1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the parser class for .ll files. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LLParser.h" 15 #include "llvm/ADT/DenseMap.h" 16 #include "llvm/ADT/None.h" 17 #include "llvm/ADT/Optional.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/AsmParser/SlotMapping.h" 21 #include "llvm/BinaryFormat/Dwarf.h" 22 #include "llvm/IR/Argument.h" 23 #include "llvm/IR/AutoUpgrade.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallingConv.h" 26 #include "llvm/IR/Comdat.h" 27 #include "llvm/IR/Constants.h" 28 #include "llvm/IR/DebugInfoMetadata.h" 29 #include "llvm/IR/DerivedTypes.h" 30 #include "llvm/IR/Function.h" 31 #include "llvm/IR/GlobalIFunc.h" 32 #include "llvm/IR/GlobalObject.h" 33 #include "llvm/IR/InlineAsm.h" 34 #include "llvm/IR/Instruction.h" 35 #include "llvm/IR/Instructions.h" 36 #include "llvm/IR/Intrinsics.h" 37 #include "llvm/IR/LLVMContext.h" 38 #include "llvm/IR/Metadata.h" 39 #include "llvm/IR/Module.h" 40 #include "llvm/IR/Operator.h" 41 #include "llvm/IR/Type.h" 42 #include "llvm/IR/Value.h" 43 #include "llvm/IR/ValueSymbolTable.h" 44 #include "llvm/Support/Casting.h" 45 #include "llvm/Support/ErrorHandling.h" 46 #include "llvm/Support/MathExtras.h" 47 #include "llvm/Support/SaveAndRestore.h" 48 #include "llvm/Support/raw_ostream.h" 49 #include <algorithm> 50 #include <cassert> 51 #include <cstring> 52 #include <iterator> 53 #include <vector> 54 55 using namespace llvm; 56 57 static std::string getTypeString(Type *T) { 58 std::string Result; 59 raw_string_ostream Tmp(Result); 60 Tmp << *T; 61 return Tmp.str(); 62 } 63 64 /// Run: module ::= toplevelentity* 65 bool LLParser::Run() { 66 // Prime the lexer. 67 Lex.Lex(); 68 69 if (Context.shouldDiscardValueNames()) 70 return Error( 71 Lex.getLoc(), 72 "Can't read textual IR with a Context that discards named Values"); 73 74 return ParseTopLevelEntities() || 75 ValidateEndOfModule(); 76 } 77 78 bool LLParser::parseStandaloneConstantValue(Constant *&C, 79 const SlotMapping *Slots) { 80 restoreParsingState(Slots); 81 Lex.Lex(); 82 83 Type *Ty = nullptr; 84 if (ParseType(Ty) || parseConstantValue(Ty, C)) 85 return true; 86 if (Lex.getKind() != lltok::Eof) 87 return Error(Lex.getLoc(), "expected end of string"); 88 return false; 89 } 90 91 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 92 const SlotMapping *Slots) { 93 restoreParsingState(Slots); 94 Lex.Lex(); 95 96 Read = 0; 97 SMLoc Start = Lex.getLoc(); 98 Ty = nullptr; 99 if (ParseType(Ty)) 100 return true; 101 SMLoc End = Lex.getLoc(); 102 Read = End.getPointer() - Start.getPointer(); 103 104 return false; 105 } 106 107 void LLParser::restoreParsingState(const SlotMapping *Slots) { 108 if (!Slots) 109 return; 110 NumberedVals = Slots->GlobalValues; 111 NumberedMetadata = Slots->MetadataNodes; 112 for (const auto &I : Slots->NamedTypes) 113 NamedTypes.insert( 114 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 115 for (const auto &I : Slots->Types) 116 NumberedTypes.insert( 117 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 118 } 119 120 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 121 /// module. 122 bool LLParser::ValidateEndOfModule() { 123 // Handle any function attribute group forward references. 124 for (const auto &RAG : ForwardRefAttrGroups) { 125 Value *V = RAG.first; 126 const std::vector<unsigned> &Attrs = RAG.second; 127 AttrBuilder B; 128 129 for (const auto &Attr : Attrs) 130 B.merge(NumberedAttrBuilders[Attr]); 131 132 if (Function *Fn = dyn_cast<Function>(V)) { 133 AttributeList AS = Fn->getAttributes(); 134 AttrBuilder FnAttrs(AS.getFnAttributes()); 135 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 136 137 FnAttrs.merge(B); 138 139 // If the alignment was parsed as an attribute, move to the alignment 140 // field. 141 if (FnAttrs.hasAlignmentAttr()) { 142 Fn->setAlignment(FnAttrs.getAlignment()); 143 FnAttrs.removeAttribute(Attribute::Alignment); 144 } 145 146 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 147 AttributeSet::get(Context, FnAttrs)); 148 Fn->setAttributes(AS); 149 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 150 AttributeList AS = CI->getAttributes(); 151 AttrBuilder FnAttrs(AS.getFnAttributes()); 152 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 153 FnAttrs.merge(B); 154 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 155 AttributeSet::get(Context, FnAttrs)); 156 CI->setAttributes(AS); 157 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 158 AttributeList AS = II->getAttributes(); 159 AttrBuilder FnAttrs(AS.getFnAttributes()); 160 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 161 FnAttrs.merge(B); 162 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 163 AttributeSet::get(Context, FnAttrs)); 164 II->setAttributes(AS); 165 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 166 AttrBuilder Attrs(GV->getAttributes()); 167 Attrs.merge(B); 168 GV->setAttributes(AttributeSet::get(Context,Attrs)); 169 } else { 170 llvm_unreachable("invalid object with forward attribute group reference"); 171 } 172 } 173 174 // If there are entries in ForwardRefBlockAddresses at this point, the 175 // function was never defined. 176 if (!ForwardRefBlockAddresses.empty()) 177 return Error(ForwardRefBlockAddresses.begin()->first.Loc, 178 "expected function name in blockaddress"); 179 180 for (const auto &NT : NumberedTypes) 181 if (NT.second.second.isValid()) 182 return Error(NT.second.second, 183 "use of undefined type '%" + Twine(NT.first) + "'"); 184 185 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 186 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 187 if (I->second.second.isValid()) 188 return Error(I->second.second, 189 "use of undefined type named '" + I->getKey() + "'"); 190 191 if (!ForwardRefComdats.empty()) 192 return Error(ForwardRefComdats.begin()->second, 193 "use of undefined comdat '$" + 194 ForwardRefComdats.begin()->first + "'"); 195 196 if (!ForwardRefVals.empty()) 197 return Error(ForwardRefVals.begin()->second.second, 198 "use of undefined value '@" + ForwardRefVals.begin()->first + 199 "'"); 200 201 if (!ForwardRefValIDs.empty()) 202 return Error(ForwardRefValIDs.begin()->second.second, 203 "use of undefined value '@" + 204 Twine(ForwardRefValIDs.begin()->first) + "'"); 205 206 if (!ForwardRefMDNodes.empty()) 207 return Error(ForwardRefMDNodes.begin()->second.second, 208 "use of undefined metadata '!" + 209 Twine(ForwardRefMDNodes.begin()->first) + "'"); 210 211 // Resolve metadata cycles. 212 for (auto &N : NumberedMetadata) { 213 if (N.second && !N.second->isResolved()) 214 N.second->resolveCycles(); 215 } 216 217 for (auto *Inst : InstsWithTBAATag) { 218 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 219 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 220 auto *UpgradedMD = UpgradeTBAANode(*MD); 221 if (MD != UpgradedMD) 222 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 223 } 224 225 // Look for intrinsic functions and CallInst that need to be upgraded 226 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 227 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 228 229 // Some types could be renamed during loading if several modules are 230 // loaded in the same LLVMContext (LTO scenario). In this case we should 231 // remangle intrinsics names as well. 232 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) { 233 Function *F = &*FI++; 234 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 235 F->replaceAllUsesWith(Remangled.getValue()); 236 F->eraseFromParent(); 237 } 238 } 239 240 if (UpgradeDebugInfo) 241 llvm::UpgradeDebugInfo(*M); 242 243 UpgradeModuleFlags(*M); 244 UpgradeSectionAttributes(*M); 245 246 if (!Slots) 247 return false; 248 // Initialize the slot mapping. 249 // Because by this point we've parsed and validated everything, we can "steal" 250 // the mapping from LLParser as it doesn't need it anymore. 251 Slots->GlobalValues = std::move(NumberedVals); 252 Slots->MetadataNodes = std::move(NumberedMetadata); 253 for (const auto &I : NamedTypes) 254 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 255 for (const auto &I : NumberedTypes) 256 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 257 258 return false; 259 } 260 261 //===----------------------------------------------------------------------===// 262 // Top-Level Entities 263 //===----------------------------------------------------------------------===// 264 265 bool LLParser::ParseTopLevelEntities() { 266 while (true) { 267 switch (Lex.getKind()) { 268 default: return TokError("expected top-level entity"); 269 case lltok::Eof: return false; 270 case lltok::kw_declare: if (ParseDeclare()) return true; break; 271 case lltok::kw_define: if (ParseDefine()) return true; break; 272 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 273 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 274 case lltok::kw_source_filename: 275 if (ParseSourceFileName()) 276 return true; 277 break; 278 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 279 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 280 case lltok::LocalVar: if (ParseNamedType()) return true; break; 281 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 282 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 283 case lltok::ComdatVar: if (parseComdat()) return true; break; 284 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 285 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break; 286 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break; 287 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break; 288 case lltok::kw_uselistorder_bb: 289 if (ParseUseListOrderBB()) 290 return true; 291 break; 292 } 293 } 294 } 295 296 /// toplevelentity 297 /// ::= 'module' 'asm' STRINGCONSTANT 298 bool LLParser::ParseModuleAsm() { 299 assert(Lex.getKind() == lltok::kw_module); 300 Lex.Lex(); 301 302 std::string AsmStr; 303 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 304 ParseStringConstant(AsmStr)) return true; 305 306 M->appendModuleInlineAsm(AsmStr); 307 return false; 308 } 309 310 /// toplevelentity 311 /// ::= 'target' 'triple' '=' STRINGCONSTANT 312 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 313 bool LLParser::ParseTargetDefinition() { 314 assert(Lex.getKind() == lltok::kw_target); 315 std::string Str; 316 switch (Lex.Lex()) { 317 default: return TokError("unknown target property"); 318 case lltok::kw_triple: 319 Lex.Lex(); 320 if (ParseToken(lltok::equal, "expected '=' after target triple") || 321 ParseStringConstant(Str)) 322 return true; 323 M->setTargetTriple(Str); 324 return false; 325 case lltok::kw_datalayout: 326 Lex.Lex(); 327 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 328 ParseStringConstant(Str)) 329 return true; 330 if (DataLayoutStr.empty()) 331 M->setDataLayout(Str); 332 return false; 333 } 334 } 335 336 /// toplevelentity 337 /// ::= 'source_filename' '=' STRINGCONSTANT 338 bool LLParser::ParseSourceFileName() { 339 assert(Lex.getKind() == lltok::kw_source_filename); 340 std::string Str; 341 Lex.Lex(); 342 if (ParseToken(lltok::equal, "expected '=' after source_filename") || 343 ParseStringConstant(Str)) 344 return true; 345 M->setSourceFileName(Str); 346 return false; 347 } 348 349 /// toplevelentity 350 /// ::= 'deplibs' '=' '[' ']' 351 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 352 /// FIXME: Remove in 4.0. Currently parse, but ignore. 353 bool LLParser::ParseDepLibs() { 354 assert(Lex.getKind() == lltok::kw_deplibs); 355 Lex.Lex(); 356 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 357 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 358 return true; 359 360 if (EatIfPresent(lltok::rsquare)) 361 return false; 362 363 do { 364 std::string Str; 365 if (ParseStringConstant(Str)) return true; 366 } while (EatIfPresent(lltok::comma)); 367 368 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 369 } 370 371 /// ParseUnnamedType: 372 /// ::= LocalVarID '=' 'type' type 373 bool LLParser::ParseUnnamedType() { 374 LocTy TypeLoc = Lex.getLoc(); 375 unsigned TypeID = Lex.getUIntVal(); 376 Lex.Lex(); // eat LocalVarID; 377 378 if (ParseToken(lltok::equal, "expected '=' after name") || 379 ParseToken(lltok::kw_type, "expected 'type' after '='")) 380 return true; 381 382 Type *Result = nullptr; 383 if (ParseStructDefinition(TypeLoc, "", 384 NumberedTypes[TypeID], Result)) return true; 385 386 if (!isa<StructType>(Result)) { 387 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 388 if (Entry.first) 389 return Error(TypeLoc, "non-struct types may not be recursive"); 390 Entry.first = Result; 391 Entry.second = SMLoc(); 392 } 393 394 return false; 395 } 396 397 /// toplevelentity 398 /// ::= LocalVar '=' 'type' type 399 bool LLParser::ParseNamedType() { 400 std::string Name = Lex.getStrVal(); 401 LocTy NameLoc = Lex.getLoc(); 402 Lex.Lex(); // eat LocalVar. 403 404 if (ParseToken(lltok::equal, "expected '=' after name") || 405 ParseToken(lltok::kw_type, "expected 'type' after name")) 406 return true; 407 408 Type *Result = nullptr; 409 if (ParseStructDefinition(NameLoc, Name, 410 NamedTypes[Name], Result)) return true; 411 412 if (!isa<StructType>(Result)) { 413 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 414 if (Entry.first) 415 return Error(NameLoc, "non-struct types may not be recursive"); 416 Entry.first = Result; 417 Entry.second = SMLoc(); 418 } 419 420 return false; 421 } 422 423 /// toplevelentity 424 /// ::= 'declare' FunctionHeader 425 bool LLParser::ParseDeclare() { 426 assert(Lex.getKind() == lltok::kw_declare); 427 Lex.Lex(); 428 429 std::vector<std::pair<unsigned, MDNode *>> MDs; 430 while (Lex.getKind() == lltok::MetadataVar) { 431 unsigned MDK; 432 MDNode *N; 433 if (ParseMetadataAttachment(MDK, N)) 434 return true; 435 MDs.push_back({MDK, N}); 436 } 437 438 Function *F; 439 if (ParseFunctionHeader(F, false)) 440 return true; 441 for (auto &MD : MDs) 442 F->addMetadata(MD.first, *MD.second); 443 return false; 444 } 445 446 /// toplevelentity 447 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 448 bool LLParser::ParseDefine() { 449 assert(Lex.getKind() == lltok::kw_define); 450 Lex.Lex(); 451 452 Function *F; 453 return ParseFunctionHeader(F, true) || 454 ParseOptionalFunctionMetadata(*F) || 455 ParseFunctionBody(*F); 456 } 457 458 /// ParseGlobalType 459 /// ::= 'constant' 460 /// ::= 'global' 461 bool LLParser::ParseGlobalType(bool &IsConstant) { 462 if (Lex.getKind() == lltok::kw_constant) 463 IsConstant = true; 464 else if (Lex.getKind() == lltok::kw_global) 465 IsConstant = false; 466 else { 467 IsConstant = false; 468 return TokError("expected 'global' or 'constant'"); 469 } 470 Lex.Lex(); 471 return false; 472 } 473 474 bool LLParser::ParseOptionalUnnamedAddr( 475 GlobalVariable::UnnamedAddr &UnnamedAddr) { 476 if (EatIfPresent(lltok::kw_unnamed_addr)) 477 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 478 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 479 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 480 else 481 UnnamedAddr = GlobalValue::UnnamedAddr::None; 482 return false; 483 } 484 485 /// ParseUnnamedGlobal: 486 /// OptionalVisibility (ALIAS | IFUNC) ... 487 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 488 /// OptionalDLLStorageClass 489 /// ... -> global variable 490 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 491 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 492 /// OptionalDLLStorageClass 493 /// ... -> global variable 494 bool LLParser::ParseUnnamedGlobal() { 495 unsigned VarID = NumberedVals.size(); 496 std::string Name; 497 LocTy NameLoc = Lex.getLoc(); 498 499 // Handle the GlobalID form. 500 if (Lex.getKind() == lltok::GlobalID) { 501 if (Lex.getUIntVal() != VarID) 502 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 503 Twine(VarID) + "'"); 504 Lex.Lex(); // eat GlobalID; 505 506 if (ParseToken(lltok::equal, "expected '=' after name")) 507 return true; 508 } 509 510 bool HasLinkage; 511 unsigned Linkage, Visibility, DLLStorageClass; 512 bool DSOLocal; 513 GlobalVariable::ThreadLocalMode TLM; 514 GlobalVariable::UnnamedAddr UnnamedAddr; 515 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 516 DSOLocal) || 517 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 518 return true; 519 520 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 521 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 522 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 523 524 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 525 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 526 } 527 528 /// ParseNamedGlobal: 529 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 530 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 531 /// OptionalVisibility OptionalDLLStorageClass 532 /// ... -> global variable 533 bool LLParser::ParseNamedGlobal() { 534 assert(Lex.getKind() == lltok::GlobalVar); 535 LocTy NameLoc = Lex.getLoc(); 536 std::string Name = Lex.getStrVal(); 537 Lex.Lex(); 538 539 bool HasLinkage; 540 unsigned Linkage, Visibility, DLLStorageClass; 541 bool DSOLocal; 542 GlobalVariable::ThreadLocalMode TLM; 543 GlobalVariable::UnnamedAddr UnnamedAddr; 544 if (ParseToken(lltok::equal, "expected '=' in global variable") || 545 ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 546 DSOLocal) || 547 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 548 return true; 549 550 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 551 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 552 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 553 554 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 555 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 556 } 557 558 bool LLParser::parseComdat() { 559 assert(Lex.getKind() == lltok::ComdatVar); 560 std::string Name = Lex.getStrVal(); 561 LocTy NameLoc = Lex.getLoc(); 562 Lex.Lex(); 563 564 if (ParseToken(lltok::equal, "expected '=' here")) 565 return true; 566 567 if (ParseToken(lltok::kw_comdat, "expected comdat keyword")) 568 return TokError("expected comdat type"); 569 570 Comdat::SelectionKind SK; 571 switch (Lex.getKind()) { 572 default: 573 return TokError("unknown selection kind"); 574 case lltok::kw_any: 575 SK = Comdat::Any; 576 break; 577 case lltok::kw_exactmatch: 578 SK = Comdat::ExactMatch; 579 break; 580 case lltok::kw_largest: 581 SK = Comdat::Largest; 582 break; 583 case lltok::kw_noduplicates: 584 SK = Comdat::NoDuplicates; 585 break; 586 case lltok::kw_samesize: 587 SK = Comdat::SameSize; 588 break; 589 } 590 Lex.Lex(); 591 592 // See if the comdat was forward referenced, if so, use the comdat. 593 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 594 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 595 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 596 return Error(NameLoc, "redefinition of comdat '$" + Name + "'"); 597 598 Comdat *C; 599 if (I != ComdatSymTab.end()) 600 C = &I->second; 601 else 602 C = M->getOrInsertComdat(Name); 603 C->setSelectionKind(SK); 604 605 return false; 606 } 607 608 // MDString: 609 // ::= '!' STRINGCONSTANT 610 bool LLParser::ParseMDString(MDString *&Result) { 611 std::string Str; 612 if (ParseStringConstant(Str)) return true; 613 Result = MDString::get(Context, Str); 614 return false; 615 } 616 617 // MDNode: 618 // ::= '!' MDNodeNumber 619 bool LLParser::ParseMDNodeID(MDNode *&Result) { 620 // !{ ..., !42, ... } 621 LocTy IDLoc = Lex.getLoc(); 622 unsigned MID = 0; 623 if (ParseUInt32(MID)) 624 return true; 625 626 // If not a forward reference, just return it now. 627 if (NumberedMetadata.count(MID)) { 628 Result = NumberedMetadata[MID]; 629 return false; 630 } 631 632 // Otherwise, create MDNode forward reference. 633 auto &FwdRef = ForwardRefMDNodes[MID]; 634 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 635 636 Result = FwdRef.first.get(); 637 NumberedMetadata[MID].reset(Result); 638 return false; 639 } 640 641 /// ParseNamedMetadata: 642 /// !foo = !{ !1, !2 } 643 bool LLParser::ParseNamedMetadata() { 644 assert(Lex.getKind() == lltok::MetadataVar); 645 std::string Name = Lex.getStrVal(); 646 Lex.Lex(); 647 648 if (ParseToken(lltok::equal, "expected '=' here") || 649 ParseToken(lltok::exclaim, "Expected '!' here") || 650 ParseToken(lltok::lbrace, "Expected '{' here")) 651 return true; 652 653 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 654 if (Lex.getKind() != lltok::rbrace) 655 do { 656 MDNode *N = nullptr; 657 // Parse DIExpressions inline as a special case. They are still MDNodes, 658 // so they can still appear in named metadata. Remove this logic if they 659 // become plain Metadata. 660 if (Lex.getKind() == lltok::MetadataVar && 661 Lex.getStrVal() == "DIExpression") { 662 if (ParseDIExpression(N, /*IsDistinct=*/false)) 663 return true; 664 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 665 ParseMDNodeID(N)) { 666 return true; 667 } 668 NMD->addOperand(N); 669 } while (EatIfPresent(lltok::comma)); 670 671 return ParseToken(lltok::rbrace, "expected end of metadata node"); 672 } 673 674 /// ParseStandaloneMetadata: 675 /// !42 = !{...} 676 bool LLParser::ParseStandaloneMetadata() { 677 assert(Lex.getKind() == lltok::exclaim); 678 Lex.Lex(); 679 unsigned MetadataID = 0; 680 681 MDNode *Init; 682 if (ParseUInt32(MetadataID) || 683 ParseToken(lltok::equal, "expected '=' here")) 684 return true; 685 686 // Detect common error, from old metadata syntax. 687 if (Lex.getKind() == lltok::Type) 688 return TokError("unexpected type in metadata definition"); 689 690 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 691 if (Lex.getKind() == lltok::MetadataVar) { 692 if (ParseSpecializedMDNode(Init, IsDistinct)) 693 return true; 694 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 695 ParseMDTuple(Init, IsDistinct)) 696 return true; 697 698 // See if this was forward referenced, if so, handle it. 699 auto FI = ForwardRefMDNodes.find(MetadataID); 700 if (FI != ForwardRefMDNodes.end()) { 701 FI->second.first->replaceAllUsesWith(Init); 702 ForwardRefMDNodes.erase(FI); 703 704 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 705 } else { 706 if (NumberedMetadata.count(MetadataID)) 707 return TokError("Metadata id is already used"); 708 NumberedMetadata[MetadataID].reset(Init); 709 } 710 711 return false; 712 } 713 714 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 715 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 716 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 717 } 718 719 // If there was an explicit dso_local, update GV. In the absence of an explicit 720 // dso_local we keep the default value. 721 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { 722 if (DSOLocal) 723 GV.setDSOLocal(true); 724 } 725 726 /// parseIndirectSymbol: 727 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 728 /// OptionalVisibility OptionalDLLStorageClass 729 /// OptionalThreadLocal OptionalUnnamedAddr 730 // 'alias|ifunc' IndirectSymbol 731 /// 732 /// IndirectSymbol 733 /// ::= TypeAndValue 734 /// 735 /// Everything through OptionalUnnamedAddr has already been parsed. 736 /// 737 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc, 738 unsigned L, unsigned Visibility, 739 unsigned DLLStorageClass, bool DSOLocal, 740 GlobalVariable::ThreadLocalMode TLM, 741 GlobalVariable::UnnamedAddr UnnamedAddr) { 742 bool IsAlias; 743 if (Lex.getKind() == lltok::kw_alias) 744 IsAlias = true; 745 else if (Lex.getKind() == lltok::kw_ifunc) 746 IsAlias = false; 747 else 748 llvm_unreachable("Not an alias or ifunc!"); 749 Lex.Lex(); 750 751 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 752 753 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 754 return Error(NameLoc, "invalid linkage type for alias"); 755 756 if (!isValidVisibilityForLinkage(Visibility, L)) 757 return Error(NameLoc, 758 "symbol with local linkage must have default visibility"); 759 760 Type *Ty; 761 LocTy ExplicitTypeLoc = Lex.getLoc(); 762 if (ParseType(Ty) || 763 ParseToken(lltok::comma, "expected comma after alias or ifunc's type")) 764 return true; 765 766 Constant *Aliasee; 767 LocTy AliaseeLoc = Lex.getLoc(); 768 if (Lex.getKind() != lltok::kw_bitcast && 769 Lex.getKind() != lltok::kw_getelementptr && 770 Lex.getKind() != lltok::kw_addrspacecast && 771 Lex.getKind() != lltok::kw_inttoptr) { 772 if (ParseGlobalTypeAndValue(Aliasee)) 773 return true; 774 } else { 775 // The bitcast dest type is not present, it is implied by the dest type. 776 ValID ID; 777 if (ParseValID(ID)) 778 return true; 779 if (ID.Kind != ValID::t_Constant) 780 return Error(AliaseeLoc, "invalid aliasee"); 781 Aliasee = ID.ConstantVal; 782 } 783 784 Type *AliaseeType = Aliasee->getType(); 785 auto *PTy = dyn_cast<PointerType>(AliaseeType); 786 if (!PTy) 787 return Error(AliaseeLoc, "An alias or ifunc must have pointer type"); 788 unsigned AddrSpace = PTy->getAddressSpace(); 789 790 if (IsAlias && Ty != PTy->getElementType()) 791 return Error( 792 ExplicitTypeLoc, 793 "explicit pointee type doesn't match operand's pointee type"); 794 795 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) 796 return Error( 797 ExplicitTypeLoc, 798 "explicit pointee type should be a function type"); 799 800 GlobalValue *GVal = nullptr; 801 802 // See if the alias was forward referenced, if so, prepare to replace the 803 // forward reference. 804 if (!Name.empty()) { 805 GVal = M->getNamedValue(Name); 806 if (GVal) { 807 if (!ForwardRefVals.erase(Name)) 808 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 809 } 810 } else { 811 auto I = ForwardRefValIDs.find(NumberedVals.size()); 812 if (I != ForwardRefValIDs.end()) { 813 GVal = I->second.first; 814 ForwardRefValIDs.erase(I); 815 } 816 } 817 818 // Okay, create the alias but do not insert it into the module yet. 819 std::unique_ptr<GlobalIndirectSymbol> GA; 820 if (IsAlias) 821 GA.reset(GlobalAlias::create(Ty, AddrSpace, 822 (GlobalValue::LinkageTypes)Linkage, Name, 823 Aliasee, /*Parent*/ nullptr)); 824 else 825 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 826 (GlobalValue::LinkageTypes)Linkage, Name, 827 Aliasee, /*Parent*/ nullptr)); 828 GA->setThreadLocalMode(TLM); 829 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 830 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 831 GA->setUnnamedAddr(UnnamedAddr); 832 maybeSetDSOLocal(DSOLocal, *GA); 833 834 if (Name.empty()) 835 NumberedVals.push_back(GA.get()); 836 837 if (GVal) { 838 // Verify that types agree. 839 if (GVal->getType() != GA->getType()) 840 return Error( 841 ExplicitTypeLoc, 842 "forward reference and definition of alias have different types"); 843 844 // If they agree, just RAUW the old value with the alias and remove the 845 // forward ref info. 846 GVal->replaceAllUsesWith(GA.get()); 847 GVal->eraseFromParent(); 848 } 849 850 // Insert into the module, we know its name won't collide now. 851 if (IsAlias) 852 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 853 else 854 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 855 assert(GA->getName() == Name && "Should not be a name conflict!"); 856 857 // The module owns this now 858 GA.release(); 859 860 return false; 861 } 862 863 /// ParseGlobal 864 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 865 /// OptionalVisibility OptionalDLLStorageClass 866 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 867 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 868 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 869 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 870 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 871 /// Const OptionalAttrs 872 /// 873 /// Everything up to and including OptionalUnnamedAddr has been parsed 874 /// already. 875 /// 876 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 877 unsigned Linkage, bool HasLinkage, 878 unsigned Visibility, unsigned DLLStorageClass, 879 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 880 GlobalVariable::UnnamedAddr UnnamedAddr) { 881 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 882 return Error(NameLoc, 883 "symbol with local linkage must have default visibility"); 884 885 unsigned AddrSpace; 886 bool IsConstant, IsExternallyInitialized; 887 LocTy IsExternallyInitializedLoc; 888 LocTy TyLoc; 889 890 Type *Ty = nullptr; 891 if (ParseOptionalAddrSpace(AddrSpace) || 892 ParseOptionalToken(lltok::kw_externally_initialized, 893 IsExternallyInitialized, 894 &IsExternallyInitializedLoc) || 895 ParseGlobalType(IsConstant) || 896 ParseType(Ty, TyLoc)) 897 return true; 898 899 // If the linkage is specified and is external, then no initializer is 900 // present. 901 Constant *Init = nullptr; 902 if (!HasLinkage || 903 !GlobalValue::isValidDeclarationLinkage( 904 (GlobalValue::LinkageTypes)Linkage)) { 905 if (ParseGlobalValue(Ty, Init)) 906 return true; 907 } 908 909 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 910 return Error(TyLoc, "invalid type for global variable"); 911 912 GlobalValue *GVal = nullptr; 913 914 // See if the global was forward referenced, if so, use the global. 915 if (!Name.empty()) { 916 GVal = M->getNamedValue(Name); 917 if (GVal) { 918 if (!ForwardRefVals.erase(Name)) 919 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 920 } 921 } else { 922 auto I = ForwardRefValIDs.find(NumberedVals.size()); 923 if (I != ForwardRefValIDs.end()) { 924 GVal = I->second.first; 925 ForwardRefValIDs.erase(I); 926 } 927 } 928 929 GlobalVariable *GV; 930 if (!GVal) { 931 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 932 Name, nullptr, GlobalVariable::NotThreadLocal, 933 AddrSpace); 934 } else { 935 if (GVal->getValueType() != Ty) 936 return Error(TyLoc, 937 "forward reference and definition of global have different types"); 938 939 GV = cast<GlobalVariable>(GVal); 940 941 // Move the forward-reference to the correct spot in the module. 942 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 943 } 944 945 if (Name.empty()) 946 NumberedVals.push_back(GV); 947 948 // Set the parsed properties on the global. 949 if (Init) 950 GV->setInitializer(Init); 951 GV->setConstant(IsConstant); 952 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 953 maybeSetDSOLocal(DSOLocal, *GV); 954 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 955 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 956 GV->setExternallyInitialized(IsExternallyInitialized); 957 GV->setThreadLocalMode(TLM); 958 GV->setUnnamedAddr(UnnamedAddr); 959 960 // Parse attributes on the global. 961 while (Lex.getKind() == lltok::comma) { 962 Lex.Lex(); 963 964 if (Lex.getKind() == lltok::kw_section) { 965 Lex.Lex(); 966 GV->setSection(Lex.getStrVal()); 967 if (ParseToken(lltok::StringConstant, "expected global section string")) 968 return true; 969 } else if (Lex.getKind() == lltok::kw_align) { 970 unsigned Alignment; 971 if (ParseOptionalAlignment(Alignment)) return true; 972 GV->setAlignment(Alignment); 973 } else if (Lex.getKind() == lltok::MetadataVar) { 974 if (ParseGlobalObjectMetadataAttachment(*GV)) 975 return true; 976 } else { 977 Comdat *C; 978 if (parseOptionalComdat(Name, C)) 979 return true; 980 if (C) 981 GV->setComdat(C); 982 else 983 return TokError("unknown global variable property!"); 984 } 985 } 986 987 AttrBuilder Attrs; 988 LocTy BuiltinLoc; 989 std::vector<unsigned> FwdRefAttrGrps; 990 if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 991 return true; 992 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 993 GV->setAttributes(AttributeSet::get(Context, Attrs)); 994 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 995 } 996 997 return false; 998 } 999 1000 /// ParseUnnamedAttrGrp 1001 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 1002 bool LLParser::ParseUnnamedAttrGrp() { 1003 assert(Lex.getKind() == lltok::kw_attributes); 1004 LocTy AttrGrpLoc = Lex.getLoc(); 1005 Lex.Lex(); 1006 1007 if (Lex.getKind() != lltok::AttrGrpID) 1008 return TokError("expected attribute group id"); 1009 1010 unsigned VarID = Lex.getUIntVal(); 1011 std::vector<unsigned> unused; 1012 LocTy BuiltinLoc; 1013 Lex.Lex(); 1014 1015 if (ParseToken(lltok::equal, "expected '=' here") || 1016 ParseToken(lltok::lbrace, "expected '{' here") || 1017 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 1018 BuiltinLoc) || 1019 ParseToken(lltok::rbrace, "expected end of attribute group")) 1020 return true; 1021 1022 if (!NumberedAttrBuilders[VarID].hasAttributes()) 1023 return Error(AttrGrpLoc, "attribute group has no attributes"); 1024 1025 return false; 1026 } 1027 1028 /// ParseFnAttributeValuePairs 1029 /// ::= <attr> | <attr> '=' <value> 1030 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B, 1031 std::vector<unsigned> &FwdRefAttrGrps, 1032 bool inAttrGrp, LocTy &BuiltinLoc) { 1033 bool HaveError = false; 1034 1035 B.clear(); 1036 1037 while (true) { 1038 lltok::Kind Token = Lex.getKind(); 1039 if (Token == lltok::kw_builtin) 1040 BuiltinLoc = Lex.getLoc(); 1041 switch (Token) { 1042 default: 1043 if (!inAttrGrp) return HaveError; 1044 return Error(Lex.getLoc(), "unterminated attribute group"); 1045 case lltok::rbrace: 1046 // Finished. 1047 return false; 1048 1049 case lltok::AttrGrpID: { 1050 // Allow a function to reference an attribute group: 1051 // 1052 // define void @foo() #1 { ... } 1053 if (inAttrGrp) 1054 HaveError |= 1055 Error(Lex.getLoc(), 1056 "cannot have an attribute group reference in an attribute group"); 1057 1058 unsigned AttrGrpNum = Lex.getUIntVal(); 1059 if (inAttrGrp) break; 1060 1061 // Save the reference to the attribute group. We'll fill it in later. 1062 FwdRefAttrGrps.push_back(AttrGrpNum); 1063 break; 1064 } 1065 // Target-dependent attributes: 1066 case lltok::StringConstant: { 1067 if (ParseStringAttribute(B)) 1068 return true; 1069 continue; 1070 } 1071 1072 // Target-independent attributes: 1073 case lltok::kw_align: { 1074 // As a hack, we allow function alignment to be initially parsed as an 1075 // attribute on a function declaration/definition or added to an attribute 1076 // group and later moved to the alignment field. 1077 unsigned Alignment; 1078 if (inAttrGrp) { 1079 Lex.Lex(); 1080 if (ParseToken(lltok::equal, "expected '=' here") || 1081 ParseUInt32(Alignment)) 1082 return true; 1083 } else { 1084 if (ParseOptionalAlignment(Alignment)) 1085 return true; 1086 } 1087 B.addAlignmentAttr(Alignment); 1088 continue; 1089 } 1090 case lltok::kw_alignstack: { 1091 unsigned Alignment; 1092 if (inAttrGrp) { 1093 Lex.Lex(); 1094 if (ParseToken(lltok::equal, "expected '=' here") || 1095 ParseUInt32(Alignment)) 1096 return true; 1097 } else { 1098 if (ParseOptionalStackAlignment(Alignment)) 1099 return true; 1100 } 1101 B.addStackAlignmentAttr(Alignment); 1102 continue; 1103 } 1104 case lltok::kw_allocsize: { 1105 unsigned ElemSizeArg; 1106 Optional<unsigned> NumElemsArg; 1107 // inAttrGrp doesn't matter; we only support allocsize(a[, b]) 1108 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1109 return true; 1110 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1111 continue; 1112 } 1113 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 1114 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 1115 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 1116 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 1117 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 1118 case lltok::kw_inaccessiblememonly: 1119 B.addAttribute(Attribute::InaccessibleMemOnly); break; 1120 case lltok::kw_inaccessiblemem_or_argmemonly: 1121 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break; 1122 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 1123 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 1124 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 1125 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 1126 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 1127 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 1128 case lltok::kw_noimplicitfloat: 1129 B.addAttribute(Attribute::NoImplicitFloat); break; 1130 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1131 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1132 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1133 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1134 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1135 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1136 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1137 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1138 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1139 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1140 case lltok::kw_returns_twice: 1141 B.addAttribute(Attribute::ReturnsTwice); break; 1142 case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break; 1143 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1144 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1145 case lltok::kw_sspstrong: 1146 B.addAttribute(Attribute::StackProtectStrong); break; 1147 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1148 case lltok::kw_sanitize_address: 1149 B.addAttribute(Attribute::SanitizeAddress); break; 1150 case lltok::kw_sanitize_hwaddress: 1151 B.addAttribute(Attribute::SanitizeHWAddress); break; 1152 case lltok::kw_sanitize_thread: 1153 B.addAttribute(Attribute::SanitizeThread); break; 1154 case lltok::kw_sanitize_memory: 1155 B.addAttribute(Attribute::SanitizeMemory); break; 1156 case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break; 1157 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1158 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1159 1160 // Error handling. 1161 case lltok::kw_inreg: 1162 case lltok::kw_signext: 1163 case lltok::kw_zeroext: 1164 HaveError |= 1165 Error(Lex.getLoc(), 1166 "invalid use of attribute on a function"); 1167 break; 1168 case lltok::kw_byval: 1169 case lltok::kw_dereferenceable: 1170 case lltok::kw_dereferenceable_or_null: 1171 case lltok::kw_inalloca: 1172 case lltok::kw_nest: 1173 case lltok::kw_noalias: 1174 case lltok::kw_nocapture: 1175 case lltok::kw_nonnull: 1176 case lltok::kw_returned: 1177 case lltok::kw_sret: 1178 case lltok::kw_swifterror: 1179 case lltok::kw_swiftself: 1180 HaveError |= 1181 Error(Lex.getLoc(), 1182 "invalid use of parameter-only attribute on a function"); 1183 break; 1184 } 1185 1186 Lex.Lex(); 1187 } 1188 } 1189 1190 //===----------------------------------------------------------------------===// 1191 // GlobalValue Reference/Resolution Routines. 1192 //===----------------------------------------------------------------------===// 1193 1194 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1195 const std::string &Name) { 1196 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1197 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M); 1198 else 1199 return new GlobalVariable(*M, PTy->getElementType(), false, 1200 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1201 nullptr, GlobalVariable::NotThreadLocal, 1202 PTy->getAddressSpace()); 1203 } 1204 1205 /// GetGlobalVal - Get a value with the specified name or ID, creating a 1206 /// forward reference record if needed. This can return null if the value 1207 /// exists but does not have the right type. 1208 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 1209 LocTy Loc) { 1210 PointerType *PTy = dyn_cast<PointerType>(Ty); 1211 if (!PTy) { 1212 Error(Loc, "global variable reference must have pointer type"); 1213 return nullptr; 1214 } 1215 1216 // Look this name up in the normal function symbol table. 1217 GlobalValue *Val = 1218 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1219 1220 // If this is a forward reference for the value, see if we already created a 1221 // forward ref record. 1222 if (!Val) { 1223 auto I = ForwardRefVals.find(Name); 1224 if (I != ForwardRefVals.end()) 1225 Val = I->second.first; 1226 } 1227 1228 // If we have the value in the symbol table or fwd-ref table, return it. 1229 if (Val) { 1230 if (Val->getType() == Ty) return Val; 1231 Error(Loc, "'@" + Name + "' defined with type '" + 1232 getTypeString(Val->getType()) + "'"); 1233 return nullptr; 1234 } 1235 1236 // Otherwise, create a new forward reference for this value and remember it. 1237 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1238 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1239 return FwdVal; 1240 } 1241 1242 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { 1243 PointerType *PTy = dyn_cast<PointerType>(Ty); 1244 if (!PTy) { 1245 Error(Loc, "global variable reference must have pointer type"); 1246 return nullptr; 1247 } 1248 1249 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1250 1251 // If this is a forward reference for the value, see if we already created a 1252 // forward ref record. 1253 if (!Val) { 1254 auto I = ForwardRefValIDs.find(ID); 1255 if (I != ForwardRefValIDs.end()) 1256 Val = I->second.first; 1257 } 1258 1259 // If we have the value in the symbol table or fwd-ref table, return it. 1260 if (Val) { 1261 if (Val->getType() == Ty) return Val; 1262 Error(Loc, "'@" + Twine(ID) + "' defined with type '" + 1263 getTypeString(Val->getType()) + "'"); 1264 return nullptr; 1265 } 1266 1267 // Otherwise, create a new forward reference for this value and remember it. 1268 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1269 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1270 return FwdVal; 1271 } 1272 1273 //===----------------------------------------------------------------------===// 1274 // Comdat Reference/Resolution Routines. 1275 //===----------------------------------------------------------------------===// 1276 1277 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1278 // Look this name up in the comdat symbol table. 1279 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1280 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1281 if (I != ComdatSymTab.end()) 1282 return &I->second; 1283 1284 // Otherwise, create a new forward reference for this value and remember it. 1285 Comdat *C = M->getOrInsertComdat(Name); 1286 ForwardRefComdats[Name] = Loc; 1287 return C; 1288 } 1289 1290 //===----------------------------------------------------------------------===// 1291 // Helper Routines. 1292 //===----------------------------------------------------------------------===// 1293 1294 /// ParseToken - If the current token has the specified kind, eat it and return 1295 /// success. Otherwise, emit the specified error and return failure. 1296 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 1297 if (Lex.getKind() != T) 1298 return TokError(ErrMsg); 1299 Lex.Lex(); 1300 return false; 1301 } 1302 1303 /// ParseStringConstant 1304 /// ::= StringConstant 1305 bool LLParser::ParseStringConstant(std::string &Result) { 1306 if (Lex.getKind() != lltok::StringConstant) 1307 return TokError("expected string constant"); 1308 Result = Lex.getStrVal(); 1309 Lex.Lex(); 1310 return false; 1311 } 1312 1313 /// ParseUInt32 1314 /// ::= uint32 1315 bool LLParser::ParseUInt32(uint32_t &Val) { 1316 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1317 return TokError("expected integer"); 1318 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1319 if (Val64 != unsigned(Val64)) 1320 return TokError("expected 32-bit integer (too large)"); 1321 Val = Val64; 1322 Lex.Lex(); 1323 return false; 1324 } 1325 1326 /// ParseUInt64 1327 /// ::= uint64 1328 bool LLParser::ParseUInt64(uint64_t &Val) { 1329 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1330 return TokError("expected integer"); 1331 Val = Lex.getAPSIntVal().getLimitedValue(); 1332 Lex.Lex(); 1333 return false; 1334 } 1335 1336 /// ParseTLSModel 1337 /// := 'localdynamic' 1338 /// := 'initialexec' 1339 /// := 'localexec' 1340 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1341 switch (Lex.getKind()) { 1342 default: 1343 return TokError("expected localdynamic, initialexec or localexec"); 1344 case lltok::kw_localdynamic: 1345 TLM = GlobalVariable::LocalDynamicTLSModel; 1346 break; 1347 case lltok::kw_initialexec: 1348 TLM = GlobalVariable::InitialExecTLSModel; 1349 break; 1350 case lltok::kw_localexec: 1351 TLM = GlobalVariable::LocalExecTLSModel; 1352 break; 1353 } 1354 1355 Lex.Lex(); 1356 return false; 1357 } 1358 1359 /// ParseOptionalThreadLocal 1360 /// := /*empty*/ 1361 /// := 'thread_local' 1362 /// := 'thread_local' '(' tlsmodel ')' 1363 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1364 TLM = GlobalVariable::NotThreadLocal; 1365 if (!EatIfPresent(lltok::kw_thread_local)) 1366 return false; 1367 1368 TLM = GlobalVariable::GeneralDynamicTLSModel; 1369 if (Lex.getKind() == lltok::lparen) { 1370 Lex.Lex(); 1371 return ParseTLSModel(TLM) || 1372 ParseToken(lltok::rparen, "expected ')' after thread local model"); 1373 } 1374 return false; 1375 } 1376 1377 /// ParseOptionalAddrSpace 1378 /// := /*empty*/ 1379 /// := 'addrspace' '(' uint32 ')' 1380 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) { 1381 AddrSpace = 0; 1382 if (!EatIfPresent(lltok::kw_addrspace)) 1383 return false; 1384 return ParseToken(lltok::lparen, "expected '(' in address space") || 1385 ParseUInt32(AddrSpace) || 1386 ParseToken(lltok::rparen, "expected ')' in address space"); 1387 } 1388 1389 /// ParseStringAttribute 1390 /// := StringConstant 1391 /// := StringConstant '=' StringConstant 1392 bool LLParser::ParseStringAttribute(AttrBuilder &B) { 1393 std::string Attr = Lex.getStrVal(); 1394 Lex.Lex(); 1395 std::string Val; 1396 if (EatIfPresent(lltok::equal) && ParseStringConstant(Val)) 1397 return true; 1398 B.addAttribute(Attr, Val); 1399 return false; 1400 } 1401 1402 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes. 1403 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) { 1404 bool HaveError = false; 1405 1406 B.clear(); 1407 1408 while (true) { 1409 lltok::Kind Token = Lex.getKind(); 1410 switch (Token) { 1411 default: // End of attributes. 1412 return HaveError; 1413 case lltok::StringConstant: { 1414 if (ParseStringAttribute(B)) 1415 return true; 1416 continue; 1417 } 1418 case lltok::kw_align: { 1419 unsigned Alignment; 1420 if (ParseOptionalAlignment(Alignment)) 1421 return true; 1422 B.addAlignmentAttr(Alignment); 1423 continue; 1424 } 1425 case lltok::kw_byval: B.addAttribute(Attribute::ByVal); break; 1426 case lltok::kw_dereferenceable: { 1427 uint64_t Bytes; 1428 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1429 return true; 1430 B.addDereferenceableAttr(Bytes); 1431 continue; 1432 } 1433 case lltok::kw_dereferenceable_or_null: { 1434 uint64_t Bytes; 1435 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1436 return true; 1437 B.addDereferenceableOrNullAttr(Bytes); 1438 continue; 1439 } 1440 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break; 1441 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1442 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1443 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1444 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1445 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1446 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1447 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1448 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1449 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1450 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break; 1451 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break; 1452 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break; 1453 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1454 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1455 1456 case lltok::kw_alignstack: 1457 case lltok::kw_alwaysinline: 1458 case lltok::kw_argmemonly: 1459 case lltok::kw_builtin: 1460 case lltok::kw_inlinehint: 1461 case lltok::kw_jumptable: 1462 case lltok::kw_minsize: 1463 case lltok::kw_naked: 1464 case lltok::kw_nobuiltin: 1465 case lltok::kw_noduplicate: 1466 case lltok::kw_noimplicitfloat: 1467 case lltok::kw_noinline: 1468 case lltok::kw_nonlazybind: 1469 case lltok::kw_noredzone: 1470 case lltok::kw_noreturn: 1471 case lltok::kw_nounwind: 1472 case lltok::kw_optnone: 1473 case lltok::kw_optsize: 1474 case lltok::kw_returns_twice: 1475 case lltok::kw_sanitize_address: 1476 case lltok::kw_sanitize_hwaddress: 1477 case lltok::kw_sanitize_memory: 1478 case lltok::kw_sanitize_thread: 1479 case lltok::kw_ssp: 1480 case lltok::kw_sspreq: 1481 case lltok::kw_sspstrong: 1482 case lltok::kw_safestack: 1483 case lltok::kw_strictfp: 1484 case lltok::kw_uwtable: 1485 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1486 break; 1487 } 1488 1489 Lex.Lex(); 1490 } 1491 } 1492 1493 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes. 1494 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) { 1495 bool HaveError = false; 1496 1497 B.clear(); 1498 1499 while (true) { 1500 lltok::Kind Token = Lex.getKind(); 1501 switch (Token) { 1502 default: // End of attributes. 1503 return HaveError; 1504 case lltok::StringConstant: { 1505 if (ParseStringAttribute(B)) 1506 return true; 1507 continue; 1508 } 1509 case lltok::kw_dereferenceable: { 1510 uint64_t Bytes; 1511 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1512 return true; 1513 B.addDereferenceableAttr(Bytes); 1514 continue; 1515 } 1516 case lltok::kw_dereferenceable_or_null: { 1517 uint64_t Bytes; 1518 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1519 return true; 1520 B.addDereferenceableOrNullAttr(Bytes); 1521 continue; 1522 } 1523 case lltok::kw_align: { 1524 unsigned Alignment; 1525 if (ParseOptionalAlignment(Alignment)) 1526 return true; 1527 B.addAlignmentAttr(Alignment); 1528 continue; 1529 } 1530 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1531 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1532 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1533 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1534 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1535 1536 // Error handling. 1537 case lltok::kw_byval: 1538 case lltok::kw_inalloca: 1539 case lltok::kw_nest: 1540 case lltok::kw_nocapture: 1541 case lltok::kw_returned: 1542 case lltok::kw_sret: 1543 case lltok::kw_swifterror: 1544 case lltok::kw_swiftself: 1545 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1546 break; 1547 1548 case lltok::kw_alignstack: 1549 case lltok::kw_alwaysinline: 1550 case lltok::kw_argmemonly: 1551 case lltok::kw_builtin: 1552 case lltok::kw_cold: 1553 case lltok::kw_inlinehint: 1554 case lltok::kw_jumptable: 1555 case lltok::kw_minsize: 1556 case lltok::kw_naked: 1557 case lltok::kw_nobuiltin: 1558 case lltok::kw_noduplicate: 1559 case lltok::kw_noimplicitfloat: 1560 case lltok::kw_noinline: 1561 case lltok::kw_nonlazybind: 1562 case lltok::kw_noredzone: 1563 case lltok::kw_noreturn: 1564 case lltok::kw_nounwind: 1565 case lltok::kw_optnone: 1566 case lltok::kw_optsize: 1567 case lltok::kw_returns_twice: 1568 case lltok::kw_sanitize_address: 1569 case lltok::kw_sanitize_hwaddress: 1570 case lltok::kw_sanitize_memory: 1571 case lltok::kw_sanitize_thread: 1572 case lltok::kw_ssp: 1573 case lltok::kw_sspreq: 1574 case lltok::kw_sspstrong: 1575 case lltok::kw_safestack: 1576 case lltok::kw_strictfp: 1577 case lltok::kw_uwtable: 1578 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1579 break; 1580 1581 case lltok::kw_readnone: 1582 case lltok::kw_readonly: 1583 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type"); 1584 } 1585 1586 Lex.Lex(); 1587 } 1588 } 1589 1590 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1591 HasLinkage = true; 1592 switch (Kind) { 1593 default: 1594 HasLinkage = false; 1595 return GlobalValue::ExternalLinkage; 1596 case lltok::kw_private: 1597 return GlobalValue::PrivateLinkage; 1598 case lltok::kw_internal: 1599 return GlobalValue::InternalLinkage; 1600 case lltok::kw_weak: 1601 return GlobalValue::WeakAnyLinkage; 1602 case lltok::kw_weak_odr: 1603 return GlobalValue::WeakODRLinkage; 1604 case lltok::kw_linkonce: 1605 return GlobalValue::LinkOnceAnyLinkage; 1606 case lltok::kw_linkonce_odr: 1607 return GlobalValue::LinkOnceODRLinkage; 1608 case lltok::kw_available_externally: 1609 return GlobalValue::AvailableExternallyLinkage; 1610 case lltok::kw_appending: 1611 return GlobalValue::AppendingLinkage; 1612 case lltok::kw_common: 1613 return GlobalValue::CommonLinkage; 1614 case lltok::kw_extern_weak: 1615 return GlobalValue::ExternalWeakLinkage; 1616 case lltok::kw_external: 1617 return GlobalValue::ExternalLinkage; 1618 } 1619 } 1620 1621 /// ParseOptionalLinkage 1622 /// ::= /*empty*/ 1623 /// ::= 'private' 1624 /// ::= 'internal' 1625 /// ::= 'weak' 1626 /// ::= 'weak_odr' 1627 /// ::= 'linkonce' 1628 /// ::= 'linkonce_odr' 1629 /// ::= 'available_externally' 1630 /// ::= 'appending' 1631 /// ::= 'common' 1632 /// ::= 'extern_weak' 1633 /// ::= 'external' 1634 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1635 unsigned &Visibility, 1636 unsigned &DLLStorageClass, 1637 bool &DSOLocal) { 1638 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1639 if (HasLinkage) 1640 Lex.Lex(); 1641 ParseOptionalDSOLocal(DSOLocal); 1642 ParseOptionalVisibility(Visibility); 1643 ParseOptionalDLLStorageClass(DLLStorageClass); 1644 1645 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 1646 return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 1647 } 1648 1649 return false; 1650 } 1651 1652 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) { 1653 switch (Lex.getKind()) { 1654 default: 1655 DSOLocal = false; 1656 break; 1657 case lltok::kw_dso_local: 1658 DSOLocal = true; 1659 Lex.Lex(); 1660 break; 1661 case lltok::kw_dso_preemptable: 1662 DSOLocal = false; 1663 Lex.Lex(); 1664 break; 1665 } 1666 } 1667 1668 /// ParseOptionalVisibility 1669 /// ::= /*empty*/ 1670 /// ::= 'default' 1671 /// ::= 'hidden' 1672 /// ::= 'protected' 1673 /// 1674 void LLParser::ParseOptionalVisibility(unsigned &Res) { 1675 switch (Lex.getKind()) { 1676 default: 1677 Res = GlobalValue::DefaultVisibility; 1678 return; 1679 case lltok::kw_default: 1680 Res = GlobalValue::DefaultVisibility; 1681 break; 1682 case lltok::kw_hidden: 1683 Res = GlobalValue::HiddenVisibility; 1684 break; 1685 case lltok::kw_protected: 1686 Res = GlobalValue::ProtectedVisibility; 1687 break; 1688 } 1689 Lex.Lex(); 1690 } 1691 1692 /// ParseOptionalDLLStorageClass 1693 /// ::= /*empty*/ 1694 /// ::= 'dllimport' 1695 /// ::= 'dllexport' 1696 /// 1697 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) { 1698 switch (Lex.getKind()) { 1699 default: 1700 Res = GlobalValue::DefaultStorageClass; 1701 return; 1702 case lltok::kw_dllimport: 1703 Res = GlobalValue::DLLImportStorageClass; 1704 break; 1705 case lltok::kw_dllexport: 1706 Res = GlobalValue::DLLExportStorageClass; 1707 break; 1708 } 1709 Lex.Lex(); 1710 } 1711 1712 /// ParseOptionalCallingConv 1713 /// ::= /*empty*/ 1714 /// ::= 'ccc' 1715 /// ::= 'fastcc' 1716 /// ::= 'intel_ocl_bicc' 1717 /// ::= 'coldcc' 1718 /// ::= 'x86_stdcallcc' 1719 /// ::= 'x86_fastcallcc' 1720 /// ::= 'x86_thiscallcc' 1721 /// ::= 'x86_vectorcallcc' 1722 /// ::= 'arm_apcscc' 1723 /// ::= 'arm_aapcscc' 1724 /// ::= 'arm_aapcs_vfpcc' 1725 /// ::= 'msp430_intrcc' 1726 /// ::= 'avr_intrcc' 1727 /// ::= 'avr_signalcc' 1728 /// ::= 'ptx_kernel' 1729 /// ::= 'ptx_device' 1730 /// ::= 'spir_func' 1731 /// ::= 'spir_kernel' 1732 /// ::= 'x86_64_sysvcc' 1733 /// ::= 'win64cc' 1734 /// ::= 'webkit_jscc' 1735 /// ::= 'anyregcc' 1736 /// ::= 'preserve_mostcc' 1737 /// ::= 'preserve_allcc' 1738 /// ::= 'ghccc' 1739 /// ::= 'swiftcc' 1740 /// ::= 'x86_intrcc' 1741 /// ::= 'hhvmcc' 1742 /// ::= 'hhvm_ccc' 1743 /// ::= 'cxx_fast_tlscc' 1744 /// ::= 'amdgpu_vs' 1745 /// ::= 'amdgpu_ls' 1746 /// ::= 'amdgpu_hs' 1747 /// ::= 'amdgpu_es' 1748 /// ::= 'amdgpu_gs' 1749 /// ::= 'amdgpu_ps' 1750 /// ::= 'amdgpu_cs' 1751 /// ::= 'amdgpu_kernel' 1752 /// ::= 'cc' UINT 1753 /// 1754 bool LLParser::ParseOptionalCallingConv(unsigned &CC) { 1755 switch (Lex.getKind()) { 1756 default: CC = CallingConv::C; return false; 1757 case lltok::kw_ccc: CC = CallingConv::C; break; 1758 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1759 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1760 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1761 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1762 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 1763 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1764 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1765 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1766 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1767 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1768 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1769 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 1770 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 1771 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1772 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1773 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1774 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1775 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1776 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1777 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 1778 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1779 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1780 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1781 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1782 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1783 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 1784 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 1785 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 1786 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 1787 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 1788 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 1789 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 1790 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 1791 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 1792 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 1793 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 1794 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 1795 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 1796 case lltok::kw_cc: { 1797 Lex.Lex(); 1798 return ParseUInt32(CC); 1799 } 1800 } 1801 1802 Lex.Lex(); 1803 return false; 1804 } 1805 1806 /// ParseMetadataAttachment 1807 /// ::= !dbg !42 1808 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 1809 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 1810 1811 std::string Name = Lex.getStrVal(); 1812 Kind = M->getMDKindID(Name); 1813 Lex.Lex(); 1814 1815 return ParseMDNode(MD); 1816 } 1817 1818 /// ParseInstructionMetadata 1819 /// ::= !dbg !42 (',' !dbg !57)* 1820 bool LLParser::ParseInstructionMetadata(Instruction &Inst) { 1821 do { 1822 if (Lex.getKind() != lltok::MetadataVar) 1823 return TokError("expected metadata after comma"); 1824 1825 unsigned MDK; 1826 MDNode *N; 1827 if (ParseMetadataAttachment(MDK, N)) 1828 return true; 1829 1830 Inst.setMetadata(MDK, N); 1831 if (MDK == LLVMContext::MD_tbaa) 1832 InstsWithTBAATag.push_back(&Inst); 1833 1834 // If this is the end of the list, we're done. 1835 } while (EatIfPresent(lltok::comma)); 1836 return false; 1837 } 1838 1839 /// ParseGlobalObjectMetadataAttachment 1840 /// ::= !dbg !57 1841 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) { 1842 unsigned MDK; 1843 MDNode *N; 1844 if (ParseMetadataAttachment(MDK, N)) 1845 return true; 1846 1847 GO.addMetadata(MDK, *N); 1848 return false; 1849 } 1850 1851 /// ParseOptionalFunctionMetadata 1852 /// ::= (!dbg !57)* 1853 bool LLParser::ParseOptionalFunctionMetadata(Function &F) { 1854 while (Lex.getKind() == lltok::MetadataVar) 1855 if (ParseGlobalObjectMetadataAttachment(F)) 1856 return true; 1857 return false; 1858 } 1859 1860 /// ParseOptionalAlignment 1861 /// ::= /* empty */ 1862 /// ::= 'align' 4 1863 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { 1864 Alignment = 0; 1865 if (!EatIfPresent(lltok::kw_align)) 1866 return false; 1867 LocTy AlignLoc = Lex.getLoc(); 1868 if (ParseUInt32(Alignment)) return true; 1869 if (!isPowerOf2_32(Alignment)) 1870 return Error(AlignLoc, "alignment is not a power of two"); 1871 if (Alignment > Value::MaximumAlignment) 1872 return Error(AlignLoc, "huge alignments are not supported yet"); 1873 return false; 1874 } 1875 1876 /// ParseOptionalDerefAttrBytes 1877 /// ::= /* empty */ 1878 /// ::= AttrKind '(' 4 ')' 1879 /// 1880 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 1881 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind, 1882 uint64_t &Bytes) { 1883 assert((AttrKind == lltok::kw_dereferenceable || 1884 AttrKind == lltok::kw_dereferenceable_or_null) && 1885 "contract!"); 1886 1887 Bytes = 0; 1888 if (!EatIfPresent(AttrKind)) 1889 return false; 1890 LocTy ParenLoc = Lex.getLoc(); 1891 if (!EatIfPresent(lltok::lparen)) 1892 return Error(ParenLoc, "expected '('"); 1893 LocTy DerefLoc = Lex.getLoc(); 1894 if (ParseUInt64(Bytes)) return true; 1895 ParenLoc = Lex.getLoc(); 1896 if (!EatIfPresent(lltok::rparen)) 1897 return Error(ParenLoc, "expected ')'"); 1898 if (!Bytes) 1899 return Error(DerefLoc, "dereferenceable bytes must be non-zero"); 1900 return false; 1901 } 1902 1903 /// ParseOptionalCommaAlign 1904 /// ::= 1905 /// ::= ',' align 4 1906 /// 1907 /// This returns with AteExtraComma set to true if it ate an excess comma at the 1908 /// end. 1909 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, 1910 bool &AteExtraComma) { 1911 AteExtraComma = false; 1912 while (EatIfPresent(lltok::comma)) { 1913 // Metadata at the end is an early exit. 1914 if (Lex.getKind() == lltok::MetadataVar) { 1915 AteExtraComma = true; 1916 return false; 1917 } 1918 1919 if (Lex.getKind() != lltok::kw_align) 1920 return Error(Lex.getLoc(), "expected metadata or 'align'"); 1921 1922 if (ParseOptionalAlignment(Alignment)) return true; 1923 } 1924 1925 return false; 1926 } 1927 1928 /// ParseOptionalCommaAddrSpace 1929 /// ::= 1930 /// ::= ',' addrspace(1) 1931 /// 1932 /// This returns with AteExtraComma set to true if it ate an excess comma at the 1933 /// end. 1934 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace, 1935 LocTy &Loc, 1936 bool &AteExtraComma) { 1937 AteExtraComma = false; 1938 while (EatIfPresent(lltok::comma)) { 1939 // Metadata at the end is an early exit. 1940 if (Lex.getKind() == lltok::MetadataVar) { 1941 AteExtraComma = true; 1942 return false; 1943 } 1944 1945 Loc = Lex.getLoc(); 1946 if (Lex.getKind() != lltok::kw_addrspace) 1947 return Error(Lex.getLoc(), "expected metadata or 'addrspace'"); 1948 1949 if (ParseOptionalAddrSpace(AddrSpace)) 1950 return true; 1951 } 1952 1953 return false; 1954 } 1955 1956 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 1957 Optional<unsigned> &HowManyArg) { 1958 Lex.Lex(); 1959 1960 auto StartParen = Lex.getLoc(); 1961 if (!EatIfPresent(lltok::lparen)) 1962 return Error(StartParen, "expected '('"); 1963 1964 if (ParseUInt32(BaseSizeArg)) 1965 return true; 1966 1967 if (EatIfPresent(lltok::comma)) { 1968 auto HowManyAt = Lex.getLoc(); 1969 unsigned HowMany; 1970 if (ParseUInt32(HowMany)) 1971 return true; 1972 if (HowMany == BaseSizeArg) 1973 return Error(HowManyAt, 1974 "'allocsize' indices can't refer to the same parameter"); 1975 HowManyArg = HowMany; 1976 } else 1977 HowManyArg = None; 1978 1979 auto EndParen = Lex.getLoc(); 1980 if (!EatIfPresent(lltok::rparen)) 1981 return Error(EndParen, "expected ')'"); 1982 return false; 1983 } 1984 1985 /// ParseScopeAndOrdering 1986 /// if isAtomic: ::= SyncScope? AtomicOrdering 1987 /// else: ::= 1988 /// 1989 /// This sets Scope and Ordering to the parsed values. 1990 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID, 1991 AtomicOrdering &Ordering) { 1992 if (!isAtomic) 1993 return false; 1994 1995 return ParseScope(SSID) || ParseOrdering(Ordering); 1996 } 1997 1998 /// ParseScope 1999 /// ::= syncscope("singlethread" | "<target scope>")? 2000 /// 2001 /// This sets synchronization scope ID to the ID of the parsed value. 2002 bool LLParser::ParseScope(SyncScope::ID &SSID) { 2003 SSID = SyncScope::System; 2004 if (EatIfPresent(lltok::kw_syncscope)) { 2005 auto StartParenAt = Lex.getLoc(); 2006 if (!EatIfPresent(lltok::lparen)) 2007 return Error(StartParenAt, "Expected '(' in syncscope"); 2008 2009 std::string SSN; 2010 auto SSNAt = Lex.getLoc(); 2011 if (ParseStringConstant(SSN)) 2012 return Error(SSNAt, "Expected synchronization scope name"); 2013 2014 auto EndParenAt = Lex.getLoc(); 2015 if (!EatIfPresent(lltok::rparen)) 2016 return Error(EndParenAt, "Expected ')' in syncscope"); 2017 2018 SSID = Context.getOrInsertSyncScopeID(SSN); 2019 } 2020 2021 return false; 2022 } 2023 2024 /// ParseOrdering 2025 /// ::= AtomicOrdering 2026 /// 2027 /// This sets Ordering to the parsed value. 2028 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) { 2029 switch (Lex.getKind()) { 2030 default: return TokError("Expected ordering on atomic instruction"); 2031 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2032 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2033 // Not specified yet: 2034 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2035 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2036 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2037 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2038 case lltok::kw_seq_cst: 2039 Ordering = AtomicOrdering::SequentiallyConsistent; 2040 break; 2041 } 2042 Lex.Lex(); 2043 return false; 2044 } 2045 2046 /// ParseOptionalStackAlignment 2047 /// ::= /* empty */ 2048 /// ::= 'alignstack' '(' 4 ')' 2049 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 2050 Alignment = 0; 2051 if (!EatIfPresent(lltok::kw_alignstack)) 2052 return false; 2053 LocTy ParenLoc = Lex.getLoc(); 2054 if (!EatIfPresent(lltok::lparen)) 2055 return Error(ParenLoc, "expected '('"); 2056 LocTy AlignLoc = Lex.getLoc(); 2057 if (ParseUInt32(Alignment)) return true; 2058 ParenLoc = Lex.getLoc(); 2059 if (!EatIfPresent(lltok::rparen)) 2060 return Error(ParenLoc, "expected ')'"); 2061 if (!isPowerOf2_32(Alignment)) 2062 return Error(AlignLoc, "stack alignment is not a power of two"); 2063 return false; 2064 } 2065 2066 /// ParseIndexList - This parses the index list for an insert/extractvalue 2067 /// instruction. This sets AteExtraComma in the case where we eat an extra 2068 /// comma at the end of the line and find that it is followed by metadata. 2069 /// Clients that don't allow metadata can call the version of this function that 2070 /// only takes one argument. 2071 /// 2072 /// ParseIndexList 2073 /// ::= (',' uint32)+ 2074 /// 2075 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 2076 bool &AteExtraComma) { 2077 AteExtraComma = false; 2078 2079 if (Lex.getKind() != lltok::comma) 2080 return TokError("expected ',' as start of index list"); 2081 2082 while (EatIfPresent(lltok::comma)) { 2083 if (Lex.getKind() == lltok::MetadataVar) { 2084 if (Indices.empty()) return TokError("expected index"); 2085 AteExtraComma = true; 2086 return false; 2087 } 2088 unsigned Idx = 0; 2089 if (ParseUInt32(Idx)) return true; 2090 Indices.push_back(Idx); 2091 } 2092 2093 return false; 2094 } 2095 2096 //===----------------------------------------------------------------------===// 2097 // Type Parsing. 2098 //===----------------------------------------------------------------------===// 2099 2100 /// ParseType - Parse a type. 2101 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2102 SMLoc TypeLoc = Lex.getLoc(); 2103 switch (Lex.getKind()) { 2104 default: 2105 return TokError(Msg); 2106 case lltok::Type: 2107 // Type ::= 'float' | 'void' (etc) 2108 Result = Lex.getTyVal(); 2109 Lex.Lex(); 2110 break; 2111 case lltok::lbrace: 2112 // Type ::= StructType 2113 if (ParseAnonStructType(Result, false)) 2114 return true; 2115 break; 2116 case lltok::lsquare: 2117 // Type ::= '[' ... ']' 2118 Lex.Lex(); // eat the lsquare. 2119 if (ParseArrayVectorType(Result, false)) 2120 return true; 2121 break; 2122 case lltok::less: // Either vector or packed struct. 2123 // Type ::= '<' ... '>' 2124 Lex.Lex(); 2125 if (Lex.getKind() == lltok::lbrace) { 2126 if (ParseAnonStructType(Result, true) || 2127 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 2128 return true; 2129 } else if (ParseArrayVectorType(Result, true)) 2130 return true; 2131 break; 2132 case lltok::LocalVar: { 2133 // Type ::= %foo 2134 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2135 2136 // If the type hasn't been defined yet, create a forward definition and 2137 // remember where that forward def'n was seen (in case it never is defined). 2138 if (!Entry.first) { 2139 Entry.first = StructType::create(Context, Lex.getStrVal()); 2140 Entry.second = Lex.getLoc(); 2141 } 2142 Result = Entry.first; 2143 Lex.Lex(); 2144 break; 2145 } 2146 2147 case lltok::LocalVarID: { 2148 // Type ::= %4 2149 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2150 2151 // If the type hasn't been defined yet, create a forward definition and 2152 // remember where that forward def'n was seen (in case it never is defined). 2153 if (!Entry.first) { 2154 Entry.first = StructType::create(Context); 2155 Entry.second = Lex.getLoc(); 2156 } 2157 Result = Entry.first; 2158 Lex.Lex(); 2159 break; 2160 } 2161 } 2162 2163 // Parse the type suffixes. 2164 while (true) { 2165 switch (Lex.getKind()) { 2166 // End of type. 2167 default: 2168 if (!AllowVoid && Result->isVoidTy()) 2169 return Error(TypeLoc, "void type only allowed for function results"); 2170 return false; 2171 2172 // Type ::= Type '*' 2173 case lltok::star: 2174 if (Result->isLabelTy()) 2175 return TokError("basic block pointers are invalid"); 2176 if (Result->isVoidTy()) 2177 return TokError("pointers to void are invalid - use i8* instead"); 2178 if (!PointerType::isValidElementType(Result)) 2179 return TokError("pointer to this type is invalid"); 2180 Result = PointerType::getUnqual(Result); 2181 Lex.Lex(); 2182 break; 2183 2184 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2185 case lltok::kw_addrspace: { 2186 if (Result->isLabelTy()) 2187 return TokError("basic block pointers are invalid"); 2188 if (Result->isVoidTy()) 2189 return TokError("pointers to void are invalid; use i8* instead"); 2190 if (!PointerType::isValidElementType(Result)) 2191 return TokError("pointer to this type is invalid"); 2192 unsigned AddrSpace; 2193 if (ParseOptionalAddrSpace(AddrSpace) || 2194 ParseToken(lltok::star, "expected '*' in address space")) 2195 return true; 2196 2197 Result = PointerType::get(Result, AddrSpace); 2198 break; 2199 } 2200 2201 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2202 case lltok::lparen: 2203 if (ParseFunctionType(Result)) 2204 return true; 2205 break; 2206 } 2207 } 2208 } 2209 2210 /// ParseParameterList 2211 /// ::= '(' ')' 2212 /// ::= '(' Arg (',' Arg)* ')' 2213 /// Arg 2214 /// ::= Type OptionalAttributes Value OptionalAttributes 2215 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2216 PerFunctionState &PFS, bool IsMustTailCall, 2217 bool InVarArgsFunc) { 2218 if (ParseToken(lltok::lparen, "expected '(' in call")) 2219 return true; 2220 2221 while (Lex.getKind() != lltok::rparen) { 2222 // If this isn't the first argument, we need a comma. 2223 if (!ArgList.empty() && 2224 ParseToken(lltok::comma, "expected ',' in argument list")) 2225 return true; 2226 2227 // Parse an ellipsis if this is a musttail call in a variadic function. 2228 if (Lex.getKind() == lltok::dotdotdot) { 2229 const char *Msg = "unexpected ellipsis in argument list for "; 2230 if (!IsMustTailCall) 2231 return TokError(Twine(Msg) + "non-musttail call"); 2232 if (!InVarArgsFunc) 2233 return TokError(Twine(Msg) + "musttail call in non-varargs function"); 2234 Lex.Lex(); // Lex the '...', it is purely for readability. 2235 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2236 } 2237 2238 // Parse the argument. 2239 LocTy ArgLoc; 2240 Type *ArgTy = nullptr; 2241 AttrBuilder ArgAttrs; 2242 Value *V; 2243 if (ParseType(ArgTy, ArgLoc)) 2244 return true; 2245 2246 if (ArgTy->isMetadataTy()) { 2247 if (ParseMetadataAsValue(V, PFS)) 2248 return true; 2249 } else { 2250 // Otherwise, handle normal operands. 2251 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS)) 2252 return true; 2253 } 2254 ArgList.push_back(ParamInfo( 2255 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2256 } 2257 2258 if (IsMustTailCall && InVarArgsFunc) 2259 return TokError("expected '...' at end of argument list for musttail call " 2260 "in varargs function"); 2261 2262 Lex.Lex(); // Lex the ')'. 2263 return false; 2264 } 2265 2266 /// ParseOptionalOperandBundles 2267 /// ::= /*empty*/ 2268 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2269 /// 2270 /// OperandBundle 2271 /// ::= bundle-tag '(' ')' 2272 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2273 /// 2274 /// bundle-tag ::= String Constant 2275 bool LLParser::ParseOptionalOperandBundles( 2276 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2277 LocTy BeginLoc = Lex.getLoc(); 2278 if (!EatIfPresent(lltok::lsquare)) 2279 return false; 2280 2281 while (Lex.getKind() != lltok::rsquare) { 2282 // If this isn't the first operand bundle, we need a comma. 2283 if (!BundleList.empty() && 2284 ParseToken(lltok::comma, "expected ',' in input list")) 2285 return true; 2286 2287 std::string Tag; 2288 if (ParseStringConstant(Tag)) 2289 return true; 2290 2291 if (ParseToken(lltok::lparen, "expected '(' in operand bundle")) 2292 return true; 2293 2294 std::vector<Value *> Inputs; 2295 while (Lex.getKind() != lltok::rparen) { 2296 // If this isn't the first input, we need a comma. 2297 if (!Inputs.empty() && 2298 ParseToken(lltok::comma, "expected ',' in input list")) 2299 return true; 2300 2301 Type *Ty = nullptr; 2302 Value *Input = nullptr; 2303 if (ParseType(Ty) || ParseValue(Ty, Input, PFS)) 2304 return true; 2305 Inputs.push_back(Input); 2306 } 2307 2308 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2309 2310 Lex.Lex(); // Lex the ')'. 2311 } 2312 2313 if (BundleList.empty()) 2314 return Error(BeginLoc, "operand bundle set must not be empty"); 2315 2316 Lex.Lex(); // Lex the ']'. 2317 return false; 2318 } 2319 2320 /// ParseArgumentList - Parse the argument list for a function type or function 2321 /// prototype. 2322 /// ::= '(' ArgTypeListI ')' 2323 /// ArgTypeListI 2324 /// ::= /*empty*/ 2325 /// ::= '...' 2326 /// ::= ArgTypeList ',' '...' 2327 /// ::= ArgType (',' ArgType)* 2328 /// 2329 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2330 bool &isVarArg){ 2331 isVarArg = false; 2332 assert(Lex.getKind() == lltok::lparen); 2333 Lex.Lex(); // eat the (. 2334 2335 if (Lex.getKind() == lltok::rparen) { 2336 // empty 2337 } else if (Lex.getKind() == lltok::dotdotdot) { 2338 isVarArg = true; 2339 Lex.Lex(); 2340 } else { 2341 LocTy TypeLoc = Lex.getLoc(); 2342 Type *ArgTy = nullptr; 2343 AttrBuilder Attrs; 2344 std::string Name; 2345 2346 if (ParseType(ArgTy) || 2347 ParseOptionalParamAttrs(Attrs)) return true; 2348 2349 if (ArgTy->isVoidTy()) 2350 return Error(TypeLoc, "argument can not have void type"); 2351 2352 if (Lex.getKind() == lltok::LocalVar) { 2353 Name = Lex.getStrVal(); 2354 Lex.Lex(); 2355 } 2356 2357 if (!FunctionType::isValidArgumentType(ArgTy)) 2358 return Error(TypeLoc, "invalid type for function argument"); 2359 2360 ArgList.emplace_back(TypeLoc, ArgTy, 2361 AttributeSet::get(ArgTy->getContext(), Attrs), 2362 std::move(Name)); 2363 2364 while (EatIfPresent(lltok::comma)) { 2365 // Handle ... at end of arg list. 2366 if (EatIfPresent(lltok::dotdotdot)) { 2367 isVarArg = true; 2368 break; 2369 } 2370 2371 // Otherwise must be an argument type. 2372 TypeLoc = Lex.getLoc(); 2373 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true; 2374 2375 if (ArgTy->isVoidTy()) 2376 return Error(TypeLoc, "argument can not have void type"); 2377 2378 if (Lex.getKind() == lltok::LocalVar) { 2379 Name = Lex.getStrVal(); 2380 Lex.Lex(); 2381 } else { 2382 Name = ""; 2383 } 2384 2385 if (!ArgTy->isFirstClassType()) 2386 return Error(TypeLoc, "invalid type for function argument"); 2387 2388 ArgList.emplace_back(TypeLoc, ArgTy, 2389 AttributeSet::get(ArgTy->getContext(), Attrs), 2390 std::move(Name)); 2391 } 2392 } 2393 2394 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2395 } 2396 2397 /// ParseFunctionType 2398 /// ::= Type ArgumentList OptionalAttrs 2399 bool LLParser::ParseFunctionType(Type *&Result) { 2400 assert(Lex.getKind() == lltok::lparen); 2401 2402 if (!FunctionType::isValidReturnType(Result)) 2403 return TokError("invalid function return type"); 2404 2405 SmallVector<ArgInfo, 8> ArgList; 2406 bool isVarArg; 2407 if (ParseArgumentList(ArgList, isVarArg)) 2408 return true; 2409 2410 // Reject names on the arguments lists. 2411 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2412 if (!ArgList[i].Name.empty()) 2413 return Error(ArgList[i].Loc, "argument name invalid in function type"); 2414 if (ArgList[i].Attrs.hasAttributes()) 2415 return Error(ArgList[i].Loc, 2416 "argument attributes invalid in function type"); 2417 } 2418 2419 SmallVector<Type*, 16> ArgListTy; 2420 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2421 ArgListTy.push_back(ArgList[i].Ty); 2422 2423 Result = FunctionType::get(Result, ArgListTy, isVarArg); 2424 return false; 2425 } 2426 2427 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 2428 /// other structs. 2429 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 2430 SmallVector<Type*, 8> Elts; 2431 if (ParseStructBody(Elts)) return true; 2432 2433 Result = StructType::get(Context, Elts, Packed); 2434 return false; 2435 } 2436 2437 /// ParseStructDefinition - Parse a struct in a 'type' definition. 2438 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 2439 std::pair<Type*, LocTy> &Entry, 2440 Type *&ResultTy) { 2441 // If the type was already defined, diagnose the redefinition. 2442 if (Entry.first && !Entry.second.isValid()) 2443 return Error(TypeLoc, "redefinition of type"); 2444 2445 // If we have opaque, just return without filling in the definition for the 2446 // struct. This counts as a definition as far as the .ll file goes. 2447 if (EatIfPresent(lltok::kw_opaque)) { 2448 // This type is being defined, so clear the location to indicate this. 2449 Entry.second = SMLoc(); 2450 2451 // If this type number has never been uttered, create it. 2452 if (!Entry.first) 2453 Entry.first = StructType::create(Context, Name); 2454 ResultTy = Entry.first; 2455 return false; 2456 } 2457 2458 // If the type starts with '<', then it is either a packed struct or a vector. 2459 bool isPacked = EatIfPresent(lltok::less); 2460 2461 // If we don't have a struct, then we have a random type alias, which we 2462 // accept for compatibility with old files. These types are not allowed to be 2463 // forward referenced and not allowed to be recursive. 2464 if (Lex.getKind() != lltok::lbrace) { 2465 if (Entry.first) 2466 return Error(TypeLoc, "forward references to non-struct type"); 2467 2468 ResultTy = nullptr; 2469 if (isPacked) 2470 return ParseArrayVectorType(ResultTy, true); 2471 return ParseType(ResultTy); 2472 } 2473 2474 // This type is being defined, so clear the location to indicate this. 2475 Entry.second = SMLoc(); 2476 2477 // If this type number has never been uttered, create it. 2478 if (!Entry.first) 2479 Entry.first = StructType::create(Context, Name); 2480 2481 StructType *STy = cast<StructType>(Entry.first); 2482 2483 SmallVector<Type*, 8> Body; 2484 if (ParseStructBody(Body) || 2485 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 2486 return true; 2487 2488 STy->setBody(Body, isPacked); 2489 ResultTy = STy; 2490 return false; 2491 } 2492 2493 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2494 /// StructType 2495 /// ::= '{' '}' 2496 /// ::= '{' Type (',' Type)* '}' 2497 /// ::= '<' '{' '}' '>' 2498 /// ::= '<' '{' Type (',' Type)* '}' '>' 2499 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 2500 assert(Lex.getKind() == lltok::lbrace); 2501 Lex.Lex(); // Consume the '{' 2502 2503 // Handle the empty struct. 2504 if (EatIfPresent(lltok::rbrace)) 2505 return false; 2506 2507 LocTy EltTyLoc = Lex.getLoc(); 2508 Type *Ty = nullptr; 2509 if (ParseType(Ty)) return true; 2510 Body.push_back(Ty); 2511 2512 if (!StructType::isValidElementType(Ty)) 2513 return Error(EltTyLoc, "invalid element type for struct"); 2514 2515 while (EatIfPresent(lltok::comma)) { 2516 EltTyLoc = Lex.getLoc(); 2517 if (ParseType(Ty)) return true; 2518 2519 if (!StructType::isValidElementType(Ty)) 2520 return Error(EltTyLoc, "invalid element type for struct"); 2521 2522 Body.push_back(Ty); 2523 } 2524 2525 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 2526 } 2527 2528 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 2529 /// token has already been consumed. 2530 /// Type 2531 /// ::= '[' APSINTVAL 'x' Types ']' 2532 /// ::= '<' APSINTVAL 'x' Types '>' 2533 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 2534 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2535 Lex.getAPSIntVal().getBitWidth() > 64) 2536 return TokError("expected number in address space"); 2537 2538 LocTy SizeLoc = Lex.getLoc(); 2539 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2540 Lex.Lex(); 2541 2542 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 2543 return true; 2544 2545 LocTy TypeLoc = Lex.getLoc(); 2546 Type *EltTy = nullptr; 2547 if (ParseType(EltTy)) return true; 2548 2549 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 2550 "expected end of sequential type")) 2551 return true; 2552 2553 if (isVector) { 2554 if (Size == 0) 2555 return Error(SizeLoc, "zero element vector is illegal"); 2556 if ((unsigned)Size != Size) 2557 return Error(SizeLoc, "size too large for vector"); 2558 if (!VectorType::isValidElementType(EltTy)) 2559 return Error(TypeLoc, "invalid vector element type"); 2560 Result = VectorType::get(EltTy, unsigned(Size)); 2561 } else { 2562 if (!ArrayType::isValidElementType(EltTy)) 2563 return Error(TypeLoc, "invalid array element type"); 2564 Result = ArrayType::get(EltTy, Size); 2565 } 2566 return false; 2567 } 2568 2569 //===----------------------------------------------------------------------===// 2570 // Function Semantic Analysis. 2571 //===----------------------------------------------------------------------===// 2572 2573 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2574 int functionNumber) 2575 : P(p), F(f), FunctionNumber(functionNumber) { 2576 2577 // Insert unnamed arguments into the NumberedVals list. 2578 for (Argument &A : F.args()) 2579 if (!A.hasName()) 2580 NumberedVals.push_back(&A); 2581 } 2582 2583 LLParser::PerFunctionState::~PerFunctionState() { 2584 // If there were any forward referenced non-basicblock values, delete them. 2585 2586 for (const auto &P : ForwardRefVals) { 2587 if (isa<BasicBlock>(P.second.first)) 2588 continue; 2589 P.second.first->replaceAllUsesWith( 2590 UndefValue::get(P.second.first->getType())); 2591 P.second.first->deleteValue(); 2592 } 2593 2594 for (const auto &P : ForwardRefValIDs) { 2595 if (isa<BasicBlock>(P.second.first)) 2596 continue; 2597 P.second.first->replaceAllUsesWith( 2598 UndefValue::get(P.second.first->getType())); 2599 P.second.first->deleteValue(); 2600 } 2601 } 2602 2603 bool LLParser::PerFunctionState::FinishFunction() { 2604 if (!ForwardRefVals.empty()) 2605 return P.Error(ForwardRefVals.begin()->second.second, 2606 "use of undefined value '%" + ForwardRefVals.begin()->first + 2607 "'"); 2608 if (!ForwardRefValIDs.empty()) 2609 return P.Error(ForwardRefValIDs.begin()->second.second, 2610 "use of undefined value '%" + 2611 Twine(ForwardRefValIDs.begin()->first) + "'"); 2612 return false; 2613 } 2614 2615 /// GetVal - Get a value with the specified name or ID, creating a 2616 /// forward reference record if needed. This can return null if the value 2617 /// exists but does not have the right type. 2618 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty, 2619 LocTy Loc) { 2620 // Look this name up in the normal function symbol table. 2621 Value *Val = F.getValueSymbolTable()->lookup(Name); 2622 2623 // If this is a forward reference for the value, see if we already created a 2624 // forward ref record. 2625 if (!Val) { 2626 auto I = ForwardRefVals.find(Name); 2627 if (I != ForwardRefVals.end()) 2628 Val = I->second.first; 2629 } 2630 2631 // If we have the value in the symbol table or fwd-ref table, return it. 2632 if (Val) { 2633 if (Val->getType() == Ty) return Val; 2634 if (Ty->isLabelTy()) 2635 P.Error(Loc, "'%" + Name + "' is not a basic block"); 2636 else 2637 P.Error(Loc, "'%" + Name + "' defined with type '" + 2638 getTypeString(Val->getType()) + "'"); 2639 return nullptr; 2640 } 2641 2642 // Don't make placeholders with invalid type. 2643 if (!Ty->isFirstClassType()) { 2644 P.Error(Loc, "invalid use of a non-first-class type"); 2645 return nullptr; 2646 } 2647 2648 // Otherwise, create a new forward reference for this value and remember it. 2649 Value *FwdVal; 2650 if (Ty->isLabelTy()) { 2651 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2652 } else { 2653 FwdVal = new Argument(Ty, Name); 2654 } 2655 2656 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2657 return FwdVal; 2658 } 2659 2660 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc) { 2661 // Look this name up in the normal function symbol table. 2662 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2663 2664 // If this is a forward reference for the value, see if we already created a 2665 // forward ref record. 2666 if (!Val) { 2667 auto I = ForwardRefValIDs.find(ID); 2668 if (I != ForwardRefValIDs.end()) 2669 Val = I->second.first; 2670 } 2671 2672 // If we have the value in the symbol table or fwd-ref table, return it. 2673 if (Val) { 2674 if (Val->getType() == Ty) return Val; 2675 if (Ty->isLabelTy()) 2676 P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block"); 2677 else 2678 P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" + 2679 getTypeString(Val->getType()) + "'"); 2680 return nullptr; 2681 } 2682 2683 if (!Ty->isFirstClassType()) { 2684 P.Error(Loc, "invalid use of a non-first-class type"); 2685 return nullptr; 2686 } 2687 2688 // Otherwise, create a new forward reference for this value and remember it. 2689 Value *FwdVal; 2690 if (Ty->isLabelTy()) { 2691 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2692 } else { 2693 FwdVal = new Argument(Ty); 2694 } 2695 2696 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2697 return FwdVal; 2698 } 2699 2700 /// SetInstName - After an instruction is parsed and inserted into its 2701 /// basic block, this installs its name. 2702 bool LLParser::PerFunctionState::SetInstName(int NameID, 2703 const std::string &NameStr, 2704 LocTy NameLoc, Instruction *Inst) { 2705 // If this instruction has void type, it cannot have a name or ID specified. 2706 if (Inst->getType()->isVoidTy()) { 2707 if (NameID != -1 || !NameStr.empty()) 2708 return P.Error(NameLoc, "instructions returning void cannot have a name"); 2709 return false; 2710 } 2711 2712 // If this was a numbered instruction, verify that the instruction is the 2713 // expected value and resolve any forward references. 2714 if (NameStr.empty()) { 2715 // If neither a name nor an ID was specified, just use the next ID. 2716 if (NameID == -1) 2717 NameID = NumberedVals.size(); 2718 2719 if (unsigned(NameID) != NumberedVals.size()) 2720 return P.Error(NameLoc, "instruction expected to be numbered '%" + 2721 Twine(NumberedVals.size()) + "'"); 2722 2723 auto FI = ForwardRefValIDs.find(NameID); 2724 if (FI != ForwardRefValIDs.end()) { 2725 Value *Sentinel = FI->second.first; 2726 if (Sentinel->getType() != Inst->getType()) 2727 return P.Error(NameLoc, "instruction forward referenced with type '" + 2728 getTypeString(FI->second.first->getType()) + "'"); 2729 2730 Sentinel->replaceAllUsesWith(Inst); 2731 Sentinel->deleteValue(); 2732 ForwardRefValIDs.erase(FI); 2733 } 2734 2735 NumberedVals.push_back(Inst); 2736 return false; 2737 } 2738 2739 // Otherwise, the instruction had a name. Resolve forward refs and set it. 2740 auto FI = ForwardRefVals.find(NameStr); 2741 if (FI != ForwardRefVals.end()) { 2742 Value *Sentinel = FI->second.first; 2743 if (Sentinel->getType() != Inst->getType()) 2744 return P.Error(NameLoc, "instruction forward referenced with type '" + 2745 getTypeString(FI->second.first->getType()) + "'"); 2746 2747 Sentinel->replaceAllUsesWith(Inst); 2748 Sentinel->deleteValue(); 2749 ForwardRefVals.erase(FI); 2750 } 2751 2752 // Set the name on the instruction. 2753 Inst->setName(NameStr); 2754 2755 if (Inst->getName() != NameStr) 2756 return P.Error(NameLoc, "multiple definition of local value named '" + 2757 NameStr + "'"); 2758 return false; 2759 } 2760 2761 /// GetBB - Get a basic block with the specified name or ID, creating a 2762 /// forward reference record if needed. 2763 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 2764 LocTy Loc) { 2765 return dyn_cast_or_null<BasicBlock>(GetVal(Name, 2766 Type::getLabelTy(F.getContext()), Loc)); 2767 } 2768 2769 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 2770 return dyn_cast_or_null<BasicBlock>(GetVal(ID, 2771 Type::getLabelTy(F.getContext()), Loc)); 2772 } 2773 2774 /// DefineBB - Define the specified basic block, which is either named or 2775 /// unnamed. If there is an error, this returns null otherwise it returns 2776 /// the block being defined. 2777 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 2778 LocTy Loc) { 2779 BasicBlock *BB; 2780 if (Name.empty()) 2781 BB = GetBB(NumberedVals.size(), Loc); 2782 else 2783 BB = GetBB(Name, Loc); 2784 if (!BB) return nullptr; // Already diagnosed error. 2785 2786 // Move the block to the end of the function. Forward ref'd blocks are 2787 // inserted wherever they happen to be referenced. 2788 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 2789 2790 // Remove the block from forward ref sets. 2791 if (Name.empty()) { 2792 ForwardRefValIDs.erase(NumberedVals.size()); 2793 NumberedVals.push_back(BB); 2794 } else { 2795 // BB forward references are already in the function symbol table. 2796 ForwardRefVals.erase(Name); 2797 } 2798 2799 return BB; 2800 } 2801 2802 //===----------------------------------------------------------------------===// 2803 // Constants. 2804 //===----------------------------------------------------------------------===// 2805 2806 /// ParseValID - Parse an abstract value that doesn't necessarily have a 2807 /// type implied. For example, if we parse "4" we don't know what integer type 2808 /// it has. The value will later be combined with its type and checked for 2809 /// sanity. PFS is used to convert function-local operands of metadata (since 2810 /// metadata operands are not just parsed here but also converted to values). 2811 /// PFS can be null when we are not parsing metadata values inside a function. 2812 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 2813 ID.Loc = Lex.getLoc(); 2814 switch (Lex.getKind()) { 2815 default: return TokError("expected value token"); 2816 case lltok::GlobalID: // @42 2817 ID.UIntVal = Lex.getUIntVal(); 2818 ID.Kind = ValID::t_GlobalID; 2819 break; 2820 case lltok::GlobalVar: // @foo 2821 ID.StrVal = Lex.getStrVal(); 2822 ID.Kind = ValID::t_GlobalName; 2823 break; 2824 case lltok::LocalVarID: // %42 2825 ID.UIntVal = Lex.getUIntVal(); 2826 ID.Kind = ValID::t_LocalID; 2827 break; 2828 case lltok::LocalVar: // %foo 2829 ID.StrVal = Lex.getStrVal(); 2830 ID.Kind = ValID::t_LocalName; 2831 break; 2832 case lltok::APSInt: 2833 ID.APSIntVal = Lex.getAPSIntVal(); 2834 ID.Kind = ValID::t_APSInt; 2835 break; 2836 case lltok::APFloat: 2837 ID.APFloatVal = Lex.getAPFloatVal(); 2838 ID.Kind = ValID::t_APFloat; 2839 break; 2840 case lltok::kw_true: 2841 ID.ConstantVal = ConstantInt::getTrue(Context); 2842 ID.Kind = ValID::t_Constant; 2843 break; 2844 case lltok::kw_false: 2845 ID.ConstantVal = ConstantInt::getFalse(Context); 2846 ID.Kind = ValID::t_Constant; 2847 break; 2848 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 2849 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 2850 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 2851 case lltok::kw_none: ID.Kind = ValID::t_None; break; 2852 2853 case lltok::lbrace: { 2854 // ValID ::= '{' ConstVector '}' 2855 Lex.Lex(); 2856 SmallVector<Constant*, 16> Elts; 2857 if (ParseGlobalValueVector(Elts) || 2858 ParseToken(lltok::rbrace, "expected end of struct constant")) 2859 return true; 2860 2861 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 2862 ID.UIntVal = Elts.size(); 2863 memcpy(ID.ConstantStructElts.get(), Elts.data(), 2864 Elts.size() * sizeof(Elts[0])); 2865 ID.Kind = ValID::t_ConstantStruct; 2866 return false; 2867 } 2868 case lltok::less: { 2869 // ValID ::= '<' ConstVector '>' --> Vector. 2870 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 2871 Lex.Lex(); 2872 bool isPackedStruct = EatIfPresent(lltok::lbrace); 2873 2874 SmallVector<Constant*, 16> Elts; 2875 LocTy FirstEltLoc = Lex.getLoc(); 2876 if (ParseGlobalValueVector(Elts) || 2877 (isPackedStruct && 2878 ParseToken(lltok::rbrace, "expected end of packed struct")) || 2879 ParseToken(lltok::greater, "expected end of constant")) 2880 return true; 2881 2882 if (isPackedStruct) { 2883 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 2884 memcpy(ID.ConstantStructElts.get(), Elts.data(), 2885 Elts.size() * sizeof(Elts[0])); 2886 ID.UIntVal = Elts.size(); 2887 ID.Kind = ValID::t_PackedConstantStruct; 2888 return false; 2889 } 2890 2891 if (Elts.empty()) 2892 return Error(ID.Loc, "constant vector must not be empty"); 2893 2894 if (!Elts[0]->getType()->isIntegerTy() && 2895 !Elts[0]->getType()->isFloatingPointTy() && 2896 !Elts[0]->getType()->isPointerTy()) 2897 return Error(FirstEltLoc, 2898 "vector elements must have integer, pointer or floating point type"); 2899 2900 // Verify that all the vector elements have the same type. 2901 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 2902 if (Elts[i]->getType() != Elts[0]->getType()) 2903 return Error(FirstEltLoc, 2904 "vector element #" + Twine(i) + 2905 " is not of type '" + getTypeString(Elts[0]->getType())); 2906 2907 ID.ConstantVal = ConstantVector::get(Elts); 2908 ID.Kind = ValID::t_Constant; 2909 return false; 2910 } 2911 case lltok::lsquare: { // Array Constant 2912 Lex.Lex(); 2913 SmallVector<Constant*, 16> Elts; 2914 LocTy FirstEltLoc = Lex.getLoc(); 2915 if (ParseGlobalValueVector(Elts) || 2916 ParseToken(lltok::rsquare, "expected end of array constant")) 2917 return true; 2918 2919 // Handle empty element. 2920 if (Elts.empty()) { 2921 // Use undef instead of an array because it's inconvenient to determine 2922 // the element type at this point, there being no elements to examine. 2923 ID.Kind = ValID::t_EmptyArray; 2924 return false; 2925 } 2926 2927 if (!Elts[0]->getType()->isFirstClassType()) 2928 return Error(FirstEltLoc, "invalid array element type: " + 2929 getTypeString(Elts[0]->getType())); 2930 2931 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 2932 2933 // Verify all elements are correct type! 2934 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 2935 if (Elts[i]->getType() != Elts[0]->getType()) 2936 return Error(FirstEltLoc, 2937 "array element #" + Twine(i) + 2938 " is not of type '" + getTypeString(Elts[0]->getType())); 2939 } 2940 2941 ID.ConstantVal = ConstantArray::get(ATy, Elts); 2942 ID.Kind = ValID::t_Constant; 2943 return false; 2944 } 2945 case lltok::kw_c: // c "foo" 2946 Lex.Lex(); 2947 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 2948 false); 2949 if (ParseToken(lltok::StringConstant, "expected string")) return true; 2950 ID.Kind = ValID::t_Constant; 2951 return false; 2952 2953 case lltok::kw_asm: { 2954 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 2955 // STRINGCONSTANT 2956 bool HasSideEffect, AlignStack, AsmDialect; 2957 Lex.Lex(); 2958 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 2959 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 2960 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 2961 ParseStringConstant(ID.StrVal) || 2962 ParseToken(lltok::comma, "expected comma in inline asm expression") || 2963 ParseToken(lltok::StringConstant, "expected constraint string")) 2964 return true; 2965 ID.StrVal2 = Lex.getStrVal(); 2966 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 2967 (unsigned(AsmDialect)<<2); 2968 ID.Kind = ValID::t_InlineAsm; 2969 return false; 2970 } 2971 2972 case lltok::kw_blockaddress: { 2973 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 2974 Lex.Lex(); 2975 2976 ValID Fn, Label; 2977 2978 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 2979 ParseValID(Fn) || 2980 ParseToken(lltok::comma, "expected comma in block address expression")|| 2981 ParseValID(Label) || 2982 ParseToken(lltok::rparen, "expected ')' in block address expression")) 2983 return true; 2984 2985 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 2986 return Error(Fn.Loc, "expected function name in blockaddress"); 2987 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 2988 return Error(Label.Loc, "expected basic block name in blockaddress"); 2989 2990 // Try to find the function (but skip it if it's forward-referenced). 2991 GlobalValue *GV = nullptr; 2992 if (Fn.Kind == ValID::t_GlobalID) { 2993 if (Fn.UIntVal < NumberedVals.size()) 2994 GV = NumberedVals[Fn.UIntVal]; 2995 } else if (!ForwardRefVals.count(Fn.StrVal)) { 2996 GV = M->getNamedValue(Fn.StrVal); 2997 } 2998 Function *F = nullptr; 2999 if (GV) { 3000 // Confirm that it's actually a function with a definition. 3001 if (!isa<Function>(GV)) 3002 return Error(Fn.Loc, "expected function name in blockaddress"); 3003 F = cast<Function>(GV); 3004 if (F->isDeclaration()) 3005 return Error(Fn.Loc, "cannot take blockaddress inside a declaration"); 3006 } 3007 3008 if (!F) { 3009 // Make a global variable as a placeholder for this reference. 3010 GlobalValue *&FwdRef = 3011 ForwardRefBlockAddresses.insert(std::make_pair( 3012 std::move(Fn), 3013 std::map<ValID, GlobalValue *>())) 3014 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 3015 .first->second; 3016 if (!FwdRef) 3017 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 3018 GlobalValue::InternalLinkage, nullptr, ""); 3019 ID.ConstantVal = FwdRef; 3020 ID.Kind = ValID::t_Constant; 3021 return false; 3022 } 3023 3024 // We found the function; now find the basic block. Don't use PFS, since we 3025 // might be inside a constant expression. 3026 BasicBlock *BB; 3027 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 3028 if (Label.Kind == ValID::t_LocalID) 3029 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc); 3030 else 3031 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc); 3032 if (!BB) 3033 return Error(Label.Loc, "referenced value is not a basic block"); 3034 } else { 3035 if (Label.Kind == ValID::t_LocalID) 3036 return Error(Label.Loc, "cannot take address of numeric label after " 3037 "the function is defined"); 3038 BB = dyn_cast_or_null<BasicBlock>( 3039 F->getValueSymbolTable()->lookup(Label.StrVal)); 3040 if (!BB) 3041 return Error(Label.Loc, "referenced value is not a basic block"); 3042 } 3043 3044 ID.ConstantVal = BlockAddress::get(F, BB); 3045 ID.Kind = ValID::t_Constant; 3046 return false; 3047 } 3048 3049 case lltok::kw_trunc: 3050 case lltok::kw_zext: 3051 case lltok::kw_sext: 3052 case lltok::kw_fptrunc: 3053 case lltok::kw_fpext: 3054 case lltok::kw_bitcast: 3055 case lltok::kw_addrspacecast: 3056 case lltok::kw_uitofp: 3057 case lltok::kw_sitofp: 3058 case lltok::kw_fptoui: 3059 case lltok::kw_fptosi: 3060 case lltok::kw_inttoptr: 3061 case lltok::kw_ptrtoint: { 3062 unsigned Opc = Lex.getUIntVal(); 3063 Type *DestTy = nullptr; 3064 Constant *SrcVal; 3065 Lex.Lex(); 3066 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3067 ParseGlobalTypeAndValue(SrcVal) || 3068 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3069 ParseType(DestTy) || 3070 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3071 return true; 3072 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3073 return Error(ID.Loc, "invalid cast opcode for cast from '" + 3074 getTypeString(SrcVal->getType()) + "' to '" + 3075 getTypeString(DestTy) + "'"); 3076 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3077 SrcVal, DestTy); 3078 ID.Kind = ValID::t_Constant; 3079 return false; 3080 } 3081 case lltok::kw_extractvalue: { 3082 Lex.Lex(); 3083 Constant *Val; 3084 SmallVector<unsigned, 4> Indices; 3085 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 3086 ParseGlobalTypeAndValue(Val) || 3087 ParseIndexList(Indices) || 3088 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 3089 return true; 3090 3091 if (!Val->getType()->isAggregateType()) 3092 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 3093 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 3094 return Error(ID.Loc, "invalid indices for extractvalue"); 3095 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 3096 ID.Kind = ValID::t_Constant; 3097 return false; 3098 } 3099 case lltok::kw_insertvalue: { 3100 Lex.Lex(); 3101 Constant *Val0, *Val1; 3102 SmallVector<unsigned, 4> Indices; 3103 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 3104 ParseGlobalTypeAndValue(Val0) || 3105 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 3106 ParseGlobalTypeAndValue(Val1) || 3107 ParseIndexList(Indices) || 3108 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 3109 return true; 3110 if (!Val0->getType()->isAggregateType()) 3111 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 3112 Type *IndexedType = 3113 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3114 if (!IndexedType) 3115 return Error(ID.Loc, "invalid indices for insertvalue"); 3116 if (IndexedType != Val1->getType()) 3117 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3118 getTypeString(Val1->getType()) + 3119 "' instead of '" + getTypeString(IndexedType) + 3120 "'"); 3121 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3122 ID.Kind = ValID::t_Constant; 3123 return false; 3124 } 3125 case lltok::kw_icmp: 3126 case lltok::kw_fcmp: { 3127 unsigned PredVal, Opc = Lex.getUIntVal(); 3128 Constant *Val0, *Val1; 3129 Lex.Lex(); 3130 if (ParseCmpPredicate(PredVal, Opc) || 3131 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3132 ParseGlobalTypeAndValue(Val0) || 3133 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 3134 ParseGlobalTypeAndValue(Val1) || 3135 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3136 return true; 3137 3138 if (Val0->getType() != Val1->getType()) 3139 return Error(ID.Loc, "compare operands must have the same type"); 3140 3141 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3142 3143 if (Opc == Instruction::FCmp) { 3144 if (!Val0->getType()->isFPOrFPVectorTy()) 3145 return Error(ID.Loc, "fcmp requires floating point operands"); 3146 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3147 } else { 3148 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3149 if (!Val0->getType()->isIntOrIntVectorTy() && 3150 !Val0->getType()->isPtrOrPtrVectorTy()) 3151 return Error(ID.Loc, "icmp requires pointer or integer operands"); 3152 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3153 } 3154 ID.Kind = ValID::t_Constant; 3155 return false; 3156 } 3157 3158 // Binary Operators. 3159 case lltok::kw_add: 3160 case lltok::kw_fadd: 3161 case lltok::kw_sub: 3162 case lltok::kw_fsub: 3163 case lltok::kw_mul: 3164 case lltok::kw_fmul: 3165 case lltok::kw_udiv: 3166 case lltok::kw_sdiv: 3167 case lltok::kw_fdiv: 3168 case lltok::kw_urem: 3169 case lltok::kw_srem: 3170 case lltok::kw_frem: 3171 case lltok::kw_shl: 3172 case lltok::kw_lshr: 3173 case lltok::kw_ashr: { 3174 bool NUW = false; 3175 bool NSW = false; 3176 bool Exact = false; 3177 unsigned Opc = Lex.getUIntVal(); 3178 Constant *Val0, *Val1; 3179 Lex.Lex(); 3180 LocTy ModifierLoc = Lex.getLoc(); 3181 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3182 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3183 if (EatIfPresent(lltok::kw_nuw)) 3184 NUW = true; 3185 if (EatIfPresent(lltok::kw_nsw)) { 3186 NSW = true; 3187 if (EatIfPresent(lltok::kw_nuw)) 3188 NUW = true; 3189 } 3190 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3191 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3192 if (EatIfPresent(lltok::kw_exact)) 3193 Exact = true; 3194 } 3195 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3196 ParseGlobalTypeAndValue(Val0) || 3197 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 3198 ParseGlobalTypeAndValue(Val1) || 3199 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3200 return true; 3201 if (Val0->getType() != Val1->getType()) 3202 return Error(ID.Loc, "operands of constexpr must have same type"); 3203 if (!Val0->getType()->isIntOrIntVectorTy()) { 3204 if (NUW) 3205 return Error(ModifierLoc, "nuw only applies to integer operations"); 3206 if (NSW) 3207 return Error(ModifierLoc, "nsw only applies to integer operations"); 3208 } 3209 // Check that the type is valid for the operator. 3210 switch (Opc) { 3211 case Instruction::Add: 3212 case Instruction::Sub: 3213 case Instruction::Mul: 3214 case Instruction::UDiv: 3215 case Instruction::SDiv: 3216 case Instruction::URem: 3217 case Instruction::SRem: 3218 case Instruction::Shl: 3219 case Instruction::AShr: 3220 case Instruction::LShr: 3221 if (!Val0->getType()->isIntOrIntVectorTy()) 3222 return Error(ID.Loc, "constexpr requires integer operands"); 3223 break; 3224 case Instruction::FAdd: 3225 case Instruction::FSub: 3226 case Instruction::FMul: 3227 case Instruction::FDiv: 3228 case Instruction::FRem: 3229 if (!Val0->getType()->isFPOrFPVectorTy()) 3230 return Error(ID.Loc, "constexpr requires fp operands"); 3231 break; 3232 default: llvm_unreachable("Unknown binary operator!"); 3233 } 3234 unsigned Flags = 0; 3235 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3236 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3237 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3238 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3239 ID.ConstantVal = C; 3240 ID.Kind = ValID::t_Constant; 3241 return false; 3242 } 3243 3244 // Logical Operations 3245 case lltok::kw_and: 3246 case lltok::kw_or: 3247 case lltok::kw_xor: { 3248 unsigned Opc = Lex.getUIntVal(); 3249 Constant *Val0, *Val1; 3250 Lex.Lex(); 3251 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3252 ParseGlobalTypeAndValue(Val0) || 3253 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 3254 ParseGlobalTypeAndValue(Val1) || 3255 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3256 return true; 3257 if (Val0->getType() != Val1->getType()) 3258 return Error(ID.Loc, "operands of constexpr must have same type"); 3259 if (!Val0->getType()->isIntOrIntVectorTy()) 3260 return Error(ID.Loc, 3261 "constexpr requires integer or integer vector operands"); 3262 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3263 ID.Kind = ValID::t_Constant; 3264 return false; 3265 } 3266 3267 case lltok::kw_getelementptr: 3268 case lltok::kw_shufflevector: 3269 case lltok::kw_insertelement: 3270 case lltok::kw_extractelement: 3271 case lltok::kw_select: { 3272 unsigned Opc = Lex.getUIntVal(); 3273 SmallVector<Constant*, 16> Elts; 3274 bool InBounds = false; 3275 Type *Ty; 3276 Lex.Lex(); 3277 3278 if (Opc == Instruction::GetElementPtr) 3279 InBounds = EatIfPresent(lltok::kw_inbounds); 3280 3281 if (ParseToken(lltok::lparen, "expected '(' in constantexpr")) 3282 return true; 3283 3284 LocTy ExplicitTypeLoc = Lex.getLoc(); 3285 if (Opc == Instruction::GetElementPtr) { 3286 if (ParseType(Ty) || 3287 ParseToken(lltok::comma, "expected comma after getelementptr's type")) 3288 return true; 3289 } 3290 3291 Optional<unsigned> InRangeOp; 3292 if (ParseGlobalValueVector( 3293 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3294 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 3295 return true; 3296 3297 if (Opc == Instruction::GetElementPtr) { 3298 if (Elts.size() == 0 || 3299 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 3300 return Error(ID.Loc, "base of getelementptr must be a pointer"); 3301 3302 Type *BaseType = Elts[0]->getType(); 3303 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3304 if (Ty != BasePointerType->getElementType()) 3305 return Error( 3306 ExplicitTypeLoc, 3307 "explicit pointee type doesn't match operand's pointee type"); 3308 3309 unsigned GEPWidth = 3310 BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0; 3311 3312 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3313 for (Constant *Val : Indices) { 3314 Type *ValTy = Val->getType(); 3315 if (!ValTy->isIntOrIntVectorTy()) 3316 return Error(ID.Loc, "getelementptr index must be an integer"); 3317 if (ValTy->isVectorTy()) { 3318 unsigned ValNumEl = ValTy->getVectorNumElements(); 3319 if (GEPWidth && (ValNumEl != GEPWidth)) 3320 return Error( 3321 ID.Loc, 3322 "getelementptr vector index has a wrong number of elements"); 3323 // GEPWidth may have been unknown because the base is a scalar, 3324 // but it is known now. 3325 GEPWidth = ValNumEl; 3326 } 3327 } 3328 3329 SmallPtrSet<Type*, 4> Visited; 3330 if (!Indices.empty() && !Ty->isSized(&Visited)) 3331 return Error(ID.Loc, "base element of getelementptr must be sized"); 3332 3333 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3334 return Error(ID.Loc, "invalid getelementptr indices"); 3335 3336 if (InRangeOp) { 3337 if (*InRangeOp == 0) 3338 return Error(ID.Loc, 3339 "inrange keyword may not appear on pointer operand"); 3340 --*InRangeOp; 3341 } 3342 3343 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3344 InBounds, InRangeOp); 3345 } else if (Opc == Instruction::Select) { 3346 if (Elts.size() != 3) 3347 return Error(ID.Loc, "expected three operands to select"); 3348 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3349 Elts[2])) 3350 return Error(ID.Loc, Reason); 3351 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3352 } else if (Opc == Instruction::ShuffleVector) { 3353 if (Elts.size() != 3) 3354 return Error(ID.Loc, "expected three operands to shufflevector"); 3355 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3356 return Error(ID.Loc, "invalid operands to shufflevector"); 3357 ID.ConstantVal = 3358 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 3359 } else if (Opc == Instruction::ExtractElement) { 3360 if (Elts.size() != 2) 3361 return Error(ID.Loc, "expected two operands to extractelement"); 3362 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3363 return Error(ID.Loc, "invalid extractelement operands"); 3364 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3365 } else { 3366 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3367 if (Elts.size() != 3) 3368 return Error(ID.Loc, "expected three operands to insertelement"); 3369 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3370 return Error(ID.Loc, "invalid insertelement operands"); 3371 ID.ConstantVal = 3372 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3373 } 3374 3375 ID.Kind = ValID::t_Constant; 3376 return false; 3377 } 3378 } 3379 3380 Lex.Lex(); 3381 return false; 3382 } 3383 3384 /// ParseGlobalValue - Parse a global value with the specified type. 3385 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 3386 C = nullptr; 3387 ValID ID; 3388 Value *V = nullptr; 3389 bool Parsed = ParseValID(ID) || 3390 ConvertValIDToValue(Ty, ID, V, nullptr); 3391 if (V && !(C = dyn_cast<Constant>(V))) 3392 return Error(ID.Loc, "global values must be constants"); 3393 return Parsed; 3394 } 3395 3396 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 3397 Type *Ty = nullptr; 3398 return ParseType(Ty) || 3399 ParseGlobalValue(Ty, V); 3400 } 3401 3402 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3403 C = nullptr; 3404 3405 LocTy KwLoc = Lex.getLoc(); 3406 if (!EatIfPresent(lltok::kw_comdat)) 3407 return false; 3408 3409 if (EatIfPresent(lltok::lparen)) { 3410 if (Lex.getKind() != lltok::ComdatVar) 3411 return TokError("expected comdat variable"); 3412 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3413 Lex.Lex(); 3414 if (ParseToken(lltok::rparen, "expected ')' after comdat var")) 3415 return true; 3416 } else { 3417 if (GlobalName.empty()) 3418 return TokError("comdat cannot be unnamed"); 3419 C = getComdat(GlobalName, KwLoc); 3420 } 3421 3422 return false; 3423 } 3424 3425 /// ParseGlobalValueVector 3426 /// ::= /*empty*/ 3427 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 3428 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 3429 Optional<unsigned> *InRangeOp) { 3430 // Empty list. 3431 if (Lex.getKind() == lltok::rbrace || 3432 Lex.getKind() == lltok::rsquare || 3433 Lex.getKind() == lltok::greater || 3434 Lex.getKind() == lltok::rparen) 3435 return false; 3436 3437 do { 3438 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 3439 *InRangeOp = Elts.size(); 3440 3441 Constant *C; 3442 if (ParseGlobalTypeAndValue(C)) return true; 3443 Elts.push_back(C); 3444 } while (EatIfPresent(lltok::comma)); 3445 3446 return false; 3447 } 3448 3449 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) { 3450 SmallVector<Metadata *, 16> Elts; 3451 if (ParseMDNodeVector(Elts)) 3452 return true; 3453 3454 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3455 return false; 3456 } 3457 3458 /// MDNode: 3459 /// ::= !{ ... } 3460 /// ::= !7 3461 /// ::= !DILocation(...) 3462 bool LLParser::ParseMDNode(MDNode *&N) { 3463 if (Lex.getKind() == lltok::MetadataVar) 3464 return ParseSpecializedMDNode(N); 3465 3466 return ParseToken(lltok::exclaim, "expected '!' here") || 3467 ParseMDNodeTail(N); 3468 } 3469 3470 bool LLParser::ParseMDNodeTail(MDNode *&N) { 3471 // !{ ... } 3472 if (Lex.getKind() == lltok::lbrace) 3473 return ParseMDTuple(N); 3474 3475 // !42 3476 return ParseMDNodeID(N); 3477 } 3478 3479 namespace { 3480 3481 /// Structure to represent an optional metadata field. 3482 template <class FieldTy> struct MDFieldImpl { 3483 typedef MDFieldImpl ImplTy; 3484 FieldTy Val; 3485 bool Seen; 3486 3487 void assign(FieldTy Val) { 3488 Seen = true; 3489 this->Val = std::move(Val); 3490 } 3491 3492 explicit MDFieldImpl(FieldTy Default) 3493 : Val(std::move(Default)), Seen(false) {} 3494 }; 3495 3496 /// Structure to represent an optional metadata field that 3497 /// can be of either type (A or B) and encapsulates the 3498 /// MD<typeofA>Field and MD<typeofB>Field structs, so not 3499 /// to reimplement the specifics for representing each Field. 3500 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl { 3501 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy; 3502 FieldTypeA A; 3503 FieldTypeB B; 3504 bool Seen; 3505 3506 enum { 3507 IsInvalid = 0, 3508 IsTypeA = 1, 3509 IsTypeB = 2 3510 } WhatIs; 3511 3512 void assign(FieldTypeA A) { 3513 Seen = true; 3514 this->A = std::move(A); 3515 WhatIs = IsTypeA; 3516 } 3517 3518 void assign(FieldTypeB B) { 3519 Seen = true; 3520 this->B = std::move(B); 3521 WhatIs = IsTypeB; 3522 } 3523 3524 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) 3525 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), 3526 WhatIs(IsInvalid) {} 3527 }; 3528 3529 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3530 uint64_t Max; 3531 3532 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3533 : ImplTy(Default), Max(Max) {} 3534 }; 3535 3536 struct LineField : public MDUnsignedField { 3537 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3538 }; 3539 3540 struct ColumnField : public MDUnsignedField { 3541 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3542 }; 3543 3544 struct DwarfTagField : public MDUnsignedField { 3545 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3546 DwarfTagField(dwarf::Tag DefaultTag) 3547 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3548 }; 3549 3550 struct DwarfMacinfoTypeField : public MDUnsignedField { 3551 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 3552 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 3553 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 3554 }; 3555 3556 struct DwarfAttEncodingField : public MDUnsignedField { 3557 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3558 }; 3559 3560 struct DwarfVirtualityField : public MDUnsignedField { 3561 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3562 }; 3563 3564 struct DwarfLangField : public MDUnsignedField { 3565 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3566 }; 3567 3568 struct DwarfCCField : public MDUnsignedField { 3569 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 3570 }; 3571 3572 struct EmissionKindField : public MDUnsignedField { 3573 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 3574 }; 3575 3576 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 3577 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 3578 }; 3579 3580 struct MDSignedField : public MDFieldImpl<int64_t> { 3581 int64_t Min; 3582 int64_t Max; 3583 3584 MDSignedField(int64_t Default = 0) 3585 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3586 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3587 : ImplTy(Default), Min(Min), Max(Max) {} 3588 }; 3589 3590 struct MDBoolField : public MDFieldImpl<bool> { 3591 MDBoolField(bool Default = false) : ImplTy(Default) {} 3592 }; 3593 3594 struct MDField : public MDFieldImpl<Metadata *> { 3595 bool AllowNull; 3596 3597 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3598 }; 3599 3600 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 3601 MDConstant() : ImplTy(nullptr) {} 3602 }; 3603 3604 struct MDStringField : public MDFieldImpl<MDString *> { 3605 bool AllowEmpty; 3606 MDStringField(bool AllowEmpty = true) 3607 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3608 }; 3609 3610 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3611 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3612 }; 3613 3614 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 3615 ChecksumKindField() : ImplTy(DIFile::CSK_None) {} 3616 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 3617 }; 3618 3619 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> { 3620 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) 3621 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} 3622 3623 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, 3624 bool AllowNull = true) 3625 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} 3626 3627 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3628 bool isMDField() const { return WhatIs == IsTypeB; } 3629 int64_t getMDSignedValue() const { 3630 assert(isMDSignedField() && "Wrong field type"); 3631 return A.Val; 3632 } 3633 Metadata *getMDFieldValue() const { 3634 assert(isMDField() && "Wrong field type"); 3635 return B.Val; 3636 } 3637 }; 3638 3639 } // end anonymous namespace 3640 3641 namespace llvm { 3642 3643 template <> 3644 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3645 MDUnsignedField &Result) { 3646 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3647 return TokError("expected unsigned integer"); 3648 3649 auto &U = Lex.getAPSIntVal(); 3650 if (U.ugt(Result.Max)) 3651 return TokError("value for '" + Name + "' too large, limit is " + 3652 Twine(Result.Max)); 3653 Result.assign(U.getZExtValue()); 3654 assert(Result.Val <= Result.Max && "Expected value in range"); 3655 Lex.Lex(); 3656 return false; 3657 } 3658 3659 template <> 3660 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) { 3661 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3662 } 3663 template <> 3664 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 3665 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3666 } 3667 3668 template <> 3669 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 3670 if (Lex.getKind() == lltok::APSInt) 3671 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3672 3673 if (Lex.getKind() != lltok::DwarfTag) 3674 return TokError("expected DWARF tag"); 3675 3676 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 3677 if (Tag == dwarf::DW_TAG_invalid) 3678 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 3679 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 3680 3681 Result.assign(Tag); 3682 Lex.Lex(); 3683 return false; 3684 } 3685 3686 template <> 3687 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3688 DwarfMacinfoTypeField &Result) { 3689 if (Lex.getKind() == lltok::APSInt) 3690 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3691 3692 if (Lex.getKind() != lltok::DwarfMacinfo) 3693 return TokError("expected DWARF macinfo type"); 3694 3695 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 3696 if (Macinfo == dwarf::DW_MACINFO_invalid) 3697 return TokError( 3698 "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'"); 3699 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 3700 3701 Result.assign(Macinfo); 3702 Lex.Lex(); 3703 return false; 3704 } 3705 3706 template <> 3707 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3708 DwarfVirtualityField &Result) { 3709 if (Lex.getKind() == lltok::APSInt) 3710 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3711 3712 if (Lex.getKind() != lltok::DwarfVirtuality) 3713 return TokError("expected DWARF virtuality code"); 3714 3715 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 3716 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 3717 return TokError("invalid DWARF virtuality code" + Twine(" '") + 3718 Lex.getStrVal() + "'"); 3719 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 3720 Result.assign(Virtuality); 3721 Lex.Lex(); 3722 return false; 3723 } 3724 3725 template <> 3726 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 3727 if (Lex.getKind() == lltok::APSInt) 3728 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3729 3730 if (Lex.getKind() != lltok::DwarfLang) 3731 return TokError("expected DWARF language"); 3732 3733 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 3734 if (!Lang) 3735 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 3736 "'"); 3737 assert(Lang <= Result.Max && "Expected valid DWARF language"); 3738 Result.assign(Lang); 3739 Lex.Lex(); 3740 return false; 3741 } 3742 3743 template <> 3744 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 3745 if (Lex.getKind() == lltok::APSInt) 3746 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3747 3748 if (Lex.getKind() != lltok::DwarfCC) 3749 return TokError("expected DWARF calling convention"); 3750 3751 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 3752 if (!CC) 3753 return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() + 3754 "'"); 3755 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 3756 Result.assign(CC); 3757 Lex.Lex(); 3758 return false; 3759 } 3760 3761 template <> 3762 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) { 3763 if (Lex.getKind() == lltok::APSInt) 3764 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3765 3766 if (Lex.getKind() != lltok::EmissionKind) 3767 return TokError("expected emission kind"); 3768 3769 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 3770 if (!Kind) 3771 return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 3772 "'"); 3773 assert(*Kind <= Result.Max && "Expected valid emission kind"); 3774 Result.assign(*Kind); 3775 Lex.Lex(); 3776 return false; 3777 } 3778 3779 template <> 3780 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3781 DwarfAttEncodingField &Result) { 3782 if (Lex.getKind() == lltok::APSInt) 3783 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3784 3785 if (Lex.getKind() != lltok::DwarfAttEncoding) 3786 return TokError("expected DWARF type attribute encoding"); 3787 3788 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 3789 if (!Encoding) 3790 return TokError("invalid DWARF type attribute encoding" + Twine(" '") + 3791 Lex.getStrVal() + "'"); 3792 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 3793 Result.assign(Encoding); 3794 Lex.Lex(); 3795 return false; 3796 } 3797 3798 /// DIFlagField 3799 /// ::= uint32 3800 /// ::= DIFlagVector 3801 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 3802 template <> 3803 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 3804 3805 // Parser for a single flag. 3806 auto parseFlag = [&](DINode::DIFlags &Val) { 3807 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 3808 uint32_t TempVal = static_cast<uint32_t>(Val); 3809 bool Res = ParseUInt32(TempVal); 3810 Val = static_cast<DINode::DIFlags>(TempVal); 3811 return Res; 3812 } 3813 3814 if (Lex.getKind() != lltok::DIFlag) 3815 return TokError("expected debug info flag"); 3816 3817 Val = DINode::getFlag(Lex.getStrVal()); 3818 if (!Val) 3819 return TokError(Twine("invalid debug info flag flag '") + 3820 Lex.getStrVal() + "'"); 3821 Lex.Lex(); 3822 return false; 3823 }; 3824 3825 // Parse the flags and combine them together. 3826 DINode::DIFlags Combined = DINode::FlagZero; 3827 do { 3828 DINode::DIFlags Val; 3829 if (parseFlag(Val)) 3830 return true; 3831 Combined |= Val; 3832 } while (EatIfPresent(lltok::bar)); 3833 3834 Result.assign(Combined); 3835 return false; 3836 } 3837 3838 template <> 3839 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3840 MDSignedField &Result) { 3841 if (Lex.getKind() != lltok::APSInt) 3842 return TokError("expected signed integer"); 3843 3844 auto &S = Lex.getAPSIntVal(); 3845 if (S < Result.Min) 3846 return TokError("value for '" + Name + "' too small, limit is " + 3847 Twine(Result.Min)); 3848 if (S > Result.Max) 3849 return TokError("value for '" + Name + "' too large, limit is " + 3850 Twine(Result.Max)); 3851 Result.assign(S.getExtValue()); 3852 assert(Result.Val >= Result.Min && "Expected value in range"); 3853 assert(Result.Val <= Result.Max && "Expected value in range"); 3854 Lex.Lex(); 3855 return false; 3856 } 3857 3858 template <> 3859 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 3860 switch (Lex.getKind()) { 3861 default: 3862 return TokError("expected 'true' or 'false'"); 3863 case lltok::kw_true: 3864 Result.assign(true); 3865 break; 3866 case lltok::kw_false: 3867 Result.assign(false); 3868 break; 3869 } 3870 Lex.Lex(); 3871 return false; 3872 } 3873 3874 template <> 3875 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) { 3876 if (Lex.getKind() == lltok::kw_null) { 3877 if (!Result.AllowNull) 3878 return TokError("'" + Name + "' cannot be null"); 3879 Lex.Lex(); 3880 Result.assign(nullptr); 3881 return false; 3882 } 3883 3884 Metadata *MD; 3885 if (ParseMetadata(MD, nullptr)) 3886 return true; 3887 3888 Result.assign(MD); 3889 return false; 3890 } 3891 3892 template <> 3893 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3894 MDSignedOrMDField &Result) { 3895 // Try to parse a signed int. 3896 if (Lex.getKind() == lltok::APSInt) { 3897 MDSignedField Res = Result.A; 3898 if (!ParseMDField(Loc, Name, Res)) { 3899 Result.assign(Res); 3900 return false; 3901 } 3902 return true; 3903 } 3904 3905 // Otherwise, try to parse as an MDField. 3906 MDField Res = Result.B; 3907 if (!ParseMDField(Loc, Name, Res)) { 3908 Result.assign(Res); 3909 return false; 3910 } 3911 3912 return true; 3913 } 3914 3915 template <> 3916 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 3917 LocTy ValueLoc = Lex.getLoc(); 3918 std::string S; 3919 if (ParseStringConstant(S)) 3920 return true; 3921 3922 if (!Result.AllowEmpty && S.empty()) 3923 return Error(ValueLoc, "'" + Name + "' cannot be empty"); 3924 3925 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 3926 return false; 3927 } 3928 3929 template <> 3930 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 3931 SmallVector<Metadata *, 4> MDs; 3932 if (ParseMDNodeVector(MDs)) 3933 return true; 3934 3935 Result.assign(std::move(MDs)); 3936 return false; 3937 } 3938 3939 template <> 3940 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3941 ChecksumKindField &Result) { 3942 if (Lex.getKind() != lltok::ChecksumKind) 3943 return TokError( 3944 "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'"); 3945 3946 DIFile::ChecksumKind CSKind = DIFile::getChecksumKind(Lex.getStrVal()); 3947 3948 Result.assign(CSKind); 3949 Lex.Lex(); 3950 return false; 3951 } 3952 3953 } // end namespace llvm 3954 3955 template <class ParserTy> 3956 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) { 3957 do { 3958 if (Lex.getKind() != lltok::LabelStr) 3959 return TokError("expected field label here"); 3960 3961 if (parseField()) 3962 return true; 3963 } while (EatIfPresent(lltok::comma)); 3964 3965 return false; 3966 } 3967 3968 template <class ParserTy> 3969 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) { 3970 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 3971 Lex.Lex(); 3972 3973 if (ParseToken(lltok::lparen, "expected '(' here")) 3974 return true; 3975 if (Lex.getKind() != lltok::rparen) 3976 if (ParseMDFieldsImplBody(parseField)) 3977 return true; 3978 3979 ClosingLoc = Lex.getLoc(); 3980 return ParseToken(lltok::rparen, "expected ')' here"); 3981 } 3982 3983 template <class FieldTy> 3984 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) { 3985 if (Result.Seen) 3986 return TokError("field '" + Name + "' cannot be specified more than once"); 3987 3988 LocTy Loc = Lex.getLoc(); 3989 Lex.Lex(); 3990 return ParseMDField(Loc, Name, Result); 3991 } 3992 3993 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 3994 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 3995 3996 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 3997 if (Lex.getStrVal() == #CLASS) \ 3998 return Parse##CLASS(N, IsDistinct); 3999 #include "llvm/IR/Metadata.def" 4000 4001 return TokError("expected metadata type"); 4002 } 4003 4004 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 4005 #define NOP_FIELD(NAME, TYPE, INIT) 4006 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 4007 if (!NAME.Seen) \ 4008 return Error(ClosingLoc, "missing required field '" #NAME "'"); 4009 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 4010 if (Lex.getStrVal() == #NAME) \ 4011 return ParseMDField(#NAME, NAME); 4012 #define PARSE_MD_FIELDS() \ 4013 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 4014 do { \ 4015 LocTy ClosingLoc; \ 4016 if (ParseMDFieldsImpl([&]() -> bool { \ 4017 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 4018 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \ 4019 }, ClosingLoc)) \ 4020 return true; \ 4021 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 4022 } while (false) 4023 #define GET_OR_DISTINCT(CLASS, ARGS) \ 4024 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 4025 4026 /// ParseDILocationFields: 4027 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6) 4028 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) { 4029 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4030 OPTIONAL(line, LineField, ); \ 4031 OPTIONAL(column, ColumnField, ); \ 4032 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4033 OPTIONAL(inlinedAt, MDField, ); 4034 PARSE_MD_FIELDS(); 4035 #undef VISIT_MD_FIELDS 4036 4037 Result = GET_OR_DISTINCT( 4038 DILocation, (Context, line.Val, column.Val, scope.Val, inlinedAt.Val)); 4039 return false; 4040 } 4041 4042 /// ParseGenericDINode: 4043 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 4044 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) { 4045 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4046 REQUIRED(tag, DwarfTagField, ); \ 4047 OPTIONAL(header, MDStringField, ); \ 4048 OPTIONAL(operands, MDFieldList, ); 4049 PARSE_MD_FIELDS(); 4050 #undef VISIT_MD_FIELDS 4051 4052 Result = GET_OR_DISTINCT(GenericDINode, 4053 (Context, tag.Val, header.Val, operands.Val)); 4054 return false; 4055 } 4056 4057 /// ParseDISubrange: 4058 /// ::= !DISubrange(count: 30, lowerBound: 2) 4059 /// ::= !DISubrange(count: !node, lowerBound: 2) 4060 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) { 4061 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4062 REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ 4063 OPTIONAL(lowerBound, MDSignedField, ); 4064 PARSE_MD_FIELDS(); 4065 #undef VISIT_MD_FIELDS 4066 4067 if (count.isMDSignedField()) 4068 Result = GET_OR_DISTINCT( 4069 DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val)); 4070 else if (count.isMDField()) 4071 Result = GET_OR_DISTINCT( 4072 DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val)); 4073 else 4074 return true; 4075 4076 return false; 4077 } 4078 4079 /// ParseDIEnumerator: 4080 /// ::= !DIEnumerator(value: 30, name: "SomeKind") 4081 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) { 4082 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4083 REQUIRED(name, MDStringField, ); \ 4084 REQUIRED(value, MDSignedField, ); 4085 PARSE_MD_FIELDS(); 4086 #undef VISIT_MD_FIELDS 4087 4088 Result = GET_OR_DISTINCT(DIEnumerator, (Context, value.Val, name.Val)); 4089 return false; 4090 } 4091 4092 /// ParseDIBasicType: 4093 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32) 4094 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) { 4095 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4096 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 4097 OPTIONAL(name, MDStringField, ); \ 4098 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4099 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4100 OPTIONAL(encoding, DwarfAttEncodingField, ); 4101 PARSE_MD_FIELDS(); 4102 #undef VISIT_MD_FIELDS 4103 4104 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 4105 align.Val, encoding.Val)); 4106 return false; 4107 } 4108 4109 /// ParseDIDerivedType: 4110 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 4111 /// line: 7, scope: !1, baseType: !2, size: 32, 4112 /// align: 32, offset: 0, flags: 0, extraData: !3, 4113 /// dwarfAddressSpace: 3) 4114 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) { 4115 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4116 REQUIRED(tag, DwarfTagField, ); \ 4117 OPTIONAL(name, MDStringField, ); \ 4118 OPTIONAL(file, MDField, ); \ 4119 OPTIONAL(line, LineField, ); \ 4120 OPTIONAL(scope, MDField, ); \ 4121 REQUIRED(baseType, MDField, ); \ 4122 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4123 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4124 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4125 OPTIONAL(flags, DIFlagField, ); \ 4126 OPTIONAL(extraData, MDField, ); \ 4127 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); 4128 PARSE_MD_FIELDS(); 4129 #undef VISIT_MD_FIELDS 4130 4131 Optional<unsigned> DWARFAddressSpace; 4132 if (dwarfAddressSpace.Val != UINT32_MAX) 4133 DWARFAddressSpace = dwarfAddressSpace.Val; 4134 4135 Result = GET_OR_DISTINCT(DIDerivedType, 4136 (Context, tag.Val, name.Val, file.Val, line.Val, 4137 scope.Val, baseType.Val, size.Val, align.Val, 4138 offset.Val, DWARFAddressSpace, flags.Val, 4139 extraData.Val)); 4140 return false; 4141 } 4142 4143 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) { 4144 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4145 REQUIRED(tag, DwarfTagField, ); \ 4146 OPTIONAL(name, MDStringField, ); \ 4147 OPTIONAL(file, MDField, ); \ 4148 OPTIONAL(line, LineField, ); \ 4149 OPTIONAL(scope, MDField, ); \ 4150 OPTIONAL(baseType, MDField, ); \ 4151 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4152 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4153 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4154 OPTIONAL(flags, DIFlagField, ); \ 4155 OPTIONAL(elements, MDField, ); \ 4156 OPTIONAL(runtimeLang, DwarfLangField, ); \ 4157 OPTIONAL(vtableHolder, MDField, ); \ 4158 OPTIONAL(templateParams, MDField, ); \ 4159 OPTIONAL(identifier, MDStringField, ); \ 4160 OPTIONAL(discriminator, MDField, ); 4161 PARSE_MD_FIELDS(); 4162 #undef VISIT_MD_FIELDS 4163 4164 // If this has an identifier try to build an ODR type. 4165 if (identifier.Val) 4166 if (auto *CT = DICompositeType::buildODRType( 4167 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 4168 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 4169 elements.Val, runtimeLang.Val, vtableHolder.Val, 4170 templateParams.Val, discriminator.Val)) { 4171 Result = CT; 4172 return false; 4173 } 4174 4175 // Create a new node, and save it in the context if it belongs in the type 4176 // map. 4177 Result = GET_OR_DISTINCT( 4178 DICompositeType, 4179 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 4180 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 4181 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val, 4182 discriminator.Val)); 4183 return false; 4184 } 4185 4186 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) { 4187 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4188 OPTIONAL(flags, DIFlagField, ); \ 4189 OPTIONAL(cc, DwarfCCField, ); \ 4190 REQUIRED(types, MDField, ); 4191 PARSE_MD_FIELDS(); 4192 #undef VISIT_MD_FIELDS 4193 4194 Result = GET_OR_DISTINCT(DISubroutineType, 4195 (Context, flags.Val, cc.Val, types.Val)); 4196 return false; 4197 } 4198 4199 /// ParseDIFileType: 4200 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir" 4201 /// checksumkind: CSK_MD5, 4202 /// checksum: "000102030405060708090a0b0c0d0e0f") 4203 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) { 4204 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4205 REQUIRED(filename, MDStringField, ); \ 4206 REQUIRED(directory, MDStringField, ); \ 4207 OPTIONAL(checksumkind, ChecksumKindField, ); \ 4208 OPTIONAL(checksum, MDStringField, ); 4209 PARSE_MD_FIELDS(); 4210 #undef VISIT_MD_FIELDS 4211 4212 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val, 4213 checksumkind.Val, checksum.Val)); 4214 return false; 4215 } 4216 4217 /// ParseDICompileUnit: 4218 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 4219 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 4220 /// splitDebugFilename: "abc.debug", 4221 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 4222 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd) 4223 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) { 4224 if (!IsDistinct) 4225 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 4226 4227 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4228 REQUIRED(language, DwarfLangField, ); \ 4229 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 4230 OPTIONAL(producer, MDStringField, ); \ 4231 OPTIONAL(isOptimized, MDBoolField, ); \ 4232 OPTIONAL(flags, MDStringField, ); \ 4233 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 4234 OPTIONAL(splitDebugFilename, MDStringField, ); \ 4235 OPTIONAL(emissionKind, EmissionKindField, ); \ 4236 OPTIONAL(enums, MDField, ); \ 4237 OPTIONAL(retainedTypes, MDField, ); \ 4238 OPTIONAL(globals, MDField, ); \ 4239 OPTIONAL(imports, MDField, ); \ 4240 OPTIONAL(macros, MDField, ); \ 4241 OPTIONAL(dwoId, MDUnsignedField, ); \ 4242 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 4243 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 4244 OPTIONAL(gnuPubnames, MDBoolField, = false); 4245 PARSE_MD_FIELDS(); 4246 #undef VISIT_MD_FIELDS 4247 4248 Result = DICompileUnit::getDistinct( 4249 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 4250 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 4251 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 4252 splitDebugInlining.Val, debugInfoForProfiling.Val, gnuPubnames.Val); 4253 return false; 4254 } 4255 4256 /// ParseDISubprogram: 4257 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 4258 /// file: !1, line: 7, type: !2, isLocal: false, 4259 /// isDefinition: true, scopeLine: 8, containingType: !3, 4260 /// virtuality: DW_VIRTUALTIY_pure_virtual, 4261 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 4262 /// isOptimized: false, templateParams: !4, declaration: !5, 4263 /// variables: !6, thrownTypes: !7) 4264 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) { 4265 auto Loc = Lex.getLoc(); 4266 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4267 OPTIONAL(scope, MDField, ); \ 4268 OPTIONAL(name, MDStringField, ); \ 4269 OPTIONAL(linkageName, MDStringField, ); \ 4270 OPTIONAL(file, MDField, ); \ 4271 OPTIONAL(line, LineField, ); \ 4272 OPTIONAL(type, MDField, ); \ 4273 OPTIONAL(isLocal, MDBoolField, ); \ 4274 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4275 OPTIONAL(scopeLine, LineField, ); \ 4276 OPTIONAL(containingType, MDField, ); \ 4277 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 4278 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 4279 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 4280 OPTIONAL(flags, DIFlagField, ); \ 4281 OPTIONAL(isOptimized, MDBoolField, ); \ 4282 OPTIONAL(unit, MDField, ); \ 4283 OPTIONAL(templateParams, MDField, ); \ 4284 OPTIONAL(declaration, MDField, ); \ 4285 OPTIONAL(variables, MDField, ); \ 4286 OPTIONAL(thrownTypes, MDField, ); 4287 PARSE_MD_FIELDS(); 4288 #undef VISIT_MD_FIELDS 4289 4290 if (isDefinition.Val && !IsDistinct) 4291 return Lex.Error( 4292 Loc, 4293 "missing 'distinct', required for !DISubprogram when 'isDefinition'"); 4294 4295 Result = GET_OR_DISTINCT( 4296 DISubprogram, 4297 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 4298 type.Val, isLocal.Val, isDefinition.Val, scopeLine.Val, 4299 containingType.Val, virtuality.Val, virtualIndex.Val, thisAdjustment.Val, 4300 flags.Val, isOptimized.Val, unit.Val, templateParams.Val, 4301 declaration.Val, variables.Val, thrownTypes.Val)); 4302 return false; 4303 } 4304 4305 /// ParseDILexicalBlock: 4306 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 4307 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 4308 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4309 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4310 OPTIONAL(file, MDField, ); \ 4311 OPTIONAL(line, LineField, ); \ 4312 OPTIONAL(column, ColumnField, ); 4313 PARSE_MD_FIELDS(); 4314 #undef VISIT_MD_FIELDS 4315 4316 Result = GET_OR_DISTINCT( 4317 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 4318 return false; 4319 } 4320 4321 /// ParseDILexicalBlockFile: 4322 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 4323 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 4324 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4325 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4326 OPTIONAL(file, MDField, ); \ 4327 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 4328 PARSE_MD_FIELDS(); 4329 #undef VISIT_MD_FIELDS 4330 4331 Result = GET_OR_DISTINCT(DILexicalBlockFile, 4332 (Context, scope.Val, file.Val, discriminator.Val)); 4333 return false; 4334 } 4335 4336 /// ParseDINamespace: 4337 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 4338 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) { 4339 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4340 REQUIRED(scope, MDField, ); \ 4341 OPTIONAL(name, MDStringField, ); \ 4342 OPTIONAL(exportSymbols, MDBoolField, ); 4343 PARSE_MD_FIELDS(); 4344 #undef VISIT_MD_FIELDS 4345 4346 Result = GET_OR_DISTINCT(DINamespace, 4347 (Context, scope.Val, name.Val, exportSymbols.Val)); 4348 return false; 4349 } 4350 4351 /// ParseDIMacro: 4352 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue") 4353 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) { 4354 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4355 REQUIRED(type, DwarfMacinfoTypeField, ); \ 4356 OPTIONAL(line, LineField, ); \ 4357 REQUIRED(name, MDStringField, ); \ 4358 OPTIONAL(value, MDStringField, ); 4359 PARSE_MD_FIELDS(); 4360 #undef VISIT_MD_FIELDS 4361 4362 Result = GET_OR_DISTINCT(DIMacro, 4363 (Context, type.Val, line.Val, name.Val, value.Val)); 4364 return false; 4365 } 4366 4367 /// ParseDIMacroFile: 4368 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 4369 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) { 4370 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4371 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 4372 OPTIONAL(line, LineField, ); \ 4373 REQUIRED(file, MDField, ); \ 4374 OPTIONAL(nodes, MDField, ); 4375 PARSE_MD_FIELDS(); 4376 #undef VISIT_MD_FIELDS 4377 4378 Result = GET_OR_DISTINCT(DIMacroFile, 4379 (Context, type.Val, line.Val, file.Val, nodes.Val)); 4380 return false; 4381 } 4382 4383 /// ParseDIModule: 4384 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG", 4385 /// includePath: "/usr/include", isysroot: "/") 4386 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) { 4387 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4388 REQUIRED(scope, MDField, ); \ 4389 REQUIRED(name, MDStringField, ); \ 4390 OPTIONAL(configMacros, MDStringField, ); \ 4391 OPTIONAL(includePath, MDStringField, ); \ 4392 OPTIONAL(isysroot, MDStringField, ); 4393 PARSE_MD_FIELDS(); 4394 #undef VISIT_MD_FIELDS 4395 4396 Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val, 4397 configMacros.Val, includePath.Val, isysroot.Val)); 4398 return false; 4399 } 4400 4401 /// ParseDITemplateTypeParameter: 4402 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1) 4403 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 4404 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4405 OPTIONAL(name, MDStringField, ); \ 4406 REQUIRED(type, MDField, ); 4407 PARSE_MD_FIELDS(); 4408 #undef VISIT_MD_FIELDS 4409 4410 Result = 4411 GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val)); 4412 return false; 4413 } 4414 4415 /// ParseDITemplateValueParameter: 4416 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 4417 /// name: "V", type: !1, value: i32 7) 4418 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 4419 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4420 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 4421 OPTIONAL(name, MDStringField, ); \ 4422 OPTIONAL(type, MDField, ); \ 4423 REQUIRED(value, MDField, ); 4424 PARSE_MD_FIELDS(); 4425 #undef VISIT_MD_FIELDS 4426 4427 Result = GET_OR_DISTINCT(DITemplateValueParameter, 4428 (Context, tag.Val, name.Val, type.Val, value.Val)); 4429 return false; 4430 } 4431 4432 /// ParseDIGlobalVariable: 4433 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 4434 /// file: !1, line: 7, type: !2, isLocal: false, 4435 /// isDefinition: true, declaration: !3, align: 8) 4436 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 4437 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4438 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 4439 OPTIONAL(scope, MDField, ); \ 4440 OPTIONAL(linkageName, MDStringField, ); \ 4441 OPTIONAL(file, MDField, ); \ 4442 OPTIONAL(line, LineField, ); \ 4443 OPTIONAL(type, MDField, ); \ 4444 OPTIONAL(isLocal, MDBoolField, ); \ 4445 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4446 OPTIONAL(declaration, MDField, ); \ 4447 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4448 PARSE_MD_FIELDS(); 4449 #undef VISIT_MD_FIELDS 4450 4451 Result = GET_OR_DISTINCT(DIGlobalVariable, 4452 (Context, scope.Val, name.Val, linkageName.Val, 4453 file.Val, line.Val, type.Val, isLocal.Val, 4454 isDefinition.Val, declaration.Val, align.Val)); 4455 return false; 4456 } 4457 4458 /// ParseDILocalVariable: 4459 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 4460 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4461 /// align: 8) 4462 /// ::= !DILocalVariable(scope: !0, name: "foo", 4463 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4464 /// align: 8) 4465 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) { 4466 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4467 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4468 OPTIONAL(name, MDStringField, ); \ 4469 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 4470 OPTIONAL(file, MDField, ); \ 4471 OPTIONAL(line, LineField, ); \ 4472 OPTIONAL(type, MDField, ); \ 4473 OPTIONAL(flags, DIFlagField, ); \ 4474 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4475 PARSE_MD_FIELDS(); 4476 #undef VISIT_MD_FIELDS 4477 4478 Result = GET_OR_DISTINCT(DILocalVariable, 4479 (Context, scope.Val, name.Val, file.Val, line.Val, 4480 type.Val, arg.Val, flags.Val, align.Val)); 4481 return false; 4482 } 4483 4484 /// ParseDIExpression: 4485 /// ::= !DIExpression(0, 7, -1) 4486 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) { 4487 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4488 Lex.Lex(); 4489 4490 if (ParseToken(lltok::lparen, "expected '(' here")) 4491 return true; 4492 4493 SmallVector<uint64_t, 8> Elements; 4494 if (Lex.getKind() != lltok::rparen) 4495 do { 4496 if (Lex.getKind() == lltok::DwarfOp) { 4497 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 4498 Lex.Lex(); 4499 Elements.push_back(Op); 4500 continue; 4501 } 4502 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 4503 } 4504 4505 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4506 return TokError("expected unsigned integer"); 4507 4508 auto &U = Lex.getAPSIntVal(); 4509 if (U.ugt(UINT64_MAX)) 4510 return TokError("element too large, limit is " + Twine(UINT64_MAX)); 4511 Elements.push_back(U.getZExtValue()); 4512 Lex.Lex(); 4513 } while (EatIfPresent(lltok::comma)); 4514 4515 if (ParseToken(lltok::rparen, "expected ')' here")) 4516 return true; 4517 4518 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 4519 return false; 4520 } 4521 4522 /// ParseDIGlobalVariableExpression: 4523 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 4524 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result, 4525 bool IsDistinct) { 4526 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4527 REQUIRED(var, MDField, ); \ 4528 REQUIRED(expr, MDField, ); 4529 PARSE_MD_FIELDS(); 4530 #undef VISIT_MD_FIELDS 4531 4532 Result = 4533 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 4534 return false; 4535 } 4536 4537 /// ParseDIObjCProperty: 4538 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 4539 /// getter: "getFoo", attributes: 7, type: !2) 4540 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 4541 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4542 OPTIONAL(name, MDStringField, ); \ 4543 OPTIONAL(file, MDField, ); \ 4544 OPTIONAL(line, LineField, ); \ 4545 OPTIONAL(setter, MDStringField, ); \ 4546 OPTIONAL(getter, MDStringField, ); \ 4547 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 4548 OPTIONAL(type, MDField, ); 4549 PARSE_MD_FIELDS(); 4550 #undef VISIT_MD_FIELDS 4551 4552 Result = GET_OR_DISTINCT(DIObjCProperty, 4553 (Context, name.Val, file.Val, line.Val, setter.Val, 4554 getter.Val, attributes.Val, type.Val)); 4555 return false; 4556 } 4557 4558 /// ParseDIImportedEntity: 4559 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 4560 /// line: 7, name: "foo") 4561 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 4562 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4563 REQUIRED(tag, DwarfTagField, ); \ 4564 REQUIRED(scope, MDField, ); \ 4565 OPTIONAL(entity, MDField, ); \ 4566 OPTIONAL(file, MDField, ); \ 4567 OPTIONAL(line, LineField, ); \ 4568 OPTIONAL(name, MDStringField, ); 4569 PARSE_MD_FIELDS(); 4570 #undef VISIT_MD_FIELDS 4571 4572 Result = GET_OR_DISTINCT( 4573 DIImportedEntity, 4574 (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val)); 4575 return false; 4576 } 4577 4578 #undef PARSE_MD_FIELD 4579 #undef NOP_FIELD 4580 #undef REQUIRE_FIELD 4581 #undef DECLARE_FIELD 4582 4583 /// ParseMetadataAsValue 4584 /// ::= metadata i32 %local 4585 /// ::= metadata i32 @global 4586 /// ::= metadata i32 7 4587 /// ::= metadata !0 4588 /// ::= metadata !{...} 4589 /// ::= metadata !"string" 4590 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 4591 // Note: the type 'metadata' has already been parsed. 4592 Metadata *MD; 4593 if (ParseMetadata(MD, &PFS)) 4594 return true; 4595 4596 V = MetadataAsValue::get(Context, MD); 4597 return false; 4598 } 4599 4600 /// ParseValueAsMetadata 4601 /// ::= i32 %local 4602 /// ::= i32 @global 4603 /// ::= i32 7 4604 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 4605 PerFunctionState *PFS) { 4606 Type *Ty; 4607 LocTy Loc; 4608 if (ParseType(Ty, TypeMsg, Loc)) 4609 return true; 4610 if (Ty->isMetadataTy()) 4611 return Error(Loc, "invalid metadata-value-metadata roundtrip"); 4612 4613 Value *V; 4614 if (ParseValue(Ty, V, PFS)) 4615 return true; 4616 4617 MD = ValueAsMetadata::get(V); 4618 return false; 4619 } 4620 4621 /// ParseMetadata 4622 /// ::= i32 %local 4623 /// ::= i32 @global 4624 /// ::= i32 7 4625 /// ::= !42 4626 /// ::= !{...} 4627 /// ::= !"string" 4628 /// ::= !DILocation(...) 4629 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) { 4630 if (Lex.getKind() == lltok::MetadataVar) { 4631 MDNode *N; 4632 if (ParseSpecializedMDNode(N)) 4633 return true; 4634 MD = N; 4635 return false; 4636 } 4637 4638 // ValueAsMetadata: 4639 // <type> <value> 4640 if (Lex.getKind() != lltok::exclaim) 4641 return ParseValueAsMetadata(MD, "expected metadata operand", PFS); 4642 4643 // '!'. 4644 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 4645 Lex.Lex(); 4646 4647 // MDString: 4648 // ::= '!' STRINGCONSTANT 4649 if (Lex.getKind() == lltok::StringConstant) { 4650 MDString *S; 4651 if (ParseMDString(S)) 4652 return true; 4653 MD = S; 4654 return false; 4655 } 4656 4657 // MDNode: 4658 // !{ ... } 4659 // !7 4660 MDNode *N; 4661 if (ParseMDNodeTail(N)) 4662 return true; 4663 MD = N; 4664 return false; 4665 } 4666 4667 //===----------------------------------------------------------------------===// 4668 // Function Parsing. 4669 //===----------------------------------------------------------------------===// 4670 4671 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 4672 PerFunctionState *PFS) { 4673 if (Ty->isFunctionTy()) 4674 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 4675 4676 switch (ID.Kind) { 4677 case ValID::t_LocalID: 4678 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4679 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc); 4680 return V == nullptr; 4681 case ValID::t_LocalName: 4682 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 4683 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc); 4684 return V == nullptr; 4685 case ValID::t_InlineAsm: { 4686 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 4687 return Error(ID.Loc, "invalid type for inline asm constraint string"); 4688 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, 4689 (ID.UIntVal >> 1) & 1, 4690 (InlineAsm::AsmDialect(ID.UIntVal >> 2))); 4691 return false; 4692 } 4693 case ValID::t_GlobalName: 4694 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc); 4695 return V == nullptr; 4696 case ValID::t_GlobalID: 4697 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc); 4698 return V == nullptr; 4699 case ValID::t_APSInt: 4700 if (!Ty->isIntegerTy()) 4701 return Error(ID.Loc, "integer constant must have integer type"); 4702 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 4703 V = ConstantInt::get(Context, ID.APSIntVal); 4704 return false; 4705 case ValID::t_APFloat: 4706 if (!Ty->isFloatingPointTy() || 4707 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 4708 return Error(ID.Loc, "floating point constant invalid for type"); 4709 4710 // The lexer has no type info, so builds all half, float, and double FP 4711 // constants as double. Fix this here. Long double does not need this. 4712 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 4713 bool Ignored; 4714 if (Ty->isHalfTy()) 4715 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 4716 &Ignored); 4717 else if (Ty->isFloatTy()) 4718 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 4719 &Ignored); 4720 } 4721 V = ConstantFP::get(Context, ID.APFloatVal); 4722 4723 if (V->getType() != Ty) 4724 return Error(ID.Loc, "floating point constant does not have type '" + 4725 getTypeString(Ty) + "'"); 4726 4727 return false; 4728 case ValID::t_Null: 4729 if (!Ty->isPointerTy()) 4730 return Error(ID.Loc, "null must be a pointer type"); 4731 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 4732 return false; 4733 case ValID::t_Undef: 4734 // FIXME: LabelTy should not be a first-class type. 4735 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4736 return Error(ID.Loc, "invalid type for undef constant"); 4737 V = UndefValue::get(Ty); 4738 return false; 4739 case ValID::t_EmptyArray: 4740 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 4741 return Error(ID.Loc, "invalid empty array initializer"); 4742 V = UndefValue::get(Ty); 4743 return false; 4744 case ValID::t_Zero: 4745 // FIXME: LabelTy should not be a first-class type. 4746 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 4747 return Error(ID.Loc, "invalid type for null constant"); 4748 V = Constant::getNullValue(Ty); 4749 return false; 4750 case ValID::t_None: 4751 if (!Ty->isTokenTy()) 4752 return Error(ID.Loc, "invalid type for none constant"); 4753 V = Constant::getNullValue(Ty); 4754 return false; 4755 case ValID::t_Constant: 4756 if (ID.ConstantVal->getType() != Ty) 4757 return Error(ID.Loc, "constant expression type mismatch"); 4758 4759 V = ID.ConstantVal; 4760 return false; 4761 case ValID::t_ConstantStruct: 4762 case ValID::t_PackedConstantStruct: 4763 if (StructType *ST = dyn_cast<StructType>(Ty)) { 4764 if (ST->getNumElements() != ID.UIntVal) 4765 return Error(ID.Loc, 4766 "initializer with struct type has wrong # elements"); 4767 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 4768 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 4769 4770 // Verify that the elements are compatible with the structtype. 4771 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 4772 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 4773 return Error(ID.Loc, "element " + Twine(i) + 4774 " of struct initializer doesn't match struct element type"); 4775 4776 V = ConstantStruct::get( 4777 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 4778 } else 4779 return Error(ID.Loc, "constant expression type mismatch"); 4780 return false; 4781 } 4782 llvm_unreachable("Invalid ValID"); 4783 } 4784 4785 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 4786 C = nullptr; 4787 ValID ID; 4788 auto Loc = Lex.getLoc(); 4789 if (ParseValID(ID, /*PFS=*/nullptr)) 4790 return true; 4791 switch (ID.Kind) { 4792 case ValID::t_APSInt: 4793 case ValID::t_APFloat: 4794 case ValID::t_Undef: 4795 case ValID::t_Constant: 4796 case ValID::t_ConstantStruct: 4797 case ValID::t_PackedConstantStruct: { 4798 Value *V; 4799 if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr)) 4800 return true; 4801 assert(isa<Constant>(V) && "Expected a constant value"); 4802 C = cast<Constant>(V); 4803 return false; 4804 } 4805 case ValID::t_Null: 4806 C = Constant::getNullValue(Ty); 4807 return false; 4808 default: 4809 return Error(Loc, "expected a constant value"); 4810 } 4811 } 4812 4813 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 4814 V = nullptr; 4815 ValID ID; 4816 return ParseValID(ID, PFS) || ConvertValIDToValue(Ty, ID, V, PFS); 4817 } 4818 4819 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 4820 Type *Ty = nullptr; 4821 return ParseType(Ty) || 4822 ParseValue(Ty, V, PFS); 4823 } 4824 4825 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 4826 PerFunctionState &PFS) { 4827 Value *V; 4828 Loc = Lex.getLoc(); 4829 if (ParseTypeAndValue(V, PFS)) return true; 4830 if (!isa<BasicBlock>(V)) 4831 return Error(Loc, "expected a basic block"); 4832 BB = cast<BasicBlock>(V); 4833 return false; 4834 } 4835 4836 /// FunctionHeader 4837 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 4838 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 4839 /// '(' ArgList ')' OptFuncAttrs OptSection OptionalAlign OptGC 4840 /// OptionalPrefix OptionalPrologue OptPersonalityFn 4841 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 4842 // Parse the linkage. 4843 LocTy LinkageLoc = Lex.getLoc(); 4844 unsigned Linkage; 4845 unsigned Visibility; 4846 unsigned DLLStorageClass; 4847 bool DSOLocal; 4848 AttrBuilder RetAttrs; 4849 unsigned CC; 4850 bool HasLinkage; 4851 Type *RetType = nullptr; 4852 LocTy RetTypeLoc = Lex.getLoc(); 4853 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 4854 DSOLocal) || 4855 ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 4856 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 4857 return true; 4858 4859 // Verify that the linkage is ok. 4860 switch ((GlobalValue::LinkageTypes)Linkage) { 4861 case GlobalValue::ExternalLinkage: 4862 break; // always ok. 4863 case GlobalValue::ExternalWeakLinkage: 4864 if (isDefine) 4865 return Error(LinkageLoc, "invalid linkage for function definition"); 4866 break; 4867 case GlobalValue::PrivateLinkage: 4868 case GlobalValue::InternalLinkage: 4869 case GlobalValue::AvailableExternallyLinkage: 4870 case GlobalValue::LinkOnceAnyLinkage: 4871 case GlobalValue::LinkOnceODRLinkage: 4872 case GlobalValue::WeakAnyLinkage: 4873 case GlobalValue::WeakODRLinkage: 4874 if (!isDefine) 4875 return Error(LinkageLoc, "invalid linkage for function declaration"); 4876 break; 4877 case GlobalValue::AppendingLinkage: 4878 case GlobalValue::CommonLinkage: 4879 return Error(LinkageLoc, "invalid function linkage type"); 4880 } 4881 4882 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 4883 return Error(LinkageLoc, 4884 "symbol with local linkage must have default visibility"); 4885 4886 if (!FunctionType::isValidReturnType(RetType)) 4887 return Error(RetTypeLoc, "invalid function return type"); 4888 4889 LocTy NameLoc = Lex.getLoc(); 4890 4891 std::string FunctionName; 4892 if (Lex.getKind() == lltok::GlobalVar) { 4893 FunctionName = Lex.getStrVal(); 4894 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 4895 unsigned NameID = Lex.getUIntVal(); 4896 4897 if (NameID != NumberedVals.size()) 4898 return TokError("function expected to be numbered '%" + 4899 Twine(NumberedVals.size()) + "'"); 4900 } else { 4901 return TokError("expected function name"); 4902 } 4903 4904 Lex.Lex(); 4905 4906 if (Lex.getKind() != lltok::lparen) 4907 return TokError("expected '(' in function argument list"); 4908 4909 SmallVector<ArgInfo, 8> ArgList; 4910 bool isVarArg; 4911 AttrBuilder FuncAttrs; 4912 std::vector<unsigned> FwdRefAttrGrps; 4913 LocTy BuiltinLoc; 4914 std::string Section; 4915 unsigned Alignment; 4916 std::string GC; 4917 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 4918 Constant *Prefix = nullptr; 4919 Constant *Prologue = nullptr; 4920 Constant *PersonalityFn = nullptr; 4921 Comdat *C; 4922 4923 if (ParseArgumentList(ArgList, isVarArg) || 4924 ParseOptionalUnnamedAddr(UnnamedAddr) || 4925 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 4926 BuiltinLoc) || 4927 (EatIfPresent(lltok::kw_section) && 4928 ParseStringConstant(Section)) || 4929 parseOptionalComdat(FunctionName, C) || 4930 ParseOptionalAlignment(Alignment) || 4931 (EatIfPresent(lltok::kw_gc) && 4932 ParseStringConstant(GC)) || 4933 (EatIfPresent(lltok::kw_prefix) && 4934 ParseGlobalTypeAndValue(Prefix)) || 4935 (EatIfPresent(lltok::kw_prologue) && 4936 ParseGlobalTypeAndValue(Prologue)) || 4937 (EatIfPresent(lltok::kw_personality) && 4938 ParseGlobalTypeAndValue(PersonalityFn))) 4939 return true; 4940 4941 if (FuncAttrs.contains(Attribute::Builtin)) 4942 return Error(BuiltinLoc, "'builtin' attribute not valid on function"); 4943 4944 // If the alignment was parsed as an attribute, move to the alignment field. 4945 if (FuncAttrs.hasAlignmentAttr()) { 4946 Alignment = FuncAttrs.getAlignment(); 4947 FuncAttrs.removeAttribute(Attribute::Alignment); 4948 } 4949 4950 // Okay, if we got here, the function is syntactically valid. Convert types 4951 // and do semantic checks. 4952 std::vector<Type*> ParamTypeList; 4953 SmallVector<AttributeSet, 8> Attrs; 4954 4955 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 4956 ParamTypeList.push_back(ArgList[i].Ty); 4957 Attrs.push_back(ArgList[i].Attrs); 4958 } 4959 4960 AttributeList PAL = 4961 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 4962 AttributeSet::get(Context, RetAttrs), Attrs); 4963 4964 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 4965 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 4966 4967 FunctionType *FT = 4968 FunctionType::get(RetType, ParamTypeList, isVarArg); 4969 PointerType *PFT = PointerType::getUnqual(FT); 4970 4971 Fn = nullptr; 4972 if (!FunctionName.empty()) { 4973 // If this was a definition of a forward reference, remove the definition 4974 // from the forward reference table and fill in the forward ref. 4975 auto FRVI = ForwardRefVals.find(FunctionName); 4976 if (FRVI != ForwardRefVals.end()) { 4977 Fn = M->getFunction(FunctionName); 4978 if (!Fn) 4979 return Error(FRVI->second.second, "invalid forward reference to " 4980 "function as global value!"); 4981 if (Fn->getType() != PFT) 4982 return Error(FRVI->second.second, "invalid forward reference to " 4983 "function '" + FunctionName + "' with wrong type!"); 4984 4985 ForwardRefVals.erase(FRVI); 4986 } else if ((Fn = M->getFunction(FunctionName))) { 4987 // Reject redefinitions. 4988 return Error(NameLoc, "invalid redefinition of function '" + 4989 FunctionName + "'"); 4990 } else if (M->getNamedValue(FunctionName)) { 4991 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 4992 } 4993 4994 } else { 4995 // If this is a definition of a forward referenced function, make sure the 4996 // types agree. 4997 auto I = ForwardRefValIDs.find(NumberedVals.size()); 4998 if (I != ForwardRefValIDs.end()) { 4999 Fn = cast<Function>(I->second.first); 5000 if (Fn->getType() != PFT) 5001 return Error(NameLoc, "type of definition and forward reference of '@" + 5002 Twine(NumberedVals.size()) + "' disagree"); 5003 ForwardRefValIDs.erase(I); 5004 } 5005 } 5006 5007 if (!Fn) 5008 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M); 5009 else // Move the forward-reference to the correct spot in the module. 5010 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 5011 5012 if (FunctionName.empty()) 5013 NumberedVals.push_back(Fn); 5014 5015 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 5016 maybeSetDSOLocal(DSOLocal, *Fn); 5017 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 5018 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 5019 Fn->setCallingConv(CC); 5020 Fn->setAttributes(PAL); 5021 Fn->setUnnamedAddr(UnnamedAddr); 5022 Fn->setAlignment(Alignment); 5023 Fn->setSection(Section); 5024 Fn->setComdat(C); 5025 Fn->setPersonalityFn(PersonalityFn); 5026 if (!GC.empty()) Fn->setGC(GC); 5027 Fn->setPrefixData(Prefix); 5028 Fn->setPrologueData(Prologue); 5029 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 5030 5031 // Add all of the arguments we parsed to the function. 5032 Function::arg_iterator ArgIt = Fn->arg_begin(); 5033 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 5034 // If the argument has a name, insert it into the argument symbol table. 5035 if (ArgList[i].Name.empty()) continue; 5036 5037 // Set the name, if it conflicted, it will be auto-renamed. 5038 ArgIt->setName(ArgList[i].Name); 5039 5040 if (ArgIt->getName() != ArgList[i].Name) 5041 return Error(ArgList[i].Loc, "redefinition of argument '%" + 5042 ArgList[i].Name + "'"); 5043 } 5044 5045 if (isDefine) 5046 return false; 5047 5048 // Check the declaration has no block address forward references. 5049 ValID ID; 5050 if (FunctionName.empty()) { 5051 ID.Kind = ValID::t_GlobalID; 5052 ID.UIntVal = NumberedVals.size() - 1; 5053 } else { 5054 ID.Kind = ValID::t_GlobalName; 5055 ID.StrVal = FunctionName; 5056 } 5057 auto Blocks = ForwardRefBlockAddresses.find(ID); 5058 if (Blocks != ForwardRefBlockAddresses.end()) 5059 return Error(Blocks->first.Loc, 5060 "cannot take blockaddress inside a declaration"); 5061 return false; 5062 } 5063 5064 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 5065 ValID ID; 5066 if (FunctionNumber == -1) { 5067 ID.Kind = ValID::t_GlobalName; 5068 ID.StrVal = F.getName(); 5069 } else { 5070 ID.Kind = ValID::t_GlobalID; 5071 ID.UIntVal = FunctionNumber; 5072 } 5073 5074 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 5075 if (Blocks == P.ForwardRefBlockAddresses.end()) 5076 return false; 5077 5078 for (const auto &I : Blocks->second) { 5079 const ValID &BBID = I.first; 5080 GlobalValue *GV = I.second; 5081 5082 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 5083 "Expected local id or name"); 5084 BasicBlock *BB; 5085 if (BBID.Kind == ValID::t_LocalName) 5086 BB = GetBB(BBID.StrVal, BBID.Loc); 5087 else 5088 BB = GetBB(BBID.UIntVal, BBID.Loc); 5089 if (!BB) 5090 return P.Error(BBID.Loc, "referenced value is not a basic block"); 5091 5092 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 5093 GV->eraseFromParent(); 5094 } 5095 5096 P.ForwardRefBlockAddresses.erase(Blocks); 5097 return false; 5098 } 5099 5100 /// ParseFunctionBody 5101 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 5102 bool LLParser::ParseFunctionBody(Function &Fn) { 5103 if (Lex.getKind() != lltok::lbrace) 5104 return TokError("expected '{' in function body"); 5105 Lex.Lex(); // eat the {. 5106 5107 int FunctionNumber = -1; 5108 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 5109 5110 PerFunctionState PFS(*this, Fn, FunctionNumber); 5111 5112 // Resolve block addresses and allow basic blocks to be forward-declared 5113 // within this function. 5114 if (PFS.resolveForwardRefBlockAddresses()) 5115 return true; 5116 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 5117 5118 // We need at least one basic block. 5119 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 5120 return TokError("function body requires at least one basic block"); 5121 5122 while (Lex.getKind() != lltok::rbrace && 5123 Lex.getKind() != lltok::kw_uselistorder) 5124 if (ParseBasicBlock(PFS)) return true; 5125 5126 while (Lex.getKind() != lltok::rbrace) 5127 if (ParseUseListOrder(&PFS)) 5128 return true; 5129 5130 // Eat the }. 5131 Lex.Lex(); 5132 5133 // Verify function is ok. 5134 return PFS.FinishFunction(); 5135 } 5136 5137 /// ParseBasicBlock 5138 /// ::= LabelStr? Instruction* 5139 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 5140 // If this basic block starts out with a name, remember it. 5141 std::string Name; 5142 LocTy NameLoc = Lex.getLoc(); 5143 if (Lex.getKind() == lltok::LabelStr) { 5144 Name = Lex.getStrVal(); 5145 Lex.Lex(); 5146 } 5147 5148 BasicBlock *BB = PFS.DefineBB(Name, NameLoc); 5149 if (!BB) 5150 return Error(NameLoc, 5151 "unable to create block named '" + Name + "'"); 5152 5153 std::string NameStr; 5154 5155 // Parse the instructions in this block until we get a terminator. 5156 Instruction *Inst; 5157 do { 5158 // This instruction may have three possibilities for a name: a) none 5159 // specified, b) name specified "%foo =", c) number specified: "%4 =". 5160 LocTy NameLoc = Lex.getLoc(); 5161 int NameID = -1; 5162 NameStr = ""; 5163 5164 if (Lex.getKind() == lltok::LocalVarID) { 5165 NameID = Lex.getUIntVal(); 5166 Lex.Lex(); 5167 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 5168 return true; 5169 } else if (Lex.getKind() == lltok::LocalVar) { 5170 NameStr = Lex.getStrVal(); 5171 Lex.Lex(); 5172 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 5173 return true; 5174 } 5175 5176 switch (ParseInstruction(Inst, BB, PFS)) { 5177 default: llvm_unreachable("Unknown ParseInstruction result!"); 5178 case InstError: return true; 5179 case InstNormal: 5180 BB->getInstList().push_back(Inst); 5181 5182 // With a normal result, we check to see if the instruction is followed by 5183 // a comma and metadata. 5184 if (EatIfPresent(lltok::comma)) 5185 if (ParseInstructionMetadata(*Inst)) 5186 return true; 5187 break; 5188 case InstExtraComma: 5189 BB->getInstList().push_back(Inst); 5190 5191 // If the instruction parser ate an extra comma at the end of it, it 5192 // *must* be followed by metadata. 5193 if (ParseInstructionMetadata(*Inst)) 5194 return true; 5195 break; 5196 } 5197 5198 // Set the name on the instruction. 5199 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 5200 } while (!isa<TerminatorInst>(Inst)); 5201 5202 return false; 5203 } 5204 5205 //===----------------------------------------------------------------------===// 5206 // Instruction Parsing. 5207 //===----------------------------------------------------------------------===// 5208 5209 /// ParseInstruction - Parse one of the many different instructions. 5210 /// 5211 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 5212 PerFunctionState &PFS) { 5213 lltok::Kind Token = Lex.getKind(); 5214 if (Token == lltok::Eof) 5215 return TokError("found end of file when expecting more instructions"); 5216 LocTy Loc = Lex.getLoc(); 5217 unsigned KeywordVal = Lex.getUIntVal(); 5218 Lex.Lex(); // Eat the keyword. 5219 5220 switch (Token) { 5221 default: return Error(Loc, "expected instruction opcode"); 5222 // Terminator Instructions. 5223 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 5224 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 5225 case lltok::kw_br: return ParseBr(Inst, PFS); 5226 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 5227 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 5228 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 5229 case lltok::kw_resume: return ParseResume(Inst, PFS); 5230 case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS); 5231 case lltok::kw_catchret: return ParseCatchRet(Inst, PFS); 5232 case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS); 5233 case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS); 5234 case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS); 5235 // Binary Operators. 5236 case lltok::kw_add: 5237 case lltok::kw_sub: 5238 case lltok::kw_mul: 5239 case lltok::kw_shl: { 5240 bool NUW = EatIfPresent(lltok::kw_nuw); 5241 bool NSW = EatIfPresent(lltok::kw_nsw); 5242 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 5243 5244 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 5245 5246 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 5247 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 5248 return false; 5249 } 5250 case lltok::kw_fadd: 5251 case lltok::kw_fsub: 5252 case lltok::kw_fmul: 5253 case lltok::kw_fdiv: 5254 case lltok::kw_frem: { 5255 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5256 int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2); 5257 if (Res != 0) 5258 return Res; 5259 if (FMF.any()) 5260 Inst->setFastMathFlags(FMF); 5261 return 0; 5262 } 5263 5264 case lltok::kw_sdiv: 5265 case lltok::kw_udiv: 5266 case lltok::kw_lshr: 5267 case lltok::kw_ashr: { 5268 bool Exact = EatIfPresent(lltok::kw_exact); 5269 5270 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 5271 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 5272 return false; 5273 } 5274 5275 case lltok::kw_urem: 5276 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1); 5277 case lltok::kw_and: 5278 case lltok::kw_or: 5279 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 5280 case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal); 5281 case lltok::kw_fcmp: { 5282 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5283 int Res = ParseCompare(Inst, PFS, KeywordVal); 5284 if (Res != 0) 5285 return Res; 5286 if (FMF.any()) 5287 Inst->setFastMathFlags(FMF); 5288 return 0; 5289 } 5290 5291 // Casts. 5292 case lltok::kw_trunc: 5293 case lltok::kw_zext: 5294 case lltok::kw_sext: 5295 case lltok::kw_fptrunc: 5296 case lltok::kw_fpext: 5297 case lltok::kw_bitcast: 5298 case lltok::kw_addrspacecast: 5299 case lltok::kw_uitofp: 5300 case lltok::kw_sitofp: 5301 case lltok::kw_fptoui: 5302 case lltok::kw_fptosi: 5303 case lltok::kw_inttoptr: 5304 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 5305 // Other. 5306 case lltok::kw_select: return ParseSelect(Inst, PFS); 5307 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 5308 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 5309 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 5310 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 5311 case lltok::kw_phi: return ParsePHI(Inst, PFS); 5312 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 5313 // Call. 5314 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None); 5315 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail); 5316 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail); 5317 case lltok::kw_notail: return ParseCall(Inst, PFS, CallInst::TCK_NoTail); 5318 // Memory. 5319 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 5320 case lltok::kw_load: return ParseLoad(Inst, PFS); 5321 case lltok::kw_store: return ParseStore(Inst, PFS); 5322 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 5323 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 5324 case lltok::kw_fence: return ParseFence(Inst, PFS); 5325 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 5326 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 5327 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 5328 } 5329 } 5330 5331 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 5332 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 5333 if (Opc == Instruction::FCmp) { 5334 switch (Lex.getKind()) { 5335 default: return TokError("expected fcmp predicate (e.g. 'oeq')"); 5336 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 5337 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 5338 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 5339 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 5340 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 5341 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 5342 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 5343 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 5344 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 5345 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 5346 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 5347 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 5348 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 5349 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 5350 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 5351 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 5352 } 5353 } else { 5354 switch (Lex.getKind()) { 5355 default: return TokError("expected icmp predicate (e.g. 'eq')"); 5356 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 5357 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 5358 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 5359 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 5360 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 5361 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 5362 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 5363 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 5364 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 5365 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 5366 } 5367 } 5368 Lex.Lex(); 5369 return false; 5370 } 5371 5372 //===----------------------------------------------------------------------===// 5373 // Terminator Instructions. 5374 //===----------------------------------------------------------------------===// 5375 5376 /// ParseRet - Parse a return instruction. 5377 /// ::= 'ret' void (',' !dbg, !1)* 5378 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 5379 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 5380 PerFunctionState &PFS) { 5381 SMLoc TypeLoc = Lex.getLoc(); 5382 Type *Ty = nullptr; 5383 if (ParseType(Ty, true /*void allowed*/)) return true; 5384 5385 Type *ResType = PFS.getFunction().getReturnType(); 5386 5387 if (Ty->isVoidTy()) { 5388 if (!ResType->isVoidTy()) 5389 return Error(TypeLoc, "value doesn't match function result type '" + 5390 getTypeString(ResType) + "'"); 5391 5392 Inst = ReturnInst::Create(Context); 5393 return false; 5394 } 5395 5396 Value *RV; 5397 if (ParseValue(Ty, RV, PFS)) return true; 5398 5399 if (ResType != RV->getType()) 5400 return Error(TypeLoc, "value doesn't match function result type '" + 5401 getTypeString(ResType) + "'"); 5402 5403 Inst = ReturnInst::Create(Context, RV); 5404 return false; 5405 } 5406 5407 /// ParseBr 5408 /// ::= 'br' TypeAndValue 5409 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5410 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 5411 LocTy Loc, Loc2; 5412 Value *Op0; 5413 BasicBlock *Op1, *Op2; 5414 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 5415 5416 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 5417 Inst = BranchInst::Create(BB); 5418 return false; 5419 } 5420 5421 if (Op0->getType() != Type::getInt1Ty(Context)) 5422 return Error(Loc, "branch condition must have 'i1' type"); 5423 5424 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 5425 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 5426 ParseToken(lltok::comma, "expected ',' after true destination") || 5427 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 5428 return true; 5429 5430 Inst = BranchInst::Create(Op1, Op2, Op0); 5431 return false; 5432 } 5433 5434 /// ParseSwitch 5435 /// Instruction 5436 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 5437 /// JumpTable 5438 /// ::= (TypeAndValue ',' TypeAndValue)* 5439 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5440 LocTy CondLoc, BBLoc; 5441 Value *Cond; 5442 BasicBlock *DefaultBB; 5443 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 5444 ParseToken(lltok::comma, "expected ',' after switch condition") || 5445 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 5446 ParseToken(lltok::lsquare, "expected '[' with switch table")) 5447 return true; 5448 5449 if (!Cond->getType()->isIntegerTy()) 5450 return Error(CondLoc, "switch condition must have integer type"); 5451 5452 // Parse the jump table pairs. 5453 SmallPtrSet<Value*, 32> SeenCases; 5454 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 5455 while (Lex.getKind() != lltok::rsquare) { 5456 Value *Constant; 5457 BasicBlock *DestBB; 5458 5459 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 5460 ParseToken(lltok::comma, "expected ',' after case value") || 5461 ParseTypeAndBasicBlock(DestBB, PFS)) 5462 return true; 5463 5464 if (!SeenCases.insert(Constant).second) 5465 return Error(CondLoc, "duplicate case value in switch"); 5466 if (!isa<ConstantInt>(Constant)) 5467 return Error(CondLoc, "case value is not a constant integer"); 5468 5469 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 5470 } 5471 5472 Lex.Lex(); // Eat the ']'. 5473 5474 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 5475 for (unsigned i = 0, e = Table.size(); i != e; ++i) 5476 SI->addCase(Table[i].first, Table[i].second); 5477 Inst = SI; 5478 return false; 5479 } 5480 5481 /// ParseIndirectBr 5482 /// Instruction 5483 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 5484 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 5485 LocTy AddrLoc; 5486 Value *Address; 5487 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 5488 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 5489 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 5490 return true; 5491 5492 if (!Address->getType()->isPointerTy()) 5493 return Error(AddrLoc, "indirectbr address must have pointer type"); 5494 5495 // Parse the destination list. 5496 SmallVector<BasicBlock*, 16> DestList; 5497 5498 if (Lex.getKind() != lltok::rsquare) { 5499 BasicBlock *DestBB; 5500 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5501 return true; 5502 DestList.push_back(DestBB); 5503 5504 while (EatIfPresent(lltok::comma)) { 5505 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5506 return true; 5507 DestList.push_back(DestBB); 5508 } 5509 } 5510 5511 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 5512 return true; 5513 5514 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 5515 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 5516 IBI->addDestination(DestList[i]); 5517 Inst = IBI; 5518 return false; 5519 } 5520 5521 /// ParseInvoke 5522 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 5523 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 5524 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 5525 LocTy CallLoc = Lex.getLoc(); 5526 AttrBuilder RetAttrs, FnAttrs; 5527 std::vector<unsigned> FwdRefAttrGrps; 5528 LocTy NoBuiltinLoc; 5529 unsigned CC; 5530 Type *RetType = nullptr; 5531 LocTy RetTypeLoc; 5532 ValID CalleeID; 5533 SmallVector<ParamInfo, 16> ArgList; 5534 SmallVector<OperandBundleDef, 2> BundleList; 5535 5536 BasicBlock *NormalBB, *UnwindBB; 5537 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5538 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5539 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 5540 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 5541 NoBuiltinLoc) || 5542 ParseOptionalOperandBundles(BundleList, PFS) || 5543 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 5544 ParseTypeAndBasicBlock(NormalBB, PFS) || 5545 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 5546 ParseTypeAndBasicBlock(UnwindBB, PFS)) 5547 return true; 5548 5549 // If RetType is a non-function pointer type, then this is the short syntax 5550 // for the call, which means that RetType is just the return type. Infer the 5551 // rest of the function argument types from the arguments that are present. 5552 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 5553 if (!Ty) { 5554 // Pull out the types of all of the arguments... 5555 std::vector<Type*> ParamTypes; 5556 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 5557 ParamTypes.push_back(ArgList[i].V->getType()); 5558 5559 if (!FunctionType::isValidReturnType(RetType)) 5560 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 5561 5562 Ty = FunctionType::get(RetType, ParamTypes, false); 5563 } 5564 5565 CalleeID.FTy = Ty; 5566 5567 // Look up the callee. 5568 Value *Callee; 5569 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 5570 return true; 5571 5572 // Set up the Attribute for the function. 5573 SmallVector<Value *, 8> Args; 5574 SmallVector<AttributeSet, 8> ArgAttrs; 5575 5576 // Loop through FunctionType's arguments and ensure they are specified 5577 // correctly. Also, gather any parameter attributes. 5578 FunctionType::param_iterator I = Ty->param_begin(); 5579 FunctionType::param_iterator E = Ty->param_end(); 5580 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5581 Type *ExpectedTy = nullptr; 5582 if (I != E) { 5583 ExpectedTy = *I++; 5584 } else if (!Ty->isVarArg()) { 5585 return Error(ArgList[i].Loc, "too many arguments specified"); 5586 } 5587 5588 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 5589 return Error(ArgList[i].Loc, "argument is not of expected type '" + 5590 getTypeString(ExpectedTy) + "'"); 5591 Args.push_back(ArgList[i].V); 5592 ArgAttrs.push_back(ArgList[i].Attrs); 5593 } 5594 5595 if (I != E) 5596 return Error(CallLoc, "not enough parameters specified for call"); 5597 5598 if (FnAttrs.hasAlignmentAttr()) 5599 return Error(CallLoc, "invoke instructions may not have an alignment"); 5600 5601 // Finish off the Attribute and check them 5602 AttributeList PAL = 5603 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 5604 AttributeSet::get(Context, RetAttrs), ArgAttrs); 5605 5606 InvokeInst *II = 5607 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 5608 II->setCallingConv(CC); 5609 II->setAttributes(PAL); 5610 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 5611 Inst = II; 5612 return false; 5613 } 5614 5615 /// ParseResume 5616 /// ::= 'resume' TypeAndValue 5617 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 5618 Value *Exn; LocTy ExnLoc; 5619 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 5620 return true; 5621 5622 ResumeInst *RI = ResumeInst::Create(Exn); 5623 Inst = RI; 5624 return false; 5625 } 5626 5627 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args, 5628 PerFunctionState &PFS) { 5629 if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 5630 return true; 5631 5632 while (Lex.getKind() != lltok::rsquare) { 5633 // If this isn't the first argument, we need a comma. 5634 if (!Args.empty() && 5635 ParseToken(lltok::comma, "expected ',' in argument list")) 5636 return true; 5637 5638 // Parse the argument. 5639 LocTy ArgLoc; 5640 Type *ArgTy = nullptr; 5641 if (ParseType(ArgTy, ArgLoc)) 5642 return true; 5643 5644 Value *V; 5645 if (ArgTy->isMetadataTy()) { 5646 if (ParseMetadataAsValue(V, PFS)) 5647 return true; 5648 } else { 5649 if (ParseValue(ArgTy, V, PFS)) 5650 return true; 5651 } 5652 Args.push_back(V); 5653 } 5654 5655 Lex.Lex(); // Lex the ']'. 5656 return false; 5657 } 5658 5659 /// ParseCleanupRet 5660 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 5661 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 5662 Value *CleanupPad = nullptr; 5663 5664 if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret")) 5665 return true; 5666 5667 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 5668 return true; 5669 5670 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 5671 return true; 5672 5673 BasicBlock *UnwindBB = nullptr; 5674 if (Lex.getKind() == lltok::kw_to) { 5675 Lex.Lex(); 5676 if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 5677 return true; 5678 } else { 5679 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 5680 return true; 5681 } 5682 } 5683 5684 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 5685 return false; 5686 } 5687 5688 /// ParseCatchRet 5689 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 5690 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 5691 Value *CatchPad = nullptr; 5692 5693 if (ParseToken(lltok::kw_from, "expected 'from' after catchret")) 5694 return true; 5695 5696 if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS)) 5697 return true; 5698 5699 BasicBlock *BB; 5700 if (ParseToken(lltok::kw_to, "expected 'to' in catchret") || 5701 ParseTypeAndBasicBlock(BB, PFS)) 5702 return true; 5703 5704 Inst = CatchReturnInst::Create(CatchPad, BB); 5705 return false; 5706 } 5707 5708 /// ParseCatchSwitch 5709 /// ::= 'catchswitch' within Parent 5710 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5711 Value *ParentPad; 5712 5713 if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch")) 5714 return true; 5715 5716 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 5717 Lex.getKind() != lltok::LocalVarID) 5718 return TokError("expected scope value for catchswitch"); 5719 5720 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 5721 return true; 5722 5723 if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 5724 return true; 5725 5726 SmallVector<BasicBlock *, 32> Table; 5727 do { 5728 BasicBlock *DestBB; 5729 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5730 return true; 5731 Table.push_back(DestBB); 5732 } while (EatIfPresent(lltok::comma)); 5733 5734 if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 5735 return true; 5736 5737 if (ParseToken(lltok::kw_unwind, 5738 "expected 'unwind' after catchswitch scope")) 5739 return true; 5740 5741 BasicBlock *UnwindBB = nullptr; 5742 if (EatIfPresent(lltok::kw_to)) { 5743 if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 5744 return true; 5745 } else { 5746 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) 5747 return true; 5748 } 5749 5750 auto *CatchSwitch = 5751 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 5752 for (BasicBlock *DestBB : Table) 5753 CatchSwitch->addHandler(DestBB); 5754 Inst = CatchSwitch; 5755 return false; 5756 } 5757 5758 /// ParseCatchPad 5759 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 5760 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 5761 Value *CatchSwitch = nullptr; 5762 5763 if (ParseToken(lltok::kw_within, "expected 'within' after catchpad")) 5764 return true; 5765 5766 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 5767 return TokError("expected scope value for catchpad"); 5768 5769 if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 5770 return true; 5771 5772 SmallVector<Value *, 8> Args; 5773 if (ParseExceptionArgs(Args, PFS)) 5774 return true; 5775 5776 Inst = CatchPadInst::Create(CatchSwitch, Args); 5777 return false; 5778 } 5779 5780 /// ParseCleanupPad 5781 /// ::= 'cleanuppad' within Parent ParamList 5782 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 5783 Value *ParentPad = nullptr; 5784 5785 if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 5786 return true; 5787 5788 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 5789 Lex.getKind() != lltok::LocalVarID) 5790 return TokError("expected scope value for cleanuppad"); 5791 5792 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 5793 return true; 5794 5795 SmallVector<Value *, 8> Args; 5796 if (ParseExceptionArgs(Args, PFS)) 5797 return true; 5798 5799 Inst = CleanupPadInst::Create(ParentPad, Args); 5800 return false; 5801 } 5802 5803 //===----------------------------------------------------------------------===// 5804 // Binary Operators. 5805 //===----------------------------------------------------------------------===// 5806 5807 /// ParseArithmetic 5808 /// ::= ArithmeticOps TypeAndValue ',' Value 5809 /// 5810 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, 5811 /// then any integer operand is allowed, if it is 2, any fp operand is allowed. 5812 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 5813 unsigned Opc, unsigned OperandType) { 5814 LocTy Loc; Value *LHS, *RHS; 5815 if (ParseTypeAndValue(LHS, Loc, PFS) || 5816 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 5817 ParseValue(LHS->getType(), RHS, PFS)) 5818 return true; 5819 5820 bool Valid; 5821 switch (OperandType) { 5822 default: llvm_unreachable("Unknown operand type!"); 5823 case 0: // int or FP. 5824 Valid = LHS->getType()->isIntOrIntVectorTy() || 5825 LHS->getType()->isFPOrFPVectorTy(); 5826 break; 5827 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break; 5828 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break; 5829 } 5830 5831 if (!Valid) 5832 return Error(Loc, "invalid operand type for instruction"); 5833 5834 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5835 return false; 5836 } 5837 5838 /// ParseLogical 5839 /// ::= ArithmeticOps TypeAndValue ',' Value { 5840 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 5841 unsigned Opc) { 5842 LocTy Loc; Value *LHS, *RHS; 5843 if (ParseTypeAndValue(LHS, Loc, PFS) || 5844 ParseToken(lltok::comma, "expected ',' in logical operation") || 5845 ParseValue(LHS->getType(), RHS, PFS)) 5846 return true; 5847 5848 if (!LHS->getType()->isIntOrIntVectorTy()) 5849 return Error(Loc,"instruction requires integer or integer vector operands"); 5850 5851 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 5852 return false; 5853 } 5854 5855 /// ParseCompare 5856 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 5857 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 5858 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 5859 unsigned Opc) { 5860 // Parse the integer/fp comparison predicate. 5861 LocTy Loc; 5862 unsigned Pred; 5863 Value *LHS, *RHS; 5864 if (ParseCmpPredicate(Pred, Opc) || 5865 ParseTypeAndValue(LHS, Loc, PFS) || 5866 ParseToken(lltok::comma, "expected ',' after compare value") || 5867 ParseValue(LHS->getType(), RHS, PFS)) 5868 return true; 5869 5870 if (Opc == Instruction::FCmp) { 5871 if (!LHS->getType()->isFPOrFPVectorTy()) 5872 return Error(Loc, "fcmp requires floating point operands"); 5873 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 5874 } else { 5875 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 5876 if (!LHS->getType()->isIntOrIntVectorTy() && 5877 !LHS->getType()->isPtrOrPtrVectorTy()) 5878 return Error(Loc, "icmp requires integer operands"); 5879 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 5880 } 5881 return false; 5882 } 5883 5884 //===----------------------------------------------------------------------===// 5885 // Other Instructions. 5886 //===----------------------------------------------------------------------===// 5887 5888 5889 /// ParseCast 5890 /// ::= CastOpc TypeAndValue 'to' Type 5891 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 5892 unsigned Opc) { 5893 LocTy Loc; 5894 Value *Op; 5895 Type *DestTy = nullptr; 5896 if (ParseTypeAndValue(Op, Loc, PFS) || 5897 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 5898 ParseType(DestTy)) 5899 return true; 5900 5901 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 5902 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 5903 return Error(Loc, "invalid cast opcode for cast from '" + 5904 getTypeString(Op->getType()) + "' to '" + 5905 getTypeString(DestTy) + "'"); 5906 } 5907 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 5908 return false; 5909 } 5910 5911 /// ParseSelect 5912 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5913 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 5914 LocTy Loc; 5915 Value *Op0, *Op1, *Op2; 5916 if (ParseTypeAndValue(Op0, Loc, PFS) || 5917 ParseToken(lltok::comma, "expected ',' after select condition") || 5918 ParseTypeAndValue(Op1, PFS) || 5919 ParseToken(lltok::comma, "expected ',' after select value") || 5920 ParseTypeAndValue(Op2, PFS)) 5921 return true; 5922 5923 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 5924 return Error(Loc, Reason); 5925 5926 Inst = SelectInst::Create(Op0, Op1, Op2); 5927 return false; 5928 } 5929 5930 /// ParseVA_Arg 5931 /// ::= 'va_arg' TypeAndValue ',' Type 5932 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 5933 Value *Op; 5934 Type *EltTy = nullptr; 5935 LocTy TypeLoc; 5936 if (ParseTypeAndValue(Op, PFS) || 5937 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 5938 ParseType(EltTy, TypeLoc)) 5939 return true; 5940 5941 if (!EltTy->isFirstClassType()) 5942 return Error(TypeLoc, "va_arg requires operand with first class type"); 5943 5944 Inst = new VAArgInst(Op, EltTy); 5945 return false; 5946 } 5947 5948 /// ParseExtractElement 5949 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 5950 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 5951 LocTy Loc; 5952 Value *Op0, *Op1; 5953 if (ParseTypeAndValue(Op0, Loc, PFS) || 5954 ParseToken(lltok::comma, "expected ',' after extract value") || 5955 ParseTypeAndValue(Op1, PFS)) 5956 return true; 5957 5958 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 5959 return Error(Loc, "invalid extractelement operands"); 5960 5961 Inst = ExtractElementInst::Create(Op0, Op1); 5962 return false; 5963 } 5964 5965 /// ParseInsertElement 5966 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5967 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 5968 LocTy Loc; 5969 Value *Op0, *Op1, *Op2; 5970 if (ParseTypeAndValue(Op0, Loc, PFS) || 5971 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5972 ParseTypeAndValue(Op1, PFS) || 5973 ParseToken(lltok::comma, "expected ',' after insertelement value") || 5974 ParseTypeAndValue(Op2, PFS)) 5975 return true; 5976 5977 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 5978 return Error(Loc, "invalid insertelement operands"); 5979 5980 Inst = InsertElementInst::Create(Op0, Op1, Op2); 5981 return false; 5982 } 5983 5984 /// ParseShuffleVector 5985 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5986 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 5987 LocTy Loc; 5988 Value *Op0, *Op1, *Op2; 5989 if (ParseTypeAndValue(Op0, Loc, PFS) || 5990 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 5991 ParseTypeAndValue(Op1, PFS) || 5992 ParseToken(lltok::comma, "expected ',' after shuffle value") || 5993 ParseTypeAndValue(Op2, PFS)) 5994 return true; 5995 5996 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 5997 return Error(Loc, "invalid shufflevector operands"); 5998 5999 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 6000 return false; 6001 } 6002 6003 /// ParsePHI 6004 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 6005 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 6006 Type *Ty = nullptr; LocTy TypeLoc; 6007 Value *Op0, *Op1; 6008 6009 if (ParseType(Ty, TypeLoc) || 6010 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 6011 ParseValue(Ty, Op0, PFS) || 6012 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6013 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 6014 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 6015 return true; 6016 6017 bool AteExtraComma = false; 6018 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 6019 6020 while (true) { 6021 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 6022 6023 if (!EatIfPresent(lltok::comma)) 6024 break; 6025 6026 if (Lex.getKind() == lltok::MetadataVar) { 6027 AteExtraComma = true; 6028 break; 6029 } 6030 6031 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 6032 ParseValue(Ty, Op0, PFS) || 6033 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6034 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 6035 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 6036 return true; 6037 } 6038 6039 if (!Ty->isFirstClassType()) 6040 return Error(TypeLoc, "phi node must have first class type"); 6041 6042 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 6043 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 6044 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 6045 Inst = PN; 6046 return AteExtraComma ? InstExtraComma : InstNormal; 6047 } 6048 6049 /// ParseLandingPad 6050 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 6051 /// Clause 6052 /// ::= 'catch' TypeAndValue 6053 /// ::= 'filter' 6054 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 6055 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 6056 Type *Ty = nullptr; LocTy TyLoc; 6057 6058 if (ParseType(Ty, TyLoc)) 6059 return true; 6060 6061 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 6062 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 6063 6064 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 6065 LandingPadInst::ClauseType CT; 6066 if (EatIfPresent(lltok::kw_catch)) 6067 CT = LandingPadInst::Catch; 6068 else if (EatIfPresent(lltok::kw_filter)) 6069 CT = LandingPadInst::Filter; 6070 else 6071 return TokError("expected 'catch' or 'filter' clause type"); 6072 6073 Value *V; 6074 LocTy VLoc; 6075 if (ParseTypeAndValue(V, VLoc, PFS)) 6076 return true; 6077 6078 // A 'catch' type expects a non-array constant. A filter clause expects an 6079 // array constant. 6080 if (CT == LandingPadInst::Catch) { 6081 if (isa<ArrayType>(V->getType())) 6082 Error(VLoc, "'catch' clause has an invalid type"); 6083 } else { 6084 if (!isa<ArrayType>(V->getType())) 6085 Error(VLoc, "'filter' clause has an invalid type"); 6086 } 6087 6088 Constant *CV = dyn_cast<Constant>(V); 6089 if (!CV) 6090 return Error(VLoc, "clause argument must be a constant"); 6091 LP->addClause(CV); 6092 } 6093 6094 Inst = LP.release(); 6095 return false; 6096 } 6097 6098 /// ParseCall 6099 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 6100 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6101 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 6102 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6103 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 6104 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6105 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 6106 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6107 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 6108 CallInst::TailCallKind TCK) { 6109 AttrBuilder RetAttrs, FnAttrs; 6110 std::vector<unsigned> FwdRefAttrGrps; 6111 LocTy BuiltinLoc; 6112 unsigned CC; 6113 Type *RetType = nullptr; 6114 LocTy RetTypeLoc; 6115 ValID CalleeID; 6116 SmallVector<ParamInfo, 16> ArgList; 6117 SmallVector<OperandBundleDef, 2> BundleList; 6118 LocTy CallLoc = Lex.getLoc(); 6119 6120 if (TCK != CallInst::TCK_None && 6121 ParseToken(lltok::kw_call, 6122 "expected 'tail call', 'musttail call', or 'notail call'")) 6123 return true; 6124 6125 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6126 6127 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6128 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6129 ParseValID(CalleeID) || 6130 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 6131 PFS.getFunction().isVarArg()) || 6132 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 6133 ParseOptionalOperandBundles(BundleList, PFS)) 6134 return true; 6135 6136 if (FMF.any() && !RetType->isFPOrFPVectorTy()) 6137 return Error(CallLoc, "fast-math-flags specified for call without " 6138 "floating-point scalar or vector return type"); 6139 6140 // If RetType is a non-function pointer type, then this is the short syntax 6141 // for the call, which means that RetType is just the return type. Infer the 6142 // rest of the function argument types from the arguments that are present. 6143 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6144 if (!Ty) { 6145 // Pull out the types of all of the arguments... 6146 std::vector<Type*> ParamTypes; 6147 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6148 ParamTypes.push_back(ArgList[i].V->getType()); 6149 6150 if (!FunctionType::isValidReturnType(RetType)) 6151 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6152 6153 Ty = FunctionType::get(RetType, ParamTypes, false); 6154 } 6155 6156 CalleeID.FTy = Ty; 6157 6158 // Look up the callee. 6159 Value *Callee; 6160 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS)) 6161 return true; 6162 6163 // Set up the Attribute for the function. 6164 SmallVector<AttributeSet, 8> Attrs; 6165 6166 SmallVector<Value*, 8> Args; 6167 6168 // Loop through FunctionType's arguments and ensure they are specified 6169 // correctly. Also, gather any parameter attributes. 6170 FunctionType::param_iterator I = Ty->param_begin(); 6171 FunctionType::param_iterator E = Ty->param_end(); 6172 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6173 Type *ExpectedTy = nullptr; 6174 if (I != E) { 6175 ExpectedTy = *I++; 6176 } else if (!Ty->isVarArg()) { 6177 return Error(ArgList[i].Loc, "too many arguments specified"); 6178 } 6179 6180 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6181 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6182 getTypeString(ExpectedTy) + "'"); 6183 Args.push_back(ArgList[i].V); 6184 Attrs.push_back(ArgList[i].Attrs); 6185 } 6186 6187 if (I != E) 6188 return Error(CallLoc, "not enough parameters specified for call"); 6189 6190 if (FnAttrs.hasAlignmentAttr()) 6191 return Error(CallLoc, "call instructions may not have an alignment"); 6192 6193 // Finish off the Attribute and check them 6194 AttributeList PAL = 6195 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6196 AttributeSet::get(Context, RetAttrs), Attrs); 6197 6198 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 6199 CI->setTailCallKind(TCK); 6200 CI->setCallingConv(CC); 6201 if (FMF.any()) 6202 CI->setFastMathFlags(FMF); 6203 CI->setAttributes(PAL); 6204 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 6205 Inst = CI; 6206 return false; 6207 } 6208 6209 //===----------------------------------------------------------------------===// 6210 // Memory Instructions. 6211 //===----------------------------------------------------------------------===// 6212 6213 /// ParseAlloc 6214 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 6215 /// (',' 'align' i32)? (',', 'addrspace(n))? 6216 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 6217 Value *Size = nullptr; 6218 LocTy SizeLoc, TyLoc, ASLoc; 6219 unsigned Alignment = 0; 6220 unsigned AddrSpace = 0; 6221 Type *Ty = nullptr; 6222 6223 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 6224 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 6225 6226 if (ParseType(Ty, TyLoc)) return true; 6227 6228 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 6229 return Error(TyLoc, "invalid type for alloca"); 6230 6231 bool AteExtraComma = false; 6232 if (EatIfPresent(lltok::comma)) { 6233 if (Lex.getKind() == lltok::kw_align) { 6234 if (ParseOptionalAlignment(Alignment)) 6235 return true; 6236 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 6237 return true; 6238 } else if (Lex.getKind() == lltok::kw_addrspace) { 6239 ASLoc = Lex.getLoc(); 6240 if (ParseOptionalAddrSpace(AddrSpace)) 6241 return true; 6242 } else if (Lex.getKind() == lltok::MetadataVar) { 6243 AteExtraComma = true; 6244 } else { 6245 if (ParseTypeAndValue(Size, SizeLoc, PFS)) 6246 return true; 6247 if (EatIfPresent(lltok::comma)) { 6248 if (Lex.getKind() == lltok::kw_align) { 6249 if (ParseOptionalAlignment(Alignment)) 6250 return true; 6251 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 6252 return true; 6253 } else if (Lex.getKind() == lltok::kw_addrspace) { 6254 ASLoc = Lex.getLoc(); 6255 if (ParseOptionalAddrSpace(AddrSpace)) 6256 return true; 6257 } else if (Lex.getKind() == lltok::MetadataVar) { 6258 AteExtraComma = true; 6259 } 6260 } 6261 } 6262 } 6263 6264 if (Size && !Size->getType()->isIntegerTy()) 6265 return Error(SizeLoc, "element count must have integer type"); 6266 6267 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, Alignment); 6268 AI->setUsedWithInAlloca(IsInAlloca); 6269 AI->setSwiftError(IsSwiftError); 6270 Inst = AI; 6271 return AteExtraComma ? InstExtraComma : InstNormal; 6272 } 6273 6274 /// ParseLoad 6275 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 6276 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 6277 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6278 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 6279 Value *Val; LocTy Loc; 6280 unsigned Alignment = 0; 6281 bool AteExtraComma = false; 6282 bool isAtomic = false; 6283 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6284 SyncScope::ID SSID = SyncScope::System; 6285 6286 if (Lex.getKind() == lltok::kw_atomic) { 6287 isAtomic = true; 6288 Lex.Lex(); 6289 } 6290 6291 bool isVolatile = false; 6292 if (Lex.getKind() == lltok::kw_volatile) { 6293 isVolatile = true; 6294 Lex.Lex(); 6295 } 6296 6297 Type *Ty; 6298 LocTy ExplicitTypeLoc = Lex.getLoc(); 6299 if (ParseType(Ty) || 6300 ParseToken(lltok::comma, "expected comma after load's type") || 6301 ParseTypeAndValue(Val, Loc, PFS) || 6302 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 6303 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6304 return true; 6305 6306 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 6307 return Error(Loc, "load operand must be a pointer to a first class type"); 6308 if (isAtomic && !Alignment) 6309 return Error(Loc, "atomic load must have explicit non-zero alignment"); 6310 if (Ordering == AtomicOrdering::Release || 6311 Ordering == AtomicOrdering::AcquireRelease) 6312 return Error(Loc, "atomic load cannot use Release ordering"); 6313 6314 if (Ty != cast<PointerType>(Val->getType())->getElementType()) 6315 return Error(ExplicitTypeLoc, 6316 "explicit pointee type doesn't match operand's pointee type"); 6317 6318 Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID); 6319 return AteExtraComma ? InstExtraComma : InstNormal; 6320 } 6321 6322 /// ParseStore 6323 6324 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 6325 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 6326 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6327 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 6328 Value *Val, *Ptr; LocTy Loc, PtrLoc; 6329 unsigned Alignment = 0; 6330 bool AteExtraComma = false; 6331 bool isAtomic = false; 6332 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6333 SyncScope::ID SSID = SyncScope::System; 6334 6335 if (Lex.getKind() == lltok::kw_atomic) { 6336 isAtomic = true; 6337 Lex.Lex(); 6338 } 6339 6340 bool isVolatile = false; 6341 if (Lex.getKind() == lltok::kw_volatile) { 6342 isVolatile = true; 6343 Lex.Lex(); 6344 } 6345 6346 if (ParseTypeAndValue(Val, Loc, PFS) || 6347 ParseToken(lltok::comma, "expected ',' after store operand") || 6348 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6349 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 6350 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6351 return true; 6352 6353 if (!Ptr->getType()->isPointerTy()) 6354 return Error(PtrLoc, "store operand must be a pointer"); 6355 if (!Val->getType()->isFirstClassType()) 6356 return Error(Loc, "store operand must be a first class value"); 6357 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6358 return Error(Loc, "stored value and pointer type do not match"); 6359 if (isAtomic && !Alignment) 6360 return Error(Loc, "atomic store must have explicit non-zero alignment"); 6361 if (Ordering == AtomicOrdering::Acquire || 6362 Ordering == AtomicOrdering::AcquireRelease) 6363 return Error(Loc, "atomic store cannot use Acquire ordering"); 6364 6365 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID); 6366 return AteExtraComma ? InstExtraComma : InstNormal; 6367 } 6368 6369 /// ParseCmpXchg 6370 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 6371 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering 6372 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 6373 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 6374 bool AteExtraComma = false; 6375 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 6376 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 6377 SyncScope::ID SSID = SyncScope::System; 6378 bool isVolatile = false; 6379 bool isWeak = false; 6380 6381 if (EatIfPresent(lltok::kw_weak)) 6382 isWeak = true; 6383 6384 if (EatIfPresent(lltok::kw_volatile)) 6385 isVolatile = true; 6386 6387 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6388 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 6389 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 6390 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 6391 ParseTypeAndValue(New, NewLoc, PFS) || 6392 ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 6393 ParseOrdering(FailureOrdering)) 6394 return true; 6395 6396 if (SuccessOrdering == AtomicOrdering::Unordered || 6397 FailureOrdering == AtomicOrdering::Unordered) 6398 return TokError("cmpxchg cannot be unordered"); 6399 if (isStrongerThan(FailureOrdering, SuccessOrdering)) 6400 return TokError("cmpxchg failure argument shall be no stronger than the " 6401 "success argument"); 6402 if (FailureOrdering == AtomicOrdering::Release || 6403 FailureOrdering == AtomicOrdering::AcquireRelease) 6404 return TokError( 6405 "cmpxchg failure ordering cannot include release semantics"); 6406 if (!Ptr->getType()->isPointerTy()) 6407 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 6408 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 6409 return Error(CmpLoc, "compare value and pointer type do not match"); 6410 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 6411 return Error(NewLoc, "new value and pointer type do not match"); 6412 if (!New->getType()->isFirstClassType()) 6413 return Error(NewLoc, "cmpxchg operand must be a first class value"); 6414 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 6415 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID); 6416 CXI->setVolatile(isVolatile); 6417 CXI->setWeak(isWeak); 6418 Inst = CXI; 6419 return AteExtraComma ? InstExtraComma : InstNormal; 6420 } 6421 6422 /// ParseAtomicRMW 6423 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 6424 /// 'singlethread'? AtomicOrdering 6425 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 6426 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 6427 bool AteExtraComma = false; 6428 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6429 SyncScope::ID SSID = SyncScope::System; 6430 bool isVolatile = false; 6431 AtomicRMWInst::BinOp Operation; 6432 6433 if (EatIfPresent(lltok::kw_volatile)) 6434 isVolatile = true; 6435 6436 switch (Lex.getKind()) { 6437 default: return TokError("expected binary operation in atomicrmw"); 6438 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 6439 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 6440 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 6441 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 6442 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 6443 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 6444 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 6445 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 6446 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 6447 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 6448 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 6449 } 6450 Lex.Lex(); // Eat the operation. 6451 6452 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6453 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 6454 ParseTypeAndValue(Val, ValLoc, PFS) || 6455 ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 6456 return true; 6457 6458 if (Ordering == AtomicOrdering::Unordered) 6459 return TokError("atomicrmw cannot be unordered"); 6460 if (!Ptr->getType()->isPointerTy()) 6461 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 6462 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6463 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 6464 if (!Val->getType()->isIntegerTy()) 6465 return Error(ValLoc, "atomicrmw operand must be an integer"); 6466 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 6467 if (Size < 8 || (Size & (Size - 1))) 6468 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 6469 " integer"); 6470 6471 AtomicRMWInst *RMWI = 6472 new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 6473 RMWI->setVolatile(isVolatile); 6474 Inst = RMWI; 6475 return AteExtraComma ? InstExtraComma : InstNormal; 6476 } 6477 6478 /// ParseFence 6479 /// ::= 'fence' 'singlethread'? AtomicOrdering 6480 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 6481 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6482 SyncScope::ID SSID = SyncScope::System; 6483 if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 6484 return true; 6485 6486 if (Ordering == AtomicOrdering::Unordered) 6487 return TokError("fence cannot be unordered"); 6488 if (Ordering == AtomicOrdering::Monotonic) 6489 return TokError("fence cannot be monotonic"); 6490 6491 Inst = new FenceInst(Context, Ordering, SSID); 6492 return InstNormal; 6493 } 6494 6495 /// ParseGetElementPtr 6496 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 6497 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 6498 Value *Ptr = nullptr; 6499 Value *Val = nullptr; 6500 LocTy Loc, EltLoc; 6501 6502 bool InBounds = EatIfPresent(lltok::kw_inbounds); 6503 6504 Type *Ty = nullptr; 6505 LocTy ExplicitTypeLoc = Lex.getLoc(); 6506 if (ParseType(Ty) || 6507 ParseToken(lltok::comma, "expected comma after getelementptr's type") || 6508 ParseTypeAndValue(Ptr, Loc, PFS)) 6509 return true; 6510 6511 Type *BaseType = Ptr->getType(); 6512 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 6513 if (!BasePointerType) 6514 return Error(Loc, "base of getelementptr must be a pointer"); 6515 6516 if (Ty != BasePointerType->getElementType()) 6517 return Error(ExplicitTypeLoc, 6518 "explicit pointee type doesn't match operand's pointee type"); 6519 6520 SmallVector<Value*, 16> Indices; 6521 bool AteExtraComma = false; 6522 // GEP returns a vector of pointers if at least one of parameters is a vector. 6523 // All vector parameters should have the same vector width. 6524 unsigned GEPWidth = BaseType->isVectorTy() ? 6525 BaseType->getVectorNumElements() : 0; 6526 6527 while (EatIfPresent(lltok::comma)) { 6528 if (Lex.getKind() == lltok::MetadataVar) { 6529 AteExtraComma = true; 6530 break; 6531 } 6532 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 6533 if (!Val->getType()->isIntOrIntVectorTy()) 6534 return Error(EltLoc, "getelementptr index must be an integer"); 6535 6536 if (Val->getType()->isVectorTy()) { 6537 unsigned ValNumEl = Val->getType()->getVectorNumElements(); 6538 if (GEPWidth && GEPWidth != ValNumEl) 6539 return Error(EltLoc, 6540 "getelementptr vector index has a wrong number of elements"); 6541 GEPWidth = ValNumEl; 6542 } 6543 Indices.push_back(Val); 6544 } 6545 6546 SmallPtrSet<Type*, 4> Visited; 6547 if (!Indices.empty() && !Ty->isSized(&Visited)) 6548 return Error(Loc, "base element of getelementptr must be sized"); 6549 6550 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 6551 return Error(Loc, "invalid getelementptr indices"); 6552 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 6553 if (InBounds) 6554 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 6555 return AteExtraComma ? InstExtraComma : InstNormal; 6556 } 6557 6558 /// ParseExtractValue 6559 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 6560 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 6561 Value *Val; LocTy Loc; 6562 SmallVector<unsigned, 4> Indices; 6563 bool AteExtraComma; 6564 if (ParseTypeAndValue(Val, Loc, PFS) || 6565 ParseIndexList(Indices, AteExtraComma)) 6566 return true; 6567 6568 if (!Val->getType()->isAggregateType()) 6569 return Error(Loc, "extractvalue operand must be aggregate type"); 6570 6571 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 6572 return Error(Loc, "invalid indices for extractvalue"); 6573 Inst = ExtractValueInst::Create(Val, Indices); 6574 return AteExtraComma ? InstExtraComma : InstNormal; 6575 } 6576 6577 /// ParseInsertValue 6578 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 6579 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 6580 Value *Val0, *Val1; LocTy Loc0, Loc1; 6581 SmallVector<unsigned, 4> Indices; 6582 bool AteExtraComma; 6583 if (ParseTypeAndValue(Val0, Loc0, PFS) || 6584 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 6585 ParseTypeAndValue(Val1, Loc1, PFS) || 6586 ParseIndexList(Indices, AteExtraComma)) 6587 return true; 6588 6589 if (!Val0->getType()->isAggregateType()) 6590 return Error(Loc0, "insertvalue operand must be aggregate type"); 6591 6592 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 6593 if (!IndexedType) 6594 return Error(Loc0, "invalid indices for insertvalue"); 6595 if (IndexedType != Val1->getType()) 6596 return Error(Loc1, "insertvalue operand and field disagree in type: '" + 6597 getTypeString(Val1->getType()) + "' instead of '" + 6598 getTypeString(IndexedType) + "'"); 6599 Inst = InsertValueInst::Create(Val0, Val1, Indices); 6600 return AteExtraComma ? InstExtraComma : InstNormal; 6601 } 6602 6603 //===----------------------------------------------------------------------===// 6604 // Embedded metadata. 6605 //===----------------------------------------------------------------------===// 6606 6607 /// ParseMDNodeVector 6608 /// ::= { Element (',' Element)* } 6609 /// Element 6610 /// ::= 'null' | TypeAndValue 6611 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 6612 if (ParseToken(lltok::lbrace, "expected '{' here")) 6613 return true; 6614 6615 // Check for an empty list. 6616 if (EatIfPresent(lltok::rbrace)) 6617 return false; 6618 6619 do { 6620 // Null is a special case since it is typeless. 6621 if (EatIfPresent(lltok::kw_null)) { 6622 Elts.push_back(nullptr); 6623 continue; 6624 } 6625 6626 Metadata *MD; 6627 if (ParseMetadata(MD, nullptr)) 6628 return true; 6629 Elts.push_back(MD); 6630 } while (EatIfPresent(lltok::comma)); 6631 6632 return ParseToken(lltok::rbrace, "expected end of metadata node"); 6633 } 6634 6635 //===----------------------------------------------------------------------===// 6636 // Use-list order directives. 6637 //===----------------------------------------------------------------------===// 6638 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 6639 SMLoc Loc) { 6640 if (V->use_empty()) 6641 return Error(Loc, "value has no uses"); 6642 6643 unsigned NumUses = 0; 6644 SmallDenseMap<const Use *, unsigned, 16> Order; 6645 for (const Use &U : V->uses()) { 6646 if (++NumUses > Indexes.size()) 6647 break; 6648 Order[&U] = Indexes[NumUses - 1]; 6649 } 6650 if (NumUses < 2) 6651 return Error(Loc, "value only has one use"); 6652 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 6653 return Error(Loc, "wrong number of indexes, expected " + 6654 Twine(std::distance(V->use_begin(), V->use_end()))); 6655 6656 V->sortUseList([&](const Use &L, const Use &R) { 6657 return Order.lookup(&L) < Order.lookup(&R); 6658 }); 6659 return false; 6660 } 6661 6662 /// ParseUseListOrderIndexes 6663 /// ::= '{' uint32 (',' uint32)+ '}' 6664 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 6665 SMLoc Loc = Lex.getLoc(); 6666 if (ParseToken(lltok::lbrace, "expected '{' here")) 6667 return true; 6668 if (Lex.getKind() == lltok::rbrace) 6669 return Lex.Error("expected non-empty list of uselistorder indexes"); 6670 6671 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 6672 // indexes should be distinct numbers in the range [0, size-1], and should 6673 // not be in order. 6674 unsigned Offset = 0; 6675 unsigned Max = 0; 6676 bool IsOrdered = true; 6677 assert(Indexes.empty() && "Expected empty order vector"); 6678 do { 6679 unsigned Index; 6680 if (ParseUInt32(Index)) 6681 return true; 6682 6683 // Update consistency checks. 6684 Offset += Index - Indexes.size(); 6685 Max = std::max(Max, Index); 6686 IsOrdered &= Index == Indexes.size(); 6687 6688 Indexes.push_back(Index); 6689 } while (EatIfPresent(lltok::comma)); 6690 6691 if (ParseToken(lltok::rbrace, "expected '}' here")) 6692 return true; 6693 6694 if (Indexes.size() < 2) 6695 return Error(Loc, "expected >= 2 uselistorder indexes"); 6696 if (Offset != 0 || Max >= Indexes.size()) 6697 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)"); 6698 if (IsOrdered) 6699 return Error(Loc, "expected uselistorder indexes to change the order"); 6700 6701 return false; 6702 } 6703 6704 /// ParseUseListOrder 6705 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 6706 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) { 6707 SMLoc Loc = Lex.getLoc(); 6708 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 6709 return true; 6710 6711 Value *V; 6712 SmallVector<unsigned, 16> Indexes; 6713 if (ParseTypeAndValue(V, PFS) || 6714 ParseToken(lltok::comma, "expected comma in uselistorder directive") || 6715 ParseUseListOrderIndexes(Indexes)) 6716 return true; 6717 6718 return sortUseListOrder(V, Indexes, Loc); 6719 } 6720 6721 /// ParseUseListOrderBB 6722 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 6723 bool LLParser::ParseUseListOrderBB() { 6724 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 6725 SMLoc Loc = Lex.getLoc(); 6726 Lex.Lex(); 6727 6728 ValID Fn, Label; 6729 SmallVector<unsigned, 16> Indexes; 6730 if (ParseValID(Fn) || 6731 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6732 ParseValID(Label) || 6733 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 6734 ParseUseListOrderIndexes(Indexes)) 6735 return true; 6736 6737 // Check the function. 6738 GlobalValue *GV; 6739 if (Fn.Kind == ValID::t_GlobalName) 6740 GV = M->getNamedValue(Fn.StrVal); 6741 else if (Fn.Kind == ValID::t_GlobalID) 6742 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 6743 else 6744 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 6745 if (!GV) 6746 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb"); 6747 auto *F = dyn_cast<Function>(GV); 6748 if (!F) 6749 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 6750 if (F->isDeclaration()) 6751 return Error(Fn.Loc, "invalid declaration in uselistorder_bb"); 6752 6753 // Check the basic block. 6754 if (Label.Kind == ValID::t_LocalID) 6755 return Error(Label.Loc, "invalid numeric label in uselistorder_bb"); 6756 if (Label.Kind != ValID::t_LocalName) 6757 return Error(Label.Loc, "expected basic block name in uselistorder_bb"); 6758 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 6759 if (!V) 6760 return Error(Label.Loc, "invalid basic block in uselistorder_bb"); 6761 if (!isa<BasicBlock>(V)) 6762 return Error(Label.Loc, "expected basic block in uselistorder_bb"); 6763 6764 return sortUseListOrder(V, Indexes, Loc); 6765 } 6766