 else 1108 return TokError("unknown global variable property!"); 1109 } 1110 } 1111 1112 AttrBuilder Attrs; 1113 LocTy BuiltinLoc; 1114 std::vector<unsigned> FwdRefAttrGrps; 1115 if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 1116 return true; 1117 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 1118 GV->setAttributes(AttributeSet::get(Context, Attrs)); 1119 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 1120 } 1121 1122 return false; 1123 } 1124 1125 /// ParseUnnamedAttrGrp 1126 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 1127 bool LLParser::ParseUnnamedAttrGrp() { 1128 assert(Lex.getKind() == lltok::kw_attributes); 1129 LocTy AttrGrpLoc = Lex.getLoc(); 1130 Lex.Lex(); 1131 1132 if (Lex.getKind() != lltok::AttrGrpID) 1133 return TokError("expected attribute group id"); 1134 1135 unsigned VarID = Lex.getUIntVal(); 1136 std::vector<unsigned> unused; 1137 LocTy BuiltinLoc; 1138 Lex.Lex(); 1139 1140 if (ParseToken(lltok::equal, "expected '=' here") || 1141 ParseToken(lltok::lbrace, "expected '{' here") || 1142 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 1143 BuiltinLoc) || 1144 ParseToken(lltok::rbrace, "expected end of attribute group")) 1145 return true; 1146 1147 if (!NumberedAttrBuilders[VarID].hasAttributes()) 1148 return Error(AttrGrpLoc, "attribute group has no attributes"); 1149 1150 return false; 1151 } 1152 1153 /// ParseFnAttributeValuePairs 1154 /// ::= <attr> | <attr> '=' <value> 1155 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B, 1156 std::vector<unsigned> &FwdRefAttrGrps, 1157 bool inAttrGrp, LocTy &BuiltinLoc) { 1158 bool HaveError = false; 1159 1160 B.clear(); 1161 1162 while (true) { 1163 lltok::Kind Token = Lex.getKind(); 1164 if (Token == lltok::kw_builtin) 1165 BuiltinLoc = Lex.getLoc(); 1166 switch (Token) { 1167 default: 1168 if (!inAttrGrp) return HaveError; 1169 return Error(Lex.getLoc(), "unterminated attribute group"); 1170 case lltok::rbrace: 1171 // Finished. 1172 return false; 1173 1174 case lltok::AttrGrpID: { 1175 // Allow a function to reference an attribute group: 1176 // 1177 // define void @foo() #1 { ... } 1178 if (inAttrGrp) 1179 HaveError |= 1180 Error(Lex.getLoc(), 1181 "cannot have an attribute group reference in an attribute group"); 1182 1183 unsigned AttrGrpNum = Lex.getUIntVal(); 1184 if (inAttrGrp) break; 1185 1186 // Save the reference to the attribute group. We'll fill it in later. 1187 FwdRefAttrGrps.push_back(AttrGrpNum); 1188 break; 1189 } 1190 // Target-dependent attributes: 1191 case lltok::StringConstant: { 1192 if (ParseStringAttribute(B)) 1193 return true; 1194 continue; 1195 } 1196 1197 // Target-independent attributes: 1198 case lltok::kw_align: { 1199 // As a hack, we allow function alignment to be initially parsed as an 1200 // attribute on a function declaration/definition or added to an attribute 1201 // group and later moved to the alignment field. 1202 unsigned Alignment; 1203 if (inAttrGrp) { 1204 Lex.Lex(); 1205 if (ParseToken(lltok::equal, "expected '=' here") || 1206 ParseUInt32(Alignment)) 1207 return true; 1208 } else { 1209 if (ParseOptionalAlignment(Alignment)) 1210 return true; 1211 } 1212 B.addAlignmentAttr(Alignment); 1213 continue; 1214 } 1215 case lltok::kw_alignstack: { 1216 unsigned Alignment; 1217 if (inAttrGrp) { 1218 Lex.Lex(); 1219 if (ParseToken(lltok::equal, "expected '=' here") || 1220 ParseUInt32(Alignment)) 1221 return true; 1222 } else { 1223 if (ParseOptionalStackAlignment(Alignment)) 1224 return true; 1225 } 1226 B.addStackAlignmentAttr(Alignment); 1227 continue; 1228 } 1229 case lltok::kw_allocsize: { 1230 unsigned ElemSizeArg; 1231 Optional<unsigned> NumElemsArg; 1232 // inAttrGrp doesn't matter; we only support allocsize(a[, b]) 1233 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1234 return true; 1235 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1236 continue; 1237 } 1238 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 1239 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 1240 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 1241 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 1242 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 1243 case lltok::kw_inaccessiblememonly: 1244 B.addAttribute(Attribute::InaccessibleMemOnly); break; 1245 case lltok::kw_inaccessiblemem_or_argmemonly: 1246 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break; 1247 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 1248 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 1249 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 1250 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 1251 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 1252 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 1253 case lltok::kw_noimplicitfloat: 1254 B.addAttribute(Attribute::NoImplicitFloat); break; 1255 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1256 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1257 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1258 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1259 case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break; 1260 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1261 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1262 case lltok::kw_optforfuzzing: 1263 B.addAttribute(Attribute::OptForFuzzing); break; 1264 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1265 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1266 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1267 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1268 case lltok::kw_returns_twice: 1269 B.addAttribute(Attribute::ReturnsTwice); break; 1270 case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break; 1271 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1272 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1273 case lltok::kw_sspstrong: 1274 B.addAttribute(Attribute::StackProtectStrong); break; 1275 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1276 case lltok::kw_shadowcallstack: 1277 B.addAttribute(Attribute::ShadowCallStack); break; 1278 case lltok::kw_sanitize_address: 1279 B.addAttribute(Attribute::SanitizeAddress); break; 1280 case lltok::kw_sanitize_hwaddress: 1281 B.addAttribute(Attribute::SanitizeHWAddress); break; 1282 case lltok::kw_sanitize_thread: 1283 B.addAttribute(Attribute::SanitizeThread); break; 1284 case lltok::kw_sanitize_memory: 1285 B.addAttribute(Attribute::SanitizeMemory); break; 1286 case lltok::kw_speculative_load_hardening: 1287 B.addAttribute(Attribute::SpeculativeLoadHardening); 1288 break; 1289 case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break; 1290 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1291 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1292 1293 // Error handling. 1294 case lltok::kw_inreg: 1295 case lltok::kw_signext: 1296 case lltok::kw_zeroext: 1297 HaveError |= 1298 Error(Lex.getLoc(), 1299 "invalid use of attribute on a function"); 1300 break; 1301 case lltok::kw_byval: 1302 case lltok::kw_dereferenceable: 1303 case lltok::kw_dereferenceable_or_null: 1304 case lltok::kw_inalloca: 1305 case lltok::kw_nest: 1306 case lltok::kw_noalias: 1307 case lltok::kw_nocapture: 1308 case lltok::kw_nonnull: 1309 case lltok::kw_returned: 1310 case lltok::kw_sret: 1311 case lltok::kw_swifterror: 1312 case lltok::kw_swiftself: 1313 HaveError |= 1314 Error(Lex.getLoc(), 1315 "invalid use of parameter-only attribute on a function"); 1316 break; 1317 } 1318 1319 Lex.Lex(); 1320 } 1321 } 1322 1323 //===----------------------------------------------------------------------===// 1324 // GlobalValue Reference/Resolution Routines. 1325 //===----------------------------------------------------------------------===// 1326 1327 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1328 const std::string &Name) { 1329 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1330 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, 1331 PTy->getAddressSpace(), Name, M); 1332 else 1333 return new GlobalVariable(*M, PTy->getElementType(), false, 1334 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1335 nullptr, GlobalVariable::NotThreadLocal, 1336 PTy->getAddressSpace()); 1337 } 1338 1339 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty, 1340 Value *Val, bool IsCall) { 1341 if (Val->getType() == Ty) 1342 return Val; 1343 // For calls we also accept variables in the program address space. 1344 Type *SuggestedTy = Ty; 1345 if (IsCall && isa<PointerType>(Ty)) { 1346 Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo( 1347 M->getDataLayout().getProgramAddressSpace()); 1348 SuggestedTy = TyInProgAS; 1349 if (Val->getType() == TyInProgAS) 1350 return Val; 1351 } 1352 if (Ty->isLabelTy()) 1353 Error(Loc, "'" + Name + "' is not a basic block"); 1354 else 1355 Error(Loc, "'" + Name + "' defined with type '" + 1356 getTypeString(Val->getType()) + "' but expected '" + 1357 getTypeString(SuggestedTy) + "'"); 1358 return nullptr; 1359 } 1360 1361 /// GetGlobalVal - Get a value with the specified name or ID, creating a 1362 /// forward reference record if needed. This can return null if the value 1363 /// exists but does not have the right type. 1364 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 1365 LocTy Loc, bool IsCall) { 1366 PointerType *PTy = dyn_cast<PointerType>(Ty); 1367 if (!PTy) { 1368 Error(Loc, "global variable reference must have pointer type"); 1369 return nullptr; 1370 } 1371 1372 // Look this name up in the normal function symbol table. 1373 GlobalValue *Val = 1374 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1375 1376 // If this is a forward reference for the value, see if we already created a 1377 // forward ref record. 1378 if (!Val) { 1379 auto I = ForwardRefVals.find(Name); 1380 if (I != ForwardRefVals.end()) 1381 Val = I->second.first; 1382 } 1383 1384 // If we have the value in the symbol table or fwd-ref table, return it. 1385 if (Val) 1386 return cast_or_null<GlobalValue>( 1387 checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall)); 1388 1389 // Otherwise, create a new forward reference for this value and remember it. 1390 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1391 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1392 return FwdVal; 1393 } 1394 1395 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc, 1396 bool IsCall) { 1397 PointerType *PTy = dyn_cast<PointerType>(Ty); 1398 if (!PTy) { 1399 Error(Loc, "global variable reference must have pointer type"); 1400 return nullptr; 1401 } 1402 1403 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1404 1405 // If this is a forward reference for the value, see if we already created a 1406 // forward ref record. 1407 if (!Val) { 1408 auto I = ForwardRefValIDs.find(ID); 1409 if (I != ForwardRefValIDs.end()) 1410 Val = I->second.first; 1411 } 1412 1413 // If we have the value in the symbol table or fwd-ref table, return it. 1414 if (Val) 1415 return cast_or_null<GlobalValue>( 1416 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall)); 1417 1418 // Otherwise, create a new forward reference for this value and remember it. 1419 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1420 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1421 return FwdVal; 1422 } 1423 1424 //===----------------------------------------------------------------------===// 1425 // Comdat Reference/Resolution Routines. 1426 //===----------------------------------------------------------------------===// 1427 1428 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1429 // Look this name up in the comdat symbol table. 1430 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1431 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1432 if (I != ComdatSymTab.end()) 1433 return &I->second; 1434 1435 // Otherwise, create a new forward reference for this value and remember it. 1436 Comdat *C = M->getOrInsertComdat(Name); 1437 ForwardRefComdats[Name] = Loc; 1438 return C; 1439 } 1440 1441 //===----------------------------------------------------------------------===// 1442 // Helper Routines. 1443 //===----------------------------------------------------------------------===// 1444 1445 /// ParseToken - If the current token has the specified kind, eat it and return 1446 /// success. Otherwise, emit the specified error and return failure. 1447 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 1448 if (Lex.getKind() != T) 1449 return TokError(ErrMsg); 1450 Lex.Lex(); 1451 return false; 1452 } 1453 1454 /// ParseStringConstant 1455 /// ::= StringConstant 1456 bool LLParser::ParseStringConstant(std::string &Result) { 1457 if (Lex.getKind() != lltok::StringConstant) 1458 return TokError("expected string constant"); 1459 Result = Lex.getStrVal(); 1460 Lex.Lex(); 1461 return false; 1462 } 1463 1464 /// ParseUInt32 1465 /// ::= uint32 1466 bool LLParser::ParseUInt32(uint32_t &Val) { 1467 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1468 return TokError("expected integer"); 1469 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1470 if (Val64 != unsigned(Val64)) 1471 return TokError("expected 32-bit integer (too large)"); 1472 Val = Val64; 1473 Lex.Lex(); 1474 return false; 1475 } 1476 1477 /// ParseUInt64 1478 /// ::= uint64 1479 bool LLParser::ParseUInt64(uint64_t &Val) { 1480 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1481 return TokError("expected integer"); 1482 Val = Lex.getAPSIntVal().getLimitedValue(); 1483 Lex.Lex(); 1484 return false; 1485 } 1486 1487 /// ParseTLSModel 1488 /// := 'localdynamic' 1489 /// := 'initialexec' 1490 /// := 'localexec' 1491 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1492 switch (Lex.getKind()) { 1493 default: 1494 return TokError("expected localdynamic, initialexec or localexec"); 1495 case lltok::kw_localdynamic: 1496 TLM = GlobalVariable::LocalDynamicTLSModel; 1497 break; 1498 case lltok::kw_initialexec: 1499 TLM = GlobalVariable::InitialExecTLSModel; 1500 break; 1501 case lltok::kw_localexec: 1502 TLM = GlobalVariable::LocalExecTLSModel; 1503 break; 1504 } 1505 1506 Lex.Lex(); 1507 return false; 1508 } 1509 1510 /// ParseOptionalThreadLocal 1511 /// := /*empty*/ 1512 /// := 'thread_local' 1513 /// := 'thread_local' '(' tlsmodel ')' 1514 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1515 TLM = GlobalVariable::NotThreadLocal; 1516 if (!EatIfPresent(lltok::kw_thread_local)) 1517 return false; 1518 1519 TLM = GlobalVariable::GeneralDynamicTLSModel; 1520 if (Lex.getKind() == lltok::lparen) { 1521 Lex.Lex(); 1522 return ParseTLSModel(TLM) || 1523 ParseToken(lltok::rparen, "expected ')' after thread local model"); 1524 } 1525 return false; 1526 } 1527 1528 /// ParseOptionalAddrSpace 1529 /// := /*empty*/ 1530 /// := 'addrspace' '(' uint32 ')' 1531 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) { 1532 AddrSpace = DefaultAS; 1533 if (!EatIfPresent(lltok::kw_addrspace)) 1534 return false; 1535 return ParseToken(lltok::lparen, "expected '(' in address space") || 1536 ParseUInt32(AddrSpace) || 1537 ParseToken(lltok::rparen, "expected ')' in address space"); 1538 } 1539 1540 /// ParseStringAttribute 1541 /// := StringConstant 1542 /// := StringConstant '=' StringConstant 1543 bool LLParser::ParseStringAttribute(AttrBuilder &B) { 1544 std::string Attr = Lex.getStrVal(); 1545 Lex.Lex(); 1546 std::string Val; 1547 if (EatIfPresent(lltok::equal) && ParseStringConstant(Val)) 1548 return true; 1549 B.addAttribute(Attr, Val); 1550 return false; 1551 } 1552 1553 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes. 1554 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) { 1555 bool HaveError = false; 1556 1557 B.clear(); 1558 1559 while (true) { 1560 lltok::Kind Token = Lex.getKind(); 1561 switch (Token) { 1562 default: // End of attributes. 1563 return HaveError; 1564 case lltok::StringConstant: { 1565 if (ParseStringAttribute(B)) 1566 return true; 1567 continue; 1568 } 1569 case lltok::kw_align: { 1570 unsigned Alignment; 1571 if (ParseOptionalAlignment(Alignment)) 1572 return true; 1573 B.addAlignmentAttr(Alignment); 1574 continue; 1575 } 1576 case lltok::kw_byval: B.addAttribute(Attribute::ByVal); break; 1577 case lltok::kw_dereferenceable: { 1578 uint64_t Bytes; 1579 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1580 return true; 1581 B.addDereferenceableAttr(Bytes); 1582 continue; 1583 } 1584 case lltok::kw_dereferenceable_or_null: { 1585 uint64_t Bytes; 1586 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1587 return true; 1588 B.addDereferenceableOrNullAttr(Bytes); 1589 continue; 1590 } 1591 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break; 1592 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1593 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1594 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1595 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1596 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1597 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1598 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1599 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1600 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1601 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break; 1602 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break; 1603 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break; 1604 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1605 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1606 1607 case lltok::kw_alignstack: 1608 case lltok::kw_alwaysinline: 1609 case lltok::kw_argmemonly: 1610 case lltok::kw_builtin: 1611 case lltok::kw_inlinehint: 1612 case lltok::kw_jumptable: 1613 case lltok::kw_minsize: 1614 case lltok::kw_naked: 1615 case lltok::kw_nobuiltin: 1616 case lltok::kw_noduplicate: 1617 case lltok::kw_noimplicitfloat: 1618 case lltok::kw_noinline: 1619 case lltok::kw_nonlazybind: 1620 case lltok::kw_noredzone: 1621 case lltok::kw_noreturn: 1622 case lltok::kw_nocf_check: 1623 case lltok::kw_nounwind: 1624 case lltok::kw_optforfuzzing: 1625 case lltok::kw_optnone: 1626 case lltok::kw_optsize: 1627 case lltok::kw_returns_twice: 1628 case lltok::kw_sanitize_address: 1629 case lltok::kw_sanitize_hwaddress: 1630 case lltok::kw_sanitize_memory: 1631 case lltok::kw_sanitize_thread: 1632 case lltok::kw_speculative_load_hardening: 1633 case lltok::kw_ssp: 1634 case lltok::kw_sspreq: 1635 case lltok::kw_sspstrong: 1636 case lltok::kw_safestack: 1637 case lltok::kw_shadowcallstack: 1638 case lltok::kw_strictfp: 1639 case lltok::kw_uwtable: 1640 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1641 break; 1642 } 1643 1644 Lex.Lex(); 1645 } 1646 } 1647 1648 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes. 1649 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) { 1650 bool HaveError = false; 1651 1652 B.clear(); 1653 1654 while (true) { 1655 lltok::Kind Token = Lex.getKind(); 1656 switch (Token) { 1657 default: // End of attributes. 1658 return HaveError; 1659 case lltok::StringConstant: { 1660 if (ParseStringAttribute(B)) 1661 return true; 1662 continue; 1663 } 1664 case lltok::kw_dereferenceable: { 1665 uint64_t Bytes; 1666 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1667 return true; 1668 B.addDereferenceableAttr(Bytes); 1669 continue; 1670 } 1671 case lltok::kw_dereferenceable_or_null: { 1672 uint64_t Bytes; 1673 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1674 return true; 1675 B.addDereferenceableOrNullAttr(Bytes); 1676 continue; 1677 } 1678 case lltok::kw_align: { 1679 unsigned Alignment; 1680 if (ParseOptionalAlignment(Alignment)) 1681 return true; 1682 B.addAlignmentAttr(Alignment); 1683 continue; 1684 } 1685 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1686 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1687 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1688 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1689 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1690 1691 // Error handling. 1692 case lltok::kw_byval: 1693 case lltok::kw_inalloca: 1694 case lltok::kw_nest: 1695 case lltok::kw_nocapture: 1696 case lltok::kw_returned: 1697 case lltok::kw_sret: 1698 case lltok::kw_swifterror: 1699 case lltok::kw_swiftself: 1700 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1701 break; 1702 1703 case lltok::kw_alignstack: 1704 case lltok::kw_alwaysinline: 1705 case lltok::kw_argmemonly: 1706 case lltok::kw_builtin: 1707 case lltok::kw_cold: 1708 case lltok::kw_inlinehint: 1709 case lltok::kw_jumptable: 1710 case lltok::kw_minsize: 1711 case lltok::kw_naked: 1712 case lltok::kw_nobuiltin: 1713 case lltok::kw_noduplicate: 1714 case lltok::kw_noimplicitfloat: 1715 case lltok::kw_noinline: 1716 case lltok::kw_nonlazybind: 1717 case lltok::kw_noredzone: 1718 case lltok::kw_noreturn: 1719 case lltok::kw_nocf_check: 1720 case lltok::kw_nounwind: 1721 case lltok::kw_optforfuzzing: 1722 case lltok::kw_optnone: 1723 case lltok::kw_optsize: 1724 case lltok::kw_returns_twice: 1725 case lltok::kw_sanitize_address: 1726 case lltok::kw_sanitize_hwaddress: 1727 case lltok::kw_sanitize_memory: 1728 case lltok::kw_sanitize_thread: 1729 case lltok::kw_speculative_load_hardening: 1730 case lltok::kw_ssp: 1731 case lltok::kw_sspreq: 1732 case lltok::kw_sspstrong: 1733 case lltok::kw_safestack: 1734 case lltok::kw_shadowcallstack: 1735 case lltok::kw_strictfp: 1736 case lltok::kw_uwtable: 1737 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1738 break; 1739 1740 case lltok::kw_readnone: 1741 case lltok::kw_readonly: 1742 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type"); 1743 } 1744 1745 Lex.Lex(); 1746 } 1747 } 1748 1749 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1750 HasLinkage = true; 1751 switch (Kind) { 1752 default: 1753 HasLinkage = false; 1754 return GlobalValue::ExternalLinkage; 1755 case lltok::kw_private: 1756 return GlobalValue::PrivateLinkage; 1757 case lltok::kw_internal: 1758 return GlobalValue::InternalLinkage; 1759 case lltok::kw_weak: 1760 return GlobalValue::WeakAnyLinkage; 1761 case lltok::kw_weak_odr: 1762 return GlobalValue::WeakODRLinkage; 1763 case lltok::kw_linkonce: 1764 return GlobalValue::LinkOnceAnyLinkage; 1765 case lltok::kw_linkonce_odr: 1766 return GlobalValue::LinkOnceODRLinkage; 1767 case lltok::kw_available_externally: 1768 return GlobalValue::AvailableExternallyLinkage; 1769 case lltok::kw_appending: 1770 return GlobalValue::AppendingLinkage; 1771 case lltok::kw_common: 1772 return GlobalValue::CommonLinkage; 1773 case lltok::kw_extern_weak: 1774 return GlobalValue::ExternalWeakLinkage; 1775 case lltok::kw_external: 1776 return GlobalValue::ExternalLinkage; 1777 } 1778 } 1779 1780 /// ParseOptionalLinkage 1781 /// ::= /*empty*/ 1782 /// ::= 'private' 1783 /// ::= 'internal' 1784 /// ::= 'weak' 1785 /// ::= 'weak_odr' 1786 /// ::= 'linkonce' 1787 /// ::= 'linkonce_odr' 1788 /// ::= 'available_externally' 1789 /// ::= 'appending' 1790 /// ::= 'common' 1791 /// ::= 'extern_weak' 1792 /// ::= 'external' 1793 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1794 unsigned &Visibility, 1795 unsigned &DLLStorageClass, 1796 bool &DSOLocal) { 1797 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1798 if (HasLinkage) 1799 Lex.Lex(); 1800 ParseOptionalDSOLocal(DSOLocal); 1801 ParseOptionalVisibility(Visibility); 1802 ParseOptionalDLLStorageClass(DLLStorageClass); 1803 1804 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 1805 return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 1806 } 1807 1808 return false; 1809 } 1810 1811 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) { 1812 switch (Lex.getKind()) { 1813 default: 1814 DSOLocal = false; 1815 break; 1816 case lltok::kw_dso_local: 1817 DSOLocal = true; 1818 Lex.Lex(); 1819 break; 1820 case lltok::kw_dso_preemptable: 1821 DSOLocal = false; 1822 Lex.Lex(); 1823 break; 1824 } 1825 } 1826 1827 /// ParseOptionalVisibility 1828 /// ::= /*empty*/ 1829 /// ::= 'default' 1830 /// ::= 'hidden' 1831 /// ::= 'protected' 1832 /// 1833 void LLParser::ParseOptionalVisibility(unsigned &Res) { 1834 switch (Lex.getKind()) { 1835 default: 1836 Res = GlobalValue::DefaultVisibility; 1837 return; 1838 case lltok::kw_default: 1839 Res = GlobalValue::DefaultVisibility; 1840 break; 1841 case lltok::kw_hidden: 1842 Res = GlobalValue::HiddenVisibility; 1843 break; 1844 case lltok::kw_protected: 1845 Res = GlobalValue::ProtectedVisibility; 1846 break; 1847 } 1848 Lex.Lex(); 1849 } 1850 1851 /// ParseOptionalDLLStorageClass 1852 /// ::= /*empty*/ 1853 /// ::= 'dllimport' 1854 /// ::= 'dllexport' 1855 /// 1856 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) { 1857 switch (Lex.getKind()) { 1858 default: 1859 Res = GlobalValue::DefaultStorageClass; 1860 return; 1861 case lltok::kw_dllimport: 1862 Res = GlobalValue::DLLImportStorageClass; 1863 break; 1864 case lltok::kw_dllexport: 1865 Res = GlobalValue::DLLExportStorageClass; 1866 break; 1867 } 1868 Lex.Lex(); 1869 } 1870 1871 /// ParseOptionalCallingConv 1872 /// ::= /*empty*/ 1873 /// ::= 'ccc' 1874 /// ::= 'fastcc' 1875 /// ::= 'intel_ocl_bicc' 1876 /// ::= 'coldcc' 1877 /// ::= 'x86_stdcallcc' 1878 /// ::= 'x86_fastcallcc' 1879 /// ::= 'x86_thiscallcc' 1880 /// ::= 'x86_vectorcallcc' 1881 /// ::= 'arm_apcscc' 1882 /// ::= 'arm_aapcscc' 1883 /// ::= 'arm_aapcs_vfpcc' 1884 /// ::= 'aarch64_vector_pcs' 1885 /// ::= 'msp430_intrcc' 1886 /// ::= 'avr_intrcc' 1887 /// ::= 'avr_signalcc' 1888 /// ::= 'ptx_kernel' 1889 /// ::= 'ptx_device' 1890 /// ::= 'spir_func' 1891 /// ::= 'spir_kernel' 1892 /// ::= 'x86_64_sysvcc' 1893 /// ::= 'win64cc' 1894 /// ::= 'webkit_jscc' 1895 /// ::= 'anyregcc' 1896 /// ::= 'preserve_mostcc' 1897 /// ::= 'preserve_allcc' 1898 /// ::= 'ghccc' 1899 /// ::= 'swiftcc' 1900 /// ::= 'x86_intrcc' 1901 /// ::= 'hhvmcc' 1902 /// ::= 'hhvm_ccc' 1903 /// ::= 'cxx_fast_tlscc' 1904 /// ::= 'amdgpu_vs' 1905 /// ::= 'amdgpu_ls' 1906 /// ::= 'amdgpu_hs' 1907 /// ::= 'amdgpu_es' 1908 /// ::= 'amdgpu_gs' 1909 /// ::= 'amdgpu_ps' 1910 /// ::= 'amdgpu_cs' 1911 /// ::= 'amdgpu_kernel' 1912 /// ::= 'cc' UINT 1913 /// 1914 bool LLParser::ParseOptionalCallingConv(unsigned &CC) { 1915 switch (Lex.getKind()) { 1916 default: CC = CallingConv::C; return false; 1917 case lltok::kw_ccc: CC = CallingConv::C; break; 1918 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1919 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1920 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1921 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1922 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 1923 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1924 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1925 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1926 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1927 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1928 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break; 1929 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1930 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 1931 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 1932 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1933 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1934 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1935 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1936 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1937 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1938 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 1939 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1940 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1941 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1942 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1943 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1944 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 1945 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 1946 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 1947 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 1948 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 1949 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 1950 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 1951 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 1952 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 1953 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 1954 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 1955 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 1956 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 1957 case lltok::kw_cc: { 1958 Lex.Lex(); 1959 return ParseUInt32(CC); 1960 } 1961 } 1962 1963 Lex.Lex(); 1964 return false; 1965 } 1966 1967 /// ParseMetadataAttachment 1968 /// ::= !dbg !42 1969 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 1970 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 1971 1972 std::string Name = Lex.getStrVal(); 1973 Kind = M->getMDKindID(Name); 1974 Lex.Lex(); 1975 1976 return ParseMDNode(MD); 1977 } 1978 1979 /// ParseInstructionMetadata 1980 /// ::= !dbg !42 (',' !dbg !57)* 1981 bool LLParser::ParseInstructionMetadata(Instruction &Inst) { 1982 do { 1983 if (Lex.getKind() != lltok::MetadataVar) 1984 return TokError("expected metadata after comma"); 1985 1986 unsigned MDK; 1987 MDNode *N; 1988 if (ParseMetadataAttachment(MDK, N)) 1989 return true; 1990 1991 Inst.setMetadata(MDK, N); 1992 if (MDK == LLVMContext::MD_tbaa) 1993 InstsWithTBAATag.push_back(&Inst); 1994 1995 // If this is the end of the list, we're done. 1996 } while (EatIfPresent(lltok::comma)); 1997 return false; 1998 } 1999 2000 /// ParseGlobalObjectMetadataAttachment 2001 /// ::= !dbg !57 2002 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) { 2003 unsigned MDK; 2004 MDNode *N; 2005 if (ParseMetadataAttachment(MDK, N)) 2006 return true; 2007 2008 GO.addMetadata(MDK, *N); 2009 return false; 2010 } 2011 2012 /// ParseOptionalFunctionMetadata 2013 /// ::= (!dbg !57)* 2014 bool LLParser::ParseOptionalFunctionMetadata(Function &F) { 2015 while (Lex.getKind() == lltok::MetadataVar) 2016 if (ParseGlobalObjectMetadataAttachment(F)) 2017 return true; 2018 return false; 2019 } 2020 2021 /// ParseOptionalAlignment 2022 /// ::= /* empty */ 2023 /// ::= 'align' 4 2024 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { 2025 Alignment = 0; 2026 if (!EatIfPresent(lltok::kw_align)) 2027 return false; 2028 LocTy AlignLoc = Lex.getLoc(); 2029 if (ParseUInt32(Alignment)) return true; 2030 if (!isPowerOf2_32(Alignment)) 2031 return Error(AlignLoc, "alignment is not a power of two"); 2032 if (Alignment > Value::MaximumAlignment) 2033 return Error(AlignLoc, "huge alignments are not supported yet"); 2034 return false; 2035 } 2036 2037 /// ParseOptionalDerefAttrBytes 2038 /// ::= /* empty */ 2039 /// ::= AttrKind '(' 4 ')' 2040 /// 2041 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 2042 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind, 2043 uint64_t &Bytes) { 2044 assert((AttrKind == lltok::kw_dereferenceable || 2045 AttrKind == lltok::kw_dereferenceable_or_null) && 2046 "contract!"); 2047 2048 Bytes = 0; 2049 if (!EatIfPresent(AttrKind)) 2050 return false; 2051 LocTy ParenLoc = Lex.getLoc(); 2052 if (!EatIfPresent(lltok::lparen)) 2053 return Error(ParenLoc, "expected '('"); 2054 LocTy DerefLoc = Lex.getLoc(); 2055 if (ParseUInt64(Bytes)) return true; 2056 ParenLoc = Lex.getLoc(); 2057 if (!EatIfPresent(lltok::rparen)) 2058 return Error(ParenLoc, "expected ')'"); 2059 if (!Bytes) 2060 return Error(DerefLoc, "dereferenceable bytes must be non-zero"); 2061 return false; 2062 } 2063 2064 /// ParseOptionalCommaAlign 2065 /// ::= 2066 /// ::= ',' align 4 2067 /// 2068 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2069 /// end. 2070 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, 2071 bool &AteExtraComma) { 2072 AteExtraComma = false; 2073 while (EatIfPresent(lltok::comma)) { 2074 // Metadata at the end is an early exit. 2075 if (Lex.getKind() == lltok::MetadataVar) { 2076 AteExtraComma = true; 2077 return false; 2078 } 2079 2080 if (Lex.getKind() != lltok::kw_align) 2081 return Error(Lex.getLoc(), "expected metadata or 'align'"); 2082 2083 if (ParseOptionalAlignment(Alignment)) return true; 2084 } 2085 2086 return false; 2087 } 2088 2089 /// ParseOptionalCommaAddrSpace 2090 /// ::= 2091 /// ::= ',' addrspace(1) 2092 /// 2093 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2094 /// end. 2095 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace, 2096 LocTy &Loc, 2097 bool &AteExtraComma) { 2098 AteExtraComma = false; 2099 while (EatIfPresent(lltok::comma)) { 2100 // Metadata at the end is an early exit. 2101 if (Lex.getKind() == lltok::MetadataVar) { 2102 AteExtraComma = true; 2103 return false; 2104 } 2105 2106 Loc = Lex.getLoc(); 2107 if (Lex.getKind() != lltok::kw_addrspace) 2108 return Error(Lex.getLoc(), "expected metadata or 'addrspace'"); 2109 2110 if (ParseOptionalAddrSpace(AddrSpace)) 2111 return true; 2112 } 2113 2114 return false; 2115 } 2116 2117 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 2118 Optional<unsigned> &HowManyArg) { 2119 Lex.Lex(); 2120 2121 auto StartParen = Lex.getLoc(); 2122 if (!EatIfPresent(lltok::lparen)) 2123 return Error(StartParen, "expected '('"); 2124 2125 if (ParseUInt32(BaseSizeArg)) 2126 return true; 2127 2128 if (EatIfPresent(lltok::comma)) { 2129 auto HowManyAt = Lex.getLoc(); 2130 unsigned HowMany; 2131 if (ParseUInt32(HowMany)) 2132 return true; 2133 if (HowMany == BaseSizeArg) 2134 return Error(HowManyAt, 2135 "'allocsize' indices can't refer to the same parameter"); 2136 HowManyArg = HowMany; 2137 } else 2138 HowManyArg = None; 2139 2140 auto EndParen = Lex.getLoc(); 2141 if (!EatIfPresent(lltok::rparen)) 2142 return Error(EndParen, "expected ')'"); 2143 return false; 2144 } 2145 2146 /// ParseScopeAndOrdering 2147 /// if isAtomic: ::= SyncScope? AtomicOrdering 2148 /// else: ::= 2149 /// 2150 /// This sets Scope and Ordering to the parsed values. 2151 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID, 2152 AtomicOrdering &Ordering) { 2153 if (!isAtomic) 2154 return false; 2155 2156 return ParseScope(SSID) || ParseOrdering(Ordering); 2157 } 2158 2159 /// ParseScope 2160 /// ::= syncscope("singlethread" | "<target scope>")? 2161 /// 2162 /// This sets synchronization scope ID to the ID of the parsed value. 2163 bool LLParser::ParseScope(SyncScope::ID &SSID) { 2164 SSID = SyncScope::System; 2165 if (EatIfPresent(lltok::kw_syncscope)) { 2166 auto StartParenAt = Lex.getLoc(); 2167 if (!EatIfPresent(lltok::lparen)) 2168 return Error(StartParenAt, "Expected '(' in syncscope"); 2169 2170 std::string SSN; 2171 auto SSNAt = Lex.getLoc(); 2172 if (ParseStringConstant(SSN)) 2173 return Error(SSNAt, "Expected synchronization scope name"); 2174 2175 auto EndParenAt = Lex.getLoc(); 2176 if (!EatIfPresent(lltok::rparen)) 2177 return Error(EndParenAt, "Expected ')' in syncscope"); 2178 2179 SSID = Context.getOrInsertSyncScopeID(SSN); 2180 } 2181 2182 return false; 2183 } 2184 2185 /// ParseOrdering 2186 /// ::= AtomicOrdering 2187 /// 2188 /// This sets Ordering to the parsed value. 2189 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) { 2190 switch (Lex.getKind()) { 2191 default: return TokError("Expected ordering on atomic instruction"); 2192 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2193 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2194 // Not specified yet: 2195 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2196 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2197 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2198 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2199 case lltok::kw_seq_cst: 2200 Ordering = AtomicOrdering::SequentiallyConsistent; 2201 break; 2202 } 2203 Lex.Lex(); 2204 return false; 2205 } 2206 2207 /// ParseOptionalStackAlignment 2208 /// ::= /* empty */ 2209 /// ::= 'alignstack' '(' 4 ')' 2210 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 2211 Alignment = 0; 2212 if (!EatIfPresent(lltok::kw_alignstack)) 2213 return false; 2214 LocTy ParenLoc = Lex.getLoc(); 2215 if (!EatIfPresent(lltok::lparen)) 2216 return Error(ParenLoc, "expected '('"); 2217 LocTy AlignLoc = Lex.getLoc(); 2218 if (ParseUInt32(Alignment)) return true; 2219 ParenLoc = Lex.getLoc(); 2220 if (!EatIfPresent(lltok::rparen)) 2221 return Error(ParenLoc, "expected ')'"); 2222 if (!isPowerOf2_32(Alignment)) 2223 return Error(AlignLoc, "stack alignment is not a power of two"); 2224 return false; 2225 } 2226 2227 /// ParseIndexList - This parses the index list for an insert/extractvalue 2228 /// instruction. This sets AteExtraComma in the case where we eat an extra 2229 /// comma at the end of the line and find that it is followed by metadata. 2230 /// Clients that don't allow metadata can call the version of this function that 2231 /// only takes one argument. 2232 /// 2233 /// ParseIndexList 2234 /// ::= (',' uint32)+ 2235 /// 2236 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 2237 bool &AteExtraComma) { 2238 AteExtraComma = false; 2239 2240 if (Lex.getKind() != lltok::comma) 2241 return TokError("expected ',' as start of index list"); 2242 2243 while (EatIfPresent(lltok::comma)) { 2244 if (Lex.getKind() == lltok::MetadataVar) { 2245 if (Indices.empty()) return TokError("expected index"); 2246 AteExtraComma = true; 2247 return false; 2248 } 2249 unsigned Idx = 0; 2250 if (ParseUInt32(Idx)) return true; 2251 Indices.push_back(Idx); 2252 } 2253 2254 return false; 2255 } 2256 2257 //===----------------------------------------------------------------------===// 2258 // Type Parsing. 2259 //===----------------------------------------------------------------------===// 2260 2261 /// ParseType - Parse a type. 2262 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2263 SMLoc TypeLoc = Lex.getLoc(); 2264 switch (Lex.getKind()) { 2265 default: 2266 return TokError(Msg); 2267 case lltok::Type: 2268 // Type ::= 'float' | 'void' (etc) 2269 Result = Lex.getTyVal(); 2270 Lex.Lex(); 2271 break; 2272 case lltok::lbrace: 2273 // Type ::= StructType 2274 if (ParseAnonStructType(Result, false)) 2275 return true; 2276 break; 2277 case lltok::lsquare: 2278 // Type ::= '[' ... ']' 2279 Lex.Lex(); // eat the lsquare. 2280 if (ParseArrayVectorType(Result, false)) 2281 return true; 2282 break; 2283 case lltok::less: // Either vector or packed struct. 2284 // Type ::= '<' ... '>' 2285 Lex.Lex(); 2286 if (Lex.getKind() == lltok::lbrace) { 2287 if (ParseAnonStructType(Result, true) || 2288 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 2289 return true; 2290 } else if (ParseArrayVectorType(Result, true)) 2291 return true; 2292 break; 2293 case lltok::LocalVar: { 2294 // Type ::= %foo 2295 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2296 2297 // If the type hasn't been defined yet, create a forward definition and 2298 // remember where that forward def'n was seen (in case it never is defined). 2299 if (!Entry.first) { 2300 Entry.first = StructType::create(Context, Lex.getStrVal()); 2301 Entry.second = Lex.getLoc(); 2302 } 2303 Result = Entry.first; 2304 Lex.Lex(); 2305 break; 2306 } 2307 2308 case lltok::LocalVarID: { 2309 // Type ::= %4 2310 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2311 2312 // If the type hasn't been defined yet, create a forward definition and 2313 // remember where that forward def'n was seen (in case it never is defined). 2314 if (!Entry.first) { 2315 Entry.first = StructType::create(Context); 2316 Entry.second = Lex.getLoc(); 2317 } 2318 Result = Entry.first; 2319 Lex.Lex(); 2320 break; 2321 } 2322 } 2323 2324 // Parse the type suffixes. 2325 while (true) { 2326 switch (Lex.getKind()) { 2327 // End of type. 2328 default: 2329 if (!AllowVoid && Result->isVoidTy()) 2330 return Error(TypeLoc, "void type only allowed for function results"); 2331 return false; 2332 2333 // Type ::= Type '*' 2334 case lltok::star: 2335 if (Result->isLabelTy()) 2336 return TokError("basic block pointers are invalid"); 2337 if (Result->isVoidTy()) 2338 return TokError("pointers to void are invalid - use i8* instead"); 2339 if (!PointerType::isValidElementType(Result)) 2340 return TokError("pointer to this type is invalid"); 2341 Result = PointerType::getUnqual(Result); 2342 Lex.Lex(); 2343 break; 2344 2345 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2346 case lltok::kw_addrspace: { 2347 if (Result->isLabelTy()) 2348 return TokError("basic block pointers are invalid"); 2349 if (Result->isVoidTy()) 2350 return TokError("pointers to void are invalid; use i8* instead"); 2351 if (!PointerType::isValidElementType(Result)) 2352 return TokError("pointer to this type is invalid"); 2353 unsigned AddrSpace; 2354 if (ParseOptionalAddrSpace(AddrSpace) || 2355 ParseToken(lltok::star, "expected '*' in address space")) 2356 return true; 2357 2358 Result = PointerType::get(Result, AddrSpace); 2359 break; 2360 } 2361 2362 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2363 case lltok::lparen: 2364 if (ParseFunctionType(Result)) 2365 return true; 2366 break; 2367 } 2368 } 2369 } 2370 2371 /// ParseParameterList 2372 /// ::= '(' ')' 2373 /// ::= '(' Arg (',' Arg)* ')' 2374 /// Arg 2375 /// ::= Type OptionalAttributes Value OptionalAttributes 2376 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2377 PerFunctionState &PFS, bool IsMustTailCall, 2378 bool InVarArgsFunc) { 2379 if (ParseToken(lltok::lparen, "expected '(' in call")) 2380 return true; 2381 2382 while (Lex.getKind() != lltok::rparen) { 2383 // If this isn't the first argument, we need a comma. 2384 if (!ArgList.empty() && 2385 ParseToken(lltok::comma, "expected ',' in argument list")) 2386 return true; 2387 2388 // Parse an ellipsis if this is a musttail call in a variadic function. 2389 if (Lex.getKind() == lltok::dotdotdot) { 2390 const char *Msg = "unexpected ellipsis in argument list for "; 2391 if (!IsMustTailCall) 2392 return TokError(Twine(Msg) + "non-musttail call"); 2393 if (!InVarArgsFunc) 2394 return TokError(Twine(Msg) + "musttail call in non-varargs function"); 2395 Lex.Lex(); // Lex the '...', it is purely for readability. 2396 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2397 } 2398 2399 // Parse the argument. 2400 LocTy ArgLoc; 2401 Type *ArgTy = nullptr; 2402 AttrBuilder ArgAttrs; 2403 Value *V; 2404 if (ParseType(ArgTy, ArgLoc)) 2405 return true; 2406 2407 if (ArgTy->isMetadataTy()) { 2408 if (ParseMetadataAsValue(V, PFS)) 2409 return true; 2410 } else { 2411 // Otherwise, handle normal operands. 2412 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS)) 2413 return true; 2414 } 2415 ArgList.push_back(ParamInfo( 2416 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2417 } 2418 2419 if (IsMustTailCall && InVarArgsFunc) 2420 return TokError("expected '...' at end of argument list for musttail call " 2421 "in varargs function"); 2422 2423 Lex.Lex(); // Lex the ')'. 2424 return false; 2425 } 2426 2427 /// ParseOptionalOperandBundles 2428 /// ::= /*empty*/ 2429 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2430 /// 2431 /// OperandBundle 2432 /// ::= bundle-tag '(' ')' 2433 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2434 /// 2435 /// bundle-tag ::= String Constant 2436 bool LLParser::ParseOptionalOperandBundles( 2437 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2438 LocTy BeginLoc = Lex.getLoc(); 2439 if (!EatIfPresent(lltok::lsquare)) 2440 return false; 2441 2442 while (Lex.getKind() != lltok::rsquare) { 2443 // If this isn't the first operand bundle, we need a comma. 2444 if (!BundleList.empty() && 2445 ParseToken(lltok::comma, "expected ',' in input list")) 2446 return true; 2447 2448 std::string Tag; 2449 if (ParseStringConstant(Tag)) 2450 return true; 2451 2452 if (ParseToken(lltok::lparen, "expected '(' in operand bundle")) 2453 return true; 2454 2455 std::vector<Value *> Inputs; 2456 while (Lex.getKind() != lltok::rparen) { 2457 // If this isn't the first input, we need a comma. 2458 if (!Inputs.empty() && 2459 ParseToken(lltok::comma, "expected ',' in input list")) 2460 return true; 2461 2462 Type *Ty = nullptr; 2463 Value *Input = nullptr; 2464 if (ParseType(Ty) || ParseValue(Ty, Input, PFS)) 2465 return true; 2466 Inputs.push_back(Input); 2467 } 2468 2469 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2470 2471 Lex.Lex(); // Lex the ')'. 2472 } 2473 2474 if (BundleList.empty()) 2475 return Error(BeginLoc, "operand bundle set must not be empty"); 2476 2477 Lex.Lex(); // Lex the ']'. 2478 return false; 2479 } 2480 2481 /// ParseArgumentList - Parse the argument list for a function type or function 2482 /// prototype. 2483 /// ::= '(' ArgTypeListI ')' 2484 /// ArgTypeListI 2485 /// ::= /*empty*/ 2486 /// ::= '...' 2487 /// ::= ArgTypeList ',' '...' 2488 /// ::= ArgType (',' ArgType)* 2489 /// 2490 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2491 bool &isVarArg){ 2492 isVarArg = false; 2493 assert(Lex.getKind() == lltok::lparen); 2494 Lex.Lex(); // eat the (. 2495 2496 if (Lex.getKind() == lltok::rparen) { 2497 // empty 2498 } else if (Lex.getKind() == lltok::dotdotdot) { 2499 isVarArg = true; 2500 Lex.Lex(); 2501 } else { 2502 LocTy TypeLoc = Lex.getLoc(); 2503 Type *ArgTy = nullptr; 2504 AttrBuilder Attrs; 2505 std::string Name; 2506 2507 if (ParseType(ArgTy) || 2508 ParseOptionalParamAttrs(Attrs)) return true; 2509 2510 if (ArgTy->isVoidTy()) 2511 return Error(TypeLoc, "argument can not have void type"); 2512 2513 if (Lex.getKind() == lltok::LocalVar) { 2514 Name = Lex.getStrVal(); 2515 Lex.Lex(); 2516 } 2517 2518 if (!FunctionType::isValidArgumentType(ArgTy)) 2519 return Error(TypeLoc, "invalid type for function argument"); 2520 2521 ArgList.emplace_back(TypeLoc, ArgTy, 2522 AttributeSet::get(ArgTy->getContext(), Attrs), 2523 std::move(Name)); 2524 2525 while (EatIfPresent(lltok::comma)) { 2526 // Handle ... at end of arg list. 2527 if (EatIfPresent(lltok::dotdotdot)) { 2528 isVarArg = true; 2529 break; 2530 } 2531 2532 // Otherwise must be an argument type. 2533 TypeLoc = Lex.getLoc(); 2534 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true; 2535 2536 if (ArgTy->isVoidTy()) 2537 return Error(TypeLoc, "argument can not have void type"); 2538 2539 if (Lex.getKind() == lltok::LocalVar) { 2540 Name = Lex.getStrVal(); 2541 Lex.Lex(); 2542 } else { 2543 Name = ""; 2544 } 2545 2546 if (!ArgTy->isFirstClassType()) 2547 return Error(TypeLoc, "invalid type for function argument"); 2548 2549 ArgList.emplace_back(TypeLoc, ArgTy, 2550 AttributeSet::get(ArgTy->getContext(), Attrs), 2551 std::move(Name)); 2552 } 2553 } 2554 2555 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2556 } 2557 2558 /// ParseFunctionType 2559 /// ::= Type ArgumentList OptionalAttrs 2560 bool LLParser::ParseFunctionType(Type *&Result) { 2561 assert(Lex.getKind() == lltok::lparen); 2562 2563 if (!FunctionType::isValidReturnType(Result)) 2564 return TokError("invalid function return type"); 2565 2566 SmallVector<ArgInfo, 8> ArgList; 2567 bool isVarArg; 2568 if (ParseArgumentList(ArgList, isVarArg)) 2569 return true; 2570 2571 // Reject names on the arguments lists. 2572 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2573 if (!ArgList[i].Name.empty()) 2574 return Error(ArgList[i].Loc, "argument name invalid in function type"); 2575 if (ArgList[i].Attrs.hasAttributes()) 2576 return Error(ArgList[i].Loc, 2577 "argument attributes invalid in function type"); 2578 } 2579 2580 SmallVector<Type*, 16> ArgListTy; 2581 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2582 ArgListTy.push_back(ArgList[i].Ty); 2583 2584 Result = FunctionType::get(Result, ArgListTy, isVarArg); 2585 return false; 2586 } 2587 2588 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 2589 /// other structs. 2590 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 2591 SmallVector<Type*, 8> Elts; 2592 if (ParseStructBody(Elts)) return true; 2593 2594 Result = StructType::get(Context, Elts, Packed); 2595 return false; 2596 } 2597 2598 /// ParseStructDefinition - Parse a struct in a 'type' definition. 2599 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 2600 std::pair<Type*, LocTy> &Entry, 2601 Type *&ResultTy) { 2602 // If the type was already defined, diagnose the redefinition. 2603 if (Entry.first && !Entry.second.isValid()) 2604 return Error(TypeLoc, "redefinition of type"); 2605 2606 // If we have opaque, just return without filling in the definition for the 2607 // struct. This counts as a definition as far as the .ll file goes. 2608 if (EatIfPresent(lltok::kw_opaque)) { 2609 // This type is being defined, so clear the location to indicate this. 2610 Entry.second = SMLoc(); 2611 2612 // If this type number has never been uttered, create it. 2613 if (!Entry.first) 2614 Entry.first = StructType::create(Context, Name); 2615 ResultTy = Entry.first; 2616 return false; 2617 } 2618 2619 // If the type starts with '<', then it is either a packed struct or a vector. 2620 bool isPacked = EatIfPresent(lltok::less); 2621 2622 // If we don't have a struct, then we have a random type alias, which we 2623 // accept for compatibility with old files. These types are not allowed to be 2624 // forward referenced and not allowed to be recursive. 2625 if (Lex.getKind() != lltok::lbrace) { 2626 if (Entry.first) 2627 return Error(TypeLoc, "forward references to non-struct type"); 2628 2629 ResultTy = nullptr; 2630 if (isPacked) 2631 return ParseArrayVectorType(ResultTy, true); 2632 return ParseType(ResultTy); 2633 } 2634 2635 // This type is being defined, so clear the location to indicate this. 2636 Entry.second = SMLoc(); 2637 2638 // If this type number has never been uttered, create it. 2639 if (!Entry.first) 2640 Entry.first = StructType::create(Context, Name); 2641 2642 StructType *STy = cast<StructType>(Entry.first); 2643 2644 SmallVector<Type*, 8> Body; 2645 if (ParseStructBody(Body) || 2646 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 2647 return true; 2648 2649 STy->setBody(Body, isPacked); 2650 ResultTy = STy; 2651 return false; 2652 } 2653 2654 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2655 /// StructType 2656 /// ::= '{' '}' 2657 /// ::= '{' Type (',' Type)* '}' 2658 /// ::= '<' '{' '}' '>' 2659 /// ::= '<' '{' Type (',' Type)* '}' '>' 2660 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 2661 assert(Lex.getKind() == lltok::lbrace); 2662 Lex.Lex(); // Consume the '{' 2663 2664 // Handle the empty struct. 2665 if (EatIfPresent(lltok::rbrace)) 2666 return false; 2667 2668 LocTy EltTyLoc = Lex.getLoc(); 2669 Type *Ty = nullptr; 2670 if (ParseType(Ty)) return true; 2671 Body.push_back(Ty); 2672 2673 if (!StructType::isValidElementType(Ty)) 2674 return Error(EltTyLoc, "invalid element type for struct"); 2675 2676 while (EatIfPresent(lltok::comma)) { 2677 EltTyLoc = Lex.getLoc(); 2678 if (ParseType(Ty)) return true; 2679 2680 if (!StructType::isValidElementType(Ty)) 2681 return Error(EltTyLoc, "invalid element type for struct"); 2682 2683 Body.push_back(Ty); 2684 } 2685 2686 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 2687 } 2688 2689 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 2690 /// token has already been consumed. 2691 /// Type 2692 /// ::= '[' APSINTVAL 'x' Types ']' 2693 /// ::= '<' APSINTVAL 'x' Types '>' 2694 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 2695 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2696 Lex.getAPSIntVal().getBitWidth() > 64) 2697 return TokError("expected number in address space"); 2698 2699 LocTy SizeLoc = Lex.getLoc(); 2700 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2701 Lex.Lex(); 2702 2703 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 2704 return true; 2705 2706 LocTy TypeLoc = Lex.getLoc(); 2707 Type *EltTy = nullptr; 2708 if (ParseType(EltTy)) return true; 2709 2710 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 2711 "expected end of sequential type")) 2712 return true; 2713 2714 if (isVector) { 2715 if (Size == 0) 2716 return Error(SizeLoc, "zero element vector is illegal"); 2717 if ((unsigned)Size != Size) 2718 return Error(SizeLoc, "size too large for vector"); 2719 if (!VectorType::isValidElementType(EltTy)) 2720 return Error(TypeLoc, "invalid vector element type"); 2721 Result = VectorType::get(EltTy, unsigned(Size)); 2722 } else { 2723 if (!ArrayType::isValidElementType(EltTy)) 2724 return Error(TypeLoc, "invalid array element type"); 2725 Result = ArrayType::get(EltTy, Size); 2726 } 2727 return false; 2728 } 2729 2730 //===----------------------------------------------------------------------===// 2731 // Function Semantic Analysis. 2732 //===----------------------------------------------------------------------===// 2733 2734 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2735 int functionNumber) 2736 : P(p), F(f), FunctionNumber(functionNumber) { 2737 2738 // Insert unnamed arguments into the NumberedVals list. 2739 for (Argument &A : F.args()) 2740 if (!A.hasName()) 2741 NumberedVals.push_back(&A); 2742 } 2743 2744 LLParser::PerFunctionState::~PerFunctionState() { 2745 // If there were any forward referenced non-basicblock values, delete them. 2746 2747 for (const auto &P : ForwardRefVals) { 2748 if (isa<BasicBlock>(P.second.first)) 2749 continue; 2750 P.second.first->replaceAllUsesWith( 2751 UndefValue::get(P.second.first->getType())); 2752 P.second.first->deleteValue(); 2753 } 2754 2755 for (const auto &P : ForwardRefValIDs) { 2756 if (isa<BasicBlock>(P.second.first)) 2757 continue; 2758 P.second.first->replaceAllUsesWith( 2759 UndefValue::get(P.second.first->getType())); 2760 P.second.first->deleteValue(); 2761 } 2762 } 2763 2764 bool LLParser::PerFunctionState::FinishFunction() { 2765 if (!ForwardRefVals.empty()) 2766 return P.Error(ForwardRefVals.begin()->second.second, 2767 "use of undefined value '%" + ForwardRefVals.begin()->first + 2768 "'"); 2769 if (!ForwardRefValIDs.empty()) 2770 return P.Error(ForwardRefValIDs.begin()->second.second, 2771 "use of undefined value '%" + 2772 Twine(ForwardRefValIDs.begin()->first) + "'"); 2773 return false; 2774 } 2775 2776 /// GetVal - Get a value with the specified name or ID, creating a 2777 /// forward reference record if needed. This can return null if the value 2778 /// exists but does not have the right type. 2779 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty, 2780 LocTy Loc, bool IsCall) { 2781 // Look this name up in the normal function symbol table. 2782 Value *Val = F.getValueSymbolTable()->lookup(Name); 2783 2784 // If this is a forward reference for the value, see if we already created a 2785 // forward ref record. 2786 if (!Val) { 2787 auto I = ForwardRefVals.find(Name); 2788 if (I != ForwardRefVals.end()) 2789 Val = I->second.first; 2790 } 2791 2792 // If we have the value in the symbol table or fwd-ref table, return it. 2793 if (Val) 2794 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall); 2795 2796 // Don't make placeholders with invalid type. 2797 if (!Ty->isFirstClassType()) { 2798 P.Error(Loc, "invalid use of a non-first-class type"); 2799 return nullptr; 2800 } 2801 2802 // Otherwise, create a new forward reference for this value and remember it. 2803 Value *FwdVal; 2804 if (Ty->isLabelTy()) { 2805 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2806 } else { 2807 FwdVal = new Argument(Ty, Name); 2808 } 2809 2810 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2811 return FwdVal; 2812 } 2813 2814 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc, 2815 bool IsCall) { 2816 // Look this name up in the normal function symbol table. 2817 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2818 2819 // If this is a forward reference for the value, see if we already created a 2820 // forward ref record. 2821 if (!Val) { 2822 auto I = ForwardRefValIDs.find(ID); 2823 if (I != ForwardRefValIDs.end()) 2824 Val = I->second.first; 2825 } 2826 2827 // If we have the value in the symbol table or fwd-ref table, return it. 2828 if (Val) 2829 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall); 2830 2831 if (!Ty->isFirstClassType()) { 2832 P.Error(Loc, "invalid use of a non-first-class type"); 2833 return nullptr; 2834 } 2835 2836 // Otherwise, create a new forward reference for this value and remember it. 2837 Value *FwdVal; 2838 if (Ty->isLabelTy()) { 2839 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2840 } else { 2841 FwdVal = new Argument(Ty); 2842 } 2843 2844 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2845 return FwdVal; 2846 } 2847 2848 /// SetInstName - After an instruction is parsed and inserted into its 2849 /// basic block, this installs its name. 2850 bool LLParser::PerFunctionState::SetInstName(int NameID, 2851 const std::string &NameStr, 2852 LocTy NameLoc, Instruction *Inst) { 2853 // If this instruction has void type, it cannot have a name or ID specified. 2854 if (Inst->getType()->isVoidTy()) { 2855 if (NameID != -1 || !NameStr.empty()) 2856 return P.Error(NameLoc, "instructions returning void cannot have a name"); 2857 return false; 2858 } 2859 2860 // If this was a numbered instruction, verify that the instruction is the 2861 // expected value and resolve any forward references. 2862 if (NameStr.empty()) { 2863 // If neither a name nor an ID was specified, just use the next ID. 2864 if (NameID == -1) 2865 NameID = NumberedVals.size(); 2866 2867 if (unsigned(NameID) != NumberedVals.size()) 2868 return P.Error(NameLoc, "instruction expected to be numbered '%" + 2869 Twine(NumberedVals.size()) + "'"); 2870 2871 auto FI = ForwardRefValIDs.find(NameID); 2872 if (FI != ForwardRefValIDs.end()) { 2873 Value *Sentinel = FI->second.first; 2874 if (Sentinel->getType() != Inst->getType()) 2875 return P.Error(NameLoc, "instruction forward referenced with type '" + 2876 getTypeString(FI->second.first->getType()) + "'"); 2877 2878 Sentinel->replaceAllUsesWith(Inst); 2879 Sentinel->deleteValue(); 2880 ForwardRefValIDs.erase(FI); 2881 } 2882 2883 NumberedVals.push_back(Inst); 2884 return false; 2885 } 2886 2887 // Otherwise, the instruction had a name. Resolve forward refs and set it. 2888 auto FI = ForwardRefVals.find(NameStr); 2889 if (FI != ForwardRefVals.end()) { 2890 Value *Sentinel = FI->second.first; 2891 if (Sentinel->getType() != Inst->getType()) 2892 return P.Error(NameLoc, "instruction forward referenced with type '" + 2893 getTypeString(FI->second.first->getType()) + "'"); 2894 2895 Sentinel->replaceAllUsesWith(Inst); 2896 Sentinel->deleteValue(); 2897 ForwardRefVals.erase(FI); 2898 } 2899 2900 // Set the name on the instruction. 2901 Inst->setName(NameStr); 2902 2903 if (Inst->getName() != NameStr) 2904 return P.Error(NameLoc, "multiple definition of local value named '" + 2905 NameStr + "'"); 2906 return false; 2907 } 2908 2909 /// GetBB - Get a basic block with the specified name or ID, creating a 2910 /// forward reference record if needed. 2911 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 2912 LocTy Loc) { 2913 return dyn_cast_or_null<BasicBlock>( 2914 GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 2915 } 2916 2917 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 2918 return dyn_cast_or_null<BasicBlock>( 2919 GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 2920 } 2921 2922 /// DefineBB - Define the specified basic block, which is either named or 2923 /// unnamed. If there is an error, this returns null otherwise it returns 2924 /// the block being defined. 2925 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 2926 LocTy Loc) { 2927 BasicBlock *BB; 2928 if (Name.empty()) 2929 BB = GetBB(NumberedVals.size(), Loc); 2930 else 2931 BB = GetBB(Name, Loc); 2932 if (!BB) return nullptr; // Already diagnosed error. 2933 2934 // Move the block to the end of the function. Forward ref'd blocks are 2935 // inserted wherever they happen to be referenced. 2936 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 2937 2938 // Remove the block from forward ref sets. 2939 if (Name.empty()) { 2940 ForwardRefValIDs.erase(NumberedVals.size()); 2941 NumberedVals.push_back(BB); 2942 } else { 2943 // BB forward references are already in the function symbol table. 2944 ForwardRefVals.erase(Name); 2945 } 2946 2947 return BB; 2948 } 2949 2950 //===----------------------------------------------------------------------===// 2951 // Constants. 2952 //===----------------------------------------------------------------------===// 2953 2954 /// ParseValID - Parse an abstract value that doesn't necessarily have a 2955 /// type implied. For example, if we parse "4" we don't know what integer type 2956 /// it has. The value will later be combined with its type and checked for 2957 /// sanity. PFS is used to convert function-local operands of metadata (since 2958 /// metadata operands are not just parsed here but also converted to values). 2959 /// PFS can be null when we are not parsing metadata values inside a function. 2960 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 2961 ID.Loc = Lex.getLoc(); 2962 switch (Lex.getKind()) { 2963 default: return TokError("expected value token"); 2964 case lltok::GlobalID: // @42 2965 ID.UIntVal = Lex.getUIntVal(); 2966 ID.Kind = ValID::t_GlobalID; 2967 break; 2968 case lltok::GlobalVar: // @foo 2969 ID.StrVal = Lex.getStrVal(); 2970 ID.Kind = ValID::t_GlobalName; 2971 break; 2972 case lltok::LocalVarID: // %42 2973 ID.UIntVal = Lex.getUIntVal(); 2974 ID.Kind = ValID::t_LocalID; 2975 break; 2976 case lltok::LocalVar: // %foo 2977 ID.StrVal = Lex.getStrVal(); 2978 ID.Kind = ValID::t_LocalName; 2979 break; 2980 case lltok::APSInt: 2981 ID.APSIntVal = Lex.getAPSIntVal(); 2982 ID.Kind = ValID::t_APSInt; 2983 break; 2984 case lltok::APFloat: 2985 ID.APFloatVal = Lex.getAPFloatVal(); 2986 ID.Kind = ValID::t_APFloat; 2987 break; 2988 case lltok::kw_true: 2989 ID.ConstantVal = ConstantInt::getTrue(Context); 2990 ID.Kind = ValID::t_Constant; 2991 break; 2992 case lltok::kw_false: 2993 ID.ConstantVal = ConstantInt::getFalse(Context); 2994 ID.Kind = ValID::t_Constant; 2995 break; 2996 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 2997 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 2998 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 2999 case lltok::kw_none: ID.Kind = ValID::t_None; break; 3000 3001 case lltok::lbrace: { 3002 // ValID ::= '{' ConstVector '}' 3003 Lex.Lex(); 3004 SmallVector<Constant*, 16> Elts; 3005 if (ParseGlobalValueVector(Elts) || 3006 ParseToken(lltok::rbrace, "expected end of struct constant")) 3007 return true; 3008 3009 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 3010 ID.UIntVal = Elts.size(); 3011 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3012 Elts.size() * sizeof(Elts[0])); 3013 ID.Kind = ValID::t_ConstantStruct; 3014 return false; 3015 } 3016 case lltok::less: { 3017 // ValID ::= '<' ConstVector '>' --> Vector. 3018 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 3019 Lex.Lex(); 3020 bool isPackedStruct = EatIfPresent(lltok::lbrace); 3021 3022 SmallVector<Constant*, 16> Elts; 3023 LocTy FirstEltLoc = Lex.getLoc(); 3024 if (ParseGlobalValueVector(Elts) || 3025 (isPackedStruct && 3026 ParseToken(lltok::rbrace, "expected end of packed struct")) || 3027 ParseToken(lltok::greater, "expected end of constant")) 3028 return true; 3029 3030 if (isPackedStruct) { 3031 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 3032 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3033 Elts.size() * sizeof(Elts[0])); 3034 ID.UIntVal = Elts.size(); 3035 ID.Kind = ValID::t_PackedConstantStruct; 3036 return false; 3037 } 3038 3039 if (Elts.empty()) 3040 return Error(ID.Loc, "constant vector must not be empty"); 3041 3042 if (!Elts[0]->getType()->isIntegerTy() && 3043 !Elts[0]->getType()->isFloatingPointTy() && 3044 !Elts[0]->getType()->isPointerTy()) 3045 return Error(FirstEltLoc, 3046 "vector elements must have integer, pointer or floating point type"); 3047 3048 // Verify that all the vector elements have the same type. 3049 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 3050 if (Elts[i]->getType() != Elts[0]->getType()) 3051 return Error(FirstEltLoc, 3052 "vector element #" + Twine(i) + 3053 " is not of type '" + getTypeString(Elts[0]->getType())); 3054 3055 ID.ConstantVal = ConstantVector::get(Elts); 3056 ID.Kind = ValID::t_Constant; 3057 return false; 3058 } 3059 case lltok::lsquare: { // Array Constant 3060 Lex.Lex(); 3061 SmallVector<Constant*, 16> Elts; 3062 LocTy FirstEltLoc = Lex.getLoc(); 3063 if (ParseGlobalValueVector(Elts) || 3064 ParseToken(lltok::rsquare, "expected end of array constant")) 3065 return true; 3066 3067 // Handle empty element. 3068 if (Elts.empty()) { 3069 // Use undef instead of an array because it's inconvenient to determine 3070 // the element type at this point, there being no elements to examine. 3071 ID.Kind = ValID::t_EmptyArray; 3072 return false; 3073 } 3074 3075 if (!Elts[0]->getType()->isFirstClassType()) 3076 return Error(FirstEltLoc, "invalid array element type: " + 3077 getTypeString(Elts[0]->getType())); 3078 3079 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 3080 3081 // Verify all elements are correct type! 3082 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 3083 if (Elts[i]->getType() != Elts[0]->getType()) 3084 return Error(FirstEltLoc, 3085 "array element #" + Twine(i) + 3086 " is not of type '" + getTypeString(Elts[0]->getType())); 3087 } 3088 3089 ID.ConstantVal = ConstantArray::get(ATy, Elts); 3090 ID.Kind = ValID::t_Constant; 3091 return false; 3092 } 3093 case lltok::kw_c: // c "foo" 3094 Lex.Lex(); 3095 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 3096 false); 3097 if (ParseToken(lltok::StringConstant, "expected string")) return true; 3098 ID.Kind = ValID::t_Constant; 3099 return false; 3100 3101 case lltok::kw_asm: { 3102 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 3103 // STRINGCONSTANT 3104 bool HasSideEffect, AlignStack, AsmDialect; 3105 Lex.Lex(); 3106 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 3107 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 3108 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 3109 ParseStringConstant(ID.StrVal) || 3110 ParseToken(lltok::comma, "expected comma in inline asm expression") || 3111 ParseToken(lltok::StringConstant, "expected constraint string")) 3112 return true; 3113 ID.StrVal2 = Lex.getStrVal(); 3114 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 3115 (unsigned(AsmDialect)<<2); 3116 ID.Kind = ValID::t_InlineAsm; 3117 return false; 3118 } 3119 3120 case lltok::kw_blockaddress: { 3121 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 3122 Lex.Lex(); 3123 3124 ValID Fn, Label; 3125 3126 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 3127 ParseValID(Fn) || 3128 ParseToken(lltok::comma, "expected comma in block address expression")|| 3129 ParseValID(Label) || 3130 ParseToken(lltok::rparen, "expected ')' in block address expression")) 3131 return true; 3132 3133 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3134 return Error(Fn.Loc, "expected function name in blockaddress"); 3135 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 3136 return Error(Label.Loc, "expected basic block name in blockaddress"); 3137 3138 // Try to find the function (but skip it if it's forward-referenced). 3139 GlobalValue *GV = nullptr; 3140 if (Fn.Kind == ValID::t_GlobalID) { 3141 if (Fn.UIntVal < NumberedVals.size()) 3142 GV = NumberedVals[Fn.UIntVal]; 3143 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3144 GV = M->getNamedValue(Fn.StrVal); 3145 } 3146 Function *F = nullptr; 3147 if (GV) { 3148 // Confirm that it's actually a function with a definition. 3149 if (!isa<Function>(GV)) 3150 return Error(Fn.Loc, "expected function name in blockaddress"); 3151 F = cast<Function>(GV); 3152 if (F->isDeclaration()) 3153 return Error(Fn.Loc, "cannot take blockaddress inside a declaration"); 3154 } 3155 3156 if (!F) { 3157 // Make a global variable as a placeholder for this reference. 3158 GlobalValue *&FwdRef = 3159 ForwardRefBlockAddresses.insert(std::make_pair( 3160 std::move(Fn), 3161 std::map<ValID, GlobalValue *>())) 3162 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 3163 .first->second; 3164 if (!FwdRef) 3165 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 3166 GlobalValue::InternalLinkage, nullptr, ""); 3167 ID.ConstantVal = FwdRef; 3168 ID.Kind = ValID::t_Constant; 3169 return false; 3170 } 3171 3172 // We found the function; now find the basic block. Don't use PFS, since we 3173 // might be inside a constant expression. 3174 BasicBlock *BB; 3175 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 3176 if (Label.Kind == ValID::t_LocalID) 3177 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc); 3178 else 3179 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc); 3180 if (!BB) 3181 return Error(Label.Loc, "referenced value is not a basic block"); 3182 } else { 3183 if (Label.Kind == ValID::t_LocalID) 3184 return Error(Label.Loc, "cannot take address of numeric label after " 3185 "the function is defined"); 3186 BB = dyn_cast_or_null<BasicBlock>( 3187 F->getValueSymbolTable()->lookup(Label.StrVal)); 3188 if (!BB) 3189 return Error(Label.Loc, "referenced value is not a basic block"); 3190 } 3191 3192 ID.ConstantVal = BlockAddress::get(F, BB); 3193 ID.Kind = ValID::t_Constant; 3194 return false; 3195 } 3196 3197 case lltok::kw_trunc: 3198 case lltok::kw_zext: 3199 case lltok::kw_sext: 3200 case lltok::kw_fptrunc: 3201 case lltok::kw_fpext: 3202 case lltok::kw_bitcast: 3203 case lltok::kw_addrspacecast: 3204 case lltok::kw_uitofp: 3205 case lltok::kw_sitofp: 3206 case lltok::kw_fptoui: 3207 case lltok::kw_fptosi: 3208 case lltok::kw_inttoptr: 3209 case lltok::kw_ptrtoint: { 3210 unsigned Opc = Lex.getUIntVal(); 3211 Type *DestTy = nullptr; 3212 Constant *SrcVal; 3213 Lex.Lex(); 3214 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3215 ParseGlobalTypeAndValue(SrcVal) || 3216 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3217 ParseType(DestTy) || 3218 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3219 return true; 3220 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3221 return Error(ID.Loc, "invalid cast opcode for cast from '" + 3222 getTypeString(SrcVal->getType()) + "' to '" + 3223 getTypeString(DestTy) + "'"); 3224 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3225 SrcVal, DestTy); 3226 ID.Kind = ValID::t_Constant; 3227 return false; 3228 } 3229 case lltok::kw_extractvalue: { 3230 Lex.Lex(); 3231 Constant *Val; 3232 SmallVector<unsigned, 4> Indices; 3233 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 3234 ParseGlobalTypeAndValue(Val) || 3235 ParseIndexList(Indices) || 3236 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 3237 return true; 3238 3239 if (!Val->getType()->isAggregateType()) 3240 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 3241 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 3242 return Error(ID.Loc, "invalid indices for extractvalue"); 3243 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 3244 ID.Kind = ValID::t_Constant; 3245 return false; 3246 } 3247 case lltok::kw_insertvalue: { 3248 Lex.Lex(); 3249 Constant *Val0, *Val1; 3250 SmallVector<unsigned, 4> Indices; 3251 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 3252 ParseGlobalTypeAndValue(Val0) || 3253 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 3254 ParseGlobalTypeAndValue(Val1) || 3255 ParseIndexList(Indices) || 3256 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 3257 return true; 3258 if (!Val0->getType()->isAggregateType()) 3259 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 3260 Type *IndexedType = 3261 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3262 if (!IndexedType) 3263 return Error(ID.Loc, "invalid indices for insertvalue"); 3264 if (IndexedType != Val1->getType()) 3265 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3266 getTypeString(Val1->getType()) + 3267 "' instead of '" + getTypeString(IndexedType) + 3268 "'"); 3269 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3270 ID.Kind = ValID::t_Constant; 3271 return false; 3272 } 3273 case lltok::kw_icmp: 3274 case lltok::kw_fcmp: { 3275 unsigned PredVal, Opc = Lex.getUIntVal(); 3276 Constant *Val0, *Val1; 3277 Lex.Lex(); 3278 if (ParseCmpPredicate(PredVal, Opc) || 3279 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3280 ParseGlobalTypeAndValue(Val0) || 3281 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 3282 ParseGlobalTypeAndValue(Val1) || 3283 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3284 return true; 3285 3286 if (Val0->getType() != Val1->getType()) 3287 return Error(ID.Loc, "compare operands must have the same type"); 3288 3289 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3290 3291 if (Opc == Instruction::FCmp) { 3292 if (!Val0->getType()->isFPOrFPVectorTy()) 3293 return Error(ID.Loc, "fcmp requires floating point operands"); 3294 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3295 } else { 3296 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3297 if (!Val0->getType()->isIntOrIntVectorTy() && 3298 !Val0->getType()->isPtrOrPtrVectorTy()) 3299 return Error(ID.Loc, "icmp requires pointer or integer operands"); 3300 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3301 } 3302 ID.Kind = ValID::t_Constant; 3303 return false; 3304 } 3305 3306 // Unary Operators. 3307 case lltok::kw_fneg: { 3308 unsigned Opc = Lex.getUIntVal(); 3309 Constant *Val; 3310 Lex.Lex(); 3311 if (ParseToken(lltok::lparen, "expected '(' in unary constantexpr") || 3312 ParseGlobalTypeAndValue(Val) || 3313 ParseToken(lltok::rparen, "expected ')' in unary constantexpr")) 3314 return true; 3315 3316 // Check that the type is valid for the operator. 3317 switch (Opc) { 3318 case Instruction::FNeg: 3319 if (!Val->getType()->isFPOrFPVectorTy()) 3320 return Error(ID.Loc, "constexpr requires fp operands"); 3321 break; 3322 default: llvm_unreachable("Unknown unary operator!"); 3323 } 3324 unsigned Flags = 0; 3325 Constant *C = ConstantExpr::get(Opc, Val, Flags); 3326 ID.ConstantVal = C; 3327 ID.Kind = ValID::t_Constant; 3328 return false; 3329 } 3330 // Binary Operators. 3331 case lltok::kw_add: 3332 case lltok::kw_fadd: 3333 case lltok::kw_sub: 3334 case lltok::kw_fsub: 3335 case lltok::kw_mul: 3336 case lltok::kw_fmul: 3337 case lltok::kw_udiv: 3338 case lltok::kw_sdiv: 3339 case lltok::kw_fdiv: 3340 case lltok::kw_urem: 3341 case lltok::kw_srem: 3342 case lltok::kw_frem: 3343 case lltok::kw_shl: 3344 case lltok::kw_lshr: 3345 case lltok::kw_ashr: { 3346 bool NUW = false; 3347 bool NSW = false; 3348 bool Exact = false; 3349 unsigned Opc = Lex.getUIntVal(); 3350 Constant *Val0, *Val1; 3351 Lex.Lex(); 3352 LocTy ModifierLoc = Lex.getLoc(); 3353 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3354 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3355 if (EatIfPresent(lltok::kw_nuw)) 3356 NUW = true; 3357 if (EatIfPresent(lltok::kw_nsw)) { 3358 NSW = true; 3359 if (EatIfPresent(lltok::kw_nuw)) 3360 NUW = true; 3361 } 3362 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3363 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3364 if (EatIfPresent(lltok::kw_exact)) 3365 Exact = true; 3366 } 3367 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3368 ParseGlobalTypeAndValue(Val0) || 3369 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 3370 ParseGlobalTypeAndValue(Val1) || 3371 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3372 return true; 3373 if (Val0->getType() != Val1->getType()) 3374 return Error(ID.Loc, "operands of constexpr must have same type"); 3375 if (!Val0->getType()->isIntOrIntVectorTy()) { 3376 if (NUW) 3377 return Error(ModifierLoc, "nuw only applies to integer operations"); 3378 if (NSW) 3379 return Error(ModifierLoc, "nsw only applies to integer operations"); 3380 } 3381 // Check that the type is valid for the operator. 3382 switch (Opc) { 3383 case Instruction::Add: 3384 case Instruction::Sub: 3385 case Instruction::Mul: 3386 case Instruction::UDiv: 3387 case Instruction::SDiv: 3388 case Instruction::URem: 3389 case Instruction::SRem: 3390 case Instruction::Shl: 3391 case Instruction::AShr: 3392 case Instruction::LShr: 3393 if (!Val0->getType()->isIntOrIntVectorTy()) 3394 return Error(ID.Loc, "constexpr requires integer operands"); 3395 break; 3396 case Instruction::FAdd: 3397 case Instruction::FSub: 3398 case Instruction::FMul: 3399 case Instruction::FDiv: 3400 case Instruction::FRem: 3401 if (!Val0->getType()->isFPOrFPVectorTy()) 3402 return Error(ID.Loc, "constexpr requires fp operands"); 3403 break; 3404 default: llvm_unreachable("Unknown binary operator!"); 3405 } 3406 unsigned Flags = 0; 3407 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3408 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3409 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3410 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3411 ID.ConstantVal = C; 3412 ID.Kind = ValID::t_Constant; 3413 return false; 3414 } 3415 3416 // Logical Operations 3417 case lltok::kw_and: 3418 case lltok::kw_or: 3419 case lltok::kw_xor: { 3420 unsigned Opc = Lex.getUIntVal(); 3421 Constant *Val0, *Val1; 3422 Lex.Lex(); 3423 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3424 ParseGlobalTypeAndValue(Val0) || 3425 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 3426 ParseGlobalTypeAndValue(Val1) || 3427 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3428 return true; 3429 if (Val0->getType() != Val1->getType()) 3430 return Error(ID.Loc, "operands of constexpr must have same type"); 3431 if (!Val0->getType()->isIntOrIntVectorTy()) 3432 return Error(ID.Loc, 3433 "constexpr requires integer or integer vector operands"); 3434 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3435 ID.Kind = ValID::t_Constant; 3436 return false; 3437 } 3438 3439 case lltok::kw_getelementptr: 3440 case lltok::kw_shufflevector: 3441 case lltok::kw_insertelement: 3442 case lltok::kw_extractelement: 3443 case lltok::kw_select: { 3444 unsigned Opc = Lex.getUIntVal(); 3445 SmallVector<Constant*, 16> Elts; 3446 bool InBounds = false; 3447 Type *Ty; 3448 Lex.Lex(); 3449 3450 if (Opc == Instruction::GetElementPtr) 3451 InBounds = EatIfPresent(lltok::kw_inbounds); 3452 3453 if (ParseToken(lltok::lparen, "expected '(' in constantexpr")) 3454 return true; 3455 3456 LocTy ExplicitTypeLoc = Lex.getLoc(); 3457 if (Opc == Instruction::GetElementPtr) { 3458 if (ParseType(Ty) || 3459 ParseToken(lltok::comma, "expected comma after getelementptr's type")) 3460 return true; 3461 } 3462 3463 Optional<unsigned> InRangeOp; 3464 if (ParseGlobalValueVector( 3465 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3466 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 3467 return true; 3468 3469 if (Opc == Instruction::GetElementPtr) { 3470 if (Elts.size() == 0 || 3471 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 3472 return Error(ID.Loc, "base of getelementptr must be a pointer"); 3473 3474 Type *BaseType = Elts[0]->getType(); 3475 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3476 if (Ty != BasePointerType->getElementType()) 3477 return Error( 3478 ExplicitTypeLoc, 3479 "explicit pointee type doesn't match operand's pointee type"); 3480 3481 unsigned GEPWidth = 3482 BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0; 3483 3484 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3485 for (Constant *Val : Indices) { 3486 Type *ValTy = Val->getType(); 3487 if (!ValTy->isIntOrIntVectorTy()) 3488 return Error(ID.Loc, "getelementptr index must be an integer"); 3489 if (ValTy->isVectorTy()) { 3490 unsigned ValNumEl = ValTy->getVectorNumElements(); 3491 if (GEPWidth && (ValNumEl != GEPWidth)) 3492 return Error( 3493 ID.Loc, 3494 "getelementptr vector index has a wrong number of elements"); 3495 // GEPWidth may have been unknown because the base is a scalar, 3496 // but it is known now. 3497 GEPWidth = ValNumEl; 3498 } 3499 } 3500 3501 SmallPtrSet<Type*, 4> Visited; 3502 if (!Indices.empty() && !Ty->isSized(&Visited)) 3503 return Error(ID.Loc, "base element of getelementptr must be sized"); 3504 3505 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3506 return Error(ID.Loc, "invalid getelementptr indices"); 3507 3508 if (InRangeOp) { 3509 if (*InRangeOp == 0) 3510 return Error(ID.Loc, 3511 "inrange keyword may not appear on pointer operand"); 3512 --*InRangeOp; 3513 } 3514 3515 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3516 InBounds, InRangeOp); 3517 } else if (Opc == Instruction::Select) { 3518 if (Elts.size() != 3) 3519 return Error(ID.Loc, "expected three operands to select"); 3520 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3521 Elts[2])) 3522 return Error(ID.Loc, Reason); 3523 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3524 } else if (Opc == Instruction::ShuffleVector) { 3525 if (Elts.size() != 3) 3526 return Error(ID.Loc, "expected three operands to shufflevector"); 3527 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3528 return Error(ID.Loc, "invalid operands to shufflevector"); 3529 ID.ConstantVal = 3530 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 3531 } else if (Opc == Instruction::ExtractElement) { 3532 if (Elts.size() != 2) 3533 return Error(ID.Loc, "expected two operands to extractelement"); 3534 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3535 return Error(ID.Loc, "invalid extractelement operands"); 3536 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3537 } else { 3538 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3539 if (Elts.size() != 3) 3540 return Error(ID.Loc, "expected three operands to insertelement"); 3541 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3542 return Error(ID.Loc, "invalid insertelement operands"); 3543 ID.ConstantVal = 3544 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3545 } 3546 3547 ID.Kind = ValID::t_Constant; 3548 return false; 3549 } 3550 } 3551 3552 Lex.Lex(); 3553 return false; 3554 } 3555 3556 /// ParseGlobalValue - Parse a global value with the specified type. 3557 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 3558 C = nullptr; 3559 ValID ID; 3560 Value *V = nullptr; 3561 bool Parsed = ParseValID(ID) || 3562 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false); 3563 if (V && !(C = dyn_cast<Constant>(V))) 3564 return Error(ID.Loc, "global values must be constants"); 3565 return Parsed; 3566 } 3567 3568 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 3569 Type *Ty = nullptr; 3570 return ParseType(Ty) || 3571 ParseGlobalValue(Ty, V); 3572 } 3573 3574 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3575 C = nullptr; 3576 3577 LocTy KwLoc = Lex.getLoc(); 3578 if (!EatIfPresent(lltok::kw_comdat)) 3579 return false; 3580 3581 if (EatIfPresent(lltok::lparen)) { 3582 if (Lex.getKind() != lltok::ComdatVar) 3583 return TokError("expected comdat variable"); 3584 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3585 Lex.Lex(); 3586 if (ParseToken(lltok::rparen, "expected ')' after comdat var")) 3587 return true; 3588 } else { 3589 if (GlobalName.empty()) 3590 return TokError("comdat cannot be unnamed"); 3591 C = getComdat(GlobalName, KwLoc); 3592 } 3593 3594 return false; 3595 } 3596 3597 /// ParseGlobalValueVector 3598 /// ::= /*empty*/ 3599 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 3600 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 3601 Optional<unsigned> *InRangeOp) { 3602 // Empty list. 3603 if (Lex.getKind() == lltok::rbrace || 3604 Lex.getKind() == lltok::rsquare || 3605 Lex.getKind() == lltok::greater || 3606 Lex.getKind() == lltok::rparen) 3607 return false; 3608 3609 do { 3610 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 3611 *InRangeOp = Elts.size(); 3612 3613 Constant *C; 3614 if (ParseGlobalTypeAndValue(C)) return true; 3615 Elts.push_back(C); 3616 } while (EatIfPresent(lltok::comma)); 3617 3618 return false; 3619 } 3620 3621 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) { 3622 SmallVector<Metadata *, 16> Elts; 3623 if (ParseMDNodeVector(Elts)) 3624 return true; 3625 3626 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3627 return false; 3628 } 3629 3630 /// MDNode: 3631 /// ::= !{ ... } 3632 /// ::= !7 3633 /// ::= !DILocation(...) 3634 bool LLParser::ParseMDNode(MDNode *&N) { 3635 if (Lex.getKind() == lltok::MetadataVar) 3636 return ParseSpecializedMDNode(N); 3637 3638 return ParseToken(lltok::exclaim, "expected '!' here") || 3639 ParseMDNodeTail(N); 3640 } 3641 3642 bool LLParser::ParseMDNodeTail(MDNode *&N) { 3643 // !{ ... } 3644 if (Lex.getKind() == lltok::lbrace) 3645 return ParseMDTuple(N); 3646 3647 // !42 3648 return ParseMDNodeID(N); 3649 } 3650 3651 namespace { 3652 3653 /// Structure to represent an optional metadata field. 3654 template <class FieldTy> struct MDFieldImpl { 3655 typedef MDFieldImpl ImplTy; 3656 FieldTy Val; 3657 bool Seen; 3658 3659 void assign(FieldTy Val) { 3660 Seen = true; 3661 this->Val = std::move(Val); 3662 } 3663 3664 explicit MDFieldImpl(FieldTy Default) 3665 : Val(std::move(Default)), Seen(false) {} 3666 }; 3667 3668 /// Structure to represent an optional metadata field that 3669 /// can be of either type (A or B) and encapsulates the 3670 /// MD<typeofA>Field and MD<typeofB>Field structs, so not 3671 /// to reimplement the specifics for representing each Field. 3672 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl { 3673 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy; 3674 FieldTypeA A; 3675 FieldTypeB B; 3676 bool Seen; 3677 3678 enum { 3679 IsInvalid = 0, 3680 IsTypeA = 1, 3681 IsTypeB = 2 3682 } WhatIs; 3683 3684 void assign(FieldTypeA A) { 3685 Seen = true; 3686 this->A = std::move(A); 3687 WhatIs = IsTypeA; 3688 } 3689 3690 void assign(FieldTypeB B) { 3691 Seen = true; 3692 this->B = std::move(B); 3693 WhatIs = IsTypeB; 3694 } 3695 3696 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) 3697 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), 3698 WhatIs(IsInvalid) {} 3699 }; 3700 3701 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3702 uint64_t Max; 3703 3704 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3705 : ImplTy(Default), Max(Max) {} 3706 }; 3707 3708 struct LineField : public MDUnsignedField { 3709 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3710 }; 3711 3712 struct ColumnField : public MDUnsignedField { 3713 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3714 }; 3715 3716 struct DwarfTagField : public MDUnsignedField { 3717 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3718 DwarfTagField(dwarf::Tag DefaultTag) 3719 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3720 }; 3721 3722 struct DwarfMacinfoTypeField : public MDUnsignedField { 3723 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 3724 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 3725 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 3726 }; 3727 3728 struct DwarfAttEncodingField : public MDUnsignedField { 3729 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3730 }; 3731 3732 struct DwarfVirtualityField : public MDUnsignedField { 3733 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3734 }; 3735 3736 struct DwarfLangField : public MDUnsignedField { 3737 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3738 }; 3739 3740 struct DwarfCCField : public MDUnsignedField { 3741 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 3742 }; 3743 3744 struct EmissionKindField : public MDUnsignedField { 3745 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 3746 }; 3747 3748 struct NameTableKindField : public MDUnsignedField { 3749 NameTableKindField() 3750 : MDUnsignedField( 3751 0, (unsigned) 3752 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {} 3753 }; 3754 3755 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 3756 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 3757 }; 3758 3759 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> { 3760 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {} 3761 }; 3762 3763 struct MDSignedField : public MDFieldImpl<int64_t> { 3764 int64_t Min; 3765 int64_t Max; 3766 3767 MDSignedField(int64_t Default = 0) 3768 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3769 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3770 : ImplTy(Default), Min(Min), Max(Max) {} 3771 }; 3772 3773 struct MDBoolField : public MDFieldImpl<bool> { 3774 MDBoolField(bool Default = false) : ImplTy(Default) {} 3775 }; 3776 3777 struct MDField : public MDFieldImpl<Metadata *> { 3778 bool AllowNull; 3779 3780 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3781 }; 3782 3783 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 3784 MDConstant() : ImplTy(nullptr) {} 3785 }; 3786 3787 struct MDStringField : public MDFieldImpl<MDString *> { 3788 bool AllowEmpty; 3789 MDStringField(bool AllowEmpty = true) 3790 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3791 }; 3792 3793 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3794 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3795 }; 3796 3797 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 3798 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 3799 }; 3800 3801 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> { 3802 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) 3803 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} 3804 3805 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, 3806 bool AllowNull = true) 3807 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} 3808 3809 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3810 bool isMDField() const { return WhatIs == IsTypeB; } 3811 int64_t getMDSignedValue() const { 3812 assert(isMDSignedField() && "Wrong field type"); 3813 return A.Val; 3814 } 3815 Metadata *getMDFieldValue() const { 3816 assert(isMDField() && "Wrong field type"); 3817 return B.Val; 3818 } 3819 }; 3820 3821 struct MDSignedOrUnsignedField 3822 : MDEitherFieldImpl<MDSignedField, MDUnsignedField> { 3823 MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {} 3824 3825 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3826 bool isMDUnsignedField() const { return WhatIs == IsTypeB; } 3827 int64_t getMDSignedValue() const { 3828 assert(isMDSignedField() && "Wrong field type"); 3829 return A.Val; 3830 } 3831 uint64_t getMDUnsignedValue() const { 3832 assert(isMDUnsignedField() && "Wrong field type"); 3833 return B.Val; 3834 } 3835 }; 3836 3837 } // end anonymous namespace 3838 3839 namespace llvm { 3840 3841 template <> 3842 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3843 MDUnsignedField &Result) { 3844 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3845 return TokError("expected unsigned integer"); 3846 3847 auto &U = Lex.getAPSIntVal(); 3848 if (U.ugt(Result.Max)) 3849 return TokError("value for '" + Name + "' too large, limit is " + 3850 Twine(Result.Max)); 3851 Result.assign(U.getZExtValue()); 3852 assert(Result.Val <= Result.Max && "Expected value in range"); 3853 Lex.Lex(); 3854 return false; 3855 } 3856 3857 template <> 3858 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) { 3859 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3860 } 3861 template <> 3862 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 3863 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3864 } 3865 3866 template <> 3867 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 3868 if (Lex.getKind() == lltok::APSInt) 3869 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3870 3871 if (Lex.getKind() != lltok::DwarfTag) 3872 return TokError("expected DWARF tag"); 3873 3874 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 3875 if (Tag == dwarf::DW_TAG_invalid) 3876 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 3877 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 3878 3879 Result.assign(Tag); 3880 Lex.Lex(); 3881 return false; 3882 } 3883 3884 template <> 3885 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3886 DwarfMacinfoTypeField &Result) { 3887 if (Lex.getKind() == lltok::APSInt) 3888 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3889 3890 if (Lex.getKind() != lltok::DwarfMacinfo) 3891 return TokError("expected DWARF macinfo type"); 3892 3893 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 3894 if (Macinfo == dwarf::DW_MACINFO_invalid) 3895 return TokError( 3896 "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'"); 3897 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 3898 3899 Result.assign(Macinfo); 3900 Lex.Lex(); 3901 return false; 3902 } 3903 3904 template <> 3905 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3906 DwarfVirtualityField &Result) { 3907 if (Lex.getKind() == lltok::APSInt) 3908 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3909 3910 if (Lex.getKind() != lltok::DwarfVirtuality) 3911 return TokError("expected DWARF virtuality code"); 3912 3913 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 3914 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 3915 return TokError("invalid DWARF virtuality code" + Twine(" '") + 3916 Lex.getStrVal() + "'"); 3917 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 3918 Result.assign(Virtuality); 3919 Lex.Lex(); 3920 return false; 3921 } 3922 3923 template <> 3924 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 3925 if (Lex.getKind() == lltok::APSInt) 3926 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3927 3928 if (Lex.getKind() != lltok::DwarfLang) 3929 return TokError("expected DWARF language"); 3930 3931 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 3932 if (!Lang) 3933 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 3934 "'"); 3935 assert(Lang <= Result.Max && "Expected valid DWARF language"); 3936 Result.assign(Lang); 3937 Lex.Lex(); 3938 return false; 3939 } 3940 3941 template <> 3942 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 3943 if (Lex.getKind() == lltok::APSInt) 3944 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3945 3946 if (Lex.getKind() != lltok::DwarfCC) 3947 return TokError("expected DWARF calling convention"); 3948 3949 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 3950 if (!CC) 3951 return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() + 3952 "'"); 3953 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 3954 Result.assign(CC); 3955 Lex.Lex(); 3956 return false; 3957 } 3958 3959 template <> 3960 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) { 3961 if (Lex.getKind() == lltok::APSInt) 3962 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3963 3964 if (Lex.getKind() != lltok::EmissionKind) 3965 return TokError("expected emission kind"); 3966 3967 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 3968 if (!Kind) 3969 return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 3970 "'"); 3971 assert(*Kind <= Result.Max && "Expected valid emission kind"); 3972 Result.assign(*Kind); 3973 Lex.Lex(); 3974 return false; 3975 } 3976 3977 template <> 3978 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3979 NameTableKindField &Result) { 3980 if (Lex.getKind() == lltok::APSInt) 3981 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3982 3983 if (Lex.getKind() != lltok::NameTableKind) 3984 return TokError("expected nameTable kind"); 3985 3986 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal()); 3987 if (!Kind) 3988 return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() + 3989 "'"); 3990 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind"); 3991 Result.assign((unsigned)*Kind); 3992 Lex.Lex(); 3993 return false; 3994 } 3995 3996 template <> 3997 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3998 DwarfAttEncodingField &Result) { 3999 if (Lex.getKind() == lltok::APSInt) 4000 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4001 4002 if (Lex.getKind() != lltok::DwarfAttEncoding) 4003 return TokError("expected DWARF type attribute encoding"); 4004 4005 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 4006 if (!Encoding) 4007 return TokError("invalid DWARF type attribute encoding" + Twine(" '") + 4008 Lex.getStrVal() + "'"); 4009 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 4010 Result.assign(Encoding); 4011 Lex.Lex(); 4012 return false; 4013 } 4014 4015 /// DIFlagField 4016 /// ::= uint32 4017 /// ::= DIFlagVector 4018 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 4019 template <> 4020 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 4021 4022 // Parser for a single flag. 4023 auto parseFlag = [&](DINode::DIFlags &Val) { 4024 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4025 uint32_t TempVal = static_cast<uint32_t>(Val); 4026 bool Res = ParseUInt32(TempVal); 4027 Val = static_cast<DINode::DIFlags>(TempVal); 4028 return Res; 4029 } 4030 4031 if (Lex.getKind() != lltok::DIFlag) 4032 return TokError("expected debug info flag"); 4033 4034 Val = DINode::getFlag(Lex.getStrVal()); 4035 if (!Val) 4036 return TokError(Twine("invalid debug info flag flag '") + 4037 Lex.getStrVal() + "'"); 4038 Lex.Lex(); 4039 return false; 4040 }; 4041 4042 // Parse the flags and combine them together. 4043 DINode::DIFlags Combined = DINode::FlagZero; 4044 do { 4045 DINode::DIFlags Val; 4046 if (parseFlag(Val)) 4047 return true; 4048 Combined |= Val; 4049 } while (EatIfPresent(lltok::bar)); 4050 4051 Result.assign(Combined); 4052 return false; 4053 } 4054 4055 /// DISPFlagField 4056 /// ::= uint32 4057 /// ::= DISPFlagVector 4058 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32 4059 template <> 4060 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) { 4061 4062 // Parser for a single flag. 4063 auto parseFlag = [&](DISubprogram::DISPFlags &Val) { 4064 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4065 uint32_t TempVal = static_cast<uint32_t>(Val); 4066 bool Res = ParseUInt32(TempVal); 4067 Val = static_cast<DISubprogram::DISPFlags>(TempVal); 4068 return Res; 4069 } 4070 4071 if (Lex.getKind() != lltok::DISPFlag) 4072 return TokError("expected debug info flag"); 4073 4074 Val = DISubprogram::getFlag(Lex.getStrVal()); 4075 if (!Val) 4076 return TokError(Twine("invalid subprogram debug info flag '") + 4077 Lex.getStrVal() + "'"); 4078 Lex.Lex(); 4079 return false; 4080 }; 4081 4082 // Parse the flags and combine them together. 4083 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero; 4084 do { 4085 DISubprogram::DISPFlags Val; 4086 if (parseFlag(Val)) 4087 return true; 4088 Combined |= Val; 4089 } while (EatIfPresent(lltok::bar)); 4090 4091 Result.assign(Combined); 4092 return false; 4093 } 4094 4095 template <> 4096 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4097 MDSignedField &Result) { 4098 if (Lex.getKind() != lltok::APSInt) 4099 return TokError("expected signed integer"); 4100 4101 auto &S = Lex.getAPSIntVal(); 4102 if (S < Result.Min) 4103 return TokError("value for '" + Name + "' too small, limit is " + 4104 Twine(Result.Min)); 4105 if (S > Result.Max) 4106 return TokError("value for '" + Name + "' too large, limit is " + 4107 Twine(Result.Max)); 4108 Result.assign(S.getExtValue()); 4109 assert(Result.Val >= Result.Min && "Expected value in range"); 4110 assert(Result.Val <= Result.Max && "Expected value in range"); 4111 Lex.Lex(); 4112 return false; 4113 } 4114 4115 template <> 4116 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 4117 switch (Lex.getKind()) { 4118 default: 4119 return TokError("expected 'true' or 'false'"); 4120 case lltok::kw_true: 4121 Result.assign(true); 4122 break; 4123 case lltok::kw_false: 4124 Result.assign(false); 4125 break; 4126 } 4127 Lex.Lex(); 4128 return false; 4129 } 4130 4131 template <> 4132 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) { 4133 if (Lex.getKind() == lltok::kw_null) { 4134 if (!Result.AllowNull) 4135 return TokError("'" + Name + "' cannot be null"); 4136 Lex.Lex(); 4137 Result.assign(nullptr); 4138 return false; 4139 } 4140 4141 Metadata *MD; 4142 if (ParseMetadata(MD, nullptr)) 4143 return true; 4144 4145 Result.assign(MD); 4146 return false; 4147 } 4148 4149 template <> 4150 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4151 MDSignedOrMDField &Result) { 4152 // Try to parse a signed int. 4153 if (Lex.getKind() == lltok::APSInt) { 4154 MDSignedField Res = Result.A; 4155 if (!ParseMDField(Loc, Name, Res)) { 4156 Result.assign(Res); 4157 return false; 4158 } 4159 return true; 4160 } 4161 4162 // Otherwise, try to parse as an MDField. 4163 MDField Res = Result.B; 4164 if (!ParseMDField(Loc, Name, Res)) { 4165 Result.assign(Res); 4166 return false; 4167 } 4168 4169 return true; 4170 } 4171 4172 template <> 4173 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4174 MDSignedOrUnsignedField &Result) { 4175 if (Lex.getKind() != lltok::APSInt) 4176 return false; 4177 4178 if (Lex.getAPSIntVal().isSigned()) { 4179 MDSignedField Res = Result.A; 4180 if (ParseMDField(Loc, Name, Res)) 4181 return true; 4182 Result.assign(Res); 4183 return false; 4184 } 4185 4186 MDUnsignedField Res = Result.B; 4187 if (ParseMDField(Loc, Name, Res)) 4188 return true; 4189 Result.assign(Res); 4190 return false; 4191 } 4192 4193 template <> 4194 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 4195 LocTy ValueLoc = Lex.getLoc(); 4196 std::string S; 4197 if (ParseStringConstant(S)) 4198 return true; 4199 4200 if (!Result.AllowEmpty && S.empty()) 4201 return Error(ValueLoc, "'" + Name + "' cannot be empty"); 4202 4203 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 4204 return false; 4205 } 4206 4207 template <> 4208 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 4209 SmallVector<Metadata *, 4> MDs; 4210 if (ParseMDNodeVector(MDs)) 4211 return true; 4212 4213 Result.assign(std::move(MDs)); 4214 return false; 4215 } 4216 4217 template <> 4218 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4219 ChecksumKindField &Result) { 4220 Optional<DIFile::ChecksumKind> CSKind = 4221 DIFile::getChecksumKind(Lex.getStrVal()); 4222 4223 if (Lex.getKind() != lltok::ChecksumKind || !CSKind) 4224 return TokError( 4225 "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'"); 4226 4227 Result.assign(*CSKind); 4228 Lex.Lex(); 4229 return false; 4230 } 4231 4232 } // end namespace llvm 4233 4234 template <class ParserTy> 4235 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) { 4236 do { 4237 if (Lex.getKind() != lltok::LabelStr) 4238 return TokError("expected field label here"); 4239 4240 if (parseField()) 4241 return true; 4242 } while (EatIfPresent(lltok::comma)); 4243 4244 return false; 4245 } 4246 4247 template <class ParserTy> 4248 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) { 4249 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4250 Lex.Lex(); 4251 4252 if (ParseToken(lltok::lparen, "expected '(' here")) 4253 return true; 4254 if (Lex.getKind() != lltok::rparen) 4255 if (ParseMDFieldsImplBody(parseField)) 4256 return true; 4257 4258 ClosingLoc = Lex.getLoc(); 4259 return ParseToken(lltok::rparen, "expected ')' here"); 4260 } 4261 4262 template <class FieldTy> 4263 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) { 4264 if (Result.Seen) 4265 return TokError("field '" + Name + "' cannot be specified more than once"); 4266 4267 LocTy Loc = Lex.getLoc(); 4268 Lex.Lex(); 4269 return ParseMDField(Loc, Name, Result); 4270 } 4271 4272 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 4273 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4274 4275 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 4276 if (Lex.getStrVal() == #CLASS) \ 4277 return Parse##CLASS(N, IsDistinct); 4278 #include "llvm/IR/Metadata.def" 4279 4280 return TokError("expected metadata type"); 4281 } 4282 4283 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 4284 #define NOP_FIELD(NAME, TYPE, INIT) 4285 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 4286 if (!NAME.Seen) \ 4287 return Error(ClosingLoc, "missing required field '" #NAME "'"); 4288 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 4289 if (Lex.getStrVal() == #NAME) \ 4290 return ParseMDField(#NAME, NAME); 4291 #define PARSE_MD_FIELDS() \ 4292 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 4293 do { \ 4294 LocTy ClosingLoc; \ 4295 if (ParseMDFieldsImpl([&]() -> bool { \ 4296 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 4297 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \ 4298 }, ClosingLoc)) \ 4299 return true; \ 4300 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 4301 } while (false) 4302 #define GET_OR_DISTINCT(CLASS, ARGS) \ 4303 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 4304 4305 /// ParseDILocationFields: 4306 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6, 4307 /// isImplicitCode: true) 4308 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) { 4309 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4310 OPTIONAL(line, LineField, ); \ 4311 OPTIONAL(column, ColumnField, ); \ 4312 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4313 OPTIONAL(inlinedAt, MDField, ); \ 4314 OPTIONAL(isImplicitCode, MDBoolField, (false)); 4315 PARSE_MD_FIELDS(); 4316 #undef VISIT_MD_FIELDS 4317 4318 Result = 4319 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val, 4320 inlinedAt.Val, isImplicitCode.Val)); 4321 return false; 4322 } 4323 4324 /// ParseGenericDINode: 4325 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 4326 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) { 4327 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4328 REQUIRED(tag, DwarfTagField, ); \ 4329 OPTIONAL(header, MDStringField, ); \ 4330 OPTIONAL(operands, MDFieldList, ); 4331 PARSE_MD_FIELDS(); 4332 #undef VISIT_MD_FIELDS 4333 4334 Result = GET_OR_DISTINCT(GenericDINode, 4335 (Context, tag.Val, header.Val, operands.Val)); 4336 return false; 4337 } 4338 4339 /// ParseDISubrange: 4340 /// ::= !DISubrange(count: 30, lowerBound: 2) 4341 /// ::= !DISubrange(count: !node, lowerBound: 2) 4342 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) { 4343 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4344 REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ 4345 OPTIONAL(lowerBound, MDSignedField, ); 4346 PARSE_MD_FIELDS(); 4347 #undef VISIT_MD_FIELDS 4348 4349 if (count.isMDSignedField()) 4350 Result = GET_OR_DISTINCT( 4351 DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val)); 4352 else if (count.isMDField()) 4353 Result = GET_OR_DISTINCT( 4354 DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val)); 4355 else 4356 return true; 4357 4358 return false; 4359 } 4360 4361 /// ParseDIEnumerator: 4362 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind") 4363 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) { 4364 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4365 REQUIRED(name, MDStringField, ); \ 4366 REQUIRED(value, MDSignedOrUnsignedField, ); \ 4367 OPTIONAL(isUnsigned, MDBoolField, (false)); 4368 PARSE_MD_FIELDS(); 4369 #undef VISIT_MD_FIELDS 4370 4371 if (isUnsigned.Val && value.isMDSignedField()) 4372 return TokError("unsigned enumerator with negative value"); 4373 4374 int64_t Value = value.isMDSignedField() 4375 ? value.getMDSignedValue() 4376 : static_cast<int64_t>(value.getMDUnsignedValue()); 4377 Result = 4378 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val)); 4379 4380 return false; 4381 } 4382 4383 /// ParseDIBasicType: 4384 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32, 4385 /// encoding: DW_ATE_encoding, flags: 0) 4386 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) { 4387 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4388 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 4389 OPTIONAL(name, MDStringField, ); \ 4390 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4391 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4392 OPTIONAL(encoding, DwarfAttEncodingField, ); \ 4393 OPTIONAL(flags, DIFlagField, ); 4394 PARSE_MD_FIELDS(); 4395 #undef VISIT_MD_FIELDS 4396 4397 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 4398 align.Val, encoding.Val, flags.Val)); 4399 return false; 4400 } 4401 4402 /// ParseDIDerivedType: 4403 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 4404 /// line: 7, scope: !1, baseType: !2, size: 32, 4405 /// align: 32, offset: 0, flags: 0, extraData: !3, 4406 /// dwarfAddressSpace: 3) 4407 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) { 4408 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4409 REQUIRED(tag, DwarfTagField, ); \ 4410 OPTIONAL(name, MDStringField, ); \ 4411 OPTIONAL(file, MDField, ); \ 4412 OPTIONAL(line, LineField, ); \ 4413 OPTIONAL(scope, MDField, ); \ 4414 REQUIRED(baseType, MDField, ); \ 4415 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4416 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4417 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4418 OPTIONAL(flags, DIFlagField, ); \ 4419 OPTIONAL(extraData, MDField, ); \ 4420 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); 4421 PARSE_MD_FIELDS(); 4422 #undef VISIT_MD_FIELDS 4423 4424 Optional<unsigned> DWARFAddressSpace; 4425 if (dwarfAddressSpace.Val != UINT32_MAX) 4426 DWARFAddressSpace = dwarfAddressSpace.Val; 4427 4428 Result = GET_OR_DISTINCT(DIDerivedType, 4429 (Context, tag.Val, name.Val, file.Val, line.Val, 4430 scope.Val, baseType.Val, size.Val, align.Val, 4431 offset.Val, DWARFAddressSpace, flags.Val, 4432 extraData.Val)); 4433 return false; 4434 } 4435 4436 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) { 4437 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4438 REQUIRED(tag, DwarfTagField, ); \ 4439 OPTIONAL(name, MDStringField, ); \ 4440 OPTIONAL(file, MDField, ); \ 4441 OPTIONAL(line, LineField, ); \ 4442 OPTIONAL(scope, MDField, ); \ 4443 OPTIONAL(baseType, MDField, ); \ 4444 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4445 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4446 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4447 OPTIONAL(flags, DIFlagField, ); \ 4448 OPTIONAL(elements, MDField, ); \ 4449 OPTIONAL(runtimeLang, DwarfLangField, ); \ 4450 OPTIONAL(vtableHolder, MDField, ); \ 4451 OPTIONAL(templateParams, MDField, ); \ 4452 OPTIONAL(identifier, MDStringField, ); \ 4453 OPTIONAL(discriminator, MDField, ); 4454 PARSE_MD_FIELDS(); 4455 #undef VISIT_MD_FIELDS 4456 4457 // If this has an identifier try to build an ODR type. 4458 if (identifier.Val) 4459 if (auto *CT = DICompositeType::buildODRType( 4460 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 4461 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 4462 elements.Val, runtimeLang.Val, vtableHolder.Val, 4463 templateParams.Val, discriminator.Val)) { 4464 Result = CT; 4465 return false; 4466 } 4467 4468 // Create a new node, and save it in the context if it belongs in the type 4469 // map. 4470 Result = GET_OR_DISTINCT( 4471 DICompositeType, 4472 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 4473 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 4474 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val, 4475 discriminator.Val)); 4476 return false; 4477 } 4478 4479 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) { 4480 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4481 OPTIONAL(flags, DIFlagField, ); \ 4482 OPTIONAL(cc, DwarfCCField, ); \ 4483 REQUIRED(types, MDField, ); 4484 PARSE_MD_FIELDS(); 4485 #undef VISIT_MD_FIELDS 4486 4487 Result = GET_OR_DISTINCT(DISubroutineType, 4488 (Context, flags.Val, cc.Val, types.Val)); 4489 return false; 4490 } 4491 4492 /// ParseDIFileType: 4493 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir", 4494 /// checksumkind: CSK_MD5, 4495 /// checksum: "000102030405060708090a0b0c0d0e0f", 4496 /// source: "source file contents") 4497 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) { 4498 // The default constructed value for checksumkind is required, but will never 4499 // be used, as the parser checks if the field was actually Seen before using 4500 // the Val. 4501 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4502 REQUIRED(filename, MDStringField, ); \ 4503 REQUIRED(directory, MDStringField, ); \ 4504 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \ 4505 OPTIONAL(checksum, MDStringField, ); \ 4506 OPTIONAL(source, MDStringField, ); 4507 PARSE_MD_FIELDS(); 4508 #undef VISIT_MD_FIELDS 4509 4510 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum; 4511 if (checksumkind.Seen && checksum.Seen) 4512 OptChecksum.emplace(checksumkind.Val, checksum.Val); 4513 else if (checksumkind.Seen || checksum.Seen) 4514 return Lex.Error("'checksumkind' and 'checksum' must be provided together"); 4515 4516 Optional<MDString *> OptSource; 4517 if (source.Seen) 4518 OptSource = source.Val; 4519 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val, 4520 OptChecksum, OptSource)); 4521 return false; 4522 } 4523 4524 /// ParseDICompileUnit: 4525 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 4526 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 4527 /// splitDebugFilename: "abc.debug", 4528 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 4529 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd) 4530 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) { 4531 if (!IsDistinct) 4532 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 4533 4534 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4535 REQUIRED(language, DwarfLangField, ); \ 4536 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 4537 OPTIONAL(producer, MDStringField, ); \ 4538 OPTIONAL(isOptimized, MDBoolField, ); \ 4539 OPTIONAL(flags, MDStringField, ); \ 4540 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 4541 OPTIONAL(splitDebugFilename, MDStringField, ); \ 4542 OPTIONAL(emissionKind, EmissionKindField, ); \ 4543 OPTIONAL(enums, MDField, ); \ 4544 OPTIONAL(retainedTypes, MDField, ); \ 4545 OPTIONAL(globals, MDField, ); \ 4546 OPTIONAL(imports, MDField, ); \ 4547 OPTIONAL(macros, MDField, ); \ 4548 OPTIONAL(dwoId, MDUnsignedField, ); \ 4549 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 4550 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 4551 OPTIONAL(nameTableKind, NameTableKindField, ); \ 4552 OPTIONAL(debugBaseAddress, MDBoolField, = false); 4553 PARSE_MD_FIELDS(); 4554 #undef VISIT_MD_FIELDS 4555 4556 Result = DICompileUnit::getDistinct( 4557 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 4558 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 4559 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 4560 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val, 4561 debugBaseAddress.Val); 4562 return false; 4563 } 4564 4565 /// ParseDISubprogram: 4566 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 4567 /// file: !1, line: 7, type: !2, isLocal: false, 4568 /// isDefinition: true, scopeLine: 8, containingType: !3, 4569 /// virtuality: DW_VIRTUALTIY_pure_virtual, 4570 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 4571 /// spFlags: 10, isOptimized: false, templateParams: !4, 4572 /// declaration: !5, retainedNodes: !6, thrownTypes: !7) 4573 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) { 4574 auto Loc = Lex.getLoc(); 4575 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4576 OPTIONAL(scope, MDField, ); \ 4577 OPTIONAL(name, MDStringField, ); \ 4578 OPTIONAL(linkageName, MDStringField, ); \ 4579 OPTIONAL(file, MDField, ); \ 4580 OPTIONAL(line, LineField, ); \ 4581 OPTIONAL(type, MDField, ); \ 4582 OPTIONAL(isLocal, MDBoolField, ); \ 4583 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4584 OPTIONAL(scopeLine, LineField, ); \ 4585 OPTIONAL(containingType, MDField, ); \ 4586 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 4587 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 4588 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 4589 OPTIONAL(flags, DIFlagField, ); \ 4590 OPTIONAL(spFlags, DISPFlagField, ); \ 4591 OPTIONAL(isOptimized, MDBoolField, ); \ 4592 OPTIONAL(unit, MDField, ); \ 4593 OPTIONAL(templateParams, MDField, ); \ 4594 OPTIONAL(declaration, MDField, ); \ 4595 OPTIONAL(retainedNodes, MDField, ); \ 4596 OPTIONAL(thrownTypes, MDField, ); 4597 PARSE_MD_FIELDS(); 4598 #undef VISIT_MD_FIELDS 4599 4600 // An explicit spFlags field takes precedence over individual fields in 4601 // older IR versions. 4602 DISubprogram::DISPFlags SPFlags = 4603 spFlags.Seen ? spFlags.Val 4604 : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val, 4605 isOptimized.Val, virtuality.Val); 4606 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct) 4607 return Lex.Error( 4608 Loc, 4609 "missing 'distinct', required for !DISubprogram that is a Definition"); 4610 Result = GET_OR_DISTINCT( 4611 DISubprogram, 4612 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 4613 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val, 4614 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val, 4615 declaration.Val, retainedNodes.Val, thrownTypes.Val)); 4616 return false; 4617 } 4618 4619 /// ParseDILexicalBlock: 4620 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 4621 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 4622 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4623 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4624 OPTIONAL(file, MDField, ); \ 4625 OPTIONAL(line, LineField, ); \ 4626 OPTIONAL(column, ColumnField, ); 4627 PARSE_MD_FIELDS(); 4628 #undef VISIT_MD_FIELDS 4629 4630 Result = GET_OR_DISTINCT( 4631 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 4632 return false; 4633 } 4634 4635 /// ParseDILexicalBlockFile: 4636 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 4637 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 4638 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4639 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4640 OPTIONAL(file, MDField, ); \ 4641 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 4642 PARSE_MD_FIELDS(); 4643 #undef VISIT_MD_FIELDS 4644 4645 Result = GET_OR_DISTINCT(DILexicalBlockFile, 4646 (Context, scope.Val, file.Val, discriminator.Val)); 4647 return false; 4648 } 4649 4650 /// ParseDINamespace: 4651 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 4652 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) { 4653 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4654 REQUIRED(scope, MDField, ); \ 4655 OPTIONAL(name, MDStringField, ); \ 4656 OPTIONAL(exportSymbols, MDBoolField, ); 4657 PARSE_MD_FIELDS(); 4658 #undef VISIT_MD_FIELDS 4659 4660 Result = GET_OR_DISTINCT(DINamespace, 4661 (Context, scope.Val, name.Val, exportSymbols.Val)); 4662 return false; 4663 } 4664 4665 /// ParseDIMacro: 4666 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue") 4667 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) { 4668 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4669 REQUIRED(type, DwarfMacinfoTypeField, ); \ 4670 OPTIONAL(line, LineField, ); \ 4671 REQUIRED(name, MDStringField, ); \ 4672 OPTIONAL(value, MDStringField, ); 4673 PARSE_MD_FIELDS(); 4674 #undef VISIT_MD_FIELDS 4675 4676 Result = GET_OR_DISTINCT(DIMacro, 4677 (Context, type.Val, line.Val, name.Val, value.Val)); 4678 return false; 4679 } 4680 4681 /// ParseDIMacroFile: 4682 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 4683 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) { 4684 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4685 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 4686 OPTIONAL(line, LineField, ); \ 4687 REQUIRED(file, MDField, ); \ 4688 OPTIONAL(nodes, MDField, ); 4689 PARSE_MD_FIELDS(); 4690 #undef VISIT_MD_FIELDS 4691 4692 Result = GET_OR_DISTINCT(DIMacroFile, 4693 (Context, type.Val, line.Val, file.Val, nodes.Val)); 4694 return false; 4695 } 4696 4697 /// ParseDIModule: 4698 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG", 4699 /// includePath: "/usr/include", isysroot: "/") 4700 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) { 4701 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4702 REQUIRED(scope, MDField, ); \ 4703 REQUIRED(name, MDStringField, ); \ 4704 OPTIONAL(configMacros, MDStringField, ); \ 4705 OPTIONAL(includePath, MDStringField, ); \ 4706 OPTIONAL(isysroot, MDStringField, ); 4707 PARSE_MD_FIELDS(); 4708 #undef VISIT_MD_FIELDS 4709 4710 Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val, 4711 configMacros.Val, includePath.Val, isysroot.Val)); 4712 return false; 4713 } 4714 4715 /// ParseDITemplateTypeParameter: 4716 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1) 4717 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 4718 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4719 OPTIONAL(name, MDStringField, ); \ 4720 REQUIRED(type, MDField, ); 4721 PARSE_MD_FIELDS(); 4722 #undef VISIT_MD_FIELDS 4723 4724 Result = 4725 GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val)); 4726 return false; 4727 } 4728 4729 /// ParseDITemplateValueParameter: 4730 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 4731 /// name: "V", type: !1, value: i32 7) 4732 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 4733 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4734 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 4735 OPTIONAL(name, MDStringField, ); \ 4736 OPTIONAL(type, MDField, ); \ 4737 REQUIRED(value, MDField, ); 4738 PARSE_MD_FIELDS(); 4739 #undef VISIT_MD_FIELDS 4740 4741 Result = GET_OR_DISTINCT(DITemplateValueParameter, 4742 (Context, tag.Val, name.Val, type.Val, value.Val)); 4743 return false; 4744 } 4745 4746 /// ParseDIGlobalVariable: 4747 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 4748 /// file: !1, line: 7, type: !2, isLocal: false, 4749 /// isDefinition: true, templateParams: !3, 4750 /// declaration: !4, align: 8) 4751 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 4752 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4753 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 4754 OPTIONAL(scope, MDField, ); \ 4755 OPTIONAL(linkageName, MDStringField, ); \ 4756 OPTIONAL(file, MDField, ); \ 4757 OPTIONAL(line, LineField, ); \ 4758 OPTIONAL(type, MDField, ); \ 4759 OPTIONAL(isLocal, MDBoolField, ); \ 4760 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4761 OPTIONAL(templateParams, MDField, ); \ 4762 OPTIONAL(declaration, MDField, ); \ 4763 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4764 PARSE_MD_FIELDS(); 4765 #undef VISIT_MD_FIELDS 4766 4767 Result = 4768 GET_OR_DISTINCT(DIGlobalVariable, 4769 (Context, scope.Val, name.Val, linkageName.Val, file.Val, 4770 line.Val, type.Val, isLocal.Val, isDefinition.Val, 4771 declaration.Val, templateParams.Val, align.Val)); 4772 return false; 4773 } 4774 4775 /// ParseDILocalVariable: 4776 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 4777 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4778 /// align: 8) 4779 /// ::= !DILocalVariable(scope: !0, name: "foo", 4780 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4781 /// align: 8) 4782 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) { 4783 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4784 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4785 OPTIONAL(name, MDStringField, ); \ 4786 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 4787 OPTIONAL(file, MDField, ); \ 4788 OPTIONAL(line, LineField, ); \ 4789 OPTIONAL(type, MDField, ); \ 4790 OPTIONAL(flags, DIFlagField, ); \ 4791 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4792 PARSE_MD_FIELDS(); 4793 #undef VISIT_MD_FIELDS 4794 4795 Result = GET_OR_DISTINCT(DILocalVariable, 4796 (Context, scope.Val, name.Val, file.Val, line.Val, 4797 type.Val, arg.Val, flags.Val, align.Val)); 4798 return false; 4799 } 4800 4801 /// ParseDILabel: 4802 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7) 4803 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) { 4804 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4805 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4806 REQUIRED(name, MDStringField, ); \ 4807 REQUIRED(file, MDField, ); \ 4808 REQUIRED(line, LineField, ); 4809 PARSE_MD_FIELDS(); 4810 #undef VISIT_MD_FIELDS 4811 4812 Result = GET_OR_DISTINCT(DILabel, 4813 (Context, scope.Val, name.Val, file.Val, line.Val)); 4814 return false; 4815 } 4816 4817 /// ParseDIExpression: 4818 /// ::= !DIExpression(0, 7, -1) 4819 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) { 4820 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4821 Lex.Lex(); 4822 4823 if (ParseToken(lltok::lparen, "expected '(' here")) 4824 return true; 4825 4826 SmallVector<uint64_t, 8> Elements; 4827 if (Lex.getKind() != lltok::rparen) 4828 do { 4829 if (Lex.getKind() == lltok::DwarfOp) { 4830 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 4831 Lex.Lex(); 4832 Elements.push_back(Op); 4833 continue; 4834 } 4835 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 4836 } 4837 4838 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4839 return TokError("expected unsigned integer"); 4840 4841 auto &U = Lex.getAPSIntVal(); 4842 if (U.ugt(UINT64_MAX)) 4843 return TokError("element too large, limit is " + Twine(UINT64_MAX)); 4844 Elements.push_back(U.getZExtValue()); 4845 Lex.Lex(); 4846 } while (EatIfPresent(lltok::comma)); 4847 4848 if (ParseToken(lltok::rparen, "expected ')' here")) 4849 return true; 4850 4851 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 4852 return false; 4853 } 4854 4855 /// ParseDIGlobalVariableExpression: 4856 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 4857 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result, 4858 bool IsDistinct) { 4859 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4860 REQUIRED(var, MDField, ); \ 4861 REQUIRED(expr, MDField, ); 4862 PARSE_MD_FIELDS(); 4863 #undef VISIT_MD_FIELDS 4864 4865 Result = 4866 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 4867 return false; 4868 } 4869 4870 /// ParseDIObjCProperty: 4871 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 4872 /// getter: "getFoo", attributes: 7, type: !2) 4873 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 4874 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4875 OPTIONAL(name, MDStringField, ); \ 4876 OPTIONAL(file, MDField, ); \ 4877 OPTIONAL(line, LineField, ); \ 4878 OPTIONAL(setter, MDStringField, ); \ 4879 OPTIONAL(getter, MDStringField, ); \ 4880 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 4881 OPTIONAL(type, MDField, ); 4882 PARSE_MD_FIELDS(); 4883 #undef VISIT_MD_FIELDS 4884 4885 Result = GET_OR_DISTINCT(DIObjCProperty, 4886 (Context, name.Val, file.Val, line.Val, setter.Val, 4887 getter.Val, attributes.Val, type.Val)); 4888 return false; 4889 } 4890 4891 /// ParseDIImportedEntity: 4892 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 4893 /// line: 7, name: "foo") 4894 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 4895 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4896 REQUIRED(tag, DwarfTagField, ); \ 4897 REQUIRED(scope, MDField, ); \ 4898 OPTIONAL(entity, MDField, ); \ 4899 OPTIONAL(file, MDField, ); \ 4900 OPTIONAL(line, LineField, ); \ 4901 OPTIONAL(name, MDStringField, ); 4902 PARSE_MD_FIELDS(); 4903 #undef VISIT_MD_FIELDS 4904 4905 Result = GET_OR_DISTINCT( 4906 DIImportedEntity, 4907 (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val)); 4908 return false; 4909 } 4910 4911 #undef PARSE_MD_FIELD 4912 #undef NOP_FIELD 4913 #undef REQUIRE_FIELD 4914 #undef DECLARE_FIELD 4915 4916 /// ParseMetadataAsValue 4917 /// ::= metadata i32 %local 4918 /// ::= metadata i32 @global 4919 /// ::= metadata i32 7 4920 /// ::= metadata !0 4921 /// ::= metadata !{...} 4922 /// ::= metadata !"string" 4923 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 4924 // Note: the type 'metadata' has already been parsed. 4925 Metadata *MD; 4926 if (ParseMetadata(MD, &PFS)) 4927 return true; 4928 4929 V = MetadataAsValue::get(Context, MD); 4930 return false; 4931 } 4932 4933 /// ParseValueAsMetadata 4934 /// ::= i32 %local 4935 /// ::= i32 @global 4936 /// ::= i32 7 4937 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 4938 PerFunctionState *PFS) { 4939 Type *Ty; 4940 LocTy Loc; 4941 if (ParseType(Ty, TypeMsg, Loc)) 4942 return true; 4943 if (Ty->isMetadataTy()) 4944 return Error(Loc, "invalid metadata-value-metadata roundtrip"); 4945 4946 Value *V; 4947 if (ParseValue(Ty, V, PFS)) 4948 return true; 4949 4950 MD = ValueAsMetadata::get(V); 4951 return false; 4952 } 4953 4954 /// ParseMetadata 4955 /// ::= i32 %local 4956 /// ::= i32 @global 4957 /// ::= i32 7 4958 /// ::= !42 4959 /// ::= !{...} 4960 /// ::= !"string" 4961 /// ::= !DILocation(...) 4962 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) { 4963 if (Lex.getKind() == lltok::MetadataVar) { 4964 MDNode *N; 4965 if (ParseSpecializedMDNode(N)) 4966 return true; 4967 MD = N; 4968 return false; 4969 } 4970 4971 // ValueAsMetadata: 4972 // <type> <value> 4973 if (Lex.getKind() != lltok::exclaim) 4974 return ParseValueAsMetadata(MD, "expected metadata operand", PFS); 4975 4976 // '!'. 4977 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 4978 Lex.Lex(); 4979 4980 // MDString: 4981 // ::= '!' STRINGCONSTANT 4982 if (Lex.getKind() == lltok::StringConstant) { 4983 MDString *S; 4984 if (ParseMDString(S)) 4985 return true; 4986 MD = S; 4987 return false; 4988 } 4989 4990 // MDNode: 4991 // !{ ... } 4992 // !7 4993 MDNode *N; 4994 if (ParseMDNodeTail(N)) 4995 return true; 4996 MD = N; 4997 return false; 4998 } 4999 5000 //===----------------------------------------------------------------------===// 5001 // Function Parsing. 5002 //===----------------------------------------------------------------------===// 5003 5004 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 5005 PerFunctionState *PFS, bool IsCall) { 5006 if (Ty->isFunctionTy()) 5007 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 5008 5009 switch (ID.Kind) { 5010 case ValID::t_LocalID: 5011 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 5012 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5013 return V == nullptr; 5014 case ValID::t_LocalName: 5015 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 5016 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall); 5017 return V == nullptr; 5018 case ValID::t_InlineAsm: { 5019 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 5020 return Error(ID.Loc, "invalid type for inline asm constraint string"); 5021 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, 5022 (ID.UIntVal >> 1) & 1, 5023 (InlineAsm::AsmDialect(ID.UIntVal >> 2))); 5024 return false; 5025 } 5026 case ValID::t_GlobalName: 5027 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall); 5028 return V == nullptr; 5029 case ValID::t_GlobalID: 5030 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5031 return V == nullptr; 5032 case ValID::t_APSInt: 5033 if (!Ty->isIntegerTy()) 5034 return Error(ID.Loc, "integer constant must have integer type"); 5035 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 5036 V = ConstantInt::get(Context, ID.APSIntVal); 5037 return false; 5038 case ValID::t_APFloat: 5039 if (!Ty->isFloatingPointTy() || 5040 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 5041 return Error(ID.Loc, "floating point constant invalid for type"); 5042 5043 // The lexer has no type info, so builds all half, float, and double FP 5044 // constants as double. Fix this here. Long double does not need this. 5045 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 5046 bool Ignored; 5047 if (Ty->isHalfTy()) 5048 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 5049 &Ignored); 5050 else if (Ty->isFloatTy()) 5051 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 5052 &Ignored); 5053 } 5054 V = ConstantFP::get(Context, ID.APFloatVal); 5055 5056 if (V->getType() != Ty) 5057 return Error(ID.Loc, "floating point constant does not have type '" + 5058 getTypeString(Ty) + "'"); 5059 5060 return false; 5061 case ValID::t_Null: 5062 if (!Ty->isPointerTy()) 5063 return Error(ID.Loc, "null must be a pointer type"); 5064 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 5065 return false; 5066 case ValID::t_Undef: 5067 // FIXME: LabelTy should not be a first-class type. 5068 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5069 return Error(ID.Loc, "invalid type for undef constant"); 5070 V = UndefValue::get(Ty); 5071 return false; 5072 case ValID::t_EmptyArray: 5073 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 5074 return Error(ID.Loc, "invalid empty array initializer"); 5075 V = UndefValue::get(Ty); 5076 return false; 5077 case ValID::t_Zero: 5078 // FIXME: LabelTy should not be a first-class type. 5079 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5080 return Error(ID.Loc, "invalid type for null constant"); 5081 V = Constant::getNullValue(Ty); 5082 return false; 5083 case ValID::t_None: 5084 if (!Ty->isTokenTy()) 5085 return Error(ID.Loc, "invalid type for none constant"); 5086 V = Constant::getNullValue(Ty); 5087 return false; 5088 case ValID::t_Constant: 5089 if (ID.ConstantVal->getType() != Ty) 5090 return Error(ID.Loc, "constant expression type mismatch"); 5091 5092 V = ID.ConstantVal; 5093 return false; 5094 case ValID::t_ConstantStruct: 5095 case ValID::t_PackedConstantStruct: 5096 if (StructType *ST = dyn_cast<StructType>(Ty)) { 5097 if (ST->getNumElements() != ID.UIntVal) 5098 return Error(ID.Loc, 5099 "initializer with struct type has wrong # elements"); 5100 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 5101 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 5102 5103 // Verify that the elements are compatible with the structtype. 5104 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 5105 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 5106 return Error(ID.Loc, "element " + Twine(i) + 5107 " of struct initializer doesn't match struct element type"); 5108 5109 V = ConstantStruct::get( 5110 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 5111 } else 5112 return Error(ID.Loc, "constant expression type mismatch"); 5113 return false; 5114 } 5115 llvm_unreachable("Invalid ValID"); 5116 } 5117 5118 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 5119 C = nullptr; 5120 ValID ID; 5121 auto Loc = Lex.getLoc(); 5122 if (ParseValID(ID, /*PFS=*/nullptr)) 5123 return true; 5124 switch (ID.Kind) { 5125 case ValID::t_APSInt: 5126 case ValID::t_APFloat: 5127 case ValID::t_Undef: 5128 case ValID::t_Constant: 5129 case ValID::t_ConstantStruct: 5130 case ValID::t_PackedConstantStruct: { 5131 Value *V; 5132 if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false)) 5133 return true; 5134 assert(isa<Constant>(V) && "Expected a constant value"); 5135 C = cast<Constant>(V); 5136 return false; 5137 } 5138 case ValID::t_Null: 5139 C = Constant::getNullValue(Ty); 5140 return false; 5141 default: 5142 return Error(Loc, "expected a constant value"); 5143 } 5144 } 5145 5146 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 5147 V = nullptr; 5148 ValID ID; 5149 return ParseValID(ID, PFS) || 5150 ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false); 5151 } 5152 5153 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 5154 Type *Ty = nullptr; 5155 return ParseType(Ty) || 5156 ParseValue(Ty, V, PFS); 5157 } 5158 5159 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 5160 PerFunctionState &PFS) { 5161 Value *V; 5162 Loc = Lex.getLoc(); 5163 if (ParseTypeAndValue(V, PFS)) return true; 5164 if (!isa<BasicBlock>(V)) 5165 return Error(Loc, "expected a basic block"); 5166 BB = cast<BasicBlock>(V); 5167 return false; 5168 } 5169 5170 /// FunctionHeader 5171 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 5172 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 5173 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign 5174 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 5175 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 5176 // Parse the linkage. 5177 LocTy LinkageLoc = Lex.getLoc(); 5178 unsigned Linkage; 5179 unsigned Visibility; 5180 unsigned DLLStorageClass; 5181 bool DSOLocal; 5182 AttrBuilder RetAttrs; 5183 unsigned CC; 5184 bool HasLinkage; 5185 Type *RetType = nullptr; 5186 LocTy RetTypeLoc = Lex.getLoc(); 5187 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 5188 DSOLocal) || 5189 ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5190 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 5191 return true; 5192 5193 // Verify that the linkage is ok. 5194 switch ((GlobalValue::LinkageTypes)Linkage) { 5195 case GlobalValue::ExternalLinkage: 5196 break; // always ok. 5197 case GlobalValue::ExternalWeakLinkage: 5198 if (isDefine) 5199 return Error(LinkageLoc, "invalid linkage for function definition"); 5200 break; 5201 case GlobalValue::PrivateLinkage: 5202 case GlobalValue::InternalLinkage: 5203 case GlobalValue::AvailableExternallyLinkage: 5204 case GlobalValue::LinkOnceAnyLinkage: 5205 case GlobalValue::LinkOnceODRLinkage: 5206 case GlobalValue::WeakAnyLinkage: 5207 case GlobalValue::WeakODRLinkage: 5208 if (!isDefine) 5209 return Error(LinkageLoc, "invalid linkage for function declaration"); 5210 break; 5211 case GlobalValue::AppendingLinkage: 5212 case GlobalValue::CommonLinkage: 5213 return Error(LinkageLoc, "invalid function linkage type"); 5214 } 5215 5216 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 5217 return Error(LinkageLoc, 5218 "symbol with local linkage must have default visibility"); 5219 5220 if (!FunctionType::isValidReturnType(RetType)) 5221 return Error(RetTypeLoc, "invalid function return type"); 5222 5223 LocTy NameLoc = Lex.getLoc(); 5224 5225 std::string FunctionName; 5226 if (Lex.getKind() == lltok::GlobalVar) { 5227 FunctionName = Lex.getStrVal(); 5228 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 5229 unsigned NameID = Lex.getUIntVal(); 5230 5231 if (NameID != NumberedVals.size()) 5232 return TokError("function expected to be numbered '%" + 5233 Twine(NumberedVals.size()) + "'"); 5234 } else { 5235 return TokError("expected function name"); 5236 } 5237 5238 Lex.Lex(); 5239 5240 if (Lex.getKind() != lltok::lparen) 5241 return TokError("expected '(' in function argument list"); 5242 5243 SmallVector<ArgInfo, 8> ArgList; 5244 bool isVarArg; 5245 AttrBuilder FuncAttrs; 5246 std::vector<unsigned> FwdRefAttrGrps; 5247 LocTy BuiltinLoc; 5248 std::string Section; 5249 unsigned Alignment; 5250 std::string GC; 5251 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 5252 unsigned AddrSpace = 0; 5253 Constant *Prefix = nullptr; 5254 Constant *Prologue = nullptr; 5255 Constant *PersonalityFn = nullptr; 5256 Comdat *C; 5257 5258 if (ParseArgumentList(ArgList, isVarArg) || 5259 ParseOptionalUnnamedAddr(UnnamedAddr) || 5260 ParseOptionalProgramAddrSpace(AddrSpace) || 5261 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 5262 BuiltinLoc) || 5263 (EatIfPresent(lltok::kw_section) && 5264 ParseStringConstant(Section)) || 5265 parseOptionalComdat(FunctionName, C) || 5266 ParseOptionalAlignment(Alignment) || 5267 (EatIfPresent(lltok::kw_gc) && 5268 ParseStringConstant(GC)) || 5269 (EatIfPresent(lltok::kw_prefix) && 5270 ParseGlobalTypeAndValue(Prefix)) || 5271 (EatIfPresent(lltok::kw_prologue) && 5272 ParseGlobalTypeAndValue(Prologue)) || 5273 (EatIfPresent(lltok::kw_personality) && 5274 ParseGlobalTypeAndValue(PersonalityFn))) 5275 return true; 5276 5277 if (FuncAttrs.contains(Attribute::Builtin)) 5278 return Error(BuiltinLoc, "'builtin' attribute not valid on function"); 5279 5280 // If the alignment was parsed as an attribute, move to the alignment field. 5281 if (FuncAttrs.hasAlignmentAttr()) { 5282 Alignment = FuncAttrs.getAlignment(); 5283 FuncAttrs.removeAttribute(Attribute::Alignment); 5284 } 5285 5286 // Okay, if we got here, the function is syntactically valid. Convert types 5287 // and do semantic checks. 5288 std::vector<Type*> ParamTypeList; 5289 SmallVector<AttributeSet, 8> Attrs; 5290 5291 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5292 ParamTypeList.push_back(ArgList[i].Ty); 5293 Attrs.push_back(ArgList[i].Attrs); 5294 } 5295 5296 AttributeList PAL = 5297 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 5298 AttributeSet::get(Context, RetAttrs), Attrs); 5299 5300 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 5301 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 5302 5303 FunctionType *FT = 5304 FunctionType::get(RetType, ParamTypeList, isVarArg); 5305 PointerType *PFT = PointerType::get(FT, AddrSpace); 5306 5307 Fn = nullptr; 5308 if (!FunctionName.empty()) { 5309 // If this was a definition of a forward reference, remove the definition 5310 // from the forward reference table and fill in the forward ref. 5311 auto FRVI = ForwardRefVals.find(FunctionName); 5312 if (FRVI != ForwardRefVals.end()) { 5313 Fn = M->getFunction(FunctionName); 5314 if (!Fn) 5315 return Error(FRVI->second.second, "invalid forward reference to " 5316 "function as global value!"); 5317 if (Fn->getType() != PFT) 5318 return Error(FRVI->second.second, "invalid forward reference to " 5319 "function '" + FunctionName + "' with wrong type: " 5320 "expected '" + getTypeString(PFT) + "' but was '" + 5321 getTypeString(Fn->getType()) + "'"); 5322 ForwardRefVals.erase(FRVI); 5323 } else if ((Fn = M->getFunction(FunctionName))) { 5324 // Reject redefinitions. 5325 return Error(NameLoc, "invalid redefinition of function '" + 5326 FunctionName + "'"); 5327 } else if (M->getNamedValue(FunctionName)) { 5328 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 5329 } 5330 5331 } else { 5332 // If this is a definition of a forward referenced function, make sure the 5333 // types agree. 5334 auto I = ForwardRefValIDs.find(NumberedVals.size()); 5335 if (I != ForwardRefValIDs.end()) { 5336 Fn = cast<Function>(I->second.first); 5337 if (Fn->getType() != PFT) 5338 return Error(NameLoc, "type of definition and forward reference of '@" + 5339 Twine(NumberedVals.size()) + "' disagree: " 5340 "expected '" + getTypeString(PFT) + "' but was '" + 5341 getTypeString(Fn->getType()) + "'"); 5342 ForwardRefValIDs.erase(I); 5343 } 5344 } 5345 5346 if (!Fn) 5347 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace, 5348 FunctionName, M); 5349 else // Move the forward-reference to the correct spot in the module. 5350 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 5351 5352 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS"); 5353 5354 if (FunctionName.empty()) 5355 NumberedVals.push_back(Fn); 5356 5357 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 5358 maybeSetDSOLocal(DSOLocal, *Fn); 5359 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 5360 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 5361 Fn->setCallingConv(CC); 5362 Fn->setAttributes(PAL); 5363 Fn->setUnnamedAddr(UnnamedAddr); 5364 Fn->setAlignment(Alignment); 5365 Fn->setSection(Section); 5366 Fn->setComdat(C); 5367 Fn->setPersonalityFn(PersonalityFn); 5368 if (!GC.empty()) Fn->setGC(GC); 5369 Fn->setPrefixData(Prefix); 5370 Fn->setPrologueData(Prologue); 5371 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 5372 5373 // Add all of the arguments we parsed to the function. 5374 Function::arg_iterator ArgIt = Fn->arg_begin(); 5375 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 5376 // If the argument has a name, insert it into the argument symbol table. 5377 if (ArgList[i].Name.empty()) continue; 5378 5379 // Set the name, if it conflicted, it will be auto-renamed. 5380 ArgIt->setName(ArgList[i].Name); 5381 5382 if (ArgIt->getName() != ArgList[i].Name) 5383 return Error(ArgList[i].Loc, "redefinition of argument '%" + 5384 ArgList[i].Name + "'"); 5385 } 5386 5387 if (isDefine) 5388 return false; 5389 5390 // Check the declaration has no block address forward references. 5391 ValID ID; 5392 if (FunctionName.empty()) { 5393 ID.Kind = ValID::t_GlobalID; 5394 ID.UIntVal = NumberedVals.size() - 1; 5395 } else { 5396 ID.Kind = ValID::t_GlobalName; 5397 ID.StrVal = FunctionName; 5398 } 5399 auto Blocks = ForwardRefBlockAddresses.find(ID); 5400 if (Blocks != ForwardRefBlockAddresses.end()) 5401 return Error(Blocks->first.Loc, 5402 "cannot take blockaddress inside a declaration"); 5403 return false; 5404 } 5405 5406 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 5407 ValID ID; 5408 if (FunctionNumber == -1) { 5409 ID.Kind = ValID::t_GlobalName; 5410 ID.StrVal = F.getName(); 5411 } else { 5412 ID.Kind = ValID::t_GlobalID; 5413 ID.UIntVal = FunctionNumber; 5414 } 5415 5416 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 5417 if (Blocks == P.ForwardRefBlockAddresses.end()) 5418 return false; 5419 5420 for (const auto &I : Blocks->second) { 5421 const ValID &BBID = I.first; 5422 GlobalValue *GV = I.second; 5423 5424 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 5425 "Expected local id or name"); 5426 BasicBlock *BB; 5427 if (BBID.Kind == ValID::t_LocalName) 5428 BB = GetBB(BBID.StrVal, BBID.Loc); 5429 else 5430 BB = GetBB(BBID.UIntVal, BBID.Loc); 5431 if (!BB) 5432 return P.Error(BBID.Loc, "referenced value is not a basic block"); 5433 5434 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 5435 GV->eraseFromParent(); 5436 } 5437 5438 P.ForwardRefBlockAddresses.erase(Blocks); 5439 return false; 5440 } 5441 5442 /// ParseFunctionBody 5443 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 5444 bool LLParser::ParseFunctionBody(Function &Fn) { 5445 if (Lex.getKind() != lltok::lbrace) 5446 return TokError("expected '{' in function body"); 5447 Lex.Lex(); // eat the {. 5448 5449 int FunctionNumber = -1; 5450 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 5451 5452 PerFunctionState PFS(*this, Fn, FunctionNumber); 5453 5454 // Resolve block addresses and allow basic blocks to be forward-declared 5455 // within this function. 5456 if (PFS.resolveForwardRefBlockAddresses()) 5457 return true; 5458 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 5459 5460 // We need at least one basic block. 5461 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 5462 return TokError("function body requires at least one basic block"); 5463 5464 while (Lex.getKind() != lltok::rbrace && 5465 Lex.getKind() != lltok::kw_uselistorder) 5466 if (ParseBasicBlock(PFS)) return true; 5467 5468 while (Lex.getKind() != lltok::rbrace) 5469 if (ParseUseListOrder(&PFS)) 5470 return true; 5471 5472 // Eat the }. 5473 Lex.Lex(); 5474 5475 // Verify function is ok. 5476 return PFS.FinishFunction(); 5477 } 5478 5479 /// ParseBasicBlock 5480 /// ::= LabelStr? Instruction* 5481 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 5482 // If this basic block starts out with a name, remember it. 5483 std::string Name; 5484 LocTy NameLoc = Lex.getLoc(); 5485 if (Lex.getKind() == lltok::LabelStr) { 5486 Name = Lex.getStrVal(); 5487 Lex.Lex(); 5488 } 5489 5490 BasicBlock *BB = PFS.DefineBB(Name, NameLoc); 5491 if (!BB) 5492 return Error(NameLoc, 5493 "unable to create block named '" + Name + "'"); 5494 5495 std::string NameStr; 5496 5497 // Parse the instructions in this block until we get a terminator. 5498 Instruction *Inst; 5499 do { 5500 // This instruction may have three possibilities for a name: a) none 5501 // specified, b) name specified "%foo =", c) number specified: "%4 =". 5502 LocTy NameLoc = Lex.getLoc(); 5503 int NameID = -1; 5504 NameStr = ""; 5505 5506 if (Lex.getKind() == lltok::LocalVarID) { 5507 NameID = Lex.getUIntVal(); 5508 Lex.Lex(); 5509 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 5510 return true; 5511 } else if (Lex.getKind() == lltok::LocalVar) { 5512 NameStr = Lex.getStrVal(); 5513 Lex.Lex(); 5514 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 5515 return true; 5516 } 5517 5518 switch (ParseInstruction(Inst, BB, PFS)) { 5519 default: llvm_unreachable("Unknown ParseInstruction result!"); 5520 case InstError: return true; 5521 case InstNormal: 5522 BB->getInstList().push_back(Inst); 5523 5524 // With a normal result, we check to see if the instruction is followed by 5525 // a comma and metadata. 5526 if (EatIfPresent(lltok::comma)) 5527 if (ParseInstructionMetadata(*Inst)) 5528 return true; 5529 break; 5530 case InstExtraComma: 5531 BB->getInstList().push_back(Inst); 5532 5533 // If the instruction parser ate an extra comma at the end of it, it 5534 // *must* be followed by metadata. 5535 if (ParseInstructionMetadata(*Inst)) 5536 return true; 5537 break; 5538 } 5539 5540 // Set the name on the instruction. 5541 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 5542 } while (!Inst->isTerminator()); 5543 5544 return false; 5545 } 5546 5547 //===----------------------------------------------------------------------===// 5548 // Instruction Parsing. 5549 //===----------------------------------------------------------------------===// 5550 5551 /// ParseInstruction - Parse one of the many different instructions. 5552 /// 5553 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 5554 PerFunctionState &PFS) { 5555 lltok::Kind Token = Lex.getKind(); 5556 if (Token == lltok::Eof) 5557 return TokError("found end of file when expecting more instructions"); 5558 LocTy Loc = Lex.getLoc(); 5559 unsigned KeywordVal = Lex.getUIntVal(); 5560 Lex.Lex(); // Eat the keyword. 5561 5562 switch (Token) { 5563 default: return Error(Loc, "expected instruction opcode"); 5564 // Terminator Instructions. 5565 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 5566 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 5567 case lltok::kw_br: return ParseBr(Inst, PFS); 5568 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 5569 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 5570 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 5571 case lltok::kw_resume: return ParseResume(Inst, PFS); 5572 case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS); 5573 case lltok::kw_catchret: return ParseCatchRet(Inst, PFS); 5574 case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS); 5575 case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS); 5576 case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS); 5577 case lltok::kw_callbr: return ParseCallBr(Inst, PFS); 5578 // Unary Operators. 5579 case lltok::kw_fneg: { 5580 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5581 int Res = ParseUnaryOp(Inst, PFS, KeywordVal, 2); 5582 if (Res != 0) 5583 return Res; 5584 if (FMF.any()) 5585 Inst->setFastMathFlags(FMF); 5586 return false; 5587 } 5588 // Binary Operators. 5589 case lltok::kw_add: 5590 case lltok::kw_sub: 5591 case lltok::kw_mul: 5592 case lltok::kw_shl: { 5593 bool NUW = EatIfPresent(lltok::kw_nuw); 5594 bool NSW = EatIfPresent(lltok::kw_nsw); 5595 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 5596 5597 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 5598 5599 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 5600 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 5601 return false; 5602 } 5603 case lltok::kw_fadd: 5604 case lltok::kw_fsub: 5605 case lltok::kw_fmul: 5606 case lltok::kw_fdiv: 5607 case lltok::kw_frem: { 5608 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5609 int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2); 5610 if (Res != 0) 5611 return Res; 5612 if (FMF.any()) 5613 Inst->setFastMathFlags(FMF); 5614 return 0; 5615 } 5616 5617 case lltok::kw_sdiv: 5618 case lltok::kw_udiv: 5619 case lltok::kw_lshr: 5620 case lltok::kw_ashr: { 5621 bool Exact = EatIfPresent(lltok::kw_exact); 5622 5623 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 5624 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 5625 return false; 5626 } 5627 5628 case lltok::kw_urem: 5629 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1); 5630 case lltok::kw_and: 5631 case lltok::kw_or: 5632 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 5633 case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal); 5634 case lltok::kw_fcmp: { 5635 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5636 int Res = ParseCompare(Inst, PFS, KeywordVal); 5637 if (Res != 0) 5638 return Res; 5639 if (FMF.any()) 5640 Inst->setFastMathFlags(FMF); 5641 return 0; 5642 } 5643 5644 // Casts. 5645 case lltok::kw_trunc: 5646 case lltok::kw_zext: 5647 case lltok::kw_sext: 5648 case lltok::kw_fptrunc: 5649 case lltok::kw_fpext: 5650 case lltok::kw_bitcast: 5651 case lltok::kw_addrspacecast: 5652 case lltok::kw_uitofp: 5653 case lltok::kw_sitofp: 5654 case lltok::kw_fptoui: 5655 case lltok::kw_fptosi: 5656 case lltok::kw_inttoptr: 5657 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 5658 // Other. 5659 case lltok::kw_select: return ParseSelect(Inst, PFS); 5660 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 5661 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 5662 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 5663 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 5664 case lltok::kw_phi: return ParsePHI(Inst, PFS); 5665 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 5666 // Call. 5667 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None); 5668 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail); 5669 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail); 5670 case lltok::kw_notail: return ParseCall(Inst, PFS, CallInst::TCK_NoTail); 5671 // Memory. 5672 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 5673 case lltok::kw_load: return ParseLoad(Inst, PFS); 5674 case lltok::kw_store: return ParseStore(Inst, PFS); 5675 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 5676 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 5677 case lltok::kw_fence: return ParseFence(Inst, PFS); 5678 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 5679 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 5680 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 5681 } 5682 } 5683 5684 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 5685 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 5686 if (Opc == Instruction::FCmp) { 5687 switch (Lex.getKind()) { 5688 default: return TokError("expected fcmp predicate (e.g. 'oeq')"); 5689 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 5690 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 5691 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 5692 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 5693 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 5694 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 5695 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 5696 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 5697 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 5698 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 5699 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 5700 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 5701 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 5702 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 5703 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 5704 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 5705 } 5706 } else { 5707 switch (Lex.getKind()) { 5708 default: return TokError("expected icmp predicate (e.g. 'eq')"); 5709 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 5710 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 5711 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 5712 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 5713 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 5714 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 5715 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 5716 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 5717 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 5718 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 5719 } 5720 } 5721 Lex.Lex(); 5722 return false; 5723 } 5724 5725 //===----------------------------------------------------------------------===// 5726 // Terminator Instructions. 5727 //===----------------------------------------------------------------------===// 5728 5729 /// ParseRet - Parse a return instruction. 5730 /// ::= 'ret' void (',' !dbg, !1)* 5731 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 5732 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 5733 PerFunctionState &PFS) { 5734 SMLoc TypeLoc = Lex.getLoc(); 5735 Type *Ty = nullptr; 5736 if (ParseType(Ty, true /*void allowed*/)) return true; 5737 5738 Type *ResType = PFS.getFunction().getReturnType(); 5739 5740 if (Ty->isVoidTy()) { 5741 if (!ResType->isVoidTy()) 5742 return Error(TypeLoc, "value doesn't match function result type '" + 5743 getTypeString(ResType) + "'"); 5744 5745 Inst = ReturnInst::Create(Context); 5746 return false; 5747 } 5748 5749 Value *RV; 5750 if (ParseValue(Ty, RV, PFS)) return true; 5751 5752 if (ResType != RV->getType()) 5753 return Error(TypeLoc, "value doesn't match function result type '" + 5754 getTypeString(ResType) + "'"); 5755 5756 Inst = ReturnInst::Create(Context, RV); 5757 return false; 5758 } 5759 5760 /// ParseBr 5761 /// ::= 'br' TypeAndValue 5762 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5763 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 5764 LocTy Loc, Loc2; 5765 Value *Op0; 5766 BasicBlock *Op1, *Op2; 5767 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 5768 5769 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 5770 Inst = BranchInst::Create(BB); 5771 return false; 5772 } 5773 5774 if (Op0->getType() != Type::getInt1Ty(Context)) 5775 return Error(Loc, "branch condition must have 'i1' type"); 5776 5777 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 5778 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 5779 ParseToken(lltok::comma, "expected ',' after true destination") || 5780 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 5781 return true; 5782 5783 Inst = BranchInst::Create(Op1, Op2, Op0); 5784 return false; 5785 } 5786 5787 /// ParseSwitch 5788 /// Instruction 5789 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 5790 /// JumpTable 5791 /// ::= (TypeAndValue ',' TypeAndValue)* 5792 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5793 LocTy CondLoc, BBLoc; 5794 Value *Cond; 5795 BasicBlock *DefaultBB; 5796 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 5797 ParseToken(lltok::comma, "expected ',' after switch condition") || 5798 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 5799 ParseToken(lltok::lsquare, "expected '[' with switch table")) 5800 return true; 5801 5802 if (!Cond->getType()->isIntegerTy()) 5803 return Error(CondLoc, "switch condition must have integer type"); 5804 5805 // Parse the jump table pairs. 5806 SmallPtrSet<Value*, 32> SeenCases; 5807 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 5808 while (Lex.getKind() != lltok::rsquare) { 5809 Value *Constant; 5810 BasicBlock *DestBB; 5811 5812 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 5813 ParseToken(lltok::comma, "expected ',' after case value") || 5814 ParseTypeAndBasicBlock(DestBB, PFS)) 5815 return true; 5816 5817 if (!SeenCases.insert(Constant).second) 5818 return Error(CondLoc, "duplicate case value in switch"); 5819 if (!isa<ConstantInt>(Constant)) 5820 return Error(CondLoc, "case value is not a constant integer"); 5821 5822 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 5823 } 5824 5825 Lex.Lex(); // Eat the ']'. 5826 5827 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 5828 for (unsigned i = 0, e = Table.size(); i != e; ++i) 5829 SI->addCase(Table[i].first, Table[i].second); 5830 Inst = SI; 5831 return false; 5832 } 5833 5834 /// ParseIndirectBr 5835 /// Instruction 5836 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 5837 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 5838 LocTy AddrLoc; 5839 Value *Address; 5840 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 5841 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 5842 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 5843 return true; 5844 5845 if (!Address->getType()->isPointerTy()) 5846 return Error(AddrLoc, "indirectbr address must have pointer type"); 5847 5848 // Parse the destination list. 5849 SmallVector<BasicBlock*, 16> DestList; 5850 5851 if (Lex.getKind() != lltok::rsquare) { 5852 BasicBlock *DestBB; 5853 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5854 return true; 5855 DestList.push_back(DestBB); 5856 5857 while (EatIfPresent(lltok::comma)) { 5858 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5859 return true; 5860 DestList.push_back(DestBB); 5861 } 5862 } 5863 5864 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 5865 return true; 5866 5867 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 5868 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 5869 IBI->addDestination(DestList[i]); 5870 Inst = IBI; 5871 return false; 5872 } 5873 5874 /// ParseInvoke 5875 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 5876 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 5877 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 5878 LocTy CallLoc = Lex.getLoc(); 5879 AttrBuilder RetAttrs, FnAttrs; 5880 std::vector<unsigned> FwdRefAttrGrps; 5881 LocTy NoBuiltinLoc; 5882 unsigned CC; 5883 unsigned InvokeAddrSpace; 5884 Type *RetType = nullptr; 5885 LocTy RetTypeLoc; 5886 ValID CalleeID; 5887 SmallVector<ParamInfo, 16> ArgList; 5888 SmallVector<OperandBundleDef, 2> BundleList; 5889 5890 BasicBlock *NormalBB, *UnwindBB; 5891 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5892 ParseOptionalProgramAddrSpace(InvokeAddrSpace) || 5893 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5894 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 5895 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 5896 NoBuiltinLoc) || 5897 ParseOptionalOperandBundles(BundleList, PFS) || 5898 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 5899 ParseTypeAndBasicBlock(NormalBB, PFS) || 5900 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 5901 ParseTypeAndBasicBlock(UnwindBB, PFS)) 5902 return true; 5903 5904 // If RetType is a non-function pointer type, then this is the short syntax 5905 // for the call, which means that RetType is just the return type. Infer the 5906 // rest of the function argument types from the arguments that are present. 5907 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 5908 if (!Ty) { 5909 // Pull out the types of all of the arguments... 5910 std::vector<Type*> ParamTypes; 5911 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 5912 ParamTypes.push_back(ArgList[i].V->getType()); 5913 5914 if (!FunctionType::isValidReturnType(RetType)) 5915 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 5916 5917 Ty = FunctionType::get(RetType, ParamTypes, false); 5918 } 5919 5920 CalleeID.FTy = Ty; 5921 5922 // Look up the callee. 5923 Value *Callee; 5924 if (ConvertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID, 5925 Callee, &PFS, /*IsCall=*/true)) 5926 return true; 5927 5928 // Set up the Attribute for the function. 5929 SmallVector<Value *, 8> Args; 5930 SmallVector<AttributeSet, 8> ArgAttrs; 5931 5932 // Loop through FunctionType's arguments and ensure they are specified 5933 // correctly. Also, gather any parameter attributes. 5934 FunctionType::param_iterator I = Ty->param_begin(); 5935 FunctionType::param_iterator E = Ty->param_end(); 5936 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5937 Type *ExpectedTy = nullptr; 5938 if (I != E) { 5939 ExpectedTy = *I++; 5940 } else if (!Ty->isVarArg()) { 5941 return Error(ArgList[i].Loc, "too many arguments specified"); 5942 } 5943 5944 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 5945 return Error(ArgList[i].Loc, "argument is not of expected type '" + 5946 getTypeString(ExpectedTy) + "'"); 5947 Args.push_back(ArgList[i].V); 5948 ArgAttrs.push_back(ArgList[i].Attrs); 5949 } 5950 5951 if (I != E) 5952 return Error(CallLoc, "not enough parameters specified for call"); 5953 5954 if (FnAttrs.hasAlignmentAttr()) 5955 return Error(CallLoc, "invoke instructions may not have an alignment"); 5956 5957 // Finish off the Attribute and check them 5958 AttributeList PAL = 5959 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 5960 AttributeSet::get(Context, RetAttrs), ArgAttrs); 5961 5962 InvokeInst *II = 5963 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 5964 II->setCallingConv(CC); 5965 II->setAttributes(PAL); 5966 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 5967 Inst = II; 5968 return false; 5969 } 5970 5971 /// ParseResume 5972 /// ::= 'resume' TypeAndValue 5973 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 5974 Value *Exn; LocTy ExnLoc; 5975 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 5976 return true; 5977 5978 ResumeInst *RI = ResumeInst::Create(Exn); 5979 Inst = RI; 5980 return false; 5981 } 5982 5983 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args, 5984 PerFunctionState &PFS) { 5985 if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 5986 return true; 5987 5988 while (Lex.getKind() != lltok::rsquare) { 5989 // If this isn't the first argument, we need a comma. 5990 if (!Args.empty() && 5991 ParseToken(lltok::comma, "expected ',' in argument list")) 5992 return true; 5993 5994 // Parse the argument. 5995 LocTy ArgLoc; 5996 Type *ArgTy = nullptr; 5997 if (ParseType(ArgTy, ArgLoc)) 5998 return true; 5999 6000 Value *V; 6001 if (ArgTy->isMetadataTy()) { 6002 if (ParseMetadataAsValue(V, PFS)) 6003 return true; 6004 } else { 6005 if (ParseValue(ArgTy, V, PFS)) 6006 return true; 6007 } 6008 Args.push_back(V); 6009 } 6010 6011 Lex.Lex(); // Lex the ']'. 6012 return false; 6013 } 6014 6015 /// ParseCleanupRet 6016 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 6017 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 6018 Value *CleanupPad = nullptr; 6019 6020 if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret")) 6021 return true; 6022 6023 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 6024 return true; 6025 6026 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 6027 return true; 6028 6029 BasicBlock *UnwindBB = nullptr; 6030 if (Lex.getKind() == lltok::kw_to) { 6031 Lex.Lex(); 6032 if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 6033 return true; 6034 } else { 6035 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 6036 return true; 6037 } 6038 } 6039 6040 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 6041 return false; 6042 } 6043 6044 /// ParseCatchRet 6045 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 6046 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 6047 Value *CatchPad = nullptr; 6048 6049 if (ParseToken(lltok::kw_from, "expected 'from' after catchret")) 6050 return true; 6051 6052 if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS)) 6053 return true; 6054 6055 BasicBlock *BB; 6056 if (ParseToken(lltok::kw_to, "expected 'to' in catchret") || 6057 ParseTypeAndBasicBlock(BB, PFS)) 6058 return true; 6059 6060 Inst = CatchReturnInst::Create(CatchPad, BB); 6061 return false; 6062 } 6063 6064 /// ParseCatchSwitch 6065 /// ::= 'catchswitch' within Parent 6066 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6067 Value *ParentPad; 6068 6069 if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch")) 6070 return true; 6071 6072 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6073 Lex.getKind() != lltok::LocalVarID) 6074 return TokError("expected scope value for catchswitch"); 6075 6076 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6077 return true; 6078 6079 if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 6080 return true; 6081 6082 SmallVector<BasicBlock *, 32> Table; 6083 do { 6084 BasicBlock *DestBB; 6085 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6086 return true; 6087 Table.push_back(DestBB); 6088 } while (EatIfPresent(lltok::comma)); 6089 6090 if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 6091 return true; 6092 6093 if (ParseToken(lltok::kw_unwind, 6094 "expected 'unwind' after catchswitch scope")) 6095 return true; 6096 6097 BasicBlock *UnwindBB = nullptr; 6098 if (EatIfPresent(lltok::kw_to)) { 6099 if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 6100 return true; 6101 } else { 6102 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) 6103 return true; 6104 } 6105 6106 auto *CatchSwitch = 6107 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 6108 for (BasicBlock *DestBB : Table) 6109 CatchSwitch->addHandler(DestBB); 6110 Inst = CatchSwitch; 6111 return false; 6112 } 6113 6114 /// ParseCatchPad 6115 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 6116 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 6117 Value *CatchSwitch = nullptr; 6118 6119 if (ParseToken(lltok::kw_within, "expected 'within' after catchpad")) 6120 return true; 6121 6122 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 6123 return TokError("expected scope value for catchpad"); 6124 6125 if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 6126 return true; 6127 6128 SmallVector<Value *, 8> Args; 6129 if (ParseExceptionArgs(Args, PFS)) 6130 return true; 6131 6132 Inst = CatchPadInst::Create(CatchSwitch, Args); 6133 return false; 6134 } 6135 6136 /// ParseCleanupPad 6137 /// ::= 'cleanuppad' within Parent ParamList 6138 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 6139 Value *ParentPad = nullptr; 6140 6141 if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 6142 return true; 6143 6144 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6145 Lex.getKind() != lltok::LocalVarID) 6146 return TokError("expected scope value for cleanuppad"); 6147 6148 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6149 return true; 6150 6151 SmallVector<Value *, 8> Args; 6152 if (ParseExceptionArgs(Args, PFS)) 6153 return true; 6154 6155 Inst = CleanupPadInst::Create(ParentPad, Args); 6156 return false; 6157 } 6158 6159 //===----------------------------------------------------------------------===// 6160 // Unary Operators. 6161 //===----------------------------------------------------------------------===// 6162 6163 /// ParseUnaryOp 6164 /// ::= UnaryOp TypeAndValue ',' Value 6165 /// 6166 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, 6167 /// then any integer operand is allowed, if it is 2, any fp operand is allowed. 6168 bool LLParser::ParseUnaryOp(Instruction *&Inst, PerFunctionState &PFS, 6169 unsigned Opc, unsigned OperandType) { 6170 LocTy Loc; Value *LHS; 6171 if (ParseTypeAndValue(LHS, Loc, PFS)) 6172 return true; 6173 6174 bool Valid; 6175 switch (OperandType) { 6176 default: llvm_unreachable("Unknown operand type!"); 6177 case 0: // int or FP. 6178 Valid = LHS->getType()->isIntOrIntVectorTy() || 6179 LHS->getType()->isFPOrFPVectorTy(); 6180 break; 6181 case 1: 6182 Valid = LHS->getType()->isIntOrIntVectorTy(); 6183 break; 6184 case 2: 6185 Valid = LHS->getType()->isFPOrFPVectorTy(); 6186 break; 6187 } 6188 6189 if (!Valid) 6190 return Error(Loc, "invalid operand type for instruction"); 6191 6192 Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 6193 return false; 6194 } 6195 6196 /// ParseCallBr 6197 /// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList 6198 /// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue 6199 /// '[' LabelList ']' 6200 bool LLParser::ParseCallBr(Instruction *&Inst, PerFunctionState &PFS) { 6201 LocTy CallLoc = Lex.getLoc(); 6202 AttrBuilder RetAttrs, FnAttrs; 6203 std::vector<unsigned> FwdRefAttrGrps; 6204 LocTy NoBuiltinLoc; 6205 unsigned CC; 6206 Type *RetType = nullptr; 6207 LocTy RetTypeLoc; 6208 ValID CalleeID; 6209 SmallVector<ParamInfo, 16> ArgList; 6210 SmallVector<OperandBundleDef, 2> BundleList; 6211 6212 BasicBlock *DefaultDest; 6213 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6214 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6215 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 6216 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6217 NoBuiltinLoc) || 6218 ParseOptionalOperandBundles(BundleList, PFS) || 6219 ParseToken(lltok::kw_to, "expected 'to' in callbr") || 6220 ParseTypeAndBasicBlock(DefaultDest, PFS) || 6221 ParseToken(lltok::lsquare, "expected '[' in callbr")) 6222 return true; 6223 6224 // Parse the destination list. 6225 SmallVector<BasicBlock *, 16> IndirectDests; 6226 6227 if (Lex.getKind() != lltok::rsquare) { 6228 BasicBlock *DestBB; 6229 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6230 return true; 6231 IndirectDests.push_back(DestBB); 6232 6233 while (EatIfPresent(lltok::comma)) { 6234 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6235 return true; 6236 IndirectDests.push_back(DestBB); 6237 } 6238 } 6239 6240 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 6241 return true; 6242 6243 // If RetType is a non-function pointer type, then this is the short syntax 6244 // for the call, which means that RetType is just the return type. Infer the 6245 // rest of the function argument types from the arguments that are present. 6246 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6247 if (!Ty) { 6248 // Pull out the types of all of the arguments... 6249 std::vector<Type *> ParamTypes; 6250 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6251 ParamTypes.push_back(ArgList[i].V->getType()); 6252 6253 if (!FunctionType::isValidReturnType(RetType)) 6254 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6255 6256 Ty = FunctionType::get(RetType, ParamTypes, false); 6257 } 6258 6259 CalleeID.FTy = Ty; 6260 6261 // Look up the callee. 6262 Value *Callee; 6263 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS, 6264 /*IsCall=*/true)) 6265 return true; 6266 6267 if (isa<InlineAsm>(Callee) && !Ty->getReturnType()->isVoidTy()) 6268 return Error(RetTypeLoc, "asm-goto outputs not supported"); 6269 6270 // Set up the Attribute for the function. 6271 SmallVector<Value *, 8> Args; 6272 SmallVector<AttributeSet, 8> ArgAttrs; 6273 6274 // Loop through FunctionType's arguments and ensure they are specified 6275 // correctly. Also, gather any parameter attributes. 6276 FunctionType::param_iterator I = Ty->param_begin(); 6277 FunctionType::param_iterator E = Ty->param_end(); 6278 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6279 Type *ExpectedTy = nullptr; 6280 if (I != E) { 6281 ExpectedTy = *I++; 6282 } else if (!Ty->isVarArg()) { 6283 return Error(ArgList[i].Loc, "too many arguments specified"); 6284 } 6285 6286 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6287 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6288 getTypeString(ExpectedTy) + "'"); 6289 Args.push_back(ArgList[i].V); 6290 ArgAttrs.push_back(ArgList[i].Attrs); 6291 } 6292 6293 if (I != E) 6294 return Error(CallLoc, "not enough parameters specified for call"); 6295 6296 if (FnAttrs.hasAlignmentAttr()) 6297 return Error(CallLoc, "callbr instructions may not have an alignment"); 6298 6299 // Finish off the Attribute and check them 6300 AttributeList PAL = 6301 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6302 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6303 6304 CallBrInst *CBI = 6305 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args, 6306 BundleList); 6307 CBI->setCallingConv(CC); 6308 CBI->setAttributes(PAL); 6309 ForwardRefAttrGroups[CBI] = FwdRefAttrGrps; 6310 Inst = CBI; 6311 return false; 6312 } 6313 6314 //===----------------------------------------------------------------------===// 6315 // Binary Operators. 6316 //===----------------------------------------------------------------------===// 6317 6318 /// ParseArithmetic 6319 /// ::= ArithmeticOps TypeAndValue ',' Value 6320 /// 6321 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, 6322 /// then any integer operand is allowed, if it is 2, any fp operand is allowed. 6323 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 6324 unsigned Opc, unsigned OperandType) { 6325 LocTy Loc; Value *LHS, *RHS; 6326 if (ParseTypeAndValue(LHS, Loc, PFS) || 6327 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 6328 ParseValue(LHS->getType(), RHS, PFS)) 6329 return true; 6330 6331 bool Valid; 6332 switch (OperandType) { 6333 default: llvm_unreachable("Unknown operand type!"); 6334 case 0: // int or FP. 6335 Valid = LHS->getType()->isIntOrIntVectorTy() || 6336 LHS->getType()->isFPOrFPVectorTy(); 6337 break; 6338 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break; 6339 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break; 6340 } 6341 6342 if (!Valid) 6343 return Error(Loc, "invalid operand type for instruction"); 6344 6345 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6346 return false; 6347 } 6348 6349 /// ParseLogical 6350 /// ::= ArithmeticOps TypeAndValue ',' Value { 6351 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 6352 unsigned Opc) { 6353 LocTy Loc; Value *LHS, *RHS; 6354 if (ParseTypeAndValue(LHS, Loc, PFS) || 6355 ParseToken(lltok::comma, "expected ',' in logical operation") || 6356 ParseValue(LHS->getType(), RHS, PFS)) 6357 return true; 6358 6359 if (!LHS->getType()->isIntOrIntVectorTy()) 6360 return Error(Loc,"instruction requires integer or integer vector operands"); 6361 6362 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6363 return false; 6364 } 6365 6366 /// ParseCompare 6367 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 6368 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 6369 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 6370 unsigned Opc) { 6371 // Parse the integer/fp comparison predicate. 6372 LocTy Loc; 6373 unsigned Pred; 6374 Value *LHS, *RHS; 6375 if (ParseCmpPredicate(Pred, Opc) || 6376 ParseTypeAndValue(LHS, Loc, PFS) || 6377 ParseToken(lltok::comma, "expected ',' after compare value") || 6378 ParseValue(LHS->getType(), RHS, PFS)) 6379 return true; 6380 6381 if (Opc == Instruction::FCmp) { 6382 if (!LHS->getType()->isFPOrFPVectorTy()) 6383 return Error(Loc, "fcmp requires floating point operands"); 6384 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6385 } else { 6386 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 6387 if (!LHS->getType()->isIntOrIntVectorTy() && 6388 !LHS->getType()->isPtrOrPtrVectorTy()) 6389 return Error(Loc, "icmp requires integer operands"); 6390 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6391 } 6392 return false; 6393 } 6394 6395 //===----------------------------------------------------------------------===// 6396 // Other Instructions. 6397 //===----------------------------------------------------------------------===// 6398 6399 6400 /// ParseCast 6401 /// ::= CastOpc TypeAndValue 'to' Type 6402 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 6403 unsigned Opc) { 6404 LocTy Loc; 6405 Value *Op; 6406 Type *DestTy = nullptr; 6407 if (ParseTypeAndValue(Op, Loc, PFS) || 6408 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 6409 ParseType(DestTy)) 6410 return true; 6411 6412 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 6413 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 6414 return Error(Loc, "invalid cast opcode for cast from '" + 6415 getTypeString(Op->getType()) + "' to '" + 6416 getTypeString(DestTy) + "'"); 6417 } 6418 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 6419 return false; 6420 } 6421 6422 /// ParseSelect 6423 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6424 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 6425 LocTy Loc; 6426 Value *Op0, *Op1, *Op2; 6427 if (ParseTypeAndValue(Op0, Loc, PFS) || 6428 ParseToken(lltok::comma, "expected ',' after select condition") || 6429 ParseTypeAndValue(Op1, PFS) || 6430 ParseToken(lltok::comma, "expected ',' after select value") || 6431 ParseTypeAndValue(Op2, PFS)) 6432 return true; 6433 6434 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 6435 return Error(Loc, Reason); 6436 6437 Inst = SelectInst::Create(Op0, Op1, Op2); 6438 return false; 6439 } 6440 6441 /// ParseVA_Arg 6442 /// ::= 'va_arg' TypeAndValue ',' Type 6443 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 6444 Value *Op; 6445 Type *EltTy = nullptr; 6446 LocTy TypeLoc; 6447 if (ParseTypeAndValue(Op, PFS) || 6448 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 6449 ParseType(EltTy, TypeLoc)) 6450 return true; 6451 6452 if (!EltTy->isFirstClassType()) 6453 return Error(TypeLoc, "va_arg requires operand with first class type"); 6454 6455 Inst = new VAArgInst(Op, EltTy); 6456 return false; 6457 } 6458 6459 /// ParseExtractElement 6460 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 6461 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 6462 LocTy Loc; 6463 Value *Op0, *Op1; 6464 if (ParseTypeAndValue(Op0, Loc, PFS) || 6465 ParseToken(lltok::comma, "expected ',' after extract value") || 6466 ParseTypeAndValue(Op1, PFS)) 6467 return true; 6468 6469 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 6470 return Error(Loc, "invalid extractelement operands"); 6471 6472 Inst = ExtractElementInst::Create(Op0, Op1); 6473 return false; 6474 } 6475 6476 /// ParseInsertElement 6477 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6478 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 6479 LocTy Loc; 6480 Value *Op0, *Op1, *Op2; 6481 if (ParseTypeAndValue(Op0, Loc, PFS) || 6482 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6483 ParseTypeAndValue(Op1, PFS) || 6484 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6485 ParseTypeAndValue(Op2, PFS)) 6486 return true; 6487 6488 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 6489 return Error(Loc, "invalid insertelement operands"); 6490 6491 Inst = InsertElementInst::Create(Op0, Op1, Op2); 6492 return false; 6493 } 6494 6495 /// ParseShuffleVector 6496 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6497 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 6498 LocTy Loc; 6499 Value *Op0, *Op1, *Op2; 6500 if (ParseTypeAndValue(Op0, Loc, PFS) || 6501 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 6502 ParseTypeAndValue(Op1, PFS) || 6503 ParseToken(lltok::comma, "expected ',' after shuffle value") || 6504 ParseTypeAndValue(Op2, PFS)) 6505 return true; 6506 6507 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 6508 return Error(Loc, "invalid shufflevector operands"); 6509 6510 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 6511 return false; 6512 } 6513 6514 /// ParsePHI 6515 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 6516 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 6517 Type *Ty = nullptr; LocTy TypeLoc; 6518 Value *Op0, *Op1; 6519 6520 if (ParseType(Ty, TypeLoc) || 6521 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 6522 ParseValue(Ty, Op0, PFS) || 6523 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6524 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 6525 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 6526 return true; 6527 6528 bool AteExtraComma = false; 6529 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 6530 6531 while (true) { 6532 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 6533 6534 if (!EatIfPresent(lltok::comma)) 6535 break; 6536 6537 if (Lex.getKind() == lltok::MetadataVar) { 6538 AteExtraComma = true; 6539 break; 6540 } 6541 6542 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 6543 ParseValue(Ty, Op0, PFS) || 6544 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6545 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 6546 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 6547 return true; 6548 } 6549 6550 if (!Ty->isFirstClassType()) 6551 return Error(TypeLoc, "phi node must have first class type"); 6552 6553 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 6554 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 6555 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 6556 Inst = PN; 6557 return AteExtraComma ? InstExtraComma : InstNormal; 6558 } 6559 6560 /// ParseLandingPad 6561 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 6562 /// Clause 6563 /// ::= 'catch' TypeAndValue 6564 /// ::= 'filter' 6565 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 6566 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 6567 Type *Ty = nullptr; LocTy TyLoc; 6568 6569 if (ParseType(Ty, TyLoc)) 6570 return true; 6571 6572 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 6573 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 6574 6575 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 6576 LandingPadInst::ClauseType CT; 6577 if (EatIfPresent(lltok::kw_catch)) 6578 CT = LandingPadInst::Catch; 6579 else if (EatIfPresent(lltok::kw_filter)) 6580 CT = LandingPadInst::Filter; 6581 else 6582 return TokError("expected 'catch' or 'filter' clause type"); 6583 6584 Value *V; 6585 LocTy VLoc; 6586 if (ParseTypeAndValue(V, VLoc, PFS)) 6587 return true; 6588 6589 // A 'catch' type expects a non-array constant. A filter clause expects an 6590 // array constant. 6591 if (CT == LandingPadInst::Catch) { 6592 if (isa<ArrayType>(V->getType())) 6593 Error(VLoc, "'catch' clause has an invalid type"); 6594 } else { 6595 if (!isa<ArrayType>(V->getType())) 6596 Error(VLoc, "'filter' clause has an invalid type"); 6597 } 6598 6599 Constant *CV = dyn_cast<Constant>(V); 6600 if (!CV) 6601 return Error(VLoc, "clause argument must be a constant"); 6602 LP->addClause(CV); 6603 } 6604 6605 Inst = LP.release(); 6606 return false; 6607 } 6608 6609 /// ParseCall 6610 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 6611 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6612 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 6613 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6614 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 6615 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6616 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 6617 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6618 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 6619 CallInst::TailCallKind TCK) { 6620 AttrBuilder RetAttrs, FnAttrs; 6621 std::vector<unsigned> FwdRefAttrGrps; 6622 LocTy BuiltinLoc; 6623 unsigned CallAddrSpace; 6624 unsigned CC; 6625 Type *RetType = nullptr; 6626 LocTy RetTypeLoc; 6627 ValID CalleeID; 6628 SmallVector<ParamInfo, 16> ArgList; 6629 SmallVector<OperandBundleDef, 2> BundleList; 6630 LocTy CallLoc = Lex.getLoc(); 6631 6632 if (TCK != CallInst::TCK_None && 6633 ParseToken(lltok::kw_call, 6634 "expected 'tail call', 'musttail call', or 'notail call'")) 6635 return true; 6636 6637 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6638 6639 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6640 ParseOptionalProgramAddrSpace(CallAddrSpace) || 6641 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6642 ParseValID(CalleeID) || 6643 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 6644 PFS.getFunction().isVarArg()) || 6645 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 6646 ParseOptionalOperandBundles(BundleList, PFS)) 6647 return true; 6648 6649 if (FMF.any() && !RetType->isFPOrFPVectorTy()) 6650 return Error(CallLoc, "fast-math-flags specified for call without " 6651 "floating-point scalar or vector return type"); 6652 6653 // If RetType is a non-function pointer type, then this is the short syntax 6654 // for the call, which means that RetType is just the return type. Infer the 6655 // rest of the function argument types from the arguments that are present. 6656 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6657 if (!Ty) { 6658 // Pull out the types of all of the arguments... 6659 std::vector<Type*> ParamTypes; 6660 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6661 ParamTypes.push_back(ArgList[i].V->getType()); 6662 6663 if (!FunctionType::isValidReturnType(RetType)) 6664 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6665 6666 Ty = FunctionType::get(RetType, ParamTypes, false); 6667 } 6668 6669 CalleeID.FTy = Ty; 6670 6671 // Look up the callee. 6672 Value *Callee; 6673 if (ConvertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee, 6674 &PFS, /*IsCall=*/true)) 6675 return true; 6676 6677 // Set up the Attribute for the function. 6678 SmallVector<AttributeSet, 8> Attrs; 6679 6680 SmallVector<Value*, 8> Args; 6681 6682 // Loop through FunctionType's arguments and ensure they are specified 6683 // correctly. Also, gather any parameter attributes. 6684 FunctionType::param_iterator I = Ty->param_begin(); 6685 FunctionType::param_iterator E = Ty->param_end(); 6686 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6687 Type *ExpectedTy = nullptr; 6688 if (I != E) { 6689 ExpectedTy = *I++; 6690 } else if (!Ty->isVarArg()) { 6691 return Error(ArgList[i].Loc, "too many arguments specified"); 6692 } 6693 6694 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6695 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6696 getTypeString(ExpectedTy) + "'"); 6697 Args.push_back(ArgList[i].V); 6698 Attrs.push_back(ArgList[i].Attrs); 6699 } 6700 6701 if (I != E) 6702 return Error(CallLoc, "not enough parameters specified for call"); 6703 6704 if (FnAttrs.hasAlignmentAttr()) 6705 return Error(CallLoc, "call instructions may not have an alignment"); 6706 6707 // Finish off the Attribute and check them 6708 AttributeList PAL = 6709 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6710 AttributeSet::get(Context, RetAttrs), Attrs); 6711 6712 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 6713 CI->setTailCallKind(TCK); 6714 CI->setCallingConv(CC); 6715 if (FMF.any()) 6716 CI->setFastMathFlags(FMF); 6717 CI->setAttributes(PAL); 6718 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 6719 Inst = CI; 6720 return false; 6721 } 6722 6723 //===----------------------------------------------------------------------===// 6724 // Memory Instructions. 6725 //===----------------------------------------------------------------------===// 6726 6727 /// ParseAlloc 6728 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 6729 /// (',' 'align' i32)? (',', 'addrspace(n))? 6730 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 6731 Value *Size = nullptr; 6732 LocTy SizeLoc, TyLoc, ASLoc; 6733 unsigned Alignment = 0; 6734 unsigned AddrSpace = 0; 6735 Type *Ty = nullptr; 6736 6737 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 6738 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 6739 6740 if (ParseType(Ty, TyLoc)) return true; 6741 6742 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 6743 return Error(TyLoc, "invalid type for alloca"); 6744 6745 bool AteExtraComma = false; 6746 if (EatIfPresent(lltok::comma)) { 6747 if (Lex.getKind() == lltok::kw_align) { 6748 if (ParseOptionalAlignment(Alignment)) 6749 return true; 6750 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 6751 return true; 6752 } else if (Lex.getKind() == lltok::kw_addrspace) { 6753 ASLoc = Lex.getLoc(); 6754 if (ParseOptionalAddrSpace(AddrSpace)) 6755 return true; 6756 } else if (Lex.getKind() == lltok::MetadataVar) { 6757 AteExtraComma = true; 6758 } else { 6759 if (ParseTypeAndValue(Size, SizeLoc, PFS)) 6760 return true; 6761 if (EatIfPresent(lltok::comma)) { 6762 if (Lex.getKind() == lltok::kw_align) { 6763 if (ParseOptionalAlignment(Alignment)) 6764 return true; 6765 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 6766 return true; 6767 } else if (Lex.getKind() == lltok::kw_addrspace) { 6768 ASLoc = Lex.getLoc(); 6769 if (ParseOptionalAddrSpace(AddrSpace)) 6770 return true; 6771 } else if (Lex.getKind() == lltok::MetadataVar) { 6772 AteExtraComma = true; 6773 } 6774 } 6775 } 6776 } 6777 6778 if (Size && !Size->getType()->isIntegerTy()) 6779 return Error(SizeLoc, "element count must have integer type"); 6780 6781 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, Alignment); 6782 AI->setUsedWithInAlloca(IsInAlloca); 6783 AI->setSwiftError(IsSwiftError); 6784 Inst = AI; 6785 return AteExtraComma ? InstExtraComma : InstNormal; 6786 } 6787 6788 /// ParseLoad 6789 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 6790 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 6791 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6792 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 6793 Value *Val; LocTy Loc; 6794 unsigned Alignment = 0; 6795 bool AteExtraComma = false; 6796 bool isAtomic = false; 6797 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6798 SyncScope::ID SSID = SyncScope::System; 6799 6800 if (Lex.getKind() == lltok::kw_atomic) { 6801 isAtomic = true; 6802 Lex.Lex(); 6803 } 6804 6805 bool isVolatile = false; 6806 if (Lex.getKind() == lltok::kw_volatile) { 6807 isVolatile = true; 6808 Lex.Lex(); 6809 } 6810 6811 Type *Ty; 6812 LocTy ExplicitTypeLoc = Lex.getLoc(); 6813 if (ParseType(Ty) || 6814 ParseToken(lltok::comma, "expected comma after load's type") || 6815 ParseTypeAndValue(Val, Loc, PFS) || 6816 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 6817 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6818 return true; 6819 6820 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 6821 return Error(Loc, "load operand must be a pointer to a first class type"); 6822 if (isAtomic && !Alignment) 6823 return Error(Loc, "atomic load must have explicit non-zero alignment"); 6824 if (Ordering == AtomicOrdering::Release || 6825 Ordering == AtomicOrdering::AcquireRelease) 6826 return Error(Loc, "atomic load cannot use Release ordering"); 6827 6828 if (Ty != cast<PointerType>(Val->getType())->getElementType()) 6829 return Error(ExplicitTypeLoc, 6830 "explicit pointee type doesn't match operand's pointee type"); 6831 6832 Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID); 6833 return AteExtraComma ? InstExtraComma : InstNormal; 6834 } 6835 6836 /// ParseStore 6837 6838 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 6839 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 6840 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6841 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 6842 Value *Val, *Ptr; LocTy Loc, PtrLoc; 6843 unsigned Alignment = 0; 6844 bool AteExtraComma = false; 6845 bool isAtomic = false; 6846 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6847 SyncScope::ID SSID = SyncScope::System; 6848 6849 if (Lex.getKind() == lltok::kw_atomic) { 6850 isAtomic = true; 6851 Lex.Lex(); 6852 } 6853 6854 bool isVolatile = false; 6855 if (Lex.getKind() == lltok::kw_volatile) { 6856 isVolatile = true; 6857 Lex.Lex(); 6858 } 6859 6860 if (ParseTypeAndValue(Val, Loc, PFS) || 6861 ParseToken(lltok::comma, "expected ',' after store operand") || 6862 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6863 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 6864 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6865 return true; 6866 6867 if (!Ptr->getType()->isPointerTy()) 6868 return Error(PtrLoc, "store operand must be a pointer"); 6869 if (!Val->getType()->isFirstClassType()) 6870 return Error(Loc, "store operand must be a first class value"); 6871 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6872 return Error(Loc, "stored value and pointer type do not match"); 6873 if (isAtomic && !Alignment) 6874 return Error(Loc, "atomic store must have explicit non-zero alignment"); 6875 if (Ordering == AtomicOrdering::Acquire || 6876 Ordering == AtomicOrdering::AcquireRelease) 6877 return Error(Loc, "atomic store cannot use Acquire ordering"); 6878 6879 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID); 6880 return AteExtraComma ? InstExtraComma : InstNormal; 6881 } 6882 6883 /// ParseCmpXchg 6884 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 6885 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering 6886 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 6887 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 6888 bool AteExtraComma = false; 6889 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 6890 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 6891 SyncScope::ID SSID = SyncScope::System; 6892 bool isVolatile = false; 6893 bool isWeak = false; 6894 6895 if (EatIfPresent(lltok::kw_weak)) 6896 isWeak = true; 6897 6898 if (EatIfPresent(lltok::kw_volatile)) 6899 isVolatile = true; 6900 6901 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6902 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 6903 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 6904 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 6905 ParseTypeAndValue(New, NewLoc, PFS) || 6906 ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 6907 ParseOrdering(FailureOrdering)) 6908 return true; 6909 6910 if (SuccessOrdering == AtomicOrdering::Unordered || 6911 FailureOrdering == AtomicOrdering::Unordered) 6912 return TokError("cmpxchg cannot be unordered"); 6913 if (isStrongerThan(FailureOrdering, SuccessOrdering)) 6914 return TokError("cmpxchg failure argument shall be no stronger than the " 6915 "success argument"); 6916 if (FailureOrdering == AtomicOrdering::Release || 6917 FailureOrdering == AtomicOrdering::AcquireRelease) 6918 return TokError( 6919 "cmpxchg failure ordering cannot include release semantics"); 6920 if (!Ptr->getType()->isPointerTy()) 6921 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 6922 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 6923 return Error(CmpLoc, "compare value and pointer type do not match"); 6924 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 6925 return Error(NewLoc, "new value and pointer type do not match"); 6926 if (!New->getType()->isFirstClassType()) 6927 return Error(NewLoc, "cmpxchg operand must be a first class value"); 6928 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 6929 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID); 6930 CXI->setVolatile(isVolatile); 6931 CXI->setWeak(isWeak); 6932 Inst = CXI; 6933 return AteExtraComma ? InstExtraComma : InstNormal; 6934 } 6935 6936 /// ParseAtomicRMW 6937 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 6938 /// 'singlethread'? AtomicOrdering 6939 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 6940 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 6941 bool AteExtraComma = false; 6942 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6943 SyncScope::ID SSID = SyncScope::System; 6944 bool isVolatile = false; 6945 bool IsFP = false; 6946 AtomicRMWInst::BinOp Operation; 6947 6948 if (EatIfPresent(lltok::kw_volatile)) 6949 isVolatile = true; 6950 6951 switch (Lex.getKind()) { 6952 default: return TokError("expected binary operation in atomicrmw"); 6953 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 6954 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 6955 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 6956 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 6957 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 6958 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 6959 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 6960 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 6961 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 6962 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 6963 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 6964 case lltok::kw_fadd: 6965 Operation = AtomicRMWInst::FAdd; 6966 IsFP = true; 6967 break; 6968 case lltok::kw_fsub: 6969 Operation = AtomicRMWInst::FSub; 6970 IsFP = true; 6971 break; 6972 } 6973 Lex.Lex(); // Eat the operation. 6974 6975 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6976 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 6977 ParseTypeAndValue(Val, ValLoc, PFS) || 6978 ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 6979 return true; 6980 6981 if (Ordering == AtomicOrdering::Unordered) 6982 return TokError("atomicrmw cannot be unordered"); 6983 if (!Ptr->getType()->isPointerTy()) 6984 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 6985 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6986 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 6987 6988 if (Operation == AtomicRMWInst::Xchg) { 6989 if (!Val->getType()->isIntegerTy() && 6990 !Val->getType()->isFloatingPointTy()) { 6991 return Error(ValLoc, "atomicrmw " + 6992 AtomicRMWInst::getOperationName(Operation) + 6993 " operand must be an integer or floating point type"); 6994 } 6995 } else if (IsFP) { 6996 if (!Val->getType()->isFloatingPointTy()) { 6997 return Error(ValLoc, "atomicrmw " + 6998 AtomicRMWInst::getOperationName(Operation) + 6999 " operand must be a floating point type"); 7000 } 7001 } else { 7002 if (!Val->getType()->isIntegerTy()) { 7003 return Error(ValLoc, "atomicrmw " + 7004 AtomicRMWInst::getOperationName(Operation) + 7005 " operand must be an integer"); 7006 } 7007 } 7008 7009 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 7010 if (Size < 8 || (Size & (Size - 1))) 7011 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 7012 " integer"); 7013 7014 AtomicRMWInst *RMWI = 7015 new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 7016 RMWI->setVolatile(isVolatile); 7017 Inst = RMWI; 7018 return AteExtraComma ? InstExtraComma : InstNormal; 7019 } 7020 7021 /// ParseFence 7022 /// ::= 'fence' 'singlethread'? AtomicOrdering 7023 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 7024 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7025 SyncScope::ID SSID = SyncScope::System; 7026 if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7027 return true; 7028 7029 if (Ordering == AtomicOrdering::Unordered) 7030 return TokError("fence cannot be unordered"); 7031 if (Ordering == AtomicOrdering::Monotonic) 7032 return TokError("fence cannot be monotonic"); 7033 7034 Inst = new FenceInst(Context, Ordering, SSID); 7035 return InstNormal; 7036 } 7037 7038 /// ParseGetElementPtr 7039 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 7040 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 7041 Value *Ptr = nullptr; 7042 Value *Val = nullptr; 7043 LocTy Loc, EltLoc; 7044 7045 bool InBounds = EatIfPresent(lltok::kw_inbounds); 7046 7047 Type *Ty = nullptr; 7048 LocTy ExplicitTypeLoc = Lex.getLoc(); 7049 if (ParseType(Ty) || 7050 ParseToken(lltok::comma, "expected comma after getelementptr's type") || 7051 ParseTypeAndValue(Ptr, Loc, PFS)) 7052 return true; 7053 7054 Type *BaseType = Ptr->getType(); 7055 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 7056 if (!BasePointerType) 7057 return Error(Loc, "base of getelementptr must be a pointer"); 7058 7059 if (Ty != BasePointerType->getElementType()) 7060 return Error(ExplicitTypeLoc, 7061 "explicit pointee type doesn't match operand's pointee type"); 7062 7063 SmallVector<Value*, 16> Indices; 7064 bool AteExtraComma = false; 7065 // GEP returns a vector of pointers if at least one of parameters is a vector. 7066 // All vector parameters should have the same vector width. 7067 unsigned GEPWidth = BaseType->isVectorTy() ? 7068 BaseType->getVectorNumElements() : 0; 7069 7070 while (EatIfPresent(lltok::comma)) { 7071 if (Lex.getKind() == lltok::MetadataVar) { 7072 AteExtraComma = true; 7073 break; 7074 } 7075 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 7076 if (!Val->getType()->isIntOrIntVectorTy()) 7077 return Error(EltLoc, "getelementptr index must be an integer"); 7078 7079 if (Val->getType()->isVectorTy()) { 7080 unsigned ValNumEl = Val->getType()->getVectorNumElements(); 7081 if (GEPWidth && GEPWidth != ValNumEl) 7082 return Error(EltLoc, 7083 "getelementptr vector index has a wrong number of elements"); 7084 GEPWidth = ValNumEl; 7085 } 7086 Indices.push_back(Val); 7087 } 7088 7089 SmallPtrSet<Type*, 4> Visited; 7090 if (!Indices.empty() && !Ty->isSized(&Visited)) 7091 return Error(Loc, "base element of getelementptr must be sized"); 7092 7093 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 7094 return Error(Loc, "invalid getelementptr indices"); 7095 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 7096 if (InBounds) 7097 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 7098 return AteExtraComma ? InstExtraComma : InstNormal; 7099 } 7100 7101 /// ParseExtractValue 7102 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 7103 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 7104 Value *Val; LocTy Loc; 7105 SmallVector<unsigned, 4> Indices; 7106 bool AteExtraComma; 7107 if (ParseTypeAndValue(Val, Loc, PFS) || 7108 ParseIndexList(Indices, AteExtraComma)) 7109 return true; 7110 7111 if (!Val->getType()->isAggregateType()) 7112 return Error(Loc, "extractvalue operand must be aggregate type"); 7113 7114 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 7115 return Error(Loc, "invalid indices for extractvalue"); 7116 Inst = ExtractValueInst::Create(Val, Indices); 7117 return AteExtraComma ? InstExtraComma : InstNormal; 7118 } 7119 7120 /// ParseInsertValue 7121 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 7122 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 7123 Value *Val0, *Val1; LocTy Loc0, Loc1; 7124 SmallVector<unsigned, 4> Indices; 7125 bool AteExtraComma; 7126 if (ParseTypeAndValue(Val0, Loc0, PFS) || 7127 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 7128 ParseTypeAndValue(Val1, Loc1, PFS) || 7129 ParseIndexList(Indices, AteExtraComma)) 7130 return true; 7131 7132 if (!Val0->getType()->isAggregateType()) 7133 return Error(Loc0, "insertvalue operand must be aggregate type"); 7134 7135 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 7136 if (!IndexedType) 7137 return Error(Loc0, "invalid indices for insertvalue"); 7138 if (IndexedType != Val1->getType()) 7139 return Error(Loc1, "insertvalue operand and field disagree in type: '" + 7140 getTypeString(Val1->getType()) + "' instead of '" + 7141 getTypeString(IndexedType) + "'"); 7142 Inst = InsertValueInst::Create(Val0, Val1, Indices); 7143 return AteExtraComma ? InstExtraComma : InstNormal; 7144 } 7145 7146 //===----------------------------------------------------------------------===// 7147 // Embedded metadata. 7148 //===----------------------------------------------------------------------===// 7149 7150 /// ParseMDNodeVector 7151 /// ::= { Element (',' Element)* } 7152 /// Element 7153 /// ::= 'null' | TypeAndValue 7154 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 7155 if (ParseToken(lltok::lbrace, "expected '{' here")) 7156 return true; 7157 7158 // Check for an empty list. 7159 if (EatIfPresent(lltok::rbrace)) 7160 return false; 7161 7162 do { 7163 // Null is a special case since it is typeless. 7164 if (EatIfPresent(lltok::kw_null)) { 7165 Elts.push_back(nullptr); 7166 continue; 7167 } 7168 7169 Metadata *MD; 7170 if (ParseMetadata(MD, nullptr)) 7171 return true; 7172 Elts.push_back(MD); 7173 } while (EatIfPresent(lltok::comma)); 7174 7175 return ParseToken(lltok::rbrace, "expected end of metadata node"); 7176 } 7177 7178 //===----------------------------------------------------------------------===// 7179 // Use-list order directives. 7180 //===----------------------------------------------------------------------===// 7181 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 7182 SMLoc Loc) { 7183 if (V->use_empty()) 7184 return Error(Loc, "value has no uses"); 7185 7186 unsigned NumUses = 0; 7187 SmallDenseMap<const Use *, unsigned, 16> Order; 7188 for (const Use &U : V->uses()) { 7189 if (++NumUses > Indexes.size()) 7190 break; 7191 Order[&U] = Indexes[NumUses - 1]; 7192 } 7193 if (NumUses < 2) 7194 return Error(Loc, "value only has one use"); 7195 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 7196 return Error(Loc, 7197 "wrong number of indexes, expected " + Twine(V->getNumUses())); 7198 7199 V->sortUseList([&](const Use &L, const Use &R) { 7200 return Order.lookup(&L) < Order.lookup(&R); 7201 }); 7202 return false; 7203 } 7204 7205 /// ParseUseListOrderIndexes 7206 /// ::= '{' uint32 (',' uint32)+ '}' 7207 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 7208 SMLoc Loc = Lex.getLoc(); 7209 if (ParseToken(lltok::lbrace, "expected '{' here")) 7210 return true; 7211 if (Lex.getKind() == lltok::rbrace) 7212 return Lex.Error("expected non-empty list of uselistorder indexes"); 7213 7214 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 7215 // indexes should be distinct numbers in the range [0, size-1], and should 7216 // not be in order. 7217 unsigned Offset = 0; 7218 unsigned Max = 0; 7219 bool IsOrdered = true; 7220 assert(Indexes.empty() && "Expected empty order vector"); 7221 do { 7222 unsigned Index; 7223 if (ParseUInt32(Index)) 7224 return true; 7225 7226 // Update consistency checks. 7227 Offset += Index - Indexes.size(); 7228 Max = std::max(Max, Index); 7229 IsOrdered &= Index == Indexes.size(); 7230 7231 Indexes.push_back(Index); 7232 } while (EatIfPresent(lltok::comma)); 7233 7234 if (ParseToken(lltok::rbrace, "expected '}' here")) 7235 return true; 7236 7237 if (Indexes.size() < 2) 7238 return Error(Loc, "expected >= 2 uselistorder indexes"); 7239 if (Offset != 0 || Max >= Indexes.size()) 7240 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)"); 7241 if (IsOrdered) 7242 return Error(Loc, "expected uselistorder indexes to change the order"); 7243 7244 return false; 7245 } 7246 7247 /// ParseUseListOrder 7248 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 7249 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) { 7250 SMLoc Loc = Lex.getLoc(); 7251 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 7252 return true; 7253 7254 Value *V; 7255 SmallVector<unsigned, 16> Indexes; 7256 if (ParseTypeAndValue(V, PFS) || 7257 ParseToken(lltok::comma, "expected comma in uselistorder directive") || 7258 ParseUseListOrderIndexes(Indexes)) 7259 return true; 7260 7261 return sortUseListOrder(V, Indexes, Loc); 7262 } 7263 7264 /// ParseUseListOrderBB 7265 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 7266 bool LLParser::ParseUseListOrderBB() { 7267 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 7268 SMLoc Loc = Lex.getLoc(); 7269 Lex.Lex(); 7270 7271 ValID Fn, Label; 7272 SmallVector<unsigned, 16> Indexes; 7273 if (ParseValID(Fn) || 7274 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7275 ParseValID(Label) || 7276 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7277 ParseUseListOrderIndexes(Indexes)) 7278 return true; 7279 7280 // Check the function. 7281 GlobalValue *GV; 7282 if (Fn.Kind == ValID::t_GlobalName) 7283 GV = M->getNamedValue(Fn.StrVal); 7284 else if (Fn.Kind == ValID::t_GlobalID) 7285 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 7286 else 7287 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 7288 if (!GV) 7289 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb"); 7290 auto *F = dyn_cast<Function>(GV); 7291 if (!F) 7292 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 7293 if (F->isDeclaration()) 7294 return Error(Fn.Loc, "invalid declaration in uselistorder_bb"); 7295 7296 // Check the basic block. 7297 if (Label.Kind == ValID::t_LocalID) 7298 return Error(Label.Loc, "invalid numeric label in uselistorder_bb"); 7299 if (Label.Kind != ValID::t_LocalName) 7300 return Error(Label.Loc, "expected basic block name in uselistorder_bb"); 7301 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 7302 if (!V) 7303 return Error(Label.Loc, "invalid basic block in uselistorder_bb"); 7304 if (!isa<BasicBlock>(V)) 7305 return Error(Label.Loc, "expected basic block in uselistorder_bb"); 7306 7307 return sortUseListOrder(V, Indexes, Loc); 7308 } 7309 7310 /// ModuleEntry 7311 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')' 7312 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')' 7313 bool LLParser::ParseModuleEntry(unsigned ID) { 7314 assert(Lex.getKind() == lltok::kw_module); 7315 Lex.Lex(); 7316 7317 std::string Path; 7318 if (ParseToken(lltok::colon, "expected ':' here") || 7319 ParseToken(lltok::lparen, "expected '(' here") || 7320 ParseToken(lltok::kw_path, "expected 'path' here") || 7321 ParseToken(lltok::colon, "expected ':' here") || 7322 ParseStringConstant(Path) || 7323 ParseToken(lltok::comma, "expected ',' here") || 7324 ParseToken(lltok::kw_hash, "expected 'hash' here") || 7325 ParseToken(lltok::colon, "expected ':' here") || 7326 ParseToken(lltok::lparen, "expected '(' here")) 7327 return true; 7328 7329 ModuleHash Hash; 7330 if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") || 7331 ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") || 7332 ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") || 7333 ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") || 7334 ParseUInt32(Hash[4])) 7335 return true; 7336 7337 if (ParseToken(lltok::rparen, "expected ')' here") || 7338 ParseToken(lltok::rparen, "expected ')' here")) 7339 return true; 7340 7341 auto ModuleEntry = Index->addModule(Path, ID, Hash); 7342 ModuleIdMap[ID] = ModuleEntry->first(); 7343 7344 return false; 7345 } 7346 7347 /// TypeIdEntry 7348 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')' 7349 bool LLParser::ParseTypeIdEntry(unsigned ID) { 7350 assert(Lex.getKind() == lltok::kw_typeid); 7351 Lex.Lex(); 7352 7353 std::string Name; 7354 if (ParseToken(lltok::colon, "expected ':' here") || 7355 ParseToken(lltok::lparen, "expected '(' here") || 7356 ParseToken(lltok::kw_name, "expected 'name' here") || 7357 ParseToken(lltok::colon, "expected ':' here") || 7358 ParseStringConstant(Name)) 7359 return true; 7360 7361 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name); 7362 if (ParseToken(lltok::comma, "expected ',' here") || 7363 ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here")) 7364 return true; 7365 7366 // Check if this ID was forward referenced, and if so, update the 7367 // corresponding GUIDs. 7368 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7369 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7370 for (auto TIDRef : FwdRefTIDs->second) { 7371 assert(!*TIDRef.first && 7372 "Forward referenced type id GUID expected to be 0"); 7373 *TIDRef.first = GlobalValue::getGUID(Name); 7374 } 7375 ForwardRefTypeIds.erase(FwdRefTIDs); 7376 } 7377 7378 return false; 7379 } 7380 7381 /// TypeIdSummary 7382 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')' 7383 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) { 7384 if (ParseToken(lltok::kw_summary, "expected 'summary' here") || 7385 ParseToken(lltok::colon, "expected ':' here") || 7386 ParseToken(lltok::lparen, "expected '(' here") || 7387 ParseTypeTestResolution(TIS.TTRes)) 7388 return true; 7389 7390 if (EatIfPresent(lltok::comma)) { 7391 // Expect optional wpdResolutions field 7392 if (ParseOptionalWpdResolutions(TIS.WPDRes)) 7393 return true; 7394 } 7395 7396 if (ParseToken(lltok::rparen, "expected ')' here")) 7397 return true; 7398 7399 return false; 7400 } 7401 7402 /// TypeTestResolution 7403 /// ::= 'typeTestRes' ':' '(' 'kind' ':' 7404 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ',' 7405 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]? 7406 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]? 7407 /// [',' 'inlinesBits' ':' UInt64]? ')' 7408 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) { 7409 if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") || 7410 ParseToken(lltok::colon, "expected ':' here") || 7411 ParseToken(lltok::lparen, "expected '(' here") || 7412 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7413 ParseToken(lltok::colon, "expected ':' here")) 7414 return true; 7415 7416 switch (Lex.getKind()) { 7417 case lltok::kw_unsat: 7418 TTRes.TheKind = TypeTestResolution::Unsat; 7419 break; 7420 case lltok::kw_byteArray: 7421 TTRes.TheKind = TypeTestResolution::ByteArray; 7422 break; 7423 case lltok::kw_inline: 7424 TTRes.TheKind = TypeTestResolution::Inline; 7425 break; 7426 case lltok::kw_single: 7427 TTRes.TheKind = TypeTestResolution::Single; 7428 break; 7429 case lltok::kw_allOnes: 7430 TTRes.TheKind = TypeTestResolution::AllOnes; 7431 break; 7432 default: 7433 return Error(Lex.getLoc(), "unexpected TypeTestResolution kind"); 7434 } 7435 Lex.Lex(); 7436 7437 if (ParseToken(lltok::comma, "expected ',' here") || 7438 ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") || 7439 ParseToken(lltok::colon, "expected ':' here") || 7440 ParseUInt32(TTRes.SizeM1BitWidth)) 7441 return true; 7442 7443 // Parse optional fields 7444 while (EatIfPresent(lltok::comma)) { 7445 switch (Lex.getKind()) { 7446 case lltok::kw_alignLog2: 7447 Lex.Lex(); 7448 if (ParseToken(lltok::colon, "expected ':'") || 7449 ParseUInt64(TTRes.AlignLog2)) 7450 return true; 7451 break; 7452 case lltok::kw_sizeM1: 7453 Lex.Lex(); 7454 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1)) 7455 return true; 7456 break; 7457 case lltok::kw_bitMask: { 7458 unsigned Val; 7459 Lex.Lex(); 7460 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val)) 7461 return true; 7462 assert(Val <= 0xff); 7463 TTRes.BitMask = (uint8_t)Val; 7464 break; 7465 } 7466 case lltok::kw_inlineBits: 7467 Lex.Lex(); 7468 if (ParseToken(lltok::colon, "expected ':'") || 7469 ParseUInt64(TTRes.InlineBits)) 7470 return true; 7471 break; 7472 default: 7473 return Error(Lex.getLoc(), "expected optional TypeTestResolution field"); 7474 } 7475 } 7476 7477 if (ParseToken(lltok::rparen, "expected ')' here")) 7478 return true; 7479 7480 return false; 7481 } 7482 7483 /// OptionalWpdResolutions 7484 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')' 7485 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')' 7486 bool LLParser::ParseOptionalWpdResolutions( 7487 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) { 7488 if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") || 7489 ParseToken(lltok::colon, "expected ':' here") || 7490 ParseToken(lltok::lparen, "expected '(' here")) 7491 return true; 7492 7493 do { 7494 uint64_t Offset; 7495 WholeProgramDevirtResolution WPDRes; 7496 if (ParseToken(lltok::lparen, "expected '(' here") || 7497 ParseToken(lltok::kw_offset, "expected 'offset' here") || 7498 ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) || 7499 ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) || 7500 ParseToken(lltok::rparen, "expected ')' here")) 7501 return true; 7502 WPDResMap[Offset] = WPDRes; 7503 } while (EatIfPresent(lltok::comma)); 7504 7505 if (ParseToken(lltok::rparen, "expected ')' here")) 7506 return true; 7507 7508 return false; 7509 } 7510 7511 /// WpdRes 7512 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir' 7513 /// [',' OptionalResByArg]? ')' 7514 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl' 7515 /// ',' 'singleImplName' ':' STRINGCONSTANT ',' 7516 /// [',' OptionalResByArg]? ')' 7517 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel' 7518 /// [',' OptionalResByArg]? ')' 7519 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) { 7520 if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") || 7521 ParseToken(lltok::colon, "expected ':' here") || 7522 ParseToken(lltok::lparen, "expected '(' here") || 7523 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7524 ParseToken(lltok::colon, "expected ':' here")) 7525 return true; 7526 7527 switch (Lex.getKind()) { 7528 case lltok::kw_indir: 7529 WPDRes.TheKind = WholeProgramDevirtResolution::Indir; 7530 break; 7531 case lltok::kw_singleImpl: 7532 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl; 7533 break; 7534 case lltok::kw_branchFunnel: 7535 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel; 7536 break; 7537 default: 7538 return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind"); 7539 } 7540 Lex.Lex(); 7541 7542 // Parse optional fields 7543 while (EatIfPresent(lltok::comma)) { 7544 switch (Lex.getKind()) { 7545 case lltok::kw_singleImplName: 7546 Lex.Lex(); 7547 if (ParseToken(lltok::colon, "expected ':' here") || 7548 ParseStringConstant(WPDRes.SingleImplName)) 7549 return true; 7550 break; 7551 case lltok::kw_resByArg: 7552 if (ParseOptionalResByArg(WPDRes.ResByArg)) 7553 return true; 7554 break; 7555 default: 7556 return Error(Lex.getLoc(), 7557 "expected optional WholeProgramDevirtResolution field"); 7558 } 7559 } 7560 7561 if (ParseToken(lltok::rparen, "expected ')' here")) 7562 return true; 7563 7564 return false; 7565 } 7566 7567 /// OptionalResByArg 7568 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')' 7569 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':' 7570 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' | 7571 /// 'virtualConstProp' ) 7572 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]? 7573 /// [',' 'bit' ':' UInt32]? ')' 7574 bool LLParser::ParseOptionalResByArg( 7575 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg> 7576 &ResByArg) { 7577 if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") || 7578 ParseToken(lltok::colon, "expected ':' here") || 7579 ParseToken(lltok::lparen, "expected '(' here")) 7580 return true; 7581 7582 do { 7583 std::vector<uint64_t> Args; 7584 if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") || 7585 ParseToken(lltok::kw_byArg, "expected 'byArg here") || 7586 ParseToken(lltok::colon, "expected ':' here") || 7587 ParseToken(lltok::lparen, "expected '(' here") || 7588 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7589 ParseToken(lltok::colon, "expected ':' here")) 7590 return true; 7591 7592 WholeProgramDevirtResolution::ByArg ByArg; 7593 switch (Lex.getKind()) { 7594 case lltok::kw_indir: 7595 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir; 7596 break; 7597 case lltok::kw_uniformRetVal: 7598 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 7599 break; 7600 case lltok::kw_uniqueRetVal: 7601 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 7602 break; 7603 case lltok::kw_virtualConstProp: 7604 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 7605 break; 7606 default: 7607 return Error(Lex.getLoc(), 7608 "unexpected WholeProgramDevirtResolution::ByArg kind"); 7609 } 7610 Lex.Lex(); 7611 7612 // Parse optional fields 7613 while (EatIfPresent(lltok::comma)) { 7614 switch (Lex.getKind()) { 7615 case lltok::kw_info: 7616 Lex.Lex(); 7617 if (ParseToken(lltok::colon, "expected ':' here") || 7618 ParseUInt64(ByArg.Info)) 7619 return true; 7620 break; 7621 case lltok::kw_byte: 7622 Lex.Lex(); 7623 if (ParseToken(lltok::colon, "expected ':' here") || 7624 ParseUInt32(ByArg.Byte)) 7625 return true; 7626 break; 7627 case lltok::kw_bit: 7628 Lex.Lex(); 7629 if (ParseToken(lltok::colon, "expected ':' here") || 7630 ParseUInt32(ByArg.Bit)) 7631 return true; 7632 break; 7633 default: 7634 return Error(Lex.getLoc(), 7635 "expected optional whole program devirt field"); 7636 } 7637 } 7638 7639 if (ParseToken(lltok::rparen, "expected ')' here")) 7640 return true; 7641 7642 ResByArg[Args] = ByArg; 7643 } while (EatIfPresent(lltok::comma)); 7644 7645 if (ParseToken(lltok::rparen, "expected ')' here")) 7646 return true; 7647 7648 return false; 7649 } 7650 7651 /// OptionalResByArg 7652 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')' 7653 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) { 7654 if (ParseToken(lltok::kw_args, "expected 'args' here") || 7655 ParseToken(lltok::colon, "expected ':' here") || 7656 ParseToken(lltok::lparen, "expected '(' here")) 7657 return true; 7658 7659 do { 7660 uint64_t Val; 7661 if (ParseUInt64(Val)) 7662 return true; 7663 Args.push_back(Val); 7664 } while (EatIfPresent(lltok::comma)); 7665 7666 if (ParseToken(lltok::rparen, "expected ')' here")) 7667 return true; 7668 7669 return false; 7670 } 7671 7672 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8; 7673 7674 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) { 7675 bool ReadOnly = Fwd->isReadOnly(); 7676 *Fwd = Resolved; 7677 if (ReadOnly) 7678 Fwd->setReadOnly(); 7679 } 7680 7681 /// Stores the given Name/GUID and associated summary into the Index. 7682 /// Also updates any forward references to the associated entry ID. 7683 void LLParser::AddGlobalValueToIndex( 7684 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage, 7685 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) { 7686 // First create the ValueInfo utilizing the Name or GUID. 7687 ValueInfo VI; 7688 if (GUID != 0) { 7689 assert(Name.empty()); 7690 VI = Index->getOrInsertValueInfo(GUID); 7691 } else { 7692 assert(!Name.empty()); 7693 if (M) { 7694 auto *GV = M->getNamedValue(Name); 7695 assert(GV); 7696 VI = Index->getOrInsertValueInfo(GV); 7697 } else { 7698 assert( 7699 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) && 7700 "Need a source_filename to compute GUID for local"); 7701 GUID = GlobalValue::getGUID( 7702 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName)); 7703 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name)); 7704 } 7705 } 7706 7707 // Add the summary if one was provided. 7708 if (Summary) 7709 Index->addGlobalValueSummary(VI, std::move(Summary)); 7710 7711 // Resolve forward references from calls/refs 7712 auto FwdRefVIs = ForwardRefValueInfos.find(ID); 7713 if (FwdRefVIs != ForwardRefValueInfos.end()) { 7714 for (auto VIRef : FwdRefVIs->second) { 7715 assert(VIRef.first->getRef() == FwdVIRef && 7716 "Forward referenced ValueInfo expected to be empty"); 7717 resolveFwdRef(VIRef.first, VI); 7718 } 7719 ForwardRefValueInfos.erase(FwdRefVIs); 7720 } 7721 7722 // Resolve forward references from aliases 7723 auto FwdRefAliasees = ForwardRefAliasees.find(ID); 7724 if (FwdRefAliasees != ForwardRefAliasees.end()) { 7725 for (auto AliaseeRef : FwdRefAliasees->second) { 7726 assert(!AliaseeRef.first->hasAliasee() && 7727 "Forward referencing alias already has aliasee"); 7728 AliaseeRef.first->setAliasee(VI.getSummaryList().front().get()); 7729 } 7730 ForwardRefAliasees.erase(FwdRefAliasees); 7731 } 7732 7733 // Save the associated ValueInfo for use in later references by ID. 7734 if (ID == NumberedValueInfos.size()) 7735 NumberedValueInfos.push_back(VI); 7736 else { 7737 // Handle non-continuous numbers (to make test simplification easier). 7738 if (ID > NumberedValueInfos.size()) 7739 NumberedValueInfos.resize(ID + 1); 7740 NumberedValueInfos[ID] = VI; 7741 } 7742 } 7743 7744 /// ParseGVEntry 7745 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64) 7746 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')' 7747 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')' 7748 bool LLParser::ParseGVEntry(unsigned ID) { 7749 assert(Lex.getKind() == lltok::kw_gv); 7750 Lex.Lex(); 7751 7752 if (ParseToken(lltok::colon, "expected ':' here") || 7753 ParseToken(lltok::lparen, "expected '(' here")) 7754 return true; 7755 7756 std::string Name; 7757 GlobalValue::GUID GUID = 0; 7758 switch (Lex.getKind()) { 7759 case lltok::kw_name: 7760 Lex.Lex(); 7761 if (ParseToken(lltok::colon, "expected ':' here") || 7762 ParseStringConstant(Name)) 7763 return true; 7764 // Can't create GUID/ValueInfo until we have the linkage. 7765 break; 7766 case lltok::kw_guid: 7767 Lex.Lex(); 7768 if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID)) 7769 return true; 7770 break; 7771 default: 7772 return Error(Lex.getLoc(), "expected name or guid tag"); 7773 } 7774 7775 if (!EatIfPresent(lltok::comma)) { 7776 // No summaries. Wrap up. 7777 if (ParseToken(lltok::rparen, "expected ')' here")) 7778 return true; 7779 // This was created for a call to an external or indirect target. 7780 // A GUID with no summary came from a VALUE_GUID record, dummy GUID 7781 // created for indirect calls with VP. A Name with no GUID came from 7782 // an external definition. We pass ExternalLinkage since that is only 7783 // used when the GUID must be computed from Name, and in that case 7784 // the symbol must have external linkage. 7785 AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID, 7786 nullptr); 7787 return false; 7788 } 7789 7790 // Have a list of summaries 7791 if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") || 7792 ParseToken(lltok::colon, "expected ':' here")) 7793 return true; 7794 7795 do { 7796 if (ParseToken(lltok::lparen, "expected '(' here")) 7797 return true; 7798 switch (Lex.getKind()) { 7799 case lltok::kw_function: 7800 if (ParseFunctionSummary(Name, GUID, ID)) 7801 return true; 7802 break; 7803 case lltok::kw_variable: 7804 if (ParseVariableSummary(Name, GUID, ID)) 7805 return true; 7806 break; 7807 case lltok::kw_alias: 7808 if (ParseAliasSummary(Name, GUID, ID)) 7809 return true; 7810 break; 7811 default: 7812 return Error(Lex.getLoc(), "expected summary type"); 7813 } 7814 if (ParseToken(lltok::rparen, "expected ')' here")) 7815 return true; 7816 } while (EatIfPresent(lltok::comma)); 7817 7818 if (ParseToken(lltok::rparen, "expected ')' here")) 7819 return true; 7820 7821 return false; 7822 } 7823 7824 /// FunctionSummary 7825 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags 7826 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]? 7827 /// [',' OptionalTypeIdInfo]? [',' OptionalRefs]? ')' 7828 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID, 7829 unsigned ID) { 7830 assert(Lex.getKind() == lltok::kw_function); 7831 Lex.Lex(); 7832 7833 StringRef ModulePath; 7834 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 7835 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 7836 /*Live=*/false, /*IsLocal=*/false); 7837 unsigned InstCount; 7838 std::vector<FunctionSummary::EdgeTy> Calls; 7839 FunctionSummary::TypeIdInfo TypeIdInfo; 7840 std::vector<ValueInfo> Refs; 7841 // Default is all-zeros (conservative values). 7842 FunctionSummary::FFlags FFlags = {}; 7843 if (ParseToken(lltok::colon, "expected ':' here") || 7844 ParseToken(lltok::lparen, "expected '(' here") || 7845 ParseModuleReference(ModulePath) || 7846 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 7847 ParseToken(lltok::comma, "expected ',' here") || 7848 ParseToken(lltok::kw_insts, "expected 'insts' here") || 7849 ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount)) 7850 return true; 7851 7852 // Parse optional fields 7853 while (EatIfPresent(lltok::comma)) { 7854 switch (Lex.getKind()) { 7855 case lltok::kw_funcFlags: 7856 if (ParseOptionalFFlags(FFlags)) 7857 return true; 7858 break; 7859 case lltok::kw_calls: 7860 if (ParseOptionalCalls(Calls)) 7861 return true; 7862 break; 7863 case lltok::kw_typeIdInfo: 7864 if (ParseOptionalTypeIdInfo(TypeIdInfo)) 7865 return true; 7866 break; 7867 case lltok::kw_refs: 7868 if (ParseOptionalRefs(Refs)) 7869 return true; 7870 break; 7871 default: 7872 return Error(Lex.getLoc(), "expected optional function summary field"); 7873 } 7874 } 7875 7876 if (ParseToken(lltok::rparen, "expected ')' here")) 7877 return true; 7878 7879 auto FS = llvm::make_unique<FunctionSummary>( 7880 GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs), 7881 std::move(Calls), std::move(TypeIdInfo.TypeTests), 7882 std::move(TypeIdInfo.TypeTestAssumeVCalls), 7883 std::move(TypeIdInfo.TypeCheckedLoadVCalls), 7884 std::move(TypeIdInfo.TypeTestAssumeConstVCalls), 7885 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls)); 7886 7887 FS->setModulePath(ModulePath); 7888 7889 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 7890 ID, std::move(FS)); 7891 7892 return false; 7893 } 7894 7895 /// VariableSummary 7896 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags 7897 /// [',' OptionalRefs]? ')' 7898 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID, 7899 unsigned ID) { 7900 assert(Lex.getKind() == lltok::kw_variable); 7901 Lex.Lex(); 7902 7903 StringRef ModulePath; 7904 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 7905 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 7906 /*Live=*/false, /*IsLocal=*/false); 7907 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false); 7908 std::vector<ValueInfo> Refs; 7909 if (ParseToken(lltok::colon, "expected ':' here") || 7910 ParseToken(lltok::lparen, "expected '(' here") || 7911 ParseModuleReference(ModulePath) || 7912 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 7913 ParseToken(lltok::comma, "expected ',' here") || 7914 ParseGVarFlags(GVarFlags)) 7915 return true; 7916 7917 // Parse optional refs field 7918 if (EatIfPresent(lltok::comma)) { 7919 if (ParseOptionalRefs(Refs)) 7920 return true; 7921 } 7922 7923 if (ParseToken(lltok::rparen, "expected ')' here")) 7924 return true; 7925 7926 auto GS = 7927 llvm::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs)); 7928 7929 GS->setModulePath(ModulePath); 7930 7931 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 7932 ID, std::move(GS)); 7933 7934 return false; 7935 } 7936 7937 /// AliasSummary 7938 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ',' 7939 /// 'aliasee' ':' GVReference ')' 7940 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID, 7941 unsigned ID) { 7942 assert(Lex.getKind() == lltok::kw_alias); 7943 LocTy Loc = Lex.getLoc(); 7944 Lex.Lex(); 7945 7946 StringRef ModulePath; 7947 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 7948 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 7949 /*Live=*/false, /*IsLocal=*/false); 7950 if (ParseToken(lltok::colon, "expected ':' here") || 7951 ParseToken(lltok::lparen, "expected '(' here") || 7952 ParseModuleReference(ModulePath) || 7953 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 7954 ParseToken(lltok::comma, "expected ',' here") || 7955 ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") || 7956 ParseToken(lltok::colon, "expected ':' here")) 7957 return true; 7958 7959 ValueInfo AliaseeVI; 7960 unsigned GVId; 7961 if (ParseGVReference(AliaseeVI, GVId)) 7962 return true; 7963 7964 if (ParseToken(lltok::rparen, "expected ')' here")) 7965 return true; 7966 7967 auto AS = llvm::make_unique<AliasSummary>(GVFlags); 7968 7969 AS->setModulePath(ModulePath); 7970 7971 // Record forward reference if the aliasee is not parsed yet. 7972 if (AliaseeVI.getRef() == FwdVIRef) { 7973 auto FwdRef = ForwardRefAliasees.insert( 7974 std::make_pair(GVId, std::vector<std::pair<AliasSummary *, LocTy>>())); 7975 FwdRef.first->second.push_back(std::make_pair(AS.get(), Loc)); 7976 } else 7977 AS->setAliasee(AliaseeVI.getSummaryList().front().get()); 7978 7979 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 7980 ID, std::move(AS)); 7981 7982 return false; 7983 } 7984 7985 /// Flag 7986 /// ::= [0|1] 7987 bool LLParser::ParseFlag(unsigned &Val) { 7988 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 7989 return TokError("expected integer"); 7990 Val = (unsigned)Lex.getAPSIntVal().getBoolValue(); 7991 Lex.Lex(); 7992 return false; 7993 } 7994 7995 /// OptionalFFlags 7996 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]? 7997 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]? 7998 /// [',' 'returnDoesNotAlias' ':' Flag]? ')' 7999 /// [',' 'noInline' ':' Flag]? ')' 8000 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) { 8001 assert(Lex.getKind() == lltok::kw_funcFlags); 8002 Lex.Lex(); 8003 8004 if (ParseToken(lltok::colon, "expected ':' in funcFlags") | 8005 ParseToken(lltok::lparen, "expected '(' in funcFlags")) 8006 return true; 8007 8008 do { 8009 unsigned Val; 8010 switch (Lex.getKind()) { 8011 case lltok::kw_readNone: 8012 Lex.Lex(); 8013 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8014 return true; 8015 FFlags.ReadNone = Val; 8016 break; 8017 case lltok::kw_readOnly: 8018 Lex.Lex(); 8019 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8020 return true; 8021 FFlags.ReadOnly = Val; 8022 break; 8023 case lltok::kw_noRecurse: 8024 Lex.Lex(); 8025 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8026 return true; 8027 FFlags.NoRecurse = Val; 8028 break; 8029 case lltok::kw_returnDoesNotAlias: 8030 Lex.Lex(); 8031 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8032 return true; 8033 FFlags.ReturnDoesNotAlias = Val; 8034 break; 8035 case lltok::kw_noInline: 8036 Lex.Lex(); 8037 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8038 return true; 8039 FFlags.NoInline = Val; 8040 break; 8041 default: 8042 return Error(Lex.getLoc(), "expected function flag type"); 8043 } 8044 } while (EatIfPresent(lltok::comma)); 8045 8046 if (ParseToken(lltok::rparen, "expected ')' in funcFlags")) 8047 return true; 8048 8049 return false; 8050 } 8051 8052 /// OptionalCalls 8053 /// := 'calls' ':' '(' Call [',' Call]* ')' 8054 /// Call ::= '(' 'callee' ':' GVReference 8055 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')' 8056 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) { 8057 assert(Lex.getKind() == lltok::kw_calls); 8058 Lex.Lex(); 8059 8060 if (ParseToken(lltok::colon, "expected ':' in calls") | 8061 ParseToken(lltok::lparen, "expected '(' in calls")) 8062 return true; 8063 8064 IdToIndexMapType IdToIndexMap; 8065 // Parse each call edge 8066 do { 8067 ValueInfo VI; 8068 if (ParseToken(lltok::lparen, "expected '(' in call") || 8069 ParseToken(lltok::kw_callee, "expected 'callee' in call") || 8070 ParseToken(lltok::colon, "expected ':'")) 8071 return true; 8072 8073 LocTy Loc = Lex.getLoc(); 8074 unsigned GVId; 8075 if (ParseGVReference(VI, GVId)) 8076 return true; 8077 8078 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 8079 unsigned RelBF = 0; 8080 if (EatIfPresent(lltok::comma)) { 8081 // Expect either hotness or relbf 8082 if (EatIfPresent(lltok::kw_hotness)) { 8083 if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness)) 8084 return true; 8085 } else { 8086 if (ParseToken(lltok::kw_relbf, "expected relbf") || 8087 ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF)) 8088 return true; 8089 } 8090 } 8091 // Keep track of the Call array index needing a forward reference. 8092 // We will save the location of the ValueInfo needing an update, but 8093 // can only do so once the std::vector is finalized. 8094 if (VI.getRef() == FwdVIRef) 8095 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc)); 8096 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)}); 8097 8098 if (ParseToken(lltok::rparen, "expected ')' in call")) 8099 return true; 8100 } while (EatIfPresent(lltok::comma)); 8101 8102 // Now that the Calls vector is finalized, it is safe to save the locations 8103 // of any forward GV references that need updating later. 8104 for (auto I : IdToIndexMap) { 8105 for (auto P : I.second) { 8106 assert(Calls[P.first].first.getRef() == FwdVIRef && 8107 "Forward referenced ValueInfo expected to be empty"); 8108 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 8109 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 8110 FwdRef.first->second.push_back( 8111 std::make_pair(&Calls[P.first].first, P.second)); 8112 } 8113 } 8114 8115 if (ParseToken(lltok::rparen, "expected ')' in calls")) 8116 return true; 8117 8118 return false; 8119 } 8120 8121 /// Hotness 8122 /// := ('unknown'|'cold'|'none'|'hot'|'critical') 8123 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) { 8124 switch (Lex.getKind()) { 8125 case lltok::kw_unknown: 8126 Hotness = CalleeInfo::HotnessType::Unknown; 8127 break; 8128 case lltok::kw_cold: 8129 Hotness = CalleeInfo::HotnessType::Cold; 8130 break; 8131 case lltok::kw_none: 8132 Hotness = CalleeInfo::HotnessType::None; 8133 break; 8134 case lltok::kw_hot: 8135 Hotness = CalleeInfo::HotnessType::Hot; 8136 break; 8137 case lltok::kw_critical: 8138 Hotness = CalleeInfo::HotnessType::Critical; 8139 break; 8140 default: 8141 return Error(Lex.getLoc(), "invalid call edge hotness"); 8142 } 8143 Lex.Lex(); 8144 return false; 8145 } 8146 8147 /// OptionalRefs 8148 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')' 8149 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) { 8150 assert(Lex.getKind() == lltok::kw_refs); 8151 Lex.Lex(); 8152 8153 if (ParseToken(lltok::colon, "expected ':' in refs") | 8154 ParseToken(lltok::lparen, "expected '(' in refs")) 8155 return true; 8156 8157 struct ValueContext { 8158 ValueInfo VI; 8159 unsigned GVId; 8160 LocTy Loc; 8161 }; 8162 std::vector<ValueContext> VContexts; 8163 // Parse each ref edge 8164 do { 8165 ValueContext VC; 8166 VC.Loc = Lex.getLoc(); 8167 if (ParseGVReference(VC.VI, VC.GVId)) 8168 return true; 8169 VContexts.push_back(VC); 8170 } while (EatIfPresent(lltok::comma)); 8171 8172 // Sort value contexts so that ones with readonly ValueInfo are at the end 8173 // of VContexts vector. This is needed to match immutableRefCount() behavior. 8174 llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) { 8175 return VC1.VI.isReadOnly() < VC2.VI.isReadOnly(); 8176 }); 8177 8178 IdToIndexMapType IdToIndexMap; 8179 for (auto &VC : VContexts) { 8180 // Keep track of the Refs array index needing a forward reference. 8181 // We will save the location of the ValueInfo needing an update, but 8182 // can only do so once the std::vector is finalized. 8183 if (VC.VI.getRef() == FwdVIRef) 8184 IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc)); 8185 Refs.push_back(VC.VI); 8186 } 8187 8188 // Now that the Refs vector is finalized, it is safe to save the locations 8189 // of any forward GV references that need updating later. 8190 for (auto I : IdToIndexMap) { 8191 for (auto P : I.second) { 8192 assert(Refs[P.first].getRef() == FwdVIRef && 8193 "Forward referenced ValueInfo expected to be empty"); 8194 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 8195 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 8196 FwdRef.first->second.push_back(std::make_pair(&Refs[P.first], P.second)); 8197 } 8198 } 8199 8200 if (ParseToken(lltok::rparen, "expected ')' in refs")) 8201 return true; 8202 8203 return false; 8204 } 8205 8206 /// OptionalTypeIdInfo 8207 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]? 8208 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]? 8209 /// [',' TypeCheckedLoadConstVCalls]? ')' 8210 bool LLParser::ParseOptionalTypeIdInfo( 8211 FunctionSummary::TypeIdInfo &TypeIdInfo) { 8212 assert(Lex.getKind() == lltok::kw_typeIdInfo); 8213 Lex.Lex(); 8214 8215 if (ParseToken(lltok::colon, "expected ':' here") || 8216 ParseToken(lltok::lparen, "expected '(' in typeIdInfo")) 8217 return true; 8218 8219 do { 8220 switch (Lex.getKind()) { 8221 case lltok::kw_typeTests: 8222 if (ParseTypeTests(TypeIdInfo.TypeTests)) 8223 return true; 8224 break; 8225 case lltok::kw_typeTestAssumeVCalls: 8226 if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls, 8227 TypeIdInfo.TypeTestAssumeVCalls)) 8228 return true; 8229 break; 8230 case lltok::kw_typeCheckedLoadVCalls: 8231 if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls, 8232 TypeIdInfo.TypeCheckedLoadVCalls)) 8233 return true; 8234 break; 8235 case lltok::kw_typeTestAssumeConstVCalls: 8236 if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls, 8237 TypeIdInfo.TypeTestAssumeConstVCalls)) 8238 return true; 8239 break; 8240 case lltok::kw_typeCheckedLoadConstVCalls: 8241 if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls, 8242 TypeIdInfo.TypeCheckedLoadConstVCalls)) 8243 return true; 8244 break; 8245 default: 8246 return Error(Lex.getLoc(), "invalid typeIdInfo list type"); 8247 } 8248 } while (EatIfPresent(lltok::comma)); 8249 8250 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo")) 8251 return true; 8252 8253 return false; 8254 } 8255 8256 /// TypeTests 8257 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64) 8258 /// [',' (SummaryID | UInt64)]* ')' 8259 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) { 8260 assert(Lex.getKind() == lltok::kw_typeTests); 8261 Lex.Lex(); 8262 8263 if (ParseToken(lltok::colon, "expected ':' here") || 8264 ParseToken(lltok::lparen, "expected '(' in typeIdInfo")) 8265 return true; 8266 8267 IdToIndexMapType IdToIndexMap; 8268 do { 8269 GlobalValue::GUID GUID = 0; 8270 if (Lex.getKind() == lltok::SummaryID) { 8271 unsigned ID = Lex.getUIntVal(); 8272 LocTy Loc = Lex.getLoc(); 8273 // Keep track of the TypeTests array index needing a forward reference. 8274 // We will save the location of the GUID needing an update, but 8275 // can only do so once the std::vector is finalized. 8276 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc)); 8277 Lex.Lex(); 8278 } else if (ParseUInt64(GUID)) 8279 return true; 8280 TypeTests.push_back(GUID); 8281 } while (EatIfPresent(lltok::comma)); 8282 8283 // Now that the TypeTests vector is finalized, it is safe to save the 8284 // locations of any forward GV references that need updating later. 8285 for (auto I : IdToIndexMap) { 8286 for (auto P : I.second) { 8287 assert(TypeTests[P.first] == 0 && 8288 "Forward referenced type id GUID expected to be 0"); 8289 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8290 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8291 FwdRef.first->second.push_back( 8292 std::make_pair(&TypeTests[P.first], P.second)); 8293 } 8294 } 8295 8296 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo")) 8297 return true; 8298 8299 return false; 8300 } 8301 8302 /// VFuncIdList 8303 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')' 8304 bool LLParser::ParseVFuncIdList( 8305 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) { 8306 assert(Lex.getKind() == Kind); 8307 Lex.Lex(); 8308 8309 if (ParseToken(lltok::colon, "expected ':' here") || 8310 ParseToken(lltok::lparen, "expected '(' here")) 8311 return true; 8312 8313 IdToIndexMapType IdToIndexMap; 8314 do { 8315 FunctionSummary::VFuncId VFuncId; 8316 if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size())) 8317 return true; 8318 VFuncIdList.push_back(VFuncId); 8319 } while (EatIfPresent(lltok::comma)); 8320 8321 if (ParseToken(lltok::rparen, "expected ')' here")) 8322 return true; 8323 8324 // Now that the VFuncIdList vector is finalized, it is safe to save the 8325 // locations of any forward GV references that need updating later. 8326 for (auto I : IdToIndexMap) { 8327 for (auto P : I.second) { 8328 assert(VFuncIdList[P.first].GUID == 0 && 8329 "Forward referenced type id GUID expected to be 0"); 8330 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8331 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8332 FwdRef.first->second.push_back( 8333 std::make_pair(&VFuncIdList[P.first].GUID, P.second)); 8334 } 8335 } 8336 8337 return false; 8338 } 8339 8340 /// ConstVCallList 8341 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')' 8342 bool LLParser::ParseConstVCallList( 8343 lltok::Kind Kind, 8344 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) { 8345 assert(Lex.getKind() == Kind); 8346 Lex.Lex(); 8347 8348 if (ParseToken(lltok::colon, "expected ':' here") || 8349 ParseToken(lltok::lparen, "expected '(' here")) 8350 return true; 8351 8352 IdToIndexMapType IdToIndexMap; 8353 do { 8354 FunctionSummary::ConstVCall ConstVCall; 8355 if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size())) 8356 return true; 8357 ConstVCallList.push_back(ConstVCall); 8358 } while (EatIfPresent(lltok::comma)); 8359 8360 if (ParseToken(lltok::rparen, "expected ')' here")) 8361 return true; 8362 8363 // Now that the ConstVCallList vector is finalized, it is safe to save the 8364 // locations of any forward GV references that need updating later. 8365 for (auto I : IdToIndexMap) { 8366 for (auto P : I.second) { 8367 assert(ConstVCallList[P.first].VFunc.GUID == 0 && 8368 "Forward referenced type id GUID expected to be 0"); 8369 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8370 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8371 FwdRef.first->second.push_back( 8372 std::make_pair(&ConstVCallList[P.first].VFunc.GUID, P.second)); 8373 } 8374 } 8375 8376 return false; 8377 } 8378 8379 /// ConstVCall 8380 /// ::= '(' VFuncId ',' Args ')' 8381 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall, 8382 IdToIndexMapType &IdToIndexMap, unsigned Index) { 8383 if (ParseToken(lltok::lparen, "expected '(' here") || 8384 ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index)) 8385 return true; 8386 8387 if (EatIfPresent(lltok::comma)) 8388 if (ParseArgs(ConstVCall.Args)) 8389 return true; 8390 8391 if (ParseToken(lltok::rparen, "expected ')' here")) 8392 return true; 8393 8394 return false; 8395 } 8396 8397 /// VFuncId 8398 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ',' 8399 /// 'offset' ':' UInt64 ')' 8400 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId, 8401 IdToIndexMapType &IdToIndexMap, unsigned Index) { 8402 assert(Lex.getKind() == lltok::kw_vFuncId); 8403 Lex.Lex(); 8404 8405 if (ParseToken(lltok::colon, "expected ':' here") || 8406 ParseToken(lltok::lparen, "expected '(' here")) 8407 return true; 8408 8409 if (Lex.getKind() == lltok::SummaryID) { 8410 VFuncId.GUID = 0; 8411 unsigned ID = Lex.getUIntVal(); 8412 LocTy Loc = Lex.getLoc(); 8413 // Keep track of the array index needing a forward reference. 8414 // We will save the location of the GUID needing an update, but 8415 // can only do so once the caller's std::vector is finalized. 8416 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc)); 8417 Lex.Lex(); 8418 } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") || 8419 ParseToken(lltok::colon, "expected ':' here") || 8420 ParseUInt64(VFuncId.GUID)) 8421 return true; 8422 8423 if (ParseToken(lltok::comma, "expected ',' here") || 8424 ParseToken(lltok::kw_offset, "expected 'offset' here") || 8425 ParseToken(lltok::colon, "expected ':' here") || 8426 ParseUInt64(VFuncId.Offset) || 8427 ParseToken(lltok::rparen, "expected ')' here")) 8428 return true; 8429 8430 return false; 8431 } 8432 8433 /// GVFlags 8434 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ',' 8435 /// 'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ',' 8436 /// 'dsoLocal' ':' Flag ')' 8437 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) { 8438 assert(Lex.getKind() == lltok::kw_flags); 8439 Lex.Lex(); 8440 8441 bool HasLinkage; 8442 if (ParseToken(lltok::colon, "expected ':' here") || 8443 ParseToken(lltok::lparen, "expected '(' here") || 8444 ParseToken(lltok::kw_linkage, "expected 'linkage' here") || 8445 ParseToken(lltok::colon, "expected ':' here")) 8446 return true; 8447 8448 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 8449 assert(HasLinkage && "Linkage not optional in summary entry"); 8450 Lex.Lex(); 8451 8452 unsigned Flag; 8453 if (ParseToken(lltok::comma, "expected ',' here") || 8454 ParseToken(lltok::kw_notEligibleToImport, 8455 "expected 'notEligibleToImport' here") || 8456 ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag)) 8457 return true; 8458 GVFlags.NotEligibleToImport = Flag; 8459 8460 if (ParseToken(lltok::comma, "expected ',' here") || 8461 ParseToken(lltok::kw_live, "expected 'live' here") || 8462 ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag)) 8463 return true; 8464 GVFlags.Live = Flag; 8465 8466 if (ParseToken(lltok::comma, "expected ',' here") || 8467 ParseToken(lltok::kw_dsoLocal, "expected 'dsoLocal' here") || 8468 ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag)) 8469 return true; 8470 GVFlags.DSOLocal = Flag; 8471 8472 if (ParseToken(lltok::rparen, "expected ')' here")) 8473 return true; 8474 8475 return false; 8476 } 8477 8478 /// GVarFlags 8479 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag ')' 8480 bool LLParser::ParseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) { 8481 assert(Lex.getKind() == lltok::kw_varFlags); 8482 Lex.Lex(); 8483 8484 unsigned Flag; 8485 if (ParseToken(lltok::colon, "expected ':' here") || 8486 ParseToken(lltok::lparen, "expected '(' here") || 8487 ParseToken(lltok::kw_readonly, "expected 'readonly' here") || 8488 ParseToken(lltok::colon, "expected ':' here")) 8489 return true; 8490 8491 ParseFlag(Flag); 8492 GVarFlags.ReadOnly = Flag; 8493 8494 if (ParseToken(lltok::rparen, "expected ')' here")) 8495 return true; 8496 return false; 8497 } 8498 8499 /// ModuleReference 8500 /// ::= 'module' ':' UInt 8501 bool LLParser::ParseModuleReference(StringRef &ModulePath) { 8502 // Parse module id. 8503 if (ParseToken(lltok::kw_module, "expected 'module' here") || 8504 ParseToken(lltok::colon, "expected ':' here") || 8505 ParseToken(lltok::SummaryID, "expected module ID")) 8506 return true; 8507 8508 unsigned ModuleID = Lex.getUIntVal(); 8509 auto I = ModuleIdMap.find(ModuleID); 8510 // We should have already parsed all module IDs 8511 assert(I != ModuleIdMap.end()); 8512 ModulePath = I->second; 8513 return false; 8514 } 8515 8516 /// GVReference 8517 /// ::= SummaryID 8518 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) { 8519 bool ReadOnly = EatIfPresent(lltok::kw_readonly); 8520 if (ParseToken(lltok::SummaryID, "expected GV ID")) 8521 return true; 8522 8523 GVId = Lex.getUIntVal(); 8524 // Check if we already have a VI for this GV 8525 if (GVId < NumberedValueInfos.size()) { 8526 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef); 8527 VI = NumberedValueInfos[GVId]; 8528 } else 8529 // We will create a forward reference to the stored location. 8530 VI = ValueInfo(false, FwdVIRef); 8531 8532 if (ReadOnly) 8533 VI.setReadOnly(); 8534 return false; 8535 } 8536