1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 //  This file defines the parser class for .ll files.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "LLParser.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/Optional.h"
18 #include "llvm/ADT/STLExtras.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/AsmParser/SlotMapping.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AutoUpgrade.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Comdat.h"
27 #include "llvm/IR/Constants.h"
28 #include "llvm/IR/DebugInfoMetadata.h"
29 #include "llvm/IR/DerivedTypes.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/GlobalIFunc.h"
32 #include "llvm/IR/GlobalObject.h"
33 #include "llvm/IR/InlineAsm.h"
34 #include "llvm/IR/Instruction.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/IR/Type.h"
42 #include "llvm/IR/Value.h"
43 #include "llvm/IR/ValueSymbolTable.h"
44 #include "llvm/Support/Casting.h"
45 #include "llvm/Support/ErrorHandling.h"
46 #include "llvm/Support/MathExtras.h"
47 #include "llvm/Support/SaveAndRestore.h"
48 #include "llvm/Support/raw_ostream.h"
49 #include <algorithm>
50 #include <cassert>
51 #include <cstring>
52 #include <iterator>
53 #include <vector>
54 
55 using namespace llvm;
56 
57 static std::string getTypeString(Type *T) {
58   std::string Result;
59   raw_string_ostream Tmp(Result);
60   Tmp << *T;
61   return Tmp.str();
62 }
63 
64 /// Run: module ::= toplevelentity*
65 bool LLParser::Run() {
66   // Prime the lexer.
67   Lex.Lex();
68 
69   if (Context.shouldDiscardValueNames())
70     return Error(
71         Lex.getLoc(),
72         "Can't read textual IR with a Context that discards named Values");
73 
74   return ParseTopLevelEntities() ||
75          ValidateEndOfModule();
76 }
77 
78 bool LLParser::parseStandaloneConstantValue(Constant *&C,
79                                             const SlotMapping *Slots) {
80   restoreParsingState(Slots);
81   Lex.Lex();
82 
83   Type *Ty = nullptr;
84   if (ParseType(Ty) || parseConstantValue(Ty, C))
85     return true;
86   if (Lex.getKind() != lltok::Eof)
87     return Error(Lex.getLoc(), "expected end of string");
88   return false;
89 }
90 
91 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
92                                     const SlotMapping *Slots) {
93   restoreParsingState(Slots);
94   Lex.Lex();
95 
96   Read = 0;
97   SMLoc Start = Lex.getLoc();
98   Ty = nullptr;
99   if (ParseType(Ty))
100     return true;
101   SMLoc End = Lex.getLoc();
102   Read = End.getPointer() - Start.getPointer();
103 
104   return false;
105 }
106 
107 void LLParser::restoreParsingState(const SlotMapping *Slots) {
108   if (!Slots)
109     return;
110   NumberedVals = Slots->GlobalValues;
111   NumberedMetadata = Slots->MetadataNodes;
112   for (const auto &I : Slots->NamedTypes)
113     NamedTypes.insert(
114         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
115   for (const auto &I : Slots->Types)
116     NumberedTypes.insert(
117         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
118 }
119 
120 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the
121 /// module.
122 bool LLParser::ValidateEndOfModule() {
123   // Handle any function attribute group forward references.
124   for (const auto &RAG : ForwardRefAttrGroups) {
125     Value *V = RAG.first;
126     const std::vector<unsigned> &Attrs = RAG.second;
127     AttrBuilder B;
128 
129     for (const auto &Attr : Attrs)
130       B.merge(NumberedAttrBuilders[Attr]);
131 
132     if (Function *Fn = dyn_cast<Function>(V)) {
133       AttributeList AS = Fn->getAttributes();
134       AttrBuilder FnAttrs(AS.getFnAttributes());
135       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
136 
137       FnAttrs.merge(B);
138 
139       // If the alignment was parsed as an attribute, move to the alignment
140       // field.
141       if (FnAttrs.hasAlignmentAttr()) {
142         Fn->setAlignment(FnAttrs.getAlignment());
143         FnAttrs.removeAttribute(Attribute::Alignment);
144       }
145 
146       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
147                             AttributeSet::get(Context, FnAttrs));
148       Fn->setAttributes(AS);
149     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
150       AttributeList AS = CI->getAttributes();
151       AttrBuilder FnAttrs(AS.getFnAttributes());
152       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
153       FnAttrs.merge(B);
154       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
155                             AttributeSet::get(Context, FnAttrs));
156       CI->setAttributes(AS);
157     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
158       AttributeList AS = II->getAttributes();
159       AttrBuilder FnAttrs(AS.getFnAttributes());
160       AS = AS.removeAttributes(Context, AttributeList::FunctionIndex);
161       FnAttrs.merge(B);
162       AS = AS.addAttributes(Context, AttributeList::FunctionIndex,
163                             AttributeSet::get(Context, FnAttrs));
164       II->setAttributes(AS);
165     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
166       AttrBuilder Attrs(GV->getAttributes());
167       Attrs.merge(B);
168       GV->setAttributes(AttributeSet::get(Context,Attrs));
169     } else {
170       llvm_unreachable("invalid object with forward attribute group reference");
171     }
172   }
173 
174   // If there are entries in ForwardRefBlockAddresses at this point, the
175   // function was never defined.
176   if (!ForwardRefBlockAddresses.empty())
177     return Error(ForwardRefBlockAddresses.begin()->first.Loc,
178                  "expected function name in blockaddress");
179 
180   for (const auto &NT : NumberedTypes)
181     if (NT.second.second.isValid())
182       return Error(NT.second.second,
183                    "use of undefined type '%" + Twine(NT.first) + "'");
184 
185   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
186        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
187     if (I->second.second.isValid())
188       return Error(I->second.second,
189                    "use of undefined type named '" + I->getKey() + "'");
190 
191   if (!ForwardRefComdats.empty())
192     return Error(ForwardRefComdats.begin()->second,
193                  "use of undefined comdat '$" +
194                      ForwardRefComdats.begin()->first + "'");
195 
196   if (!ForwardRefVals.empty())
197     return Error(ForwardRefVals.begin()->second.second,
198                  "use of undefined value '@" + ForwardRefVals.begin()->first +
199                  "'");
200 
201   if (!ForwardRefValIDs.empty())
202     return Error(ForwardRefValIDs.begin()->second.second,
203                  "use of undefined value '@" +
204                  Twine(ForwardRefValIDs.begin()->first) + "'");
205 
206   if (!ForwardRefMDNodes.empty())
207     return Error(ForwardRefMDNodes.begin()->second.second,
208                  "use of undefined metadata '!" +
209                  Twine(ForwardRefMDNodes.begin()->first) + "'");
210 
211   // Resolve metadata cycles.
212   for (auto &N : NumberedMetadata) {
213     if (N.second && !N.second->isResolved())
214       N.second->resolveCycles();
215   }
216 
217   for (auto *Inst : InstsWithTBAATag) {
218     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
219     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
220     auto *UpgradedMD = UpgradeTBAANode(*MD);
221     if (MD != UpgradedMD)
222       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
223   }
224 
225   // Look for intrinsic functions and CallInst that need to be upgraded
226   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; )
227     UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove
228 
229   // Some types could be renamed during loading if several modules are
230   // loaded in the same LLVMContext (LTO scenario). In this case we should
231   // remangle intrinsics names as well.
232   for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) {
233     Function *F = &*FI++;
234     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) {
235       F->replaceAllUsesWith(Remangled.getValue());
236       F->eraseFromParent();
237     }
238   }
239 
240   UpgradeDebugInfo(*M);
241 
242   UpgradeModuleFlags(*M);
243 
244   if (!Slots)
245     return false;
246   // Initialize the slot mapping.
247   // Because by this point we've parsed and validated everything, we can "steal"
248   // the mapping from LLParser as it doesn't need it anymore.
249   Slots->GlobalValues = std::move(NumberedVals);
250   Slots->MetadataNodes = std::move(NumberedMetadata);
251   for (const auto &I : NamedTypes)
252     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
253   for (const auto &I : NumberedTypes)
254     Slots->Types.insert(std::make_pair(I.first, I.second.first));
255 
256   return false;
257 }
258 
259 //===----------------------------------------------------------------------===//
260 // Top-Level Entities
261 //===----------------------------------------------------------------------===//
262 
263 bool LLParser::ParseTopLevelEntities() {
264   while (true) {
265     switch (Lex.getKind()) {
266     default:         return TokError("expected top-level entity");
267     case lltok::Eof: return false;
268     case lltok::kw_declare: if (ParseDeclare()) return true; break;
269     case lltok::kw_define:  if (ParseDefine()) return true; break;
270     case lltok::kw_module:  if (ParseModuleAsm()) return true; break;
271     case lltok::kw_target:  if (ParseTargetDefinition()) return true; break;
272     case lltok::kw_source_filename:
273       if (ParseSourceFileName())
274         return true;
275       break;
276     case lltok::kw_deplibs: if (ParseDepLibs()) return true; break;
277     case lltok::LocalVarID: if (ParseUnnamedType()) return true; break;
278     case lltok::LocalVar:   if (ParseNamedType()) return true; break;
279     case lltok::GlobalID:   if (ParseUnnamedGlobal()) return true; break;
280     case lltok::GlobalVar:  if (ParseNamedGlobal()) return true; break;
281     case lltok::ComdatVar:  if (parseComdat()) return true; break;
282     case lltok::exclaim:    if (ParseStandaloneMetadata()) return true; break;
283     case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break;
284     case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break;
285     case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break;
286     case lltok::kw_uselistorder_bb:
287       if (ParseUseListOrderBB())
288         return true;
289       break;
290     }
291   }
292 }
293 
294 /// toplevelentity
295 ///   ::= 'module' 'asm' STRINGCONSTANT
296 bool LLParser::ParseModuleAsm() {
297   assert(Lex.getKind() == lltok::kw_module);
298   Lex.Lex();
299 
300   std::string AsmStr;
301   if (ParseToken(lltok::kw_asm, "expected 'module asm'") ||
302       ParseStringConstant(AsmStr)) return true;
303 
304   M->appendModuleInlineAsm(AsmStr);
305   return false;
306 }
307 
308 /// toplevelentity
309 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
310 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
311 bool LLParser::ParseTargetDefinition() {
312   assert(Lex.getKind() == lltok::kw_target);
313   std::string Str;
314   switch (Lex.Lex()) {
315   default: return TokError("unknown target property");
316   case lltok::kw_triple:
317     Lex.Lex();
318     if (ParseToken(lltok::equal, "expected '=' after target triple") ||
319         ParseStringConstant(Str))
320       return true;
321     M->setTargetTriple(Str);
322     return false;
323   case lltok::kw_datalayout:
324     Lex.Lex();
325     if (ParseToken(lltok::equal, "expected '=' after target datalayout") ||
326         ParseStringConstant(Str))
327       return true;
328     M->setDataLayout(Str);
329     return false;
330   }
331 }
332 
333 /// toplevelentity
334 ///   ::= 'source_filename' '=' STRINGCONSTANT
335 bool LLParser::ParseSourceFileName() {
336   assert(Lex.getKind() == lltok::kw_source_filename);
337   std::string Str;
338   Lex.Lex();
339   if (ParseToken(lltok::equal, "expected '=' after source_filename") ||
340       ParseStringConstant(Str))
341     return true;
342   M->setSourceFileName(Str);
343   return false;
344 }
345 
346 /// toplevelentity
347 ///   ::= 'deplibs' '=' '[' ']'
348 ///   ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']'
349 /// FIXME: Remove in 4.0. Currently parse, but ignore.
350 bool LLParser::ParseDepLibs() {
351   assert(Lex.getKind() == lltok::kw_deplibs);
352   Lex.Lex();
353   if (ParseToken(lltok::equal, "expected '=' after deplibs") ||
354       ParseToken(lltok::lsquare, "expected '=' after deplibs"))
355     return true;
356 
357   if (EatIfPresent(lltok::rsquare))
358     return false;
359 
360   do {
361     std::string Str;
362     if (ParseStringConstant(Str)) return true;
363   } while (EatIfPresent(lltok::comma));
364 
365   return ParseToken(lltok::rsquare, "expected ']' at end of list");
366 }
367 
368 /// ParseUnnamedType:
369 ///   ::= LocalVarID '=' 'type' type
370 bool LLParser::ParseUnnamedType() {
371   LocTy TypeLoc = Lex.getLoc();
372   unsigned TypeID = Lex.getUIntVal();
373   Lex.Lex(); // eat LocalVarID;
374 
375   if (ParseToken(lltok::equal, "expected '=' after name") ||
376       ParseToken(lltok::kw_type, "expected 'type' after '='"))
377     return true;
378 
379   Type *Result = nullptr;
380   if (ParseStructDefinition(TypeLoc, "",
381                             NumberedTypes[TypeID], Result)) return true;
382 
383   if (!isa<StructType>(Result)) {
384     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
385     if (Entry.first)
386       return Error(TypeLoc, "non-struct types may not be recursive");
387     Entry.first = Result;
388     Entry.second = SMLoc();
389   }
390 
391   return false;
392 }
393 
394 /// toplevelentity
395 ///   ::= LocalVar '=' 'type' type
396 bool LLParser::ParseNamedType() {
397   std::string Name = Lex.getStrVal();
398   LocTy NameLoc = Lex.getLoc();
399   Lex.Lex();  // eat LocalVar.
400 
401   if (ParseToken(lltok::equal, "expected '=' after name") ||
402       ParseToken(lltok::kw_type, "expected 'type' after name"))
403     return true;
404 
405   Type *Result = nullptr;
406   if (ParseStructDefinition(NameLoc, Name,
407                             NamedTypes[Name], Result)) return true;
408 
409   if (!isa<StructType>(Result)) {
410     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
411     if (Entry.first)
412       return Error(NameLoc, "non-struct types may not be recursive");
413     Entry.first = Result;
414     Entry.second = SMLoc();
415   }
416 
417   return false;
418 }
419 
420 /// toplevelentity
421 ///   ::= 'declare' FunctionHeader
422 bool LLParser::ParseDeclare() {
423   assert(Lex.getKind() == lltok::kw_declare);
424   Lex.Lex();
425 
426   std::vector<std::pair<unsigned, MDNode *>> MDs;
427   while (Lex.getKind() == lltok::MetadataVar) {
428     unsigned MDK;
429     MDNode *N;
430     if (ParseMetadataAttachment(MDK, N))
431       return true;
432     MDs.push_back({MDK, N});
433   }
434 
435   Function *F;
436   if (ParseFunctionHeader(F, false))
437     return true;
438   for (auto &MD : MDs)
439     F->addMetadata(MD.first, *MD.second);
440   return false;
441 }
442 
443 /// toplevelentity
444 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
445 bool LLParser::ParseDefine() {
446   assert(Lex.getKind() == lltok::kw_define);
447   Lex.Lex();
448 
449   Function *F;
450   return ParseFunctionHeader(F, true) ||
451          ParseOptionalFunctionMetadata(*F) ||
452          ParseFunctionBody(*F);
453 }
454 
455 /// ParseGlobalType
456 ///   ::= 'constant'
457 ///   ::= 'global'
458 bool LLParser::ParseGlobalType(bool &IsConstant) {
459   if (Lex.getKind() == lltok::kw_constant)
460     IsConstant = true;
461   else if (Lex.getKind() == lltok::kw_global)
462     IsConstant = false;
463   else {
464     IsConstant = false;
465     return TokError("expected 'global' or 'constant'");
466   }
467   Lex.Lex();
468   return false;
469 }
470 
471 bool LLParser::ParseOptionalUnnamedAddr(
472     GlobalVariable::UnnamedAddr &UnnamedAddr) {
473   if (EatIfPresent(lltok::kw_unnamed_addr))
474     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
475   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
476     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
477   else
478     UnnamedAddr = GlobalValue::UnnamedAddr::None;
479   return false;
480 }
481 
482 /// ParseUnnamedGlobal:
483 ///   OptionalVisibility (ALIAS | IFUNC) ...
484 ///   OptionalLinkage OptionalVisibility OptionalDLLStorageClass
485 ///                                                     ...   -> global variable
486 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
487 ///   GlobalID '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
488 ///                                                     ...   -> global variable
489 bool LLParser::ParseUnnamedGlobal() {
490   unsigned VarID = NumberedVals.size();
491   std::string Name;
492   LocTy NameLoc = Lex.getLoc();
493 
494   // Handle the GlobalID form.
495   if (Lex.getKind() == lltok::GlobalID) {
496     if (Lex.getUIntVal() != VarID)
497       return Error(Lex.getLoc(), "variable expected to be numbered '%" +
498                    Twine(VarID) + "'");
499     Lex.Lex(); // eat GlobalID;
500 
501     if (ParseToken(lltok::equal, "expected '=' after name"))
502       return true;
503   }
504 
505   bool HasLinkage;
506   unsigned Linkage, Visibility, DLLStorageClass;
507   GlobalVariable::ThreadLocalMode TLM;
508   GlobalVariable::UnnamedAddr UnnamedAddr;
509   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) ||
510       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
511     return true;
512 
513   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
514     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
515                        DLLStorageClass, TLM, UnnamedAddr);
516 
517   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
518                              DLLStorageClass, TLM, UnnamedAddr);
519 }
520 
521 /// ParseNamedGlobal:
522 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
523 ///   GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
524 ///                                                     ...   -> global variable
525 bool LLParser::ParseNamedGlobal() {
526   assert(Lex.getKind() == lltok::GlobalVar);
527   LocTy NameLoc = Lex.getLoc();
528   std::string Name = Lex.getStrVal();
529   Lex.Lex();
530 
531   bool HasLinkage;
532   unsigned Linkage, Visibility, DLLStorageClass;
533   GlobalVariable::ThreadLocalMode TLM;
534   GlobalVariable::UnnamedAddr UnnamedAddr;
535   if (ParseToken(lltok::equal, "expected '=' in global variable") ||
536       ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) ||
537       ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr))
538     return true;
539 
540   if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc)
541     return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
542                        DLLStorageClass, TLM, UnnamedAddr);
543 
544   return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility,
545                              DLLStorageClass, TLM, UnnamedAddr);
546 }
547 
548 bool LLParser::parseComdat() {
549   assert(Lex.getKind() == lltok::ComdatVar);
550   std::string Name = Lex.getStrVal();
551   LocTy NameLoc = Lex.getLoc();
552   Lex.Lex();
553 
554   if (ParseToken(lltok::equal, "expected '=' here"))
555     return true;
556 
557   if (ParseToken(lltok::kw_comdat, "expected comdat keyword"))
558     return TokError("expected comdat type");
559 
560   Comdat::SelectionKind SK;
561   switch (Lex.getKind()) {
562   default:
563     return TokError("unknown selection kind");
564   case lltok::kw_any:
565     SK = Comdat::Any;
566     break;
567   case lltok::kw_exactmatch:
568     SK = Comdat::ExactMatch;
569     break;
570   case lltok::kw_largest:
571     SK = Comdat::Largest;
572     break;
573   case lltok::kw_noduplicates:
574     SK = Comdat::NoDuplicates;
575     break;
576   case lltok::kw_samesize:
577     SK = Comdat::SameSize;
578     break;
579   }
580   Lex.Lex();
581 
582   // See if the comdat was forward referenced, if so, use the comdat.
583   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
584   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
585   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
586     return Error(NameLoc, "redefinition of comdat '$" + Name + "'");
587 
588   Comdat *C;
589   if (I != ComdatSymTab.end())
590     C = &I->second;
591   else
592     C = M->getOrInsertComdat(Name);
593   C->setSelectionKind(SK);
594 
595   return false;
596 }
597 
598 // MDString:
599 //   ::= '!' STRINGCONSTANT
600 bool LLParser::ParseMDString(MDString *&Result) {
601   std::string Str;
602   if (ParseStringConstant(Str)) return true;
603   Result = MDString::get(Context, Str);
604   return false;
605 }
606 
607 // MDNode:
608 //   ::= '!' MDNodeNumber
609 bool LLParser::ParseMDNodeID(MDNode *&Result) {
610   // !{ ..., !42, ... }
611   LocTy IDLoc = Lex.getLoc();
612   unsigned MID = 0;
613   if (ParseUInt32(MID))
614     return true;
615 
616   // If not a forward reference, just return it now.
617   if (NumberedMetadata.count(MID)) {
618     Result = NumberedMetadata[MID];
619     return false;
620   }
621 
622   // Otherwise, create MDNode forward reference.
623   auto &FwdRef = ForwardRefMDNodes[MID];
624   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
625 
626   Result = FwdRef.first.get();
627   NumberedMetadata[MID].reset(Result);
628   return false;
629 }
630 
631 /// ParseNamedMetadata:
632 ///   !foo = !{ !1, !2 }
633 bool LLParser::ParseNamedMetadata() {
634   assert(Lex.getKind() == lltok::MetadataVar);
635   std::string Name = Lex.getStrVal();
636   Lex.Lex();
637 
638   if (ParseToken(lltok::equal, "expected '=' here") ||
639       ParseToken(lltok::exclaim, "Expected '!' here") ||
640       ParseToken(lltok::lbrace, "Expected '{' here"))
641     return true;
642 
643   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
644   if (Lex.getKind() != lltok::rbrace)
645     do {
646       if (ParseToken(lltok::exclaim, "Expected '!' here"))
647         return true;
648 
649       MDNode *N = nullptr;
650       if (ParseMDNodeID(N)) return true;
651       NMD->addOperand(N);
652     } while (EatIfPresent(lltok::comma));
653 
654   return ParseToken(lltok::rbrace, "expected end of metadata node");
655 }
656 
657 /// ParseStandaloneMetadata:
658 ///   !42 = !{...}
659 bool LLParser::ParseStandaloneMetadata() {
660   assert(Lex.getKind() == lltok::exclaim);
661   Lex.Lex();
662   unsigned MetadataID = 0;
663 
664   MDNode *Init;
665   if (ParseUInt32(MetadataID) ||
666       ParseToken(lltok::equal, "expected '=' here"))
667     return true;
668 
669   // Detect common error, from old metadata syntax.
670   if (Lex.getKind() == lltok::Type)
671     return TokError("unexpected type in metadata definition");
672 
673   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
674   if (Lex.getKind() == lltok::MetadataVar) {
675     if (ParseSpecializedMDNode(Init, IsDistinct))
676       return true;
677   } else if (ParseToken(lltok::exclaim, "Expected '!' here") ||
678              ParseMDTuple(Init, IsDistinct))
679     return true;
680 
681   // See if this was forward referenced, if so, handle it.
682   auto FI = ForwardRefMDNodes.find(MetadataID);
683   if (FI != ForwardRefMDNodes.end()) {
684     FI->second.first->replaceAllUsesWith(Init);
685     ForwardRefMDNodes.erase(FI);
686 
687     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
688   } else {
689     if (NumberedMetadata.count(MetadataID))
690       return TokError("Metadata id is already used");
691     NumberedMetadata[MetadataID].reset(Init);
692   }
693 
694   return false;
695 }
696 
697 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
698   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
699          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
700 }
701 
702 /// parseIndirectSymbol:
703 ///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility
704 ///                     OptionalDLLStorageClass OptionalThreadLocal
705 ///                     OptionalUnnamedAddr 'alias|ifunc' IndirectSymbol
706 ///
707 /// IndirectSymbol
708 ///   ::= TypeAndValue
709 ///
710 /// Everything through OptionalUnnamedAddr has already been parsed.
711 ///
712 bool LLParser::parseIndirectSymbol(
713     const std::string &Name, LocTy NameLoc, unsigned L, unsigned Visibility,
714     unsigned DLLStorageClass, GlobalVariable::ThreadLocalMode TLM,
715     GlobalVariable::UnnamedAddr UnnamedAddr) {
716   bool IsAlias;
717   if (Lex.getKind() == lltok::kw_alias)
718     IsAlias = true;
719   else if (Lex.getKind() == lltok::kw_ifunc)
720     IsAlias = false;
721   else
722     llvm_unreachable("Not an alias or ifunc!");
723   Lex.Lex();
724 
725   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
726 
727   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
728     return Error(NameLoc, "invalid linkage type for alias");
729 
730   if (!isValidVisibilityForLinkage(Visibility, L))
731     return Error(NameLoc,
732                  "symbol with local linkage must have default visibility");
733 
734   Type *Ty;
735   LocTy ExplicitTypeLoc = Lex.getLoc();
736   if (ParseType(Ty) ||
737       ParseToken(lltok::comma, "expected comma after alias or ifunc's type"))
738     return true;
739 
740   Constant *Aliasee;
741   LocTy AliaseeLoc = Lex.getLoc();
742   if (Lex.getKind() != lltok::kw_bitcast &&
743       Lex.getKind() != lltok::kw_getelementptr &&
744       Lex.getKind() != lltok::kw_addrspacecast &&
745       Lex.getKind() != lltok::kw_inttoptr) {
746     if (ParseGlobalTypeAndValue(Aliasee))
747       return true;
748   } else {
749     // The bitcast dest type is not present, it is implied by the dest type.
750     ValID ID;
751     if (ParseValID(ID))
752       return true;
753     if (ID.Kind != ValID::t_Constant)
754       return Error(AliaseeLoc, "invalid aliasee");
755     Aliasee = ID.ConstantVal;
756   }
757 
758   Type *AliaseeType = Aliasee->getType();
759   auto *PTy = dyn_cast<PointerType>(AliaseeType);
760   if (!PTy)
761     return Error(AliaseeLoc, "An alias or ifunc must have pointer type");
762   unsigned AddrSpace = PTy->getAddressSpace();
763 
764   if (IsAlias && Ty != PTy->getElementType())
765     return Error(
766         ExplicitTypeLoc,
767         "explicit pointee type doesn't match operand's pointee type");
768 
769   if (!IsAlias && !PTy->getElementType()->isFunctionTy())
770     return Error(
771         ExplicitTypeLoc,
772         "explicit pointee type should be a function type");
773 
774   GlobalValue *GVal = nullptr;
775 
776   // See if the alias was forward referenced, if so, prepare to replace the
777   // forward reference.
778   if (!Name.empty()) {
779     GVal = M->getNamedValue(Name);
780     if (GVal) {
781       if (!ForwardRefVals.erase(Name))
782         return Error(NameLoc, "redefinition of global '@" + Name + "'");
783     }
784   } else {
785     auto I = ForwardRefValIDs.find(NumberedVals.size());
786     if (I != ForwardRefValIDs.end()) {
787       GVal = I->second.first;
788       ForwardRefValIDs.erase(I);
789     }
790   }
791 
792   // Okay, create the alias but do not insert it into the module yet.
793   std::unique_ptr<GlobalIndirectSymbol> GA;
794   if (IsAlias)
795     GA.reset(GlobalAlias::create(Ty, AddrSpace,
796                                  (GlobalValue::LinkageTypes)Linkage, Name,
797                                  Aliasee, /*Parent*/ nullptr));
798   else
799     GA.reset(GlobalIFunc::create(Ty, AddrSpace,
800                                  (GlobalValue::LinkageTypes)Linkage, Name,
801                                  Aliasee, /*Parent*/ nullptr));
802   GA->setThreadLocalMode(TLM);
803   GA->setVisibility((GlobalValue::VisibilityTypes)Visibility);
804   GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
805   GA->setUnnamedAddr(UnnamedAddr);
806 
807   if (Name.empty())
808     NumberedVals.push_back(GA.get());
809 
810   if (GVal) {
811     // Verify that types agree.
812     if (GVal->getType() != GA->getType())
813       return Error(
814           ExplicitTypeLoc,
815           "forward reference and definition of alias have different types");
816 
817     // If they agree, just RAUW the old value with the alias and remove the
818     // forward ref info.
819     GVal->replaceAllUsesWith(GA.get());
820     GVal->eraseFromParent();
821   }
822 
823   // Insert into the module, we know its name won't collide now.
824   if (IsAlias)
825     M->getAliasList().push_back(cast<GlobalAlias>(GA.get()));
826   else
827     M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get()));
828   assert(GA->getName() == Name && "Should not be a name conflict!");
829 
830   // The module owns this now
831   GA.release();
832 
833   return false;
834 }
835 
836 /// ParseGlobal
837 ///   ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalDLLStorageClass
838 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
839 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
840 ///   ::= OptionalLinkage OptionalVisibility OptionalDLLStorageClass
841 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
842 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
843 ///
844 /// Everything up to and including OptionalUnnamedAddr has been parsed
845 /// already.
846 ///
847 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc,
848                            unsigned Linkage, bool HasLinkage,
849                            unsigned Visibility, unsigned DLLStorageClass,
850                            GlobalVariable::ThreadLocalMode TLM,
851                            GlobalVariable::UnnamedAddr UnnamedAddr) {
852   if (!isValidVisibilityForLinkage(Visibility, Linkage))
853     return Error(NameLoc,
854                  "symbol with local linkage must have default visibility");
855 
856   unsigned AddrSpace;
857   bool IsConstant, IsExternallyInitialized;
858   LocTy IsExternallyInitializedLoc;
859   LocTy TyLoc;
860 
861   Type *Ty = nullptr;
862   if (ParseOptionalAddrSpace(AddrSpace) ||
863       ParseOptionalToken(lltok::kw_externally_initialized,
864                          IsExternallyInitialized,
865                          &IsExternallyInitializedLoc) ||
866       ParseGlobalType(IsConstant) ||
867       ParseType(Ty, TyLoc))
868     return true;
869 
870   // If the linkage is specified and is external, then no initializer is
871   // present.
872   Constant *Init = nullptr;
873   if (!HasLinkage ||
874       !GlobalValue::isValidDeclarationLinkage(
875           (GlobalValue::LinkageTypes)Linkage)) {
876     if (ParseGlobalValue(Ty, Init))
877       return true;
878   }
879 
880   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
881     return Error(TyLoc, "invalid type for global variable");
882 
883   GlobalValue *GVal = nullptr;
884 
885   // See if the global was forward referenced, if so, use the global.
886   if (!Name.empty()) {
887     GVal = M->getNamedValue(Name);
888     if (GVal) {
889       if (!ForwardRefVals.erase(Name))
890         return Error(NameLoc, "redefinition of global '@" + Name + "'");
891     }
892   } else {
893     auto I = ForwardRefValIDs.find(NumberedVals.size());
894     if (I != ForwardRefValIDs.end()) {
895       GVal = I->second.first;
896       ForwardRefValIDs.erase(I);
897     }
898   }
899 
900   GlobalVariable *GV;
901   if (!GVal) {
902     GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr,
903                             Name, nullptr, GlobalVariable::NotThreadLocal,
904                             AddrSpace);
905   } else {
906     if (GVal->getValueType() != Ty)
907       return Error(TyLoc,
908             "forward reference and definition of global have different types");
909 
910     GV = cast<GlobalVariable>(GVal);
911 
912     // Move the forward-reference to the correct spot in the module.
913     M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV);
914   }
915 
916   if (Name.empty())
917     NumberedVals.push_back(GV);
918 
919   // Set the parsed properties on the global.
920   if (Init)
921     GV->setInitializer(Init);
922   GV->setConstant(IsConstant);
923   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
924   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
925   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
926   GV->setExternallyInitialized(IsExternallyInitialized);
927   GV->setThreadLocalMode(TLM);
928   GV->setUnnamedAddr(UnnamedAddr);
929 
930   // Parse attributes on the global.
931   while (Lex.getKind() == lltok::comma) {
932     Lex.Lex();
933 
934     if (Lex.getKind() == lltok::kw_section) {
935       Lex.Lex();
936       GV->setSection(Lex.getStrVal());
937       if (ParseToken(lltok::StringConstant, "expected global section string"))
938         return true;
939     } else if (Lex.getKind() == lltok::kw_align) {
940       unsigned Alignment;
941       if (ParseOptionalAlignment(Alignment)) return true;
942       GV->setAlignment(Alignment);
943     } else if (Lex.getKind() == lltok::MetadataVar) {
944       if (ParseGlobalObjectMetadataAttachment(*GV))
945         return true;
946     } else {
947       Comdat *C;
948       if (parseOptionalComdat(Name, C))
949         return true;
950       if (C)
951         GV->setComdat(C);
952       else
953         return TokError("unknown global variable property!");
954     }
955   }
956 
957   AttrBuilder Attrs;
958   LocTy BuiltinLoc;
959   std::vector<unsigned> FwdRefAttrGrps;
960   if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
961     return true;
962   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
963     GV->setAttributes(AttributeSet::get(Context, Attrs));
964     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
965   }
966 
967   return false;
968 }
969 
970 /// ParseUnnamedAttrGrp
971 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
972 bool LLParser::ParseUnnamedAttrGrp() {
973   assert(Lex.getKind() == lltok::kw_attributes);
974   LocTy AttrGrpLoc = Lex.getLoc();
975   Lex.Lex();
976 
977   if (Lex.getKind() != lltok::AttrGrpID)
978     return TokError("expected attribute group id");
979 
980   unsigned VarID = Lex.getUIntVal();
981   std::vector<unsigned> unused;
982   LocTy BuiltinLoc;
983   Lex.Lex();
984 
985   if (ParseToken(lltok::equal, "expected '=' here") ||
986       ParseToken(lltok::lbrace, "expected '{' here") ||
987       ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true,
988                                  BuiltinLoc) ||
989       ParseToken(lltok::rbrace, "expected end of attribute group"))
990     return true;
991 
992   if (!NumberedAttrBuilders[VarID].hasAttributes())
993     return Error(AttrGrpLoc, "attribute group has no attributes");
994 
995   return false;
996 }
997 
998 /// ParseFnAttributeValuePairs
999 ///   ::= <attr> | <attr> '=' <value>
1000 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B,
1001                                           std::vector<unsigned> &FwdRefAttrGrps,
1002                                           bool inAttrGrp, LocTy &BuiltinLoc) {
1003   bool HaveError = false;
1004 
1005   B.clear();
1006 
1007   while (true) {
1008     lltok::Kind Token = Lex.getKind();
1009     if (Token == lltok::kw_builtin)
1010       BuiltinLoc = Lex.getLoc();
1011     switch (Token) {
1012     default:
1013       if (!inAttrGrp) return HaveError;
1014       return Error(Lex.getLoc(), "unterminated attribute group");
1015     case lltok::rbrace:
1016       // Finished.
1017       return false;
1018 
1019     case lltok::AttrGrpID: {
1020       // Allow a function to reference an attribute group:
1021       //
1022       //   define void @foo() #1 { ... }
1023       if (inAttrGrp)
1024         HaveError |=
1025           Error(Lex.getLoc(),
1026               "cannot have an attribute group reference in an attribute group");
1027 
1028       unsigned AttrGrpNum = Lex.getUIntVal();
1029       if (inAttrGrp) break;
1030 
1031       // Save the reference to the attribute group. We'll fill it in later.
1032       FwdRefAttrGrps.push_back(AttrGrpNum);
1033       break;
1034     }
1035     // Target-dependent attributes:
1036     case lltok::StringConstant: {
1037       if (ParseStringAttribute(B))
1038         return true;
1039       continue;
1040     }
1041 
1042     // Target-independent attributes:
1043     case lltok::kw_align: {
1044       // As a hack, we allow function alignment to be initially parsed as an
1045       // attribute on a function declaration/definition or added to an attribute
1046       // group and later moved to the alignment field.
1047       unsigned Alignment;
1048       if (inAttrGrp) {
1049         Lex.Lex();
1050         if (ParseToken(lltok::equal, "expected '=' here") ||
1051             ParseUInt32(Alignment))
1052           return true;
1053       } else {
1054         if (ParseOptionalAlignment(Alignment))
1055           return true;
1056       }
1057       B.addAlignmentAttr(Alignment);
1058       continue;
1059     }
1060     case lltok::kw_alignstack: {
1061       unsigned Alignment;
1062       if (inAttrGrp) {
1063         Lex.Lex();
1064         if (ParseToken(lltok::equal, "expected '=' here") ||
1065             ParseUInt32(Alignment))
1066           return true;
1067       } else {
1068         if (ParseOptionalStackAlignment(Alignment))
1069           return true;
1070       }
1071       B.addStackAlignmentAttr(Alignment);
1072       continue;
1073     }
1074     case lltok::kw_allocsize: {
1075       unsigned ElemSizeArg;
1076       Optional<unsigned> NumElemsArg;
1077       // inAttrGrp doesn't matter; we only support allocsize(a[, b])
1078       if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1079         return true;
1080       B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1081       continue;
1082     }
1083     case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break;
1084     case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break;
1085     case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break;
1086     case lltok::kw_cold: B.addAttribute(Attribute::Cold); break;
1087     case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break;
1088     case lltok::kw_inaccessiblememonly:
1089       B.addAttribute(Attribute::InaccessibleMemOnly); break;
1090     case lltok::kw_inaccessiblemem_or_argmemonly:
1091       B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break;
1092     case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break;
1093     case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break;
1094     case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break;
1095     case lltok::kw_naked: B.addAttribute(Attribute::Naked); break;
1096     case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break;
1097     case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break;
1098     case lltok::kw_noimplicitfloat:
1099       B.addAttribute(Attribute::NoImplicitFloat); break;
1100     case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break;
1101     case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break;
1102     case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break;
1103     case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break;
1104     case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break;
1105     case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break;
1106     case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break;
1107     case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break;
1108     case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break;
1109     case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break;
1110     case lltok::kw_returns_twice:
1111       B.addAttribute(Attribute::ReturnsTwice); break;
1112     case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break;
1113     case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break;
1114     case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break;
1115     case lltok::kw_sspstrong:
1116       B.addAttribute(Attribute::StackProtectStrong); break;
1117     case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break;
1118     case lltok::kw_sanitize_address:
1119       B.addAttribute(Attribute::SanitizeAddress); break;
1120     case lltok::kw_sanitize_thread:
1121       B.addAttribute(Attribute::SanitizeThread); break;
1122     case lltok::kw_sanitize_memory:
1123       B.addAttribute(Attribute::SanitizeMemory); break;
1124     case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break;
1125     case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break;
1126 
1127     // Error handling.
1128     case lltok::kw_inreg:
1129     case lltok::kw_signext:
1130     case lltok::kw_zeroext:
1131       HaveError |=
1132         Error(Lex.getLoc(),
1133               "invalid use of attribute on a function");
1134       break;
1135     case lltok::kw_byval:
1136     case lltok::kw_dereferenceable:
1137     case lltok::kw_dereferenceable_or_null:
1138     case lltok::kw_inalloca:
1139     case lltok::kw_nest:
1140     case lltok::kw_noalias:
1141     case lltok::kw_nocapture:
1142     case lltok::kw_nonnull:
1143     case lltok::kw_returned:
1144     case lltok::kw_sret:
1145     case lltok::kw_swifterror:
1146     case lltok::kw_swiftself:
1147       HaveError |=
1148         Error(Lex.getLoc(),
1149               "invalid use of parameter-only attribute on a function");
1150       break;
1151     }
1152 
1153     Lex.Lex();
1154   }
1155 }
1156 
1157 //===----------------------------------------------------------------------===//
1158 // GlobalValue Reference/Resolution Routines.
1159 //===----------------------------------------------------------------------===//
1160 
1161 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy,
1162                                               const std::string &Name) {
1163   if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType()))
1164     return Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M);
1165   else
1166     return new GlobalVariable(*M, PTy->getElementType(), false,
1167                               GlobalValue::ExternalWeakLinkage, nullptr, Name,
1168                               nullptr, GlobalVariable::NotThreadLocal,
1169                               PTy->getAddressSpace());
1170 }
1171 
1172 /// GetGlobalVal - Get a value with the specified name or ID, creating a
1173 /// forward reference record if needed.  This can return null if the value
1174 /// exists but does not have the right type.
1175 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty,
1176                                     LocTy Loc) {
1177   PointerType *PTy = dyn_cast<PointerType>(Ty);
1178   if (!PTy) {
1179     Error(Loc, "global variable reference must have pointer type");
1180     return nullptr;
1181   }
1182 
1183   // Look this name up in the normal function symbol table.
1184   GlobalValue *Val =
1185     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1186 
1187   // If this is a forward reference for the value, see if we already created a
1188   // forward ref record.
1189   if (!Val) {
1190     auto I = ForwardRefVals.find(Name);
1191     if (I != ForwardRefVals.end())
1192       Val = I->second.first;
1193   }
1194 
1195   // If we have the value in the symbol table or fwd-ref table, return it.
1196   if (Val) {
1197     if (Val->getType() == Ty) return Val;
1198     Error(Loc, "'@" + Name + "' defined with type '" +
1199           getTypeString(Val->getType()) + "'");
1200     return nullptr;
1201   }
1202 
1203   // Otherwise, create a new forward reference for this value and remember it.
1204   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name);
1205   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1206   return FwdVal;
1207 }
1208 
1209 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1210   PointerType *PTy = dyn_cast<PointerType>(Ty);
1211   if (!PTy) {
1212     Error(Loc, "global variable reference must have pointer type");
1213     return nullptr;
1214   }
1215 
1216   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1217 
1218   // If this is a forward reference for the value, see if we already created a
1219   // forward ref record.
1220   if (!Val) {
1221     auto I = ForwardRefValIDs.find(ID);
1222     if (I != ForwardRefValIDs.end())
1223       Val = I->second.first;
1224   }
1225 
1226   // If we have the value in the symbol table or fwd-ref table, return it.
1227   if (Val) {
1228     if (Val->getType() == Ty) return Val;
1229     Error(Loc, "'@" + Twine(ID) + "' defined with type '" +
1230           getTypeString(Val->getType()) + "'");
1231     return nullptr;
1232   }
1233 
1234   // Otherwise, create a new forward reference for this value and remember it.
1235   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, "");
1236   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1237   return FwdVal;
1238 }
1239 
1240 //===----------------------------------------------------------------------===//
1241 // Comdat Reference/Resolution Routines.
1242 //===----------------------------------------------------------------------===//
1243 
1244 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1245   // Look this name up in the comdat symbol table.
1246   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1247   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1248   if (I != ComdatSymTab.end())
1249     return &I->second;
1250 
1251   // Otherwise, create a new forward reference for this value and remember it.
1252   Comdat *C = M->getOrInsertComdat(Name);
1253   ForwardRefComdats[Name] = Loc;
1254   return C;
1255 }
1256 
1257 //===----------------------------------------------------------------------===//
1258 // Helper Routines.
1259 //===----------------------------------------------------------------------===//
1260 
1261 /// ParseToken - If the current token has the specified kind, eat it and return
1262 /// success.  Otherwise, emit the specified error and return failure.
1263 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) {
1264   if (Lex.getKind() != T)
1265     return TokError(ErrMsg);
1266   Lex.Lex();
1267   return false;
1268 }
1269 
1270 /// ParseStringConstant
1271 ///   ::= StringConstant
1272 bool LLParser::ParseStringConstant(std::string &Result) {
1273   if (Lex.getKind() != lltok::StringConstant)
1274     return TokError("expected string constant");
1275   Result = Lex.getStrVal();
1276   Lex.Lex();
1277   return false;
1278 }
1279 
1280 /// ParseUInt32
1281 ///   ::= uint32
1282 bool LLParser::ParseUInt32(uint32_t &Val) {
1283   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1284     return TokError("expected integer");
1285   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1286   if (Val64 != unsigned(Val64))
1287     return TokError("expected 32-bit integer (too large)");
1288   Val = Val64;
1289   Lex.Lex();
1290   return false;
1291 }
1292 
1293 /// ParseUInt64
1294 ///   ::= uint64
1295 bool LLParser::ParseUInt64(uint64_t &Val) {
1296   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1297     return TokError("expected integer");
1298   Val = Lex.getAPSIntVal().getLimitedValue();
1299   Lex.Lex();
1300   return false;
1301 }
1302 
1303 /// ParseTLSModel
1304 ///   := 'localdynamic'
1305 ///   := 'initialexec'
1306 ///   := 'localexec'
1307 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1308   switch (Lex.getKind()) {
1309     default:
1310       return TokError("expected localdynamic, initialexec or localexec");
1311     case lltok::kw_localdynamic:
1312       TLM = GlobalVariable::LocalDynamicTLSModel;
1313       break;
1314     case lltok::kw_initialexec:
1315       TLM = GlobalVariable::InitialExecTLSModel;
1316       break;
1317     case lltok::kw_localexec:
1318       TLM = GlobalVariable::LocalExecTLSModel;
1319       break;
1320   }
1321 
1322   Lex.Lex();
1323   return false;
1324 }
1325 
1326 /// ParseOptionalThreadLocal
1327 ///   := /*empty*/
1328 ///   := 'thread_local'
1329 ///   := 'thread_local' '(' tlsmodel ')'
1330 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1331   TLM = GlobalVariable::NotThreadLocal;
1332   if (!EatIfPresent(lltok::kw_thread_local))
1333     return false;
1334 
1335   TLM = GlobalVariable::GeneralDynamicTLSModel;
1336   if (Lex.getKind() == lltok::lparen) {
1337     Lex.Lex();
1338     return ParseTLSModel(TLM) ||
1339       ParseToken(lltok::rparen, "expected ')' after thread local model");
1340   }
1341   return false;
1342 }
1343 
1344 /// ParseOptionalAddrSpace
1345 ///   := /*empty*/
1346 ///   := 'addrspace' '(' uint32 ')'
1347 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) {
1348   AddrSpace = 0;
1349   if (!EatIfPresent(lltok::kw_addrspace))
1350     return false;
1351   return ParseToken(lltok::lparen, "expected '(' in address space") ||
1352          ParseUInt32(AddrSpace) ||
1353          ParseToken(lltok::rparen, "expected ')' in address space");
1354 }
1355 
1356 /// ParseStringAttribute
1357 ///   := StringConstant
1358 ///   := StringConstant '=' StringConstant
1359 bool LLParser::ParseStringAttribute(AttrBuilder &B) {
1360   std::string Attr = Lex.getStrVal();
1361   Lex.Lex();
1362   std::string Val;
1363   if (EatIfPresent(lltok::equal) && ParseStringConstant(Val))
1364     return true;
1365   B.addAttribute(Attr, Val);
1366   return false;
1367 }
1368 
1369 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes.
1370 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) {
1371   bool HaveError = false;
1372 
1373   B.clear();
1374 
1375   while (true) {
1376     lltok::Kind Token = Lex.getKind();
1377     switch (Token) {
1378     default:  // End of attributes.
1379       return HaveError;
1380     case lltok::StringConstant: {
1381       if (ParseStringAttribute(B))
1382         return true;
1383       continue;
1384     }
1385     case lltok::kw_align: {
1386       unsigned Alignment;
1387       if (ParseOptionalAlignment(Alignment))
1388         return true;
1389       B.addAlignmentAttr(Alignment);
1390       continue;
1391     }
1392     case lltok::kw_byval:           B.addAttribute(Attribute::ByVal); break;
1393     case lltok::kw_dereferenceable: {
1394       uint64_t Bytes;
1395       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1396         return true;
1397       B.addDereferenceableAttr(Bytes);
1398       continue;
1399     }
1400     case lltok::kw_dereferenceable_or_null: {
1401       uint64_t Bytes;
1402       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1403         return true;
1404       B.addDereferenceableOrNullAttr(Bytes);
1405       continue;
1406     }
1407     case lltok::kw_inalloca:        B.addAttribute(Attribute::InAlloca); break;
1408     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1409     case lltok::kw_nest:            B.addAttribute(Attribute::Nest); break;
1410     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1411     case lltok::kw_nocapture:       B.addAttribute(Attribute::NoCapture); break;
1412     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1413     case lltok::kw_readnone:        B.addAttribute(Attribute::ReadNone); break;
1414     case lltok::kw_readonly:        B.addAttribute(Attribute::ReadOnly); break;
1415     case lltok::kw_returned:        B.addAttribute(Attribute::Returned); break;
1416     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1417     case lltok::kw_sret:            B.addAttribute(Attribute::StructRet); break;
1418     case lltok::kw_swifterror:      B.addAttribute(Attribute::SwiftError); break;
1419     case lltok::kw_swiftself:       B.addAttribute(Attribute::SwiftSelf); break;
1420     case lltok::kw_writeonly:       B.addAttribute(Attribute::WriteOnly); break;
1421     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1422 
1423     case lltok::kw_alignstack:
1424     case lltok::kw_alwaysinline:
1425     case lltok::kw_argmemonly:
1426     case lltok::kw_builtin:
1427     case lltok::kw_inlinehint:
1428     case lltok::kw_jumptable:
1429     case lltok::kw_minsize:
1430     case lltok::kw_naked:
1431     case lltok::kw_nobuiltin:
1432     case lltok::kw_noduplicate:
1433     case lltok::kw_noimplicitfloat:
1434     case lltok::kw_noinline:
1435     case lltok::kw_nonlazybind:
1436     case lltok::kw_noredzone:
1437     case lltok::kw_noreturn:
1438     case lltok::kw_nounwind:
1439     case lltok::kw_optnone:
1440     case lltok::kw_optsize:
1441     case lltok::kw_returns_twice:
1442     case lltok::kw_sanitize_address:
1443     case lltok::kw_sanitize_memory:
1444     case lltok::kw_sanitize_thread:
1445     case lltok::kw_ssp:
1446     case lltok::kw_sspreq:
1447     case lltok::kw_sspstrong:
1448     case lltok::kw_safestack:
1449     case lltok::kw_uwtable:
1450       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1451       break;
1452     }
1453 
1454     Lex.Lex();
1455   }
1456 }
1457 
1458 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes.
1459 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) {
1460   bool HaveError = false;
1461 
1462   B.clear();
1463 
1464   while (true) {
1465     lltok::Kind Token = Lex.getKind();
1466     switch (Token) {
1467     default:  // End of attributes.
1468       return HaveError;
1469     case lltok::StringConstant: {
1470       if (ParseStringAttribute(B))
1471         return true;
1472       continue;
1473     }
1474     case lltok::kw_dereferenceable: {
1475       uint64_t Bytes;
1476       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1477         return true;
1478       B.addDereferenceableAttr(Bytes);
1479       continue;
1480     }
1481     case lltok::kw_dereferenceable_or_null: {
1482       uint64_t Bytes;
1483       if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1484         return true;
1485       B.addDereferenceableOrNullAttr(Bytes);
1486       continue;
1487     }
1488     case lltok::kw_align: {
1489       unsigned Alignment;
1490       if (ParseOptionalAlignment(Alignment))
1491         return true;
1492       B.addAlignmentAttr(Alignment);
1493       continue;
1494     }
1495     case lltok::kw_inreg:           B.addAttribute(Attribute::InReg); break;
1496     case lltok::kw_noalias:         B.addAttribute(Attribute::NoAlias); break;
1497     case lltok::kw_nonnull:         B.addAttribute(Attribute::NonNull); break;
1498     case lltok::kw_signext:         B.addAttribute(Attribute::SExt); break;
1499     case lltok::kw_zeroext:         B.addAttribute(Attribute::ZExt); break;
1500 
1501     // Error handling.
1502     case lltok::kw_byval:
1503     case lltok::kw_inalloca:
1504     case lltok::kw_nest:
1505     case lltok::kw_nocapture:
1506     case lltok::kw_returned:
1507     case lltok::kw_sret:
1508     case lltok::kw_swifterror:
1509     case lltok::kw_swiftself:
1510       HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute");
1511       break;
1512 
1513     case lltok::kw_alignstack:
1514     case lltok::kw_alwaysinline:
1515     case lltok::kw_argmemonly:
1516     case lltok::kw_builtin:
1517     case lltok::kw_cold:
1518     case lltok::kw_inlinehint:
1519     case lltok::kw_jumptable:
1520     case lltok::kw_minsize:
1521     case lltok::kw_naked:
1522     case lltok::kw_nobuiltin:
1523     case lltok::kw_noduplicate:
1524     case lltok::kw_noimplicitfloat:
1525     case lltok::kw_noinline:
1526     case lltok::kw_nonlazybind:
1527     case lltok::kw_noredzone:
1528     case lltok::kw_noreturn:
1529     case lltok::kw_nounwind:
1530     case lltok::kw_optnone:
1531     case lltok::kw_optsize:
1532     case lltok::kw_returns_twice:
1533     case lltok::kw_sanitize_address:
1534     case lltok::kw_sanitize_memory:
1535     case lltok::kw_sanitize_thread:
1536     case lltok::kw_ssp:
1537     case lltok::kw_sspreq:
1538     case lltok::kw_sspstrong:
1539     case lltok::kw_safestack:
1540     case lltok::kw_uwtable:
1541       HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute");
1542       break;
1543 
1544     case lltok::kw_readnone:
1545     case lltok::kw_readonly:
1546       HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type");
1547     }
1548 
1549     Lex.Lex();
1550   }
1551 }
1552 
1553 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1554   HasLinkage = true;
1555   switch (Kind) {
1556   default:
1557     HasLinkage = false;
1558     return GlobalValue::ExternalLinkage;
1559   case lltok::kw_private:
1560     return GlobalValue::PrivateLinkage;
1561   case lltok::kw_internal:
1562     return GlobalValue::InternalLinkage;
1563   case lltok::kw_weak:
1564     return GlobalValue::WeakAnyLinkage;
1565   case lltok::kw_weak_odr:
1566     return GlobalValue::WeakODRLinkage;
1567   case lltok::kw_linkonce:
1568     return GlobalValue::LinkOnceAnyLinkage;
1569   case lltok::kw_linkonce_odr:
1570     return GlobalValue::LinkOnceODRLinkage;
1571   case lltok::kw_available_externally:
1572     return GlobalValue::AvailableExternallyLinkage;
1573   case lltok::kw_appending:
1574     return GlobalValue::AppendingLinkage;
1575   case lltok::kw_common:
1576     return GlobalValue::CommonLinkage;
1577   case lltok::kw_extern_weak:
1578     return GlobalValue::ExternalWeakLinkage;
1579   case lltok::kw_external:
1580     return GlobalValue::ExternalLinkage;
1581   }
1582 }
1583 
1584 /// ParseOptionalLinkage
1585 ///   ::= /*empty*/
1586 ///   ::= 'private'
1587 ///   ::= 'internal'
1588 ///   ::= 'weak'
1589 ///   ::= 'weak_odr'
1590 ///   ::= 'linkonce'
1591 ///   ::= 'linkonce_odr'
1592 ///   ::= 'available_externally'
1593 ///   ::= 'appending'
1594 ///   ::= 'common'
1595 ///   ::= 'extern_weak'
1596 ///   ::= 'external'
1597 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1598                                     unsigned &Visibility,
1599                                     unsigned &DLLStorageClass) {
1600   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1601   if (HasLinkage)
1602     Lex.Lex();
1603   ParseOptionalVisibility(Visibility);
1604   ParseOptionalDLLStorageClass(DLLStorageClass);
1605   return false;
1606 }
1607 
1608 /// ParseOptionalVisibility
1609 ///   ::= /*empty*/
1610 ///   ::= 'default'
1611 ///   ::= 'hidden'
1612 ///   ::= 'protected'
1613 ///
1614 void LLParser::ParseOptionalVisibility(unsigned &Res) {
1615   switch (Lex.getKind()) {
1616   default:
1617     Res = GlobalValue::DefaultVisibility;
1618     return;
1619   case lltok::kw_default:
1620     Res = GlobalValue::DefaultVisibility;
1621     break;
1622   case lltok::kw_hidden:
1623     Res = GlobalValue::HiddenVisibility;
1624     break;
1625   case lltok::kw_protected:
1626     Res = GlobalValue::ProtectedVisibility;
1627     break;
1628   }
1629   Lex.Lex();
1630 }
1631 
1632 /// ParseOptionalDLLStorageClass
1633 ///   ::= /*empty*/
1634 ///   ::= 'dllimport'
1635 ///   ::= 'dllexport'
1636 ///
1637 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) {
1638   switch (Lex.getKind()) {
1639   default:
1640     Res = GlobalValue::DefaultStorageClass;
1641     return;
1642   case lltok::kw_dllimport:
1643     Res = GlobalValue::DLLImportStorageClass;
1644     break;
1645   case lltok::kw_dllexport:
1646     Res = GlobalValue::DLLExportStorageClass;
1647     break;
1648   }
1649   Lex.Lex();
1650 }
1651 
1652 /// ParseOptionalCallingConv
1653 ///   ::= /*empty*/
1654 ///   ::= 'ccc'
1655 ///   ::= 'fastcc'
1656 ///   ::= 'intel_ocl_bicc'
1657 ///   ::= 'coldcc'
1658 ///   ::= 'x86_stdcallcc'
1659 ///   ::= 'x86_fastcallcc'
1660 ///   ::= 'x86_thiscallcc'
1661 ///   ::= 'x86_vectorcallcc'
1662 ///   ::= 'arm_apcscc'
1663 ///   ::= 'arm_aapcscc'
1664 ///   ::= 'arm_aapcs_vfpcc'
1665 ///   ::= 'msp430_intrcc'
1666 ///   ::= 'avr_intrcc'
1667 ///   ::= 'avr_signalcc'
1668 ///   ::= 'ptx_kernel'
1669 ///   ::= 'ptx_device'
1670 ///   ::= 'spir_func'
1671 ///   ::= 'spir_kernel'
1672 ///   ::= 'x86_64_sysvcc'
1673 ///   ::= 'x86_64_win64cc'
1674 ///   ::= 'webkit_jscc'
1675 ///   ::= 'anyregcc'
1676 ///   ::= 'preserve_mostcc'
1677 ///   ::= 'preserve_allcc'
1678 ///   ::= 'ghccc'
1679 ///   ::= 'swiftcc'
1680 ///   ::= 'x86_intrcc'
1681 ///   ::= 'hhvmcc'
1682 ///   ::= 'hhvm_ccc'
1683 ///   ::= 'cxx_fast_tlscc'
1684 ///   ::= 'amdgpu_vs'
1685 ///   ::= 'amdgpu_hs'
1686 ///   ::= 'amdgpu_gs'
1687 ///   ::= 'amdgpu_ps'
1688 ///   ::= 'amdgpu_cs'
1689 ///   ::= 'amdgpu_kernel'
1690 ///   ::= 'cc' UINT
1691 ///
1692 bool LLParser::ParseOptionalCallingConv(unsigned &CC) {
1693   switch (Lex.getKind()) {
1694   default:                       CC = CallingConv::C; return false;
1695   case lltok::kw_ccc:            CC = CallingConv::C; break;
1696   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1697   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1698   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1699   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1700   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
1701   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1702   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1703   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1704   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1705   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1706   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1707   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
1708   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
1709   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1710   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1711   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1712   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1713   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1714   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1715   case lltok::kw_x86_64_win64cc: CC = CallingConv::X86_64_Win64; break;
1716   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
1717   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
1718   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1719   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1720   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
1721   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
1722   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
1723   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
1724   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
1725   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
1726   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
1727   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
1728   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
1729   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
1730   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
1731   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
1732   case lltok::kw_cc: {
1733       Lex.Lex();
1734       return ParseUInt32(CC);
1735     }
1736   }
1737 
1738   Lex.Lex();
1739   return false;
1740 }
1741 
1742 /// ParseMetadataAttachment
1743 ///   ::= !dbg !42
1744 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
1745   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
1746 
1747   std::string Name = Lex.getStrVal();
1748   Kind = M->getMDKindID(Name);
1749   Lex.Lex();
1750 
1751   return ParseMDNode(MD);
1752 }
1753 
1754 /// ParseInstructionMetadata
1755 ///   ::= !dbg !42 (',' !dbg !57)*
1756 bool LLParser::ParseInstructionMetadata(Instruction &Inst) {
1757   do {
1758     if (Lex.getKind() != lltok::MetadataVar)
1759       return TokError("expected metadata after comma");
1760 
1761     unsigned MDK;
1762     MDNode *N;
1763     if (ParseMetadataAttachment(MDK, N))
1764       return true;
1765 
1766     Inst.setMetadata(MDK, N);
1767     if (MDK == LLVMContext::MD_tbaa)
1768       InstsWithTBAATag.push_back(&Inst);
1769 
1770     // If this is the end of the list, we're done.
1771   } while (EatIfPresent(lltok::comma));
1772   return false;
1773 }
1774 
1775 /// ParseGlobalObjectMetadataAttachment
1776 ///   ::= !dbg !57
1777 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) {
1778   unsigned MDK;
1779   MDNode *N;
1780   if (ParseMetadataAttachment(MDK, N))
1781     return true;
1782 
1783   GO.addMetadata(MDK, *N);
1784   return false;
1785 }
1786 
1787 /// ParseOptionalFunctionMetadata
1788 ///   ::= (!dbg !57)*
1789 bool LLParser::ParseOptionalFunctionMetadata(Function &F) {
1790   while (Lex.getKind() == lltok::MetadataVar)
1791     if (ParseGlobalObjectMetadataAttachment(F))
1792       return true;
1793   return false;
1794 }
1795 
1796 /// ParseOptionalAlignment
1797 ///   ::= /* empty */
1798 ///   ::= 'align' 4
1799 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) {
1800   Alignment = 0;
1801   if (!EatIfPresent(lltok::kw_align))
1802     return false;
1803   LocTy AlignLoc = Lex.getLoc();
1804   if (ParseUInt32(Alignment)) return true;
1805   if (!isPowerOf2_32(Alignment))
1806     return Error(AlignLoc, "alignment is not a power of two");
1807   if (Alignment > Value::MaximumAlignment)
1808     return Error(AlignLoc, "huge alignments are not supported yet");
1809   return false;
1810 }
1811 
1812 /// ParseOptionalDerefAttrBytes
1813 ///   ::= /* empty */
1814 ///   ::= AttrKind '(' 4 ')'
1815 ///
1816 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
1817 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind,
1818                                            uint64_t &Bytes) {
1819   assert((AttrKind == lltok::kw_dereferenceable ||
1820           AttrKind == lltok::kw_dereferenceable_or_null) &&
1821          "contract!");
1822 
1823   Bytes = 0;
1824   if (!EatIfPresent(AttrKind))
1825     return false;
1826   LocTy ParenLoc = Lex.getLoc();
1827   if (!EatIfPresent(lltok::lparen))
1828     return Error(ParenLoc, "expected '('");
1829   LocTy DerefLoc = Lex.getLoc();
1830   if (ParseUInt64(Bytes)) return true;
1831   ParenLoc = Lex.getLoc();
1832   if (!EatIfPresent(lltok::rparen))
1833     return Error(ParenLoc, "expected ')'");
1834   if (!Bytes)
1835     return Error(DerefLoc, "dereferenceable bytes must be non-zero");
1836   return false;
1837 }
1838 
1839 /// ParseOptionalCommaAlign
1840 ///   ::=
1841 ///   ::= ',' align 4
1842 ///
1843 /// This returns with AteExtraComma set to true if it ate an excess comma at the
1844 /// end.
1845 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment,
1846                                        bool &AteExtraComma) {
1847   AteExtraComma = false;
1848   while (EatIfPresent(lltok::comma)) {
1849     // Metadata at the end is an early exit.
1850     if (Lex.getKind() == lltok::MetadataVar) {
1851       AteExtraComma = true;
1852       return false;
1853     }
1854 
1855     if (Lex.getKind() != lltok::kw_align)
1856       return Error(Lex.getLoc(), "expected metadata or 'align'");
1857 
1858     if (ParseOptionalAlignment(Alignment)) return true;
1859   }
1860 
1861   return false;
1862 }
1863 
1864 /// ParseOptionalCommaAddrSpace
1865 ///   ::=
1866 ///   ::= ',' addrspace(1)
1867 ///
1868 /// This returns with AteExtraComma set to true if it ate an excess comma at the
1869 /// end.
1870 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace,
1871                                            LocTy &Loc,
1872                                            bool &AteExtraComma) {
1873   AteExtraComma = false;
1874   while (EatIfPresent(lltok::comma)) {
1875     // Metadata at the end is an early exit.
1876     if (Lex.getKind() == lltok::MetadataVar) {
1877       AteExtraComma = true;
1878       return false;
1879     }
1880 
1881     Loc = Lex.getLoc();
1882     if (Lex.getKind() != lltok::kw_addrspace)
1883       return Error(Lex.getLoc(), "expected metadata or 'addrspace'");
1884 
1885     if (ParseOptionalAddrSpace(AddrSpace))
1886       return true;
1887   }
1888 
1889   return false;
1890 }
1891 
1892 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
1893                                        Optional<unsigned> &HowManyArg) {
1894   Lex.Lex();
1895 
1896   auto StartParen = Lex.getLoc();
1897   if (!EatIfPresent(lltok::lparen))
1898     return Error(StartParen, "expected '('");
1899 
1900   if (ParseUInt32(BaseSizeArg))
1901     return true;
1902 
1903   if (EatIfPresent(lltok::comma)) {
1904     auto HowManyAt = Lex.getLoc();
1905     unsigned HowMany;
1906     if (ParseUInt32(HowMany))
1907       return true;
1908     if (HowMany == BaseSizeArg)
1909       return Error(HowManyAt,
1910                    "'allocsize' indices can't refer to the same parameter");
1911     HowManyArg = HowMany;
1912   } else
1913     HowManyArg = None;
1914 
1915   auto EndParen = Lex.getLoc();
1916   if (!EatIfPresent(lltok::rparen))
1917     return Error(EndParen, "expected ')'");
1918   return false;
1919 }
1920 
1921 /// ParseScopeAndOrdering
1922 ///   if isAtomic: ::= 'singlethread'? AtomicOrdering
1923 ///   else: ::=
1924 ///
1925 /// This sets Scope and Ordering to the parsed values.
1926 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope,
1927                                      AtomicOrdering &Ordering) {
1928   if (!isAtomic)
1929     return false;
1930 
1931   Scope = CrossThread;
1932   if (EatIfPresent(lltok::kw_singlethread))
1933     Scope = SingleThread;
1934 
1935   return ParseOrdering(Ordering);
1936 }
1937 
1938 /// ParseOrdering
1939 ///   ::= AtomicOrdering
1940 ///
1941 /// This sets Ordering to the parsed value.
1942 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) {
1943   switch (Lex.getKind()) {
1944   default: return TokError("Expected ordering on atomic instruction");
1945   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
1946   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
1947   // Not specified yet:
1948   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
1949   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
1950   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
1951   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
1952   case lltok::kw_seq_cst:
1953     Ordering = AtomicOrdering::SequentiallyConsistent;
1954     break;
1955   }
1956   Lex.Lex();
1957   return false;
1958 }
1959 
1960 /// ParseOptionalStackAlignment
1961 ///   ::= /* empty */
1962 ///   ::= 'alignstack' '(' 4 ')'
1963 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) {
1964   Alignment = 0;
1965   if (!EatIfPresent(lltok::kw_alignstack))
1966     return false;
1967   LocTy ParenLoc = Lex.getLoc();
1968   if (!EatIfPresent(lltok::lparen))
1969     return Error(ParenLoc, "expected '('");
1970   LocTy AlignLoc = Lex.getLoc();
1971   if (ParseUInt32(Alignment)) return true;
1972   ParenLoc = Lex.getLoc();
1973   if (!EatIfPresent(lltok::rparen))
1974     return Error(ParenLoc, "expected ')'");
1975   if (!isPowerOf2_32(Alignment))
1976     return Error(AlignLoc, "stack alignment is not a power of two");
1977   return false;
1978 }
1979 
1980 /// ParseIndexList - This parses the index list for an insert/extractvalue
1981 /// instruction.  This sets AteExtraComma in the case where we eat an extra
1982 /// comma at the end of the line and find that it is followed by metadata.
1983 /// Clients that don't allow metadata can call the version of this function that
1984 /// only takes one argument.
1985 ///
1986 /// ParseIndexList
1987 ///    ::=  (',' uint32)+
1988 ///
1989 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices,
1990                               bool &AteExtraComma) {
1991   AteExtraComma = false;
1992 
1993   if (Lex.getKind() != lltok::comma)
1994     return TokError("expected ',' as start of index list");
1995 
1996   while (EatIfPresent(lltok::comma)) {
1997     if (Lex.getKind() == lltok::MetadataVar) {
1998       if (Indices.empty()) return TokError("expected index");
1999       AteExtraComma = true;
2000       return false;
2001     }
2002     unsigned Idx = 0;
2003     if (ParseUInt32(Idx)) return true;
2004     Indices.push_back(Idx);
2005   }
2006 
2007   return false;
2008 }
2009 
2010 //===----------------------------------------------------------------------===//
2011 // Type Parsing.
2012 //===----------------------------------------------------------------------===//
2013 
2014 /// ParseType - Parse a type.
2015 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2016   SMLoc TypeLoc = Lex.getLoc();
2017   switch (Lex.getKind()) {
2018   default:
2019     return TokError(Msg);
2020   case lltok::Type:
2021     // Type ::= 'float' | 'void' (etc)
2022     Result = Lex.getTyVal();
2023     Lex.Lex();
2024     break;
2025   case lltok::lbrace:
2026     // Type ::= StructType
2027     if (ParseAnonStructType(Result, false))
2028       return true;
2029     break;
2030   case lltok::lsquare:
2031     // Type ::= '[' ... ']'
2032     Lex.Lex(); // eat the lsquare.
2033     if (ParseArrayVectorType(Result, false))
2034       return true;
2035     break;
2036   case lltok::less: // Either vector or packed struct.
2037     // Type ::= '<' ... '>'
2038     Lex.Lex();
2039     if (Lex.getKind() == lltok::lbrace) {
2040       if (ParseAnonStructType(Result, true) ||
2041           ParseToken(lltok::greater, "expected '>' at end of packed struct"))
2042         return true;
2043     } else if (ParseArrayVectorType(Result, true))
2044       return true;
2045     break;
2046   case lltok::LocalVar: {
2047     // Type ::= %foo
2048     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2049 
2050     // If the type hasn't been defined yet, create a forward definition and
2051     // remember where that forward def'n was seen (in case it never is defined).
2052     if (!Entry.first) {
2053       Entry.first = StructType::create(Context, Lex.getStrVal());
2054       Entry.second = Lex.getLoc();
2055     }
2056     Result = Entry.first;
2057     Lex.Lex();
2058     break;
2059   }
2060 
2061   case lltok::LocalVarID: {
2062     // Type ::= %4
2063     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2064 
2065     // If the type hasn't been defined yet, create a forward definition and
2066     // remember where that forward def'n was seen (in case it never is defined).
2067     if (!Entry.first) {
2068       Entry.first = StructType::create(Context);
2069       Entry.second = Lex.getLoc();
2070     }
2071     Result = Entry.first;
2072     Lex.Lex();
2073     break;
2074   }
2075   }
2076 
2077   // Parse the type suffixes.
2078   while (true) {
2079     switch (Lex.getKind()) {
2080     // End of type.
2081     default:
2082       if (!AllowVoid && Result->isVoidTy())
2083         return Error(TypeLoc, "void type only allowed for function results");
2084       return false;
2085 
2086     // Type ::= Type '*'
2087     case lltok::star:
2088       if (Result->isLabelTy())
2089         return TokError("basic block pointers are invalid");
2090       if (Result->isVoidTy())
2091         return TokError("pointers to void are invalid - use i8* instead");
2092       if (!PointerType::isValidElementType(Result))
2093         return TokError("pointer to this type is invalid");
2094       Result = PointerType::getUnqual(Result);
2095       Lex.Lex();
2096       break;
2097 
2098     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2099     case lltok::kw_addrspace: {
2100       if (Result->isLabelTy())
2101         return TokError("basic block pointers are invalid");
2102       if (Result->isVoidTy())
2103         return TokError("pointers to void are invalid; use i8* instead");
2104       if (!PointerType::isValidElementType(Result))
2105         return TokError("pointer to this type is invalid");
2106       unsigned AddrSpace;
2107       if (ParseOptionalAddrSpace(AddrSpace) ||
2108           ParseToken(lltok::star, "expected '*' in address space"))
2109         return true;
2110 
2111       Result = PointerType::get(Result, AddrSpace);
2112       break;
2113     }
2114 
2115     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2116     case lltok::lparen:
2117       if (ParseFunctionType(Result))
2118         return true;
2119       break;
2120     }
2121   }
2122 }
2123 
2124 /// ParseParameterList
2125 ///    ::= '(' ')'
2126 ///    ::= '(' Arg (',' Arg)* ')'
2127 ///  Arg
2128 ///    ::= Type OptionalAttributes Value OptionalAttributes
2129 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2130                                   PerFunctionState &PFS, bool IsMustTailCall,
2131                                   bool InVarArgsFunc) {
2132   if (ParseToken(lltok::lparen, "expected '(' in call"))
2133     return true;
2134 
2135   while (Lex.getKind() != lltok::rparen) {
2136     // If this isn't the first argument, we need a comma.
2137     if (!ArgList.empty() &&
2138         ParseToken(lltok::comma, "expected ',' in argument list"))
2139       return true;
2140 
2141     // Parse an ellipsis if this is a musttail call in a variadic function.
2142     if (Lex.getKind() == lltok::dotdotdot) {
2143       const char *Msg = "unexpected ellipsis in argument list for ";
2144       if (!IsMustTailCall)
2145         return TokError(Twine(Msg) + "non-musttail call");
2146       if (!InVarArgsFunc)
2147         return TokError(Twine(Msg) + "musttail call in non-varargs function");
2148       Lex.Lex();  // Lex the '...', it is purely for readability.
2149       return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2150     }
2151 
2152     // Parse the argument.
2153     LocTy ArgLoc;
2154     Type *ArgTy = nullptr;
2155     AttrBuilder ArgAttrs;
2156     Value *V;
2157     if (ParseType(ArgTy, ArgLoc))
2158       return true;
2159 
2160     if (ArgTy->isMetadataTy()) {
2161       if (ParseMetadataAsValue(V, PFS))
2162         return true;
2163     } else {
2164       // Otherwise, handle normal operands.
2165       if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS))
2166         return true;
2167     }
2168     ArgList.push_back(ParamInfo(
2169         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2170   }
2171 
2172   if (IsMustTailCall && InVarArgsFunc)
2173     return TokError("expected '...' at end of argument list for musttail call "
2174                     "in varargs function");
2175 
2176   Lex.Lex();  // Lex the ')'.
2177   return false;
2178 }
2179 
2180 /// ParseOptionalOperandBundles
2181 ///    ::= /*empty*/
2182 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2183 ///
2184 /// OperandBundle
2185 ///    ::= bundle-tag '(' ')'
2186 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2187 ///
2188 /// bundle-tag ::= String Constant
2189 bool LLParser::ParseOptionalOperandBundles(
2190     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2191   LocTy BeginLoc = Lex.getLoc();
2192   if (!EatIfPresent(lltok::lsquare))
2193     return false;
2194 
2195   while (Lex.getKind() != lltok::rsquare) {
2196     // If this isn't the first operand bundle, we need a comma.
2197     if (!BundleList.empty() &&
2198         ParseToken(lltok::comma, "expected ',' in input list"))
2199       return true;
2200 
2201     std::string Tag;
2202     if (ParseStringConstant(Tag))
2203       return true;
2204 
2205     if (ParseToken(lltok::lparen, "expected '(' in operand bundle"))
2206       return true;
2207 
2208     std::vector<Value *> Inputs;
2209     while (Lex.getKind() != lltok::rparen) {
2210       // If this isn't the first input, we need a comma.
2211       if (!Inputs.empty() &&
2212           ParseToken(lltok::comma, "expected ',' in input list"))
2213         return true;
2214 
2215       Type *Ty = nullptr;
2216       Value *Input = nullptr;
2217       if (ParseType(Ty) || ParseValue(Ty, Input, PFS))
2218         return true;
2219       Inputs.push_back(Input);
2220     }
2221 
2222     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2223 
2224     Lex.Lex(); // Lex the ')'.
2225   }
2226 
2227   if (BundleList.empty())
2228     return Error(BeginLoc, "operand bundle set must not be empty");
2229 
2230   Lex.Lex(); // Lex the ']'.
2231   return false;
2232 }
2233 
2234 /// ParseArgumentList - Parse the argument list for a function type or function
2235 /// prototype.
2236 ///   ::= '(' ArgTypeListI ')'
2237 /// ArgTypeListI
2238 ///   ::= /*empty*/
2239 ///   ::= '...'
2240 ///   ::= ArgTypeList ',' '...'
2241 ///   ::= ArgType (',' ArgType)*
2242 ///
2243 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2244                                  bool &isVarArg){
2245   isVarArg = false;
2246   assert(Lex.getKind() == lltok::lparen);
2247   Lex.Lex(); // eat the (.
2248 
2249   if (Lex.getKind() == lltok::rparen) {
2250     // empty
2251   } else if (Lex.getKind() == lltok::dotdotdot) {
2252     isVarArg = true;
2253     Lex.Lex();
2254   } else {
2255     LocTy TypeLoc = Lex.getLoc();
2256     Type *ArgTy = nullptr;
2257     AttrBuilder Attrs;
2258     std::string Name;
2259 
2260     if (ParseType(ArgTy) ||
2261         ParseOptionalParamAttrs(Attrs)) return true;
2262 
2263     if (ArgTy->isVoidTy())
2264       return Error(TypeLoc, "argument can not have void type");
2265 
2266     if (Lex.getKind() == lltok::LocalVar) {
2267       Name = Lex.getStrVal();
2268       Lex.Lex();
2269     }
2270 
2271     if (!FunctionType::isValidArgumentType(ArgTy))
2272       return Error(TypeLoc, "invalid type for function argument");
2273 
2274     ArgList.emplace_back(TypeLoc, ArgTy,
2275                          AttributeSet::get(ArgTy->getContext(), Attrs),
2276                          std::move(Name));
2277 
2278     while (EatIfPresent(lltok::comma)) {
2279       // Handle ... at end of arg list.
2280       if (EatIfPresent(lltok::dotdotdot)) {
2281         isVarArg = true;
2282         break;
2283       }
2284 
2285       // Otherwise must be an argument type.
2286       TypeLoc = Lex.getLoc();
2287       if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true;
2288 
2289       if (ArgTy->isVoidTy())
2290         return Error(TypeLoc, "argument can not have void type");
2291 
2292       if (Lex.getKind() == lltok::LocalVar) {
2293         Name = Lex.getStrVal();
2294         Lex.Lex();
2295       } else {
2296         Name = "";
2297       }
2298 
2299       if (!ArgTy->isFirstClassType())
2300         return Error(TypeLoc, "invalid type for function argument");
2301 
2302       ArgList.emplace_back(TypeLoc, ArgTy,
2303                            AttributeSet::get(ArgTy->getContext(), Attrs),
2304                            std::move(Name));
2305     }
2306   }
2307 
2308   return ParseToken(lltok::rparen, "expected ')' at end of argument list");
2309 }
2310 
2311 /// ParseFunctionType
2312 ///  ::= Type ArgumentList OptionalAttrs
2313 bool LLParser::ParseFunctionType(Type *&Result) {
2314   assert(Lex.getKind() == lltok::lparen);
2315 
2316   if (!FunctionType::isValidReturnType(Result))
2317     return TokError("invalid function return type");
2318 
2319   SmallVector<ArgInfo, 8> ArgList;
2320   bool isVarArg;
2321   if (ParseArgumentList(ArgList, isVarArg))
2322     return true;
2323 
2324   // Reject names on the arguments lists.
2325   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2326     if (!ArgList[i].Name.empty())
2327       return Error(ArgList[i].Loc, "argument name invalid in function type");
2328     if (ArgList[i].Attrs.hasAttributes())
2329       return Error(ArgList[i].Loc,
2330                    "argument attributes invalid in function type");
2331   }
2332 
2333   SmallVector<Type*, 16> ArgListTy;
2334   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2335     ArgListTy.push_back(ArgList[i].Ty);
2336 
2337   Result = FunctionType::get(Result, ArgListTy, isVarArg);
2338   return false;
2339 }
2340 
2341 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into
2342 /// other structs.
2343 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) {
2344   SmallVector<Type*, 8> Elts;
2345   if (ParseStructBody(Elts)) return true;
2346 
2347   Result = StructType::get(Context, Elts, Packed);
2348   return false;
2349 }
2350 
2351 /// ParseStructDefinition - Parse a struct in a 'type' definition.
2352 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name,
2353                                      std::pair<Type*, LocTy> &Entry,
2354                                      Type *&ResultTy) {
2355   // If the type was already defined, diagnose the redefinition.
2356   if (Entry.first && !Entry.second.isValid())
2357     return Error(TypeLoc, "redefinition of type");
2358 
2359   // If we have opaque, just return without filling in the definition for the
2360   // struct.  This counts as a definition as far as the .ll file goes.
2361   if (EatIfPresent(lltok::kw_opaque)) {
2362     // This type is being defined, so clear the location to indicate this.
2363     Entry.second = SMLoc();
2364 
2365     // If this type number has never been uttered, create it.
2366     if (!Entry.first)
2367       Entry.first = StructType::create(Context, Name);
2368     ResultTy = Entry.first;
2369     return false;
2370   }
2371 
2372   // If the type starts with '<', then it is either a packed struct or a vector.
2373   bool isPacked = EatIfPresent(lltok::less);
2374 
2375   // If we don't have a struct, then we have a random type alias, which we
2376   // accept for compatibility with old files.  These types are not allowed to be
2377   // forward referenced and not allowed to be recursive.
2378   if (Lex.getKind() != lltok::lbrace) {
2379     if (Entry.first)
2380       return Error(TypeLoc, "forward references to non-struct type");
2381 
2382     ResultTy = nullptr;
2383     if (isPacked)
2384       return ParseArrayVectorType(ResultTy, true);
2385     return ParseType(ResultTy);
2386   }
2387 
2388   // This type is being defined, so clear the location to indicate this.
2389   Entry.second = SMLoc();
2390 
2391   // If this type number has never been uttered, create it.
2392   if (!Entry.first)
2393     Entry.first = StructType::create(Context, Name);
2394 
2395   StructType *STy = cast<StructType>(Entry.first);
2396 
2397   SmallVector<Type*, 8> Body;
2398   if (ParseStructBody(Body) ||
2399       (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct")))
2400     return true;
2401 
2402   STy->setBody(Body, isPacked);
2403   ResultTy = STy;
2404   return false;
2405 }
2406 
2407 /// ParseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2408 ///   StructType
2409 ///     ::= '{' '}'
2410 ///     ::= '{' Type (',' Type)* '}'
2411 ///     ::= '<' '{' '}' '>'
2412 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2413 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) {
2414   assert(Lex.getKind() == lltok::lbrace);
2415   Lex.Lex(); // Consume the '{'
2416 
2417   // Handle the empty struct.
2418   if (EatIfPresent(lltok::rbrace))
2419     return false;
2420 
2421   LocTy EltTyLoc = Lex.getLoc();
2422   Type *Ty = nullptr;
2423   if (ParseType(Ty)) return true;
2424   Body.push_back(Ty);
2425 
2426   if (!StructType::isValidElementType(Ty))
2427     return Error(EltTyLoc, "invalid element type for struct");
2428 
2429   while (EatIfPresent(lltok::comma)) {
2430     EltTyLoc = Lex.getLoc();
2431     if (ParseType(Ty)) return true;
2432 
2433     if (!StructType::isValidElementType(Ty))
2434       return Error(EltTyLoc, "invalid element type for struct");
2435 
2436     Body.push_back(Ty);
2437   }
2438 
2439   return ParseToken(lltok::rbrace, "expected '}' at end of struct");
2440 }
2441 
2442 /// ParseArrayVectorType - Parse an array or vector type, assuming the first
2443 /// token has already been consumed.
2444 ///   Type
2445 ///     ::= '[' APSINTVAL 'x' Types ']'
2446 ///     ::= '<' APSINTVAL 'x' Types '>'
2447 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) {
2448   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2449       Lex.getAPSIntVal().getBitWidth() > 64)
2450     return TokError("expected number in address space");
2451 
2452   LocTy SizeLoc = Lex.getLoc();
2453   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2454   Lex.Lex();
2455 
2456   if (ParseToken(lltok::kw_x, "expected 'x' after element count"))
2457       return true;
2458 
2459   LocTy TypeLoc = Lex.getLoc();
2460   Type *EltTy = nullptr;
2461   if (ParseType(EltTy)) return true;
2462 
2463   if (ParseToken(isVector ? lltok::greater : lltok::rsquare,
2464                  "expected end of sequential type"))
2465     return true;
2466 
2467   if (isVector) {
2468     if (Size == 0)
2469       return Error(SizeLoc, "zero element vector is illegal");
2470     if ((unsigned)Size != Size)
2471       return Error(SizeLoc, "size too large for vector");
2472     if (!VectorType::isValidElementType(EltTy))
2473       return Error(TypeLoc, "invalid vector element type");
2474     Result = VectorType::get(EltTy, unsigned(Size));
2475   } else {
2476     if (!ArrayType::isValidElementType(EltTy))
2477       return Error(TypeLoc, "invalid array element type");
2478     Result = ArrayType::get(EltTy, Size);
2479   }
2480   return false;
2481 }
2482 
2483 //===----------------------------------------------------------------------===//
2484 // Function Semantic Analysis.
2485 //===----------------------------------------------------------------------===//
2486 
2487 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2488                                              int functionNumber)
2489   : P(p), F(f), FunctionNumber(functionNumber) {
2490 
2491   // Insert unnamed arguments into the NumberedVals list.
2492   for (Argument &A : F.args())
2493     if (!A.hasName())
2494       NumberedVals.push_back(&A);
2495 }
2496 
2497 LLParser::PerFunctionState::~PerFunctionState() {
2498   // If there were any forward referenced non-basicblock values, delete them.
2499 
2500   for (const auto &P : ForwardRefVals) {
2501     if (isa<BasicBlock>(P.second.first))
2502       continue;
2503     P.second.first->replaceAllUsesWith(
2504         UndefValue::get(P.second.first->getType()));
2505     P.second.first->deleteValue();
2506   }
2507 
2508   for (const auto &P : ForwardRefValIDs) {
2509     if (isa<BasicBlock>(P.second.first))
2510       continue;
2511     P.second.first->replaceAllUsesWith(
2512         UndefValue::get(P.second.first->getType()));
2513     P.second.first->deleteValue();
2514   }
2515 }
2516 
2517 bool LLParser::PerFunctionState::FinishFunction() {
2518   if (!ForwardRefVals.empty())
2519     return P.Error(ForwardRefVals.begin()->second.second,
2520                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2521                    "'");
2522   if (!ForwardRefValIDs.empty())
2523     return P.Error(ForwardRefValIDs.begin()->second.second,
2524                    "use of undefined value '%" +
2525                    Twine(ForwardRefValIDs.begin()->first) + "'");
2526   return false;
2527 }
2528 
2529 /// GetVal - Get a value with the specified name or ID, creating a
2530 /// forward reference record if needed.  This can return null if the value
2531 /// exists but does not have the right type.
2532 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty,
2533                                           LocTy Loc) {
2534   // Look this name up in the normal function symbol table.
2535   Value *Val = F.getValueSymbolTable()->lookup(Name);
2536 
2537   // If this is a forward reference for the value, see if we already created a
2538   // forward ref record.
2539   if (!Val) {
2540     auto I = ForwardRefVals.find(Name);
2541     if (I != ForwardRefVals.end())
2542       Val = I->second.first;
2543   }
2544 
2545   // If we have the value in the symbol table or fwd-ref table, return it.
2546   if (Val) {
2547     if (Val->getType() == Ty) return Val;
2548     if (Ty->isLabelTy())
2549       P.Error(Loc, "'%" + Name + "' is not a basic block");
2550     else
2551       P.Error(Loc, "'%" + Name + "' defined with type '" +
2552               getTypeString(Val->getType()) + "'");
2553     return nullptr;
2554   }
2555 
2556   // Don't make placeholders with invalid type.
2557   if (!Ty->isFirstClassType()) {
2558     P.Error(Loc, "invalid use of a non-first-class type");
2559     return nullptr;
2560   }
2561 
2562   // Otherwise, create a new forward reference for this value and remember it.
2563   Value *FwdVal;
2564   if (Ty->isLabelTy()) {
2565     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2566   } else {
2567     FwdVal = new Argument(Ty, Name);
2568   }
2569 
2570   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2571   return FwdVal;
2572 }
2573 
2574 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc) {
2575   // Look this name up in the normal function symbol table.
2576   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2577 
2578   // If this is a forward reference for the value, see if we already created a
2579   // forward ref record.
2580   if (!Val) {
2581     auto I = ForwardRefValIDs.find(ID);
2582     if (I != ForwardRefValIDs.end())
2583       Val = I->second.first;
2584   }
2585 
2586   // If we have the value in the symbol table or fwd-ref table, return it.
2587   if (Val) {
2588     if (Val->getType() == Ty) return Val;
2589     if (Ty->isLabelTy())
2590       P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block");
2591     else
2592       P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" +
2593               getTypeString(Val->getType()) + "'");
2594     return nullptr;
2595   }
2596 
2597   if (!Ty->isFirstClassType()) {
2598     P.Error(Loc, "invalid use of a non-first-class type");
2599     return nullptr;
2600   }
2601 
2602   // Otherwise, create a new forward reference for this value and remember it.
2603   Value *FwdVal;
2604   if (Ty->isLabelTy()) {
2605     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2606   } else {
2607     FwdVal = new Argument(Ty);
2608   }
2609 
2610   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2611   return FwdVal;
2612 }
2613 
2614 /// SetInstName - After an instruction is parsed and inserted into its
2615 /// basic block, this installs its name.
2616 bool LLParser::PerFunctionState::SetInstName(int NameID,
2617                                              const std::string &NameStr,
2618                                              LocTy NameLoc, Instruction *Inst) {
2619   // If this instruction has void type, it cannot have a name or ID specified.
2620   if (Inst->getType()->isVoidTy()) {
2621     if (NameID != -1 || !NameStr.empty())
2622       return P.Error(NameLoc, "instructions returning void cannot have a name");
2623     return false;
2624   }
2625 
2626   // If this was a numbered instruction, verify that the instruction is the
2627   // expected value and resolve any forward references.
2628   if (NameStr.empty()) {
2629     // If neither a name nor an ID was specified, just use the next ID.
2630     if (NameID == -1)
2631       NameID = NumberedVals.size();
2632 
2633     if (unsigned(NameID) != NumberedVals.size())
2634       return P.Error(NameLoc, "instruction expected to be numbered '%" +
2635                      Twine(NumberedVals.size()) + "'");
2636 
2637     auto FI = ForwardRefValIDs.find(NameID);
2638     if (FI != ForwardRefValIDs.end()) {
2639       Value *Sentinel = FI->second.first;
2640       if (Sentinel->getType() != Inst->getType())
2641         return P.Error(NameLoc, "instruction forward referenced with type '" +
2642                        getTypeString(FI->second.first->getType()) + "'");
2643 
2644       Sentinel->replaceAllUsesWith(Inst);
2645       Sentinel->deleteValue();
2646       ForwardRefValIDs.erase(FI);
2647     }
2648 
2649     NumberedVals.push_back(Inst);
2650     return false;
2651   }
2652 
2653   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2654   auto FI = ForwardRefVals.find(NameStr);
2655   if (FI != ForwardRefVals.end()) {
2656     Value *Sentinel = FI->second.first;
2657     if (Sentinel->getType() != Inst->getType())
2658       return P.Error(NameLoc, "instruction forward referenced with type '" +
2659                      getTypeString(FI->second.first->getType()) + "'");
2660 
2661     Sentinel->replaceAllUsesWith(Inst);
2662     Sentinel->deleteValue();
2663     ForwardRefVals.erase(FI);
2664   }
2665 
2666   // Set the name on the instruction.
2667   Inst->setName(NameStr);
2668 
2669   if (Inst->getName() != NameStr)
2670     return P.Error(NameLoc, "multiple definition of local value named '" +
2671                    NameStr + "'");
2672   return false;
2673 }
2674 
2675 /// GetBB - Get a basic block with the specified name or ID, creating a
2676 /// forward reference record if needed.
2677 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name,
2678                                               LocTy Loc) {
2679   return dyn_cast_or_null<BasicBlock>(GetVal(Name,
2680                                       Type::getLabelTy(F.getContext()), Loc));
2681 }
2682 
2683 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) {
2684   return dyn_cast_or_null<BasicBlock>(GetVal(ID,
2685                                       Type::getLabelTy(F.getContext()), Loc));
2686 }
2687 
2688 /// DefineBB - Define the specified basic block, which is either named or
2689 /// unnamed.  If there is an error, this returns null otherwise it returns
2690 /// the block being defined.
2691 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name,
2692                                                  LocTy Loc) {
2693   BasicBlock *BB;
2694   if (Name.empty())
2695     BB = GetBB(NumberedVals.size(), Loc);
2696   else
2697     BB = GetBB(Name, Loc);
2698   if (!BB) return nullptr; // Already diagnosed error.
2699 
2700   // Move the block to the end of the function.  Forward ref'd blocks are
2701   // inserted wherever they happen to be referenced.
2702   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
2703 
2704   // Remove the block from forward ref sets.
2705   if (Name.empty()) {
2706     ForwardRefValIDs.erase(NumberedVals.size());
2707     NumberedVals.push_back(BB);
2708   } else {
2709     // BB forward references are already in the function symbol table.
2710     ForwardRefVals.erase(Name);
2711   }
2712 
2713   return BB;
2714 }
2715 
2716 //===----------------------------------------------------------------------===//
2717 // Constants.
2718 //===----------------------------------------------------------------------===//
2719 
2720 /// ParseValID - Parse an abstract value that doesn't necessarily have a
2721 /// type implied.  For example, if we parse "4" we don't know what integer type
2722 /// it has.  The value will later be combined with its type and checked for
2723 /// sanity.  PFS is used to convert function-local operands of metadata (since
2724 /// metadata operands are not just parsed here but also converted to values).
2725 /// PFS can be null when we are not parsing metadata values inside a function.
2726 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) {
2727   ID.Loc = Lex.getLoc();
2728   switch (Lex.getKind()) {
2729   default: return TokError("expected value token");
2730   case lltok::GlobalID:  // @42
2731     ID.UIntVal = Lex.getUIntVal();
2732     ID.Kind = ValID::t_GlobalID;
2733     break;
2734   case lltok::GlobalVar:  // @foo
2735     ID.StrVal = Lex.getStrVal();
2736     ID.Kind = ValID::t_GlobalName;
2737     break;
2738   case lltok::LocalVarID:  // %42
2739     ID.UIntVal = Lex.getUIntVal();
2740     ID.Kind = ValID::t_LocalID;
2741     break;
2742   case lltok::LocalVar:  // %foo
2743     ID.StrVal = Lex.getStrVal();
2744     ID.Kind = ValID::t_LocalName;
2745     break;
2746   case lltok::APSInt:
2747     ID.APSIntVal = Lex.getAPSIntVal();
2748     ID.Kind = ValID::t_APSInt;
2749     break;
2750   case lltok::APFloat:
2751     ID.APFloatVal = Lex.getAPFloatVal();
2752     ID.Kind = ValID::t_APFloat;
2753     break;
2754   case lltok::kw_true:
2755     ID.ConstantVal = ConstantInt::getTrue(Context);
2756     ID.Kind = ValID::t_Constant;
2757     break;
2758   case lltok::kw_false:
2759     ID.ConstantVal = ConstantInt::getFalse(Context);
2760     ID.Kind = ValID::t_Constant;
2761     break;
2762   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
2763   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
2764   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
2765   case lltok::kw_none: ID.Kind = ValID::t_None; break;
2766 
2767   case lltok::lbrace: {
2768     // ValID ::= '{' ConstVector '}'
2769     Lex.Lex();
2770     SmallVector<Constant*, 16> Elts;
2771     if (ParseGlobalValueVector(Elts) ||
2772         ParseToken(lltok::rbrace, "expected end of struct constant"))
2773       return true;
2774 
2775     ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
2776     ID.UIntVal = Elts.size();
2777     memcpy(ID.ConstantStructElts.get(), Elts.data(),
2778            Elts.size() * sizeof(Elts[0]));
2779     ID.Kind = ValID::t_ConstantStruct;
2780     return false;
2781   }
2782   case lltok::less: {
2783     // ValID ::= '<' ConstVector '>'         --> Vector.
2784     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
2785     Lex.Lex();
2786     bool isPackedStruct = EatIfPresent(lltok::lbrace);
2787 
2788     SmallVector<Constant*, 16> Elts;
2789     LocTy FirstEltLoc = Lex.getLoc();
2790     if (ParseGlobalValueVector(Elts) ||
2791         (isPackedStruct &&
2792          ParseToken(lltok::rbrace, "expected end of packed struct")) ||
2793         ParseToken(lltok::greater, "expected end of constant"))
2794       return true;
2795 
2796     if (isPackedStruct) {
2797       ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size());
2798       memcpy(ID.ConstantStructElts.get(), Elts.data(),
2799              Elts.size() * sizeof(Elts[0]));
2800       ID.UIntVal = Elts.size();
2801       ID.Kind = ValID::t_PackedConstantStruct;
2802       return false;
2803     }
2804 
2805     if (Elts.empty())
2806       return Error(ID.Loc, "constant vector must not be empty");
2807 
2808     if (!Elts[0]->getType()->isIntegerTy() &&
2809         !Elts[0]->getType()->isFloatingPointTy() &&
2810         !Elts[0]->getType()->isPointerTy())
2811       return Error(FirstEltLoc,
2812             "vector elements must have integer, pointer or floating point type");
2813 
2814     // Verify that all the vector elements have the same type.
2815     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
2816       if (Elts[i]->getType() != Elts[0]->getType())
2817         return Error(FirstEltLoc,
2818                      "vector element #" + Twine(i) +
2819                     " is not of type '" + getTypeString(Elts[0]->getType()));
2820 
2821     ID.ConstantVal = ConstantVector::get(Elts);
2822     ID.Kind = ValID::t_Constant;
2823     return false;
2824   }
2825   case lltok::lsquare: {   // Array Constant
2826     Lex.Lex();
2827     SmallVector<Constant*, 16> Elts;
2828     LocTy FirstEltLoc = Lex.getLoc();
2829     if (ParseGlobalValueVector(Elts) ||
2830         ParseToken(lltok::rsquare, "expected end of array constant"))
2831       return true;
2832 
2833     // Handle empty element.
2834     if (Elts.empty()) {
2835       // Use undef instead of an array because it's inconvenient to determine
2836       // the element type at this point, there being no elements to examine.
2837       ID.Kind = ValID::t_EmptyArray;
2838       return false;
2839     }
2840 
2841     if (!Elts[0]->getType()->isFirstClassType())
2842       return Error(FirstEltLoc, "invalid array element type: " +
2843                    getTypeString(Elts[0]->getType()));
2844 
2845     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
2846 
2847     // Verify all elements are correct type!
2848     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
2849       if (Elts[i]->getType() != Elts[0]->getType())
2850         return Error(FirstEltLoc,
2851                      "array element #" + Twine(i) +
2852                      " is not of type '" + getTypeString(Elts[0]->getType()));
2853     }
2854 
2855     ID.ConstantVal = ConstantArray::get(ATy, Elts);
2856     ID.Kind = ValID::t_Constant;
2857     return false;
2858   }
2859   case lltok::kw_c:  // c "foo"
2860     Lex.Lex();
2861     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
2862                                                   false);
2863     if (ParseToken(lltok::StringConstant, "expected string")) return true;
2864     ID.Kind = ValID::t_Constant;
2865     return false;
2866 
2867   case lltok::kw_asm: {
2868     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
2869     //             STRINGCONSTANT
2870     bool HasSideEffect, AlignStack, AsmDialect;
2871     Lex.Lex();
2872     if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
2873         ParseOptionalToken(lltok::kw_alignstack, AlignStack) ||
2874         ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
2875         ParseStringConstant(ID.StrVal) ||
2876         ParseToken(lltok::comma, "expected comma in inline asm expression") ||
2877         ParseToken(lltok::StringConstant, "expected constraint string"))
2878       return true;
2879     ID.StrVal2 = Lex.getStrVal();
2880     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) |
2881       (unsigned(AsmDialect)<<2);
2882     ID.Kind = ValID::t_InlineAsm;
2883     return false;
2884   }
2885 
2886   case lltok::kw_blockaddress: {
2887     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
2888     Lex.Lex();
2889 
2890     ValID Fn, Label;
2891 
2892     if (ParseToken(lltok::lparen, "expected '(' in block address expression") ||
2893         ParseValID(Fn) ||
2894         ParseToken(lltok::comma, "expected comma in block address expression")||
2895         ParseValID(Label) ||
2896         ParseToken(lltok::rparen, "expected ')' in block address expression"))
2897       return true;
2898 
2899     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
2900       return Error(Fn.Loc, "expected function name in blockaddress");
2901     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
2902       return Error(Label.Loc, "expected basic block name in blockaddress");
2903 
2904     // Try to find the function (but skip it if it's forward-referenced).
2905     GlobalValue *GV = nullptr;
2906     if (Fn.Kind == ValID::t_GlobalID) {
2907       if (Fn.UIntVal < NumberedVals.size())
2908         GV = NumberedVals[Fn.UIntVal];
2909     } else if (!ForwardRefVals.count(Fn.StrVal)) {
2910       GV = M->getNamedValue(Fn.StrVal);
2911     }
2912     Function *F = nullptr;
2913     if (GV) {
2914       // Confirm that it's actually a function with a definition.
2915       if (!isa<Function>(GV))
2916         return Error(Fn.Loc, "expected function name in blockaddress");
2917       F = cast<Function>(GV);
2918       if (F->isDeclaration())
2919         return Error(Fn.Loc, "cannot take blockaddress inside a declaration");
2920     }
2921 
2922     if (!F) {
2923       // Make a global variable as a placeholder for this reference.
2924       GlobalValue *&FwdRef =
2925           ForwardRefBlockAddresses.insert(std::make_pair(
2926                                               std::move(Fn),
2927                                               std::map<ValID, GlobalValue *>()))
2928               .first->second.insert(std::make_pair(std::move(Label), nullptr))
2929               .first->second;
2930       if (!FwdRef)
2931         FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false,
2932                                     GlobalValue::InternalLinkage, nullptr, "");
2933       ID.ConstantVal = FwdRef;
2934       ID.Kind = ValID::t_Constant;
2935       return false;
2936     }
2937 
2938     // We found the function; now find the basic block.  Don't use PFS, since we
2939     // might be inside a constant expression.
2940     BasicBlock *BB;
2941     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
2942       if (Label.Kind == ValID::t_LocalID)
2943         BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc);
2944       else
2945         BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc);
2946       if (!BB)
2947         return Error(Label.Loc, "referenced value is not a basic block");
2948     } else {
2949       if (Label.Kind == ValID::t_LocalID)
2950         return Error(Label.Loc, "cannot take address of numeric label after "
2951                                 "the function is defined");
2952       BB = dyn_cast_or_null<BasicBlock>(
2953           F->getValueSymbolTable()->lookup(Label.StrVal));
2954       if (!BB)
2955         return Error(Label.Loc, "referenced value is not a basic block");
2956     }
2957 
2958     ID.ConstantVal = BlockAddress::get(F, BB);
2959     ID.Kind = ValID::t_Constant;
2960     return false;
2961   }
2962 
2963   case lltok::kw_trunc:
2964   case lltok::kw_zext:
2965   case lltok::kw_sext:
2966   case lltok::kw_fptrunc:
2967   case lltok::kw_fpext:
2968   case lltok::kw_bitcast:
2969   case lltok::kw_addrspacecast:
2970   case lltok::kw_uitofp:
2971   case lltok::kw_sitofp:
2972   case lltok::kw_fptoui:
2973   case lltok::kw_fptosi:
2974   case lltok::kw_inttoptr:
2975   case lltok::kw_ptrtoint: {
2976     unsigned Opc = Lex.getUIntVal();
2977     Type *DestTy = nullptr;
2978     Constant *SrcVal;
2979     Lex.Lex();
2980     if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
2981         ParseGlobalTypeAndValue(SrcVal) ||
2982         ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
2983         ParseType(DestTy) ||
2984         ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
2985       return true;
2986     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
2987       return Error(ID.Loc, "invalid cast opcode for cast from '" +
2988                    getTypeString(SrcVal->getType()) + "' to '" +
2989                    getTypeString(DestTy) + "'");
2990     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
2991                                                  SrcVal, DestTy);
2992     ID.Kind = ValID::t_Constant;
2993     return false;
2994   }
2995   case lltok::kw_extractvalue: {
2996     Lex.Lex();
2997     Constant *Val;
2998     SmallVector<unsigned, 4> Indices;
2999     if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")||
3000         ParseGlobalTypeAndValue(Val) ||
3001         ParseIndexList(Indices) ||
3002         ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3003       return true;
3004 
3005     if (!Val->getType()->isAggregateType())
3006       return Error(ID.Loc, "extractvalue operand must be aggregate type");
3007     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3008       return Error(ID.Loc, "invalid indices for extractvalue");
3009     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3010     ID.Kind = ValID::t_Constant;
3011     return false;
3012   }
3013   case lltok::kw_insertvalue: {
3014     Lex.Lex();
3015     Constant *Val0, *Val1;
3016     SmallVector<unsigned, 4> Indices;
3017     if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")||
3018         ParseGlobalTypeAndValue(Val0) ||
3019         ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")||
3020         ParseGlobalTypeAndValue(Val1) ||
3021         ParseIndexList(Indices) ||
3022         ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3023       return true;
3024     if (!Val0->getType()->isAggregateType())
3025       return Error(ID.Loc, "insertvalue operand must be aggregate type");
3026     Type *IndexedType =
3027         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3028     if (!IndexedType)
3029       return Error(ID.Loc, "invalid indices for insertvalue");
3030     if (IndexedType != Val1->getType())
3031       return Error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3032                                getTypeString(Val1->getType()) +
3033                                "' instead of '" + getTypeString(IndexedType) +
3034                                "'");
3035     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3036     ID.Kind = ValID::t_Constant;
3037     return false;
3038   }
3039   case lltok::kw_icmp:
3040   case lltok::kw_fcmp: {
3041     unsigned PredVal, Opc = Lex.getUIntVal();
3042     Constant *Val0, *Val1;
3043     Lex.Lex();
3044     if (ParseCmpPredicate(PredVal, Opc) ||
3045         ParseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3046         ParseGlobalTypeAndValue(Val0) ||
3047         ParseToken(lltok::comma, "expected comma in compare constantexpr") ||
3048         ParseGlobalTypeAndValue(Val1) ||
3049         ParseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3050       return true;
3051 
3052     if (Val0->getType() != Val1->getType())
3053       return Error(ID.Loc, "compare operands must have the same type");
3054 
3055     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3056 
3057     if (Opc == Instruction::FCmp) {
3058       if (!Val0->getType()->isFPOrFPVectorTy())
3059         return Error(ID.Loc, "fcmp requires floating point operands");
3060       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3061     } else {
3062       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3063       if (!Val0->getType()->isIntOrIntVectorTy() &&
3064           !Val0->getType()->getScalarType()->isPointerTy())
3065         return Error(ID.Loc, "icmp requires pointer or integer operands");
3066       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3067     }
3068     ID.Kind = ValID::t_Constant;
3069     return false;
3070   }
3071 
3072   // Binary Operators.
3073   case lltok::kw_add:
3074   case lltok::kw_fadd:
3075   case lltok::kw_sub:
3076   case lltok::kw_fsub:
3077   case lltok::kw_mul:
3078   case lltok::kw_fmul:
3079   case lltok::kw_udiv:
3080   case lltok::kw_sdiv:
3081   case lltok::kw_fdiv:
3082   case lltok::kw_urem:
3083   case lltok::kw_srem:
3084   case lltok::kw_frem:
3085   case lltok::kw_shl:
3086   case lltok::kw_lshr:
3087   case lltok::kw_ashr: {
3088     bool NUW = false;
3089     bool NSW = false;
3090     bool Exact = false;
3091     unsigned Opc = Lex.getUIntVal();
3092     Constant *Val0, *Val1;
3093     Lex.Lex();
3094     LocTy ModifierLoc = Lex.getLoc();
3095     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3096         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3097       if (EatIfPresent(lltok::kw_nuw))
3098         NUW = true;
3099       if (EatIfPresent(lltok::kw_nsw)) {
3100         NSW = true;
3101         if (EatIfPresent(lltok::kw_nuw))
3102           NUW = true;
3103       }
3104     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3105                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3106       if (EatIfPresent(lltok::kw_exact))
3107         Exact = true;
3108     }
3109     if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3110         ParseGlobalTypeAndValue(Val0) ||
3111         ParseToken(lltok::comma, "expected comma in binary constantexpr") ||
3112         ParseGlobalTypeAndValue(Val1) ||
3113         ParseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3114       return true;
3115     if (Val0->getType() != Val1->getType())
3116       return Error(ID.Loc, "operands of constexpr must have same type");
3117     if (!Val0->getType()->isIntOrIntVectorTy()) {
3118       if (NUW)
3119         return Error(ModifierLoc, "nuw only applies to integer operations");
3120       if (NSW)
3121         return Error(ModifierLoc, "nsw only applies to integer operations");
3122     }
3123     // Check that the type is valid for the operator.
3124     switch (Opc) {
3125     case Instruction::Add:
3126     case Instruction::Sub:
3127     case Instruction::Mul:
3128     case Instruction::UDiv:
3129     case Instruction::SDiv:
3130     case Instruction::URem:
3131     case Instruction::SRem:
3132     case Instruction::Shl:
3133     case Instruction::AShr:
3134     case Instruction::LShr:
3135       if (!Val0->getType()->isIntOrIntVectorTy())
3136         return Error(ID.Loc, "constexpr requires integer operands");
3137       break;
3138     case Instruction::FAdd:
3139     case Instruction::FSub:
3140     case Instruction::FMul:
3141     case Instruction::FDiv:
3142     case Instruction::FRem:
3143       if (!Val0->getType()->isFPOrFPVectorTy())
3144         return Error(ID.Loc, "constexpr requires fp operands");
3145       break;
3146     default: llvm_unreachable("Unknown binary operator!");
3147     }
3148     unsigned Flags = 0;
3149     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3150     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3151     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3152     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3153     ID.ConstantVal = C;
3154     ID.Kind = ValID::t_Constant;
3155     return false;
3156   }
3157 
3158   // Logical Operations
3159   case lltok::kw_and:
3160   case lltok::kw_or:
3161   case lltok::kw_xor: {
3162     unsigned Opc = Lex.getUIntVal();
3163     Constant *Val0, *Val1;
3164     Lex.Lex();
3165     if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3166         ParseGlobalTypeAndValue(Val0) ||
3167         ParseToken(lltok::comma, "expected comma in logical constantexpr") ||
3168         ParseGlobalTypeAndValue(Val1) ||
3169         ParseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3170       return true;
3171     if (Val0->getType() != Val1->getType())
3172       return Error(ID.Loc, "operands of constexpr must have same type");
3173     if (!Val0->getType()->isIntOrIntVectorTy())
3174       return Error(ID.Loc,
3175                    "constexpr requires integer or integer vector operands");
3176     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3177     ID.Kind = ValID::t_Constant;
3178     return false;
3179   }
3180 
3181   case lltok::kw_getelementptr:
3182   case lltok::kw_shufflevector:
3183   case lltok::kw_insertelement:
3184   case lltok::kw_extractelement:
3185   case lltok::kw_select: {
3186     unsigned Opc = Lex.getUIntVal();
3187     SmallVector<Constant*, 16> Elts;
3188     bool InBounds = false;
3189     Type *Ty;
3190     Lex.Lex();
3191 
3192     if (Opc == Instruction::GetElementPtr)
3193       InBounds = EatIfPresent(lltok::kw_inbounds);
3194 
3195     if (ParseToken(lltok::lparen, "expected '(' in constantexpr"))
3196       return true;
3197 
3198     LocTy ExplicitTypeLoc = Lex.getLoc();
3199     if (Opc == Instruction::GetElementPtr) {
3200       if (ParseType(Ty) ||
3201           ParseToken(lltok::comma, "expected comma after getelementptr's type"))
3202         return true;
3203     }
3204 
3205     Optional<unsigned> InRangeOp;
3206     if (ParseGlobalValueVector(
3207             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3208         ParseToken(lltok::rparen, "expected ')' in constantexpr"))
3209       return true;
3210 
3211     if (Opc == Instruction::GetElementPtr) {
3212       if (Elts.size() == 0 ||
3213           !Elts[0]->getType()->getScalarType()->isPointerTy())
3214         return Error(ID.Loc, "base of getelementptr must be a pointer");
3215 
3216       Type *BaseType = Elts[0]->getType();
3217       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3218       if (Ty != BasePointerType->getElementType())
3219         return Error(
3220             ExplicitTypeLoc,
3221             "explicit pointee type doesn't match operand's pointee type");
3222 
3223       unsigned GEPWidth =
3224           BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0;
3225 
3226       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3227       for (Constant *Val : Indices) {
3228         Type *ValTy = Val->getType();
3229         if (!ValTy->getScalarType()->isIntegerTy())
3230           return Error(ID.Loc, "getelementptr index must be an integer");
3231         if (ValTy->isVectorTy()) {
3232           unsigned ValNumEl = ValTy->getVectorNumElements();
3233           if (GEPWidth && (ValNumEl != GEPWidth))
3234             return Error(
3235                 ID.Loc,
3236                 "getelementptr vector index has a wrong number of elements");
3237           // GEPWidth may have been unknown because the base is a scalar,
3238           // but it is known now.
3239           GEPWidth = ValNumEl;
3240         }
3241       }
3242 
3243       SmallPtrSet<Type*, 4> Visited;
3244       if (!Indices.empty() && !Ty->isSized(&Visited))
3245         return Error(ID.Loc, "base element of getelementptr must be sized");
3246 
3247       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3248         return Error(ID.Loc, "invalid getelementptr indices");
3249 
3250       if (InRangeOp) {
3251         if (*InRangeOp == 0)
3252           return Error(ID.Loc,
3253                        "inrange keyword may not appear on pointer operand");
3254         --*InRangeOp;
3255       }
3256 
3257       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3258                                                       InBounds, InRangeOp);
3259     } else if (Opc == Instruction::Select) {
3260       if (Elts.size() != 3)
3261         return Error(ID.Loc, "expected three operands to select");
3262       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3263                                                               Elts[2]))
3264         return Error(ID.Loc, Reason);
3265       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3266     } else if (Opc == Instruction::ShuffleVector) {
3267       if (Elts.size() != 3)
3268         return Error(ID.Loc, "expected three operands to shufflevector");
3269       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3270         return Error(ID.Loc, "invalid operands to shufflevector");
3271       ID.ConstantVal =
3272                  ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]);
3273     } else if (Opc == Instruction::ExtractElement) {
3274       if (Elts.size() != 2)
3275         return Error(ID.Loc, "expected two operands to extractelement");
3276       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3277         return Error(ID.Loc, "invalid extractelement operands");
3278       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3279     } else {
3280       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3281       if (Elts.size() != 3)
3282       return Error(ID.Loc, "expected three operands to insertelement");
3283       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3284         return Error(ID.Loc, "invalid insertelement operands");
3285       ID.ConstantVal =
3286                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3287     }
3288 
3289     ID.Kind = ValID::t_Constant;
3290     return false;
3291   }
3292   }
3293 
3294   Lex.Lex();
3295   return false;
3296 }
3297 
3298 /// ParseGlobalValue - Parse a global value with the specified type.
3299 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) {
3300   C = nullptr;
3301   ValID ID;
3302   Value *V = nullptr;
3303   bool Parsed = ParseValID(ID) ||
3304                 ConvertValIDToValue(Ty, ID, V, nullptr);
3305   if (V && !(C = dyn_cast<Constant>(V)))
3306     return Error(ID.Loc, "global values must be constants");
3307   return Parsed;
3308 }
3309 
3310 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) {
3311   Type *Ty = nullptr;
3312   return ParseType(Ty) ||
3313          ParseGlobalValue(Ty, V);
3314 }
3315 
3316 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3317   C = nullptr;
3318 
3319   LocTy KwLoc = Lex.getLoc();
3320   if (!EatIfPresent(lltok::kw_comdat))
3321     return false;
3322 
3323   if (EatIfPresent(lltok::lparen)) {
3324     if (Lex.getKind() != lltok::ComdatVar)
3325       return TokError("expected comdat variable");
3326     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3327     Lex.Lex();
3328     if (ParseToken(lltok::rparen, "expected ')' after comdat var"))
3329       return true;
3330   } else {
3331     if (GlobalName.empty())
3332       return TokError("comdat cannot be unnamed");
3333     C = getComdat(GlobalName, KwLoc);
3334   }
3335 
3336   return false;
3337 }
3338 
3339 /// ParseGlobalValueVector
3340 ///   ::= /*empty*/
3341 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3342 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3343                                       Optional<unsigned> *InRangeOp) {
3344   // Empty list.
3345   if (Lex.getKind() == lltok::rbrace ||
3346       Lex.getKind() == lltok::rsquare ||
3347       Lex.getKind() == lltok::greater ||
3348       Lex.getKind() == lltok::rparen)
3349     return false;
3350 
3351   do {
3352     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3353       *InRangeOp = Elts.size();
3354 
3355     Constant *C;
3356     if (ParseGlobalTypeAndValue(C)) return true;
3357     Elts.push_back(C);
3358   } while (EatIfPresent(lltok::comma));
3359 
3360   return false;
3361 }
3362 
3363 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) {
3364   SmallVector<Metadata *, 16> Elts;
3365   if (ParseMDNodeVector(Elts))
3366     return true;
3367 
3368   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3369   return false;
3370 }
3371 
3372 /// MDNode:
3373 ///  ::= !{ ... }
3374 ///  ::= !7
3375 ///  ::= !DILocation(...)
3376 bool LLParser::ParseMDNode(MDNode *&N) {
3377   if (Lex.getKind() == lltok::MetadataVar)
3378     return ParseSpecializedMDNode(N);
3379 
3380   return ParseToken(lltok::exclaim, "expected '!' here") ||
3381          ParseMDNodeTail(N);
3382 }
3383 
3384 bool LLParser::ParseMDNodeTail(MDNode *&N) {
3385   // !{ ... }
3386   if (Lex.getKind() == lltok::lbrace)
3387     return ParseMDTuple(N);
3388 
3389   // !42
3390   return ParseMDNodeID(N);
3391 }
3392 
3393 namespace {
3394 
3395 /// Structure to represent an optional metadata field.
3396 template <class FieldTy> struct MDFieldImpl {
3397   typedef MDFieldImpl ImplTy;
3398   FieldTy Val;
3399   bool Seen;
3400 
3401   void assign(FieldTy Val) {
3402     Seen = true;
3403     this->Val = std::move(Val);
3404   }
3405 
3406   explicit MDFieldImpl(FieldTy Default)
3407       : Val(std::move(Default)), Seen(false) {}
3408 };
3409 
3410 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3411   uint64_t Max;
3412 
3413   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3414       : ImplTy(Default), Max(Max) {}
3415 };
3416 
3417 struct LineField : public MDUnsignedField {
3418   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3419 };
3420 
3421 struct ColumnField : public MDUnsignedField {
3422   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3423 };
3424 
3425 struct DwarfTagField : public MDUnsignedField {
3426   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3427   DwarfTagField(dwarf::Tag DefaultTag)
3428       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3429 };
3430 
3431 struct DwarfMacinfoTypeField : public MDUnsignedField {
3432   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3433   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3434     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3435 };
3436 
3437 struct DwarfAttEncodingField : public MDUnsignedField {
3438   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3439 };
3440 
3441 struct DwarfVirtualityField : public MDUnsignedField {
3442   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3443 };
3444 
3445 struct DwarfLangField : public MDUnsignedField {
3446   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3447 };
3448 
3449 struct DwarfCCField : public MDUnsignedField {
3450   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3451 };
3452 
3453 struct EmissionKindField : public MDUnsignedField {
3454   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3455 };
3456 
3457 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3458   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3459 };
3460 
3461 struct MDSignedField : public MDFieldImpl<int64_t> {
3462   int64_t Min;
3463   int64_t Max;
3464 
3465   MDSignedField(int64_t Default = 0)
3466       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3467   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3468       : ImplTy(Default), Min(Min), Max(Max) {}
3469 };
3470 
3471 struct MDBoolField : public MDFieldImpl<bool> {
3472   MDBoolField(bool Default = false) : ImplTy(Default) {}
3473 };
3474 
3475 struct MDField : public MDFieldImpl<Metadata *> {
3476   bool AllowNull;
3477 
3478   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3479 };
3480 
3481 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> {
3482   MDConstant() : ImplTy(nullptr) {}
3483 };
3484 
3485 struct MDStringField : public MDFieldImpl<MDString *> {
3486   bool AllowEmpty;
3487   MDStringField(bool AllowEmpty = true)
3488       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3489 };
3490 
3491 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3492   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3493 };
3494 
3495 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
3496   ChecksumKindField() : ImplTy(DIFile::CSK_None) {}
3497   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3498 };
3499 
3500 } // end anonymous namespace
3501 
3502 namespace llvm {
3503 
3504 template <>
3505 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3506                             MDUnsignedField &Result) {
3507   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
3508     return TokError("expected unsigned integer");
3509 
3510   auto &U = Lex.getAPSIntVal();
3511   if (U.ugt(Result.Max))
3512     return TokError("value for '" + Name + "' too large, limit is " +
3513                     Twine(Result.Max));
3514   Result.assign(U.getZExtValue());
3515   assert(Result.Val <= Result.Max && "Expected value in range");
3516   Lex.Lex();
3517   return false;
3518 }
3519 
3520 template <>
3521 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) {
3522   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3523 }
3524 template <>
3525 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
3526   return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3527 }
3528 
3529 template <>
3530 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
3531   if (Lex.getKind() == lltok::APSInt)
3532     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3533 
3534   if (Lex.getKind() != lltok::DwarfTag)
3535     return TokError("expected DWARF tag");
3536 
3537   unsigned Tag = dwarf::getTag(Lex.getStrVal());
3538   if (Tag == dwarf::DW_TAG_invalid)
3539     return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
3540   assert(Tag <= Result.Max && "Expected valid DWARF tag");
3541 
3542   Result.assign(Tag);
3543   Lex.Lex();
3544   return false;
3545 }
3546 
3547 template <>
3548 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3549                             DwarfMacinfoTypeField &Result) {
3550   if (Lex.getKind() == lltok::APSInt)
3551     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3552 
3553   if (Lex.getKind() != lltok::DwarfMacinfo)
3554     return TokError("expected DWARF macinfo type");
3555 
3556   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
3557   if (Macinfo == dwarf::DW_MACINFO_invalid)
3558     return TokError(
3559         "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'");
3560   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
3561 
3562   Result.assign(Macinfo);
3563   Lex.Lex();
3564   return false;
3565 }
3566 
3567 template <>
3568 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3569                             DwarfVirtualityField &Result) {
3570   if (Lex.getKind() == lltok::APSInt)
3571     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3572 
3573   if (Lex.getKind() != lltok::DwarfVirtuality)
3574     return TokError("expected DWARF virtuality code");
3575 
3576   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
3577   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
3578     return TokError("invalid DWARF virtuality code" + Twine(" '") +
3579                     Lex.getStrVal() + "'");
3580   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
3581   Result.assign(Virtuality);
3582   Lex.Lex();
3583   return false;
3584 }
3585 
3586 template <>
3587 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
3588   if (Lex.getKind() == lltok::APSInt)
3589     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3590 
3591   if (Lex.getKind() != lltok::DwarfLang)
3592     return TokError("expected DWARF language");
3593 
3594   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
3595   if (!Lang)
3596     return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
3597                     "'");
3598   assert(Lang <= Result.Max && "Expected valid DWARF language");
3599   Result.assign(Lang);
3600   Lex.Lex();
3601   return false;
3602 }
3603 
3604 template <>
3605 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
3606   if (Lex.getKind() == lltok::APSInt)
3607     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3608 
3609   if (Lex.getKind() != lltok::DwarfCC)
3610     return TokError("expected DWARF calling convention");
3611 
3612   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
3613   if (!CC)
3614     return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() +
3615                     "'");
3616   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
3617   Result.assign(CC);
3618   Lex.Lex();
3619   return false;
3620 }
3621 
3622 template <>
3623 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) {
3624   if (Lex.getKind() == lltok::APSInt)
3625     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3626 
3627   if (Lex.getKind() != lltok::EmissionKind)
3628     return TokError("expected emission kind");
3629 
3630   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
3631   if (!Kind)
3632     return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
3633                     "'");
3634   assert(*Kind <= Result.Max && "Expected valid emission kind");
3635   Result.assign(*Kind);
3636   Lex.Lex();
3637   return false;
3638 }
3639 
3640 template <>
3641 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3642                             DwarfAttEncodingField &Result) {
3643   if (Lex.getKind() == lltok::APSInt)
3644     return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
3645 
3646   if (Lex.getKind() != lltok::DwarfAttEncoding)
3647     return TokError("expected DWARF type attribute encoding");
3648 
3649   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
3650   if (!Encoding)
3651     return TokError("invalid DWARF type attribute encoding" + Twine(" '") +
3652                     Lex.getStrVal() + "'");
3653   assert(Encoding <= Result.Max && "Expected valid DWARF language");
3654   Result.assign(Encoding);
3655   Lex.Lex();
3656   return false;
3657 }
3658 
3659 /// DIFlagField
3660 ///  ::= uint32
3661 ///  ::= DIFlagVector
3662 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
3663 template <>
3664 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
3665 
3666   // Parser for a single flag.
3667   auto parseFlag = [&](DINode::DIFlags &Val) {
3668     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
3669       uint32_t TempVal = static_cast<uint32_t>(Val);
3670       bool Res = ParseUInt32(TempVal);
3671       Val = static_cast<DINode::DIFlags>(TempVal);
3672       return Res;
3673     }
3674 
3675     if (Lex.getKind() != lltok::DIFlag)
3676       return TokError("expected debug info flag");
3677 
3678     Val = DINode::getFlag(Lex.getStrVal());
3679     if (!Val)
3680       return TokError(Twine("invalid debug info flag flag '") +
3681                       Lex.getStrVal() + "'");
3682     Lex.Lex();
3683     return false;
3684   };
3685 
3686   // Parse the flags and combine them together.
3687   DINode::DIFlags Combined = DINode::FlagZero;
3688   do {
3689     DINode::DIFlags Val;
3690     if (parseFlag(Val))
3691       return true;
3692     Combined |= Val;
3693   } while (EatIfPresent(lltok::bar));
3694 
3695   Result.assign(Combined);
3696   return false;
3697 }
3698 
3699 template <>
3700 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3701                             MDSignedField &Result) {
3702   if (Lex.getKind() != lltok::APSInt)
3703     return TokError("expected signed integer");
3704 
3705   auto &S = Lex.getAPSIntVal();
3706   if (S < Result.Min)
3707     return TokError("value for '" + Name + "' too small, limit is " +
3708                     Twine(Result.Min));
3709   if (S > Result.Max)
3710     return TokError("value for '" + Name + "' too large, limit is " +
3711                     Twine(Result.Max));
3712   Result.assign(S.getExtValue());
3713   assert(Result.Val >= Result.Min && "Expected value in range");
3714   assert(Result.Val <= Result.Max && "Expected value in range");
3715   Lex.Lex();
3716   return false;
3717 }
3718 
3719 template <>
3720 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
3721   switch (Lex.getKind()) {
3722   default:
3723     return TokError("expected 'true' or 'false'");
3724   case lltok::kw_true:
3725     Result.assign(true);
3726     break;
3727   case lltok::kw_false:
3728     Result.assign(false);
3729     break;
3730   }
3731   Lex.Lex();
3732   return false;
3733 }
3734 
3735 template <>
3736 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) {
3737   if (Lex.getKind() == lltok::kw_null) {
3738     if (!Result.AllowNull)
3739       return TokError("'" + Name + "' cannot be null");
3740     Lex.Lex();
3741     Result.assign(nullptr);
3742     return false;
3743   }
3744 
3745   Metadata *MD;
3746   if (ParseMetadata(MD, nullptr))
3747     return true;
3748 
3749   Result.assign(MD);
3750   return false;
3751 }
3752 
3753 template <>
3754 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
3755   LocTy ValueLoc = Lex.getLoc();
3756   std::string S;
3757   if (ParseStringConstant(S))
3758     return true;
3759 
3760   if (!Result.AllowEmpty && S.empty())
3761     return Error(ValueLoc, "'" + Name + "' cannot be empty");
3762 
3763   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
3764   return false;
3765 }
3766 
3767 template <>
3768 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
3769   SmallVector<Metadata *, 4> MDs;
3770   if (ParseMDNodeVector(MDs))
3771     return true;
3772 
3773   Result.assign(std::move(MDs));
3774   return false;
3775 }
3776 
3777 template <>
3778 bool LLParser::ParseMDField(LocTy Loc, StringRef Name,
3779                             ChecksumKindField &Result) {
3780   if (Lex.getKind() != lltok::ChecksumKind)
3781     return TokError(
3782         "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'");
3783 
3784   DIFile::ChecksumKind CSKind = DIFile::getChecksumKind(Lex.getStrVal());
3785 
3786   Result.assign(CSKind);
3787   Lex.Lex();
3788   return false;
3789 }
3790 
3791 } // end namespace llvm
3792 
3793 template <class ParserTy>
3794 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) {
3795   do {
3796     if (Lex.getKind() != lltok::LabelStr)
3797       return TokError("expected field label here");
3798 
3799     if (parseField())
3800       return true;
3801   } while (EatIfPresent(lltok::comma));
3802 
3803   return false;
3804 }
3805 
3806 template <class ParserTy>
3807 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) {
3808   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
3809   Lex.Lex();
3810 
3811   if (ParseToken(lltok::lparen, "expected '(' here"))
3812     return true;
3813   if (Lex.getKind() != lltok::rparen)
3814     if (ParseMDFieldsImplBody(parseField))
3815       return true;
3816 
3817   ClosingLoc = Lex.getLoc();
3818   return ParseToken(lltok::rparen, "expected ')' here");
3819 }
3820 
3821 template <class FieldTy>
3822 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) {
3823   if (Result.Seen)
3824     return TokError("field '" + Name + "' cannot be specified more than once");
3825 
3826   LocTy Loc = Lex.getLoc();
3827   Lex.Lex();
3828   return ParseMDField(Loc, Name, Result);
3829 }
3830 
3831 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
3832   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
3833 
3834 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
3835   if (Lex.getStrVal() == #CLASS)                                               \
3836     return Parse##CLASS(N, IsDistinct);
3837 #include "llvm/IR/Metadata.def"
3838 
3839   return TokError("expected metadata type");
3840 }
3841 
3842 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
3843 #define NOP_FIELD(NAME, TYPE, INIT)
3844 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
3845   if (!NAME.Seen)                                                              \
3846     return Error(ClosingLoc, "missing required field '" #NAME "'");
3847 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
3848   if (Lex.getStrVal() == #NAME)                                                \
3849     return ParseMDField(#NAME, NAME);
3850 #define PARSE_MD_FIELDS()                                                      \
3851   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
3852   do {                                                                         \
3853     LocTy ClosingLoc;                                                          \
3854     if (ParseMDFieldsImpl([&]() -> bool {                                      \
3855       VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                          \
3856       return TokError(Twine("invalid field '") + Lex.getStrVal() + "'");       \
3857     }, ClosingLoc))                                                            \
3858       return true;                                                             \
3859     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
3860   } while (false)
3861 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
3862   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
3863 
3864 /// ParseDILocationFields:
3865 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6)
3866 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) {
3867 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3868   OPTIONAL(line, LineField, );                                                 \
3869   OPTIONAL(column, ColumnField, );                                             \
3870   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
3871   OPTIONAL(inlinedAt, MDField, );
3872   PARSE_MD_FIELDS();
3873 #undef VISIT_MD_FIELDS
3874 
3875   Result = GET_OR_DISTINCT(
3876       DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val));
3877   return false;
3878 }
3879 
3880 /// ParseGenericDINode:
3881 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
3882 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) {
3883 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3884   REQUIRED(tag, DwarfTagField, );                                              \
3885   OPTIONAL(header, MDStringField, );                                           \
3886   OPTIONAL(operands, MDFieldList, );
3887   PARSE_MD_FIELDS();
3888 #undef VISIT_MD_FIELDS
3889 
3890   Result = GET_OR_DISTINCT(GenericDINode,
3891                            (Context, tag.Val, header.Val, operands.Val));
3892   return false;
3893 }
3894 
3895 /// ParseDISubrange:
3896 ///   ::= !DISubrange(count: 30, lowerBound: 2)
3897 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) {
3898 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3899   REQUIRED(count, MDSignedField, (-1, -1, INT64_MAX));                         \
3900   OPTIONAL(lowerBound, MDSignedField, );
3901   PARSE_MD_FIELDS();
3902 #undef VISIT_MD_FIELDS
3903 
3904   Result = GET_OR_DISTINCT(DISubrange, (Context, count.Val, lowerBound.Val));
3905   return false;
3906 }
3907 
3908 /// ParseDIEnumerator:
3909 ///   ::= !DIEnumerator(value: 30, name: "SomeKind")
3910 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) {
3911 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3912   REQUIRED(name, MDStringField, );                                             \
3913   REQUIRED(value, MDSignedField, );
3914   PARSE_MD_FIELDS();
3915 #undef VISIT_MD_FIELDS
3916 
3917   Result = GET_OR_DISTINCT(DIEnumerator, (Context, value.Val, name.Val));
3918   return false;
3919 }
3920 
3921 /// ParseDIBasicType:
3922 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32)
3923 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) {
3924 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3925   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
3926   OPTIONAL(name, MDStringField, );                                             \
3927   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
3928   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
3929   OPTIONAL(encoding, DwarfAttEncodingField, );
3930   PARSE_MD_FIELDS();
3931 #undef VISIT_MD_FIELDS
3932 
3933   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
3934                                          align.Val, encoding.Val));
3935   return false;
3936 }
3937 
3938 /// ParseDIDerivedType:
3939 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
3940 ///                      line: 7, scope: !1, baseType: !2, size: 32,
3941 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
3942 ///                      dwarfAddressSpace: 3)
3943 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) {
3944 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3945   REQUIRED(tag, DwarfTagField, );                                              \
3946   OPTIONAL(name, MDStringField, );                                             \
3947   OPTIONAL(file, MDField, );                                                   \
3948   OPTIONAL(line, LineField, );                                                 \
3949   OPTIONAL(scope, MDField, );                                                  \
3950   REQUIRED(baseType, MDField, );                                               \
3951   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
3952   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
3953   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
3954   OPTIONAL(flags, DIFlagField, );                                              \
3955   OPTIONAL(extraData, MDField, );                                              \
3956   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));
3957   PARSE_MD_FIELDS();
3958 #undef VISIT_MD_FIELDS
3959 
3960   Optional<unsigned> DWARFAddressSpace;
3961   if (dwarfAddressSpace.Val != UINT32_MAX)
3962     DWARFAddressSpace = dwarfAddressSpace.Val;
3963 
3964   Result = GET_OR_DISTINCT(DIDerivedType,
3965                            (Context, tag.Val, name.Val, file.Val, line.Val,
3966                             scope.Val, baseType.Val, size.Val, align.Val,
3967                             offset.Val, DWARFAddressSpace, flags.Val,
3968                             extraData.Val));
3969   return false;
3970 }
3971 
3972 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) {
3973 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
3974   REQUIRED(tag, DwarfTagField, );                                              \
3975   OPTIONAL(name, MDStringField, );                                             \
3976   OPTIONAL(file, MDField, );                                                   \
3977   OPTIONAL(line, LineField, );                                                 \
3978   OPTIONAL(scope, MDField, );                                                  \
3979   OPTIONAL(baseType, MDField, );                                               \
3980   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
3981   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
3982   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
3983   OPTIONAL(flags, DIFlagField, );                                              \
3984   OPTIONAL(elements, MDField, );                                               \
3985   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
3986   OPTIONAL(vtableHolder, MDField, );                                           \
3987   OPTIONAL(templateParams, MDField, );                                         \
3988   OPTIONAL(identifier, MDStringField, );
3989   PARSE_MD_FIELDS();
3990 #undef VISIT_MD_FIELDS
3991 
3992   // If this has an identifier try to build an ODR type.
3993   if (identifier.Val)
3994     if (auto *CT = DICompositeType::buildODRType(
3995             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
3996             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
3997             elements.Val, runtimeLang.Val, vtableHolder.Val,
3998             templateParams.Val)) {
3999       Result = CT;
4000       return false;
4001     }
4002 
4003   // Create a new node, and save it in the context if it belongs in the type
4004   // map.
4005   Result = GET_OR_DISTINCT(
4006       DICompositeType,
4007       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4008        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4009        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val));
4010   return false;
4011 }
4012 
4013 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4014 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4015   OPTIONAL(flags, DIFlagField, );                                              \
4016   OPTIONAL(cc, DwarfCCField, );                                                \
4017   REQUIRED(types, MDField, );
4018   PARSE_MD_FIELDS();
4019 #undef VISIT_MD_FIELDS
4020 
4021   Result = GET_OR_DISTINCT(DISubroutineType,
4022                            (Context, flags.Val, cc.Val, types.Val));
4023   return false;
4024 }
4025 
4026 /// ParseDIFileType:
4027 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir"
4028 ///                   checksumkind: CSK_MD5,
4029 ///                   checksum: "000102030405060708090a0b0c0d0e0f")
4030 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) {
4031 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4032   REQUIRED(filename, MDStringField, );                                         \
4033   REQUIRED(directory, MDStringField, );                                        \
4034   OPTIONAL(checksumkind, ChecksumKindField, );                                 \
4035   OPTIONAL(checksum, MDStringField, );
4036   PARSE_MD_FIELDS();
4037 #undef VISIT_MD_FIELDS
4038 
4039   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4040                                     checksumkind.Val, checksum.Val));
4041   return false;
4042 }
4043 
4044 /// ParseDICompileUnit:
4045 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4046 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4047 ///                      splitDebugFilename: "abc.debug",
4048 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4049 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd)
4050 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4051   if (!IsDistinct)
4052     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4053 
4054 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4055   REQUIRED(language, DwarfLangField, );                                        \
4056   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4057   OPTIONAL(producer, MDStringField, );                                         \
4058   OPTIONAL(isOptimized, MDBoolField, );                                        \
4059   OPTIONAL(flags, MDStringField, );                                            \
4060   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4061   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4062   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4063   OPTIONAL(enums, MDField, );                                                  \
4064   OPTIONAL(retainedTypes, MDField, );                                          \
4065   OPTIONAL(globals, MDField, );                                                \
4066   OPTIONAL(imports, MDField, );                                                \
4067   OPTIONAL(macros, MDField, );                                                 \
4068   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4069   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
4070   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);
4071   PARSE_MD_FIELDS();
4072 #undef VISIT_MD_FIELDS
4073 
4074   Result = DICompileUnit::getDistinct(
4075       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4076       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4077       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4078       splitDebugInlining.Val, debugInfoForProfiling.Val);
4079   return false;
4080 }
4081 
4082 /// ParseDISubprogram:
4083 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4084 ///                     file: !1, line: 7, type: !2, isLocal: false,
4085 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4086 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4087 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4088 ///                     isOptimized: false, templateParams: !4, declaration: !5,
4089 ///                     variables: !6, thrownTypes: !7)
4090 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) {
4091   auto Loc = Lex.getLoc();
4092 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4093   OPTIONAL(scope, MDField, );                                                  \
4094   OPTIONAL(name, MDStringField, );                                             \
4095   OPTIONAL(linkageName, MDStringField, );                                      \
4096   OPTIONAL(file, MDField, );                                                   \
4097   OPTIONAL(line, LineField, );                                                 \
4098   OPTIONAL(type, MDField, );                                                   \
4099   OPTIONAL(isLocal, MDBoolField, );                                            \
4100   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4101   OPTIONAL(scopeLine, LineField, );                                            \
4102   OPTIONAL(containingType, MDField, );                                         \
4103   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4104   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4105   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4106   OPTIONAL(flags, DIFlagField, );                                              \
4107   OPTIONAL(isOptimized, MDBoolField, );                                        \
4108   OPTIONAL(unit, MDField, );                                                   \
4109   OPTIONAL(templateParams, MDField, );                                         \
4110   OPTIONAL(declaration, MDField, );                                            \
4111   OPTIONAL(variables, MDField, );                                              \
4112   OPTIONAL(thrownTypes, MDField, );
4113   PARSE_MD_FIELDS();
4114 #undef VISIT_MD_FIELDS
4115 
4116   if (isDefinition.Val && !IsDistinct)
4117     return Lex.Error(
4118         Loc,
4119         "missing 'distinct', required for !DISubprogram when 'isDefinition'");
4120 
4121   Result = GET_OR_DISTINCT(
4122       DISubprogram,
4123       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4124        type.Val, isLocal.Val, isDefinition.Val, scopeLine.Val,
4125        containingType.Val, virtuality.Val, virtualIndex.Val, thisAdjustment.Val,
4126        flags.Val, isOptimized.Val, unit.Val, templateParams.Val,
4127        declaration.Val, variables.Val, thrownTypes.Val));
4128   return false;
4129 }
4130 
4131 /// ParseDILexicalBlock:
4132 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4133 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4134 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4135   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4136   OPTIONAL(file, MDField, );                                                   \
4137   OPTIONAL(line, LineField, );                                                 \
4138   OPTIONAL(column, ColumnField, );
4139   PARSE_MD_FIELDS();
4140 #undef VISIT_MD_FIELDS
4141 
4142   Result = GET_OR_DISTINCT(
4143       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4144   return false;
4145 }
4146 
4147 /// ParseDILexicalBlockFile:
4148 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4149 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4150 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4151   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4152   OPTIONAL(file, MDField, );                                                   \
4153   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4154   PARSE_MD_FIELDS();
4155 #undef VISIT_MD_FIELDS
4156 
4157   Result = GET_OR_DISTINCT(DILexicalBlockFile,
4158                            (Context, scope.Val, file.Val, discriminator.Val));
4159   return false;
4160 }
4161 
4162 /// ParseDINamespace:
4163 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4164 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) {
4165 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4166   REQUIRED(scope, MDField, );                                                  \
4167   OPTIONAL(name, MDStringField, );                                             \
4168   OPTIONAL(exportSymbols, MDBoolField, );
4169   PARSE_MD_FIELDS();
4170 #undef VISIT_MD_FIELDS
4171 
4172   Result = GET_OR_DISTINCT(DINamespace,
4173                            (Context, scope.Val, name.Val, exportSymbols.Val));
4174   return false;
4175 }
4176 
4177 /// ParseDIMacro:
4178 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue")
4179 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) {
4180 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4181   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
4182   OPTIONAL(line, LineField, );                                                 \
4183   REQUIRED(name, MDStringField, );                                             \
4184   OPTIONAL(value, MDStringField, );
4185   PARSE_MD_FIELDS();
4186 #undef VISIT_MD_FIELDS
4187 
4188   Result = GET_OR_DISTINCT(DIMacro,
4189                            (Context, type.Val, line.Val, name.Val, value.Val));
4190   return false;
4191 }
4192 
4193 /// ParseDIMacroFile:
4194 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4195 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4196 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4197   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
4198   OPTIONAL(line, LineField, );                                                 \
4199   REQUIRED(file, MDField, );                                                   \
4200   OPTIONAL(nodes, MDField, );
4201   PARSE_MD_FIELDS();
4202 #undef VISIT_MD_FIELDS
4203 
4204   Result = GET_OR_DISTINCT(DIMacroFile,
4205                            (Context, type.Val, line.Val, file.Val, nodes.Val));
4206   return false;
4207 }
4208 
4209 /// ParseDIModule:
4210 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG",
4211 ///                 includePath: "/usr/include", isysroot: "/")
4212 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) {
4213 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4214   REQUIRED(scope, MDField, );                                                  \
4215   REQUIRED(name, MDStringField, );                                             \
4216   OPTIONAL(configMacros, MDStringField, );                                     \
4217   OPTIONAL(includePath, MDStringField, );                                      \
4218   OPTIONAL(isysroot, MDStringField, );
4219   PARSE_MD_FIELDS();
4220 #undef VISIT_MD_FIELDS
4221 
4222   Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val,
4223                            configMacros.Val, includePath.Val, isysroot.Val));
4224   return false;
4225 }
4226 
4227 /// ParseDITemplateTypeParameter:
4228 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1)
4229 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4230 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4231   OPTIONAL(name, MDStringField, );                                             \
4232   REQUIRED(type, MDField, );
4233   PARSE_MD_FIELDS();
4234 #undef VISIT_MD_FIELDS
4235 
4236   Result =
4237       GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val));
4238   return false;
4239 }
4240 
4241 /// ParseDITemplateValueParameter:
4242 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4243 ///                                 name: "V", type: !1, value: i32 7)
4244 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4245 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4246   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
4247   OPTIONAL(name, MDStringField, );                                             \
4248   OPTIONAL(type, MDField, );                                                   \
4249   REQUIRED(value, MDField, );
4250   PARSE_MD_FIELDS();
4251 #undef VISIT_MD_FIELDS
4252 
4253   Result = GET_OR_DISTINCT(DITemplateValueParameter,
4254                            (Context, tag.Val, name.Val, type.Val, value.Val));
4255   return false;
4256 }
4257 
4258 /// ParseDIGlobalVariable:
4259 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
4260 ///                         file: !1, line: 7, type: !2, isLocal: false,
4261 ///                         isDefinition: true, declaration: !3, align: 8)
4262 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
4263 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4264   REQUIRED(name, MDStringField, (/* AllowEmpty */ false));                     \
4265   OPTIONAL(scope, MDField, );                                                  \
4266   OPTIONAL(linkageName, MDStringField, );                                      \
4267   OPTIONAL(file, MDField, );                                                   \
4268   OPTIONAL(line, LineField, );                                                 \
4269   OPTIONAL(type, MDField, );                                                   \
4270   OPTIONAL(isLocal, MDBoolField, );                                            \
4271   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4272   OPTIONAL(declaration, MDField, );                                            \
4273   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4274   PARSE_MD_FIELDS();
4275 #undef VISIT_MD_FIELDS
4276 
4277   Result = GET_OR_DISTINCT(DIGlobalVariable,
4278                            (Context, scope.Val, name.Val, linkageName.Val,
4279                             file.Val, line.Val, type.Val, isLocal.Val,
4280                             isDefinition.Val, declaration.Val, align.Val));
4281   return false;
4282 }
4283 
4284 /// ParseDILocalVariable:
4285 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
4286 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4287 ///                        align: 8)
4288 ///   ::= !DILocalVariable(scope: !0, name: "foo",
4289 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
4290 ///                        align: 8)
4291 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) {
4292 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4293   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4294   OPTIONAL(name, MDStringField, );                                             \
4295   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
4296   OPTIONAL(file, MDField, );                                                   \
4297   OPTIONAL(line, LineField, );                                                 \
4298   OPTIONAL(type, MDField, );                                                   \
4299   OPTIONAL(flags, DIFlagField, );                                              \
4300   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));
4301   PARSE_MD_FIELDS();
4302 #undef VISIT_MD_FIELDS
4303 
4304   Result = GET_OR_DISTINCT(DILocalVariable,
4305                            (Context, scope.Val, name.Val, file.Val, line.Val,
4306                             type.Val, arg.Val, flags.Val, align.Val));
4307   return false;
4308 }
4309 
4310 /// ParseDIExpression:
4311 ///   ::= !DIExpression(0, 7, -1)
4312 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) {
4313   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4314   Lex.Lex();
4315 
4316   if (ParseToken(lltok::lparen, "expected '(' here"))
4317     return true;
4318 
4319   SmallVector<uint64_t, 8> Elements;
4320   if (Lex.getKind() != lltok::rparen)
4321     do {
4322       if (Lex.getKind() == lltok::DwarfOp) {
4323         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
4324           Lex.Lex();
4325           Elements.push_back(Op);
4326           continue;
4327         }
4328         return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
4329       }
4330 
4331       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4332         return TokError("expected unsigned integer");
4333 
4334       auto &U = Lex.getAPSIntVal();
4335       if (U.ugt(UINT64_MAX))
4336         return TokError("element too large, limit is " + Twine(UINT64_MAX));
4337       Elements.push_back(U.getZExtValue());
4338       Lex.Lex();
4339     } while (EatIfPresent(lltok::comma));
4340 
4341   if (ParseToken(lltok::rparen, "expected ')' here"))
4342     return true;
4343 
4344   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
4345   return false;
4346 }
4347 
4348 /// ParseDIGlobalVariableExpression:
4349 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
4350 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result,
4351                                                bool IsDistinct) {
4352 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4353   REQUIRED(var, MDField, );                                                    \
4354   OPTIONAL(expr, MDField, );
4355   PARSE_MD_FIELDS();
4356 #undef VISIT_MD_FIELDS
4357 
4358   Result =
4359       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
4360   return false;
4361 }
4362 
4363 /// ParseDIObjCProperty:
4364 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
4365 ///                       getter: "getFoo", attributes: 7, type: !2)
4366 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
4367 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4368   OPTIONAL(name, MDStringField, );                                             \
4369   OPTIONAL(file, MDField, );                                                   \
4370   OPTIONAL(line, LineField, );                                                 \
4371   OPTIONAL(setter, MDStringField, );                                           \
4372   OPTIONAL(getter, MDStringField, );                                           \
4373   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
4374   OPTIONAL(type, MDField, );
4375   PARSE_MD_FIELDS();
4376 #undef VISIT_MD_FIELDS
4377 
4378   Result = GET_OR_DISTINCT(DIObjCProperty,
4379                            (Context, name.Val, file.Val, line.Val, setter.Val,
4380                             getter.Val, attributes.Val, type.Val));
4381   return false;
4382 }
4383 
4384 /// ParseDIImportedEntity:
4385 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
4386 ///                         line: 7, name: "foo")
4387 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
4388 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4389   REQUIRED(tag, DwarfTagField, );                                              \
4390   REQUIRED(scope, MDField, );                                                  \
4391   OPTIONAL(entity, MDField, );                                                 \
4392   OPTIONAL(line, LineField, );                                                 \
4393   OPTIONAL(name, MDStringField, );
4394   PARSE_MD_FIELDS();
4395 #undef VISIT_MD_FIELDS
4396 
4397   Result = GET_OR_DISTINCT(DIImportedEntity, (Context, tag.Val, scope.Val,
4398                                               entity.Val, line.Val, name.Val));
4399   return false;
4400 }
4401 
4402 #undef PARSE_MD_FIELD
4403 #undef NOP_FIELD
4404 #undef REQUIRE_FIELD
4405 #undef DECLARE_FIELD
4406 
4407 /// ParseMetadataAsValue
4408 ///  ::= metadata i32 %local
4409 ///  ::= metadata i32 @global
4410 ///  ::= metadata i32 7
4411 ///  ::= metadata !0
4412 ///  ::= metadata !{...}
4413 ///  ::= metadata !"string"
4414 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
4415   // Note: the type 'metadata' has already been parsed.
4416   Metadata *MD;
4417   if (ParseMetadata(MD, &PFS))
4418     return true;
4419 
4420   V = MetadataAsValue::get(Context, MD);
4421   return false;
4422 }
4423 
4424 /// ParseValueAsMetadata
4425 ///  ::= i32 %local
4426 ///  ::= i32 @global
4427 ///  ::= i32 7
4428 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
4429                                     PerFunctionState *PFS) {
4430   Type *Ty;
4431   LocTy Loc;
4432   if (ParseType(Ty, TypeMsg, Loc))
4433     return true;
4434   if (Ty->isMetadataTy())
4435     return Error(Loc, "invalid metadata-value-metadata roundtrip");
4436 
4437   Value *V;
4438   if (ParseValue(Ty, V, PFS))
4439     return true;
4440 
4441   MD = ValueAsMetadata::get(V);
4442   return false;
4443 }
4444 
4445 /// ParseMetadata
4446 ///  ::= i32 %local
4447 ///  ::= i32 @global
4448 ///  ::= i32 7
4449 ///  ::= !42
4450 ///  ::= !{...}
4451 ///  ::= !"string"
4452 ///  ::= !DILocation(...)
4453 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) {
4454   if (Lex.getKind() == lltok::MetadataVar) {
4455     MDNode *N;
4456     if (ParseSpecializedMDNode(N))
4457       return true;
4458     MD = N;
4459     return false;
4460   }
4461 
4462   // ValueAsMetadata:
4463   // <type> <value>
4464   if (Lex.getKind() != lltok::exclaim)
4465     return ParseValueAsMetadata(MD, "expected metadata operand", PFS);
4466 
4467   // '!'.
4468   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
4469   Lex.Lex();
4470 
4471   // MDString:
4472   //   ::= '!' STRINGCONSTANT
4473   if (Lex.getKind() == lltok::StringConstant) {
4474     MDString *S;
4475     if (ParseMDString(S))
4476       return true;
4477     MD = S;
4478     return false;
4479   }
4480 
4481   // MDNode:
4482   // !{ ... }
4483   // !7
4484   MDNode *N;
4485   if (ParseMDNodeTail(N))
4486     return true;
4487   MD = N;
4488   return false;
4489 }
4490 
4491 //===----------------------------------------------------------------------===//
4492 // Function Parsing.
4493 //===----------------------------------------------------------------------===//
4494 
4495 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V,
4496                                    PerFunctionState *PFS) {
4497   if (Ty->isFunctionTy())
4498     return Error(ID.Loc, "functions are not values, refer to them as pointers");
4499 
4500   switch (ID.Kind) {
4501   case ValID::t_LocalID:
4502     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
4503     V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc);
4504     return V == nullptr;
4505   case ValID::t_LocalName:
4506     if (!PFS) return Error(ID.Loc, "invalid use of function-local name");
4507     V = PFS->GetVal(ID.StrVal, Ty, ID.Loc);
4508     return V == nullptr;
4509   case ValID::t_InlineAsm: {
4510     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
4511       return Error(ID.Loc, "invalid type for inline asm constraint string");
4512     V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1,
4513                        (ID.UIntVal >> 1) & 1,
4514                        (InlineAsm::AsmDialect(ID.UIntVal >> 2)));
4515     return false;
4516   }
4517   case ValID::t_GlobalName:
4518     V = GetGlobalVal(ID.StrVal, Ty, ID.Loc);
4519     return V == nullptr;
4520   case ValID::t_GlobalID:
4521     V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc);
4522     return V == nullptr;
4523   case ValID::t_APSInt:
4524     if (!Ty->isIntegerTy())
4525       return Error(ID.Loc, "integer constant must have integer type");
4526     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
4527     V = ConstantInt::get(Context, ID.APSIntVal);
4528     return false;
4529   case ValID::t_APFloat:
4530     if (!Ty->isFloatingPointTy() ||
4531         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
4532       return Error(ID.Loc, "floating point constant invalid for type");
4533 
4534     // The lexer has no type info, so builds all half, float, and double FP
4535     // constants as double.  Fix this here.  Long double does not need this.
4536     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
4537       bool Ignored;
4538       if (Ty->isHalfTy())
4539         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
4540                               &Ignored);
4541       else if (Ty->isFloatTy())
4542         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
4543                               &Ignored);
4544     }
4545     V = ConstantFP::get(Context, ID.APFloatVal);
4546 
4547     if (V->getType() != Ty)
4548       return Error(ID.Loc, "floating point constant does not have type '" +
4549                    getTypeString(Ty) + "'");
4550 
4551     return false;
4552   case ValID::t_Null:
4553     if (!Ty->isPointerTy())
4554       return Error(ID.Loc, "null must be a pointer type");
4555     V = ConstantPointerNull::get(cast<PointerType>(Ty));
4556     return false;
4557   case ValID::t_Undef:
4558     // FIXME: LabelTy should not be a first-class type.
4559     if (!Ty->isFirstClassType() || Ty->isLabelTy())
4560       return Error(ID.Loc, "invalid type for undef constant");
4561     V = UndefValue::get(Ty);
4562     return false;
4563   case ValID::t_EmptyArray:
4564     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
4565       return Error(ID.Loc, "invalid empty array initializer");
4566     V = UndefValue::get(Ty);
4567     return false;
4568   case ValID::t_Zero:
4569     // FIXME: LabelTy should not be a first-class type.
4570     if (!Ty->isFirstClassType() || Ty->isLabelTy())
4571       return Error(ID.Loc, "invalid type for null constant");
4572     V = Constant::getNullValue(Ty);
4573     return false;
4574   case ValID::t_None:
4575     if (!Ty->isTokenTy())
4576       return Error(ID.Loc, "invalid type for none constant");
4577     V = Constant::getNullValue(Ty);
4578     return false;
4579   case ValID::t_Constant:
4580     if (ID.ConstantVal->getType() != Ty)
4581       return Error(ID.Loc, "constant expression type mismatch");
4582 
4583     V = ID.ConstantVal;
4584     return false;
4585   case ValID::t_ConstantStruct:
4586   case ValID::t_PackedConstantStruct:
4587     if (StructType *ST = dyn_cast<StructType>(Ty)) {
4588       if (ST->getNumElements() != ID.UIntVal)
4589         return Error(ID.Loc,
4590                      "initializer with struct type has wrong # elements");
4591       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
4592         return Error(ID.Loc, "packed'ness of initializer and type don't match");
4593 
4594       // Verify that the elements are compatible with the structtype.
4595       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
4596         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
4597           return Error(ID.Loc, "element " + Twine(i) +
4598                     " of struct initializer doesn't match struct element type");
4599 
4600       V = ConstantStruct::get(
4601           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
4602     } else
4603       return Error(ID.Loc, "constant expression type mismatch");
4604     return false;
4605   }
4606   llvm_unreachable("Invalid ValID");
4607 }
4608 
4609 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
4610   C = nullptr;
4611   ValID ID;
4612   auto Loc = Lex.getLoc();
4613   if (ParseValID(ID, /*PFS=*/nullptr))
4614     return true;
4615   switch (ID.Kind) {
4616   case ValID::t_APSInt:
4617   case ValID::t_APFloat:
4618   case ValID::t_Undef:
4619   case ValID::t_Constant:
4620   case ValID::t_ConstantStruct:
4621   case ValID::t_PackedConstantStruct: {
4622     Value *V;
4623     if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr))
4624       return true;
4625     assert(isa<Constant>(V) && "Expected a constant value");
4626     C = cast<Constant>(V);
4627     return false;
4628   }
4629   case ValID::t_Null:
4630     C = Constant::getNullValue(Ty);
4631     return false;
4632   default:
4633     return Error(Loc, "expected a constant value");
4634   }
4635 }
4636 
4637 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
4638   V = nullptr;
4639   ValID ID;
4640   return ParseValID(ID, PFS) || ConvertValIDToValue(Ty, ID, V, PFS);
4641 }
4642 
4643 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) {
4644   Type *Ty = nullptr;
4645   return ParseType(Ty) ||
4646          ParseValue(Ty, V, PFS);
4647 }
4648 
4649 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
4650                                       PerFunctionState &PFS) {
4651   Value *V;
4652   Loc = Lex.getLoc();
4653   if (ParseTypeAndValue(V, PFS)) return true;
4654   if (!isa<BasicBlock>(V))
4655     return Error(Loc, "expected a basic block");
4656   BB = cast<BasicBlock>(V);
4657   return false;
4658 }
4659 
4660 /// FunctionHeader
4661 ///   ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs
4662 ///       OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection
4663 ///       OptionalAlign OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
4664 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) {
4665   // Parse the linkage.
4666   LocTy LinkageLoc = Lex.getLoc();
4667   unsigned Linkage;
4668 
4669   unsigned Visibility;
4670   unsigned DLLStorageClass;
4671   AttrBuilder RetAttrs;
4672   unsigned CC;
4673   bool HasLinkage;
4674   Type *RetType = nullptr;
4675   LocTy RetTypeLoc = Lex.getLoc();
4676   if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass) ||
4677       ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
4678       ParseType(RetType, RetTypeLoc, true /*void allowed*/))
4679     return true;
4680 
4681   // Verify that the linkage is ok.
4682   switch ((GlobalValue::LinkageTypes)Linkage) {
4683   case GlobalValue::ExternalLinkage:
4684     break; // always ok.
4685   case GlobalValue::ExternalWeakLinkage:
4686     if (isDefine)
4687       return Error(LinkageLoc, "invalid linkage for function definition");
4688     break;
4689   case GlobalValue::PrivateLinkage:
4690   case GlobalValue::InternalLinkage:
4691   case GlobalValue::AvailableExternallyLinkage:
4692   case GlobalValue::LinkOnceAnyLinkage:
4693   case GlobalValue::LinkOnceODRLinkage:
4694   case GlobalValue::WeakAnyLinkage:
4695   case GlobalValue::WeakODRLinkage:
4696     if (!isDefine)
4697       return Error(LinkageLoc, "invalid linkage for function declaration");
4698     break;
4699   case GlobalValue::AppendingLinkage:
4700   case GlobalValue::CommonLinkage:
4701     return Error(LinkageLoc, "invalid function linkage type");
4702   }
4703 
4704   if (!isValidVisibilityForLinkage(Visibility, Linkage))
4705     return Error(LinkageLoc,
4706                  "symbol with local linkage must have default visibility");
4707 
4708   if (!FunctionType::isValidReturnType(RetType))
4709     return Error(RetTypeLoc, "invalid function return type");
4710 
4711   LocTy NameLoc = Lex.getLoc();
4712 
4713   std::string FunctionName;
4714   if (Lex.getKind() == lltok::GlobalVar) {
4715     FunctionName = Lex.getStrVal();
4716   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
4717     unsigned NameID = Lex.getUIntVal();
4718 
4719     if (NameID != NumberedVals.size())
4720       return TokError("function expected to be numbered '%" +
4721                       Twine(NumberedVals.size()) + "'");
4722   } else {
4723     return TokError("expected function name");
4724   }
4725 
4726   Lex.Lex();
4727 
4728   if (Lex.getKind() != lltok::lparen)
4729     return TokError("expected '(' in function argument list");
4730 
4731   SmallVector<ArgInfo, 8> ArgList;
4732   bool isVarArg;
4733   AttrBuilder FuncAttrs;
4734   std::vector<unsigned> FwdRefAttrGrps;
4735   LocTy BuiltinLoc;
4736   std::string Section;
4737   unsigned Alignment;
4738   std::string GC;
4739   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
4740   LocTy UnnamedAddrLoc;
4741   Constant *Prefix = nullptr;
4742   Constant *Prologue = nullptr;
4743   Constant *PersonalityFn = nullptr;
4744   Comdat *C;
4745 
4746   if (ParseArgumentList(ArgList, isVarArg) ||
4747       ParseOptionalUnnamedAddr(UnnamedAddr) ||
4748       ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
4749                                  BuiltinLoc) ||
4750       (EatIfPresent(lltok::kw_section) &&
4751        ParseStringConstant(Section)) ||
4752       parseOptionalComdat(FunctionName, C) ||
4753       ParseOptionalAlignment(Alignment) ||
4754       (EatIfPresent(lltok::kw_gc) &&
4755        ParseStringConstant(GC)) ||
4756       (EatIfPresent(lltok::kw_prefix) &&
4757        ParseGlobalTypeAndValue(Prefix)) ||
4758       (EatIfPresent(lltok::kw_prologue) &&
4759        ParseGlobalTypeAndValue(Prologue)) ||
4760       (EatIfPresent(lltok::kw_personality) &&
4761        ParseGlobalTypeAndValue(PersonalityFn)))
4762     return true;
4763 
4764   if (FuncAttrs.contains(Attribute::Builtin))
4765     return Error(BuiltinLoc, "'builtin' attribute not valid on function");
4766 
4767   // If the alignment was parsed as an attribute, move to the alignment field.
4768   if (FuncAttrs.hasAlignmentAttr()) {
4769     Alignment = FuncAttrs.getAlignment();
4770     FuncAttrs.removeAttribute(Attribute::Alignment);
4771   }
4772 
4773   // Okay, if we got here, the function is syntactically valid.  Convert types
4774   // and do semantic checks.
4775   std::vector<Type*> ParamTypeList;
4776   SmallVector<AttributeSet, 8> Attrs;
4777 
4778   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
4779     ParamTypeList.push_back(ArgList[i].Ty);
4780     Attrs.push_back(ArgList[i].Attrs);
4781   }
4782 
4783   AttributeList PAL =
4784       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
4785                          AttributeSet::get(Context, RetAttrs), Attrs);
4786 
4787   if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy())
4788     return Error(RetTypeLoc, "functions with 'sret' argument must return void");
4789 
4790   FunctionType *FT =
4791     FunctionType::get(RetType, ParamTypeList, isVarArg);
4792   PointerType *PFT = PointerType::getUnqual(FT);
4793 
4794   Fn = nullptr;
4795   if (!FunctionName.empty()) {
4796     // If this was a definition of a forward reference, remove the definition
4797     // from the forward reference table and fill in the forward ref.
4798     auto FRVI = ForwardRefVals.find(FunctionName);
4799     if (FRVI != ForwardRefVals.end()) {
4800       Fn = M->getFunction(FunctionName);
4801       if (!Fn)
4802         return Error(FRVI->second.second, "invalid forward reference to "
4803                      "function as global value!");
4804       if (Fn->getType() != PFT)
4805         return Error(FRVI->second.second, "invalid forward reference to "
4806                      "function '" + FunctionName + "' with wrong type!");
4807 
4808       ForwardRefVals.erase(FRVI);
4809     } else if ((Fn = M->getFunction(FunctionName))) {
4810       // Reject redefinitions.
4811       return Error(NameLoc, "invalid redefinition of function '" +
4812                    FunctionName + "'");
4813     } else if (M->getNamedValue(FunctionName)) {
4814       return Error(NameLoc, "redefinition of function '@" + FunctionName + "'");
4815     }
4816 
4817   } else {
4818     // If this is a definition of a forward referenced function, make sure the
4819     // types agree.
4820     auto I = ForwardRefValIDs.find(NumberedVals.size());
4821     if (I != ForwardRefValIDs.end()) {
4822       Fn = cast<Function>(I->second.first);
4823       if (Fn->getType() != PFT)
4824         return Error(NameLoc, "type of definition and forward reference of '@" +
4825                      Twine(NumberedVals.size()) + "' disagree");
4826       ForwardRefValIDs.erase(I);
4827     }
4828   }
4829 
4830   if (!Fn)
4831     Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M);
4832   else // Move the forward-reference to the correct spot in the module.
4833     M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn);
4834 
4835   if (FunctionName.empty())
4836     NumberedVals.push_back(Fn);
4837 
4838   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
4839   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
4840   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
4841   Fn->setCallingConv(CC);
4842   Fn->setAttributes(PAL);
4843   Fn->setUnnamedAddr(UnnamedAddr);
4844   Fn->setAlignment(Alignment);
4845   Fn->setSection(Section);
4846   Fn->setComdat(C);
4847   Fn->setPersonalityFn(PersonalityFn);
4848   if (!GC.empty()) Fn->setGC(GC);
4849   Fn->setPrefixData(Prefix);
4850   Fn->setPrologueData(Prologue);
4851   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
4852 
4853   // Add all of the arguments we parsed to the function.
4854   Function::arg_iterator ArgIt = Fn->arg_begin();
4855   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
4856     // If the argument has a name, insert it into the argument symbol table.
4857     if (ArgList[i].Name.empty()) continue;
4858 
4859     // Set the name, if it conflicted, it will be auto-renamed.
4860     ArgIt->setName(ArgList[i].Name);
4861 
4862     if (ArgIt->getName() != ArgList[i].Name)
4863       return Error(ArgList[i].Loc, "redefinition of argument '%" +
4864                    ArgList[i].Name + "'");
4865   }
4866 
4867   if (isDefine)
4868     return false;
4869 
4870   // Check the declaration has no block address forward references.
4871   ValID ID;
4872   if (FunctionName.empty()) {
4873     ID.Kind = ValID::t_GlobalID;
4874     ID.UIntVal = NumberedVals.size() - 1;
4875   } else {
4876     ID.Kind = ValID::t_GlobalName;
4877     ID.StrVal = FunctionName;
4878   }
4879   auto Blocks = ForwardRefBlockAddresses.find(ID);
4880   if (Blocks != ForwardRefBlockAddresses.end())
4881     return Error(Blocks->first.Loc,
4882                  "cannot take blockaddress inside a declaration");
4883   return false;
4884 }
4885 
4886 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
4887   ValID ID;
4888   if (FunctionNumber == -1) {
4889     ID.Kind = ValID::t_GlobalName;
4890     ID.StrVal = F.getName();
4891   } else {
4892     ID.Kind = ValID::t_GlobalID;
4893     ID.UIntVal = FunctionNumber;
4894   }
4895 
4896   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
4897   if (Blocks == P.ForwardRefBlockAddresses.end())
4898     return false;
4899 
4900   for (const auto &I : Blocks->second) {
4901     const ValID &BBID = I.first;
4902     GlobalValue *GV = I.second;
4903 
4904     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
4905            "Expected local id or name");
4906     BasicBlock *BB;
4907     if (BBID.Kind == ValID::t_LocalName)
4908       BB = GetBB(BBID.StrVal, BBID.Loc);
4909     else
4910       BB = GetBB(BBID.UIntVal, BBID.Loc);
4911     if (!BB)
4912       return P.Error(BBID.Loc, "referenced value is not a basic block");
4913 
4914     GV->replaceAllUsesWith(BlockAddress::get(&F, BB));
4915     GV->eraseFromParent();
4916   }
4917 
4918   P.ForwardRefBlockAddresses.erase(Blocks);
4919   return false;
4920 }
4921 
4922 /// ParseFunctionBody
4923 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
4924 bool LLParser::ParseFunctionBody(Function &Fn) {
4925   if (Lex.getKind() != lltok::lbrace)
4926     return TokError("expected '{' in function body");
4927   Lex.Lex();  // eat the {.
4928 
4929   int FunctionNumber = -1;
4930   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
4931 
4932   PerFunctionState PFS(*this, Fn, FunctionNumber);
4933 
4934   // Resolve block addresses and allow basic blocks to be forward-declared
4935   // within this function.
4936   if (PFS.resolveForwardRefBlockAddresses())
4937     return true;
4938   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
4939 
4940   // We need at least one basic block.
4941   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
4942     return TokError("function body requires at least one basic block");
4943 
4944   while (Lex.getKind() != lltok::rbrace &&
4945          Lex.getKind() != lltok::kw_uselistorder)
4946     if (ParseBasicBlock(PFS)) return true;
4947 
4948   while (Lex.getKind() != lltok::rbrace)
4949     if (ParseUseListOrder(&PFS))
4950       return true;
4951 
4952   // Eat the }.
4953   Lex.Lex();
4954 
4955   // Verify function is ok.
4956   return PFS.FinishFunction();
4957 }
4958 
4959 /// ParseBasicBlock
4960 ///   ::= LabelStr? Instruction*
4961 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) {
4962   // If this basic block starts out with a name, remember it.
4963   std::string Name;
4964   LocTy NameLoc = Lex.getLoc();
4965   if (Lex.getKind() == lltok::LabelStr) {
4966     Name = Lex.getStrVal();
4967     Lex.Lex();
4968   }
4969 
4970   BasicBlock *BB = PFS.DefineBB(Name, NameLoc);
4971   if (!BB)
4972     return Error(NameLoc,
4973                  "unable to create block named '" + Name + "'");
4974 
4975   std::string NameStr;
4976 
4977   // Parse the instructions in this block until we get a terminator.
4978   Instruction *Inst;
4979   do {
4980     // This instruction may have three possibilities for a name: a) none
4981     // specified, b) name specified "%foo =", c) number specified: "%4 =".
4982     LocTy NameLoc = Lex.getLoc();
4983     int NameID = -1;
4984     NameStr = "";
4985 
4986     if (Lex.getKind() == lltok::LocalVarID) {
4987       NameID = Lex.getUIntVal();
4988       Lex.Lex();
4989       if (ParseToken(lltok::equal, "expected '=' after instruction id"))
4990         return true;
4991     } else if (Lex.getKind() == lltok::LocalVar) {
4992       NameStr = Lex.getStrVal();
4993       Lex.Lex();
4994       if (ParseToken(lltok::equal, "expected '=' after instruction name"))
4995         return true;
4996     }
4997 
4998     switch (ParseInstruction(Inst, BB, PFS)) {
4999     default: llvm_unreachable("Unknown ParseInstruction result!");
5000     case InstError: return true;
5001     case InstNormal:
5002       BB->getInstList().push_back(Inst);
5003 
5004       // With a normal result, we check to see if the instruction is followed by
5005       // a comma and metadata.
5006       if (EatIfPresent(lltok::comma))
5007         if (ParseInstructionMetadata(*Inst))
5008           return true;
5009       break;
5010     case InstExtraComma:
5011       BB->getInstList().push_back(Inst);
5012 
5013       // If the instruction parser ate an extra comma at the end of it, it
5014       // *must* be followed by metadata.
5015       if (ParseInstructionMetadata(*Inst))
5016         return true;
5017       break;
5018     }
5019 
5020     // Set the name on the instruction.
5021     if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true;
5022   } while (!isa<TerminatorInst>(Inst));
5023 
5024   return false;
5025 }
5026 
5027 //===----------------------------------------------------------------------===//
5028 // Instruction Parsing.
5029 //===----------------------------------------------------------------------===//
5030 
5031 /// ParseInstruction - Parse one of the many different instructions.
5032 ///
5033 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB,
5034                                PerFunctionState &PFS) {
5035   lltok::Kind Token = Lex.getKind();
5036   if (Token == lltok::Eof)
5037     return TokError("found end of file when expecting more instructions");
5038   LocTy Loc = Lex.getLoc();
5039   unsigned KeywordVal = Lex.getUIntVal();
5040   Lex.Lex();  // Eat the keyword.
5041 
5042   switch (Token) {
5043   default:                    return Error(Loc, "expected instruction opcode");
5044   // Terminator Instructions.
5045   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5046   case lltok::kw_ret:         return ParseRet(Inst, BB, PFS);
5047   case lltok::kw_br:          return ParseBr(Inst, PFS);
5048   case lltok::kw_switch:      return ParseSwitch(Inst, PFS);
5049   case lltok::kw_indirectbr:  return ParseIndirectBr(Inst, PFS);
5050   case lltok::kw_invoke:      return ParseInvoke(Inst, PFS);
5051   case lltok::kw_resume:      return ParseResume(Inst, PFS);
5052   case lltok::kw_cleanupret:  return ParseCleanupRet(Inst, PFS);
5053   case lltok::kw_catchret:    return ParseCatchRet(Inst, PFS);
5054   case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS);
5055   case lltok::kw_catchpad:    return ParseCatchPad(Inst, PFS);
5056   case lltok::kw_cleanuppad:  return ParseCleanupPad(Inst, PFS);
5057   // Binary Operators.
5058   case lltok::kw_add:
5059   case lltok::kw_sub:
5060   case lltok::kw_mul:
5061   case lltok::kw_shl: {
5062     bool NUW = EatIfPresent(lltok::kw_nuw);
5063     bool NSW = EatIfPresent(lltok::kw_nsw);
5064     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5065 
5066     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
5067 
5068     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5069     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5070     return false;
5071   }
5072   case lltok::kw_fadd:
5073   case lltok::kw_fsub:
5074   case lltok::kw_fmul:
5075   case lltok::kw_fdiv:
5076   case lltok::kw_frem: {
5077     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5078     int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2);
5079     if (Res != 0)
5080       return Res;
5081     if (FMF.any())
5082       Inst->setFastMathFlags(FMF);
5083     return 0;
5084   }
5085 
5086   case lltok::kw_sdiv:
5087   case lltok::kw_udiv:
5088   case lltok::kw_lshr:
5089   case lltok::kw_ashr: {
5090     bool Exact = EatIfPresent(lltok::kw_exact);
5091 
5092     if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true;
5093     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
5094     return false;
5095   }
5096 
5097   case lltok::kw_urem:
5098   case lltok::kw_srem:   return ParseArithmetic(Inst, PFS, KeywordVal, 1);
5099   case lltok::kw_and:
5100   case lltok::kw_or:
5101   case lltok::kw_xor:    return ParseLogical(Inst, PFS, KeywordVal);
5102   case lltok::kw_icmp:   return ParseCompare(Inst, PFS, KeywordVal);
5103   case lltok::kw_fcmp: {
5104     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5105     int Res = ParseCompare(Inst, PFS, KeywordVal);
5106     if (Res != 0)
5107       return Res;
5108     if (FMF.any())
5109       Inst->setFastMathFlags(FMF);
5110     return 0;
5111   }
5112 
5113   // Casts.
5114   case lltok::kw_trunc:
5115   case lltok::kw_zext:
5116   case lltok::kw_sext:
5117   case lltok::kw_fptrunc:
5118   case lltok::kw_fpext:
5119   case lltok::kw_bitcast:
5120   case lltok::kw_addrspacecast:
5121   case lltok::kw_uitofp:
5122   case lltok::kw_sitofp:
5123   case lltok::kw_fptoui:
5124   case lltok::kw_fptosi:
5125   case lltok::kw_inttoptr:
5126   case lltok::kw_ptrtoint:       return ParseCast(Inst, PFS, KeywordVal);
5127   // Other.
5128   case lltok::kw_select:         return ParseSelect(Inst, PFS);
5129   case lltok::kw_va_arg:         return ParseVA_Arg(Inst, PFS);
5130   case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS);
5131   case lltok::kw_insertelement:  return ParseInsertElement(Inst, PFS);
5132   case lltok::kw_shufflevector:  return ParseShuffleVector(Inst, PFS);
5133   case lltok::kw_phi:            return ParsePHI(Inst, PFS);
5134   case lltok::kw_landingpad:     return ParseLandingPad(Inst, PFS);
5135   // Call.
5136   case lltok::kw_call:     return ParseCall(Inst, PFS, CallInst::TCK_None);
5137   case lltok::kw_tail:     return ParseCall(Inst, PFS, CallInst::TCK_Tail);
5138   case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail);
5139   case lltok::kw_notail:   return ParseCall(Inst, PFS, CallInst::TCK_NoTail);
5140   // Memory.
5141   case lltok::kw_alloca:         return ParseAlloc(Inst, PFS);
5142   case lltok::kw_load:           return ParseLoad(Inst, PFS);
5143   case lltok::kw_store:          return ParseStore(Inst, PFS);
5144   case lltok::kw_cmpxchg:        return ParseCmpXchg(Inst, PFS);
5145   case lltok::kw_atomicrmw:      return ParseAtomicRMW(Inst, PFS);
5146   case lltok::kw_fence:          return ParseFence(Inst, PFS);
5147   case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS);
5148   case lltok::kw_extractvalue:  return ParseExtractValue(Inst, PFS);
5149   case lltok::kw_insertvalue:   return ParseInsertValue(Inst, PFS);
5150   }
5151 }
5152 
5153 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind.
5154 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) {
5155   if (Opc == Instruction::FCmp) {
5156     switch (Lex.getKind()) {
5157     default: return TokError("expected fcmp predicate (e.g. 'oeq')");
5158     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
5159     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
5160     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
5161     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
5162     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
5163     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
5164     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
5165     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
5166     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
5167     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
5168     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
5169     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
5170     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
5171     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
5172     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
5173     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
5174     }
5175   } else {
5176     switch (Lex.getKind()) {
5177     default: return TokError("expected icmp predicate (e.g. 'eq')");
5178     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
5179     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
5180     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
5181     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
5182     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
5183     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
5184     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
5185     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
5186     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
5187     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
5188     }
5189   }
5190   Lex.Lex();
5191   return false;
5192 }
5193 
5194 //===----------------------------------------------------------------------===//
5195 // Terminator Instructions.
5196 //===----------------------------------------------------------------------===//
5197 
5198 /// ParseRet - Parse a return instruction.
5199 ///   ::= 'ret' void (',' !dbg, !1)*
5200 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
5201 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB,
5202                         PerFunctionState &PFS) {
5203   SMLoc TypeLoc = Lex.getLoc();
5204   Type *Ty = nullptr;
5205   if (ParseType(Ty, true /*void allowed*/)) return true;
5206 
5207   Type *ResType = PFS.getFunction().getReturnType();
5208 
5209   if (Ty->isVoidTy()) {
5210     if (!ResType->isVoidTy())
5211       return Error(TypeLoc, "value doesn't match function result type '" +
5212                    getTypeString(ResType) + "'");
5213 
5214     Inst = ReturnInst::Create(Context);
5215     return false;
5216   }
5217 
5218   Value *RV;
5219   if (ParseValue(Ty, RV, PFS)) return true;
5220 
5221   if (ResType != RV->getType())
5222     return Error(TypeLoc, "value doesn't match function result type '" +
5223                  getTypeString(ResType) + "'");
5224 
5225   Inst = ReturnInst::Create(Context, RV);
5226   return false;
5227 }
5228 
5229 /// ParseBr
5230 ///   ::= 'br' TypeAndValue
5231 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5232 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) {
5233   LocTy Loc, Loc2;
5234   Value *Op0;
5235   BasicBlock *Op1, *Op2;
5236   if (ParseTypeAndValue(Op0, Loc, PFS)) return true;
5237 
5238   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
5239     Inst = BranchInst::Create(BB);
5240     return false;
5241   }
5242 
5243   if (Op0->getType() != Type::getInt1Ty(Context))
5244     return Error(Loc, "branch condition must have 'i1' type");
5245 
5246   if (ParseToken(lltok::comma, "expected ',' after branch condition") ||
5247       ParseTypeAndBasicBlock(Op1, Loc, PFS) ||
5248       ParseToken(lltok::comma, "expected ',' after true destination") ||
5249       ParseTypeAndBasicBlock(Op2, Loc2, PFS))
5250     return true;
5251 
5252   Inst = BranchInst::Create(Op1, Op2, Op0);
5253   return false;
5254 }
5255 
5256 /// ParseSwitch
5257 ///  Instruction
5258 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
5259 ///  JumpTable
5260 ///    ::= (TypeAndValue ',' TypeAndValue)*
5261 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5262   LocTy CondLoc, BBLoc;
5263   Value *Cond;
5264   BasicBlock *DefaultBB;
5265   if (ParseTypeAndValue(Cond, CondLoc, PFS) ||
5266       ParseToken(lltok::comma, "expected ',' after switch condition") ||
5267       ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
5268       ParseToken(lltok::lsquare, "expected '[' with switch table"))
5269     return true;
5270 
5271   if (!Cond->getType()->isIntegerTy())
5272     return Error(CondLoc, "switch condition must have integer type");
5273 
5274   // Parse the jump table pairs.
5275   SmallPtrSet<Value*, 32> SeenCases;
5276   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
5277   while (Lex.getKind() != lltok::rsquare) {
5278     Value *Constant;
5279     BasicBlock *DestBB;
5280 
5281     if (ParseTypeAndValue(Constant, CondLoc, PFS) ||
5282         ParseToken(lltok::comma, "expected ',' after case value") ||
5283         ParseTypeAndBasicBlock(DestBB, PFS))
5284       return true;
5285 
5286     if (!SeenCases.insert(Constant).second)
5287       return Error(CondLoc, "duplicate case value in switch");
5288     if (!isa<ConstantInt>(Constant))
5289       return Error(CondLoc, "case value is not a constant integer");
5290 
5291     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
5292   }
5293 
5294   Lex.Lex();  // Eat the ']'.
5295 
5296   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
5297   for (unsigned i = 0, e = Table.size(); i != e; ++i)
5298     SI->addCase(Table[i].first, Table[i].second);
5299   Inst = SI;
5300   return false;
5301 }
5302 
5303 /// ParseIndirectBr
5304 ///  Instruction
5305 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
5306 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
5307   LocTy AddrLoc;
5308   Value *Address;
5309   if (ParseTypeAndValue(Address, AddrLoc, PFS) ||
5310       ParseToken(lltok::comma, "expected ',' after indirectbr address") ||
5311       ParseToken(lltok::lsquare, "expected '[' with indirectbr"))
5312     return true;
5313 
5314   if (!Address->getType()->isPointerTy())
5315     return Error(AddrLoc, "indirectbr address must have pointer type");
5316 
5317   // Parse the destination list.
5318   SmallVector<BasicBlock*, 16> DestList;
5319 
5320   if (Lex.getKind() != lltok::rsquare) {
5321     BasicBlock *DestBB;
5322     if (ParseTypeAndBasicBlock(DestBB, PFS))
5323       return true;
5324     DestList.push_back(DestBB);
5325 
5326     while (EatIfPresent(lltok::comma)) {
5327       if (ParseTypeAndBasicBlock(DestBB, PFS))
5328         return true;
5329       DestList.push_back(DestBB);
5330     }
5331   }
5332 
5333   if (ParseToken(lltok::rsquare, "expected ']' at end of block list"))
5334     return true;
5335 
5336   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
5337   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
5338     IBI->addDestination(DestList[i]);
5339   Inst = IBI;
5340   return false;
5341 }
5342 
5343 /// ParseInvoke
5344 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
5345 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
5346 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
5347   LocTy CallLoc = Lex.getLoc();
5348   AttrBuilder RetAttrs, FnAttrs;
5349   std::vector<unsigned> FwdRefAttrGrps;
5350   LocTy NoBuiltinLoc;
5351   unsigned CC;
5352   Type *RetType = nullptr;
5353   LocTy RetTypeLoc;
5354   ValID CalleeID;
5355   SmallVector<ParamInfo, 16> ArgList;
5356   SmallVector<OperandBundleDef, 2> BundleList;
5357 
5358   BasicBlock *NormalBB, *UnwindBB;
5359   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5360       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
5361       ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) ||
5362       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
5363                                  NoBuiltinLoc) ||
5364       ParseOptionalOperandBundles(BundleList, PFS) ||
5365       ParseToken(lltok::kw_to, "expected 'to' in invoke") ||
5366       ParseTypeAndBasicBlock(NormalBB, PFS) ||
5367       ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
5368       ParseTypeAndBasicBlock(UnwindBB, PFS))
5369     return true;
5370 
5371   // If RetType is a non-function pointer type, then this is the short syntax
5372   // for the call, which means that RetType is just the return type.  Infer the
5373   // rest of the function argument types from the arguments that are present.
5374   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
5375   if (!Ty) {
5376     // Pull out the types of all of the arguments...
5377     std::vector<Type*> ParamTypes;
5378     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
5379       ParamTypes.push_back(ArgList[i].V->getType());
5380 
5381     if (!FunctionType::isValidReturnType(RetType))
5382       return Error(RetTypeLoc, "Invalid result type for LLVM function");
5383 
5384     Ty = FunctionType::get(RetType, ParamTypes, false);
5385   }
5386 
5387   CalleeID.FTy = Ty;
5388 
5389   // Look up the callee.
5390   Value *Callee;
5391   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
5392     return true;
5393 
5394   // Set up the Attribute for the function.
5395   SmallVector<Value *, 8> Args;
5396   SmallVector<AttributeSet, 8> ArgAttrs;
5397 
5398   // Loop through FunctionType's arguments and ensure they are specified
5399   // correctly.  Also, gather any parameter attributes.
5400   FunctionType::param_iterator I = Ty->param_begin();
5401   FunctionType::param_iterator E = Ty->param_end();
5402   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5403     Type *ExpectedTy = nullptr;
5404     if (I != E) {
5405       ExpectedTy = *I++;
5406     } else if (!Ty->isVarArg()) {
5407       return Error(ArgList[i].Loc, "too many arguments specified");
5408     }
5409 
5410     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
5411       return Error(ArgList[i].Loc, "argument is not of expected type '" +
5412                    getTypeString(ExpectedTy) + "'");
5413     Args.push_back(ArgList[i].V);
5414     ArgAttrs.push_back(ArgList[i].Attrs);
5415   }
5416 
5417   if (I != E)
5418     return Error(CallLoc, "not enough parameters specified for call");
5419 
5420   if (FnAttrs.hasAlignmentAttr())
5421     return Error(CallLoc, "invoke instructions may not have an alignment");
5422 
5423   // Finish off the Attribute and check them
5424   AttributeList PAL =
5425       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
5426                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
5427 
5428   InvokeInst *II =
5429       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
5430   II->setCallingConv(CC);
5431   II->setAttributes(PAL);
5432   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
5433   Inst = II;
5434   return false;
5435 }
5436 
5437 /// ParseResume
5438 ///   ::= 'resume' TypeAndValue
5439 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) {
5440   Value *Exn; LocTy ExnLoc;
5441   if (ParseTypeAndValue(Exn, ExnLoc, PFS))
5442     return true;
5443 
5444   ResumeInst *RI = ResumeInst::Create(Exn);
5445   Inst = RI;
5446   return false;
5447 }
5448 
5449 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args,
5450                                   PerFunctionState &PFS) {
5451   if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
5452     return true;
5453 
5454   while (Lex.getKind() != lltok::rsquare) {
5455     // If this isn't the first argument, we need a comma.
5456     if (!Args.empty() &&
5457         ParseToken(lltok::comma, "expected ',' in argument list"))
5458       return true;
5459 
5460     // Parse the argument.
5461     LocTy ArgLoc;
5462     Type *ArgTy = nullptr;
5463     if (ParseType(ArgTy, ArgLoc))
5464       return true;
5465 
5466     Value *V;
5467     if (ArgTy->isMetadataTy()) {
5468       if (ParseMetadataAsValue(V, PFS))
5469         return true;
5470     } else {
5471       if (ParseValue(ArgTy, V, PFS))
5472         return true;
5473     }
5474     Args.push_back(V);
5475   }
5476 
5477   Lex.Lex();  // Lex the ']'.
5478   return false;
5479 }
5480 
5481 /// ParseCleanupRet
5482 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
5483 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
5484   Value *CleanupPad = nullptr;
5485 
5486   if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret"))
5487     return true;
5488 
5489   if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS))
5490     return true;
5491 
5492   if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
5493     return true;
5494 
5495   BasicBlock *UnwindBB = nullptr;
5496   if (Lex.getKind() == lltok::kw_to) {
5497     Lex.Lex();
5498     if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
5499       return true;
5500   } else {
5501     if (ParseTypeAndBasicBlock(UnwindBB, PFS)) {
5502       return true;
5503     }
5504   }
5505 
5506   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
5507   return false;
5508 }
5509 
5510 /// ParseCatchRet
5511 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
5512 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
5513   Value *CatchPad = nullptr;
5514 
5515   if (ParseToken(lltok::kw_from, "expected 'from' after catchret"))
5516     return true;
5517 
5518   if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS))
5519     return true;
5520 
5521   BasicBlock *BB;
5522   if (ParseToken(lltok::kw_to, "expected 'to' in catchret") ||
5523       ParseTypeAndBasicBlock(BB, PFS))
5524       return true;
5525 
5526   Inst = CatchReturnInst::Create(CatchPad, BB);
5527   return false;
5528 }
5529 
5530 /// ParseCatchSwitch
5531 ///   ::= 'catchswitch' within Parent
5532 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
5533   Value *ParentPad;
5534   LocTy BBLoc;
5535 
5536   if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch"))
5537     return true;
5538 
5539   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
5540       Lex.getKind() != lltok::LocalVarID)
5541     return TokError("expected scope value for catchswitch");
5542 
5543   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
5544     return true;
5545 
5546   if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
5547     return true;
5548 
5549   SmallVector<BasicBlock *, 32> Table;
5550   do {
5551     BasicBlock *DestBB;
5552     if (ParseTypeAndBasicBlock(DestBB, PFS))
5553       return true;
5554     Table.push_back(DestBB);
5555   } while (EatIfPresent(lltok::comma));
5556 
5557   if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
5558     return true;
5559 
5560   if (ParseToken(lltok::kw_unwind,
5561                  "expected 'unwind' after catchswitch scope"))
5562     return true;
5563 
5564   BasicBlock *UnwindBB = nullptr;
5565   if (EatIfPresent(lltok::kw_to)) {
5566     if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
5567       return true;
5568   } else {
5569     if (ParseTypeAndBasicBlock(UnwindBB, PFS))
5570       return true;
5571   }
5572 
5573   auto *CatchSwitch =
5574       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
5575   for (BasicBlock *DestBB : Table)
5576     CatchSwitch->addHandler(DestBB);
5577   Inst = CatchSwitch;
5578   return false;
5579 }
5580 
5581 /// ParseCatchPad
5582 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
5583 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
5584   Value *CatchSwitch = nullptr;
5585 
5586   if (ParseToken(lltok::kw_within, "expected 'within' after catchpad"))
5587     return true;
5588 
5589   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
5590     return TokError("expected scope value for catchpad");
5591 
5592   if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
5593     return true;
5594 
5595   SmallVector<Value *, 8> Args;
5596   if (ParseExceptionArgs(Args, PFS))
5597     return true;
5598 
5599   Inst = CatchPadInst::Create(CatchSwitch, Args);
5600   return false;
5601 }
5602 
5603 /// ParseCleanupPad
5604 ///   ::= 'cleanuppad' within Parent ParamList
5605 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
5606   Value *ParentPad = nullptr;
5607 
5608   if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
5609     return true;
5610 
5611   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
5612       Lex.getKind() != lltok::LocalVarID)
5613     return TokError("expected scope value for cleanuppad");
5614 
5615   if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS))
5616     return true;
5617 
5618   SmallVector<Value *, 8> Args;
5619   if (ParseExceptionArgs(Args, PFS))
5620     return true;
5621 
5622   Inst = CleanupPadInst::Create(ParentPad, Args);
5623   return false;
5624 }
5625 
5626 //===----------------------------------------------------------------------===//
5627 // Binary Operators.
5628 //===----------------------------------------------------------------------===//
5629 
5630 /// ParseArithmetic
5631 ///  ::= ArithmeticOps TypeAndValue ',' Value
5632 ///
5633 /// If OperandType is 0, then any FP or integer operand is allowed.  If it is 1,
5634 /// then any integer operand is allowed, if it is 2, any fp operand is allowed.
5635 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
5636                                unsigned Opc, unsigned OperandType) {
5637   LocTy Loc; Value *LHS, *RHS;
5638   if (ParseTypeAndValue(LHS, Loc, PFS) ||
5639       ParseToken(lltok::comma, "expected ',' in arithmetic operation") ||
5640       ParseValue(LHS->getType(), RHS, PFS))
5641     return true;
5642 
5643   bool Valid;
5644   switch (OperandType) {
5645   default: llvm_unreachable("Unknown operand type!");
5646   case 0: // int or FP.
5647     Valid = LHS->getType()->isIntOrIntVectorTy() ||
5648             LHS->getType()->isFPOrFPVectorTy();
5649     break;
5650   case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break;
5651   case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break;
5652   }
5653 
5654   if (!Valid)
5655     return Error(Loc, "invalid operand type for instruction");
5656 
5657   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5658   return false;
5659 }
5660 
5661 /// ParseLogical
5662 ///  ::= ArithmeticOps TypeAndValue ',' Value {
5663 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS,
5664                             unsigned Opc) {
5665   LocTy Loc; Value *LHS, *RHS;
5666   if (ParseTypeAndValue(LHS, Loc, PFS) ||
5667       ParseToken(lltok::comma, "expected ',' in logical operation") ||
5668       ParseValue(LHS->getType(), RHS, PFS))
5669     return true;
5670 
5671   if (!LHS->getType()->isIntOrIntVectorTy())
5672     return Error(Loc,"instruction requires integer or integer vector operands");
5673 
5674   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
5675   return false;
5676 }
5677 
5678 /// ParseCompare
5679 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
5680 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
5681 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS,
5682                             unsigned Opc) {
5683   // Parse the integer/fp comparison predicate.
5684   LocTy Loc;
5685   unsigned Pred;
5686   Value *LHS, *RHS;
5687   if (ParseCmpPredicate(Pred, Opc) ||
5688       ParseTypeAndValue(LHS, Loc, PFS) ||
5689       ParseToken(lltok::comma, "expected ',' after compare value") ||
5690       ParseValue(LHS->getType(), RHS, PFS))
5691     return true;
5692 
5693   if (Opc == Instruction::FCmp) {
5694     if (!LHS->getType()->isFPOrFPVectorTy())
5695       return Error(Loc, "fcmp requires floating point operands");
5696     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
5697   } else {
5698     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
5699     if (!LHS->getType()->isIntOrIntVectorTy() &&
5700         !LHS->getType()->getScalarType()->isPointerTy())
5701       return Error(Loc, "icmp requires integer operands");
5702     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
5703   }
5704   return false;
5705 }
5706 
5707 //===----------------------------------------------------------------------===//
5708 // Other Instructions.
5709 //===----------------------------------------------------------------------===//
5710 
5711 
5712 /// ParseCast
5713 ///   ::= CastOpc TypeAndValue 'to' Type
5714 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS,
5715                          unsigned Opc) {
5716   LocTy Loc;
5717   Value *Op;
5718   Type *DestTy = nullptr;
5719   if (ParseTypeAndValue(Op, Loc, PFS) ||
5720       ParseToken(lltok::kw_to, "expected 'to' after cast value") ||
5721       ParseType(DestTy))
5722     return true;
5723 
5724   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
5725     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
5726     return Error(Loc, "invalid cast opcode for cast from '" +
5727                  getTypeString(Op->getType()) + "' to '" +
5728                  getTypeString(DestTy) + "'");
5729   }
5730   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
5731   return false;
5732 }
5733 
5734 /// ParseSelect
5735 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5736 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) {
5737   LocTy Loc;
5738   Value *Op0, *Op1, *Op2;
5739   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5740       ParseToken(lltok::comma, "expected ',' after select condition") ||
5741       ParseTypeAndValue(Op1, PFS) ||
5742       ParseToken(lltok::comma, "expected ',' after select value") ||
5743       ParseTypeAndValue(Op2, PFS))
5744     return true;
5745 
5746   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
5747     return Error(Loc, Reason);
5748 
5749   Inst = SelectInst::Create(Op0, Op1, Op2);
5750   return false;
5751 }
5752 
5753 /// ParseVA_Arg
5754 ///   ::= 'va_arg' TypeAndValue ',' Type
5755 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) {
5756   Value *Op;
5757   Type *EltTy = nullptr;
5758   LocTy TypeLoc;
5759   if (ParseTypeAndValue(Op, PFS) ||
5760       ParseToken(lltok::comma, "expected ',' after vaarg operand") ||
5761       ParseType(EltTy, TypeLoc))
5762     return true;
5763 
5764   if (!EltTy->isFirstClassType())
5765     return Error(TypeLoc, "va_arg requires operand with first class type");
5766 
5767   Inst = new VAArgInst(Op, EltTy);
5768   return false;
5769 }
5770 
5771 /// ParseExtractElement
5772 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
5773 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
5774   LocTy Loc;
5775   Value *Op0, *Op1;
5776   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5777       ParseToken(lltok::comma, "expected ',' after extract value") ||
5778       ParseTypeAndValue(Op1, PFS))
5779     return true;
5780 
5781   if (!ExtractElementInst::isValidOperands(Op0, Op1))
5782     return Error(Loc, "invalid extractelement operands");
5783 
5784   Inst = ExtractElementInst::Create(Op0, Op1);
5785   return false;
5786 }
5787 
5788 /// ParseInsertElement
5789 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5790 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
5791   LocTy Loc;
5792   Value *Op0, *Op1, *Op2;
5793   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5794       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5795       ParseTypeAndValue(Op1, PFS) ||
5796       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5797       ParseTypeAndValue(Op2, PFS))
5798     return true;
5799 
5800   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
5801     return Error(Loc, "invalid insertelement operands");
5802 
5803   Inst = InsertElementInst::Create(Op0, Op1, Op2);
5804   return false;
5805 }
5806 
5807 /// ParseShuffleVector
5808 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
5809 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
5810   LocTy Loc;
5811   Value *Op0, *Op1, *Op2;
5812   if (ParseTypeAndValue(Op0, Loc, PFS) ||
5813       ParseToken(lltok::comma, "expected ',' after shuffle mask") ||
5814       ParseTypeAndValue(Op1, PFS) ||
5815       ParseToken(lltok::comma, "expected ',' after shuffle value") ||
5816       ParseTypeAndValue(Op2, PFS))
5817     return true;
5818 
5819   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
5820     return Error(Loc, "invalid shufflevector operands");
5821 
5822   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
5823   return false;
5824 }
5825 
5826 /// ParsePHI
5827 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
5828 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) {
5829   Type *Ty = nullptr;  LocTy TypeLoc;
5830   Value *Op0, *Op1;
5831 
5832   if (ParseType(Ty, TypeLoc) ||
5833       ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
5834       ParseValue(Ty, Op0, PFS) ||
5835       ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5836       ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
5837       ParseToken(lltok::rsquare, "expected ']' in phi value list"))
5838     return true;
5839 
5840   bool AteExtraComma = false;
5841   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
5842 
5843   while (true) {
5844     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
5845 
5846     if (!EatIfPresent(lltok::comma))
5847       break;
5848 
5849     if (Lex.getKind() == lltok::MetadataVar) {
5850       AteExtraComma = true;
5851       break;
5852     }
5853 
5854     if (ParseToken(lltok::lsquare, "expected '[' in phi value list") ||
5855         ParseValue(Ty, Op0, PFS) ||
5856         ParseToken(lltok::comma, "expected ',' after insertelement value") ||
5857         ParseValue(Type::getLabelTy(Context), Op1, PFS) ||
5858         ParseToken(lltok::rsquare, "expected ']' in phi value list"))
5859       return true;
5860   }
5861 
5862   if (!Ty->isFirstClassType())
5863     return Error(TypeLoc, "phi node must have first class type");
5864 
5865   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
5866   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
5867     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
5868   Inst = PN;
5869   return AteExtraComma ? InstExtraComma : InstNormal;
5870 }
5871 
5872 /// ParseLandingPad
5873 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
5874 /// Clause
5875 ///   ::= 'catch' TypeAndValue
5876 ///   ::= 'filter'
5877 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
5878 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
5879   Type *Ty = nullptr; LocTy TyLoc;
5880 
5881   if (ParseType(Ty, TyLoc))
5882     return true;
5883 
5884   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
5885   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
5886 
5887   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
5888     LandingPadInst::ClauseType CT;
5889     if (EatIfPresent(lltok::kw_catch))
5890       CT = LandingPadInst::Catch;
5891     else if (EatIfPresent(lltok::kw_filter))
5892       CT = LandingPadInst::Filter;
5893     else
5894       return TokError("expected 'catch' or 'filter' clause type");
5895 
5896     Value *V;
5897     LocTy VLoc;
5898     if (ParseTypeAndValue(V, VLoc, PFS))
5899       return true;
5900 
5901     // A 'catch' type expects a non-array constant. A filter clause expects an
5902     // array constant.
5903     if (CT == LandingPadInst::Catch) {
5904       if (isa<ArrayType>(V->getType()))
5905         Error(VLoc, "'catch' clause has an invalid type");
5906     } else {
5907       if (!isa<ArrayType>(V->getType()))
5908         Error(VLoc, "'filter' clause has an invalid type");
5909     }
5910 
5911     Constant *CV = dyn_cast<Constant>(V);
5912     if (!CV)
5913       return Error(VLoc, "clause argument must be a constant");
5914     LP->addClause(CV);
5915   }
5916 
5917   Inst = LP.release();
5918   return false;
5919 }
5920 
5921 /// ParseCall
5922 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
5923 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5924 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
5925 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5926 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
5927 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5928 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
5929 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
5930 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS,
5931                          CallInst::TailCallKind TCK) {
5932   AttrBuilder RetAttrs, FnAttrs;
5933   std::vector<unsigned> FwdRefAttrGrps;
5934   LocTy BuiltinLoc;
5935   unsigned CC;
5936   Type *RetType = nullptr;
5937   LocTy RetTypeLoc;
5938   ValID CalleeID;
5939   SmallVector<ParamInfo, 16> ArgList;
5940   SmallVector<OperandBundleDef, 2> BundleList;
5941   LocTy CallLoc = Lex.getLoc();
5942 
5943   if (TCK != CallInst::TCK_None &&
5944       ParseToken(lltok::kw_call,
5945                  "expected 'tail call', 'musttail call', or 'notail call'"))
5946     return true;
5947 
5948   FastMathFlags FMF = EatFastMathFlagsIfPresent();
5949 
5950   if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) ||
5951       ParseType(RetType, RetTypeLoc, true /*void allowed*/) ||
5952       ParseValID(CalleeID) ||
5953       ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
5954                          PFS.getFunction().isVarArg()) ||
5955       ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
5956       ParseOptionalOperandBundles(BundleList, PFS))
5957     return true;
5958 
5959   if (FMF.any() && !RetType->isFPOrFPVectorTy())
5960     return Error(CallLoc, "fast-math-flags specified for call without "
5961                           "floating-point scalar or vector return type");
5962 
5963   // If RetType is a non-function pointer type, then this is the short syntax
5964   // for the call, which means that RetType is just the return type.  Infer the
5965   // rest of the function argument types from the arguments that are present.
5966   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
5967   if (!Ty) {
5968     // Pull out the types of all of the arguments...
5969     std::vector<Type*> ParamTypes;
5970     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
5971       ParamTypes.push_back(ArgList[i].V->getType());
5972 
5973     if (!FunctionType::isValidReturnType(RetType))
5974       return Error(RetTypeLoc, "Invalid result type for LLVM function");
5975 
5976     Ty = FunctionType::get(RetType, ParamTypes, false);
5977   }
5978 
5979   CalleeID.FTy = Ty;
5980 
5981   // Look up the callee.
5982   Value *Callee;
5983   if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
5984     return true;
5985 
5986   // Set up the Attribute for the function.
5987   SmallVector<AttributeSet, 8> Attrs;
5988 
5989   SmallVector<Value*, 8> Args;
5990 
5991   // Loop through FunctionType's arguments and ensure they are specified
5992   // correctly.  Also, gather any parameter attributes.
5993   FunctionType::param_iterator I = Ty->param_begin();
5994   FunctionType::param_iterator E = Ty->param_end();
5995   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5996     Type *ExpectedTy = nullptr;
5997     if (I != E) {
5998       ExpectedTy = *I++;
5999     } else if (!Ty->isVarArg()) {
6000       return Error(ArgList[i].Loc, "too many arguments specified");
6001     }
6002 
6003     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6004       return Error(ArgList[i].Loc, "argument is not of expected type '" +
6005                    getTypeString(ExpectedTy) + "'");
6006     Args.push_back(ArgList[i].V);
6007     Attrs.push_back(ArgList[i].Attrs);
6008   }
6009 
6010   if (I != E)
6011     return Error(CallLoc, "not enough parameters specified for call");
6012 
6013   if (FnAttrs.hasAlignmentAttr())
6014     return Error(CallLoc, "call instructions may not have an alignment");
6015 
6016   // Finish off the Attribute and check them
6017   AttributeList PAL =
6018       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6019                          AttributeSet::get(Context, RetAttrs), Attrs);
6020 
6021   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
6022   CI->setTailCallKind(TCK);
6023   CI->setCallingConv(CC);
6024   if (FMF.any())
6025     CI->setFastMathFlags(FMF);
6026   CI->setAttributes(PAL);
6027   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
6028   Inst = CI;
6029   return false;
6030 }
6031 
6032 //===----------------------------------------------------------------------===//
6033 // Memory Instructions.
6034 //===----------------------------------------------------------------------===//
6035 
6036 /// ParseAlloc
6037 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
6038 ///       (',' 'align' i32)?
6039 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
6040   Value *Size = nullptr;
6041   LocTy SizeLoc, TyLoc, ASLoc;
6042   unsigned Alignment = 0;
6043   unsigned AddrSpace = 0;
6044   Type *Ty = nullptr;
6045 
6046   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
6047   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
6048 
6049   if (ParseType(Ty, TyLoc)) return true;
6050 
6051   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
6052     return Error(TyLoc, "invalid type for alloca");
6053 
6054   bool AteExtraComma = false;
6055   if (EatIfPresent(lltok::comma)) {
6056     if (Lex.getKind() == lltok::kw_align) {
6057       if (ParseOptionalAlignment(Alignment))
6058         return true;
6059       if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
6060         return true;
6061     } else if (Lex.getKind() == lltok::kw_addrspace) {
6062       ASLoc = Lex.getLoc();
6063       if (ParseOptionalAddrSpace(AddrSpace))
6064         return true;
6065     } else if (Lex.getKind() == lltok::MetadataVar) {
6066       AteExtraComma = true;
6067     } else {
6068       if (ParseTypeAndValue(Size, SizeLoc, PFS) ||
6069           ParseOptionalCommaAlign(Alignment, AteExtraComma) ||
6070           (!AteExtraComma &&
6071            ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)))
6072         return true;
6073     }
6074   }
6075 
6076   if (Size && !Size->getType()->isIntegerTy())
6077     return Error(SizeLoc, "element count must have integer type");
6078 
6079   const DataLayout &DL = M->getDataLayout();
6080   unsigned AS = DL.getAllocaAddrSpace();
6081   if (AS != AddrSpace) {
6082     // TODO: In the future it should be possible to specify addrspace per-alloca.
6083     return Error(ASLoc, "address space must match datalayout");
6084   }
6085 
6086   AllocaInst *AI = new AllocaInst(Ty, AS, Size, Alignment);
6087   AI->setUsedWithInAlloca(IsInAlloca);
6088   AI->setSwiftError(IsSwiftError);
6089   Inst = AI;
6090   return AteExtraComma ? InstExtraComma : InstNormal;
6091 }
6092 
6093 /// ParseLoad
6094 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
6095 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
6096 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6097 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) {
6098   Value *Val; LocTy Loc;
6099   unsigned Alignment = 0;
6100   bool AteExtraComma = false;
6101   bool isAtomic = false;
6102   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6103   SynchronizationScope Scope = CrossThread;
6104 
6105   if (Lex.getKind() == lltok::kw_atomic) {
6106     isAtomic = true;
6107     Lex.Lex();
6108   }
6109 
6110   bool isVolatile = false;
6111   if (Lex.getKind() == lltok::kw_volatile) {
6112     isVolatile = true;
6113     Lex.Lex();
6114   }
6115 
6116   Type *Ty;
6117   LocTy ExplicitTypeLoc = Lex.getLoc();
6118   if (ParseType(Ty) ||
6119       ParseToken(lltok::comma, "expected comma after load's type") ||
6120       ParseTypeAndValue(Val, Loc, PFS) ||
6121       ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
6122       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6123     return true;
6124 
6125   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
6126     return Error(Loc, "load operand must be a pointer to a first class type");
6127   if (isAtomic && !Alignment)
6128     return Error(Loc, "atomic load must have explicit non-zero alignment");
6129   if (Ordering == AtomicOrdering::Release ||
6130       Ordering == AtomicOrdering::AcquireRelease)
6131     return Error(Loc, "atomic load cannot use Release ordering");
6132 
6133   if (Ty != cast<PointerType>(Val->getType())->getElementType())
6134     return Error(ExplicitTypeLoc,
6135                  "explicit pointee type doesn't match operand's pointee type");
6136 
6137   Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, Scope);
6138   return AteExtraComma ? InstExtraComma : InstNormal;
6139 }
6140 
6141 /// ParseStore
6142 
6143 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
6144 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
6145 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
6146 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) {
6147   Value *Val, *Ptr; LocTy Loc, PtrLoc;
6148   unsigned Alignment = 0;
6149   bool AteExtraComma = false;
6150   bool isAtomic = false;
6151   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6152   SynchronizationScope Scope = CrossThread;
6153 
6154   if (Lex.getKind() == lltok::kw_atomic) {
6155     isAtomic = true;
6156     Lex.Lex();
6157   }
6158 
6159   bool isVolatile = false;
6160   if (Lex.getKind() == lltok::kw_volatile) {
6161     isVolatile = true;
6162     Lex.Lex();
6163   }
6164 
6165   if (ParseTypeAndValue(Val, Loc, PFS) ||
6166       ParseToken(lltok::comma, "expected ',' after store operand") ||
6167       ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6168       ParseScopeAndOrdering(isAtomic, Scope, Ordering) ||
6169       ParseOptionalCommaAlign(Alignment, AteExtraComma))
6170     return true;
6171 
6172   if (!Ptr->getType()->isPointerTy())
6173     return Error(PtrLoc, "store operand must be a pointer");
6174   if (!Val->getType()->isFirstClassType())
6175     return Error(Loc, "store operand must be a first class value");
6176   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6177     return Error(Loc, "stored value and pointer type do not match");
6178   if (isAtomic && !Alignment)
6179     return Error(Loc, "atomic store must have explicit non-zero alignment");
6180   if (Ordering == AtomicOrdering::Acquire ||
6181       Ordering == AtomicOrdering::AcquireRelease)
6182     return Error(Loc, "atomic store cannot use Acquire ordering");
6183 
6184   Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope);
6185   return AteExtraComma ? InstExtraComma : InstNormal;
6186 }
6187 
6188 /// ParseCmpXchg
6189 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
6190 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering
6191 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
6192   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
6193   bool AteExtraComma = false;
6194   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
6195   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
6196   SynchronizationScope Scope = CrossThread;
6197   bool isVolatile = false;
6198   bool isWeak = false;
6199 
6200   if (EatIfPresent(lltok::kw_weak))
6201     isWeak = true;
6202 
6203   if (EatIfPresent(lltok::kw_volatile))
6204     isVolatile = true;
6205 
6206   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6207       ParseToken(lltok::comma, "expected ',' after cmpxchg address") ||
6208       ParseTypeAndValue(Cmp, CmpLoc, PFS) ||
6209       ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
6210       ParseTypeAndValue(New, NewLoc, PFS) ||
6211       ParseScopeAndOrdering(true /*Always atomic*/, Scope, SuccessOrdering) ||
6212       ParseOrdering(FailureOrdering))
6213     return true;
6214 
6215   if (SuccessOrdering == AtomicOrdering::Unordered ||
6216       FailureOrdering == AtomicOrdering::Unordered)
6217     return TokError("cmpxchg cannot be unordered");
6218   if (isStrongerThan(FailureOrdering, SuccessOrdering))
6219     return TokError("cmpxchg failure argument shall be no stronger than the "
6220                     "success argument");
6221   if (FailureOrdering == AtomicOrdering::Release ||
6222       FailureOrdering == AtomicOrdering::AcquireRelease)
6223     return TokError(
6224         "cmpxchg failure ordering cannot include release semantics");
6225   if (!Ptr->getType()->isPointerTy())
6226     return Error(PtrLoc, "cmpxchg operand must be a pointer");
6227   if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType())
6228     return Error(CmpLoc, "compare value and pointer type do not match");
6229   if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType())
6230     return Error(NewLoc, "new value and pointer type do not match");
6231   if (!New->getType()->isFirstClassType())
6232     return Error(NewLoc, "cmpxchg operand must be a first class value");
6233   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
6234       Ptr, Cmp, New, SuccessOrdering, FailureOrdering, Scope);
6235   CXI->setVolatile(isVolatile);
6236   CXI->setWeak(isWeak);
6237   Inst = CXI;
6238   return AteExtraComma ? InstExtraComma : InstNormal;
6239 }
6240 
6241 /// ParseAtomicRMW
6242 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
6243 ///       'singlethread'? AtomicOrdering
6244 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
6245   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
6246   bool AteExtraComma = false;
6247   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6248   SynchronizationScope Scope = CrossThread;
6249   bool isVolatile = false;
6250   AtomicRMWInst::BinOp Operation;
6251 
6252   if (EatIfPresent(lltok::kw_volatile))
6253     isVolatile = true;
6254 
6255   switch (Lex.getKind()) {
6256   default: return TokError("expected binary operation in atomicrmw");
6257   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
6258   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
6259   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
6260   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
6261   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
6262   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
6263   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
6264   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
6265   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
6266   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
6267   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
6268   }
6269   Lex.Lex();  // Eat the operation.
6270 
6271   if (ParseTypeAndValue(Ptr, PtrLoc, PFS) ||
6272       ParseToken(lltok::comma, "expected ',' after atomicrmw address") ||
6273       ParseTypeAndValue(Val, ValLoc, PFS) ||
6274       ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
6275     return true;
6276 
6277   if (Ordering == AtomicOrdering::Unordered)
6278     return TokError("atomicrmw cannot be unordered");
6279   if (!Ptr->getType()->isPointerTy())
6280     return Error(PtrLoc, "atomicrmw operand must be a pointer");
6281   if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType())
6282     return Error(ValLoc, "atomicrmw value and pointer type do not match");
6283   if (!Val->getType()->isIntegerTy())
6284     return Error(ValLoc, "atomicrmw operand must be an integer");
6285   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
6286   if (Size < 8 || (Size & (Size - 1)))
6287     return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
6288                          " integer");
6289 
6290   AtomicRMWInst *RMWI =
6291     new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope);
6292   RMWI->setVolatile(isVolatile);
6293   Inst = RMWI;
6294   return AteExtraComma ? InstExtraComma : InstNormal;
6295 }
6296 
6297 /// ParseFence
6298 ///   ::= 'fence' 'singlethread'? AtomicOrdering
6299 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) {
6300   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
6301   SynchronizationScope Scope = CrossThread;
6302   if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering))
6303     return true;
6304 
6305   if (Ordering == AtomicOrdering::Unordered)
6306     return TokError("fence cannot be unordered");
6307   if (Ordering == AtomicOrdering::Monotonic)
6308     return TokError("fence cannot be monotonic");
6309 
6310   Inst = new FenceInst(Context, Ordering, Scope);
6311   return InstNormal;
6312 }
6313 
6314 /// ParseGetElementPtr
6315 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
6316 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
6317   Value *Ptr = nullptr;
6318   Value *Val = nullptr;
6319   LocTy Loc, EltLoc;
6320 
6321   bool InBounds = EatIfPresent(lltok::kw_inbounds);
6322 
6323   Type *Ty = nullptr;
6324   LocTy ExplicitTypeLoc = Lex.getLoc();
6325   if (ParseType(Ty) ||
6326       ParseToken(lltok::comma, "expected comma after getelementptr's type") ||
6327       ParseTypeAndValue(Ptr, Loc, PFS))
6328     return true;
6329 
6330   Type *BaseType = Ptr->getType();
6331   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
6332   if (!BasePointerType)
6333     return Error(Loc, "base of getelementptr must be a pointer");
6334 
6335   if (Ty != BasePointerType->getElementType())
6336     return Error(ExplicitTypeLoc,
6337                  "explicit pointee type doesn't match operand's pointee type");
6338 
6339   SmallVector<Value*, 16> Indices;
6340   bool AteExtraComma = false;
6341   // GEP returns a vector of pointers if at least one of parameters is a vector.
6342   // All vector parameters should have the same vector width.
6343   unsigned GEPWidth = BaseType->isVectorTy() ?
6344     BaseType->getVectorNumElements() : 0;
6345 
6346   while (EatIfPresent(lltok::comma)) {
6347     if (Lex.getKind() == lltok::MetadataVar) {
6348       AteExtraComma = true;
6349       break;
6350     }
6351     if (ParseTypeAndValue(Val, EltLoc, PFS)) return true;
6352     if (!Val->getType()->getScalarType()->isIntegerTy())
6353       return Error(EltLoc, "getelementptr index must be an integer");
6354 
6355     if (Val->getType()->isVectorTy()) {
6356       unsigned ValNumEl = Val->getType()->getVectorNumElements();
6357       if (GEPWidth && GEPWidth != ValNumEl)
6358         return Error(EltLoc,
6359           "getelementptr vector index has a wrong number of elements");
6360       GEPWidth = ValNumEl;
6361     }
6362     Indices.push_back(Val);
6363   }
6364 
6365   SmallPtrSet<Type*, 4> Visited;
6366   if (!Indices.empty() && !Ty->isSized(&Visited))
6367     return Error(Loc, "base element of getelementptr must be sized");
6368 
6369   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
6370     return Error(Loc, "invalid getelementptr indices");
6371   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
6372   if (InBounds)
6373     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
6374   return AteExtraComma ? InstExtraComma : InstNormal;
6375 }
6376 
6377 /// ParseExtractValue
6378 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
6379 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
6380   Value *Val; LocTy Loc;
6381   SmallVector<unsigned, 4> Indices;
6382   bool AteExtraComma;
6383   if (ParseTypeAndValue(Val, Loc, PFS) ||
6384       ParseIndexList(Indices, AteExtraComma))
6385     return true;
6386 
6387   if (!Val->getType()->isAggregateType())
6388     return Error(Loc, "extractvalue operand must be aggregate type");
6389 
6390   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
6391     return Error(Loc, "invalid indices for extractvalue");
6392   Inst = ExtractValueInst::Create(Val, Indices);
6393   return AteExtraComma ? InstExtraComma : InstNormal;
6394 }
6395 
6396 /// ParseInsertValue
6397 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
6398 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
6399   Value *Val0, *Val1; LocTy Loc0, Loc1;
6400   SmallVector<unsigned, 4> Indices;
6401   bool AteExtraComma;
6402   if (ParseTypeAndValue(Val0, Loc0, PFS) ||
6403       ParseToken(lltok::comma, "expected comma after insertvalue operand") ||
6404       ParseTypeAndValue(Val1, Loc1, PFS) ||
6405       ParseIndexList(Indices, AteExtraComma))
6406     return true;
6407 
6408   if (!Val0->getType()->isAggregateType())
6409     return Error(Loc0, "insertvalue operand must be aggregate type");
6410 
6411   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
6412   if (!IndexedType)
6413     return Error(Loc0, "invalid indices for insertvalue");
6414   if (IndexedType != Val1->getType())
6415     return Error(Loc1, "insertvalue operand and field disagree in type: '" +
6416                            getTypeString(Val1->getType()) + "' instead of '" +
6417                            getTypeString(IndexedType) + "'");
6418   Inst = InsertValueInst::Create(Val0, Val1, Indices);
6419   return AteExtraComma ? InstExtraComma : InstNormal;
6420 }
6421 
6422 //===----------------------------------------------------------------------===//
6423 // Embedded metadata.
6424 //===----------------------------------------------------------------------===//
6425 
6426 /// ParseMDNodeVector
6427 ///   ::= { Element (',' Element)* }
6428 /// Element
6429 ///   ::= 'null' | TypeAndValue
6430 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
6431   if (ParseToken(lltok::lbrace, "expected '{' here"))
6432     return true;
6433 
6434   // Check for an empty list.
6435   if (EatIfPresent(lltok::rbrace))
6436     return false;
6437 
6438   do {
6439     // Null is a special case since it is typeless.
6440     if (EatIfPresent(lltok::kw_null)) {
6441       Elts.push_back(nullptr);
6442       continue;
6443     }
6444 
6445     Metadata *MD;
6446     if (ParseMetadata(MD, nullptr))
6447       return true;
6448     Elts.push_back(MD);
6449   } while (EatIfPresent(lltok::comma));
6450 
6451   return ParseToken(lltok::rbrace, "expected end of metadata node");
6452 }
6453 
6454 //===----------------------------------------------------------------------===//
6455 // Use-list order directives.
6456 //===----------------------------------------------------------------------===//
6457 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
6458                                 SMLoc Loc) {
6459   if (V->use_empty())
6460     return Error(Loc, "value has no uses");
6461 
6462   unsigned NumUses = 0;
6463   SmallDenseMap<const Use *, unsigned, 16> Order;
6464   for (const Use &U : V->uses()) {
6465     if (++NumUses > Indexes.size())
6466       break;
6467     Order[&U] = Indexes[NumUses - 1];
6468   }
6469   if (NumUses < 2)
6470     return Error(Loc, "value only has one use");
6471   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
6472     return Error(Loc, "wrong number of indexes, expected " +
6473                           Twine(std::distance(V->use_begin(), V->use_end())));
6474 
6475   V->sortUseList([&](const Use &L, const Use &R) {
6476     return Order.lookup(&L) < Order.lookup(&R);
6477   });
6478   return false;
6479 }
6480 
6481 /// ParseUseListOrderIndexes
6482 ///   ::= '{' uint32 (',' uint32)+ '}'
6483 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
6484   SMLoc Loc = Lex.getLoc();
6485   if (ParseToken(lltok::lbrace, "expected '{' here"))
6486     return true;
6487   if (Lex.getKind() == lltok::rbrace)
6488     return Lex.Error("expected non-empty list of uselistorder indexes");
6489 
6490   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
6491   // indexes should be distinct numbers in the range [0, size-1], and should
6492   // not be in order.
6493   unsigned Offset = 0;
6494   unsigned Max = 0;
6495   bool IsOrdered = true;
6496   assert(Indexes.empty() && "Expected empty order vector");
6497   do {
6498     unsigned Index;
6499     if (ParseUInt32(Index))
6500       return true;
6501 
6502     // Update consistency checks.
6503     Offset += Index - Indexes.size();
6504     Max = std::max(Max, Index);
6505     IsOrdered &= Index == Indexes.size();
6506 
6507     Indexes.push_back(Index);
6508   } while (EatIfPresent(lltok::comma));
6509 
6510   if (ParseToken(lltok::rbrace, "expected '}' here"))
6511     return true;
6512 
6513   if (Indexes.size() < 2)
6514     return Error(Loc, "expected >= 2 uselistorder indexes");
6515   if (Offset != 0 || Max >= Indexes.size())
6516     return Error(Loc, "expected distinct uselistorder indexes in range [0, size)");
6517   if (IsOrdered)
6518     return Error(Loc, "expected uselistorder indexes to change the order");
6519 
6520   return false;
6521 }
6522 
6523 /// ParseUseListOrder
6524 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
6525 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) {
6526   SMLoc Loc = Lex.getLoc();
6527   if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
6528     return true;
6529 
6530   Value *V;
6531   SmallVector<unsigned, 16> Indexes;
6532   if (ParseTypeAndValue(V, PFS) ||
6533       ParseToken(lltok::comma, "expected comma in uselistorder directive") ||
6534       ParseUseListOrderIndexes(Indexes))
6535     return true;
6536 
6537   return sortUseListOrder(V, Indexes, Loc);
6538 }
6539 
6540 /// ParseUseListOrderBB
6541 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
6542 bool LLParser::ParseUseListOrderBB() {
6543   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
6544   SMLoc Loc = Lex.getLoc();
6545   Lex.Lex();
6546 
6547   ValID Fn, Label;
6548   SmallVector<unsigned, 16> Indexes;
6549   if (ParseValID(Fn) ||
6550       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
6551       ParseValID(Label) ||
6552       ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
6553       ParseUseListOrderIndexes(Indexes))
6554     return true;
6555 
6556   // Check the function.
6557   GlobalValue *GV;
6558   if (Fn.Kind == ValID::t_GlobalName)
6559     GV = M->getNamedValue(Fn.StrVal);
6560   else if (Fn.Kind == ValID::t_GlobalID)
6561     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
6562   else
6563     return Error(Fn.Loc, "expected function name in uselistorder_bb");
6564   if (!GV)
6565     return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb");
6566   auto *F = dyn_cast<Function>(GV);
6567   if (!F)
6568     return Error(Fn.Loc, "expected function name in uselistorder_bb");
6569   if (F->isDeclaration())
6570     return Error(Fn.Loc, "invalid declaration in uselistorder_bb");
6571 
6572   // Check the basic block.
6573   if (Label.Kind == ValID::t_LocalID)
6574     return Error(Label.Loc, "invalid numeric label in uselistorder_bb");
6575   if (Label.Kind != ValID::t_LocalName)
6576     return Error(Label.Loc, "expected basic block name in uselistorder_bb");
6577   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
6578   if (!V)
6579     return Error(Label.Loc, "invalid basic block in uselistorder_bb");
6580   if (!isa<BasicBlock>(V))
6581     return Error(Label.Loc, "expected basic block in uselistorder_bb");
6582 
6583   return sortUseListOrder(V, Indexes, Loc);
6584 }
6585