1 //===-- LLParser.cpp - Parser Class ---------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 //  This file defines the parser class for .ll files.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/AsmParser/LLParser.h"
14 #include "llvm/ADT/APSInt.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/None.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/AsmParser/LLToken.h"
20 #include "llvm/AsmParser/SlotMapping.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/IR/Argument.h"
23 #include "llvm/IR/AutoUpgrade.h"
24 #include "llvm/IR/BasicBlock.h"
25 #include "llvm/IR/CallingConv.h"
26 #include "llvm/IR/Comdat.h"
27 #include "llvm/IR/ConstantRange.h"
28 #include "llvm/IR/Constants.h"
29 #include "llvm/IR/DebugInfoMetadata.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/GlobalIFunc.h"
33 #include "llvm/IR/GlobalObject.h"
34 #include "llvm/IR/InlineAsm.h"
35 #include "llvm/IR/Instructions.h"
36 #include "llvm/IR/Intrinsics.h"
37 #include "llvm/IR/LLVMContext.h"
38 #include "llvm/IR/Metadata.h"
39 #include "llvm/IR/Module.h"
40 #include "llvm/IR/Operator.h"
41 #include "llvm/IR/Value.h"
42 #include "llvm/IR/ValueSymbolTable.h"
43 #include "llvm/Support/Casting.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/MathExtras.h"
46 #include "llvm/Support/SaveAndRestore.h"
47 #include "llvm/Support/raw_ostream.h"
48 #include <algorithm>
49 #include <cassert>
50 #include <cstring>
51 #include <vector>
52 
53 using namespace llvm;
54 
55 static std::string getTypeString(Type *T) {
56   std::string Result;
57   raw_string_ostream Tmp(Result);
58   Tmp << *T;
59   return Tmp.str();
60 }
61 
62 static void setContextOpaquePointers(LLLexer &L, LLVMContext &C) {
63   while (true) {
64     lltok::Kind K = L.Lex();
65     // LLLexer will set the opaque pointers option in LLVMContext if it sees an
66     // explicit "ptr".
67     if (K == lltok::star || K == lltok::Error || K == lltok::Eof ||
68         isa_and_nonnull<PointerType>(L.getTyVal())) {
69       if (K == lltok::star)
70         C.setOpaquePointers(false);
71       return;
72     }
73   }
74 }
75 
76 /// Run: module ::= toplevelentity*
77 bool LLParser::Run(bool UpgradeDebugInfo,
78                    DataLayoutCallbackTy DataLayoutCallback) {
79   // If we haven't decided on whether or not we're using opaque pointers, do a
80   // quick lex over the tokens to see if we explicitly construct any typed or
81   // opaque pointer types.
82   // Don't bail out on an error so we do the same work in the parsing below
83   // regardless of if --opaque-pointers is set.
84   if (!Context.hasSetOpaquePointersValue())
85     setContextOpaquePointers(OPLex, Context);
86 
87   // Prime the lexer.
88   Lex.Lex();
89 
90   if (Context.shouldDiscardValueNames())
91     return error(
92         Lex.getLoc(),
93         "Can't read textual IR with a Context that discards named Values");
94 
95   if (M) {
96     if (parseTargetDefinitions())
97       return true;
98 
99     if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple()))
100       M->setDataLayout(*LayoutOverride);
101   }
102 
103   return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) ||
104          validateEndOfIndex();
105 }
106 
107 bool LLParser::parseStandaloneConstantValue(Constant *&C,
108                                             const SlotMapping *Slots) {
109   restoreParsingState(Slots);
110   Lex.Lex();
111 
112   Type *Ty = nullptr;
113   if (parseType(Ty) || parseConstantValue(Ty, C))
114     return true;
115   if (Lex.getKind() != lltok::Eof)
116     return error(Lex.getLoc(), "expected end of string");
117   return false;
118 }
119 
120 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read,
121                                     const SlotMapping *Slots) {
122   restoreParsingState(Slots);
123   Lex.Lex();
124 
125   Read = 0;
126   SMLoc Start = Lex.getLoc();
127   Ty = nullptr;
128   if (parseType(Ty))
129     return true;
130   SMLoc End = Lex.getLoc();
131   Read = End.getPointer() - Start.getPointer();
132 
133   return false;
134 }
135 
136 void LLParser::restoreParsingState(const SlotMapping *Slots) {
137   if (!Slots)
138     return;
139   NumberedVals = Slots->GlobalValues;
140   NumberedMetadata = Slots->MetadataNodes;
141   for (const auto &I : Slots->NamedTypes)
142     NamedTypes.insert(
143         std::make_pair(I.getKey(), std::make_pair(I.second, LocTy())));
144   for (const auto &I : Slots->Types)
145     NumberedTypes.insert(
146         std::make_pair(I.first, std::make_pair(I.second, LocTy())));
147 }
148 
149 /// validateEndOfModule - Do final validity and basic correctness checks at the
150 /// end of the module.
151 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) {
152   if (!M)
153     return false;
154   // Handle any function attribute group forward references.
155   for (const auto &RAG : ForwardRefAttrGroups) {
156     Value *V = RAG.first;
157     const std::vector<unsigned> &Attrs = RAG.second;
158     AttrBuilder B(Context);
159 
160     for (const auto &Attr : Attrs) {
161       auto R = NumberedAttrBuilders.find(Attr);
162       if (R != NumberedAttrBuilders.end())
163         B.merge(R->second);
164     }
165 
166     if (Function *Fn = dyn_cast<Function>(V)) {
167       AttributeList AS = Fn->getAttributes();
168       AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
169       AS = AS.removeFnAttributes(Context);
170 
171       FnAttrs.merge(B);
172 
173       // If the alignment was parsed as an attribute, move to the alignment
174       // field.
175       if (FnAttrs.hasAlignmentAttr()) {
176         Fn->setAlignment(FnAttrs.getAlignment());
177         FnAttrs.removeAttribute(Attribute::Alignment);
178       }
179 
180       AS = AS.addFnAttributes(Context, FnAttrs);
181       Fn->setAttributes(AS);
182     } else if (CallInst *CI = dyn_cast<CallInst>(V)) {
183       AttributeList AS = CI->getAttributes();
184       AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
185       AS = AS.removeFnAttributes(Context);
186       FnAttrs.merge(B);
187       AS = AS.addFnAttributes(Context, FnAttrs);
188       CI->setAttributes(AS);
189     } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) {
190       AttributeList AS = II->getAttributes();
191       AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
192       AS = AS.removeFnAttributes(Context);
193       FnAttrs.merge(B);
194       AS = AS.addFnAttributes(Context, FnAttrs);
195       II->setAttributes(AS);
196     } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) {
197       AttributeList AS = CBI->getAttributes();
198       AttrBuilder FnAttrs(M->getContext(), AS.getFnAttrs());
199       AS = AS.removeFnAttributes(Context);
200       FnAttrs.merge(B);
201       AS = AS.addFnAttributes(Context, FnAttrs);
202       CBI->setAttributes(AS);
203     } else if (auto *GV = dyn_cast<GlobalVariable>(V)) {
204       AttrBuilder Attrs(M->getContext(), GV->getAttributes());
205       Attrs.merge(B);
206       GV->setAttributes(AttributeSet::get(Context,Attrs));
207     } else {
208       llvm_unreachable("invalid object with forward attribute group reference");
209     }
210   }
211 
212   // If there are entries in ForwardRefBlockAddresses at this point, the
213   // function was never defined.
214   if (!ForwardRefBlockAddresses.empty())
215     return error(ForwardRefBlockAddresses.begin()->first.Loc,
216                  "expected function name in blockaddress");
217 
218   for (const auto &NT : NumberedTypes)
219     if (NT.second.second.isValid())
220       return error(NT.second.second,
221                    "use of undefined type '%" + Twine(NT.first) + "'");
222 
223   for (StringMap<std::pair<Type*, LocTy> >::iterator I =
224        NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I)
225     if (I->second.second.isValid())
226       return error(I->second.second,
227                    "use of undefined type named '" + I->getKey() + "'");
228 
229   if (!ForwardRefComdats.empty())
230     return error(ForwardRefComdats.begin()->second,
231                  "use of undefined comdat '$" +
232                      ForwardRefComdats.begin()->first + "'");
233 
234   if (!ForwardRefVals.empty())
235     return error(ForwardRefVals.begin()->second.second,
236                  "use of undefined value '@" + ForwardRefVals.begin()->first +
237                      "'");
238 
239   if (!ForwardRefValIDs.empty())
240     return error(ForwardRefValIDs.begin()->second.second,
241                  "use of undefined value '@" +
242                      Twine(ForwardRefValIDs.begin()->first) + "'");
243 
244   if (!ForwardRefMDNodes.empty())
245     return error(ForwardRefMDNodes.begin()->second.second,
246                  "use of undefined metadata '!" +
247                      Twine(ForwardRefMDNodes.begin()->first) + "'");
248 
249   // Resolve metadata cycles.
250   for (auto &N : NumberedMetadata) {
251     if (N.second && !N.second->isResolved())
252       N.second->resolveCycles();
253   }
254 
255   for (auto *Inst : InstsWithTBAATag) {
256     MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa);
257     assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag");
258     auto *UpgradedMD = UpgradeTBAANode(*MD);
259     if (MD != UpgradedMD)
260       Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD);
261   }
262 
263   // Look for intrinsic functions and CallInst that need to be upgraded.  We use
264   // make_early_inc_range here because we may remove some functions.
265   for (Function &F : llvm::make_early_inc_range(*M))
266     UpgradeCallsToIntrinsic(&F);
267 
268   // Some types could be renamed during loading if several modules are
269   // loaded in the same LLVMContext (LTO scenario). In this case we should
270   // remangle intrinsics names as well.
271   for (Function &F : llvm::make_early_inc_range(*M)) {
272     if (auto Remangled = Intrinsic::remangleIntrinsicFunction(&F)) {
273       F.replaceAllUsesWith(Remangled.getValue());
274       F.eraseFromParent();
275     }
276   }
277 
278   if (UpgradeDebugInfo)
279     llvm::UpgradeDebugInfo(*M);
280 
281   UpgradeModuleFlags(*M);
282   UpgradeSectionAttributes(*M);
283 
284   if (!Slots)
285     return false;
286   // Initialize the slot mapping.
287   // Because by this point we've parsed and validated everything, we can "steal"
288   // the mapping from LLParser as it doesn't need it anymore.
289   Slots->GlobalValues = std::move(NumberedVals);
290   Slots->MetadataNodes = std::move(NumberedMetadata);
291   for (const auto &I : NamedTypes)
292     Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first));
293   for (const auto &I : NumberedTypes)
294     Slots->Types.insert(std::make_pair(I.first, I.second.first));
295 
296   return false;
297 }
298 
299 /// Do final validity and basic correctness checks at the end of the index.
300 bool LLParser::validateEndOfIndex() {
301   if (!Index)
302     return false;
303 
304   if (!ForwardRefValueInfos.empty())
305     return error(ForwardRefValueInfos.begin()->second.front().second,
306                  "use of undefined summary '^" +
307                      Twine(ForwardRefValueInfos.begin()->first) + "'");
308 
309   if (!ForwardRefAliasees.empty())
310     return error(ForwardRefAliasees.begin()->second.front().second,
311                  "use of undefined summary '^" +
312                      Twine(ForwardRefAliasees.begin()->first) + "'");
313 
314   if (!ForwardRefTypeIds.empty())
315     return error(ForwardRefTypeIds.begin()->second.front().second,
316                  "use of undefined type id summary '^" +
317                      Twine(ForwardRefTypeIds.begin()->first) + "'");
318 
319   return false;
320 }
321 
322 //===----------------------------------------------------------------------===//
323 // Top-Level Entities
324 //===----------------------------------------------------------------------===//
325 
326 bool LLParser::parseTargetDefinitions() {
327   while (true) {
328     switch (Lex.getKind()) {
329     case lltok::kw_target:
330       if (parseTargetDefinition())
331         return true;
332       break;
333     case lltok::kw_source_filename:
334       if (parseSourceFileName())
335         return true;
336       break;
337     default:
338       return false;
339     }
340   }
341 }
342 
343 bool LLParser::parseTopLevelEntities() {
344   // If there is no Module, then parse just the summary index entries.
345   if (!M) {
346     while (true) {
347       switch (Lex.getKind()) {
348       case lltok::Eof:
349         return false;
350       case lltok::SummaryID:
351         if (parseSummaryEntry())
352           return true;
353         break;
354       case lltok::kw_source_filename:
355         if (parseSourceFileName())
356           return true;
357         break;
358       default:
359         // Skip everything else
360         Lex.Lex();
361       }
362     }
363   }
364   while (true) {
365     switch (Lex.getKind()) {
366     default:
367       return tokError("expected top-level entity");
368     case lltok::Eof: return false;
369     case lltok::kw_declare:
370       if (parseDeclare())
371         return true;
372       break;
373     case lltok::kw_define:
374       if (parseDefine())
375         return true;
376       break;
377     case lltok::kw_module:
378       if (parseModuleAsm())
379         return true;
380       break;
381     case lltok::LocalVarID:
382       if (parseUnnamedType())
383         return true;
384       break;
385     case lltok::LocalVar:
386       if (parseNamedType())
387         return true;
388       break;
389     case lltok::GlobalID:
390       if (parseUnnamedGlobal())
391         return true;
392       break;
393     case lltok::GlobalVar:
394       if (parseNamedGlobal())
395         return true;
396       break;
397     case lltok::ComdatVar:  if (parseComdat()) return true; break;
398     case lltok::exclaim:
399       if (parseStandaloneMetadata())
400         return true;
401       break;
402     case lltok::SummaryID:
403       if (parseSummaryEntry())
404         return true;
405       break;
406     case lltok::MetadataVar:
407       if (parseNamedMetadata())
408         return true;
409       break;
410     case lltok::kw_attributes:
411       if (parseUnnamedAttrGrp())
412         return true;
413       break;
414     case lltok::kw_uselistorder:
415       if (parseUseListOrder())
416         return true;
417       break;
418     case lltok::kw_uselistorder_bb:
419       if (parseUseListOrderBB())
420         return true;
421       break;
422     }
423   }
424 }
425 
426 /// toplevelentity
427 ///   ::= 'module' 'asm' STRINGCONSTANT
428 bool LLParser::parseModuleAsm() {
429   assert(Lex.getKind() == lltok::kw_module);
430   Lex.Lex();
431 
432   std::string AsmStr;
433   if (parseToken(lltok::kw_asm, "expected 'module asm'") ||
434       parseStringConstant(AsmStr))
435     return true;
436 
437   M->appendModuleInlineAsm(AsmStr);
438   return false;
439 }
440 
441 /// toplevelentity
442 ///   ::= 'target' 'triple' '=' STRINGCONSTANT
443 ///   ::= 'target' 'datalayout' '=' STRINGCONSTANT
444 bool LLParser::parseTargetDefinition() {
445   assert(Lex.getKind() == lltok::kw_target);
446   std::string Str;
447   switch (Lex.Lex()) {
448   default:
449     return tokError("unknown target property");
450   case lltok::kw_triple:
451     Lex.Lex();
452     if (parseToken(lltok::equal, "expected '=' after target triple") ||
453         parseStringConstant(Str))
454       return true;
455     M->setTargetTriple(Str);
456     return false;
457   case lltok::kw_datalayout:
458     Lex.Lex();
459     if (parseToken(lltok::equal, "expected '=' after target datalayout") ||
460         parseStringConstant(Str))
461       return true;
462     M->setDataLayout(Str);
463     return false;
464   }
465 }
466 
467 /// toplevelentity
468 ///   ::= 'source_filename' '=' STRINGCONSTANT
469 bool LLParser::parseSourceFileName() {
470   assert(Lex.getKind() == lltok::kw_source_filename);
471   Lex.Lex();
472   if (parseToken(lltok::equal, "expected '=' after source_filename") ||
473       parseStringConstant(SourceFileName))
474     return true;
475   if (M)
476     M->setSourceFileName(SourceFileName);
477   return false;
478 }
479 
480 /// parseUnnamedType:
481 ///   ::= LocalVarID '=' 'type' type
482 bool LLParser::parseUnnamedType() {
483   LocTy TypeLoc = Lex.getLoc();
484   unsigned TypeID = Lex.getUIntVal();
485   Lex.Lex(); // eat LocalVarID;
486 
487   if (parseToken(lltok::equal, "expected '=' after name") ||
488       parseToken(lltok::kw_type, "expected 'type' after '='"))
489     return true;
490 
491   Type *Result = nullptr;
492   if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result))
493     return true;
494 
495   if (!isa<StructType>(Result)) {
496     std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID];
497     if (Entry.first)
498       return error(TypeLoc, "non-struct types may not be recursive");
499     Entry.first = Result;
500     Entry.second = SMLoc();
501   }
502 
503   return false;
504 }
505 
506 /// toplevelentity
507 ///   ::= LocalVar '=' 'type' type
508 bool LLParser::parseNamedType() {
509   std::string Name = Lex.getStrVal();
510   LocTy NameLoc = Lex.getLoc();
511   Lex.Lex();  // eat LocalVar.
512 
513   if (parseToken(lltok::equal, "expected '=' after name") ||
514       parseToken(lltok::kw_type, "expected 'type' after name"))
515     return true;
516 
517   Type *Result = nullptr;
518   if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result))
519     return true;
520 
521   if (!isa<StructType>(Result)) {
522     std::pair<Type*, LocTy> &Entry = NamedTypes[Name];
523     if (Entry.first)
524       return error(NameLoc, "non-struct types may not be recursive");
525     Entry.first = Result;
526     Entry.second = SMLoc();
527   }
528 
529   return false;
530 }
531 
532 /// toplevelentity
533 ///   ::= 'declare' FunctionHeader
534 bool LLParser::parseDeclare() {
535   assert(Lex.getKind() == lltok::kw_declare);
536   Lex.Lex();
537 
538   std::vector<std::pair<unsigned, MDNode *>> MDs;
539   while (Lex.getKind() == lltok::MetadataVar) {
540     unsigned MDK;
541     MDNode *N;
542     if (parseMetadataAttachment(MDK, N))
543       return true;
544     MDs.push_back({MDK, N});
545   }
546 
547   Function *F;
548   if (parseFunctionHeader(F, false))
549     return true;
550   for (auto &MD : MDs)
551     F->addMetadata(MD.first, *MD.second);
552   return false;
553 }
554 
555 /// toplevelentity
556 ///   ::= 'define' FunctionHeader (!dbg !56)* '{' ...
557 bool LLParser::parseDefine() {
558   assert(Lex.getKind() == lltok::kw_define);
559   Lex.Lex();
560 
561   Function *F;
562   return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) ||
563          parseFunctionBody(*F);
564 }
565 
566 /// parseGlobalType
567 ///   ::= 'constant'
568 ///   ::= 'global'
569 bool LLParser::parseGlobalType(bool &IsConstant) {
570   if (Lex.getKind() == lltok::kw_constant)
571     IsConstant = true;
572   else if (Lex.getKind() == lltok::kw_global)
573     IsConstant = false;
574   else {
575     IsConstant = false;
576     return tokError("expected 'global' or 'constant'");
577   }
578   Lex.Lex();
579   return false;
580 }
581 
582 bool LLParser::parseOptionalUnnamedAddr(
583     GlobalVariable::UnnamedAddr &UnnamedAddr) {
584   if (EatIfPresent(lltok::kw_unnamed_addr))
585     UnnamedAddr = GlobalValue::UnnamedAddr::Global;
586   else if (EatIfPresent(lltok::kw_local_unnamed_addr))
587     UnnamedAddr = GlobalValue::UnnamedAddr::Local;
588   else
589     UnnamedAddr = GlobalValue::UnnamedAddr::None;
590   return false;
591 }
592 
593 /// parseUnnamedGlobal:
594 ///   OptionalVisibility (ALIAS | IFUNC) ...
595 ///   OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
596 ///   OptionalDLLStorageClass
597 ///                                                     ...   -> global variable
598 ///   GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ...
599 ///   GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier
600 ///   OptionalVisibility
601 ///                OptionalDLLStorageClass
602 ///                                                     ...   -> global variable
603 bool LLParser::parseUnnamedGlobal() {
604   unsigned VarID = NumberedVals.size();
605   std::string Name;
606   LocTy NameLoc = Lex.getLoc();
607 
608   // Handle the GlobalID form.
609   if (Lex.getKind() == lltok::GlobalID) {
610     if (Lex.getUIntVal() != VarID)
611       return error(Lex.getLoc(),
612                    "variable expected to be numbered '%" + Twine(VarID) + "'");
613     Lex.Lex(); // eat GlobalID;
614 
615     if (parseToken(lltok::equal, "expected '=' after name"))
616       return true;
617   }
618 
619   bool HasLinkage;
620   unsigned Linkage, Visibility, DLLStorageClass;
621   bool DSOLocal;
622   GlobalVariable::ThreadLocalMode TLM;
623   GlobalVariable::UnnamedAddr UnnamedAddr;
624   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
625                            DSOLocal) ||
626       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
627     return true;
628 
629   switch (Lex.getKind()) {
630   default:
631     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
632                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
633   case lltok::kw_alias:
634   case lltok::kw_ifunc:
635     return parseAliasOrIFunc(Name, NameLoc, Linkage, Visibility,
636                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
637   }
638 }
639 
640 /// parseNamedGlobal:
641 ///   GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ...
642 ///   GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
643 ///                 OptionalVisibility OptionalDLLStorageClass
644 ///                                                     ...   -> global variable
645 bool LLParser::parseNamedGlobal() {
646   assert(Lex.getKind() == lltok::GlobalVar);
647   LocTy NameLoc = Lex.getLoc();
648   std::string Name = Lex.getStrVal();
649   Lex.Lex();
650 
651   bool HasLinkage;
652   unsigned Linkage, Visibility, DLLStorageClass;
653   bool DSOLocal;
654   GlobalVariable::ThreadLocalMode TLM;
655   GlobalVariable::UnnamedAddr UnnamedAddr;
656   if (parseToken(lltok::equal, "expected '=' in global variable") ||
657       parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
658                            DSOLocal) ||
659       parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr))
660     return true;
661 
662   switch (Lex.getKind()) {
663   default:
664     return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility,
665                        DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
666   case lltok::kw_alias:
667   case lltok::kw_ifunc:
668     return parseAliasOrIFunc(Name, NameLoc, Linkage, Visibility,
669                              DLLStorageClass, DSOLocal, TLM, UnnamedAddr);
670   }
671 }
672 
673 bool LLParser::parseComdat() {
674   assert(Lex.getKind() == lltok::ComdatVar);
675   std::string Name = Lex.getStrVal();
676   LocTy NameLoc = Lex.getLoc();
677   Lex.Lex();
678 
679   if (parseToken(lltok::equal, "expected '=' here"))
680     return true;
681 
682   if (parseToken(lltok::kw_comdat, "expected comdat keyword"))
683     return tokError("expected comdat type");
684 
685   Comdat::SelectionKind SK;
686   switch (Lex.getKind()) {
687   default:
688     return tokError("unknown selection kind");
689   case lltok::kw_any:
690     SK = Comdat::Any;
691     break;
692   case lltok::kw_exactmatch:
693     SK = Comdat::ExactMatch;
694     break;
695   case lltok::kw_largest:
696     SK = Comdat::Largest;
697     break;
698   case lltok::kw_nodeduplicate:
699     SK = Comdat::NoDeduplicate;
700     break;
701   case lltok::kw_samesize:
702     SK = Comdat::SameSize;
703     break;
704   }
705   Lex.Lex();
706 
707   // See if the comdat was forward referenced, if so, use the comdat.
708   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
709   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
710   if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name))
711     return error(NameLoc, "redefinition of comdat '$" + Name + "'");
712 
713   Comdat *C;
714   if (I != ComdatSymTab.end())
715     C = &I->second;
716   else
717     C = M->getOrInsertComdat(Name);
718   C->setSelectionKind(SK);
719 
720   return false;
721 }
722 
723 // MDString:
724 //   ::= '!' STRINGCONSTANT
725 bool LLParser::parseMDString(MDString *&Result) {
726   std::string Str;
727   if (parseStringConstant(Str))
728     return true;
729   Result = MDString::get(Context, Str);
730   return false;
731 }
732 
733 // MDNode:
734 //   ::= '!' MDNodeNumber
735 bool LLParser::parseMDNodeID(MDNode *&Result) {
736   // !{ ..., !42, ... }
737   LocTy IDLoc = Lex.getLoc();
738   unsigned MID = 0;
739   if (parseUInt32(MID))
740     return true;
741 
742   // If not a forward reference, just return it now.
743   if (NumberedMetadata.count(MID)) {
744     Result = NumberedMetadata[MID];
745     return false;
746   }
747 
748   // Otherwise, create MDNode forward reference.
749   auto &FwdRef = ForwardRefMDNodes[MID];
750   FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc);
751 
752   Result = FwdRef.first.get();
753   NumberedMetadata[MID].reset(Result);
754   return false;
755 }
756 
757 /// parseNamedMetadata:
758 ///   !foo = !{ !1, !2 }
759 bool LLParser::parseNamedMetadata() {
760   assert(Lex.getKind() == lltok::MetadataVar);
761   std::string Name = Lex.getStrVal();
762   Lex.Lex();
763 
764   if (parseToken(lltok::equal, "expected '=' here") ||
765       parseToken(lltok::exclaim, "Expected '!' here") ||
766       parseToken(lltok::lbrace, "Expected '{' here"))
767     return true;
768 
769   NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name);
770   if (Lex.getKind() != lltok::rbrace)
771     do {
772       MDNode *N = nullptr;
773       // parse DIExpressions inline as a special case. They are still MDNodes,
774       // so they can still appear in named metadata. Remove this logic if they
775       // become plain Metadata.
776       if (Lex.getKind() == lltok::MetadataVar &&
777           Lex.getStrVal() == "DIExpression") {
778         if (parseDIExpression(N, /*IsDistinct=*/false))
779           return true;
780         // DIArgLists should only appear inline in a function, as they may
781         // contain LocalAsMetadata arguments which require a function context.
782       } else if (Lex.getKind() == lltok::MetadataVar &&
783                  Lex.getStrVal() == "DIArgList") {
784         return tokError("found DIArgList outside of function");
785       } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
786                  parseMDNodeID(N)) {
787         return true;
788       }
789       NMD->addOperand(N);
790     } while (EatIfPresent(lltok::comma));
791 
792   return parseToken(lltok::rbrace, "expected end of metadata node");
793 }
794 
795 /// parseStandaloneMetadata:
796 ///   !42 = !{...}
797 bool LLParser::parseStandaloneMetadata() {
798   assert(Lex.getKind() == lltok::exclaim);
799   Lex.Lex();
800   unsigned MetadataID = 0;
801 
802   MDNode *Init;
803   if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here"))
804     return true;
805 
806   // Detect common error, from old metadata syntax.
807   if (Lex.getKind() == lltok::Type)
808     return tokError("unexpected type in metadata definition");
809 
810   bool IsDistinct = EatIfPresent(lltok::kw_distinct);
811   if (Lex.getKind() == lltok::MetadataVar) {
812     if (parseSpecializedMDNode(Init, IsDistinct))
813       return true;
814   } else if (parseToken(lltok::exclaim, "Expected '!' here") ||
815              parseMDTuple(Init, IsDistinct))
816     return true;
817 
818   // See if this was forward referenced, if so, handle it.
819   auto FI = ForwardRefMDNodes.find(MetadataID);
820   if (FI != ForwardRefMDNodes.end()) {
821     FI->second.first->replaceAllUsesWith(Init);
822     ForwardRefMDNodes.erase(FI);
823 
824     assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work");
825   } else {
826     if (NumberedMetadata.count(MetadataID))
827       return tokError("Metadata id is already used");
828     NumberedMetadata[MetadataID].reset(Init);
829   }
830 
831   return false;
832 }
833 
834 // Skips a single module summary entry.
835 bool LLParser::skipModuleSummaryEntry() {
836   // Each module summary entry consists of a tag for the entry
837   // type, followed by a colon, then the fields which may be surrounded by
838   // nested sets of parentheses. The "tag:" looks like a Label. Once parsing
839   // support is in place we will look for the tokens corresponding to the
840   // expected tags.
841   if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module &&
842       Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags &&
843       Lex.getKind() != lltok::kw_blockcount)
844     return tokError(
845         "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the "
846         "start of summary entry");
847   if (Lex.getKind() == lltok::kw_flags)
848     return parseSummaryIndexFlags();
849   if (Lex.getKind() == lltok::kw_blockcount)
850     return parseBlockCount();
851   Lex.Lex();
852   if (parseToken(lltok::colon, "expected ':' at start of summary entry") ||
853       parseToken(lltok::lparen, "expected '(' at start of summary entry"))
854     return true;
855   // Now walk through the parenthesized entry, until the number of open
856   // parentheses goes back down to 0 (the first '(' was parsed above).
857   unsigned NumOpenParen = 1;
858   do {
859     switch (Lex.getKind()) {
860     case lltok::lparen:
861       NumOpenParen++;
862       break;
863     case lltok::rparen:
864       NumOpenParen--;
865       break;
866     case lltok::Eof:
867       return tokError("found end of file while parsing summary entry");
868     default:
869       // Skip everything in between parentheses.
870       break;
871     }
872     Lex.Lex();
873   } while (NumOpenParen > 0);
874   return false;
875 }
876 
877 /// SummaryEntry
878 ///   ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry
879 bool LLParser::parseSummaryEntry() {
880   assert(Lex.getKind() == lltok::SummaryID);
881   unsigned SummaryID = Lex.getUIntVal();
882 
883   // For summary entries, colons should be treated as distinct tokens,
884   // not an indication of the end of a label token.
885   Lex.setIgnoreColonInIdentifiers(true);
886 
887   Lex.Lex();
888   if (parseToken(lltok::equal, "expected '=' here"))
889     return true;
890 
891   // If we don't have an index object, skip the summary entry.
892   if (!Index)
893     return skipModuleSummaryEntry();
894 
895   bool result = false;
896   switch (Lex.getKind()) {
897   case lltok::kw_gv:
898     result = parseGVEntry(SummaryID);
899     break;
900   case lltok::kw_module:
901     result = parseModuleEntry(SummaryID);
902     break;
903   case lltok::kw_typeid:
904     result = parseTypeIdEntry(SummaryID);
905     break;
906   case lltok::kw_typeidCompatibleVTable:
907     result = parseTypeIdCompatibleVtableEntry(SummaryID);
908     break;
909   case lltok::kw_flags:
910     result = parseSummaryIndexFlags();
911     break;
912   case lltok::kw_blockcount:
913     result = parseBlockCount();
914     break;
915   default:
916     result = error(Lex.getLoc(), "unexpected summary kind");
917     break;
918   }
919   Lex.setIgnoreColonInIdentifiers(false);
920   return result;
921 }
922 
923 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) {
924   return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) ||
925          (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility;
926 }
927 
928 // If there was an explicit dso_local, update GV. In the absence of an explicit
929 // dso_local we keep the default value.
930 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) {
931   if (DSOLocal)
932     GV.setDSOLocal(true);
933 }
934 
935 static std::string typeComparisonErrorMessage(StringRef Message, Type *Ty1,
936                                               Type *Ty2) {
937   std::string ErrString;
938   raw_string_ostream ErrOS(ErrString);
939   ErrOS << Message << " (" << *Ty1 << " vs " << *Ty2 << ")";
940   return ErrOS.str();
941 }
942 
943 /// parseAliasOrIFunc:
944 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
945 ///                     OptionalVisibility OptionalDLLStorageClass
946 ///                     OptionalThreadLocal OptionalUnnamedAddr
947 ///                     'alias|ifunc' AliaseeOrResolver SymbolAttrs*
948 ///
949 /// AliaseeOrResolver
950 ///   ::= TypeAndValue
951 ///
952 /// SymbolAttrs
953 ///   ::= ',' 'partition' StringConstant
954 ///
955 /// Everything through OptionalUnnamedAddr has already been parsed.
956 ///
957 bool LLParser::parseAliasOrIFunc(const std::string &Name, LocTy NameLoc,
958                                  unsigned L, unsigned Visibility,
959                                  unsigned DLLStorageClass, bool DSOLocal,
960                                  GlobalVariable::ThreadLocalMode TLM,
961                                  GlobalVariable::UnnamedAddr UnnamedAddr) {
962   bool IsAlias;
963   if (Lex.getKind() == lltok::kw_alias)
964     IsAlias = true;
965   else if (Lex.getKind() == lltok::kw_ifunc)
966     IsAlias = false;
967   else
968     llvm_unreachable("Not an alias or ifunc!");
969   Lex.Lex();
970 
971   GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L;
972 
973   if(IsAlias && !GlobalAlias::isValidLinkage(Linkage))
974     return error(NameLoc, "invalid linkage type for alias");
975 
976   if (!isValidVisibilityForLinkage(Visibility, L))
977     return error(NameLoc,
978                  "symbol with local linkage must have default visibility");
979 
980   Type *Ty;
981   LocTy ExplicitTypeLoc = Lex.getLoc();
982   if (parseType(Ty) ||
983       parseToken(lltok::comma, "expected comma after alias or ifunc's type"))
984     return true;
985 
986   Constant *Aliasee;
987   LocTy AliaseeLoc = Lex.getLoc();
988   if (Lex.getKind() != lltok::kw_bitcast &&
989       Lex.getKind() != lltok::kw_getelementptr &&
990       Lex.getKind() != lltok::kw_addrspacecast &&
991       Lex.getKind() != lltok::kw_inttoptr) {
992     if (parseGlobalTypeAndValue(Aliasee))
993       return true;
994   } else {
995     // The bitcast dest type is not present, it is implied by the dest type.
996     ValID ID;
997     if (parseValID(ID, /*PFS=*/nullptr))
998       return true;
999     if (ID.Kind != ValID::t_Constant)
1000       return error(AliaseeLoc, "invalid aliasee");
1001     Aliasee = ID.ConstantVal;
1002   }
1003 
1004   Type *AliaseeType = Aliasee->getType();
1005   auto *PTy = dyn_cast<PointerType>(AliaseeType);
1006   if (!PTy)
1007     return error(AliaseeLoc, "An alias or ifunc must have pointer type");
1008   unsigned AddrSpace = PTy->getAddressSpace();
1009 
1010   if (IsAlias) {
1011     if (!PTy->isOpaqueOrPointeeTypeMatches(Ty))
1012       return error(
1013           ExplicitTypeLoc,
1014           typeComparisonErrorMessage(
1015               "explicit pointee type doesn't match operand's pointee type", Ty,
1016               PTy->getNonOpaquePointerElementType()));
1017   } else {
1018     if (!PTy->isOpaque() &&
1019         !PTy->getNonOpaquePointerElementType()->isFunctionTy())
1020       return error(ExplicitTypeLoc,
1021                    "explicit pointee type should be a function type");
1022   }
1023 
1024   GlobalValue *GVal = nullptr;
1025 
1026   // See if the alias was forward referenced, if so, prepare to replace the
1027   // forward reference.
1028   if (!Name.empty()) {
1029     auto I = ForwardRefVals.find(Name);
1030     if (I != ForwardRefVals.end()) {
1031       GVal = I->second.first;
1032       ForwardRefVals.erase(Name);
1033     } else if (M->getNamedValue(Name)) {
1034       return error(NameLoc, "redefinition of global '@" + Name + "'");
1035     }
1036   } else {
1037     auto I = ForwardRefValIDs.find(NumberedVals.size());
1038     if (I != ForwardRefValIDs.end()) {
1039       GVal = I->second.first;
1040       ForwardRefValIDs.erase(I);
1041     }
1042   }
1043 
1044   // Okay, create the alias/ifunc but do not insert it into the module yet.
1045   std::unique_ptr<GlobalAlias> GA;
1046   std::unique_ptr<GlobalIFunc> GI;
1047   GlobalValue *GV;
1048   if (IsAlias) {
1049     GA.reset(GlobalAlias::create(Ty, AddrSpace,
1050                                  (GlobalValue::LinkageTypes)Linkage, Name,
1051                                  Aliasee, /*Parent*/ nullptr));
1052     GV = GA.get();
1053   } else {
1054     GI.reset(GlobalIFunc::create(Ty, AddrSpace,
1055                                  (GlobalValue::LinkageTypes)Linkage, Name,
1056                                  Aliasee, /*Parent*/ nullptr));
1057     GV = GI.get();
1058   }
1059   GV->setThreadLocalMode(TLM);
1060   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1061   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1062   GV->setUnnamedAddr(UnnamedAddr);
1063   maybeSetDSOLocal(DSOLocal, *GV);
1064 
1065   // At this point we've parsed everything except for the IndirectSymbolAttrs.
1066   // Now parse them if there are any.
1067   while (Lex.getKind() == lltok::comma) {
1068     Lex.Lex();
1069 
1070     if (Lex.getKind() == lltok::kw_partition) {
1071       Lex.Lex();
1072       GV->setPartition(Lex.getStrVal());
1073       if (parseToken(lltok::StringConstant, "expected partition string"))
1074         return true;
1075     } else {
1076       return tokError("unknown alias or ifunc property!");
1077     }
1078   }
1079 
1080   if (Name.empty())
1081     NumberedVals.push_back(GV);
1082 
1083   if (GVal) {
1084     // Verify that types agree.
1085     if (GVal->getType() != GV->getType())
1086       return error(
1087           ExplicitTypeLoc,
1088           "forward reference and definition of alias have different types");
1089 
1090     // If they agree, just RAUW the old value with the alias and remove the
1091     // forward ref info.
1092     GVal->replaceAllUsesWith(GV);
1093     GVal->eraseFromParent();
1094   }
1095 
1096   // Insert into the module, we know its name won't collide now.
1097   if (IsAlias)
1098     M->getAliasList().push_back(GA.release());
1099   else
1100     M->getIFuncList().push_back(GI.release());
1101   assert(GV->getName() == Name && "Should not be a name conflict!");
1102 
1103   return false;
1104 }
1105 
1106 /// parseGlobal
1107 ///   ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier
1108 ///       OptionalVisibility OptionalDLLStorageClass
1109 ///       OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace
1110 ///       OptionalExternallyInitialized GlobalType Type Const OptionalAttrs
1111 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
1112 ///       OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr
1113 ///       OptionalAddrSpace OptionalExternallyInitialized GlobalType Type
1114 ///       Const OptionalAttrs
1115 ///
1116 /// Everything up to and including OptionalUnnamedAddr has been parsed
1117 /// already.
1118 ///
1119 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc,
1120                            unsigned Linkage, bool HasLinkage,
1121                            unsigned Visibility, unsigned DLLStorageClass,
1122                            bool DSOLocal, GlobalVariable::ThreadLocalMode TLM,
1123                            GlobalVariable::UnnamedAddr UnnamedAddr) {
1124   if (!isValidVisibilityForLinkage(Visibility, Linkage))
1125     return error(NameLoc,
1126                  "symbol with local linkage must have default visibility");
1127 
1128   unsigned AddrSpace;
1129   bool IsConstant, IsExternallyInitialized;
1130   LocTy IsExternallyInitializedLoc;
1131   LocTy TyLoc;
1132 
1133   Type *Ty = nullptr;
1134   if (parseOptionalAddrSpace(AddrSpace) ||
1135       parseOptionalToken(lltok::kw_externally_initialized,
1136                          IsExternallyInitialized,
1137                          &IsExternallyInitializedLoc) ||
1138       parseGlobalType(IsConstant) || parseType(Ty, TyLoc))
1139     return true;
1140 
1141   // If the linkage is specified and is external, then no initializer is
1142   // present.
1143   Constant *Init = nullptr;
1144   if (!HasLinkage ||
1145       !GlobalValue::isValidDeclarationLinkage(
1146           (GlobalValue::LinkageTypes)Linkage)) {
1147     if (parseGlobalValue(Ty, Init))
1148       return true;
1149   }
1150 
1151   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
1152     return error(TyLoc, "invalid type for global variable");
1153 
1154   GlobalValue *GVal = nullptr;
1155 
1156   // See if the global was forward referenced, if so, use the global.
1157   if (!Name.empty()) {
1158     auto I = ForwardRefVals.find(Name);
1159     if (I != ForwardRefVals.end()) {
1160       GVal = I->second.first;
1161       ForwardRefVals.erase(I);
1162     } else if (M->getNamedValue(Name)) {
1163       return error(NameLoc, "redefinition of global '@" + Name + "'");
1164     }
1165   } else {
1166     auto I = ForwardRefValIDs.find(NumberedVals.size());
1167     if (I != ForwardRefValIDs.end()) {
1168       GVal = I->second.first;
1169       ForwardRefValIDs.erase(I);
1170     }
1171   }
1172 
1173   GlobalVariable *GV = new GlobalVariable(
1174       *M, Ty, false, GlobalValue::ExternalLinkage, nullptr, Name, nullptr,
1175       GlobalVariable::NotThreadLocal, AddrSpace);
1176 
1177   if (Name.empty())
1178     NumberedVals.push_back(GV);
1179 
1180   // Set the parsed properties on the global.
1181   if (Init)
1182     GV->setInitializer(Init);
1183   GV->setConstant(IsConstant);
1184   GV->setLinkage((GlobalValue::LinkageTypes)Linkage);
1185   maybeSetDSOLocal(DSOLocal, *GV);
1186   GV->setVisibility((GlobalValue::VisibilityTypes)Visibility);
1187   GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
1188   GV->setExternallyInitialized(IsExternallyInitialized);
1189   GV->setThreadLocalMode(TLM);
1190   GV->setUnnamedAddr(UnnamedAddr);
1191 
1192   if (GVal) {
1193     if (GVal->getType() != Ty->getPointerTo(AddrSpace))
1194       return error(
1195           TyLoc,
1196           "forward reference and definition of global have different types");
1197 
1198     GVal->replaceAllUsesWith(GV);
1199     GVal->eraseFromParent();
1200   }
1201 
1202   // parse attributes on the global.
1203   while (Lex.getKind() == lltok::comma) {
1204     Lex.Lex();
1205 
1206     if (Lex.getKind() == lltok::kw_section) {
1207       Lex.Lex();
1208       GV->setSection(Lex.getStrVal());
1209       if (parseToken(lltok::StringConstant, "expected global section string"))
1210         return true;
1211     } else if (Lex.getKind() == lltok::kw_partition) {
1212       Lex.Lex();
1213       GV->setPartition(Lex.getStrVal());
1214       if (parseToken(lltok::StringConstant, "expected partition string"))
1215         return true;
1216     } else if (Lex.getKind() == lltok::kw_align) {
1217       MaybeAlign Alignment;
1218       if (parseOptionalAlignment(Alignment))
1219         return true;
1220       GV->setAlignment(Alignment);
1221     } else if (Lex.getKind() == lltok::MetadataVar) {
1222       if (parseGlobalObjectMetadataAttachment(*GV))
1223         return true;
1224     } else {
1225       Comdat *C;
1226       if (parseOptionalComdat(Name, C))
1227         return true;
1228       if (C)
1229         GV->setComdat(C);
1230       else
1231         return tokError("unknown global variable property!");
1232     }
1233   }
1234 
1235   AttrBuilder Attrs(M->getContext());
1236   LocTy BuiltinLoc;
1237   std::vector<unsigned> FwdRefAttrGrps;
1238   if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc))
1239     return true;
1240   if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) {
1241     GV->setAttributes(AttributeSet::get(Context, Attrs));
1242     ForwardRefAttrGroups[GV] = FwdRefAttrGrps;
1243   }
1244 
1245   return false;
1246 }
1247 
1248 /// parseUnnamedAttrGrp
1249 ///   ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}'
1250 bool LLParser::parseUnnamedAttrGrp() {
1251   assert(Lex.getKind() == lltok::kw_attributes);
1252   LocTy AttrGrpLoc = Lex.getLoc();
1253   Lex.Lex();
1254 
1255   if (Lex.getKind() != lltok::AttrGrpID)
1256     return tokError("expected attribute group id");
1257 
1258   unsigned VarID = Lex.getUIntVal();
1259   std::vector<unsigned> unused;
1260   LocTy BuiltinLoc;
1261   Lex.Lex();
1262 
1263   if (parseToken(lltok::equal, "expected '=' here") ||
1264       parseToken(lltok::lbrace, "expected '{' here"))
1265     return true;
1266 
1267   auto R = NumberedAttrBuilders.find(VarID);
1268   if (R == NumberedAttrBuilders.end())
1269     R = NumberedAttrBuilders.emplace(VarID, AttrBuilder(M->getContext())).first;
1270 
1271   if (parseFnAttributeValuePairs(R->second, unused, true, BuiltinLoc) ||
1272       parseToken(lltok::rbrace, "expected end of attribute group"))
1273     return true;
1274 
1275   if (!R->second.hasAttributes())
1276     return error(AttrGrpLoc, "attribute group has no attributes");
1277 
1278   return false;
1279 }
1280 
1281 static Attribute::AttrKind tokenToAttribute(lltok::Kind Kind) {
1282   switch (Kind) {
1283 #define GET_ATTR_NAMES
1284 #define ATTRIBUTE_ENUM(ENUM_NAME, DISPLAY_NAME) \
1285   case lltok::kw_##DISPLAY_NAME: \
1286     return Attribute::ENUM_NAME;
1287 #include "llvm/IR/Attributes.inc"
1288   default:
1289     return Attribute::None;
1290   }
1291 }
1292 
1293 bool LLParser::parseEnumAttribute(Attribute::AttrKind Attr, AttrBuilder &B,
1294                                   bool InAttrGroup) {
1295   if (Attribute::isTypeAttrKind(Attr))
1296     return parseRequiredTypeAttr(B, Lex.getKind(), Attr);
1297 
1298   switch (Attr) {
1299   case Attribute::Alignment: {
1300     MaybeAlign Alignment;
1301     if (InAttrGroup) {
1302       uint32_t Value = 0;
1303       Lex.Lex();
1304       if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value))
1305         return true;
1306       Alignment = Align(Value);
1307     } else {
1308       if (parseOptionalAlignment(Alignment, true))
1309         return true;
1310     }
1311     B.addAlignmentAttr(Alignment);
1312     return false;
1313   }
1314   case Attribute::StackAlignment: {
1315     unsigned Alignment;
1316     if (InAttrGroup) {
1317       Lex.Lex();
1318       if (parseToken(lltok::equal, "expected '=' here") ||
1319           parseUInt32(Alignment))
1320         return true;
1321     } else {
1322       if (parseOptionalStackAlignment(Alignment))
1323         return true;
1324     }
1325     B.addStackAlignmentAttr(Alignment);
1326     return false;
1327   }
1328   case Attribute::AllocSize: {
1329     unsigned ElemSizeArg;
1330     Optional<unsigned> NumElemsArg;
1331     if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg))
1332       return true;
1333     B.addAllocSizeAttr(ElemSizeArg, NumElemsArg);
1334     return false;
1335   }
1336   case Attribute::VScaleRange: {
1337     unsigned MinValue, MaxValue;
1338     if (parseVScaleRangeArguments(MinValue, MaxValue))
1339       return true;
1340     B.addVScaleRangeAttr(MinValue,
1341                          MaxValue > 0 ? MaxValue : Optional<unsigned>());
1342     return false;
1343   }
1344   case Attribute::Dereferenceable: {
1345     uint64_t Bytes;
1346     if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes))
1347       return true;
1348     B.addDereferenceableAttr(Bytes);
1349     return false;
1350   }
1351   case Attribute::DereferenceableOrNull: {
1352     uint64_t Bytes;
1353     if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes))
1354       return true;
1355     B.addDereferenceableOrNullAttr(Bytes);
1356     return false;
1357   }
1358   case Attribute::UWTable: {
1359     UWTableKind Kind;
1360     if (parseOptionalUWTableKind(Kind))
1361       return true;
1362     B.addUWTableAttr(Kind);
1363     return false;
1364   }
1365   default:
1366     B.addAttribute(Attr);
1367     Lex.Lex();
1368     return false;
1369   }
1370 }
1371 
1372 /// parseFnAttributeValuePairs
1373 ///   ::= <attr> | <attr> '=' <value>
1374 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B,
1375                                           std::vector<unsigned> &FwdRefAttrGrps,
1376                                           bool InAttrGrp, LocTy &BuiltinLoc) {
1377   bool HaveError = false;
1378 
1379   B.clear();
1380 
1381   while (true) {
1382     lltok::Kind Token = Lex.getKind();
1383     if (Token == lltok::rbrace)
1384       return HaveError; // Finished.
1385 
1386     if (Token == lltok::StringConstant) {
1387       if (parseStringAttribute(B))
1388         return true;
1389       continue;
1390     }
1391 
1392     if (Token == lltok::AttrGrpID) {
1393       // Allow a function to reference an attribute group:
1394       //
1395       //   define void @foo() #1 { ... }
1396       if (InAttrGrp) {
1397         HaveError |= error(
1398             Lex.getLoc(),
1399             "cannot have an attribute group reference in an attribute group");
1400       } else {
1401         // Save the reference to the attribute group. We'll fill it in later.
1402         FwdRefAttrGrps.push_back(Lex.getUIntVal());
1403       }
1404       Lex.Lex();
1405       continue;
1406     }
1407 
1408     SMLoc Loc = Lex.getLoc();
1409     if (Token == lltok::kw_builtin)
1410       BuiltinLoc = Loc;
1411 
1412     Attribute::AttrKind Attr = tokenToAttribute(Token);
1413     if (Attr == Attribute::None) {
1414       if (!InAttrGrp)
1415         return HaveError;
1416       return error(Lex.getLoc(), "unterminated attribute group");
1417     }
1418 
1419     if (parseEnumAttribute(Attr, B, InAttrGrp))
1420       return true;
1421 
1422     // As a hack, we allow function alignment to be initially parsed as an
1423     // attribute on a function declaration/definition or added to an attribute
1424     // group and later moved to the alignment field.
1425     if (!Attribute::canUseAsFnAttr(Attr) && Attr != Attribute::Alignment)
1426       HaveError |= error(Loc, "this attribute does not apply to functions");
1427   }
1428 }
1429 
1430 //===----------------------------------------------------------------------===//
1431 // GlobalValue Reference/Resolution Routines.
1432 //===----------------------------------------------------------------------===//
1433 
1434 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy) {
1435   // For opaque pointers, the used global type does not matter. We will later
1436   // RAUW it with a global/function of the correct type.
1437   if (PTy->isOpaque())
1438     return new GlobalVariable(*M, Type::getInt8Ty(M->getContext()), false,
1439                               GlobalValue::ExternalWeakLinkage, nullptr, "",
1440                               nullptr, GlobalVariable::NotThreadLocal,
1441                               PTy->getAddressSpace());
1442 
1443   Type *ElemTy = PTy->getNonOpaquePointerElementType();
1444   if (auto *FT = dyn_cast<FunctionType>(ElemTy))
1445     return Function::Create(FT, GlobalValue::ExternalWeakLinkage,
1446                             PTy->getAddressSpace(), "", M);
1447   else
1448     return new GlobalVariable(
1449         *M, ElemTy, false, GlobalValue::ExternalWeakLinkage, nullptr, "",
1450         nullptr, GlobalVariable::NotThreadLocal, PTy->getAddressSpace());
1451 }
1452 
1453 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty,
1454                                         Value *Val) {
1455   Type *ValTy = Val->getType();
1456   if (ValTy == Ty)
1457     return Val;
1458   if (Ty->isLabelTy())
1459     error(Loc, "'" + Name + "' is not a basic block");
1460   else
1461     error(Loc, "'" + Name + "' defined with type '" +
1462                    getTypeString(Val->getType()) + "' but expected '" +
1463                    getTypeString(Ty) + "'");
1464   return nullptr;
1465 }
1466 
1467 /// getGlobalVal - Get a value with the specified name or ID, creating a
1468 /// forward reference record if needed.  This can return null if the value
1469 /// exists but does not have the right type.
1470 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty,
1471                                     LocTy Loc) {
1472   PointerType *PTy = dyn_cast<PointerType>(Ty);
1473   if (!PTy) {
1474     error(Loc, "global variable reference must have pointer type");
1475     return nullptr;
1476   }
1477 
1478   // Look this name up in the normal function symbol table.
1479   GlobalValue *Val =
1480     cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name));
1481 
1482   // If this is a forward reference for the value, see if we already created a
1483   // forward ref record.
1484   if (!Val) {
1485     auto I = ForwardRefVals.find(Name);
1486     if (I != ForwardRefVals.end())
1487       Val = I->second.first;
1488   }
1489 
1490   // If we have the value in the symbol table or fwd-ref table, return it.
1491   if (Val)
1492     return cast_or_null<GlobalValue>(
1493         checkValidVariableType(Loc, "@" + Name, Ty, Val));
1494 
1495   // Otherwise, create a new forward reference for this value and remember it.
1496   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy);
1497   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
1498   return FwdVal;
1499 }
1500 
1501 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc) {
1502   PointerType *PTy = dyn_cast<PointerType>(Ty);
1503   if (!PTy) {
1504     error(Loc, "global variable reference must have pointer type");
1505     return nullptr;
1506   }
1507 
1508   GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
1509 
1510   // If this is a forward reference for the value, see if we already created a
1511   // forward ref record.
1512   if (!Val) {
1513     auto I = ForwardRefValIDs.find(ID);
1514     if (I != ForwardRefValIDs.end())
1515       Val = I->second.first;
1516   }
1517 
1518   // If we have the value in the symbol table or fwd-ref table, return it.
1519   if (Val)
1520     return cast_or_null<GlobalValue>(
1521         checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val));
1522 
1523   // Otherwise, create a new forward reference for this value and remember it.
1524   GlobalValue *FwdVal = createGlobalFwdRef(M, PTy);
1525   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
1526   return FwdVal;
1527 }
1528 
1529 //===----------------------------------------------------------------------===//
1530 // Comdat Reference/Resolution Routines.
1531 //===----------------------------------------------------------------------===//
1532 
1533 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) {
1534   // Look this name up in the comdat symbol table.
1535   Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable();
1536   Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name);
1537   if (I != ComdatSymTab.end())
1538     return &I->second;
1539 
1540   // Otherwise, create a new forward reference for this value and remember it.
1541   Comdat *C = M->getOrInsertComdat(Name);
1542   ForwardRefComdats[Name] = Loc;
1543   return C;
1544 }
1545 
1546 //===----------------------------------------------------------------------===//
1547 // Helper Routines.
1548 //===----------------------------------------------------------------------===//
1549 
1550 /// parseToken - If the current token has the specified kind, eat it and return
1551 /// success.  Otherwise, emit the specified error and return failure.
1552 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) {
1553   if (Lex.getKind() != T)
1554     return tokError(ErrMsg);
1555   Lex.Lex();
1556   return false;
1557 }
1558 
1559 /// parseStringConstant
1560 ///   ::= StringConstant
1561 bool LLParser::parseStringConstant(std::string &Result) {
1562   if (Lex.getKind() != lltok::StringConstant)
1563     return tokError("expected string constant");
1564   Result = Lex.getStrVal();
1565   Lex.Lex();
1566   return false;
1567 }
1568 
1569 /// parseUInt32
1570 ///   ::= uint32
1571 bool LLParser::parseUInt32(uint32_t &Val) {
1572   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1573     return tokError("expected integer");
1574   uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1);
1575   if (Val64 != unsigned(Val64))
1576     return tokError("expected 32-bit integer (too large)");
1577   Val = Val64;
1578   Lex.Lex();
1579   return false;
1580 }
1581 
1582 /// parseUInt64
1583 ///   ::= uint64
1584 bool LLParser::parseUInt64(uint64_t &Val) {
1585   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
1586     return tokError("expected integer");
1587   Val = Lex.getAPSIntVal().getLimitedValue();
1588   Lex.Lex();
1589   return false;
1590 }
1591 
1592 /// parseTLSModel
1593 ///   := 'localdynamic'
1594 ///   := 'initialexec'
1595 ///   := 'localexec'
1596 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) {
1597   switch (Lex.getKind()) {
1598     default:
1599       return tokError("expected localdynamic, initialexec or localexec");
1600     case lltok::kw_localdynamic:
1601       TLM = GlobalVariable::LocalDynamicTLSModel;
1602       break;
1603     case lltok::kw_initialexec:
1604       TLM = GlobalVariable::InitialExecTLSModel;
1605       break;
1606     case lltok::kw_localexec:
1607       TLM = GlobalVariable::LocalExecTLSModel;
1608       break;
1609   }
1610 
1611   Lex.Lex();
1612   return false;
1613 }
1614 
1615 /// parseOptionalThreadLocal
1616 ///   := /*empty*/
1617 ///   := 'thread_local'
1618 ///   := 'thread_local' '(' tlsmodel ')'
1619 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) {
1620   TLM = GlobalVariable::NotThreadLocal;
1621   if (!EatIfPresent(lltok::kw_thread_local))
1622     return false;
1623 
1624   TLM = GlobalVariable::GeneralDynamicTLSModel;
1625   if (Lex.getKind() == lltok::lparen) {
1626     Lex.Lex();
1627     return parseTLSModel(TLM) ||
1628            parseToken(lltok::rparen, "expected ')' after thread local model");
1629   }
1630   return false;
1631 }
1632 
1633 /// parseOptionalAddrSpace
1634 ///   := /*empty*/
1635 ///   := 'addrspace' '(' uint32 ')'
1636 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) {
1637   AddrSpace = DefaultAS;
1638   if (!EatIfPresent(lltok::kw_addrspace))
1639     return false;
1640   return parseToken(lltok::lparen, "expected '(' in address space") ||
1641          parseUInt32(AddrSpace) ||
1642          parseToken(lltok::rparen, "expected ')' in address space");
1643 }
1644 
1645 /// parseStringAttribute
1646 ///   := StringConstant
1647 ///   := StringConstant '=' StringConstant
1648 bool LLParser::parseStringAttribute(AttrBuilder &B) {
1649   std::string Attr = Lex.getStrVal();
1650   Lex.Lex();
1651   std::string Val;
1652   if (EatIfPresent(lltok::equal) && parseStringConstant(Val))
1653     return true;
1654   B.addAttribute(Attr, Val);
1655   return false;
1656 }
1657 
1658 /// Parse a potentially empty list of parameter or return attributes.
1659 bool LLParser::parseOptionalParamOrReturnAttrs(AttrBuilder &B, bool IsParam) {
1660   bool HaveError = false;
1661 
1662   B.clear();
1663 
1664   while (true) {
1665     lltok::Kind Token = Lex.getKind();
1666     if (Token == lltok::StringConstant) {
1667       if (parseStringAttribute(B))
1668         return true;
1669       continue;
1670     }
1671 
1672     SMLoc Loc = Lex.getLoc();
1673     Attribute::AttrKind Attr = tokenToAttribute(Token);
1674     if (Attr == Attribute::None)
1675       return HaveError;
1676 
1677     if (parseEnumAttribute(Attr, B, /* InAttrGroup */ false))
1678       return true;
1679 
1680     if (IsParam && !Attribute::canUseAsParamAttr(Attr))
1681       HaveError |= error(Loc, "this attribute does not apply to parameters");
1682     if (!IsParam && !Attribute::canUseAsRetAttr(Attr))
1683       HaveError |= error(Loc, "this attribute does not apply to return values");
1684   }
1685 }
1686 
1687 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) {
1688   HasLinkage = true;
1689   switch (Kind) {
1690   default:
1691     HasLinkage = false;
1692     return GlobalValue::ExternalLinkage;
1693   case lltok::kw_private:
1694     return GlobalValue::PrivateLinkage;
1695   case lltok::kw_internal:
1696     return GlobalValue::InternalLinkage;
1697   case lltok::kw_weak:
1698     return GlobalValue::WeakAnyLinkage;
1699   case lltok::kw_weak_odr:
1700     return GlobalValue::WeakODRLinkage;
1701   case lltok::kw_linkonce:
1702     return GlobalValue::LinkOnceAnyLinkage;
1703   case lltok::kw_linkonce_odr:
1704     return GlobalValue::LinkOnceODRLinkage;
1705   case lltok::kw_available_externally:
1706     return GlobalValue::AvailableExternallyLinkage;
1707   case lltok::kw_appending:
1708     return GlobalValue::AppendingLinkage;
1709   case lltok::kw_common:
1710     return GlobalValue::CommonLinkage;
1711   case lltok::kw_extern_weak:
1712     return GlobalValue::ExternalWeakLinkage;
1713   case lltok::kw_external:
1714     return GlobalValue::ExternalLinkage;
1715   }
1716 }
1717 
1718 /// parseOptionalLinkage
1719 ///   ::= /*empty*/
1720 ///   ::= 'private'
1721 ///   ::= 'internal'
1722 ///   ::= 'weak'
1723 ///   ::= 'weak_odr'
1724 ///   ::= 'linkonce'
1725 ///   ::= 'linkonce_odr'
1726 ///   ::= 'available_externally'
1727 ///   ::= 'appending'
1728 ///   ::= 'common'
1729 ///   ::= 'extern_weak'
1730 ///   ::= 'external'
1731 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage,
1732                                     unsigned &Visibility,
1733                                     unsigned &DLLStorageClass, bool &DSOLocal) {
1734   Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
1735   if (HasLinkage)
1736     Lex.Lex();
1737   parseOptionalDSOLocal(DSOLocal);
1738   parseOptionalVisibility(Visibility);
1739   parseOptionalDLLStorageClass(DLLStorageClass);
1740 
1741   if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) {
1742     return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch");
1743   }
1744 
1745   return false;
1746 }
1747 
1748 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) {
1749   switch (Lex.getKind()) {
1750   default:
1751     DSOLocal = false;
1752     break;
1753   case lltok::kw_dso_local:
1754     DSOLocal = true;
1755     Lex.Lex();
1756     break;
1757   case lltok::kw_dso_preemptable:
1758     DSOLocal = false;
1759     Lex.Lex();
1760     break;
1761   }
1762 }
1763 
1764 /// parseOptionalVisibility
1765 ///   ::= /*empty*/
1766 ///   ::= 'default'
1767 ///   ::= 'hidden'
1768 ///   ::= 'protected'
1769 ///
1770 void LLParser::parseOptionalVisibility(unsigned &Res) {
1771   switch (Lex.getKind()) {
1772   default:
1773     Res = GlobalValue::DefaultVisibility;
1774     return;
1775   case lltok::kw_default:
1776     Res = GlobalValue::DefaultVisibility;
1777     break;
1778   case lltok::kw_hidden:
1779     Res = GlobalValue::HiddenVisibility;
1780     break;
1781   case lltok::kw_protected:
1782     Res = GlobalValue::ProtectedVisibility;
1783     break;
1784   }
1785   Lex.Lex();
1786 }
1787 
1788 /// parseOptionalDLLStorageClass
1789 ///   ::= /*empty*/
1790 ///   ::= 'dllimport'
1791 ///   ::= 'dllexport'
1792 ///
1793 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) {
1794   switch (Lex.getKind()) {
1795   default:
1796     Res = GlobalValue::DefaultStorageClass;
1797     return;
1798   case lltok::kw_dllimport:
1799     Res = GlobalValue::DLLImportStorageClass;
1800     break;
1801   case lltok::kw_dllexport:
1802     Res = GlobalValue::DLLExportStorageClass;
1803     break;
1804   }
1805   Lex.Lex();
1806 }
1807 
1808 /// parseOptionalCallingConv
1809 ///   ::= /*empty*/
1810 ///   ::= 'ccc'
1811 ///   ::= 'fastcc'
1812 ///   ::= 'intel_ocl_bicc'
1813 ///   ::= 'coldcc'
1814 ///   ::= 'cfguard_checkcc'
1815 ///   ::= 'x86_stdcallcc'
1816 ///   ::= 'x86_fastcallcc'
1817 ///   ::= 'x86_thiscallcc'
1818 ///   ::= 'x86_vectorcallcc'
1819 ///   ::= 'arm_apcscc'
1820 ///   ::= 'arm_aapcscc'
1821 ///   ::= 'arm_aapcs_vfpcc'
1822 ///   ::= 'aarch64_vector_pcs'
1823 ///   ::= 'aarch64_sve_vector_pcs'
1824 ///   ::= 'msp430_intrcc'
1825 ///   ::= 'avr_intrcc'
1826 ///   ::= 'avr_signalcc'
1827 ///   ::= 'ptx_kernel'
1828 ///   ::= 'ptx_device'
1829 ///   ::= 'spir_func'
1830 ///   ::= 'spir_kernel'
1831 ///   ::= 'x86_64_sysvcc'
1832 ///   ::= 'win64cc'
1833 ///   ::= 'webkit_jscc'
1834 ///   ::= 'anyregcc'
1835 ///   ::= 'preserve_mostcc'
1836 ///   ::= 'preserve_allcc'
1837 ///   ::= 'ghccc'
1838 ///   ::= 'swiftcc'
1839 ///   ::= 'swifttailcc'
1840 ///   ::= 'x86_intrcc'
1841 ///   ::= 'hhvmcc'
1842 ///   ::= 'hhvm_ccc'
1843 ///   ::= 'cxx_fast_tlscc'
1844 ///   ::= 'amdgpu_vs'
1845 ///   ::= 'amdgpu_ls'
1846 ///   ::= 'amdgpu_hs'
1847 ///   ::= 'amdgpu_es'
1848 ///   ::= 'amdgpu_gs'
1849 ///   ::= 'amdgpu_ps'
1850 ///   ::= 'amdgpu_cs'
1851 ///   ::= 'amdgpu_kernel'
1852 ///   ::= 'tailcc'
1853 ///   ::= 'cc' UINT
1854 ///
1855 bool LLParser::parseOptionalCallingConv(unsigned &CC) {
1856   switch (Lex.getKind()) {
1857   default:                       CC = CallingConv::C; return false;
1858   case lltok::kw_ccc:            CC = CallingConv::C; break;
1859   case lltok::kw_fastcc:         CC = CallingConv::Fast; break;
1860   case lltok::kw_coldcc:         CC = CallingConv::Cold; break;
1861   case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break;
1862   case lltok::kw_x86_stdcallcc:  CC = CallingConv::X86_StdCall; break;
1863   case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break;
1864   case lltok::kw_x86_regcallcc:  CC = CallingConv::X86_RegCall; break;
1865   case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break;
1866   case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break;
1867   case lltok::kw_arm_apcscc:     CC = CallingConv::ARM_APCS; break;
1868   case lltok::kw_arm_aapcscc:    CC = CallingConv::ARM_AAPCS; break;
1869   case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break;
1870   case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break;
1871   case lltok::kw_aarch64_sve_vector_pcs:
1872     CC = CallingConv::AArch64_SVE_VectorCall;
1873     break;
1874   case lltok::kw_msp430_intrcc:  CC = CallingConv::MSP430_INTR; break;
1875   case lltok::kw_avr_intrcc:     CC = CallingConv::AVR_INTR; break;
1876   case lltok::kw_avr_signalcc:   CC = CallingConv::AVR_SIGNAL; break;
1877   case lltok::kw_ptx_kernel:     CC = CallingConv::PTX_Kernel; break;
1878   case lltok::kw_ptx_device:     CC = CallingConv::PTX_Device; break;
1879   case lltok::kw_spir_kernel:    CC = CallingConv::SPIR_KERNEL; break;
1880   case lltok::kw_spir_func:      CC = CallingConv::SPIR_FUNC; break;
1881   case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break;
1882   case lltok::kw_x86_64_sysvcc:  CC = CallingConv::X86_64_SysV; break;
1883   case lltok::kw_win64cc:        CC = CallingConv::Win64; break;
1884   case lltok::kw_webkit_jscc:    CC = CallingConv::WebKit_JS; break;
1885   case lltok::kw_anyregcc:       CC = CallingConv::AnyReg; break;
1886   case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break;
1887   case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break;
1888   case lltok::kw_ghccc:          CC = CallingConv::GHC; break;
1889   case lltok::kw_swiftcc:        CC = CallingConv::Swift; break;
1890   case lltok::kw_swifttailcc:    CC = CallingConv::SwiftTail; break;
1891   case lltok::kw_x86_intrcc:     CC = CallingConv::X86_INTR; break;
1892   case lltok::kw_hhvmcc:         CC = CallingConv::HHVM; break;
1893   case lltok::kw_hhvm_ccc:       CC = CallingConv::HHVM_C; break;
1894   case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break;
1895   case lltok::kw_amdgpu_vs:      CC = CallingConv::AMDGPU_VS; break;
1896   case lltok::kw_amdgpu_gfx:     CC = CallingConv::AMDGPU_Gfx; break;
1897   case lltok::kw_amdgpu_ls:      CC = CallingConv::AMDGPU_LS; break;
1898   case lltok::kw_amdgpu_hs:      CC = CallingConv::AMDGPU_HS; break;
1899   case lltok::kw_amdgpu_es:      CC = CallingConv::AMDGPU_ES; break;
1900   case lltok::kw_amdgpu_gs:      CC = CallingConv::AMDGPU_GS; break;
1901   case lltok::kw_amdgpu_ps:      CC = CallingConv::AMDGPU_PS; break;
1902   case lltok::kw_amdgpu_cs:      CC = CallingConv::AMDGPU_CS; break;
1903   case lltok::kw_amdgpu_kernel:  CC = CallingConv::AMDGPU_KERNEL; break;
1904   case lltok::kw_tailcc:         CC = CallingConv::Tail; break;
1905   case lltok::kw_cc: {
1906       Lex.Lex();
1907       return parseUInt32(CC);
1908     }
1909   }
1910 
1911   Lex.Lex();
1912   return false;
1913 }
1914 
1915 /// parseMetadataAttachment
1916 ///   ::= !dbg !42
1917 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) {
1918   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment");
1919 
1920   std::string Name = Lex.getStrVal();
1921   Kind = M->getMDKindID(Name);
1922   Lex.Lex();
1923 
1924   return parseMDNode(MD);
1925 }
1926 
1927 /// parseInstructionMetadata
1928 ///   ::= !dbg !42 (',' !dbg !57)*
1929 bool LLParser::parseInstructionMetadata(Instruction &Inst) {
1930   do {
1931     if (Lex.getKind() != lltok::MetadataVar)
1932       return tokError("expected metadata after comma");
1933 
1934     unsigned MDK;
1935     MDNode *N;
1936     if (parseMetadataAttachment(MDK, N))
1937       return true;
1938 
1939     Inst.setMetadata(MDK, N);
1940     if (MDK == LLVMContext::MD_tbaa)
1941       InstsWithTBAATag.push_back(&Inst);
1942 
1943     // If this is the end of the list, we're done.
1944   } while (EatIfPresent(lltok::comma));
1945   return false;
1946 }
1947 
1948 /// parseGlobalObjectMetadataAttachment
1949 ///   ::= !dbg !57
1950 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) {
1951   unsigned MDK;
1952   MDNode *N;
1953   if (parseMetadataAttachment(MDK, N))
1954     return true;
1955 
1956   GO.addMetadata(MDK, *N);
1957   return false;
1958 }
1959 
1960 /// parseOptionalFunctionMetadata
1961 ///   ::= (!dbg !57)*
1962 bool LLParser::parseOptionalFunctionMetadata(Function &F) {
1963   while (Lex.getKind() == lltok::MetadataVar)
1964     if (parseGlobalObjectMetadataAttachment(F))
1965       return true;
1966   return false;
1967 }
1968 
1969 /// parseOptionalAlignment
1970 ///   ::= /* empty */
1971 ///   ::= 'align' 4
1972 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) {
1973   Alignment = None;
1974   if (!EatIfPresent(lltok::kw_align))
1975     return false;
1976   LocTy AlignLoc = Lex.getLoc();
1977   uint64_t Value = 0;
1978 
1979   LocTy ParenLoc = Lex.getLoc();
1980   bool HaveParens = false;
1981   if (AllowParens) {
1982     if (EatIfPresent(lltok::lparen))
1983       HaveParens = true;
1984   }
1985 
1986   if (parseUInt64(Value))
1987     return true;
1988 
1989   if (HaveParens && !EatIfPresent(lltok::rparen))
1990     return error(ParenLoc, "expected ')'");
1991 
1992   if (!isPowerOf2_64(Value))
1993     return error(AlignLoc, "alignment is not a power of two");
1994   if (Value > Value::MaximumAlignment)
1995     return error(AlignLoc, "huge alignments are not supported yet");
1996   Alignment = Align(Value);
1997   return false;
1998 }
1999 
2000 /// parseOptionalDerefAttrBytes
2001 ///   ::= /* empty */
2002 ///   ::= AttrKind '(' 4 ')'
2003 ///
2004 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'.
2005 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind,
2006                                            uint64_t &Bytes) {
2007   assert((AttrKind == lltok::kw_dereferenceable ||
2008           AttrKind == lltok::kw_dereferenceable_or_null) &&
2009          "contract!");
2010 
2011   Bytes = 0;
2012   if (!EatIfPresent(AttrKind))
2013     return false;
2014   LocTy ParenLoc = Lex.getLoc();
2015   if (!EatIfPresent(lltok::lparen))
2016     return error(ParenLoc, "expected '('");
2017   LocTy DerefLoc = Lex.getLoc();
2018   if (parseUInt64(Bytes))
2019     return true;
2020   ParenLoc = Lex.getLoc();
2021   if (!EatIfPresent(lltok::rparen))
2022     return error(ParenLoc, "expected ')'");
2023   if (!Bytes)
2024     return error(DerefLoc, "dereferenceable bytes must be non-zero");
2025   return false;
2026 }
2027 
2028 bool LLParser::parseOptionalUWTableKind(UWTableKind &Kind) {
2029   Lex.Lex();
2030   Kind = UWTableKind::Default;
2031   if (!EatIfPresent(lltok::lparen))
2032     return false;
2033   LocTy KindLoc = Lex.getLoc();
2034   if (Lex.getKind() == lltok::kw_sync)
2035     Kind = UWTableKind::Sync;
2036   else if (Lex.getKind() == lltok::kw_async)
2037     Kind = UWTableKind::Async;
2038   else
2039     return error(KindLoc, "expected unwind table kind");
2040   Lex.Lex();
2041   return parseToken(lltok::rparen, "expected ')'");
2042 }
2043 
2044 /// parseOptionalCommaAlign
2045 ///   ::=
2046 ///   ::= ',' align 4
2047 ///
2048 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2049 /// end.
2050 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment,
2051                                        bool &AteExtraComma) {
2052   AteExtraComma = false;
2053   while (EatIfPresent(lltok::comma)) {
2054     // Metadata at the end is an early exit.
2055     if (Lex.getKind() == lltok::MetadataVar) {
2056       AteExtraComma = true;
2057       return false;
2058     }
2059 
2060     if (Lex.getKind() != lltok::kw_align)
2061       return error(Lex.getLoc(), "expected metadata or 'align'");
2062 
2063     if (parseOptionalAlignment(Alignment))
2064       return true;
2065   }
2066 
2067   return false;
2068 }
2069 
2070 /// parseOptionalCommaAddrSpace
2071 ///   ::=
2072 ///   ::= ',' addrspace(1)
2073 ///
2074 /// This returns with AteExtraComma set to true if it ate an excess comma at the
2075 /// end.
2076 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc,
2077                                            bool &AteExtraComma) {
2078   AteExtraComma = false;
2079   while (EatIfPresent(lltok::comma)) {
2080     // Metadata at the end is an early exit.
2081     if (Lex.getKind() == lltok::MetadataVar) {
2082       AteExtraComma = true;
2083       return false;
2084     }
2085 
2086     Loc = Lex.getLoc();
2087     if (Lex.getKind() != lltok::kw_addrspace)
2088       return error(Lex.getLoc(), "expected metadata or 'addrspace'");
2089 
2090     if (parseOptionalAddrSpace(AddrSpace))
2091       return true;
2092   }
2093 
2094   return false;
2095 }
2096 
2097 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg,
2098                                        Optional<unsigned> &HowManyArg) {
2099   Lex.Lex();
2100 
2101   auto StartParen = Lex.getLoc();
2102   if (!EatIfPresent(lltok::lparen))
2103     return error(StartParen, "expected '('");
2104 
2105   if (parseUInt32(BaseSizeArg))
2106     return true;
2107 
2108   if (EatIfPresent(lltok::comma)) {
2109     auto HowManyAt = Lex.getLoc();
2110     unsigned HowMany;
2111     if (parseUInt32(HowMany))
2112       return true;
2113     if (HowMany == BaseSizeArg)
2114       return error(HowManyAt,
2115                    "'allocsize' indices can't refer to the same parameter");
2116     HowManyArg = HowMany;
2117   } else
2118     HowManyArg = None;
2119 
2120   auto EndParen = Lex.getLoc();
2121   if (!EatIfPresent(lltok::rparen))
2122     return error(EndParen, "expected ')'");
2123   return false;
2124 }
2125 
2126 bool LLParser::parseVScaleRangeArguments(unsigned &MinValue,
2127                                          unsigned &MaxValue) {
2128   Lex.Lex();
2129 
2130   auto StartParen = Lex.getLoc();
2131   if (!EatIfPresent(lltok::lparen))
2132     return error(StartParen, "expected '('");
2133 
2134   if (parseUInt32(MinValue))
2135     return true;
2136 
2137   if (EatIfPresent(lltok::comma)) {
2138     if (parseUInt32(MaxValue))
2139       return true;
2140   } else
2141     MaxValue = MinValue;
2142 
2143   auto EndParen = Lex.getLoc();
2144   if (!EatIfPresent(lltok::rparen))
2145     return error(EndParen, "expected ')'");
2146   return false;
2147 }
2148 
2149 /// parseScopeAndOrdering
2150 ///   if isAtomic: ::= SyncScope? AtomicOrdering
2151 ///   else: ::=
2152 ///
2153 /// This sets Scope and Ordering to the parsed values.
2154 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID,
2155                                      AtomicOrdering &Ordering) {
2156   if (!IsAtomic)
2157     return false;
2158 
2159   return parseScope(SSID) || parseOrdering(Ordering);
2160 }
2161 
2162 /// parseScope
2163 ///   ::= syncscope("singlethread" | "<target scope>")?
2164 ///
2165 /// This sets synchronization scope ID to the ID of the parsed value.
2166 bool LLParser::parseScope(SyncScope::ID &SSID) {
2167   SSID = SyncScope::System;
2168   if (EatIfPresent(lltok::kw_syncscope)) {
2169     auto StartParenAt = Lex.getLoc();
2170     if (!EatIfPresent(lltok::lparen))
2171       return error(StartParenAt, "Expected '(' in syncscope");
2172 
2173     std::string SSN;
2174     auto SSNAt = Lex.getLoc();
2175     if (parseStringConstant(SSN))
2176       return error(SSNAt, "Expected synchronization scope name");
2177 
2178     auto EndParenAt = Lex.getLoc();
2179     if (!EatIfPresent(lltok::rparen))
2180       return error(EndParenAt, "Expected ')' in syncscope");
2181 
2182     SSID = Context.getOrInsertSyncScopeID(SSN);
2183   }
2184 
2185   return false;
2186 }
2187 
2188 /// parseOrdering
2189 ///   ::= AtomicOrdering
2190 ///
2191 /// This sets Ordering to the parsed value.
2192 bool LLParser::parseOrdering(AtomicOrdering &Ordering) {
2193   switch (Lex.getKind()) {
2194   default:
2195     return tokError("Expected ordering on atomic instruction");
2196   case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break;
2197   case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break;
2198   // Not specified yet:
2199   // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break;
2200   case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break;
2201   case lltok::kw_release: Ordering = AtomicOrdering::Release; break;
2202   case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break;
2203   case lltok::kw_seq_cst:
2204     Ordering = AtomicOrdering::SequentiallyConsistent;
2205     break;
2206   }
2207   Lex.Lex();
2208   return false;
2209 }
2210 
2211 /// parseOptionalStackAlignment
2212 ///   ::= /* empty */
2213 ///   ::= 'alignstack' '(' 4 ')'
2214 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) {
2215   Alignment = 0;
2216   if (!EatIfPresent(lltok::kw_alignstack))
2217     return false;
2218   LocTy ParenLoc = Lex.getLoc();
2219   if (!EatIfPresent(lltok::lparen))
2220     return error(ParenLoc, "expected '('");
2221   LocTy AlignLoc = Lex.getLoc();
2222   if (parseUInt32(Alignment))
2223     return true;
2224   ParenLoc = Lex.getLoc();
2225   if (!EatIfPresent(lltok::rparen))
2226     return error(ParenLoc, "expected ')'");
2227   if (!isPowerOf2_32(Alignment))
2228     return error(AlignLoc, "stack alignment is not a power of two");
2229   return false;
2230 }
2231 
2232 /// parseIndexList - This parses the index list for an insert/extractvalue
2233 /// instruction.  This sets AteExtraComma in the case where we eat an extra
2234 /// comma at the end of the line and find that it is followed by metadata.
2235 /// Clients that don't allow metadata can call the version of this function that
2236 /// only takes one argument.
2237 ///
2238 /// parseIndexList
2239 ///    ::=  (',' uint32)+
2240 ///
2241 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices,
2242                               bool &AteExtraComma) {
2243   AteExtraComma = false;
2244 
2245   if (Lex.getKind() != lltok::comma)
2246     return tokError("expected ',' as start of index list");
2247 
2248   while (EatIfPresent(lltok::comma)) {
2249     if (Lex.getKind() == lltok::MetadataVar) {
2250       if (Indices.empty())
2251         return tokError("expected index");
2252       AteExtraComma = true;
2253       return false;
2254     }
2255     unsigned Idx = 0;
2256     if (parseUInt32(Idx))
2257       return true;
2258     Indices.push_back(Idx);
2259   }
2260 
2261   return false;
2262 }
2263 
2264 //===----------------------------------------------------------------------===//
2265 // Type Parsing.
2266 //===----------------------------------------------------------------------===//
2267 
2268 /// parseType - parse a type.
2269 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) {
2270   SMLoc TypeLoc = Lex.getLoc();
2271   switch (Lex.getKind()) {
2272   default:
2273     return tokError(Msg);
2274   case lltok::Type:
2275     // Type ::= 'float' | 'void' (etc)
2276     Result = Lex.getTyVal();
2277     Lex.Lex();
2278 
2279     // Handle "ptr" opaque pointer type.
2280     //
2281     // Type ::= ptr ('addrspace' '(' uint32 ')')?
2282     if (Result->isOpaquePointerTy()) {
2283       unsigned AddrSpace;
2284       if (parseOptionalAddrSpace(AddrSpace))
2285         return true;
2286       Result = PointerType::get(getContext(), AddrSpace);
2287 
2288       // Give a nice error for 'ptr*'.
2289       if (Lex.getKind() == lltok::star)
2290         return tokError("ptr* is invalid - use ptr instead");
2291 
2292       // Fall through to parsing the type suffixes only if this 'ptr' is a
2293       // function return. Otherwise, return success, implicitly rejecting other
2294       // suffixes.
2295       if (Lex.getKind() != lltok::lparen)
2296         return false;
2297     }
2298     break;
2299   case lltok::lbrace:
2300     // Type ::= StructType
2301     if (parseAnonStructType(Result, false))
2302       return true;
2303     break;
2304   case lltok::lsquare:
2305     // Type ::= '[' ... ']'
2306     Lex.Lex(); // eat the lsquare.
2307     if (parseArrayVectorType(Result, false))
2308       return true;
2309     break;
2310   case lltok::less: // Either vector or packed struct.
2311     // Type ::= '<' ... '>'
2312     Lex.Lex();
2313     if (Lex.getKind() == lltok::lbrace) {
2314       if (parseAnonStructType(Result, true) ||
2315           parseToken(lltok::greater, "expected '>' at end of packed struct"))
2316         return true;
2317     } else if (parseArrayVectorType(Result, true))
2318       return true;
2319     break;
2320   case lltok::LocalVar: {
2321     // Type ::= %foo
2322     std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()];
2323 
2324     // If the type hasn't been defined yet, create a forward definition and
2325     // remember where that forward def'n was seen (in case it never is defined).
2326     if (!Entry.first) {
2327       Entry.first = StructType::create(Context, Lex.getStrVal());
2328       Entry.second = Lex.getLoc();
2329     }
2330     Result = Entry.first;
2331     Lex.Lex();
2332     break;
2333   }
2334 
2335   case lltok::LocalVarID: {
2336     // Type ::= %4
2337     std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()];
2338 
2339     // If the type hasn't been defined yet, create a forward definition and
2340     // remember where that forward def'n was seen (in case it never is defined).
2341     if (!Entry.first) {
2342       Entry.first = StructType::create(Context);
2343       Entry.second = Lex.getLoc();
2344     }
2345     Result = Entry.first;
2346     Lex.Lex();
2347     break;
2348   }
2349   }
2350 
2351   // parse the type suffixes.
2352   while (true) {
2353     switch (Lex.getKind()) {
2354     // End of type.
2355     default:
2356       if (!AllowVoid && Result->isVoidTy())
2357         return error(TypeLoc, "void type only allowed for function results");
2358       return false;
2359 
2360     // Type ::= Type '*'
2361     case lltok::star:
2362       if (Result->isLabelTy())
2363         return tokError("basic block pointers are invalid");
2364       if (Result->isVoidTy())
2365         return tokError("pointers to void are invalid - use i8* instead");
2366       if (!PointerType::isValidElementType(Result))
2367         return tokError("pointer to this type is invalid");
2368       Result = PointerType::getUnqual(Result);
2369       Lex.Lex();
2370       break;
2371 
2372     // Type ::= Type 'addrspace' '(' uint32 ')' '*'
2373     case lltok::kw_addrspace: {
2374       if (Result->isLabelTy())
2375         return tokError("basic block pointers are invalid");
2376       if (Result->isVoidTy())
2377         return tokError("pointers to void are invalid; use i8* instead");
2378       if (!PointerType::isValidElementType(Result))
2379         return tokError("pointer to this type is invalid");
2380       unsigned AddrSpace;
2381       if (parseOptionalAddrSpace(AddrSpace) ||
2382           parseToken(lltok::star, "expected '*' in address space"))
2383         return true;
2384 
2385       Result = PointerType::get(Result, AddrSpace);
2386       break;
2387     }
2388 
2389     /// Types '(' ArgTypeListI ')' OptFuncAttrs
2390     case lltok::lparen:
2391       if (parseFunctionType(Result))
2392         return true;
2393       break;
2394     }
2395   }
2396 }
2397 
2398 /// parseParameterList
2399 ///    ::= '(' ')'
2400 ///    ::= '(' Arg (',' Arg)* ')'
2401 ///  Arg
2402 ///    ::= Type OptionalAttributes Value OptionalAttributes
2403 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList,
2404                                   PerFunctionState &PFS, bool IsMustTailCall,
2405                                   bool InVarArgsFunc) {
2406   if (parseToken(lltok::lparen, "expected '(' in call"))
2407     return true;
2408 
2409   while (Lex.getKind() != lltok::rparen) {
2410     // If this isn't the first argument, we need a comma.
2411     if (!ArgList.empty() &&
2412         parseToken(lltok::comma, "expected ',' in argument list"))
2413       return true;
2414 
2415     // parse an ellipsis if this is a musttail call in a variadic function.
2416     if (Lex.getKind() == lltok::dotdotdot) {
2417       const char *Msg = "unexpected ellipsis in argument list for ";
2418       if (!IsMustTailCall)
2419         return tokError(Twine(Msg) + "non-musttail call");
2420       if (!InVarArgsFunc)
2421         return tokError(Twine(Msg) + "musttail call in non-varargs function");
2422       Lex.Lex();  // Lex the '...', it is purely for readability.
2423       return parseToken(lltok::rparen, "expected ')' at end of argument list");
2424     }
2425 
2426     // parse the argument.
2427     LocTy ArgLoc;
2428     Type *ArgTy = nullptr;
2429     Value *V;
2430     if (parseType(ArgTy, ArgLoc))
2431       return true;
2432 
2433     AttrBuilder ArgAttrs(M->getContext());
2434 
2435     if (ArgTy->isMetadataTy()) {
2436       if (parseMetadataAsValue(V, PFS))
2437         return true;
2438     } else {
2439       // Otherwise, handle normal operands.
2440       if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS))
2441         return true;
2442     }
2443     ArgList.push_back(ParamInfo(
2444         ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs)));
2445   }
2446 
2447   if (IsMustTailCall && InVarArgsFunc)
2448     return tokError("expected '...' at end of argument list for musttail call "
2449                     "in varargs function");
2450 
2451   Lex.Lex();  // Lex the ')'.
2452   return false;
2453 }
2454 
2455 /// parseRequiredTypeAttr
2456 ///   ::= attrname(<ty>)
2457 bool LLParser::parseRequiredTypeAttr(AttrBuilder &B, lltok::Kind AttrToken,
2458                                      Attribute::AttrKind AttrKind) {
2459   Type *Ty = nullptr;
2460   if (!EatIfPresent(AttrToken))
2461     return true;
2462   if (!EatIfPresent(lltok::lparen))
2463     return error(Lex.getLoc(), "expected '('");
2464   if (parseType(Ty))
2465     return true;
2466   if (!EatIfPresent(lltok::rparen))
2467     return error(Lex.getLoc(), "expected ')'");
2468 
2469   B.addTypeAttr(AttrKind, Ty);
2470   return false;
2471 }
2472 
2473 /// parseOptionalOperandBundles
2474 ///    ::= /*empty*/
2475 ///    ::= '[' OperandBundle [, OperandBundle ]* ']'
2476 ///
2477 /// OperandBundle
2478 ///    ::= bundle-tag '(' ')'
2479 ///    ::= bundle-tag '(' Type Value [, Type Value ]* ')'
2480 ///
2481 /// bundle-tag ::= String Constant
2482 bool LLParser::parseOptionalOperandBundles(
2483     SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) {
2484   LocTy BeginLoc = Lex.getLoc();
2485   if (!EatIfPresent(lltok::lsquare))
2486     return false;
2487 
2488   while (Lex.getKind() != lltok::rsquare) {
2489     // If this isn't the first operand bundle, we need a comma.
2490     if (!BundleList.empty() &&
2491         parseToken(lltok::comma, "expected ',' in input list"))
2492       return true;
2493 
2494     std::string Tag;
2495     if (parseStringConstant(Tag))
2496       return true;
2497 
2498     if (parseToken(lltok::lparen, "expected '(' in operand bundle"))
2499       return true;
2500 
2501     std::vector<Value *> Inputs;
2502     while (Lex.getKind() != lltok::rparen) {
2503       // If this isn't the first input, we need a comma.
2504       if (!Inputs.empty() &&
2505           parseToken(lltok::comma, "expected ',' in input list"))
2506         return true;
2507 
2508       Type *Ty = nullptr;
2509       Value *Input = nullptr;
2510       if (parseType(Ty) || parseValue(Ty, Input, PFS))
2511         return true;
2512       Inputs.push_back(Input);
2513     }
2514 
2515     BundleList.emplace_back(std::move(Tag), std::move(Inputs));
2516 
2517     Lex.Lex(); // Lex the ')'.
2518   }
2519 
2520   if (BundleList.empty())
2521     return error(BeginLoc, "operand bundle set must not be empty");
2522 
2523   Lex.Lex(); // Lex the ']'.
2524   return false;
2525 }
2526 
2527 /// parseArgumentList - parse the argument list for a function type or function
2528 /// prototype.
2529 ///   ::= '(' ArgTypeListI ')'
2530 /// ArgTypeListI
2531 ///   ::= /*empty*/
2532 ///   ::= '...'
2533 ///   ::= ArgTypeList ',' '...'
2534 ///   ::= ArgType (',' ArgType)*
2535 ///
2536 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList,
2537                                  bool &IsVarArg) {
2538   unsigned CurValID = 0;
2539   IsVarArg = false;
2540   assert(Lex.getKind() == lltok::lparen);
2541   Lex.Lex(); // eat the (.
2542 
2543   if (Lex.getKind() == lltok::rparen) {
2544     // empty
2545   } else if (Lex.getKind() == lltok::dotdotdot) {
2546     IsVarArg = true;
2547     Lex.Lex();
2548   } else {
2549     LocTy TypeLoc = Lex.getLoc();
2550     Type *ArgTy = nullptr;
2551     AttrBuilder Attrs(M->getContext());
2552     std::string Name;
2553 
2554     if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2555       return true;
2556 
2557     if (ArgTy->isVoidTy())
2558       return error(TypeLoc, "argument can not have void type");
2559 
2560     if (Lex.getKind() == lltok::LocalVar) {
2561       Name = Lex.getStrVal();
2562       Lex.Lex();
2563     } else if (Lex.getKind() == lltok::LocalVarID) {
2564       if (Lex.getUIntVal() != CurValID)
2565         return error(TypeLoc, "argument expected to be numbered '%" +
2566                                   Twine(CurValID) + "'");
2567       ++CurValID;
2568       Lex.Lex();
2569     }
2570 
2571     if (!FunctionType::isValidArgumentType(ArgTy))
2572       return error(TypeLoc, "invalid type for function argument");
2573 
2574     ArgList.emplace_back(TypeLoc, ArgTy,
2575                          AttributeSet::get(ArgTy->getContext(), Attrs),
2576                          std::move(Name));
2577 
2578     while (EatIfPresent(lltok::comma)) {
2579       // Handle ... at end of arg list.
2580       if (EatIfPresent(lltok::dotdotdot)) {
2581         IsVarArg = true;
2582         break;
2583       }
2584 
2585       // Otherwise must be an argument type.
2586       TypeLoc = Lex.getLoc();
2587       if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs))
2588         return true;
2589 
2590       if (ArgTy->isVoidTy())
2591         return error(TypeLoc, "argument can not have void type");
2592 
2593       if (Lex.getKind() == lltok::LocalVar) {
2594         Name = Lex.getStrVal();
2595         Lex.Lex();
2596       } else {
2597         if (Lex.getKind() == lltok::LocalVarID) {
2598           if (Lex.getUIntVal() != CurValID)
2599             return error(TypeLoc, "argument expected to be numbered '%" +
2600                                       Twine(CurValID) + "'");
2601           Lex.Lex();
2602         }
2603         ++CurValID;
2604         Name = "";
2605       }
2606 
2607       if (!ArgTy->isFirstClassType())
2608         return error(TypeLoc, "invalid type for function argument");
2609 
2610       ArgList.emplace_back(TypeLoc, ArgTy,
2611                            AttributeSet::get(ArgTy->getContext(), Attrs),
2612                            std::move(Name));
2613     }
2614   }
2615 
2616   return parseToken(lltok::rparen, "expected ')' at end of argument list");
2617 }
2618 
2619 /// parseFunctionType
2620 ///  ::= Type ArgumentList OptionalAttrs
2621 bool LLParser::parseFunctionType(Type *&Result) {
2622   assert(Lex.getKind() == lltok::lparen);
2623 
2624   if (!FunctionType::isValidReturnType(Result))
2625     return tokError("invalid function return type");
2626 
2627   SmallVector<ArgInfo, 8> ArgList;
2628   bool IsVarArg;
2629   if (parseArgumentList(ArgList, IsVarArg))
2630     return true;
2631 
2632   // Reject names on the arguments lists.
2633   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
2634     if (!ArgList[i].Name.empty())
2635       return error(ArgList[i].Loc, "argument name invalid in function type");
2636     if (ArgList[i].Attrs.hasAttributes())
2637       return error(ArgList[i].Loc,
2638                    "argument attributes invalid in function type");
2639   }
2640 
2641   SmallVector<Type*, 16> ArgListTy;
2642   for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
2643     ArgListTy.push_back(ArgList[i].Ty);
2644 
2645   Result = FunctionType::get(Result, ArgListTy, IsVarArg);
2646   return false;
2647 }
2648 
2649 /// parseAnonStructType - parse an anonymous struct type, which is inlined into
2650 /// other structs.
2651 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) {
2652   SmallVector<Type*, 8> Elts;
2653   if (parseStructBody(Elts))
2654     return true;
2655 
2656   Result = StructType::get(Context, Elts, Packed);
2657   return false;
2658 }
2659 
2660 /// parseStructDefinition - parse a struct in a 'type' definition.
2661 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name,
2662                                      std::pair<Type *, LocTy> &Entry,
2663                                      Type *&ResultTy) {
2664   // If the type was already defined, diagnose the redefinition.
2665   if (Entry.first && !Entry.second.isValid())
2666     return error(TypeLoc, "redefinition of type");
2667 
2668   // If we have opaque, just return without filling in the definition for the
2669   // struct.  This counts as a definition as far as the .ll file goes.
2670   if (EatIfPresent(lltok::kw_opaque)) {
2671     // This type is being defined, so clear the location to indicate this.
2672     Entry.second = SMLoc();
2673 
2674     // If this type number has never been uttered, create it.
2675     if (!Entry.first)
2676       Entry.first = StructType::create(Context, Name);
2677     ResultTy = Entry.first;
2678     return false;
2679   }
2680 
2681   // If the type starts with '<', then it is either a packed struct or a vector.
2682   bool isPacked = EatIfPresent(lltok::less);
2683 
2684   // If we don't have a struct, then we have a random type alias, which we
2685   // accept for compatibility with old files.  These types are not allowed to be
2686   // forward referenced and not allowed to be recursive.
2687   if (Lex.getKind() != lltok::lbrace) {
2688     if (Entry.first)
2689       return error(TypeLoc, "forward references to non-struct type");
2690 
2691     ResultTy = nullptr;
2692     if (isPacked)
2693       return parseArrayVectorType(ResultTy, true);
2694     return parseType(ResultTy);
2695   }
2696 
2697   // This type is being defined, so clear the location to indicate this.
2698   Entry.second = SMLoc();
2699 
2700   // If this type number has never been uttered, create it.
2701   if (!Entry.first)
2702     Entry.first = StructType::create(Context, Name);
2703 
2704   StructType *STy = cast<StructType>(Entry.first);
2705 
2706   SmallVector<Type*, 8> Body;
2707   if (parseStructBody(Body) ||
2708       (isPacked && parseToken(lltok::greater, "expected '>' in packed struct")))
2709     return true;
2710 
2711   STy->setBody(Body, isPacked);
2712   ResultTy = STy;
2713   return false;
2714 }
2715 
2716 /// parseStructType: Handles packed and unpacked types.  </> parsed elsewhere.
2717 ///   StructType
2718 ///     ::= '{' '}'
2719 ///     ::= '{' Type (',' Type)* '}'
2720 ///     ::= '<' '{' '}' '>'
2721 ///     ::= '<' '{' Type (',' Type)* '}' '>'
2722 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) {
2723   assert(Lex.getKind() == lltok::lbrace);
2724   Lex.Lex(); // Consume the '{'
2725 
2726   // Handle the empty struct.
2727   if (EatIfPresent(lltok::rbrace))
2728     return false;
2729 
2730   LocTy EltTyLoc = Lex.getLoc();
2731   Type *Ty = nullptr;
2732   if (parseType(Ty))
2733     return true;
2734   Body.push_back(Ty);
2735 
2736   if (!StructType::isValidElementType(Ty))
2737     return error(EltTyLoc, "invalid element type for struct");
2738 
2739   while (EatIfPresent(lltok::comma)) {
2740     EltTyLoc = Lex.getLoc();
2741     if (parseType(Ty))
2742       return true;
2743 
2744     if (!StructType::isValidElementType(Ty))
2745       return error(EltTyLoc, "invalid element type for struct");
2746 
2747     Body.push_back(Ty);
2748   }
2749 
2750   return parseToken(lltok::rbrace, "expected '}' at end of struct");
2751 }
2752 
2753 /// parseArrayVectorType - parse an array or vector type, assuming the first
2754 /// token has already been consumed.
2755 ///   Type
2756 ///     ::= '[' APSINTVAL 'x' Types ']'
2757 ///     ::= '<' APSINTVAL 'x' Types '>'
2758 ///     ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>'
2759 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) {
2760   bool Scalable = false;
2761 
2762   if (IsVector && Lex.getKind() == lltok::kw_vscale) {
2763     Lex.Lex(); // consume the 'vscale'
2764     if (parseToken(lltok::kw_x, "expected 'x' after vscale"))
2765       return true;
2766 
2767     Scalable = true;
2768   }
2769 
2770   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() ||
2771       Lex.getAPSIntVal().getBitWidth() > 64)
2772     return tokError("expected number in address space");
2773 
2774   LocTy SizeLoc = Lex.getLoc();
2775   uint64_t Size = Lex.getAPSIntVal().getZExtValue();
2776   Lex.Lex();
2777 
2778   if (parseToken(lltok::kw_x, "expected 'x' after element count"))
2779     return true;
2780 
2781   LocTy TypeLoc = Lex.getLoc();
2782   Type *EltTy = nullptr;
2783   if (parseType(EltTy))
2784     return true;
2785 
2786   if (parseToken(IsVector ? lltok::greater : lltok::rsquare,
2787                  "expected end of sequential type"))
2788     return true;
2789 
2790   if (IsVector) {
2791     if (Size == 0)
2792       return error(SizeLoc, "zero element vector is illegal");
2793     if ((unsigned)Size != Size)
2794       return error(SizeLoc, "size too large for vector");
2795     if (!VectorType::isValidElementType(EltTy))
2796       return error(TypeLoc, "invalid vector element type");
2797     Result = VectorType::get(EltTy, unsigned(Size), Scalable);
2798   } else {
2799     if (!ArrayType::isValidElementType(EltTy))
2800       return error(TypeLoc, "invalid array element type");
2801     Result = ArrayType::get(EltTy, Size);
2802   }
2803   return false;
2804 }
2805 
2806 //===----------------------------------------------------------------------===//
2807 // Function Semantic Analysis.
2808 //===----------------------------------------------------------------------===//
2809 
2810 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f,
2811                                              int functionNumber)
2812   : P(p), F(f), FunctionNumber(functionNumber) {
2813 
2814   // Insert unnamed arguments into the NumberedVals list.
2815   for (Argument &A : F.args())
2816     if (!A.hasName())
2817       NumberedVals.push_back(&A);
2818 }
2819 
2820 LLParser::PerFunctionState::~PerFunctionState() {
2821   // If there were any forward referenced non-basicblock values, delete them.
2822 
2823   for (const auto &P : ForwardRefVals) {
2824     if (isa<BasicBlock>(P.second.first))
2825       continue;
2826     P.second.first->replaceAllUsesWith(
2827         UndefValue::get(P.second.first->getType()));
2828     P.second.first->deleteValue();
2829   }
2830 
2831   for (const auto &P : ForwardRefValIDs) {
2832     if (isa<BasicBlock>(P.second.first))
2833       continue;
2834     P.second.first->replaceAllUsesWith(
2835         UndefValue::get(P.second.first->getType()));
2836     P.second.first->deleteValue();
2837   }
2838 }
2839 
2840 bool LLParser::PerFunctionState::finishFunction() {
2841   if (!ForwardRefVals.empty())
2842     return P.error(ForwardRefVals.begin()->second.second,
2843                    "use of undefined value '%" + ForwardRefVals.begin()->first +
2844                        "'");
2845   if (!ForwardRefValIDs.empty())
2846     return P.error(ForwardRefValIDs.begin()->second.second,
2847                    "use of undefined value '%" +
2848                        Twine(ForwardRefValIDs.begin()->first) + "'");
2849   return false;
2850 }
2851 
2852 /// getVal - Get a value with the specified name or ID, creating a
2853 /// forward reference record if needed.  This can return null if the value
2854 /// exists but does not have the right type.
2855 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty,
2856                                           LocTy Loc) {
2857   // Look this name up in the normal function symbol table.
2858   Value *Val = F.getValueSymbolTable()->lookup(Name);
2859 
2860   // If this is a forward reference for the value, see if we already created a
2861   // forward ref record.
2862   if (!Val) {
2863     auto I = ForwardRefVals.find(Name);
2864     if (I != ForwardRefVals.end())
2865       Val = I->second.first;
2866   }
2867 
2868   // If we have the value in the symbol table or fwd-ref table, return it.
2869   if (Val)
2870     return P.checkValidVariableType(Loc, "%" + Name, Ty, Val);
2871 
2872   // Don't make placeholders with invalid type.
2873   if (!Ty->isFirstClassType()) {
2874     P.error(Loc, "invalid use of a non-first-class type");
2875     return nullptr;
2876   }
2877 
2878   // Otherwise, create a new forward reference for this value and remember it.
2879   Value *FwdVal;
2880   if (Ty->isLabelTy()) {
2881     FwdVal = BasicBlock::Create(F.getContext(), Name, &F);
2882   } else {
2883     FwdVal = new Argument(Ty, Name);
2884   }
2885 
2886   ForwardRefVals[Name] = std::make_pair(FwdVal, Loc);
2887   return FwdVal;
2888 }
2889 
2890 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc) {
2891   // Look this name up in the normal function symbol table.
2892   Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr;
2893 
2894   // If this is a forward reference for the value, see if we already created a
2895   // forward ref record.
2896   if (!Val) {
2897     auto I = ForwardRefValIDs.find(ID);
2898     if (I != ForwardRefValIDs.end())
2899       Val = I->second.first;
2900   }
2901 
2902   // If we have the value in the symbol table or fwd-ref table, return it.
2903   if (Val)
2904     return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val);
2905 
2906   if (!Ty->isFirstClassType()) {
2907     P.error(Loc, "invalid use of a non-first-class type");
2908     return nullptr;
2909   }
2910 
2911   // Otherwise, create a new forward reference for this value and remember it.
2912   Value *FwdVal;
2913   if (Ty->isLabelTy()) {
2914     FwdVal = BasicBlock::Create(F.getContext(), "", &F);
2915   } else {
2916     FwdVal = new Argument(Ty);
2917   }
2918 
2919   ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc);
2920   return FwdVal;
2921 }
2922 
2923 /// setInstName - After an instruction is parsed and inserted into its
2924 /// basic block, this installs its name.
2925 bool LLParser::PerFunctionState::setInstName(int NameID,
2926                                              const std::string &NameStr,
2927                                              LocTy NameLoc, Instruction *Inst) {
2928   // If this instruction has void type, it cannot have a name or ID specified.
2929   if (Inst->getType()->isVoidTy()) {
2930     if (NameID != -1 || !NameStr.empty())
2931       return P.error(NameLoc, "instructions returning void cannot have a name");
2932     return false;
2933   }
2934 
2935   // If this was a numbered instruction, verify that the instruction is the
2936   // expected value and resolve any forward references.
2937   if (NameStr.empty()) {
2938     // If neither a name nor an ID was specified, just use the next ID.
2939     if (NameID == -1)
2940       NameID = NumberedVals.size();
2941 
2942     if (unsigned(NameID) != NumberedVals.size())
2943       return P.error(NameLoc, "instruction expected to be numbered '%" +
2944                                   Twine(NumberedVals.size()) + "'");
2945 
2946     auto FI = ForwardRefValIDs.find(NameID);
2947     if (FI != ForwardRefValIDs.end()) {
2948       Value *Sentinel = FI->second.first;
2949       if (Sentinel->getType() != Inst->getType())
2950         return P.error(NameLoc, "instruction forward referenced with type '" +
2951                                     getTypeString(FI->second.first->getType()) +
2952                                     "'");
2953 
2954       Sentinel->replaceAllUsesWith(Inst);
2955       Sentinel->deleteValue();
2956       ForwardRefValIDs.erase(FI);
2957     }
2958 
2959     NumberedVals.push_back(Inst);
2960     return false;
2961   }
2962 
2963   // Otherwise, the instruction had a name.  Resolve forward refs and set it.
2964   auto FI = ForwardRefVals.find(NameStr);
2965   if (FI != ForwardRefVals.end()) {
2966     Value *Sentinel = FI->second.first;
2967     if (Sentinel->getType() != Inst->getType())
2968       return P.error(NameLoc, "instruction forward referenced with type '" +
2969                                   getTypeString(FI->second.first->getType()) +
2970                                   "'");
2971 
2972     Sentinel->replaceAllUsesWith(Inst);
2973     Sentinel->deleteValue();
2974     ForwardRefVals.erase(FI);
2975   }
2976 
2977   // Set the name on the instruction.
2978   Inst->setName(NameStr);
2979 
2980   if (Inst->getName() != NameStr)
2981     return P.error(NameLoc, "multiple definition of local value named '" +
2982                                 NameStr + "'");
2983   return false;
2984 }
2985 
2986 /// getBB - Get a basic block with the specified name or ID, creating a
2987 /// forward reference record if needed.
2988 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name,
2989                                               LocTy Loc) {
2990   return dyn_cast_or_null<BasicBlock>(
2991       getVal(Name, Type::getLabelTy(F.getContext()), Loc));
2992 }
2993 
2994 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) {
2995   return dyn_cast_or_null<BasicBlock>(
2996       getVal(ID, Type::getLabelTy(F.getContext()), Loc));
2997 }
2998 
2999 /// defineBB - Define the specified basic block, which is either named or
3000 /// unnamed.  If there is an error, this returns null otherwise it returns
3001 /// the block being defined.
3002 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name,
3003                                                  int NameID, LocTy Loc) {
3004   BasicBlock *BB;
3005   if (Name.empty()) {
3006     if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) {
3007       P.error(Loc, "label expected to be numbered '" +
3008                        Twine(NumberedVals.size()) + "'");
3009       return nullptr;
3010     }
3011     BB = getBB(NumberedVals.size(), Loc);
3012     if (!BB) {
3013       P.error(Loc, "unable to create block numbered '" +
3014                        Twine(NumberedVals.size()) + "'");
3015       return nullptr;
3016     }
3017   } else {
3018     BB = getBB(Name, Loc);
3019     if (!BB) {
3020       P.error(Loc, "unable to create block named '" + Name + "'");
3021       return nullptr;
3022     }
3023   }
3024 
3025   // Move the block to the end of the function.  Forward ref'd blocks are
3026   // inserted wherever they happen to be referenced.
3027   F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB);
3028 
3029   // Remove the block from forward ref sets.
3030   if (Name.empty()) {
3031     ForwardRefValIDs.erase(NumberedVals.size());
3032     NumberedVals.push_back(BB);
3033   } else {
3034     // BB forward references are already in the function symbol table.
3035     ForwardRefVals.erase(Name);
3036   }
3037 
3038   return BB;
3039 }
3040 
3041 //===----------------------------------------------------------------------===//
3042 // Constants.
3043 //===----------------------------------------------------------------------===//
3044 
3045 /// parseValID - parse an abstract value that doesn't necessarily have a
3046 /// type implied.  For example, if we parse "4" we don't know what integer type
3047 /// it has.  The value will later be combined with its type and checked for
3048 /// basic correctness.  PFS is used to convert function-local operands of
3049 /// metadata (since metadata operands are not just parsed here but also
3050 /// converted to values). PFS can be null when we are not parsing metadata
3051 /// values inside a function.
3052 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS, Type *ExpectedTy) {
3053   ID.Loc = Lex.getLoc();
3054   switch (Lex.getKind()) {
3055   default:
3056     return tokError("expected value token");
3057   case lltok::GlobalID:  // @42
3058     ID.UIntVal = Lex.getUIntVal();
3059     ID.Kind = ValID::t_GlobalID;
3060     break;
3061   case lltok::GlobalVar:  // @foo
3062     ID.StrVal = Lex.getStrVal();
3063     ID.Kind = ValID::t_GlobalName;
3064     break;
3065   case lltok::LocalVarID:  // %42
3066     ID.UIntVal = Lex.getUIntVal();
3067     ID.Kind = ValID::t_LocalID;
3068     break;
3069   case lltok::LocalVar:  // %foo
3070     ID.StrVal = Lex.getStrVal();
3071     ID.Kind = ValID::t_LocalName;
3072     break;
3073   case lltok::APSInt:
3074     ID.APSIntVal = Lex.getAPSIntVal();
3075     ID.Kind = ValID::t_APSInt;
3076     break;
3077   case lltok::APFloat:
3078     ID.APFloatVal = Lex.getAPFloatVal();
3079     ID.Kind = ValID::t_APFloat;
3080     break;
3081   case lltok::kw_true:
3082     ID.ConstantVal = ConstantInt::getTrue(Context);
3083     ID.Kind = ValID::t_Constant;
3084     break;
3085   case lltok::kw_false:
3086     ID.ConstantVal = ConstantInt::getFalse(Context);
3087     ID.Kind = ValID::t_Constant;
3088     break;
3089   case lltok::kw_null: ID.Kind = ValID::t_Null; break;
3090   case lltok::kw_undef: ID.Kind = ValID::t_Undef; break;
3091   case lltok::kw_poison: ID.Kind = ValID::t_Poison; break;
3092   case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break;
3093   case lltok::kw_none: ID.Kind = ValID::t_None; break;
3094 
3095   case lltok::lbrace: {
3096     // ValID ::= '{' ConstVector '}'
3097     Lex.Lex();
3098     SmallVector<Constant*, 16> Elts;
3099     if (parseGlobalValueVector(Elts) ||
3100         parseToken(lltok::rbrace, "expected end of struct constant"))
3101       return true;
3102 
3103     ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3104     ID.UIntVal = Elts.size();
3105     memcpy(ID.ConstantStructElts.get(), Elts.data(),
3106            Elts.size() * sizeof(Elts[0]));
3107     ID.Kind = ValID::t_ConstantStruct;
3108     return false;
3109   }
3110   case lltok::less: {
3111     // ValID ::= '<' ConstVector '>'         --> Vector.
3112     // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct.
3113     Lex.Lex();
3114     bool isPackedStruct = EatIfPresent(lltok::lbrace);
3115 
3116     SmallVector<Constant*, 16> Elts;
3117     LocTy FirstEltLoc = Lex.getLoc();
3118     if (parseGlobalValueVector(Elts) ||
3119         (isPackedStruct &&
3120          parseToken(lltok::rbrace, "expected end of packed struct")) ||
3121         parseToken(lltok::greater, "expected end of constant"))
3122       return true;
3123 
3124     if (isPackedStruct) {
3125       ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size());
3126       memcpy(ID.ConstantStructElts.get(), Elts.data(),
3127              Elts.size() * sizeof(Elts[0]));
3128       ID.UIntVal = Elts.size();
3129       ID.Kind = ValID::t_PackedConstantStruct;
3130       return false;
3131     }
3132 
3133     if (Elts.empty())
3134       return error(ID.Loc, "constant vector must not be empty");
3135 
3136     if (!Elts[0]->getType()->isIntegerTy() &&
3137         !Elts[0]->getType()->isFloatingPointTy() &&
3138         !Elts[0]->getType()->isPointerTy())
3139       return error(
3140           FirstEltLoc,
3141           "vector elements must have integer, pointer or floating point type");
3142 
3143     // Verify that all the vector elements have the same type.
3144     for (unsigned i = 1, e = Elts.size(); i != e; ++i)
3145       if (Elts[i]->getType() != Elts[0]->getType())
3146         return error(FirstEltLoc, "vector element #" + Twine(i) +
3147                                       " is not of type '" +
3148                                       getTypeString(Elts[0]->getType()));
3149 
3150     ID.ConstantVal = ConstantVector::get(Elts);
3151     ID.Kind = ValID::t_Constant;
3152     return false;
3153   }
3154   case lltok::lsquare: {   // Array Constant
3155     Lex.Lex();
3156     SmallVector<Constant*, 16> Elts;
3157     LocTy FirstEltLoc = Lex.getLoc();
3158     if (parseGlobalValueVector(Elts) ||
3159         parseToken(lltok::rsquare, "expected end of array constant"))
3160       return true;
3161 
3162     // Handle empty element.
3163     if (Elts.empty()) {
3164       // Use undef instead of an array because it's inconvenient to determine
3165       // the element type at this point, there being no elements to examine.
3166       ID.Kind = ValID::t_EmptyArray;
3167       return false;
3168     }
3169 
3170     if (!Elts[0]->getType()->isFirstClassType())
3171       return error(FirstEltLoc, "invalid array element type: " +
3172                                     getTypeString(Elts[0]->getType()));
3173 
3174     ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size());
3175 
3176     // Verify all elements are correct type!
3177     for (unsigned i = 0, e = Elts.size(); i != e; ++i) {
3178       if (Elts[i]->getType() != Elts[0]->getType())
3179         return error(FirstEltLoc, "array element #" + Twine(i) +
3180                                       " is not of type '" +
3181                                       getTypeString(Elts[0]->getType()));
3182     }
3183 
3184     ID.ConstantVal = ConstantArray::get(ATy, Elts);
3185     ID.Kind = ValID::t_Constant;
3186     return false;
3187   }
3188   case lltok::kw_c:  // c "foo"
3189     Lex.Lex();
3190     ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(),
3191                                                   false);
3192     if (parseToken(lltok::StringConstant, "expected string"))
3193       return true;
3194     ID.Kind = ValID::t_Constant;
3195     return false;
3196 
3197   case lltok::kw_asm: {
3198     // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ','
3199     //             STRINGCONSTANT
3200     bool HasSideEffect, AlignStack, AsmDialect, CanThrow;
3201     Lex.Lex();
3202     if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) ||
3203         parseOptionalToken(lltok::kw_alignstack, AlignStack) ||
3204         parseOptionalToken(lltok::kw_inteldialect, AsmDialect) ||
3205         parseOptionalToken(lltok::kw_unwind, CanThrow) ||
3206         parseStringConstant(ID.StrVal) ||
3207         parseToken(lltok::comma, "expected comma in inline asm expression") ||
3208         parseToken(lltok::StringConstant, "expected constraint string"))
3209       return true;
3210     ID.StrVal2 = Lex.getStrVal();
3211     ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack) << 1) |
3212                  (unsigned(AsmDialect) << 2) | (unsigned(CanThrow) << 3);
3213     ID.Kind = ValID::t_InlineAsm;
3214     return false;
3215   }
3216 
3217   case lltok::kw_blockaddress: {
3218     // ValID ::= 'blockaddress' '(' @foo ',' %bar ')'
3219     Lex.Lex();
3220 
3221     ValID Fn, Label;
3222 
3223     if (parseToken(lltok::lparen, "expected '(' in block address expression") ||
3224         parseValID(Fn, PFS) ||
3225         parseToken(lltok::comma,
3226                    "expected comma in block address expression") ||
3227         parseValID(Label, PFS) ||
3228         parseToken(lltok::rparen, "expected ')' in block address expression"))
3229       return true;
3230 
3231     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3232       return error(Fn.Loc, "expected function name in blockaddress");
3233     if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName)
3234       return error(Label.Loc, "expected basic block name in blockaddress");
3235 
3236     // Try to find the function (but skip it if it's forward-referenced).
3237     GlobalValue *GV = nullptr;
3238     if (Fn.Kind == ValID::t_GlobalID) {
3239       if (Fn.UIntVal < NumberedVals.size())
3240         GV = NumberedVals[Fn.UIntVal];
3241     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3242       GV = M->getNamedValue(Fn.StrVal);
3243     }
3244     Function *F = nullptr;
3245     if (GV) {
3246       // Confirm that it's actually a function with a definition.
3247       if (!isa<Function>(GV))
3248         return error(Fn.Loc, "expected function name in blockaddress");
3249       F = cast<Function>(GV);
3250       if (F->isDeclaration())
3251         return error(Fn.Loc, "cannot take blockaddress inside a declaration");
3252     }
3253 
3254     if (!F) {
3255       // Make a global variable as a placeholder for this reference.
3256       GlobalValue *&FwdRef =
3257           ForwardRefBlockAddresses.insert(std::make_pair(
3258                                               std::move(Fn),
3259                                               std::map<ValID, GlobalValue *>()))
3260               .first->second.insert(std::make_pair(std::move(Label), nullptr))
3261               .first->second;
3262       if (!FwdRef) {
3263         unsigned FwdDeclAS;
3264         if (ExpectedTy) {
3265           // If we know the type that the blockaddress is being assigned to,
3266           // we can use the address space of that type.
3267           if (!ExpectedTy->isPointerTy())
3268             return error(ID.Loc,
3269                          "type of blockaddress must be a pointer and not '" +
3270                              getTypeString(ExpectedTy) + "'");
3271           FwdDeclAS = ExpectedTy->getPointerAddressSpace();
3272         } else if (PFS) {
3273           // Otherwise, we default the address space of the current function.
3274           FwdDeclAS = PFS->getFunction().getAddressSpace();
3275         } else {
3276           llvm_unreachable("Unknown address space for blockaddress");
3277         }
3278         FwdRef = new GlobalVariable(
3279             *M, Type::getInt8Ty(Context), false, GlobalValue::InternalLinkage,
3280             nullptr, "", nullptr, GlobalValue::NotThreadLocal, FwdDeclAS);
3281       }
3282 
3283       ID.ConstantVal = FwdRef;
3284       ID.Kind = ValID::t_Constant;
3285       return false;
3286     }
3287 
3288     // We found the function; now find the basic block.  Don't use PFS, since we
3289     // might be inside a constant expression.
3290     BasicBlock *BB;
3291     if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) {
3292       if (Label.Kind == ValID::t_LocalID)
3293         BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc);
3294       else
3295         BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc);
3296       if (!BB)
3297         return error(Label.Loc, "referenced value is not a basic block");
3298     } else {
3299       if (Label.Kind == ValID::t_LocalID)
3300         return error(Label.Loc, "cannot take address of numeric label after "
3301                                 "the function is defined");
3302       BB = dyn_cast_or_null<BasicBlock>(
3303           F->getValueSymbolTable()->lookup(Label.StrVal));
3304       if (!BB)
3305         return error(Label.Loc, "referenced value is not a basic block");
3306     }
3307 
3308     ID.ConstantVal = BlockAddress::get(F, BB);
3309     ID.Kind = ValID::t_Constant;
3310     return false;
3311   }
3312 
3313   case lltok::kw_dso_local_equivalent: {
3314     // ValID ::= 'dso_local_equivalent' @foo
3315     Lex.Lex();
3316 
3317     ValID Fn;
3318 
3319     if (parseValID(Fn, PFS))
3320       return true;
3321 
3322     if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName)
3323       return error(Fn.Loc,
3324                    "expected global value name in dso_local_equivalent");
3325 
3326     // Try to find the function (but skip it if it's forward-referenced).
3327     GlobalValue *GV = nullptr;
3328     if (Fn.Kind == ValID::t_GlobalID) {
3329       if (Fn.UIntVal < NumberedVals.size())
3330         GV = NumberedVals[Fn.UIntVal];
3331     } else if (!ForwardRefVals.count(Fn.StrVal)) {
3332       GV = M->getNamedValue(Fn.StrVal);
3333     }
3334 
3335     assert(GV && "Could not find a corresponding global variable");
3336 
3337     if (!GV->getValueType()->isFunctionTy())
3338       return error(Fn.Loc, "expected a function, alias to function, or ifunc "
3339                            "in dso_local_equivalent");
3340 
3341     ID.ConstantVal = DSOLocalEquivalent::get(GV);
3342     ID.Kind = ValID::t_Constant;
3343     return false;
3344   }
3345 
3346   case lltok::kw_no_cfi: {
3347     // ValID ::= 'no_cfi' @foo
3348     Lex.Lex();
3349 
3350     if (parseValID(ID, PFS))
3351       return true;
3352 
3353     if (ID.Kind != ValID::t_GlobalID && ID.Kind != ValID::t_GlobalName)
3354       return error(ID.Loc, "expected global value name in no_cfi");
3355 
3356     ID.NoCFI = true;
3357     return false;
3358   }
3359 
3360   case lltok::kw_trunc:
3361   case lltok::kw_zext:
3362   case lltok::kw_sext:
3363   case lltok::kw_fptrunc:
3364   case lltok::kw_fpext:
3365   case lltok::kw_bitcast:
3366   case lltok::kw_addrspacecast:
3367   case lltok::kw_uitofp:
3368   case lltok::kw_sitofp:
3369   case lltok::kw_fptoui:
3370   case lltok::kw_fptosi:
3371   case lltok::kw_inttoptr:
3372   case lltok::kw_ptrtoint: {
3373     unsigned Opc = Lex.getUIntVal();
3374     Type *DestTy = nullptr;
3375     Constant *SrcVal;
3376     Lex.Lex();
3377     if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") ||
3378         parseGlobalTypeAndValue(SrcVal) ||
3379         parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") ||
3380         parseType(DestTy) ||
3381         parseToken(lltok::rparen, "expected ')' at end of constantexpr cast"))
3382       return true;
3383     if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy))
3384       return error(ID.Loc, "invalid cast opcode for cast from '" +
3385                                getTypeString(SrcVal->getType()) + "' to '" +
3386                                getTypeString(DestTy) + "'");
3387     ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc,
3388                                                  SrcVal, DestTy);
3389     ID.Kind = ValID::t_Constant;
3390     return false;
3391   }
3392   case lltok::kw_extractvalue: {
3393     Lex.Lex();
3394     Constant *Val;
3395     SmallVector<unsigned, 4> Indices;
3396     if (parseToken(lltok::lparen,
3397                    "expected '(' in extractvalue constantexpr") ||
3398         parseGlobalTypeAndValue(Val) || parseIndexList(Indices) ||
3399         parseToken(lltok::rparen, "expected ')' in extractvalue constantexpr"))
3400       return true;
3401 
3402     if (!Val->getType()->isAggregateType())
3403       return error(ID.Loc, "extractvalue operand must be aggregate type");
3404     if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
3405       return error(ID.Loc, "invalid indices for extractvalue");
3406     ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices);
3407     ID.Kind = ValID::t_Constant;
3408     return false;
3409   }
3410   case lltok::kw_insertvalue: {
3411     Lex.Lex();
3412     Constant *Val0, *Val1;
3413     SmallVector<unsigned, 4> Indices;
3414     if (parseToken(lltok::lparen, "expected '(' in insertvalue constantexpr") ||
3415         parseGlobalTypeAndValue(Val0) ||
3416         parseToken(lltok::comma,
3417                    "expected comma in insertvalue constantexpr") ||
3418         parseGlobalTypeAndValue(Val1) || parseIndexList(Indices) ||
3419         parseToken(lltok::rparen, "expected ')' in insertvalue constantexpr"))
3420       return true;
3421     if (!Val0->getType()->isAggregateType())
3422       return error(ID.Loc, "insertvalue operand must be aggregate type");
3423     Type *IndexedType =
3424         ExtractValueInst::getIndexedType(Val0->getType(), Indices);
3425     if (!IndexedType)
3426       return error(ID.Loc, "invalid indices for insertvalue");
3427     if (IndexedType != Val1->getType())
3428       return error(ID.Loc, "insertvalue operand and field disagree in type: '" +
3429                                getTypeString(Val1->getType()) +
3430                                "' instead of '" + getTypeString(IndexedType) +
3431                                "'");
3432     ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices);
3433     ID.Kind = ValID::t_Constant;
3434     return false;
3435   }
3436   case lltok::kw_icmp:
3437   case lltok::kw_fcmp: {
3438     unsigned PredVal, Opc = Lex.getUIntVal();
3439     Constant *Val0, *Val1;
3440     Lex.Lex();
3441     if (parseCmpPredicate(PredVal, Opc) ||
3442         parseToken(lltok::lparen, "expected '(' in compare constantexpr") ||
3443         parseGlobalTypeAndValue(Val0) ||
3444         parseToken(lltok::comma, "expected comma in compare constantexpr") ||
3445         parseGlobalTypeAndValue(Val1) ||
3446         parseToken(lltok::rparen, "expected ')' in compare constantexpr"))
3447       return true;
3448 
3449     if (Val0->getType() != Val1->getType())
3450       return error(ID.Loc, "compare operands must have the same type");
3451 
3452     CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal;
3453 
3454     if (Opc == Instruction::FCmp) {
3455       if (!Val0->getType()->isFPOrFPVectorTy())
3456         return error(ID.Loc, "fcmp requires floating point operands");
3457       ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1);
3458     } else {
3459       assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!");
3460       if (!Val0->getType()->isIntOrIntVectorTy() &&
3461           !Val0->getType()->isPtrOrPtrVectorTy())
3462         return error(ID.Loc, "icmp requires pointer or integer operands");
3463       ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1);
3464     }
3465     ID.Kind = ValID::t_Constant;
3466     return false;
3467   }
3468 
3469   // Unary Operators.
3470   case lltok::kw_fneg: {
3471     unsigned Opc = Lex.getUIntVal();
3472     Constant *Val;
3473     Lex.Lex();
3474     if (parseToken(lltok::lparen, "expected '(' in unary constantexpr") ||
3475         parseGlobalTypeAndValue(Val) ||
3476         parseToken(lltok::rparen, "expected ')' in unary constantexpr"))
3477       return true;
3478 
3479     // Check that the type is valid for the operator.
3480     switch (Opc) {
3481     case Instruction::FNeg:
3482       if (!Val->getType()->isFPOrFPVectorTy())
3483         return error(ID.Loc, "constexpr requires fp operands");
3484       break;
3485     default: llvm_unreachable("Unknown unary operator!");
3486     }
3487     unsigned Flags = 0;
3488     Constant *C = ConstantExpr::get(Opc, Val, Flags);
3489     ID.ConstantVal = C;
3490     ID.Kind = ValID::t_Constant;
3491     return false;
3492   }
3493   // Binary Operators.
3494   case lltok::kw_add:
3495   case lltok::kw_fadd:
3496   case lltok::kw_sub:
3497   case lltok::kw_fsub:
3498   case lltok::kw_mul:
3499   case lltok::kw_fmul:
3500   case lltok::kw_udiv:
3501   case lltok::kw_sdiv:
3502   case lltok::kw_fdiv:
3503   case lltok::kw_urem:
3504   case lltok::kw_srem:
3505   case lltok::kw_frem:
3506   case lltok::kw_shl:
3507   case lltok::kw_lshr:
3508   case lltok::kw_ashr: {
3509     bool NUW = false;
3510     bool NSW = false;
3511     bool Exact = false;
3512     unsigned Opc = Lex.getUIntVal();
3513     Constant *Val0, *Val1;
3514     Lex.Lex();
3515     if (Opc == Instruction::Add || Opc == Instruction::Sub ||
3516         Opc == Instruction::Mul || Opc == Instruction::Shl) {
3517       if (EatIfPresent(lltok::kw_nuw))
3518         NUW = true;
3519       if (EatIfPresent(lltok::kw_nsw)) {
3520         NSW = true;
3521         if (EatIfPresent(lltok::kw_nuw))
3522           NUW = true;
3523       }
3524     } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv ||
3525                Opc == Instruction::LShr || Opc == Instruction::AShr) {
3526       if (EatIfPresent(lltok::kw_exact))
3527         Exact = true;
3528     }
3529     if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") ||
3530         parseGlobalTypeAndValue(Val0) ||
3531         parseToken(lltok::comma, "expected comma in binary constantexpr") ||
3532         parseGlobalTypeAndValue(Val1) ||
3533         parseToken(lltok::rparen, "expected ')' in binary constantexpr"))
3534       return true;
3535     if (Val0->getType() != Val1->getType())
3536       return error(ID.Loc, "operands of constexpr must have same type");
3537     // Check that the type is valid for the operator.
3538     switch (Opc) {
3539     case Instruction::Add:
3540     case Instruction::Sub:
3541     case Instruction::Mul:
3542     case Instruction::UDiv:
3543     case Instruction::SDiv:
3544     case Instruction::URem:
3545     case Instruction::SRem:
3546     case Instruction::Shl:
3547     case Instruction::AShr:
3548     case Instruction::LShr:
3549       if (!Val0->getType()->isIntOrIntVectorTy())
3550         return error(ID.Loc, "constexpr requires integer operands");
3551       break;
3552     case Instruction::FAdd:
3553     case Instruction::FSub:
3554     case Instruction::FMul:
3555     case Instruction::FDiv:
3556     case Instruction::FRem:
3557       if (!Val0->getType()->isFPOrFPVectorTy())
3558         return error(ID.Loc, "constexpr requires fp operands");
3559       break;
3560     default: llvm_unreachable("Unknown binary operator!");
3561     }
3562     unsigned Flags = 0;
3563     if (NUW)   Flags |= OverflowingBinaryOperator::NoUnsignedWrap;
3564     if (NSW)   Flags |= OverflowingBinaryOperator::NoSignedWrap;
3565     if (Exact) Flags |= PossiblyExactOperator::IsExact;
3566     Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags);
3567     ID.ConstantVal = C;
3568     ID.Kind = ValID::t_Constant;
3569     return false;
3570   }
3571 
3572   // Logical Operations
3573   case lltok::kw_and:
3574   case lltok::kw_or:
3575   case lltok::kw_xor: {
3576     unsigned Opc = Lex.getUIntVal();
3577     Constant *Val0, *Val1;
3578     Lex.Lex();
3579     if (parseToken(lltok::lparen, "expected '(' in logical constantexpr") ||
3580         parseGlobalTypeAndValue(Val0) ||
3581         parseToken(lltok::comma, "expected comma in logical constantexpr") ||
3582         parseGlobalTypeAndValue(Val1) ||
3583         parseToken(lltok::rparen, "expected ')' in logical constantexpr"))
3584       return true;
3585     if (Val0->getType() != Val1->getType())
3586       return error(ID.Loc, "operands of constexpr must have same type");
3587     if (!Val0->getType()->isIntOrIntVectorTy())
3588       return error(ID.Loc,
3589                    "constexpr requires integer or integer vector operands");
3590     ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1);
3591     ID.Kind = ValID::t_Constant;
3592     return false;
3593   }
3594 
3595   case lltok::kw_getelementptr:
3596   case lltok::kw_shufflevector:
3597   case lltok::kw_insertelement:
3598   case lltok::kw_extractelement:
3599   case lltok::kw_select: {
3600     unsigned Opc = Lex.getUIntVal();
3601     SmallVector<Constant*, 16> Elts;
3602     bool InBounds = false;
3603     Type *Ty;
3604     Lex.Lex();
3605 
3606     if (Opc == Instruction::GetElementPtr)
3607       InBounds = EatIfPresent(lltok::kw_inbounds);
3608 
3609     if (parseToken(lltok::lparen, "expected '(' in constantexpr"))
3610       return true;
3611 
3612     LocTy ExplicitTypeLoc = Lex.getLoc();
3613     if (Opc == Instruction::GetElementPtr) {
3614       if (parseType(Ty) ||
3615           parseToken(lltok::comma, "expected comma after getelementptr's type"))
3616         return true;
3617     }
3618 
3619     Optional<unsigned> InRangeOp;
3620     if (parseGlobalValueVector(
3621             Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) ||
3622         parseToken(lltok::rparen, "expected ')' in constantexpr"))
3623       return true;
3624 
3625     if (Opc == Instruction::GetElementPtr) {
3626       if (Elts.size() == 0 ||
3627           !Elts[0]->getType()->isPtrOrPtrVectorTy())
3628         return error(ID.Loc, "base of getelementptr must be a pointer");
3629 
3630       Type *BaseType = Elts[0]->getType();
3631       auto *BasePointerType = cast<PointerType>(BaseType->getScalarType());
3632       if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) {
3633         return error(
3634             ExplicitTypeLoc,
3635             typeComparisonErrorMessage(
3636                 "explicit pointee type doesn't match operand's pointee type",
3637                 Ty, BasePointerType->getNonOpaquePointerElementType()));
3638       }
3639 
3640       unsigned GEPWidth =
3641           BaseType->isVectorTy()
3642               ? cast<FixedVectorType>(BaseType)->getNumElements()
3643               : 0;
3644 
3645       ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end());
3646       for (Constant *Val : Indices) {
3647         Type *ValTy = Val->getType();
3648         if (!ValTy->isIntOrIntVectorTy())
3649           return error(ID.Loc, "getelementptr index must be an integer");
3650         if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) {
3651           unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements();
3652           if (GEPWidth && (ValNumEl != GEPWidth))
3653             return error(
3654                 ID.Loc,
3655                 "getelementptr vector index has a wrong number of elements");
3656           // GEPWidth may have been unknown because the base is a scalar,
3657           // but it is known now.
3658           GEPWidth = ValNumEl;
3659         }
3660       }
3661 
3662       SmallPtrSet<Type*, 4> Visited;
3663       if (!Indices.empty() && !Ty->isSized(&Visited))
3664         return error(ID.Loc, "base element of getelementptr must be sized");
3665 
3666       if (!GetElementPtrInst::getIndexedType(Ty, Indices))
3667         return error(ID.Loc, "invalid getelementptr indices");
3668 
3669       if (InRangeOp) {
3670         if (*InRangeOp == 0)
3671           return error(ID.Loc,
3672                        "inrange keyword may not appear on pointer operand");
3673         --*InRangeOp;
3674       }
3675 
3676       ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices,
3677                                                       InBounds, InRangeOp);
3678     } else if (Opc == Instruction::Select) {
3679       if (Elts.size() != 3)
3680         return error(ID.Loc, "expected three operands to select");
3681       if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1],
3682                                                               Elts[2]))
3683         return error(ID.Loc, Reason);
3684       ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]);
3685     } else if (Opc == Instruction::ShuffleVector) {
3686       if (Elts.size() != 3)
3687         return error(ID.Loc, "expected three operands to shufflevector");
3688       if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3689         return error(ID.Loc, "invalid operands to shufflevector");
3690       SmallVector<int, 16> Mask;
3691       ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask);
3692       ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask);
3693     } else if (Opc == Instruction::ExtractElement) {
3694       if (Elts.size() != 2)
3695         return error(ID.Loc, "expected two operands to extractelement");
3696       if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1]))
3697         return error(ID.Loc, "invalid extractelement operands");
3698       ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]);
3699     } else {
3700       assert(Opc == Instruction::InsertElement && "Unknown opcode");
3701       if (Elts.size() != 3)
3702         return error(ID.Loc, "expected three operands to insertelement");
3703       if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2]))
3704         return error(ID.Loc, "invalid insertelement operands");
3705       ID.ConstantVal =
3706                  ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]);
3707     }
3708 
3709     ID.Kind = ValID::t_Constant;
3710     return false;
3711   }
3712   }
3713 
3714   Lex.Lex();
3715   return false;
3716 }
3717 
3718 /// parseGlobalValue - parse a global value with the specified type.
3719 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) {
3720   C = nullptr;
3721   ValID ID;
3722   Value *V = nullptr;
3723   bool Parsed = parseValID(ID, /*PFS=*/nullptr, Ty) ||
3724                 convertValIDToValue(Ty, ID, V, nullptr);
3725   if (V && !(C = dyn_cast<Constant>(V)))
3726     return error(ID.Loc, "global values must be constants");
3727   return Parsed;
3728 }
3729 
3730 bool LLParser::parseGlobalTypeAndValue(Constant *&V) {
3731   Type *Ty = nullptr;
3732   return parseType(Ty) || parseGlobalValue(Ty, V);
3733 }
3734 
3735 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) {
3736   C = nullptr;
3737 
3738   LocTy KwLoc = Lex.getLoc();
3739   if (!EatIfPresent(lltok::kw_comdat))
3740     return false;
3741 
3742   if (EatIfPresent(lltok::lparen)) {
3743     if (Lex.getKind() != lltok::ComdatVar)
3744       return tokError("expected comdat variable");
3745     C = getComdat(Lex.getStrVal(), Lex.getLoc());
3746     Lex.Lex();
3747     if (parseToken(lltok::rparen, "expected ')' after comdat var"))
3748       return true;
3749   } else {
3750     if (GlobalName.empty())
3751       return tokError("comdat cannot be unnamed");
3752     C = getComdat(std::string(GlobalName), KwLoc);
3753   }
3754 
3755   return false;
3756 }
3757 
3758 /// parseGlobalValueVector
3759 ///   ::= /*empty*/
3760 ///   ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)*
3761 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts,
3762                                       Optional<unsigned> *InRangeOp) {
3763   // Empty list.
3764   if (Lex.getKind() == lltok::rbrace ||
3765       Lex.getKind() == lltok::rsquare ||
3766       Lex.getKind() == lltok::greater ||
3767       Lex.getKind() == lltok::rparen)
3768     return false;
3769 
3770   do {
3771     if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange))
3772       *InRangeOp = Elts.size();
3773 
3774     Constant *C;
3775     if (parseGlobalTypeAndValue(C))
3776       return true;
3777     Elts.push_back(C);
3778   } while (EatIfPresent(lltok::comma));
3779 
3780   return false;
3781 }
3782 
3783 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) {
3784   SmallVector<Metadata *, 16> Elts;
3785   if (parseMDNodeVector(Elts))
3786     return true;
3787 
3788   MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts);
3789   return false;
3790 }
3791 
3792 /// MDNode:
3793 ///  ::= !{ ... }
3794 ///  ::= !7
3795 ///  ::= !DILocation(...)
3796 bool LLParser::parseMDNode(MDNode *&N) {
3797   if (Lex.getKind() == lltok::MetadataVar)
3798     return parseSpecializedMDNode(N);
3799 
3800   return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N);
3801 }
3802 
3803 bool LLParser::parseMDNodeTail(MDNode *&N) {
3804   // !{ ... }
3805   if (Lex.getKind() == lltok::lbrace)
3806     return parseMDTuple(N);
3807 
3808   // !42
3809   return parseMDNodeID(N);
3810 }
3811 
3812 namespace {
3813 
3814 /// Structure to represent an optional metadata field.
3815 template <class FieldTy> struct MDFieldImpl {
3816   typedef MDFieldImpl ImplTy;
3817   FieldTy Val;
3818   bool Seen;
3819 
3820   void assign(FieldTy Val) {
3821     Seen = true;
3822     this->Val = std::move(Val);
3823   }
3824 
3825   explicit MDFieldImpl(FieldTy Default)
3826       : Val(std::move(Default)), Seen(false) {}
3827 };
3828 
3829 /// Structure to represent an optional metadata field that
3830 /// can be of either type (A or B) and encapsulates the
3831 /// MD<typeofA>Field and MD<typeofB>Field structs, so not
3832 /// to reimplement the specifics for representing each Field.
3833 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl {
3834   typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy;
3835   FieldTypeA A;
3836   FieldTypeB B;
3837   bool Seen;
3838 
3839   enum {
3840     IsInvalid = 0,
3841     IsTypeA = 1,
3842     IsTypeB = 2
3843   } WhatIs;
3844 
3845   void assign(FieldTypeA A) {
3846     Seen = true;
3847     this->A = std::move(A);
3848     WhatIs = IsTypeA;
3849   }
3850 
3851   void assign(FieldTypeB B) {
3852     Seen = true;
3853     this->B = std::move(B);
3854     WhatIs = IsTypeB;
3855   }
3856 
3857   explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB)
3858       : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false),
3859         WhatIs(IsInvalid) {}
3860 };
3861 
3862 struct MDUnsignedField : public MDFieldImpl<uint64_t> {
3863   uint64_t Max;
3864 
3865   MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX)
3866       : ImplTy(Default), Max(Max) {}
3867 };
3868 
3869 struct LineField : public MDUnsignedField {
3870   LineField() : MDUnsignedField(0, UINT32_MAX) {}
3871 };
3872 
3873 struct ColumnField : public MDUnsignedField {
3874   ColumnField() : MDUnsignedField(0, UINT16_MAX) {}
3875 };
3876 
3877 struct DwarfTagField : public MDUnsignedField {
3878   DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {}
3879   DwarfTagField(dwarf::Tag DefaultTag)
3880       : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {}
3881 };
3882 
3883 struct DwarfMacinfoTypeField : public MDUnsignedField {
3884   DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {}
3885   DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType)
3886     : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {}
3887 };
3888 
3889 struct DwarfAttEncodingField : public MDUnsignedField {
3890   DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {}
3891 };
3892 
3893 struct DwarfVirtualityField : public MDUnsignedField {
3894   DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {}
3895 };
3896 
3897 struct DwarfLangField : public MDUnsignedField {
3898   DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {}
3899 };
3900 
3901 struct DwarfCCField : public MDUnsignedField {
3902   DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {}
3903 };
3904 
3905 struct EmissionKindField : public MDUnsignedField {
3906   EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {}
3907 };
3908 
3909 struct NameTableKindField : public MDUnsignedField {
3910   NameTableKindField()
3911       : MDUnsignedField(
3912             0, (unsigned)
3913                    DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {}
3914 };
3915 
3916 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> {
3917   DIFlagField() : MDFieldImpl(DINode::FlagZero) {}
3918 };
3919 
3920 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> {
3921   DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {}
3922 };
3923 
3924 struct MDAPSIntField : public MDFieldImpl<APSInt> {
3925   MDAPSIntField() : ImplTy(APSInt()) {}
3926 };
3927 
3928 struct MDSignedField : public MDFieldImpl<int64_t> {
3929   int64_t Min;
3930   int64_t Max;
3931 
3932   MDSignedField(int64_t Default = 0)
3933       : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {}
3934   MDSignedField(int64_t Default, int64_t Min, int64_t Max)
3935       : ImplTy(Default), Min(Min), Max(Max) {}
3936 };
3937 
3938 struct MDBoolField : public MDFieldImpl<bool> {
3939   MDBoolField(bool Default = false) : ImplTy(Default) {}
3940 };
3941 
3942 struct MDField : public MDFieldImpl<Metadata *> {
3943   bool AllowNull;
3944 
3945   MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {}
3946 };
3947 
3948 struct MDStringField : public MDFieldImpl<MDString *> {
3949   bool AllowEmpty;
3950   MDStringField(bool AllowEmpty = true)
3951       : ImplTy(nullptr), AllowEmpty(AllowEmpty) {}
3952 };
3953 
3954 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> {
3955   MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {}
3956 };
3957 
3958 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> {
3959   ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {}
3960 };
3961 
3962 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> {
3963   MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true)
3964       : ImplTy(MDSignedField(Default), MDField(AllowNull)) {}
3965 
3966   MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max,
3967                     bool AllowNull = true)
3968       : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {}
3969 
3970   bool isMDSignedField() const { return WhatIs == IsTypeA; }
3971   bool isMDField() const { return WhatIs == IsTypeB; }
3972   int64_t getMDSignedValue() const {
3973     assert(isMDSignedField() && "Wrong field type");
3974     return A.Val;
3975   }
3976   Metadata *getMDFieldValue() const {
3977     assert(isMDField() && "Wrong field type");
3978     return B.Val;
3979   }
3980 };
3981 
3982 } // end anonymous namespace
3983 
3984 namespace llvm {
3985 
3986 template <>
3987 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) {
3988   if (Lex.getKind() != lltok::APSInt)
3989     return tokError("expected integer");
3990 
3991   Result.assign(Lex.getAPSIntVal());
3992   Lex.Lex();
3993   return false;
3994 }
3995 
3996 template <>
3997 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
3998                             MDUnsignedField &Result) {
3999   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
4000     return tokError("expected unsigned integer");
4001 
4002   auto &U = Lex.getAPSIntVal();
4003   if (U.ugt(Result.Max))
4004     return tokError("value for '" + Name + "' too large, limit is " +
4005                     Twine(Result.Max));
4006   Result.assign(U.getZExtValue());
4007   assert(Result.Val <= Result.Max && "Expected value in range");
4008   Lex.Lex();
4009   return false;
4010 }
4011 
4012 template <>
4013 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) {
4014   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4015 }
4016 template <>
4017 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) {
4018   return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4019 }
4020 
4021 template <>
4022 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) {
4023   if (Lex.getKind() == lltok::APSInt)
4024     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4025 
4026   if (Lex.getKind() != lltok::DwarfTag)
4027     return tokError("expected DWARF tag");
4028 
4029   unsigned Tag = dwarf::getTag(Lex.getStrVal());
4030   if (Tag == dwarf::DW_TAG_invalid)
4031     return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'");
4032   assert(Tag <= Result.Max && "Expected valid DWARF tag");
4033 
4034   Result.assign(Tag);
4035   Lex.Lex();
4036   return false;
4037 }
4038 
4039 template <>
4040 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4041                             DwarfMacinfoTypeField &Result) {
4042   if (Lex.getKind() == lltok::APSInt)
4043     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4044 
4045   if (Lex.getKind() != lltok::DwarfMacinfo)
4046     return tokError("expected DWARF macinfo type");
4047 
4048   unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal());
4049   if (Macinfo == dwarf::DW_MACINFO_invalid)
4050     return tokError("invalid DWARF macinfo type" + Twine(" '") +
4051                     Lex.getStrVal() + "'");
4052   assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type");
4053 
4054   Result.assign(Macinfo);
4055   Lex.Lex();
4056   return false;
4057 }
4058 
4059 template <>
4060 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4061                             DwarfVirtualityField &Result) {
4062   if (Lex.getKind() == lltok::APSInt)
4063     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4064 
4065   if (Lex.getKind() != lltok::DwarfVirtuality)
4066     return tokError("expected DWARF virtuality code");
4067 
4068   unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal());
4069   if (Virtuality == dwarf::DW_VIRTUALITY_invalid)
4070     return tokError("invalid DWARF virtuality code" + Twine(" '") +
4071                     Lex.getStrVal() + "'");
4072   assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code");
4073   Result.assign(Virtuality);
4074   Lex.Lex();
4075   return false;
4076 }
4077 
4078 template <>
4079 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) {
4080   if (Lex.getKind() == lltok::APSInt)
4081     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4082 
4083   if (Lex.getKind() != lltok::DwarfLang)
4084     return tokError("expected DWARF language");
4085 
4086   unsigned Lang = dwarf::getLanguage(Lex.getStrVal());
4087   if (!Lang)
4088     return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() +
4089                     "'");
4090   assert(Lang <= Result.Max && "Expected valid DWARF language");
4091   Result.assign(Lang);
4092   Lex.Lex();
4093   return false;
4094 }
4095 
4096 template <>
4097 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) {
4098   if (Lex.getKind() == lltok::APSInt)
4099     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4100 
4101   if (Lex.getKind() != lltok::DwarfCC)
4102     return tokError("expected DWARF calling convention");
4103 
4104   unsigned CC = dwarf::getCallingConvention(Lex.getStrVal());
4105   if (!CC)
4106     return tokError("invalid DWARF calling convention" + Twine(" '") +
4107                     Lex.getStrVal() + "'");
4108   assert(CC <= Result.Max && "Expected valid DWARF calling convention");
4109   Result.assign(CC);
4110   Lex.Lex();
4111   return false;
4112 }
4113 
4114 template <>
4115 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4116                             EmissionKindField &Result) {
4117   if (Lex.getKind() == lltok::APSInt)
4118     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4119 
4120   if (Lex.getKind() != lltok::EmissionKind)
4121     return tokError("expected emission kind");
4122 
4123   auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal());
4124   if (!Kind)
4125     return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() +
4126                     "'");
4127   assert(*Kind <= Result.Max && "Expected valid emission kind");
4128   Result.assign(*Kind);
4129   Lex.Lex();
4130   return false;
4131 }
4132 
4133 template <>
4134 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4135                             NameTableKindField &Result) {
4136   if (Lex.getKind() == lltok::APSInt)
4137     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4138 
4139   if (Lex.getKind() != lltok::NameTableKind)
4140     return tokError("expected nameTable kind");
4141 
4142   auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal());
4143   if (!Kind)
4144     return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() +
4145                     "'");
4146   assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind");
4147   Result.assign((unsigned)*Kind);
4148   Lex.Lex();
4149   return false;
4150 }
4151 
4152 template <>
4153 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4154                             DwarfAttEncodingField &Result) {
4155   if (Lex.getKind() == lltok::APSInt)
4156     return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result));
4157 
4158   if (Lex.getKind() != lltok::DwarfAttEncoding)
4159     return tokError("expected DWARF type attribute encoding");
4160 
4161   unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal());
4162   if (!Encoding)
4163     return tokError("invalid DWARF type attribute encoding" + Twine(" '") +
4164                     Lex.getStrVal() + "'");
4165   assert(Encoding <= Result.Max && "Expected valid DWARF language");
4166   Result.assign(Encoding);
4167   Lex.Lex();
4168   return false;
4169 }
4170 
4171 /// DIFlagField
4172 ///  ::= uint32
4173 ///  ::= DIFlagVector
4174 ///  ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic
4175 template <>
4176 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) {
4177 
4178   // parser for a single flag.
4179   auto parseFlag = [&](DINode::DIFlags &Val) {
4180     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4181       uint32_t TempVal = static_cast<uint32_t>(Val);
4182       bool Res = parseUInt32(TempVal);
4183       Val = static_cast<DINode::DIFlags>(TempVal);
4184       return Res;
4185     }
4186 
4187     if (Lex.getKind() != lltok::DIFlag)
4188       return tokError("expected debug info flag");
4189 
4190     Val = DINode::getFlag(Lex.getStrVal());
4191     if (!Val)
4192       return tokError(Twine("invalid debug info flag '") + Lex.getStrVal() +
4193                       "'");
4194     Lex.Lex();
4195     return false;
4196   };
4197 
4198   // parse the flags and combine them together.
4199   DINode::DIFlags Combined = DINode::FlagZero;
4200   do {
4201     DINode::DIFlags Val;
4202     if (parseFlag(Val))
4203       return true;
4204     Combined |= Val;
4205   } while (EatIfPresent(lltok::bar));
4206 
4207   Result.assign(Combined);
4208   return false;
4209 }
4210 
4211 /// DISPFlagField
4212 ///  ::= uint32
4213 ///  ::= DISPFlagVector
4214 ///  ::= DISPFlagVector '|' DISPFlag* '|' uint32
4215 template <>
4216 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) {
4217 
4218   // parser for a single flag.
4219   auto parseFlag = [&](DISubprogram::DISPFlags &Val) {
4220     if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) {
4221       uint32_t TempVal = static_cast<uint32_t>(Val);
4222       bool Res = parseUInt32(TempVal);
4223       Val = static_cast<DISubprogram::DISPFlags>(TempVal);
4224       return Res;
4225     }
4226 
4227     if (Lex.getKind() != lltok::DISPFlag)
4228       return tokError("expected debug info flag");
4229 
4230     Val = DISubprogram::getFlag(Lex.getStrVal());
4231     if (!Val)
4232       return tokError(Twine("invalid subprogram debug info flag '") +
4233                       Lex.getStrVal() + "'");
4234     Lex.Lex();
4235     return false;
4236   };
4237 
4238   // parse the flags and combine them together.
4239   DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero;
4240   do {
4241     DISubprogram::DISPFlags Val;
4242     if (parseFlag(Val))
4243       return true;
4244     Combined |= Val;
4245   } while (EatIfPresent(lltok::bar));
4246 
4247   Result.assign(Combined);
4248   return false;
4249 }
4250 
4251 template <>
4252 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) {
4253   if (Lex.getKind() != lltok::APSInt)
4254     return tokError("expected signed integer");
4255 
4256   auto &S = Lex.getAPSIntVal();
4257   if (S < Result.Min)
4258     return tokError("value for '" + Name + "' too small, limit is " +
4259                     Twine(Result.Min));
4260   if (S > Result.Max)
4261     return tokError("value for '" + Name + "' too large, limit is " +
4262                     Twine(Result.Max));
4263   Result.assign(S.getExtValue());
4264   assert(Result.Val >= Result.Min && "Expected value in range");
4265   assert(Result.Val <= Result.Max && "Expected value in range");
4266   Lex.Lex();
4267   return false;
4268 }
4269 
4270 template <>
4271 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) {
4272   switch (Lex.getKind()) {
4273   default:
4274     return tokError("expected 'true' or 'false'");
4275   case lltok::kw_true:
4276     Result.assign(true);
4277     break;
4278   case lltok::kw_false:
4279     Result.assign(false);
4280     break;
4281   }
4282   Lex.Lex();
4283   return false;
4284 }
4285 
4286 template <>
4287 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) {
4288   if (Lex.getKind() == lltok::kw_null) {
4289     if (!Result.AllowNull)
4290       return tokError("'" + Name + "' cannot be null");
4291     Lex.Lex();
4292     Result.assign(nullptr);
4293     return false;
4294   }
4295 
4296   Metadata *MD;
4297   if (parseMetadata(MD, nullptr))
4298     return true;
4299 
4300   Result.assign(MD);
4301   return false;
4302 }
4303 
4304 template <>
4305 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4306                             MDSignedOrMDField &Result) {
4307   // Try to parse a signed int.
4308   if (Lex.getKind() == lltok::APSInt) {
4309     MDSignedField Res = Result.A;
4310     if (!parseMDField(Loc, Name, Res)) {
4311       Result.assign(Res);
4312       return false;
4313     }
4314     return true;
4315   }
4316 
4317   // Otherwise, try to parse as an MDField.
4318   MDField Res = Result.B;
4319   if (!parseMDField(Loc, Name, Res)) {
4320     Result.assign(Res);
4321     return false;
4322   }
4323 
4324   return true;
4325 }
4326 
4327 template <>
4328 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) {
4329   LocTy ValueLoc = Lex.getLoc();
4330   std::string S;
4331   if (parseStringConstant(S))
4332     return true;
4333 
4334   if (!Result.AllowEmpty && S.empty())
4335     return error(ValueLoc, "'" + Name + "' cannot be empty");
4336 
4337   Result.assign(S.empty() ? nullptr : MDString::get(Context, S));
4338   return false;
4339 }
4340 
4341 template <>
4342 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) {
4343   SmallVector<Metadata *, 4> MDs;
4344   if (parseMDNodeVector(MDs))
4345     return true;
4346 
4347   Result.assign(std::move(MDs));
4348   return false;
4349 }
4350 
4351 template <>
4352 bool LLParser::parseMDField(LocTy Loc, StringRef Name,
4353                             ChecksumKindField &Result) {
4354   Optional<DIFile::ChecksumKind> CSKind =
4355       DIFile::getChecksumKind(Lex.getStrVal());
4356 
4357   if (Lex.getKind() != lltok::ChecksumKind || !CSKind)
4358     return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() +
4359                     "'");
4360 
4361   Result.assign(*CSKind);
4362   Lex.Lex();
4363   return false;
4364 }
4365 
4366 } // end namespace llvm
4367 
4368 template <class ParserTy>
4369 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) {
4370   do {
4371     if (Lex.getKind() != lltok::LabelStr)
4372       return tokError("expected field label here");
4373 
4374     if (ParseField())
4375       return true;
4376   } while (EatIfPresent(lltok::comma));
4377 
4378   return false;
4379 }
4380 
4381 template <class ParserTy>
4382 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) {
4383   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4384   Lex.Lex();
4385 
4386   if (parseToken(lltok::lparen, "expected '(' here"))
4387     return true;
4388   if (Lex.getKind() != lltok::rparen)
4389     if (parseMDFieldsImplBody(ParseField))
4390       return true;
4391 
4392   ClosingLoc = Lex.getLoc();
4393   return parseToken(lltok::rparen, "expected ')' here");
4394 }
4395 
4396 template <class FieldTy>
4397 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) {
4398   if (Result.Seen)
4399     return tokError("field '" + Name + "' cannot be specified more than once");
4400 
4401   LocTy Loc = Lex.getLoc();
4402   Lex.Lex();
4403   return parseMDField(Loc, Name, Result);
4404 }
4405 
4406 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) {
4407   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
4408 
4409 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS)                                  \
4410   if (Lex.getStrVal() == #CLASS)                                               \
4411     return parse##CLASS(N, IsDistinct);
4412 #include "llvm/IR/Metadata.def"
4413 
4414   return tokError("expected metadata type");
4415 }
4416 
4417 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT
4418 #define NOP_FIELD(NAME, TYPE, INIT)
4419 #define REQUIRE_FIELD(NAME, TYPE, INIT)                                        \
4420   if (!NAME.Seen)                                                              \
4421     return error(ClosingLoc, "missing required field '" #NAME "'");
4422 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT)                                    \
4423   if (Lex.getStrVal() == #NAME)                                                \
4424     return parseMDField(#NAME, NAME);
4425 #define PARSE_MD_FIELDS()                                                      \
4426   VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD)                                \
4427   do {                                                                         \
4428     LocTy ClosingLoc;                                                          \
4429     if (parseMDFieldsImpl(                                                     \
4430             [&]() -> bool {                                                    \
4431               VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD)                  \
4432               return tokError(Twine("invalid field '") + Lex.getStrVal() +     \
4433                               "'");                                            \
4434             },                                                                 \
4435             ClosingLoc))                                                       \
4436       return true;                                                             \
4437     VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD)                                  \
4438   } while (false)
4439 #define GET_OR_DISTINCT(CLASS, ARGS)                                           \
4440   (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS)
4441 
4442 /// parseDILocationFields:
4443 ///   ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6,
4444 ///   isImplicitCode: true)
4445 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) {
4446 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4447   OPTIONAL(line, LineField, );                                                 \
4448   OPTIONAL(column, ColumnField, );                                             \
4449   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4450   OPTIONAL(inlinedAt, MDField, );                                              \
4451   OPTIONAL(isImplicitCode, MDBoolField, (false));
4452   PARSE_MD_FIELDS();
4453 #undef VISIT_MD_FIELDS
4454 
4455   Result =
4456       GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val,
4457                                    inlinedAt.Val, isImplicitCode.Val));
4458   return false;
4459 }
4460 
4461 /// parseGenericDINode:
4462 ///   ::= !GenericDINode(tag: 15, header: "...", operands: {...})
4463 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) {
4464 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4465   REQUIRED(tag, DwarfTagField, );                                              \
4466   OPTIONAL(header, MDStringField, );                                           \
4467   OPTIONAL(operands, MDFieldList, );
4468   PARSE_MD_FIELDS();
4469 #undef VISIT_MD_FIELDS
4470 
4471   Result = GET_OR_DISTINCT(GenericDINode,
4472                            (Context, tag.Val, header.Val, operands.Val));
4473   return false;
4474 }
4475 
4476 /// parseDISubrange:
4477 ///   ::= !DISubrange(count: 30, lowerBound: 2)
4478 ///   ::= !DISubrange(count: !node, lowerBound: 2)
4479 ///   ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3)
4480 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) {
4481 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4482   OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false));              \
4483   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4484   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4485   OPTIONAL(stride, MDSignedOrMDField, );
4486   PARSE_MD_FIELDS();
4487 #undef VISIT_MD_FIELDS
4488 
4489   Metadata *Count = nullptr;
4490   Metadata *LowerBound = nullptr;
4491   Metadata *UpperBound = nullptr;
4492   Metadata *Stride = nullptr;
4493 
4494   auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4495     if (Bound.isMDSignedField())
4496       return ConstantAsMetadata::get(ConstantInt::getSigned(
4497           Type::getInt64Ty(Context), Bound.getMDSignedValue()));
4498     if (Bound.isMDField())
4499       return Bound.getMDFieldValue();
4500     return nullptr;
4501   };
4502 
4503   Count = convToMetadata(count);
4504   LowerBound = convToMetadata(lowerBound);
4505   UpperBound = convToMetadata(upperBound);
4506   Stride = convToMetadata(stride);
4507 
4508   Result = GET_OR_DISTINCT(DISubrange,
4509                            (Context, Count, LowerBound, UpperBound, Stride));
4510 
4511   return false;
4512 }
4513 
4514 /// parseDIGenericSubrange:
4515 ///   ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride:
4516 ///   !node3)
4517 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) {
4518 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4519   OPTIONAL(count, MDSignedOrMDField, );                                        \
4520   OPTIONAL(lowerBound, MDSignedOrMDField, );                                   \
4521   OPTIONAL(upperBound, MDSignedOrMDField, );                                   \
4522   OPTIONAL(stride, MDSignedOrMDField, );
4523   PARSE_MD_FIELDS();
4524 #undef VISIT_MD_FIELDS
4525 
4526   auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * {
4527     if (Bound.isMDSignedField())
4528       return DIExpression::get(
4529           Context, {dwarf::DW_OP_consts,
4530                     static_cast<uint64_t>(Bound.getMDSignedValue())});
4531     if (Bound.isMDField())
4532       return Bound.getMDFieldValue();
4533     return nullptr;
4534   };
4535 
4536   Metadata *Count = ConvToMetadata(count);
4537   Metadata *LowerBound = ConvToMetadata(lowerBound);
4538   Metadata *UpperBound = ConvToMetadata(upperBound);
4539   Metadata *Stride = ConvToMetadata(stride);
4540 
4541   Result = GET_OR_DISTINCT(DIGenericSubrange,
4542                            (Context, Count, LowerBound, UpperBound, Stride));
4543 
4544   return false;
4545 }
4546 
4547 /// parseDIEnumerator:
4548 ///   ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind")
4549 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) {
4550 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4551   REQUIRED(name, MDStringField, );                                             \
4552   REQUIRED(value, MDAPSIntField, );                                            \
4553   OPTIONAL(isUnsigned, MDBoolField, (false));
4554   PARSE_MD_FIELDS();
4555 #undef VISIT_MD_FIELDS
4556 
4557   if (isUnsigned.Val && value.Val.isNegative())
4558     return tokError("unsigned enumerator with negative value");
4559 
4560   APSInt Value(value.Val);
4561   // Add a leading zero so that unsigned values with the msb set are not
4562   // mistaken for negative values when used for signed enumerators.
4563   if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet())
4564     Value = Value.zext(Value.getBitWidth() + 1);
4565 
4566   Result =
4567       GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val));
4568 
4569   return false;
4570 }
4571 
4572 /// parseDIBasicType:
4573 ///   ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32,
4574 ///                    encoding: DW_ATE_encoding, flags: 0)
4575 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) {
4576 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4577   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type));                     \
4578   OPTIONAL(name, MDStringField, );                                             \
4579   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4580   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4581   OPTIONAL(encoding, DwarfAttEncodingField, );                                 \
4582   OPTIONAL(flags, DIFlagField, );
4583   PARSE_MD_FIELDS();
4584 #undef VISIT_MD_FIELDS
4585 
4586   Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val,
4587                                          align.Val, encoding.Val, flags.Val));
4588   return false;
4589 }
4590 
4591 /// parseDIStringType:
4592 ///   ::= !DIStringType(name: "character(4)", size: 32, align: 32)
4593 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) {
4594 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4595   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type));                   \
4596   OPTIONAL(name, MDStringField, );                                             \
4597   OPTIONAL(stringLength, MDField, );                                           \
4598   OPTIONAL(stringLengthExpression, MDField, );                                 \
4599   OPTIONAL(stringLocationExpression, MDField, );                               \
4600   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4601   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4602   OPTIONAL(encoding, DwarfAttEncodingField, );
4603   PARSE_MD_FIELDS();
4604 #undef VISIT_MD_FIELDS
4605 
4606   Result = GET_OR_DISTINCT(
4607       DIStringType,
4608       (Context, tag.Val, name.Val, stringLength.Val, stringLengthExpression.Val,
4609        stringLocationExpression.Val, size.Val, align.Val, encoding.Val));
4610   return false;
4611 }
4612 
4613 /// parseDIDerivedType:
4614 ///   ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0,
4615 ///                      line: 7, scope: !1, baseType: !2, size: 32,
4616 ///                      align: 32, offset: 0, flags: 0, extraData: !3,
4617 ///                      dwarfAddressSpace: 3)
4618 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) {
4619 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4620   REQUIRED(tag, DwarfTagField, );                                              \
4621   OPTIONAL(name, MDStringField, );                                             \
4622   OPTIONAL(file, MDField, );                                                   \
4623   OPTIONAL(line, LineField, );                                                 \
4624   OPTIONAL(scope, MDField, );                                                  \
4625   REQUIRED(baseType, MDField, );                                               \
4626   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4627   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4628   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4629   OPTIONAL(flags, DIFlagField, );                                              \
4630   OPTIONAL(extraData, MDField, );                                              \
4631   OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX));      \
4632   OPTIONAL(annotations, MDField, );
4633   PARSE_MD_FIELDS();
4634 #undef VISIT_MD_FIELDS
4635 
4636   Optional<unsigned> DWARFAddressSpace;
4637   if (dwarfAddressSpace.Val != UINT32_MAX)
4638     DWARFAddressSpace = dwarfAddressSpace.Val;
4639 
4640   Result = GET_OR_DISTINCT(DIDerivedType,
4641                            (Context, tag.Val, name.Val, file.Val, line.Val,
4642                             scope.Val, baseType.Val, size.Val, align.Val,
4643                             offset.Val, DWARFAddressSpace, flags.Val,
4644                             extraData.Val, annotations.Val));
4645   return false;
4646 }
4647 
4648 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) {
4649 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4650   REQUIRED(tag, DwarfTagField, );                                              \
4651   OPTIONAL(name, MDStringField, );                                             \
4652   OPTIONAL(file, MDField, );                                                   \
4653   OPTIONAL(line, LineField, );                                                 \
4654   OPTIONAL(scope, MDField, );                                                  \
4655   OPTIONAL(baseType, MDField, );                                               \
4656   OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX));                            \
4657   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
4658   OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX));                          \
4659   OPTIONAL(flags, DIFlagField, );                                              \
4660   OPTIONAL(elements, MDField, );                                               \
4661   OPTIONAL(runtimeLang, DwarfLangField, );                                     \
4662   OPTIONAL(vtableHolder, MDField, );                                           \
4663   OPTIONAL(templateParams, MDField, );                                         \
4664   OPTIONAL(identifier, MDStringField, );                                       \
4665   OPTIONAL(discriminator, MDField, );                                          \
4666   OPTIONAL(dataLocation, MDField, );                                           \
4667   OPTIONAL(associated, MDField, );                                             \
4668   OPTIONAL(allocated, MDField, );                                              \
4669   OPTIONAL(rank, MDSignedOrMDField, );                                         \
4670   OPTIONAL(annotations, MDField, );
4671   PARSE_MD_FIELDS();
4672 #undef VISIT_MD_FIELDS
4673 
4674   Metadata *Rank = nullptr;
4675   if (rank.isMDSignedField())
4676     Rank = ConstantAsMetadata::get(ConstantInt::getSigned(
4677         Type::getInt64Ty(Context), rank.getMDSignedValue()));
4678   else if (rank.isMDField())
4679     Rank = rank.getMDFieldValue();
4680 
4681   // If this has an identifier try to build an ODR type.
4682   if (identifier.Val)
4683     if (auto *CT = DICompositeType::buildODRType(
4684             Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val,
4685             scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val,
4686             elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val,
4687             discriminator.Val, dataLocation.Val, associated.Val, allocated.Val,
4688             Rank, annotations.Val)) {
4689       Result = CT;
4690       return false;
4691     }
4692 
4693   // Create a new node, and save it in the context if it belongs in the type
4694   // map.
4695   Result = GET_OR_DISTINCT(
4696       DICompositeType,
4697       (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val,
4698        size.Val, align.Val, offset.Val, flags.Val, elements.Val,
4699        runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val,
4700        discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, Rank,
4701        annotations.Val));
4702   return false;
4703 }
4704 
4705 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) {
4706 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4707   OPTIONAL(flags, DIFlagField, );                                              \
4708   OPTIONAL(cc, DwarfCCField, );                                                \
4709   REQUIRED(types, MDField, );
4710   PARSE_MD_FIELDS();
4711 #undef VISIT_MD_FIELDS
4712 
4713   Result = GET_OR_DISTINCT(DISubroutineType,
4714                            (Context, flags.Val, cc.Val, types.Val));
4715   return false;
4716 }
4717 
4718 /// parseDIFileType:
4719 ///   ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir",
4720 ///                   checksumkind: CSK_MD5,
4721 ///                   checksum: "000102030405060708090a0b0c0d0e0f",
4722 ///                   source: "source file contents")
4723 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) {
4724   // The default constructed value for checksumkind is required, but will never
4725   // be used, as the parser checks if the field was actually Seen before using
4726   // the Val.
4727 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4728   REQUIRED(filename, MDStringField, );                                         \
4729   REQUIRED(directory, MDStringField, );                                        \
4730   OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5));                \
4731   OPTIONAL(checksum, MDStringField, );                                         \
4732   OPTIONAL(source, MDStringField, );
4733   PARSE_MD_FIELDS();
4734 #undef VISIT_MD_FIELDS
4735 
4736   Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum;
4737   if (checksumkind.Seen && checksum.Seen)
4738     OptChecksum.emplace(checksumkind.Val, checksum.Val);
4739   else if (checksumkind.Seen || checksum.Seen)
4740     return Lex.Error("'checksumkind' and 'checksum' must be provided together");
4741 
4742   Optional<MDString *> OptSource;
4743   if (source.Seen)
4744     OptSource = source.Val;
4745   Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val,
4746                                     OptChecksum, OptSource));
4747   return false;
4748 }
4749 
4750 /// parseDICompileUnit:
4751 ///   ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang",
4752 ///                      isOptimized: true, flags: "-O2", runtimeVersion: 1,
4753 ///                      splitDebugFilename: "abc.debug",
4754 ///                      emissionKind: FullDebug, enums: !1, retainedTypes: !2,
4755 ///                      globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd,
4756 ///                      sysroot: "/", sdk: "MacOSX.sdk")
4757 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) {
4758   if (!IsDistinct)
4759     return Lex.Error("missing 'distinct', required for !DICompileUnit");
4760 
4761 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4762   REQUIRED(language, DwarfLangField, );                                        \
4763   REQUIRED(file, MDField, (/* AllowNull */ false));                            \
4764   OPTIONAL(producer, MDStringField, );                                         \
4765   OPTIONAL(isOptimized, MDBoolField, );                                        \
4766   OPTIONAL(flags, MDStringField, );                                            \
4767   OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX));                  \
4768   OPTIONAL(splitDebugFilename, MDStringField, );                               \
4769   OPTIONAL(emissionKind, EmissionKindField, );                                 \
4770   OPTIONAL(enums, MDField, );                                                  \
4771   OPTIONAL(retainedTypes, MDField, );                                          \
4772   OPTIONAL(globals, MDField, );                                                \
4773   OPTIONAL(imports, MDField, );                                                \
4774   OPTIONAL(macros, MDField, );                                                 \
4775   OPTIONAL(dwoId, MDUnsignedField, );                                          \
4776   OPTIONAL(splitDebugInlining, MDBoolField, = true);                           \
4777   OPTIONAL(debugInfoForProfiling, MDBoolField, = false);                       \
4778   OPTIONAL(nameTableKind, NameTableKindField, );                               \
4779   OPTIONAL(rangesBaseAddress, MDBoolField, = false);                           \
4780   OPTIONAL(sysroot, MDStringField, );                                          \
4781   OPTIONAL(sdk, MDStringField, );
4782   PARSE_MD_FIELDS();
4783 #undef VISIT_MD_FIELDS
4784 
4785   Result = DICompileUnit::getDistinct(
4786       Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val,
4787       runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val,
4788       retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val,
4789       splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val,
4790       rangesBaseAddress.Val, sysroot.Val, sdk.Val);
4791   return false;
4792 }
4793 
4794 /// parseDISubprogram:
4795 ///   ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo",
4796 ///                     file: !1, line: 7, type: !2, isLocal: false,
4797 ///                     isDefinition: true, scopeLine: 8, containingType: !3,
4798 ///                     virtuality: DW_VIRTUALTIY_pure_virtual,
4799 ///                     virtualIndex: 10, thisAdjustment: 4, flags: 11,
4800 ///                     spFlags: 10, isOptimized: false, templateParams: !4,
4801 ///                     declaration: !5, retainedNodes: !6, thrownTypes: !7,
4802 ///                     annotations: !8)
4803 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) {
4804   auto Loc = Lex.getLoc();
4805 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4806   OPTIONAL(scope, MDField, );                                                  \
4807   OPTIONAL(name, MDStringField, );                                             \
4808   OPTIONAL(linkageName, MDStringField, );                                      \
4809   OPTIONAL(file, MDField, );                                                   \
4810   OPTIONAL(line, LineField, );                                                 \
4811   OPTIONAL(type, MDField, );                                                   \
4812   OPTIONAL(isLocal, MDBoolField, );                                            \
4813   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
4814   OPTIONAL(scopeLine, LineField, );                                            \
4815   OPTIONAL(containingType, MDField, );                                         \
4816   OPTIONAL(virtuality, DwarfVirtualityField, );                                \
4817   OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX));                    \
4818   OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX));          \
4819   OPTIONAL(flags, DIFlagField, );                                              \
4820   OPTIONAL(spFlags, DISPFlagField, );                                          \
4821   OPTIONAL(isOptimized, MDBoolField, );                                        \
4822   OPTIONAL(unit, MDField, );                                                   \
4823   OPTIONAL(templateParams, MDField, );                                         \
4824   OPTIONAL(declaration, MDField, );                                            \
4825   OPTIONAL(retainedNodes, MDField, );                                          \
4826   OPTIONAL(thrownTypes, MDField, );                                            \
4827   OPTIONAL(annotations, MDField, );                                            \
4828   OPTIONAL(targetFuncName, MDStringField, );
4829   PARSE_MD_FIELDS();
4830 #undef VISIT_MD_FIELDS
4831 
4832   // An explicit spFlags field takes precedence over individual fields in
4833   // older IR versions.
4834   DISubprogram::DISPFlags SPFlags =
4835       spFlags.Seen ? spFlags.Val
4836                    : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val,
4837                                              isOptimized.Val, virtuality.Val);
4838   if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct)
4839     return Lex.Error(
4840         Loc,
4841         "missing 'distinct', required for !DISubprogram that is a Definition");
4842   Result = GET_OR_DISTINCT(
4843       DISubprogram,
4844       (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val,
4845        type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val,
4846        thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val,
4847        declaration.Val, retainedNodes.Val, thrownTypes.Val, annotations.Val,
4848        targetFuncName.Val));
4849   return false;
4850 }
4851 
4852 /// parseDILexicalBlock:
4853 ///   ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9)
4854 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) {
4855 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4856   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4857   OPTIONAL(file, MDField, );                                                   \
4858   OPTIONAL(line, LineField, );                                                 \
4859   OPTIONAL(column, ColumnField, );
4860   PARSE_MD_FIELDS();
4861 #undef VISIT_MD_FIELDS
4862 
4863   Result = GET_OR_DISTINCT(
4864       DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val));
4865   return false;
4866 }
4867 
4868 /// parseDILexicalBlockFile:
4869 ///   ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9)
4870 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) {
4871 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4872   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
4873   OPTIONAL(file, MDField, );                                                   \
4874   REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX));
4875   PARSE_MD_FIELDS();
4876 #undef VISIT_MD_FIELDS
4877 
4878   Result = GET_OR_DISTINCT(DILexicalBlockFile,
4879                            (Context, scope.Val, file.Val, discriminator.Val));
4880   return false;
4881 }
4882 
4883 /// parseDICommonBlock:
4884 ///   ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9)
4885 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) {
4886 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4887   REQUIRED(scope, MDField, );                                                  \
4888   OPTIONAL(declaration, MDField, );                                            \
4889   OPTIONAL(name, MDStringField, );                                             \
4890   OPTIONAL(file, MDField, );                                                   \
4891   OPTIONAL(line, LineField, );
4892   PARSE_MD_FIELDS();
4893 #undef VISIT_MD_FIELDS
4894 
4895   Result = GET_OR_DISTINCT(DICommonBlock,
4896                            (Context, scope.Val, declaration.Val, name.Val,
4897                             file.Val, line.Val));
4898   return false;
4899 }
4900 
4901 /// parseDINamespace:
4902 ///   ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9)
4903 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) {
4904 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4905   REQUIRED(scope, MDField, );                                                  \
4906   OPTIONAL(name, MDStringField, );                                             \
4907   OPTIONAL(exportSymbols, MDBoolField, );
4908   PARSE_MD_FIELDS();
4909 #undef VISIT_MD_FIELDS
4910 
4911   Result = GET_OR_DISTINCT(DINamespace,
4912                            (Context, scope.Val, name.Val, exportSymbols.Val));
4913   return false;
4914 }
4915 
4916 /// parseDIMacro:
4917 ///   ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value:
4918 ///   "SomeValue")
4919 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) {
4920 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4921   REQUIRED(type, DwarfMacinfoTypeField, );                                     \
4922   OPTIONAL(line, LineField, );                                                 \
4923   REQUIRED(name, MDStringField, );                                             \
4924   OPTIONAL(value, MDStringField, );
4925   PARSE_MD_FIELDS();
4926 #undef VISIT_MD_FIELDS
4927 
4928   Result = GET_OR_DISTINCT(DIMacro,
4929                            (Context, type.Val, line.Val, name.Val, value.Val));
4930   return false;
4931 }
4932 
4933 /// parseDIMacroFile:
4934 ///   ::= !DIMacroFile(line: 9, file: !2, nodes: !3)
4935 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) {
4936 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4937   OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file));       \
4938   OPTIONAL(line, LineField, );                                                 \
4939   REQUIRED(file, MDField, );                                                   \
4940   OPTIONAL(nodes, MDField, );
4941   PARSE_MD_FIELDS();
4942 #undef VISIT_MD_FIELDS
4943 
4944   Result = GET_OR_DISTINCT(DIMacroFile,
4945                            (Context, type.Val, line.Val, file.Val, nodes.Val));
4946   return false;
4947 }
4948 
4949 /// parseDIModule:
4950 ///   ::= !DIModule(scope: !0, name: "SomeModule", configMacros:
4951 ///   "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes",
4952 ///   file: !1, line: 4, isDecl: false)
4953 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) {
4954 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4955   REQUIRED(scope, MDField, );                                                  \
4956   REQUIRED(name, MDStringField, );                                             \
4957   OPTIONAL(configMacros, MDStringField, );                                     \
4958   OPTIONAL(includePath, MDStringField, );                                      \
4959   OPTIONAL(apinotes, MDStringField, );                                         \
4960   OPTIONAL(file, MDField, );                                                   \
4961   OPTIONAL(line, LineField, );                                                 \
4962   OPTIONAL(isDecl, MDBoolField, );
4963   PARSE_MD_FIELDS();
4964 #undef VISIT_MD_FIELDS
4965 
4966   Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val,
4967                                       configMacros.Val, includePath.Val,
4968                                       apinotes.Val, line.Val, isDecl.Val));
4969   return false;
4970 }
4971 
4972 /// parseDITemplateTypeParameter:
4973 ///   ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false)
4974 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) {
4975 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4976   OPTIONAL(name, MDStringField, );                                             \
4977   REQUIRED(type, MDField, );                                                   \
4978   OPTIONAL(defaulted, MDBoolField, );
4979   PARSE_MD_FIELDS();
4980 #undef VISIT_MD_FIELDS
4981 
4982   Result = GET_OR_DISTINCT(DITemplateTypeParameter,
4983                            (Context, name.Val, type.Val, defaulted.Val));
4984   return false;
4985 }
4986 
4987 /// parseDITemplateValueParameter:
4988 ///   ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter,
4989 ///                                 name: "V", type: !1, defaulted: false,
4990 ///                                 value: i32 7)
4991 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) {
4992 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
4993   OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter));      \
4994   OPTIONAL(name, MDStringField, );                                             \
4995   OPTIONAL(type, MDField, );                                                   \
4996   OPTIONAL(defaulted, MDBoolField, );                                          \
4997   REQUIRED(value, MDField, );
4998 
4999   PARSE_MD_FIELDS();
5000 #undef VISIT_MD_FIELDS
5001 
5002   Result = GET_OR_DISTINCT(
5003       DITemplateValueParameter,
5004       (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val));
5005   return false;
5006 }
5007 
5008 /// parseDIGlobalVariable:
5009 ///   ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo",
5010 ///                         file: !1, line: 7, type: !2, isLocal: false,
5011 ///                         isDefinition: true, templateParams: !3,
5012 ///                         declaration: !4, align: 8)
5013 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) {
5014 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5015   OPTIONAL(name, MDStringField, (/* AllowEmpty */ false));                     \
5016   OPTIONAL(scope, MDField, );                                                  \
5017   OPTIONAL(linkageName, MDStringField, );                                      \
5018   OPTIONAL(file, MDField, );                                                   \
5019   OPTIONAL(line, LineField, );                                                 \
5020   OPTIONAL(type, MDField, );                                                   \
5021   OPTIONAL(isLocal, MDBoolField, );                                            \
5022   OPTIONAL(isDefinition, MDBoolField, (true));                                 \
5023   OPTIONAL(templateParams, MDField, );                                         \
5024   OPTIONAL(declaration, MDField, );                                            \
5025   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
5026   OPTIONAL(annotations, MDField, );
5027   PARSE_MD_FIELDS();
5028 #undef VISIT_MD_FIELDS
5029 
5030   Result =
5031       GET_OR_DISTINCT(DIGlobalVariable,
5032                       (Context, scope.Val, name.Val, linkageName.Val, file.Val,
5033                        line.Val, type.Val, isLocal.Val, isDefinition.Val,
5034                        declaration.Val, templateParams.Val, align.Val,
5035                        annotations.Val));
5036   return false;
5037 }
5038 
5039 /// parseDILocalVariable:
5040 ///   ::= !DILocalVariable(arg: 7, scope: !0, name: "foo",
5041 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5042 ///                        align: 8)
5043 ///   ::= !DILocalVariable(scope: !0, name: "foo",
5044 ///                        file: !1, line: 7, type: !2, arg: 2, flags: 7,
5045 ///                        align: 8)
5046 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) {
5047 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5048   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5049   OPTIONAL(name, MDStringField, );                                             \
5050   OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX));                             \
5051   OPTIONAL(file, MDField, );                                                   \
5052   OPTIONAL(line, LineField, );                                                 \
5053   OPTIONAL(type, MDField, );                                                   \
5054   OPTIONAL(flags, DIFlagField, );                                              \
5055   OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX));                           \
5056   OPTIONAL(annotations, MDField, );
5057   PARSE_MD_FIELDS();
5058 #undef VISIT_MD_FIELDS
5059 
5060   Result = GET_OR_DISTINCT(DILocalVariable,
5061                            (Context, scope.Val, name.Val, file.Val, line.Val,
5062                             type.Val, arg.Val, flags.Val, align.Val,
5063                             annotations.Val));
5064   return false;
5065 }
5066 
5067 /// parseDILabel:
5068 ///   ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7)
5069 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) {
5070 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5071   REQUIRED(scope, MDField, (/* AllowNull */ false));                           \
5072   REQUIRED(name, MDStringField, );                                             \
5073   REQUIRED(file, MDField, );                                                   \
5074   REQUIRED(line, LineField, );
5075   PARSE_MD_FIELDS();
5076 #undef VISIT_MD_FIELDS
5077 
5078   Result = GET_OR_DISTINCT(DILabel,
5079                            (Context, scope.Val, name.Val, file.Val, line.Val));
5080   return false;
5081 }
5082 
5083 /// parseDIExpression:
5084 ///   ::= !DIExpression(0, 7, -1)
5085 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) {
5086   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5087   Lex.Lex();
5088 
5089   if (parseToken(lltok::lparen, "expected '(' here"))
5090     return true;
5091 
5092   SmallVector<uint64_t, 8> Elements;
5093   if (Lex.getKind() != lltok::rparen)
5094     do {
5095       if (Lex.getKind() == lltok::DwarfOp) {
5096         if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) {
5097           Lex.Lex();
5098           Elements.push_back(Op);
5099           continue;
5100         }
5101         return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'");
5102       }
5103 
5104       if (Lex.getKind() == lltok::DwarfAttEncoding) {
5105         if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) {
5106           Lex.Lex();
5107           Elements.push_back(Op);
5108           continue;
5109         }
5110         return tokError(Twine("invalid DWARF attribute encoding '") +
5111                         Lex.getStrVal() + "'");
5112       }
5113 
5114       if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
5115         return tokError("expected unsigned integer");
5116 
5117       auto &U = Lex.getAPSIntVal();
5118       if (U.ugt(UINT64_MAX))
5119         return tokError("element too large, limit is " + Twine(UINT64_MAX));
5120       Elements.push_back(U.getZExtValue());
5121       Lex.Lex();
5122     } while (EatIfPresent(lltok::comma));
5123 
5124   if (parseToken(lltok::rparen, "expected ')' here"))
5125     return true;
5126 
5127   Result = GET_OR_DISTINCT(DIExpression, (Context, Elements));
5128   return false;
5129 }
5130 
5131 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct) {
5132   return parseDIArgList(Result, IsDistinct, nullptr);
5133 }
5134 /// ParseDIArgList:
5135 ///   ::= !DIArgList(i32 7, i64 %0)
5136 bool LLParser::parseDIArgList(MDNode *&Result, bool IsDistinct,
5137                               PerFunctionState *PFS) {
5138   assert(PFS && "Expected valid function state");
5139   assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name");
5140   Lex.Lex();
5141 
5142   if (parseToken(lltok::lparen, "expected '(' here"))
5143     return true;
5144 
5145   SmallVector<ValueAsMetadata *, 4> Args;
5146   if (Lex.getKind() != lltok::rparen)
5147     do {
5148       Metadata *MD;
5149       if (parseValueAsMetadata(MD, "expected value-as-metadata operand", PFS))
5150         return true;
5151       Args.push_back(dyn_cast<ValueAsMetadata>(MD));
5152     } while (EatIfPresent(lltok::comma));
5153 
5154   if (parseToken(lltok::rparen, "expected ')' here"))
5155     return true;
5156 
5157   Result = GET_OR_DISTINCT(DIArgList, (Context, Args));
5158   return false;
5159 }
5160 
5161 /// parseDIGlobalVariableExpression:
5162 ///   ::= !DIGlobalVariableExpression(var: !0, expr: !1)
5163 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result,
5164                                                bool IsDistinct) {
5165 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5166   REQUIRED(var, MDField, );                                                    \
5167   REQUIRED(expr, MDField, );
5168   PARSE_MD_FIELDS();
5169 #undef VISIT_MD_FIELDS
5170 
5171   Result =
5172       GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val));
5173   return false;
5174 }
5175 
5176 /// parseDIObjCProperty:
5177 ///   ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo",
5178 ///                       getter: "getFoo", attributes: 7, type: !2)
5179 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) {
5180 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5181   OPTIONAL(name, MDStringField, );                                             \
5182   OPTIONAL(file, MDField, );                                                   \
5183   OPTIONAL(line, LineField, );                                                 \
5184   OPTIONAL(setter, MDStringField, );                                           \
5185   OPTIONAL(getter, MDStringField, );                                           \
5186   OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX));                      \
5187   OPTIONAL(type, MDField, );
5188   PARSE_MD_FIELDS();
5189 #undef VISIT_MD_FIELDS
5190 
5191   Result = GET_OR_DISTINCT(DIObjCProperty,
5192                            (Context, name.Val, file.Val, line.Val, setter.Val,
5193                             getter.Val, attributes.Val, type.Val));
5194   return false;
5195 }
5196 
5197 /// parseDIImportedEntity:
5198 ///   ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1,
5199 ///                         line: 7, name: "foo", elements: !2)
5200 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) {
5201 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED)                                    \
5202   REQUIRED(tag, DwarfTagField, );                                              \
5203   REQUIRED(scope, MDField, );                                                  \
5204   OPTIONAL(entity, MDField, );                                                 \
5205   OPTIONAL(file, MDField, );                                                   \
5206   OPTIONAL(line, LineField, );                                                 \
5207   OPTIONAL(name, MDStringField, );                                             \
5208   OPTIONAL(elements, MDField, );
5209   PARSE_MD_FIELDS();
5210 #undef VISIT_MD_FIELDS
5211 
5212   Result = GET_OR_DISTINCT(DIImportedEntity,
5213                            (Context, tag.Val, scope.Val, entity.Val, file.Val,
5214                             line.Val, name.Val, elements.Val));
5215   return false;
5216 }
5217 
5218 #undef PARSE_MD_FIELD
5219 #undef NOP_FIELD
5220 #undef REQUIRE_FIELD
5221 #undef DECLARE_FIELD
5222 
5223 /// parseMetadataAsValue
5224 ///  ::= metadata i32 %local
5225 ///  ::= metadata i32 @global
5226 ///  ::= metadata i32 7
5227 ///  ::= metadata !0
5228 ///  ::= metadata !{...}
5229 ///  ::= metadata !"string"
5230 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) {
5231   // Note: the type 'metadata' has already been parsed.
5232   Metadata *MD;
5233   if (parseMetadata(MD, &PFS))
5234     return true;
5235 
5236   V = MetadataAsValue::get(Context, MD);
5237   return false;
5238 }
5239 
5240 /// parseValueAsMetadata
5241 ///  ::= i32 %local
5242 ///  ::= i32 @global
5243 ///  ::= i32 7
5244 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg,
5245                                     PerFunctionState *PFS) {
5246   Type *Ty;
5247   LocTy Loc;
5248   if (parseType(Ty, TypeMsg, Loc))
5249     return true;
5250   if (Ty->isMetadataTy())
5251     return error(Loc, "invalid metadata-value-metadata roundtrip");
5252 
5253   Value *V;
5254   if (parseValue(Ty, V, PFS))
5255     return true;
5256 
5257   MD = ValueAsMetadata::get(V);
5258   return false;
5259 }
5260 
5261 /// parseMetadata
5262 ///  ::= i32 %local
5263 ///  ::= i32 @global
5264 ///  ::= i32 7
5265 ///  ::= !42
5266 ///  ::= !{...}
5267 ///  ::= !"string"
5268 ///  ::= !DILocation(...)
5269 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) {
5270   if (Lex.getKind() == lltok::MetadataVar) {
5271     MDNode *N;
5272     // DIArgLists are a special case, as they are a list of ValueAsMetadata and
5273     // so parsing this requires a Function State.
5274     if (Lex.getStrVal() == "DIArgList") {
5275       if (parseDIArgList(N, false, PFS))
5276         return true;
5277     } else if (parseSpecializedMDNode(N)) {
5278       return true;
5279     }
5280     MD = N;
5281     return false;
5282   }
5283 
5284   // ValueAsMetadata:
5285   // <type> <value>
5286   if (Lex.getKind() != lltok::exclaim)
5287     return parseValueAsMetadata(MD, "expected metadata operand", PFS);
5288 
5289   // '!'.
5290   assert(Lex.getKind() == lltok::exclaim && "Expected '!' here");
5291   Lex.Lex();
5292 
5293   // MDString:
5294   //   ::= '!' STRINGCONSTANT
5295   if (Lex.getKind() == lltok::StringConstant) {
5296     MDString *S;
5297     if (parseMDString(S))
5298       return true;
5299     MD = S;
5300     return false;
5301   }
5302 
5303   // MDNode:
5304   // !{ ... }
5305   // !7
5306   MDNode *N;
5307   if (parseMDNodeTail(N))
5308     return true;
5309   MD = N;
5310   return false;
5311 }
5312 
5313 //===----------------------------------------------------------------------===//
5314 // Function Parsing.
5315 //===----------------------------------------------------------------------===//
5316 
5317 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V,
5318                                    PerFunctionState *PFS) {
5319   if (Ty->isFunctionTy())
5320     return error(ID.Loc, "functions are not values, refer to them as pointers");
5321 
5322   switch (ID.Kind) {
5323   case ValID::t_LocalID:
5324     if (!PFS)
5325       return error(ID.Loc, "invalid use of function-local name");
5326     V = PFS->getVal(ID.UIntVal, Ty, ID.Loc);
5327     return V == nullptr;
5328   case ValID::t_LocalName:
5329     if (!PFS)
5330       return error(ID.Loc, "invalid use of function-local name");
5331     V = PFS->getVal(ID.StrVal, Ty, ID.Loc);
5332     return V == nullptr;
5333   case ValID::t_InlineAsm: {
5334     if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2))
5335       return error(ID.Loc, "invalid type for inline asm constraint string");
5336     V = InlineAsm::get(
5337         ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, (ID.UIntVal >> 1) & 1,
5338         InlineAsm::AsmDialect((ID.UIntVal >> 2) & 1), (ID.UIntVal >> 3) & 1);
5339     return false;
5340   }
5341   case ValID::t_GlobalName:
5342     V = getGlobalVal(ID.StrVal, Ty, ID.Loc);
5343     if (V && ID.NoCFI)
5344       V = NoCFIValue::get(cast<GlobalValue>(V));
5345     return V == nullptr;
5346   case ValID::t_GlobalID:
5347     V = getGlobalVal(ID.UIntVal, Ty, ID.Loc);
5348     if (V && ID.NoCFI)
5349       V = NoCFIValue::get(cast<GlobalValue>(V));
5350     return V == nullptr;
5351   case ValID::t_APSInt:
5352     if (!Ty->isIntegerTy())
5353       return error(ID.Loc, "integer constant must have integer type");
5354     ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits());
5355     V = ConstantInt::get(Context, ID.APSIntVal);
5356     return false;
5357   case ValID::t_APFloat:
5358     if (!Ty->isFloatingPointTy() ||
5359         !ConstantFP::isValueValidForType(Ty, ID.APFloatVal))
5360       return error(ID.Loc, "floating point constant invalid for type");
5361 
5362     // The lexer has no type info, so builds all half, bfloat, float, and double
5363     // FP constants as double.  Fix this here.  Long double does not need this.
5364     if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) {
5365       // Check for signaling before potentially converting and losing that info.
5366       bool IsSNAN = ID.APFloatVal.isSignaling();
5367       bool Ignored;
5368       if (Ty->isHalfTy())
5369         ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven,
5370                               &Ignored);
5371       else if (Ty->isBFloatTy())
5372         ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven,
5373                               &Ignored);
5374       else if (Ty->isFloatTy())
5375         ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven,
5376                               &Ignored);
5377       if (IsSNAN) {
5378         // The convert call above may quiet an SNaN, so manufacture another
5379         // SNaN. The bitcast works because the payload (significand) parameter
5380         // is truncated to fit.
5381         APInt Payload = ID.APFloatVal.bitcastToAPInt();
5382         ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(),
5383                                          ID.APFloatVal.isNegative(), &Payload);
5384       }
5385     }
5386     V = ConstantFP::get(Context, ID.APFloatVal);
5387 
5388     if (V->getType() != Ty)
5389       return error(ID.Loc, "floating point constant does not have type '" +
5390                                getTypeString(Ty) + "'");
5391 
5392     return false;
5393   case ValID::t_Null:
5394     if (!Ty->isPointerTy())
5395       return error(ID.Loc, "null must be a pointer type");
5396     V = ConstantPointerNull::get(cast<PointerType>(Ty));
5397     return false;
5398   case ValID::t_Undef:
5399     // FIXME: LabelTy should not be a first-class type.
5400     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5401       return error(ID.Loc, "invalid type for undef constant");
5402     V = UndefValue::get(Ty);
5403     return false;
5404   case ValID::t_EmptyArray:
5405     if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0)
5406       return error(ID.Loc, "invalid empty array initializer");
5407     V = UndefValue::get(Ty);
5408     return false;
5409   case ValID::t_Zero:
5410     // FIXME: LabelTy should not be a first-class type.
5411     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5412       return error(ID.Loc, "invalid type for null constant");
5413     V = Constant::getNullValue(Ty);
5414     return false;
5415   case ValID::t_None:
5416     if (!Ty->isTokenTy())
5417       return error(ID.Loc, "invalid type for none constant");
5418     V = Constant::getNullValue(Ty);
5419     return false;
5420   case ValID::t_Poison:
5421     // FIXME: LabelTy should not be a first-class type.
5422     if (!Ty->isFirstClassType() || Ty->isLabelTy())
5423       return error(ID.Loc, "invalid type for poison constant");
5424     V = PoisonValue::get(Ty);
5425     return false;
5426   case ValID::t_Constant:
5427     if (ID.ConstantVal->getType() != Ty)
5428       return error(ID.Loc, "constant expression type mismatch: got type '" +
5429                                getTypeString(ID.ConstantVal->getType()) +
5430                                "' but expected '" + getTypeString(Ty) + "'");
5431     V = ID.ConstantVal;
5432     return false;
5433   case ValID::t_ConstantStruct:
5434   case ValID::t_PackedConstantStruct:
5435     if (StructType *ST = dyn_cast<StructType>(Ty)) {
5436       if (ST->getNumElements() != ID.UIntVal)
5437         return error(ID.Loc,
5438                      "initializer with struct type has wrong # elements");
5439       if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct))
5440         return error(ID.Loc, "packed'ness of initializer and type don't match");
5441 
5442       // Verify that the elements are compatible with the structtype.
5443       for (unsigned i = 0, e = ID.UIntVal; i != e; ++i)
5444         if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i))
5445           return error(
5446               ID.Loc,
5447               "element " + Twine(i) +
5448                   " of struct initializer doesn't match struct element type");
5449 
5450       V = ConstantStruct::get(
5451           ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal));
5452     } else
5453       return error(ID.Loc, "constant expression type mismatch");
5454     return false;
5455   }
5456   llvm_unreachable("Invalid ValID");
5457 }
5458 
5459 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) {
5460   C = nullptr;
5461   ValID ID;
5462   auto Loc = Lex.getLoc();
5463   if (parseValID(ID, /*PFS=*/nullptr))
5464     return true;
5465   switch (ID.Kind) {
5466   case ValID::t_APSInt:
5467   case ValID::t_APFloat:
5468   case ValID::t_Undef:
5469   case ValID::t_Constant:
5470   case ValID::t_ConstantStruct:
5471   case ValID::t_PackedConstantStruct: {
5472     Value *V;
5473     if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr))
5474       return true;
5475     assert(isa<Constant>(V) && "Expected a constant value");
5476     C = cast<Constant>(V);
5477     return false;
5478   }
5479   case ValID::t_Null:
5480     C = Constant::getNullValue(Ty);
5481     return false;
5482   default:
5483     return error(Loc, "expected a constant value");
5484   }
5485 }
5486 
5487 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) {
5488   V = nullptr;
5489   ValID ID;
5490   return parseValID(ID, PFS, Ty) ||
5491          convertValIDToValue(Ty, ID, V, PFS);
5492 }
5493 
5494 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) {
5495   Type *Ty = nullptr;
5496   return parseType(Ty) || parseValue(Ty, V, PFS);
5497 }
5498 
5499 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc,
5500                                       PerFunctionState &PFS) {
5501   Value *V;
5502   Loc = Lex.getLoc();
5503   if (parseTypeAndValue(V, PFS))
5504     return true;
5505   if (!isa<BasicBlock>(V))
5506     return error(Loc, "expected a basic block");
5507   BB = cast<BasicBlock>(V);
5508   return false;
5509 }
5510 
5511 /// FunctionHeader
5512 ///   ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility
5513 ///       OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName
5514 ///       '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign
5515 ///       OptGC OptionalPrefix OptionalPrologue OptPersonalityFn
5516 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) {
5517   // parse the linkage.
5518   LocTy LinkageLoc = Lex.getLoc();
5519   unsigned Linkage;
5520   unsigned Visibility;
5521   unsigned DLLStorageClass;
5522   bool DSOLocal;
5523   AttrBuilder RetAttrs(M->getContext());
5524   unsigned CC;
5525   bool HasLinkage;
5526   Type *RetType = nullptr;
5527   LocTy RetTypeLoc = Lex.getLoc();
5528   if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass,
5529                            DSOLocal) ||
5530       parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
5531       parseType(RetType, RetTypeLoc, true /*void allowed*/))
5532     return true;
5533 
5534   // Verify that the linkage is ok.
5535   switch ((GlobalValue::LinkageTypes)Linkage) {
5536   case GlobalValue::ExternalLinkage:
5537     break; // always ok.
5538   case GlobalValue::ExternalWeakLinkage:
5539     if (IsDefine)
5540       return error(LinkageLoc, "invalid linkage for function definition");
5541     break;
5542   case GlobalValue::PrivateLinkage:
5543   case GlobalValue::InternalLinkage:
5544   case GlobalValue::AvailableExternallyLinkage:
5545   case GlobalValue::LinkOnceAnyLinkage:
5546   case GlobalValue::LinkOnceODRLinkage:
5547   case GlobalValue::WeakAnyLinkage:
5548   case GlobalValue::WeakODRLinkage:
5549     if (!IsDefine)
5550       return error(LinkageLoc, "invalid linkage for function declaration");
5551     break;
5552   case GlobalValue::AppendingLinkage:
5553   case GlobalValue::CommonLinkage:
5554     return error(LinkageLoc, "invalid function linkage type");
5555   }
5556 
5557   if (!isValidVisibilityForLinkage(Visibility, Linkage))
5558     return error(LinkageLoc,
5559                  "symbol with local linkage must have default visibility");
5560 
5561   if (!FunctionType::isValidReturnType(RetType))
5562     return error(RetTypeLoc, "invalid function return type");
5563 
5564   LocTy NameLoc = Lex.getLoc();
5565 
5566   std::string FunctionName;
5567   if (Lex.getKind() == lltok::GlobalVar) {
5568     FunctionName = Lex.getStrVal();
5569   } else if (Lex.getKind() == lltok::GlobalID) {     // @42 is ok.
5570     unsigned NameID = Lex.getUIntVal();
5571 
5572     if (NameID != NumberedVals.size())
5573       return tokError("function expected to be numbered '%" +
5574                       Twine(NumberedVals.size()) + "'");
5575   } else {
5576     return tokError("expected function name");
5577   }
5578 
5579   Lex.Lex();
5580 
5581   if (Lex.getKind() != lltok::lparen)
5582     return tokError("expected '(' in function argument list");
5583 
5584   SmallVector<ArgInfo, 8> ArgList;
5585   bool IsVarArg;
5586   AttrBuilder FuncAttrs(M->getContext());
5587   std::vector<unsigned> FwdRefAttrGrps;
5588   LocTy BuiltinLoc;
5589   std::string Section;
5590   std::string Partition;
5591   MaybeAlign Alignment;
5592   std::string GC;
5593   GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None;
5594   unsigned AddrSpace = 0;
5595   Constant *Prefix = nullptr;
5596   Constant *Prologue = nullptr;
5597   Constant *PersonalityFn = nullptr;
5598   Comdat *C;
5599 
5600   if (parseArgumentList(ArgList, IsVarArg) ||
5601       parseOptionalUnnamedAddr(UnnamedAddr) ||
5602       parseOptionalProgramAddrSpace(AddrSpace) ||
5603       parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false,
5604                                  BuiltinLoc) ||
5605       (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) ||
5606       (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) ||
5607       parseOptionalComdat(FunctionName, C) ||
5608       parseOptionalAlignment(Alignment) ||
5609       (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) ||
5610       (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) ||
5611       (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) ||
5612       (EatIfPresent(lltok::kw_personality) &&
5613        parseGlobalTypeAndValue(PersonalityFn)))
5614     return true;
5615 
5616   if (FuncAttrs.contains(Attribute::Builtin))
5617     return error(BuiltinLoc, "'builtin' attribute not valid on function");
5618 
5619   // If the alignment was parsed as an attribute, move to the alignment field.
5620   if (FuncAttrs.hasAlignmentAttr()) {
5621     Alignment = FuncAttrs.getAlignment();
5622     FuncAttrs.removeAttribute(Attribute::Alignment);
5623   }
5624 
5625   // Okay, if we got here, the function is syntactically valid.  Convert types
5626   // and do semantic checks.
5627   std::vector<Type*> ParamTypeList;
5628   SmallVector<AttributeSet, 8> Attrs;
5629 
5630   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
5631     ParamTypeList.push_back(ArgList[i].Ty);
5632     Attrs.push_back(ArgList[i].Attrs);
5633   }
5634 
5635   AttributeList PAL =
5636       AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs),
5637                          AttributeSet::get(Context, RetAttrs), Attrs);
5638 
5639   if (PAL.hasParamAttr(0, Attribute::StructRet) && !RetType->isVoidTy())
5640     return error(RetTypeLoc, "functions with 'sret' argument must return void");
5641 
5642   FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg);
5643   PointerType *PFT = PointerType::get(FT, AddrSpace);
5644 
5645   Fn = nullptr;
5646   GlobalValue *FwdFn = nullptr;
5647   if (!FunctionName.empty()) {
5648     // If this was a definition of a forward reference, remove the definition
5649     // from the forward reference table and fill in the forward ref.
5650     auto FRVI = ForwardRefVals.find(FunctionName);
5651     if (FRVI != ForwardRefVals.end()) {
5652       FwdFn = FRVI->second.first;
5653       if (!FwdFn->getType()->isOpaque() &&
5654           !FwdFn->getType()->getNonOpaquePointerElementType()->isFunctionTy())
5655         return error(FRVI->second.second, "invalid forward reference to "
5656                                           "function as global value!");
5657       if (FwdFn->getType() != PFT)
5658         return error(FRVI->second.second,
5659                      "invalid forward reference to "
5660                      "function '" +
5661                          FunctionName +
5662                          "' with wrong type: "
5663                          "expected '" +
5664                          getTypeString(PFT) + "' but was '" +
5665                          getTypeString(FwdFn->getType()) + "'");
5666       ForwardRefVals.erase(FRVI);
5667     } else if ((Fn = M->getFunction(FunctionName))) {
5668       // Reject redefinitions.
5669       return error(NameLoc,
5670                    "invalid redefinition of function '" + FunctionName + "'");
5671     } else if (M->getNamedValue(FunctionName)) {
5672       return error(NameLoc, "redefinition of function '@" + FunctionName + "'");
5673     }
5674 
5675   } else {
5676     // If this is a definition of a forward referenced function, make sure the
5677     // types agree.
5678     auto I = ForwardRefValIDs.find(NumberedVals.size());
5679     if (I != ForwardRefValIDs.end()) {
5680       FwdFn = I->second.first;
5681       if (FwdFn->getType() != PFT)
5682         return error(NameLoc, "type of definition and forward reference of '@" +
5683                                   Twine(NumberedVals.size()) +
5684                                   "' disagree: "
5685                                   "expected '" +
5686                                   getTypeString(PFT) + "' but was '" +
5687                                   getTypeString(FwdFn->getType()) + "'");
5688       ForwardRefValIDs.erase(I);
5689     }
5690   }
5691 
5692   Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace,
5693                         FunctionName, M);
5694 
5695   assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS");
5696 
5697   if (FunctionName.empty())
5698     NumberedVals.push_back(Fn);
5699 
5700   Fn->setLinkage((GlobalValue::LinkageTypes)Linkage);
5701   maybeSetDSOLocal(DSOLocal, *Fn);
5702   Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility);
5703   Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass);
5704   Fn->setCallingConv(CC);
5705   Fn->setAttributes(PAL);
5706   Fn->setUnnamedAddr(UnnamedAddr);
5707   Fn->setAlignment(MaybeAlign(Alignment));
5708   Fn->setSection(Section);
5709   Fn->setPartition(Partition);
5710   Fn->setComdat(C);
5711   Fn->setPersonalityFn(PersonalityFn);
5712   if (!GC.empty()) Fn->setGC(GC);
5713   Fn->setPrefixData(Prefix);
5714   Fn->setPrologueData(Prologue);
5715   ForwardRefAttrGroups[Fn] = FwdRefAttrGrps;
5716 
5717   // Add all of the arguments we parsed to the function.
5718   Function::arg_iterator ArgIt = Fn->arg_begin();
5719   for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) {
5720     // If the argument has a name, insert it into the argument symbol table.
5721     if (ArgList[i].Name.empty()) continue;
5722 
5723     // Set the name, if it conflicted, it will be auto-renamed.
5724     ArgIt->setName(ArgList[i].Name);
5725 
5726     if (ArgIt->getName() != ArgList[i].Name)
5727       return error(ArgList[i].Loc,
5728                    "redefinition of argument '%" + ArgList[i].Name + "'");
5729   }
5730 
5731   if (FwdFn) {
5732     FwdFn->replaceAllUsesWith(Fn);
5733     FwdFn->eraseFromParent();
5734   }
5735 
5736   if (IsDefine)
5737     return false;
5738 
5739   // Check the declaration has no block address forward references.
5740   ValID ID;
5741   if (FunctionName.empty()) {
5742     ID.Kind = ValID::t_GlobalID;
5743     ID.UIntVal = NumberedVals.size() - 1;
5744   } else {
5745     ID.Kind = ValID::t_GlobalName;
5746     ID.StrVal = FunctionName;
5747   }
5748   auto Blocks = ForwardRefBlockAddresses.find(ID);
5749   if (Blocks != ForwardRefBlockAddresses.end())
5750     return error(Blocks->first.Loc,
5751                  "cannot take blockaddress inside a declaration");
5752   return false;
5753 }
5754 
5755 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() {
5756   ValID ID;
5757   if (FunctionNumber == -1) {
5758     ID.Kind = ValID::t_GlobalName;
5759     ID.StrVal = std::string(F.getName());
5760   } else {
5761     ID.Kind = ValID::t_GlobalID;
5762     ID.UIntVal = FunctionNumber;
5763   }
5764 
5765   auto Blocks = P.ForwardRefBlockAddresses.find(ID);
5766   if (Blocks == P.ForwardRefBlockAddresses.end())
5767     return false;
5768 
5769   for (const auto &I : Blocks->second) {
5770     const ValID &BBID = I.first;
5771     GlobalValue *GV = I.second;
5772 
5773     assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) &&
5774            "Expected local id or name");
5775     BasicBlock *BB;
5776     if (BBID.Kind == ValID::t_LocalName)
5777       BB = getBB(BBID.StrVal, BBID.Loc);
5778     else
5779       BB = getBB(BBID.UIntVal, BBID.Loc);
5780     if (!BB)
5781       return P.error(BBID.Loc, "referenced value is not a basic block");
5782 
5783     Value *ResolvedVal = BlockAddress::get(&F, BB);
5784     ResolvedVal = P.checkValidVariableType(BBID.Loc, BBID.StrVal, GV->getType(),
5785                                            ResolvedVal);
5786     if (!ResolvedVal)
5787       return true;
5788     GV->replaceAllUsesWith(ResolvedVal);
5789     GV->eraseFromParent();
5790   }
5791 
5792   P.ForwardRefBlockAddresses.erase(Blocks);
5793   return false;
5794 }
5795 
5796 /// parseFunctionBody
5797 ///   ::= '{' BasicBlock+ UseListOrderDirective* '}'
5798 bool LLParser::parseFunctionBody(Function &Fn) {
5799   if (Lex.getKind() != lltok::lbrace)
5800     return tokError("expected '{' in function body");
5801   Lex.Lex();  // eat the {.
5802 
5803   int FunctionNumber = -1;
5804   if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1;
5805 
5806   PerFunctionState PFS(*this, Fn, FunctionNumber);
5807 
5808   // Resolve block addresses and allow basic blocks to be forward-declared
5809   // within this function.
5810   if (PFS.resolveForwardRefBlockAddresses())
5811     return true;
5812   SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS);
5813 
5814   // We need at least one basic block.
5815   if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder)
5816     return tokError("function body requires at least one basic block");
5817 
5818   while (Lex.getKind() != lltok::rbrace &&
5819          Lex.getKind() != lltok::kw_uselistorder)
5820     if (parseBasicBlock(PFS))
5821       return true;
5822 
5823   while (Lex.getKind() != lltok::rbrace)
5824     if (parseUseListOrder(&PFS))
5825       return true;
5826 
5827   // Eat the }.
5828   Lex.Lex();
5829 
5830   // Verify function is ok.
5831   return PFS.finishFunction();
5832 }
5833 
5834 /// parseBasicBlock
5835 ///   ::= (LabelStr|LabelID)? Instruction*
5836 bool LLParser::parseBasicBlock(PerFunctionState &PFS) {
5837   // If this basic block starts out with a name, remember it.
5838   std::string Name;
5839   int NameID = -1;
5840   LocTy NameLoc = Lex.getLoc();
5841   if (Lex.getKind() == lltok::LabelStr) {
5842     Name = Lex.getStrVal();
5843     Lex.Lex();
5844   } else if (Lex.getKind() == lltok::LabelID) {
5845     NameID = Lex.getUIntVal();
5846     Lex.Lex();
5847   }
5848 
5849   BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc);
5850   if (!BB)
5851     return true;
5852 
5853   std::string NameStr;
5854 
5855   // parse the instructions in this block until we get a terminator.
5856   Instruction *Inst;
5857   do {
5858     // This instruction may have three possibilities for a name: a) none
5859     // specified, b) name specified "%foo =", c) number specified: "%4 =".
5860     LocTy NameLoc = Lex.getLoc();
5861     int NameID = -1;
5862     NameStr = "";
5863 
5864     if (Lex.getKind() == lltok::LocalVarID) {
5865       NameID = Lex.getUIntVal();
5866       Lex.Lex();
5867       if (parseToken(lltok::equal, "expected '=' after instruction id"))
5868         return true;
5869     } else if (Lex.getKind() == lltok::LocalVar) {
5870       NameStr = Lex.getStrVal();
5871       Lex.Lex();
5872       if (parseToken(lltok::equal, "expected '=' after instruction name"))
5873         return true;
5874     }
5875 
5876     switch (parseInstruction(Inst, BB, PFS)) {
5877     default:
5878       llvm_unreachable("Unknown parseInstruction result!");
5879     case InstError: return true;
5880     case InstNormal:
5881       BB->getInstList().push_back(Inst);
5882 
5883       // With a normal result, we check to see if the instruction is followed by
5884       // a comma and metadata.
5885       if (EatIfPresent(lltok::comma))
5886         if (parseInstructionMetadata(*Inst))
5887           return true;
5888       break;
5889     case InstExtraComma:
5890       BB->getInstList().push_back(Inst);
5891 
5892       // If the instruction parser ate an extra comma at the end of it, it
5893       // *must* be followed by metadata.
5894       if (parseInstructionMetadata(*Inst))
5895         return true;
5896       break;
5897     }
5898 
5899     // Set the name on the instruction.
5900     if (PFS.setInstName(NameID, NameStr, NameLoc, Inst))
5901       return true;
5902   } while (!Inst->isTerminator());
5903 
5904   return false;
5905 }
5906 
5907 //===----------------------------------------------------------------------===//
5908 // Instruction Parsing.
5909 //===----------------------------------------------------------------------===//
5910 
5911 /// parseInstruction - parse one of the many different instructions.
5912 ///
5913 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB,
5914                                PerFunctionState &PFS) {
5915   lltok::Kind Token = Lex.getKind();
5916   if (Token == lltok::Eof)
5917     return tokError("found end of file when expecting more instructions");
5918   LocTy Loc = Lex.getLoc();
5919   unsigned KeywordVal = Lex.getUIntVal();
5920   Lex.Lex();  // Eat the keyword.
5921 
5922   switch (Token) {
5923   default:
5924     return error(Loc, "expected instruction opcode");
5925   // Terminator Instructions.
5926   case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false;
5927   case lltok::kw_ret:
5928     return parseRet(Inst, BB, PFS);
5929   case lltok::kw_br:
5930     return parseBr(Inst, PFS);
5931   case lltok::kw_switch:
5932     return parseSwitch(Inst, PFS);
5933   case lltok::kw_indirectbr:
5934     return parseIndirectBr(Inst, PFS);
5935   case lltok::kw_invoke:
5936     return parseInvoke(Inst, PFS);
5937   case lltok::kw_resume:
5938     return parseResume(Inst, PFS);
5939   case lltok::kw_cleanupret:
5940     return parseCleanupRet(Inst, PFS);
5941   case lltok::kw_catchret:
5942     return parseCatchRet(Inst, PFS);
5943   case lltok::kw_catchswitch:
5944     return parseCatchSwitch(Inst, PFS);
5945   case lltok::kw_catchpad:
5946     return parseCatchPad(Inst, PFS);
5947   case lltok::kw_cleanuppad:
5948     return parseCleanupPad(Inst, PFS);
5949   case lltok::kw_callbr:
5950     return parseCallBr(Inst, PFS);
5951   // Unary Operators.
5952   case lltok::kw_fneg: {
5953     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5954     int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true);
5955     if (Res != 0)
5956       return Res;
5957     if (FMF.any())
5958       Inst->setFastMathFlags(FMF);
5959     return false;
5960   }
5961   // Binary Operators.
5962   case lltok::kw_add:
5963   case lltok::kw_sub:
5964   case lltok::kw_mul:
5965   case lltok::kw_shl: {
5966     bool NUW = EatIfPresent(lltok::kw_nuw);
5967     bool NSW = EatIfPresent(lltok::kw_nsw);
5968     if (!NUW) NUW = EatIfPresent(lltok::kw_nuw);
5969 
5970     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
5971       return true;
5972 
5973     if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true);
5974     if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true);
5975     return false;
5976   }
5977   case lltok::kw_fadd:
5978   case lltok::kw_fsub:
5979   case lltok::kw_fmul:
5980   case lltok::kw_fdiv:
5981   case lltok::kw_frem: {
5982     FastMathFlags FMF = EatFastMathFlagsIfPresent();
5983     int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true);
5984     if (Res != 0)
5985       return Res;
5986     if (FMF.any())
5987       Inst->setFastMathFlags(FMF);
5988     return 0;
5989   }
5990 
5991   case lltok::kw_sdiv:
5992   case lltok::kw_udiv:
5993   case lltok::kw_lshr:
5994   case lltok::kw_ashr: {
5995     bool Exact = EatIfPresent(lltok::kw_exact);
5996 
5997     if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false))
5998       return true;
5999     if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true);
6000     return false;
6001   }
6002 
6003   case lltok::kw_urem:
6004   case lltok::kw_srem:
6005     return parseArithmetic(Inst, PFS, KeywordVal,
6006                            /*IsFP*/ false);
6007   case lltok::kw_and:
6008   case lltok::kw_or:
6009   case lltok::kw_xor:
6010     return parseLogical(Inst, PFS, KeywordVal);
6011   case lltok::kw_icmp:
6012     return parseCompare(Inst, PFS, KeywordVal);
6013   case lltok::kw_fcmp: {
6014     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6015     int Res = parseCompare(Inst, PFS, KeywordVal);
6016     if (Res != 0)
6017       return Res;
6018     if (FMF.any())
6019       Inst->setFastMathFlags(FMF);
6020     return 0;
6021   }
6022 
6023   // Casts.
6024   case lltok::kw_trunc:
6025   case lltok::kw_zext:
6026   case lltok::kw_sext:
6027   case lltok::kw_fptrunc:
6028   case lltok::kw_fpext:
6029   case lltok::kw_bitcast:
6030   case lltok::kw_addrspacecast:
6031   case lltok::kw_uitofp:
6032   case lltok::kw_sitofp:
6033   case lltok::kw_fptoui:
6034   case lltok::kw_fptosi:
6035   case lltok::kw_inttoptr:
6036   case lltok::kw_ptrtoint:
6037     return parseCast(Inst, PFS, KeywordVal);
6038   // Other.
6039   case lltok::kw_select: {
6040     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6041     int Res = parseSelect(Inst, PFS);
6042     if (Res != 0)
6043       return Res;
6044     if (FMF.any()) {
6045       if (!isa<FPMathOperator>(Inst))
6046         return error(Loc, "fast-math-flags specified for select without "
6047                           "floating-point scalar or vector return type");
6048       Inst->setFastMathFlags(FMF);
6049     }
6050     return 0;
6051   }
6052   case lltok::kw_va_arg:
6053     return parseVAArg(Inst, PFS);
6054   case lltok::kw_extractelement:
6055     return parseExtractElement(Inst, PFS);
6056   case lltok::kw_insertelement:
6057     return parseInsertElement(Inst, PFS);
6058   case lltok::kw_shufflevector:
6059     return parseShuffleVector(Inst, PFS);
6060   case lltok::kw_phi: {
6061     FastMathFlags FMF = EatFastMathFlagsIfPresent();
6062     int Res = parsePHI(Inst, PFS);
6063     if (Res != 0)
6064       return Res;
6065     if (FMF.any()) {
6066       if (!isa<FPMathOperator>(Inst))
6067         return error(Loc, "fast-math-flags specified for phi without "
6068                           "floating-point scalar or vector return type");
6069       Inst->setFastMathFlags(FMF);
6070     }
6071     return 0;
6072   }
6073   case lltok::kw_landingpad:
6074     return parseLandingPad(Inst, PFS);
6075   case lltok::kw_freeze:
6076     return parseFreeze(Inst, PFS);
6077   // Call.
6078   case lltok::kw_call:
6079     return parseCall(Inst, PFS, CallInst::TCK_None);
6080   case lltok::kw_tail:
6081     return parseCall(Inst, PFS, CallInst::TCK_Tail);
6082   case lltok::kw_musttail:
6083     return parseCall(Inst, PFS, CallInst::TCK_MustTail);
6084   case lltok::kw_notail:
6085     return parseCall(Inst, PFS, CallInst::TCK_NoTail);
6086   // Memory.
6087   case lltok::kw_alloca:
6088     return parseAlloc(Inst, PFS);
6089   case lltok::kw_load:
6090     return parseLoad(Inst, PFS);
6091   case lltok::kw_store:
6092     return parseStore(Inst, PFS);
6093   case lltok::kw_cmpxchg:
6094     return parseCmpXchg(Inst, PFS);
6095   case lltok::kw_atomicrmw:
6096     return parseAtomicRMW(Inst, PFS);
6097   case lltok::kw_fence:
6098     return parseFence(Inst, PFS);
6099   case lltok::kw_getelementptr:
6100     return parseGetElementPtr(Inst, PFS);
6101   case lltok::kw_extractvalue:
6102     return parseExtractValue(Inst, PFS);
6103   case lltok::kw_insertvalue:
6104     return parseInsertValue(Inst, PFS);
6105   }
6106 }
6107 
6108 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind.
6109 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) {
6110   if (Opc == Instruction::FCmp) {
6111     switch (Lex.getKind()) {
6112     default:
6113       return tokError("expected fcmp predicate (e.g. 'oeq')");
6114     case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break;
6115     case lltok::kw_one: P = CmpInst::FCMP_ONE; break;
6116     case lltok::kw_olt: P = CmpInst::FCMP_OLT; break;
6117     case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break;
6118     case lltok::kw_ole: P = CmpInst::FCMP_OLE; break;
6119     case lltok::kw_oge: P = CmpInst::FCMP_OGE; break;
6120     case lltok::kw_ord: P = CmpInst::FCMP_ORD; break;
6121     case lltok::kw_uno: P = CmpInst::FCMP_UNO; break;
6122     case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break;
6123     case lltok::kw_une: P = CmpInst::FCMP_UNE; break;
6124     case lltok::kw_ult: P = CmpInst::FCMP_ULT; break;
6125     case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break;
6126     case lltok::kw_ule: P = CmpInst::FCMP_ULE; break;
6127     case lltok::kw_uge: P = CmpInst::FCMP_UGE; break;
6128     case lltok::kw_true: P = CmpInst::FCMP_TRUE; break;
6129     case lltok::kw_false: P = CmpInst::FCMP_FALSE; break;
6130     }
6131   } else {
6132     switch (Lex.getKind()) {
6133     default:
6134       return tokError("expected icmp predicate (e.g. 'eq')");
6135     case lltok::kw_eq:  P = CmpInst::ICMP_EQ; break;
6136     case lltok::kw_ne:  P = CmpInst::ICMP_NE; break;
6137     case lltok::kw_slt: P = CmpInst::ICMP_SLT; break;
6138     case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break;
6139     case lltok::kw_sle: P = CmpInst::ICMP_SLE; break;
6140     case lltok::kw_sge: P = CmpInst::ICMP_SGE; break;
6141     case lltok::kw_ult: P = CmpInst::ICMP_ULT; break;
6142     case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break;
6143     case lltok::kw_ule: P = CmpInst::ICMP_ULE; break;
6144     case lltok::kw_uge: P = CmpInst::ICMP_UGE; break;
6145     }
6146   }
6147   Lex.Lex();
6148   return false;
6149 }
6150 
6151 //===----------------------------------------------------------------------===//
6152 // Terminator Instructions.
6153 //===----------------------------------------------------------------------===//
6154 
6155 /// parseRet - parse a return instruction.
6156 ///   ::= 'ret' void (',' !dbg, !1)*
6157 ///   ::= 'ret' TypeAndValue (',' !dbg, !1)*
6158 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB,
6159                         PerFunctionState &PFS) {
6160   SMLoc TypeLoc = Lex.getLoc();
6161   Type *Ty = nullptr;
6162   if (parseType(Ty, true /*void allowed*/))
6163     return true;
6164 
6165   Type *ResType = PFS.getFunction().getReturnType();
6166 
6167   if (Ty->isVoidTy()) {
6168     if (!ResType->isVoidTy())
6169       return error(TypeLoc, "value doesn't match function result type '" +
6170                                 getTypeString(ResType) + "'");
6171 
6172     Inst = ReturnInst::Create(Context);
6173     return false;
6174   }
6175 
6176   Value *RV;
6177   if (parseValue(Ty, RV, PFS))
6178     return true;
6179 
6180   if (ResType != RV->getType())
6181     return error(TypeLoc, "value doesn't match function result type '" +
6182                               getTypeString(ResType) + "'");
6183 
6184   Inst = ReturnInst::Create(Context, RV);
6185   return false;
6186 }
6187 
6188 /// parseBr
6189 ///   ::= 'br' TypeAndValue
6190 ///   ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6191 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) {
6192   LocTy Loc, Loc2;
6193   Value *Op0;
6194   BasicBlock *Op1, *Op2;
6195   if (parseTypeAndValue(Op0, Loc, PFS))
6196     return true;
6197 
6198   if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) {
6199     Inst = BranchInst::Create(BB);
6200     return false;
6201   }
6202 
6203   if (Op0->getType() != Type::getInt1Ty(Context))
6204     return error(Loc, "branch condition must have 'i1' type");
6205 
6206   if (parseToken(lltok::comma, "expected ',' after branch condition") ||
6207       parseTypeAndBasicBlock(Op1, Loc, PFS) ||
6208       parseToken(lltok::comma, "expected ',' after true destination") ||
6209       parseTypeAndBasicBlock(Op2, Loc2, PFS))
6210     return true;
6211 
6212   Inst = BranchInst::Create(Op1, Op2, Op0);
6213   return false;
6214 }
6215 
6216 /// parseSwitch
6217 ///  Instruction
6218 ///    ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']'
6219 ///  JumpTable
6220 ///    ::= (TypeAndValue ',' TypeAndValue)*
6221 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6222   LocTy CondLoc, BBLoc;
6223   Value *Cond;
6224   BasicBlock *DefaultBB;
6225   if (parseTypeAndValue(Cond, CondLoc, PFS) ||
6226       parseToken(lltok::comma, "expected ',' after switch condition") ||
6227       parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) ||
6228       parseToken(lltok::lsquare, "expected '[' with switch table"))
6229     return true;
6230 
6231   if (!Cond->getType()->isIntegerTy())
6232     return error(CondLoc, "switch condition must have integer type");
6233 
6234   // parse the jump table pairs.
6235   SmallPtrSet<Value*, 32> SeenCases;
6236   SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table;
6237   while (Lex.getKind() != lltok::rsquare) {
6238     Value *Constant;
6239     BasicBlock *DestBB;
6240 
6241     if (parseTypeAndValue(Constant, CondLoc, PFS) ||
6242         parseToken(lltok::comma, "expected ',' after case value") ||
6243         parseTypeAndBasicBlock(DestBB, PFS))
6244       return true;
6245 
6246     if (!SeenCases.insert(Constant).second)
6247       return error(CondLoc, "duplicate case value in switch");
6248     if (!isa<ConstantInt>(Constant))
6249       return error(CondLoc, "case value is not a constant integer");
6250 
6251     Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB));
6252   }
6253 
6254   Lex.Lex();  // Eat the ']'.
6255 
6256   SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size());
6257   for (unsigned i = 0, e = Table.size(); i != e; ++i)
6258     SI->addCase(Table[i].first, Table[i].second);
6259   Inst = SI;
6260   return false;
6261 }
6262 
6263 /// parseIndirectBr
6264 ///  Instruction
6265 ///    ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']'
6266 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) {
6267   LocTy AddrLoc;
6268   Value *Address;
6269   if (parseTypeAndValue(Address, AddrLoc, PFS) ||
6270       parseToken(lltok::comma, "expected ',' after indirectbr address") ||
6271       parseToken(lltok::lsquare, "expected '[' with indirectbr"))
6272     return true;
6273 
6274   if (!Address->getType()->isPointerTy())
6275     return error(AddrLoc, "indirectbr address must have pointer type");
6276 
6277   // parse the destination list.
6278   SmallVector<BasicBlock*, 16> DestList;
6279 
6280   if (Lex.getKind() != lltok::rsquare) {
6281     BasicBlock *DestBB;
6282     if (parseTypeAndBasicBlock(DestBB, PFS))
6283       return true;
6284     DestList.push_back(DestBB);
6285 
6286     while (EatIfPresent(lltok::comma)) {
6287       if (parseTypeAndBasicBlock(DestBB, PFS))
6288         return true;
6289       DestList.push_back(DestBB);
6290     }
6291   }
6292 
6293   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6294     return true;
6295 
6296   IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size());
6297   for (unsigned i = 0, e = DestList.size(); i != e; ++i)
6298     IBI->addDestination(DestList[i]);
6299   Inst = IBI;
6300   return false;
6301 }
6302 
6303 /// parseInvoke
6304 ///   ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList
6305 ///       OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue
6306 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) {
6307   LocTy CallLoc = Lex.getLoc();
6308   AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext());
6309   std::vector<unsigned> FwdRefAttrGrps;
6310   LocTy NoBuiltinLoc;
6311   unsigned CC;
6312   unsigned InvokeAddrSpace;
6313   Type *RetType = nullptr;
6314   LocTy RetTypeLoc;
6315   ValID CalleeID;
6316   SmallVector<ParamInfo, 16> ArgList;
6317   SmallVector<OperandBundleDef, 2> BundleList;
6318 
6319   BasicBlock *NormalBB, *UnwindBB;
6320   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6321       parseOptionalProgramAddrSpace(InvokeAddrSpace) ||
6322       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6323       parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) ||
6324       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6325                                  NoBuiltinLoc) ||
6326       parseOptionalOperandBundles(BundleList, PFS) ||
6327       parseToken(lltok::kw_to, "expected 'to' in invoke") ||
6328       parseTypeAndBasicBlock(NormalBB, PFS) ||
6329       parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") ||
6330       parseTypeAndBasicBlock(UnwindBB, PFS))
6331     return true;
6332 
6333   // If RetType is a non-function pointer type, then this is the short syntax
6334   // for the call, which means that RetType is just the return type.  Infer the
6335   // rest of the function argument types from the arguments that are present.
6336   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6337   if (!Ty) {
6338     // Pull out the types of all of the arguments...
6339     std::vector<Type*> ParamTypes;
6340     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6341       ParamTypes.push_back(ArgList[i].V->getType());
6342 
6343     if (!FunctionType::isValidReturnType(RetType))
6344       return error(RetTypeLoc, "Invalid result type for LLVM function");
6345 
6346     Ty = FunctionType::get(RetType, ParamTypes, false);
6347   }
6348 
6349   CalleeID.FTy = Ty;
6350 
6351   // Look up the callee.
6352   Value *Callee;
6353   if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID,
6354                           Callee, &PFS))
6355     return true;
6356 
6357   // Set up the Attribute for the function.
6358   SmallVector<Value *, 8> Args;
6359   SmallVector<AttributeSet, 8> ArgAttrs;
6360 
6361   // Loop through FunctionType's arguments and ensure they are specified
6362   // correctly.  Also, gather any parameter attributes.
6363   FunctionType::param_iterator I = Ty->param_begin();
6364   FunctionType::param_iterator E = Ty->param_end();
6365   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6366     Type *ExpectedTy = nullptr;
6367     if (I != E) {
6368       ExpectedTy = *I++;
6369     } else if (!Ty->isVarArg()) {
6370       return error(ArgList[i].Loc, "too many arguments specified");
6371     }
6372 
6373     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6374       return error(ArgList[i].Loc, "argument is not of expected type '" +
6375                                        getTypeString(ExpectedTy) + "'");
6376     Args.push_back(ArgList[i].V);
6377     ArgAttrs.push_back(ArgList[i].Attrs);
6378   }
6379 
6380   if (I != E)
6381     return error(CallLoc, "not enough parameters specified for call");
6382 
6383   if (FnAttrs.hasAlignmentAttr())
6384     return error(CallLoc, "invoke instructions may not have an alignment");
6385 
6386   // Finish off the Attribute and check them
6387   AttributeList PAL =
6388       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6389                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6390 
6391   InvokeInst *II =
6392       InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList);
6393   II->setCallingConv(CC);
6394   II->setAttributes(PAL);
6395   ForwardRefAttrGroups[II] = FwdRefAttrGrps;
6396   Inst = II;
6397   return false;
6398 }
6399 
6400 /// parseResume
6401 ///   ::= 'resume' TypeAndValue
6402 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) {
6403   Value *Exn; LocTy ExnLoc;
6404   if (parseTypeAndValue(Exn, ExnLoc, PFS))
6405     return true;
6406 
6407   ResumeInst *RI = ResumeInst::Create(Exn);
6408   Inst = RI;
6409   return false;
6410 }
6411 
6412 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args,
6413                                   PerFunctionState &PFS) {
6414   if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad"))
6415     return true;
6416 
6417   while (Lex.getKind() != lltok::rsquare) {
6418     // If this isn't the first argument, we need a comma.
6419     if (!Args.empty() &&
6420         parseToken(lltok::comma, "expected ',' in argument list"))
6421       return true;
6422 
6423     // parse the argument.
6424     LocTy ArgLoc;
6425     Type *ArgTy = nullptr;
6426     if (parseType(ArgTy, ArgLoc))
6427       return true;
6428 
6429     Value *V;
6430     if (ArgTy->isMetadataTy()) {
6431       if (parseMetadataAsValue(V, PFS))
6432         return true;
6433     } else {
6434       if (parseValue(ArgTy, V, PFS))
6435         return true;
6436     }
6437     Args.push_back(V);
6438   }
6439 
6440   Lex.Lex();  // Lex the ']'.
6441   return false;
6442 }
6443 
6444 /// parseCleanupRet
6445 ///   ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue)
6446 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) {
6447   Value *CleanupPad = nullptr;
6448 
6449   if (parseToken(lltok::kw_from, "expected 'from' after cleanupret"))
6450     return true;
6451 
6452   if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS))
6453     return true;
6454 
6455   if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret"))
6456     return true;
6457 
6458   BasicBlock *UnwindBB = nullptr;
6459   if (Lex.getKind() == lltok::kw_to) {
6460     Lex.Lex();
6461     if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret"))
6462       return true;
6463   } else {
6464     if (parseTypeAndBasicBlock(UnwindBB, PFS)) {
6465       return true;
6466     }
6467   }
6468 
6469   Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB);
6470   return false;
6471 }
6472 
6473 /// parseCatchRet
6474 ///   ::= 'catchret' from Parent Value 'to' TypeAndValue
6475 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) {
6476   Value *CatchPad = nullptr;
6477 
6478   if (parseToken(lltok::kw_from, "expected 'from' after catchret"))
6479     return true;
6480 
6481   if (parseValue(Type::getTokenTy(Context), CatchPad, PFS))
6482     return true;
6483 
6484   BasicBlock *BB;
6485   if (parseToken(lltok::kw_to, "expected 'to' in catchret") ||
6486       parseTypeAndBasicBlock(BB, PFS))
6487     return true;
6488 
6489   Inst = CatchReturnInst::Create(CatchPad, BB);
6490   return false;
6491 }
6492 
6493 /// parseCatchSwitch
6494 ///   ::= 'catchswitch' within Parent
6495 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) {
6496   Value *ParentPad;
6497 
6498   if (parseToken(lltok::kw_within, "expected 'within' after catchswitch"))
6499     return true;
6500 
6501   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6502       Lex.getKind() != lltok::LocalVarID)
6503     return tokError("expected scope value for catchswitch");
6504 
6505   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6506     return true;
6507 
6508   if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels"))
6509     return true;
6510 
6511   SmallVector<BasicBlock *, 32> Table;
6512   do {
6513     BasicBlock *DestBB;
6514     if (parseTypeAndBasicBlock(DestBB, PFS))
6515       return true;
6516     Table.push_back(DestBB);
6517   } while (EatIfPresent(lltok::comma));
6518 
6519   if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels"))
6520     return true;
6521 
6522   if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope"))
6523     return true;
6524 
6525   BasicBlock *UnwindBB = nullptr;
6526   if (EatIfPresent(lltok::kw_to)) {
6527     if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch"))
6528       return true;
6529   } else {
6530     if (parseTypeAndBasicBlock(UnwindBB, PFS))
6531       return true;
6532   }
6533 
6534   auto *CatchSwitch =
6535       CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size());
6536   for (BasicBlock *DestBB : Table)
6537     CatchSwitch->addHandler(DestBB);
6538   Inst = CatchSwitch;
6539   return false;
6540 }
6541 
6542 /// parseCatchPad
6543 ///   ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue
6544 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) {
6545   Value *CatchSwitch = nullptr;
6546 
6547   if (parseToken(lltok::kw_within, "expected 'within' after catchpad"))
6548     return true;
6549 
6550   if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID)
6551     return tokError("expected scope value for catchpad");
6552 
6553   if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS))
6554     return true;
6555 
6556   SmallVector<Value *, 8> Args;
6557   if (parseExceptionArgs(Args, PFS))
6558     return true;
6559 
6560   Inst = CatchPadInst::Create(CatchSwitch, Args);
6561   return false;
6562 }
6563 
6564 /// parseCleanupPad
6565 ///   ::= 'cleanuppad' within Parent ParamList
6566 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) {
6567   Value *ParentPad = nullptr;
6568 
6569   if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad"))
6570     return true;
6571 
6572   if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar &&
6573       Lex.getKind() != lltok::LocalVarID)
6574     return tokError("expected scope value for cleanuppad");
6575 
6576   if (parseValue(Type::getTokenTy(Context), ParentPad, PFS))
6577     return true;
6578 
6579   SmallVector<Value *, 8> Args;
6580   if (parseExceptionArgs(Args, PFS))
6581     return true;
6582 
6583   Inst = CleanupPadInst::Create(ParentPad, Args);
6584   return false;
6585 }
6586 
6587 //===----------------------------------------------------------------------===//
6588 // Unary Operators.
6589 //===----------------------------------------------------------------------===//
6590 
6591 /// parseUnaryOp
6592 ///  ::= UnaryOp TypeAndValue ',' Value
6593 ///
6594 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6595 /// operand is allowed.
6596 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS,
6597                             unsigned Opc, bool IsFP) {
6598   LocTy Loc; Value *LHS;
6599   if (parseTypeAndValue(LHS, Loc, PFS))
6600     return true;
6601 
6602   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6603                     : LHS->getType()->isIntOrIntVectorTy();
6604 
6605   if (!Valid)
6606     return error(Loc, "invalid operand type for instruction");
6607 
6608   Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS);
6609   return false;
6610 }
6611 
6612 /// parseCallBr
6613 ///   ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList
6614 ///       OptionalAttrs OptionalOperandBundles 'to' TypeAndValue
6615 ///       '[' LabelList ']'
6616 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) {
6617   LocTy CallLoc = Lex.getLoc();
6618   AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext());
6619   std::vector<unsigned> FwdRefAttrGrps;
6620   LocTy NoBuiltinLoc;
6621   unsigned CC;
6622   Type *RetType = nullptr;
6623   LocTy RetTypeLoc;
6624   ValID CalleeID;
6625   SmallVector<ParamInfo, 16> ArgList;
6626   SmallVector<OperandBundleDef, 2> BundleList;
6627 
6628   BasicBlock *DefaultDest;
6629   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
6630       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
6631       parseValID(CalleeID, &PFS) || parseParameterList(ArgList, PFS) ||
6632       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false,
6633                                  NoBuiltinLoc) ||
6634       parseOptionalOperandBundles(BundleList, PFS) ||
6635       parseToken(lltok::kw_to, "expected 'to' in callbr") ||
6636       parseTypeAndBasicBlock(DefaultDest, PFS) ||
6637       parseToken(lltok::lsquare, "expected '[' in callbr"))
6638     return true;
6639 
6640   // parse the destination list.
6641   SmallVector<BasicBlock *, 16> IndirectDests;
6642 
6643   if (Lex.getKind() != lltok::rsquare) {
6644     BasicBlock *DestBB;
6645     if (parseTypeAndBasicBlock(DestBB, PFS))
6646       return true;
6647     IndirectDests.push_back(DestBB);
6648 
6649     while (EatIfPresent(lltok::comma)) {
6650       if (parseTypeAndBasicBlock(DestBB, PFS))
6651         return true;
6652       IndirectDests.push_back(DestBB);
6653     }
6654   }
6655 
6656   if (parseToken(lltok::rsquare, "expected ']' at end of block list"))
6657     return true;
6658 
6659   // If RetType is a non-function pointer type, then this is the short syntax
6660   // for the call, which means that RetType is just the return type.  Infer the
6661   // rest of the function argument types from the arguments that are present.
6662   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
6663   if (!Ty) {
6664     // Pull out the types of all of the arguments...
6665     std::vector<Type *> ParamTypes;
6666     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
6667       ParamTypes.push_back(ArgList[i].V->getType());
6668 
6669     if (!FunctionType::isValidReturnType(RetType))
6670       return error(RetTypeLoc, "Invalid result type for LLVM function");
6671 
6672     Ty = FunctionType::get(RetType, ParamTypes, false);
6673   }
6674 
6675   CalleeID.FTy = Ty;
6676 
6677   // Look up the callee.
6678   Value *Callee;
6679   if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS))
6680     return true;
6681 
6682   // Set up the Attribute for the function.
6683   SmallVector<Value *, 8> Args;
6684   SmallVector<AttributeSet, 8> ArgAttrs;
6685 
6686   // Loop through FunctionType's arguments and ensure they are specified
6687   // correctly.  Also, gather any parameter attributes.
6688   FunctionType::param_iterator I = Ty->param_begin();
6689   FunctionType::param_iterator E = Ty->param_end();
6690   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
6691     Type *ExpectedTy = nullptr;
6692     if (I != E) {
6693       ExpectedTy = *I++;
6694     } else if (!Ty->isVarArg()) {
6695       return error(ArgList[i].Loc, "too many arguments specified");
6696     }
6697 
6698     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
6699       return error(ArgList[i].Loc, "argument is not of expected type '" +
6700                                        getTypeString(ExpectedTy) + "'");
6701     Args.push_back(ArgList[i].V);
6702     ArgAttrs.push_back(ArgList[i].Attrs);
6703   }
6704 
6705   if (I != E)
6706     return error(CallLoc, "not enough parameters specified for call");
6707 
6708   if (FnAttrs.hasAlignmentAttr())
6709     return error(CallLoc, "callbr instructions may not have an alignment");
6710 
6711   // Finish off the Attribute and check them
6712   AttributeList PAL =
6713       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
6714                          AttributeSet::get(Context, RetAttrs), ArgAttrs);
6715 
6716   CallBrInst *CBI =
6717       CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args,
6718                          BundleList);
6719   CBI->setCallingConv(CC);
6720   CBI->setAttributes(PAL);
6721   ForwardRefAttrGroups[CBI] = FwdRefAttrGrps;
6722   Inst = CBI;
6723   return false;
6724 }
6725 
6726 //===----------------------------------------------------------------------===//
6727 // Binary Operators.
6728 //===----------------------------------------------------------------------===//
6729 
6730 /// parseArithmetic
6731 ///  ::= ArithmeticOps TypeAndValue ',' Value
6732 ///
6733 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp
6734 /// operand is allowed.
6735 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS,
6736                                unsigned Opc, bool IsFP) {
6737   LocTy Loc; Value *LHS, *RHS;
6738   if (parseTypeAndValue(LHS, Loc, PFS) ||
6739       parseToken(lltok::comma, "expected ',' in arithmetic operation") ||
6740       parseValue(LHS->getType(), RHS, PFS))
6741     return true;
6742 
6743   bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy()
6744                     : LHS->getType()->isIntOrIntVectorTy();
6745 
6746   if (!Valid)
6747     return error(Loc, "invalid operand type for instruction");
6748 
6749   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6750   return false;
6751 }
6752 
6753 /// parseLogical
6754 ///  ::= ArithmeticOps TypeAndValue ',' Value {
6755 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS,
6756                             unsigned Opc) {
6757   LocTy Loc; Value *LHS, *RHS;
6758   if (parseTypeAndValue(LHS, Loc, PFS) ||
6759       parseToken(lltok::comma, "expected ',' in logical operation") ||
6760       parseValue(LHS->getType(), RHS, PFS))
6761     return true;
6762 
6763   if (!LHS->getType()->isIntOrIntVectorTy())
6764     return error(Loc,
6765                  "instruction requires integer or integer vector operands");
6766 
6767   Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
6768   return false;
6769 }
6770 
6771 /// parseCompare
6772 ///  ::= 'icmp' IPredicates TypeAndValue ',' Value
6773 ///  ::= 'fcmp' FPredicates TypeAndValue ',' Value
6774 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS,
6775                             unsigned Opc) {
6776   // parse the integer/fp comparison predicate.
6777   LocTy Loc;
6778   unsigned Pred;
6779   Value *LHS, *RHS;
6780   if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) ||
6781       parseToken(lltok::comma, "expected ',' after compare value") ||
6782       parseValue(LHS->getType(), RHS, PFS))
6783     return true;
6784 
6785   if (Opc == Instruction::FCmp) {
6786     if (!LHS->getType()->isFPOrFPVectorTy())
6787       return error(Loc, "fcmp requires floating point operands");
6788     Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6789   } else {
6790     assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!");
6791     if (!LHS->getType()->isIntOrIntVectorTy() &&
6792         !LHS->getType()->isPtrOrPtrVectorTy())
6793       return error(Loc, "icmp requires integer operands");
6794     Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS);
6795   }
6796   return false;
6797 }
6798 
6799 //===----------------------------------------------------------------------===//
6800 // Other Instructions.
6801 //===----------------------------------------------------------------------===//
6802 
6803 /// parseCast
6804 ///   ::= CastOpc TypeAndValue 'to' Type
6805 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS,
6806                          unsigned Opc) {
6807   LocTy Loc;
6808   Value *Op;
6809   Type *DestTy = nullptr;
6810   if (parseTypeAndValue(Op, Loc, PFS) ||
6811       parseToken(lltok::kw_to, "expected 'to' after cast value") ||
6812       parseType(DestTy))
6813     return true;
6814 
6815   if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) {
6816     CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy);
6817     return error(Loc, "invalid cast opcode for cast from '" +
6818                           getTypeString(Op->getType()) + "' to '" +
6819                           getTypeString(DestTy) + "'");
6820   }
6821   Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy);
6822   return false;
6823 }
6824 
6825 /// parseSelect
6826 ///   ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6827 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) {
6828   LocTy Loc;
6829   Value *Op0, *Op1, *Op2;
6830   if (parseTypeAndValue(Op0, Loc, PFS) ||
6831       parseToken(lltok::comma, "expected ',' after select condition") ||
6832       parseTypeAndValue(Op1, PFS) ||
6833       parseToken(lltok::comma, "expected ',' after select value") ||
6834       parseTypeAndValue(Op2, PFS))
6835     return true;
6836 
6837   if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2))
6838     return error(Loc, Reason);
6839 
6840   Inst = SelectInst::Create(Op0, Op1, Op2);
6841   return false;
6842 }
6843 
6844 /// parseVAArg
6845 ///   ::= 'va_arg' TypeAndValue ',' Type
6846 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) {
6847   Value *Op;
6848   Type *EltTy = nullptr;
6849   LocTy TypeLoc;
6850   if (parseTypeAndValue(Op, PFS) ||
6851       parseToken(lltok::comma, "expected ',' after vaarg operand") ||
6852       parseType(EltTy, TypeLoc))
6853     return true;
6854 
6855   if (!EltTy->isFirstClassType())
6856     return error(TypeLoc, "va_arg requires operand with first class type");
6857 
6858   Inst = new VAArgInst(Op, EltTy);
6859   return false;
6860 }
6861 
6862 /// parseExtractElement
6863 ///   ::= 'extractelement' TypeAndValue ',' TypeAndValue
6864 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) {
6865   LocTy Loc;
6866   Value *Op0, *Op1;
6867   if (parseTypeAndValue(Op0, Loc, PFS) ||
6868       parseToken(lltok::comma, "expected ',' after extract value") ||
6869       parseTypeAndValue(Op1, PFS))
6870     return true;
6871 
6872   if (!ExtractElementInst::isValidOperands(Op0, Op1))
6873     return error(Loc, "invalid extractelement operands");
6874 
6875   Inst = ExtractElementInst::Create(Op0, Op1);
6876   return false;
6877 }
6878 
6879 /// parseInsertElement
6880 ///   ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6881 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) {
6882   LocTy Loc;
6883   Value *Op0, *Op1, *Op2;
6884   if (parseTypeAndValue(Op0, Loc, PFS) ||
6885       parseToken(lltok::comma, "expected ',' after insertelement value") ||
6886       parseTypeAndValue(Op1, PFS) ||
6887       parseToken(lltok::comma, "expected ',' after insertelement value") ||
6888       parseTypeAndValue(Op2, PFS))
6889     return true;
6890 
6891   if (!InsertElementInst::isValidOperands(Op0, Op1, Op2))
6892     return error(Loc, "invalid insertelement operands");
6893 
6894   Inst = InsertElementInst::Create(Op0, Op1, Op2);
6895   return false;
6896 }
6897 
6898 /// parseShuffleVector
6899 ///   ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue
6900 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) {
6901   LocTy Loc;
6902   Value *Op0, *Op1, *Op2;
6903   if (parseTypeAndValue(Op0, Loc, PFS) ||
6904       parseToken(lltok::comma, "expected ',' after shuffle mask") ||
6905       parseTypeAndValue(Op1, PFS) ||
6906       parseToken(lltok::comma, "expected ',' after shuffle value") ||
6907       parseTypeAndValue(Op2, PFS))
6908     return true;
6909 
6910   if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2))
6911     return error(Loc, "invalid shufflevector operands");
6912 
6913   Inst = new ShuffleVectorInst(Op0, Op1, Op2);
6914   return false;
6915 }
6916 
6917 /// parsePHI
6918 ///   ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')*
6919 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) {
6920   Type *Ty = nullptr;  LocTy TypeLoc;
6921   Value *Op0, *Op1;
6922 
6923   if (parseType(Ty, TypeLoc) ||
6924       parseToken(lltok::lsquare, "expected '[' in phi value list") ||
6925       parseValue(Ty, Op0, PFS) ||
6926       parseToken(lltok::comma, "expected ',' after insertelement value") ||
6927       parseValue(Type::getLabelTy(Context), Op1, PFS) ||
6928       parseToken(lltok::rsquare, "expected ']' in phi value list"))
6929     return true;
6930 
6931   bool AteExtraComma = false;
6932   SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals;
6933 
6934   while (true) {
6935     PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1)));
6936 
6937     if (!EatIfPresent(lltok::comma))
6938       break;
6939 
6940     if (Lex.getKind() == lltok::MetadataVar) {
6941       AteExtraComma = true;
6942       break;
6943     }
6944 
6945     if (parseToken(lltok::lsquare, "expected '[' in phi value list") ||
6946         parseValue(Ty, Op0, PFS) ||
6947         parseToken(lltok::comma, "expected ',' after insertelement value") ||
6948         parseValue(Type::getLabelTy(Context), Op1, PFS) ||
6949         parseToken(lltok::rsquare, "expected ']' in phi value list"))
6950       return true;
6951   }
6952 
6953   if (!Ty->isFirstClassType())
6954     return error(TypeLoc, "phi node must have first class type");
6955 
6956   PHINode *PN = PHINode::Create(Ty, PHIVals.size());
6957   for (unsigned i = 0, e = PHIVals.size(); i != e; ++i)
6958     PN->addIncoming(PHIVals[i].first, PHIVals[i].second);
6959   Inst = PN;
6960   return AteExtraComma ? InstExtraComma : InstNormal;
6961 }
6962 
6963 /// parseLandingPad
6964 ///   ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+
6965 /// Clause
6966 ///   ::= 'catch' TypeAndValue
6967 ///   ::= 'filter'
6968 ///   ::= 'filter' TypeAndValue ( ',' TypeAndValue )*
6969 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) {
6970   Type *Ty = nullptr; LocTy TyLoc;
6971 
6972   if (parseType(Ty, TyLoc))
6973     return true;
6974 
6975   std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0));
6976   LP->setCleanup(EatIfPresent(lltok::kw_cleanup));
6977 
6978   while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){
6979     LandingPadInst::ClauseType CT;
6980     if (EatIfPresent(lltok::kw_catch))
6981       CT = LandingPadInst::Catch;
6982     else if (EatIfPresent(lltok::kw_filter))
6983       CT = LandingPadInst::Filter;
6984     else
6985       return tokError("expected 'catch' or 'filter' clause type");
6986 
6987     Value *V;
6988     LocTy VLoc;
6989     if (parseTypeAndValue(V, VLoc, PFS))
6990       return true;
6991 
6992     // A 'catch' type expects a non-array constant. A filter clause expects an
6993     // array constant.
6994     if (CT == LandingPadInst::Catch) {
6995       if (isa<ArrayType>(V->getType()))
6996         error(VLoc, "'catch' clause has an invalid type");
6997     } else {
6998       if (!isa<ArrayType>(V->getType()))
6999         error(VLoc, "'filter' clause has an invalid type");
7000     }
7001 
7002     Constant *CV = dyn_cast<Constant>(V);
7003     if (!CV)
7004       return error(VLoc, "clause argument must be a constant");
7005     LP->addClause(CV);
7006   }
7007 
7008   Inst = LP.release();
7009   return false;
7010 }
7011 
7012 /// parseFreeze
7013 ///   ::= 'freeze' Type Value
7014 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) {
7015   LocTy Loc;
7016   Value *Op;
7017   if (parseTypeAndValue(Op, Loc, PFS))
7018     return true;
7019 
7020   Inst = new FreezeInst(Op);
7021   return false;
7022 }
7023 
7024 /// parseCall
7025 ///   ::= 'call' OptionalFastMathFlags OptionalCallingConv
7026 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7027 ///   ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv
7028 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7029 ///   ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv
7030 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7031 ///   ::= 'notail' 'call'  OptionalFastMathFlags OptionalCallingConv
7032 ///           OptionalAttrs Type Value ParameterList OptionalAttrs
7033 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS,
7034                          CallInst::TailCallKind TCK) {
7035   AttrBuilder RetAttrs(M->getContext()), FnAttrs(M->getContext());
7036   std::vector<unsigned> FwdRefAttrGrps;
7037   LocTy BuiltinLoc;
7038   unsigned CallAddrSpace;
7039   unsigned CC;
7040   Type *RetType = nullptr;
7041   LocTy RetTypeLoc;
7042   ValID CalleeID;
7043   SmallVector<ParamInfo, 16> ArgList;
7044   SmallVector<OperandBundleDef, 2> BundleList;
7045   LocTy CallLoc = Lex.getLoc();
7046 
7047   if (TCK != CallInst::TCK_None &&
7048       parseToken(lltok::kw_call,
7049                  "expected 'tail call', 'musttail call', or 'notail call'"))
7050     return true;
7051 
7052   FastMathFlags FMF = EatFastMathFlagsIfPresent();
7053 
7054   if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) ||
7055       parseOptionalProgramAddrSpace(CallAddrSpace) ||
7056       parseType(RetType, RetTypeLoc, true /*void allowed*/) ||
7057       parseValID(CalleeID, &PFS) ||
7058       parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail,
7059                          PFS.getFunction().isVarArg()) ||
7060       parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) ||
7061       parseOptionalOperandBundles(BundleList, PFS))
7062     return true;
7063 
7064   // If RetType is a non-function pointer type, then this is the short syntax
7065   // for the call, which means that RetType is just the return type.  Infer the
7066   // rest of the function argument types from the arguments that are present.
7067   FunctionType *Ty = dyn_cast<FunctionType>(RetType);
7068   if (!Ty) {
7069     // Pull out the types of all of the arguments...
7070     std::vector<Type*> ParamTypes;
7071     for (unsigned i = 0, e = ArgList.size(); i != e; ++i)
7072       ParamTypes.push_back(ArgList[i].V->getType());
7073 
7074     if (!FunctionType::isValidReturnType(RetType))
7075       return error(RetTypeLoc, "Invalid result type for LLVM function");
7076 
7077     Ty = FunctionType::get(RetType, ParamTypes, false);
7078   }
7079 
7080   CalleeID.FTy = Ty;
7081 
7082   // Look up the callee.
7083   Value *Callee;
7084   if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee,
7085                           &PFS))
7086     return true;
7087 
7088   // Set up the Attribute for the function.
7089   SmallVector<AttributeSet, 8> Attrs;
7090 
7091   SmallVector<Value*, 8> Args;
7092 
7093   // Loop through FunctionType's arguments and ensure they are specified
7094   // correctly.  Also, gather any parameter attributes.
7095   FunctionType::param_iterator I = Ty->param_begin();
7096   FunctionType::param_iterator E = Ty->param_end();
7097   for (unsigned i = 0, e = ArgList.size(); i != e; ++i) {
7098     Type *ExpectedTy = nullptr;
7099     if (I != E) {
7100       ExpectedTy = *I++;
7101     } else if (!Ty->isVarArg()) {
7102       return error(ArgList[i].Loc, "too many arguments specified");
7103     }
7104 
7105     if (ExpectedTy && ExpectedTy != ArgList[i].V->getType())
7106       return error(ArgList[i].Loc, "argument is not of expected type '" +
7107                                        getTypeString(ExpectedTy) + "'");
7108     Args.push_back(ArgList[i].V);
7109     Attrs.push_back(ArgList[i].Attrs);
7110   }
7111 
7112   if (I != E)
7113     return error(CallLoc, "not enough parameters specified for call");
7114 
7115   if (FnAttrs.hasAlignmentAttr())
7116     return error(CallLoc, "call instructions may not have an alignment");
7117 
7118   // Finish off the Attribute and check them
7119   AttributeList PAL =
7120       AttributeList::get(Context, AttributeSet::get(Context, FnAttrs),
7121                          AttributeSet::get(Context, RetAttrs), Attrs);
7122 
7123   CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList);
7124   CI->setTailCallKind(TCK);
7125   CI->setCallingConv(CC);
7126   if (FMF.any()) {
7127     if (!isa<FPMathOperator>(CI)) {
7128       CI->deleteValue();
7129       return error(CallLoc, "fast-math-flags specified for call without "
7130                             "floating-point scalar or vector return type");
7131     }
7132     CI->setFastMathFlags(FMF);
7133   }
7134   CI->setAttributes(PAL);
7135   ForwardRefAttrGroups[CI] = FwdRefAttrGrps;
7136   Inst = CI;
7137   return false;
7138 }
7139 
7140 //===----------------------------------------------------------------------===//
7141 // Memory Instructions.
7142 //===----------------------------------------------------------------------===//
7143 
7144 /// parseAlloc
7145 ///   ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)?
7146 ///       (',' 'align' i32)? (',', 'addrspace(n))?
7147 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) {
7148   Value *Size = nullptr;
7149   LocTy SizeLoc, TyLoc, ASLoc;
7150   MaybeAlign Alignment;
7151   unsigned AddrSpace = 0;
7152   Type *Ty = nullptr;
7153 
7154   bool IsInAlloca = EatIfPresent(lltok::kw_inalloca);
7155   bool IsSwiftError = EatIfPresent(lltok::kw_swifterror);
7156 
7157   if (parseType(Ty, TyLoc))
7158     return true;
7159 
7160   if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty))
7161     return error(TyLoc, "invalid type for alloca");
7162 
7163   bool AteExtraComma = false;
7164   if (EatIfPresent(lltok::comma)) {
7165     if (Lex.getKind() == lltok::kw_align) {
7166       if (parseOptionalAlignment(Alignment))
7167         return true;
7168       if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7169         return true;
7170     } else if (Lex.getKind() == lltok::kw_addrspace) {
7171       ASLoc = Lex.getLoc();
7172       if (parseOptionalAddrSpace(AddrSpace))
7173         return true;
7174     } else if (Lex.getKind() == lltok::MetadataVar) {
7175       AteExtraComma = true;
7176     } else {
7177       if (parseTypeAndValue(Size, SizeLoc, PFS))
7178         return true;
7179       if (EatIfPresent(lltok::comma)) {
7180         if (Lex.getKind() == lltok::kw_align) {
7181           if (parseOptionalAlignment(Alignment))
7182             return true;
7183           if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma))
7184             return true;
7185         } else if (Lex.getKind() == lltok::kw_addrspace) {
7186           ASLoc = Lex.getLoc();
7187           if (parseOptionalAddrSpace(AddrSpace))
7188             return true;
7189         } else if (Lex.getKind() == lltok::MetadataVar) {
7190           AteExtraComma = true;
7191         }
7192       }
7193     }
7194   }
7195 
7196   if (Size && !Size->getType()->isIntegerTy())
7197     return error(SizeLoc, "element count must have integer type");
7198 
7199   SmallPtrSet<Type *, 4> Visited;
7200   if (!Alignment && !Ty->isSized(&Visited))
7201     return error(TyLoc, "Cannot allocate unsized type");
7202   if (!Alignment)
7203     Alignment = M->getDataLayout().getPrefTypeAlign(Ty);
7204   AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment);
7205   AI->setUsedWithInAlloca(IsInAlloca);
7206   AI->setSwiftError(IsSwiftError);
7207   Inst = AI;
7208   return AteExtraComma ? InstExtraComma : InstNormal;
7209 }
7210 
7211 /// parseLoad
7212 ///   ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)?
7213 ///   ::= 'load' 'atomic' 'volatile'? TypeAndValue
7214 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7215 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) {
7216   Value *Val; LocTy Loc;
7217   MaybeAlign Alignment;
7218   bool AteExtraComma = false;
7219   bool isAtomic = false;
7220   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7221   SyncScope::ID SSID = SyncScope::System;
7222 
7223   if (Lex.getKind() == lltok::kw_atomic) {
7224     isAtomic = true;
7225     Lex.Lex();
7226   }
7227 
7228   bool isVolatile = false;
7229   if (Lex.getKind() == lltok::kw_volatile) {
7230     isVolatile = true;
7231     Lex.Lex();
7232   }
7233 
7234   Type *Ty;
7235   LocTy ExplicitTypeLoc = Lex.getLoc();
7236   if (parseType(Ty) ||
7237       parseToken(lltok::comma, "expected comma after load's type") ||
7238       parseTypeAndValue(Val, Loc, PFS) ||
7239       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7240       parseOptionalCommaAlign(Alignment, AteExtraComma))
7241     return true;
7242 
7243   if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType())
7244     return error(Loc, "load operand must be a pointer to a first class type");
7245   if (isAtomic && !Alignment)
7246     return error(Loc, "atomic load must have explicit non-zero alignment");
7247   if (Ordering == AtomicOrdering::Release ||
7248       Ordering == AtomicOrdering::AcquireRelease)
7249     return error(Loc, "atomic load cannot use Release ordering");
7250 
7251   if (!cast<PointerType>(Val->getType())->isOpaqueOrPointeeTypeMatches(Ty)) {
7252     return error(
7253         ExplicitTypeLoc,
7254         typeComparisonErrorMessage(
7255             "explicit pointee type doesn't match operand's pointee type", Ty,
7256             Val->getType()->getNonOpaquePointerElementType()));
7257   }
7258   SmallPtrSet<Type *, 4> Visited;
7259   if (!Alignment && !Ty->isSized(&Visited))
7260     return error(ExplicitTypeLoc, "loading unsized types is not allowed");
7261   if (!Alignment)
7262     Alignment = M->getDataLayout().getABITypeAlign(Ty);
7263   Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID);
7264   return AteExtraComma ? InstExtraComma : InstNormal;
7265 }
7266 
7267 /// parseStore
7268 
7269 ///   ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)?
7270 ///   ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue
7271 ///       'singlethread'? AtomicOrdering (',' 'align' i32)?
7272 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) {
7273   Value *Val, *Ptr; LocTy Loc, PtrLoc;
7274   MaybeAlign Alignment;
7275   bool AteExtraComma = false;
7276   bool isAtomic = false;
7277   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7278   SyncScope::ID SSID = SyncScope::System;
7279 
7280   if (Lex.getKind() == lltok::kw_atomic) {
7281     isAtomic = true;
7282     Lex.Lex();
7283   }
7284 
7285   bool isVolatile = false;
7286   if (Lex.getKind() == lltok::kw_volatile) {
7287     isVolatile = true;
7288     Lex.Lex();
7289   }
7290 
7291   if (parseTypeAndValue(Val, Loc, PFS) ||
7292       parseToken(lltok::comma, "expected ',' after store operand") ||
7293       parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7294       parseScopeAndOrdering(isAtomic, SSID, Ordering) ||
7295       parseOptionalCommaAlign(Alignment, AteExtraComma))
7296     return true;
7297 
7298   if (!Ptr->getType()->isPointerTy())
7299     return error(PtrLoc, "store operand must be a pointer");
7300   if (!Val->getType()->isFirstClassType())
7301     return error(Loc, "store operand must be a first class value");
7302   if (!cast<PointerType>(Ptr->getType())
7303            ->isOpaqueOrPointeeTypeMatches(Val->getType()))
7304     return error(Loc, "stored value and pointer type do not match");
7305   if (isAtomic && !Alignment)
7306     return error(Loc, "atomic store must have explicit non-zero alignment");
7307   if (Ordering == AtomicOrdering::Acquire ||
7308       Ordering == AtomicOrdering::AcquireRelease)
7309     return error(Loc, "atomic store cannot use Acquire ordering");
7310   SmallPtrSet<Type *, 4> Visited;
7311   if (!Alignment && !Val->getType()->isSized(&Visited))
7312     return error(Loc, "storing unsized types is not allowed");
7313   if (!Alignment)
7314     Alignment = M->getDataLayout().getABITypeAlign(Val->getType());
7315 
7316   Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID);
7317   return AteExtraComma ? InstExtraComma : InstNormal;
7318 }
7319 
7320 /// parseCmpXchg
7321 ///   ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ','
7322 ///       TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering ','
7323 ///       'Align'?
7324 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) {
7325   Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc;
7326   bool AteExtraComma = false;
7327   AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic;
7328   AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic;
7329   SyncScope::ID SSID = SyncScope::System;
7330   bool isVolatile = false;
7331   bool isWeak = false;
7332   MaybeAlign Alignment;
7333 
7334   if (EatIfPresent(lltok::kw_weak))
7335     isWeak = true;
7336 
7337   if (EatIfPresent(lltok::kw_volatile))
7338     isVolatile = true;
7339 
7340   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7341       parseToken(lltok::comma, "expected ',' after cmpxchg address") ||
7342       parseTypeAndValue(Cmp, CmpLoc, PFS) ||
7343       parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") ||
7344       parseTypeAndValue(New, NewLoc, PFS) ||
7345       parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) ||
7346       parseOrdering(FailureOrdering) ||
7347       parseOptionalCommaAlign(Alignment, AteExtraComma))
7348     return true;
7349 
7350   if (!AtomicCmpXchgInst::isValidSuccessOrdering(SuccessOrdering))
7351     return tokError("invalid cmpxchg success ordering");
7352   if (!AtomicCmpXchgInst::isValidFailureOrdering(FailureOrdering))
7353     return tokError("invalid cmpxchg failure ordering");
7354   if (!Ptr->getType()->isPointerTy())
7355     return error(PtrLoc, "cmpxchg operand must be a pointer");
7356   if (!cast<PointerType>(Ptr->getType())
7357            ->isOpaqueOrPointeeTypeMatches(Cmp->getType()))
7358     return error(CmpLoc, "compare value and pointer type do not match");
7359   if (!cast<PointerType>(Ptr->getType())
7360            ->isOpaqueOrPointeeTypeMatches(New->getType()))
7361     return error(NewLoc, "new value and pointer type do not match");
7362   if (Cmp->getType() != New->getType())
7363     return error(NewLoc, "compare value and new value type do not match");
7364   if (!New->getType()->isFirstClassType())
7365     return error(NewLoc, "cmpxchg operand must be a first class value");
7366 
7367   const Align DefaultAlignment(
7368       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7369           Cmp->getType()));
7370 
7371   AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst(
7372       Ptr, Cmp, New, Alignment.getValueOr(DefaultAlignment), SuccessOrdering,
7373       FailureOrdering, SSID);
7374   CXI->setVolatile(isVolatile);
7375   CXI->setWeak(isWeak);
7376 
7377   Inst = CXI;
7378   return AteExtraComma ? InstExtraComma : InstNormal;
7379 }
7380 
7381 /// parseAtomicRMW
7382 ///   ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue
7383 ///       'singlethread'? AtomicOrdering
7384 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) {
7385   Value *Ptr, *Val; LocTy PtrLoc, ValLoc;
7386   bool AteExtraComma = false;
7387   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7388   SyncScope::ID SSID = SyncScope::System;
7389   bool isVolatile = false;
7390   bool IsFP = false;
7391   AtomicRMWInst::BinOp Operation;
7392   MaybeAlign Alignment;
7393 
7394   if (EatIfPresent(lltok::kw_volatile))
7395     isVolatile = true;
7396 
7397   switch (Lex.getKind()) {
7398   default:
7399     return tokError("expected binary operation in atomicrmw");
7400   case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break;
7401   case lltok::kw_add: Operation = AtomicRMWInst::Add; break;
7402   case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break;
7403   case lltok::kw_and: Operation = AtomicRMWInst::And; break;
7404   case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break;
7405   case lltok::kw_or: Operation = AtomicRMWInst::Or; break;
7406   case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break;
7407   case lltok::kw_max: Operation = AtomicRMWInst::Max; break;
7408   case lltok::kw_min: Operation = AtomicRMWInst::Min; break;
7409   case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break;
7410   case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break;
7411   case lltok::kw_fadd:
7412     Operation = AtomicRMWInst::FAdd;
7413     IsFP = true;
7414     break;
7415   case lltok::kw_fsub:
7416     Operation = AtomicRMWInst::FSub;
7417     IsFP = true;
7418     break;
7419   }
7420   Lex.Lex();  // Eat the operation.
7421 
7422   if (parseTypeAndValue(Ptr, PtrLoc, PFS) ||
7423       parseToken(lltok::comma, "expected ',' after atomicrmw address") ||
7424       parseTypeAndValue(Val, ValLoc, PFS) ||
7425       parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering) ||
7426       parseOptionalCommaAlign(Alignment, AteExtraComma))
7427     return true;
7428 
7429   if (Ordering == AtomicOrdering::Unordered)
7430     return tokError("atomicrmw cannot be unordered");
7431   if (!Ptr->getType()->isPointerTy())
7432     return error(PtrLoc, "atomicrmw operand must be a pointer");
7433   if (!cast<PointerType>(Ptr->getType())
7434            ->isOpaqueOrPointeeTypeMatches(Val->getType()))
7435     return error(ValLoc, "atomicrmw value and pointer type do not match");
7436 
7437   if (Operation == AtomicRMWInst::Xchg) {
7438     if (!Val->getType()->isIntegerTy() &&
7439         !Val->getType()->isFloatingPointTy()) {
7440       return error(ValLoc,
7441                    "atomicrmw " + AtomicRMWInst::getOperationName(Operation) +
7442                        " operand must be an integer or floating point type");
7443     }
7444   } else if (IsFP) {
7445     if (!Val->getType()->isFloatingPointTy()) {
7446       return error(ValLoc, "atomicrmw " +
7447                                AtomicRMWInst::getOperationName(Operation) +
7448                                " operand must be a floating point type");
7449     }
7450   } else {
7451     if (!Val->getType()->isIntegerTy()) {
7452       return error(ValLoc, "atomicrmw " +
7453                                AtomicRMWInst::getOperationName(Operation) +
7454                                " operand must be an integer");
7455     }
7456   }
7457 
7458   unsigned Size = Val->getType()->getPrimitiveSizeInBits();
7459   if (Size < 8 || (Size & (Size - 1)))
7460     return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized"
7461                          " integer");
7462   const Align DefaultAlignment(
7463       PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize(
7464           Val->getType()));
7465   AtomicRMWInst *RMWI =
7466       new AtomicRMWInst(Operation, Ptr, Val,
7467                         Alignment.getValueOr(DefaultAlignment), Ordering, SSID);
7468   RMWI->setVolatile(isVolatile);
7469   Inst = RMWI;
7470   return AteExtraComma ? InstExtraComma : InstNormal;
7471 }
7472 
7473 /// parseFence
7474 ///   ::= 'fence' 'singlethread'? AtomicOrdering
7475 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) {
7476   AtomicOrdering Ordering = AtomicOrdering::NotAtomic;
7477   SyncScope::ID SSID = SyncScope::System;
7478   if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering))
7479     return true;
7480 
7481   if (Ordering == AtomicOrdering::Unordered)
7482     return tokError("fence cannot be unordered");
7483   if (Ordering == AtomicOrdering::Monotonic)
7484     return tokError("fence cannot be monotonic");
7485 
7486   Inst = new FenceInst(Context, Ordering, SSID);
7487   return InstNormal;
7488 }
7489 
7490 /// parseGetElementPtr
7491 ///   ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)*
7492 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) {
7493   Value *Ptr = nullptr;
7494   Value *Val = nullptr;
7495   LocTy Loc, EltLoc;
7496 
7497   bool InBounds = EatIfPresent(lltok::kw_inbounds);
7498 
7499   Type *Ty = nullptr;
7500   LocTy ExplicitTypeLoc = Lex.getLoc();
7501   if (parseType(Ty) ||
7502       parseToken(lltok::comma, "expected comma after getelementptr's type") ||
7503       parseTypeAndValue(Ptr, Loc, PFS))
7504     return true;
7505 
7506   Type *BaseType = Ptr->getType();
7507   PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType());
7508   if (!BasePointerType)
7509     return error(Loc, "base of getelementptr must be a pointer");
7510 
7511   if (!BasePointerType->isOpaqueOrPointeeTypeMatches(Ty)) {
7512     return error(
7513         ExplicitTypeLoc,
7514         typeComparisonErrorMessage(
7515             "explicit pointee type doesn't match operand's pointee type", Ty,
7516             BasePointerType->getNonOpaquePointerElementType()));
7517   }
7518 
7519   SmallVector<Value*, 16> Indices;
7520   bool AteExtraComma = false;
7521   // GEP returns a vector of pointers if at least one of parameters is a vector.
7522   // All vector parameters should have the same vector width.
7523   ElementCount GEPWidth = BaseType->isVectorTy()
7524                               ? cast<VectorType>(BaseType)->getElementCount()
7525                               : ElementCount::getFixed(0);
7526 
7527   while (EatIfPresent(lltok::comma)) {
7528     if (Lex.getKind() == lltok::MetadataVar) {
7529       AteExtraComma = true;
7530       break;
7531     }
7532     if (parseTypeAndValue(Val, EltLoc, PFS))
7533       return true;
7534     if (!Val->getType()->isIntOrIntVectorTy())
7535       return error(EltLoc, "getelementptr index must be an integer");
7536 
7537     if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) {
7538       ElementCount ValNumEl = ValVTy->getElementCount();
7539       if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl)
7540         return error(
7541             EltLoc,
7542             "getelementptr vector index has a wrong number of elements");
7543       GEPWidth = ValNumEl;
7544     }
7545     Indices.push_back(Val);
7546   }
7547 
7548   SmallPtrSet<Type*, 4> Visited;
7549   if (!Indices.empty() && !Ty->isSized(&Visited))
7550     return error(Loc, "base element of getelementptr must be sized");
7551 
7552   if (!GetElementPtrInst::getIndexedType(Ty, Indices))
7553     return error(Loc, "invalid getelementptr indices");
7554   Inst = GetElementPtrInst::Create(Ty, Ptr, Indices);
7555   if (InBounds)
7556     cast<GetElementPtrInst>(Inst)->setIsInBounds(true);
7557   return AteExtraComma ? InstExtraComma : InstNormal;
7558 }
7559 
7560 /// parseExtractValue
7561 ///   ::= 'extractvalue' TypeAndValue (',' uint32)+
7562 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) {
7563   Value *Val; LocTy Loc;
7564   SmallVector<unsigned, 4> Indices;
7565   bool AteExtraComma;
7566   if (parseTypeAndValue(Val, Loc, PFS) ||
7567       parseIndexList(Indices, AteExtraComma))
7568     return true;
7569 
7570   if (!Val->getType()->isAggregateType())
7571     return error(Loc, "extractvalue operand must be aggregate type");
7572 
7573   if (!ExtractValueInst::getIndexedType(Val->getType(), Indices))
7574     return error(Loc, "invalid indices for extractvalue");
7575   Inst = ExtractValueInst::Create(Val, Indices);
7576   return AteExtraComma ? InstExtraComma : InstNormal;
7577 }
7578 
7579 /// parseInsertValue
7580 ///   ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+
7581 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) {
7582   Value *Val0, *Val1; LocTy Loc0, Loc1;
7583   SmallVector<unsigned, 4> Indices;
7584   bool AteExtraComma;
7585   if (parseTypeAndValue(Val0, Loc0, PFS) ||
7586       parseToken(lltok::comma, "expected comma after insertvalue operand") ||
7587       parseTypeAndValue(Val1, Loc1, PFS) ||
7588       parseIndexList(Indices, AteExtraComma))
7589     return true;
7590 
7591   if (!Val0->getType()->isAggregateType())
7592     return error(Loc0, "insertvalue operand must be aggregate type");
7593 
7594   Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices);
7595   if (!IndexedType)
7596     return error(Loc0, "invalid indices for insertvalue");
7597   if (IndexedType != Val1->getType())
7598     return error(Loc1, "insertvalue operand and field disagree in type: '" +
7599                            getTypeString(Val1->getType()) + "' instead of '" +
7600                            getTypeString(IndexedType) + "'");
7601   Inst = InsertValueInst::Create(Val0, Val1, Indices);
7602   return AteExtraComma ? InstExtraComma : InstNormal;
7603 }
7604 
7605 //===----------------------------------------------------------------------===//
7606 // Embedded metadata.
7607 //===----------------------------------------------------------------------===//
7608 
7609 /// parseMDNodeVector
7610 ///   ::= { Element (',' Element)* }
7611 /// Element
7612 ///   ::= 'null' | TypeAndValue
7613 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) {
7614   if (parseToken(lltok::lbrace, "expected '{' here"))
7615     return true;
7616 
7617   // Check for an empty list.
7618   if (EatIfPresent(lltok::rbrace))
7619     return false;
7620 
7621   do {
7622     // Null is a special case since it is typeless.
7623     if (EatIfPresent(lltok::kw_null)) {
7624       Elts.push_back(nullptr);
7625       continue;
7626     }
7627 
7628     Metadata *MD;
7629     if (parseMetadata(MD, nullptr))
7630       return true;
7631     Elts.push_back(MD);
7632   } while (EatIfPresent(lltok::comma));
7633 
7634   return parseToken(lltok::rbrace, "expected end of metadata node");
7635 }
7636 
7637 //===----------------------------------------------------------------------===//
7638 // Use-list order directives.
7639 //===----------------------------------------------------------------------===//
7640 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes,
7641                                 SMLoc Loc) {
7642   if (V->use_empty())
7643     return error(Loc, "value has no uses");
7644 
7645   unsigned NumUses = 0;
7646   SmallDenseMap<const Use *, unsigned, 16> Order;
7647   for (const Use &U : V->uses()) {
7648     if (++NumUses > Indexes.size())
7649       break;
7650     Order[&U] = Indexes[NumUses - 1];
7651   }
7652   if (NumUses < 2)
7653     return error(Loc, "value only has one use");
7654   if (Order.size() != Indexes.size() || NumUses > Indexes.size())
7655     return error(Loc,
7656                  "wrong number of indexes, expected " + Twine(V->getNumUses()));
7657 
7658   V->sortUseList([&](const Use &L, const Use &R) {
7659     return Order.lookup(&L) < Order.lookup(&R);
7660   });
7661   return false;
7662 }
7663 
7664 /// parseUseListOrderIndexes
7665 ///   ::= '{' uint32 (',' uint32)+ '}'
7666 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) {
7667   SMLoc Loc = Lex.getLoc();
7668   if (parseToken(lltok::lbrace, "expected '{' here"))
7669     return true;
7670   if (Lex.getKind() == lltok::rbrace)
7671     return Lex.Error("expected non-empty list of uselistorder indexes");
7672 
7673   // Use Offset, Max, and IsOrdered to check consistency of indexes.  The
7674   // indexes should be distinct numbers in the range [0, size-1], and should
7675   // not be in order.
7676   unsigned Offset = 0;
7677   unsigned Max = 0;
7678   bool IsOrdered = true;
7679   assert(Indexes.empty() && "Expected empty order vector");
7680   do {
7681     unsigned Index;
7682     if (parseUInt32(Index))
7683       return true;
7684 
7685     // Update consistency checks.
7686     Offset += Index - Indexes.size();
7687     Max = std::max(Max, Index);
7688     IsOrdered &= Index == Indexes.size();
7689 
7690     Indexes.push_back(Index);
7691   } while (EatIfPresent(lltok::comma));
7692 
7693   if (parseToken(lltok::rbrace, "expected '}' here"))
7694     return true;
7695 
7696   if (Indexes.size() < 2)
7697     return error(Loc, "expected >= 2 uselistorder indexes");
7698   if (Offset != 0 || Max >= Indexes.size())
7699     return error(Loc,
7700                  "expected distinct uselistorder indexes in range [0, size)");
7701   if (IsOrdered)
7702     return error(Loc, "expected uselistorder indexes to change the order");
7703 
7704   return false;
7705 }
7706 
7707 /// parseUseListOrder
7708 ///   ::= 'uselistorder' Type Value ',' UseListOrderIndexes
7709 bool LLParser::parseUseListOrder(PerFunctionState *PFS) {
7710   SMLoc Loc = Lex.getLoc();
7711   if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive"))
7712     return true;
7713 
7714   Value *V;
7715   SmallVector<unsigned, 16> Indexes;
7716   if (parseTypeAndValue(V, PFS) ||
7717       parseToken(lltok::comma, "expected comma in uselistorder directive") ||
7718       parseUseListOrderIndexes(Indexes))
7719     return true;
7720 
7721   return sortUseListOrder(V, Indexes, Loc);
7722 }
7723 
7724 /// parseUseListOrderBB
7725 ///   ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes
7726 bool LLParser::parseUseListOrderBB() {
7727   assert(Lex.getKind() == lltok::kw_uselistorder_bb);
7728   SMLoc Loc = Lex.getLoc();
7729   Lex.Lex();
7730 
7731   ValID Fn, Label;
7732   SmallVector<unsigned, 16> Indexes;
7733   if (parseValID(Fn, /*PFS=*/nullptr) ||
7734       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7735       parseValID(Label, /*PFS=*/nullptr) ||
7736       parseToken(lltok::comma, "expected comma in uselistorder_bb directive") ||
7737       parseUseListOrderIndexes(Indexes))
7738     return true;
7739 
7740   // Check the function.
7741   GlobalValue *GV;
7742   if (Fn.Kind == ValID::t_GlobalName)
7743     GV = M->getNamedValue(Fn.StrVal);
7744   else if (Fn.Kind == ValID::t_GlobalID)
7745     GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr;
7746   else
7747     return error(Fn.Loc, "expected function name in uselistorder_bb");
7748   if (!GV)
7749     return error(Fn.Loc,
7750                  "invalid function forward reference in uselistorder_bb");
7751   auto *F = dyn_cast<Function>(GV);
7752   if (!F)
7753     return error(Fn.Loc, "expected function name in uselistorder_bb");
7754   if (F->isDeclaration())
7755     return error(Fn.Loc, "invalid declaration in uselistorder_bb");
7756 
7757   // Check the basic block.
7758   if (Label.Kind == ValID::t_LocalID)
7759     return error(Label.Loc, "invalid numeric label in uselistorder_bb");
7760   if (Label.Kind != ValID::t_LocalName)
7761     return error(Label.Loc, "expected basic block name in uselistorder_bb");
7762   Value *V = F->getValueSymbolTable()->lookup(Label.StrVal);
7763   if (!V)
7764     return error(Label.Loc, "invalid basic block in uselistorder_bb");
7765   if (!isa<BasicBlock>(V))
7766     return error(Label.Loc, "expected basic block in uselistorder_bb");
7767 
7768   return sortUseListOrder(V, Indexes, Loc);
7769 }
7770 
7771 /// ModuleEntry
7772 ///   ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')'
7773 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')'
7774 bool LLParser::parseModuleEntry(unsigned ID) {
7775   assert(Lex.getKind() == lltok::kw_module);
7776   Lex.Lex();
7777 
7778   std::string Path;
7779   if (parseToken(lltok::colon, "expected ':' here") ||
7780       parseToken(lltok::lparen, "expected '(' here") ||
7781       parseToken(lltok::kw_path, "expected 'path' here") ||
7782       parseToken(lltok::colon, "expected ':' here") ||
7783       parseStringConstant(Path) ||
7784       parseToken(lltok::comma, "expected ',' here") ||
7785       parseToken(lltok::kw_hash, "expected 'hash' here") ||
7786       parseToken(lltok::colon, "expected ':' here") ||
7787       parseToken(lltok::lparen, "expected '(' here"))
7788     return true;
7789 
7790   ModuleHash Hash;
7791   if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") ||
7792       parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") ||
7793       parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") ||
7794       parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") ||
7795       parseUInt32(Hash[4]))
7796     return true;
7797 
7798   if (parseToken(lltok::rparen, "expected ')' here") ||
7799       parseToken(lltok::rparen, "expected ')' here"))
7800     return true;
7801 
7802   auto ModuleEntry = Index->addModule(Path, ID, Hash);
7803   ModuleIdMap[ID] = ModuleEntry->first();
7804 
7805   return false;
7806 }
7807 
7808 /// TypeIdEntry
7809 ///   ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')'
7810 bool LLParser::parseTypeIdEntry(unsigned ID) {
7811   assert(Lex.getKind() == lltok::kw_typeid);
7812   Lex.Lex();
7813 
7814   std::string Name;
7815   if (parseToken(lltok::colon, "expected ':' here") ||
7816       parseToken(lltok::lparen, "expected '(' here") ||
7817       parseToken(lltok::kw_name, "expected 'name' here") ||
7818       parseToken(lltok::colon, "expected ':' here") ||
7819       parseStringConstant(Name))
7820     return true;
7821 
7822   TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name);
7823   if (parseToken(lltok::comma, "expected ',' here") ||
7824       parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here"))
7825     return true;
7826 
7827   // Check if this ID was forward referenced, and if so, update the
7828   // corresponding GUIDs.
7829   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7830   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7831     for (auto TIDRef : FwdRefTIDs->second) {
7832       assert(!*TIDRef.first &&
7833              "Forward referenced type id GUID expected to be 0");
7834       *TIDRef.first = GlobalValue::getGUID(Name);
7835     }
7836     ForwardRefTypeIds.erase(FwdRefTIDs);
7837   }
7838 
7839   return false;
7840 }
7841 
7842 /// TypeIdSummary
7843 ///   ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')'
7844 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) {
7845   if (parseToken(lltok::kw_summary, "expected 'summary' here") ||
7846       parseToken(lltok::colon, "expected ':' here") ||
7847       parseToken(lltok::lparen, "expected '(' here") ||
7848       parseTypeTestResolution(TIS.TTRes))
7849     return true;
7850 
7851   if (EatIfPresent(lltok::comma)) {
7852     // Expect optional wpdResolutions field
7853     if (parseOptionalWpdResolutions(TIS.WPDRes))
7854       return true;
7855   }
7856 
7857   if (parseToken(lltok::rparen, "expected ')' here"))
7858     return true;
7859 
7860   return false;
7861 }
7862 
7863 static ValueInfo EmptyVI =
7864     ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8);
7865 
7866 /// TypeIdCompatibleVtableEntry
7867 ///   ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ','
7868 ///   TypeIdCompatibleVtableInfo
7869 ///   ')'
7870 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) {
7871   assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable);
7872   Lex.Lex();
7873 
7874   std::string Name;
7875   if (parseToken(lltok::colon, "expected ':' here") ||
7876       parseToken(lltok::lparen, "expected '(' here") ||
7877       parseToken(lltok::kw_name, "expected 'name' here") ||
7878       parseToken(lltok::colon, "expected ':' here") ||
7879       parseStringConstant(Name))
7880     return true;
7881 
7882   TypeIdCompatibleVtableInfo &TI =
7883       Index->getOrInsertTypeIdCompatibleVtableSummary(Name);
7884   if (parseToken(lltok::comma, "expected ',' here") ||
7885       parseToken(lltok::kw_summary, "expected 'summary' here") ||
7886       parseToken(lltok::colon, "expected ':' here") ||
7887       parseToken(lltok::lparen, "expected '(' here"))
7888     return true;
7889 
7890   IdToIndexMapType IdToIndexMap;
7891   // parse each call edge
7892   do {
7893     uint64_t Offset;
7894     if (parseToken(lltok::lparen, "expected '(' here") ||
7895         parseToken(lltok::kw_offset, "expected 'offset' here") ||
7896         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
7897         parseToken(lltok::comma, "expected ',' here"))
7898       return true;
7899 
7900     LocTy Loc = Lex.getLoc();
7901     unsigned GVId;
7902     ValueInfo VI;
7903     if (parseGVReference(VI, GVId))
7904       return true;
7905 
7906     // Keep track of the TypeIdCompatibleVtableInfo array index needing a
7907     // forward reference. We will save the location of the ValueInfo needing an
7908     // update, but can only do so once the std::vector is finalized.
7909     if (VI == EmptyVI)
7910       IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc));
7911     TI.push_back({Offset, VI});
7912 
7913     if (parseToken(lltok::rparen, "expected ')' in call"))
7914       return true;
7915   } while (EatIfPresent(lltok::comma));
7916 
7917   // Now that the TI vector is finalized, it is safe to save the locations
7918   // of any forward GV references that need updating later.
7919   for (auto I : IdToIndexMap) {
7920     auto &Infos = ForwardRefValueInfos[I.first];
7921     for (auto P : I.second) {
7922       assert(TI[P.first].VTableVI == EmptyVI &&
7923              "Forward referenced ValueInfo expected to be empty");
7924       Infos.emplace_back(&TI[P.first].VTableVI, P.second);
7925     }
7926   }
7927 
7928   if (parseToken(lltok::rparen, "expected ')' here") ||
7929       parseToken(lltok::rparen, "expected ')' here"))
7930     return true;
7931 
7932   // Check if this ID was forward referenced, and if so, update the
7933   // corresponding GUIDs.
7934   auto FwdRefTIDs = ForwardRefTypeIds.find(ID);
7935   if (FwdRefTIDs != ForwardRefTypeIds.end()) {
7936     for (auto TIDRef : FwdRefTIDs->second) {
7937       assert(!*TIDRef.first &&
7938              "Forward referenced type id GUID expected to be 0");
7939       *TIDRef.first = GlobalValue::getGUID(Name);
7940     }
7941     ForwardRefTypeIds.erase(FwdRefTIDs);
7942   }
7943 
7944   return false;
7945 }
7946 
7947 /// TypeTestResolution
7948 ///   ::= 'typeTestRes' ':' '(' 'kind' ':'
7949 ///         ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ','
7950 ///         'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]?
7951 ///         [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]?
7952 ///         [',' 'inlinesBits' ':' UInt64]? ')'
7953 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) {
7954   if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") ||
7955       parseToken(lltok::colon, "expected ':' here") ||
7956       parseToken(lltok::lparen, "expected '(' here") ||
7957       parseToken(lltok::kw_kind, "expected 'kind' here") ||
7958       parseToken(lltok::colon, "expected ':' here"))
7959     return true;
7960 
7961   switch (Lex.getKind()) {
7962   case lltok::kw_unknown:
7963     TTRes.TheKind = TypeTestResolution::Unknown;
7964     break;
7965   case lltok::kw_unsat:
7966     TTRes.TheKind = TypeTestResolution::Unsat;
7967     break;
7968   case lltok::kw_byteArray:
7969     TTRes.TheKind = TypeTestResolution::ByteArray;
7970     break;
7971   case lltok::kw_inline:
7972     TTRes.TheKind = TypeTestResolution::Inline;
7973     break;
7974   case lltok::kw_single:
7975     TTRes.TheKind = TypeTestResolution::Single;
7976     break;
7977   case lltok::kw_allOnes:
7978     TTRes.TheKind = TypeTestResolution::AllOnes;
7979     break;
7980   default:
7981     return error(Lex.getLoc(), "unexpected TypeTestResolution kind");
7982   }
7983   Lex.Lex();
7984 
7985   if (parseToken(lltok::comma, "expected ',' here") ||
7986       parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") ||
7987       parseToken(lltok::colon, "expected ':' here") ||
7988       parseUInt32(TTRes.SizeM1BitWidth))
7989     return true;
7990 
7991   // parse optional fields
7992   while (EatIfPresent(lltok::comma)) {
7993     switch (Lex.getKind()) {
7994     case lltok::kw_alignLog2:
7995       Lex.Lex();
7996       if (parseToken(lltok::colon, "expected ':'") ||
7997           parseUInt64(TTRes.AlignLog2))
7998         return true;
7999       break;
8000     case lltok::kw_sizeM1:
8001       Lex.Lex();
8002       if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1))
8003         return true;
8004       break;
8005     case lltok::kw_bitMask: {
8006       unsigned Val;
8007       Lex.Lex();
8008       if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val))
8009         return true;
8010       assert(Val <= 0xff);
8011       TTRes.BitMask = (uint8_t)Val;
8012       break;
8013     }
8014     case lltok::kw_inlineBits:
8015       Lex.Lex();
8016       if (parseToken(lltok::colon, "expected ':'") ||
8017           parseUInt64(TTRes.InlineBits))
8018         return true;
8019       break;
8020     default:
8021       return error(Lex.getLoc(), "expected optional TypeTestResolution field");
8022     }
8023   }
8024 
8025   if (parseToken(lltok::rparen, "expected ')' here"))
8026     return true;
8027 
8028   return false;
8029 }
8030 
8031 /// OptionalWpdResolutions
8032 ///   ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')'
8033 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')'
8034 bool LLParser::parseOptionalWpdResolutions(
8035     std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) {
8036   if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") ||
8037       parseToken(lltok::colon, "expected ':' here") ||
8038       parseToken(lltok::lparen, "expected '(' here"))
8039     return true;
8040 
8041   do {
8042     uint64_t Offset;
8043     WholeProgramDevirtResolution WPDRes;
8044     if (parseToken(lltok::lparen, "expected '(' here") ||
8045         parseToken(lltok::kw_offset, "expected 'offset' here") ||
8046         parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) ||
8047         parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) ||
8048         parseToken(lltok::rparen, "expected ')' here"))
8049       return true;
8050     WPDResMap[Offset] = WPDRes;
8051   } while (EatIfPresent(lltok::comma));
8052 
8053   if (parseToken(lltok::rparen, "expected ')' here"))
8054     return true;
8055 
8056   return false;
8057 }
8058 
8059 /// WpdRes
8060 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'indir'
8061 ///         [',' OptionalResByArg]? ')'
8062 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl'
8063 ///         ',' 'singleImplName' ':' STRINGCONSTANT ','
8064 ///         [',' OptionalResByArg]? ')'
8065 ///   ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel'
8066 ///         [',' OptionalResByArg]? ')'
8067 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) {
8068   if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") ||
8069       parseToken(lltok::colon, "expected ':' here") ||
8070       parseToken(lltok::lparen, "expected '(' here") ||
8071       parseToken(lltok::kw_kind, "expected 'kind' here") ||
8072       parseToken(lltok::colon, "expected ':' here"))
8073     return true;
8074 
8075   switch (Lex.getKind()) {
8076   case lltok::kw_indir:
8077     WPDRes.TheKind = WholeProgramDevirtResolution::Indir;
8078     break;
8079   case lltok::kw_singleImpl:
8080     WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl;
8081     break;
8082   case lltok::kw_branchFunnel:
8083     WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel;
8084     break;
8085   default:
8086     return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind");
8087   }
8088   Lex.Lex();
8089 
8090   // parse optional fields
8091   while (EatIfPresent(lltok::comma)) {
8092     switch (Lex.getKind()) {
8093     case lltok::kw_singleImplName:
8094       Lex.Lex();
8095       if (parseToken(lltok::colon, "expected ':' here") ||
8096           parseStringConstant(WPDRes.SingleImplName))
8097         return true;
8098       break;
8099     case lltok::kw_resByArg:
8100       if (parseOptionalResByArg(WPDRes.ResByArg))
8101         return true;
8102       break;
8103     default:
8104       return error(Lex.getLoc(),
8105                    "expected optional WholeProgramDevirtResolution field");
8106     }
8107   }
8108 
8109   if (parseToken(lltok::rparen, "expected ')' here"))
8110     return true;
8111 
8112   return false;
8113 }
8114 
8115 /// OptionalResByArg
8116 ///   ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')'
8117 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':'
8118 ///                ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' |
8119 ///                  'virtualConstProp' )
8120 ///                [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]?
8121 ///                [',' 'bit' ':' UInt32]? ')'
8122 bool LLParser::parseOptionalResByArg(
8123     std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg>
8124         &ResByArg) {
8125   if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") ||
8126       parseToken(lltok::colon, "expected ':' here") ||
8127       parseToken(lltok::lparen, "expected '(' here"))
8128     return true;
8129 
8130   do {
8131     std::vector<uint64_t> Args;
8132     if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") ||
8133         parseToken(lltok::kw_byArg, "expected 'byArg here") ||
8134         parseToken(lltok::colon, "expected ':' here") ||
8135         parseToken(lltok::lparen, "expected '(' here") ||
8136         parseToken(lltok::kw_kind, "expected 'kind' here") ||
8137         parseToken(lltok::colon, "expected ':' here"))
8138       return true;
8139 
8140     WholeProgramDevirtResolution::ByArg ByArg;
8141     switch (Lex.getKind()) {
8142     case lltok::kw_indir:
8143       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir;
8144       break;
8145     case lltok::kw_uniformRetVal:
8146       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal;
8147       break;
8148     case lltok::kw_uniqueRetVal:
8149       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal;
8150       break;
8151     case lltok::kw_virtualConstProp:
8152       ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp;
8153       break;
8154     default:
8155       return error(Lex.getLoc(),
8156                    "unexpected WholeProgramDevirtResolution::ByArg kind");
8157     }
8158     Lex.Lex();
8159 
8160     // parse optional fields
8161     while (EatIfPresent(lltok::comma)) {
8162       switch (Lex.getKind()) {
8163       case lltok::kw_info:
8164         Lex.Lex();
8165         if (parseToken(lltok::colon, "expected ':' here") ||
8166             parseUInt64(ByArg.Info))
8167           return true;
8168         break;
8169       case lltok::kw_byte:
8170         Lex.Lex();
8171         if (parseToken(lltok::colon, "expected ':' here") ||
8172             parseUInt32(ByArg.Byte))
8173           return true;
8174         break;
8175       case lltok::kw_bit:
8176         Lex.Lex();
8177         if (parseToken(lltok::colon, "expected ':' here") ||
8178             parseUInt32(ByArg.Bit))
8179           return true;
8180         break;
8181       default:
8182         return error(Lex.getLoc(),
8183                      "expected optional whole program devirt field");
8184       }
8185     }
8186 
8187     if (parseToken(lltok::rparen, "expected ')' here"))
8188       return true;
8189 
8190     ResByArg[Args] = ByArg;
8191   } while (EatIfPresent(lltok::comma));
8192 
8193   if (parseToken(lltok::rparen, "expected ')' here"))
8194     return true;
8195 
8196   return false;
8197 }
8198 
8199 /// OptionalResByArg
8200 ///   ::= 'args' ':' '(' UInt64[, UInt64]* ')'
8201 bool LLParser::parseArgs(std::vector<uint64_t> &Args) {
8202   if (parseToken(lltok::kw_args, "expected 'args' here") ||
8203       parseToken(lltok::colon, "expected ':' here") ||
8204       parseToken(lltok::lparen, "expected '(' here"))
8205     return true;
8206 
8207   do {
8208     uint64_t Val;
8209     if (parseUInt64(Val))
8210       return true;
8211     Args.push_back(Val);
8212   } while (EatIfPresent(lltok::comma));
8213 
8214   if (parseToken(lltok::rparen, "expected ')' here"))
8215     return true;
8216 
8217   return false;
8218 }
8219 
8220 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8;
8221 
8222 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) {
8223   bool ReadOnly = Fwd->isReadOnly();
8224   bool WriteOnly = Fwd->isWriteOnly();
8225   assert(!(ReadOnly && WriteOnly));
8226   *Fwd = Resolved;
8227   if (ReadOnly)
8228     Fwd->setReadOnly();
8229   if (WriteOnly)
8230     Fwd->setWriteOnly();
8231 }
8232 
8233 /// Stores the given Name/GUID and associated summary into the Index.
8234 /// Also updates any forward references to the associated entry ID.
8235 void LLParser::addGlobalValueToIndex(
8236     std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage,
8237     unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) {
8238   // First create the ValueInfo utilizing the Name or GUID.
8239   ValueInfo VI;
8240   if (GUID != 0) {
8241     assert(Name.empty());
8242     VI = Index->getOrInsertValueInfo(GUID);
8243   } else {
8244     assert(!Name.empty());
8245     if (M) {
8246       auto *GV = M->getNamedValue(Name);
8247       assert(GV);
8248       VI = Index->getOrInsertValueInfo(GV);
8249     } else {
8250       assert(
8251           (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) &&
8252           "Need a source_filename to compute GUID for local");
8253       GUID = GlobalValue::getGUID(
8254           GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName));
8255       VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name));
8256     }
8257   }
8258 
8259   // Resolve forward references from calls/refs
8260   auto FwdRefVIs = ForwardRefValueInfos.find(ID);
8261   if (FwdRefVIs != ForwardRefValueInfos.end()) {
8262     for (auto VIRef : FwdRefVIs->second) {
8263       assert(VIRef.first->getRef() == FwdVIRef &&
8264              "Forward referenced ValueInfo expected to be empty");
8265       resolveFwdRef(VIRef.first, VI);
8266     }
8267     ForwardRefValueInfos.erase(FwdRefVIs);
8268   }
8269 
8270   // Resolve forward references from aliases
8271   auto FwdRefAliasees = ForwardRefAliasees.find(ID);
8272   if (FwdRefAliasees != ForwardRefAliasees.end()) {
8273     for (auto AliaseeRef : FwdRefAliasees->second) {
8274       assert(!AliaseeRef.first->hasAliasee() &&
8275              "Forward referencing alias already has aliasee");
8276       assert(Summary && "Aliasee must be a definition");
8277       AliaseeRef.first->setAliasee(VI, Summary.get());
8278     }
8279     ForwardRefAliasees.erase(FwdRefAliasees);
8280   }
8281 
8282   // Add the summary if one was provided.
8283   if (Summary)
8284     Index->addGlobalValueSummary(VI, std::move(Summary));
8285 
8286   // Save the associated ValueInfo for use in later references by ID.
8287   if (ID == NumberedValueInfos.size())
8288     NumberedValueInfos.push_back(VI);
8289   else {
8290     // Handle non-continuous numbers (to make test simplification easier).
8291     if (ID > NumberedValueInfos.size())
8292       NumberedValueInfos.resize(ID + 1);
8293     NumberedValueInfos[ID] = VI;
8294   }
8295 }
8296 
8297 /// parseSummaryIndexFlags
8298 ///   ::= 'flags' ':' UInt64
8299 bool LLParser::parseSummaryIndexFlags() {
8300   assert(Lex.getKind() == lltok::kw_flags);
8301   Lex.Lex();
8302 
8303   if (parseToken(lltok::colon, "expected ':' here"))
8304     return true;
8305   uint64_t Flags;
8306   if (parseUInt64(Flags))
8307     return true;
8308   if (Index)
8309     Index->setFlags(Flags);
8310   return false;
8311 }
8312 
8313 /// parseBlockCount
8314 ///   ::= 'blockcount' ':' UInt64
8315 bool LLParser::parseBlockCount() {
8316   assert(Lex.getKind() == lltok::kw_blockcount);
8317   Lex.Lex();
8318 
8319   if (parseToken(lltok::colon, "expected ':' here"))
8320     return true;
8321   uint64_t BlockCount;
8322   if (parseUInt64(BlockCount))
8323     return true;
8324   if (Index)
8325     Index->setBlockCount(BlockCount);
8326   return false;
8327 }
8328 
8329 /// parseGVEntry
8330 ///   ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64)
8331 ///         [',' 'summaries' ':' Summary[',' Summary]* ]? ')'
8332 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')'
8333 bool LLParser::parseGVEntry(unsigned ID) {
8334   assert(Lex.getKind() == lltok::kw_gv);
8335   Lex.Lex();
8336 
8337   if (parseToken(lltok::colon, "expected ':' here") ||
8338       parseToken(lltok::lparen, "expected '(' here"))
8339     return true;
8340 
8341   std::string Name;
8342   GlobalValue::GUID GUID = 0;
8343   switch (Lex.getKind()) {
8344   case lltok::kw_name:
8345     Lex.Lex();
8346     if (parseToken(lltok::colon, "expected ':' here") ||
8347         parseStringConstant(Name))
8348       return true;
8349     // Can't create GUID/ValueInfo until we have the linkage.
8350     break;
8351   case lltok::kw_guid:
8352     Lex.Lex();
8353     if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID))
8354       return true;
8355     break;
8356   default:
8357     return error(Lex.getLoc(), "expected name or guid tag");
8358   }
8359 
8360   if (!EatIfPresent(lltok::comma)) {
8361     // No summaries. Wrap up.
8362     if (parseToken(lltok::rparen, "expected ')' here"))
8363       return true;
8364     // This was created for a call to an external or indirect target.
8365     // A GUID with no summary came from a VALUE_GUID record, dummy GUID
8366     // created for indirect calls with VP. A Name with no GUID came from
8367     // an external definition. We pass ExternalLinkage since that is only
8368     // used when the GUID must be computed from Name, and in that case
8369     // the symbol must have external linkage.
8370     addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID,
8371                           nullptr);
8372     return false;
8373   }
8374 
8375   // Have a list of summaries
8376   if (parseToken(lltok::kw_summaries, "expected 'summaries' here") ||
8377       parseToken(lltok::colon, "expected ':' here") ||
8378       parseToken(lltok::lparen, "expected '(' here"))
8379     return true;
8380   do {
8381     switch (Lex.getKind()) {
8382     case lltok::kw_function:
8383       if (parseFunctionSummary(Name, GUID, ID))
8384         return true;
8385       break;
8386     case lltok::kw_variable:
8387       if (parseVariableSummary(Name, GUID, ID))
8388         return true;
8389       break;
8390     case lltok::kw_alias:
8391       if (parseAliasSummary(Name, GUID, ID))
8392         return true;
8393       break;
8394     default:
8395       return error(Lex.getLoc(), "expected summary type");
8396     }
8397   } while (EatIfPresent(lltok::comma));
8398 
8399   if (parseToken(lltok::rparen, "expected ')' here") ||
8400       parseToken(lltok::rparen, "expected ')' here"))
8401     return true;
8402 
8403   return false;
8404 }
8405 
8406 /// FunctionSummary
8407 ///   ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8408 ///         ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]?
8409 ///         [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]?
8410 ///         [',' OptionalRefs]? ')'
8411 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID,
8412                                     unsigned ID) {
8413   assert(Lex.getKind() == lltok::kw_function);
8414   Lex.Lex();
8415 
8416   StringRef ModulePath;
8417   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8418       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8419       /*NotEligibleToImport=*/false,
8420       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8421   unsigned InstCount;
8422   std::vector<FunctionSummary::EdgeTy> Calls;
8423   FunctionSummary::TypeIdInfo TypeIdInfo;
8424   std::vector<FunctionSummary::ParamAccess> ParamAccesses;
8425   std::vector<ValueInfo> Refs;
8426   // Default is all-zeros (conservative values).
8427   FunctionSummary::FFlags FFlags = {};
8428   if (parseToken(lltok::colon, "expected ':' here") ||
8429       parseToken(lltok::lparen, "expected '(' here") ||
8430       parseModuleReference(ModulePath) ||
8431       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8432       parseToken(lltok::comma, "expected ',' here") ||
8433       parseToken(lltok::kw_insts, "expected 'insts' here") ||
8434       parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount))
8435     return true;
8436 
8437   // parse optional fields
8438   while (EatIfPresent(lltok::comma)) {
8439     switch (Lex.getKind()) {
8440     case lltok::kw_funcFlags:
8441       if (parseOptionalFFlags(FFlags))
8442         return true;
8443       break;
8444     case lltok::kw_calls:
8445       if (parseOptionalCalls(Calls))
8446         return true;
8447       break;
8448     case lltok::kw_typeIdInfo:
8449       if (parseOptionalTypeIdInfo(TypeIdInfo))
8450         return true;
8451       break;
8452     case lltok::kw_refs:
8453       if (parseOptionalRefs(Refs))
8454         return true;
8455       break;
8456     case lltok::kw_params:
8457       if (parseOptionalParamAccesses(ParamAccesses))
8458         return true;
8459       break;
8460     default:
8461       return error(Lex.getLoc(), "expected optional function summary field");
8462     }
8463   }
8464 
8465   if (parseToken(lltok::rparen, "expected ')' here"))
8466     return true;
8467 
8468   auto FS = std::make_unique<FunctionSummary>(
8469       GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs),
8470       std::move(Calls), std::move(TypeIdInfo.TypeTests),
8471       std::move(TypeIdInfo.TypeTestAssumeVCalls),
8472       std::move(TypeIdInfo.TypeCheckedLoadVCalls),
8473       std::move(TypeIdInfo.TypeTestAssumeConstVCalls),
8474       std::move(TypeIdInfo.TypeCheckedLoadConstVCalls),
8475       std::move(ParamAccesses));
8476 
8477   FS->setModulePath(ModulePath);
8478 
8479   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8480                         ID, std::move(FS));
8481 
8482   return false;
8483 }
8484 
8485 /// VariableSummary
8486 ///   ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags
8487 ///         [',' OptionalRefs]? ')'
8488 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID,
8489                                     unsigned ID) {
8490   assert(Lex.getKind() == lltok::kw_variable);
8491   Lex.Lex();
8492 
8493   StringRef ModulePath;
8494   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8495       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8496       /*NotEligibleToImport=*/false,
8497       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8498   GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false,
8499                                         /* WriteOnly */ false,
8500                                         /* Constant */ false,
8501                                         GlobalObject::VCallVisibilityPublic);
8502   std::vector<ValueInfo> Refs;
8503   VTableFuncList VTableFuncs;
8504   if (parseToken(lltok::colon, "expected ':' here") ||
8505       parseToken(lltok::lparen, "expected '(' here") ||
8506       parseModuleReference(ModulePath) ||
8507       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8508       parseToken(lltok::comma, "expected ',' here") ||
8509       parseGVarFlags(GVarFlags))
8510     return true;
8511 
8512   // parse optional fields
8513   while (EatIfPresent(lltok::comma)) {
8514     switch (Lex.getKind()) {
8515     case lltok::kw_vTableFuncs:
8516       if (parseOptionalVTableFuncs(VTableFuncs))
8517         return true;
8518       break;
8519     case lltok::kw_refs:
8520       if (parseOptionalRefs(Refs))
8521         return true;
8522       break;
8523     default:
8524       return error(Lex.getLoc(), "expected optional variable summary field");
8525     }
8526   }
8527 
8528   if (parseToken(lltok::rparen, "expected ')' here"))
8529     return true;
8530 
8531   auto GS =
8532       std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs));
8533 
8534   GS->setModulePath(ModulePath);
8535   GS->setVTableFuncs(std::move(VTableFuncs));
8536 
8537   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8538                         ID, std::move(GS));
8539 
8540   return false;
8541 }
8542 
8543 /// AliasSummary
8544 ///   ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ','
8545 ///         'aliasee' ':' GVReference ')'
8546 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID,
8547                                  unsigned ID) {
8548   assert(Lex.getKind() == lltok::kw_alias);
8549   LocTy Loc = Lex.getLoc();
8550   Lex.Lex();
8551 
8552   StringRef ModulePath;
8553   GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags(
8554       GlobalValue::ExternalLinkage, GlobalValue::DefaultVisibility,
8555       /*NotEligibleToImport=*/false,
8556       /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false);
8557   if (parseToken(lltok::colon, "expected ':' here") ||
8558       parseToken(lltok::lparen, "expected '(' here") ||
8559       parseModuleReference(ModulePath) ||
8560       parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) ||
8561       parseToken(lltok::comma, "expected ',' here") ||
8562       parseToken(lltok::kw_aliasee, "expected 'aliasee' here") ||
8563       parseToken(lltok::colon, "expected ':' here"))
8564     return true;
8565 
8566   ValueInfo AliaseeVI;
8567   unsigned GVId;
8568   if (parseGVReference(AliaseeVI, GVId))
8569     return true;
8570 
8571   if (parseToken(lltok::rparen, "expected ')' here"))
8572     return true;
8573 
8574   auto AS = std::make_unique<AliasSummary>(GVFlags);
8575 
8576   AS->setModulePath(ModulePath);
8577 
8578   // Record forward reference if the aliasee is not parsed yet.
8579   if (AliaseeVI.getRef() == FwdVIRef) {
8580     ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc);
8581   } else {
8582     auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath);
8583     assert(Summary && "Aliasee must be a definition");
8584     AS->setAliasee(AliaseeVI, Summary);
8585   }
8586 
8587   addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage,
8588                         ID, std::move(AS));
8589 
8590   return false;
8591 }
8592 
8593 /// Flag
8594 ///   ::= [0|1]
8595 bool LLParser::parseFlag(unsigned &Val) {
8596   if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned())
8597     return tokError("expected integer");
8598   Val = (unsigned)Lex.getAPSIntVal().getBoolValue();
8599   Lex.Lex();
8600   return false;
8601 }
8602 
8603 /// OptionalFFlags
8604 ///   := 'funcFlags' ':' '(' ['readNone' ':' Flag]?
8605 ///        [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]?
8606 ///        [',' 'returnDoesNotAlias' ':' Flag]? ')'
8607 ///        [',' 'noInline' ':' Flag]? ')'
8608 ///        [',' 'alwaysInline' ':' Flag]? ')'
8609 ///        [',' 'noUnwind' ':' Flag]? ')'
8610 ///        [',' 'mayThrow' ':' Flag]? ')'
8611 ///        [',' 'hasUnknownCall' ':' Flag]? ')'
8612 ///        [',' 'mustBeUnreachable' ':' Flag]? ')'
8613 
8614 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) {
8615   assert(Lex.getKind() == lltok::kw_funcFlags);
8616   Lex.Lex();
8617 
8618   if (parseToken(lltok::colon, "expected ':' in funcFlags") ||
8619       parseToken(lltok::lparen, "expected '(' in funcFlags"))
8620     return true;
8621 
8622   do {
8623     unsigned Val = 0;
8624     switch (Lex.getKind()) {
8625     case lltok::kw_readNone:
8626       Lex.Lex();
8627       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8628         return true;
8629       FFlags.ReadNone = Val;
8630       break;
8631     case lltok::kw_readOnly:
8632       Lex.Lex();
8633       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8634         return true;
8635       FFlags.ReadOnly = Val;
8636       break;
8637     case lltok::kw_noRecurse:
8638       Lex.Lex();
8639       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8640         return true;
8641       FFlags.NoRecurse = Val;
8642       break;
8643     case lltok::kw_returnDoesNotAlias:
8644       Lex.Lex();
8645       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8646         return true;
8647       FFlags.ReturnDoesNotAlias = Val;
8648       break;
8649     case lltok::kw_noInline:
8650       Lex.Lex();
8651       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8652         return true;
8653       FFlags.NoInline = Val;
8654       break;
8655     case lltok::kw_alwaysInline:
8656       Lex.Lex();
8657       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8658         return true;
8659       FFlags.AlwaysInline = Val;
8660       break;
8661     case lltok::kw_noUnwind:
8662       Lex.Lex();
8663       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8664         return true;
8665       FFlags.NoUnwind = Val;
8666       break;
8667     case lltok::kw_mayThrow:
8668       Lex.Lex();
8669       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8670         return true;
8671       FFlags.MayThrow = Val;
8672       break;
8673     case lltok::kw_hasUnknownCall:
8674       Lex.Lex();
8675       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8676         return true;
8677       FFlags.HasUnknownCall = Val;
8678       break;
8679     case lltok::kw_mustBeUnreachable:
8680       Lex.Lex();
8681       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val))
8682         return true;
8683       FFlags.MustBeUnreachable = Val;
8684       break;
8685     default:
8686       return error(Lex.getLoc(), "expected function flag type");
8687     }
8688   } while (EatIfPresent(lltok::comma));
8689 
8690   if (parseToken(lltok::rparen, "expected ')' in funcFlags"))
8691     return true;
8692 
8693   return false;
8694 }
8695 
8696 /// OptionalCalls
8697 ///   := 'calls' ':' '(' Call [',' Call]* ')'
8698 /// Call ::= '(' 'callee' ':' GVReference
8699 ///            [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')'
8700 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) {
8701   assert(Lex.getKind() == lltok::kw_calls);
8702   Lex.Lex();
8703 
8704   if (parseToken(lltok::colon, "expected ':' in calls") ||
8705       parseToken(lltok::lparen, "expected '(' in calls"))
8706     return true;
8707 
8708   IdToIndexMapType IdToIndexMap;
8709   // parse each call edge
8710   do {
8711     ValueInfo VI;
8712     if (parseToken(lltok::lparen, "expected '(' in call") ||
8713         parseToken(lltok::kw_callee, "expected 'callee' in call") ||
8714         parseToken(lltok::colon, "expected ':'"))
8715       return true;
8716 
8717     LocTy Loc = Lex.getLoc();
8718     unsigned GVId;
8719     if (parseGVReference(VI, GVId))
8720       return true;
8721 
8722     CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown;
8723     unsigned RelBF = 0;
8724     if (EatIfPresent(lltok::comma)) {
8725       // Expect either hotness or relbf
8726       if (EatIfPresent(lltok::kw_hotness)) {
8727         if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness))
8728           return true;
8729       } else {
8730         if (parseToken(lltok::kw_relbf, "expected relbf") ||
8731             parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF))
8732           return true;
8733       }
8734     }
8735     // Keep track of the Call array index needing a forward reference.
8736     // We will save the location of the ValueInfo needing an update, but
8737     // can only do so once the std::vector is finalized.
8738     if (VI.getRef() == FwdVIRef)
8739       IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc));
8740     Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)});
8741 
8742     if (parseToken(lltok::rparen, "expected ')' in call"))
8743       return true;
8744   } while (EatIfPresent(lltok::comma));
8745 
8746   // Now that the Calls vector is finalized, it is safe to save the locations
8747   // of any forward GV references that need updating later.
8748   for (auto I : IdToIndexMap) {
8749     auto &Infos = ForwardRefValueInfos[I.first];
8750     for (auto P : I.second) {
8751       assert(Calls[P.first].first.getRef() == FwdVIRef &&
8752              "Forward referenced ValueInfo expected to be empty");
8753       Infos.emplace_back(&Calls[P.first].first, P.second);
8754     }
8755   }
8756 
8757   if (parseToken(lltok::rparen, "expected ')' in calls"))
8758     return true;
8759 
8760   return false;
8761 }
8762 
8763 /// Hotness
8764 ///   := ('unknown'|'cold'|'none'|'hot'|'critical')
8765 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) {
8766   switch (Lex.getKind()) {
8767   case lltok::kw_unknown:
8768     Hotness = CalleeInfo::HotnessType::Unknown;
8769     break;
8770   case lltok::kw_cold:
8771     Hotness = CalleeInfo::HotnessType::Cold;
8772     break;
8773   case lltok::kw_none:
8774     Hotness = CalleeInfo::HotnessType::None;
8775     break;
8776   case lltok::kw_hot:
8777     Hotness = CalleeInfo::HotnessType::Hot;
8778     break;
8779   case lltok::kw_critical:
8780     Hotness = CalleeInfo::HotnessType::Critical;
8781     break;
8782   default:
8783     return error(Lex.getLoc(), "invalid call edge hotness");
8784   }
8785   Lex.Lex();
8786   return false;
8787 }
8788 
8789 /// OptionalVTableFuncs
8790 ///   := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')'
8791 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')'
8792 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) {
8793   assert(Lex.getKind() == lltok::kw_vTableFuncs);
8794   Lex.Lex();
8795 
8796   if (parseToken(lltok::colon, "expected ':' in vTableFuncs") ||
8797       parseToken(lltok::lparen, "expected '(' in vTableFuncs"))
8798     return true;
8799 
8800   IdToIndexMapType IdToIndexMap;
8801   // parse each virtual function pair
8802   do {
8803     ValueInfo VI;
8804     if (parseToken(lltok::lparen, "expected '(' in vTableFunc") ||
8805         parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") ||
8806         parseToken(lltok::colon, "expected ':'"))
8807       return true;
8808 
8809     LocTy Loc = Lex.getLoc();
8810     unsigned GVId;
8811     if (parseGVReference(VI, GVId))
8812       return true;
8813 
8814     uint64_t Offset;
8815     if (parseToken(lltok::comma, "expected comma") ||
8816         parseToken(lltok::kw_offset, "expected offset") ||
8817         parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset))
8818       return true;
8819 
8820     // Keep track of the VTableFuncs array index needing a forward reference.
8821     // We will save the location of the ValueInfo needing an update, but
8822     // can only do so once the std::vector is finalized.
8823     if (VI == EmptyVI)
8824       IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc));
8825     VTableFuncs.push_back({VI, Offset});
8826 
8827     if (parseToken(lltok::rparen, "expected ')' in vTableFunc"))
8828       return true;
8829   } while (EatIfPresent(lltok::comma));
8830 
8831   // Now that the VTableFuncs vector is finalized, it is safe to save the
8832   // locations of any forward GV references that need updating later.
8833   for (auto I : IdToIndexMap) {
8834     auto &Infos = ForwardRefValueInfos[I.first];
8835     for (auto P : I.second) {
8836       assert(VTableFuncs[P.first].FuncVI == EmptyVI &&
8837              "Forward referenced ValueInfo expected to be empty");
8838       Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second);
8839     }
8840   }
8841 
8842   if (parseToken(lltok::rparen, "expected ')' in vTableFuncs"))
8843     return true;
8844 
8845   return false;
8846 }
8847 
8848 /// ParamNo := 'param' ':' UInt64
8849 bool LLParser::parseParamNo(uint64_t &ParamNo) {
8850   if (parseToken(lltok::kw_param, "expected 'param' here") ||
8851       parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo))
8852     return true;
8853   return false;
8854 }
8855 
8856 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']'
8857 bool LLParser::parseParamAccessOffset(ConstantRange &Range) {
8858   APSInt Lower;
8859   APSInt Upper;
8860   auto ParseAPSInt = [&](APSInt &Val) {
8861     if (Lex.getKind() != lltok::APSInt)
8862       return tokError("expected integer");
8863     Val = Lex.getAPSIntVal();
8864     Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth);
8865     Val.setIsSigned(true);
8866     Lex.Lex();
8867     return false;
8868   };
8869   if (parseToken(lltok::kw_offset, "expected 'offset' here") ||
8870       parseToken(lltok::colon, "expected ':' here") ||
8871       parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) ||
8872       parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) ||
8873       parseToken(lltok::rsquare, "expected ']' here"))
8874     return true;
8875 
8876   ++Upper;
8877   Range =
8878       (Lower == Upper && !Lower.isMaxValue())
8879           ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth)
8880           : ConstantRange(Lower, Upper);
8881 
8882   return false;
8883 }
8884 
8885 /// ParamAccessCall
8886 ///   := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')'
8887 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call,
8888                                     IdLocListType &IdLocList) {
8889   if (parseToken(lltok::lparen, "expected '(' here") ||
8890       parseToken(lltok::kw_callee, "expected 'callee' here") ||
8891       parseToken(lltok::colon, "expected ':' here"))
8892     return true;
8893 
8894   unsigned GVId;
8895   ValueInfo VI;
8896   LocTy Loc = Lex.getLoc();
8897   if (parseGVReference(VI, GVId))
8898     return true;
8899 
8900   Call.Callee = VI;
8901   IdLocList.emplace_back(GVId, Loc);
8902 
8903   if (parseToken(lltok::comma, "expected ',' here") ||
8904       parseParamNo(Call.ParamNo) ||
8905       parseToken(lltok::comma, "expected ',' here") ||
8906       parseParamAccessOffset(Call.Offsets))
8907     return true;
8908 
8909   if (parseToken(lltok::rparen, "expected ')' here"))
8910     return true;
8911 
8912   return false;
8913 }
8914 
8915 /// ParamAccess
8916 ///   := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')'
8917 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')'
8918 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param,
8919                                 IdLocListType &IdLocList) {
8920   if (parseToken(lltok::lparen, "expected '(' here") ||
8921       parseParamNo(Param.ParamNo) ||
8922       parseToken(lltok::comma, "expected ',' here") ||
8923       parseParamAccessOffset(Param.Use))
8924     return true;
8925 
8926   if (EatIfPresent(lltok::comma)) {
8927     if (parseToken(lltok::kw_calls, "expected 'calls' here") ||
8928         parseToken(lltok::colon, "expected ':' here") ||
8929         parseToken(lltok::lparen, "expected '(' here"))
8930       return true;
8931     do {
8932       FunctionSummary::ParamAccess::Call Call;
8933       if (parseParamAccessCall(Call, IdLocList))
8934         return true;
8935       Param.Calls.push_back(Call);
8936     } while (EatIfPresent(lltok::comma));
8937 
8938     if (parseToken(lltok::rparen, "expected ')' here"))
8939       return true;
8940   }
8941 
8942   if (parseToken(lltok::rparen, "expected ')' here"))
8943     return true;
8944 
8945   return false;
8946 }
8947 
8948 /// OptionalParamAccesses
8949 ///   := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')'
8950 bool LLParser::parseOptionalParamAccesses(
8951     std::vector<FunctionSummary::ParamAccess> &Params) {
8952   assert(Lex.getKind() == lltok::kw_params);
8953   Lex.Lex();
8954 
8955   if (parseToken(lltok::colon, "expected ':' here") ||
8956       parseToken(lltok::lparen, "expected '(' here"))
8957     return true;
8958 
8959   IdLocListType VContexts;
8960   size_t CallsNum = 0;
8961   do {
8962     FunctionSummary::ParamAccess ParamAccess;
8963     if (parseParamAccess(ParamAccess, VContexts))
8964       return true;
8965     CallsNum += ParamAccess.Calls.size();
8966     assert(VContexts.size() == CallsNum);
8967     (void)CallsNum;
8968     Params.emplace_back(std::move(ParamAccess));
8969   } while (EatIfPresent(lltok::comma));
8970 
8971   if (parseToken(lltok::rparen, "expected ')' here"))
8972     return true;
8973 
8974   // Now that the Params is finalized, it is safe to save the locations
8975   // of any forward GV references that need updating later.
8976   IdLocListType::const_iterator ItContext = VContexts.begin();
8977   for (auto &PA : Params) {
8978     for (auto &C : PA.Calls) {
8979       if (C.Callee.getRef() == FwdVIRef)
8980         ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee,
8981                                                             ItContext->second);
8982       ++ItContext;
8983     }
8984   }
8985   assert(ItContext == VContexts.end());
8986 
8987   return false;
8988 }
8989 
8990 /// OptionalRefs
8991 ///   := 'refs' ':' '(' GVReference [',' GVReference]* ')'
8992 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) {
8993   assert(Lex.getKind() == lltok::kw_refs);
8994   Lex.Lex();
8995 
8996   if (parseToken(lltok::colon, "expected ':' in refs") ||
8997       parseToken(lltok::lparen, "expected '(' in refs"))
8998     return true;
8999 
9000   struct ValueContext {
9001     ValueInfo VI;
9002     unsigned GVId;
9003     LocTy Loc;
9004   };
9005   std::vector<ValueContext> VContexts;
9006   // parse each ref edge
9007   do {
9008     ValueContext VC;
9009     VC.Loc = Lex.getLoc();
9010     if (parseGVReference(VC.VI, VC.GVId))
9011       return true;
9012     VContexts.push_back(VC);
9013   } while (EatIfPresent(lltok::comma));
9014 
9015   // Sort value contexts so that ones with writeonly
9016   // and readonly ValueInfo  are at the end of VContexts vector.
9017   // See FunctionSummary::specialRefCounts()
9018   llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) {
9019     return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier();
9020   });
9021 
9022   IdToIndexMapType IdToIndexMap;
9023   for (auto &VC : VContexts) {
9024     // Keep track of the Refs array index needing a forward reference.
9025     // We will save the location of the ValueInfo needing an update, but
9026     // can only do so once the std::vector is finalized.
9027     if (VC.VI.getRef() == FwdVIRef)
9028       IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc));
9029     Refs.push_back(VC.VI);
9030   }
9031 
9032   // Now that the Refs vector is finalized, it is safe to save the locations
9033   // of any forward GV references that need updating later.
9034   for (auto I : IdToIndexMap) {
9035     auto &Infos = ForwardRefValueInfos[I.first];
9036     for (auto P : I.second) {
9037       assert(Refs[P.first].getRef() == FwdVIRef &&
9038              "Forward referenced ValueInfo expected to be empty");
9039       Infos.emplace_back(&Refs[P.first], P.second);
9040     }
9041   }
9042 
9043   if (parseToken(lltok::rparen, "expected ')' in refs"))
9044     return true;
9045 
9046   return false;
9047 }
9048 
9049 /// OptionalTypeIdInfo
9050 ///   := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]?
9051 ///         [',' TypeCheckedLoadVCalls]?  [',' TypeTestAssumeConstVCalls]?
9052 ///         [',' TypeCheckedLoadConstVCalls]? ')'
9053 bool LLParser::parseOptionalTypeIdInfo(
9054     FunctionSummary::TypeIdInfo &TypeIdInfo) {
9055   assert(Lex.getKind() == lltok::kw_typeIdInfo);
9056   Lex.Lex();
9057 
9058   if (parseToken(lltok::colon, "expected ':' here") ||
9059       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
9060     return true;
9061 
9062   do {
9063     switch (Lex.getKind()) {
9064     case lltok::kw_typeTests:
9065       if (parseTypeTests(TypeIdInfo.TypeTests))
9066         return true;
9067       break;
9068     case lltok::kw_typeTestAssumeVCalls:
9069       if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls,
9070                            TypeIdInfo.TypeTestAssumeVCalls))
9071         return true;
9072       break;
9073     case lltok::kw_typeCheckedLoadVCalls:
9074       if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls,
9075                            TypeIdInfo.TypeCheckedLoadVCalls))
9076         return true;
9077       break;
9078     case lltok::kw_typeTestAssumeConstVCalls:
9079       if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls,
9080                               TypeIdInfo.TypeTestAssumeConstVCalls))
9081         return true;
9082       break;
9083     case lltok::kw_typeCheckedLoadConstVCalls:
9084       if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls,
9085                               TypeIdInfo.TypeCheckedLoadConstVCalls))
9086         return true;
9087       break;
9088     default:
9089       return error(Lex.getLoc(), "invalid typeIdInfo list type");
9090     }
9091   } while (EatIfPresent(lltok::comma));
9092 
9093   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9094     return true;
9095 
9096   return false;
9097 }
9098 
9099 /// TypeTests
9100 ///   ::= 'typeTests' ':' '(' (SummaryID | UInt64)
9101 ///         [',' (SummaryID | UInt64)]* ')'
9102 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) {
9103   assert(Lex.getKind() == lltok::kw_typeTests);
9104   Lex.Lex();
9105 
9106   if (parseToken(lltok::colon, "expected ':' here") ||
9107       parseToken(lltok::lparen, "expected '(' in typeIdInfo"))
9108     return true;
9109 
9110   IdToIndexMapType IdToIndexMap;
9111   do {
9112     GlobalValue::GUID GUID = 0;
9113     if (Lex.getKind() == lltok::SummaryID) {
9114       unsigned ID = Lex.getUIntVal();
9115       LocTy Loc = Lex.getLoc();
9116       // Keep track of the TypeTests array index needing a forward reference.
9117       // We will save the location of the GUID needing an update, but
9118       // can only do so once the std::vector is finalized.
9119       IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc));
9120       Lex.Lex();
9121     } else if (parseUInt64(GUID))
9122       return true;
9123     TypeTests.push_back(GUID);
9124   } while (EatIfPresent(lltok::comma));
9125 
9126   // Now that the TypeTests vector is finalized, it is safe to save the
9127   // locations of any forward GV references that need updating later.
9128   for (auto I : IdToIndexMap) {
9129     auto &Ids = ForwardRefTypeIds[I.first];
9130     for (auto P : I.second) {
9131       assert(TypeTests[P.first] == 0 &&
9132              "Forward referenced type id GUID expected to be 0");
9133       Ids.emplace_back(&TypeTests[P.first], P.second);
9134     }
9135   }
9136 
9137   if (parseToken(lltok::rparen, "expected ')' in typeIdInfo"))
9138     return true;
9139 
9140   return false;
9141 }
9142 
9143 /// VFuncIdList
9144 ///   ::= Kind ':' '(' VFuncId [',' VFuncId]* ')'
9145 bool LLParser::parseVFuncIdList(
9146     lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) {
9147   assert(Lex.getKind() == Kind);
9148   Lex.Lex();
9149 
9150   if (parseToken(lltok::colon, "expected ':' here") ||
9151       parseToken(lltok::lparen, "expected '(' here"))
9152     return true;
9153 
9154   IdToIndexMapType IdToIndexMap;
9155   do {
9156     FunctionSummary::VFuncId VFuncId;
9157     if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size()))
9158       return true;
9159     VFuncIdList.push_back(VFuncId);
9160   } while (EatIfPresent(lltok::comma));
9161 
9162   if (parseToken(lltok::rparen, "expected ')' here"))
9163     return true;
9164 
9165   // Now that the VFuncIdList vector is finalized, it is safe to save the
9166   // locations of any forward GV references that need updating later.
9167   for (auto I : IdToIndexMap) {
9168     auto &Ids = ForwardRefTypeIds[I.first];
9169     for (auto P : I.second) {
9170       assert(VFuncIdList[P.first].GUID == 0 &&
9171              "Forward referenced type id GUID expected to be 0");
9172       Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second);
9173     }
9174   }
9175 
9176   return false;
9177 }
9178 
9179 /// ConstVCallList
9180 ///   ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')'
9181 bool LLParser::parseConstVCallList(
9182     lltok::Kind Kind,
9183     std::vector<FunctionSummary::ConstVCall> &ConstVCallList) {
9184   assert(Lex.getKind() == Kind);
9185   Lex.Lex();
9186 
9187   if (parseToken(lltok::colon, "expected ':' here") ||
9188       parseToken(lltok::lparen, "expected '(' here"))
9189     return true;
9190 
9191   IdToIndexMapType IdToIndexMap;
9192   do {
9193     FunctionSummary::ConstVCall ConstVCall;
9194     if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size()))
9195       return true;
9196     ConstVCallList.push_back(ConstVCall);
9197   } while (EatIfPresent(lltok::comma));
9198 
9199   if (parseToken(lltok::rparen, "expected ')' here"))
9200     return true;
9201 
9202   // Now that the ConstVCallList vector is finalized, it is safe to save the
9203   // locations of any forward GV references that need updating later.
9204   for (auto I : IdToIndexMap) {
9205     auto &Ids = ForwardRefTypeIds[I.first];
9206     for (auto P : I.second) {
9207       assert(ConstVCallList[P.first].VFunc.GUID == 0 &&
9208              "Forward referenced type id GUID expected to be 0");
9209       Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second);
9210     }
9211   }
9212 
9213   return false;
9214 }
9215 
9216 /// ConstVCall
9217 ///   ::= '(' VFuncId ',' Args ')'
9218 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall,
9219                                IdToIndexMapType &IdToIndexMap, unsigned Index) {
9220   if (parseToken(lltok::lparen, "expected '(' here") ||
9221       parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index))
9222     return true;
9223 
9224   if (EatIfPresent(lltok::comma))
9225     if (parseArgs(ConstVCall.Args))
9226       return true;
9227 
9228   if (parseToken(lltok::rparen, "expected ')' here"))
9229     return true;
9230 
9231   return false;
9232 }
9233 
9234 /// VFuncId
9235 ///   ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ','
9236 ///         'offset' ':' UInt64 ')'
9237 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId,
9238                             IdToIndexMapType &IdToIndexMap, unsigned Index) {
9239   assert(Lex.getKind() == lltok::kw_vFuncId);
9240   Lex.Lex();
9241 
9242   if (parseToken(lltok::colon, "expected ':' here") ||
9243       parseToken(lltok::lparen, "expected '(' here"))
9244     return true;
9245 
9246   if (Lex.getKind() == lltok::SummaryID) {
9247     VFuncId.GUID = 0;
9248     unsigned ID = Lex.getUIntVal();
9249     LocTy Loc = Lex.getLoc();
9250     // Keep track of the array index needing a forward reference.
9251     // We will save the location of the GUID needing an update, but
9252     // can only do so once the caller's std::vector is finalized.
9253     IdToIndexMap[ID].push_back(std::make_pair(Index, Loc));
9254     Lex.Lex();
9255   } else if (parseToken(lltok::kw_guid, "expected 'guid' here") ||
9256              parseToken(lltok::colon, "expected ':' here") ||
9257              parseUInt64(VFuncId.GUID))
9258     return true;
9259 
9260   if (parseToken(lltok::comma, "expected ',' here") ||
9261       parseToken(lltok::kw_offset, "expected 'offset' here") ||
9262       parseToken(lltok::colon, "expected ':' here") ||
9263       parseUInt64(VFuncId.Offset) ||
9264       parseToken(lltok::rparen, "expected ')' here"))
9265     return true;
9266 
9267   return false;
9268 }
9269 
9270 /// GVFlags
9271 ///   ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ','
9272 ///         'visibility' ':' Flag 'notEligibleToImport' ':' Flag ','
9273 ///         'live' ':' Flag ',' 'dsoLocal' ':' Flag ','
9274 ///         'canAutoHide' ':' Flag ',' ')'
9275 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) {
9276   assert(Lex.getKind() == lltok::kw_flags);
9277   Lex.Lex();
9278 
9279   if (parseToken(lltok::colon, "expected ':' here") ||
9280       parseToken(lltok::lparen, "expected '(' here"))
9281     return true;
9282 
9283   do {
9284     unsigned Flag = 0;
9285     switch (Lex.getKind()) {
9286     case lltok::kw_linkage:
9287       Lex.Lex();
9288       if (parseToken(lltok::colon, "expected ':'"))
9289         return true;
9290       bool HasLinkage;
9291       GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage);
9292       assert(HasLinkage && "Linkage not optional in summary entry");
9293       Lex.Lex();
9294       break;
9295     case lltok::kw_visibility:
9296       Lex.Lex();
9297       if (parseToken(lltok::colon, "expected ':'"))
9298         return true;
9299       parseOptionalVisibility(Flag);
9300       GVFlags.Visibility = Flag;
9301       break;
9302     case lltok::kw_notEligibleToImport:
9303       Lex.Lex();
9304       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9305         return true;
9306       GVFlags.NotEligibleToImport = Flag;
9307       break;
9308     case lltok::kw_live:
9309       Lex.Lex();
9310       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9311         return true;
9312       GVFlags.Live = Flag;
9313       break;
9314     case lltok::kw_dsoLocal:
9315       Lex.Lex();
9316       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9317         return true;
9318       GVFlags.DSOLocal = Flag;
9319       break;
9320     case lltok::kw_canAutoHide:
9321       Lex.Lex();
9322       if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag))
9323         return true;
9324       GVFlags.CanAutoHide = Flag;
9325       break;
9326     default:
9327       return error(Lex.getLoc(), "expected gv flag type");
9328     }
9329   } while (EatIfPresent(lltok::comma));
9330 
9331   if (parseToken(lltok::rparen, "expected ')' here"))
9332     return true;
9333 
9334   return false;
9335 }
9336 
9337 /// GVarFlags
9338 ///   ::= 'varFlags' ':' '(' 'readonly' ':' Flag
9339 ///                      ',' 'writeonly' ':' Flag
9340 ///                      ',' 'constant' ':' Flag ')'
9341 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) {
9342   assert(Lex.getKind() == lltok::kw_varFlags);
9343   Lex.Lex();
9344 
9345   if (parseToken(lltok::colon, "expected ':' here") ||
9346       parseToken(lltok::lparen, "expected '(' here"))
9347     return true;
9348 
9349   auto ParseRest = [this](unsigned int &Val) {
9350     Lex.Lex();
9351     if (parseToken(lltok::colon, "expected ':'"))
9352       return true;
9353     return parseFlag(Val);
9354   };
9355 
9356   do {
9357     unsigned Flag = 0;
9358     switch (Lex.getKind()) {
9359     case lltok::kw_readonly:
9360       if (ParseRest(Flag))
9361         return true;
9362       GVarFlags.MaybeReadOnly = Flag;
9363       break;
9364     case lltok::kw_writeonly:
9365       if (ParseRest(Flag))
9366         return true;
9367       GVarFlags.MaybeWriteOnly = Flag;
9368       break;
9369     case lltok::kw_constant:
9370       if (ParseRest(Flag))
9371         return true;
9372       GVarFlags.Constant = Flag;
9373       break;
9374     case lltok::kw_vcall_visibility:
9375       if (ParseRest(Flag))
9376         return true;
9377       GVarFlags.VCallVisibility = Flag;
9378       break;
9379     default:
9380       return error(Lex.getLoc(), "expected gvar flag type");
9381     }
9382   } while (EatIfPresent(lltok::comma));
9383   return parseToken(lltok::rparen, "expected ')' here");
9384 }
9385 
9386 /// ModuleReference
9387 ///   ::= 'module' ':' UInt
9388 bool LLParser::parseModuleReference(StringRef &ModulePath) {
9389   // parse module id.
9390   if (parseToken(lltok::kw_module, "expected 'module' here") ||
9391       parseToken(lltok::colon, "expected ':' here") ||
9392       parseToken(lltok::SummaryID, "expected module ID"))
9393     return true;
9394 
9395   unsigned ModuleID = Lex.getUIntVal();
9396   auto I = ModuleIdMap.find(ModuleID);
9397   // We should have already parsed all module IDs
9398   assert(I != ModuleIdMap.end());
9399   ModulePath = I->second;
9400   return false;
9401 }
9402 
9403 /// GVReference
9404 ///   ::= SummaryID
9405 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) {
9406   bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly);
9407   if (!ReadOnly)
9408     WriteOnly = EatIfPresent(lltok::kw_writeonly);
9409   if (parseToken(lltok::SummaryID, "expected GV ID"))
9410     return true;
9411 
9412   GVId = Lex.getUIntVal();
9413   // Check if we already have a VI for this GV
9414   if (GVId < NumberedValueInfos.size()) {
9415     assert(NumberedValueInfos[GVId].getRef() != FwdVIRef);
9416     VI = NumberedValueInfos[GVId];
9417   } else
9418     // We will create a forward reference to the stored location.
9419     VI = ValueInfo(false, FwdVIRef);
9420 
9421   if (ReadOnly)
9422     VI.setReadOnly();
9423   if (WriteOnly)
9424     VI.setWriteOnly();
9425   return false;
9426 }
9427