1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "LLParser.h"
14 #include "LLToken.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/DenseMap.h"
17 #include "llvm/ADT/None.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/AsmParser/SlotMapping.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AutoUpgrade.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Comdat.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalIFunc.h"
33 #include "llvm/IR/GlobalObject.h"
34 #include "llvm/IR/InlineAsm.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/LLVMContext.h"
37 #include "llvm/IR/Metadata.h"
38 #include "llvm/IR/Module.h"
39 #include "llvm/IR/Value.h"
40 #include "llvm/IR/ValueSymbolTable.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/ErrorHandling.h"
43 #include "llvm/Support/MathExtras.h"
44 #include "llvm/Support/SaveAndRestore.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include <algorithm>
47 #include <cassert>
48 #include <cstring>
49 #include <iterator>
50 #include <vector>
51 
52 using namespace llvm;
53 
54 static std::string getTypeString(Type *T) {
55   std::string Result;
56   raw_string_ostream Tmp(Result);
57   Tmp << *T;
58   return Tmp.str();
59 }
60 
61 /// Run: module ::= toplevelentity*
62 bool LLParser::Run(bool UpgradeDebugInfo,
63                    DataLayoutCallbackTy DataLayoutCallback) {
64   // Prime the lexer.
65   Lex.Lex();
66 
67   if (Context.shouldDiscardValueNames())
68     return Error(
69         Lex.getLoc(),
70         "Can't read textual IR with a Context that discards named Values");
71 
72   if (M) {
73     if (ParseTargetDefinitions())
74       return true;
75 
76     if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple()))
77       M->setDataLayout(*LayoutOverride);
78   }
79 
80   return ParseTopLevelEntities() || ValidateEndOfModule(UpgradeDebugInfo) ||
81          ValidateEndOfIndex();
82 }
83 
84 bool LLParser::parseStandaloneConstantValue(Constant *&C,
85                                             const SlotMapping *Slots) {
86   restoreParsingState(Slots);
87   Lex.Lex();
88 
89   Type *Ty = nullptr;
90   if (ParseType(Ty) || parseConstantValue(Ty, C))
91     return true;
92   if (Lex.getKind() != lltok::Eof)
93     return Error(Lex.getLoc(), "expected end of string");
94   return false;
95 }
96 
97 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
98                                     const SlotMapping *Slots) {
99   restoreParsingState(Slots);
100   Lex.Lex();
101 
102   Read = 0;
103   SMLoc Start = Lex.getLoc();
104   Ty = nullptr;
105   if (ParseType(Ty))
106     return true;
107   SMLoc End = Lex.getLoc();
108   Read = End.getPointer() - Start.getPointer();
109 
110   return false;
111 }
112 
113 void LLParser::restoreParsingState(const SlotMapping *Slots) {
114   if (!Slots)
115     return;
116   NumberedVals = Slots->GlobalValues;
117   NumberedMetadata = Slots->MetadataNodes;
118   for (const auto &I : Slots->NamedTypes)
119     NamedTypes.insert(
120         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
121   for (const auto &I : Slots->Types)
122     NumberedTypes.insert(
123         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
124 }
125 
126 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
127 /// module.
128 bool LLParser::ValidateEndOfModule(bool UpgradeDebugInfo) {
129   if (!M)
130     return false;
131   // Handle any function attribute group forward references.
132   for (const auto &RAG : ForwardRefAttrGroups) {
133     Value *V = RAG.first;
134     const std::vector<unsigned> &Attrs = RAG.second;
135     AttrBuilder B;
136 
137     for (const auto &Attr : Attrs)
138       B.merge(NumberedAttrBuilders[Attr]);
139 
140     if (Function *Fn = dyn_cast<Function>(V)) {
141       AttributeList AS = Fn->getAttributes();
142       AttrBuilder FnAttrs(AS.getFnAttributes());
143       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
144 
145       FnAttrs.merge(B);
146 
147       // If the alignment was parsed as an attribute, move to the alignment
148       // field.
149       if (FnAttrs.hasAlignmentAttr()) {
150         Fn->setAlignment(FnAttrs.getAlignment());
151         FnAttrs.removeAttribute(Attribute::Alignment);
152       }
153 
154       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
155                             AttributeSet::get(Context, FnAttrs));
156       Fn->setAttributes(AS);
157     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
158       AttributeList AS = CI->getAttributes();
159       AttrBuilder FnAttrs(AS.getFnAttributes());
160       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
161       FnAttrs.merge(B);
162       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
163                             AttributeSet::get(Context, FnAttrs));
164       CI->setAttributes(AS);
165     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
166       AttributeList AS = II->getAttributes();
167       AttrBuilder FnAttrs(AS.getFnAttributes());
168       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
169       FnAttrs.merge(B);
170       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
171                             AttributeSet::get(Context, FnAttrs));
172       II->setAttributes(AS);
173     } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
174       AttributeList AS = CBI->getAttributes();
175       AttrBuilder FnAttrs(AS.getFnAttributes());
176       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
177       FnAttrs.merge(B);
178       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
179                             AttributeSet::get(Context, FnAttrs));
180       CBI->setAttributes(AS);
181     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
182       AttrBuilder Attrs(GV->getAttributes());
183       Attrs.merge(B);
184       GV->setAttributes(AttributeSet::get(Context,Attrs));
185     } else {
186       llvm_unreachable("invalid object with forward attribute group reference");
187     }
188   }
189 
190   // If there are entries in ForwardRefBlockAddresses at this point, the
191   // function was never defined.
192   if (!ForwardRefBlockAddresses.empty())
193     return Error(ForwardRefBlockAddresses.begin()->first.Loc,
194                  "expected function name in blockaddress");
195 
196   for (const auto &NT : NumberedTypes)
197     if (NT.second.second.isValid())
198       return Error(NT.second.second,
199                    "use of undefined type '%" + Twine(NT.first) + "'");
200 
201   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
202        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
203     if (I->second.second.isValid())
204       return Error(I->second.second,
205                    "use of undefined type named '" + I->getKey() + "'");
206 
207   if (!ForwardRefComdats.empty())
208     return Error(ForwardRefComdats.begin()->second,
209                  "use of undefined comdat '$" +
210                      ForwardRefComdats.begin()->first + "'");
211 
212   if (!ForwardRefVals.empty())
213     return Error(ForwardRefVals.begin()->second.second,
214                  "use of undefined value '@" + ForwardRefVals.begin()->first +
215                  "'");
216 
217   if (!ForwardRefValIDs.empty())
218     return Error(ForwardRefValIDs.begin()->second.second,
219                  "use of undefined value '@" +
220                  Twine(ForwardRefValIDs.begin()->first) + "'");
221 
222   if (!ForwardRefMDNodes.empty())
223     return Error(ForwardRefMDNodes.begin()->second.second,
224                  "use of undefined metadata '!" +
225                  Twine(ForwardRefMDNodes.begin()->first) + "'");
226 
227   // Resolve metadata cycles.
228   for (auto &N : NumberedMetadata) {
229     if (N.second && !N.second->isResolved())
230       N.second->resolveCycles();
231   }
232 
233   for (auto *Inst : InstsWithTBAATag) {
234     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
235     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
236     auto *UpgradedMD = UpgradeTBAANode(*MD);
237     if (MD != UpgradedMD)
238       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
239   }
240 
241   // Look for intrinsic functions and CallInst that need to be upgraded
242   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
243     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
244 
245   // Some types could be renamed during loading if several modules are
246   // loaded in the same LLVMContext (LTO scenario). In this case we should
247   // remangle intrinsics names as well.
248   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
249     Function *F = &*FI++;
250     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
251       F->replaceAllUsesWith(Remangled.getValue());
252       F->eraseFromParent();
253     }
254   }
255 
256   if (UpgradeDebugInfo)
257     llvm::UpgradeDebugInfo(*M);
258 
259   UpgradeModuleFlags(*M);
260   UpgradeSectionAttributes(*M);
261 
262   if (!Slots)
263     return false;
264   // Initialize the slot mapping.
265   // Because by this point we've parsed and validated everything, we can "steal"
266   // the mapping from LLParser as it doesn't need it anymore.
267   Slots->GlobalValues = std::move(NumberedVals);
268   Slots->MetadataNodes = std::move(NumberedMetadata);
269   for (const auto &I : NamedTypes)
270     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
271   for (const auto &I : NumberedTypes)
272     Slots->Types.insert(std::make_pair(I.first, I.second.first));
273 
274   return false;
275 }
276 
277 /// Do final validity and sanity checks at the end of the index.
278 bool LLParser::ValidateEndOfIndex() {
279   if (!Index)
280     return false;
281 
282   if (!ForwardRefValueInfos.empty())
283     return Error(ForwardRefValueInfos.begin()->second.front().second,
284                  "use of undefined summary '^" +
285                      Twine(ForwardRefValueInfos.begin()->first) + "'");
286 
287   if (!ForwardRefAliasees.empty())
288     return Error(ForwardRefAliasees.begin()->second.front().second,
289                  "use of undefined summary '^" +
290                      Twine(ForwardRefAliasees.begin()->first) + "'");
291 
292   if (!ForwardRefTypeIds.empty())
293     return Error(ForwardRefTypeIds.begin()->second.front().second,
294                  "use of undefined type id summary '^" +
295                      Twine(ForwardRefTypeIds.begin()->first) + "'");
296 
297   return false;
298 }
299 
300 //===----------------------------------------------------------------------===//
301 // Top-Level Entities
302 //===----------------------------------------------------------------------===//
303 
304 bool LLParser::ParseTargetDefinitions() {
305   while (true) {
306     switch (Lex.getKind()) {
307     case lltok::kw_target:
308       if (ParseTargetDefinition())
309         return true;
310       break;
311     case lltok::kw_source_filename:
312       if (ParseSourceFileName())
313         return true;
314       break;
315     default:
316       return false;
317     }
318   }
319 }
320 
321 bool LLParser::ParseTopLevelEntities() {
322   // If there is no Module, then parse just the summary index entries.
323   if (!M) {
324     while (true) {
325       switch (Lex.getKind()) {
326       case lltok::Eof:
327         return false;
328       case lltok::SummaryID:
329         if (ParseSummaryEntry())
330           return true;
331         break;
332       case lltok::kw_source_filename:
333         if (ParseSourceFileName())
334           return true;
335         break;
336       default:
337         // Skip everything else
338         Lex.Lex();
339       }
340     }
341   }
342   while (true) {
343     switch (Lex.getKind()) {
344     default:         return TokError("expected top-level entity");
345     case lltok::Eof: return false;
346     case lltok::kw_declare: if (ParseDeclare()) return true; break;
347     case lltok::kw_define:  if (ParseDefine()) return true; break;
348     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
349     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
350     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
351     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
352     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
353     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
354     case lltok::ComdatVar:  if (parseComdat()) return true; break;
355     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
356     case lltok::SummaryID:
357       if (ParseSummaryEntry())
358         return true;
359       break;
360     case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
361     case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
362     case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
363     case lltok::kw_uselistorder_bb:
364       if (ParseUseListOrderBB())
365         return true;
366       break;
367     }
368   }
369 }
370 
371 /// toplevelentity
372 ///   ::= 'module' 'asm' STRINGCONSTANT
373 bool LLParser::ParseModuleAsm() {
374   assert(Lex.getKind() == lltok::kw_module);
375   Lex.Lex();
376 
377   std::string AsmStr;
378   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
379       ParseStringConstant(AsmStr)) return true;
380 
381   M->appendModuleInlineAsm(AsmStr);
382   return false;
383 }
384 
385 /// toplevelentity
386 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
387 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
388 bool LLParser::ParseTargetDefinition() {
389   assert(Lex.getKind() == lltok::kw_target);
390   std::string Str;
391   switch (Lex.Lex()) {
392   default: return TokError("unknown target property");
393   case lltok::kw_triple:
394     Lex.Lex();
395     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
396         ParseStringConstant(Str))
397       return true;
398     M->setTargetTriple(Str);
399     return false;
400   case lltok::kw_datalayout:
401     Lex.Lex();
402     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
403         ParseStringConstant(Str))
404       return true;
405     M->setDataLayout(Str);
406     return false;
407   }
408 }
409 
410 /// toplevelentity
411 ///   ::= 'source_filename' '=' STRINGCONSTANT
412 bool LLParser::ParseSourceFileName() {
413   assert(Lex.getKind() == lltok::kw_source_filename);
414   Lex.Lex();
415   if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
416       ParseStringConstant(SourceFileName))
417     return true;
418   if (M)
419     M->setSourceFileName(SourceFileName);
420   return false;
421 }
422 
423 /// toplevelentity
424 ///   ::= 'deplibs' '=' '[' ']'
425 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
426 /// FIXME: Remove in 4.0. Currently parse, but ignore.
427 bool LLParser::ParseDepLibs() {
428   assert(Lex.getKind() == lltok::kw_deplibs);
429   Lex.Lex();
430   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
431       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
432     return true;
433 
434   if (EatIfPresent(lltok::rsquare))
435     return false;
436 
437   do {
438     std::string Str;
439     if (ParseStringConstant(Str)) return true;
440   } while (EatIfPresent(lltok::comma));
441 
442   return ParseToken(lltok::rsquare, "expected ']' at end of list");
443 }
444 
445 /// ParseUnnamedType:
446 ///   ::= LocalVarID '=' 'type' type
447 bool LLParser::ParseUnnamedType() {
448   LocTy TypeLoc = Lex.getLoc();
449   unsigned TypeID = Lex.getUIntVal();
450   Lex.Lex(); // eat LocalVarID;
451 
452   if (ParseToken(lltok::equal, "expected '=' after name") ||
453       ParseToken(lltok::kw_type, "expected 'type' after '='"))
454     return true;
455 
456   Type *Result = nullptr;
457   if (ParseStructDefinition(TypeLoc, "",
458                             NumberedTypes[TypeID], Result)) return true;
459 
460   if (!isa<StructType>(Result)) {
461     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
462     if (Entry.first)
463       return Error(TypeLoc, "non-struct types may not be recursive");
464     Entry.first = Result;
465     Entry.second = SMLoc();
466   }
467 
468   return false;
469 }
470 
471 /// toplevelentity
472 ///   ::= LocalVar '=' 'type' type
473 bool LLParser::ParseNamedType() {
474   std::string Name = Lex.getStrVal();
475   LocTy NameLoc = Lex.getLoc();
476   Lex.Lex();  // eat LocalVar.
477 
478   if (ParseToken(lltok::equal, "expected '=' after name") ||
479       ParseToken(lltok::kw_type, "expected 'type' after name"))
480     return true;
481 
482   Type *Result = nullptr;
483   if (ParseStructDefinition(NameLoc, Name,
484                             NamedTypes[Name], Result)) return true;
485 
486   if (!isa<StructType>(Result)) {
487     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
488     if (Entry.first)
489       return Error(NameLoc, "non-struct types may not be recursive");
490     Entry.first = Result;
491     Entry.second = SMLoc();
492   }
493 
494   return false;
495 }
496 
497 /// toplevelentity
498 ///   ::= 'declare' FunctionHeader
499 bool LLParser::ParseDeclare() {
500   assert(Lex.getKind() == lltok::kw_declare);
501   Lex.Lex();
502 
503   std::vector<std::pair<unsigned, MDNode *>> MDs;
504   while (Lex.getKind() == lltok::MetadataVar) {
505     unsigned MDK;
506     MDNode *N;
507     if (ParseMetadataAttachment(MDK, N))
508       return true;
509     MDs.push_back({MDK, N});
510   }
511 
512   Function *F;
513   if (ParseFunctionHeader(F, false))
514     return true;
515   for (auto &MD : MDs)
516     F->addMetadata(MD.first, *MD.second);
517   return false;
518 }
519 
520 /// toplevelentity
521 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
522 bool LLParser::ParseDefine() {
523   assert(Lex.getKind() == lltok::kw_define);
524   Lex.Lex();
525 
526   Function *F;
527   return ParseFunctionHeader(F, true) ||
528          ParseOptionalFunctionMetadata(*F) ||
529          ParseFunctionBody(*F);
530 }
531 
532 /// ParseGlobalType
533 ///   ::= 'constant'
534 ///   ::= 'global'
535 bool LLParser::ParseGlobalType(bool &IsConstant) {
536   if (Lex.getKind() == lltok::kw_constant)
537     IsConstant = true;
538   else if (Lex.getKind() == lltok::kw_global)
539     IsConstant = false;
540   else {
541     IsConstant = false;
542     return TokError("expected 'global' or 'constant'");
543   }
544   Lex.Lex();
545   return false;
546 }
547 
548 bool LLParser::ParseOptionalUnnamedAddr(
549     GlobalVariable::UnnamedAddr &UnnamedAddr) {
550   if (EatIfPresent(lltok::kw_unnamed_addr))
551     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
552   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
553     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
554   else
555     UnnamedAddr = GlobalValue::UnnamedAddr::None;
556   return false;
557 }
558 
559 /// ParseUnnamedGlobal:
560 ///   OptionalVisibility (ALIAS | IFUNC) ...
561 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
562 ///   OptionalDLLStorageClass
563 ///                                                     ...   -> global variable
564 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
565 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
566 ///                OptionalDLLStorageClass
567 ///                                                     ...   -> global variable
568 bool LLParser::ParseUnnamedGlobal() {
569   unsigned VarID = NumberedVals.size();
570   std::string Name;
571   LocTy NameLoc = Lex.getLoc();
572 
573   // Handle the GlobalID form.
574   if (Lex.getKind() == lltok::GlobalID) {
575     if (Lex.getUIntVal() != VarID)
576       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
577                    Twine(VarID) + "'");
578     Lex.Lex(); // eat GlobalID;
579 
580     if (ParseToken(lltok::equal, "expected '=' after name"))
581       return true;
582   }
583 
584   bool HasLinkage;
585   unsigned Linkage, Visibility, DLLStorageClass;
586   bool DSOLocal;
587   GlobalVariable::ThreadLocalMode TLM;
588   GlobalVariable::UnnamedAddr UnnamedAddr;
589   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
590                            DSOLocal) ||
591       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
592     return true;
593 
594   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
595     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
596                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
597 
598   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
599                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
600 }
601 
602 /// ParseNamedGlobal:
603 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
604 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
605 ///                 OptionalVisibility OptionalDLLStorageClass
606 ///                                                     ...   -> global variable
607 bool LLParser::ParseNamedGlobal() {
608   assert(Lex.getKind() == lltok::GlobalVar);
609   LocTy NameLoc = Lex.getLoc();
610   std::string Name = Lex.getStrVal();
611   Lex.Lex();
612 
613   bool HasLinkage;
614   unsigned Linkage, Visibility, DLLStorageClass;
615   bool DSOLocal;
616   GlobalVariable::ThreadLocalMode TLM;
617   GlobalVariable::UnnamedAddr UnnamedAddr;
618   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
619       ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
620                            DSOLocal) ||
621       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
622     return true;
623 
624   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
625     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
626                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
627 
628   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
629                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
630 }
631 
632 bool LLParser::parseComdat() {
633   assert(Lex.getKind() == lltok::ComdatVar);
634   std::string Name = Lex.getStrVal();
635   LocTy NameLoc = Lex.getLoc();
636   Lex.Lex();
637 
638   if (ParseToken(lltok::equal, "expected '=' here"))
639     return true;
640 
641   if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
642     return TokError("expected comdat type");
643 
644   Comdat::SelectionKind SK;
645   switch (Lex.getKind()) {
646   default:
647     return TokError("unknown selection kind");
648   case lltok::kw_any:
649     SK = Comdat::Any;
650     break;
651   case lltok::kw_exactmatch:
652     SK = Comdat::ExactMatch;
653     break;
654   case lltok::kw_largest:
655     SK = Comdat::Largest;
656     break;
657   case lltok::kw_noduplicates:
658     SK = Comdat::NoDuplicates;
659     break;
660   case lltok::kw_samesize:
661     SK = Comdat::SameSize;
662     break;
663   }
664   Lex.Lex();
665 
666   // See if the comdat was forward referenced, if so, use the comdat.
667   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
668   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
669   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
670     return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
671 
672   Comdat *C;
673   if (I != ComdatSymTab.end())
674     C = &I->second;
675   else
676     C = M->getOrInsertComdat(Name);
677   C->setSelectionKind(SK);
678 
679   return false;
680 }
681 
682 // MDString:
683 //   ::= '!' STRINGCONSTANT
684 bool LLParser::ParseMDString(MDString *&Result) {
685   std::string Str;
686   if (ParseStringConstant(Str)) return true;
687   Result = MDString::get(Context, Str);
688   return false;
689 }
690 
691 // MDNode:
692 //   ::= '!' MDNodeNumber
693 bool LLParser::ParseMDNodeID(MDNode *&Result) {
694   // !{ ..., !42, ... }
695   LocTy IDLoc = Lex.getLoc();
696   unsigned MID = 0;
697   if (ParseUInt32(MID))
698     return true;
699 
700   // If not a forward reference, just return it now.
701   if (NumberedMetadata.count(MID)) {
702     Result = NumberedMetadata[MID];
703     return false;
704   }
705 
706   // Otherwise, create MDNode forward reference.
707   auto &FwdRef = ForwardRefMDNodes[MID];
708   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
709 
710   Result = FwdRef.first.get();
711   NumberedMetadata[MID].reset(Result);
712   return false;
713 }
714 
715 /// ParseNamedMetadata:
716 ///   !foo = !{ !1, !2 }
717 bool LLParser::ParseNamedMetadata() {
718   assert(Lex.getKind() == lltok::MetadataVar);
719   std::string Name = Lex.getStrVal();
720   Lex.Lex();
721 
722   if (ParseToken(lltok::equal, "expected '=' here") ||
723       ParseToken(lltok::exclaim, "Expected '!' here") ||
724       ParseToken(lltok::lbrace, "Expected '{' here"))
725     return true;
726 
727   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
728   if (Lex.getKind() != lltok::rbrace)
729     do {
730       MDNode *N = nullptr;
731       // Parse DIExpressions inline as a special case. They are still MDNodes,
732       // so they can still appear in named metadata. Remove this logic if they
733       // become plain Metadata.
734       if (Lex.getKind() == lltok::MetadataVar &&
735           Lex.getStrVal() == "DIExpression") {
736         if (ParseDIExpression(N, /*IsDistinct=*/false))
737           return true;
738       } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
739                  ParseMDNodeID(N)) {
740         return true;
741       }
742       NMD->addOperand(N);
743     } while (EatIfPresent(lltok::comma));
744 
745   return ParseToken(lltok::rbrace, "expected end of metadata node");
746 }
747 
748 /// ParseStandaloneMetadata:
749 ///   !42 = !{...}
750 bool LLParser::ParseStandaloneMetadata() {
751   assert(Lex.getKind() == lltok::exclaim);
752   Lex.Lex();
753   unsigned MetadataID = 0;
754 
755   MDNode *Init;
756   if (ParseUInt32(MetadataID) ||
757       ParseToken(lltok::equal, "expected '=' here"))
758     return true;
759 
760   // Detect common error, from old metadata syntax.
761   if (Lex.getKind() == lltok::Type)
762     return TokError("unexpected type in metadata definition");
763 
764   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
765   if (Lex.getKind() == lltok::MetadataVar) {
766     if (ParseSpecializedMDNode(Init, IsDistinct))
767       return true;
768   } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
769              ParseMDTuple(Init, IsDistinct))
770     return true;
771 
772   // See if this was forward referenced, if so, handle it.
773   auto FI = ForwardRefMDNodes.find(MetadataID);
774   if (FI != ForwardRefMDNodes.end()) {
775     FI->second.first->replaceAllUsesWith(Init);
776     ForwardRefMDNodes.erase(FI);
777 
778     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
779   } else {
780     if (NumberedMetadata.count(MetadataID))
781       return TokError("Metadata id is already used");
782     NumberedMetadata[MetadataID].reset(Init);
783   }
784 
785   return false;
786 }
787 
788 // Skips a single module summary entry.
789 bool LLParser::SkipModuleSummaryEntry() {
790   // Each module summary entry consists of a tag for the entry
791   // type, followed by a colon, then the fields which may be surrounded by
792   // nested sets of parentheses. The "tag:" looks like a Label. Once parsing
793   // support is in place we will look for the tokens corresponding to the
794   // expected tags.
795   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
796       Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags &&
797       Lex.getKind() != lltok::kw_blockcount)
798     return TokError(
799         "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the "
800         "start of summary entry");
801   if (Lex.getKind() == lltok::kw_flags)
802     return ParseSummaryIndexFlags();
803   if (Lex.getKind() == lltok::kw_blockcount)
804     return ParseBlockCount();
805   Lex.Lex();
806   if (ParseToken(lltok::colon, "expected ':' at start of summary entry") ||
807       ParseToken(lltok::lparen, "expected '(' at start of summary entry"))
808     return true;
809   // Now walk through the parenthesized entry, until the number of open
810   // parentheses goes back down to 0 (the first '(' was parsed above).
811   unsigned NumOpenParen = 1;
812   do {
813     switch (Lex.getKind()) {
814     case lltok::lparen:
815       NumOpenParen++;
816       break;
817     case lltok::rparen:
818       NumOpenParen--;
819       break;
820     case lltok::Eof:
821       return TokError("found end of file while parsing summary entry");
822     default:
823       // Skip everything in between parentheses.
824       break;
825     }
826     Lex.Lex();
827   } while (NumOpenParen > 0);
828   return false;
829 }
830 
831 /// SummaryEntry
832 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
833 bool LLParser::ParseSummaryEntry() {
834   assert(Lex.getKind() == lltok::SummaryID);
835   unsigned SummaryID = Lex.getUIntVal();
836 
837   // For summary entries, colons should be treated as distinct tokens,
838   // not an indication of the end of a label token.
839   Lex.setIgnoreColonInIdentifiers(true);
840 
841   Lex.Lex();
842   if (ParseToken(lltok::equal, "expected '=' here"))
843     return true;
844 
845   // If we don't have an index object, skip the summary entry.
846   if (!Index)
847     return SkipModuleSummaryEntry();
848 
849   bool result = false;
850   switch (Lex.getKind()) {
851   case lltok::kw_gv:
852     result = ParseGVEntry(SummaryID);
853     break;
854   case lltok::kw_module:
855     result = ParseModuleEntry(SummaryID);
856     break;
857   case lltok::kw_typeid:
858     result = ParseTypeIdEntry(SummaryID);
859     break;
860   case lltok::kw_typeidCompatibleVTable:
861     result = ParseTypeIdCompatibleVtableEntry(SummaryID);
862     break;
863   case lltok::kw_flags:
864     result = ParseSummaryIndexFlags();
865     break;
866   case lltok::kw_blockcount:
867     result = ParseBlockCount();
868     break;
869   default:
870     result = Error(Lex.getLoc(), "unexpected summary kind");
871     break;
872   }
873   Lex.setIgnoreColonInIdentifiers(false);
874   return result;
875 }
876 
877 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
878   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
879          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
880 }
881 
882 // If there was an explicit dso_local, update GV. In the absence of an explicit
883 // dso_local we keep the default value.
884 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
885   if (DSOLocal)
886     GV.setDSOLocal(true);
887 }
888 
889 /// parseIndirectSymbol:
890 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
891 ///                     OptionalVisibility OptionalDLLStorageClass
892 ///                     OptionalThreadLocal OptionalUnnamedAddr
893 ///                     'alias|ifunc' IndirectSymbol IndirectSymbolAttr*
894 ///
895 /// IndirectSymbol
896 ///   ::= TypeAndValue
897 ///
898 /// IndirectSymbolAttr
899 ///   ::= ',' 'partition' StringConstant
900 ///
901 /// Everything through OptionalUnnamedAddr has already been parsed.
902 ///
903 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc,
904                                    unsigned L, unsigned Visibility,
905                                    unsigned DLLStorageClass, bool DSOLocal,
906                                    GlobalVariable::ThreadLocalMode TLM,
907                                    GlobalVariable::UnnamedAddr UnnamedAddr) {
908   bool IsAlias;
909   if (Lex.getKind() == lltok::kw_alias)
910     IsAlias = true;
911   else if (Lex.getKind() == lltok::kw_ifunc)
912     IsAlias = false;
913   else
914     llvm_unreachable("Not an alias or ifunc!");
915   Lex.Lex();
916 
917   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
918 
919   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
920     return Error(NameLoc, "invalid linkage type for alias");
921 
922   if (!isValidVisibilityForLinkage(Visibility, L))
923     return Error(NameLoc,
924                  "symbol with local linkage must have default visibility");
925 
926   Type *Ty;
927   LocTy ExplicitTypeLoc = Lex.getLoc();
928   if (ParseType(Ty) ||
929       ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
930     return true;
931 
932   Constant *Aliasee;
933   LocTy AliaseeLoc = Lex.getLoc();
934   if (Lex.getKind() != lltok::kw_bitcast &&
935       Lex.getKind() != lltok::kw_getelementptr &&
936       Lex.getKind() != lltok::kw_addrspacecast &&
937       Lex.getKind() != lltok::kw_inttoptr) {
938     if (ParseGlobalTypeAndValue(Aliasee))
939       return true;
940   } else {
941     // The bitcast dest type is not present, it is implied by the dest type.
942     ValID ID;
943     if (ParseValID(ID))
944       return true;
945     if (ID.Kind != ValID::t_Constant)
946       return Error(AliaseeLoc, "invalid aliasee");
947     Aliasee = ID.ConstantVal;
948   }
949 
950   Type *AliaseeType = Aliasee->getType();
951   auto *PTy = dyn_cast<PointerType>(AliaseeType);
952   if (!PTy)
953     return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
954   unsigned AddrSpace = PTy->getAddressSpace();
955 
956   if (IsAlias && Ty != PTy->getElementType())
957     return Error(
958         ExplicitTypeLoc,
959         "explicit pointee type doesn't match operand's pointee type");
960 
961   if (!IsAlias && !PTy->getElementType()->isFunctionTy())
962     return Error(
963         ExplicitTypeLoc,
964         "explicit pointee type should be a function type");
965 
966   GlobalValue *GVal = nullptr;
967 
968   // See if the alias was forward referenced, if so, prepare to replace the
969   // forward reference.
970   if (!Name.empty()) {
971     GVal = M->getNamedValue(Name);
972     if (GVal) {
973       if (!ForwardRefVals.erase(Name))
974         return Error(NameLoc, "redefinition of global '@" + Name + "'");
975     }
976   } else {
977     auto I = ForwardRefValIDs.find(NumberedVals.size());
978     if (I != ForwardRefValIDs.end()) {
979       GVal = I->second.first;
980       ForwardRefValIDs.erase(I);
981     }
982   }
983 
984   // Okay, create the alias but do not insert it into the module yet.
985   std::unique_ptr<GlobalIndirectSymbol> GA;
986   if (IsAlias)
987     GA.reset(GlobalAlias::create(Ty, AddrSpace,
988                                  (GlobalValue::LinkageTypes)Linkage, Name,
989                                  Aliasee, /*Parent*/ nullptr));
990   else
991     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
992                                  (GlobalValue::LinkageTypes)Linkage, Name,
993                                  Aliasee, /*Parent*/ nullptr));
994   GA->setThreadLocalMode(TLM);
995   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
996   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
997   GA->setUnnamedAddr(UnnamedAddr);
998   maybeSetDSOLocal(DSOLocal, *GA);
999 
1000   // At this point we've parsed everything except for the IndirectSymbolAttrs.
1001   // Now parse them if there are any.
1002   while (Lex.getKind() == lltok::comma) {
1003     Lex.Lex();
1004 
1005     if (Lex.getKind() == lltok::kw_partition) {
1006       Lex.Lex();
1007       GA->setPartition(Lex.getStrVal());
1008       if (ParseToken(lltok::StringConstant, "expected partition string"))
1009         return true;
1010     } else {
1011       return TokError("unknown alias or ifunc property!");
1012     }
1013   }
1014 
1015   if (Name.empty())
1016     NumberedVals.push_back(GA.get());
1017 
1018   if (GVal) {
1019     // Verify that types agree.
1020     if (GVal->getType() != GA->getType())
1021       return Error(
1022           ExplicitTypeLoc,
1023           "forward reference and definition of alias have different types");
1024 
1025     // If they agree, just RAUW the old value with the alias and remove the
1026     // forward ref info.
1027     GVal->replaceAllUsesWith(GA.get());
1028     GVal->eraseFromParent();
1029   }
1030 
1031   // Insert into the module, we know its name won't collide now.
1032   if (IsAlias)
1033     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
1034   else
1035     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
1036   assert(GA->getName() == Name && "Should not be a name conflict!");
1037 
1038   // The module owns this now
1039   GA.release();
1040 
1041   return false;
1042 }
1043 
1044 /// ParseGlobal
1045 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1046 ///       OptionalVisibility OptionalDLLStorageClass
1047 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1048 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1049 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1050 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1051 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1052 ///       Const OptionalAttrs
1053 ///
1054 /// Everything up to and including OptionalUnnamedAddr has been parsed
1055 /// already.
1056 ///
1057 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
1058                            unsigned Linkage, bool HasLinkage,
1059                            unsigned Visibility, unsigned DLLStorageClass,
1060                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1061                            GlobalVariable::UnnamedAddr UnnamedAddr) {
1062   if (!isValidVisibilityForLinkage(Visibility, Linkage))
1063     return Error(NameLoc,
1064                  "symbol with local linkage must have default visibility");
1065 
1066   unsigned AddrSpace;
1067   bool IsConstant, IsExternallyInitialized;
1068   LocTy IsExternallyInitializedLoc;
1069   LocTy TyLoc;
1070 
1071   Type *Ty = nullptr;
1072   if (ParseOptionalAddrSpace(AddrSpace) ||
1073       ParseOptionalToken(lltok::kw_externally_initialized,
1074                          IsExternallyInitialized,
1075                          &IsExternallyInitializedLoc) ||
1076       ParseGlobalType(IsConstant) ||
1077       ParseType(Ty, TyLoc))
1078     return true;
1079 
1080   // If the linkage is specified and is external, then no initializer is
1081   // present.
1082   Constant *Init = nullptr;
1083   if (!HasLinkage ||
1084       !GlobalValue::isValidDeclarationLinkage(
1085           (GlobalValue::LinkageTypes)Linkage)) {
1086     if (ParseGlobalValue(Ty, Init))
1087       return true;
1088   }
1089 
1090   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1091     return Error(TyLoc, "invalid type for global variable");
1092 
1093   GlobalValue *GVal = nullptr;
1094 
1095   // See if the global was forward referenced, if so, use the global.
1096   if (!Name.empty()) {
1097     GVal = M->getNamedValue(Name);
1098     if (GVal) {
1099       if (!ForwardRefVals.erase(Name))
1100         return Error(NameLoc, "redefinition of global '@" + Name + "'");
1101     }
1102   } else {
1103     auto I = ForwardRefValIDs.find(NumberedVals.size());
1104     if (I != ForwardRefValIDs.end()) {
1105       GVal = I->second.first;
1106       ForwardRefValIDs.erase(I);
1107     }
1108   }
1109 
1110   GlobalVariable *GV;
1111   if (!GVal) {
1112     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
1113                             Name, nullptr, GlobalVariable::NotThreadLocal,
1114                             AddrSpace);
1115   } else {
1116     if (GVal->getValueType() != Ty)
1117       return Error(TyLoc,
1118             "forward reference and definition of global have different types");
1119 
1120     GV = cast<GlobalVariable>(GVal);
1121 
1122     // Move the forward-reference to the correct spot in the module.
1123     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
1124   }
1125 
1126   if (Name.empty())
1127     NumberedVals.push_back(GV);
1128 
1129   // Set the parsed properties on the global.
1130   if (Init)
1131     GV->setInitializer(Init);
1132   GV->setConstant(IsConstant);
1133   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1134   maybeSetDSOLocal(DSOLocal, *GV);
1135   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1136   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1137   GV->setExternallyInitialized(IsExternallyInitialized);
1138   GV->setThreadLocalMode(TLM);
1139   GV->setUnnamedAddr(UnnamedAddr);
1140 
1141   // Parse attributes on the global.
1142   while (Lex.getKind() == lltok::comma) {
1143     Lex.Lex();
1144 
1145     if (Lex.getKind() == lltok::kw_section) {
1146       Lex.Lex();
1147       GV->setSection(Lex.getStrVal());
1148       if (ParseToken(lltok::StringConstant, "expected global section string"))
1149         return true;
1150     } else if (Lex.getKind() == lltok::kw_partition) {
1151       Lex.Lex();
1152       GV->setPartition(Lex.getStrVal());
1153       if (ParseToken(lltok::StringConstant, "expected partition string"))
1154         return true;
1155     } else if (Lex.getKind() == lltok::kw_align) {
1156       MaybeAlign Alignment;
1157       if (ParseOptionalAlignment(Alignment)) return true;
1158       GV->setAlignment(Alignment);
1159     } else if (Lex.getKind() == lltok::MetadataVar) {
1160       if (ParseGlobalObjectMetadataAttachment(*GV))
1161         return true;
1162     } else {
1163       Comdat *C;
1164       if (parseOptionalComdat(Name, C))
1165         return true;
1166       if (C)
1167         GV->setComdat(C);
1168       else
1169         return TokError("unknown global variable property!");
1170     }
1171   }
1172 
1173   AttrBuilder Attrs;
1174   LocTy BuiltinLoc;
1175   std::vector<unsigned> FwdRefAttrGrps;
1176   if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1177     return true;
1178   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1179     GV->setAttributes(AttributeSet::get(Context, Attrs));
1180     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1181   }
1182 
1183   return false;
1184 }
1185 
1186 /// ParseUnnamedAttrGrp
1187 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1188 bool LLParser::ParseUnnamedAttrGrp() {
1189   assert(Lex.getKind() == lltok::kw_attributes);
1190   LocTy AttrGrpLoc = Lex.getLoc();
1191   Lex.Lex();
1192 
1193   if (Lex.getKind() != lltok::AttrGrpID)
1194     return TokError("expected attribute group id");
1195 
1196   unsigned VarID = Lex.getUIntVal();
1197   std::vector<unsigned> unused;
1198   LocTy BuiltinLoc;
1199   Lex.Lex();
1200 
1201   if (ParseToken(lltok::equal, "expected '=' here") ||
1202       ParseToken(lltok::lbrace, "expected '{' here") ||
1203       ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
1204                                  BuiltinLoc) ||
1205       ParseToken(lltok::rbrace, "expected end of attribute group"))
1206     return true;
1207 
1208   if (!NumberedAttrBuilders[VarID].hasAttributes())
1209     return Error(AttrGrpLoc, "attribute group has no attributes");
1210 
1211   return false;
1212 }
1213 
1214 /// ParseFnAttributeValuePairs
1215 ///   ::= <attr> | <attr> '=' <value>
1216 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
1217                                           std::vector<unsigned> &FwdRefAttrGrps,
1218                                           bool inAttrGrp, LocTy &BuiltinLoc) {
1219   bool HaveError = false;
1220 
1221   B.clear();
1222 
1223   while (true) {
1224     lltok::Kind Token = Lex.getKind();
1225     if (Token == lltok::kw_builtin)
1226       BuiltinLoc = Lex.getLoc();
1227     switch (Token) {
1228     default:
1229       if (!inAttrGrp) return HaveError;
1230       return Error(Lex.getLoc(), "unterminated attribute group");
1231     case lltok::rbrace:
1232       // Finished.
1233       return false;
1234 
1235     case lltok::AttrGrpID: {
1236       // Allow a function to reference an attribute group:
1237       //
1238       //   define void @foo() #1 { ... }
1239       if (inAttrGrp)
1240         HaveError |=
1241           Error(Lex.getLoc(),
1242               "cannot have an attribute group reference in an attribute group");
1243 
1244       unsigned AttrGrpNum = Lex.getUIntVal();
1245       if (inAttrGrp) break;
1246 
1247       // Save the reference to the attribute group. We'll fill it in later.
1248       FwdRefAttrGrps.push_back(AttrGrpNum);
1249       break;
1250     }
1251     // Target-dependent attributes:
1252     case lltok::StringConstant: {
1253       if (ParseStringAttribute(B))
1254         return true;
1255       continue;
1256     }
1257 
1258     // Target-independent attributes:
1259     case lltok::kw_align: {
1260       // As a hack, we allow function alignment to be initially parsed as an
1261       // attribute on a function declaration/definition or added to an attribute
1262       // group and later moved to the alignment field.
1263       MaybeAlign Alignment;
1264       if (inAttrGrp) {
1265         Lex.Lex();
1266         uint32_t Value = 0;
1267         if (ParseToken(lltok::equal, "expected '=' here") || ParseUInt32(Value))
1268           return true;
1269         Alignment = Align(Value);
1270       } else {
1271         if (ParseOptionalAlignment(Alignment))
1272           return true;
1273       }
1274       B.addAlignmentAttr(Alignment);
1275       continue;
1276     }
1277     case lltok::kw_alignstack: {
1278       unsigned Alignment;
1279       if (inAttrGrp) {
1280         Lex.Lex();
1281         if (ParseToken(lltok::equal, "expected '=' here") ||
1282             ParseUInt32(Alignment))
1283           return true;
1284       } else {
1285         if (ParseOptionalStackAlignment(Alignment))
1286           return true;
1287       }
1288       B.addStackAlignmentAttr(Alignment);
1289       continue;
1290     }
1291     case lltok::kw_allocsize: {
1292       unsigned ElemSizeArg;
1293       Optional<unsigned> NumElemsArg;
1294       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1295       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1296         return true;
1297       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1298       continue;
1299     }
1300     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1301     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1302     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1303     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1304     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1305     case lltok::kw_inaccessiblememonly:
1306       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1307     case lltok::kw_inaccessiblemem_or_argmemonly:
1308       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1309     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1310     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1311     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1312     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1313     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1314     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1315     case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break;
1316     case lltok::kw_noimplicitfloat:
1317       B.addAttribute(Attribute::NoImplicitFloat); break;
1318     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1319     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1320     case lltok::kw_nomerge: B.addAttribute(Attribute::NoMerge); break;
1321     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1322     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1323     case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break;
1324     case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break;
1325     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1326     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1327     case lltok::kw_null_pointer_is_valid:
1328       B.addAttribute(Attribute::NullPointerIsValid); break;
1329     case lltok::kw_optforfuzzing:
1330       B.addAttribute(Attribute::OptForFuzzing); break;
1331     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1332     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1333     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1334     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1335     case lltok::kw_returns_twice:
1336       B.addAttribute(Attribute::ReturnsTwice); break;
1337     case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1338     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1339     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1340     case lltok::kw_sspstrong:
1341       B.addAttribute(Attribute::StackProtectStrong); break;
1342     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1343     case lltok::kw_shadowcallstack:
1344       B.addAttribute(Attribute::ShadowCallStack); break;
1345     case lltok::kw_sanitize_address:
1346       B.addAttribute(Attribute::SanitizeAddress); break;
1347     case lltok::kw_sanitize_hwaddress:
1348       B.addAttribute(Attribute::SanitizeHWAddress); break;
1349     case lltok::kw_sanitize_memtag:
1350       B.addAttribute(Attribute::SanitizeMemTag); break;
1351     case lltok::kw_sanitize_thread:
1352       B.addAttribute(Attribute::SanitizeThread); break;
1353     case lltok::kw_sanitize_memory:
1354       B.addAttribute(Attribute::SanitizeMemory); break;
1355     case lltok::kw_speculative_load_hardening:
1356       B.addAttribute(Attribute::SpeculativeLoadHardening);
1357       break;
1358     case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break;
1359     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1360     case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break;
1361     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1362     case lltok::kw_preallocated: {
1363       Type *Ty;
1364       if (ParsePreallocated(Ty))
1365         return true;
1366       B.addPreallocatedAttr(Ty);
1367       break;
1368     }
1369 
1370     // Error handling.
1371     case lltok::kw_inreg:
1372     case lltok::kw_signext:
1373     case lltok::kw_zeroext:
1374       HaveError |=
1375         Error(Lex.getLoc(),
1376               "invalid use of attribute on a function");
1377       break;
1378     case lltok::kw_byval:
1379     case lltok::kw_dereferenceable:
1380     case lltok::kw_dereferenceable_or_null:
1381     case lltok::kw_inalloca:
1382     case lltok::kw_nest:
1383     case lltok::kw_noalias:
1384     case lltok::kw_noundef:
1385     case lltok::kw_nocapture:
1386     case lltok::kw_nonnull:
1387     case lltok::kw_returned:
1388     case lltok::kw_sret:
1389     case lltok::kw_swifterror:
1390     case lltok::kw_swiftself:
1391     case lltok::kw_immarg:
1392     case lltok::kw_byref:
1393       HaveError |=
1394         Error(Lex.getLoc(),
1395               "invalid use of parameter-only attribute on a function");
1396       break;
1397     }
1398 
1399     // ParsePreallocated() consumes token
1400     if (Token != lltok::kw_preallocated)
1401       Lex.Lex();
1402   }
1403 }
1404 
1405 //===----------------------------------------------------------------------===//
1406 // GlobalValue Reference/Resolution Routines.
1407 //===----------------------------------------------------------------------===//
1408 
1409 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1410                                               const std::string &Name) {
1411   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1412     return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1413                             PTy->getAddressSpace(), Name, M);
1414   else
1415     return new GlobalVariable(*M, PTy->getElementType(), false,
1416                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1417                               nullptr, GlobalVariable::NotThreadLocal,
1418                               PTy->getAddressSpace());
1419 }
1420 
1421 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1422                                         Value *Val, bool IsCall) {
1423   if (Val->getType() == Ty)
1424     return Val;
1425   // For calls we also accept variables in the program address space.
1426   Type *SuggestedTy = Ty;
1427   if (IsCall && isa<PointerType>(Ty)) {
1428     Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo(
1429         M->getDataLayout().getProgramAddressSpace());
1430     SuggestedTy = TyInProgAS;
1431     if (Val->getType() == TyInProgAS)
1432       return Val;
1433   }
1434   if (Ty->isLabelTy())
1435     Error(Loc, "'" + Name + "' is not a basic block");
1436   else
1437     Error(Loc, "'" + Name + "' defined with type '" +
1438                    getTypeString(Val->getType()) + "' but expected '" +
1439                    getTypeString(SuggestedTy) + "'");
1440   return nullptr;
1441 }
1442 
1443 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1444 /// forward reference record if needed.  This can return null if the value
1445 /// exists but does not have the right type.
1446 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1447                                     LocTy Loc, bool IsCall) {
1448   PointerType *PTy = dyn_cast<PointerType>(Ty);
1449   if (!PTy) {
1450     Error(Loc, "global variable reference must have pointer type");
1451     return nullptr;
1452   }
1453 
1454   // Look this name up in the normal function symbol table.
1455   GlobalValue *Val =
1456     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1457 
1458   // If this is a forward reference for the value, see if we already created a
1459   // forward ref record.
1460   if (!Val) {
1461     auto I = ForwardRefVals.find(Name);
1462     if (I != ForwardRefVals.end())
1463       Val = I->second.first;
1464   }
1465 
1466   // If we have the value in the symbol table or fwd-ref table, return it.
1467   if (Val)
1468     return cast_or_null<GlobalValue>(
1469         checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall));
1470 
1471   // Otherwise, create a new forward reference for this value and remember it.
1472   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1473   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1474   return FwdVal;
1475 }
1476 
1477 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc,
1478                                     bool IsCall) {
1479   PointerType *PTy = dyn_cast<PointerType>(Ty);
1480   if (!PTy) {
1481     Error(Loc, "global variable reference must have pointer type");
1482     return nullptr;
1483   }
1484 
1485   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1486 
1487   // If this is a forward reference for the value, see if we already created a
1488   // forward ref record.
1489   if (!Val) {
1490     auto I = ForwardRefValIDs.find(ID);
1491     if (I != ForwardRefValIDs.end())
1492       Val = I->second.first;
1493   }
1494 
1495   // If we have the value in the symbol table or fwd-ref table, return it.
1496   if (Val)
1497     return cast_or_null<GlobalValue>(
1498         checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall));
1499 
1500   // Otherwise, create a new forward reference for this value and remember it.
1501   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1502   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1503   return FwdVal;
1504 }
1505 
1506 //===----------------------------------------------------------------------===//
1507 // Comdat Reference/Resolution Routines.
1508 //===----------------------------------------------------------------------===//
1509 
1510 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1511   // Look this name up in the comdat symbol table.
1512   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1513   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1514   if (I != ComdatSymTab.end())
1515     return &I->second;
1516 
1517   // Otherwise, create a new forward reference for this value and remember it.
1518   Comdat *C = M->getOrInsertComdat(Name);
1519   ForwardRefComdats[Name] = Loc;
1520   return C;
1521 }
1522 
1523 //===----------------------------------------------------------------------===//
1524 // Helper Routines.
1525 //===----------------------------------------------------------------------===//
1526 
1527 /// ParseToken - If the current token has the specified kind, eat it and return
1528 /// success.  Otherwise, emit the specified error and return failure.
1529 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1530   if (Lex.getKind() != T)
1531     return TokError(ErrMsg);
1532   Lex.Lex();
1533   return false;
1534 }
1535 
1536 /// ParseStringConstant
1537 ///   ::= StringConstant
1538 bool LLParser::ParseStringConstant(std::string &Result) {
1539   if (Lex.getKind() != lltok::StringConstant)
1540     return TokError("expected string constant");
1541   Result = Lex.getStrVal();
1542   Lex.Lex();
1543   return false;
1544 }
1545 
1546 /// ParseUInt32
1547 ///   ::= uint32
1548 bool LLParser::ParseUInt32(uint32_t &Val) {
1549   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1550     return TokError("expected integer");
1551   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1552   if (Val64 != unsigned(Val64))
1553     return TokError("expected 32-bit integer (too large)");
1554   Val = Val64;
1555   Lex.Lex();
1556   return false;
1557 }
1558 
1559 /// ParseUInt64
1560 ///   ::= uint64
1561 bool LLParser::ParseUInt64(uint64_t &Val) {
1562   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1563     return TokError("expected integer");
1564   Val = Lex.getAPSIntVal().getLimitedValue();
1565   Lex.Lex();
1566   return false;
1567 }
1568 
1569 /// ParseTLSModel
1570 ///   := 'localdynamic'
1571 ///   := 'initialexec'
1572 ///   := 'localexec'
1573 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1574   switch (Lex.getKind()) {
1575     default:
1576       return TokError("expected localdynamic, initialexec or localexec");
1577     case lltok::kw_localdynamic:
1578       TLM = GlobalVariable::LocalDynamicTLSModel;
1579       break;
1580     case lltok::kw_initialexec:
1581       TLM = GlobalVariable::InitialExecTLSModel;
1582       break;
1583     case lltok::kw_localexec:
1584       TLM = GlobalVariable::LocalExecTLSModel;
1585       break;
1586   }
1587 
1588   Lex.Lex();
1589   return false;
1590 }
1591 
1592 /// ParseOptionalThreadLocal
1593 ///   := /*empty*/
1594 ///   := 'thread_local'
1595 ///   := 'thread_local' '(' tlsmodel ')'
1596 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1597   TLM = GlobalVariable::NotThreadLocal;
1598   if (!EatIfPresent(lltok::kw_thread_local))
1599     return false;
1600 
1601   TLM = GlobalVariable::GeneralDynamicTLSModel;
1602   if (Lex.getKind() == lltok::lparen) {
1603     Lex.Lex();
1604     return ParseTLSModel(TLM) ||
1605       ParseToken(lltok::rparen, "expected ')' after thread local model");
1606   }
1607   return false;
1608 }
1609 
1610 /// ParseOptionalAddrSpace
1611 ///   := /*empty*/
1612 ///   := 'addrspace' '(' uint32 ')'
1613 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1614   AddrSpace = DefaultAS;
1615   if (!EatIfPresent(lltok::kw_addrspace))
1616     return false;
1617   return ParseToken(lltok::lparen, "expected '(' in address space") ||
1618          ParseUInt32(AddrSpace) ||
1619          ParseToken(lltok::rparen, "expected ')' in address space");
1620 }
1621 
1622 /// ParseStringAttribute
1623 ///   := StringConstant
1624 ///   := StringConstant '=' StringConstant
1625 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1626   std::string Attr = Lex.getStrVal();
1627   Lex.Lex();
1628   std::string Val;
1629   if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1630     return true;
1631   B.addAttribute(Attr, Val);
1632   return false;
1633 }
1634 
1635 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1636 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1637   bool HaveError = false;
1638 
1639   B.clear();
1640 
1641   while (true) {
1642     lltok::Kind Token = Lex.getKind();
1643     switch (Token) {
1644     default:  // End of attributes.
1645       return HaveError;
1646     case lltok::StringConstant: {
1647       if (ParseStringAttribute(B))
1648         return true;
1649       continue;
1650     }
1651     case lltok::kw_align: {
1652       MaybeAlign Alignment;
1653       if (ParseOptionalAlignment(Alignment, true))
1654         return true;
1655       B.addAlignmentAttr(Alignment);
1656       continue;
1657     }
1658     case lltok::kw_byval: {
1659       Type *Ty;
1660       if (ParseByValWithOptionalType(Ty))
1661         return true;
1662       B.addByValAttr(Ty);
1663       continue;
1664     }
1665     case lltok::kw_preallocated: {
1666       Type *Ty;
1667       if (ParsePreallocated(Ty))
1668         return true;
1669       B.addPreallocatedAttr(Ty);
1670       continue;
1671     }
1672     case lltok::kw_dereferenceable: {
1673       uint64_t Bytes;
1674       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1675         return true;
1676       B.addDereferenceableAttr(Bytes);
1677       continue;
1678     }
1679     case lltok::kw_dereferenceable_or_null: {
1680       uint64_t Bytes;
1681       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1682         return true;
1683       B.addDereferenceableOrNullAttr(Bytes);
1684       continue;
1685     }
1686     case lltok::kw_byref: {
1687       Type *Ty;
1688       if (ParseByRef(Ty))
1689         return true;
1690       B.addByRefAttr(Ty);
1691       continue;
1692     }
1693     case lltok::kw_inalloca:        B.addAttribute(Attribute::InAlloca); break;
1694     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1695     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1696     case lltok::kw_noundef:
1697       B.addAttribute(Attribute::NoUndef);
1698       break;
1699     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1700     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1701     case lltok::kw_nofree:          B.addAttribute(Attribute::NoFree); break;
1702     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1703     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1704     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1705     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1706     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1707     case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1708     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1709     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1710     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
1711     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1712     case lltok::kw_immarg:          B.addAttribute(Attribute::ImmArg); break;
1713 
1714     case lltok::kw_alignstack:
1715     case lltok::kw_alwaysinline:
1716     case lltok::kw_argmemonly:
1717     case lltok::kw_builtin:
1718     case lltok::kw_inlinehint:
1719     case lltok::kw_jumptable:
1720     case lltok::kw_minsize:
1721     case lltok::kw_naked:
1722     case lltok::kw_nobuiltin:
1723     case lltok::kw_noduplicate:
1724     case lltok::kw_noimplicitfloat:
1725     case lltok::kw_noinline:
1726     case lltok::kw_nonlazybind:
1727     case lltok::kw_nomerge:
1728     case lltok::kw_noredzone:
1729     case lltok::kw_noreturn:
1730     case lltok::kw_nocf_check:
1731     case lltok::kw_nounwind:
1732     case lltok::kw_optforfuzzing:
1733     case lltok::kw_optnone:
1734     case lltok::kw_optsize:
1735     case lltok::kw_returns_twice:
1736     case lltok::kw_sanitize_address:
1737     case lltok::kw_sanitize_hwaddress:
1738     case lltok::kw_sanitize_memtag:
1739     case lltok::kw_sanitize_memory:
1740     case lltok::kw_sanitize_thread:
1741     case lltok::kw_speculative_load_hardening:
1742     case lltok::kw_ssp:
1743     case lltok::kw_sspreq:
1744     case lltok::kw_sspstrong:
1745     case lltok::kw_safestack:
1746     case lltok::kw_shadowcallstack:
1747     case lltok::kw_strictfp:
1748     case lltok::kw_uwtable:
1749       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1750       break;
1751     }
1752 
1753     Lex.Lex();
1754   }
1755 }
1756 
1757 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1758 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1759   bool HaveError = false;
1760 
1761   B.clear();
1762 
1763   while (true) {
1764     lltok::Kind Token = Lex.getKind();
1765     switch (Token) {
1766     default:  // End of attributes.
1767       return HaveError;
1768     case lltok::StringConstant: {
1769       if (ParseStringAttribute(B))
1770         return true;
1771       continue;
1772     }
1773     case lltok::kw_dereferenceable: {
1774       uint64_t Bytes;
1775       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1776         return true;
1777       B.addDereferenceableAttr(Bytes);
1778       continue;
1779     }
1780     case lltok::kw_dereferenceable_or_null: {
1781       uint64_t Bytes;
1782       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1783         return true;
1784       B.addDereferenceableOrNullAttr(Bytes);
1785       continue;
1786     }
1787     case lltok::kw_align: {
1788       MaybeAlign Alignment;
1789       if (ParseOptionalAlignment(Alignment))
1790         return true;
1791       B.addAlignmentAttr(Alignment);
1792       continue;
1793     }
1794     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1795     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1796     case lltok::kw_noundef:
1797       B.addAttribute(Attribute::NoUndef);
1798       break;
1799     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1800     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1801     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1802 
1803     // Error handling.
1804     case lltok::kw_byval:
1805     case lltok::kw_inalloca:
1806     case lltok::kw_nest:
1807     case lltok::kw_nocapture:
1808     case lltok::kw_returned:
1809     case lltok::kw_sret:
1810     case lltok::kw_swifterror:
1811     case lltok::kw_swiftself:
1812     case lltok::kw_immarg:
1813     case lltok::kw_byref:
1814       HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1815       break;
1816 
1817     case lltok::kw_alignstack:
1818     case lltok::kw_alwaysinline:
1819     case lltok::kw_argmemonly:
1820     case lltok::kw_builtin:
1821     case lltok::kw_cold:
1822     case lltok::kw_inlinehint:
1823     case lltok::kw_jumptable:
1824     case lltok::kw_minsize:
1825     case lltok::kw_naked:
1826     case lltok::kw_nobuiltin:
1827     case lltok::kw_noduplicate:
1828     case lltok::kw_noimplicitfloat:
1829     case lltok::kw_noinline:
1830     case lltok::kw_nonlazybind:
1831     case lltok::kw_nomerge:
1832     case lltok::kw_noredzone:
1833     case lltok::kw_noreturn:
1834     case lltok::kw_nocf_check:
1835     case lltok::kw_nounwind:
1836     case lltok::kw_optforfuzzing:
1837     case lltok::kw_optnone:
1838     case lltok::kw_optsize:
1839     case lltok::kw_returns_twice:
1840     case lltok::kw_sanitize_address:
1841     case lltok::kw_sanitize_hwaddress:
1842     case lltok::kw_sanitize_memtag:
1843     case lltok::kw_sanitize_memory:
1844     case lltok::kw_sanitize_thread:
1845     case lltok::kw_speculative_load_hardening:
1846     case lltok::kw_ssp:
1847     case lltok::kw_sspreq:
1848     case lltok::kw_sspstrong:
1849     case lltok::kw_safestack:
1850     case lltok::kw_shadowcallstack:
1851     case lltok::kw_strictfp:
1852     case lltok::kw_uwtable:
1853       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1854       break;
1855     case lltok::kw_readnone:
1856     case lltok::kw_readonly:
1857       HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1858       break;
1859     case lltok::kw_preallocated:
1860       HaveError |=
1861           Error(Lex.getLoc(),
1862                 "invalid use of parameter-only/call site-only attribute");
1863       break;
1864     }
1865 
1866     Lex.Lex();
1867   }
1868 }
1869 
1870 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1871   HasLinkage = true;
1872   switch (Kind) {
1873   default:
1874     HasLinkage = false;
1875     return GlobalValue::ExternalLinkage;
1876   case lltok::kw_private:
1877     return GlobalValue::PrivateLinkage;
1878   case lltok::kw_internal:
1879     return GlobalValue::InternalLinkage;
1880   case lltok::kw_weak:
1881     return GlobalValue::WeakAnyLinkage;
1882   case lltok::kw_weak_odr:
1883     return GlobalValue::WeakODRLinkage;
1884   case lltok::kw_linkonce:
1885     return GlobalValue::LinkOnceAnyLinkage;
1886   case lltok::kw_linkonce_odr:
1887     return GlobalValue::LinkOnceODRLinkage;
1888   case lltok::kw_available_externally:
1889     return GlobalValue::AvailableExternallyLinkage;
1890   case lltok::kw_appending:
1891     return GlobalValue::AppendingLinkage;
1892   case lltok::kw_common:
1893     return GlobalValue::CommonLinkage;
1894   case lltok::kw_extern_weak:
1895     return GlobalValue::ExternalWeakLinkage;
1896   case lltok::kw_external:
1897     return GlobalValue::ExternalLinkage;
1898   }
1899 }
1900 
1901 /// ParseOptionalLinkage
1902 ///   ::= /*empty*/
1903 ///   ::= 'private'
1904 ///   ::= 'internal'
1905 ///   ::= 'weak'
1906 ///   ::= 'weak_odr'
1907 ///   ::= 'linkonce'
1908 ///   ::= 'linkonce_odr'
1909 ///   ::= 'available_externally'
1910 ///   ::= 'appending'
1911 ///   ::= 'common'
1912 ///   ::= 'extern_weak'
1913 ///   ::= 'external'
1914 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1915                                     unsigned &Visibility,
1916                                     unsigned &DLLStorageClass,
1917                                     bool &DSOLocal) {
1918   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1919   if (HasLinkage)
1920     Lex.Lex();
1921   ParseOptionalDSOLocal(DSOLocal);
1922   ParseOptionalVisibility(Visibility);
1923   ParseOptionalDLLStorageClass(DLLStorageClass);
1924 
1925   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1926     return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1927   }
1928 
1929   return false;
1930 }
1931 
1932 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) {
1933   switch (Lex.getKind()) {
1934   default:
1935     DSOLocal = false;
1936     break;
1937   case lltok::kw_dso_local:
1938     DSOLocal = true;
1939     Lex.Lex();
1940     break;
1941   case lltok::kw_dso_preemptable:
1942     DSOLocal = false;
1943     Lex.Lex();
1944     break;
1945   }
1946 }
1947 
1948 /// ParseOptionalVisibility
1949 ///   ::= /*empty*/
1950 ///   ::= 'default'
1951 ///   ::= 'hidden'
1952 ///   ::= 'protected'
1953 ///
1954 void LLParser::ParseOptionalVisibility(unsigned &Res) {
1955   switch (Lex.getKind()) {
1956   default:
1957     Res = GlobalValue::DefaultVisibility;
1958     return;
1959   case lltok::kw_default:
1960     Res = GlobalValue::DefaultVisibility;
1961     break;
1962   case lltok::kw_hidden:
1963     Res = GlobalValue::HiddenVisibility;
1964     break;
1965   case lltok::kw_protected:
1966     Res = GlobalValue::ProtectedVisibility;
1967     break;
1968   }
1969   Lex.Lex();
1970 }
1971 
1972 /// ParseOptionalDLLStorageClass
1973 ///   ::= /*empty*/
1974 ///   ::= 'dllimport'
1975 ///   ::= 'dllexport'
1976 ///
1977 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1978   switch (Lex.getKind()) {
1979   default:
1980     Res = GlobalValue::DefaultStorageClass;
1981     return;
1982   case lltok::kw_dllimport:
1983     Res = GlobalValue::DLLImportStorageClass;
1984     break;
1985   case lltok::kw_dllexport:
1986     Res = GlobalValue::DLLExportStorageClass;
1987     break;
1988   }
1989   Lex.Lex();
1990 }
1991 
1992 /// ParseOptionalCallingConv
1993 ///   ::= /*empty*/
1994 ///   ::= 'ccc'
1995 ///   ::= 'fastcc'
1996 ///   ::= 'intel_ocl_bicc'
1997 ///   ::= 'coldcc'
1998 ///   ::= 'cfguard_checkcc'
1999 ///   ::= 'x86_stdcallcc'
2000 ///   ::= 'x86_fastcallcc'
2001 ///   ::= 'x86_thiscallcc'
2002 ///   ::= 'x86_vectorcallcc'
2003 ///   ::= 'arm_apcscc'
2004 ///   ::= 'arm_aapcscc'
2005 ///   ::= 'arm_aapcs_vfpcc'
2006 ///   ::= 'aarch64_vector_pcs'
2007 ///   ::= 'aarch64_sve_vector_pcs'
2008 ///   ::= 'msp430_intrcc'
2009 ///   ::= 'avr_intrcc'
2010 ///   ::= 'avr_signalcc'
2011 ///   ::= 'ptx_kernel'
2012 ///   ::= 'ptx_device'
2013 ///   ::= 'spir_func'
2014 ///   ::= 'spir_kernel'
2015 ///   ::= 'x86_64_sysvcc'
2016 ///   ::= 'win64cc'
2017 ///   ::= 'webkit_jscc'
2018 ///   ::= 'anyregcc'
2019 ///   ::= 'preserve_mostcc'
2020 ///   ::= 'preserve_allcc'
2021 ///   ::= 'ghccc'
2022 ///   ::= 'swiftcc'
2023 ///   ::= 'x86_intrcc'
2024 ///   ::= 'hhvmcc'
2025 ///   ::= 'hhvm_ccc'
2026 ///   ::= 'cxx_fast_tlscc'
2027 ///   ::= 'amdgpu_vs'
2028 ///   ::= 'amdgpu_ls'
2029 ///   ::= 'amdgpu_hs'
2030 ///   ::= 'amdgpu_es'
2031 ///   ::= 'amdgpu_gs'
2032 ///   ::= 'amdgpu_ps'
2033 ///   ::= 'amdgpu_cs'
2034 ///   ::= 'amdgpu_kernel'
2035 ///   ::= 'tailcc'
2036 ///   ::= 'cc' UINT
2037 ///
2038 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
2039   switch (Lex.getKind()) {
2040   default:                       CC = CallingConv::C; return false;
2041   case lltok::kw_ccc:            CC = CallingConv::C; break;
2042   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
2043   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
2044   case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break;
2045   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
2046   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
2047   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
2048   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
2049   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
2050   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
2051   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
2052   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
2053   case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
2054   case lltok::kw_aarch64_sve_vector_pcs:
2055     CC = CallingConv::AArch64_SVE_VectorCall;
2056     break;
2057   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
2058   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
2059   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
2060   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
2061   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
2062   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
2063   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
2064   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
2065   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
2066   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
2067   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
2068   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
2069   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
2070   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
2071   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
2072   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
2073   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
2074   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
2075   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
2076   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
2077   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
2078   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
2079   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
2080   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
2081   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
2082   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
2083   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
2084   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
2085   case lltok::kw_tailcc:         CC = CallingConv::Tail; break;
2086   case lltok::kw_cc: {
2087       Lex.Lex();
2088       return ParseUInt32(CC);
2089     }
2090   }
2091 
2092   Lex.Lex();
2093   return false;
2094 }
2095 
2096 /// ParseMetadataAttachment
2097 ///   ::= !dbg !42
2098 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
2099   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
2100 
2101   std::string Name = Lex.getStrVal();
2102   Kind = M->getMDKindID(Name);
2103   Lex.Lex();
2104 
2105   return ParseMDNode(MD);
2106 }
2107 
2108 /// ParseInstructionMetadata
2109 ///   ::= !dbg !42 (',' !dbg !57)*
2110 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
2111   do {
2112     if (Lex.getKind() != lltok::MetadataVar)
2113       return TokError("expected metadata after comma");
2114 
2115     unsigned MDK;
2116     MDNode *N;
2117     if (ParseMetadataAttachment(MDK, N))
2118       return true;
2119 
2120     Inst.setMetadata(MDK, N);
2121     if (MDK == LLVMContext::MD_tbaa)
2122       InstsWithTBAATag.push_back(&Inst);
2123 
2124     // If this is the end of the list, we're done.
2125   } while (EatIfPresent(lltok::comma));
2126   return false;
2127 }
2128 
2129 /// ParseGlobalObjectMetadataAttachment
2130 ///   ::= !dbg !57
2131 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
2132   unsigned MDK;
2133   MDNode *N;
2134   if (ParseMetadataAttachment(MDK, N))
2135     return true;
2136 
2137   GO.addMetadata(MDK, *N);
2138   return false;
2139 }
2140 
2141 /// ParseOptionalFunctionMetadata
2142 ///   ::= (!dbg !57)*
2143 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
2144   while (Lex.getKind() == lltok::MetadataVar)
2145     if (ParseGlobalObjectMetadataAttachment(F))
2146       return true;
2147   return false;
2148 }
2149 
2150 /// ParseOptionalAlignment
2151 ///   ::= /* empty */
2152 ///   ::= 'align' 4
2153 bool LLParser::ParseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) {
2154   Alignment = None;
2155   if (!EatIfPresent(lltok::kw_align))
2156     return false;
2157   LocTy AlignLoc = Lex.getLoc();
2158   uint32_t Value = 0;
2159 
2160   LocTy ParenLoc = Lex.getLoc();
2161   bool HaveParens = false;
2162   if (AllowParens) {
2163     if (EatIfPresent(lltok::lparen))
2164       HaveParens = true;
2165   }
2166 
2167   if (ParseUInt32(Value))
2168     return true;
2169 
2170   if (HaveParens && !EatIfPresent(lltok::rparen))
2171     return Error(ParenLoc, "expected ')'");
2172 
2173   if (!isPowerOf2_32(Value))
2174     return Error(AlignLoc, "alignment is not a power of two");
2175   if (Value > Value::MaximumAlignment)
2176     return Error(AlignLoc, "huge alignments are not supported yet");
2177   Alignment = Align(Value);
2178   return false;
2179 }
2180 
2181 /// ParseOptionalDerefAttrBytes
2182 ///   ::= /* empty */
2183 ///   ::= AttrKind '(' 4 ')'
2184 ///
2185 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2186 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2187                                            uint64_t &Bytes) {
2188   assert((AttrKind == lltok::kw_dereferenceable ||
2189           AttrKind == lltok::kw_dereferenceable_or_null) &&
2190          "contract!");
2191 
2192   Bytes = 0;
2193   if (!EatIfPresent(AttrKind))
2194     return false;
2195   LocTy ParenLoc = Lex.getLoc();
2196   if (!EatIfPresent(lltok::lparen))
2197     return Error(ParenLoc, "expected '('");
2198   LocTy DerefLoc = Lex.getLoc();
2199   if (ParseUInt64(Bytes)) return true;
2200   ParenLoc = Lex.getLoc();
2201   if (!EatIfPresent(lltok::rparen))
2202     return Error(ParenLoc, "expected ')'");
2203   if (!Bytes)
2204     return Error(DerefLoc, "dereferenceable bytes must be non-zero");
2205   return false;
2206 }
2207 
2208 /// ParseOptionalCommaAlign
2209 ///   ::=
2210 ///   ::= ',' align 4
2211 ///
2212 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2213 /// end.
2214 bool LLParser::ParseOptionalCommaAlign(MaybeAlign &Alignment,
2215                                        bool &AteExtraComma) {
2216   AteExtraComma = false;
2217   while (EatIfPresent(lltok::comma)) {
2218     // Metadata at the end is an early exit.
2219     if (Lex.getKind() == lltok::MetadataVar) {
2220       AteExtraComma = true;
2221       return false;
2222     }
2223 
2224     if (Lex.getKind() != lltok::kw_align)
2225       return Error(Lex.getLoc(), "expected metadata or 'align'");
2226 
2227     if (ParseOptionalAlignment(Alignment)) return true;
2228   }
2229 
2230   return false;
2231 }
2232 
2233 /// ParseOptionalCommaAddrSpace
2234 ///   ::=
2235 ///   ::= ',' addrspace(1)
2236 ///
2237 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2238 /// end.
2239 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace,
2240                                            LocTy &Loc,
2241                                            bool &AteExtraComma) {
2242   AteExtraComma = false;
2243   while (EatIfPresent(lltok::comma)) {
2244     // Metadata at the end is an early exit.
2245     if (Lex.getKind() == lltok::MetadataVar) {
2246       AteExtraComma = true;
2247       return false;
2248     }
2249 
2250     Loc = Lex.getLoc();
2251     if (Lex.getKind() != lltok::kw_addrspace)
2252       return Error(Lex.getLoc(), "expected metadata or 'addrspace'");
2253 
2254     if (ParseOptionalAddrSpace(AddrSpace))
2255       return true;
2256   }
2257 
2258   return false;
2259 }
2260 
2261 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2262                                        Optional<unsigned> &HowManyArg) {
2263   Lex.Lex();
2264 
2265   auto StartParen = Lex.getLoc();
2266   if (!EatIfPresent(lltok::lparen))
2267     return Error(StartParen, "expected '('");
2268 
2269   if (ParseUInt32(BaseSizeArg))
2270     return true;
2271 
2272   if (EatIfPresent(lltok::comma)) {
2273     auto HowManyAt = Lex.getLoc();
2274     unsigned HowMany;
2275     if (ParseUInt32(HowMany))
2276       return true;
2277     if (HowMany == BaseSizeArg)
2278       return Error(HowManyAt,
2279                    "'allocsize' indices can't refer to the same parameter");
2280     HowManyArg = HowMany;
2281   } else
2282     HowManyArg = None;
2283 
2284   auto EndParen = Lex.getLoc();
2285   if (!EatIfPresent(lltok::rparen))
2286     return Error(EndParen, "expected ')'");
2287   return false;
2288 }
2289 
2290 /// ParseScopeAndOrdering
2291 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2292 ///   else: ::=
2293 ///
2294 /// This sets Scope and Ordering to the parsed values.
2295 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID,
2296                                      AtomicOrdering &Ordering) {
2297   if (!isAtomic)
2298     return false;
2299 
2300   return ParseScope(SSID) || ParseOrdering(Ordering);
2301 }
2302 
2303 /// ParseScope
2304 ///   ::= syncscope("singlethread" | "<target scope>")?
2305 ///
2306 /// This sets synchronization scope ID to the ID of the parsed value.
2307 bool LLParser::ParseScope(SyncScope::ID &SSID) {
2308   SSID = SyncScope::System;
2309   if (EatIfPresent(lltok::kw_syncscope)) {
2310     auto StartParenAt = Lex.getLoc();
2311     if (!EatIfPresent(lltok::lparen))
2312       return Error(StartParenAt, "Expected '(' in syncscope");
2313 
2314     std::string SSN;
2315     auto SSNAt = Lex.getLoc();
2316     if (ParseStringConstant(SSN))
2317       return Error(SSNAt, "Expected synchronization scope name");
2318 
2319     auto EndParenAt = Lex.getLoc();
2320     if (!EatIfPresent(lltok::rparen))
2321       return Error(EndParenAt, "Expected ')' in syncscope");
2322 
2323     SSID = Context.getOrInsertSyncScopeID(SSN);
2324   }
2325 
2326   return false;
2327 }
2328 
2329 /// ParseOrdering
2330 ///   ::= AtomicOrdering
2331 ///
2332 /// This sets Ordering to the parsed value.
2333 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
2334   switch (Lex.getKind()) {
2335   default: return TokError("Expected ordering on atomic instruction");
2336   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2337   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2338   // Not specified yet:
2339   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2340   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2341   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2342   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2343   case lltok::kw_seq_cst:
2344     Ordering = AtomicOrdering::SequentiallyConsistent;
2345     break;
2346   }
2347   Lex.Lex();
2348   return false;
2349 }
2350 
2351 /// ParseOptionalStackAlignment
2352 ///   ::= /* empty */
2353 ///   ::= 'alignstack' '(' 4 ')'
2354 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
2355   Alignment = 0;
2356   if (!EatIfPresent(lltok::kw_alignstack))
2357     return false;
2358   LocTy ParenLoc = Lex.getLoc();
2359   if (!EatIfPresent(lltok::lparen))
2360     return Error(ParenLoc, "expected '('");
2361   LocTy AlignLoc = Lex.getLoc();
2362   if (ParseUInt32(Alignment)) return true;
2363   ParenLoc = Lex.getLoc();
2364   if (!EatIfPresent(lltok::rparen))
2365     return Error(ParenLoc, "expected ')'");
2366   if (!isPowerOf2_32(Alignment))
2367     return Error(AlignLoc, "stack alignment is not a power of two");
2368   return false;
2369 }
2370 
2371 /// ParseIndexList - This parses the index list for an insert/extractvalue
2372 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2373 /// comma at the end of the line and find that it is followed by metadata.
2374 /// Clients that don't allow metadata can call the version of this function that
2375 /// only takes one argument.
2376 ///
2377 /// ParseIndexList
2378 ///    ::=  (',' uint32)+
2379 ///
2380 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
2381                               bool &AteExtraComma) {
2382   AteExtraComma = false;
2383 
2384   if (Lex.getKind() != lltok::comma)
2385     return TokError("expected ',' as start of index list");
2386 
2387   while (EatIfPresent(lltok::comma)) {
2388     if (Lex.getKind() == lltok::MetadataVar) {
2389       if (Indices.empty()) return TokError("expected index");
2390       AteExtraComma = true;
2391       return false;
2392     }
2393     unsigned Idx = 0;
2394     if (ParseUInt32(Idx)) return true;
2395     Indices.push_back(Idx);
2396   }
2397 
2398   return false;
2399 }
2400 
2401 //===----------------------------------------------------------------------===//
2402 // Type Parsing.
2403 //===----------------------------------------------------------------------===//
2404 
2405 /// ParseType - Parse a type.
2406 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2407   SMLoc TypeLoc = Lex.getLoc();
2408   switch (Lex.getKind()) {
2409   default:
2410     return TokError(Msg);
2411   case lltok::Type:
2412     // Type ::= 'float' | 'void' (etc)
2413     Result = Lex.getTyVal();
2414     Lex.Lex();
2415     break;
2416   case lltok::lbrace:
2417     // Type ::= StructType
2418     if (ParseAnonStructType(Result, false))
2419       return true;
2420     break;
2421   case lltok::lsquare:
2422     // Type ::= '[' ... ']'
2423     Lex.Lex(); // eat the lsquare.
2424     if (ParseArrayVectorType(Result, false))
2425       return true;
2426     break;
2427   case lltok::less: // Either vector or packed struct.
2428     // Type ::= '<' ... '>'
2429     Lex.Lex();
2430     if (Lex.getKind() == lltok::lbrace) {
2431       if (ParseAnonStructType(Result, true) ||
2432           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
2433         return true;
2434     } else if (ParseArrayVectorType(Result, true))
2435       return true;
2436     break;
2437   case lltok::LocalVar: {
2438     // Type ::= %foo
2439     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2440 
2441     // If the type hasn't been defined yet, create a forward definition and
2442     // remember where that forward def'n was seen (in case it never is defined).
2443     if (!Entry.first) {
2444       Entry.first = StructType::create(Context, Lex.getStrVal());
2445       Entry.second = Lex.getLoc();
2446     }
2447     Result = Entry.first;
2448     Lex.Lex();
2449     break;
2450   }
2451 
2452   case lltok::LocalVarID: {
2453     // Type ::= %4
2454     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2455 
2456     // If the type hasn't been defined yet, create a forward definition and
2457     // remember where that forward def'n was seen (in case it never is defined).
2458     if (!Entry.first) {
2459       Entry.first = StructType::create(Context);
2460       Entry.second = Lex.getLoc();
2461     }
2462     Result = Entry.first;
2463     Lex.Lex();
2464     break;
2465   }
2466   }
2467 
2468   // Parse the type suffixes.
2469   while (true) {
2470     switch (Lex.getKind()) {
2471     // End of type.
2472     default:
2473       if (!AllowVoid && Result->isVoidTy())
2474         return Error(TypeLoc, "void type only allowed for function results");
2475       return false;
2476 
2477     // Type ::= Type '*'
2478     case lltok::star:
2479       if (Result->isLabelTy())
2480         return TokError("basic block pointers are invalid");
2481       if (Result->isVoidTy())
2482         return TokError("pointers to void are invalid - use i8* instead");
2483       if (!PointerType::isValidElementType(Result))
2484         return TokError("pointer to this type is invalid");
2485       Result = PointerType::getUnqual(Result);
2486       Lex.Lex();
2487       break;
2488 
2489     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2490     case lltok::kw_addrspace: {
2491       if (Result->isLabelTy())
2492         return TokError("basic block pointers are invalid");
2493       if (Result->isVoidTy())
2494         return TokError("pointers to void are invalid; use i8* instead");
2495       if (!PointerType::isValidElementType(Result))
2496         return TokError("pointer to this type is invalid");
2497       unsigned AddrSpace;
2498       if (ParseOptionalAddrSpace(AddrSpace) ||
2499           ParseToken(lltok::star, "expected '*' in address space"))
2500         return true;
2501 
2502       Result = PointerType::get(Result, AddrSpace);
2503       break;
2504     }
2505 
2506     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2507     case lltok::lparen:
2508       if (ParseFunctionType(Result))
2509         return true;
2510       break;
2511     }
2512   }
2513 }
2514 
2515 /// ParseParameterList
2516 ///    ::= '(' ')'
2517 ///    ::= '(' Arg (',' Arg)* ')'
2518 ///  Arg
2519 ///    ::= Type OptionalAttributes Value OptionalAttributes
2520 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2521                                   PerFunctionState &PFS, bool IsMustTailCall,
2522                                   bool InVarArgsFunc) {
2523   if (ParseToken(lltok::lparen, "expected '(' in call"))
2524     return true;
2525 
2526   while (Lex.getKind() != lltok::rparen) {
2527     // If this isn't the first argument, we need a comma.
2528     if (!ArgList.empty() &&
2529         ParseToken(lltok::comma, "expected ',' in argument list"))
2530       return true;
2531 
2532     // Parse an ellipsis if this is a musttail call in a variadic function.
2533     if (Lex.getKind() == lltok::dotdotdot) {
2534       const char *Msg = "unexpected ellipsis in argument list for ";
2535       if (!IsMustTailCall)
2536         return TokError(Twine(Msg) + "non-musttail call");
2537       if (!InVarArgsFunc)
2538         return TokError(Twine(Msg) + "musttail call in non-varargs function");
2539       Lex.Lex();  // Lex the '...', it is purely for readability.
2540       return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2541     }
2542 
2543     // Parse the argument.
2544     LocTy ArgLoc;
2545     Type *ArgTy = nullptr;
2546     AttrBuilder ArgAttrs;
2547     Value *V;
2548     if (ParseType(ArgTy, ArgLoc))
2549       return true;
2550 
2551     if (ArgTy->isMetadataTy()) {
2552       if (ParseMetadataAsValue(V, PFS))
2553         return true;
2554     } else {
2555       // Otherwise, handle normal operands.
2556       if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2557         return true;
2558     }
2559     ArgList.push_back(ParamInfo(
2560         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2561   }
2562 
2563   if (IsMustTailCall && InVarArgsFunc)
2564     return TokError("expected '...' at end of argument list for musttail call "
2565                     "in varargs function");
2566 
2567   Lex.Lex();  // Lex the ')'.
2568   return false;
2569 }
2570 
2571 /// ParseByValWithOptionalType
2572 ///   ::= byval
2573 ///   ::= byval(<ty>)
2574 bool LLParser::ParseByValWithOptionalType(Type *&Result) {
2575   Result = nullptr;
2576   if (!EatIfPresent(lltok::kw_byval))
2577     return true;
2578   if (!EatIfPresent(lltok::lparen))
2579     return false;
2580   if (ParseType(Result))
2581     return true;
2582   if (!EatIfPresent(lltok::rparen))
2583     return Error(Lex.getLoc(), "expected ')'");
2584   return false;
2585 }
2586 
2587 /// ParseRequiredTypeAttr
2588 ///   ::= attrname(<ty>)
2589 bool LLParser::ParseRequiredTypeAttr(Type *&Result, lltok::Kind AttrName) {
2590   Result = nullptr;
2591   if (!EatIfPresent(AttrName))
2592     return true;
2593   if (!EatIfPresent(lltok::lparen))
2594     return Error(Lex.getLoc(), "expected '('");
2595   if (ParseType(Result))
2596     return true;
2597   if (!EatIfPresent(lltok::rparen))
2598     return Error(Lex.getLoc(), "expected ')'");
2599   return false;
2600 }
2601 
2602 /// ParsePreallocated
2603 ///   ::= preallocated(<ty>)
2604 bool LLParser::ParsePreallocated(Type *&Result) {
2605   return ParseRequiredTypeAttr(Result, lltok::kw_preallocated);
2606 }
2607 
2608 /// ParseByRef
2609 ///   ::= byref(<type>)
2610 bool LLParser::ParseByRef(Type *&Result) {
2611   return ParseRequiredTypeAttr(Result, lltok::kw_byref);
2612 }
2613 
2614 /// ParseOptionalOperandBundles
2615 ///    ::= /*empty*/
2616 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2617 ///
2618 /// OperandBundle
2619 ///    ::= bundle-tag '(' ')'
2620 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2621 ///
2622 /// bundle-tag ::= String Constant
2623 bool LLParser::ParseOptionalOperandBundles(
2624     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2625   LocTy BeginLoc = Lex.getLoc();
2626   if (!EatIfPresent(lltok::lsquare))
2627     return false;
2628 
2629   while (Lex.getKind() != lltok::rsquare) {
2630     // If this isn't the first operand bundle, we need a comma.
2631     if (!BundleList.empty() &&
2632         ParseToken(lltok::comma, "expected ',' in input list"))
2633       return true;
2634 
2635     std::string Tag;
2636     if (ParseStringConstant(Tag))
2637       return true;
2638 
2639     if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2640       return true;
2641 
2642     std::vector<Value *> Inputs;
2643     while (Lex.getKind() != lltok::rparen) {
2644       // If this isn't the first input, we need a comma.
2645       if (!Inputs.empty() &&
2646           ParseToken(lltok::comma, "expected ',' in input list"))
2647         return true;
2648 
2649       Type *Ty = nullptr;
2650       Value *Input = nullptr;
2651       if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2652         return true;
2653       Inputs.push_back(Input);
2654     }
2655 
2656     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2657 
2658     Lex.Lex(); // Lex the ')'.
2659   }
2660 
2661   if (BundleList.empty())
2662     return Error(BeginLoc, "operand bundle set must not be empty");
2663 
2664   Lex.Lex(); // Lex the ']'.
2665   return false;
2666 }
2667 
2668 /// ParseArgumentList - Parse the argument list for a function type or function
2669 /// prototype.
2670 ///   ::= '(' ArgTypeListI ')'
2671 /// ArgTypeListI
2672 ///   ::= /*empty*/
2673 ///   ::= '...'
2674 ///   ::= ArgTypeList ',' '...'
2675 ///   ::= ArgType (',' ArgType)*
2676 ///
2677 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2678                                  bool &isVarArg){
2679   unsigned CurValID = 0;
2680   isVarArg = false;
2681   assert(Lex.getKind() == lltok::lparen);
2682   Lex.Lex(); // eat the (.
2683 
2684   if (Lex.getKind() == lltok::rparen) {
2685     // empty
2686   } else if (Lex.getKind() == lltok::dotdotdot) {
2687     isVarArg = true;
2688     Lex.Lex();
2689   } else {
2690     LocTy TypeLoc = Lex.getLoc();
2691     Type *ArgTy = nullptr;
2692     AttrBuilder Attrs;
2693     std::string Name;
2694 
2695     if (ParseType(ArgTy) ||
2696         ParseOptionalParamAttrs(Attrs)) return true;
2697 
2698     if (ArgTy->isVoidTy())
2699       return Error(TypeLoc, "argument can not have void type");
2700 
2701     if (Lex.getKind() == lltok::LocalVar) {
2702       Name = Lex.getStrVal();
2703       Lex.Lex();
2704     } else if (Lex.getKind() == lltok::LocalVarID) {
2705       if (Lex.getUIntVal() != CurValID)
2706         return Error(TypeLoc, "argument expected to be numbered '%" +
2707                                   Twine(CurValID) + "'");
2708       ++CurValID;
2709       Lex.Lex();
2710     }
2711 
2712     if (!FunctionType::isValidArgumentType(ArgTy))
2713       return Error(TypeLoc, "invalid type for function argument");
2714 
2715     ArgList.emplace_back(TypeLoc, ArgTy,
2716                          AttributeSet::get(ArgTy->getContext(), Attrs),
2717                          std::move(Name));
2718 
2719     while (EatIfPresent(lltok::comma)) {
2720       // Handle ... at end of arg list.
2721       if (EatIfPresent(lltok::dotdotdot)) {
2722         isVarArg = true;
2723         break;
2724       }
2725 
2726       // Otherwise must be an argument type.
2727       TypeLoc = Lex.getLoc();
2728       if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2729 
2730       if (ArgTy->isVoidTy())
2731         return Error(TypeLoc, "argument can not have void type");
2732 
2733       if (Lex.getKind() == lltok::LocalVar) {
2734         Name = Lex.getStrVal();
2735         Lex.Lex();
2736       } else {
2737         if (Lex.getKind() == lltok::LocalVarID) {
2738           if (Lex.getUIntVal() != CurValID)
2739             return Error(TypeLoc, "argument expected to be numbered '%" +
2740                                       Twine(CurValID) + "'");
2741           Lex.Lex();
2742         }
2743         ++CurValID;
2744         Name = "";
2745       }
2746 
2747       if (!ArgTy->isFirstClassType())
2748         return Error(TypeLoc, "invalid type for function argument");
2749 
2750       ArgList.emplace_back(TypeLoc, ArgTy,
2751                            AttributeSet::get(ArgTy->getContext(), Attrs),
2752                            std::move(Name));
2753     }
2754   }
2755 
2756   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2757 }
2758 
2759 /// ParseFunctionType
2760 ///  ::= Type ArgumentList OptionalAttrs
2761 bool LLParser::ParseFunctionType(Type *&Result) {
2762   assert(Lex.getKind() == lltok::lparen);
2763 
2764   if (!FunctionType::isValidReturnType(Result))
2765     return TokError("invalid function return type");
2766 
2767   SmallVector<ArgInfo, 8> ArgList;
2768   bool isVarArg;
2769   if (ParseArgumentList(ArgList, isVarArg))
2770     return true;
2771 
2772   // Reject names on the arguments lists.
2773   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2774     if (!ArgList[i].Name.empty())
2775       return Error(ArgList[i].Loc, "argument name invalid in function type");
2776     if (ArgList[i].Attrs.hasAttributes())
2777       return Error(ArgList[i].Loc,
2778                    "argument attributes invalid in function type");
2779   }
2780 
2781   SmallVector<Type*, 16> ArgListTy;
2782   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2783     ArgListTy.push_back(ArgList[i].Ty);
2784 
2785   Result = FunctionType::get(Result, ArgListTy, isVarArg);
2786   return false;
2787 }
2788 
2789 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2790 /// other structs.
2791 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2792   SmallVector<Type*, 8> Elts;
2793   if (ParseStructBody(Elts)) return true;
2794 
2795   Result = StructType::get(Context, Elts, Packed);
2796   return false;
2797 }
2798 
2799 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2800 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2801                                      std::pair<Type*, LocTy> &Entry,
2802                                      Type *&ResultTy) {
2803   // If the type was already defined, diagnose the redefinition.
2804   if (Entry.first && !Entry.second.isValid())
2805     return Error(TypeLoc, "redefinition of type");
2806 
2807   // If we have opaque, just return without filling in the definition for the
2808   // struct.  This counts as a definition as far as the .ll file goes.
2809   if (EatIfPresent(lltok::kw_opaque)) {
2810     // This type is being defined, so clear the location to indicate this.
2811     Entry.second = SMLoc();
2812 
2813     // If this type number has never been uttered, create it.
2814     if (!Entry.first)
2815       Entry.first = StructType::create(Context, Name);
2816     ResultTy = Entry.first;
2817     return false;
2818   }
2819 
2820   // If the type starts with '<', then it is either a packed struct or a vector.
2821   bool isPacked = EatIfPresent(lltok::less);
2822 
2823   // If we don't have a struct, then we have a random type alias, which we
2824   // accept for compatibility with old files.  These types are not allowed to be
2825   // forward referenced and not allowed to be recursive.
2826   if (Lex.getKind() != lltok::lbrace) {
2827     if (Entry.first)
2828       return Error(TypeLoc, "forward references to non-struct type");
2829 
2830     ResultTy = nullptr;
2831     if (isPacked)
2832       return ParseArrayVectorType(ResultTy, true);
2833     return ParseType(ResultTy);
2834   }
2835 
2836   // This type is being defined, so clear the location to indicate this.
2837   Entry.second = SMLoc();
2838 
2839   // If this type number has never been uttered, create it.
2840   if (!Entry.first)
2841     Entry.first = StructType::create(Context, Name);
2842 
2843   StructType *STy = cast<StructType>(Entry.first);
2844 
2845   SmallVector<Type*, 8> Body;
2846   if (ParseStructBody(Body) ||
2847       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2848     return true;
2849 
2850   STy->setBody(Body, isPacked);
2851   ResultTy = STy;
2852   return false;
2853 }
2854 
2855 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2856 ///   StructType
2857 ///     ::= '{' '}'
2858 ///     ::= '{' Type (',' Type)* '}'
2859 ///     ::= '<' '{' '}' '>'
2860 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2861 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2862   assert(Lex.getKind() == lltok::lbrace);
2863   Lex.Lex(); // Consume the '{'
2864 
2865   // Handle the empty struct.
2866   if (EatIfPresent(lltok::rbrace))
2867     return false;
2868 
2869   LocTy EltTyLoc = Lex.getLoc();
2870   Type *Ty = nullptr;
2871   if (ParseType(Ty)) return true;
2872   Body.push_back(Ty);
2873 
2874   if (!StructType::isValidElementType(Ty))
2875     return Error(EltTyLoc, "invalid element type for struct");
2876 
2877   while (EatIfPresent(lltok::comma)) {
2878     EltTyLoc = Lex.getLoc();
2879     if (ParseType(Ty)) return true;
2880 
2881     if (!StructType::isValidElementType(Ty))
2882       return Error(EltTyLoc, "invalid element type for struct");
2883 
2884     Body.push_back(Ty);
2885   }
2886 
2887   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2888 }
2889 
2890 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2891 /// token has already been consumed.
2892 ///   Type
2893 ///     ::= '[' APSINTVAL 'x' Types ']'
2894 ///     ::= '<' APSINTVAL 'x' Types '>'
2895 ///     ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
2896 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2897   bool Scalable = false;
2898 
2899   if (isVector && Lex.getKind() == lltok::kw_vscale) {
2900     Lex.Lex(); // consume the 'vscale'
2901     if (ParseToken(lltok::kw_x, "expected 'x' after vscale"))
2902       return true;
2903 
2904     Scalable = true;
2905   }
2906 
2907   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2908       Lex.getAPSIntVal().getBitWidth() > 64)
2909     return TokError("expected number in address space");
2910 
2911   LocTy SizeLoc = Lex.getLoc();
2912   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2913   Lex.Lex();
2914 
2915   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2916       return true;
2917 
2918   LocTy TypeLoc = Lex.getLoc();
2919   Type *EltTy = nullptr;
2920   if (ParseType(EltTy)) return true;
2921 
2922   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2923                  "expected end of sequential type"))
2924     return true;
2925 
2926   if (isVector) {
2927     if (Size == 0)
2928       return Error(SizeLoc, "zero element vector is illegal");
2929     if ((unsigned)Size != Size)
2930       return Error(SizeLoc, "size too large for vector");
2931     if (!VectorType::isValidElementType(EltTy))
2932       return Error(TypeLoc, "invalid vector element type");
2933     Result = VectorType::get(EltTy, unsigned(Size), Scalable);
2934   } else {
2935     if (!ArrayType::isValidElementType(EltTy))
2936       return Error(TypeLoc, "invalid array element type");
2937     Result = ArrayType::get(EltTy, Size);
2938   }
2939   return false;
2940 }
2941 
2942 //===----------------------------------------------------------------------===//
2943 // Function Semantic Analysis.
2944 //===----------------------------------------------------------------------===//
2945 
2946 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2947                                              int functionNumber)
2948   : P(p), F(f), FunctionNumber(functionNumber) {
2949 
2950   // Insert unnamed arguments into the NumberedVals list.
2951   for (Argument &A : F.args())
2952     if (!A.hasName())
2953       NumberedVals.push_back(&A);
2954 }
2955 
2956 LLParser::PerFunctionState::~PerFunctionState() {
2957   // If there were any forward referenced non-basicblock values, delete them.
2958 
2959   for (const auto &P : ForwardRefVals) {
2960     if (isa<BasicBlock>(P.second.first))
2961       continue;
2962     P.second.first->replaceAllUsesWith(
2963         UndefValue::get(P.second.first->getType()));
2964     P.second.first->deleteValue();
2965   }
2966 
2967   for (const auto &P : ForwardRefValIDs) {
2968     if (isa<BasicBlock>(P.second.first))
2969       continue;
2970     P.second.first->replaceAllUsesWith(
2971         UndefValue::get(P.second.first->getType()));
2972     P.second.first->deleteValue();
2973   }
2974 }
2975 
2976 bool LLParser::PerFunctionState::FinishFunction() {
2977   if (!ForwardRefVals.empty())
2978     return P.Error(ForwardRefVals.begin()->second.second,
2979                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2980                    "'");
2981   if (!ForwardRefValIDs.empty())
2982     return P.Error(ForwardRefValIDs.begin()->second.second,
2983                    "use of undefined value '%" +
2984                    Twine(ForwardRefValIDs.begin()->first) + "'");
2985   return false;
2986 }
2987 
2988 /// GetVal - Get a value with the specified name or ID, creating a
2989 /// forward reference record if needed.  This can return null if the value
2990 /// exists but does not have the right type.
2991 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2992                                           LocTy Loc, bool IsCall) {
2993   // Look this name up in the normal function symbol table.
2994   Value *Val = F.getValueSymbolTable()->lookup(Name);
2995 
2996   // If this is a forward reference for the value, see if we already created a
2997   // forward ref record.
2998   if (!Val) {
2999     auto I = ForwardRefVals.find(Name);
3000     if (I != ForwardRefVals.end())
3001       Val = I->second.first;
3002   }
3003 
3004   // If we have the value in the symbol table or fwd-ref table, return it.
3005   if (Val)
3006     return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall);
3007 
3008   // Don't make placeholders with invalid type.
3009   if (!Ty->isFirstClassType()) {
3010     P.Error(Loc, "invalid use of a non-first-class type");
3011     return nullptr;
3012   }
3013 
3014   // Otherwise, create a new forward reference for this value and remember it.
3015   Value *FwdVal;
3016   if (Ty->isLabelTy()) {
3017     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
3018   } else {
3019     FwdVal = new Argument(Ty, Name);
3020   }
3021 
3022   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
3023   return FwdVal;
3024 }
3025 
3026 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc,
3027                                           bool IsCall) {
3028   // Look this name up in the normal function symbol table.
3029   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
3030 
3031   // If this is a forward reference for the value, see if we already created a
3032   // forward ref record.
3033   if (!Val) {
3034     auto I = ForwardRefValIDs.find(ID);
3035     if (I != ForwardRefValIDs.end())
3036       Val = I->second.first;
3037   }
3038 
3039   // If we have the value in the symbol table or fwd-ref table, return it.
3040   if (Val)
3041     return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall);
3042 
3043   if (!Ty->isFirstClassType()) {
3044     P.Error(Loc, "invalid use of a non-first-class type");
3045     return nullptr;
3046   }
3047 
3048   // Otherwise, create a new forward reference for this value and remember it.
3049   Value *FwdVal;
3050   if (Ty->isLabelTy()) {
3051     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
3052   } else {
3053     FwdVal = new Argument(Ty);
3054   }
3055 
3056   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
3057   return FwdVal;
3058 }
3059 
3060 /// SetInstName - After an instruction is parsed and inserted into its
3061 /// basic block, this installs its name.
3062 bool LLParser::PerFunctionState::SetInstName(int NameID,
3063                                              const std::string &NameStr,
3064                                              LocTy NameLoc, Instruction *Inst) {
3065   // If this instruction has void type, it cannot have a name or ID specified.
3066   if (Inst->getType()->isVoidTy()) {
3067     if (NameID != -1 || !NameStr.empty())
3068       return P.Error(NameLoc, "instructions returning void cannot have a name");
3069     return false;
3070   }
3071 
3072   // If this was a numbered instruction, verify that the instruction is the
3073   // expected value and resolve any forward references.
3074   if (NameStr.empty()) {
3075     // If neither a name nor an ID was specified, just use the next ID.
3076     if (NameID == -1)
3077       NameID = NumberedVals.size();
3078 
3079     if (unsigned(NameID) != NumberedVals.size())
3080       return P.Error(NameLoc, "instruction expected to be numbered '%" +
3081                      Twine(NumberedVals.size()) + "'");
3082 
3083     auto FI = ForwardRefValIDs.find(NameID);
3084     if (FI != ForwardRefValIDs.end()) {
3085       Value *Sentinel = FI->second.first;
3086       if (Sentinel->getType() != Inst->getType())
3087         return P.Error(NameLoc, "instruction forward referenced with type '" +
3088                        getTypeString(FI->second.first->getType()) + "'");
3089 
3090       Sentinel->replaceAllUsesWith(Inst);
3091       Sentinel->deleteValue();
3092       ForwardRefValIDs.erase(FI);
3093     }
3094 
3095     NumberedVals.push_back(Inst);
3096     return false;
3097   }
3098 
3099   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
3100   auto FI = ForwardRefVals.find(NameStr);
3101   if (FI != ForwardRefVals.end()) {
3102     Value *Sentinel = FI->second.first;
3103     if (Sentinel->getType() != Inst->getType())
3104       return P.Error(NameLoc, "instruction forward referenced with type '" +
3105                      getTypeString(FI->second.first->getType()) + "'");
3106 
3107     Sentinel->replaceAllUsesWith(Inst);
3108     Sentinel->deleteValue();
3109     ForwardRefVals.erase(FI);
3110   }
3111 
3112   // Set the name on the instruction.
3113   Inst->setName(NameStr);
3114 
3115   if (Inst->getName() != NameStr)
3116     return P.Error(NameLoc, "multiple definition of local value named '" +
3117                    NameStr + "'");
3118   return false;
3119 }
3120 
3121 /// GetBB - Get a basic block with the specified name or ID, creating a
3122 /// forward reference record if needed.
3123 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
3124                                               LocTy Loc) {
3125   return dyn_cast_or_null<BasicBlock>(
3126       GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3127 }
3128 
3129 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
3130   return dyn_cast_or_null<BasicBlock>(
3131       GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false));
3132 }
3133 
3134 /// DefineBB - Define the specified basic block, which is either named or
3135 /// unnamed.  If there is an error, this returns null otherwise it returns
3136 /// the block being defined.
3137 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
3138                                                  int NameID, LocTy Loc) {
3139   BasicBlock *BB;
3140   if (Name.empty()) {
3141     if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
3142       P.Error(Loc, "label expected to be numbered '" +
3143                        Twine(NumberedVals.size()) + "'");
3144       return nullptr;
3145     }
3146     BB = GetBB(NumberedVals.size(), Loc);
3147     if (!BB) {
3148       P.Error(Loc, "unable to create block numbered '" +
3149                        Twine(NumberedVals.size()) + "'");
3150       return nullptr;
3151     }
3152   } else {
3153     BB = GetBB(Name, Loc);
3154     if (!BB) {
3155       P.Error(Loc, "unable to create block named '" + Name + "'");
3156       return nullptr;
3157     }
3158   }
3159 
3160   // Move the block to the end of the function.  Forward ref'd blocks are
3161   // inserted wherever they happen to be referenced.
3162   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
3163 
3164   // Remove the block from forward ref sets.
3165   if (Name.empty()) {
3166     ForwardRefValIDs.erase(NumberedVals.size());
3167     NumberedVals.push_back(BB);
3168   } else {
3169     // BB forward references are already in the function symbol table.
3170     ForwardRefVals.erase(Name);
3171   }
3172 
3173   return BB;
3174 }
3175 
3176 //===----------------------------------------------------------------------===//
3177 // Constants.
3178 //===----------------------------------------------------------------------===//
3179 
3180 /// ParseValID - Parse an abstract value that doesn't necessarily have a
3181 /// type implied.  For example, if we parse "4" we don't know what integer type
3182 /// it has.  The value will later be combined with its type and checked for
3183 /// sanity.  PFS is used to convert function-local operands of metadata (since
3184 /// metadata operands are not just parsed here but also converted to values).
3185 /// PFS can be null when we are not parsing metadata values inside a function.
3186 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
3187   ID.Loc = Lex.getLoc();
3188   switch (Lex.getKind()) {
3189   default: return TokError("expected value token");
3190   case lltok::GlobalID:  // @42
3191     ID.UIntVal = Lex.getUIntVal();
3192     ID.Kind = ValID::t_GlobalID;
3193     break;
3194   case lltok::GlobalVar:  // @foo
3195     ID.StrVal = Lex.getStrVal();
3196     ID.Kind = ValID::t_GlobalName;
3197     break;
3198   case lltok::LocalVarID:  // %42
3199     ID.UIntVal = Lex.getUIntVal();
3200     ID.Kind = ValID::t_LocalID;
3201     break;
3202   case lltok::LocalVar:  // %foo
3203     ID.StrVal = Lex.getStrVal();
3204     ID.Kind = ValID::t_LocalName;
3205     break;
3206   case lltok::APSInt:
3207     ID.APSIntVal = Lex.getAPSIntVal();
3208     ID.Kind = ValID::t_APSInt;
3209     break;
3210   case lltok::APFloat:
3211     ID.APFloatVal = Lex.getAPFloatVal();
3212     ID.Kind = ValID::t_APFloat;
3213     break;
3214   case lltok::kw_true:
3215     ID.ConstantVal = ConstantInt::getTrue(Context);
3216     ID.Kind = ValID::t_Constant;
3217     break;
3218   case lltok::kw_false:
3219     ID.ConstantVal = ConstantInt::getFalse(Context);
3220     ID.Kind = ValID::t_Constant;
3221     break;
3222   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3223   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3224   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3225   case lltok::kw_none: ID.Kind = ValID::t_None; break;
3226 
3227   case lltok::lbrace: {
3228     // ValID ::= '{' ConstVector '}'
3229     Lex.Lex();
3230     SmallVector<Constant*, 16> Elts;
3231     if (ParseGlobalValueVector(Elts) ||
3232         ParseToken(lltok::rbrace, "expected end of struct constant"))
3233       return true;
3234 
3235     ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3236     ID.UIntVal = Elts.size();
3237     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3238            Elts.size() * sizeof(Elts[0]));
3239     ID.Kind = ValID::t_ConstantStruct;
3240     return false;
3241   }
3242   case lltok::less: {
3243     // ValID ::= '<' ConstVector '>'         --> Vector.
3244     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3245     Lex.Lex();
3246     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3247 
3248     SmallVector<Constant*, 16> Elts;
3249     LocTy FirstEltLoc = Lex.getLoc();
3250     if (ParseGlobalValueVector(Elts) ||
3251         (isPackedStruct &&
3252          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
3253         ParseToken(lltok::greater, "expected end of constant"))
3254       return true;
3255 
3256     if (isPackedStruct) {
3257       ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3258       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3259              Elts.size() * sizeof(Elts[0]));
3260       ID.UIntVal = Elts.size();
3261       ID.Kind = ValID::t_PackedConstantStruct;
3262       return false;
3263     }
3264 
3265     if (Elts.empty())
3266       return Error(ID.Loc, "constant vector must not be empty");
3267 
3268     if (!Elts[0]->getType()->isIntegerTy() &&
3269         !Elts[0]->getType()->isFloatingPointTy() &&
3270         !Elts[0]->getType()->isPointerTy())
3271       return Error(FirstEltLoc,
3272             "vector elements must have integer, pointer or floating point type");
3273 
3274     // Verify that all the vector elements have the same type.
3275     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3276       if (Elts[i]->getType() != Elts[0]->getType())
3277         return Error(FirstEltLoc,
3278                      "vector element #" + Twine(i) +
3279                     " is not of type '" + getTypeString(Elts[0]->getType()));
3280 
3281     ID.ConstantVal = ConstantVector::get(Elts);
3282     ID.Kind = ValID::t_Constant;
3283     return false;
3284   }
3285   case lltok::lsquare: {   // Array Constant
3286     Lex.Lex();
3287     SmallVector<Constant*, 16> Elts;
3288     LocTy FirstEltLoc = Lex.getLoc();
3289     if (ParseGlobalValueVector(Elts) ||
3290         ParseToken(lltok::rsquare, "expected end of array constant"))
3291       return true;
3292 
3293     // Handle empty element.
3294     if (Elts.empty()) {
3295       // Use undef instead of an array because it's inconvenient to determine
3296       // the element type at this point, there being no elements to examine.
3297       ID.Kind = ValID::t_EmptyArray;
3298       return false;
3299     }
3300 
3301     if (!Elts[0]->getType()->isFirstClassType())
3302       return Error(FirstEltLoc, "invalid array element type: " +
3303                    getTypeString(Elts[0]->getType()));
3304 
3305     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3306 
3307     // Verify all elements are correct type!
3308     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3309       if (Elts[i]->getType() != Elts[0]->getType())
3310         return Error(FirstEltLoc,
3311                      "array element #" + Twine(i) +
3312                      " is not of type '" + getTypeString(Elts[0]->getType()));
3313     }
3314 
3315     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3316     ID.Kind = ValID::t_Constant;
3317     return false;
3318   }
3319   case lltok::kw_c:  // c "foo"
3320     Lex.Lex();
3321     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3322                                                   false);
3323     if (ParseToken(lltok::StringConstant, "expected string")) return true;
3324     ID.Kind = ValID::t_Constant;
3325     return false;
3326 
3327   case lltok::kw_asm: {
3328     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3329     //             STRINGCONSTANT
3330     bool HasSideEffect, AlignStack, AsmDialect;
3331     Lex.Lex();
3332     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3333         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3334         ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3335         ParseStringConstant(ID.StrVal) ||
3336         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
3337         ParseToken(lltok::StringConstant, "expected constraint string"))
3338       return true;
3339     ID.StrVal2 = Lex.getStrVal();
3340     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
3341       (unsigned(AsmDialect)<<2);
3342     ID.Kind = ValID::t_InlineAsm;
3343     return false;
3344   }
3345 
3346   case lltok::kw_blockaddress: {
3347     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3348     Lex.Lex();
3349 
3350     ValID Fn, Label;
3351 
3352     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
3353         ParseValID(Fn) ||
3354         ParseToken(lltok::comma, "expected comma in block address expression")||
3355         ParseValID(Label) ||
3356         ParseToken(lltok::rparen, "expected ')' in block address expression"))
3357       return true;
3358 
3359     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3360       return Error(Fn.Loc, "expected function name in blockaddress");
3361     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3362       return Error(Label.Loc, "expected basic block name in blockaddress");
3363 
3364     // Try to find the function (but skip it if it's forward-referenced).
3365     GlobalValue *GV = nullptr;
3366     if (Fn.Kind == ValID::t_GlobalID) {
3367       if (Fn.UIntVal < NumberedVals.size())
3368         GV = NumberedVals[Fn.UIntVal];
3369     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3370       GV = M->getNamedValue(Fn.StrVal);
3371     }
3372     Function *F = nullptr;
3373     if (GV) {
3374       // Confirm that it's actually a function with a definition.
3375       if (!isa<Function>(GV))
3376         return Error(Fn.Loc, "expected function name in blockaddress");
3377       F = cast<Function>(GV);
3378       if (F->isDeclaration())
3379         return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
3380     }
3381 
3382     if (!F) {
3383       // Make a global variable as a placeholder for this reference.
3384       GlobalValue *&FwdRef =
3385           ForwardRefBlockAddresses.insert(std::make_pair(
3386                                               std::move(Fn),
3387                                               std::map<ValID, GlobalValue *>()))
3388               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3389               .first->second;
3390       if (!FwdRef)
3391         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
3392                                     GlobalValue::InternalLinkage, nullptr, "");
3393       ID.ConstantVal = FwdRef;
3394       ID.Kind = ValID::t_Constant;
3395       return false;
3396     }
3397 
3398     // We found the function; now find the basic block.  Don't use PFS, since we
3399     // might be inside a constant expression.
3400     BasicBlock *BB;
3401     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3402       if (Label.Kind == ValID::t_LocalID)
3403         BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
3404       else
3405         BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
3406       if (!BB)
3407         return Error(Label.Loc, "referenced value is not a basic block");
3408     } else {
3409       if (Label.Kind == ValID::t_LocalID)
3410         return Error(Label.Loc, "cannot take address of numeric label after "
3411                                 "the function is defined");
3412       BB = dyn_cast_or_null<BasicBlock>(
3413           F->getValueSymbolTable()->lookup(Label.StrVal));
3414       if (!BB)
3415         return Error(Label.Loc, "referenced value is not a basic block");
3416     }
3417 
3418     ID.ConstantVal = BlockAddress::get(F, BB);
3419     ID.Kind = ValID::t_Constant;
3420     return false;
3421   }
3422 
3423   case lltok::kw_trunc:
3424   case lltok::kw_zext:
3425   case lltok::kw_sext:
3426   case lltok::kw_fptrunc:
3427   case lltok::kw_fpext:
3428   case lltok::kw_bitcast:
3429   case lltok::kw_addrspacecast:
3430   case lltok::kw_uitofp:
3431   case lltok::kw_sitofp:
3432   case lltok::kw_fptoui:
3433   case lltok::kw_fptosi:
3434   case lltok::kw_inttoptr:
3435   case lltok::kw_ptrtoint: {
3436     unsigned Opc = Lex.getUIntVal();
3437     Type *DestTy = nullptr;
3438     Constant *SrcVal;
3439     Lex.Lex();
3440     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3441         ParseGlobalTypeAndValue(SrcVal) ||
3442         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3443         ParseType(DestTy) ||
3444         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3445       return true;
3446     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3447       return Error(ID.Loc, "invalid cast opcode for cast from '" +
3448                    getTypeString(SrcVal->getType()) + "' to '" +
3449                    getTypeString(DestTy) + "'");
3450     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3451                                                  SrcVal, DestTy);
3452     ID.Kind = ValID::t_Constant;
3453     return false;
3454   }
3455   case lltok::kw_extractvalue: {
3456     Lex.Lex();
3457     Constant *Val;
3458     SmallVector<unsigned, 4> Indices;
3459     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
3460         ParseGlobalTypeAndValue(Val) ||
3461         ParseIndexList(Indices) ||
3462         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3463       return true;
3464 
3465     if (!Val->getType()->isAggregateType())
3466       return Error(ID.Loc, "extractvalue operand must be aggregate type");
3467     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3468       return Error(ID.Loc, "invalid indices for extractvalue");
3469     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3470     ID.Kind = ValID::t_Constant;
3471     return false;
3472   }
3473   case lltok::kw_insertvalue: {
3474     Lex.Lex();
3475     Constant *Val0, *Val1;
3476     SmallVector<unsigned, 4> Indices;
3477     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
3478         ParseGlobalTypeAndValue(Val0) ||
3479         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
3480         ParseGlobalTypeAndValue(Val1) ||
3481         ParseIndexList(Indices) ||
3482         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3483       return true;
3484     if (!Val0->getType()->isAggregateType())
3485       return Error(ID.Loc, "insertvalue operand must be aggregate type");
3486     Type *IndexedType =
3487         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3488     if (!IndexedType)
3489       return Error(ID.Loc, "invalid indices for insertvalue");
3490     if (IndexedType != Val1->getType())
3491       return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3492                                getTypeString(Val1->getType()) +
3493                                "' instead of '" + getTypeString(IndexedType) +
3494                                "'");
3495     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3496     ID.Kind = ValID::t_Constant;
3497     return false;
3498   }
3499   case lltok::kw_icmp:
3500   case lltok::kw_fcmp: {
3501     unsigned PredVal, Opc = Lex.getUIntVal();
3502     Constant *Val0, *Val1;
3503     Lex.Lex();
3504     if (ParseCmpPredicate(PredVal, Opc) ||
3505         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3506         ParseGlobalTypeAndValue(Val0) ||
3507         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
3508         ParseGlobalTypeAndValue(Val1) ||
3509         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3510       return true;
3511 
3512     if (Val0->getType() != Val1->getType())
3513       return Error(ID.Loc, "compare operands must have the same type");
3514 
3515     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3516 
3517     if (Opc == Instruction::FCmp) {
3518       if (!Val0->getType()->isFPOrFPVectorTy())
3519         return Error(ID.Loc, "fcmp requires floating point operands");
3520       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3521     } else {
3522       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3523       if (!Val0->getType()->isIntOrIntVectorTy() &&
3524           !Val0->getType()->isPtrOrPtrVectorTy())
3525         return Error(ID.Loc, "icmp requires pointer or integer operands");
3526       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3527     }
3528     ID.Kind = ValID::t_Constant;
3529     return false;
3530   }
3531 
3532   // Unary Operators.
3533   case lltok::kw_fneg: {
3534     unsigned Opc = Lex.getUIntVal();
3535     Constant *Val;
3536     Lex.Lex();
3537     if (ParseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3538         ParseGlobalTypeAndValue(Val) ||
3539         ParseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3540       return true;
3541 
3542     // Check that the type is valid for the operator.
3543     switch (Opc) {
3544     case Instruction::FNeg:
3545       if (!Val->getType()->isFPOrFPVectorTy())
3546         return Error(ID.Loc, "constexpr requires fp operands");
3547       break;
3548     default: llvm_unreachable("Unknown unary operator!");
3549     }
3550     unsigned Flags = 0;
3551     Constant *C = ConstantExpr::get(Opc, Val, Flags);
3552     ID.ConstantVal = C;
3553     ID.Kind = ValID::t_Constant;
3554     return false;
3555   }
3556   // Binary Operators.
3557   case lltok::kw_add:
3558   case lltok::kw_fadd:
3559   case lltok::kw_sub:
3560   case lltok::kw_fsub:
3561   case lltok::kw_mul:
3562   case lltok::kw_fmul:
3563   case lltok::kw_udiv:
3564   case lltok::kw_sdiv:
3565   case lltok::kw_fdiv:
3566   case lltok::kw_urem:
3567   case lltok::kw_srem:
3568   case lltok::kw_frem:
3569   case lltok::kw_shl:
3570   case lltok::kw_lshr:
3571   case lltok::kw_ashr: {
3572     bool NUW = false;
3573     bool NSW = false;
3574     bool Exact = false;
3575     unsigned Opc = Lex.getUIntVal();
3576     Constant *Val0, *Val1;
3577     Lex.Lex();
3578     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3579         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3580       if (EatIfPresent(lltok::kw_nuw))
3581         NUW = true;
3582       if (EatIfPresent(lltok::kw_nsw)) {
3583         NSW = true;
3584         if (EatIfPresent(lltok::kw_nuw))
3585           NUW = true;
3586       }
3587     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3588                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3589       if (EatIfPresent(lltok::kw_exact))
3590         Exact = true;
3591     }
3592     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3593         ParseGlobalTypeAndValue(Val0) ||
3594         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
3595         ParseGlobalTypeAndValue(Val1) ||
3596         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3597       return true;
3598     if (Val0->getType() != Val1->getType())
3599       return Error(ID.Loc, "operands of constexpr must have same type");
3600     // Check that the type is valid for the operator.
3601     switch (Opc) {
3602     case Instruction::Add:
3603     case Instruction::Sub:
3604     case Instruction::Mul:
3605     case Instruction::UDiv:
3606     case Instruction::SDiv:
3607     case Instruction::URem:
3608     case Instruction::SRem:
3609     case Instruction::Shl:
3610     case Instruction::AShr:
3611     case Instruction::LShr:
3612       if (!Val0->getType()->isIntOrIntVectorTy())
3613         return Error(ID.Loc, "constexpr requires integer operands");
3614       break;
3615     case Instruction::FAdd:
3616     case Instruction::FSub:
3617     case Instruction::FMul:
3618     case Instruction::FDiv:
3619     case Instruction::FRem:
3620       if (!Val0->getType()->isFPOrFPVectorTy())
3621         return Error(ID.Loc, "constexpr requires fp operands");
3622       break;
3623     default: llvm_unreachable("Unknown binary operator!");
3624     }
3625     unsigned Flags = 0;
3626     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3627     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3628     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3629     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3630     ID.ConstantVal = C;
3631     ID.Kind = ValID::t_Constant;
3632     return false;
3633   }
3634 
3635   // Logical Operations
3636   case lltok::kw_and:
3637   case lltok::kw_or:
3638   case lltok::kw_xor: {
3639     unsigned Opc = Lex.getUIntVal();
3640     Constant *Val0, *Val1;
3641     Lex.Lex();
3642     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3643         ParseGlobalTypeAndValue(Val0) ||
3644         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3645         ParseGlobalTypeAndValue(Val1) ||
3646         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3647       return true;
3648     if (Val0->getType() != Val1->getType())
3649       return Error(ID.Loc, "operands of constexpr must have same type");
3650     if (!Val0->getType()->isIntOrIntVectorTy())
3651       return Error(ID.Loc,
3652                    "constexpr requires integer or integer vector operands");
3653     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3654     ID.Kind = ValID::t_Constant;
3655     return false;
3656   }
3657 
3658   case lltok::kw_getelementptr:
3659   case lltok::kw_shufflevector:
3660   case lltok::kw_insertelement:
3661   case lltok::kw_extractelement:
3662   case lltok::kw_select: {
3663     unsigned Opc = Lex.getUIntVal();
3664     SmallVector<Constant*, 16> Elts;
3665     bool InBounds = false;
3666     Type *Ty;
3667     Lex.Lex();
3668 
3669     if (Opc == Instruction::GetElementPtr)
3670       InBounds = EatIfPresent(lltok::kw_inbounds);
3671 
3672     if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3673       return true;
3674 
3675     LocTy ExplicitTypeLoc = Lex.getLoc();
3676     if (Opc == Instruction::GetElementPtr) {
3677       if (ParseType(Ty) ||
3678           ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3679         return true;
3680     }
3681 
3682     Optional<unsigned> InRangeOp;
3683     if (ParseGlobalValueVector(
3684             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3685         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3686       return true;
3687 
3688     if (Opc == Instruction::GetElementPtr) {
3689       if (Elts.size() == 0 ||
3690           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3691         return Error(ID.Loc, "base of getelementptr must be a pointer");
3692 
3693       Type *BaseType = Elts[0]->getType();
3694       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3695       if (Ty != BasePointerType->getElementType())
3696         return Error(
3697             ExplicitTypeLoc,
3698             "explicit pointee type doesn't match operand's pointee type");
3699 
3700       unsigned GEPWidth =
3701           BaseType->isVectorTy()
3702               ? cast<FixedVectorType>(BaseType)->getNumElements()
3703               : 0;
3704 
3705       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3706       for (Constant *Val : Indices) {
3707         Type *ValTy = Val->getType();
3708         if (!ValTy->isIntOrIntVectorTy())
3709           return Error(ID.Loc, "getelementptr index must be an integer");
3710         if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) {
3711           unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements();
3712           if (GEPWidth && (ValNumEl != GEPWidth))
3713             return Error(
3714                 ID.Loc,
3715                 "getelementptr vector index has a wrong number of elements");
3716           // GEPWidth may have been unknown because the base is a scalar,
3717           // but it is known now.
3718           GEPWidth = ValNumEl;
3719         }
3720       }
3721 
3722       SmallPtrSet<Type*, 4> Visited;
3723       if (!Indices.empty() && !Ty->isSized(&Visited))
3724         return Error(ID.Loc, "base element of getelementptr must be sized");
3725 
3726       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3727         return Error(ID.Loc, "invalid getelementptr indices");
3728 
3729       if (InRangeOp) {
3730         if (*InRangeOp == 0)
3731           return Error(ID.Loc,
3732                        "inrange keyword may not appear on pointer operand");
3733         --*InRangeOp;
3734       }
3735 
3736       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3737                                                       InBounds, InRangeOp);
3738     } else if (Opc == Instruction::Select) {
3739       if (Elts.size() != 3)
3740         return Error(ID.Loc, "expected three operands to select");
3741       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3742                                                               Elts[2]))
3743         return Error(ID.Loc, Reason);
3744       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3745     } else if (Opc == Instruction::ShuffleVector) {
3746       if (Elts.size() != 3)
3747         return Error(ID.Loc, "expected three operands to shufflevector");
3748       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3749         return Error(ID.Loc, "invalid operands to shufflevector");
3750       SmallVector<int, 16> Mask;
3751       ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask);
3752       ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask);
3753     } else if (Opc == Instruction::ExtractElement) {
3754       if (Elts.size() != 2)
3755         return Error(ID.Loc, "expected two operands to extractelement");
3756       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3757         return Error(ID.Loc, "invalid extractelement operands");
3758       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3759     } else {
3760       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3761       if (Elts.size() != 3)
3762       return Error(ID.Loc, "expected three operands to insertelement");
3763       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3764         return Error(ID.Loc, "invalid insertelement operands");
3765       ID.ConstantVal =
3766                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3767     }
3768 
3769     ID.Kind = ValID::t_Constant;
3770     return false;
3771   }
3772   }
3773 
3774   Lex.Lex();
3775   return false;
3776 }
3777 
3778 /// ParseGlobalValue - Parse a global value with the specified type.
3779 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3780   C = nullptr;
3781   ValID ID;
3782   Value *V = nullptr;
3783   bool Parsed = ParseValID(ID) ||
3784                 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false);
3785   if (V && !(C = dyn_cast<Constant>(V)))
3786     return Error(ID.Loc, "global values must be constants");
3787   return Parsed;
3788 }
3789 
3790 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3791   Type *Ty = nullptr;
3792   return ParseType(Ty) ||
3793          ParseGlobalValue(Ty, V);
3794 }
3795 
3796 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3797   C = nullptr;
3798 
3799   LocTy KwLoc = Lex.getLoc();
3800   if (!EatIfPresent(lltok::kw_comdat))
3801     return false;
3802 
3803   if (EatIfPresent(lltok::lparen)) {
3804     if (Lex.getKind() != lltok::ComdatVar)
3805       return TokError("expected comdat variable");
3806     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3807     Lex.Lex();
3808     if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3809       return true;
3810   } else {
3811     if (GlobalName.empty())
3812       return TokError("comdat cannot be unnamed");
3813     C = getComdat(std::string(GlobalName), KwLoc);
3814   }
3815 
3816   return false;
3817 }
3818 
3819 /// ParseGlobalValueVector
3820 ///   ::= /*empty*/
3821 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3822 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3823                                       Optional<unsigned> *InRangeOp) {
3824   // Empty list.
3825   if (Lex.getKind() == lltok::rbrace ||
3826       Lex.getKind() == lltok::rsquare ||
3827       Lex.getKind() == lltok::greater ||
3828       Lex.getKind() == lltok::rparen)
3829     return false;
3830 
3831   do {
3832     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3833       *InRangeOp = Elts.size();
3834 
3835     Constant *C;
3836     if (ParseGlobalTypeAndValue(C)) return true;
3837     Elts.push_back(C);
3838   } while (EatIfPresent(lltok::comma));
3839 
3840   return false;
3841 }
3842 
3843 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3844   SmallVector<Metadata *, 16> Elts;
3845   if (ParseMDNodeVector(Elts))
3846     return true;
3847 
3848   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3849   return false;
3850 }
3851 
3852 /// MDNode:
3853 ///  ::= !{ ... }
3854 ///  ::= !7
3855 ///  ::= !DILocation(...)
3856 bool LLParser::ParseMDNode(MDNode *&N) {
3857   if (Lex.getKind() == lltok::MetadataVar)
3858     return ParseSpecializedMDNode(N);
3859 
3860   return ParseToken(lltok::exclaim, "expected '!' here") ||
3861          ParseMDNodeTail(N);
3862 }
3863 
3864 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3865   // !{ ... }
3866   if (Lex.getKind() == lltok::lbrace)
3867     return ParseMDTuple(N);
3868 
3869   // !42
3870   return ParseMDNodeID(N);
3871 }
3872 
3873 namespace {
3874 
3875 /// Structure to represent an optional metadata field.
3876 template <class FieldTy> struct MDFieldImpl {
3877   typedef MDFieldImpl ImplTy;
3878   FieldTy Val;
3879   bool Seen;
3880 
3881   void assign(FieldTy Val) {
3882     Seen = true;
3883     this->Val = std::move(Val);
3884   }
3885 
3886   explicit MDFieldImpl(FieldTy Default)
3887       : Val(std::move(Default)), Seen(false) {}
3888 };
3889 
3890 /// Structure to represent an optional metadata field that
3891 /// can be of either type (A or B) and encapsulates the
3892 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3893 /// to reimplement the specifics for representing each Field.
3894 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3895   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3896   FieldTypeA A;
3897   FieldTypeB B;
3898   bool Seen;
3899 
3900   enum {
3901     IsInvalid = 0,
3902     IsTypeA = 1,
3903     IsTypeB = 2
3904   } WhatIs;
3905 
3906   void assign(FieldTypeA A) {
3907     Seen = true;
3908     this->A = std::move(A);
3909     WhatIs = IsTypeA;
3910   }
3911 
3912   void assign(FieldTypeB B) {
3913     Seen = true;
3914     this->B = std::move(B);
3915     WhatIs = IsTypeB;
3916   }
3917 
3918   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3919       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3920         WhatIs(IsInvalid) {}
3921 };
3922 
3923 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3924   uint64_t Max;
3925 
3926   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3927       : ImplTy(Default), Max(Max) {}
3928 };
3929 
3930 struct LineField : public MDUnsignedField {
3931   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3932 };
3933 
3934 struct ColumnField : public MDUnsignedField {
3935   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3936 };
3937 
3938 struct DwarfTagField : public MDUnsignedField {
3939   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3940   DwarfTagField(dwarf::Tag DefaultTag)
3941       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3942 };
3943 
3944 struct DwarfMacinfoTypeField : public MDUnsignedField {
3945   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3946   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3947     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3948 };
3949 
3950 struct DwarfAttEncodingField : public MDUnsignedField {
3951   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3952 };
3953 
3954 struct DwarfVirtualityField : public MDUnsignedField {
3955   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3956 };
3957 
3958 struct DwarfLangField : public MDUnsignedField {
3959   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3960 };
3961 
3962 struct DwarfCCField : public MDUnsignedField {
3963   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3964 };
3965 
3966 struct EmissionKindField : public MDUnsignedField {
3967   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3968 };
3969 
3970 struct NameTableKindField : public MDUnsignedField {
3971   NameTableKindField()
3972       : MDUnsignedField(
3973             0, (unsigned)
3974                    DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
3975 };
3976 
3977 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3978   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3979 };
3980 
3981 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
3982   DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
3983 };
3984 
3985 struct MDAPSIntField : public MDFieldImpl<APSInt> {
3986   MDAPSIntField() : ImplTy(APSInt()) {}
3987 };
3988 
3989 struct MDSignedField : public MDFieldImpl<int64_t> {
3990   int64_t Min;
3991   int64_t Max;
3992 
3993   MDSignedField(int64_t Default = 0)
3994       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3995   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3996       : ImplTy(Default), Min(Min), Max(Max) {}
3997 };
3998 
3999 struct MDBoolField : public MDFieldImpl<bool> {
4000   MDBoolField(bool Default = false) : ImplTy(Default) {}
4001 };
4002 
4003 struct MDField : public MDFieldImpl<Metadata *> {
4004   bool AllowNull;
4005 
4006   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
4007 };
4008 
4009 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
4010   MDConstant() : ImplTy(nullptr) {}
4011 };
4012 
4013 struct MDStringField : public MDFieldImpl<MDString *> {
4014   bool AllowEmpty;
4015   MDStringField(bool AllowEmpty = true)
4016       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
4017 };
4018 
4019 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
4020   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
4021 };
4022 
4023 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
4024   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
4025 };
4026 
4027 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
4028   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
4029       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
4030 
4031   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
4032                     bool AllowNull = true)
4033       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
4034 
4035   bool isMDSignedField() const { return WhatIs == IsTypeA; }
4036   bool isMDField() const { return WhatIs == IsTypeB; }
4037   int64_t getMDSignedValue() const {
4038     assert(isMDSignedField() && "Wrong field type");
4039     return A.Val;
4040   }
4041   Metadata *getMDFieldValue() const {
4042     assert(isMDField() && "Wrong field type");
4043     return B.Val;
4044   }
4045 };
4046 
4047 struct MDSignedOrUnsignedField
4048     : MDEitherFieldImpl<MDSignedField, MDUnsignedField> {
4049   MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {}
4050 
4051   bool isMDSignedField() const { return WhatIs == IsTypeA; }
4052   bool isMDUnsignedField() const { return WhatIs == IsTypeB; }
4053   int64_t getMDSignedValue() const {
4054     assert(isMDSignedField() && "Wrong field type");
4055     return A.Val;
4056   }
4057   uint64_t getMDUnsignedValue() const {
4058     assert(isMDUnsignedField() && "Wrong field type");
4059     return B.Val;
4060   }
4061 };
4062 
4063 } // end anonymous namespace
4064 
4065 namespace llvm {
4066 
4067 template <>
4068 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) {
4069   if (Lex.getKind() != lltok::APSInt)
4070     return TokError("expected integer");
4071 
4072   Result.assign(Lex.getAPSIntVal());
4073   Lex.Lex();
4074   return false;
4075 }
4076 
4077 template <>
4078 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4079                             MDUnsignedField &Result) {
4080   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4081     return TokError("expected unsigned integer");
4082 
4083   auto &U = Lex.getAPSIntVal();
4084   if (U.ugt(Result.Max))
4085     return TokError("value for '" + Name + "' too large, limit is " +
4086                     Twine(Result.Max));
4087   Result.assign(U.getZExtValue());
4088   assert(Result.Val <= Result.Max && "Expected value in range");
4089   Lex.Lex();
4090   return false;
4091 }
4092 
4093 template <>
4094 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
4095   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4096 }
4097 template <>
4098 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
4099   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4100 }
4101 
4102 template <>
4103 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
4104   if (Lex.getKind() == lltok::APSInt)
4105     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4106 
4107   if (Lex.getKind() != lltok::DwarfTag)
4108     return TokError("expected DWARF tag");
4109 
4110   unsigned Tag = dwarf::getTag(Lex.getStrVal());
4111   if (Tag == dwarf::DW_TAG_invalid)
4112     return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
4113   assert(Tag <= Result.Max && "Expected valid DWARF tag");
4114 
4115   Result.assign(Tag);
4116   Lex.Lex();
4117   return false;
4118 }
4119 
4120 template <>
4121 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4122                             DwarfMacinfoTypeField &Result) {
4123   if (Lex.getKind() == lltok::APSInt)
4124     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4125 
4126   if (Lex.getKind() != lltok::DwarfMacinfo)
4127     return TokError("expected DWARF macinfo type");
4128 
4129   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
4130   if (Macinfo == dwarf::DW_MACINFO_invalid)
4131     return TokError(
4132         "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
4133   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
4134 
4135   Result.assign(Macinfo);
4136   Lex.Lex();
4137   return false;
4138 }
4139 
4140 template <>
4141 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4142                             DwarfVirtualityField &Result) {
4143   if (Lex.getKind() == lltok::APSInt)
4144     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4145 
4146   if (Lex.getKind() != lltok::DwarfVirtuality)
4147     return TokError("expected DWARF virtuality code");
4148 
4149   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
4150   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
4151     return TokError("invalid DWARF virtuality code" + Twine(" '") +
4152                     Lex.getStrVal() + "'");
4153   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
4154   Result.assign(Virtuality);
4155   Lex.Lex();
4156   return false;
4157 }
4158 
4159 template <>
4160 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
4161   if (Lex.getKind() == lltok::APSInt)
4162     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4163 
4164   if (Lex.getKind() != lltok::DwarfLang)
4165     return TokError("expected DWARF language");
4166 
4167   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
4168   if (!Lang)
4169     return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
4170                     "'");
4171   assert(Lang <= Result.Max && "Expected valid DWARF language");
4172   Result.assign(Lang);
4173   Lex.Lex();
4174   return false;
4175 }
4176 
4177 template <>
4178 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4179   if (Lex.getKind() == lltok::APSInt)
4180     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4181 
4182   if (Lex.getKind() != lltok::DwarfCC)
4183     return TokError("expected DWARF calling convention");
4184 
4185   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
4186   if (!CC)
4187     return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() +
4188                     "'");
4189   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4190   Result.assign(CC);
4191   Lex.Lex();
4192   return false;
4193 }
4194 
4195 template <>
4196 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
4197   if (Lex.getKind() == lltok::APSInt)
4198     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4199 
4200   if (Lex.getKind() != lltok::EmissionKind)
4201     return TokError("expected emission kind");
4202 
4203   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4204   if (!Kind)
4205     return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4206                     "'");
4207   assert(*Kind <= Result.Max && "Expected valid emission kind");
4208   Result.assign(*Kind);
4209   Lex.Lex();
4210   return false;
4211 }
4212 
4213 template <>
4214 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4215                             NameTableKindField &Result) {
4216   if (Lex.getKind() == lltok::APSInt)
4217     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4218 
4219   if (Lex.getKind() != lltok::NameTableKind)
4220     return TokError("expected nameTable kind");
4221 
4222   auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4223   if (!Kind)
4224     return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4225                     "'");
4226   assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4227   Result.assign((unsigned)*Kind);
4228   Lex.Lex();
4229   return false;
4230 }
4231 
4232 template <>
4233 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4234                             DwarfAttEncodingField &Result) {
4235   if (Lex.getKind() == lltok::APSInt)
4236     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4237 
4238   if (Lex.getKind() != lltok::DwarfAttEncoding)
4239     return TokError("expected DWARF type attribute encoding");
4240 
4241   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4242   if (!Encoding)
4243     return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
4244                     Lex.getStrVal() + "'");
4245   assert(Encoding <= Result.Max && "Expected valid DWARF language");
4246   Result.assign(Encoding);
4247   Lex.Lex();
4248   return false;
4249 }
4250 
4251 /// DIFlagField
4252 ///  ::= uint32
4253 ///  ::= DIFlagVector
4254 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4255 template <>
4256 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4257 
4258   // Parser for a single flag.
4259   auto parseFlag = [&](DINode::DIFlags &Val) {
4260     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4261       uint32_t TempVal = static_cast<uint32_t>(Val);
4262       bool Res = ParseUInt32(TempVal);
4263       Val = static_cast<DINode::DIFlags>(TempVal);
4264       return Res;
4265     }
4266 
4267     if (Lex.getKind() != lltok::DIFlag)
4268       return TokError("expected debug info flag");
4269 
4270     Val = DINode::getFlag(Lex.getStrVal());
4271     if (!Val)
4272       return TokError(Twine("invalid debug info flag flag '") +
4273                       Lex.getStrVal() + "'");
4274     Lex.Lex();
4275     return false;
4276   };
4277 
4278   // Parse the flags and combine them together.
4279   DINode::DIFlags Combined = DINode::FlagZero;
4280   do {
4281     DINode::DIFlags Val;
4282     if (parseFlag(Val))
4283       return true;
4284     Combined |= Val;
4285   } while (EatIfPresent(lltok::bar));
4286 
4287   Result.assign(Combined);
4288   return false;
4289 }
4290 
4291 /// DISPFlagField
4292 ///  ::= uint32
4293 ///  ::= DISPFlagVector
4294 ///  ::= DISPFlagVector '|' DISPFlag* '|' uint32
4295 template <>
4296 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4297 
4298   // Parser for a single flag.
4299   auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4300     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4301       uint32_t TempVal = static_cast<uint32_t>(Val);
4302       bool Res = ParseUInt32(TempVal);
4303       Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4304       return Res;
4305     }
4306 
4307     if (Lex.getKind() != lltok::DISPFlag)
4308       return TokError("expected debug info flag");
4309 
4310     Val = DISubprogram::getFlag(Lex.getStrVal());
4311     if (!Val)
4312       return TokError(Twine("invalid subprogram debug info flag '") +
4313                       Lex.getStrVal() + "'");
4314     Lex.Lex();
4315     return false;
4316   };
4317 
4318   // Parse the flags and combine them together.
4319   DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4320   do {
4321     DISubprogram::DISPFlags Val;
4322     if (parseFlag(Val))
4323       return true;
4324     Combined |= Val;
4325   } while (EatIfPresent(lltok::bar));
4326 
4327   Result.assign(Combined);
4328   return false;
4329 }
4330 
4331 template <>
4332 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4333                             MDSignedField &Result) {
4334   if (Lex.getKind() != lltok::APSInt)
4335     return TokError("expected signed integer");
4336 
4337   auto &S = Lex.getAPSIntVal();
4338   if (S < Result.Min)
4339     return TokError("value for '" + Name + "' too small, limit is " +
4340                     Twine(Result.Min));
4341   if (S > Result.Max)
4342     return TokError("value for '" + Name + "' too large, limit is " +
4343                     Twine(Result.Max));
4344   Result.assign(S.getExtValue());
4345   assert(Result.Val >= Result.Min && "Expected value in range");
4346   assert(Result.Val <= Result.Max && "Expected value in range");
4347   Lex.Lex();
4348   return false;
4349 }
4350 
4351 template <>
4352 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4353   switch (Lex.getKind()) {
4354   default:
4355     return TokError("expected 'true' or 'false'");
4356   case lltok::kw_true:
4357     Result.assign(true);
4358     break;
4359   case lltok::kw_false:
4360     Result.assign(false);
4361     break;
4362   }
4363   Lex.Lex();
4364   return false;
4365 }
4366 
4367 template <>
4368 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4369   if (Lex.getKind() == lltok::kw_null) {
4370     if (!Result.AllowNull)
4371       return TokError("'" + Name + "' cannot be null");
4372     Lex.Lex();
4373     Result.assign(nullptr);
4374     return false;
4375   }
4376 
4377   Metadata *MD;
4378   if (ParseMetadata(MD, nullptr))
4379     return true;
4380 
4381   Result.assign(MD);
4382   return false;
4383 }
4384 
4385 template <>
4386 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4387                             MDSignedOrMDField &Result) {
4388   // Try to parse a signed int.
4389   if (Lex.getKind() == lltok::APSInt) {
4390     MDSignedField Res = Result.A;
4391     if (!ParseMDField(Loc, Name, Res)) {
4392       Result.assign(Res);
4393       return false;
4394     }
4395     return true;
4396   }
4397 
4398   // Otherwise, try to parse as an MDField.
4399   MDField Res = Result.B;
4400   if (!ParseMDField(Loc, Name, Res)) {
4401     Result.assign(Res);
4402     return false;
4403   }
4404 
4405   return true;
4406 }
4407 
4408 template <>
4409 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4410   LocTy ValueLoc = Lex.getLoc();
4411   std::string S;
4412   if (ParseStringConstant(S))
4413     return true;
4414 
4415   if (!Result.AllowEmpty && S.empty())
4416     return Error(ValueLoc, "'" + Name + "' cannot be empty");
4417 
4418   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4419   return false;
4420 }
4421 
4422 template <>
4423 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4424   SmallVector<Metadata *, 4> MDs;
4425   if (ParseMDNodeVector(MDs))
4426     return true;
4427 
4428   Result.assign(std::move(MDs));
4429   return false;
4430 }
4431 
4432 template <>
4433 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
4434                             ChecksumKindField &Result) {
4435   Optional<DIFile::ChecksumKind> CSKind =
4436       DIFile::getChecksumKind(Lex.getStrVal());
4437 
4438   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4439     return TokError(
4440         "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'");
4441 
4442   Result.assign(*CSKind);
4443   Lex.Lex();
4444   return false;
4445 }
4446 
4447 } // end namespace llvm
4448 
4449 template <class ParserTy>
4450 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
4451   do {
4452     if (Lex.getKind() != lltok::LabelStr)
4453       return TokError("expected field label here");
4454 
4455     if (parseField())
4456       return true;
4457   } while (EatIfPresent(lltok::comma));
4458 
4459   return false;
4460 }
4461 
4462 template <class ParserTy>
4463 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
4464   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4465   Lex.Lex();
4466 
4467   if (ParseToken(lltok::lparen, "expected '(' here"))
4468     return true;
4469   if (Lex.getKind() != lltok::rparen)
4470     if (ParseMDFieldsImplBody(parseField))
4471       return true;
4472 
4473   ClosingLoc = Lex.getLoc();
4474   return ParseToken(lltok::rparen, "expected ')' here");
4475 }
4476 
4477 template <class FieldTy>
4478 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
4479   if (Result.Seen)
4480     return TokError("field '" + Name + "' cannot be specified more than once");
4481 
4482   LocTy Loc = Lex.getLoc();
4483   Lex.Lex();
4484   return ParseMDField(Loc, Name, Result);
4485 }
4486 
4487 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4488   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4489 
4490 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4491   if (Lex.getStrVal() == #CLASS)                                               \
4492     return Parse##CLASS(N, IsDistinct);
4493 #include "llvm/IR/Metadata.def"
4494 
4495   return TokError("expected metadata type");
4496 }
4497 
4498 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4499 #define NOP_FIELD(NAME, TYPE, INIT)
4500 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4501   if (!NAME.Seen)                                                              \
4502     return Error(ClosingLoc, "missing required field '" #NAME "'");
4503 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4504   if (Lex.getStrVal() == #NAME)                                                \
4505     return ParseMDField(#NAME, NAME);
4506 #define PARSE_MD_FIELDS()                                                      \
4507   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4508   do {                                                                         \
4509     LocTy ClosingLoc;                                                          \
4510     if (ParseMDFieldsImpl([&]() -> bool {                                      \
4511       VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                          \
4512       return TokError(Twine("invalid field '") + Lex.getStrVal() + "'");       \
4513     }, ClosingLoc))                                                            \
4514       return true;                                                             \
4515     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4516   } while (false)
4517 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4518   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4519 
4520 /// ParseDILocationFields:
4521 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4522 ///   isImplicitCode: true)
4523 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
4524 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4525   OPTIONAL(line, LineField, );                                                 \
4526   OPTIONAL(column, ColumnField, );                                             \
4527   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4528   OPTIONAL(inlinedAt, MDField, );                                              \
4529   OPTIONAL(isImplicitCode, MDBoolField, (false));
4530   PARSE_MD_FIELDS();
4531 #undef VISIT_MD_FIELDS
4532 
4533   Result =
4534       GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4535                                    inlinedAt.Val, isImplicitCode.Val));
4536   return false;
4537 }
4538 
4539 /// ParseGenericDINode:
4540 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4541 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
4542 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4543   REQUIRED(tag, DwarfTagField, );                                              \
4544   OPTIONAL(header, MDStringField, );                                           \
4545   OPTIONAL(operands, MDFieldList, );
4546   PARSE_MD_FIELDS();
4547 #undef VISIT_MD_FIELDS
4548 
4549   Result = GET_OR_DISTINCT(GenericDINode,
4550                            (Context, tag.Val, header.Val, operands.Val));
4551   return false;
4552 }
4553 
4554 /// ParseDISubrange:
4555 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4556 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4557 ///   ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3)
4558 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
4559 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4560   OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4561   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4562   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4563   OPTIONAL(stride, MDSignedOrMDField, );
4564   PARSE_MD_FIELDS();
4565 #undef VISIT_MD_FIELDS
4566 
4567   Metadata *Count = nullptr;
4568   Metadata *LowerBound = nullptr;
4569   Metadata *UpperBound = nullptr;
4570   Metadata *Stride = nullptr;
4571   if (count.isMDSignedField())
4572     Count = ConstantAsMetadata::get(ConstantInt::getSigned(
4573         Type::getInt64Ty(Context), count.getMDSignedValue()));
4574   else if (count.isMDField())
4575     Count = count.getMDFieldValue();
4576 
4577   auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4578     if (Bound.isMDSignedField())
4579       return ConstantAsMetadata::get(ConstantInt::getSigned(
4580           Type::getInt64Ty(Context), Bound.getMDSignedValue()));
4581     if (Bound.isMDField())
4582       return Bound.getMDFieldValue();
4583     return nullptr;
4584   };
4585 
4586   LowerBound = convToMetadata(lowerBound);
4587   UpperBound = convToMetadata(upperBound);
4588   Stride = convToMetadata(stride);
4589 
4590   Result = GET_OR_DISTINCT(DISubrange,
4591                            (Context, Count, LowerBound, UpperBound, Stride));
4592 
4593   return false;
4594 }
4595 
4596 /// ParseDIEnumerator:
4597 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4598 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4599 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4600   REQUIRED(name, MDStringField, );                                             \
4601   REQUIRED(value, MDAPSIntField, );                                            \
4602   OPTIONAL(isUnsigned, MDBoolField, (false));
4603   PARSE_MD_FIELDS();
4604 #undef VISIT_MD_FIELDS
4605 
4606   if (isUnsigned.Val && value.Val.isNegative())
4607     return TokError("unsigned enumerator with negative value");
4608 
4609   APSInt Value(value.Val);
4610   // Add a leading zero so that unsigned values with the msb set are not
4611   // mistaken for negative values when used for signed enumerators.
4612   if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet())
4613     Value = Value.zext(Value.getBitWidth() + 1);
4614 
4615   Result =
4616       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4617 
4618   return false;
4619 }
4620 
4621 /// ParseDIBasicType:
4622 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4623 ///                    encoding: DW_ATE_encoding, flags: 0)
4624 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
4625 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4626   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4627   OPTIONAL(name, MDStringField, );                                             \
4628   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4629   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4630   OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
4631   OPTIONAL(flags, DIFlagField, );
4632   PARSE_MD_FIELDS();
4633 #undef VISIT_MD_FIELDS
4634 
4635   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4636                                          align.Val, encoding.Val, flags.Val));
4637   return false;
4638 }
4639 
4640 /// ParseDIDerivedType:
4641 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4642 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4643 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4644 ///                      dwarfAddressSpace: 3)
4645 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4646 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4647   REQUIRED(tag, DwarfTagField, );                                              \
4648   OPTIONAL(name, MDStringField, );                                             \
4649   OPTIONAL(file, MDField, );                                                   \
4650   OPTIONAL(line, LineField, );                                                 \
4651   OPTIONAL(scope, MDField, );                                                  \
4652   REQUIRED(baseType, MDField, );                                               \
4653   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4654   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4655   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4656   OPTIONAL(flags, DIFlagField, );                                              \
4657   OPTIONAL(extraData, MDField, );                                              \
4658   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
4659   PARSE_MD_FIELDS();
4660 #undef VISIT_MD_FIELDS
4661 
4662   Optional<unsigned> DWARFAddressSpace;
4663   if (dwarfAddressSpace.Val != UINT32_MAX)
4664     DWARFAddressSpace = dwarfAddressSpace.Val;
4665 
4666   Result = GET_OR_DISTINCT(DIDerivedType,
4667                            (Context, tag.Val, name.Val, file.Val, line.Val,
4668                             scope.Val, baseType.Val, size.Val, align.Val,
4669                             offset.Val, DWARFAddressSpace, flags.Val,
4670                             extraData.Val));
4671   return false;
4672 }
4673 
4674 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
4675 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4676   REQUIRED(tag, DwarfTagField, );                                              \
4677   OPTIONAL(name, MDStringField, );                                             \
4678   OPTIONAL(file, MDField, );                                                   \
4679   OPTIONAL(line, LineField, );                                                 \
4680   OPTIONAL(scope, MDField, );                                                  \
4681   OPTIONAL(baseType, MDField, );                                               \
4682   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4683   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4684   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4685   OPTIONAL(flags, DIFlagField, );                                              \
4686   OPTIONAL(elements, MDField, );                                               \
4687   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4688   OPTIONAL(vtableHolder, MDField, );                                           \
4689   OPTIONAL(templateParams, MDField, );                                         \
4690   OPTIONAL(identifier, MDStringField, );                                       \
4691   OPTIONAL(discriminator, MDField, );                                          \
4692   OPTIONAL(dataLocation, MDField, );                                           \
4693   OPTIONAL(associated, MDField, );                                             \
4694   OPTIONAL(allocated, MDField, );
4695   PARSE_MD_FIELDS();
4696 #undef VISIT_MD_FIELDS
4697 
4698   // If this has an identifier try to build an ODR type.
4699   if (identifier.Val)
4700     if (auto *CT = DICompositeType::buildODRType(
4701             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4702             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4703             elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val,
4704             discriminator.Val, dataLocation.Val, associated.Val,
4705             allocated.Val)) {
4706       Result = CT;
4707       return false;
4708     }
4709 
4710   // Create a new node, and save it in the context if it belongs in the type
4711   // map.
4712   Result = GET_OR_DISTINCT(
4713       DICompositeType,
4714       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4715        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4716        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4717        discriminator.Val, dataLocation.Val, associated.Val, allocated.Val));
4718   return false;
4719 }
4720 
4721 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4722 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4723   OPTIONAL(flags, DIFlagField, );                                              \
4724   OPTIONAL(cc, DwarfCCField, );                                                \
4725   REQUIRED(types, MDField, );
4726   PARSE_MD_FIELDS();
4727 #undef VISIT_MD_FIELDS
4728 
4729   Result = GET_OR_DISTINCT(DISubroutineType,
4730                            (Context, flags.Val, cc.Val, types.Val));
4731   return false;
4732 }
4733 
4734 /// ParseDIFileType:
4735 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4736 ///                   checksumkind: CSK_MD5,
4737 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
4738 ///                   source: "source file contents")
4739 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
4740   // The default constructed value for checksumkind is required, but will never
4741   // be used, as the parser checks if the field was actually Seen before using
4742   // the Val.
4743 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4744   REQUIRED(filename, MDStringField, );                                         \
4745   REQUIRED(directory, MDStringField, );                                        \
4746   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
4747   OPTIONAL(checksum, MDStringField, );                                         \
4748   OPTIONAL(source, MDStringField, );
4749   PARSE_MD_FIELDS();
4750 #undef VISIT_MD_FIELDS
4751 
4752   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4753   if (checksumkind.Seen && checksum.Seen)
4754     OptChecksum.emplace(checksumkind.Val, checksum.Val);
4755   else if (checksumkind.Seen || checksum.Seen)
4756     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4757 
4758   Optional<MDString *> OptSource;
4759   if (source.Seen)
4760     OptSource = source.Val;
4761   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4762                                     OptChecksum, OptSource));
4763   return false;
4764 }
4765 
4766 /// ParseDICompileUnit:
4767 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4768 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4769 ///                      splitDebugFilename: "abc.debug",
4770 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4771 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd,
4772 ///                      sysroot: "/", sdk: "MacOSX.sdk")
4773 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4774   if (!IsDistinct)
4775     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4776 
4777 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4778   REQUIRED(language, DwarfLangField, );                                        \
4779   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4780   OPTIONAL(producer, MDStringField, );                                         \
4781   OPTIONAL(isOptimized, MDBoolField, );                                        \
4782   OPTIONAL(flags, MDStringField, );                                            \
4783   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4784   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4785   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4786   OPTIONAL(enums, MDField, );                                                  \
4787   OPTIONAL(retainedTypes, MDField, );                                          \
4788   OPTIONAL(globals, MDField, );                                                \
4789   OPTIONAL(imports, MDField, );                                                \
4790   OPTIONAL(macros, MDField, );                                                 \
4791   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4792   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
4793   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
4794   OPTIONAL(nameTableKind, NameTableKindField, );                               \
4795   OPTIONAL(rangesBaseAddress, MDBoolField, = false);                           \
4796   OPTIONAL(sysroot, MDStringField, );                                          \
4797   OPTIONAL(sdk, MDStringField, );
4798   PARSE_MD_FIELDS();
4799 #undef VISIT_MD_FIELDS
4800 
4801   Result = DICompileUnit::getDistinct(
4802       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4803       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4804       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4805       splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
4806       rangesBaseAddress.Val, sysroot.Val, sdk.Val);
4807   return false;
4808 }
4809 
4810 /// ParseDISubprogram:
4811 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4812 ///                     file: !1, line: 7, type: !2, isLocal: false,
4813 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4814 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4815 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4816 ///                     spFlags: 10, isOptimized: false, templateParams: !4,
4817 ///                     declaration: !5, retainedNodes: !6, thrownTypes: !7)
4818 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
4819   auto Loc = Lex.getLoc();
4820 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4821   OPTIONAL(scope, MDField, );                                                  \
4822   OPTIONAL(name, MDStringField, );                                             \
4823   OPTIONAL(linkageName, MDStringField, );                                      \
4824   OPTIONAL(file, MDField, );                                                   \
4825   OPTIONAL(line, LineField, );                                                 \
4826   OPTIONAL(type, MDField, );                                                   \
4827   OPTIONAL(isLocal, MDBoolField, );                                            \
4828   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4829   OPTIONAL(scopeLine, LineField, );                                            \
4830   OPTIONAL(containingType, MDField, );                                         \
4831   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4832   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4833   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4834   OPTIONAL(flags, DIFlagField, );                                              \
4835   OPTIONAL(spFlags, DISPFlagField, );                                          \
4836   OPTIONAL(isOptimized, MDBoolField, );                                        \
4837   OPTIONAL(unit, MDField, );                                                   \
4838   OPTIONAL(templateParams, MDField, );                                         \
4839   OPTIONAL(declaration, MDField, );                                            \
4840   OPTIONAL(retainedNodes, MDField, );                                          \
4841   OPTIONAL(thrownTypes, MDField, );
4842   PARSE_MD_FIELDS();
4843 #undef VISIT_MD_FIELDS
4844 
4845   // An explicit spFlags field takes precedence over individual fields in
4846   // older IR versions.
4847   DISubprogram::DISPFlags SPFlags =
4848       spFlags.Seen ? spFlags.Val
4849                    : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
4850                                              isOptimized.Val, virtuality.Val);
4851   if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
4852     return Lex.Error(
4853         Loc,
4854         "missing 'distinct', required for !DISubprogram that is a Definition");
4855   Result = GET_OR_DISTINCT(
4856       DISubprogram,
4857       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4858        type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
4859        thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
4860        declaration.Val, retainedNodes.Val, thrownTypes.Val));
4861   return false;
4862 }
4863 
4864 /// ParseDILexicalBlock:
4865 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4866 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4867 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4868   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4869   OPTIONAL(file, MDField, );                                                   \
4870   OPTIONAL(line, LineField, );                                                 \
4871   OPTIONAL(column, ColumnField, );
4872   PARSE_MD_FIELDS();
4873 #undef VISIT_MD_FIELDS
4874 
4875   Result = GET_OR_DISTINCT(
4876       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4877   return false;
4878 }
4879 
4880 /// ParseDILexicalBlockFile:
4881 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4882 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4883 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4884   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4885   OPTIONAL(file, MDField, );                                                   \
4886   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4887   PARSE_MD_FIELDS();
4888 #undef VISIT_MD_FIELDS
4889 
4890   Result = GET_OR_DISTINCT(DILexicalBlockFile,
4891                            (Context, scope.Val, file.Val, discriminator.Val));
4892   return false;
4893 }
4894 
4895 /// ParseDICommonBlock:
4896 ///   ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
4897 bool LLParser::ParseDICommonBlock(MDNode *&Result, bool IsDistinct) {
4898 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4899   REQUIRED(scope, MDField, );                                                  \
4900   OPTIONAL(declaration, MDField, );                                            \
4901   OPTIONAL(name, MDStringField, );                                             \
4902   OPTIONAL(file, MDField, );                                                   \
4903   OPTIONAL(line, LineField, );
4904   PARSE_MD_FIELDS();
4905 #undef VISIT_MD_FIELDS
4906 
4907   Result = GET_OR_DISTINCT(DICommonBlock,
4908                            (Context, scope.Val, declaration.Val, name.Val,
4909                             file.Val, line.Val));
4910   return false;
4911 }
4912 
4913 /// ParseDINamespace:
4914 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4915 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
4916 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4917   REQUIRED(scope, MDField, );                                                  \
4918   OPTIONAL(name, MDStringField, );                                             \
4919   OPTIONAL(exportSymbols, MDBoolField, );
4920   PARSE_MD_FIELDS();
4921 #undef VISIT_MD_FIELDS
4922 
4923   Result = GET_OR_DISTINCT(DINamespace,
4924                            (Context, scope.Val, name.Val, exportSymbols.Val));
4925   return false;
4926 }
4927 
4928 /// ParseDIMacro:
4929 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
4930 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
4931 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4932   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
4933   OPTIONAL(line, LineField, );                                                 \
4934   REQUIRED(name, MDStringField, );                                             \
4935   OPTIONAL(value, MDStringField, );
4936   PARSE_MD_FIELDS();
4937 #undef VISIT_MD_FIELDS
4938 
4939   Result = GET_OR_DISTINCT(DIMacro,
4940                            (Context, type.Val, line.Val, name.Val, value.Val));
4941   return false;
4942 }
4943 
4944 /// ParseDIMacroFile:
4945 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4946 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4947 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4948   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
4949   OPTIONAL(line, LineField, );                                                 \
4950   REQUIRED(file, MDField, );                                                   \
4951   OPTIONAL(nodes, MDField, );
4952   PARSE_MD_FIELDS();
4953 #undef VISIT_MD_FIELDS
4954 
4955   Result = GET_OR_DISTINCT(DIMacroFile,
4956                            (Context, type.Val, line.Val, file.Val, nodes.Val));
4957   return false;
4958 }
4959 
4960 /// ParseDIModule:
4961 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros:
4962 ///   "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes",
4963 ///   file: !1, line: 4)
4964 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4965 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4966   REQUIRED(scope, MDField, );                                                  \
4967   REQUIRED(name, MDStringField, );                                             \
4968   OPTIONAL(configMacros, MDStringField, );                                     \
4969   OPTIONAL(includePath, MDStringField, );                                      \
4970   OPTIONAL(apinotes, MDStringField, );                                         \
4971   OPTIONAL(file, MDField, );                                                   \
4972   OPTIONAL(line, LineField, );
4973   PARSE_MD_FIELDS();
4974 #undef VISIT_MD_FIELDS
4975 
4976   Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val,
4977                                       configMacros.Val, includePath.Val,
4978                                       apinotes.Val, line.Val));
4979   return false;
4980 }
4981 
4982 /// ParseDITemplateTypeParameter:
4983 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false)
4984 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4985 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4986   OPTIONAL(name, MDStringField, );                                             \
4987   REQUIRED(type, MDField, );                                                   \
4988   OPTIONAL(defaulted, MDBoolField, );
4989   PARSE_MD_FIELDS();
4990 #undef VISIT_MD_FIELDS
4991 
4992   Result = GET_OR_DISTINCT(DITemplateTypeParameter,
4993                            (Context, name.Val, type.Val, defaulted.Val));
4994   return false;
4995 }
4996 
4997 /// ParseDITemplateValueParameter:
4998 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4999 ///                                 name: "V", type: !1, defaulted: false,
5000 ///                                 value: i32 7)
5001 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
5002 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5003   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
5004   OPTIONAL(name, MDStringField, );                                             \
5005   OPTIONAL(type, MDField, );                                                   \
5006   OPTIONAL(defaulted, MDBoolField, );                                          \
5007   REQUIRED(value, MDField, );
5008 
5009   PARSE_MD_FIELDS();
5010 #undef VISIT_MD_FIELDS
5011 
5012   Result = GET_OR_DISTINCT(
5013       DITemplateValueParameter,
5014       (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val));
5015   return false;
5016 }
5017 
5018 /// ParseDIGlobalVariable:
5019 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
5020 ///                         file: !1, line: 7, type: !2, isLocal: false,
5021 ///                         isDefinition: true, templateParams: !3,
5022 ///                         declaration: !4, align: 8)
5023 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
5024 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5025   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
5026   OPTIONAL(scope, MDField, );                                                  \
5027   OPTIONAL(linkageName, MDStringField, );                                      \
5028   OPTIONAL(file, MDField, );                                                   \
5029   OPTIONAL(line, LineField, );                                                 \
5030   OPTIONAL(type, MDField, );                                                   \
5031   OPTIONAL(isLocal, MDBoolField, );                                            \
5032   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
5033   OPTIONAL(templateParams, MDField, );                                         \
5034   OPTIONAL(declaration, MDField, );                                            \
5035   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
5036   PARSE_MD_FIELDS();
5037 #undef VISIT_MD_FIELDS
5038 
5039   Result =
5040       GET_OR_DISTINCT(DIGlobalVariable,
5041                       (Context, scope.Val, name.Val, linkageName.Val, file.Val,
5042                        line.Val, type.Val, isLocal.Val, isDefinition.Val,
5043                        declaration.Val, templateParams.Val, align.Val));
5044   return false;
5045 }
5046 
5047 /// ParseDILocalVariable:
5048 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
5049 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5050 ///                        align: 8)
5051 ///   ::= !DILocalVariable(scope: !0, name: "foo",
5052 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5053 ///                        align: 8)
5054 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
5055 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5056   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5057   OPTIONAL(name, MDStringField, );                                             \
5058   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
5059   OPTIONAL(file, MDField, );                                                   \
5060   OPTIONAL(line, LineField, );                                                 \
5061   OPTIONAL(type, MDField, );                                                   \
5062   OPTIONAL(flags, DIFlagField, );                                              \
5063   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
5064   PARSE_MD_FIELDS();
5065 #undef VISIT_MD_FIELDS
5066 
5067   Result = GET_OR_DISTINCT(DILocalVariable,
5068                            (Context, scope.Val, name.Val, file.Val, line.Val,
5069                             type.Val, arg.Val, flags.Val, align.Val));
5070   return false;
5071 }
5072 
5073 /// ParseDILabel:
5074 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
5075 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) {
5076 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5077   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5078   REQUIRED(name, MDStringField, );                                             \
5079   REQUIRED(file, MDField, );                                                   \
5080   REQUIRED(line, LineField, );
5081   PARSE_MD_FIELDS();
5082 #undef VISIT_MD_FIELDS
5083 
5084   Result = GET_OR_DISTINCT(DILabel,
5085                            (Context, scope.Val, name.Val, file.Val, line.Val));
5086   return false;
5087 }
5088 
5089 /// ParseDIExpression:
5090 ///   ::= !DIExpression(0, 7, -1)
5091 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
5092   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5093   Lex.Lex();
5094 
5095   if (ParseToken(lltok::lparen, "expected '(' here"))
5096     return true;
5097 
5098   SmallVector<uint64_t, 8> Elements;
5099   if (Lex.getKind() != lltok::rparen)
5100     do {
5101       if (Lex.getKind() == lltok::DwarfOp) {
5102         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
5103           Lex.Lex();
5104           Elements.push_back(Op);
5105           continue;
5106         }
5107         return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
5108       }
5109 
5110       if (Lex.getKind() == lltok::DwarfAttEncoding) {
5111         if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
5112           Lex.Lex();
5113           Elements.push_back(Op);
5114           continue;
5115         }
5116         return TokError(Twine("invalid DWARF attribute encoding '") + Lex.getStrVal() + "'");
5117       }
5118 
5119       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
5120         return TokError("expected unsigned integer");
5121 
5122       auto &U = Lex.getAPSIntVal();
5123       if (U.ugt(UINT64_MAX))
5124         return TokError("element too large, limit is " + Twine(UINT64_MAX));
5125       Elements.push_back(U.getZExtValue());
5126       Lex.Lex();
5127     } while (EatIfPresent(lltok::comma));
5128 
5129   if (ParseToken(lltok::rparen, "expected ')' here"))
5130     return true;
5131 
5132   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
5133   return false;
5134 }
5135 
5136 /// ParseDIGlobalVariableExpression:
5137 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
5138 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result,
5139                                                bool IsDistinct) {
5140 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5141   REQUIRED(var, MDField, );                                                    \
5142   REQUIRED(expr, MDField, );
5143   PARSE_MD_FIELDS();
5144 #undef VISIT_MD_FIELDS
5145 
5146   Result =
5147       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
5148   return false;
5149 }
5150 
5151 /// ParseDIObjCProperty:
5152 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
5153 ///                       getter: "getFoo", attributes: 7, type: !2)
5154 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
5155 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5156   OPTIONAL(name, MDStringField, );                                             \
5157   OPTIONAL(file, MDField, );                                                   \
5158   OPTIONAL(line, LineField, );                                                 \
5159   OPTIONAL(setter, MDStringField, );                                           \
5160   OPTIONAL(getter, MDStringField, );                                           \
5161   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
5162   OPTIONAL(type, MDField, );
5163   PARSE_MD_FIELDS();
5164 #undef VISIT_MD_FIELDS
5165 
5166   Result = GET_OR_DISTINCT(DIObjCProperty,
5167                            (Context, name.Val, file.Val, line.Val, setter.Val,
5168                             getter.Val, attributes.Val, type.Val));
5169   return false;
5170 }
5171 
5172 /// ParseDIImportedEntity:
5173 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
5174 ///                         line: 7, name: "foo")
5175 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
5176 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5177   REQUIRED(tag, DwarfTagField, );                                              \
5178   REQUIRED(scope, MDField, );                                                  \
5179   OPTIONAL(entity, MDField, );                                                 \
5180   OPTIONAL(file, MDField, );                                                   \
5181   OPTIONAL(line, LineField, );                                                 \
5182   OPTIONAL(name, MDStringField, );
5183   PARSE_MD_FIELDS();
5184 #undef VISIT_MD_FIELDS
5185 
5186   Result = GET_OR_DISTINCT(
5187       DIImportedEntity,
5188       (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val));
5189   return false;
5190 }
5191 
5192 #undef PARSE_MD_FIELD
5193 #undef NOP_FIELD
5194 #undef REQUIRE_FIELD
5195 #undef DECLARE_FIELD
5196 
5197 /// ParseMetadataAsValue
5198 ///  ::= metadata i32 %local
5199 ///  ::= metadata i32 @global
5200 ///  ::= metadata i32 7
5201 ///  ::= metadata !0
5202 ///  ::= metadata !{...}
5203 ///  ::= metadata !"string"
5204 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5205   // Note: the type 'metadata' has already been parsed.
5206   Metadata *MD;
5207   if (ParseMetadata(MD, &PFS))
5208     return true;
5209 
5210   V = MetadataAsValue::get(Context, MD);
5211   return false;
5212 }
5213 
5214 /// ParseValueAsMetadata
5215 ///  ::= i32 %local
5216 ///  ::= i32 @global
5217 ///  ::= i32 7
5218 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
5219                                     PerFunctionState *PFS) {
5220   Type *Ty;
5221   LocTy Loc;
5222   if (ParseType(Ty, TypeMsg, Loc))
5223     return true;
5224   if (Ty->isMetadataTy())
5225     return Error(Loc, "invalid metadata-value-metadata roundtrip");
5226 
5227   Value *V;
5228   if (ParseValue(Ty, V, PFS))
5229     return true;
5230 
5231   MD = ValueAsMetadata::get(V);
5232   return false;
5233 }
5234 
5235 /// ParseMetadata
5236 ///  ::= i32 %local
5237 ///  ::= i32 @global
5238 ///  ::= i32 7
5239 ///  ::= !42
5240 ///  ::= !{...}
5241 ///  ::= !"string"
5242 ///  ::= !DILocation(...)
5243 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
5244   if (Lex.getKind() == lltok::MetadataVar) {
5245     MDNode *N;
5246     if (ParseSpecializedMDNode(N))
5247       return true;
5248     MD = N;
5249     return false;
5250   }
5251 
5252   // ValueAsMetadata:
5253   // <type> <value>
5254   if (Lex.getKind() != lltok::exclaim)
5255     return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
5256 
5257   // '!'.
5258   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5259   Lex.Lex();
5260 
5261   // MDString:
5262   //   ::= '!' STRINGCONSTANT
5263   if (Lex.getKind() == lltok::StringConstant) {
5264     MDString *S;
5265     if (ParseMDString(S))
5266       return true;
5267     MD = S;
5268     return false;
5269   }
5270 
5271   // MDNode:
5272   // !{ ... }
5273   // !7
5274   MDNode *N;
5275   if (ParseMDNodeTail(N))
5276     return true;
5277   MD = N;
5278   return false;
5279 }
5280 
5281 //===----------------------------------------------------------------------===//
5282 // Function Parsing.
5283 //===----------------------------------------------------------------------===//
5284 
5285 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5286                                    PerFunctionState *PFS, bool IsCall) {
5287   if (Ty->isFunctionTy())
5288     return Error(ID.Loc, "functions are not values, refer to them as pointers");
5289 
5290   switch (ID.Kind) {
5291   case ValID::t_LocalID:
5292     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5293     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5294     return V == nullptr;
5295   case ValID::t_LocalName:
5296     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
5297     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall);
5298     return V == nullptr;
5299   case ValID::t_InlineAsm: {
5300     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5301       return Error(ID.Loc, "invalid type for inline asm constraint string");
5302     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
5303                        (ID.UIntVal >> 1) & 1,
5304                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
5305     return false;
5306   }
5307   case ValID::t_GlobalName:
5308     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall);
5309     return V == nullptr;
5310   case ValID::t_GlobalID:
5311     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall);
5312     return V == nullptr;
5313   case ValID::t_APSInt:
5314     if (!Ty->isIntegerTy())
5315       return Error(ID.Loc, "integer constant must have integer type");
5316     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5317     V = ConstantInt::get(Context, ID.APSIntVal);
5318     return false;
5319   case ValID::t_APFloat:
5320     if (!Ty->isFloatingPointTy() ||
5321         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5322       return Error(ID.Loc, "floating point constant invalid for type");
5323 
5324     // The lexer has no type info, so builds all half, bfloat, float, and double
5325     // FP constants as double.  Fix this here.  Long double does not need this.
5326     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5327       bool Ignored;
5328       if (Ty->isHalfTy())
5329         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5330                               &Ignored);
5331       else if (Ty->isBFloatTy())
5332         ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven,
5333                               &Ignored);
5334       else if (Ty->isFloatTy())
5335         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5336                               &Ignored);
5337     }
5338     V = ConstantFP::get(Context, ID.APFloatVal);
5339 
5340     if (V->getType() != Ty)
5341       return Error(ID.Loc, "floating point constant does not have type '" +
5342                    getTypeString(Ty) + "'");
5343 
5344     return false;
5345   case ValID::t_Null:
5346     if (!Ty->isPointerTy())
5347       return Error(ID.Loc, "null must be a pointer type");
5348     V = ConstantPointerNull::get(cast<PointerType>(Ty));
5349     return false;
5350   case ValID::t_Undef:
5351     // FIXME: LabelTy should not be a first-class type.
5352     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5353       return Error(ID.Loc, "invalid type for undef constant");
5354     V = UndefValue::get(Ty);
5355     return false;
5356   case ValID::t_EmptyArray:
5357     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5358       return Error(ID.Loc, "invalid empty array initializer");
5359     V = UndefValue::get(Ty);
5360     return false;
5361   case ValID::t_Zero:
5362     // FIXME: LabelTy should not be a first-class type.
5363     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5364       return Error(ID.Loc, "invalid type for null constant");
5365     V = Constant::getNullValue(Ty);
5366     return false;
5367   case ValID::t_None:
5368     if (!Ty->isTokenTy())
5369       return Error(ID.Loc, "invalid type for none constant");
5370     V = Constant::getNullValue(Ty);
5371     return false;
5372   case ValID::t_Constant:
5373     if (ID.ConstantVal->getType() != Ty)
5374       return Error(ID.Loc, "constant expression type mismatch");
5375 
5376     V = ID.ConstantVal;
5377     return false;
5378   case ValID::t_ConstantStruct:
5379   case ValID::t_PackedConstantStruct:
5380     if (StructType *ST = dyn_cast<StructType>(Ty)) {
5381       if (ST->getNumElements() != ID.UIntVal)
5382         return Error(ID.Loc,
5383                      "initializer with struct type has wrong # elements");
5384       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5385         return Error(ID.Loc, "packed'ness of initializer and type don't match");
5386 
5387       // Verify that the elements are compatible with the structtype.
5388       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5389         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5390           return Error(ID.Loc, "element " + Twine(i) +
5391                     " of struct initializer doesn't match struct element type");
5392 
5393       V = ConstantStruct::get(
5394           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5395     } else
5396       return Error(ID.Loc, "constant expression type mismatch");
5397     return false;
5398   }
5399   llvm_unreachable("Invalid ValID");
5400 }
5401 
5402 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5403   C = nullptr;
5404   ValID ID;
5405   auto Loc = Lex.getLoc();
5406   if (ParseValID(ID, /*PFS=*/nullptr))
5407     return true;
5408   switch (ID.Kind) {
5409   case ValID::t_APSInt:
5410   case ValID::t_APFloat:
5411   case ValID::t_Undef:
5412   case ValID::t_Constant:
5413   case ValID::t_ConstantStruct:
5414   case ValID::t_PackedConstantStruct: {
5415     Value *V;
5416     if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false))
5417       return true;
5418     assert(isa<Constant>(V) && "Expected a constant value");
5419     C = cast<Constant>(V);
5420     return false;
5421   }
5422   case ValID::t_Null:
5423     C = Constant::getNullValue(Ty);
5424     return false;
5425   default:
5426     return Error(Loc, "expected a constant value");
5427   }
5428 }
5429 
5430 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5431   V = nullptr;
5432   ValID ID;
5433   return ParseValID(ID, PFS) ||
5434          ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false);
5435 }
5436 
5437 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5438   Type *Ty = nullptr;
5439   return ParseType(Ty) ||
5440          ParseValue(Ty, V, PFS);
5441 }
5442 
5443 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5444                                       PerFunctionState &PFS) {
5445   Value *V;
5446   Loc = Lex.getLoc();
5447   if (ParseTypeAndValue(V, PFS)) return true;
5448   if (!isa<BasicBlock>(V))
5449     return Error(Loc, "expected a basic block");
5450   BB = cast<BasicBlock>(V);
5451   return false;
5452 }
5453 
5454 /// FunctionHeader
5455 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5456 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5457 ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5458 ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5459 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
5460   // Parse the linkage.
5461   LocTy LinkageLoc = Lex.getLoc();
5462   unsigned Linkage;
5463   unsigned Visibility;
5464   unsigned DLLStorageClass;
5465   bool DSOLocal;
5466   AttrBuilder RetAttrs;
5467   unsigned CC;
5468   bool HasLinkage;
5469   Type *RetType = nullptr;
5470   LocTy RetTypeLoc = Lex.getLoc();
5471   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5472                            DSOLocal) ||
5473       ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5474       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
5475     return true;
5476 
5477   // Verify that the linkage is ok.
5478   switch ((GlobalValue::LinkageTypes)Linkage) {
5479   case GlobalValue::ExternalLinkage:
5480     break; // always ok.
5481   case GlobalValue::ExternalWeakLinkage:
5482     if (isDefine)
5483       return Error(LinkageLoc, "invalid linkage for function definition");
5484     break;
5485   case GlobalValue::PrivateLinkage:
5486   case GlobalValue::InternalLinkage:
5487   case GlobalValue::AvailableExternallyLinkage:
5488   case GlobalValue::LinkOnceAnyLinkage:
5489   case GlobalValue::LinkOnceODRLinkage:
5490   case GlobalValue::WeakAnyLinkage:
5491   case GlobalValue::WeakODRLinkage:
5492     if (!isDefine)
5493       return Error(LinkageLoc, "invalid linkage for function declaration");
5494     break;
5495   case GlobalValue::AppendingLinkage:
5496   case GlobalValue::CommonLinkage:
5497     return Error(LinkageLoc, "invalid function linkage type");
5498   }
5499 
5500   if (!isValidVisibilityForLinkage(Visibility, Linkage))
5501     return Error(LinkageLoc,
5502                  "symbol with local linkage must have default visibility");
5503 
5504   if (!FunctionType::isValidReturnType(RetType))
5505     return Error(RetTypeLoc, "invalid function return type");
5506 
5507   LocTy NameLoc = Lex.getLoc();
5508 
5509   std::string FunctionName;
5510   if (Lex.getKind() == lltok::GlobalVar) {
5511     FunctionName = Lex.getStrVal();
5512   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
5513     unsigned NameID = Lex.getUIntVal();
5514 
5515     if (NameID != NumberedVals.size())
5516       return TokError("function expected to be numbered '%" +
5517                       Twine(NumberedVals.size()) + "'");
5518   } else {
5519     return TokError("expected function name");
5520   }
5521 
5522   Lex.Lex();
5523 
5524   if (Lex.getKind() != lltok::lparen)
5525     return TokError("expected '(' in function argument list");
5526 
5527   SmallVector<ArgInfo, 8> ArgList;
5528   bool isVarArg;
5529   AttrBuilder FuncAttrs;
5530   std::vector<unsigned> FwdRefAttrGrps;
5531   LocTy BuiltinLoc;
5532   std::string Section;
5533   std::string Partition;
5534   MaybeAlign Alignment;
5535   std::string GC;
5536   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5537   unsigned AddrSpace = 0;
5538   Constant *Prefix = nullptr;
5539   Constant *Prologue = nullptr;
5540   Constant *PersonalityFn = nullptr;
5541   Comdat *C;
5542 
5543   if (ParseArgumentList(ArgList, isVarArg) ||
5544       ParseOptionalUnnamedAddr(UnnamedAddr) ||
5545       ParseOptionalProgramAddrSpace(AddrSpace) ||
5546       ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5547                                  BuiltinLoc) ||
5548       (EatIfPresent(lltok::kw_section) &&
5549        ParseStringConstant(Section)) ||
5550       (EatIfPresent(lltok::kw_partition) &&
5551        ParseStringConstant(Partition)) ||
5552       parseOptionalComdat(FunctionName, C) ||
5553       ParseOptionalAlignment(Alignment) ||
5554       (EatIfPresent(lltok::kw_gc) &&
5555        ParseStringConstant(GC)) ||
5556       (EatIfPresent(lltok::kw_prefix) &&
5557        ParseGlobalTypeAndValue(Prefix)) ||
5558       (EatIfPresent(lltok::kw_prologue) &&
5559        ParseGlobalTypeAndValue(Prologue)) ||
5560       (EatIfPresent(lltok::kw_personality) &&
5561        ParseGlobalTypeAndValue(PersonalityFn)))
5562     return true;
5563 
5564   if (FuncAttrs.contains(Attribute::Builtin))
5565     return Error(BuiltinLoc, "'builtin' attribute not valid on function");
5566 
5567   // If the alignment was parsed as an attribute, move to the alignment field.
5568   if (FuncAttrs.hasAlignmentAttr()) {
5569     Alignment = FuncAttrs.getAlignment();
5570     FuncAttrs.removeAttribute(Attribute::Alignment);
5571   }
5572 
5573   // Okay, if we got here, the function is syntactically valid.  Convert types
5574   // and do semantic checks.
5575   std::vector<Type*> ParamTypeList;
5576   SmallVector<AttributeSet, 8> Attrs;
5577 
5578   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5579     ParamTypeList.push_back(ArgList[i].Ty);
5580     Attrs.push_back(ArgList[i].Attrs);
5581   }
5582 
5583   AttributeList PAL =
5584       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5585                          AttributeSet::get(Context, RetAttrs), Attrs);
5586 
5587   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
5588     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
5589 
5590   FunctionType *FT =
5591     FunctionType::get(RetType, ParamTypeList, isVarArg);
5592   PointerType *PFT = PointerType::get(FT, AddrSpace);
5593 
5594   Fn = nullptr;
5595   if (!FunctionName.empty()) {
5596     // If this was a definition of a forward reference, remove the definition
5597     // from the forward reference table and fill in the forward ref.
5598     auto FRVI = ForwardRefVals.find(FunctionName);
5599     if (FRVI != ForwardRefVals.end()) {
5600       Fn = M->getFunction(FunctionName);
5601       if (!Fn)
5602         return Error(FRVI->second.second, "invalid forward reference to "
5603                      "function as global value!");
5604       if (Fn->getType() != PFT)
5605         return Error(FRVI->second.second, "invalid forward reference to "
5606                      "function '" + FunctionName + "' with wrong type: "
5607                      "expected '" + getTypeString(PFT) + "' but was '" +
5608                      getTypeString(Fn->getType()) + "'");
5609       ForwardRefVals.erase(FRVI);
5610     } else if ((Fn = M->getFunction(FunctionName))) {
5611       // Reject redefinitions.
5612       return Error(NameLoc, "invalid redefinition of function '" +
5613                    FunctionName + "'");
5614     } else if (M->getNamedValue(FunctionName)) {
5615       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5616     }
5617 
5618   } else {
5619     // If this is a definition of a forward referenced function, make sure the
5620     // types agree.
5621     auto I = ForwardRefValIDs.find(NumberedVals.size());
5622     if (I != ForwardRefValIDs.end()) {
5623       Fn = cast<Function>(I->second.first);
5624       if (Fn->getType() != PFT)
5625         return Error(NameLoc, "type of definition and forward reference of '@" +
5626                      Twine(NumberedVals.size()) + "' disagree: "
5627                      "expected '" + getTypeString(PFT) + "' but was '" +
5628                      getTypeString(Fn->getType()) + "'");
5629       ForwardRefValIDs.erase(I);
5630     }
5631   }
5632 
5633   if (!Fn)
5634     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5635                           FunctionName, M);
5636   else // Move the forward-reference to the correct spot in the module.
5637     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
5638 
5639   assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5640 
5641   if (FunctionName.empty())
5642     NumberedVals.push_back(Fn);
5643 
5644   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5645   maybeSetDSOLocal(DSOLocal, *Fn);
5646   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5647   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5648   Fn->setCallingConv(CC);
5649   Fn->setAttributes(PAL);
5650   Fn->setUnnamedAddr(UnnamedAddr);
5651   Fn->setAlignment(MaybeAlign(Alignment));
5652   Fn->setSection(Section);
5653   Fn->setPartition(Partition);
5654   Fn->setComdat(C);
5655   Fn->setPersonalityFn(PersonalityFn);
5656   if (!GC.empty()) Fn->setGC(GC);
5657   Fn->setPrefixData(Prefix);
5658   Fn->setPrologueData(Prologue);
5659   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5660 
5661   // Add all of the arguments we parsed to the function.
5662   Function::arg_iterator ArgIt = Fn->arg_begin();
5663   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5664     // If the argument has a name, insert it into the argument symbol table.
5665     if (ArgList[i].Name.empty()) continue;
5666 
5667     // Set the name, if it conflicted, it will be auto-renamed.
5668     ArgIt->setName(ArgList[i].Name);
5669 
5670     if (ArgIt->getName() != ArgList[i].Name)
5671       return Error(ArgList[i].Loc, "redefinition of argument '%" +
5672                    ArgList[i].Name + "'");
5673   }
5674 
5675   if (isDefine)
5676     return false;
5677 
5678   // Check the declaration has no block address forward references.
5679   ValID ID;
5680   if (FunctionName.empty()) {
5681     ID.Kind = ValID::t_GlobalID;
5682     ID.UIntVal = NumberedVals.size() - 1;
5683   } else {
5684     ID.Kind = ValID::t_GlobalName;
5685     ID.StrVal = FunctionName;
5686   }
5687   auto Blocks = ForwardRefBlockAddresses.find(ID);
5688   if (Blocks != ForwardRefBlockAddresses.end())
5689     return Error(Blocks->first.Loc,
5690                  "cannot take blockaddress inside a declaration");
5691   return false;
5692 }
5693 
5694 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5695   ValID ID;
5696   if (FunctionNumber == -1) {
5697     ID.Kind = ValID::t_GlobalName;
5698     ID.StrVal = std::string(F.getName());
5699   } else {
5700     ID.Kind = ValID::t_GlobalID;
5701     ID.UIntVal = FunctionNumber;
5702   }
5703 
5704   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5705   if (Blocks == P.ForwardRefBlockAddresses.end())
5706     return false;
5707 
5708   for (const auto &I : Blocks->second) {
5709     const ValID &BBID = I.first;
5710     GlobalValue *GV = I.second;
5711 
5712     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5713            "Expected local id or name");
5714     BasicBlock *BB;
5715     if (BBID.Kind == ValID::t_LocalName)
5716       BB = GetBB(BBID.StrVal, BBID.Loc);
5717     else
5718       BB = GetBB(BBID.UIntVal, BBID.Loc);
5719     if (!BB)
5720       return P.Error(BBID.Loc, "referenced value is not a basic block");
5721 
5722     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
5723     GV->eraseFromParent();
5724   }
5725 
5726   P.ForwardRefBlockAddresses.erase(Blocks);
5727   return false;
5728 }
5729 
5730 /// ParseFunctionBody
5731 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
5732 bool LLParser::ParseFunctionBody(Function &Fn) {
5733   if (Lex.getKind() != lltok::lbrace)
5734     return TokError("expected '{' in function body");
5735   Lex.Lex();  // eat the {.
5736 
5737   int FunctionNumber = -1;
5738   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5739 
5740   PerFunctionState PFS(*this, Fn, FunctionNumber);
5741 
5742   // Resolve block addresses and allow basic blocks to be forward-declared
5743   // within this function.
5744   if (PFS.resolveForwardRefBlockAddresses())
5745     return true;
5746   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5747 
5748   // We need at least one basic block.
5749   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
5750     return TokError("function body requires at least one basic block");
5751 
5752   while (Lex.getKind() != lltok::rbrace &&
5753          Lex.getKind() != lltok::kw_uselistorder)
5754     if (ParseBasicBlock(PFS)) return true;
5755 
5756   while (Lex.getKind() != lltok::rbrace)
5757     if (ParseUseListOrder(&PFS))
5758       return true;
5759 
5760   // Eat the }.
5761   Lex.Lex();
5762 
5763   // Verify function is ok.
5764   return PFS.FinishFunction();
5765 }
5766 
5767 /// ParseBasicBlock
5768 ///   ::= (LabelStr|LabelID)? Instruction*
5769 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
5770   // If this basic block starts out with a name, remember it.
5771   std::string Name;
5772   int NameID = -1;
5773   LocTy NameLoc = Lex.getLoc();
5774   if (Lex.getKind() == lltok::LabelStr) {
5775     Name = Lex.getStrVal();
5776     Lex.Lex();
5777   } else if (Lex.getKind() == lltok::LabelID) {
5778     NameID = Lex.getUIntVal();
5779     Lex.Lex();
5780   }
5781 
5782   BasicBlock *BB = PFS.DefineBB(Name, NameID, NameLoc);
5783   if (!BB)
5784     return true;
5785 
5786   std::string NameStr;
5787 
5788   // Parse the instructions in this block until we get a terminator.
5789   Instruction *Inst;
5790   do {
5791     // This instruction may have three possibilities for a name: a) none
5792     // specified, b) name specified "%foo =", c) number specified: "%4 =".
5793     LocTy NameLoc = Lex.getLoc();
5794     int NameID = -1;
5795     NameStr = "";
5796 
5797     if (Lex.getKind() == lltok::LocalVarID) {
5798       NameID = Lex.getUIntVal();
5799       Lex.Lex();
5800       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
5801         return true;
5802     } else if (Lex.getKind() == lltok::LocalVar) {
5803       NameStr = Lex.getStrVal();
5804       Lex.Lex();
5805       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
5806         return true;
5807     }
5808 
5809     switch (ParseInstruction(Inst, BB, PFS)) {
5810     default: llvm_unreachable("Unknown ParseInstruction result!");
5811     case InstError: return true;
5812     case InstNormal:
5813       BB->getInstList().push_back(Inst);
5814 
5815       // With a normal result, we check to see if the instruction is followed by
5816       // a comma and metadata.
5817       if (EatIfPresent(lltok::comma))
5818         if (ParseInstructionMetadata(*Inst))
5819           return true;
5820       break;
5821     case InstExtraComma:
5822       BB->getInstList().push_back(Inst);
5823 
5824       // If the instruction parser ate an extra comma at the end of it, it
5825       // *must* be followed by metadata.
5826       if (ParseInstructionMetadata(*Inst))
5827         return true;
5828       break;
5829     }
5830 
5831     // Set the name on the instruction.
5832     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
5833   } while (!Inst->isTerminator());
5834 
5835   return false;
5836 }
5837 
5838 //===----------------------------------------------------------------------===//
5839 // Instruction Parsing.
5840 //===----------------------------------------------------------------------===//
5841 
5842 /// ParseInstruction - Parse one of the many different instructions.
5843 ///
5844 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
5845                                PerFunctionState &PFS) {
5846   lltok::Kind Token = Lex.getKind();
5847   if (Token == lltok::Eof)
5848     return TokError("found end of file when expecting more instructions");
5849   LocTy Loc = Lex.getLoc();
5850   unsigned KeywordVal = Lex.getUIntVal();
5851   Lex.Lex();  // Eat the keyword.
5852 
5853   switch (Token) {
5854   default:                    return Error(Loc, "expected instruction opcode");
5855   // Terminator Instructions.
5856   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5857   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
5858   case lltok::kw_br:          return ParseBr(Inst, PFS);
5859   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
5860   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
5861   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
5862   case lltok::kw_resume:      return ParseResume(Inst, PFS);
5863   case lltok::kw_cleanupret:  return ParseCleanupRet(Inst, PFS);
5864   case lltok::kw_catchret:    return ParseCatchRet(Inst, PFS);
5865   case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
5866   case lltok::kw_catchpad:    return ParseCatchPad(Inst, PFS);
5867   case lltok::kw_cleanuppad:  return ParseCleanupPad(Inst, PFS);
5868   case lltok::kw_callbr:      return ParseCallBr(Inst, PFS);
5869   // Unary Operators.
5870   case lltok::kw_fneg: {
5871     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5872     int Res = ParseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/true);
5873     if (Res != 0)
5874       return Res;
5875     if (FMF.any())
5876       Inst->setFastMathFlags(FMF);
5877     return false;
5878   }
5879   // Binary Operators.
5880   case lltok::kw_add:
5881   case lltok::kw_sub:
5882   case lltok::kw_mul:
5883   case lltok::kw_shl: {
5884     bool NUW = EatIfPresent(lltok::kw_nuw);
5885     bool NSW = EatIfPresent(lltok::kw_nsw);
5886     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5887 
5888     if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true;
5889 
5890     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5891     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5892     return false;
5893   }
5894   case lltok::kw_fadd:
5895   case lltok::kw_fsub:
5896   case lltok::kw_fmul:
5897   case lltok::kw_fdiv:
5898   case lltok::kw_frem: {
5899     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5900     int Res = ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/true);
5901     if (Res != 0)
5902       return Res;
5903     if (FMF.any())
5904       Inst->setFastMathFlags(FMF);
5905     return 0;
5906   }
5907 
5908   case lltok::kw_sdiv:
5909   case lltok::kw_udiv:
5910   case lltok::kw_lshr:
5911   case lltok::kw_ashr: {
5912     bool Exact = EatIfPresent(lltok::kw_exact);
5913 
5914     if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true;
5915     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5916     return false;
5917   }
5918 
5919   case lltok::kw_urem:
5920   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal,
5921                                                 /*IsFP*/false);
5922   case lltok::kw_and:
5923   case lltok::kw_or:
5924   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
5925   case lltok::kw_icmp:   return ParseCompare(Inst, PFS, KeywordVal);
5926   case lltok::kw_fcmp: {
5927     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5928     int Res = ParseCompare(Inst, PFS, KeywordVal);
5929     if (Res != 0)
5930       return Res;
5931     if (FMF.any())
5932       Inst->setFastMathFlags(FMF);
5933     return 0;
5934   }
5935 
5936   // Casts.
5937   case lltok::kw_trunc:
5938   case lltok::kw_zext:
5939   case lltok::kw_sext:
5940   case lltok::kw_fptrunc:
5941   case lltok::kw_fpext:
5942   case lltok::kw_bitcast:
5943   case lltok::kw_addrspacecast:
5944   case lltok::kw_uitofp:
5945   case lltok::kw_sitofp:
5946   case lltok::kw_fptoui:
5947   case lltok::kw_fptosi:
5948   case lltok::kw_inttoptr:
5949   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
5950   // Other.
5951   case lltok::kw_select: {
5952     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5953     int Res = ParseSelect(Inst, PFS);
5954     if (Res != 0)
5955       return Res;
5956     if (FMF.any()) {
5957       if (!isa<FPMathOperator>(Inst))
5958         return Error(Loc, "fast-math-flags specified for select without "
5959                           "floating-point scalar or vector return type");
5960       Inst->setFastMathFlags(FMF);
5961     }
5962     return 0;
5963   }
5964   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
5965   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
5966   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
5967   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
5968   case lltok::kw_phi: {
5969     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5970     int Res = ParsePHI(Inst, PFS);
5971     if (Res != 0)
5972       return Res;
5973     if (FMF.any()) {
5974       if (!isa<FPMathOperator>(Inst))
5975         return Error(Loc, "fast-math-flags specified for phi without "
5976                           "floating-point scalar or vector return type");
5977       Inst->setFastMathFlags(FMF);
5978     }
5979     return 0;
5980   }
5981   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
5982   case lltok::kw_freeze:         return ParseFreeze(Inst, PFS);
5983   // Call.
5984   case lltok::kw_call:     return ParseCall(Inst, PFS, CallInst::TCK_None);
5985   case lltok::kw_tail:     return ParseCall(Inst, PFS, CallInst::TCK_Tail);
5986   case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
5987   case lltok::kw_notail:   return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
5988   // Memory.
5989   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
5990   case lltok::kw_load:           return ParseLoad(Inst, PFS);
5991   case lltok::kw_store:          return ParseStore(Inst, PFS);
5992   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
5993   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
5994   case lltok::kw_fence:          return ParseFence(Inst, PFS);
5995   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
5996   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
5997   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
5998   }
5999 }
6000 
6001 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
6002 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
6003   if (Opc == Instruction::FCmp) {
6004     switch (Lex.getKind()) {
6005     default: return TokError("expected fcmp predicate (e.g. 'oeq')");
6006     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
6007     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
6008     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
6009     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
6010     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
6011     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
6012     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
6013     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
6014     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
6015     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
6016     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
6017     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
6018     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
6019     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
6020     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
6021     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
6022     }
6023   } else {
6024     switch (Lex.getKind()) {
6025     default: return TokError("expected icmp predicate (e.g. 'eq')");
6026     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
6027     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
6028     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
6029     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
6030     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
6031     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
6032     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
6033     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
6034     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
6035     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
6036     }
6037   }
6038   Lex.Lex();
6039   return false;
6040 }
6041 
6042 //===----------------------------------------------------------------------===//
6043 // Terminator Instructions.
6044 //===----------------------------------------------------------------------===//
6045 
6046 /// ParseRet - Parse a return instruction.
6047 ///   ::= 'ret' void (',' !dbg, !1)*
6048 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
6049 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
6050                         PerFunctionState &PFS) {
6051   SMLoc TypeLoc = Lex.getLoc();
6052   Type *Ty = nullptr;
6053   if (ParseType(Ty, true /*void allowed*/)) return true;
6054 
6055   Type *ResType = PFS.getFunction().getReturnType();
6056 
6057   if (Ty->isVoidTy()) {
6058     if (!ResType->isVoidTy())
6059       return Error(TypeLoc, "value doesn't match function result type '" +
6060                    getTypeString(ResType) + "'");
6061 
6062     Inst = ReturnInst::Create(Context);
6063     return false;
6064   }
6065 
6066   Value *RV;
6067   if (ParseValue(Ty, RV, PFS)) return true;
6068 
6069   if (ResType != RV->getType())
6070     return Error(TypeLoc, "value doesn't match function result type '" +
6071                  getTypeString(ResType) + "'");
6072 
6073   Inst = ReturnInst::Create(Context, RV);
6074   return false;
6075 }
6076 
6077 /// ParseBr
6078 ///   ::= 'br' TypeAndValue
6079 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6080 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
6081   LocTy Loc, Loc2;
6082   Value *Op0;
6083   BasicBlock *Op1, *Op2;
6084   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
6085 
6086   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
6087     Inst = BranchInst::Create(BB);
6088     return false;
6089   }
6090 
6091   if (Op0->getType() != Type::getInt1Ty(Context))
6092     return Error(Loc, "branch condition must have 'i1' type");
6093 
6094   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
6095       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
6096       ParseToken(lltok::comma, "expected ',' after true destination") ||
6097       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
6098     return true;
6099 
6100   Inst = BranchInst::Create(Op1, Op2, Op0);
6101   return false;
6102 }
6103 
6104 /// ParseSwitch
6105 ///  Instruction
6106 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
6107 ///  JumpTable
6108 ///    ::= (TypeAndValue ',' TypeAndValue)*
6109 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6110   LocTy CondLoc, BBLoc;
6111   Value *Cond;
6112   BasicBlock *DefaultBB;
6113   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
6114       ParseToken(lltok::comma, "expected ',' after switch condition") ||
6115       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
6116       ParseToken(lltok::lsquare, "expected '[' with switch table"))
6117     return true;
6118 
6119   if (!Cond->getType()->isIntegerTy())
6120     return Error(CondLoc, "switch condition must have integer type");
6121 
6122   // Parse the jump table pairs.
6123   SmallPtrSet<Value*, 32> SeenCases;
6124   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
6125   while (Lex.getKind() != lltok::rsquare) {
6126     Value *Constant;
6127     BasicBlock *DestBB;
6128 
6129     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
6130         ParseToken(lltok::comma, "expected ',' after case value") ||
6131         ParseTypeAndBasicBlock(DestBB, PFS))
6132       return true;
6133 
6134     if (!SeenCases.insert(Constant).second)
6135       return Error(CondLoc, "duplicate case value in switch");
6136     if (!isa<ConstantInt>(Constant))
6137       return Error(CondLoc, "case value is not a constant integer");
6138 
6139     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
6140   }
6141 
6142   Lex.Lex();  // Eat the ']'.
6143 
6144   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
6145   for (unsigned i = 0, e = Table.size(); i != e; ++i)
6146     SI->addCase(Table[i].first, Table[i].second);
6147   Inst = SI;
6148   return false;
6149 }
6150 
6151 /// ParseIndirectBr
6152 ///  Instruction
6153 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
6154 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
6155   LocTy AddrLoc;
6156   Value *Address;
6157   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
6158       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
6159       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
6160     return true;
6161 
6162   if (!Address->getType()->isPointerTy())
6163     return Error(AddrLoc, "indirectbr address must have pointer type");
6164 
6165   // Parse the destination list.
6166   SmallVector<BasicBlock*, 16> DestList;
6167 
6168   if (Lex.getKind() != lltok::rsquare) {
6169     BasicBlock *DestBB;
6170     if (ParseTypeAndBasicBlock(DestBB, PFS))
6171       return true;
6172     DestList.push_back(DestBB);
6173 
6174     while (EatIfPresent(lltok::comma)) {
6175       if (ParseTypeAndBasicBlock(DestBB, PFS))
6176         return true;
6177       DestList.push_back(DestBB);
6178     }
6179   }
6180 
6181   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
6182     return true;
6183 
6184   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
6185   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
6186     IBI->addDestination(DestList[i]);
6187   Inst = IBI;
6188   return false;
6189 }
6190 
6191 /// ParseInvoke
6192 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
6193 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
6194 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
6195   LocTy CallLoc = Lex.getLoc();
6196   AttrBuilder RetAttrs, FnAttrs;
6197   std::vector<unsigned> FwdRefAttrGrps;
6198   LocTy NoBuiltinLoc;
6199   unsigned CC;
6200   unsigned InvokeAddrSpace;
6201   Type *RetType = nullptr;
6202   LocTy RetTypeLoc;
6203   ValID CalleeID;
6204   SmallVector<ParamInfo, 16> ArgList;
6205   SmallVector<OperandBundleDef, 2> BundleList;
6206 
6207   BasicBlock *NormalBB, *UnwindBB;
6208   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6209       ParseOptionalProgramAddrSpace(InvokeAddrSpace) ||
6210       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6211       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
6212       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6213                                  NoBuiltinLoc) ||
6214       ParseOptionalOperandBundles(BundleList, PFS) ||
6215       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
6216       ParseTypeAndBasicBlock(NormalBB, PFS) ||
6217       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
6218       ParseTypeAndBasicBlock(UnwindBB, PFS))
6219     return true;
6220 
6221   // If RetType is a non-function pointer type, then this is the short syntax
6222   // for the call, which means that RetType is just the return type.  Infer the
6223   // rest of the function argument types from the arguments that are present.
6224   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6225   if (!Ty) {
6226     // Pull out the types of all of the arguments...
6227     std::vector<Type*> ParamTypes;
6228     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6229       ParamTypes.push_back(ArgList[i].V->getType());
6230 
6231     if (!FunctionType::isValidReturnType(RetType))
6232       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6233 
6234     Ty = FunctionType::get(RetType, ParamTypes, false);
6235   }
6236 
6237   CalleeID.FTy = Ty;
6238 
6239   // Look up the callee.
6240   Value *Callee;
6241   if (ConvertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
6242                           Callee, &PFS, /*IsCall=*/true))
6243     return true;
6244 
6245   // Set up the Attribute for the function.
6246   SmallVector<Value *, 8> Args;
6247   SmallVector<AttributeSet, 8> ArgAttrs;
6248 
6249   // Loop through FunctionType's arguments and ensure they are specified
6250   // correctly.  Also, gather any parameter attributes.
6251   FunctionType::param_iterator I = Ty->param_begin();
6252   FunctionType::param_iterator E = Ty->param_end();
6253   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6254     Type *ExpectedTy = nullptr;
6255     if (I != E) {
6256       ExpectedTy = *I++;
6257     } else if (!Ty->isVarArg()) {
6258       return Error(ArgList[i].Loc, "too many arguments specified");
6259     }
6260 
6261     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6262       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6263                    getTypeString(ExpectedTy) + "'");
6264     Args.push_back(ArgList[i].V);
6265     ArgAttrs.push_back(ArgList[i].Attrs);
6266   }
6267 
6268   if (I != E)
6269     return Error(CallLoc, "not enough parameters specified for call");
6270 
6271   if (FnAttrs.hasAlignmentAttr())
6272     return Error(CallLoc, "invoke instructions may not have an alignment");
6273 
6274   // Finish off the Attribute and check them
6275   AttributeList PAL =
6276       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6277                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6278 
6279   InvokeInst *II =
6280       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
6281   II->setCallingConv(CC);
6282   II->setAttributes(PAL);
6283   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
6284   Inst = II;
6285   return false;
6286 }
6287 
6288 /// ParseResume
6289 ///   ::= 'resume' TypeAndValue
6290 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
6291   Value *Exn; LocTy ExnLoc;
6292   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
6293     return true;
6294 
6295   ResumeInst *RI = ResumeInst::Create(Exn);
6296   Inst = RI;
6297   return false;
6298 }
6299 
6300 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
6301                                   PerFunctionState &PFS) {
6302   if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
6303     return true;
6304 
6305   while (Lex.getKind() != lltok::rsquare) {
6306     // If this isn't the first argument, we need a comma.
6307     if (!Args.empty() &&
6308         ParseToken(lltok::comma, "expected ',' in argument list"))
6309       return true;
6310 
6311     // Parse the argument.
6312     LocTy ArgLoc;
6313     Type *ArgTy = nullptr;
6314     if (ParseType(ArgTy, ArgLoc))
6315       return true;
6316 
6317     Value *V;
6318     if (ArgTy->isMetadataTy()) {
6319       if (ParseMetadataAsValue(V, PFS))
6320         return true;
6321     } else {
6322       if (ParseValue(ArgTy, V, PFS))
6323         return true;
6324     }
6325     Args.push_back(V);
6326   }
6327 
6328   Lex.Lex();  // Lex the ']'.
6329   return false;
6330 }
6331 
6332 /// ParseCleanupRet
6333 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6334 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6335   Value *CleanupPad = nullptr;
6336 
6337   if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6338     return true;
6339 
6340   if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6341     return true;
6342 
6343   if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6344     return true;
6345 
6346   BasicBlock *UnwindBB = nullptr;
6347   if (Lex.getKind() == lltok::kw_to) {
6348     Lex.Lex();
6349     if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6350       return true;
6351   } else {
6352     if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
6353       return true;
6354     }
6355   }
6356 
6357   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6358   return false;
6359 }
6360 
6361 /// ParseCatchRet
6362 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
6363 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6364   Value *CatchPad = nullptr;
6365 
6366   if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
6367     return true;
6368 
6369   if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
6370     return true;
6371 
6372   BasicBlock *BB;
6373   if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
6374       ParseTypeAndBasicBlock(BB, PFS))
6375       return true;
6376 
6377   Inst = CatchReturnInst::Create(CatchPad, BB);
6378   return false;
6379 }
6380 
6381 /// ParseCatchSwitch
6382 ///   ::= 'catchswitch' within Parent
6383 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6384   Value *ParentPad;
6385 
6386   if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6387     return true;
6388 
6389   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6390       Lex.getKind() != lltok::LocalVarID)
6391     return TokError("expected scope value for catchswitch");
6392 
6393   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6394     return true;
6395 
6396   if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6397     return true;
6398 
6399   SmallVector<BasicBlock *, 32> Table;
6400   do {
6401     BasicBlock *DestBB;
6402     if (ParseTypeAndBasicBlock(DestBB, PFS))
6403       return true;
6404     Table.push_back(DestBB);
6405   } while (EatIfPresent(lltok::comma));
6406 
6407   if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6408     return true;
6409 
6410   if (ParseToken(lltok::kw_unwind,
6411                  "expected 'unwind' after catchswitch scope"))
6412     return true;
6413 
6414   BasicBlock *UnwindBB = nullptr;
6415   if (EatIfPresent(lltok::kw_to)) {
6416     if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6417       return true;
6418   } else {
6419     if (ParseTypeAndBasicBlock(UnwindBB, PFS))
6420       return true;
6421   }
6422 
6423   auto *CatchSwitch =
6424       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6425   for (BasicBlock *DestBB : Table)
6426     CatchSwitch->addHandler(DestBB);
6427   Inst = CatchSwitch;
6428   return false;
6429 }
6430 
6431 /// ParseCatchPad
6432 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6433 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6434   Value *CatchSwitch = nullptr;
6435 
6436   if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
6437     return true;
6438 
6439   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6440     return TokError("expected scope value for catchpad");
6441 
6442   if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6443     return true;
6444 
6445   SmallVector<Value *, 8> Args;
6446   if (ParseExceptionArgs(Args, PFS))
6447     return true;
6448 
6449   Inst = CatchPadInst::Create(CatchSwitch, Args);
6450   return false;
6451 }
6452 
6453 /// ParseCleanupPad
6454 ///   ::= 'cleanuppad' within Parent ParamList
6455 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6456   Value *ParentPad = nullptr;
6457 
6458   if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6459     return true;
6460 
6461   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6462       Lex.getKind() != lltok::LocalVarID)
6463     return TokError("expected scope value for cleanuppad");
6464 
6465   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
6466     return true;
6467 
6468   SmallVector<Value *, 8> Args;
6469   if (ParseExceptionArgs(Args, PFS))
6470     return true;
6471 
6472   Inst = CleanupPadInst::Create(ParentPad, Args);
6473   return false;
6474 }
6475 
6476 //===----------------------------------------------------------------------===//
6477 // Unary Operators.
6478 //===----------------------------------------------------------------------===//
6479 
6480 /// ParseUnaryOp
6481 ///  ::= UnaryOp TypeAndValue ',' Value
6482 ///
6483 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6484 /// operand is allowed.
6485 bool LLParser::ParseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6486                             unsigned Opc, bool IsFP) {
6487   LocTy Loc; Value *LHS;
6488   if (ParseTypeAndValue(LHS, Loc, PFS))
6489     return true;
6490 
6491   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6492                     : LHS->getType()->isIntOrIntVectorTy();
6493 
6494   if (!Valid)
6495     return Error(Loc, "invalid operand type for instruction");
6496 
6497   Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6498   return false;
6499 }
6500 
6501 /// ParseCallBr
6502 ///   ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6503 ///       OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6504 ///       '[' LabelList ']'
6505 bool LLParser::ParseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6506   LocTy CallLoc = Lex.getLoc();
6507   AttrBuilder RetAttrs, FnAttrs;
6508   std::vector<unsigned> FwdRefAttrGrps;
6509   LocTy NoBuiltinLoc;
6510   unsigned CC;
6511   Type *RetType = nullptr;
6512   LocTy RetTypeLoc;
6513   ValID CalleeID;
6514   SmallVector<ParamInfo, 16> ArgList;
6515   SmallVector<OperandBundleDef, 2> BundleList;
6516 
6517   BasicBlock *DefaultDest;
6518   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6519       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6520       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
6521       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6522                                  NoBuiltinLoc) ||
6523       ParseOptionalOperandBundles(BundleList, PFS) ||
6524       ParseToken(lltok::kw_to, "expected 'to' in callbr") ||
6525       ParseTypeAndBasicBlock(DefaultDest, PFS) ||
6526       ParseToken(lltok::lsquare, "expected '[' in callbr"))
6527     return true;
6528 
6529   // Parse the destination list.
6530   SmallVector<BasicBlock *, 16> IndirectDests;
6531 
6532   if (Lex.getKind() != lltok::rsquare) {
6533     BasicBlock *DestBB;
6534     if (ParseTypeAndBasicBlock(DestBB, PFS))
6535       return true;
6536     IndirectDests.push_back(DestBB);
6537 
6538     while (EatIfPresent(lltok::comma)) {
6539       if (ParseTypeAndBasicBlock(DestBB, PFS))
6540         return true;
6541       IndirectDests.push_back(DestBB);
6542     }
6543   }
6544 
6545   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
6546     return true;
6547 
6548   // If RetType is a non-function pointer type, then this is the short syntax
6549   // for the call, which means that RetType is just the return type.  Infer the
6550   // rest of the function argument types from the arguments that are present.
6551   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6552   if (!Ty) {
6553     // Pull out the types of all of the arguments...
6554     std::vector<Type *> ParamTypes;
6555     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6556       ParamTypes.push_back(ArgList[i].V->getType());
6557 
6558     if (!FunctionType::isValidReturnType(RetType))
6559       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6560 
6561     Ty = FunctionType::get(RetType, ParamTypes, false);
6562   }
6563 
6564   CalleeID.FTy = Ty;
6565 
6566   // Look up the callee.
6567   Value *Callee;
6568   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS,
6569                           /*IsCall=*/true))
6570     return true;
6571 
6572   // Set up the Attribute for the function.
6573   SmallVector<Value *, 8> Args;
6574   SmallVector<AttributeSet, 8> ArgAttrs;
6575 
6576   // Loop through FunctionType's arguments and ensure they are specified
6577   // correctly.  Also, gather any parameter attributes.
6578   FunctionType::param_iterator I = Ty->param_begin();
6579   FunctionType::param_iterator E = Ty->param_end();
6580   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6581     Type *ExpectedTy = nullptr;
6582     if (I != E) {
6583       ExpectedTy = *I++;
6584     } else if (!Ty->isVarArg()) {
6585       return Error(ArgList[i].Loc, "too many arguments specified");
6586     }
6587 
6588     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6589       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6590                                        getTypeString(ExpectedTy) + "'");
6591     Args.push_back(ArgList[i].V);
6592     ArgAttrs.push_back(ArgList[i].Attrs);
6593   }
6594 
6595   if (I != E)
6596     return Error(CallLoc, "not enough parameters specified for call");
6597 
6598   if (FnAttrs.hasAlignmentAttr())
6599     return Error(CallLoc, "callbr instructions may not have an alignment");
6600 
6601   // Finish off the Attribute and check them
6602   AttributeList PAL =
6603       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6604                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6605 
6606   CallBrInst *CBI =
6607       CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
6608                          BundleList);
6609   CBI->setCallingConv(CC);
6610   CBI->setAttributes(PAL);
6611   ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
6612   Inst = CBI;
6613   return false;
6614 }
6615 
6616 //===----------------------------------------------------------------------===//
6617 // Binary Operators.
6618 //===----------------------------------------------------------------------===//
6619 
6620 /// ParseArithmetic
6621 ///  ::= ArithmeticOps TypeAndValue ',' Value
6622 ///
6623 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6624 /// operand is allowed.
6625 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6626                                unsigned Opc, bool IsFP) {
6627   LocTy Loc; Value *LHS, *RHS;
6628   if (ParseTypeAndValue(LHS, Loc, PFS) ||
6629       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6630       ParseValue(LHS->getType(), RHS, PFS))
6631     return true;
6632 
6633   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6634                     : LHS->getType()->isIntOrIntVectorTy();
6635 
6636   if (!Valid)
6637     return Error(Loc, "invalid operand type for instruction");
6638 
6639   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6640   return false;
6641 }
6642 
6643 /// ParseLogical
6644 ///  ::= ArithmeticOps TypeAndValue ',' Value {
6645 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
6646                             unsigned Opc) {
6647   LocTy Loc; Value *LHS, *RHS;
6648   if (ParseTypeAndValue(LHS, Loc, PFS) ||
6649       ParseToken(lltok::comma, "expected ',' in logical operation") ||
6650       ParseValue(LHS->getType(), RHS, PFS))
6651     return true;
6652 
6653   if (!LHS->getType()->isIntOrIntVectorTy())
6654     return Error(Loc,"instruction requires integer or integer vector operands");
6655 
6656   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6657   return false;
6658 }
6659 
6660 /// ParseCompare
6661 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
6662 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
6663 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
6664                             unsigned Opc) {
6665   // Parse the integer/fp comparison predicate.
6666   LocTy Loc;
6667   unsigned Pred;
6668   Value *LHS, *RHS;
6669   if (ParseCmpPredicate(Pred, Opc) ||
6670       ParseTypeAndValue(LHS, Loc, PFS) ||
6671       ParseToken(lltok::comma, "expected ',' after compare value") ||
6672       ParseValue(LHS->getType(), RHS, PFS))
6673     return true;
6674 
6675   if (Opc == Instruction::FCmp) {
6676     if (!LHS->getType()->isFPOrFPVectorTy())
6677       return Error(Loc, "fcmp requires floating point operands");
6678     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6679   } else {
6680     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
6681     if (!LHS->getType()->isIntOrIntVectorTy() &&
6682         !LHS->getType()->isPtrOrPtrVectorTy())
6683       return Error(Loc, "icmp requires integer operands");
6684     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6685   }
6686   return false;
6687 }
6688 
6689 //===----------------------------------------------------------------------===//
6690 // Other Instructions.
6691 //===----------------------------------------------------------------------===//
6692 
6693 
6694 /// ParseCast
6695 ///   ::= CastOpc TypeAndValue 'to' Type
6696 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
6697                          unsigned Opc) {
6698   LocTy Loc;
6699   Value *Op;
6700   Type *DestTy = nullptr;
6701   if (ParseTypeAndValue(Op, Loc, PFS) ||
6702       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
6703       ParseType(DestTy))
6704     return true;
6705 
6706   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
6707     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
6708     return Error(Loc, "invalid cast opcode for cast from '" +
6709                  getTypeString(Op->getType()) + "' to '" +
6710                  getTypeString(DestTy) + "'");
6711   }
6712   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
6713   return false;
6714 }
6715 
6716 /// ParseSelect
6717 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6718 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
6719   LocTy Loc;
6720   Value *Op0, *Op1, *Op2;
6721   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6722       ParseToken(lltok::comma, "expected ',' after select condition") ||
6723       ParseTypeAndValue(Op1, PFS) ||
6724       ParseToken(lltok::comma, "expected ',' after select value") ||
6725       ParseTypeAndValue(Op2, PFS))
6726     return true;
6727 
6728   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
6729     return Error(Loc, Reason);
6730 
6731   Inst = SelectInst::Create(Op0, Op1, Op2);
6732   return false;
6733 }
6734 
6735 /// ParseVA_Arg
6736 ///   ::= 'va_arg' TypeAndValue ',' Type
6737 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
6738   Value *Op;
6739   Type *EltTy = nullptr;
6740   LocTy TypeLoc;
6741   if (ParseTypeAndValue(Op, PFS) ||
6742       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
6743       ParseType(EltTy, TypeLoc))
6744     return true;
6745 
6746   if (!EltTy->isFirstClassType())
6747     return Error(TypeLoc, "va_arg requires operand with first class type");
6748 
6749   Inst = new VAArgInst(Op, EltTy);
6750   return false;
6751 }
6752 
6753 /// ParseExtractElement
6754 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
6755 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
6756   LocTy Loc;
6757   Value *Op0, *Op1;
6758   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6759       ParseToken(lltok::comma, "expected ',' after extract value") ||
6760       ParseTypeAndValue(Op1, PFS))
6761     return true;
6762 
6763   if (!ExtractElementInst::isValidOperands(Op0, Op1))
6764     return Error(Loc, "invalid extractelement operands");
6765 
6766   Inst = ExtractElementInst::Create(Op0, Op1);
6767   return false;
6768 }
6769 
6770 /// ParseInsertElement
6771 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6772 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
6773   LocTy Loc;
6774   Value *Op0, *Op1, *Op2;
6775   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6776       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6777       ParseTypeAndValue(Op1, PFS) ||
6778       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6779       ParseTypeAndValue(Op2, PFS))
6780     return true;
6781 
6782   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
6783     return Error(Loc, "invalid insertelement operands");
6784 
6785   Inst = InsertElementInst::Create(Op0, Op1, Op2);
6786   return false;
6787 }
6788 
6789 /// ParseShuffleVector
6790 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6791 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
6792   LocTy Loc;
6793   Value *Op0, *Op1, *Op2;
6794   if (ParseTypeAndValue(Op0, Loc, PFS) ||
6795       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
6796       ParseTypeAndValue(Op1, PFS) ||
6797       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
6798       ParseTypeAndValue(Op2, PFS))
6799     return true;
6800 
6801   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
6802     return Error(Loc, "invalid shufflevector operands");
6803 
6804   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
6805   return false;
6806 }
6807 
6808 /// ParsePHI
6809 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
6810 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
6811   Type *Ty = nullptr;  LocTy TypeLoc;
6812   Value *Op0, *Op1;
6813 
6814   if (ParseType(Ty, TypeLoc) ||
6815       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6816       ParseValue(Ty, Op0, PFS) ||
6817       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6818       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6819       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6820     return true;
6821 
6822   bool AteExtraComma = false;
6823   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
6824 
6825   while (true) {
6826     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
6827 
6828     if (!EatIfPresent(lltok::comma))
6829       break;
6830 
6831     if (Lex.getKind() == lltok::MetadataVar) {
6832       AteExtraComma = true;
6833       break;
6834     }
6835 
6836     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
6837         ParseValue(Ty, Op0, PFS) ||
6838         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
6839         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
6840         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
6841       return true;
6842   }
6843 
6844   if (!Ty->isFirstClassType())
6845     return Error(TypeLoc, "phi node must have first class type");
6846 
6847   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
6848   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
6849     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
6850   Inst = PN;
6851   return AteExtraComma ? InstExtraComma : InstNormal;
6852 }
6853 
6854 /// ParseLandingPad
6855 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
6856 /// Clause
6857 ///   ::= 'catch' TypeAndValue
6858 ///   ::= 'filter'
6859 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
6860 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
6861   Type *Ty = nullptr; LocTy TyLoc;
6862 
6863   if (ParseType(Ty, TyLoc))
6864     return true;
6865 
6866   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
6867   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
6868 
6869   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
6870     LandingPadInst::ClauseType CT;
6871     if (EatIfPresent(lltok::kw_catch))
6872       CT = LandingPadInst::Catch;
6873     else if (EatIfPresent(lltok::kw_filter))
6874       CT = LandingPadInst::Filter;
6875     else
6876       return TokError("expected 'catch' or 'filter' clause type");
6877 
6878     Value *V;
6879     LocTy VLoc;
6880     if (ParseTypeAndValue(V, VLoc, PFS))
6881       return true;
6882 
6883     // A 'catch' type expects a non-array constant. A filter clause expects an
6884     // array constant.
6885     if (CT == LandingPadInst::Catch) {
6886       if (isa<ArrayType>(V->getType()))
6887         Error(VLoc, "'catch' clause has an invalid type");
6888     } else {
6889       if (!isa<ArrayType>(V->getType()))
6890         Error(VLoc, "'filter' clause has an invalid type");
6891     }
6892 
6893     Constant *CV = dyn_cast<Constant>(V);
6894     if (!CV)
6895       return Error(VLoc, "clause argument must be a constant");
6896     LP->addClause(CV);
6897   }
6898 
6899   Inst = LP.release();
6900   return false;
6901 }
6902 
6903 /// ParseFreeze
6904 ///   ::= 'freeze' Type Value
6905 bool LLParser::ParseFreeze(Instruction *&Inst, PerFunctionState &PFS) {
6906   LocTy Loc;
6907   Value *Op;
6908   if (ParseTypeAndValue(Op, Loc, PFS))
6909     return true;
6910 
6911   Inst = new FreezeInst(Op);
6912   return false;
6913 }
6914 
6915 /// ParseCall
6916 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
6917 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6918 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
6919 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6920 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
6921 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6922 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
6923 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
6924 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
6925                          CallInst::TailCallKind TCK) {
6926   AttrBuilder RetAttrs, FnAttrs;
6927   std::vector<unsigned> FwdRefAttrGrps;
6928   LocTy BuiltinLoc;
6929   unsigned CallAddrSpace;
6930   unsigned CC;
6931   Type *RetType = nullptr;
6932   LocTy RetTypeLoc;
6933   ValID CalleeID;
6934   SmallVector<ParamInfo, 16> ArgList;
6935   SmallVector<OperandBundleDef, 2> BundleList;
6936   LocTy CallLoc = Lex.getLoc();
6937 
6938   if (TCK != CallInst::TCK_None &&
6939       ParseToken(lltok::kw_call,
6940                  "expected 'tail call', 'musttail call', or 'notail call'"))
6941     return true;
6942 
6943   FastMathFlags FMF = EatFastMathFlagsIfPresent();
6944 
6945   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
6946       ParseOptionalProgramAddrSpace(CallAddrSpace) ||
6947       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6948       ParseValID(CalleeID) ||
6949       ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
6950                          PFS.getFunction().isVarArg()) ||
6951       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
6952       ParseOptionalOperandBundles(BundleList, PFS))
6953     return true;
6954 
6955   // If RetType is a non-function pointer type, then this is the short syntax
6956   // for the call, which means that RetType is just the return type.  Infer the
6957   // rest of the function argument types from the arguments that are present.
6958   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6959   if (!Ty) {
6960     // Pull out the types of all of the arguments...
6961     std::vector<Type*> ParamTypes;
6962     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6963       ParamTypes.push_back(ArgList[i].V->getType());
6964 
6965     if (!FunctionType::isValidReturnType(RetType))
6966       return Error(RetTypeLoc, "Invalid result type for LLVM function");
6967 
6968     Ty = FunctionType::get(RetType, ParamTypes, false);
6969   }
6970 
6971   CalleeID.FTy = Ty;
6972 
6973   // Look up the callee.
6974   Value *Callee;
6975   if (ConvertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
6976                           &PFS, /*IsCall=*/true))
6977     return true;
6978 
6979   // Set up the Attribute for the function.
6980   SmallVector<AttributeSet, 8> Attrs;
6981 
6982   SmallVector<Value*, 8> Args;
6983 
6984   // Loop through FunctionType's arguments and ensure they are specified
6985   // correctly.  Also, gather any parameter attributes.
6986   FunctionType::param_iterator I = Ty->param_begin();
6987   FunctionType::param_iterator E = Ty->param_end();
6988   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6989     Type *ExpectedTy = nullptr;
6990     if (I != E) {
6991       ExpectedTy = *I++;
6992     } else if (!Ty->isVarArg()) {
6993       return Error(ArgList[i].Loc, "too many arguments specified");
6994     }
6995 
6996     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6997       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6998                    getTypeString(ExpectedTy) + "'");
6999     Args.push_back(ArgList[i].V);
7000     Attrs.push_back(ArgList[i].Attrs);
7001   }
7002 
7003   if (I != E)
7004     return Error(CallLoc, "not enough parameters specified for call");
7005 
7006   if (FnAttrs.hasAlignmentAttr())
7007     return Error(CallLoc, "call instructions may not have an alignment");
7008 
7009   // Finish off the Attribute and check them
7010   AttributeList PAL =
7011       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
7012                          AttributeSet::get(Context, RetAttrs), Attrs);
7013 
7014   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
7015   CI->setTailCallKind(TCK);
7016   CI->setCallingConv(CC);
7017   if (FMF.any()) {
7018     if (!isa<FPMathOperator>(CI)) {
7019       CI->deleteValue();
7020       return Error(CallLoc, "fast-math-flags specified for call without "
7021                    "floating-point scalar or vector return type");
7022     }
7023     CI->setFastMathFlags(FMF);
7024   }
7025   CI->setAttributes(PAL);
7026   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
7027   Inst = CI;
7028   return false;
7029 }
7030 
7031 //===----------------------------------------------------------------------===//
7032 // Memory Instructions.
7033 //===----------------------------------------------------------------------===//
7034 
7035 /// ParseAlloc
7036 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
7037 ///       (',' 'align' i32)? (',', 'addrspace(n))?
7038 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
7039   Value *Size = nullptr;
7040   LocTy SizeLoc, TyLoc, ASLoc;
7041   MaybeAlign Alignment;
7042   unsigned AddrSpace = 0;
7043   Type *Ty = nullptr;
7044 
7045   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
7046   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
7047 
7048   if (ParseType(Ty, TyLoc)) return true;
7049 
7050   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
7051     return Error(TyLoc, "invalid type for alloca");
7052 
7053   bool AteExtraComma = false;
7054   if (EatIfPresent(lltok::comma)) {
7055     if (Lex.getKind() == lltok::kw_align) {
7056       if (ParseOptionalAlignment(Alignment))
7057         return true;
7058       if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7059         return true;
7060     } else if (Lex.getKind() == lltok::kw_addrspace) {
7061       ASLoc = Lex.getLoc();
7062       if (ParseOptionalAddrSpace(AddrSpace))
7063         return true;
7064     } else if (Lex.getKind() == lltok::MetadataVar) {
7065       AteExtraComma = true;
7066     } else {
7067       if (ParseTypeAndValue(Size, SizeLoc, PFS))
7068         return true;
7069       if (EatIfPresent(lltok::comma)) {
7070         if (Lex.getKind() == lltok::kw_align) {
7071           if (ParseOptionalAlignment(Alignment))
7072             return true;
7073           if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7074             return true;
7075         } else if (Lex.getKind() == lltok::kw_addrspace) {
7076           ASLoc = Lex.getLoc();
7077           if (ParseOptionalAddrSpace(AddrSpace))
7078             return true;
7079         } else if (Lex.getKind() == lltok::MetadataVar) {
7080           AteExtraComma = true;
7081         }
7082       }
7083     }
7084   }
7085 
7086   if (Size && !Size->getType()->isIntegerTy())
7087     return Error(SizeLoc, "element count must have integer type");
7088 
7089   SmallPtrSet<Type *, 4> Visited;
7090   if (!Alignment && !Ty->isSized(&Visited))
7091     return Error(TyLoc, "Cannot allocate unsized type");
7092   if (!Alignment)
7093     Alignment = M->getDataLayout().getPrefTypeAlign(Ty);
7094   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment);
7095   AI->setUsedWithInAlloca(IsInAlloca);
7096   AI->setSwiftError(IsSwiftError);
7097   Inst = AI;
7098   return AteExtraComma ? InstExtraComma : InstNormal;
7099 }
7100 
7101 /// ParseLoad
7102 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
7103 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
7104 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7105 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
7106   Value *Val; LocTy Loc;
7107   MaybeAlign Alignment;
7108   bool AteExtraComma = false;
7109   bool isAtomic = false;
7110   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7111   SyncScope::ID SSID = SyncScope::System;
7112 
7113   if (Lex.getKind() == lltok::kw_atomic) {
7114     isAtomic = true;
7115     Lex.Lex();
7116   }
7117 
7118   bool isVolatile = false;
7119   if (Lex.getKind() == lltok::kw_volatile) {
7120     isVolatile = true;
7121     Lex.Lex();
7122   }
7123 
7124   Type *Ty;
7125   LocTy ExplicitTypeLoc = Lex.getLoc();
7126   if (ParseType(Ty) ||
7127       ParseToken(lltok::comma, "expected comma after load's type") ||
7128       ParseTypeAndValue(Val, Loc, PFS) ||
7129       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7130       ParseOptionalCommaAlign(Alignment, AteExtraComma))
7131     return true;
7132 
7133   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
7134     return Error(Loc, "load operand must be a pointer to a first class type");
7135   if (isAtomic && !Alignment)
7136     return Error(Loc, "atomic load must have explicit non-zero alignment");
7137   if (Ordering == AtomicOrdering::Release ||
7138       Ordering == AtomicOrdering::AcquireRelease)
7139     return Error(Loc, "atomic load cannot use Release ordering");
7140 
7141   if (Ty != cast<PointerType>(Val->getType())->getElementType())
7142     return Error(ExplicitTypeLoc,
7143                  "explicit pointee type doesn't match operand's pointee type");
7144   SmallPtrSet<Type *, 4> Visited;
7145   if (!Alignment && !Ty->isSized(&Visited))
7146     return Error(ExplicitTypeLoc, "loading unsized types is not allowed");
7147   if (!Alignment)
7148     Alignment = M->getDataLayout().getABITypeAlign(Ty);
7149   Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID);
7150   return AteExtraComma ? InstExtraComma : InstNormal;
7151 }
7152 
7153 /// ParseStore
7154 
7155 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
7156 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
7157 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7158 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
7159   Value *Val, *Ptr; LocTy Loc, PtrLoc;
7160   MaybeAlign Alignment;
7161   bool AteExtraComma = false;
7162   bool isAtomic = false;
7163   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7164   SyncScope::ID SSID = SyncScope::System;
7165 
7166   if (Lex.getKind() == lltok::kw_atomic) {
7167     isAtomic = true;
7168     Lex.Lex();
7169   }
7170 
7171   bool isVolatile = false;
7172   if (Lex.getKind() == lltok::kw_volatile) {
7173     isVolatile = true;
7174     Lex.Lex();
7175   }
7176 
7177   if (ParseTypeAndValue(Val, Loc, PFS) ||
7178       ParseToken(lltok::comma, "expected ',' after store operand") ||
7179       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7180       ParseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7181       ParseOptionalCommaAlign(Alignment, AteExtraComma))
7182     return true;
7183 
7184   if (!Ptr->getType()->isPointerTy())
7185     return Error(PtrLoc, "store operand must be a pointer");
7186   if (!Val->getType()->isFirstClassType())
7187     return Error(Loc, "store operand must be a first class value");
7188   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
7189     return Error(Loc, "stored value and pointer type do not match");
7190   if (isAtomic && !Alignment)
7191     return Error(Loc, "atomic store must have explicit non-zero alignment");
7192   if (Ordering == AtomicOrdering::Acquire ||
7193       Ordering == AtomicOrdering::AcquireRelease)
7194     return Error(Loc, "atomic store cannot use Acquire ordering");
7195   SmallPtrSet<Type *, 4> Visited;
7196   if (!Alignment && !Val->getType()->isSized(&Visited))
7197     return Error(Loc, "storing unsized types is not allowed");
7198   if (!Alignment)
7199     Alignment = M->getDataLayout().getABITypeAlign(Val->getType());
7200 
7201   Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID);
7202   return AteExtraComma ? InstExtraComma : InstNormal;
7203 }
7204 
7205 /// ParseCmpXchg
7206 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
7207 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
7208 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
7209   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
7210   bool AteExtraComma = false;
7211   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
7212   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
7213   SyncScope::ID SSID = SyncScope::System;
7214   bool isVolatile = false;
7215   bool isWeak = false;
7216 
7217   if (EatIfPresent(lltok::kw_weak))
7218     isWeak = true;
7219 
7220   if (EatIfPresent(lltok::kw_volatile))
7221     isVolatile = true;
7222 
7223   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7224       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
7225       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
7226       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
7227       ParseTypeAndValue(New, NewLoc, PFS) ||
7228       ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
7229       ParseOrdering(FailureOrdering))
7230     return true;
7231 
7232   if (SuccessOrdering == AtomicOrdering::Unordered ||
7233       FailureOrdering == AtomicOrdering::Unordered)
7234     return TokError("cmpxchg cannot be unordered");
7235   if (isStrongerThan(FailureOrdering, SuccessOrdering))
7236     return TokError("cmpxchg failure argument shall be no stronger than the "
7237                     "success argument");
7238   if (FailureOrdering == AtomicOrdering::Release ||
7239       FailureOrdering == AtomicOrdering::AcquireRelease)
7240     return TokError(
7241         "cmpxchg failure ordering cannot include release semantics");
7242   if (!Ptr->getType()->isPointerTy())
7243     return Error(PtrLoc, "cmpxchg operand must be a pointer");
7244   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
7245     return Error(CmpLoc, "compare value and pointer type do not match");
7246   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
7247     return Error(NewLoc, "new value and pointer type do not match");
7248   if (!New->getType()->isFirstClassType())
7249     return Error(NewLoc, "cmpxchg operand must be a first class value");
7250 
7251   Align Alignment(
7252       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7253           Cmp->getType()));
7254 
7255   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
7256       Ptr, Cmp, New, Alignment, SuccessOrdering, FailureOrdering, SSID);
7257   CXI->setVolatile(isVolatile);
7258   CXI->setWeak(isWeak);
7259   Inst = CXI;
7260   return AteExtraComma ? InstExtraComma : InstNormal;
7261 }
7262 
7263 /// ParseAtomicRMW
7264 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
7265 ///       'singlethread'? AtomicOrdering
7266 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
7267   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
7268   bool AteExtraComma = false;
7269   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7270   SyncScope::ID SSID = SyncScope::System;
7271   bool isVolatile = false;
7272   bool IsFP = false;
7273   AtomicRMWInst::BinOp Operation;
7274 
7275   if (EatIfPresent(lltok::kw_volatile))
7276     isVolatile = true;
7277 
7278   switch (Lex.getKind()) {
7279   default: return TokError("expected binary operation in atomicrmw");
7280   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
7281   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
7282   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
7283   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
7284   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
7285   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
7286   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
7287   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
7288   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
7289   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
7290   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
7291   case lltok::kw_fadd:
7292     Operation = AtomicRMWInst::FAdd;
7293     IsFP = true;
7294     break;
7295   case lltok::kw_fsub:
7296     Operation = AtomicRMWInst::FSub;
7297     IsFP = true;
7298     break;
7299   }
7300   Lex.Lex();  // Eat the operation.
7301 
7302   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
7303       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
7304       ParseTypeAndValue(Val, ValLoc, PFS) ||
7305       ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7306     return true;
7307 
7308   if (Ordering == AtomicOrdering::Unordered)
7309     return TokError("atomicrmw cannot be unordered");
7310   if (!Ptr->getType()->isPointerTy())
7311     return Error(PtrLoc, "atomicrmw operand must be a pointer");
7312   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
7313     return Error(ValLoc, "atomicrmw value and pointer type do not match");
7314 
7315   if (Operation == AtomicRMWInst::Xchg) {
7316     if (!Val->getType()->isIntegerTy() &&
7317         !Val->getType()->isFloatingPointTy()) {
7318       return Error(ValLoc, "atomicrmw " +
7319                    AtomicRMWInst::getOperationName(Operation) +
7320                    " operand must be an integer or floating point type");
7321     }
7322   } else if (IsFP) {
7323     if (!Val->getType()->isFloatingPointTy()) {
7324       return Error(ValLoc, "atomicrmw " +
7325                    AtomicRMWInst::getOperationName(Operation) +
7326                    " operand must be a floating point type");
7327     }
7328   } else {
7329     if (!Val->getType()->isIntegerTy()) {
7330       return Error(ValLoc, "atomicrmw " +
7331                    AtomicRMWInst::getOperationName(Operation) +
7332                    " operand must be an integer");
7333     }
7334   }
7335 
7336   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
7337   if (Size < 8 || (Size & (Size - 1)))
7338     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7339                          " integer");
7340   Align Alignment(
7341       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7342           Val->getType()));
7343   AtomicRMWInst *RMWI =
7344       new AtomicRMWInst(Operation, Ptr, Val, Alignment, Ordering, SSID);
7345   RMWI->setVolatile(isVolatile);
7346   Inst = RMWI;
7347   return AteExtraComma ? InstExtraComma : InstNormal;
7348 }
7349 
7350 /// ParseFence
7351 ///   ::= 'fence' 'singlethread'? AtomicOrdering
7352 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
7353   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7354   SyncScope::ID SSID = SyncScope::System;
7355   if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7356     return true;
7357 
7358   if (Ordering == AtomicOrdering::Unordered)
7359     return TokError("fence cannot be unordered");
7360   if (Ordering == AtomicOrdering::Monotonic)
7361     return TokError("fence cannot be monotonic");
7362 
7363   Inst = new FenceInst(Context, Ordering, SSID);
7364   return InstNormal;
7365 }
7366 
7367 /// ParseGetElementPtr
7368 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7369 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7370   Value *Ptr = nullptr;
7371   Value *Val = nullptr;
7372   LocTy Loc, EltLoc;
7373 
7374   bool InBounds = EatIfPresent(lltok::kw_inbounds);
7375 
7376   Type *Ty = nullptr;
7377   LocTy ExplicitTypeLoc = Lex.getLoc();
7378   if (ParseType(Ty) ||
7379       ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
7380       ParseTypeAndValue(Ptr, Loc, PFS))
7381     return true;
7382 
7383   Type *BaseType = Ptr->getType();
7384   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7385   if (!BasePointerType)
7386     return Error(Loc, "base of getelementptr must be a pointer");
7387 
7388   if (Ty != BasePointerType->getElementType())
7389     return Error(ExplicitTypeLoc,
7390                  "explicit pointee type doesn't match operand's pointee type");
7391 
7392   SmallVector<Value*, 16> Indices;
7393   bool AteExtraComma = false;
7394   // GEP returns a vector of pointers if at least one of parameters is a vector.
7395   // All vector parameters should have the same vector width.
7396   ElementCount GEPWidth = BaseType->isVectorTy()
7397                               ? cast<VectorType>(BaseType)->getElementCount()
7398                               : ElementCount(0, false);
7399 
7400   while (EatIfPresent(lltok::comma)) {
7401     if (Lex.getKind() == lltok::MetadataVar) {
7402       AteExtraComma = true;
7403       break;
7404     }
7405     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
7406     if (!Val->getType()->isIntOrIntVectorTy())
7407       return Error(EltLoc, "getelementptr index must be an integer");
7408 
7409     if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) {
7410       ElementCount ValNumEl = ValVTy->getElementCount();
7411       if (GEPWidth != ElementCount(0, false) && GEPWidth != ValNumEl)
7412         return Error(EltLoc,
7413           "getelementptr vector index has a wrong number of elements");
7414       GEPWidth = ValNumEl;
7415     }
7416     Indices.push_back(Val);
7417   }
7418 
7419   SmallPtrSet<Type*, 4> Visited;
7420   if (!Indices.empty() && !Ty->isSized(&Visited))
7421     return Error(Loc, "base element of getelementptr must be sized");
7422 
7423   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7424     return Error(Loc, "invalid getelementptr indices");
7425   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7426   if (InBounds)
7427     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7428   return AteExtraComma ? InstExtraComma : InstNormal;
7429 }
7430 
7431 /// ParseExtractValue
7432 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
7433 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7434   Value *Val; LocTy Loc;
7435   SmallVector<unsigned, 4> Indices;
7436   bool AteExtraComma;
7437   if (ParseTypeAndValue(Val, Loc, PFS) ||
7438       ParseIndexList(Indices, AteExtraComma))
7439     return true;
7440 
7441   if (!Val->getType()->isAggregateType())
7442     return Error(Loc, "extractvalue operand must be aggregate type");
7443 
7444   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7445     return Error(Loc, "invalid indices for extractvalue");
7446   Inst = ExtractValueInst::Create(Val, Indices);
7447   return AteExtraComma ? InstExtraComma : InstNormal;
7448 }
7449 
7450 /// ParseInsertValue
7451 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7452 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7453   Value *Val0, *Val1; LocTy Loc0, Loc1;
7454   SmallVector<unsigned, 4> Indices;
7455   bool AteExtraComma;
7456   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
7457       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
7458       ParseTypeAndValue(Val1, Loc1, PFS) ||
7459       ParseIndexList(Indices, AteExtraComma))
7460     return true;
7461 
7462   if (!Val0->getType()->isAggregateType())
7463     return Error(Loc0, "insertvalue operand must be aggregate type");
7464 
7465   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7466   if (!IndexedType)
7467     return Error(Loc0, "invalid indices for insertvalue");
7468   if (IndexedType != Val1->getType())
7469     return Error(Loc1, "insertvalue operand and field disagree in type: '" +
7470                            getTypeString(Val1->getType()) + "' instead of '" +
7471                            getTypeString(IndexedType) + "'");
7472   Inst = InsertValueInst::Create(Val0, Val1, Indices);
7473   return AteExtraComma ? InstExtraComma : InstNormal;
7474 }
7475 
7476 //===----------------------------------------------------------------------===//
7477 // Embedded metadata.
7478 //===----------------------------------------------------------------------===//
7479 
7480 /// ParseMDNodeVector
7481 ///   ::= { Element (',' Element)* }
7482 /// Element
7483 ///   ::= 'null' | TypeAndValue
7484 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7485   if (ParseToken(lltok::lbrace, "expected '{' here"))
7486     return true;
7487 
7488   // Check for an empty list.
7489   if (EatIfPresent(lltok::rbrace))
7490     return false;
7491 
7492   do {
7493     // Null is a special case since it is typeless.
7494     if (EatIfPresent(lltok::kw_null)) {
7495       Elts.push_back(nullptr);
7496       continue;
7497     }
7498 
7499     Metadata *MD;
7500     if (ParseMetadata(MD, nullptr))
7501       return true;
7502     Elts.push_back(MD);
7503   } while (EatIfPresent(lltok::comma));
7504 
7505   return ParseToken(lltok::rbrace, "expected end of metadata node");
7506 }
7507 
7508 //===----------------------------------------------------------------------===//
7509 // Use-list order directives.
7510 //===----------------------------------------------------------------------===//
7511 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7512                                 SMLoc Loc) {
7513   if (V->use_empty())
7514     return Error(Loc, "value has no uses");
7515 
7516   unsigned NumUses = 0;
7517   SmallDenseMap<const Use *, unsigned, 16> Order;
7518   for (const Use &U : V->uses()) {
7519     if (++NumUses > Indexes.size())
7520       break;
7521     Order[&U] = Indexes[NumUses - 1];
7522   }
7523   if (NumUses < 2)
7524     return Error(Loc, "value only has one use");
7525   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7526     return Error(Loc,
7527                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
7528 
7529   V->sortUseList([&](const Use &L, const Use &R) {
7530     return Order.lookup(&L) < Order.lookup(&R);
7531   });
7532   return false;
7533 }
7534 
7535 /// ParseUseListOrderIndexes
7536 ///   ::= '{' uint32 (',' uint32)+ '}'
7537 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7538   SMLoc Loc = Lex.getLoc();
7539   if (ParseToken(lltok::lbrace, "expected '{' here"))
7540     return true;
7541   if (Lex.getKind() == lltok::rbrace)
7542     return Lex.Error("expected non-empty list of uselistorder indexes");
7543 
7544   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
7545   // indexes should be distinct numbers in the range [0, size-1], and should
7546   // not be in order.
7547   unsigned Offset = 0;
7548   unsigned Max = 0;
7549   bool IsOrdered = true;
7550   assert(Indexes.empty() && "Expected empty order vector");
7551   do {
7552     unsigned Index;
7553     if (ParseUInt32(Index))
7554       return true;
7555 
7556     // Update consistency checks.
7557     Offset += Index - Indexes.size();
7558     Max = std::max(Max, Index);
7559     IsOrdered &= Index == Indexes.size();
7560 
7561     Indexes.push_back(Index);
7562   } while (EatIfPresent(lltok::comma));
7563 
7564   if (ParseToken(lltok::rbrace, "expected '}' here"))
7565     return true;
7566 
7567   if (Indexes.size() < 2)
7568     return Error(Loc, "expected >= 2 uselistorder indexes");
7569   if (Offset != 0 || Max >= Indexes.size())
7570     return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
7571   if (IsOrdered)
7572     return Error(Loc, "expected uselistorder indexes to change the order");
7573 
7574   return false;
7575 }
7576 
7577 /// ParseUseListOrder
7578 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7579 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
7580   SMLoc Loc = Lex.getLoc();
7581   if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7582     return true;
7583 
7584   Value *V;
7585   SmallVector<unsigned, 16> Indexes;
7586   if (ParseTypeAndValue(V, PFS) ||
7587       ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
7588       ParseUseListOrderIndexes(Indexes))
7589     return true;
7590 
7591   return sortUseListOrder(V, Indexes, Loc);
7592 }
7593 
7594 /// ParseUseListOrderBB
7595 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
7596 bool LLParser::ParseUseListOrderBB() {
7597   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7598   SMLoc Loc = Lex.getLoc();
7599   Lex.Lex();
7600 
7601   ValID Fn, Label;
7602   SmallVector<unsigned, 16> Indexes;
7603   if (ParseValID(Fn) ||
7604       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7605       ParseValID(Label) ||
7606       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7607       ParseUseListOrderIndexes(Indexes))
7608     return true;
7609 
7610   // Check the function.
7611   GlobalValue *GV;
7612   if (Fn.Kind == ValID::t_GlobalName)
7613     GV = M->getNamedValue(Fn.StrVal);
7614   else if (Fn.Kind == ValID::t_GlobalID)
7615     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7616   else
7617     return Error(Fn.Loc, "expected function name in uselistorder_bb");
7618   if (!GV)
7619     return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
7620   auto *F = dyn_cast<Function>(GV);
7621   if (!F)
7622     return Error(Fn.Loc, "expected function name in uselistorder_bb");
7623   if (F->isDeclaration())
7624     return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
7625 
7626   // Check the basic block.
7627   if (Label.Kind == ValID::t_LocalID)
7628     return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
7629   if (Label.Kind != ValID::t_LocalName)
7630     return Error(Label.Loc, "expected basic block name in uselistorder_bb");
7631   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7632   if (!V)
7633     return Error(Label.Loc, "invalid basic block in uselistorder_bb");
7634   if (!isa<BasicBlock>(V))
7635     return Error(Label.Loc, "expected basic block in uselistorder_bb");
7636 
7637   return sortUseListOrder(V, Indexes, Loc);
7638 }
7639 
7640 /// ModuleEntry
7641 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
7642 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
7643 bool LLParser::ParseModuleEntry(unsigned ID) {
7644   assert(Lex.getKind() == lltok::kw_module);
7645   Lex.Lex();
7646 
7647   std::string Path;
7648   if (ParseToken(lltok::colon, "expected ':' here") ||
7649       ParseToken(lltok::lparen, "expected '(' here") ||
7650       ParseToken(lltok::kw_path, "expected 'path' here") ||
7651       ParseToken(lltok::colon, "expected ':' here") ||
7652       ParseStringConstant(Path) ||
7653       ParseToken(lltok::comma, "expected ',' here") ||
7654       ParseToken(lltok::kw_hash, "expected 'hash' here") ||
7655       ParseToken(lltok::colon, "expected ':' here") ||
7656       ParseToken(lltok::lparen, "expected '(' here"))
7657     return true;
7658 
7659   ModuleHash Hash;
7660   if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") ||
7661       ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") ||
7662       ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") ||
7663       ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") ||
7664       ParseUInt32(Hash[4]))
7665     return true;
7666 
7667   if (ParseToken(lltok::rparen, "expected ')' here") ||
7668       ParseToken(lltok::rparen, "expected ')' here"))
7669     return true;
7670 
7671   auto ModuleEntry = Index->addModule(Path, ID, Hash);
7672   ModuleIdMap[ID] = ModuleEntry->first();
7673 
7674   return false;
7675 }
7676 
7677 /// TypeIdEntry
7678 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
7679 bool LLParser::ParseTypeIdEntry(unsigned ID) {
7680   assert(Lex.getKind() == lltok::kw_typeid);
7681   Lex.Lex();
7682 
7683   std::string Name;
7684   if (ParseToken(lltok::colon, "expected ':' here") ||
7685       ParseToken(lltok::lparen, "expected '(' here") ||
7686       ParseToken(lltok::kw_name, "expected 'name' here") ||
7687       ParseToken(lltok::colon, "expected ':' here") ||
7688       ParseStringConstant(Name))
7689     return true;
7690 
7691   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
7692   if (ParseToken(lltok::comma, "expected ',' here") ||
7693       ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here"))
7694     return true;
7695 
7696   // Check if this ID was forward referenced, and if so, update the
7697   // corresponding GUIDs.
7698   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7699   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7700     for (auto TIDRef : FwdRefTIDs->second) {
7701       assert(!*TIDRef.first &&
7702              "Forward referenced type id GUID expected to be 0");
7703       *TIDRef.first = GlobalValue::getGUID(Name);
7704     }
7705     ForwardRefTypeIds.erase(FwdRefTIDs);
7706   }
7707 
7708   return false;
7709 }
7710 
7711 /// TypeIdSummary
7712 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
7713 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) {
7714   if (ParseToken(lltok::kw_summary, "expected 'summary' here") ||
7715       ParseToken(lltok::colon, "expected ':' here") ||
7716       ParseToken(lltok::lparen, "expected '(' here") ||
7717       ParseTypeTestResolution(TIS.TTRes))
7718     return true;
7719 
7720   if (EatIfPresent(lltok::comma)) {
7721     // Expect optional wpdResolutions field
7722     if (ParseOptionalWpdResolutions(TIS.WPDRes))
7723       return true;
7724   }
7725 
7726   if (ParseToken(lltok::rparen, "expected ')' here"))
7727     return true;
7728 
7729   return false;
7730 }
7731 
7732 static ValueInfo EmptyVI =
7733     ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
7734 
7735 /// TypeIdCompatibleVtableEntry
7736 ///   ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
7737 ///   TypeIdCompatibleVtableInfo
7738 ///   ')'
7739 bool LLParser::ParseTypeIdCompatibleVtableEntry(unsigned ID) {
7740   assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
7741   Lex.Lex();
7742 
7743   std::string Name;
7744   if (ParseToken(lltok::colon, "expected ':' here") ||
7745       ParseToken(lltok::lparen, "expected '(' here") ||
7746       ParseToken(lltok::kw_name, "expected 'name' here") ||
7747       ParseToken(lltok::colon, "expected ':' here") ||
7748       ParseStringConstant(Name))
7749     return true;
7750 
7751   TypeIdCompatibleVtableInfo &TI =
7752       Index->getOrInsertTypeIdCompatibleVtableSummary(Name);
7753   if (ParseToken(lltok::comma, "expected ',' here") ||
7754       ParseToken(lltok::kw_summary, "expected 'summary' here") ||
7755       ParseToken(lltok::colon, "expected ':' here") ||
7756       ParseToken(lltok::lparen, "expected '(' here"))
7757     return true;
7758 
7759   IdToIndexMapType IdToIndexMap;
7760   // Parse each call edge
7761   do {
7762     uint64_t Offset;
7763     if (ParseToken(lltok::lparen, "expected '(' here") ||
7764         ParseToken(lltok::kw_offset, "expected 'offset' here") ||
7765         ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) ||
7766         ParseToken(lltok::comma, "expected ',' here"))
7767       return true;
7768 
7769     LocTy Loc = Lex.getLoc();
7770     unsigned GVId;
7771     ValueInfo VI;
7772     if (ParseGVReference(VI, GVId))
7773       return true;
7774 
7775     // Keep track of the TypeIdCompatibleVtableInfo array index needing a
7776     // forward reference. We will save the location of the ValueInfo needing an
7777     // update, but can only do so once the std::vector is finalized.
7778     if (VI == EmptyVI)
7779       IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
7780     TI.push_back({Offset, VI});
7781 
7782     if (ParseToken(lltok::rparen, "expected ')' in call"))
7783       return true;
7784   } while (EatIfPresent(lltok::comma));
7785 
7786   // Now that the TI vector is finalized, it is safe to save the locations
7787   // of any forward GV references that need updating later.
7788   for (auto I : IdToIndexMap) {
7789     auto &Infos = ForwardRefValueInfos[I.first];
7790     for (auto P : I.second) {
7791       assert(TI[P.first].VTableVI == EmptyVI &&
7792              "Forward referenced ValueInfo expected to be empty");
7793       Infos.emplace_back(&TI[P.first].VTableVI, P.second);
7794     }
7795   }
7796 
7797   if (ParseToken(lltok::rparen, "expected ')' here") ||
7798       ParseToken(lltok::rparen, "expected ')' here"))
7799     return true;
7800 
7801   // Check if this ID was forward referenced, and if so, update the
7802   // corresponding GUIDs.
7803   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7804   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7805     for (auto TIDRef : FwdRefTIDs->second) {
7806       assert(!*TIDRef.first &&
7807              "Forward referenced type id GUID expected to be 0");
7808       *TIDRef.first = GlobalValue::getGUID(Name);
7809     }
7810     ForwardRefTypeIds.erase(FwdRefTIDs);
7811   }
7812 
7813   return false;
7814 }
7815 
7816 /// TypeTestResolution
7817 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
7818 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
7819 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
7820 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
7821 ///         [',' 'inlinesBits' ':' UInt64]? ')'
7822 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) {
7823   if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
7824       ParseToken(lltok::colon, "expected ':' here") ||
7825       ParseToken(lltok::lparen, "expected '(' here") ||
7826       ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7827       ParseToken(lltok::colon, "expected ':' here"))
7828     return true;
7829 
7830   switch (Lex.getKind()) {
7831   case lltok::kw_unknown:
7832     TTRes.TheKind = TypeTestResolution::Unknown;
7833     break;
7834   case lltok::kw_unsat:
7835     TTRes.TheKind = TypeTestResolution::Unsat;
7836     break;
7837   case lltok::kw_byteArray:
7838     TTRes.TheKind = TypeTestResolution::ByteArray;
7839     break;
7840   case lltok::kw_inline:
7841     TTRes.TheKind = TypeTestResolution::Inline;
7842     break;
7843   case lltok::kw_single:
7844     TTRes.TheKind = TypeTestResolution::Single;
7845     break;
7846   case lltok::kw_allOnes:
7847     TTRes.TheKind = TypeTestResolution::AllOnes;
7848     break;
7849   default:
7850     return Error(Lex.getLoc(), "unexpected TypeTestResolution kind");
7851   }
7852   Lex.Lex();
7853 
7854   if (ParseToken(lltok::comma, "expected ',' here") ||
7855       ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
7856       ParseToken(lltok::colon, "expected ':' here") ||
7857       ParseUInt32(TTRes.SizeM1BitWidth))
7858     return true;
7859 
7860   // Parse optional fields
7861   while (EatIfPresent(lltok::comma)) {
7862     switch (Lex.getKind()) {
7863     case lltok::kw_alignLog2:
7864       Lex.Lex();
7865       if (ParseToken(lltok::colon, "expected ':'") ||
7866           ParseUInt64(TTRes.AlignLog2))
7867         return true;
7868       break;
7869     case lltok::kw_sizeM1:
7870       Lex.Lex();
7871       if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1))
7872         return true;
7873       break;
7874     case lltok::kw_bitMask: {
7875       unsigned Val;
7876       Lex.Lex();
7877       if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val))
7878         return true;
7879       assert(Val <= 0xff);
7880       TTRes.BitMask = (uint8_t)Val;
7881       break;
7882     }
7883     case lltok::kw_inlineBits:
7884       Lex.Lex();
7885       if (ParseToken(lltok::colon, "expected ':'") ||
7886           ParseUInt64(TTRes.InlineBits))
7887         return true;
7888       break;
7889     default:
7890       return Error(Lex.getLoc(), "expected optional TypeTestResolution field");
7891     }
7892   }
7893 
7894   if (ParseToken(lltok::rparen, "expected ')' here"))
7895     return true;
7896 
7897   return false;
7898 }
7899 
7900 /// OptionalWpdResolutions
7901 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
7902 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
7903 bool LLParser::ParseOptionalWpdResolutions(
7904     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
7905   if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
7906       ParseToken(lltok::colon, "expected ':' here") ||
7907       ParseToken(lltok::lparen, "expected '(' here"))
7908     return true;
7909 
7910   do {
7911     uint64_t Offset;
7912     WholeProgramDevirtResolution WPDRes;
7913     if (ParseToken(lltok::lparen, "expected '(' here") ||
7914         ParseToken(lltok::kw_offset, "expected 'offset' here") ||
7915         ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) ||
7916         ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) ||
7917         ParseToken(lltok::rparen, "expected ')' here"))
7918       return true;
7919     WPDResMap[Offset] = WPDRes;
7920   } while (EatIfPresent(lltok::comma));
7921 
7922   if (ParseToken(lltok::rparen, "expected ')' here"))
7923     return true;
7924 
7925   return false;
7926 }
7927 
7928 /// WpdRes
7929 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
7930 ///         [',' OptionalResByArg]? ')'
7931 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
7932 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
7933 ///         [',' OptionalResByArg]? ')'
7934 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
7935 ///         [',' OptionalResByArg]? ')'
7936 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) {
7937   if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
7938       ParseToken(lltok::colon, "expected ':' here") ||
7939       ParseToken(lltok::lparen, "expected '(' here") ||
7940       ParseToken(lltok::kw_kind, "expected 'kind' here") ||
7941       ParseToken(lltok::colon, "expected ':' here"))
7942     return true;
7943 
7944   switch (Lex.getKind()) {
7945   case lltok::kw_indir:
7946     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
7947     break;
7948   case lltok::kw_singleImpl:
7949     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
7950     break;
7951   case lltok::kw_branchFunnel:
7952     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
7953     break;
7954   default:
7955     return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
7956   }
7957   Lex.Lex();
7958 
7959   // Parse optional fields
7960   while (EatIfPresent(lltok::comma)) {
7961     switch (Lex.getKind()) {
7962     case lltok::kw_singleImplName:
7963       Lex.Lex();
7964       if (ParseToken(lltok::colon, "expected ':' here") ||
7965           ParseStringConstant(WPDRes.SingleImplName))
7966         return true;
7967       break;
7968     case lltok::kw_resByArg:
7969       if (ParseOptionalResByArg(WPDRes.ResByArg))
7970         return true;
7971       break;
7972     default:
7973       return Error(Lex.getLoc(),
7974                    "expected optional WholeProgramDevirtResolution field");
7975     }
7976   }
7977 
7978   if (ParseToken(lltok::rparen, "expected ')' here"))
7979     return true;
7980 
7981   return false;
7982 }
7983 
7984 /// OptionalResByArg
7985 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
7986 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
7987 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
7988 ///                  'virtualConstProp' )
7989 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
7990 ///                [',' 'bit' ':' UInt32]? ')'
7991 bool LLParser::ParseOptionalResByArg(
7992     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
7993         &ResByArg) {
7994   if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
7995       ParseToken(lltok::colon, "expected ':' here") ||
7996       ParseToken(lltok::lparen, "expected '(' here"))
7997     return true;
7998 
7999   do {
8000     std::vector<uint64_t> Args;
8001     if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") ||
8002         ParseToken(lltok::kw_byArg, "expected 'byArg here") ||
8003         ParseToken(lltok::colon, "expected ':' here") ||
8004         ParseToken(lltok::lparen, "expected '(' here") ||
8005         ParseToken(lltok::kw_kind, "expected 'kind' here") ||
8006         ParseToken(lltok::colon, "expected ':' here"))
8007       return true;
8008 
8009     WholeProgramDevirtResolution::ByArg ByArg;
8010     switch (Lex.getKind()) {
8011     case lltok::kw_indir:
8012       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
8013       break;
8014     case lltok::kw_uniformRetVal:
8015       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
8016       break;
8017     case lltok::kw_uniqueRetVal:
8018       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
8019       break;
8020     case lltok::kw_virtualConstProp:
8021       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
8022       break;
8023     default:
8024       return Error(Lex.getLoc(),
8025                    "unexpected WholeProgramDevirtResolution::ByArg kind");
8026     }
8027     Lex.Lex();
8028 
8029     // Parse optional fields
8030     while (EatIfPresent(lltok::comma)) {
8031       switch (Lex.getKind()) {
8032       case lltok::kw_info:
8033         Lex.Lex();
8034         if (ParseToken(lltok::colon, "expected ':' here") ||
8035             ParseUInt64(ByArg.Info))
8036           return true;
8037         break;
8038       case lltok::kw_byte:
8039         Lex.Lex();
8040         if (ParseToken(lltok::colon, "expected ':' here") ||
8041             ParseUInt32(ByArg.Byte))
8042           return true;
8043         break;
8044       case lltok::kw_bit:
8045         Lex.Lex();
8046         if (ParseToken(lltok::colon, "expected ':' here") ||
8047             ParseUInt32(ByArg.Bit))
8048           return true;
8049         break;
8050       default:
8051         return Error(Lex.getLoc(),
8052                      "expected optional whole program devirt field");
8053       }
8054     }
8055 
8056     if (ParseToken(lltok::rparen, "expected ')' here"))
8057       return true;
8058 
8059     ResByArg[Args] = ByArg;
8060   } while (EatIfPresent(lltok::comma));
8061 
8062   if (ParseToken(lltok::rparen, "expected ')' here"))
8063     return true;
8064 
8065   return false;
8066 }
8067 
8068 /// OptionalResByArg
8069 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
8070 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) {
8071   if (ParseToken(lltok::kw_args, "expected 'args' here") ||
8072       ParseToken(lltok::colon, "expected ':' here") ||
8073       ParseToken(lltok::lparen, "expected '(' here"))
8074     return true;
8075 
8076   do {
8077     uint64_t Val;
8078     if (ParseUInt64(Val))
8079       return true;
8080     Args.push_back(Val);
8081   } while (EatIfPresent(lltok::comma));
8082 
8083   if (ParseToken(lltok::rparen, "expected ')' here"))
8084     return true;
8085 
8086   return false;
8087 }
8088 
8089 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
8090 
8091 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
8092   bool ReadOnly = Fwd->isReadOnly();
8093   bool WriteOnly = Fwd->isWriteOnly();
8094   assert(!(ReadOnly && WriteOnly));
8095   *Fwd = Resolved;
8096   if (ReadOnly)
8097     Fwd->setReadOnly();
8098   if (WriteOnly)
8099     Fwd->setWriteOnly();
8100 }
8101 
8102 /// Stores the given Name/GUID and associated summary into the Index.
8103 /// Also updates any forward references to the associated entry ID.
8104 void LLParser::AddGlobalValueToIndex(
8105     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
8106     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
8107   // First create the ValueInfo utilizing the Name or GUID.
8108   ValueInfo VI;
8109   if (GUID != 0) {
8110     assert(Name.empty());
8111     VI = Index->getOrInsertValueInfo(GUID);
8112   } else {
8113     assert(!Name.empty());
8114     if (M) {
8115       auto *GV = M->getNamedValue(Name);
8116       assert(GV);
8117       VI = Index->getOrInsertValueInfo(GV);
8118     } else {
8119       assert(
8120           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
8121           "Need a source_filename to compute GUID for local");
8122       GUID = GlobalValue::getGUID(
8123           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
8124       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
8125     }
8126   }
8127 
8128   // Resolve forward references from calls/refs
8129   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
8130   if (FwdRefVIs != ForwardRefValueInfos.end()) {
8131     for (auto VIRef : FwdRefVIs->second) {
8132       assert(VIRef.first->getRef() == FwdVIRef &&
8133              "Forward referenced ValueInfo expected to be empty");
8134       resolveFwdRef(VIRef.first, VI);
8135     }
8136     ForwardRefValueInfos.erase(FwdRefVIs);
8137   }
8138 
8139   // Resolve forward references from aliases
8140   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
8141   if (FwdRefAliasees != ForwardRefAliasees.end()) {
8142     for (auto AliaseeRef : FwdRefAliasees->second) {
8143       assert(!AliaseeRef.first->hasAliasee() &&
8144              "Forward referencing alias already has aliasee");
8145       assert(Summary && "Aliasee must be a definition");
8146       AliaseeRef.first->setAliasee(VI, Summary.get());
8147     }
8148     ForwardRefAliasees.erase(FwdRefAliasees);
8149   }
8150 
8151   // Add the summary if one was provided.
8152   if (Summary)
8153     Index->addGlobalValueSummary(VI, std::move(Summary));
8154 
8155   // Save the associated ValueInfo for use in later references by ID.
8156   if (ID == NumberedValueInfos.size())
8157     NumberedValueInfos.push_back(VI);
8158   else {
8159     // Handle non-continuous numbers (to make test simplification easier).
8160     if (ID > NumberedValueInfos.size())
8161       NumberedValueInfos.resize(ID + 1);
8162     NumberedValueInfos[ID] = VI;
8163   }
8164 }
8165 
8166 /// ParseSummaryIndexFlags
8167 ///   ::= 'flags' ':' UInt64
8168 bool LLParser::ParseSummaryIndexFlags() {
8169   assert(Lex.getKind() == lltok::kw_flags);
8170   Lex.Lex();
8171 
8172   if (ParseToken(lltok::colon, "expected ':' here"))
8173     return true;
8174   uint64_t Flags;
8175   if (ParseUInt64(Flags))
8176     return true;
8177   if (Index)
8178     Index->setFlags(Flags);
8179   return false;
8180 }
8181 
8182 /// ParseBlockCount
8183 ///   ::= 'blockcount' ':' UInt64
8184 bool LLParser::ParseBlockCount() {
8185   assert(Lex.getKind() == lltok::kw_blockcount);
8186   Lex.Lex();
8187 
8188   if (ParseToken(lltok::colon, "expected ':' here"))
8189     return true;
8190   uint64_t BlockCount;
8191   if (ParseUInt64(BlockCount))
8192     return true;
8193   if (Index)
8194     Index->setBlockCount(BlockCount);
8195   return false;
8196 }
8197 
8198 /// ParseGVEntry
8199 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
8200 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
8201 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
8202 bool LLParser::ParseGVEntry(unsigned ID) {
8203   assert(Lex.getKind() == lltok::kw_gv);
8204   Lex.Lex();
8205 
8206   if (ParseToken(lltok::colon, "expected ':' here") ||
8207       ParseToken(lltok::lparen, "expected '(' here"))
8208     return true;
8209 
8210   std::string Name;
8211   GlobalValue::GUID GUID = 0;
8212   switch (Lex.getKind()) {
8213   case lltok::kw_name:
8214     Lex.Lex();
8215     if (ParseToken(lltok::colon, "expected ':' here") ||
8216         ParseStringConstant(Name))
8217       return true;
8218     // Can't create GUID/ValueInfo until we have the linkage.
8219     break;
8220   case lltok::kw_guid:
8221     Lex.Lex();
8222     if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID))
8223       return true;
8224     break;
8225   default:
8226     return Error(Lex.getLoc(), "expected name or guid tag");
8227   }
8228 
8229   if (!EatIfPresent(lltok::comma)) {
8230     // No summaries. Wrap up.
8231     if (ParseToken(lltok::rparen, "expected ')' here"))
8232       return true;
8233     // This was created for a call to an external or indirect target.
8234     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
8235     // created for indirect calls with VP. A Name with no GUID came from
8236     // an external definition. We pass ExternalLinkage since that is only
8237     // used when the GUID must be computed from Name, and in that case
8238     // the symbol must have external linkage.
8239     AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
8240                           nullptr);
8241     return false;
8242   }
8243 
8244   // Have a list of summaries
8245   if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") ||
8246       ParseToken(lltok::colon, "expected ':' here") ||
8247       ParseToken(lltok::lparen, "expected '(' here"))
8248     return true;
8249   do {
8250     switch (Lex.getKind()) {
8251     case lltok::kw_function:
8252       if (ParseFunctionSummary(Name, GUID, ID))
8253         return true;
8254       break;
8255     case lltok::kw_variable:
8256       if (ParseVariableSummary(Name, GUID, ID))
8257         return true;
8258       break;
8259     case lltok::kw_alias:
8260       if (ParseAliasSummary(Name, GUID, ID))
8261         return true;
8262       break;
8263     default:
8264       return Error(Lex.getLoc(), "expected summary type");
8265     }
8266   } while (EatIfPresent(lltok::comma));
8267 
8268   if (ParseToken(lltok::rparen, "expected ')' here") ||
8269       ParseToken(lltok::rparen, "expected ')' here"))
8270     return true;
8271 
8272   return false;
8273 }
8274 
8275 /// FunctionSummary
8276 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8277 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
8278 ///         [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]?
8279 ///         [',' OptionalRefs]? ')'
8280 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
8281                                     unsigned ID) {
8282   assert(Lex.getKind() == lltok::kw_function);
8283   Lex.Lex();
8284 
8285   StringRef ModulePath;
8286   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8287       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8288       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8289   unsigned InstCount;
8290   std::vector<FunctionSummary::EdgeTy> Calls;
8291   FunctionSummary::TypeIdInfo TypeIdInfo;
8292   std::vector<FunctionSummary::ParamAccess> ParamAccesses;
8293   std::vector<ValueInfo> Refs;
8294   // Default is all-zeros (conservative values).
8295   FunctionSummary::FFlags FFlags = {};
8296   if (ParseToken(lltok::colon, "expected ':' here") ||
8297       ParseToken(lltok::lparen, "expected '(' here") ||
8298       ParseModuleReference(ModulePath) ||
8299       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8300       ParseToken(lltok::comma, "expected ',' here") ||
8301       ParseToken(lltok::kw_insts, "expected 'insts' here") ||
8302       ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount))
8303     return true;
8304 
8305   // Parse optional fields
8306   while (EatIfPresent(lltok::comma)) {
8307     switch (Lex.getKind()) {
8308     case lltok::kw_funcFlags:
8309       if (ParseOptionalFFlags(FFlags))
8310         return true;
8311       break;
8312     case lltok::kw_calls:
8313       if (ParseOptionalCalls(Calls))
8314         return true;
8315       break;
8316     case lltok::kw_typeIdInfo:
8317       if (ParseOptionalTypeIdInfo(TypeIdInfo))
8318         return true;
8319       break;
8320     case lltok::kw_refs:
8321       if (ParseOptionalRefs(Refs))
8322         return true;
8323       break;
8324     case lltok::kw_params:
8325       if (ParseOptionalParamAccesses(ParamAccesses))
8326         return true;
8327       break;
8328     default:
8329       return Error(Lex.getLoc(), "expected optional function summary field");
8330     }
8331   }
8332 
8333   if (ParseToken(lltok::rparen, "expected ')' here"))
8334     return true;
8335 
8336   auto FS = std::make_unique<FunctionSummary>(
8337       GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
8338       std::move(Calls), std::move(TypeIdInfo.TypeTests),
8339       std::move(TypeIdInfo.TypeTestAssumeVCalls),
8340       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
8341       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
8342       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls),
8343       std::move(ParamAccesses));
8344 
8345   FS->setModulePath(ModulePath);
8346 
8347   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8348                         ID, std::move(FS));
8349 
8350   return false;
8351 }
8352 
8353 /// VariableSummary
8354 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8355 ///         [',' OptionalRefs]? ')'
8356 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID,
8357                                     unsigned ID) {
8358   assert(Lex.getKind() == lltok::kw_variable);
8359   Lex.Lex();
8360 
8361   StringRef ModulePath;
8362   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8363       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8364       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8365   GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false,
8366                                         /* WriteOnly */ false,
8367                                         /* Constant */ false,
8368                                         GlobalObject::VCallVisibilityPublic);
8369   std::vector<ValueInfo> Refs;
8370   VTableFuncList VTableFuncs;
8371   if (ParseToken(lltok::colon, "expected ':' here") ||
8372       ParseToken(lltok::lparen, "expected '(' here") ||
8373       ParseModuleReference(ModulePath) ||
8374       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8375       ParseToken(lltok::comma, "expected ',' here") ||
8376       ParseGVarFlags(GVarFlags))
8377     return true;
8378 
8379   // Parse optional fields
8380   while (EatIfPresent(lltok::comma)) {
8381     switch (Lex.getKind()) {
8382     case lltok::kw_vTableFuncs:
8383       if (ParseOptionalVTableFuncs(VTableFuncs))
8384         return true;
8385       break;
8386     case lltok::kw_refs:
8387       if (ParseOptionalRefs(Refs))
8388         return true;
8389       break;
8390     default:
8391       return Error(Lex.getLoc(), "expected optional variable summary field");
8392     }
8393   }
8394 
8395   if (ParseToken(lltok::rparen, "expected ')' here"))
8396     return true;
8397 
8398   auto GS =
8399       std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
8400 
8401   GS->setModulePath(ModulePath);
8402   GS->setVTableFuncs(std::move(VTableFuncs));
8403 
8404   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8405                         ID, std::move(GS));
8406 
8407   return false;
8408 }
8409 
8410 /// AliasSummary
8411 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
8412 ///         'aliasee' ':' GVReference ')'
8413 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID,
8414                                  unsigned ID) {
8415   assert(Lex.getKind() == lltok::kw_alias);
8416   LocTy Loc = Lex.getLoc();
8417   Lex.Lex();
8418 
8419   StringRef ModulePath;
8420   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8421       /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false,
8422       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8423   if (ParseToken(lltok::colon, "expected ':' here") ||
8424       ParseToken(lltok::lparen, "expected '(' here") ||
8425       ParseModuleReference(ModulePath) ||
8426       ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) ||
8427       ParseToken(lltok::comma, "expected ',' here") ||
8428       ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
8429       ParseToken(lltok::colon, "expected ':' here"))
8430     return true;
8431 
8432   ValueInfo AliaseeVI;
8433   unsigned GVId;
8434   if (ParseGVReference(AliaseeVI, GVId))
8435     return true;
8436 
8437   if (ParseToken(lltok::rparen, "expected ')' here"))
8438     return true;
8439 
8440   auto AS = std::make_unique<AliasSummary>(GVFlags);
8441 
8442   AS->setModulePath(ModulePath);
8443 
8444   // Record forward reference if the aliasee is not parsed yet.
8445   if (AliaseeVI.getRef() == FwdVIRef) {
8446     ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc);
8447   } else {
8448     auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
8449     assert(Summary && "Aliasee must be a definition");
8450     AS->setAliasee(AliaseeVI, Summary);
8451   }
8452 
8453   AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8454                         ID, std::move(AS));
8455 
8456   return false;
8457 }
8458 
8459 /// Flag
8460 ///   ::= [0|1]
8461 bool LLParser::ParseFlag(unsigned &Val) {
8462   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
8463     return TokError("expected integer");
8464   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
8465   Lex.Lex();
8466   return false;
8467 }
8468 
8469 /// OptionalFFlags
8470 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8471 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8472 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
8473 ///        [',' 'noInline' ':' Flag]? ')'
8474 ///        [',' 'alwaysInline' ':' Flag]? ')'
8475 
8476 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8477   assert(Lex.getKind() == lltok::kw_funcFlags);
8478   Lex.Lex();
8479 
8480   if (ParseToken(lltok::colon, "expected ':' in funcFlags") |
8481       ParseToken(lltok::lparen, "expected '(' in funcFlags"))
8482     return true;
8483 
8484   do {
8485     unsigned Val = 0;
8486     switch (Lex.getKind()) {
8487     case lltok::kw_readNone:
8488       Lex.Lex();
8489       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8490         return true;
8491       FFlags.ReadNone = Val;
8492       break;
8493     case lltok::kw_readOnly:
8494       Lex.Lex();
8495       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8496         return true;
8497       FFlags.ReadOnly = Val;
8498       break;
8499     case lltok::kw_noRecurse:
8500       Lex.Lex();
8501       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8502         return true;
8503       FFlags.NoRecurse = Val;
8504       break;
8505     case lltok::kw_returnDoesNotAlias:
8506       Lex.Lex();
8507       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8508         return true;
8509       FFlags.ReturnDoesNotAlias = Val;
8510       break;
8511     case lltok::kw_noInline:
8512       Lex.Lex();
8513       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8514         return true;
8515       FFlags.NoInline = Val;
8516       break;
8517     case lltok::kw_alwaysInline:
8518       Lex.Lex();
8519       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val))
8520         return true;
8521       FFlags.AlwaysInline = Val;
8522       break;
8523     default:
8524       return Error(Lex.getLoc(), "expected function flag type");
8525     }
8526   } while (EatIfPresent(lltok::comma));
8527 
8528   if (ParseToken(lltok::rparen, "expected ')' in funcFlags"))
8529     return true;
8530 
8531   return false;
8532 }
8533 
8534 /// OptionalCalls
8535 ///   := 'calls' ':' '(' Call [',' Call]* ')'
8536 /// Call ::= '(' 'callee' ':' GVReference
8537 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
8538 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
8539   assert(Lex.getKind() == lltok::kw_calls);
8540   Lex.Lex();
8541 
8542   if (ParseToken(lltok::colon, "expected ':' in calls") |
8543       ParseToken(lltok::lparen, "expected '(' in calls"))
8544     return true;
8545 
8546   IdToIndexMapType IdToIndexMap;
8547   // Parse each call edge
8548   do {
8549     ValueInfo VI;
8550     if (ParseToken(lltok::lparen, "expected '(' in call") ||
8551         ParseToken(lltok::kw_callee, "expected 'callee' in call") ||
8552         ParseToken(lltok::colon, "expected ':'"))
8553       return true;
8554 
8555     LocTy Loc = Lex.getLoc();
8556     unsigned GVId;
8557     if (ParseGVReference(VI, GVId))
8558       return true;
8559 
8560     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
8561     unsigned RelBF = 0;
8562     if (EatIfPresent(lltok::comma)) {
8563       // Expect either hotness or relbf
8564       if (EatIfPresent(lltok::kw_hotness)) {
8565         if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness))
8566           return true;
8567       } else {
8568         if (ParseToken(lltok::kw_relbf, "expected relbf") ||
8569             ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF))
8570           return true;
8571       }
8572     }
8573     // Keep track of the Call array index needing a forward reference.
8574     // We will save the location of the ValueInfo needing an update, but
8575     // can only do so once the std::vector is finalized.
8576     if (VI.getRef() == FwdVIRef)
8577       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
8578     Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
8579 
8580     if (ParseToken(lltok::rparen, "expected ')' in call"))
8581       return true;
8582   } while (EatIfPresent(lltok::comma));
8583 
8584   // Now that the Calls vector is finalized, it is safe to save the locations
8585   // of any forward GV references that need updating later.
8586   for (auto I : IdToIndexMap) {
8587     auto &Infos = ForwardRefValueInfos[I.first];
8588     for (auto P : I.second) {
8589       assert(Calls[P.first].first.getRef() == FwdVIRef &&
8590              "Forward referenced ValueInfo expected to be empty");
8591       Infos.emplace_back(&Calls[P.first].first, P.second);
8592     }
8593   }
8594 
8595   if (ParseToken(lltok::rparen, "expected ')' in calls"))
8596     return true;
8597 
8598   return false;
8599 }
8600 
8601 /// Hotness
8602 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
8603 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) {
8604   switch (Lex.getKind()) {
8605   case lltok::kw_unknown:
8606     Hotness = CalleeInfo::HotnessType::Unknown;
8607     break;
8608   case lltok::kw_cold:
8609     Hotness = CalleeInfo::HotnessType::Cold;
8610     break;
8611   case lltok::kw_none:
8612     Hotness = CalleeInfo::HotnessType::None;
8613     break;
8614   case lltok::kw_hot:
8615     Hotness = CalleeInfo::HotnessType::Hot;
8616     break;
8617   case lltok::kw_critical:
8618     Hotness = CalleeInfo::HotnessType::Critical;
8619     break;
8620   default:
8621     return Error(Lex.getLoc(), "invalid call edge hotness");
8622   }
8623   Lex.Lex();
8624   return false;
8625 }
8626 
8627 /// OptionalVTableFuncs
8628 ///   := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
8629 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
8630 bool LLParser::ParseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
8631   assert(Lex.getKind() == lltok::kw_vTableFuncs);
8632   Lex.Lex();
8633 
8634   if (ParseToken(lltok::colon, "expected ':' in vTableFuncs") |
8635       ParseToken(lltok::lparen, "expected '(' in vTableFuncs"))
8636     return true;
8637 
8638   IdToIndexMapType IdToIndexMap;
8639   // Parse each virtual function pair
8640   do {
8641     ValueInfo VI;
8642     if (ParseToken(lltok::lparen, "expected '(' in vTableFunc") ||
8643         ParseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
8644         ParseToken(lltok::colon, "expected ':'"))
8645       return true;
8646 
8647     LocTy Loc = Lex.getLoc();
8648     unsigned GVId;
8649     if (ParseGVReference(VI, GVId))
8650       return true;
8651 
8652     uint64_t Offset;
8653     if (ParseToken(lltok::comma, "expected comma") ||
8654         ParseToken(lltok::kw_offset, "expected offset") ||
8655         ParseToken(lltok::colon, "expected ':'") || ParseUInt64(Offset))
8656       return true;
8657 
8658     // Keep track of the VTableFuncs array index needing a forward reference.
8659     // We will save the location of the ValueInfo needing an update, but
8660     // can only do so once the std::vector is finalized.
8661     if (VI == EmptyVI)
8662       IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
8663     VTableFuncs.push_back({VI, Offset});
8664 
8665     if (ParseToken(lltok::rparen, "expected ')' in vTableFunc"))
8666       return true;
8667   } while (EatIfPresent(lltok::comma));
8668 
8669   // Now that the VTableFuncs vector is finalized, it is safe to save the
8670   // locations of any forward GV references that need updating later.
8671   for (auto I : IdToIndexMap) {
8672     auto &Infos = ForwardRefValueInfos[I.first];
8673     for (auto P : I.second) {
8674       assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
8675              "Forward referenced ValueInfo expected to be empty");
8676       Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second);
8677     }
8678   }
8679 
8680   if (ParseToken(lltok::rparen, "expected ')' in vTableFuncs"))
8681     return true;
8682 
8683   return false;
8684 }
8685 
8686 /// ParamNo := 'param' ':' UInt64
8687 bool LLParser::ParseParamNo(uint64_t &ParamNo) {
8688   if (ParseToken(lltok::kw_param, "expected 'param' here") ||
8689       ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(ParamNo))
8690     return true;
8691   return false;
8692 }
8693 
8694 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']'
8695 bool LLParser::ParseParamAccessOffset(ConstantRange &Range) {
8696   APSInt Lower;
8697   APSInt Upper;
8698   auto ParseAPSInt = [&](APSInt &Val) {
8699     if (Lex.getKind() != lltok::APSInt)
8700       return TokError("expected integer");
8701     Val = Lex.getAPSIntVal();
8702     Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
8703     Val.setIsSigned(true);
8704     Lex.Lex();
8705     return false;
8706   };
8707   if (ParseToken(lltok::kw_offset, "expected 'offset' here") ||
8708       ParseToken(lltok::colon, "expected ':' here") ||
8709       ParseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) ||
8710       ParseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) ||
8711       ParseToken(lltok::rsquare, "expected ']' here"))
8712     return true;
8713 
8714   ++Upper;
8715   Range =
8716       (Lower == Upper && !Lower.isMaxValue())
8717           ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth)
8718           : ConstantRange(Lower, Upper);
8719 
8720   return false;
8721 }
8722 
8723 /// ParamAccessCall
8724 ///   := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')'
8725 bool LLParser::ParseParamAccessCall(FunctionSummary::ParamAccess::Call &Call) {
8726   if (ParseToken(lltok::lparen, "expected '(' here") ||
8727       ParseToken(lltok::kw_callee, "expected 'callee' here") ||
8728       ParseToken(lltok::colon, "expected ':' here"))
8729     return true;
8730 
8731   unsigned GVId;
8732   ValueInfo VI;
8733   if (ParseGVReference(VI, GVId))
8734     return true;
8735 
8736   Call.Callee = VI.getGUID();
8737 
8738   if (ParseToken(lltok::comma, "expected ',' here") ||
8739       ParseParamNo(Call.ParamNo) ||
8740       ParseToken(lltok::comma, "expected ',' here") ||
8741       ParseParamAccessOffset(Call.Offsets))
8742     return true;
8743 
8744   if (ParseToken(lltok::rparen, "expected ')' here"))
8745     return true;
8746 
8747   return false;
8748 }
8749 
8750 /// ParamAccess
8751 ///   := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')'
8752 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')'
8753 bool LLParser::ParseParamAccess(FunctionSummary::ParamAccess &Param) {
8754   if (ParseToken(lltok::lparen, "expected '(' here") ||
8755       ParseParamNo(Param.ParamNo) ||
8756       ParseToken(lltok::comma, "expected ',' here") ||
8757       ParseParamAccessOffset(Param.Use))
8758     return true;
8759 
8760   if (EatIfPresent(lltok::comma)) {
8761     if (ParseToken(lltok::kw_calls, "expected 'calls' here") ||
8762         ParseToken(lltok::colon, "expected ':' here") ||
8763         ParseToken(lltok::lparen, "expected '(' here"))
8764       return true;
8765     do {
8766       FunctionSummary::ParamAccess::Call Call;
8767       if (ParseParamAccessCall(Call))
8768         return true;
8769       Param.Calls.push_back(Call);
8770     } while (EatIfPresent(lltok::comma));
8771 
8772     if (ParseToken(lltok::rparen, "expected ')' here"))
8773       return true;
8774   }
8775 
8776   if (ParseToken(lltok::rparen, "expected ')' here"))
8777     return true;
8778 
8779   return false;
8780 }
8781 
8782 /// OptionalParamAccesses
8783 ///   := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')'
8784 bool LLParser::ParseOptionalParamAccesses(
8785     std::vector<FunctionSummary::ParamAccess> &Params) {
8786   assert(Lex.getKind() == lltok::kw_params);
8787   Lex.Lex();
8788 
8789   if (ParseToken(lltok::colon, "expected ':' here") ||
8790       ParseToken(lltok::lparen, "expected '(' here"))
8791     return true;
8792 
8793   do {
8794     FunctionSummary::ParamAccess ParamAccess;
8795     if (ParseParamAccess(ParamAccess))
8796       return true;
8797     Params.push_back(ParamAccess);
8798   } while (EatIfPresent(lltok::comma));
8799 
8800   if (ParseToken(lltok::rparen, "expected ')' here"))
8801     return true;
8802 
8803   return false;
8804 }
8805 
8806 /// OptionalRefs
8807 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
8808 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) {
8809   assert(Lex.getKind() == lltok::kw_refs);
8810   Lex.Lex();
8811 
8812   if (ParseToken(lltok::colon, "expected ':' in refs") ||
8813       ParseToken(lltok::lparen, "expected '(' in refs"))
8814     return true;
8815 
8816   struct ValueContext {
8817     ValueInfo VI;
8818     unsigned GVId;
8819     LocTy Loc;
8820   };
8821   std::vector<ValueContext> VContexts;
8822   // Parse each ref edge
8823   do {
8824     ValueContext VC;
8825     VC.Loc = Lex.getLoc();
8826     if (ParseGVReference(VC.VI, VC.GVId))
8827       return true;
8828     VContexts.push_back(VC);
8829   } while (EatIfPresent(lltok::comma));
8830 
8831   // Sort value contexts so that ones with writeonly
8832   // and readonly ValueInfo  are at the end of VContexts vector.
8833   // See FunctionSummary::specialRefCounts()
8834   llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
8835     return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier();
8836   });
8837 
8838   IdToIndexMapType IdToIndexMap;
8839   for (auto &VC : VContexts) {
8840     // Keep track of the Refs array index needing a forward reference.
8841     // We will save the location of the ValueInfo needing an update, but
8842     // can only do so once the std::vector is finalized.
8843     if (VC.VI.getRef() == FwdVIRef)
8844       IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
8845     Refs.push_back(VC.VI);
8846   }
8847 
8848   // Now that the Refs vector is finalized, it is safe to save the locations
8849   // of any forward GV references that need updating later.
8850   for (auto I : IdToIndexMap) {
8851     auto &Infos = ForwardRefValueInfos[I.first];
8852     for (auto P : I.second) {
8853       assert(Refs[P.first].getRef() == FwdVIRef &&
8854              "Forward referenced ValueInfo expected to be empty");
8855       Infos.emplace_back(&Refs[P.first], P.second);
8856     }
8857   }
8858 
8859   if (ParseToken(lltok::rparen, "expected ')' in refs"))
8860     return true;
8861 
8862   return false;
8863 }
8864 
8865 /// OptionalTypeIdInfo
8866 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
8867 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
8868 ///         [',' TypeCheckedLoadConstVCalls]? ')'
8869 bool LLParser::ParseOptionalTypeIdInfo(
8870     FunctionSummary::TypeIdInfo &TypeIdInfo) {
8871   assert(Lex.getKind() == lltok::kw_typeIdInfo);
8872   Lex.Lex();
8873 
8874   if (ParseToken(lltok::colon, "expected ':' here") ||
8875       ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8876     return true;
8877 
8878   do {
8879     switch (Lex.getKind()) {
8880     case lltok::kw_typeTests:
8881       if (ParseTypeTests(TypeIdInfo.TypeTests))
8882         return true;
8883       break;
8884     case lltok::kw_typeTestAssumeVCalls:
8885       if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
8886                            TypeIdInfo.TypeTestAssumeVCalls))
8887         return true;
8888       break;
8889     case lltok::kw_typeCheckedLoadVCalls:
8890       if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
8891                            TypeIdInfo.TypeCheckedLoadVCalls))
8892         return true;
8893       break;
8894     case lltok::kw_typeTestAssumeConstVCalls:
8895       if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
8896                               TypeIdInfo.TypeTestAssumeConstVCalls))
8897         return true;
8898       break;
8899     case lltok::kw_typeCheckedLoadConstVCalls:
8900       if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
8901                               TypeIdInfo.TypeCheckedLoadConstVCalls))
8902         return true;
8903       break;
8904     default:
8905       return Error(Lex.getLoc(), "invalid typeIdInfo list type");
8906     }
8907   } while (EatIfPresent(lltok::comma));
8908 
8909   if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8910     return true;
8911 
8912   return false;
8913 }
8914 
8915 /// TypeTests
8916 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
8917 ///         [',' (SummaryID | UInt64)]* ')'
8918 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
8919   assert(Lex.getKind() == lltok::kw_typeTests);
8920   Lex.Lex();
8921 
8922   if (ParseToken(lltok::colon, "expected ':' here") ||
8923       ParseToken(lltok::lparen, "expected '(' in typeIdInfo"))
8924     return true;
8925 
8926   IdToIndexMapType IdToIndexMap;
8927   do {
8928     GlobalValue::GUID GUID = 0;
8929     if (Lex.getKind() == lltok::SummaryID) {
8930       unsigned ID = Lex.getUIntVal();
8931       LocTy Loc = Lex.getLoc();
8932       // Keep track of the TypeTests array index needing a forward reference.
8933       // We will save the location of the GUID needing an update, but
8934       // can only do so once the std::vector is finalized.
8935       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
8936       Lex.Lex();
8937     } else if (ParseUInt64(GUID))
8938       return true;
8939     TypeTests.push_back(GUID);
8940   } while (EatIfPresent(lltok::comma));
8941 
8942   // Now that the TypeTests vector is finalized, it is safe to save the
8943   // locations of any forward GV references that need updating later.
8944   for (auto I : IdToIndexMap) {
8945     auto &Ids = ForwardRefTypeIds[I.first];
8946     for (auto P : I.second) {
8947       assert(TypeTests[P.first] == 0 &&
8948              "Forward referenced type id GUID expected to be 0");
8949       Ids.emplace_back(&TypeTests[P.first], P.second);
8950     }
8951   }
8952 
8953   if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo"))
8954     return true;
8955 
8956   return false;
8957 }
8958 
8959 /// VFuncIdList
8960 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
8961 bool LLParser::ParseVFuncIdList(
8962     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
8963   assert(Lex.getKind() == Kind);
8964   Lex.Lex();
8965 
8966   if (ParseToken(lltok::colon, "expected ':' here") ||
8967       ParseToken(lltok::lparen, "expected '(' here"))
8968     return true;
8969 
8970   IdToIndexMapType IdToIndexMap;
8971   do {
8972     FunctionSummary::VFuncId VFuncId;
8973     if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
8974       return true;
8975     VFuncIdList.push_back(VFuncId);
8976   } while (EatIfPresent(lltok::comma));
8977 
8978   if (ParseToken(lltok::rparen, "expected ')' here"))
8979     return true;
8980 
8981   // Now that the VFuncIdList vector is finalized, it is safe to save the
8982   // locations of any forward GV references that need updating later.
8983   for (auto I : IdToIndexMap) {
8984     auto &Ids = ForwardRefTypeIds[I.first];
8985     for (auto P : I.second) {
8986       assert(VFuncIdList[P.first].GUID == 0 &&
8987              "Forward referenced type id GUID expected to be 0");
8988       Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second);
8989     }
8990   }
8991 
8992   return false;
8993 }
8994 
8995 /// ConstVCallList
8996 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
8997 bool LLParser::ParseConstVCallList(
8998     lltok::Kind Kind,
8999     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
9000   assert(Lex.getKind() == Kind);
9001   Lex.Lex();
9002 
9003   if (ParseToken(lltok::colon, "expected ':' here") ||
9004       ParseToken(lltok::lparen, "expected '(' here"))
9005     return true;
9006 
9007   IdToIndexMapType IdToIndexMap;
9008   do {
9009     FunctionSummary::ConstVCall ConstVCall;
9010     if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
9011       return true;
9012     ConstVCallList.push_back(ConstVCall);
9013   } while (EatIfPresent(lltok::comma));
9014 
9015   if (ParseToken(lltok::rparen, "expected ')' here"))
9016     return true;
9017 
9018   // Now that the ConstVCallList vector is finalized, it is safe to save the
9019   // locations of any forward GV references that need updating later.
9020   for (auto I : IdToIndexMap) {
9021     auto &Ids = ForwardRefTypeIds[I.first];
9022     for (auto P : I.second) {
9023       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
9024              "Forward referenced type id GUID expected to be 0");
9025       Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second);
9026     }
9027   }
9028 
9029   return false;
9030 }
9031 
9032 /// ConstVCall
9033 ///   ::= '(' VFuncId ',' Args ')'
9034 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
9035                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
9036   if (ParseToken(lltok::lparen, "expected '(' here") ||
9037       ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
9038     return true;
9039 
9040   if (EatIfPresent(lltok::comma))
9041     if (ParseArgs(ConstVCall.Args))
9042       return true;
9043 
9044   if (ParseToken(lltok::rparen, "expected ')' here"))
9045     return true;
9046 
9047   return false;
9048 }
9049 
9050 /// VFuncId
9051 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
9052 ///         'offset' ':' UInt64 ')'
9053 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId,
9054                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
9055   assert(Lex.getKind() == lltok::kw_vFuncId);
9056   Lex.Lex();
9057 
9058   if (ParseToken(lltok::colon, "expected ':' here") ||
9059       ParseToken(lltok::lparen, "expected '(' here"))
9060     return true;
9061 
9062   if (Lex.getKind() == lltok::SummaryID) {
9063     VFuncId.GUID = 0;
9064     unsigned ID = Lex.getUIntVal();
9065     LocTy Loc = Lex.getLoc();
9066     // Keep track of the array index needing a forward reference.
9067     // We will save the location of the GUID needing an update, but
9068     // can only do so once the caller's std::vector is finalized.
9069     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
9070     Lex.Lex();
9071   } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") ||
9072              ParseToken(lltok::colon, "expected ':' here") ||
9073              ParseUInt64(VFuncId.GUID))
9074     return true;
9075 
9076   if (ParseToken(lltok::comma, "expected ',' here") ||
9077       ParseToken(lltok::kw_offset, "expected 'offset' here") ||
9078       ParseToken(lltok::colon, "expected ':' here") ||
9079       ParseUInt64(VFuncId.Offset) ||
9080       ParseToken(lltok::rparen, "expected ')' here"))
9081     return true;
9082 
9083   return false;
9084 }
9085 
9086 /// GVFlags
9087 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
9088 ///         'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ','
9089 ///         'dsoLocal' ':' Flag ',' 'canAutoHide' ':' Flag ')'
9090 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
9091   assert(Lex.getKind() == lltok::kw_flags);
9092   Lex.Lex();
9093 
9094   if (ParseToken(lltok::colon, "expected ':' here") ||
9095       ParseToken(lltok::lparen, "expected '(' here"))
9096     return true;
9097 
9098   do {
9099     unsigned Flag = 0;
9100     switch (Lex.getKind()) {
9101     case lltok::kw_linkage:
9102       Lex.Lex();
9103       if (ParseToken(lltok::colon, "expected ':'"))
9104         return true;
9105       bool HasLinkage;
9106       GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
9107       assert(HasLinkage && "Linkage not optional in summary entry");
9108       Lex.Lex();
9109       break;
9110     case lltok::kw_notEligibleToImport:
9111       Lex.Lex();
9112       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
9113         return true;
9114       GVFlags.NotEligibleToImport = Flag;
9115       break;
9116     case lltok::kw_live:
9117       Lex.Lex();
9118       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
9119         return true;
9120       GVFlags.Live = Flag;
9121       break;
9122     case lltok::kw_dsoLocal:
9123       Lex.Lex();
9124       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
9125         return true;
9126       GVFlags.DSOLocal = Flag;
9127       break;
9128     case lltok::kw_canAutoHide:
9129       Lex.Lex();
9130       if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag))
9131         return true;
9132       GVFlags.CanAutoHide = Flag;
9133       break;
9134     default:
9135       return Error(Lex.getLoc(), "expected gv flag type");
9136     }
9137   } while (EatIfPresent(lltok::comma));
9138 
9139   if (ParseToken(lltok::rparen, "expected ')' here"))
9140     return true;
9141 
9142   return false;
9143 }
9144 
9145 /// GVarFlags
9146 ///   ::= 'varFlags' ':' '(' 'readonly' ':' Flag
9147 ///                      ',' 'writeonly' ':' Flag
9148 ///                      ',' 'constant' ':' Flag ')'
9149 bool LLParser::ParseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
9150   assert(Lex.getKind() == lltok::kw_varFlags);
9151   Lex.Lex();
9152 
9153   if (ParseToken(lltok::colon, "expected ':' here") ||
9154       ParseToken(lltok::lparen, "expected '(' here"))
9155     return true;
9156 
9157   auto ParseRest = [this](unsigned int &Val) {
9158     Lex.Lex();
9159     if (ParseToken(lltok::colon, "expected ':'"))
9160       return true;
9161     return ParseFlag(Val);
9162   };
9163 
9164   do {
9165     unsigned Flag = 0;
9166     switch (Lex.getKind()) {
9167     case lltok::kw_readonly:
9168       if (ParseRest(Flag))
9169         return true;
9170       GVarFlags.MaybeReadOnly = Flag;
9171       break;
9172     case lltok::kw_writeonly:
9173       if (ParseRest(Flag))
9174         return true;
9175       GVarFlags.MaybeWriteOnly = Flag;
9176       break;
9177     case lltok::kw_constant:
9178       if (ParseRest(Flag))
9179         return true;
9180       GVarFlags.Constant = Flag;
9181       break;
9182     case lltok::kw_vcall_visibility:
9183       if (ParseRest(Flag))
9184         return true;
9185       GVarFlags.VCallVisibility = Flag;
9186       break;
9187     default:
9188       return Error(Lex.getLoc(), "expected gvar flag type");
9189     }
9190   } while (EatIfPresent(lltok::comma));
9191   return ParseToken(lltok::rparen, "expected ')' here");
9192 }
9193 
9194 /// ModuleReference
9195 ///   ::= 'module' ':' UInt
9196 bool LLParser::ParseModuleReference(StringRef &ModulePath) {
9197   // Parse module id.
9198   if (ParseToken(lltok::kw_module, "expected 'module' here") ||
9199       ParseToken(lltok::colon, "expected ':' here") ||
9200       ParseToken(lltok::SummaryID, "expected module ID"))
9201     return true;
9202 
9203   unsigned ModuleID = Lex.getUIntVal();
9204   auto I = ModuleIdMap.find(ModuleID);
9205   // We should have already parsed all module IDs
9206   assert(I != ModuleIdMap.end());
9207   ModulePath = I->second;
9208   return false;
9209 }
9210 
9211 /// GVReference
9212 ///   ::= SummaryID
9213 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) {
9214   bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly);
9215   if (!ReadOnly)
9216     WriteOnly = EatIfPresent(lltok::kw_writeonly);
9217   if (ParseToken(lltok::SummaryID, "expected GV ID"))
9218     return true;
9219 
9220   GVId = Lex.getUIntVal();
9221   // Check if we already have a VI for this GV
9222   if (GVId < NumberedValueInfos.size()) {
9223     assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
9224     VI = NumberedValueInfos[GVId];
9225   } else
9226     // We will create a forward reference to the stored location.
9227     VI = ValueInfo(false, FwdVIRef);
9228 
9229   if (ReadOnly)
9230     VI.setReadOnly();
9231   if (WriteOnly)
9232     VI.setWriteOnly();
9233   return false;
9234 }
9235