1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the parser class for .ll files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "LLParser.h" 14 #include "llvm/ADT/DenseMap.h" 15 #include "llvm/ADT/None.h" 16 #include "llvm/ADT/Optional.h" 17 #include "llvm/ADT/STLExtras.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/AsmParser/SlotMapping.h" 20 #include "llvm/BinaryFormat/Dwarf.h" 21 #include "llvm/IR/Argument.h" 22 #include "llvm/IR/AutoUpgrade.h" 23 #include "llvm/IR/BasicBlock.h" 24 #include "llvm/IR/CallingConv.h" 25 #include "llvm/IR/Comdat.h" 26 #include "llvm/IR/Constants.h" 27 #include "llvm/IR/DebugInfoMetadata.h" 28 #include "llvm/IR/DerivedTypes.h" 29 #include "llvm/IR/Function.h" 30 #include "llvm/IR/GlobalIFunc.h" 31 #include "llvm/IR/GlobalObject.h" 32 #include "llvm/IR/InlineAsm.h" 33 #include "llvm/IR/Instruction.h" 34 #include "llvm/IR/Instructions.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/Operator.h" 40 #include "llvm/IR/Type.h" 41 #include "llvm/IR/Value.h" 42 #include "llvm/IR/ValueSymbolTable.h" 43 #include "llvm/Support/Casting.h" 44 #include "llvm/Support/ErrorHandling.h" 45 #include "llvm/Support/MathExtras.h" 46 #include "llvm/Support/SaveAndRestore.h" 47 #include "llvm/Support/raw_ostream.h" 48 #include <algorithm> 49 #include <cassert> 50 #include <cstring> 51 #include <iterator> 52 #include <vector> 53 54 using namespace llvm; 55 56 static std::string getTypeString(Type *T) { 57 std::string Result; 58 raw_string_ostream Tmp(Result); 59 Tmp << *T; 60 return Tmp.str(); 61 } 62 63 /// Run: module ::= toplevelentity* 64 bool LLParser::Run() { 65 // Prime the lexer. 66 Lex.Lex(); 67 68 if (Context.shouldDiscardValueNames()) 69 return Error( 70 Lex.getLoc(), 71 "Can't read textual IR with a Context that discards named Values"); 72 73 return ParseTopLevelEntities() || ValidateEndOfModule() || 74 ValidateEndOfIndex(); 75 } 76 77 bool LLParser::parseStandaloneConstantValue(Constant *&C, 78 const SlotMapping *Slots) { 79 restoreParsingState(Slots); 80 Lex.Lex(); 81 82 Type *Ty = nullptr; 83 if (ParseType(Ty) || parseConstantValue(Ty, C)) 84 return true; 85 if (Lex.getKind() != lltok::Eof) 86 return Error(Lex.getLoc(), "expected end of string"); 87 return false; 88 } 89 90 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 91 const SlotMapping *Slots) { 92 restoreParsingState(Slots); 93 Lex.Lex(); 94 95 Read = 0; 96 SMLoc Start = Lex.getLoc(); 97 Ty = nullptr; 98 if (ParseType(Ty)) 99 return true; 100 SMLoc End = Lex.getLoc(); 101 Read = End.getPointer() - Start.getPointer(); 102 103 return false; 104 } 105 106 void LLParser::restoreParsingState(const SlotMapping *Slots) { 107 if (!Slots) 108 return; 109 NumberedVals = Slots->GlobalValues; 110 NumberedMetadata = Slots->MetadataNodes; 111 for (const auto &I : Slots->NamedTypes) 112 NamedTypes.insert( 113 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 114 for (const auto &I : Slots->Types) 115 NumberedTypes.insert( 116 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 117 } 118 119 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 120 /// module. 121 bool LLParser::ValidateEndOfModule() { 122 if (!M) 123 return false; 124 // Handle any function attribute group forward references. 125 for (const auto &RAG : ForwardRefAttrGroups) { 126 Value *V = RAG.first; 127 const std::vector<unsigned> &Attrs = RAG.second; 128 AttrBuilder B; 129 130 for (const auto &Attr : Attrs) 131 B.merge(NumberedAttrBuilders[Attr]); 132 133 if (Function *Fn = dyn_cast<Function>(V)) { 134 AttributeList AS = Fn->getAttributes(); 135 AttrBuilder FnAttrs(AS.getFnAttributes()); 136 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 137 138 FnAttrs.merge(B); 139 140 // If the alignment was parsed as an attribute, move to the alignment 141 // field. 142 if (FnAttrs.hasAlignmentAttr()) { 143 Fn->setAlignment(FnAttrs.getAlignment()); 144 FnAttrs.removeAttribute(Attribute::Alignment); 145 } 146 147 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 148 AttributeSet::get(Context, FnAttrs)); 149 Fn->setAttributes(AS); 150 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 151 AttributeList AS = CI->getAttributes(); 152 AttrBuilder FnAttrs(AS.getFnAttributes()); 153 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 154 FnAttrs.merge(B); 155 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 156 AttributeSet::get(Context, FnAttrs)); 157 CI->setAttributes(AS); 158 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 159 AttributeList AS = II->getAttributes(); 160 AttrBuilder FnAttrs(AS.getFnAttributes()); 161 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 162 FnAttrs.merge(B); 163 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 164 AttributeSet::get(Context, FnAttrs)); 165 II->setAttributes(AS); 166 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 167 AttrBuilder Attrs(GV->getAttributes()); 168 Attrs.merge(B); 169 GV->setAttributes(AttributeSet::get(Context,Attrs)); 170 } else { 171 llvm_unreachable("invalid object with forward attribute group reference"); 172 } 173 } 174 175 // If there are entries in ForwardRefBlockAddresses at this point, the 176 // function was never defined. 177 if (!ForwardRefBlockAddresses.empty()) 178 return Error(ForwardRefBlockAddresses.begin()->first.Loc, 179 "expected function name in blockaddress"); 180 181 for (const auto &NT : NumberedTypes) 182 if (NT.second.second.isValid()) 183 return Error(NT.second.second, 184 "use of undefined type '%" + Twine(NT.first) + "'"); 185 186 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 187 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 188 if (I->second.second.isValid()) 189 return Error(I->second.second, 190 "use of undefined type named '" + I->getKey() + "'"); 191 192 if (!ForwardRefComdats.empty()) 193 return Error(ForwardRefComdats.begin()->second, 194 "use of undefined comdat '$" + 195 ForwardRefComdats.begin()->first + "'"); 196 197 if (!ForwardRefVals.empty()) 198 return Error(ForwardRefVals.begin()->second.second, 199 "use of undefined value '@" + ForwardRefVals.begin()->first + 200 "'"); 201 202 if (!ForwardRefValIDs.empty()) 203 return Error(ForwardRefValIDs.begin()->second.second, 204 "use of undefined value '@" + 205 Twine(ForwardRefValIDs.begin()->first) + "'"); 206 207 if (!ForwardRefMDNodes.empty()) 208 return Error(ForwardRefMDNodes.begin()->second.second, 209 "use of undefined metadata '!" + 210 Twine(ForwardRefMDNodes.begin()->first) + "'"); 211 212 // Resolve metadata cycles. 213 for (auto &N : NumberedMetadata) { 214 if (N.second && !N.second->isResolved()) 215 N.second->resolveCycles(); 216 } 217 218 for (auto *Inst : InstsWithTBAATag) { 219 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 220 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 221 auto *UpgradedMD = UpgradeTBAANode(*MD); 222 if (MD != UpgradedMD) 223 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 224 } 225 226 // Look for intrinsic functions and CallInst that need to be upgraded 227 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 228 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 229 230 // Some types could be renamed during loading if several modules are 231 // loaded in the same LLVMContext (LTO scenario). In this case we should 232 // remangle intrinsics names as well. 233 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) { 234 Function *F = &*FI++; 235 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 236 F->replaceAllUsesWith(Remangled.getValue()); 237 F->eraseFromParent(); 238 } 239 } 240 241 if (UpgradeDebugInfo) 242 llvm::UpgradeDebugInfo(*M); 243 244 UpgradeModuleFlags(*M); 245 UpgradeSectionAttributes(*M); 246 247 if (!Slots) 248 return false; 249 // Initialize the slot mapping. 250 // Because by this point we've parsed and validated everything, we can "steal" 251 // the mapping from LLParser as it doesn't need it anymore. 252 Slots->GlobalValues = std::move(NumberedVals); 253 Slots->MetadataNodes = std::move(NumberedMetadata); 254 for (const auto &I : NamedTypes) 255 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 256 for (const auto &I : NumberedTypes) 257 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 258 259 return false; 260 } 261 262 /// Do final validity and sanity checks at the end of the index. 263 bool LLParser::ValidateEndOfIndex() { 264 if (!Index) 265 return false; 266 267 if (!ForwardRefValueInfos.empty()) 268 return Error(ForwardRefValueInfos.begin()->second.front().second, 269 "use of undefined summary '^" + 270 Twine(ForwardRefValueInfos.begin()->first) + "'"); 271 272 if (!ForwardRefAliasees.empty()) 273 return Error(ForwardRefAliasees.begin()->second.front().second, 274 "use of undefined summary '^" + 275 Twine(ForwardRefAliasees.begin()->first) + "'"); 276 277 if (!ForwardRefTypeIds.empty()) 278 return Error(ForwardRefTypeIds.begin()->second.front().second, 279 "use of undefined type id summary '^" + 280 Twine(ForwardRefTypeIds.begin()->first) + "'"); 281 282 return false; 283 } 284 285 //===----------------------------------------------------------------------===// 286 // Top-Level Entities 287 //===----------------------------------------------------------------------===// 288 289 bool LLParser::ParseTopLevelEntities() { 290 // If there is no Module, then parse just the summary index entries. 291 if (!M) { 292 while (true) { 293 switch (Lex.getKind()) { 294 case lltok::Eof: 295 return false; 296 case lltok::SummaryID: 297 if (ParseSummaryEntry()) 298 return true; 299 break; 300 case lltok::kw_source_filename: 301 if (ParseSourceFileName()) 302 return true; 303 break; 304 default: 305 // Skip everything else 306 Lex.Lex(); 307 } 308 } 309 } 310 while (true) { 311 switch (Lex.getKind()) { 312 default: return TokError("expected top-level entity"); 313 case lltok::Eof: return false; 314 case lltok::kw_declare: if (ParseDeclare()) return true; break; 315 case lltok::kw_define: if (ParseDefine()) return true; break; 316 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 317 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 318 case lltok::kw_source_filename: 319 if (ParseSourceFileName()) 320 return true; 321 break; 322 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 323 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 324 case lltok::LocalVar: if (ParseNamedType()) return true; break; 325 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 326 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 327 case lltok::ComdatVar: if (parseComdat()) return true; break; 328 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 329 case lltok::SummaryID: 330 if (ParseSummaryEntry()) 331 return true; 332 break; 333 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break; 334 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break; 335 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break; 336 case lltok::kw_uselistorder_bb: 337 if (ParseUseListOrderBB()) 338 return true; 339 break; 340 } 341 } 342 } 343 344 /// toplevelentity 345 /// ::= 'module' 'asm' STRINGCONSTANT 346 bool LLParser::ParseModuleAsm() { 347 assert(Lex.getKind() == lltok::kw_module); 348 Lex.Lex(); 349 350 std::string AsmStr; 351 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 352 ParseStringConstant(AsmStr)) return true; 353 354 M->appendModuleInlineAsm(AsmStr); 355 return false; 356 } 357 358 /// toplevelentity 359 /// ::= 'target' 'triple' '=' STRINGCONSTANT 360 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 361 bool LLParser::ParseTargetDefinition() { 362 assert(Lex.getKind() == lltok::kw_target); 363 std::string Str; 364 switch (Lex.Lex()) { 365 default: return TokError("unknown target property"); 366 case lltok::kw_triple: 367 Lex.Lex(); 368 if (ParseToken(lltok::equal, "expected '=' after target triple") || 369 ParseStringConstant(Str)) 370 return true; 371 M->setTargetTriple(Str); 372 return false; 373 case lltok::kw_datalayout: 374 Lex.Lex(); 375 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 376 ParseStringConstant(Str)) 377 return true; 378 if (DataLayoutStr.empty()) 379 M->setDataLayout(Str); 380 return false; 381 } 382 } 383 384 /// toplevelentity 385 /// ::= 'source_filename' '=' STRINGCONSTANT 386 bool LLParser::ParseSourceFileName() { 387 assert(Lex.getKind() == lltok::kw_source_filename); 388 Lex.Lex(); 389 if (ParseToken(lltok::equal, "expected '=' after source_filename") || 390 ParseStringConstant(SourceFileName)) 391 return true; 392 if (M) 393 M->setSourceFileName(SourceFileName); 394 return false; 395 } 396 397 /// toplevelentity 398 /// ::= 'deplibs' '=' '[' ']' 399 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 400 /// FIXME: Remove in 4.0. Currently parse, but ignore. 401 bool LLParser::ParseDepLibs() { 402 assert(Lex.getKind() == lltok::kw_deplibs); 403 Lex.Lex(); 404 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 405 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 406 return true; 407 408 if (EatIfPresent(lltok::rsquare)) 409 return false; 410 411 do { 412 std::string Str; 413 if (ParseStringConstant(Str)) return true; 414 } while (EatIfPresent(lltok::comma)); 415 416 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 417 } 418 419 /// ParseUnnamedType: 420 /// ::= LocalVarID '=' 'type' type 421 bool LLParser::ParseUnnamedType() { 422 LocTy TypeLoc = Lex.getLoc(); 423 unsigned TypeID = Lex.getUIntVal(); 424 Lex.Lex(); // eat LocalVarID; 425 426 if (ParseToken(lltok::equal, "expected '=' after name") || 427 ParseToken(lltok::kw_type, "expected 'type' after '='")) 428 return true; 429 430 Type *Result = nullptr; 431 if (ParseStructDefinition(TypeLoc, "", 432 NumberedTypes[TypeID], Result)) return true; 433 434 if (!isa<StructType>(Result)) { 435 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 436 if (Entry.first) 437 return Error(TypeLoc, "non-struct types may not be recursive"); 438 Entry.first = Result; 439 Entry.second = SMLoc(); 440 } 441 442 return false; 443 } 444 445 /// toplevelentity 446 /// ::= LocalVar '=' 'type' type 447 bool LLParser::ParseNamedType() { 448 std::string Name = Lex.getStrVal(); 449 LocTy NameLoc = Lex.getLoc(); 450 Lex.Lex(); // eat LocalVar. 451 452 if (ParseToken(lltok::equal, "expected '=' after name") || 453 ParseToken(lltok::kw_type, "expected 'type' after name")) 454 return true; 455 456 Type *Result = nullptr; 457 if (ParseStructDefinition(NameLoc, Name, 458 NamedTypes[Name], Result)) return true; 459 460 if (!isa<StructType>(Result)) { 461 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 462 if (Entry.first) 463 return Error(NameLoc, "non-struct types may not be recursive"); 464 Entry.first = Result; 465 Entry.second = SMLoc(); 466 } 467 468 return false; 469 } 470 471 /// toplevelentity 472 /// ::= 'declare' FunctionHeader 473 bool LLParser::ParseDeclare() { 474 assert(Lex.getKind() == lltok::kw_declare); 475 Lex.Lex(); 476 477 std::vector<std::pair<unsigned, MDNode *>> MDs; 478 while (Lex.getKind() == lltok::MetadataVar) { 479 unsigned MDK; 480 MDNode *N; 481 if (ParseMetadataAttachment(MDK, N)) 482 return true; 483 MDs.push_back({MDK, N}); 484 } 485 486 Function *F; 487 if (ParseFunctionHeader(F, false)) 488 return true; 489 for (auto &MD : MDs) 490 F->addMetadata(MD.first, *MD.second); 491 return false; 492 } 493 494 /// toplevelentity 495 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 496 bool LLParser::ParseDefine() { 497 assert(Lex.getKind() == lltok::kw_define); 498 Lex.Lex(); 499 500 Function *F; 501 return ParseFunctionHeader(F, true) || 502 ParseOptionalFunctionMetadata(*F) || 503 ParseFunctionBody(*F); 504 } 505 506 /// ParseGlobalType 507 /// ::= 'constant' 508 /// ::= 'global' 509 bool LLParser::ParseGlobalType(bool &IsConstant) { 510 if (Lex.getKind() == lltok::kw_constant) 511 IsConstant = true; 512 else if (Lex.getKind() == lltok::kw_global) 513 IsConstant = false; 514 else { 515 IsConstant = false; 516 return TokError("expected 'global' or 'constant'"); 517 } 518 Lex.Lex(); 519 return false; 520 } 521 522 bool LLParser::ParseOptionalUnnamedAddr( 523 GlobalVariable::UnnamedAddr &UnnamedAddr) { 524 if (EatIfPresent(lltok::kw_unnamed_addr)) 525 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 526 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 527 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 528 else 529 UnnamedAddr = GlobalValue::UnnamedAddr::None; 530 return false; 531 } 532 533 /// ParseUnnamedGlobal: 534 /// OptionalVisibility (ALIAS | IFUNC) ... 535 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 536 /// OptionalDLLStorageClass 537 /// ... -> global variable 538 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 539 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 540 /// OptionalDLLStorageClass 541 /// ... -> global variable 542 bool LLParser::ParseUnnamedGlobal() { 543 unsigned VarID = NumberedVals.size(); 544 std::string Name; 545 LocTy NameLoc = Lex.getLoc(); 546 547 // Handle the GlobalID form. 548 if (Lex.getKind() == lltok::GlobalID) { 549 if (Lex.getUIntVal() != VarID) 550 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 551 Twine(VarID) + "'"); 552 Lex.Lex(); // eat GlobalID; 553 554 if (ParseToken(lltok::equal, "expected '=' after name")) 555 return true; 556 } 557 558 bool HasLinkage; 559 unsigned Linkage, Visibility, DLLStorageClass; 560 bool DSOLocal; 561 GlobalVariable::ThreadLocalMode TLM; 562 GlobalVariable::UnnamedAddr UnnamedAddr; 563 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 564 DSOLocal) || 565 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 566 return true; 567 568 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 569 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 570 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 571 572 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 573 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 574 } 575 576 /// ParseNamedGlobal: 577 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 578 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 579 /// OptionalVisibility OptionalDLLStorageClass 580 /// ... -> global variable 581 bool LLParser::ParseNamedGlobal() { 582 assert(Lex.getKind() == lltok::GlobalVar); 583 LocTy NameLoc = Lex.getLoc(); 584 std::string Name = Lex.getStrVal(); 585 Lex.Lex(); 586 587 bool HasLinkage; 588 unsigned Linkage, Visibility, DLLStorageClass; 589 bool DSOLocal; 590 GlobalVariable::ThreadLocalMode TLM; 591 GlobalVariable::UnnamedAddr UnnamedAddr; 592 if (ParseToken(lltok::equal, "expected '=' in global variable") || 593 ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 594 DSOLocal) || 595 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 596 return true; 597 598 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 599 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 600 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 601 602 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 603 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 604 } 605 606 bool LLParser::parseComdat() { 607 assert(Lex.getKind() == lltok::ComdatVar); 608 std::string Name = Lex.getStrVal(); 609 LocTy NameLoc = Lex.getLoc(); 610 Lex.Lex(); 611 612 if (ParseToken(lltok::equal, "expected '=' here")) 613 return true; 614 615 if (ParseToken(lltok::kw_comdat, "expected comdat keyword")) 616 return TokError("expected comdat type"); 617 618 Comdat::SelectionKind SK; 619 switch (Lex.getKind()) { 620 default: 621 return TokError("unknown selection kind"); 622 case lltok::kw_any: 623 SK = Comdat::Any; 624 break; 625 case lltok::kw_exactmatch: 626 SK = Comdat::ExactMatch; 627 break; 628 case lltok::kw_largest: 629 SK = Comdat::Largest; 630 break; 631 case lltok::kw_noduplicates: 632 SK = Comdat::NoDuplicates; 633 break; 634 case lltok::kw_samesize: 635 SK = Comdat::SameSize; 636 break; 637 } 638 Lex.Lex(); 639 640 // See if the comdat was forward referenced, if so, use the comdat. 641 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 642 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 643 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 644 return Error(NameLoc, "redefinition of comdat '$" + Name + "'"); 645 646 Comdat *C; 647 if (I != ComdatSymTab.end()) 648 C = &I->second; 649 else 650 C = M->getOrInsertComdat(Name); 651 C->setSelectionKind(SK); 652 653 return false; 654 } 655 656 // MDString: 657 // ::= '!' STRINGCONSTANT 658 bool LLParser::ParseMDString(MDString *&Result) { 659 std::string Str; 660 if (ParseStringConstant(Str)) return true; 661 Result = MDString::get(Context, Str); 662 return false; 663 } 664 665 // MDNode: 666 // ::= '!' MDNodeNumber 667 bool LLParser::ParseMDNodeID(MDNode *&Result) { 668 // !{ ..., !42, ... } 669 LocTy IDLoc = Lex.getLoc(); 670 unsigned MID = 0; 671 if (ParseUInt32(MID)) 672 return true; 673 674 // If not a forward reference, just return it now. 675 if (NumberedMetadata.count(MID)) { 676 Result = NumberedMetadata[MID]; 677 return false; 678 } 679 680 // Otherwise, create MDNode forward reference. 681 auto &FwdRef = ForwardRefMDNodes[MID]; 682 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 683 684 Result = FwdRef.first.get(); 685 NumberedMetadata[MID].reset(Result); 686 return false; 687 } 688 689 /// ParseNamedMetadata: 690 /// !foo = !{ !1, !2 } 691 bool LLParser::ParseNamedMetadata() { 692 assert(Lex.getKind() == lltok::MetadataVar); 693 std::string Name = Lex.getStrVal(); 694 Lex.Lex(); 695 696 if (ParseToken(lltok::equal, "expected '=' here") || 697 ParseToken(lltok::exclaim, "Expected '!' here") || 698 ParseToken(lltok::lbrace, "Expected '{' here")) 699 return true; 700 701 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 702 if (Lex.getKind() != lltok::rbrace) 703 do { 704 MDNode *N = nullptr; 705 // Parse DIExpressions inline as a special case. They are still MDNodes, 706 // so they can still appear in named metadata. Remove this logic if they 707 // become plain Metadata. 708 if (Lex.getKind() == lltok::MetadataVar && 709 Lex.getStrVal() == "DIExpression") { 710 if (ParseDIExpression(N, /*IsDistinct=*/false)) 711 return true; 712 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 713 ParseMDNodeID(N)) { 714 return true; 715 } 716 NMD->addOperand(N); 717 } while (EatIfPresent(lltok::comma)); 718 719 return ParseToken(lltok::rbrace, "expected end of metadata node"); 720 } 721 722 /// ParseStandaloneMetadata: 723 /// !42 = !{...} 724 bool LLParser::ParseStandaloneMetadata() { 725 assert(Lex.getKind() == lltok::exclaim); 726 Lex.Lex(); 727 unsigned MetadataID = 0; 728 729 MDNode *Init; 730 if (ParseUInt32(MetadataID) || 731 ParseToken(lltok::equal, "expected '=' here")) 732 return true; 733 734 // Detect common error, from old metadata syntax. 735 if (Lex.getKind() == lltok::Type) 736 return TokError("unexpected type in metadata definition"); 737 738 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 739 if (Lex.getKind() == lltok::MetadataVar) { 740 if (ParseSpecializedMDNode(Init, IsDistinct)) 741 return true; 742 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 743 ParseMDTuple(Init, IsDistinct)) 744 return true; 745 746 // See if this was forward referenced, if so, handle it. 747 auto FI = ForwardRefMDNodes.find(MetadataID); 748 if (FI != ForwardRefMDNodes.end()) { 749 FI->second.first->replaceAllUsesWith(Init); 750 ForwardRefMDNodes.erase(FI); 751 752 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 753 } else { 754 if (NumberedMetadata.count(MetadataID)) 755 return TokError("Metadata id is already used"); 756 NumberedMetadata[MetadataID].reset(Init); 757 } 758 759 return false; 760 } 761 762 // Skips a single module summary entry. 763 bool LLParser::SkipModuleSummaryEntry() { 764 // Each module summary entry consists of a tag for the entry 765 // type, followed by a colon, then the fields surrounded by nested sets of 766 // parentheses. The "tag:" looks like a Label. Once parsing support is 767 // in place we will look for the tokens corresponding to the expected tags. 768 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module && 769 Lex.getKind() != lltok::kw_typeid) 770 return TokError( 771 "Expected 'gv', 'module', or 'typeid' at the start of summary entry"); 772 Lex.Lex(); 773 if (ParseToken(lltok::colon, "expected ':' at start of summary entry") || 774 ParseToken(lltok::lparen, "expected '(' at start of summary entry")) 775 return true; 776 // Now walk through the parenthesized entry, until the number of open 777 // parentheses goes back down to 0 (the first '(' was parsed above). 778 unsigned NumOpenParen = 1; 779 do { 780 switch (Lex.getKind()) { 781 case lltok::lparen: 782 NumOpenParen++; 783 break; 784 case lltok::rparen: 785 NumOpenParen--; 786 break; 787 case lltok::Eof: 788 return TokError("found end of file while parsing summary entry"); 789 default: 790 // Skip everything in between parentheses. 791 break; 792 } 793 Lex.Lex(); 794 } while (NumOpenParen > 0); 795 return false; 796 } 797 798 /// SummaryEntry 799 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry 800 bool LLParser::ParseSummaryEntry() { 801 assert(Lex.getKind() == lltok::SummaryID); 802 unsigned SummaryID = Lex.getUIntVal(); 803 804 // For summary entries, colons should be treated as distinct tokens, 805 // not an indication of the end of a label token. 806 Lex.setIgnoreColonInIdentifiers(true); 807 808 Lex.Lex(); 809 if (ParseToken(lltok::equal, "expected '=' here")) 810 return true; 811 812 // If we don't have an index object, skip the summary entry. 813 if (!Index) 814 return SkipModuleSummaryEntry(); 815 816 switch (Lex.getKind()) { 817 case lltok::kw_gv: 818 return ParseGVEntry(SummaryID); 819 case lltok::kw_module: 820 return ParseModuleEntry(SummaryID); 821 case lltok::kw_typeid: 822 return ParseTypeIdEntry(SummaryID); 823 break; 824 default: 825 return Error(Lex.getLoc(), "unexpected summary kind"); 826 } 827 Lex.setIgnoreColonInIdentifiers(false); 828 return false; 829 } 830 831 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 832 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 833 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 834 } 835 836 // If there was an explicit dso_local, update GV. In the absence of an explicit 837 // dso_local we keep the default value. 838 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { 839 if (DSOLocal) 840 GV.setDSOLocal(true); 841 } 842 843 /// parseIndirectSymbol: 844 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 845 /// OptionalVisibility OptionalDLLStorageClass 846 /// OptionalThreadLocal OptionalUnnamedAddr 847 // 'alias|ifunc' IndirectSymbol 848 /// 849 /// IndirectSymbol 850 /// ::= TypeAndValue 851 /// 852 /// Everything through OptionalUnnamedAddr has already been parsed. 853 /// 854 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc, 855 unsigned L, unsigned Visibility, 856 unsigned DLLStorageClass, bool DSOLocal, 857 GlobalVariable::ThreadLocalMode TLM, 858 GlobalVariable::UnnamedAddr UnnamedAddr) { 859 bool IsAlias; 860 if (Lex.getKind() == lltok::kw_alias) 861 IsAlias = true; 862 else if (Lex.getKind() == lltok::kw_ifunc) 863 IsAlias = false; 864 else 865 llvm_unreachable("Not an alias or ifunc!"); 866 Lex.Lex(); 867 868 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 869 870 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 871 return Error(NameLoc, "invalid linkage type for alias"); 872 873 if (!isValidVisibilityForLinkage(Visibility, L)) 874 return Error(NameLoc, 875 "symbol with local linkage must have default visibility"); 876 877 Type *Ty; 878 LocTy ExplicitTypeLoc = Lex.getLoc(); 879 if (ParseType(Ty) || 880 ParseToken(lltok::comma, "expected comma after alias or ifunc's type")) 881 return true; 882 883 Constant *Aliasee; 884 LocTy AliaseeLoc = Lex.getLoc(); 885 if (Lex.getKind() != lltok::kw_bitcast && 886 Lex.getKind() != lltok::kw_getelementptr && 887 Lex.getKind() != lltok::kw_addrspacecast && 888 Lex.getKind() != lltok::kw_inttoptr) { 889 if (ParseGlobalTypeAndValue(Aliasee)) 890 return true; 891 } else { 892 // The bitcast dest type is not present, it is implied by the dest type. 893 ValID ID; 894 if (ParseValID(ID)) 895 return true; 896 if (ID.Kind != ValID::t_Constant) 897 return Error(AliaseeLoc, "invalid aliasee"); 898 Aliasee = ID.ConstantVal; 899 } 900 901 Type *AliaseeType = Aliasee->getType(); 902 auto *PTy = dyn_cast<PointerType>(AliaseeType); 903 if (!PTy) 904 return Error(AliaseeLoc, "An alias or ifunc must have pointer type"); 905 unsigned AddrSpace = PTy->getAddressSpace(); 906 907 if (IsAlias && Ty != PTy->getElementType()) 908 return Error( 909 ExplicitTypeLoc, 910 "explicit pointee type doesn't match operand's pointee type"); 911 912 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) 913 return Error( 914 ExplicitTypeLoc, 915 "explicit pointee type should be a function type"); 916 917 GlobalValue *GVal = nullptr; 918 919 // See if the alias was forward referenced, if so, prepare to replace the 920 // forward reference. 921 if (!Name.empty()) { 922 GVal = M->getNamedValue(Name); 923 if (GVal) { 924 if (!ForwardRefVals.erase(Name)) 925 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 926 } 927 } else { 928 auto I = ForwardRefValIDs.find(NumberedVals.size()); 929 if (I != ForwardRefValIDs.end()) { 930 GVal = I->second.first; 931 ForwardRefValIDs.erase(I); 932 } 933 } 934 935 // Okay, create the alias but do not insert it into the module yet. 936 std::unique_ptr<GlobalIndirectSymbol> GA; 937 if (IsAlias) 938 GA.reset(GlobalAlias::create(Ty, AddrSpace, 939 (GlobalValue::LinkageTypes)Linkage, Name, 940 Aliasee, /*Parent*/ nullptr)); 941 else 942 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 943 (GlobalValue::LinkageTypes)Linkage, Name, 944 Aliasee, /*Parent*/ nullptr)); 945 GA->setThreadLocalMode(TLM); 946 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 947 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 948 GA->setUnnamedAddr(UnnamedAddr); 949 maybeSetDSOLocal(DSOLocal, *GA); 950 951 if (Name.empty()) 952 NumberedVals.push_back(GA.get()); 953 954 if (GVal) { 955 // Verify that types agree. 956 if (GVal->getType() != GA->getType()) 957 return Error( 958 ExplicitTypeLoc, 959 "forward reference and definition of alias have different types"); 960 961 // If they agree, just RAUW the old value with the alias and remove the 962 // forward ref info. 963 GVal->replaceAllUsesWith(GA.get()); 964 GVal->eraseFromParent(); 965 } 966 967 // Insert into the module, we know its name won't collide now. 968 if (IsAlias) 969 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 970 else 971 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 972 assert(GA->getName() == Name && "Should not be a name conflict!"); 973 974 // The module owns this now 975 GA.release(); 976 977 return false; 978 } 979 980 /// ParseGlobal 981 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 982 /// OptionalVisibility OptionalDLLStorageClass 983 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 984 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 985 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 986 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 987 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 988 /// Const OptionalAttrs 989 /// 990 /// Everything up to and including OptionalUnnamedAddr has been parsed 991 /// already. 992 /// 993 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 994 unsigned Linkage, bool HasLinkage, 995 unsigned Visibility, unsigned DLLStorageClass, 996 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 997 GlobalVariable::UnnamedAddr UnnamedAddr) { 998 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 999 return Error(NameLoc, 1000 "symbol with local linkage must have default visibility"); 1001 1002 unsigned AddrSpace; 1003 bool IsConstant, IsExternallyInitialized; 1004 LocTy IsExternallyInitializedLoc; 1005 LocTy TyLoc; 1006 1007 Type *Ty = nullptr; 1008 if (ParseOptionalAddrSpace(AddrSpace) || 1009 ParseOptionalToken(lltok::kw_externally_initialized, 1010 IsExternallyInitialized, 1011 &IsExternallyInitializedLoc) || 1012 ParseGlobalType(IsConstant) || 1013 ParseType(Ty, TyLoc)) 1014 return true; 1015 1016 // If the linkage is specified and is external, then no initializer is 1017 // present. 1018 Constant *Init = nullptr; 1019 if (!HasLinkage || 1020 !GlobalValue::isValidDeclarationLinkage( 1021 (GlobalValue::LinkageTypes)Linkage)) { 1022 if (ParseGlobalValue(Ty, Init)) 1023 return true; 1024 } 1025 1026 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 1027 return Error(TyLoc, "invalid type for global variable"); 1028 1029 GlobalValue *GVal = nullptr; 1030 1031 // See if the global was forward referenced, if so, use the global. 1032 if (!Name.empty()) { 1033 GVal = M->getNamedValue(Name); 1034 if (GVal) { 1035 if (!ForwardRefVals.erase(Name)) 1036 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 1037 } 1038 } else { 1039 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1040 if (I != ForwardRefValIDs.end()) { 1041 GVal = I->second.first; 1042 ForwardRefValIDs.erase(I); 1043 } 1044 } 1045 1046 GlobalVariable *GV; 1047 if (!GVal) { 1048 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 1049 Name, nullptr, GlobalVariable::NotThreadLocal, 1050 AddrSpace); 1051 } else { 1052 if (GVal->getValueType() != Ty) 1053 return Error(TyLoc, 1054 "forward reference and definition of global have different types"); 1055 1056 GV = cast<GlobalVariable>(GVal); 1057 1058 // Move the forward-reference to the correct spot in the module. 1059 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 1060 } 1061 1062 if (Name.empty()) 1063 NumberedVals.push_back(GV); 1064 1065 // Set the parsed properties on the global. 1066 if (Init) 1067 GV->setInitializer(Init); 1068 GV->setConstant(IsConstant); 1069 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 1070 maybeSetDSOLocal(DSOLocal, *GV); 1071 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1072 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1073 GV->setExternallyInitialized(IsExternallyInitialized); 1074 GV->setThreadLocalMode(TLM); 1075 GV->setUnnamedAddr(UnnamedAddr); 1076 1077 // Parse attributes on the global. 1078 while (Lex.getKind() == lltok::comma) { 1079 Lex.Lex(); 1080 1081 if (Lex.getKind() == lltok::kw_section) { 1082 Lex.Lex(); 1083 GV->setSection(Lex.getStrVal()); 1084 if (ParseToken(lltok::StringConstant, "expected global section string")) 1085 return true; 1086 } else if (Lex.getKind() == lltok::kw_align) { 1087 unsigned Alignment; 1088 if (ParseOptionalAlignment(Alignment)) return true; 1089 GV->setAlignment(Alignment); 1090 } else if (Lex.getKind() == lltok::MetadataVar) { 1091 if (ParseGlobalObjectMetadataAttachment(*GV)) 1092 return true; 1093 } else { 1094 Comdat *C; 1095 if (parseOptionalComdat(Name, C)) 1096 return true; 1097 if (C) 1098 GV->setComdat(C); 1099 else 1100 return TokError("unknown global variable property!"); 1101 } 1102 } 1103 1104 AttrBuilder Attrs; 1105 LocTy BuiltinLoc; 1106 std::vector<unsigned> FwdRefAttrGrps; 1107 if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 1108 return true; 1109 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 1110 GV->setAttributes(AttributeSet::get(Context, Attrs)); 1111 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 1112 } 1113 1114 return false; 1115 } 1116 1117 /// ParseUnnamedAttrGrp 1118 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 1119 bool LLParser::ParseUnnamedAttrGrp() { 1120 assert(Lex.getKind() == lltok::kw_attributes); 1121 LocTy AttrGrpLoc = Lex.getLoc(); 1122 Lex.Lex(); 1123 1124 if (Lex.getKind() != lltok::AttrGrpID) 1125 return TokError("expected attribute group id"); 1126 1127 unsigned VarID = Lex.getUIntVal(); 1128 std::vector<unsigned> unused; 1129 LocTy BuiltinLoc; 1130 Lex.Lex(); 1131 1132 if (ParseToken(lltok::equal, "expected '=' here") || 1133 ParseToken(lltok::lbrace, "expected '{' here") || 1134 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 1135 BuiltinLoc) || 1136 ParseToken(lltok::rbrace, "expected end of attribute group")) 1137 return true; 1138 1139 if (!NumberedAttrBuilders[VarID].hasAttributes()) 1140 return Error(AttrGrpLoc, "attribute group has no attributes"); 1141 1142 return false; 1143 } 1144 1145 /// ParseFnAttributeValuePairs 1146 /// ::= <attr> | <attr> '=' <value> 1147 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B, 1148 std::vector<unsigned> &FwdRefAttrGrps, 1149 bool inAttrGrp, LocTy &BuiltinLoc) { 1150 bool HaveError = false; 1151 1152 B.clear(); 1153 1154 while (true) { 1155 lltok::Kind Token = Lex.getKind(); 1156 if (Token == lltok::kw_builtin) 1157 BuiltinLoc = Lex.getLoc(); 1158 switch (Token) { 1159 default: 1160 if (!inAttrGrp) return HaveError; 1161 return Error(Lex.getLoc(), "unterminated attribute group"); 1162 case lltok::rbrace: 1163 // Finished. 1164 return false; 1165 1166 case lltok::AttrGrpID: { 1167 // Allow a function to reference an attribute group: 1168 // 1169 // define void @foo() #1 { ... } 1170 if (inAttrGrp) 1171 HaveError |= 1172 Error(Lex.getLoc(), 1173 "cannot have an attribute group reference in an attribute group"); 1174 1175 unsigned AttrGrpNum = Lex.getUIntVal(); 1176 if (inAttrGrp) break; 1177 1178 // Save the reference to the attribute group. We'll fill it in later. 1179 FwdRefAttrGrps.push_back(AttrGrpNum); 1180 break; 1181 } 1182 // Target-dependent attributes: 1183 case lltok::StringConstant: { 1184 if (ParseStringAttribute(B)) 1185 return true; 1186 continue; 1187 } 1188 1189 // Target-independent attributes: 1190 case lltok::kw_align: { 1191 // As a hack, we allow function alignment to be initially parsed as an 1192 // attribute on a function declaration/definition or added to an attribute 1193 // group and later moved to the alignment field. 1194 unsigned Alignment; 1195 if (inAttrGrp) { 1196 Lex.Lex(); 1197 if (ParseToken(lltok::equal, "expected '=' here") || 1198 ParseUInt32(Alignment)) 1199 return true; 1200 } else { 1201 if (ParseOptionalAlignment(Alignment)) 1202 return true; 1203 } 1204 B.addAlignmentAttr(Alignment); 1205 continue; 1206 } 1207 case lltok::kw_alignstack: { 1208 unsigned Alignment; 1209 if (inAttrGrp) { 1210 Lex.Lex(); 1211 if (ParseToken(lltok::equal, "expected '=' here") || 1212 ParseUInt32(Alignment)) 1213 return true; 1214 } else { 1215 if (ParseOptionalStackAlignment(Alignment)) 1216 return true; 1217 } 1218 B.addStackAlignmentAttr(Alignment); 1219 continue; 1220 } 1221 case lltok::kw_allocsize: { 1222 unsigned ElemSizeArg; 1223 Optional<unsigned> NumElemsArg; 1224 // inAttrGrp doesn't matter; we only support allocsize(a[, b]) 1225 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1226 return true; 1227 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1228 continue; 1229 } 1230 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 1231 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 1232 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 1233 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 1234 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 1235 case lltok::kw_inaccessiblememonly: 1236 B.addAttribute(Attribute::InaccessibleMemOnly); break; 1237 case lltok::kw_inaccessiblemem_or_argmemonly: 1238 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break; 1239 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 1240 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 1241 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 1242 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 1243 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 1244 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 1245 case lltok::kw_noimplicitfloat: 1246 B.addAttribute(Attribute::NoImplicitFloat); break; 1247 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1248 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1249 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1250 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1251 case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break; 1252 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1253 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1254 case lltok::kw_optforfuzzing: 1255 B.addAttribute(Attribute::OptForFuzzing); break; 1256 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1257 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1258 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1259 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1260 case lltok::kw_returns_twice: 1261 B.addAttribute(Attribute::ReturnsTwice); break; 1262 case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break; 1263 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1264 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1265 case lltok::kw_sspstrong: 1266 B.addAttribute(Attribute::StackProtectStrong); break; 1267 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1268 case lltok::kw_shadowcallstack: 1269 B.addAttribute(Attribute::ShadowCallStack); break; 1270 case lltok::kw_sanitize_address: 1271 B.addAttribute(Attribute::SanitizeAddress); break; 1272 case lltok::kw_sanitize_hwaddress: 1273 B.addAttribute(Attribute::SanitizeHWAddress); break; 1274 case lltok::kw_sanitize_thread: 1275 B.addAttribute(Attribute::SanitizeThread); break; 1276 case lltok::kw_sanitize_memory: 1277 B.addAttribute(Attribute::SanitizeMemory); break; 1278 case lltok::kw_speculative_load_hardening: 1279 B.addAttribute(Attribute::SpeculativeLoadHardening); 1280 break; 1281 case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break; 1282 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1283 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1284 1285 // Error handling. 1286 case lltok::kw_inreg: 1287 case lltok::kw_signext: 1288 case lltok::kw_zeroext: 1289 HaveError |= 1290 Error(Lex.getLoc(), 1291 "invalid use of attribute on a function"); 1292 break; 1293 case lltok::kw_byval: 1294 case lltok::kw_dereferenceable: 1295 case lltok::kw_dereferenceable_or_null: 1296 case lltok::kw_inalloca: 1297 case lltok::kw_nest: 1298 case lltok::kw_noalias: 1299 case lltok::kw_nocapture: 1300 case lltok::kw_nonnull: 1301 case lltok::kw_returned: 1302 case lltok::kw_sret: 1303 case lltok::kw_swifterror: 1304 case lltok::kw_swiftself: 1305 HaveError |= 1306 Error(Lex.getLoc(), 1307 "invalid use of parameter-only attribute on a function"); 1308 break; 1309 } 1310 1311 Lex.Lex(); 1312 } 1313 } 1314 1315 //===----------------------------------------------------------------------===// 1316 // GlobalValue Reference/Resolution Routines. 1317 //===----------------------------------------------------------------------===// 1318 1319 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1320 const std::string &Name) { 1321 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1322 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, 1323 PTy->getAddressSpace(), Name, M); 1324 else 1325 return new GlobalVariable(*M, PTy->getElementType(), false, 1326 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1327 nullptr, GlobalVariable::NotThreadLocal, 1328 PTy->getAddressSpace()); 1329 } 1330 1331 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty, 1332 Value *Val, bool IsCall) { 1333 if (Val->getType() == Ty) 1334 return Val; 1335 // For calls we also accept variables in the program address space. 1336 Type *SuggestedTy = Ty; 1337 if (IsCall && isa<PointerType>(Ty)) { 1338 Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo( 1339 M->getDataLayout().getProgramAddressSpace()); 1340 SuggestedTy = TyInProgAS; 1341 if (Val->getType() == TyInProgAS) 1342 return Val; 1343 } 1344 if (Ty->isLabelTy()) 1345 Error(Loc, "'" + Name + "' is not a basic block"); 1346 else 1347 Error(Loc, "'" + Name + "' defined with type '" + 1348 getTypeString(Val->getType()) + "' but expected '" + 1349 getTypeString(SuggestedTy) + "'"); 1350 return nullptr; 1351 } 1352 1353 /// GetGlobalVal - Get a value with the specified name or ID, creating a 1354 /// forward reference record if needed. This can return null if the value 1355 /// exists but does not have the right type. 1356 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 1357 LocTy Loc, bool IsCall) { 1358 PointerType *PTy = dyn_cast<PointerType>(Ty); 1359 if (!PTy) { 1360 Error(Loc, "global variable reference must have pointer type"); 1361 return nullptr; 1362 } 1363 1364 // Look this name up in the normal function symbol table. 1365 GlobalValue *Val = 1366 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1367 1368 // If this is a forward reference for the value, see if we already created a 1369 // forward ref record. 1370 if (!Val) { 1371 auto I = ForwardRefVals.find(Name); 1372 if (I != ForwardRefVals.end()) 1373 Val = I->second.first; 1374 } 1375 1376 // If we have the value in the symbol table or fwd-ref table, return it. 1377 if (Val) 1378 return cast_or_null<GlobalValue>( 1379 checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall)); 1380 1381 // Otherwise, create a new forward reference for this value and remember it. 1382 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1383 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1384 return FwdVal; 1385 } 1386 1387 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc, 1388 bool IsCall) { 1389 PointerType *PTy = dyn_cast<PointerType>(Ty); 1390 if (!PTy) { 1391 Error(Loc, "global variable reference must have pointer type"); 1392 return nullptr; 1393 } 1394 1395 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1396 1397 // If this is a forward reference for the value, see if we already created a 1398 // forward ref record. 1399 if (!Val) { 1400 auto I = ForwardRefValIDs.find(ID); 1401 if (I != ForwardRefValIDs.end()) 1402 Val = I->second.first; 1403 } 1404 1405 // If we have the value in the symbol table or fwd-ref table, return it. 1406 if (Val) 1407 return cast_or_null<GlobalValue>( 1408 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall)); 1409 1410 // Otherwise, create a new forward reference for this value and remember it. 1411 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1412 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1413 return FwdVal; 1414 } 1415 1416 //===----------------------------------------------------------------------===// 1417 // Comdat Reference/Resolution Routines. 1418 //===----------------------------------------------------------------------===// 1419 1420 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1421 // Look this name up in the comdat symbol table. 1422 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1423 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1424 if (I != ComdatSymTab.end()) 1425 return &I->second; 1426 1427 // Otherwise, create a new forward reference for this value and remember it. 1428 Comdat *C = M->getOrInsertComdat(Name); 1429 ForwardRefComdats[Name] = Loc; 1430 return C; 1431 } 1432 1433 //===----------------------------------------------------------------------===// 1434 // Helper Routines. 1435 //===----------------------------------------------------------------------===// 1436 1437 /// ParseToken - If the current token has the specified kind, eat it and return 1438 /// success. Otherwise, emit the specified error and return failure. 1439 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 1440 if (Lex.getKind() != T) 1441 return TokError(ErrMsg); 1442 Lex.Lex(); 1443 return false; 1444 } 1445 1446 /// ParseStringConstant 1447 /// ::= StringConstant 1448 bool LLParser::ParseStringConstant(std::string &Result) { 1449 if (Lex.getKind() != lltok::StringConstant) 1450 return TokError("expected string constant"); 1451 Result = Lex.getStrVal(); 1452 Lex.Lex(); 1453 return false; 1454 } 1455 1456 /// ParseUInt32 1457 /// ::= uint32 1458 bool LLParser::ParseUInt32(uint32_t &Val) { 1459 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1460 return TokError("expected integer"); 1461 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1462 if (Val64 != unsigned(Val64)) 1463 return TokError("expected 32-bit integer (too large)"); 1464 Val = Val64; 1465 Lex.Lex(); 1466 return false; 1467 } 1468 1469 /// ParseUInt64 1470 /// ::= uint64 1471 bool LLParser::ParseUInt64(uint64_t &Val) { 1472 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1473 return TokError("expected integer"); 1474 Val = Lex.getAPSIntVal().getLimitedValue(); 1475 Lex.Lex(); 1476 return false; 1477 } 1478 1479 /// ParseTLSModel 1480 /// := 'localdynamic' 1481 /// := 'initialexec' 1482 /// := 'localexec' 1483 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1484 switch (Lex.getKind()) { 1485 default: 1486 return TokError("expected localdynamic, initialexec or localexec"); 1487 case lltok::kw_localdynamic: 1488 TLM = GlobalVariable::LocalDynamicTLSModel; 1489 break; 1490 case lltok::kw_initialexec: 1491 TLM = GlobalVariable::InitialExecTLSModel; 1492 break; 1493 case lltok::kw_localexec: 1494 TLM = GlobalVariable::LocalExecTLSModel; 1495 break; 1496 } 1497 1498 Lex.Lex(); 1499 return false; 1500 } 1501 1502 /// ParseOptionalThreadLocal 1503 /// := /*empty*/ 1504 /// := 'thread_local' 1505 /// := 'thread_local' '(' tlsmodel ')' 1506 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1507 TLM = GlobalVariable::NotThreadLocal; 1508 if (!EatIfPresent(lltok::kw_thread_local)) 1509 return false; 1510 1511 TLM = GlobalVariable::GeneralDynamicTLSModel; 1512 if (Lex.getKind() == lltok::lparen) { 1513 Lex.Lex(); 1514 return ParseTLSModel(TLM) || 1515 ParseToken(lltok::rparen, "expected ')' after thread local model"); 1516 } 1517 return false; 1518 } 1519 1520 /// ParseOptionalAddrSpace 1521 /// := /*empty*/ 1522 /// := 'addrspace' '(' uint32 ')' 1523 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) { 1524 AddrSpace = DefaultAS; 1525 if (!EatIfPresent(lltok::kw_addrspace)) 1526 return false; 1527 return ParseToken(lltok::lparen, "expected '(' in address space") || 1528 ParseUInt32(AddrSpace) || 1529 ParseToken(lltok::rparen, "expected ')' in address space"); 1530 } 1531 1532 /// ParseStringAttribute 1533 /// := StringConstant 1534 /// := StringConstant '=' StringConstant 1535 bool LLParser::ParseStringAttribute(AttrBuilder &B) { 1536 std::string Attr = Lex.getStrVal(); 1537 Lex.Lex(); 1538 std::string Val; 1539 if (EatIfPresent(lltok::equal) && ParseStringConstant(Val)) 1540 return true; 1541 B.addAttribute(Attr, Val); 1542 return false; 1543 } 1544 1545 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes. 1546 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) { 1547 bool HaveError = false; 1548 1549 B.clear(); 1550 1551 while (true) { 1552 lltok::Kind Token = Lex.getKind(); 1553 switch (Token) { 1554 default: // End of attributes. 1555 return HaveError; 1556 case lltok::StringConstant: { 1557 if (ParseStringAttribute(B)) 1558 return true; 1559 continue; 1560 } 1561 case lltok::kw_align: { 1562 unsigned Alignment; 1563 if (ParseOptionalAlignment(Alignment)) 1564 return true; 1565 B.addAlignmentAttr(Alignment); 1566 continue; 1567 } 1568 case lltok::kw_byval: B.addAttribute(Attribute::ByVal); break; 1569 case lltok::kw_dereferenceable: { 1570 uint64_t Bytes; 1571 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1572 return true; 1573 B.addDereferenceableAttr(Bytes); 1574 continue; 1575 } 1576 case lltok::kw_dereferenceable_or_null: { 1577 uint64_t Bytes; 1578 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1579 return true; 1580 B.addDereferenceableOrNullAttr(Bytes); 1581 continue; 1582 } 1583 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break; 1584 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1585 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1586 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1587 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1588 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1589 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1590 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1591 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1592 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1593 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break; 1594 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break; 1595 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break; 1596 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1597 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1598 1599 case lltok::kw_alignstack: 1600 case lltok::kw_alwaysinline: 1601 case lltok::kw_argmemonly: 1602 case lltok::kw_builtin: 1603 case lltok::kw_inlinehint: 1604 case lltok::kw_jumptable: 1605 case lltok::kw_minsize: 1606 case lltok::kw_naked: 1607 case lltok::kw_nobuiltin: 1608 case lltok::kw_noduplicate: 1609 case lltok::kw_noimplicitfloat: 1610 case lltok::kw_noinline: 1611 case lltok::kw_nonlazybind: 1612 case lltok::kw_noredzone: 1613 case lltok::kw_noreturn: 1614 case lltok::kw_nocf_check: 1615 case lltok::kw_nounwind: 1616 case lltok::kw_optforfuzzing: 1617 case lltok::kw_optnone: 1618 case lltok::kw_optsize: 1619 case lltok::kw_returns_twice: 1620 case lltok::kw_sanitize_address: 1621 case lltok::kw_sanitize_hwaddress: 1622 case lltok::kw_sanitize_memory: 1623 case lltok::kw_sanitize_thread: 1624 case lltok::kw_speculative_load_hardening: 1625 case lltok::kw_ssp: 1626 case lltok::kw_sspreq: 1627 case lltok::kw_sspstrong: 1628 case lltok::kw_safestack: 1629 case lltok::kw_shadowcallstack: 1630 case lltok::kw_strictfp: 1631 case lltok::kw_uwtable: 1632 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1633 break; 1634 } 1635 1636 Lex.Lex(); 1637 } 1638 } 1639 1640 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes. 1641 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) { 1642 bool HaveError = false; 1643 1644 B.clear(); 1645 1646 while (true) { 1647 lltok::Kind Token = Lex.getKind(); 1648 switch (Token) { 1649 default: // End of attributes. 1650 return HaveError; 1651 case lltok::StringConstant: { 1652 if (ParseStringAttribute(B)) 1653 return true; 1654 continue; 1655 } 1656 case lltok::kw_dereferenceable: { 1657 uint64_t Bytes; 1658 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1659 return true; 1660 B.addDereferenceableAttr(Bytes); 1661 continue; 1662 } 1663 case lltok::kw_dereferenceable_or_null: { 1664 uint64_t Bytes; 1665 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1666 return true; 1667 B.addDereferenceableOrNullAttr(Bytes); 1668 continue; 1669 } 1670 case lltok::kw_align: { 1671 unsigned Alignment; 1672 if (ParseOptionalAlignment(Alignment)) 1673 return true; 1674 B.addAlignmentAttr(Alignment); 1675 continue; 1676 } 1677 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1678 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1679 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1680 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1681 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1682 1683 // Error handling. 1684 case lltok::kw_byval: 1685 case lltok::kw_inalloca: 1686 case lltok::kw_nest: 1687 case lltok::kw_nocapture: 1688 case lltok::kw_returned: 1689 case lltok::kw_sret: 1690 case lltok::kw_swifterror: 1691 case lltok::kw_swiftself: 1692 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1693 break; 1694 1695 case lltok::kw_alignstack: 1696 case lltok::kw_alwaysinline: 1697 case lltok::kw_argmemonly: 1698 case lltok::kw_builtin: 1699 case lltok::kw_cold: 1700 case lltok::kw_inlinehint: 1701 case lltok::kw_jumptable: 1702 case lltok::kw_minsize: 1703 case lltok::kw_naked: 1704 case lltok::kw_nobuiltin: 1705 case lltok::kw_noduplicate: 1706 case lltok::kw_noimplicitfloat: 1707 case lltok::kw_noinline: 1708 case lltok::kw_nonlazybind: 1709 case lltok::kw_noredzone: 1710 case lltok::kw_noreturn: 1711 case lltok::kw_nocf_check: 1712 case lltok::kw_nounwind: 1713 case lltok::kw_optforfuzzing: 1714 case lltok::kw_optnone: 1715 case lltok::kw_optsize: 1716 case lltok::kw_returns_twice: 1717 case lltok::kw_sanitize_address: 1718 case lltok::kw_sanitize_hwaddress: 1719 case lltok::kw_sanitize_memory: 1720 case lltok::kw_sanitize_thread: 1721 case lltok::kw_speculative_load_hardening: 1722 case lltok::kw_ssp: 1723 case lltok::kw_sspreq: 1724 case lltok::kw_sspstrong: 1725 case lltok::kw_safestack: 1726 case lltok::kw_shadowcallstack: 1727 case lltok::kw_strictfp: 1728 case lltok::kw_uwtable: 1729 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1730 break; 1731 1732 case lltok::kw_readnone: 1733 case lltok::kw_readonly: 1734 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type"); 1735 } 1736 1737 Lex.Lex(); 1738 } 1739 } 1740 1741 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1742 HasLinkage = true; 1743 switch (Kind) { 1744 default: 1745 HasLinkage = false; 1746 return GlobalValue::ExternalLinkage; 1747 case lltok::kw_private: 1748 return GlobalValue::PrivateLinkage; 1749 case lltok::kw_internal: 1750 return GlobalValue::InternalLinkage; 1751 case lltok::kw_weak: 1752 return GlobalValue::WeakAnyLinkage; 1753 case lltok::kw_weak_odr: 1754 return GlobalValue::WeakODRLinkage; 1755 case lltok::kw_linkonce: 1756 return GlobalValue::LinkOnceAnyLinkage; 1757 case lltok::kw_linkonce_odr: 1758 return GlobalValue::LinkOnceODRLinkage; 1759 case lltok::kw_available_externally: 1760 return GlobalValue::AvailableExternallyLinkage; 1761 case lltok::kw_appending: 1762 return GlobalValue::AppendingLinkage; 1763 case lltok::kw_common: 1764 return GlobalValue::CommonLinkage; 1765 case lltok::kw_extern_weak: 1766 return GlobalValue::ExternalWeakLinkage; 1767 case lltok::kw_external: 1768 return GlobalValue::ExternalLinkage; 1769 } 1770 } 1771 1772 /// ParseOptionalLinkage 1773 /// ::= /*empty*/ 1774 /// ::= 'private' 1775 /// ::= 'internal' 1776 /// ::= 'weak' 1777 /// ::= 'weak_odr' 1778 /// ::= 'linkonce' 1779 /// ::= 'linkonce_odr' 1780 /// ::= 'available_externally' 1781 /// ::= 'appending' 1782 /// ::= 'common' 1783 /// ::= 'extern_weak' 1784 /// ::= 'external' 1785 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1786 unsigned &Visibility, 1787 unsigned &DLLStorageClass, 1788 bool &DSOLocal) { 1789 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1790 if (HasLinkage) 1791 Lex.Lex(); 1792 ParseOptionalDSOLocal(DSOLocal); 1793 ParseOptionalVisibility(Visibility); 1794 ParseOptionalDLLStorageClass(DLLStorageClass); 1795 1796 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 1797 return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 1798 } 1799 1800 return false; 1801 } 1802 1803 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) { 1804 switch (Lex.getKind()) { 1805 default: 1806 DSOLocal = false; 1807 break; 1808 case lltok::kw_dso_local: 1809 DSOLocal = true; 1810 Lex.Lex(); 1811 break; 1812 case lltok::kw_dso_preemptable: 1813 DSOLocal = false; 1814 Lex.Lex(); 1815 break; 1816 } 1817 } 1818 1819 /// ParseOptionalVisibility 1820 /// ::= /*empty*/ 1821 /// ::= 'default' 1822 /// ::= 'hidden' 1823 /// ::= 'protected' 1824 /// 1825 void LLParser::ParseOptionalVisibility(unsigned &Res) { 1826 switch (Lex.getKind()) { 1827 default: 1828 Res = GlobalValue::DefaultVisibility; 1829 return; 1830 case lltok::kw_default: 1831 Res = GlobalValue::DefaultVisibility; 1832 break; 1833 case lltok::kw_hidden: 1834 Res = GlobalValue::HiddenVisibility; 1835 break; 1836 case lltok::kw_protected: 1837 Res = GlobalValue::ProtectedVisibility; 1838 break; 1839 } 1840 Lex.Lex(); 1841 } 1842 1843 /// ParseOptionalDLLStorageClass 1844 /// ::= /*empty*/ 1845 /// ::= 'dllimport' 1846 /// ::= 'dllexport' 1847 /// 1848 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) { 1849 switch (Lex.getKind()) { 1850 default: 1851 Res = GlobalValue::DefaultStorageClass; 1852 return; 1853 case lltok::kw_dllimport: 1854 Res = GlobalValue::DLLImportStorageClass; 1855 break; 1856 case lltok::kw_dllexport: 1857 Res = GlobalValue::DLLExportStorageClass; 1858 break; 1859 } 1860 Lex.Lex(); 1861 } 1862 1863 /// ParseOptionalCallingConv 1864 /// ::= /*empty*/ 1865 /// ::= 'ccc' 1866 /// ::= 'fastcc' 1867 /// ::= 'intel_ocl_bicc' 1868 /// ::= 'coldcc' 1869 /// ::= 'x86_stdcallcc' 1870 /// ::= 'x86_fastcallcc' 1871 /// ::= 'x86_thiscallcc' 1872 /// ::= 'x86_vectorcallcc' 1873 /// ::= 'arm_apcscc' 1874 /// ::= 'arm_aapcscc' 1875 /// ::= 'arm_aapcs_vfpcc' 1876 /// ::= 'aarch64_vector_pcs' 1877 /// ::= 'msp430_intrcc' 1878 /// ::= 'avr_intrcc' 1879 /// ::= 'avr_signalcc' 1880 /// ::= 'ptx_kernel' 1881 /// ::= 'ptx_device' 1882 /// ::= 'spir_func' 1883 /// ::= 'spir_kernel' 1884 /// ::= 'x86_64_sysvcc' 1885 /// ::= 'win64cc' 1886 /// ::= 'webkit_jscc' 1887 /// ::= 'anyregcc' 1888 /// ::= 'preserve_mostcc' 1889 /// ::= 'preserve_allcc' 1890 /// ::= 'ghccc' 1891 /// ::= 'swiftcc' 1892 /// ::= 'x86_intrcc' 1893 /// ::= 'hhvmcc' 1894 /// ::= 'hhvm_ccc' 1895 /// ::= 'cxx_fast_tlscc' 1896 /// ::= 'amdgpu_vs' 1897 /// ::= 'amdgpu_ls' 1898 /// ::= 'amdgpu_hs' 1899 /// ::= 'amdgpu_es' 1900 /// ::= 'amdgpu_gs' 1901 /// ::= 'amdgpu_ps' 1902 /// ::= 'amdgpu_cs' 1903 /// ::= 'amdgpu_kernel' 1904 /// ::= 'cc' UINT 1905 /// 1906 bool LLParser::ParseOptionalCallingConv(unsigned &CC) { 1907 switch (Lex.getKind()) { 1908 default: CC = CallingConv::C; return false; 1909 case lltok::kw_ccc: CC = CallingConv::C; break; 1910 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1911 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1912 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1913 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1914 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 1915 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1916 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 1917 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1918 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1919 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1920 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break; 1921 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1922 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 1923 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 1924 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1925 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1926 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 1927 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 1928 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 1929 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 1930 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 1931 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 1932 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 1933 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 1934 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 1935 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 1936 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 1937 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 1938 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 1939 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 1940 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 1941 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 1942 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 1943 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 1944 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 1945 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 1946 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 1947 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 1948 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 1949 case lltok::kw_cc: { 1950 Lex.Lex(); 1951 return ParseUInt32(CC); 1952 } 1953 } 1954 1955 Lex.Lex(); 1956 return false; 1957 } 1958 1959 /// ParseMetadataAttachment 1960 /// ::= !dbg !42 1961 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 1962 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 1963 1964 std::string Name = Lex.getStrVal(); 1965 Kind = M->getMDKindID(Name); 1966 Lex.Lex(); 1967 1968 return ParseMDNode(MD); 1969 } 1970 1971 /// ParseInstructionMetadata 1972 /// ::= !dbg !42 (',' !dbg !57)* 1973 bool LLParser::ParseInstructionMetadata(Instruction &Inst) { 1974 do { 1975 if (Lex.getKind() != lltok::MetadataVar) 1976 return TokError("expected metadata after comma"); 1977 1978 unsigned MDK; 1979 MDNode *N; 1980 if (ParseMetadataAttachment(MDK, N)) 1981 return true; 1982 1983 Inst.setMetadata(MDK, N); 1984 if (MDK == LLVMContext::MD_tbaa) 1985 InstsWithTBAATag.push_back(&Inst); 1986 1987 // If this is the end of the list, we're done. 1988 } while (EatIfPresent(lltok::comma)); 1989 return false; 1990 } 1991 1992 /// ParseGlobalObjectMetadataAttachment 1993 /// ::= !dbg !57 1994 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) { 1995 unsigned MDK; 1996 MDNode *N; 1997 if (ParseMetadataAttachment(MDK, N)) 1998 return true; 1999 2000 GO.addMetadata(MDK, *N); 2001 return false; 2002 } 2003 2004 /// ParseOptionalFunctionMetadata 2005 /// ::= (!dbg !57)* 2006 bool LLParser::ParseOptionalFunctionMetadata(Function &F) { 2007 while (Lex.getKind() == lltok::MetadataVar) 2008 if (ParseGlobalObjectMetadataAttachment(F)) 2009 return true; 2010 return false; 2011 } 2012 2013 /// ParseOptionalAlignment 2014 /// ::= /* empty */ 2015 /// ::= 'align' 4 2016 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { 2017 Alignment = 0; 2018 if (!EatIfPresent(lltok::kw_align)) 2019 return false; 2020 LocTy AlignLoc = Lex.getLoc(); 2021 if (ParseUInt32(Alignment)) return true; 2022 if (!isPowerOf2_32(Alignment)) 2023 return Error(AlignLoc, "alignment is not a power of two"); 2024 if (Alignment > Value::MaximumAlignment) 2025 return Error(AlignLoc, "huge alignments are not supported yet"); 2026 return false; 2027 } 2028 2029 /// ParseOptionalDerefAttrBytes 2030 /// ::= /* empty */ 2031 /// ::= AttrKind '(' 4 ')' 2032 /// 2033 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 2034 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind, 2035 uint64_t &Bytes) { 2036 assert((AttrKind == lltok::kw_dereferenceable || 2037 AttrKind == lltok::kw_dereferenceable_or_null) && 2038 "contract!"); 2039 2040 Bytes = 0; 2041 if (!EatIfPresent(AttrKind)) 2042 return false; 2043 LocTy ParenLoc = Lex.getLoc(); 2044 if (!EatIfPresent(lltok::lparen)) 2045 return Error(ParenLoc, "expected '('"); 2046 LocTy DerefLoc = Lex.getLoc(); 2047 if (ParseUInt64(Bytes)) return true; 2048 ParenLoc = Lex.getLoc(); 2049 if (!EatIfPresent(lltok::rparen)) 2050 return Error(ParenLoc, "expected ')'"); 2051 if (!Bytes) 2052 return Error(DerefLoc, "dereferenceable bytes must be non-zero"); 2053 return false; 2054 } 2055 2056 /// ParseOptionalCommaAlign 2057 /// ::= 2058 /// ::= ',' align 4 2059 /// 2060 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2061 /// end. 2062 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, 2063 bool &AteExtraComma) { 2064 AteExtraComma = false; 2065 while (EatIfPresent(lltok::comma)) { 2066 // Metadata at the end is an early exit. 2067 if (Lex.getKind() == lltok::MetadataVar) { 2068 AteExtraComma = true; 2069 return false; 2070 } 2071 2072 if (Lex.getKind() != lltok::kw_align) 2073 return Error(Lex.getLoc(), "expected metadata or 'align'"); 2074 2075 if (ParseOptionalAlignment(Alignment)) return true; 2076 } 2077 2078 return false; 2079 } 2080 2081 /// ParseOptionalCommaAddrSpace 2082 /// ::= 2083 /// ::= ',' addrspace(1) 2084 /// 2085 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2086 /// end. 2087 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace, 2088 LocTy &Loc, 2089 bool &AteExtraComma) { 2090 AteExtraComma = false; 2091 while (EatIfPresent(lltok::comma)) { 2092 // Metadata at the end is an early exit. 2093 if (Lex.getKind() == lltok::MetadataVar) { 2094 AteExtraComma = true; 2095 return false; 2096 } 2097 2098 Loc = Lex.getLoc(); 2099 if (Lex.getKind() != lltok::kw_addrspace) 2100 return Error(Lex.getLoc(), "expected metadata or 'addrspace'"); 2101 2102 if (ParseOptionalAddrSpace(AddrSpace)) 2103 return true; 2104 } 2105 2106 return false; 2107 } 2108 2109 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 2110 Optional<unsigned> &HowManyArg) { 2111 Lex.Lex(); 2112 2113 auto StartParen = Lex.getLoc(); 2114 if (!EatIfPresent(lltok::lparen)) 2115 return Error(StartParen, "expected '('"); 2116 2117 if (ParseUInt32(BaseSizeArg)) 2118 return true; 2119 2120 if (EatIfPresent(lltok::comma)) { 2121 auto HowManyAt = Lex.getLoc(); 2122 unsigned HowMany; 2123 if (ParseUInt32(HowMany)) 2124 return true; 2125 if (HowMany == BaseSizeArg) 2126 return Error(HowManyAt, 2127 "'allocsize' indices can't refer to the same parameter"); 2128 HowManyArg = HowMany; 2129 } else 2130 HowManyArg = None; 2131 2132 auto EndParen = Lex.getLoc(); 2133 if (!EatIfPresent(lltok::rparen)) 2134 return Error(EndParen, "expected ')'"); 2135 return false; 2136 } 2137 2138 /// ParseScopeAndOrdering 2139 /// if isAtomic: ::= SyncScope? AtomicOrdering 2140 /// else: ::= 2141 /// 2142 /// This sets Scope and Ordering to the parsed values. 2143 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID, 2144 AtomicOrdering &Ordering) { 2145 if (!isAtomic) 2146 return false; 2147 2148 return ParseScope(SSID) || ParseOrdering(Ordering); 2149 } 2150 2151 /// ParseScope 2152 /// ::= syncscope("singlethread" | "<target scope>")? 2153 /// 2154 /// This sets synchronization scope ID to the ID of the parsed value. 2155 bool LLParser::ParseScope(SyncScope::ID &SSID) { 2156 SSID = SyncScope::System; 2157 if (EatIfPresent(lltok::kw_syncscope)) { 2158 auto StartParenAt = Lex.getLoc(); 2159 if (!EatIfPresent(lltok::lparen)) 2160 return Error(StartParenAt, "Expected '(' in syncscope"); 2161 2162 std::string SSN; 2163 auto SSNAt = Lex.getLoc(); 2164 if (ParseStringConstant(SSN)) 2165 return Error(SSNAt, "Expected synchronization scope name"); 2166 2167 auto EndParenAt = Lex.getLoc(); 2168 if (!EatIfPresent(lltok::rparen)) 2169 return Error(EndParenAt, "Expected ')' in syncscope"); 2170 2171 SSID = Context.getOrInsertSyncScopeID(SSN); 2172 } 2173 2174 return false; 2175 } 2176 2177 /// ParseOrdering 2178 /// ::= AtomicOrdering 2179 /// 2180 /// This sets Ordering to the parsed value. 2181 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) { 2182 switch (Lex.getKind()) { 2183 default: return TokError("Expected ordering on atomic instruction"); 2184 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2185 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2186 // Not specified yet: 2187 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2188 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2189 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2190 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2191 case lltok::kw_seq_cst: 2192 Ordering = AtomicOrdering::SequentiallyConsistent; 2193 break; 2194 } 2195 Lex.Lex(); 2196 return false; 2197 } 2198 2199 /// ParseOptionalStackAlignment 2200 /// ::= /* empty */ 2201 /// ::= 'alignstack' '(' 4 ')' 2202 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 2203 Alignment = 0; 2204 if (!EatIfPresent(lltok::kw_alignstack)) 2205 return false; 2206 LocTy ParenLoc = Lex.getLoc(); 2207 if (!EatIfPresent(lltok::lparen)) 2208 return Error(ParenLoc, "expected '('"); 2209 LocTy AlignLoc = Lex.getLoc(); 2210 if (ParseUInt32(Alignment)) return true; 2211 ParenLoc = Lex.getLoc(); 2212 if (!EatIfPresent(lltok::rparen)) 2213 return Error(ParenLoc, "expected ')'"); 2214 if (!isPowerOf2_32(Alignment)) 2215 return Error(AlignLoc, "stack alignment is not a power of two"); 2216 return false; 2217 } 2218 2219 /// ParseIndexList - This parses the index list for an insert/extractvalue 2220 /// instruction. This sets AteExtraComma in the case where we eat an extra 2221 /// comma at the end of the line and find that it is followed by metadata. 2222 /// Clients that don't allow metadata can call the version of this function that 2223 /// only takes one argument. 2224 /// 2225 /// ParseIndexList 2226 /// ::= (',' uint32)+ 2227 /// 2228 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 2229 bool &AteExtraComma) { 2230 AteExtraComma = false; 2231 2232 if (Lex.getKind() != lltok::comma) 2233 return TokError("expected ',' as start of index list"); 2234 2235 while (EatIfPresent(lltok::comma)) { 2236 if (Lex.getKind() == lltok::MetadataVar) { 2237 if (Indices.empty()) return TokError("expected index"); 2238 AteExtraComma = true; 2239 return false; 2240 } 2241 unsigned Idx = 0; 2242 if (ParseUInt32(Idx)) return true; 2243 Indices.push_back(Idx); 2244 } 2245 2246 return false; 2247 } 2248 2249 //===----------------------------------------------------------------------===// 2250 // Type Parsing. 2251 //===----------------------------------------------------------------------===// 2252 2253 /// ParseType - Parse a type. 2254 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2255 SMLoc TypeLoc = Lex.getLoc(); 2256 switch (Lex.getKind()) { 2257 default: 2258 return TokError(Msg); 2259 case lltok::Type: 2260 // Type ::= 'float' | 'void' (etc) 2261 Result = Lex.getTyVal(); 2262 Lex.Lex(); 2263 break; 2264 case lltok::lbrace: 2265 // Type ::= StructType 2266 if (ParseAnonStructType(Result, false)) 2267 return true; 2268 break; 2269 case lltok::lsquare: 2270 // Type ::= '[' ... ']' 2271 Lex.Lex(); // eat the lsquare. 2272 if (ParseArrayVectorType(Result, false)) 2273 return true; 2274 break; 2275 case lltok::less: // Either vector or packed struct. 2276 // Type ::= '<' ... '>' 2277 Lex.Lex(); 2278 if (Lex.getKind() == lltok::lbrace) { 2279 if (ParseAnonStructType(Result, true) || 2280 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 2281 return true; 2282 } else if (ParseArrayVectorType(Result, true)) 2283 return true; 2284 break; 2285 case lltok::LocalVar: { 2286 // Type ::= %foo 2287 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2288 2289 // If the type hasn't been defined yet, create a forward definition and 2290 // remember where that forward def'n was seen (in case it never is defined). 2291 if (!Entry.first) { 2292 Entry.first = StructType::create(Context, Lex.getStrVal()); 2293 Entry.second = Lex.getLoc(); 2294 } 2295 Result = Entry.first; 2296 Lex.Lex(); 2297 break; 2298 } 2299 2300 case lltok::LocalVarID: { 2301 // Type ::= %4 2302 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2303 2304 // If the type hasn't been defined yet, create a forward definition and 2305 // remember where that forward def'n was seen (in case it never is defined). 2306 if (!Entry.first) { 2307 Entry.first = StructType::create(Context); 2308 Entry.second = Lex.getLoc(); 2309 } 2310 Result = Entry.first; 2311 Lex.Lex(); 2312 break; 2313 } 2314 } 2315 2316 // Parse the type suffixes. 2317 while (true) { 2318 switch (Lex.getKind()) { 2319 // End of type. 2320 default: 2321 if (!AllowVoid && Result->isVoidTy()) 2322 return Error(TypeLoc, "void type only allowed for function results"); 2323 return false; 2324 2325 // Type ::= Type '*' 2326 case lltok::star: 2327 if (Result->isLabelTy()) 2328 return TokError("basic block pointers are invalid"); 2329 if (Result->isVoidTy()) 2330 return TokError("pointers to void are invalid - use i8* instead"); 2331 if (!PointerType::isValidElementType(Result)) 2332 return TokError("pointer to this type is invalid"); 2333 Result = PointerType::getUnqual(Result); 2334 Lex.Lex(); 2335 break; 2336 2337 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2338 case lltok::kw_addrspace: { 2339 if (Result->isLabelTy()) 2340 return TokError("basic block pointers are invalid"); 2341 if (Result->isVoidTy()) 2342 return TokError("pointers to void are invalid; use i8* instead"); 2343 if (!PointerType::isValidElementType(Result)) 2344 return TokError("pointer to this type is invalid"); 2345 unsigned AddrSpace; 2346 if (ParseOptionalAddrSpace(AddrSpace) || 2347 ParseToken(lltok::star, "expected '*' in address space")) 2348 return true; 2349 2350 Result = PointerType::get(Result, AddrSpace); 2351 break; 2352 } 2353 2354 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2355 case lltok::lparen: 2356 if (ParseFunctionType(Result)) 2357 return true; 2358 break; 2359 } 2360 } 2361 } 2362 2363 /// ParseParameterList 2364 /// ::= '(' ')' 2365 /// ::= '(' Arg (',' Arg)* ')' 2366 /// Arg 2367 /// ::= Type OptionalAttributes Value OptionalAttributes 2368 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2369 PerFunctionState &PFS, bool IsMustTailCall, 2370 bool InVarArgsFunc) { 2371 if (ParseToken(lltok::lparen, "expected '(' in call")) 2372 return true; 2373 2374 while (Lex.getKind() != lltok::rparen) { 2375 // If this isn't the first argument, we need a comma. 2376 if (!ArgList.empty() && 2377 ParseToken(lltok::comma, "expected ',' in argument list")) 2378 return true; 2379 2380 // Parse an ellipsis if this is a musttail call in a variadic function. 2381 if (Lex.getKind() == lltok::dotdotdot) { 2382 const char *Msg = "unexpected ellipsis in argument list for "; 2383 if (!IsMustTailCall) 2384 return TokError(Twine(Msg) + "non-musttail call"); 2385 if (!InVarArgsFunc) 2386 return TokError(Twine(Msg) + "musttail call in non-varargs function"); 2387 Lex.Lex(); // Lex the '...', it is purely for readability. 2388 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2389 } 2390 2391 // Parse the argument. 2392 LocTy ArgLoc; 2393 Type *ArgTy = nullptr; 2394 AttrBuilder ArgAttrs; 2395 Value *V; 2396 if (ParseType(ArgTy, ArgLoc)) 2397 return true; 2398 2399 if (ArgTy->isMetadataTy()) { 2400 if (ParseMetadataAsValue(V, PFS)) 2401 return true; 2402 } else { 2403 // Otherwise, handle normal operands. 2404 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS)) 2405 return true; 2406 } 2407 ArgList.push_back(ParamInfo( 2408 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2409 } 2410 2411 if (IsMustTailCall && InVarArgsFunc) 2412 return TokError("expected '...' at end of argument list for musttail call " 2413 "in varargs function"); 2414 2415 Lex.Lex(); // Lex the ')'. 2416 return false; 2417 } 2418 2419 /// ParseOptionalOperandBundles 2420 /// ::= /*empty*/ 2421 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2422 /// 2423 /// OperandBundle 2424 /// ::= bundle-tag '(' ')' 2425 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2426 /// 2427 /// bundle-tag ::= String Constant 2428 bool LLParser::ParseOptionalOperandBundles( 2429 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2430 LocTy BeginLoc = Lex.getLoc(); 2431 if (!EatIfPresent(lltok::lsquare)) 2432 return false; 2433 2434 while (Lex.getKind() != lltok::rsquare) { 2435 // If this isn't the first operand bundle, we need a comma. 2436 if (!BundleList.empty() && 2437 ParseToken(lltok::comma, "expected ',' in input list")) 2438 return true; 2439 2440 std::string Tag; 2441 if (ParseStringConstant(Tag)) 2442 return true; 2443 2444 if (ParseToken(lltok::lparen, "expected '(' in operand bundle")) 2445 return true; 2446 2447 std::vector<Value *> Inputs; 2448 while (Lex.getKind() != lltok::rparen) { 2449 // If this isn't the first input, we need a comma. 2450 if (!Inputs.empty() && 2451 ParseToken(lltok::comma, "expected ',' in input list")) 2452 return true; 2453 2454 Type *Ty = nullptr; 2455 Value *Input = nullptr; 2456 if (ParseType(Ty) || ParseValue(Ty, Input, PFS)) 2457 return true; 2458 Inputs.push_back(Input); 2459 } 2460 2461 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2462 2463 Lex.Lex(); // Lex the ')'. 2464 } 2465 2466 if (BundleList.empty()) 2467 return Error(BeginLoc, "operand bundle set must not be empty"); 2468 2469 Lex.Lex(); // Lex the ']'. 2470 return false; 2471 } 2472 2473 /// ParseArgumentList - Parse the argument list for a function type or function 2474 /// prototype. 2475 /// ::= '(' ArgTypeListI ')' 2476 /// ArgTypeListI 2477 /// ::= /*empty*/ 2478 /// ::= '...' 2479 /// ::= ArgTypeList ',' '...' 2480 /// ::= ArgType (',' ArgType)* 2481 /// 2482 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2483 bool &isVarArg){ 2484 isVarArg = false; 2485 assert(Lex.getKind() == lltok::lparen); 2486 Lex.Lex(); // eat the (. 2487 2488 if (Lex.getKind() == lltok::rparen) { 2489 // empty 2490 } else if (Lex.getKind() == lltok::dotdotdot) { 2491 isVarArg = true; 2492 Lex.Lex(); 2493 } else { 2494 LocTy TypeLoc = Lex.getLoc(); 2495 Type *ArgTy = nullptr; 2496 AttrBuilder Attrs; 2497 std::string Name; 2498 2499 if (ParseType(ArgTy) || 2500 ParseOptionalParamAttrs(Attrs)) return true; 2501 2502 if (ArgTy->isVoidTy()) 2503 return Error(TypeLoc, "argument can not have void type"); 2504 2505 if (Lex.getKind() == lltok::LocalVar) { 2506 Name = Lex.getStrVal(); 2507 Lex.Lex(); 2508 } 2509 2510 if (!FunctionType::isValidArgumentType(ArgTy)) 2511 return Error(TypeLoc, "invalid type for function argument"); 2512 2513 ArgList.emplace_back(TypeLoc, ArgTy, 2514 AttributeSet::get(ArgTy->getContext(), Attrs), 2515 std::move(Name)); 2516 2517 while (EatIfPresent(lltok::comma)) { 2518 // Handle ... at end of arg list. 2519 if (EatIfPresent(lltok::dotdotdot)) { 2520 isVarArg = true; 2521 break; 2522 } 2523 2524 // Otherwise must be an argument type. 2525 TypeLoc = Lex.getLoc(); 2526 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true; 2527 2528 if (ArgTy->isVoidTy()) 2529 return Error(TypeLoc, "argument can not have void type"); 2530 2531 if (Lex.getKind() == lltok::LocalVar) { 2532 Name = Lex.getStrVal(); 2533 Lex.Lex(); 2534 } else { 2535 Name = ""; 2536 } 2537 2538 if (!ArgTy->isFirstClassType()) 2539 return Error(TypeLoc, "invalid type for function argument"); 2540 2541 ArgList.emplace_back(TypeLoc, ArgTy, 2542 AttributeSet::get(ArgTy->getContext(), Attrs), 2543 std::move(Name)); 2544 } 2545 } 2546 2547 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2548 } 2549 2550 /// ParseFunctionType 2551 /// ::= Type ArgumentList OptionalAttrs 2552 bool LLParser::ParseFunctionType(Type *&Result) { 2553 assert(Lex.getKind() == lltok::lparen); 2554 2555 if (!FunctionType::isValidReturnType(Result)) 2556 return TokError("invalid function return type"); 2557 2558 SmallVector<ArgInfo, 8> ArgList; 2559 bool isVarArg; 2560 if (ParseArgumentList(ArgList, isVarArg)) 2561 return true; 2562 2563 // Reject names on the arguments lists. 2564 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2565 if (!ArgList[i].Name.empty()) 2566 return Error(ArgList[i].Loc, "argument name invalid in function type"); 2567 if (ArgList[i].Attrs.hasAttributes()) 2568 return Error(ArgList[i].Loc, 2569 "argument attributes invalid in function type"); 2570 } 2571 2572 SmallVector<Type*, 16> ArgListTy; 2573 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2574 ArgListTy.push_back(ArgList[i].Ty); 2575 2576 Result = FunctionType::get(Result, ArgListTy, isVarArg); 2577 return false; 2578 } 2579 2580 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 2581 /// other structs. 2582 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 2583 SmallVector<Type*, 8> Elts; 2584 if (ParseStructBody(Elts)) return true; 2585 2586 Result = StructType::get(Context, Elts, Packed); 2587 return false; 2588 } 2589 2590 /// ParseStructDefinition - Parse a struct in a 'type' definition. 2591 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 2592 std::pair<Type*, LocTy> &Entry, 2593 Type *&ResultTy) { 2594 // If the type was already defined, diagnose the redefinition. 2595 if (Entry.first && !Entry.second.isValid()) 2596 return Error(TypeLoc, "redefinition of type"); 2597 2598 // If we have opaque, just return without filling in the definition for the 2599 // struct. This counts as a definition as far as the .ll file goes. 2600 if (EatIfPresent(lltok::kw_opaque)) { 2601 // This type is being defined, so clear the location to indicate this. 2602 Entry.second = SMLoc(); 2603 2604 // If this type number has never been uttered, create it. 2605 if (!Entry.first) 2606 Entry.first = StructType::create(Context, Name); 2607 ResultTy = Entry.first; 2608 return false; 2609 } 2610 2611 // If the type starts with '<', then it is either a packed struct or a vector. 2612 bool isPacked = EatIfPresent(lltok::less); 2613 2614 // If we don't have a struct, then we have a random type alias, which we 2615 // accept for compatibility with old files. These types are not allowed to be 2616 // forward referenced and not allowed to be recursive. 2617 if (Lex.getKind() != lltok::lbrace) { 2618 if (Entry.first) 2619 return Error(TypeLoc, "forward references to non-struct type"); 2620 2621 ResultTy = nullptr; 2622 if (isPacked) 2623 return ParseArrayVectorType(ResultTy, true); 2624 return ParseType(ResultTy); 2625 } 2626 2627 // This type is being defined, so clear the location to indicate this. 2628 Entry.second = SMLoc(); 2629 2630 // If this type number has never been uttered, create it. 2631 if (!Entry.first) 2632 Entry.first = StructType::create(Context, Name); 2633 2634 StructType *STy = cast<StructType>(Entry.first); 2635 2636 SmallVector<Type*, 8> Body; 2637 if (ParseStructBody(Body) || 2638 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 2639 return true; 2640 2641 STy->setBody(Body, isPacked); 2642 ResultTy = STy; 2643 return false; 2644 } 2645 2646 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2647 /// StructType 2648 /// ::= '{' '}' 2649 /// ::= '{' Type (',' Type)* '}' 2650 /// ::= '<' '{' '}' '>' 2651 /// ::= '<' '{' Type (',' Type)* '}' '>' 2652 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 2653 assert(Lex.getKind() == lltok::lbrace); 2654 Lex.Lex(); // Consume the '{' 2655 2656 // Handle the empty struct. 2657 if (EatIfPresent(lltok::rbrace)) 2658 return false; 2659 2660 LocTy EltTyLoc = Lex.getLoc(); 2661 Type *Ty = nullptr; 2662 if (ParseType(Ty)) return true; 2663 Body.push_back(Ty); 2664 2665 if (!StructType::isValidElementType(Ty)) 2666 return Error(EltTyLoc, "invalid element type for struct"); 2667 2668 while (EatIfPresent(lltok::comma)) { 2669 EltTyLoc = Lex.getLoc(); 2670 if (ParseType(Ty)) return true; 2671 2672 if (!StructType::isValidElementType(Ty)) 2673 return Error(EltTyLoc, "invalid element type for struct"); 2674 2675 Body.push_back(Ty); 2676 } 2677 2678 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 2679 } 2680 2681 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 2682 /// token has already been consumed. 2683 /// Type 2684 /// ::= '[' APSINTVAL 'x' Types ']' 2685 /// ::= '<' APSINTVAL 'x' Types '>' 2686 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 2687 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2688 Lex.getAPSIntVal().getBitWidth() > 64) 2689 return TokError("expected number in address space"); 2690 2691 LocTy SizeLoc = Lex.getLoc(); 2692 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2693 Lex.Lex(); 2694 2695 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 2696 return true; 2697 2698 LocTy TypeLoc = Lex.getLoc(); 2699 Type *EltTy = nullptr; 2700 if (ParseType(EltTy)) return true; 2701 2702 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 2703 "expected end of sequential type")) 2704 return true; 2705 2706 if (isVector) { 2707 if (Size == 0) 2708 return Error(SizeLoc, "zero element vector is illegal"); 2709 if ((unsigned)Size != Size) 2710 return Error(SizeLoc, "size too large for vector"); 2711 if (!VectorType::isValidElementType(EltTy)) 2712 return Error(TypeLoc, "invalid vector element type"); 2713 Result = VectorType::get(EltTy, unsigned(Size)); 2714 } else { 2715 if (!ArrayType::isValidElementType(EltTy)) 2716 return Error(TypeLoc, "invalid array element type"); 2717 Result = ArrayType::get(EltTy, Size); 2718 } 2719 return false; 2720 } 2721 2722 //===----------------------------------------------------------------------===// 2723 // Function Semantic Analysis. 2724 //===----------------------------------------------------------------------===// 2725 2726 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2727 int functionNumber) 2728 : P(p), F(f), FunctionNumber(functionNumber) { 2729 2730 // Insert unnamed arguments into the NumberedVals list. 2731 for (Argument &A : F.args()) 2732 if (!A.hasName()) 2733 NumberedVals.push_back(&A); 2734 } 2735 2736 LLParser::PerFunctionState::~PerFunctionState() { 2737 // If there were any forward referenced non-basicblock values, delete them. 2738 2739 for (const auto &P : ForwardRefVals) { 2740 if (isa<BasicBlock>(P.second.first)) 2741 continue; 2742 P.second.first->replaceAllUsesWith( 2743 UndefValue::get(P.second.first->getType())); 2744 P.second.first->deleteValue(); 2745 } 2746 2747 for (const auto &P : ForwardRefValIDs) { 2748 if (isa<BasicBlock>(P.second.first)) 2749 continue; 2750 P.second.first->replaceAllUsesWith( 2751 UndefValue::get(P.second.first->getType())); 2752 P.second.first->deleteValue(); 2753 } 2754 } 2755 2756 bool LLParser::PerFunctionState::FinishFunction() { 2757 if (!ForwardRefVals.empty()) 2758 return P.Error(ForwardRefVals.begin()->second.second, 2759 "use of undefined value '%" + ForwardRefVals.begin()->first + 2760 "'"); 2761 if (!ForwardRefValIDs.empty()) 2762 return P.Error(ForwardRefValIDs.begin()->second.second, 2763 "use of undefined value '%" + 2764 Twine(ForwardRefValIDs.begin()->first) + "'"); 2765 return false; 2766 } 2767 2768 /// GetVal - Get a value with the specified name or ID, creating a 2769 /// forward reference record if needed. This can return null if the value 2770 /// exists but does not have the right type. 2771 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty, 2772 LocTy Loc, bool IsCall) { 2773 // Look this name up in the normal function symbol table. 2774 Value *Val = F.getValueSymbolTable()->lookup(Name); 2775 2776 // If this is a forward reference for the value, see if we already created a 2777 // forward ref record. 2778 if (!Val) { 2779 auto I = ForwardRefVals.find(Name); 2780 if (I != ForwardRefVals.end()) 2781 Val = I->second.first; 2782 } 2783 2784 // If we have the value in the symbol table or fwd-ref table, return it. 2785 if (Val) 2786 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall); 2787 2788 // Don't make placeholders with invalid type. 2789 if (!Ty->isFirstClassType()) { 2790 P.Error(Loc, "invalid use of a non-first-class type"); 2791 return nullptr; 2792 } 2793 2794 // Otherwise, create a new forward reference for this value and remember it. 2795 Value *FwdVal; 2796 if (Ty->isLabelTy()) { 2797 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2798 } else { 2799 FwdVal = new Argument(Ty, Name); 2800 } 2801 2802 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2803 return FwdVal; 2804 } 2805 2806 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc, 2807 bool IsCall) { 2808 // Look this name up in the normal function symbol table. 2809 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2810 2811 // If this is a forward reference for the value, see if we already created a 2812 // forward ref record. 2813 if (!Val) { 2814 auto I = ForwardRefValIDs.find(ID); 2815 if (I != ForwardRefValIDs.end()) 2816 Val = I->second.first; 2817 } 2818 2819 // If we have the value in the symbol table or fwd-ref table, return it. 2820 if (Val) 2821 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall); 2822 2823 if (!Ty->isFirstClassType()) { 2824 P.Error(Loc, "invalid use of a non-first-class type"); 2825 return nullptr; 2826 } 2827 2828 // Otherwise, create a new forward reference for this value and remember it. 2829 Value *FwdVal; 2830 if (Ty->isLabelTy()) { 2831 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 2832 } else { 2833 FwdVal = new Argument(Ty); 2834 } 2835 2836 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 2837 return FwdVal; 2838 } 2839 2840 /// SetInstName - After an instruction is parsed and inserted into its 2841 /// basic block, this installs its name. 2842 bool LLParser::PerFunctionState::SetInstName(int NameID, 2843 const std::string &NameStr, 2844 LocTy NameLoc, Instruction *Inst) { 2845 // If this instruction has void type, it cannot have a name or ID specified. 2846 if (Inst->getType()->isVoidTy()) { 2847 if (NameID != -1 || !NameStr.empty()) 2848 return P.Error(NameLoc, "instructions returning void cannot have a name"); 2849 return false; 2850 } 2851 2852 // If this was a numbered instruction, verify that the instruction is the 2853 // expected value and resolve any forward references. 2854 if (NameStr.empty()) { 2855 // If neither a name nor an ID was specified, just use the next ID. 2856 if (NameID == -1) 2857 NameID = NumberedVals.size(); 2858 2859 if (unsigned(NameID) != NumberedVals.size()) 2860 return P.Error(NameLoc, "instruction expected to be numbered '%" + 2861 Twine(NumberedVals.size()) + "'"); 2862 2863 auto FI = ForwardRefValIDs.find(NameID); 2864 if (FI != ForwardRefValIDs.end()) { 2865 Value *Sentinel = FI->second.first; 2866 if (Sentinel->getType() != Inst->getType()) 2867 return P.Error(NameLoc, "instruction forward referenced with type '" + 2868 getTypeString(FI->second.first->getType()) + "'"); 2869 2870 Sentinel->replaceAllUsesWith(Inst); 2871 Sentinel->deleteValue(); 2872 ForwardRefValIDs.erase(FI); 2873 } 2874 2875 NumberedVals.push_back(Inst); 2876 return false; 2877 } 2878 2879 // Otherwise, the instruction had a name. Resolve forward refs and set it. 2880 auto FI = ForwardRefVals.find(NameStr); 2881 if (FI != ForwardRefVals.end()) { 2882 Value *Sentinel = FI->second.first; 2883 if (Sentinel->getType() != Inst->getType()) 2884 return P.Error(NameLoc, "instruction forward referenced with type '" + 2885 getTypeString(FI->second.first->getType()) + "'"); 2886 2887 Sentinel->replaceAllUsesWith(Inst); 2888 Sentinel->deleteValue(); 2889 ForwardRefVals.erase(FI); 2890 } 2891 2892 // Set the name on the instruction. 2893 Inst->setName(NameStr); 2894 2895 if (Inst->getName() != NameStr) 2896 return P.Error(NameLoc, "multiple definition of local value named '" + 2897 NameStr + "'"); 2898 return false; 2899 } 2900 2901 /// GetBB - Get a basic block with the specified name or ID, creating a 2902 /// forward reference record if needed. 2903 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 2904 LocTy Loc) { 2905 return dyn_cast_or_null<BasicBlock>( 2906 GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 2907 } 2908 2909 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 2910 return dyn_cast_or_null<BasicBlock>( 2911 GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 2912 } 2913 2914 /// DefineBB - Define the specified basic block, which is either named or 2915 /// unnamed. If there is an error, this returns null otherwise it returns 2916 /// the block being defined. 2917 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 2918 LocTy Loc) { 2919 BasicBlock *BB; 2920 if (Name.empty()) 2921 BB = GetBB(NumberedVals.size(), Loc); 2922 else 2923 BB = GetBB(Name, Loc); 2924 if (!BB) return nullptr; // Already diagnosed error. 2925 2926 // Move the block to the end of the function. Forward ref'd blocks are 2927 // inserted wherever they happen to be referenced. 2928 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 2929 2930 // Remove the block from forward ref sets. 2931 if (Name.empty()) { 2932 ForwardRefValIDs.erase(NumberedVals.size()); 2933 NumberedVals.push_back(BB); 2934 } else { 2935 // BB forward references are already in the function symbol table. 2936 ForwardRefVals.erase(Name); 2937 } 2938 2939 return BB; 2940 } 2941 2942 //===----------------------------------------------------------------------===// 2943 // Constants. 2944 //===----------------------------------------------------------------------===// 2945 2946 /// ParseValID - Parse an abstract value that doesn't necessarily have a 2947 /// type implied. For example, if we parse "4" we don't know what integer type 2948 /// it has. The value will later be combined with its type and checked for 2949 /// sanity. PFS is used to convert function-local operands of metadata (since 2950 /// metadata operands are not just parsed here but also converted to values). 2951 /// PFS can be null when we are not parsing metadata values inside a function. 2952 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 2953 ID.Loc = Lex.getLoc(); 2954 switch (Lex.getKind()) { 2955 default: return TokError("expected value token"); 2956 case lltok::GlobalID: // @42 2957 ID.UIntVal = Lex.getUIntVal(); 2958 ID.Kind = ValID::t_GlobalID; 2959 break; 2960 case lltok::GlobalVar: // @foo 2961 ID.StrVal = Lex.getStrVal(); 2962 ID.Kind = ValID::t_GlobalName; 2963 break; 2964 case lltok::LocalVarID: // %42 2965 ID.UIntVal = Lex.getUIntVal(); 2966 ID.Kind = ValID::t_LocalID; 2967 break; 2968 case lltok::LocalVar: // %foo 2969 ID.StrVal = Lex.getStrVal(); 2970 ID.Kind = ValID::t_LocalName; 2971 break; 2972 case lltok::APSInt: 2973 ID.APSIntVal = Lex.getAPSIntVal(); 2974 ID.Kind = ValID::t_APSInt; 2975 break; 2976 case lltok::APFloat: 2977 ID.APFloatVal = Lex.getAPFloatVal(); 2978 ID.Kind = ValID::t_APFloat; 2979 break; 2980 case lltok::kw_true: 2981 ID.ConstantVal = ConstantInt::getTrue(Context); 2982 ID.Kind = ValID::t_Constant; 2983 break; 2984 case lltok::kw_false: 2985 ID.ConstantVal = ConstantInt::getFalse(Context); 2986 ID.Kind = ValID::t_Constant; 2987 break; 2988 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 2989 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 2990 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 2991 case lltok::kw_none: ID.Kind = ValID::t_None; break; 2992 2993 case lltok::lbrace: { 2994 // ValID ::= '{' ConstVector '}' 2995 Lex.Lex(); 2996 SmallVector<Constant*, 16> Elts; 2997 if (ParseGlobalValueVector(Elts) || 2998 ParseToken(lltok::rbrace, "expected end of struct constant")) 2999 return true; 3000 3001 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 3002 ID.UIntVal = Elts.size(); 3003 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3004 Elts.size() * sizeof(Elts[0])); 3005 ID.Kind = ValID::t_ConstantStruct; 3006 return false; 3007 } 3008 case lltok::less: { 3009 // ValID ::= '<' ConstVector '>' --> Vector. 3010 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 3011 Lex.Lex(); 3012 bool isPackedStruct = EatIfPresent(lltok::lbrace); 3013 3014 SmallVector<Constant*, 16> Elts; 3015 LocTy FirstEltLoc = Lex.getLoc(); 3016 if (ParseGlobalValueVector(Elts) || 3017 (isPackedStruct && 3018 ParseToken(lltok::rbrace, "expected end of packed struct")) || 3019 ParseToken(lltok::greater, "expected end of constant")) 3020 return true; 3021 3022 if (isPackedStruct) { 3023 ID.ConstantStructElts = make_unique<Constant *[]>(Elts.size()); 3024 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3025 Elts.size() * sizeof(Elts[0])); 3026 ID.UIntVal = Elts.size(); 3027 ID.Kind = ValID::t_PackedConstantStruct; 3028 return false; 3029 } 3030 3031 if (Elts.empty()) 3032 return Error(ID.Loc, "constant vector must not be empty"); 3033 3034 if (!Elts[0]->getType()->isIntegerTy() && 3035 !Elts[0]->getType()->isFloatingPointTy() && 3036 !Elts[0]->getType()->isPointerTy()) 3037 return Error(FirstEltLoc, 3038 "vector elements must have integer, pointer or floating point type"); 3039 3040 // Verify that all the vector elements have the same type. 3041 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 3042 if (Elts[i]->getType() != Elts[0]->getType()) 3043 return Error(FirstEltLoc, 3044 "vector element #" + Twine(i) + 3045 " is not of type '" + getTypeString(Elts[0]->getType())); 3046 3047 ID.ConstantVal = ConstantVector::get(Elts); 3048 ID.Kind = ValID::t_Constant; 3049 return false; 3050 } 3051 case lltok::lsquare: { // Array Constant 3052 Lex.Lex(); 3053 SmallVector<Constant*, 16> Elts; 3054 LocTy FirstEltLoc = Lex.getLoc(); 3055 if (ParseGlobalValueVector(Elts) || 3056 ParseToken(lltok::rsquare, "expected end of array constant")) 3057 return true; 3058 3059 // Handle empty element. 3060 if (Elts.empty()) { 3061 // Use undef instead of an array because it's inconvenient to determine 3062 // the element type at this point, there being no elements to examine. 3063 ID.Kind = ValID::t_EmptyArray; 3064 return false; 3065 } 3066 3067 if (!Elts[0]->getType()->isFirstClassType()) 3068 return Error(FirstEltLoc, "invalid array element type: " + 3069 getTypeString(Elts[0]->getType())); 3070 3071 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 3072 3073 // Verify all elements are correct type! 3074 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 3075 if (Elts[i]->getType() != Elts[0]->getType()) 3076 return Error(FirstEltLoc, 3077 "array element #" + Twine(i) + 3078 " is not of type '" + getTypeString(Elts[0]->getType())); 3079 } 3080 3081 ID.ConstantVal = ConstantArray::get(ATy, Elts); 3082 ID.Kind = ValID::t_Constant; 3083 return false; 3084 } 3085 case lltok::kw_c: // c "foo" 3086 Lex.Lex(); 3087 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 3088 false); 3089 if (ParseToken(lltok::StringConstant, "expected string")) return true; 3090 ID.Kind = ValID::t_Constant; 3091 return false; 3092 3093 case lltok::kw_asm: { 3094 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 3095 // STRINGCONSTANT 3096 bool HasSideEffect, AlignStack, AsmDialect; 3097 Lex.Lex(); 3098 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 3099 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 3100 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 3101 ParseStringConstant(ID.StrVal) || 3102 ParseToken(lltok::comma, "expected comma in inline asm expression") || 3103 ParseToken(lltok::StringConstant, "expected constraint string")) 3104 return true; 3105 ID.StrVal2 = Lex.getStrVal(); 3106 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 3107 (unsigned(AsmDialect)<<2); 3108 ID.Kind = ValID::t_InlineAsm; 3109 return false; 3110 } 3111 3112 case lltok::kw_blockaddress: { 3113 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 3114 Lex.Lex(); 3115 3116 ValID Fn, Label; 3117 3118 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 3119 ParseValID(Fn) || 3120 ParseToken(lltok::comma, "expected comma in block address expression")|| 3121 ParseValID(Label) || 3122 ParseToken(lltok::rparen, "expected ')' in block address expression")) 3123 return true; 3124 3125 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3126 return Error(Fn.Loc, "expected function name in blockaddress"); 3127 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 3128 return Error(Label.Loc, "expected basic block name in blockaddress"); 3129 3130 // Try to find the function (but skip it if it's forward-referenced). 3131 GlobalValue *GV = nullptr; 3132 if (Fn.Kind == ValID::t_GlobalID) { 3133 if (Fn.UIntVal < NumberedVals.size()) 3134 GV = NumberedVals[Fn.UIntVal]; 3135 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3136 GV = M->getNamedValue(Fn.StrVal); 3137 } 3138 Function *F = nullptr; 3139 if (GV) { 3140 // Confirm that it's actually a function with a definition. 3141 if (!isa<Function>(GV)) 3142 return Error(Fn.Loc, "expected function name in blockaddress"); 3143 F = cast<Function>(GV); 3144 if (F->isDeclaration()) 3145 return Error(Fn.Loc, "cannot take blockaddress inside a declaration"); 3146 } 3147 3148 if (!F) { 3149 // Make a global variable as a placeholder for this reference. 3150 GlobalValue *&FwdRef = 3151 ForwardRefBlockAddresses.insert(std::make_pair( 3152 std::move(Fn), 3153 std::map<ValID, GlobalValue *>())) 3154 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 3155 .first->second; 3156 if (!FwdRef) 3157 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 3158 GlobalValue::InternalLinkage, nullptr, ""); 3159 ID.ConstantVal = FwdRef; 3160 ID.Kind = ValID::t_Constant; 3161 return false; 3162 } 3163 3164 // We found the function; now find the basic block. Don't use PFS, since we 3165 // might be inside a constant expression. 3166 BasicBlock *BB; 3167 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 3168 if (Label.Kind == ValID::t_LocalID) 3169 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc); 3170 else 3171 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc); 3172 if (!BB) 3173 return Error(Label.Loc, "referenced value is not a basic block"); 3174 } else { 3175 if (Label.Kind == ValID::t_LocalID) 3176 return Error(Label.Loc, "cannot take address of numeric label after " 3177 "the function is defined"); 3178 BB = dyn_cast_or_null<BasicBlock>( 3179 F->getValueSymbolTable()->lookup(Label.StrVal)); 3180 if (!BB) 3181 return Error(Label.Loc, "referenced value is not a basic block"); 3182 } 3183 3184 ID.ConstantVal = BlockAddress::get(F, BB); 3185 ID.Kind = ValID::t_Constant; 3186 return false; 3187 } 3188 3189 case lltok::kw_trunc: 3190 case lltok::kw_zext: 3191 case lltok::kw_sext: 3192 case lltok::kw_fptrunc: 3193 case lltok::kw_fpext: 3194 case lltok::kw_bitcast: 3195 case lltok::kw_addrspacecast: 3196 case lltok::kw_uitofp: 3197 case lltok::kw_sitofp: 3198 case lltok::kw_fptoui: 3199 case lltok::kw_fptosi: 3200 case lltok::kw_inttoptr: 3201 case lltok::kw_ptrtoint: { 3202 unsigned Opc = Lex.getUIntVal(); 3203 Type *DestTy = nullptr; 3204 Constant *SrcVal; 3205 Lex.Lex(); 3206 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3207 ParseGlobalTypeAndValue(SrcVal) || 3208 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3209 ParseType(DestTy) || 3210 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3211 return true; 3212 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3213 return Error(ID.Loc, "invalid cast opcode for cast from '" + 3214 getTypeString(SrcVal->getType()) + "' to '" + 3215 getTypeString(DestTy) + "'"); 3216 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3217 SrcVal, DestTy); 3218 ID.Kind = ValID::t_Constant; 3219 return false; 3220 } 3221 case lltok::kw_extractvalue: { 3222 Lex.Lex(); 3223 Constant *Val; 3224 SmallVector<unsigned, 4> Indices; 3225 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 3226 ParseGlobalTypeAndValue(Val) || 3227 ParseIndexList(Indices) || 3228 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 3229 return true; 3230 3231 if (!Val->getType()->isAggregateType()) 3232 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 3233 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 3234 return Error(ID.Loc, "invalid indices for extractvalue"); 3235 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 3236 ID.Kind = ValID::t_Constant; 3237 return false; 3238 } 3239 case lltok::kw_insertvalue: { 3240 Lex.Lex(); 3241 Constant *Val0, *Val1; 3242 SmallVector<unsigned, 4> Indices; 3243 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 3244 ParseGlobalTypeAndValue(Val0) || 3245 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 3246 ParseGlobalTypeAndValue(Val1) || 3247 ParseIndexList(Indices) || 3248 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 3249 return true; 3250 if (!Val0->getType()->isAggregateType()) 3251 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 3252 Type *IndexedType = 3253 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3254 if (!IndexedType) 3255 return Error(ID.Loc, "invalid indices for insertvalue"); 3256 if (IndexedType != Val1->getType()) 3257 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3258 getTypeString(Val1->getType()) + 3259 "' instead of '" + getTypeString(IndexedType) + 3260 "'"); 3261 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3262 ID.Kind = ValID::t_Constant; 3263 return false; 3264 } 3265 case lltok::kw_icmp: 3266 case lltok::kw_fcmp: { 3267 unsigned PredVal, Opc = Lex.getUIntVal(); 3268 Constant *Val0, *Val1; 3269 Lex.Lex(); 3270 if (ParseCmpPredicate(PredVal, Opc) || 3271 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3272 ParseGlobalTypeAndValue(Val0) || 3273 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 3274 ParseGlobalTypeAndValue(Val1) || 3275 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3276 return true; 3277 3278 if (Val0->getType() != Val1->getType()) 3279 return Error(ID.Loc, "compare operands must have the same type"); 3280 3281 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3282 3283 if (Opc == Instruction::FCmp) { 3284 if (!Val0->getType()->isFPOrFPVectorTy()) 3285 return Error(ID.Loc, "fcmp requires floating point operands"); 3286 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3287 } else { 3288 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3289 if (!Val0->getType()->isIntOrIntVectorTy() && 3290 !Val0->getType()->isPtrOrPtrVectorTy()) 3291 return Error(ID.Loc, "icmp requires pointer or integer operands"); 3292 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3293 } 3294 ID.Kind = ValID::t_Constant; 3295 return false; 3296 } 3297 3298 // Unary Operators. 3299 case lltok::kw_fneg: { 3300 unsigned Opc = Lex.getUIntVal(); 3301 Constant *Val; 3302 Lex.Lex(); 3303 if (ParseToken(lltok::lparen, "expected '(' in unary constantexpr") || 3304 ParseGlobalTypeAndValue(Val) || 3305 ParseToken(lltok::rparen, "expected ')' in unary constantexpr")) 3306 return true; 3307 3308 // Check that the type is valid for the operator. 3309 switch (Opc) { 3310 case Instruction::FNeg: 3311 if (!Val->getType()->isFPOrFPVectorTy()) 3312 return Error(ID.Loc, "constexpr requires fp operands"); 3313 break; 3314 default: llvm_unreachable("Unknown unary operator!"); 3315 } 3316 unsigned Flags = 0; 3317 Constant *C = ConstantExpr::get(Opc, Val, Flags); 3318 ID.ConstantVal = C; 3319 ID.Kind = ValID::t_Constant; 3320 return false; 3321 } 3322 // Binary Operators. 3323 case lltok::kw_add: 3324 case lltok::kw_fadd: 3325 case lltok::kw_sub: 3326 case lltok::kw_fsub: 3327 case lltok::kw_mul: 3328 case lltok::kw_fmul: 3329 case lltok::kw_udiv: 3330 case lltok::kw_sdiv: 3331 case lltok::kw_fdiv: 3332 case lltok::kw_urem: 3333 case lltok::kw_srem: 3334 case lltok::kw_frem: 3335 case lltok::kw_shl: 3336 case lltok::kw_lshr: 3337 case lltok::kw_ashr: { 3338 bool NUW = false; 3339 bool NSW = false; 3340 bool Exact = false; 3341 unsigned Opc = Lex.getUIntVal(); 3342 Constant *Val0, *Val1; 3343 Lex.Lex(); 3344 LocTy ModifierLoc = Lex.getLoc(); 3345 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3346 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3347 if (EatIfPresent(lltok::kw_nuw)) 3348 NUW = true; 3349 if (EatIfPresent(lltok::kw_nsw)) { 3350 NSW = true; 3351 if (EatIfPresent(lltok::kw_nuw)) 3352 NUW = true; 3353 } 3354 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3355 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3356 if (EatIfPresent(lltok::kw_exact)) 3357 Exact = true; 3358 } 3359 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3360 ParseGlobalTypeAndValue(Val0) || 3361 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 3362 ParseGlobalTypeAndValue(Val1) || 3363 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3364 return true; 3365 if (Val0->getType() != Val1->getType()) 3366 return Error(ID.Loc, "operands of constexpr must have same type"); 3367 if (!Val0->getType()->isIntOrIntVectorTy()) { 3368 if (NUW) 3369 return Error(ModifierLoc, "nuw only applies to integer operations"); 3370 if (NSW) 3371 return Error(ModifierLoc, "nsw only applies to integer operations"); 3372 } 3373 // Check that the type is valid for the operator. 3374 switch (Opc) { 3375 case Instruction::Add: 3376 case Instruction::Sub: 3377 case Instruction::Mul: 3378 case Instruction::UDiv: 3379 case Instruction::SDiv: 3380 case Instruction::URem: 3381 case Instruction::SRem: 3382 case Instruction::Shl: 3383 case Instruction::AShr: 3384 case Instruction::LShr: 3385 if (!Val0->getType()->isIntOrIntVectorTy()) 3386 return Error(ID.Loc, "constexpr requires integer operands"); 3387 break; 3388 case Instruction::FAdd: 3389 case Instruction::FSub: 3390 case Instruction::FMul: 3391 case Instruction::FDiv: 3392 case Instruction::FRem: 3393 if (!Val0->getType()->isFPOrFPVectorTy()) 3394 return Error(ID.Loc, "constexpr requires fp operands"); 3395 break; 3396 default: llvm_unreachable("Unknown binary operator!"); 3397 } 3398 unsigned Flags = 0; 3399 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3400 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3401 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3402 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3403 ID.ConstantVal = C; 3404 ID.Kind = ValID::t_Constant; 3405 return false; 3406 } 3407 3408 // Logical Operations 3409 case lltok::kw_and: 3410 case lltok::kw_or: 3411 case lltok::kw_xor: { 3412 unsigned Opc = Lex.getUIntVal(); 3413 Constant *Val0, *Val1; 3414 Lex.Lex(); 3415 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3416 ParseGlobalTypeAndValue(Val0) || 3417 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 3418 ParseGlobalTypeAndValue(Val1) || 3419 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3420 return true; 3421 if (Val0->getType() != Val1->getType()) 3422 return Error(ID.Loc, "operands of constexpr must have same type"); 3423 if (!Val0->getType()->isIntOrIntVectorTy()) 3424 return Error(ID.Loc, 3425 "constexpr requires integer or integer vector operands"); 3426 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3427 ID.Kind = ValID::t_Constant; 3428 return false; 3429 } 3430 3431 case lltok::kw_getelementptr: 3432 case lltok::kw_shufflevector: 3433 case lltok::kw_insertelement: 3434 case lltok::kw_extractelement: 3435 case lltok::kw_select: { 3436 unsigned Opc = Lex.getUIntVal(); 3437 SmallVector<Constant*, 16> Elts; 3438 bool InBounds = false; 3439 Type *Ty; 3440 Lex.Lex(); 3441 3442 if (Opc == Instruction::GetElementPtr) 3443 InBounds = EatIfPresent(lltok::kw_inbounds); 3444 3445 if (ParseToken(lltok::lparen, "expected '(' in constantexpr")) 3446 return true; 3447 3448 LocTy ExplicitTypeLoc = Lex.getLoc(); 3449 if (Opc == Instruction::GetElementPtr) { 3450 if (ParseType(Ty) || 3451 ParseToken(lltok::comma, "expected comma after getelementptr's type")) 3452 return true; 3453 } 3454 3455 Optional<unsigned> InRangeOp; 3456 if (ParseGlobalValueVector( 3457 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3458 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 3459 return true; 3460 3461 if (Opc == Instruction::GetElementPtr) { 3462 if (Elts.size() == 0 || 3463 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 3464 return Error(ID.Loc, "base of getelementptr must be a pointer"); 3465 3466 Type *BaseType = Elts[0]->getType(); 3467 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3468 if (Ty != BasePointerType->getElementType()) 3469 return Error( 3470 ExplicitTypeLoc, 3471 "explicit pointee type doesn't match operand's pointee type"); 3472 3473 unsigned GEPWidth = 3474 BaseType->isVectorTy() ? BaseType->getVectorNumElements() : 0; 3475 3476 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3477 for (Constant *Val : Indices) { 3478 Type *ValTy = Val->getType(); 3479 if (!ValTy->isIntOrIntVectorTy()) 3480 return Error(ID.Loc, "getelementptr index must be an integer"); 3481 if (ValTy->isVectorTy()) { 3482 unsigned ValNumEl = ValTy->getVectorNumElements(); 3483 if (GEPWidth && (ValNumEl != GEPWidth)) 3484 return Error( 3485 ID.Loc, 3486 "getelementptr vector index has a wrong number of elements"); 3487 // GEPWidth may have been unknown because the base is a scalar, 3488 // but it is known now. 3489 GEPWidth = ValNumEl; 3490 } 3491 } 3492 3493 SmallPtrSet<Type*, 4> Visited; 3494 if (!Indices.empty() && !Ty->isSized(&Visited)) 3495 return Error(ID.Loc, "base element of getelementptr must be sized"); 3496 3497 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3498 return Error(ID.Loc, "invalid getelementptr indices"); 3499 3500 if (InRangeOp) { 3501 if (*InRangeOp == 0) 3502 return Error(ID.Loc, 3503 "inrange keyword may not appear on pointer operand"); 3504 --*InRangeOp; 3505 } 3506 3507 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3508 InBounds, InRangeOp); 3509 } else if (Opc == Instruction::Select) { 3510 if (Elts.size() != 3) 3511 return Error(ID.Loc, "expected three operands to select"); 3512 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3513 Elts[2])) 3514 return Error(ID.Loc, Reason); 3515 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3516 } else if (Opc == Instruction::ShuffleVector) { 3517 if (Elts.size() != 3) 3518 return Error(ID.Loc, "expected three operands to shufflevector"); 3519 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3520 return Error(ID.Loc, "invalid operands to shufflevector"); 3521 ID.ConstantVal = 3522 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 3523 } else if (Opc == Instruction::ExtractElement) { 3524 if (Elts.size() != 2) 3525 return Error(ID.Loc, "expected two operands to extractelement"); 3526 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3527 return Error(ID.Loc, "invalid extractelement operands"); 3528 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3529 } else { 3530 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3531 if (Elts.size() != 3) 3532 return Error(ID.Loc, "expected three operands to insertelement"); 3533 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3534 return Error(ID.Loc, "invalid insertelement operands"); 3535 ID.ConstantVal = 3536 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3537 } 3538 3539 ID.Kind = ValID::t_Constant; 3540 return false; 3541 } 3542 } 3543 3544 Lex.Lex(); 3545 return false; 3546 } 3547 3548 /// ParseGlobalValue - Parse a global value with the specified type. 3549 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 3550 C = nullptr; 3551 ValID ID; 3552 Value *V = nullptr; 3553 bool Parsed = ParseValID(ID) || 3554 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false); 3555 if (V && !(C = dyn_cast<Constant>(V))) 3556 return Error(ID.Loc, "global values must be constants"); 3557 return Parsed; 3558 } 3559 3560 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 3561 Type *Ty = nullptr; 3562 return ParseType(Ty) || 3563 ParseGlobalValue(Ty, V); 3564 } 3565 3566 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3567 C = nullptr; 3568 3569 LocTy KwLoc = Lex.getLoc(); 3570 if (!EatIfPresent(lltok::kw_comdat)) 3571 return false; 3572 3573 if (EatIfPresent(lltok::lparen)) { 3574 if (Lex.getKind() != lltok::ComdatVar) 3575 return TokError("expected comdat variable"); 3576 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3577 Lex.Lex(); 3578 if (ParseToken(lltok::rparen, "expected ')' after comdat var")) 3579 return true; 3580 } else { 3581 if (GlobalName.empty()) 3582 return TokError("comdat cannot be unnamed"); 3583 C = getComdat(GlobalName, KwLoc); 3584 } 3585 3586 return false; 3587 } 3588 3589 /// ParseGlobalValueVector 3590 /// ::= /*empty*/ 3591 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 3592 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 3593 Optional<unsigned> *InRangeOp) { 3594 // Empty list. 3595 if (Lex.getKind() == lltok::rbrace || 3596 Lex.getKind() == lltok::rsquare || 3597 Lex.getKind() == lltok::greater || 3598 Lex.getKind() == lltok::rparen) 3599 return false; 3600 3601 do { 3602 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 3603 *InRangeOp = Elts.size(); 3604 3605 Constant *C; 3606 if (ParseGlobalTypeAndValue(C)) return true; 3607 Elts.push_back(C); 3608 } while (EatIfPresent(lltok::comma)); 3609 3610 return false; 3611 } 3612 3613 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) { 3614 SmallVector<Metadata *, 16> Elts; 3615 if (ParseMDNodeVector(Elts)) 3616 return true; 3617 3618 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3619 return false; 3620 } 3621 3622 /// MDNode: 3623 /// ::= !{ ... } 3624 /// ::= !7 3625 /// ::= !DILocation(...) 3626 bool LLParser::ParseMDNode(MDNode *&N) { 3627 if (Lex.getKind() == lltok::MetadataVar) 3628 return ParseSpecializedMDNode(N); 3629 3630 return ParseToken(lltok::exclaim, "expected '!' here") || 3631 ParseMDNodeTail(N); 3632 } 3633 3634 bool LLParser::ParseMDNodeTail(MDNode *&N) { 3635 // !{ ... } 3636 if (Lex.getKind() == lltok::lbrace) 3637 return ParseMDTuple(N); 3638 3639 // !42 3640 return ParseMDNodeID(N); 3641 } 3642 3643 namespace { 3644 3645 /// Structure to represent an optional metadata field. 3646 template <class FieldTy> struct MDFieldImpl { 3647 typedef MDFieldImpl ImplTy; 3648 FieldTy Val; 3649 bool Seen; 3650 3651 void assign(FieldTy Val) { 3652 Seen = true; 3653 this->Val = std::move(Val); 3654 } 3655 3656 explicit MDFieldImpl(FieldTy Default) 3657 : Val(std::move(Default)), Seen(false) {} 3658 }; 3659 3660 /// Structure to represent an optional metadata field that 3661 /// can be of either type (A or B) and encapsulates the 3662 /// MD<typeofA>Field and MD<typeofB>Field structs, so not 3663 /// to reimplement the specifics for representing each Field. 3664 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl { 3665 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy; 3666 FieldTypeA A; 3667 FieldTypeB B; 3668 bool Seen; 3669 3670 enum { 3671 IsInvalid = 0, 3672 IsTypeA = 1, 3673 IsTypeB = 2 3674 } WhatIs; 3675 3676 void assign(FieldTypeA A) { 3677 Seen = true; 3678 this->A = std::move(A); 3679 WhatIs = IsTypeA; 3680 } 3681 3682 void assign(FieldTypeB B) { 3683 Seen = true; 3684 this->B = std::move(B); 3685 WhatIs = IsTypeB; 3686 } 3687 3688 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) 3689 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), 3690 WhatIs(IsInvalid) {} 3691 }; 3692 3693 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3694 uint64_t Max; 3695 3696 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3697 : ImplTy(Default), Max(Max) {} 3698 }; 3699 3700 struct LineField : public MDUnsignedField { 3701 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3702 }; 3703 3704 struct ColumnField : public MDUnsignedField { 3705 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3706 }; 3707 3708 struct DwarfTagField : public MDUnsignedField { 3709 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3710 DwarfTagField(dwarf::Tag DefaultTag) 3711 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3712 }; 3713 3714 struct DwarfMacinfoTypeField : public MDUnsignedField { 3715 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 3716 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 3717 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 3718 }; 3719 3720 struct DwarfAttEncodingField : public MDUnsignedField { 3721 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3722 }; 3723 3724 struct DwarfVirtualityField : public MDUnsignedField { 3725 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3726 }; 3727 3728 struct DwarfLangField : public MDUnsignedField { 3729 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3730 }; 3731 3732 struct DwarfCCField : public MDUnsignedField { 3733 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 3734 }; 3735 3736 struct EmissionKindField : public MDUnsignedField { 3737 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 3738 }; 3739 3740 struct NameTableKindField : public MDUnsignedField { 3741 NameTableKindField() 3742 : MDUnsignedField( 3743 0, (unsigned) 3744 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {} 3745 }; 3746 3747 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 3748 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 3749 }; 3750 3751 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> { 3752 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {} 3753 }; 3754 3755 struct MDSignedField : public MDFieldImpl<int64_t> { 3756 int64_t Min; 3757 int64_t Max; 3758 3759 MDSignedField(int64_t Default = 0) 3760 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3761 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3762 : ImplTy(Default), Min(Min), Max(Max) {} 3763 }; 3764 3765 struct MDBoolField : public MDFieldImpl<bool> { 3766 MDBoolField(bool Default = false) : ImplTy(Default) {} 3767 }; 3768 3769 struct MDField : public MDFieldImpl<Metadata *> { 3770 bool AllowNull; 3771 3772 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3773 }; 3774 3775 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 3776 MDConstant() : ImplTy(nullptr) {} 3777 }; 3778 3779 struct MDStringField : public MDFieldImpl<MDString *> { 3780 bool AllowEmpty; 3781 MDStringField(bool AllowEmpty = true) 3782 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3783 }; 3784 3785 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3786 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3787 }; 3788 3789 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 3790 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 3791 }; 3792 3793 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> { 3794 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) 3795 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} 3796 3797 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, 3798 bool AllowNull = true) 3799 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} 3800 3801 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3802 bool isMDField() const { return WhatIs == IsTypeB; } 3803 int64_t getMDSignedValue() const { 3804 assert(isMDSignedField() && "Wrong field type"); 3805 return A.Val; 3806 } 3807 Metadata *getMDFieldValue() const { 3808 assert(isMDField() && "Wrong field type"); 3809 return B.Val; 3810 } 3811 }; 3812 3813 struct MDSignedOrUnsignedField 3814 : MDEitherFieldImpl<MDSignedField, MDUnsignedField> { 3815 MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {} 3816 3817 bool isMDSignedField() const { return WhatIs == IsTypeA; } 3818 bool isMDUnsignedField() const { return WhatIs == IsTypeB; } 3819 int64_t getMDSignedValue() const { 3820 assert(isMDSignedField() && "Wrong field type"); 3821 return A.Val; 3822 } 3823 uint64_t getMDUnsignedValue() const { 3824 assert(isMDUnsignedField() && "Wrong field type"); 3825 return B.Val; 3826 } 3827 }; 3828 3829 } // end anonymous namespace 3830 3831 namespace llvm { 3832 3833 template <> 3834 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3835 MDUnsignedField &Result) { 3836 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 3837 return TokError("expected unsigned integer"); 3838 3839 auto &U = Lex.getAPSIntVal(); 3840 if (U.ugt(Result.Max)) 3841 return TokError("value for '" + Name + "' too large, limit is " + 3842 Twine(Result.Max)); 3843 Result.assign(U.getZExtValue()); 3844 assert(Result.Val <= Result.Max && "Expected value in range"); 3845 Lex.Lex(); 3846 return false; 3847 } 3848 3849 template <> 3850 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) { 3851 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3852 } 3853 template <> 3854 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 3855 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3856 } 3857 3858 template <> 3859 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 3860 if (Lex.getKind() == lltok::APSInt) 3861 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3862 3863 if (Lex.getKind() != lltok::DwarfTag) 3864 return TokError("expected DWARF tag"); 3865 3866 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 3867 if (Tag == dwarf::DW_TAG_invalid) 3868 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 3869 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 3870 3871 Result.assign(Tag); 3872 Lex.Lex(); 3873 return false; 3874 } 3875 3876 template <> 3877 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3878 DwarfMacinfoTypeField &Result) { 3879 if (Lex.getKind() == lltok::APSInt) 3880 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3881 3882 if (Lex.getKind() != lltok::DwarfMacinfo) 3883 return TokError("expected DWARF macinfo type"); 3884 3885 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 3886 if (Macinfo == dwarf::DW_MACINFO_invalid) 3887 return TokError( 3888 "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'"); 3889 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 3890 3891 Result.assign(Macinfo); 3892 Lex.Lex(); 3893 return false; 3894 } 3895 3896 template <> 3897 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3898 DwarfVirtualityField &Result) { 3899 if (Lex.getKind() == lltok::APSInt) 3900 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3901 3902 if (Lex.getKind() != lltok::DwarfVirtuality) 3903 return TokError("expected DWARF virtuality code"); 3904 3905 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 3906 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 3907 return TokError("invalid DWARF virtuality code" + Twine(" '") + 3908 Lex.getStrVal() + "'"); 3909 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 3910 Result.assign(Virtuality); 3911 Lex.Lex(); 3912 return false; 3913 } 3914 3915 template <> 3916 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 3917 if (Lex.getKind() == lltok::APSInt) 3918 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3919 3920 if (Lex.getKind() != lltok::DwarfLang) 3921 return TokError("expected DWARF language"); 3922 3923 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 3924 if (!Lang) 3925 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 3926 "'"); 3927 assert(Lang <= Result.Max && "Expected valid DWARF language"); 3928 Result.assign(Lang); 3929 Lex.Lex(); 3930 return false; 3931 } 3932 3933 template <> 3934 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 3935 if (Lex.getKind() == lltok::APSInt) 3936 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3937 3938 if (Lex.getKind() != lltok::DwarfCC) 3939 return TokError("expected DWARF calling convention"); 3940 3941 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 3942 if (!CC) 3943 return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() + 3944 "'"); 3945 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 3946 Result.assign(CC); 3947 Lex.Lex(); 3948 return false; 3949 } 3950 3951 template <> 3952 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) { 3953 if (Lex.getKind() == lltok::APSInt) 3954 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3955 3956 if (Lex.getKind() != lltok::EmissionKind) 3957 return TokError("expected emission kind"); 3958 3959 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 3960 if (!Kind) 3961 return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 3962 "'"); 3963 assert(*Kind <= Result.Max && "Expected valid emission kind"); 3964 Result.assign(*Kind); 3965 Lex.Lex(); 3966 return false; 3967 } 3968 3969 template <> 3970 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3971 NameTableKindField &Result) { 3972 if (Lex.getKind() == lltok::APSInt) 3973 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3974 3975 if (Lex.getKind() != lltok::NameTableKind) 3976 return TokError("expected nameTable kind"); 3977 3978 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal()); 3979 if (!Kind) 3980 return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() + 3981 "'"); 3982 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind"); 3983 Result.assign((unsigned)*Kind); 3984 Lex.Lex(); 3985 return false; 3986 } 3987 3988 template <> 3989 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 3990 DwarfAttEncodingField &Result) { 3991 if (Lex.getKind() == lltok::APSInt) 3992 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 3993 3994 if (Lex.getKind() != lltok::DwarfAttEncoding) 3995 return TokError("expected DWARF type attribute encoding"); 3996 3997 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 3998 if (!Encoding) 3999 return TokError("invalid DWARF type attribute encoding" + Twine(" '") + 4000 Lex.getStrVal() + "'"); 4001 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 4002 Result.assign(Encoding); 4003 Lex.Lex(); 4004 return false; 4005 } 4006 4007 /// DIFlagField 4008 /// ::= uint32 4009 /// ::= DIFlagVector 4010 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 4011 template <> 4012 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 4013 4014 // Parser for a single flag. 4015 auto parseFlag = [&](DINode::DIFlags &Val) { 4016 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4017 uint32_t TempVal = static_cast<uint32_t>(Val); 4018 bool Res = ParseUInt32(TempVal); 4019 Val = static_cast<DINode::DIFlags>(TempVal); 4020 return Res; 4021 } 4022 4023 if (Lex.getKind() != lltok::DIFlag) 4024 return TokError("expected debug info flag"); 4025 4026 Val = DINode::getFlag(Lex.getStrVal()); 4027 if (!Val) 4028 return TokError(Twine("invalid debug info flag flag '") + 4029 Lex.getStrVal() + "'"); 4030 Lex.Lex(); 4031 return false; 4032 }; 4033 4034 // Parse the flags and combine them together. 4035 DINode::DIFlags Combined = DINode::FlagZero; 4036 do { 4037 DINode::DIFlags Val; 4038 if (parseFlag(Val)) 4039 return true; 4040 Combined |= Val; 4041 } while (EatIfPresent(lltok::bar)); 4042 4043 Result.assign(Combined); 4044 return false; 4045 } 4046 4047 /// DISPFlagField 4048 /// ::= uint32 4049 /// ::= DISPFlagVector 4050 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32 4051 template <> 4052 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) { 4053 4054 // Parser for a single flag. 4055 auto parseFlag = [&](DISubprogram::DISPFlags &Val) { 4056 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4057 uint32_t TempVal = static_cast<uint32_t>(Val); 4058 bool Res = ParseUInt32(TempVal); 4059 Val = static_cast<DISubprogram::DISPFlags>(TempVal); 4060 return Res; 4061 } 4062 4063 if (Lex.getKind() != lltok::DISPFlag) 4064 return TokError("expected debug info flag"); 4065 4066 Val = DISubprogram::getFlag(Lex.getStrVal()); 4067 if (!Val) 4068 return TokError(Twine("invalid subprogram debug info flag '") + 4069 Lex.getStrVal() + "'"); 4070 Lex.Lex(); 4071 return false; 4072 }; 4073 4074 // Parse the flags and combine them together. 4075 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero; 4076 do { 4077 DISubprogram::DISPFlags Val; 4078 if (parseFlag(Val)) 4079 return true; 4080 Combined |= Val; 4081 } while (EatIfPresent(lltok::bar)); 4082 4083 Result.assign(Combined); 4084 return false; 4085 } 4086 4087 template <> 4088 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4089 MDSignedField &Result) { 4090 if (Lex.getKind() != lltok::APSInt) 4091 return TokError("expected signed integer"); 4092 4093 auto &S = Lex.getAPSIntVal(); 4094 if (S < Result.Min) 4095 return TokError("value for '" + Name + "' too small, limit is " + 4096 Twine(Result.Min)); 4097 if (S > Result.Max) 4098 return TokError("value for '" + Name + "' too large, limit is " + 4099 Twine(Result.Max)); 4100 Result.assign(S.getExtValue()); 4101 assert(Result.Val >= Result.Min && "Expected value in range"); 4102 assert(Result.Val <= Result.Max && "Expected value in range"); 4103 Lex.Lex(); 4104 return false; 4105 } 4106 4107 template <> 4108 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 4109 switch (Lex.getKind()) { 4110 default: 4111 return TokError("expected 'true' or 'false'"); 4112 case lltok::kw_true: 4113 Result.assign(true); 4114 break; 4115 case lltok::kw_false: 4116 Result.assign(false); 4117 break; 4118 } 4119 Lex.Lex(); 4120 return false; 4121 } 4122 4123 template <> 4124 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) { 4125 if (Lex.getKind() == lltok::kw_null) { 4126 if (!Result.AllowNull) 4127 return TokError("'" + Name + "' cannot be null"); 4128 Lex.Lex(); 4129 Result.assign(nullptr); 4130 return false; 4131 } 4132 4133 Metadata *MD; 4134 if (ParseMetadata(MD, nullptr)) 4135 return true; 4136 4137 Result.assign(MD); 4138 return false; 4139 } 4140 4141 template <> 4142 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4143 MDSignedOrMDField &Result) { 4144 // Try to parse a signed int. 4145 if (Lex.getKind() == lltok::APSInt) { 4146 MDSignedField Res = Result.A; 4147 if (!ParseMDField(Loc, Name, Res)) { 4148 Result.assign(Res); 4149 return false; 4150 } 4151 return true; 4152 } 4153 4154 // Otherwise, try to parse as an MDField. 4155 MDField Res = Result.B; 4156 if (!ParseMDField(Loc, Name, Res)) { 4157 Result.assign(Res); 4158 return false; 4159 } 4160 4161 return true; 4162 } 4163 4164 template <> 4165 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4166 MDSignedOrUnsignedField &Result) { 4167 if (Lex.getKind() != lltok::APSInt) 4168 return false; 4169 4170 if (Lex.getAPSIntVal().isSigned()) { 4171 MDSignedField Res = Result.A; 4172 if (ParseMDField(Loc, Name, Res)) 4173 return true; 4174 Result.assign(Res); 4175 return false; 4176 } 4177 4178 MDUnsignedField Res = Result.B; 4179 if (ParseMDField(Loc, Name, Res)) 4180 return true; 4181 Result.assign(Res); 4182 return false; 4183 } 4184 4185 template <> 4186 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 4187 LocTy ValueLoc = Lex.getLoc(); 4188 std::string S; 4189 if (ParseStringConstant(S)) 4190 return true; 4191 4192 if (!Result.AllowEmpty && S.empty()) 4193 return Error(ValueLoc, "'" + Name + "' cannot be empty"); 4194 4195 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 4196 return false; 4197 } 4198 4199 template <> 4200 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 4201 SmallVector<Metadata *, 4> MDs; 4202 if (ParseMDNodeVector(MDs)) 4203 return true; 4204 4205 Result.assign(std::move(MDs)); 4206 return false; 4207 } 4208 4209 template <> 4210 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4211 ChecksumKindField &Result) { 4212 Optional<DIFile::ChecksumKind> CSKind = 4213 DIFile::getChecksumKind(Lex.getStrVal()); 4214 4215 if (Lex.getKind() != lltok::ChecksumKind || !CSKind) 4216 return TokError( 4217 "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'"); 4218 4219 Result.assign(*CSKind); 4220 Lex.Lex(); 4221 return false; 4222 } 4223 4224 } // end namespace llvm 4225 4226 template <class ParserTy> 4227 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) { 4228 do { 4229 if (Lex.getKind() != lltok::LabelStr) 4230 return TokError("expected field label here"); 4231 4232 if (parseField()) 4233 return true; 4234 } while (EatIfPresent(lltok::comma)); 4235 4236 return false; 4237 } 4238 4239 template <class ParserTy> 4240 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) { 4241 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4242 Lex.Lex(); 4243 4244 if (ParseToken(lltok::lparen, "expected '(' here")) 4245 return true; 4246 if (Lex.getKind() != lltok::rparen) 4247 if (ParseMDFieldsImplBody(parseField)) 4248 return true; 4249 4250 ClosingLoc = Lex.getLoc(); 4251 return ParseToken(lltok::rparen, "expected ')' here"); 4252 } 4253 4254 template <class FieldTy> 4255 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) { 4256 if (Result.Seen) 4257 return TokError("field '" + Name + "' cannot be specified more than once"); 4258 4259 LocTy Loc = Lex.getLoc(); 4260 Lex.Lex(); 4261 return ParseMDField(Loc, Name, Result); 4262 } 4263 4264 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 4265 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4266 4267 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 4268 if (Lex.getStrVal() == #CLASS) \ 4269 return Parse##CLASS(N, IsDistinct); 4270 #include "llvm/IR/Metadata.def" 4271 4272 return TokError("expected metadata type"); 4273 } 4274 4275 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 4276 #define NOP_FIELD(NAME, TYPE, INIT) 4277 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 4278 if (!NAME.Seen) \ 4279 return Error(ClosingLoc, "missing required field '" #NAME "'"); 4280 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 4281 if (Lex.getStrVal() == #NAME) \ 4282 return ParseMDField(#NAME, NAME); 4283 #define PARSE_MD_FIELDS() \ 4284 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 4285 do { \ 4286 LocTy ClosingLoc; \ 4287 if (ParseMDFieldsImpl([&]() -> bool { \ 4288 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 4289 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \ 4290 }, ClosingLoc)) \ 4291 return true; \ 4292 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 4293 } while (false) 4294 #define GET_OR_DISTINCT(CLASS, ARGS) \ 4295 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 4296 4297 /// ParseDILocationFields: 4298 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6, 4299 /// isImplicitCode: true) 4300 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) { 4301 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4302 OPTIONAL(line, LineField, ); \ 4303 OPTIONAL(column, ColumnField, ); \ 4304 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4305 OPTIONAL(inlinedAt, MDField, ); \ 4306 OPTIONAL(isImplicitCode, MDBoolField, (false)); 4307 PARSE_MD_FIELDS(); 4308 #undef VISIT_MD_FIELDS 4309 4310 Result = 4311 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val, 4312 inlinedAt.Val, isImplicitCode.Val)); 4313 return false; 4314 } 4315 4316 /// ParseGenericDINode: 4317 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 4318 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) { 4319 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4320 REQUIRED(tag, DwarfTagField, ); \ 4321 OPTIONAL(header, MDStringField, ); \ 4322 OPTIONAL(operands, MDFieldList, ); 4323 PARSE_MD_FIELDS(); 4324 #undef VISIT_MD_FIELDS 4325 4326 Result = GET_OR_DISTINCT(GenericDINode, 4327 (Context, tag.Val, header.Val, operands.Val)); 4328 return false; 4329 } 4330 4331 /// ParseDISubrange: 4332 /// ::= !DISubrange(count: 30, lowerBound: 2) 4333 /// ::= !DISubrange(count: !node, lowerBound: 2) 4334 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) { 4335 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4336 REQUIRED(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ 4337 OPTIONAL(lowerBound, MDSignedField, ); 4338 PARSE_MD_FIELDS(); 4339 #undef VISIT_MD_FIELDS 4340 4341 if (count.isMDSignedField()) 4342 Result = GET_OR_DISTINCT( 4343 DISubrange, (Context, count.getMDSignedValue(), lowerBound.Val)); 4344 else if (count.isMDField()) 4345 Result = GET_OR_DISTINCT( 4346 DISubrange, (Context, count.getMDFieldValue(), lowerBound.Val)); 4347 else 4348 return true; 4349 4350 return false; 4351 } 4352 4353 /// ParseDIEnumerator: 4354 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind") 4355 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) { 4356 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4357 REQUIRED(name, MDStringField, ); \ 4358 REQUIRED(value, MDSignedOrUnsignedField, ); \ 4359 OPTIONAL(isUnsigned, MDBoolField, (false)); 4360 PARSE_MD_FIELDS(); 4361 #undef VISIT_MD_FIELDS 4362 4363 if (isUnsigned.Val && value.isMDSignedField()) 4364 return TokError("unsigned enumerator with negative value"); 4365 4366 int64_t Value = value.isMDSignedField() 4367 ? value.getMDSignedValue() 4368 : static_cast<int64_t>(value.getMDUnsignedValue()); 4369 Result = 4370 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val)); 4371 4372 return false; 4373 } 4374 4375 /// ParseDIBasicType: 4376 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32, 4377 /// encoding: DW_ATE_encoding, flags: 0) 4378 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) { 4379 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4380 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 4381 OPTIONAL(name, MDStringField, ); \ 4382 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4383 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4384 OPTIONAL(encoding, DwarfAttEncodingField, ); \ 4385 OPTIONAL(flags, DIFlagField, ); 4386 PARSE_MD_FIELDS(); 4387 #undef VISIT_MD_FIELDS 4388 4389 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 4390 align.Val, encoding.Val, flags.Val)); 4391 return false; 4392 } 4393 4394 /// ParseDIDerivedType: 4395 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 4396 /// line: 7, scope: !1, baseType: !2, size: 32, 4397 /// align: 32, offset: 0, flags: 0, extraData: !3, 4398 /// dwarfAddressSpace: 3) 4399 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) { 4400 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4401 REQUIRED(tag, DwarfTagField, ); \ 4402 OPTIONAL(name, MDStringField, ); \ 4403 OPTIONAL(file, MDField, ); \ 4404 OPTIONAL(line, LineField, ); \ 4405 OPTIONAL(scope, MDField, ); \ 4406 REQUIRED(baseType, MDField, ); \ 4407 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4408 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4409 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4410 OPTIONAL(flags, DIFlagField, ); \ 4411 OPTIONAL(extraData, MDField, ); \ 4412 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); 4413 PARSE_MD_FIELDS(); 4414 #undef VISIT_MD_FIELDS 4415 4416 Optional<unsigned> DWARFAddressSpace; 4417 if (dwarfAddressSpace.Val != UINT32_MAX) 4418 DWARFAddressSpace = dwarfAddressSpace.Val; 4419 4420 Result = GET_OR_DISTINCT(DIDerivedType, 4421 (Context, tag.Val, name.Val, file.Val, line.Val, 4422 scope.Val, baseType.Val, size.Val, align.Val, 4423 offset.Val, DWARFAddressSpace, flags.Val, 4424 extraData.Val)); 4425 return false; 4426 } 4427 4428 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) { 4429 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4430 REQUIRED(tag, DwarfTagField, ); \ 4431 OPTIONAL(name, MDStringField, ); \ 4432 OPTIONAL(file, MDField, ); \ 4433 OPTIONAL(line, LineField, ); \ 4434 OPTIONAL(scope, MDField, ); \ 4435 OPTIONAL(baseType, MDField, ); \ 4436 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4437 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4438 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4439 OPTIONAL(flags, DIFlagField, ); \ 4440 OPTIONAL(elements, MDField, ); \ 4441 OPTIONAL(runtimeLang, DwarfLangField, ); \ 4442 OPTIONAL(vtableHolder, MDField, ); \ 4443 OPTIONAL(templateParams, MDField, ); \ 4444 OPTIONAL(identifier, MDStringField, ); \ 4445 OPTIONAL(discriminator, MDField, ); 4446 PARSE_MD_FIELDS(); 4447 #undef VISIT_MD_FIELDS 4448 4449 // If this has an identifier try to build an ODR type. 4450 if (identifier.Val) 4451 if (auto *CT = DICompositeType::buildODRType( 4452 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 4453 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 4454 elements.Val, runtimeLang.Val, vtableHolder.Val, 4455 templateParams.Val, discriminator.Val)) { 4456 Result = CT; 4457 return false; 4458 } 4459 4460 // Create a new node, and save it in the context if it belongs in the type 4461 // map. 4462 Result = GET_OR_DISTINCT( 4463 DICompositeType, 4464 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 4465 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 4466 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val, 4467 discriminator.Val)); 4468 return false; 4469 } 4470 4471 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) { 4472 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4473 OPTIONAL(flags, DIFlagField, ); \ 4474 OPTIONAL(cc, DwarfCCField, ); \ 4475 REQUIRED(types, MDField, ); 4476 PARSE_MD_FIELDS(); 4477 #undef VISIT_MD_FIELDS 4478 4479 Result = GET_OR_DISTINCT(DISubroutineType, 4480 (Context, flags.Val, cc.Val, types.Val)); 4481 return false; 4482 } 4483 4484 /// ParseDIFileType: 4485 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir", 4486 /// checksumkind: CSK_MD5, 4487 /// checksum: "000102030405060708090a0b0c0d0e0f", 4488 /// source: "source file contents") 4489 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) { 4490 // The default constructed value for checksumkind is required, but will never 4491 // be used, as the parser checks if the field was actually Seen before using 4492 // the Val. 4493 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4494 REQUIRED(filename, MDStringField, ); \ 4495 REQUIRED(directory, MDStringField, ); \ 4496 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \ 4497 OPTIONAL(checksum, MDStringField, ); \ 4498 OPTIONAL(source, MDStringField, ); 4499 PARSE_MD_FIELDS(); 4500 #undef VISIT_MD_FIELDS 4501 4502 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum; 4503 if (checksumkind.Seen && checksum.Seen) 4504 OptChecksum.emplace(checksumkind.Val, checksum.Val); 4505 else if (checksumkind.Seen || checksum.Seen) 4506 return Lex.Error("'checksumkind' and 'checksum' must be provided together"); 4507 4508 Optional<MDString *> OptSource; 4509 if (source.Seen) 4510 OptSource = source.Val; 4511 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val, 4512 OptChecksum, OptSource)); 4513 return false; 4514 } 4515 4516 /// ParseDICompileUnit: 4517 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 4518 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 4519 /// splitDebugFilename: "abc.debug", 4520 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 4521 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd) 4522 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) { 4523 if (!IsDistinct) 4524 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 4525 4526 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4527 REQUIRED(language, DwarfLangField, ); \ 4528 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 4529 OPTIONAL(producer, MDStringField, ); \ 4530 OPTIONAL(isOptimized, MDBoolField, ); \ 4531 OPTIONAL(flags, MDStringField, ); \ 4532 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 4533 OPTIONAL(splitDebugFilename, MDStringField, ); \ 4534 OPTIONAL(emissionKind, EmissionKindField, ); \ 4535 OPTIONAL(enums, MDField, ); \ 4536 OPTIONAL(retainedTypes, MDField, ); \ 4537 OPTIONAL(globals, MDField, ); \ 4538 OPTIONAL(imports, MDField, ); \ 4539 OPTIONAL(macros, MDField, ); \ 4540 OPTIONAL(dwoId, MDUnsignedField, ); \ 4541 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 4542 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 4543 OPTIONAL(nameTableKind, NameTableKindField, ); \ 4544 OPTIONAL(debugBaseAddress, MDBoolField, = false); 4545 PARSE_MD_FIELDS(); 4546 #undef VISIT_MD_FIELDS 4547 4548 Result = DICompileUnit::getDistinct( 4549 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 4550 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 4551 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 4552 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val, 4553 debugBaseAddress.Val); 4554 return false; 4555 } 4556 4557 /// ParseDISubprogram: 4558 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 4559 /// file: !1, line: 7, type: !2, isLocal: false, 4560 /// isDefinition: true, scopeLine: 8, containingType: !3, 4561 /// virtuality: DW_VIRTUALTIY_pure_virtual, 4562 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 4563 /// spFlags: 10, isOptimized: false, templateParams: !4, 4564 /// declaration: !5, retainedNodes: !6, thrownTypes: !7) 4565 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) { 4566 auto Loc = Lex.getLoc(); 4567 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4568 OPTIONAL(scope, MDField, ); \ 4569 OPTIONAL(name, MDStringField, ); \ 4570 OPTIONAL(linkageName, MDStringField, ); \ 4571 OPTIONAL(file, MDField, ); \ 4572 OPTIONAL(line, LineField, ); \ 4573 OPTIONAL(type, MDField, ); \ 4574 OPTIONAL(isLocal, MDBoolField, ); \ 4575 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4576 OPTIONAL(scopeLine, LineField, ); \ 4577 OPTIONAL(containingType, MDField, ); \ 4578 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 4579 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 4580 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 4581 OPTIONAL(flags, DIFlagField, ); \ 4582 OPTIONAL(spFlags, DISPFlagField, ); \ 4583 OPTIONAL(isOptimized, MDBoolField, ); \ 4584 OPTIONAL(unit, MDField, ); \ 4585 OPTIONAL(templateParams, MDField, ); \ 4586 OPTIONAL(declaration, MDField, ); \ 4587 OPTIONAL(retainedNodes, MDField, ); \ 4588 OPTIONAL(thrownTypes, MDField, ); 4589 PARSE_MD_FIELDS(); 4590 #undef VISIT_MD_FIELDS 4591 4592 // An explicit spFlags field takes precedence over individual fields in 4593 // older IR versions. 4594 DISubprogram::DISPFlags SPFlags = 4595 spFlags.Seen ? spFlags.Val 4596 : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val, 4597 isOptimized.Val, virtuality.Val); 4598 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct) 4599 return Lex.Error( 4600 Loc, 4601 "missing 'distinct', required for !DISubprogram that is a Definition"); 4602 Result = GET_OR_DISTINCT( 4603 DISubprogram, 4604 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 4605 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val, 4606 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val, 4607 declaration.Val, retainedNodes.Val, thrownTypes.Val)); 4608 return false; 4609 } 4610 4611 /// ParseDILexicalBlock: 4612 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 4613 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 4614 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4615 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4616 OPTIONAL(file, MDField, ); \ 4617 OPTIONAL(line, LineField, ); \ 4618 OPTIONAL(column, ColumnField, ); 4619 PARSE_MD_FIELDS(); 4620 #undef VISIT_MD_FIELDS 4621 4622 Result = GET_OR_DISTINCT( 4623 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 4624 return false; 4625 } 4626 4627 /// ParseDILexicalBlockFile: 4628 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 4629 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 4630 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4631 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4632 OPTIONAL(file, MDField, ); \ 4633 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 4634 PARSE_MD_FIELDS(); 4635 #undef VISIT_MD_FIELDS 4636 4637 Result = GET_OR_DISTINCT(DILexicalBlockFile, 4638 (Context, scope.Val, file.Val, discriminator.Val)); 4639 return false; 4640 } 4641 4642 /// ParseDINamespace: 4643 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 4644 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) { 4645 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4646 REQUIRED(scope, MDField, ); \ 4647 OPTIONAL(name, MDStringField, ); \ 4648 OPTIONAL(exportSymbols, MDBoolField, ); 4649 PARSE_MD_FIELDS(); 4650 #undef VISIT_MD_FIELDS 4651 4652 Result = GET_OR_DISTINCT(DINamespace, 4653 (Context, scope.Val, name.Val, exportSymbols.Val)); 4654 return false; 4655 } 4656 4657 /// ParseDIMacro: 4658 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue") 4659 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) { 4660 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4661 REQUIRED(type, DwarfMacinfoTypeField, ); \ 4662 OPTIONAL(line, LineField, ); \ 4663 REQUIRED(name, MDStringField, ); \ 4664 OPTIONAL(value, MDStringField, ); 4665 PARSE_MD_FIELDS(); 4666 #undef VISIT_MD_FIELDS 4667 4668 Result = GET_OR_DISTINCT(DIMacro, 4669 (Context, type.Val, line.Val, name.Val, value.Val)); 4670 return false; 4671 } 4672 4673 /// ParseDIMacroFile: 4674 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 4675 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) { 4676 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4677 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 4678 OPTIONAL(line, LineField, ); \ 4679 REQUIRED(file, MDField, ); \ 4680 OPTIONAL(nodes, MDField, ); 4681 PARSE_MD_FIELDS(); 4682 #undef VISIT_MD_FIELDS 4683 4684 Result = GET_OR_DISTINCT(DIMacroFile, 4685 (Context, type.Val, line.Val, file.Val, nodes.Val)); 4686 return false; 4687 } 4688 4689 /// ParseDIModule: 4690 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: "-DNDEBUG", 4691 /// includePath: "/usr/include", isysroot: "/") 4692 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) { 4693 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4694 REQUIRED(scope, MDField, ); \ 4695 REQUIRED(name, MDStringField, ); \ 4696 OPTIONAL(configMacros, MDStringField, ); \ 4697 OPTIONAL(includePath, MDStringField, ); \ 4698 OPTIONAL(isysroot, MDStringField, ); 4699 PARSE_MD_FIELDS(); 4700 #undef VISIT_MD_FIELDS 4701 4702 Result = GET_OR_DISTINCT(DIModule, (Context, scope.Val, name.Val, 4703 configMacros.Val, includePath.Val, isysroot.Val)); 4704 return false; 4705 } 4706 4707 /// ParseDITemplateTypeParameter: 4708 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1) 4709 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 4710 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4711 OPTIONAL(name, MDStringField, ); \ 4712 REQUIRED(type, MDField, ); 4713 PARSE_MD_FIELDS(); 4714 #undef VISIT_MD_FIELDS 4715 4716 Result = 4717 GET_OR_DISTINCT(DITemplateTypeParameter, (Context, name.Val, type.Val)); 4718 return false; 4719 } 4720 4721 /// ParseDITemplateValueParameter: 4722 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 4723 /// name: "V", type: !1, value: i32 7) 4724 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 4725 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4726 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 4727 OPTIONAL(name, MDStringField, ); \ 4728 OPTIONAL(type, MDField, ); \ 4729 REQUIRED(value, MDField, ); 4730 PARSE_MD_FIELDS(); 4731 #undef VISIT_MD_FIELDS 4732 4733 Result = GET_OR_DISTINCT(DITemplateValueParameter, 4734 (Context, tag.Val, name.Val, type.Val, value.Val)); 4735 return false; 4736 } 4737 4738 /// ParseDIGlobalVariable: 4739 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 4740 /// file: !1, line: 7, type: !2, isLocal: false, 4741 /// isDefinition: true, templateParams: !3, 4742 /// declaration: !4, align: 8) 4743 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 4744 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4745 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 4746 OPTIONAL(scope, MDField, ); \ 4747 OPTIONAL(linkageName, MDStringField, ); \ 4748 OPTIONAL(file, MDField, ); \ 4749 OPTIONAL(line, LineField, ); \ 4750 OPTIONAL(type, MDField, ); \ 4751 OPTIONAL(isLocal, MDBoolField, ); \ 4752 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4753 OPTIONAL(templateParams, MDField, ); \ 4754 OPTIONAL(declaration, MDField, ); \ 4755 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4756 PARSE_MD_FIELDS(); 4757 #undef VISIT_MD_FIELDS 4758 4759 Result = 4760 GET_OR_DISTINCT(DIGlobalVariable, 4761 (Context, scope.Val, name.Val, linkageName.Val, file.Val, 4762 line.Val, type.Val, isLocal.Val, isDefinition.Val, 4763 declaration.Val, templateParams.Val, align.Val)); 4764 return false; 4765 } 4766 4767 /// ParseDILocalVariable: 4768 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 4769 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4770 /// align: 8) 4771 /// ::= !DILocalVariable(scope: !0, name: "foo", 4772 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 4773 /// align: 8) 4774 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) { 4775 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4776 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4777 OPTIONAL(name, MDStringField, ); \ 4778 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 4779 OPTIONAL(file, MDField, ); \ 4780 OPTIONAL(line, LineField, ); \ 4781 OPTIONAL(type, MDField, ); \ 4782 OPTIONAL(flags, DIFlagField, ); \ 4783 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4784 PARSE_MD_FIELDS(); 4785 #undef VISIT_MD_FIELDS 4786 4787 Result = GET_OR_DISTINCT(DILocalVariable, 4788 (Context, scope.Val, name.Val, file.Val, line.Val, 4789 type.Val, arg.Val, flags.Val, align.Val)); 4790 return false; 4791 } 4792 4793 /// ParseDILabel: 4794 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7) 4795 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) { 4796 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4797 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4798 REQUIRED(name, MDStringField, ); \ 4799 REQUIRED(file, MDField, ); \ 4800 REQUIRED(line, LineField, ); 4801 PARSE_MD_FIELDS(); 4802 #undef VISIT_MD_FIELDS 4803 4804 Result = GET_OR_DISTINCT(DILabel, 4805 (Context, scope.Val, name.Val, file.Val, line.Val)); 4806 return false; 4807 } 4808 4809 /// ParseDIExpression: 4810 /// ::= !DIExpression(0, 7, -1) 4811 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) { 4812 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4813 Lex.Lex(); 4814 4815 if (ParseToken(lltok::lparen, "expected '(' here")) 4816 return true; 4817 4818 SmallVector<uint64_t, 8> Elements; 4819 if (Lex.getKind() != lltok::rparen) 4820 do { 4821 if (Lex.getKind() == lltok::DwarfOp) { 4822 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 4823 Lex.Lex(); 4824 Elements.push_back(Op); 4825 continue; 4826 } 4827 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 4828 } 4829 4830 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4831 return TokError("expected unsigned integer"); 4832 4833 auto &U = Lex.getAPSIntVal(); 4834 if (U.ugt(UINT64_MAX)) 4835 return TokError("element too large, limit is " + Twine(UINT64_MAX)); 4836 Elements.push_back(U.getZExtValue()); 4837 Lex.Lex(); 4838 } while (EatIfPresent(lltok::comma)); 4839 4840 if (ParseToken(lltok::rparen, "expected ')' here")) 4841 return true; 4842 4843 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 4844 return false; 4845 } 4846 4847 /// ParseDIGlobalVariableExpression: 4848 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 4849 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result, 4850 bool IsDistinct) { 4851 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4852 REQUIRED(var, MDField, ); \ 4853 REQUIRED(expr, MDField, ); 4854 PARSE_MD_FIELDS(); 4855 #undef VISIT_MD_FIELDS 4856 4857 Result = 4858 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 4859 return false; 4860 } 4861 4862 /// ParseDIObjCProperty: 4863 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 4864 /// getter: "getFoo", attributes: 7, type: !2) 4865 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 4866 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4867 OPTIONAL(name, MDStringField, ); \ 4868 OPTIONAL(file, MDField, ); \ 4869 OPTIONAL(line, LineField, ); \ 4870 OPTIONAL(setter, MDStringField, ); \ 4871 OPTIONAL(getter, MDStringField, ); \ 4872 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 4873 OPTIONAL(type, MDField, ); 4874 PARSE_MD_FIELDS(); 4875 #undef VISIT_MD_FIELDS 4876 4877 Result = GET_OR_DISTINCT(DIObjCProperty, 4878 (Context, name.Val, file.Val, line.Val, setter.Val, 4879 getter.Val, attributes.Val, type.Val)); 4880 return false; 4881 } 4882 4883 /// ParseDIImportedEntity: 4884 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 4885 /// line: 7, name: "foo") 4886 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 4887 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4888 REQUIRED(tag, DwarfTagField, ); \ 4889 REQUIRED(scope, MDField, ); \ 4890 OPTIONAL(entity, MDField, ); \ 4891 OPTIONAL(file, MDField, ); \ 4892 OPTIONAL(line, LineField, ); \ 4893 OPTIONAL(name, MDStringField, ); 4894 PARSE_MD_FIELDS(); 4895 #undef VISIT_MD_FIELDS 4896 4897 Result = GET_OR_DISTINCT( 4898 DIImportedEntity, 4899 (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val)); 4900 return false; 4901 } 4902 4903 #undef PARSE_MD_FIELD 4904 #undef NOP_FIELD 4905 #undef REQUIRE_FIELD 4906 #undef DECLARE_FIELD 4907 4908 /// ParseMetadataAsValue 4909 /// ::= metadata i32 %local 4910 /// ::= metadata i32 @global 4911 /// ::= metadata i32 7 4912 /// ::= metadata !0 4913 /// ::= metadata !{...} 4914 /// ::= metadata !"string" 4915 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 4916 // Note: the type 'metadata' has already been parsed. 4917 Metadata *MD; 4918 if (ParseMetadata(MD, &PFS)) 4919 return true; 4920 4921 V = MetadataAsValue::get(Context, MD); 4922 return false; 4923 } 4924 4925 /// ParseValueAsMetadata 4926 /// ::= i32 %local 4927 /// ::= i32 @global 4928 /// ::= i32 7 4929 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 4930 PerFunctionState *PFS) { 4931 Type *Ty; 4932 LocTy Loc; 4933 if (ParseType(Ty, TypeMsg, Loc)) 4934 return true; 4935 if (Ty->isMetadataTy()) 4936 return Error(Loc, "invalid metadata-value-metadata roundtrip"); 4937 4938 Value *V; 4939 if (ParseValue(Ty, V, PFS)) 4940 return true; 4941 4942 MD = ValueAsMetadata::get(V); 4943 return false; 4944 } 4945 4946 /// ParseMetadata 4947 /// ::= i32 %local 4948 /// ::= i32 @global 4949 /// ::= i32 7 4950 /// ::= !42 4951 /// ::= !{...} 4952 /// ::= !"string" 4953 /// ::= !DILocation(...) 4954 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) { 4955 if (Lex.getKind() == lltok::MetadataVar) { 4956 MDNode *N; 4957 if (ParseSpecializedMDNode(N)) 4958 return true; 4959 MD = N; 4960 return false; 4961 } 4962 4963 // ValueAsMetadata: 4964 // <type> <value> 4965 if (Lex.getKind() != lltok::exclaim) 4966 return ParseValueAsMetadata(MD, "expected metadata operand", PFS); 4967 4968 // '!'. 4969 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 4970 Lex.Lex(); 4971 4972 // MDString: 4973 // ::= '!' STRINGCONSTANT 4974 if (Lex.getKind() == lltok::StringConstant) { 4975 MDString *S; 4976 if (ParseMDString(S)) 4977 return true; 4978 MD = S; 4979 return false; 4980 } 4981 4982 // MDNode: 4983 // !{ ... } 4984 // !7 4985 MDNode *N; 4986 if (ParseMDNodeTail(N)) 4987 return true; 4988 MD = N; 4989 return false; 4990 } 4991 4992 //===----------------------------------------------------------------------===// 4993 // Function Parsing. 4994 //===----------------------------------------------------------------------===// 4995 4996 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 4997 PerFunctionState *PFS, bool IsCall) { 4998 if (Ty->isFunctionTy()) 4999 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 5000 5001 switch (ID.Kind) { 5002 case ValID::t_LocalID: 5003 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 5004 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5005 return V == nullptr; 5006 case ValID::t_LocalName: 5007 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 5008 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall); 5009 return V == nullptr; 5010 case ValID::t_InlineAsm: { 5011 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 5012 return Error(ID.Loc, "invalid type for inline asm constraint string"); 5013 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, 5014 (ID.UIntVal >> 1) & 1, 5015 (InlineAsm::AsmDialect(ID.UIntVal >> 2))); 5016 return false; 5017 } 5018 case ValID::t_GlobalName: 5019 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall); 5020 return V == nullptr; 5021 case ValID::t_GlobalID: 5022 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5023 return V == nullptr; 5024 case ValID::t_APSInt: 5025 if (!Ty->isIntegerTy()) 5026 return Error(ID.Loc, "integer constant must have integer type"); 5027 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 5028 V = ConstantInt::get(Context, ID.APSIntVal); 5029 return false; 5030 case ValID::t_APFloat: 5031 if (!Ty->isFloatingPointTy() || 5032 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 5033 return Error(ID.Loc, "floating point constant invalid for type"); 5034 5035 // The lexer has no type info, so builds all half, float, and double FP 5036 // constants as double. Fix this here. Long double does not need this. 5037 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 5038 bool Ignored; 5039 if (Ty->isHalfTy()) 5040 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 5041 &Ignored); 5042 else if (Ty->isFloatTy()) 5043 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 5044 &Ignored); 5045 } 5046 V = ConstantFP::get(Context, ID.APFloatVal); 5047 5048 if (V->getType() != Ty) 5049 return Error(ID.Loc, "floating point constant does not have type '" + 5050 getTypeString(Ty) + "'"); 5051 5052 return false; 5053 case ValID::t_Null: 5054 if (!Ty->isPointerTy()) 5055 return Error(ID.Loc, "null must be a pointer type"); 5056 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 5057 return false; 5058 case ValID::t_Undef: 5059 // FIXME: LabelTy should not be a first-class type. 5060 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5061 return Error(ID.Loc, "invalid type for undef constant"); 5062 V = UndefValue::get(Ty); 5063 return false; 5064 case ValID::t_EmptyArray: 5065 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 5066 return Error(ID.Loc, "invalid empty array initializer"); 5067 V = UndefValue::get(Ty); 5068 return false; 5069 case ValID::t_Zero: 5070 // FIXME: LabelTy should not be a first-class type. 5071 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5072 return Error(ID.Loc, "invalid type for null constant"); 5073 V = Constant::getNullValue(Ty); 5074 return false; 5075 case ValID::t_None: 5076 if (!Ty->isTokenTy()) 5077 return Error(ID.Loc, "invalid type for none constant"); 5078 V = Constant::getNullValue(Ty); 5079 return false; 5080 case ValID::t_Constant: 5081 if (ID.ConstantVal->getType() != Ty) 5082 return Error(ID.Loc, "constant expression type mismatch"); 5083 5084 V = ID.ConstantVal; 5085 return false; 5086 case ValID::t_ConstantStruct: 5087 case ValID::t_PackedConstantStruct: 5088 if (StructType *ST = dyn_cast<StructType>(Ty)) { 5089 if (ST->getNumElements() != ID.UIntVal) 5090 return Error(ID.Loc, 5091 "initializer with struct type has wrong # elements"); 5092 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 5093 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 5094 5095 // Verify that the elements are compatible with the structtype. 5096 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 5097 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 5098 return Error(ID.Loc, "element " + Twine(i) + 5099 " of struct initializer doesn't match struct element type"); 5100 5101 V = ConstantStruct::get( 5102 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 5103 } else 5104 return Error(ID.Loc, "constant expression type mismatch"); 5105 return false; 5106 } 5107 llvm_unreachable("Invalid ValID"); 5108 } 5109 5110 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 5111 C = nullptr; 5112 ValID ID; 5113 auto Loc = Lex.getLoc(); 5114 if (ParseValID(ID, /*PFS=*/nullptr)) 5115 return true; 5116 switch (ID.Kind) { 5117 case ValID::t_APSInt: 5118 case ValID::t_APFloat: 5119 case ValID::t_Undef: 5120 case ValID::t_Constant: 5121 case ValID::t_ConstantStruct: 5122 case ValID::t_PackedConstantStruct: { 5123 Value *V; 5124 if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false)) 5125 return true; 5126 assert(isa<Constant>(V) && "Expected a constant value"); 5127 C = cast<Constant>(V); 5128 return false; 5129 } 5130 case ValID::t_Null: 5131 C = Constant::getNullValue(Ty); 5132 return false; 5133 default: 5134 return Error(Loc, "expected a constant value"); 5135 } 5136 } 5137 5138 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 5139 V = nullptr; 5140 ValID ID; 5141 return ParseValID(ID, PFS) || 5142 ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false); 5143 } 5144 5145 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 5146 Type *Ty = nullptr; 5147 return ParseType(Ty) || 5148 ParseValue(Ty, V, PFS); 5149 } 5150 5151 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 5152 PerFunctionState &PFS) { 5153 Value *V; 5154 Loc = Lex.getLoc(); 5155 if (ParseTypeAndValue(V, PFS)) return true; 5156 if (!isa<BasicBlock>(V)) 5157 return Error(Loc, "expected a basic block"); 5158 BB = cast<BasicBlock>(V); 5159 return false; 5160 } 5161 5162 /// FunctionHeader 5163 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 5164 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 5165 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign 5166 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 5167 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 5168 // Parse the linkage. 5169 LocTy LinkageLoc = Lex.getLoc(); 5170 unsigned Linkage; 5171 unsigned Visibility; 5172 unsigned DLLStorageClass; 5173 bool DSOLocal; 5174 AttrBuilder RetAttrs; 5175 unsigned CC; 5176 bool HasLinkage; 5177 Type *RetType = nullptr; 5178 LocTy RetTypeLoc = Lex.getLoc(); 5179 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 5180 DSOLocal) || 5181 ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5182 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 5183 return true; 5184 5185 // Verify that the linkage is ok. 5186 switch ((GlobalValue::LinkageTypes)Linkage) { 5187 case GlobalValue::ExternalLinkage: 5188 break; // always ok. 5189 case GlobalValue::ExternalWeakLinkage: 5190 if (isDefine) 5191 return Error(LinkageLoc, "invalid linkage for function definition"); 5192 break; 5193 case GlobalValue::PrivateLinkage: 5194 case GlobalValue::InternalLinkage: 5195 case GlobalValue::AvailableExternallyLinkage: 5196 case GlobalValue::LinkOnceAnyLinkage: 5197 case GlobalValue::LinkOnceODRLinkage: 5198 case GlobalValue::WeakAnyLinkage: 5199 case GlobalValue::WeakODRLinkage: 5200 if (!isDefine) 5201 return Error(LinkageLoc, "invalid linkage for function declaration"); 5202 break; 5203 case GlobalValue::AppendingLinkage: 5204 case GlobalValue::CommonLinkage: 5205 return Error(LinkageLoc, "invalid function linkage type"); 5206 } 5207 5208 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 5209 return Error(LinkageLoc, 5210 "symbol with local linkage must have default visibility"); 5211 5212 if (!FunctionType::isValidReturnType(RetType)) 5213 return Error(RetTypeLoc, "invalid function return type"); 5214 5215 LocTy NameLoc = Lex.getLoc(); 5216 5217 std::string FunctionName; 5218 if (Lex.getKind() == lltok::GlobalVar) { 5219 FunctionName = Lex.getStrVal(); 5220 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 5221 unsigned NameID = Lex.getUIntVal(); 5222 5223 if (NameID != NumberedVals.size()) 5224 return TokError("function expected to be numbered '%" + 5225 Twine(NumberedVals.size()) + "'"); 5226 } else { 5227 return TokError("expected function name"); 5228 } 5229 5230 Lex.Lex(); 5231 5232 if (Lex.getKind() != lltok::lparen) 5233 return TokError("expected '(' in function argument list"); 5234 5235 SmallVector<ArgInfo, 8> ArgList; 5236 bool isVarArg; 5237 AttrBuilder FuncAttrs; 5238 std::vector<unsigned> FwdRefAttrGrps; 5239 LocTy BuiltinLoc; 5240 std::string Section; 5241 unsigned Alignment; 5242 std::string GC; 5243 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 5244 unsigned AddrSpace = 0; 5245 Constant *Prefix = nullptr; 5246 Constant *Prologue = nullptr; 5247 Constant *PersonalityFn = nullptr; 5248 Comdat *C; 5249 5250 if (ParseArgumentList(ArgList, isVarArg) || 5251 ParseOptionalUnnamedAddr(UnnamedAddr) || 5252 ParseOptionalProgramAddrSpace(AddrSpace) || 5253 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 5254 BuiltinLoc) || 5255 (EatIfPresent(lltok::kw_section) && 5256 ParseStringConstant(Section)) || 5257 parseOptionalComdat(FunctionName, C) || 5258 ParseOptionalAlignment(Alignment) || 5259 (EatIfPresent(lltok::kw_gc) && 5260 ParseStringConstant(GC)) || 5261 (EatIfPresent(lltok::kw_prefix) && 5262 ParseGlobalTypeAndValue(Prefix)) || 5263 (EatIfPresent(lltok::kw_prologue) && 5264 ParseGlobalTypeAndValue(Prologue)) || 5265 (EatIfPresent(lltok::kw_personality) && 5266 ParseGlobalTypeAndValue(PersonalityFn))) 5267 return true; 5268 5269 if (FuncAttrs.contains(Attribute::Builtin)) 5270 return Error(BuiltinLoc, "'builtin' attribute not valid on function"); 5271 5272 // If the alignment was parsed as an attribute, move to the alignment field. 5273 if (FuncAttrs.hasAlignmentAttr()) { 5274 Alignment = FuncAttrs.getAlignment(); 5275 FuncAttrs.removeAttribute(Attribute::Alignment); 5276 } 5277 5278 // Okay, if we got here, the function is syntactically valid. Convert types 5279 // and do semantic checks. 5280 std::vector<Type*> ParamTypeList; 5281 SmallVector<AttributeSet, 8> Attrs; 5282 5283 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5284 ParamTypeList.push_back(ArgList[i].Ty); 5285 Attrs.push_back(ArgList[i].Attrs); 5286 } 5287 5288 AttributeList PAL = 5289 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 5290 AttributeSet::get(Context, RetAttrs), Attrs); 5291 5292 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 5293 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 5294 5295 FunctionType *FT = 5296 FunctionType::get(RetType, ParamTypeList, isVarArg); 5297 PointerType *PFT = PointerType::get(FT, AddrSpace); 5298 5299 Fn = nullptr; 5300 if (!FunctionName.empty()) { 5301 // If this was a definition of a forward reference, remove the definition 5302 // from the forward reference table and fill in the forward ref. 5303 auto FRVI = ForwardRefVals.find(FunctionName); 5304 if (FRVI != ForwardRefVals.end()) { 5305 Fn = M->getFunction(FunctionName); 5306 if (!Fn) 5307 return Error(FRVI->second.second, "invalid forward reference to " 5308 "function as global value!"); 5309 if (Fn->getType() != PFT) 5310 return Error(FRVI->second.second, "invalid forward reference to " 5311 "function '" + FunctionName + "' with wrong type: " 5312 "expected '" + getTypeString(PFT) + "' but was '" + 5313 getTypeString(Fn->getType()) + "'"); 5314 ForwardRefVals.erase(FRVI); 5315 } else if ((Fn = M->getFunction(FunctionName))) { 5316 // Reject redefinitions. 5317 return Error(NameLoc, "invalid redefinition of function '" + 5318 FunctionName + "'"); 5319 } else if (M->getNamedValue(FunctionName)) { 5320 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 5321 } 5322 5323 } else { 5324 // If this is a definition of a forward referenced function, make sure the 5325 // types agree. 5326 auto I = ForwardRefValIDs.find(NumberedVals.size()); 5327 if (I != ForwardRefValIDs.end()) { 5328 Fn = cast<Function>(I->second.first); 5329 if (Fn->getType() != PFT) 5330 return Error(NameLoc, "type of definition and forward reference of '@" + 5331 Twine(NumberedVals.size()) + "' disagree: " 5332 "expected '" + getTypeString(PFT) + "' but was '" + 5333 getTypeString(Fn->getType()) + "'"); 5334 ForwardRefValIDs.erase(I); 5335 } 5336 } 5337 5338 if (!Fn) 5339 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace, 5340 FunctionName, M); 5341 else // Move the forward-reference to the correct spot in the module. 5342 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 5343 5344 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS"); 5345 5346 if (FunctionName.empty()) 5347 NumberedVals.push_back(Fn); 5348 5349 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 5350 maybeSetDSOLocal(DSOLocal, *Fn); 5351 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 5352 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 5353 Fn->setCallingConv(CC); 5354 Fn->setAttributes(PAL); 5355 Fn->setUnnamedAddr(UnnamedAddr); 5356 Fn->setAlignment(Alignment); 5357 Fn->setSection(Section); 5358 Fn->setComdat(C); 5359 Fn->setPersonalityFn(PersonalityFn); 5360 if (!GC.empty()) Fn->setGC(GC); 5361 Fn->setPrefixData(Prefix); 5362 Fn->setPrologueData(Prologue); 5363 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 5364 5365 // Add all of the arguments we parsed to the function. 5366 Function::arg_iterator ArgIt = Fn->arg_begin(); 5367 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 5368 // If the argument has a name, insert it into the argument symbol table. 5369 if (ArgList[i].Name.empty()) continue; 5370 5371 // Set the name, if it conflicted, it will be auto-renamed. 5372 ArgIt->setName(ArgList[i].Name); 5373 5374 if (ArgIt->getName() != ArgList[i].Name) 5375 return Error(ArgList[i].Loc, "redefinition of argument '%" + 5376 ArgList[i].Name + "'"); 5377 } 5378 5379 if (isDefine) 5380 return false; 5381 5382 // Check the declaration has no block address forward references. 5383 ValID ID; 5384 if (FunctionName.empty()) { 5385 ID.Kind = ValID::t_GlobalID; 5386 ID.UIntVal = NumberedVals.size() - 1; 5387 } else { 5388 ID.Kind = ValID::t_GlobalName; 5389 ID.StrVal = FunctionName; 5390 } 5391 auto Blocks = ForwardRefBlockAddresses.find(ID); 5392 if (Blocks != ForwardRefBlockAddresses.end()) 5393 return Error(Blocks->first.Loc, 5394 "cannot take blockaddress inside a declaration"); 5395 return false; 5396 } 5397 5398 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 5399 ValID ID; 5400 if (FunctionNumber == -1) { 5401 ID.Kind = ValID::t_GlobalName; 5402 ID.StrVal = F.getName(); 5403 } else { 5404 ID.Kind = ValID::t_GlobalID; 5405 ID.UIntVal = FunctionNumber; 5406 } 5407 5408 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 5409 if (Blocks == P.ForwardRefBlockAddresses.end()) 5410 return false; 5411 5412 for (const auto &I : Blocks->second) { 5413 const ValID &BBID = I.first; 5414 GlobalValue *GV = I.second; 5415 5416 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 5417 "Expected local id or name"); 5418 BasicBlock *BB; 5419 if (BBID.Kind == ValID::t_LocalName) 5420 BB = GetBB(BBID.StrVal, BBID.Loc); 5421 else 5422 BB = GetBB(BBID.UIntVal, BBID.Loc); 5423 if (!BB) 5424 return P.Error(BBID.Loc, "referenced value is not a basic block"); 5425 5426 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 5427 GV->eraseFromParent(); 5428 } 5429 5430 P.ForwardRefBlockAddresses.erase(Blocks); 5431 return false; 5432 } 5433 5434 /// ParseFunctionBody 5435 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 5436 bool LLParser::ParseFunctionBody(Function &Fn) { 5437 if (Lex.getKind() != lltok::lbrace) 5438 return TokError("expected '{' in function body"); 5439 Lex.Lex(); // eat the {. 5440 5441 int FunctionNumber = -1; 5442 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 5443 5444 PerFunctionState PFS(*this, Fn, FunctionNumber); 5445 5446 // Resolve block addresses and allow basic blocks to be forward-declared 5447 // within this function. 5448 if (PFS.resolveForwardRefBlockAddresses()) 5449 return true; 5450 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 5451 5452 // We need at least one basic block. 5453 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 5454 return TokError("function body requires at least one basic block"); 5455 5456 while (Lex.getKind() != lltok::rbrace && 5457 Lex.getKind() != lltok::kw_uselistorder) 5458 if (ParseBasicBlock(PFS)) return true; 5459 5460 while (Lex.getKind() != lltok::rbrace) 5461 if (ParseUseListOrder(&PFS)) 5462 return true; 5463 5464 // Eat the }. 5465 Lex.Lex(); 5466 5467 // Verify function is ok. 5468 return PFS.FinishFunction(); 5469 } 5470 5471 /// ParseBasicBlock 5472 /// ::= LabelStr? Instruction* 5473 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 5474 // If this basic block starts out with a name, remember it. 5475 std::string Name; 5476 LocTy NameLoc = Lex.getLoc(); 5477 if (Lex.getKind() == lltok::LabelStr) { 5478 Name = Lex.getStrVal(); 5479 Lex.Lex(); 5480 } 5481 5482 BasicBlock *BB = PFS.DefineBB(Name, NameLoc); 5483 if (!BB) 5484 return Error(NameLoc, 5485 "unable to create block named '" + Name + "'"); 5486 5487 std::string NameStr; 5488 5489 // Parse the instructions in this block until we get a terminator. 5490 Instruction *Inst; 5491 do { 5492 // This instruction may have three possibilities for a name: a) none 5493 // specified, b) name specified "%foo =", c) number specified: "%4 =". 5494 LocTy NameLoc = Lex.getLoc(); 5495 int NameID = -1; 5496 NameStr = ""; 5497 5498 if (Lex.getKind() == lltok::LocalVarID) { 5499 NameID = Lex.getUIntVal(); 5500 Lex.Lex(); 5501 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 5502 return true; 5503 } else if (Lex.getKind() == lltok::LocalVar) { 5504 NameStr = Lex.getStrVal(); 5505 Lex.Lex(); 5506 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 5507 return true; 5508 } 5509 5510 switch (ParseInstruction(Inst, BB, PFS)) { 5511 default: llvm_unreachable("Unknown ParseInstruction result!"); 5512 case InstError: return true; 5513 case InstNormal: 5514 BB->getInstList().push_back(Inst); 5515 5516 // With a normal result, we check to see if the instruction is followed by 5517 // a comma and metadata. 5518 if (EatIfPresent(lltok::comma)) 5519 if (ParseInstructionMetadata(*Inst)) 5520 return true; 5521 break; 5522 case InstExtraComma: 5523 BB->getInstList().push_back(Inst); 5524 5525 // If the instruction parser ate an extra comma at the end of it, it 5526 // *must* be followed by metadata. 5527 if (ParseInstructionMetadata(*Inst)) 5528 return true; 5529 break; 5530 } 5531 5532 // Set the name on the instruction. 5533 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 5534 } while (!Inst->isTerminator()); 5535 5536 return false; 5537 } 5538 5539 //===----------------------------------------------------------------------===// 5540 // Instruction Parsing. 5541 //===----------------------------------------------------------------------===// 5542 5543 /// ParseInstruction - Parse one of the many different instructions. 5544 /// 5545 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 5546 PerFunctionState &PFS) { 5547 lltok::Kind Token = Lex.getKind(); 5548 if (Token == lltok::Eof) 5549 return TokError("found end of file when expecting more instructions"); 5550 LocTy Loc = Lex.getLoc(); 5551 unsigned KeywordVal = Lex.getUIntVal(); 5552 Lex.Lex(); // Eat the keyword. 5553 5554 switch (Token) { 5555 default: return Error(Loc, "expected instruction opcode"); 5556 // Terminator Instructions. 5557 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 5558 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 5559 case lltok::kw_br: return ParseBr(Inst, PFS); 5560 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 5561 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 5562 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 5563 case lltok::kw_resume: return ParseResume(Inst, PFS); 5564 case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS); 5565 case lltok::kw_catchret: return ParseCatchRet(Inst, PFS); 5566 case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS); 5567 case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS); 5568 case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS); 5569 // Unary Operators. 5570 case lltok::kw_fneg: { 5571 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5572 int Res = ParseUnaryOp(Inst, PFS, KeywordVal, 2); 5573 if (Res != 0) 5574 return Res; 5575 if (FMF.any()) 5576 Inst->setFastMathFlags(FMF); 5577 return false; 5578 } 5579 // Binary Operators. 5580 case lltok::kw_add: 5581 case lltok::kw_sub: 5582 case lltok::kw_mul: 5583 case lltok::kw_shl: { 5584 bool NUW = EatIfPresent(lltok::kw_nuw); 5585 bool NSW = EatIfPresent(lltok::kw_nsw); 5586 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 5587 5588 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 5589 5590 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 5591 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 5592 return false; 5593 } 5594 case lltok::kw_fadd: 5595 case lltok::kw_fsub: 5596 case lltok::kw_fmul: 5597 case lltok::kw_fdiv: 5598 case lltok::kw_frem: { 5599 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5600 int Res = ParseArithmetic(Inst, PFS, KeywordVal, 2); 5601 if (Res != 0) 5602 return Res; 5603 if (FMF.any()) 5604 Inst->setFastMathFlags(FMF); 5605 return 0; 5606 } 5607 5608 case lltok::kw_sdiv: 5609 case lltok::kw_udiv: 5610 case lltok::kw_lshr: 5611 case lltok::kw_ashr: { 5612 bool Exact = EatIfPresent(lltok::kw_exact); 5613 5614 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 5615 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 5616 return false; 5617 } 5618 5619 case lltok::kw_urem: 5620 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1); 5621 case lltok::kw_and: 5622 case lltok::kw_or: 5623 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 5624 case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal); 5625 case lltok::kw_fcmp: { 5626 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5627 int Res = ParseCompare(Inst, PFS, KeywordVal); 5628 if (Res != 0) 5629 return Res; 5630 if (FMF.any()) 5631 Inst->setFastMathFlags(FMF); 5632 return 0; 5633 } 5634 5635 // Casts. 5636 case lltok::kw_trunc: 5637 case lltok::kw_zext: 5638 case lltok::kw_sext: 5639 case lltok::kw_fptrunc: 5640 case lltok::kw_fpext: 5641 case lltok::kw_bitcast: 5642 case lltok::kw_addrspacecast: 5643 case lltok::kw_uitofp: 5644 case lltok::kw_sitofp: 5645 case lltok::kw_fptoui: 5646 case lltok::kw_fptosi: 5647 case lltok::kw_inttoptr: 5648 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 5649 // Other. 5650 case lltok::kw_select: return ParseSelect(Inst, PFS); 5651 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 5652 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 5653 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 5654 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 5655 case lltok::kw_phi: return ParsePHI(Inst, PFS); 5656 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 5657 // Call. 5658 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None); 5659 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail); 5660 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail); 5661 case lltok::kw_notail: return ParseCall(Inst, PFS, CallInst::TCK_NoTail); 5662 // Memory. 5663 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 5664 case lltok::kw_load: return ParseLoad(Inst, PFS); 5665 case lltok::kw_store: return ParseStore(Inst, PFS); 5666 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 5667 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 5668 case lltok::kw_fence: return ParseFence(Inst, PFS); 5669 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 5670 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 5671 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 5672 } 5673 } 5674 5675 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 5676 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 5677 if (Opc == Instruction::FCmp) { 5678 switch (Lex.getKind()) { 5679 default: return TokError("expected fcmp predicate (e.g. 'oeq')"); 5680 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 5681 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 5682 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 5683 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 5684 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 5685 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 5686 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 5687 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 5688 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 5689 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 5690 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 5691 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 5692 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 5693 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 5694 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 5695 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 5696 } 5697 } else { 5698 switch (Lex.getKind()) { 5699 default: return TokError("expected icmp predicate (e.g. 'eq')"); 5700 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 5701 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 5702 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 5703 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 5704 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 5705 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 5706 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 5707 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 5708 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 5709 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 5710 } 5711 } 5712 Lex.Lex(); 5713 return false; 5714 } 5715 5716 //===----------------------------------------------------------------------===// 5717 // Terminator Instructions. 5718 //===----------------------------------------------------------------------===// 5719 5720 /// ParseRet - Parse a return instruction. 5721 /// ::= 'ret' void (',' !dbg, !1)* 5722 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 5723 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 5724 PerFunctionState &PFS) { 5725 SMLoc TypeLoc = Lex.getLoc(); 5726 Type *Ty = nullptr; 5727 if (ParseType(Ty, true /*void allowed*/)) return true; 5728 5729 Type *ResType = PFS.getFunction().getReturnType(); 5730 5731 if (Ty->isVoidTy()) { 5732 if (!ResType->isVoidTy()) 5733 return Error(TypeLoc, "value doesn't match function result type '" + 5734 getTypeString(ResType) + "'"); 5735 5736 Inst = ReturnInst::Create(Context); 5737 return false; 5738 } 5739 5740 Value *RV; 5741 if (ParseValue(Ty, RV, PFS)) return true; 5742 5743 if (ResType != RV->getType()) 5744 return Error(TypeLoc, "value doesn't match function result type '" + 5745 getTypeString(ResType) + "'"); 5746 5747 Inst = ReturnInst::Create(Context, RV); 5748 return false; 5749 } 5750 5751 /// ParseBr 5752 /// ::= 'br' TypeAndValue 5753 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 5754 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 5755 LocTy Loc, Loc2; 5756 Value *Op0; 5757 BasicBlock *Op1, *Op2; 5758 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 5759 5760 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 5761 Inst = BranchInst::Create(BB); 5762 return false; 5763 } 5764 5765 if (Op0->getType() != Type::getInt1Ty(Context)) 5766 return Error(Loc, "branch condition must have 'i1' type"); 5767 5768 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 5769 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 5770 ParseToken(lltok::comma, "expected ',' after true destination") || 5771 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 5772 return true; 5773 5774 Inst = BranchInst::Create(Op1, Op2, Op0); 5775 return false; 5776 } 5777 5778 /// ParseSwitch 5779 /// Instruction 5780 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 5781 /// JumpTable 5782 /// ::= (TypeAndValue ',' TypeAndValue)* 5783 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 5784 LocTy CondLoc, BBLoc; 5785 Value *Cond; 5786 BasicBlock *DefaultBB; 5787 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 5788 ParseToken(lltok::comma, "expected ',' after switch condition") || 5789 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 5790 ParseToken(lltok::lsquare, "expected '[' with switch table")) 5791 return true; 5792 5793 if (!Cond->getType()->isIntegerTy()) 5794 return Error(CondLoc, "switch condition must have integer type"); 5795 5796 // Parse the jump table pairs. 5797 SmallPtrSet<Value*, 32> SeenCases; 5798 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 5799 while (Lex.getKind() != lltok::rsquare) { 5800 Value *Constant; 5801 BasicBlock *DestBB; 5802 5803 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 5804 ParseToken(lltok::comma, "expected ',' after case value") || 5805 ParseTypeAndBasicBlock(DestBB, PFS)) 5806 return true; 5807 5808 if (!SeenCases.insert(Constant).second) 5809 return Error(CondLoc, "duplicate case value in switch"); 5810 if (!isa<ConstantInt>(Constant)) 5811 return Error(CondLoc, "case value is not a constant integer"); 5812 5813 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 5814 } 5815 5816 Lex.Lex(); // Eat the ']'. 5817 5818 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 5819 for (unsigned i = 0, e = Table.size(); i != e; ++i) 5820 SI->addCase(Table[i].first, Table[i].second); 5821 Inst = SI; 5822 return false; 5823 } 5824 5825 /// ParseIndirectBr 5826 /// Instruction 5827 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 5828 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 5829 LocTy AddrLoc; 5830 Value *Address; 5831 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 5832 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 5833 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 5834 return true; 5835 5836 if (!Address->getType()->isPointerTy()) 5837 return Error(AddrLoc, "indirectbr address must have pointer type"); 5838 5839 // Parse the destination list. 5840 SmallVector<BasicBlock*, 16> DestList; 5841 5842 if (Lex.getKind() != lltok::rsquare) { 5843 BasicBlock *DestBB; 5844 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5845 return true; 5846 DestList.push_back(DestBB); 5847 5848 while (EatIfPresent(lltok::comma)) { 5849 if (ParseTypeAndBasicBlock(DestBB, PFS)) 5850 return true; 5851 DestList.push_back(DestBB); 5852 } 5853 } 5854 5855 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 5856 return true; 5857 5858 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 5859 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 5860 IBI->addDestination(DestList[i]); 5861 Inst = IBI; 5862 return false; 5863 } 5864 5865 /// ParseInvoke 5866 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 5867 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 5868 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 5869 LocTy CallLoc = Lex.getLoc(); 5870 AttrBuilder RetAttrs, FnAttrs; 5871 std::vector<unsigned> FwdRefAttrGrps; 5872 LocTy NoBuiltinLoc; 5873 unsigned CC; 5874 unsigned InvokeAddrSpace; 5875 Type *RetType = nullptr; 5876 LocTy RetTypeLoc; 5877 ValID CalleeID; 5878 SmallVector<ParamInfo, 16> ArgList; 5879 SmallVector<OperandBundleDef, 2> BundleList; 5880 5881 BasicBlock *NormalBB, *UnwindBB; 5882 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5883 ParseOptionalProgramAddrSpace(InvokeAddrSpace) || 5884 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 5885 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 5886 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 5887 NoBuiltinLoc) || 5888 ParseOptionalOperandBundles(BundleList, PFS) || 5889 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 5890 ParseTypeAndBasicBlock(NormalBB, PFS) || 5891 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 5892 ParseTypeAndBasicBlock(UnwindBB, PFS)) 5893 return true; 5894 5895 // If RetType is a non-function pointer type, then this is the short syntax 5896 // for the call, which means that RetType is just the return type. Infer the 5897 // rest of the function argument types from the arguments that are present. 5898 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 5899 if (!Ty) { 5900 // Pull out the types of all of the arguments... 5901 std::vector<Type*> ParamTypes; 5902 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 5903 ParamTypes.push_back(ArgList[i].V->getType()); 5904 5905 if (!FunctionType::isValidReturnType(RetType)) 5906 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 5907 5908 Ty = FunctionType::get(RetType, ParamTypes, false); 5909 } 5910 5911 CalleeID.FTy = Ty; 5912 5913 // Look up the callee. 5914 Value *Callee; 5915 if (ConvertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID, 5916 Callee, &PFS, /*IsCall=*/true)) 5917 return true; 5918 5919 // Set up the Attribute for the function. 5920 SmallVector<Value *, 8> Args; 5921 SmallVector<AttributeSet, 8> ArgAttrs; 5922 5923 // Loop through FunctionType's arguments and ensure they are specified 5924 // correctly. Also, gather any parameter attributes. 5925 FunctionType::param_iterator I = Ty->param_begin(); 5926 FunctionType::param_iterator E = Ty->param_end(); 5927 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5928 Type *ExpectedTy = nullptr; 5929 if (I != E) { 5930 ExpectedTy = *I++; 5931 } else if (!Ty->isVarArg()) { 5932 return Error(ArgList[i].Loc, "too many arguments specified"); 5933 } 5934 5935 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 5936 return Error(ArgList[i].Loc, "argument is not of expected type '" + 5937 getTypeString(ExpectedTy) + "'"); 5938 Args.push_back(ArgList[i].V); 5939 ArgAttrs.push_back(ArgList[i].Attrs); 5940 } 5941 5942 if (I != E) 5943 return Error(CallLoc, "not enough parameters specified for call"); 5944 5945 if (FnAttrs.hasAlignmentAttr()) 5946 return Error(CallLoc, "invoke instructions may not have an alignment"); 5947 5948 // Finish off the Attribute and check them 5949 AttributeList PAL = 5950 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 5951 AttributeSet::get(Context, RetAttrs), ArgAttrs); 5952 5953 InvokeInst *II = 5954 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 5955 II->setCallingConv(CC); 5956 II->setAttributes(PAL); 5957 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 5958 Inst = II; 5959 return false; 5960 } 5961 5962 /// ParseResume 5963 /// ::= 'resume' TypeAndValue 5964 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 5965 Value *Exn; LocTy ExnLoc; 5966 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 5967 return true; 5968 5969 ResumeInst *RI = ResumeInst::Create(Exn); 5970 Inst = RI; 5971 return false; 5972 } 5973 5974 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args, 5975 PerFunctionState &PFS) { 5976 if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 5977 return true; 5978 5979 while (Lex.getKind() != lltok::rsquare) { 5980 // If this isn't the first argument, we need a comma. 5981 if (!Args.empty() && 5982 ParseToken(lltok::comma, "expected ',' in argument list")) 5983 return true; 5984 5985 // Parse the argument. 5986 LocTy ArgLoc; 5987 Type *ArgTy = nullptr; 5988 if (ParseType(ArgTy, ArgLoc)) 5989 return true; 5990 5991 Value *V; 5992 if (ArgTy->isMetadataTy()) { 5993 if (ParseMetadataAsValue(V, PFS)) 5994 return true; 5995 } else { 5996 if (ParseValue(ArgTy, V, PFS)) 5997 return true; 5998 } 5999 Args.push_back(V); 6000 } 6001 6002 Lex.Lex(); // Lex the ']'. 6003 return false; 6004 } 6005 6006 /// ParseCleanupRet 6007 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 6008 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 6009 Value *CleanupPad = nullptr; 6010 6011 if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret")) 6012 return true; 6013 6014 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 6015 return true; 6016 6017 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 6018 return true; 6019 6020 BasicBlock *UnwindBB = nullptr; 6021 if (Lex.getKind() == lltok::kw_to) { 6022 Lex.Lex(); 6023 if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 6024 return true; 6025 } else { 6026 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 6027 return true; 6028 } 6029 } 6030 6031 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 6032 return false; 6033 } 6034 6035 /// ParseCatchRet 6036 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 6037 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 6038 Value *CatchPad = nullptr; 6039 6040 if (ParseToken(lltok::kw_from, "expected 'from' after catchret")) 6041 return true; 6042 6043 if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS)) 6044 return true; 6045 6046 BasicBlock *BB; 6047 if (ParseToken(lltok::kw_to, "expected 'to' in catchret") || 6048 ParseTypeAndBasicBlock(BB, PFS)) 6049 return true; 6050 6051 Inst = CatchReturnInst::Create(CatchPad, BB); 6052 return false; 6053 } 6054 6055 /// ParseCatchSwitch 6056 /// ::= 'catchswitch' within Parent 6057 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6058 Value *ParentPad; 6059 6060 if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch")) 6061 return true; 6062 6063 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6064 Lex.getKind() != lltok::LocalVarID) 6065 return TokError("expected scope value for catchswitch"); 6066 6067 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6068 return true; 6069 6070 if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 6071 return true; 6072 6073 SmallVector<BasicBlock *, 32> Table; 6074 do { 6075 BasicBlock *DestBB; 6076 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6077 return true; 6078 Table.push_back(DestBB); 6079 } while (EatIfPresent(lltok::comma)); 6080 6081 if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 6082 return true; 6083 6084 if (ParseToken(lltok::kw_unwind, 6085 "expected 'unwind' after catchswitch scope")) 6086 return true; 6087 6088 BasicBlock *UnwindBB = nullptr; 6089 if (EatIfPresent(lltok::kw_to)) { 6090 if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 6091 return true; 6092 } else { 6093 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) 6094 return true; 6095 } 6096 6097 auto *CatchSwitch = 6098 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 6099 for (BasicBlock *DestBB : Table) 6100 CatchSwitch->addHandler(DestBB); 6101 Inst = CatchSwitch; 6102 return false; 6103 } 6104 6105 /// ParseCatchPad 6106 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 6107 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 6108 Value *CatchSwitch = nullptr; 6109 6110 if (ParseToken(lltok::kw_within, "expected 'within' after catchpad")) 6111 return true; 6112 6113 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 6114 return TokError("expected scope value for catchpad"); 6115 6116 if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 6117 return true; 6118 6119 SmallVector<Value *, 8> Args; 6120 if (ParseExceptionArgs(Args, PFS)) 6121 return true; 6122 6123 Inst = CatchPadInst::Create(CatchSwitch, Args); 6124 return false; 6125 } 6126 6127 /// ParseCleanupPad 6128 /// ::= 'cleanuppad' within Parent ParamList 6129 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 6130 Value *ParentPad = nullptr; 6131 6132 if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 6133 return true; 6134 6135 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6136 Lex.getKind() != lltok::LocalVarID) 6137 return TokError("expected scope value for cleanuppad"); 6138 6139 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6140 return true; 6141 6142 SmallVector<Value *, 8> Args; 6143 if (ParseExceptionArgs(Args, PFS)) 6144 return true; 6145 6146 Inst = CleanupPadInst::Create(ParentPad, Args); 6147 return false; 6148 } 6149 6150 //===----------------------------------------------------------------------===// 6151 // Unary Operators. 6152 //===----------------------------------------------------------------------===// 6153 6154 /// ParseUnaryOp 6155 /// ::= UnaryOp TypeAndValue ',' Value 6156 /// 6157 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, 6158 /// then any integer operand is allowed, if it is 2, any fp operand is allowed. 6159 bool LLParser::ParseUnaryOp(Instruction *&Inst, PerFunctionState &PFS, 6160 unsigned Opc, unsigned OperandType) { 6161 LocTy Loc; Value *LHS; 6162 if (ParseTypeAndValue(LHS, Loc, PFS)) 6163 return true; 6164 6165 bool Valid; 6166 switch (OperandType) { 6167 default: llvm_unreachable("Unknown operand type!"); 6168 case 0: // int or FP. 6169 Valid = LHS->getType()->isIntOrIntVectorTy() || 6170 LHS->getType()->isFPOrFPVectorTy(); 6171 break; 6172 case 1: 6173 Valid = LHS->getType()->isIntOrIntVectorTy(); 6174 break; 6175 case 2: 6176 Valid = LHS->getType()->isFPOrFPVectorTy(); 6177 break; 6178 } 6179 6180 if (!Valid) 6181 return Error(Loc, "invalid operand type for instruction"); 6182 6183 Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 6184 return false; 6185 } 6186 6187 //===----------------------------------------------------------------------===// 6188 // Binary Operators. 6189 //===----------------------------------------------------------------------===// 6190 6191 /// ParseArithmetic 6192 /// ::= ArithmeticOps TypeAndValue ',' Value 6193 /// 6194 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, 6195 /// then any integer operand is allowed, if it is 2, any fp operand is allowed. 6196 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 6197 unsigned Opc, unsigned OperandType) { 6198 LocTy Loc; Value *LHS, *RHS; 6199 if (ParseTypeAndValue(LHS, Loc, PFS) || 6200 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 6201 ParseValue(LHS->getType(), RHS, PFS)) 6202 return true; 6203 6204 bool Valid; 6205 switch (OperandType) { 6206 default: llvm_unreachable("Unknown operand type!"); 6207 case 0: // int or FP. 6208 Valid = LHS->getType()->isIntOrIntVectorTy() || 6209 LHS->getType()->isFPOrFPVectorTy(); 6210 break; 6211 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break; 6212 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break; 6213 } 6214 6215 if (!Valid) 6216 return Error(Loc, "invalid operand type for instruction"); 6217 6218 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6219 return false; 6220 } 6221 6222 /// ParseLogical 6223 /// ::= ArithmeticOps TypeAndValue ',' Value { 6224 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 6225 unsigned Opc) { 6226 LocTy Loc; Value *LHS, *RHS; 6227 if (ParseTypeAndValue(LHS, Loc, PFS) || 6228 ParseToken(lltok::comma, "expected ',' in logical operation") || 6229 ParseValue(LHS->getType(), RHS, PFS)) 6230 return true; 6231 6232 if (!LHS->getType()->isIntOrIntVectorTy()) 6233 return Error(Loc,"instruction requires integer or integer vector operands"); 6234 6235 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6236 return false; 6237 } 6238 6239 /// ParseCompare 6240 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 6241 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 6242 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 6243 unsigned Opc) { 6244 // Parse the integer/fp comparison predicate. 6245 LocTy Loc; 6246 unsigned Pred; 6247 Value *LHS, *RHS; 6248 if (ParseCmpPredicate(Pred, Opc) || 6249 ParseTypeAndValue(LHS, Loc, PFS) || 6250 ParseToken(lltok::comma, "expected ',' after compare value") || 6251 ParseValue(LHS->getType(), RHS, PFS)) 6252 return true; 6253 6254 if (Opc == Instruction::FCmp) { 6255 if (!LHS->getType()->isFPOrFPVectorTy()) 6256 return Error(Loc, "fcmp requires floating point operands"); 6257 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6258 } else { 6259 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 6260 if (!LHS->getType()->isIntOrIntVectorTy() && 6261 !LHS->getType()->isPtrOrPtrVectorTy()) 6262 return Error(Loc, "icmp requires integer operands"); 6263 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6264 } 6265 return false; 6266 } 6267 6268 //===----------------------------------------------------------------------===// 6269 // Other Instructions. 6270 //===----------------------------------------------------------------------===// 6271 6272 6273 /// ParseCast 6274 /// ::= CastOpc TypeAndValue 'to' Type 6275 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 6276 unsigned Opc) { 6277 LocTy Loc; 6278 Value *Op; 6279 Type *DestTy = nullptr; 6280 if (ParseTypeAndValue(Op, Loc, PFS) || 6281 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 6282 ParseType(DestTy)) 6283 return true; 6284 6285 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 6286 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 6287 return Error(Loc, "invalid cast opcode for cast from '" + 6288 getTypeString(Op->getType()) + "' to '" + 6289 getTypeString(DestTy) + "'"); 6290 } 6291 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 6292 return false; 6293 } 6294 6295 /// ParseSelect 6296 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6297 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 6298 LocTy Loc; 6299 Value *Op0, *Op1, *Op2; 6300 if (ParseTypeAndValue(Op0, Loc, PFS) || 6301 ParseToken(lltok::comma, "expected ',' after select condition") || 6302 ParseTypeAndValue(Op1, PFS) || 6303 ParseToken(lltok::comma, "expected ',' after select value") || 6304 ParseTypeAndValue(Op2, PFS)) 6305 return true; 6306 6307 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 6308 return Error(Loc, Reason); 6309 6310 Inst = SelectInst::Create(Op0, Op1, Op2); 6311 return false; 6312 } 6313 6314 /// ParseVA_Arg 6315 /// ::= 'va_arg' TypeAndValue ',' Type 6316 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 6317 Value *Op; 6318 Type *EltTy = nullptr; 6319 LocTy TypeLoc; 6320 if (ParseTypeAndValue(Op, PFS) || 6321 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 6322 ParseType(EltTy, TypeLoc)) 6323 return true; 6324 6325 if (!EltTy->isFirstClassType()) 6326 return Error(TypeLoc, "va_arg requires operand with first class type"); 6327 6328 Inst = new VAArgInst(Op, EltTy); 6329 return false; 6330 } 6331 6332 /// ParseExtractElement 6333 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 6334 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 6335 LocTy Loc; 6336 Value *Op0, *Op1; 6337 if (ParseTypeAndValue(Op0, Loc, PFS) || 6338 ParseToken(lltok::comma, "expected ',' after extract value") || 6339 ParseTypeAndValue(Op1, PFS)) 6340 return true; 6341 6342 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 6343 return Error(Loc, "invalid extractelement operands"); 6344 6345 Inst = ExtractElementInst::Create(Op0, Op1); 6346 return false; 6347 } 6348 6349 /// ParseInsertElement 6350 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6351 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 6352 LocTy Loc; 6353 Value *Op0, *Op1, *Op2; 6354 if (ParseTypeAndValue(Op0, Loc, PFS) || 6355 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6356 ParseTypeAndValue(Op1, PFS) || 6357 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6358 ParseTypeAndValue(Op2, PFS)) 6359 return true; 6360 6361 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 6362 return Error(Loc, "invalid insertelement operands"); 6363 6364 Inst = InsertElementInst::Create(Op0, Op1, Op2); 6365 return false; 6366 } 6367 6368 /// ParseShuffleVector 6369 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6370 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 6371 LocTy Loc; 6372 Value *Op0, *Op1, *Op2; 6373 if (ParseTypeAndValue(Op0, Loc, PFS) || 6374 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 6375 ParseTypeAndValue(Op1, PFS) || 6376 ParseToken(lltok::comma, "expected ',' after shuffle value") || 6377 ParseTypeAndValue(Op2, PFS)) 6378 return true; 6379 6380 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 6381 return Error(Loc, "invalid shufflevector operands"); 6382 6383 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 6384 return false; 6385 } 6386 6387 /// ParsePHI 6388 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 6389 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 6390 Type *Ty = nullptr; LocTy TypeLoc; 6391 Value *Op0, *Op1; 6392 6393 if (ParseType(Ty, TypeLoc) || 6394 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 6395 ParseValue(Ty, Op0, PFS) || 6396 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6397 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 6398 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 6399 return true; 6400 6401 bool AteExtraComma = false; 6402 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 6403 6404 while (true) { 6405 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 6406 6407 if (!EatIfPresent(lltok::comma)) 6408 break; 6409 6410 if (Lex.getKind() == lltok::MetadataVar) { 6411 AteExtraComma = true; 6412 break; 6413 } 6414 6415 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 6416 ParseValue(Ty, Op0, PFS) || 6417 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6418 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 6419 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 6420 return true; 6421 } 6422 6423 if (!Ty->isFirstClassType()) 6424 return Error(TypeLoc, "phi node must have first class type"); 6425 6426 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 6427 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 6428 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 6429 Inst = PN; 6430 return AteExtraComma ? InstExtraComma : InstNormal; 6431 } 6432 6433 /// ParseLandingPad 6434 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 6435 /// Clause 6436 /// ::= 'catch' TypeAndValue 6437 /// ::= 'filter' 6438 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 6439 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 6440 Type *Ty = nullptr; LocTy TyLoc; 6441 6442 if (ParseType(Ty, TyLoc)) 6443 return true; 6444 6445 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 6446 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 6447 6448 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 6449 LandingPadInst::ClauseType CT; 6450 if (EatIfPresent(lltok::kw_catch)) 6451 CT = LandingPadInst::Catch; 6452 else if (EatIfPresent(lltok::kw_filter)) 6453 CT = LandingPadInst::Filter; 6454 else 6455 return TokError("expected 'catch' or 'filter' clause type"); 6456 6457 Value *V; 6458 LocTy VLoc; 6459 if (ParseTypeAndValue(V, VLoc, PFS)) 6460 return true; 6461 6462 // A 'catch' type expects a non-array constant. A filter clause expects an 6463 // array constant. 6464 if (CT == LandingPadInst::Catch) { 6465 if (isa<ArrayType>(V->getType())) 6466 Error(VLoc, "'catch' clause has an invalid type"); 6467 } else { 6468 if (!isa<ArrayType>(V->getType())) 6469 Error(VLoc, "'filter' clause has an invalid type"); 6470 } 6471 6472 Constant *CV = dyn_cast<Constant>(V); 6473 if (!CV) 6474 return Error(VLoc, "clause argument must be a constant"); 6475 LP->addClause(CV); 6476 } 6477 6478 Inst = LP.release(); 6479 return false; 6480 } 6481 6482 /// ParseCall 6483 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 6484 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6485 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 6486 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6487 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 6488 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6489 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 6490 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6491 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 6492 CallInst::TailCallKind TCK) { 6493 AttrBuilder RetAttrs, FnAttrs; 6494 std::vector<unsigned> FwdRefAttrGrps; 6495 LocTy BuiltinLoc; 6496 unsigned CallAddrSpace; 6497 unsigned CC; 6498 Type *RetType = nullptr; 6499 LocTy RetTypeLoc; 6500 ValID CalleeID; 6501 SmallVector<ParamInfo, 16> ArgList; 6502 SmallVector<OperandBundleDef, 2> BundleList; 6503 LocTy CallLoc = Lex.getLoc(); 6504 6505 if (TCK != CallInst::TCK_None && 6506 ParseToken(lltok::kw_call, 6507 "expected 'tail call', 'musttail call', or 'notail call'")) 6508 return true; 6509 6510 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6511 6512 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6513 ParseOptionalProgramAddrSpace(CallAddrSpace) || 6514 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6515 ParseValID(CalleeID) || 6516 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 6517 PFS.getFunction().isVarArg()) || 6518 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 6519 ParseOptionalOperandBundles(BundleList, PFS)) 6520 return true; 6521 6522 if (FMF.any() && !RetType->isFPOrFPVectorTy()) 6523 return Error(CallLoc, "fast-math-flags specified for call without " 6524 "floating-point scalar or vector return type"); 6525 6526 // If RetType is a non-function pointer type, then this is the short syntax 6527 // for the call, which means that RetType is just the return type. Infer the 6528 // rest of the function argument types from the arguments that are present. 6529 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6530 if (!Ty) { 6531 // Pull out the types of all of the arguments... 6532 std::vector<Type*> ParamTypes; 6533 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6534 ParamTypes.push_back(ArgList[i].V->getType()); 6535 6536 if (!FunctionType::isValidReturnType(RetType)) 6537 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6538 6539 Ty = FunctionType::get(RetType, ParamTypes, false); 6540 } 6541 6542 CalleeID.FTy = Ty; 6543 6544 // Look up the callee. 6545 Value *Callee; 6546 if (ConvertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee, 6547 &PFS, /*IsCall=*/true)) 6548 return true; 6549 6550 // Set up the Attribute for the function. 6551 SmallVector<AttributeSet, 8> Attrs; 6552 6553 SmallVector<Value*, 8> Args; 6554 6555 // Loop through FunctionType's arguments and ensure they are specified 6556 // correctly. Also, gather any parameter attributes. 6557 FunctionType::param_iterator I = Ty->param_begin(); 6558 FunctionType::param_iterator E = Ty->param_end(); 6559 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6560 Type *ExpectedTy = nullptr; 6561 if (I != E) { 6562 ExpectedTy = *I++; 6563 } else if (!Ty->isVarArg()) { 6564 return Error(ArgList[i].Loc, "too many arguments specified"); 6565 } 6566 6567 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6568 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6569 getTypeString(ExpectedTy) + "'"); 6570 Args.push_back(ArgList[i].V); 6571 Attrs.push_back(ArgList[i].Attrs); 6572 } 6573 6574 if (I != E) 6575 return Error(CallLoc, "not enough parameters specified for call"); 6576 6577 if (FnAttrs.hasAlignmentAttr()) 6578 return Error(CallLoc, "call instructions may not have an alignment"); 6579 6580 // Finish off the Attribute and check them 6581 AttributeList PAL = 6582 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6583 AttributeSet::get(Context, RetAttrs), Attrs); 6584 6585 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 6586 CI->setTailCallKind(TCK); 6587 CI->setCallingConv(CC); 6588 if (FMF.any()) 6589 CI->setFastMathFlags(FMF); 6590 CI->setAttributes(PAL); 6591 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 6592 Inst = CI; 6593 return false; 6594 } 6595 6596 //===----------------------------------------------------------------------===// 6597 // Memory Instructions. 6598 //===----------------------------------------------------------------------===// 6599 6600 /// ParseAlloc 6601 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 6602 /// (',' 'align' i32)? (',', 'addrspace(n))? 6603 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 6604 Value *Size = nullptr; 6605 LocTy SizeLoc, TyLoc, ASLoc; 6606 unsigned Alignment = 0; 6607 unsigned AddrSpace = 0; 6608 Type *Ty = nullptr; 6609 6610 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 6611 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 6612 6613 if (ParseType(Ty, TyLoc)) return true; 6614 6615 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 6616 return Error(TyLoc, "invalid type for alloca"); 6617 6618 bool AteExtraComma = false; 6619 if (EatIfPresent(lltok::comma)) { 6620 if (Lex.getKind() == lltok::kw_align) { 6621 if (ParseOptionalAlignment(Alignment)) 6622 return true; 6623 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 6624 return true; 6625 } else if (Lex.getKind() == lltok::kw_addrspace) { 6626 ASLoc = Lex.getLoc(); 6627 if (ParseOptionalAddrSpace(AddrSpace)) 6628 return true; 6629 } else if (Lex.getKind() == lltok::MetadataVar) { 6630 AteExtraComma = true; 6631 } else { 6632 if (ParseTypeAndValue(Size, SizeLoc, PFS)) 6633 return true; 6634 if (EatIfPresent(lltok::comma)) { 6635 if (Lex.getKind() == lltok::kw_align) { 6636 if (ParseOptionalAlignment(Alignment)) 6637 return true; 6638 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 6639 return true; 6640 } else if (Lex.getKind() == lltok::kw_addrspace) { 6641 ASLoc = Lex.getLoc(); 6642 if (ParseOptionalAddrSpace(AddrSpace)) 6643 return true; 6644 } else if (Lex.getKind() == lltok::MetadataVar) { 6645 AteExtraComma = true; 6646 } 6647 } 6648 } 6649 } 6650 6651 if (Size && !Size->getType()->isIntegerTy()) 6652 return Error(SizeLoc, "element count must have integer type"); 6653 6654 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, Alignment); 6655 AI->setUsedWithInAlloca(IsInAlloca); 6656 AI->setSwiftError(IsSwiftError); 6657 Inst = AI; 6658 return AteExtraComma ? InstExtraComma : InstNormal; 6659 } 6660 6661 /// ParseLoad 6662 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 6663 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 6664 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6665 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 6666 Value *Val; LocTy Loc; 6667 unsigned Alignment = 0; 6668 bool AteExtraComma = false; 6669 bool isAtomic = false; 6670 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6671 SyncScope::ID SSID = SyncScope::System; 6672 6673 if (Lex.getKind() == lltok::kw_atomic) { 6674 isAtomic = true; 6675 Lex.Lex(); 6676 } 6677 6678 bool isVolatile = false; 6679 if (Lex.getKind() == lltok::kw_volatile) { 6680 isVolatile = true; 6681 Lex.Lex(); 6682 } 6683 6684 Type *Ty; 6685 LocTy ExplicitTypeLoc = Lex.getLoc(); 6686 if (ParseType(Ty) || 6687 ParseToken(lltok::comma, "expected comma after load's type") || 6688 ParseTypeAndValue(Val, Loc, PFS) || 6689 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 6690 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6691 return true; 6692 6693 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 6694 return Error(Loc, "load operand must be a pointer to a first class type"); 6695 if (isAtomic && !Alignment) 6696 return Error(Loc, "atomic load must have explicit non-zero alignment"); 6697 if (Ordering == AtomicOrdering::Release || 6698 Ordering == AtomicOrdering::AcquireRelease) 6699 return Error(Loc, "atomic load cannot use Release ordering"); 6700 6701 if (Ty != cast<PointerType>(Val->getType())->getElementType()) 6702 return Error(ExplicitTypeLoc, 6703 "explicit pointee type doesn't match operand's pointee type"); 6704 6705 Inst = new LoadInst(Ty, Val, "", isVolatile, Alignment, Ordering, SSID); 6706 return AteExtraComma ? InstExtraComma : InstNormal; 6707 } 6708 6709 /// ParseStore 6710 6711 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 6712 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 6713 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 6714 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 6715 Value *Val, *Ptr; LocTy Loc, PtrLoc; 6716 unsigned Alignment = 0; 6717 bool AteExtraComma = false; 6718 bool isAtomic = false; 6719 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6720 SyncScope::ID SSID = SyncScope::System; 6721 6722 if (Lex.getKind() == lltok::kw_atomic) { 6723 isAtomic = true; 6724 Lex.Lex(); 6725 } 6726 6727 bool isVolatile = false; 6728 if (Lex.getKind() == lltok::kw_volatile) { 6729 isVolatile = true; 6730 Lex.Lex(); 6731 } 6732 6733 if (ParseTypeAndValue(Val, Loc, PFS) || 6734 ParseToken(lltok::comma, "expected ',' after store operand") || 6735 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6736 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 6737 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 6738 return true; 6739 6740 if (!Ptr->getType()->isPointerTy()) 6741 return Error(PtrLoc, "store operand must be a pointer"); 6742 if (!Val->getType()->isFirstClassType()) 6743 return Error(Loc, "store operand must be a first class value"); 6744 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6745 return Error(Loc, "stored value and pointer type do not match"); 6746 if (isAtomic && !Alignment) 6747 return Error(Loc, "atomic store must have explicit non-zero alignment"); 6748 if (Ordering == AtomicOrdering::Acquire || 6749 Ordering == AtomicOrdering::AcquireRelease) 6750 return Error(Loc, "atomic store cannot use Acquire ordering"); 6751 6752 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, SSID); 6753 return AteExtraComma ? InstExtraComma : InstNormal; 6754 } 6755 6756 /// ParseCmpXchg 6757 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 6758 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering 6759 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 6760 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 6761 bool AteExtraComma = false; 6762 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 6763 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 6764 SyncScope::ID SSID = SyncScope::System; 6765 bool isVolatile = false; 6766 bool isWeak = false; 6767 6768 if (EatIfPresent(lltok::kw_weak)) 6769 isWeak = true; 6770 6771 if (EatIfPresent(lltok::kw_volatile)) 6772 isVolatile = true; 6773 6774 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6775 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 6776 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 6777 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 6778 ParseTypeAndValue(New, NewLoc, PFS) || 6779 ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 6780 ParseOrdering(FailureOrdering)) 6781 return true; 6782 6783 if (SuccessOrdering == AtomicOrdering::Unordered || 6784 FailureOrdering == AtomicOrdering::Unordered) 6785 return TokError("cmpxchg cannot be unordered"); 6786 if (isStrongerThan(FailureOrdering, SuccessOrdering)) 6787 return TokError("cmpxchg failure argument shall be no stronger than the " 6788 "success argument"); 6789 if (FailureOrdering == AtomicOrdering::Release || 6790 FailureOrdering == AtomicOrdering::AcquireRelease) 6791 return TokError( 6792 "cmpxchg failure ordering cannot include release semantics"); 6793 if (!Ptr->getType()->isPointerTy()) 6794 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 6795 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 6796 return Error(CmpLoc, "compare value and pointer type do not match"); 6797 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 6798 return Error(NewLoc, "new value and pointer type do not match"); 6799 if (!New->getType()->isFirstClassType()) 6800 return Error(NewLoc, "cmpxchg operand must be a first class value"); 6801 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 6802 Ptr, Cmp, New, SuccessOrdering, FailureOrdering, SSID); 6803 CXI->setVolatile(isVolatile); 6804 CXI->setWeak(isWeak); 6805 Inst = CXI; 6806 return AteExtraComma ? InstExtraComma : InstNormal; 6807 } 6808 6809 /// ParseAtomicRMW 6810 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 6811 /// 'singlethread'? AtomicOrdering 6812 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 6813 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 6814 bool AteExtraComma = false; 6815 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6816 SyncScope::ID SSID = SyncScope::System; 6817 bool isVolatile = false; 6818 AtomicRMWInst::BinOp Operation; 6819 6820 if (EatIfPresent(lltok::kw_volatile)) 6821 isVolatile = true; 6822 6823 switch (Lex.getKind()) { 6824 default: return TokError("expected binary operation in atomicrmw"); 6825 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 6826 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 6827 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 6828 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 6829 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 6830 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 6831 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 6832 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 6833 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 6834 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 6835 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 6836 } 6837 Lex.Lex(); // Eat the operation. 6838 6839 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 6840 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 6841 ParseTypeAndValue(Val, ValLoc, PFS) || 6842 ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 6843 return true; 6844 6845 if (Ordering == AtomicOrdering::Unordered) 6846 return TokError("atomicrmw cannot be unordered"); 6847 if (!Ptr->getType()->isPointerTy()) 6848 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 6849 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 6850 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 6851 6852 if (Operation != AtomicRMWInst::Xchg && !Val->getType()->isIntegerTy()) { 6853 return Error(ValLoc, "atomicrmw " + 6854 AtomicRMWInst::getOperationName(Operation) + 6855 " operand must be an integer"); 6856 } 6857 6858 if (Operation == AtomicRMWInst::Xchg && 6859 !Val->getType()->isIntegerTy() && 6860 !Val->getType()->isFloatingPointTy()) { 6861 return Error(ValLoc, "atomicrmw " + 6862 AtomicRMWInst::getOperationName(Operation) + 6863 " operand must be an integer or floating point type"); 6864 } 6865 6866 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 6867 if (Size < 8 || (Size & (Size - 1))) 6868 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 6869 " integer"); 6870 6871 AtomicRMWInst *RMWI = 6872 new AtomicRMWInst(Operation, Ptr, Val, Ordering, SSID); 6873 RMWI->setVolatile(isVolatile); 6874 Inst = RMWI; 6875 return AteExtraComma ? InstExtraComma : InstNormal; 6876 } 6877 6878 /// ParseFence 6879 /// ::= 'fence' 'singlethread'? AtomicOrdering 6880 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 6881 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 6882 SyncScope::ID SSID = SyncScope::System; 6883 if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 6884 return true; 6885 6886 if (Ordering == AtomicOrdering::Unordered) 6887 return TokError("fence cannot be unordered"); 6888 if (Ordering == AtomicOrdering::Monotonic) 6889 return TokError("fence cannot be monotonic"); 6890 6891 Inst = new FenceInst(Context, Ordering, SSID); 6892 return InstNormal; 6893 } 6894 6895 /// ParseGetElementPtr 6896 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 6897 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 6898 Value *Ptr = nullptr; 6899 Value *Val = nullptr; 6900 LocTy Loc, EltLoc; 6901 6902 bool InBounds = EatIfPresent(lltok::kw_inbounds); 6903 6904 Type *Ty = nullptr; 6905 LocTy ExplicitTypeLoc = Lex.getLoc(); 6906 if (ParseType(Ty) || 6907 ParseToken(lltok::comma, "expected comma after getelementptr's type") || 6908 ParseTypeAndValue(Ptr, Loc, PFS)) 6909 return true; 6910 6911 Type *BaseType = Ptr->getType(); 6912 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 6913 if (!BasePointerType) 6914 return Error(Loc, "base of getelementptr must be a pointer"); 6915 6916 if (Ty != BasePointerType->getElementType()) 6917 return Error(ExplicitTypeLoc, 6918 "explicit pointee type doesn't match operand's pointee type"); 6919 6920 SmallVector<Value*, 16> Indices; 6921 bool AteExtraComma = false; 6922 // GEP returns a vector of pointers if at least one of parameters is a vector. 6923 // All vector parameters should have the same vector width. 6924 unsigned GEPWidth = BaseType->isVectorTy() ? 6925 BaseType->getVectorNumElements() : 0; 6926 6927 while (EatIfPresent(lltok::comma)) { 6928 if (Lex.getKind() == lltok::MetadataVar) { 6929 AteExtraComma = true; 6930 break; 6931 } 6932 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 6933 if (!Val->getType()->isIntOrIntVectorTy()) 6934 return Error(EltLoc, "getelementptr index must be an integer"); 6935 6936 if (Val->getType()->isVectorTy()) { 6937 unsigned ValNumEl = Val->getType()->getVectorNumElements(); 6938 if (GEPWidth && GEPWidth != ValNumEl) 6939 return Error(EltLoc, 6940 "getelementptr vector index has a wrong number of elements"); 6941 GEPWidth = ValNumEl; 6942 } 6943 Indices.push_back(Val); 6944 } 6945 6946 SmallPtrSet<Type*, 4> Visited; 6947 if (!Indices.empty() && !Ty->isSized(&Visited)) 6948 return Error(Loc, "base element of getelementptr must be sized"); 6949 6950 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 6951 return Error(Loc, "invalid getelementptr indices"); 6952 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 6953 if (InBounds) 6954 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 6955 return AteExtraComma ? InstExtraComma : InstNormal; 6956 } 6957 6958 /// ParseExtractValue 6959 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 6960 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 6961 Value *Val; LocTy Loc; 6962 SmallVector<unsigned, 4> Indices; 6963 bool AteExtraComma; 6964 if (ParseTypeAndValue(Val, Loc, PFS) || 6965 ParseIndexList(Indices, AteExtraComma)) 6966 return true; 6967 6968 if (!Val->getType()->isAggregateType()) 6969 return Error(Loc, "extractvalue operand must be aggregate type"); 6970 6971 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 6972 return Error(Loc, "invalid indices for extractvalue"); 6973 Inst = ExtractValueInst::Create(Val, Indices); 6974 return AteExtraComma ? InstExtraComma : InstNormal; 6975 } 6976 6977 /// ParseInsertValue 6978 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 6979 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 6980 Value *Val0, *Val1; LocTy Loc0, Loc1; 6981 SmallVector<unsigned, 4> Indices; 6982 bool AteExtraComma; 6983 if (ParseTypeAndValue(Val0, Loc0, PFS) || 6984 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 6985 ParseTypeAndValue(Val1, Loc1, PFS) || 6986 ParseIndexList(Indices, AteExtraComma)) 6987 return true; 6988 6989 if (!Val0->getType()->isAggregateType()) 6990 return Error(Loc0, "insertvalue operand must be aggregate type"); 6991 6992 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 6993 if (!IndexedType) 6994 return Error(Loc0, "invalid indices for insertvalue"); 6995 if (IndexedType != Val1->getType()) 6996 return Error(Loc1, "insertvalue operand and field disagree in type: '" + 6997 getTypeString(Val1->getType()) + "' instead of '" + 6998 getTypeString(IndexedType) + "'"); 6999 Inst = InsertValueInst::Create(Val0, Val1, Indices); 7000 return AteExtraComma ? InstExtraComma : InstNormal; 7001 } 7002 7003 //===----------------------------------------------------------------------===// 7004 // Embedded metadata. 7005 //===----------------------------------------------------------------------===// 7006 7007 /// ParseMDNodeVector 7008 /// ::= { Element (',' Element)* } 7009 /// Element 7010 /// ::= 'null' | TypeAndValue 7011 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 7012 if (ParseToken(lltok::lbrace, "expected '{' here")) 7013 return true; 7014 7015 // Check for an empty list. 7016 if (EatIfPresent(lltok::rbrace)) 7017 return false; 7018 7019 do { 7020 // Null is a special case since it is typeless. 7021 if (EatIfPresent(lltok::kw_null)) { 7022 Elts.push_back(nullptr); 7023 continue; 7024 } 7025 7026 Metadata *MD; 7027 if (ParseMetadata(MD, nullptr)) 7028 return true; 7029 Elts.push_back(MD); 7030 } while (EatIfPresent(lltok::comma)); 7031 7032 return ParseToken(lltok::rbrace, "expected end of metadata node"); 7033 } 7034 7035 //===----------------------------------------------------------------------===// 7036 // Use-list order directives. 7037 //===----------------------------------------------------------------------===// 7038 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 7039 SMLoc Loc) { 7040 if (V->use_empty()) 7041 return Error(Loc, "value has no uses"); 7042 7043 unsigned NumUses = 0; 7044 SmallDenseMap<const Use *, unsigned, 16> Order; 7045 for (const Use &U : V->uses()) { 7046 if (++NumUses > Indexes.size()) 7047 break; 7048 Order[&U] = Indexes[NumUses - 1]; 7049 } 7050 if (NumUses < 2) 7051 return Error(Loc, "value only has one use"); 7052 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 7053 return Error(Loc, 7054 "wrong number of indexes, expected " + Twine(V->getNumUses())); 7055 7056 V->sortUseList([&](const Use &L, const Use &R) { 7057 return Order.lookup(&L) < Order.lookup(&R); 7058 }); 7059 return false; 7060 } 7061 7062 /// ParseUseListOrderIndexes 7063 /// ::= '{' uint32 (',' uint32)+ '}' 7064 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 7065 SMLoc Loc = Lex.getLoc(); 7066 if (ParseToken(lltok::lbrace, "expected '{' here")) 7067 return true; 7068 if (Lex.getKind() == lltok::rbrace) 7069 return Lex.Error("expected non-empty list of uselistorder indexes"); 7070 7071 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 7072 // indexes should be distinct numbers in the range [0, size-1], and should 7073 // not be in order. 7074 unsigned Offset = 0; 7075 unsigned Max = 0; 7076 bool IsOrdered = true; 7077 assert(Indexes.empty() && "Expected empty order vector"); 7078 do { 7079 unsigned Index; 7080 if (ParseUInt32(Index)) 7081 return true; 7082 7083 // Update consistency checks. 7084 Offset += Index - Indexes.size(); 7085 Max = std::max(Max, Index); 7086 IsOrdered &= Index == Indexes.size(); 7087 7088 Indexes.push_back(Index); 7089 } while (EatIfPresent(lltok::comma)); 7090 7091 if (ParseToken(lltok::rbrace, "expected '}' here")) 7092 return true; 7093 7094 if (Indexes.size() < 2) 7095 return Error(Loc, "expected >= 2 uselistorder indexes"); 7096 if (Offset != 0 || Max >= Indexes.size()) 7097 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)"); 7098 if (IsOrdered) 7099 return Error(Loc, "expected uselistorder indexes to change the order"); 7100 7101 return false; 7102 } 7103 7104 /// ParseUseListOrder 7105 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 7106 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) { 7107 SMLoc Loc = Lex.getLoc(); 7108 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 7109 return true; 7110 7111 Value *V; 7112 SmallVector<unsigned, 16> Indexes; 7113 if (ParseTypeAndValue(V, PFS) || 7114 ParseToken(lltok::comma, "expected comma in uselistorder directive") || 7115 ParseUseListOrderIndexes(Indexes)) 7116 return true; 7117 7118 return sortUseListOrder(V, Indexes, Loc); 7119 } 7120 7121 /// ParseUseListOrderBB 7122 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 7123 bool LLParser::ParseUseListOrderBB() { 7124 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 7125 SMLoc Loc = Lex.getLoc(); 7126 Lex.Lex(); 7127 7128 ValID Fn, Label; 7129 SmallVector<unsigned, 16> Indexes; 7130 if (ParseValID(Fn) || 7131 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7132 ParseValID(Label) || 7133 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7134 ParseUseListOrderIndexes(Indexes)) 7135 return true; 7136 7137 // Check the function. 7138 GlobalValue *GV; 7139 if (Fn.Kind == ValID::t_GlobalName) 7140 GV = M->getNamedValue(Fn.StrVal); 7141 else if (Fn.Kind == ValID::t_GlobalID) 7142 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 7143 else 7144 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 7145 if (!GV) 7146 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb"); 7147 auto *F = dyn_cast<Function>(GV); 7148 if (!F) 7149 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 7150 if (F->isDeclaration()) 7151 return Error(Fn.Loc, "invalid declaration in uselistorder_bb"); 7152 7153 // Check the basic block. 7154 if (Label.Kind == ValID::t_LocalID) 7155 return Error(Label.Loc, "invalid numeric label in uselistorder_bb"); 7156 if (Label.Kind != ValID::t_LocalName) 7157 return Error(Label.Loc, "expected basic block name in uselistorder_bb"); 7158 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 7159 if (!V) 7160 return Error(Label.Loc, "invalid basic block in uselistorder_bb"); 7161 if (!isa<BasicBlock>(V)) 7162 return Error(Label.Loc, "expected basic block in uselistorder_bb"); 7163 7164 return sortUseListOrder(V, Indexes, Loc); 7165 } 7166 7167 /// ModuleEntry 7168 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')' 7169 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')' 7170 bool LLParser::ParseModuleEntry(unsigned ID) { 7171 assert(Lex.getKind() == lltok::kw_module); 7172 Lex.Lex(); 7173 7174 std::string Path; 7175 if (ParseToken(lltok::colon, "expected ':' here") || 7176 ParseToken(lltok::lparen, "expected '(' here") || 7177 ParseToken(lltok::kw_path, "expected 'path' here") || 7178 ParseToken(lltok::colon, "expected ':' here") || 7179 ParseStringConstant(Path) || 7180 ParseToken(lltok::comma, "expected ',' here") || 7181 ParseToken(lltok::kw_hash, "expected 'hash' here") || 7182 ParseToken(lltok::colon, "expected ':' here") || 7183 ParseToken(lltok::lparen, "expected '(' here")) 7184 return true; 7185 7186 ModuleHash Hash; 7187 if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") || 7188 ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") || 7189 ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") || 7190 ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") || 7191 ParseUInt32(Hash[4])) 7192 return true; 7193 7194 if (ParseToken(lltok::rparen, "expected ')' here") || 7195 ParseToken(lltok::rparen, "expected ')' here")) 7196 return true; 7197 7198 auto ModuleEntry = Index->addModule(Path, ID, Hash); 7199 ModuleIdMap[ID] = ModuleEntry->first(); 7200 7201 return false; 7202 } 7203 7204 /// TypeIdEntry 7205 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')' 7206 bool LLParser::ParseTypeIdEntry(unsigned ID) { 7207 assert(Lex.getKind() == lltok::kw_typeid); 7208 Lex.Lex(); 7209 7210 std::string Name; 7211 if (ParseToken(lltok::colon, "expected ':' here") || 7212 ParseToken(lltok::lparen, "expected '(' here") || 7213 ParseToken(lltok::kw_name, "expected 'name' here") || 7214 ParseToken(lltok::colon, "expected ':' here") || 7215 ParseStringConstant(Name)) 7216 return true; 7217 7218 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name); 7219 if (ParseToken(lltok::comma, "expected ',' here") || 7220 ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here")) 7221 return true; 7222 7223 // Check if this ID was forward referenced, and if so, update the 7224 // corresponding GUIDs. 7225 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7226 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7227 for (auto TIDRef : FwdRefTIDs->second) { 7228 assert(!*TIDRef.first && 7229 "Forward referenced type id GUID expected to be 0"); 7230 *TIDRef.first = GlobalValue::getGUID(Name); 7231 } 7232 ForwardRefTypeIds.erase(FwdRefTIDs); 7233 } 7234 7235 return false; 7236 } 7237 7238 /// TypeIdSummary 7239 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')' 7240 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) { 7241 if (ParseToken(lltok::kw_summary, "expected 'summary' here") || 7242 ParseToken(lltok::colon, "expected ':' here") || 7243 ParseToken(lltok::lparen, "expected '(' here") || 7244 ParseTypeTestResolution(TIS.TTRes)) 7245 return true; 7246 7247 if (EatIfPresent(lltok::comma)) { 7248 // Expect optional wpdResolutions field 7249 if (ParseOptionalWpdResolutions(TIS.WPDRes)) 7250 return true; 7251 } 7252 7253 if (ParseToken(lltok::rparen, "expected ')' here")) 7254 return true; 7255 7256 return false; 7257 } 7258 7259 /// TypeTestResolution 7260 /// ::= 'typeTestRes' ':' '(' 'kind' ':' 7261 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ',' 7262 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]? 7263 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]? 7264 /// [',' 'inlinesBits' ':' UInt64]? ')' 7265 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) { 7266 if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") || 7267 ParseToken(lltok::colon, "expected ':' here") || 7268 ParseToken(lltok::lparen, "expected '(' here") || 7269 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7270 ParseToken(lltok::colon, "expected ':' here")) 7271 return true; 7272 7273 switch (Lex.getKind()) { 7274 case lltok::kw_unsat: 7275 TTRes.TheKind = TypeTestResolution::Unsat; 7276 break; 7277 case lltok::kw_byteArray: 7278 TTRes.TheKind = TypeTestResolution::ByteArray; 7279 break; 7280 case lltok::kw_inline: 7281 TTRes.TheKind = TypeTestResolution::Inline; 7282 break; 7283 case lltok::kw_single: 7284 TTRes.TheKind = TypeTestResolution::Single; 7285 break; 7286 case lltok::kw_allOnes: 7287 TTRes.TheKind = TypeTestResolution::AllOnes; 7288 break; 7289 default: 7290 return Error(Lex.getLoc(), "unexpected TypeTestResolution kind"); 7291 } 7292 Lex.Lex(); 7293 7294 if (ParseToken(lltok::comma, "expected ',' here") || 7295 ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") || 7296 ParseToken(lltok::colon, "expected ':' here") || 7297 ParseUInt32(TTRes.SizeM1BitWidth)) 7298 return true; 7299 7300 // Parse optional fields 7301 while (EatIfPresent(lltok::comma)) { 7302 switch (Lex.getKind()) { 7303 case lltok::kw_alignLog2: 7304 Lex.Lex(); 7305 if (ParseToken(lltok::colon, "expected ':'") || 7306 ParseUInt64(TTRes.AlignLog2)) 7307 return true; 7308 break; 7309 case lltok::kw_sizeM1: 7310 Lex.Lex(); 7311 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1)) 7312 return true; 7313 break; 7314 case lltok::kw_bitMask: { 7315 unsigned Val; 7316 Lex.Lex(); 7317 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val)) 7318 return true; 7319 assert(Val <= 0xff); 7320 TTRes.BitMask = (uint8_t)Val; 7321 break; 7322 } 7323 case lltok::kw_inlineBits: 7324 Lex.Lex(); 7325 if (ParseToken(lltok::colon, "expected ':'") || 7326 ParseUInt64(TTRes.InlineBits)) 7327 return true; 7328 break; 7329 default: 7330 return Error(Lex.getLoc(), "expected optional TypeTestResolution field"); 7331 } 7332 } 7333 7334 if (ParseToken(lltok::rparen, "expected ')' here")) 7335 return true; 7336 7337 return false; 7338 } 7339 7340 /// OptionalWpdResolutions 7341 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')' 7342 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')' 7343 bool LLParser::ParseOptionalWpdResolutions( 7344 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) { 7345 if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") || 7346 ParseToken(lltok::colon, "expected ':' here") || 7347 ParseToken(lltok::lparen, "expected '(' here")) 7348 return true; 7349 7350 do { 7351 uint64_t Offset; 7352 WholeProgramDevirtResolution WPDRes; 7353 if (ParseToken(lltok::lparen, "expected '(' here") || 7354 ParseToken(lltok::kw_offset, "expected 'offset' here") || 7355 ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) || 7356 ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) || 7357 ParseToken(lltok::rparen, "expected ')' here")) 7358 return true; 7359 WPDResMap[Offset] = WPDRes; 7360 } while (EatIfPresent(lltok::comma)); 7361 7362 if (ParseToken(lltok::rparen, "expected ')' here")) 7363 return true; 7364 7365 return false; 7366 } 7367 7368 /// WpdRes 7369 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir' 7370 /// [',' OptionalResByArg]? ')' 7371 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl' 7372 /// ',' 'singleImplName' ':' STRINGCONSTANT ',' 7373 /// [',' OptionalResByArg]? ')' 7374 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel' 7375 /// [',' OptionalResByArg]? ')' 7376 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) { 7377 if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") || 7378 ParseToken(lltok::colon, "expected ':' here") || 7379 ParseToken(lltok::lparen, "expected '(' here") || 7380 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7381 ParseToken(lltok::colon, "expected ':' here")) 7382 return true; 7383 7384 switch (Lex.getKind()) { 7385 case lltok::kw_indir: 7386 WPDRes.TheKind = WholeProgramDevirtResolution::Indir; 7387 break; 7388 case lltok::kw_singleImpl: 7389 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl; 7390 break; 7391 case lltok::kw_branchFunnel: 7392 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel; 7393 break; 7394 default: 7395 return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind"); 7396 } 7397 Lex.Lex(); 7398 7399 // Parse optional fields 7400 while (EatIfPresent(lltok::comma)) { 7401 switch (Lex.getKind()) { 7402 case lltok::kw_singleImplName: 7403 Lex.Lex(); 7404 if (ParseToken(lltok::colon, "expected ':' here") || 7405 ParseStringConstant(WPDRes.SingleImplName)) 7406 return true; 7407 break; 7408 case lltok::kw_resByArg: 7409 if (ParseOptionalResByArg(WPDRes.ResByArg)) 7410 return true; 7411 break; 7412 default: 7413 return Error(Lex.getLoc(), 7414 "expected optional WholeProgramDevirtResolution field"); 7415 } 7416 } 7417 7418 if (ParseToken(lltok::rparen, "expected ')' here")) 7419 return true; 7420 7421 return false; 7422 } 7423 7424 /// OptionalResByArg 7425 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')' 7426 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':' 7427 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' | 7428 /// 'virtualConstProp' ) 7429 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]? 7430 /// [',' 'bit' ':' UInt32]? ')' 7431 bool LLParser::ParseOptionalResByArg( 7432 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg> 7433 &ResByArg) { 7434 if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") || 7435 ParseToken(lltok::colon, "expected ':' here") || 7436 ParseToken(lltok::lparen, "expected '(' here")) 7437 return true; 7438 7439 do { 7440 std::vector<uint64_t> Args; 7441 if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") || 7442 ParseToken(lltok::kw_byArg, "expected 'byArg here") || 7443 ParseToken(lltok::colon, "expected ':' here") || 7444 ParseToken(lltok::lparen, "expected '(' here") || 7445 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7446 ParseToken(lltok::colon, "expected ':' here")) 7447 return true; 7448 7449 WholeProgramDevirtResolution::ByArg ByArg; 7450 switch (Lex.getKind()) { 7451 case lltok::kw_indir: 7452 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir; 7453 break; 7454 case lltok::kw_uniformRetVal: 7455 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 7456 break; 7457 case lltok::kw_uniqueRetVal: 7458 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 7459 break; 7460 case lltok::kw_virtualConstProp: 7461 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 7462 break; 7463 default: 7464 return Error(Lex.getLoc(), 7465 "unexpected WholeProgramDevirtResolution::ByArg kind"); 7466 } 7467 Lex.Lex(); 7468 7469 // Parse optional fields 7470 while (EatIfPresent(lltok::comma)) { 7471 switch (Lex.getKind()) { 7472 case lltok::kw_info: 7473 Lex.Lex(); 7474 if (ParseToken(lltok::colon, "expected ':' here") || 7475 ParseUInt64(ByArg.Info)) 7476 return true; 7477 break; 7478 case lltok::kw_byte: 7479 Lex.Lex(); 7480 if (ParseToken(lltok::colon, "expected ':' here") || 7481 ParseUInt32(ByArg.Byte)) 7482 return true; 7483 break; 7484 case lltok::kw_bit: 7485 Lex.Lex(); 7486 if (ParseToken(lltok::colon, "expected ':' here") || 7487 ParseUInt32(ByArg.Bit)) 7488 return true; 7489 break; 7490 default: 7491 return Error(Lex.getLoc(), 7492 "expected optional whole program devirt field"); 7493 } 7494 } 7495 7496 if (ParseToken(lltok::rparen, "expected ')' here")) 7497 return true; 7498 7499 ResByArg[Args] = ByArg; 7500 } while (EatIfPresent(lltok::comma)); 7501 7502 if (ParseToken(lltok::rparen, "expected ')' here")) 7503 return true; 7504 7505 return false; 7506 } 7507 7508 /// OptionalResByArg 7509 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')' 7510 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) { 7511 if (ParseToken(lltok::kw_args, "expected 'args' here") || 7512 ParseToken(lltok::colon, "expected ':' here") || 7513 ParseToken(lltok::lparen, "expected '(' here")) 7514 return true; 7515 7516 do { 7517 uint64_t Val; 7518 if (ParseUInt64(Val)) 7519 return true; 7520 Args.push_back(Val); 7521 } while (EatIfPresent(lltok::comma)); 7522 7523 if (ParseToken(lltok::rparen, "expected ')' here")) 7524 return true; 7525 7526 return false; 7527 } 7528 7529 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8; 7530 7531 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) { 7532 bool ReadOnly = Fwd->isReadOnly(); 7533 *Fwd = Resolved; 7534 if (ReadOnly) 7535 Fwd->setReadOnly(); 7536 } 7537 7538 /// Stores the given Name/GUID and associated summary into the Index. 7539 /// Also updates any forward references to the associated entry ID. 7540 void LLParser::AddGlobalValueToIndex( 7541 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage, 7542 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) { 7543 // First create the ValueInfo utilizing the Name or GUID. 7544 ValueInfo VI; 7545 if (GUID != 0) { 7546 assert(Name.empty()); 7547 VI = Index->getOrInsertValueInfo(GUID); 7548 } else { 7549 assert(!Name.empty()); 7550 if (M) { 7551 auto *GV = M->getNamedValue(Name); 7552 assert(GV); 7553 VI = Index->getOrInsertValueInfo(GV); 7554 } else { 7555 assert( 7556 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) && 7557 "Need a source_filename to compute GUID for local"); 7558 GUID = GlobalValue::getGUID( 7559 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName)); 7560 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name)); 7561 } 7562 } 7563 7564 // Add the summary if one was provided. 7565 if (Summary) 7566 Index->addGlobalValueSummary(VI, std::move(Summary)); 7567 7568 // Resolve forward references from calls/refs 7569 auto FwdRefVIs = ForwardRefValueInfos.find(ID); 7570 if (FwdRefVIs != ForwardRefValueInfos.end()) { 7571 for (auto VIRef : FwdRefVIs->second) { 7572 assert(VIRef.first->getRef() == FwdVIRef && 7573 "Forward referenced ValueInfo expected to be empty"); 7574 resolveFwdRef(VIRef.first, VI); 7575 } 7576 ForwardRefValueInfos.erase(FwdRefVIs); 7577 } 7578 7579 // Resolve forward references from aliases 7580 auto FwdRefAliasees = ForwardRefAliasees.find(ID); 7581 if (FwdRefAliasees != ForwardRefAliasees.end()) { 7582 for (auto AliaseeRef : FwdRefAliasees->second) { 7583 assert(!AliaseeRef.first->hasAliasee() && 7584 "Forward referencing alias already has aliasee"); 7585 AliaseeRef.first->setAliasee(VI.getSummaryList().front().get()); 7586 } 7587 ForwardRefAliasees.erase(FwdRefAliasees); 7588 } 7589 7590 // Save the associated ValueInfo for use in later references by ID. 7591 if (ID == NumberedValueInfos.size()) 7592 NumberedValueInfos.push_back(VI); 7593 else { 7594 // Handle non-continuous numbers (to make test simplification easier). 7595 if (ID > NumberedValueInfos.size()) 7596 NumberedValueInfos.resize(ID + 1); 7597 NumberedValueInfos[ID] = VI; 7598 } 7599 } 7600 7601 /// ParseGVEntry 7602 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64) 7603 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')' 7604 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')' 7605 bool LLParser::ParseGVEntry(unsigned ID) { 7606 assert(Lex.getKind() == lltok::kw_gv); 7607 Lex.Lex(); 7608 7609 if (ParseToken(lltok::colon, "expected ':' here") || 7610 ParseToken(lltok::lparen, "expected '(' here")) 7611 return true; 7612 7613 std::string Name; 7614 GlobalValue::GUID GUID = 0; 7615 switch (Lex.getKind()) { 7616 case lltok::kw_name: 7617 Lex.Lex(); 7618 if (ParseToken(lltok::colon, "expected ':' here") || 7619 ParseStringConstant(Name)) 7620 return true; 7621 // Can't create GUID/ValueInfo until we have the linkage. 7622 break; 7623 case lltok::kw_guid: 7624 Lex.Lex(); 7625 if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID)) 7626 return true; 7627 break; 7628 default: 7629 return Error(Lex.getLoc(), "expected name or guid tag"); 7630 } 7631 7632 if (!EatIfPresent(lltok::comma)) { 7633 // No summaries. Wrap up. 7634 if (ParseToken(lltok::rparen, "expected ')' here")) 7635 return true; 7636 // This was created for a call to an external or indirect target. 7637 // A GUID with no summary came from a VALUE_GUID record, dummy GUID 7638 // created for indirect calls with VP. A Name with no GUID came from 7639 // an external definition. We pass ExternalLinkage since that is only 7640 // used when the GUID must be computed from Name, and in that case 7641 // the symbol must have external linkage. 7642 AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID, 7643 nullptr); 7644 return false; 7645 } 7646 7647 // Have a list of summaries 7648 if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") || 7649 ParseToken(lltok::colon, "expected ':' here")) 7650 return true; 7651 7652 do { 7653 if (ParseToken(lltok::lparen, "expected '(' here")) 7654 return true; 7655 switch (Lex.getKind()) { 7656 case lltok::kw_function: 7657 if (ParseFunctionSummary(Name, GUID, ID)) 7658 return true; 7659 break; 7660 case lltok::kw_variable: 7661 if (ParseVariableSummary(Name, GUID, ID)) 7662 return true; 7663 break; 7664 case lltok::kw_alias: 7665 if (ParseAliasSummary(Name, GUID, ID)) 7666 return true; 7667 break; 7668 default: 7669 return Error(Lex.getLoc(), "expected summary type"); 7670 } 7671 if (ParseToken(lltok::rparen, "expected ')' here")) 7672 return true; 7673 } while (EatIfPresent(lltok::comma)); 7674 7675 if (ParseToken(lltok::rparen, "expected ')' here")) 7676 return true; 7677 7678 return false; 7679 } 7680 7681 /// FunctionSummary 7682 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags 7683 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]? 7684 /// [',' OptionalTypeIdInfo]? [',' OptionalRefs]? ')' 7685 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID, 7686 unsigned ID) { 7687 assert(Lex.getKind() == lltok::kw_function); 7688 Lex.Lex(); 7689 7690 StringRef ModulePath; 7691 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 7692 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 7693 /*Live=*/false, /*IsLocal=*/false); 7694 unsigned InstCount; 7695 std::vector<FunctionSummary::EdgeTy> Calls; 7696 FunctionSummary::TypeIdInfo TypeIdInfo; 7697 std::vector<ValueInfo> Refs; 7698 // Default is all-zeros (conservative values). 7699 FunctionSummary::FFlags FFlags = {}; 7700 if (ParseToken(lltok::colon, "expected ':' here") || 7701 ParseToken(lltok::lparen, "expected '(' here") || 7702 ParseModuleReference(ModulePath) || 7703 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 7704 ParseToken(lltok::comma, "expected ',' here") || 7705 ParseToken(lltok::kw_insts, "expected 'insts' here") || 7706 ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount)) 7707 return true; 7708 7709 // Parse optional fields 7710 while (EatIfPresent(lltok::comma)) { 7711 switch (Lex.getKind()) { 7712 case lltok::kw_funcFlags: 7713 if (ParseOptionalFFlags(FFlags)) 7714 return true; 7715 break; 7716 case lltok::kw_calls: 7717 if (ParseOptionalCalls(Calls)) 7718 return true; 7719 break; 7720 case lltok::kw_typeIdInfo: 7721 if (ParseOptionalTypeIdInfo(TypeIdInfo)) 7722 return true; 7723 break; 7724 case lltok::kw_refs: 7725 if (ParseOptionalRefs(Refs)) 7726 return true; 7727 break; 7728 default: 7729 return Error(Lex.getLoc(), "expected optional function summary field"); 7730 } 7731 } 7732 7733 if (ParseToken(lltok::rparen, "expected ')' here")) 7734 return true; 7735 7736 auto FS = llvm::make_unique<FunctionSummary>( 7737 GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs), 7738 std::move(Calls), std::move(TypeIdInfo.TypeTests), 7739 std::move(TypeIdInfo.TypeTestAssumeVCalls), 7740 std::move(TypeIdInfo.TypeCheckedLoadVCalls), 7741 std::move(TypeIdInfo.TypeTestAssumeConstVCalls), 7742 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls)); 7743 7744 FS->setModulePath(ModulePath); 7745 7746 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 7747 ID, std::move(FS)); 7748 7749 return false; 7750 } 7751 7752 /// VariableSummary 7753 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags 7754 /// [',' OptionalRefs]? ')' 7755 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID, 7756 unsigned ID) { 7757 assert(Lex.getKind() == lltok::kw_variable); 7758 Lex.Lex(); 7759 7760 StringRef ModulePath; 7761 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 7762 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 7763 /*Live=*/false, /*IsLocal=*/false); 7764 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false); 7765 std::vector<ValueInfo> Refs; 7766 if (ParseToken(lltok::colon, "expected ':' here") || 7767 ParseToken(lltok::lparen, "expected '(' here") || 7768 ParseModuleReference(ModulePath) || 7769 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 7770 ParseToken(lltok::comma, "expected ',' here") || 7771 ParseGVarFlags(GVarFlags)) 7772 return true; 7773 7774 // Parse optional refs field 7775 if (EatIfPresent(lltok::comma)) { 7776 if (ParseOptionalRefs(Refs)) 7777 return true; 7778 } 7779 7780 if (ParseToken(lltok::rparen, "expected ')' here")) 7781 return true; 7782 7783 auto GS = 7784 llvm::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs)); 7785 7786 GS->setModulePath(ModulePath); 7787 7788 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 7789 ID, std::move(GS)); 7790 7791 return false; 7792 } 7793 7794 /// AliasSummary 7795 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ',' 7796 /// 'aliasee' ':' GVReference ')' 7797 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID, 7798 unsigned ID) { 7799 assert(Lex.getKind() == lltok::kw_alias); 7800 LocTy Loc = Lex.getLoc(); 7801 Lex.Lex(); 7802 7803 StringRef ModulePath; 7804 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 7805 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 7806 /*Live=*/false, /*IsLocal=*/false); 7807 if (ParseToken(lltok::colon, "expected ':' here") || 7808 ParseToken(lltok::lparen, "expected '(' here") || 7809 ParseModuleReference(ModulePath) || 7810 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 7811 ParseToken(lltok::comma, "expected ',' here") || 7812 ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") || 7813 ParseToken(lltok::colon, "expected ':' here")) 7814 return true; 7815 7816 ValueInfo AliaseeVI; 7817 unsigned GVId; 7818 if (ParseGVReference(AliaseeVI, GVId)) 7819 return true; 7820 7821 if (ParseToken(lltok::rparen, "expected ')' here")) 7822 return true; 7823 7824 auto AS = llvm::make_unique<AliasSummary>(GVFlags); 7825 7826 AS->setModulePath(ModulePath); 7827 7828 // Record forward reference if the aliasee is not parsed yet. 7829 if (AliaseeVI.getRef() == FwdVIRef) { 7830 auto FwdRef = ForwardRefAliasees.insert( 7831 std::make_pair(GVId, std::vector<std::pair<AliasSummary *, LocTy>>())); 7832 FwdRef.first->second.push_back(std::make_pair(AS.get(), Loc)); 7833 } else 7834 AS->setAliasee(AliaseeVI.getSummaryList().front().get()); 7835 7836 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 7837 ID, std::move(AS)); 7838 7839 return false; 7840 } 7841 7842 /// Flag 7843 /// ::= [0|1] 7844 bool LLParser::ParseFlag(unsigned &Val) { 7845 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 7846 return TokError("expected integer"); 7847 Val = (unsigned)Lex.getAPSIntVal().getBoolValue(); 7848 Lex.Lex(); 7849 return false; 7850 } 7851 7852 /// OptionalFFlags 7853 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]? 7854 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]? 7855 /// [',' 'returnDoesNotAlias' ':' Flag]? ')' 7856 /// [',' 'noInline' ':' Flag]? ')' 7857 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) { 7858 assert(Lex.getKind() == lltok::kw_funcFlags); 7859 Lex.Lex(); 7860 7861 if (ParseToken(lltok::colon, "expected ':' in funcFlags") | 7862 ParseToken(lltok::lparen, "expected '(' in funcFlags")) 7863 return true; 7864 7865 do { 7866 unsigned Val; 7867 switch (Lex.getKind()) { 7868 case lltok::kw_readNone: 7869 Lex.Lex(); 7870 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 7871 return true; 7872 FFlags.ReadNone = Val; 7873 break; 7874 case lltok::kw_readOnly: 7875 Lex.Lex(); 7876 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 7877 return true; 7878 FFlags.ReadOnly = Val; 7879 break; 7880 case lltok::kw_noRecurse: 7881 Lex.Lex(); 7882 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 7883 return true; 7884 FFlags.NoRecurse = Val; 7885 break; 7886 case lltok::kw_returnDoesNotAlias: 7887 Lex.Lex(); 7888 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 7889 return true; 7890 FFlags.ReturnDoesNotAlias = Val; 7891 break; 7892 case lltok::kw_noInline: 7893 Lex.Lex(); 7894 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 7895 return true; 7896 FFlags.NoInline = Val; 7897 break; 7898 default: 7899 return Error(Lex.getLoc(), "expected function flag type"); 7900 } 7901 } while (EatIfPresent(lltok::comma)); 7902 7903 if (ParseToken(lltok::rparen, "expected ')' in funcFlags")) 7904 return true; 7905 7906 return false; 7907 } 7908 7909 /// OptionalCalls 7910 /// := 'calls' ':' '(' Call [',' Call]* ')' 7911 /// Call ::= '(' 'callee' ':' GVReference 7912 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')' 7913 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) { 7914 assert(Lex.getKind() == lltok::kw_calls); 7915 Lex.Lex(); 7916 7917 if (ParseToken(lltok::colon, "expected ':' in calls") | 7918 ParseToken(lltok::lparen, "expected '(' in calls")) 7919 return true; 7920 7921 IdToIndexMapType IdToIndexMap; 7922 // Parse each call edge 7923 do { 7924 ValueInfo VI; 7925 if (ParseToken(lltok::lparen, "expected '(' in call") || 7926 ParseToken(lltok::kw_callee, "expected 'callee' in call") || 7927 ParseToken(lltok::colon, "expected ':'")) 7928 return true; 7929 7930 LocTy Loc = Lex.getLoc(); 7931 unsigned GVId; 7932 if (ParseGVReference(VI, GVId)) 7933 return true; 7934 7935 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 7936 unsigned RelBF = 0; 7937 if (EatIfPresent(lltok::comma)) { 7938 // Expect either hotness or relbf 7939 if (EatIfPresent(lltok::kw_hotness)) { 7940 if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness)) 7941 return true; 7942 } else { 7943 if (ParseToken(lltok::kw_relbf, "expected relbf") || 7944 ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF)) 7945 return true; 7946 } 7947 } 7948 // Keep track of the Call array index needing a forward reference. 7949 // We will save the location of the ValueInfo needing an update, but 7950 // can only do so once the std::vector is finalized. 7951 if (VI.getRef() == FwdVIRef) 7952 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc)); 7953 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)}); 7954 7955 if (ParseToken(lltok::rparen, "expected ')' in call")) 7956 return true; 7957 } while (EatIfPresent(lltok::comma)); 7958 7959 // Now that the Calls vector is finalized, it is safe to save the locations 7960 // of any forward GV references that need updating later. 7961 for (auto I : IdToIndexMap) { 7962 for (auto P : I.second) { 7963 assert(Calls[P.first].first.getRef() == FwdVIRef && 7964 "Forward referenced ValueInfo expected to be empty"); 7965 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 7966 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 7967 FwdRef.first->second.push_back( 7968 std::make_pair(&Calls[P.first].first, P.second)); 7969 } 7970 } 7971 7972 if (ParseToken(lltok::rparen, "expected ')' in calls")) 7973 return true; 7974 7975 return false; 7976 } 7977 7978 /// Hotness 7979 /// := ('unknown'|'cold'|'none'|'hot'|'critical') 7980 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) { 7981 switch (Lex.getKind()) { 7982 case lltok::kw_unknown: 7983 Hotness = CalleeInfo::HotnessType::Unknown; 7984 break; 7985 case lltok::kw_cold: 7986 Hotness = CalleeInfo::HotnessType::Cold; 7987 break; 7988 case lltok::kw_none: 7989 Hotness = CalleeInfo::HotnessType::None; 7990 break; 7991 case lltok::kw_hot: 7992 Hotness = CalleeInfo::HotnessType::Hot; 7993 break; 7994 case lltok::kw_critical: 7995 Hotness = CalleeInfo::HotnessType::Critical; 7996 break; 7997 default: 7998 return Error(Lex.getLoc(), "invalid call edge hotness"); 7999 } 8000 Lex.Lex(); 8001 return false; 8002 } 8003 8004 /// OptionalRefs 8005 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')' 8006 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) { 8007 assert(Lex.getKind() == lltok::kw_refs); 8008 Lex.Lex(); 8009 8010 if (ParseToken(lltok::colon, "expected ':' in refs") | 8011 ParseToken(lltok::lparen, "expected '(' in refs")) 8012 return true; 8013 8014 struct ValueContext { 8015 ValueInfo VI; 8016 unsigned GVId; 8017 LocTy Loc; 8018 }; 8019 std::vector<ValueContext> VContexts; 8020 // Parse each ref edge 8021 do { 8022 ValueContext VC; 8023 VC.Loc = Lex.getLoc(); 8024 if (ParseGVReference(VC.VI, VC.GVId)) 8025 return true; 8026 VContexts.push_back(VC); 8027 } while (EatIfPresent(lltok::comma)); 8028 8029 // Sort value contexts so that ones with readonly ValueInfo are at the end 8030 // of VContexts vector. This is needed to match immutableRefCount() behavior. 8031 llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) { 8032 return VC1.VI.isReadOnly() < VC2.VI.isReadOnly(); 8033 }); 8034 8035 IdToIndexMapType IdToIndexMap; 8036 for (auto &VC : VContexts) { 8037 // Keep track of the Refs array index needing a forward reference. 8038 // We will save the location of the ValueInfo needing an update, but 8039 // can only do so once the std::vector is finalized. 8040 if (VC.VI.getRef() == FwdVIRef) 8041 IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc)); 8042 Refs.push_back(VC.VI); 8043 } 8044 8045 // Now that the Refs vector is finalized, it is safe to save the locations 8046 // of any forward GV references that need updating later. 8047 for (auto I : IdToIndexMap) { 8048 for (auto P : I.second) { 8049 assert(Refs[P.first].getRef() == FwdVIRef && 8050 "Forward referenced ValueInfo expected to be empty"); 8051 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 8052 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 8053 FwdRef.first->second.push_back(std::make_pair(&Refs[P.first], P.second)); 8054 } 8055 } 8056 8057 if (ParseToken(lltok::rparen, "expected ')' in refs")) 8058 return true; 8059 8060 return false; 8061 } 8062 8063 /// OptionalTypeIdInfo 8064 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]? 8065 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]? 8066 /// [',' TypeCheckedLoadConstVCalls]? ')' 8067 bool LLParser::ParseOptionalTypeIdInfo( 8068 FunctionSummary::TypeIdInfo &TypeIdInfo) { 8069 assert(Lex.getKind() == lltok::kw_typeIdInfo); 8070 Lex.Lex(); 8071 8072 if (ParseToken(lltok::colon, "expected ':' here") || 8073 ParseToken(lltok::lparen, "expected '(' in typeIdInfo")) 8074 return true; 8075 8076 do { 8077 switch (Lex.getKind()) { 8078 case lltok::kw_typeTests: 8079 if (ParseTypeTests(TypeIdInfo.TypeTests)) 8080 return true; 8081 break; 8082 case lltok::kw_typeTestAssumeVCalls: 8083 if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls, 8084 TypeIdInfo.TypeTestAssumeVCalls)) 8085 return true; 8086 break; 8087 case lltok::kw_typeCheckedLoadVCalls: 8088 if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls, 8089 TypeIdInfo.TypeCheckedLoadVCalls)) 8090 return true; 8091 break; 8092 case lltok::kw_typeTestAssumeConstVCalls: 8093 if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls, 8094 TypeIdInfo.TypeTestAssumeConstVCalls)) 8095 return true; 8096 break; 8097 case lltok::kw_typeCheckedLoadConstVCalls: 8098 if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls, 8099 TypeIdInfo.TypeCheckedLoadConstVCalls)) 8100 return true; 8101 break; 8102 default: 8103 return Error(Lex.getLoc(), "invalid typeIdInfo list type"); 8104 } 8105 } while (EatIfPresent(lltok::comma)); 8106 8107 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo")) 8108 return true; 8109 8110 return false; 8111 } 8112 8113 /// TypeTests 8114 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64) 8115 /// [',' (SummaryID | UInt64)]* ')' 8116 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) { 8117 assert(Lex.getKind() == lltok::kw_typeTests); 8118 Lex.Lex(); 8119 8120 if (ParseToken(lltok::colon, "expected ':' here") || 8121 ParseToken(lltok::lparen, "expected '(' in typeIdInfo")) 8122 return true; 8123 8124 IdToIndexMapType IdToIndexMap; 8125 do { 8126 GlobalValue::GUID GUID = 0; 8127 if (Lex.getKind() == lltok::SummaryID) { 8128 unsigned ID = Lex.getUIntVal(); 8129 LocTy Loc = Lex.getLoc(); 8130 // Keep track of the TypeTests array index needing a forward reference. 8131 // We will save the location of the GUID needing an update, but 8132 // can only do so once the std::vector is finalized. 8133 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc)); 8134 Lex.Lex(); 8135 } else if (ParseUInt64(GUID)) 8136 return true; 8137 TypeTests.push_back(GUID); 8138 } while (EatIfPresent(lltok::comma)); 8139 8140 // Now that the TypeTests vector is finalized, it is safe to save the 8141 // locations of any forward GV references that need updating later. 8142 for (auto I : IdToIndexMap) { 8143 for (auto P : I.second) { 8144 assert(TypeTests[P.first] == 0 && 8145 "Forward referenced type id GUID expected to be 0"); 8146 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8147 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8148 FwdRef.first->second.push_back( 8149 std::make_pair(&TypeTests[P.first], P.second)); 8150 } 8151 } 8152 8153 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo")) 8154 return true; 8155 8156 return false; 8157 } 8158 8159 /// VFuncIdList 8160 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')' 8161 bool LLParser::ParseVFuncIdList( 8162 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) { 8163 assert(Lex.getKind() == Kind); 8164 Lex.Lex(); 8165 8166 if (ParseToken(lltok::colon, "expected ':' here") || 8167 ParseToken(lltok::lparen, "expected '(' here")) 8168 return true; 8169 8170 IdToIndexMapType IdToIndexMap; 8171 do { 8172 FunctionSummary::VFuncId VFuncId; 8173 if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size())) 8174 return true; 8175 VFuncIdList.push_back(VFuncId); 8176 } while (EatIfPresent(lltok::comma)); 8177 8178 if (ParseToken(lltok::rparen, "expected ')' here")) 8179 return true; 8180 8181 // Now that the VFuncIdList vector is finalized, it is safe to save the 8182 // locations of any forward GV references that need updating later. 8183 for (auto I : IdToIndexMap) { 8184 for (auto P : I.second) { 8185 assert(VFuncIdList[P.first].GUID == 0 && 8186 "Forward referenced type id GUID expected to be 0"); 8187 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8188 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8189 FwdRef.first->second.push_back( 8190 std::make_pair(&VFuncIdList[P.first].GUID, P.second)); 8191 } 8192 } 8193 8194 return false; 8195 } 8196 8197 /// ConstVCallList 8198 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')' 8199 bool LLParser::ParseConstVCallList( 8200 lltok::Kind Kind, 8201 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) { 8202 assert(Lex.getKind() == Kind); 8203 Lex.Lex(); 8204 8205 if (ParseToken(lltok::colon, "expected ':' here") || 8206 ParseToken(lltok::lparen, "expected '(' here")) 8207 return true; 8208 8209 IdToIndexMapType IdToIndexMap; 8210 do { 8211 FunctionSummary::ConstVCall ConstVCall; 8212 if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size())) 8213 return true; 8214 ConstVCallList.push_back(ConstVCall); 8215 } while (EatIfPresent(lltok::comma)); 8216 8217 if (ParseToken(lltok::rparen, "expected ')' here")) 8218 return true; 8219 8220 // Now that the ConstVCallList vector is finalized, it is safe to save the 8221 // locations of any forward GV references that need updating later. 8222 for (auto I : IdToIndexMap) { 8223 for (auto P : I.second) { 8224 assert(ConstVCallList[P.first].VFunc.GUID == 0 && 8225 "Forward referenced type id GUID expected to be 0"); 8226 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8227 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8228 FwdRef.first->second.push_back( 8229 std::make_pair(&ConstVCallList[P.first].VFunc.GUID, P.second)); 8230 } 8231 } 8232 8233 return false; 8234 } 8235 8236 /// ConstVCall 8237 /// ::= '(' VFuncId ',' Args ')' 8238 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall, 8239 IdToIndexMapType &IdToIndexMap, unsigned Index) { 8240 if (ParseToken(lltok::lparen, "expected '(' here") || 8241 ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index)) 8242 return true; 8243 8244 if (EatIfPresent(lltok::comma)) 8245 if (ParseArgs(ConstVCall.Args)) 8246 return true; 8247 8248 if (ParseToken(lltok::rparen, "expected ')' here")) 8249 return true; 8250 8251 return false; 8252 } 8253 8254 /// VFuncId 8255 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ',' 8256 /// 'offset' ':' UInt64 ')' 8257 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId, 8258 IdToIndexMapType &IdToIndexMap, unsigned Index) { 8259 assert(Lex.getKind() == lltok::kw_vFuncId); 8260 Lex.Lex(); 8261 8262 if (ParseToken(lltok::colon, "expected ':' here") || 8263 ParseToken(lltok::lparen, "expected '(' here")) 8264 return true; 8265 8266 if (Lex.getKind() == lltok::SummaryID) { 8267 VFuncId.GUID = 0; 8268 unsigned ID = Lex.getUIntVal(); 8269 LocTy Loc = Lex.getLoc(); 8270 // Keep track of the array index needing a forward reference. 8271 // We will save the location of the GUID needing an update, but 8272 // can only do so once the caller's std::vector is finalized. 8273 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc)); 8274 Lex.Lex(); 8275 } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") || 8276 ParseToken(lltok::colon, "expected ':' here") || 8277 ParseUInt64(VFuncId.GUID)) 8278 return true; 8279 8280 if (ParseToken(lltok::comma, "expected ',' here") || 8281 ParseToken(lltok::kw_offset, "expected 'offset' here") || 8282 ParseToken(lltok::colon, "expected ':' here") || 8283 ParseUInt64(VFuncId.Offset) || 8284 ParseToken(lltok::rparen, "expected ')' here")) 8285 return true; 8286 8287 return false; 8288 } 8289 8290 /// GVFlags 8291 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ',' 8292 /// 'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ',' 8293 /// 'dsoLocal' ':' Flag ')' 8294 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) { 8295 assert(Lex.getKind() == lltok::kw_flags); 8296 Lex.Lex(); 8297 8298 bool HasLinkage; 8299 if (ParseToken(lltok::colon, "expected ':' here") || 8300 ParseToken(lltok::lparen, "expected '(' here") || 8301 ParseToken(lltok::kw_linkage, "expected 'linkage' here") || 8302 ParseToken(lltok::colon, "expected ':' here")) 8303 return true; 8304 8305 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 8306 assert(HasLinkage && "Linkage not optional in summary entry"); 8307 Lex.Lex(); 8308 8309 unsigned Flag; 8310 if (ParseToken(lltok::comma, "expected ',' here") || 8311 ParseToken(lltok::kw_notEligibleToImport, 8312 "expected 'notEligibleToImport' here") || 8313 ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag)) 8314 return true; 8315 GVFlags.NotEligibleToImport = Flag; 8316 8317 if (ParseToken(lltok::comma, "expected ',' here") || 8318 ParseToken(lltok::kw_live, "expected 'live' here") || 8319 ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag)) 8320 return true; 8321 GVFlags.Live = Flag; 8322 8323 if (ParseToken(lltok::comma, "expected ',' here") || 8324 ParseToken(lltok::kw_dsoLocal, "expected 'dsoLocal' here") || 8325 ParseToken(lltok::colon, "expected ':' here") || ParseFlag(Flag)) 8326 return true; 8327 GVFlags.DSOLocal = Flag; 8328 8329 if (ParseToken(lltok::rparen, "expected ')' here")) 8330 return true; 8331 8332 return false; 8333 } 8334 8335 /// GVarFlags 8336 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag ')' 8337 bool LLParser::ParseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) { 8338 assert(Lex.getKind() == lltok::kw_varFlags); 8339 Lex.Lex(); 8340 8341 unsigned Flag; 8342 if (ParseToken(lltok::colon, "expected ':' here") || 8343 ParseToken(lltok::lparen, "expected '(' here") || 8344 ParseToken(lltok::kw_readonly, "expected 'readonly' here") || 8345 ParseToken(lltok::colon, "expected ':' here")) 8346 return true; 8347 8348 ParseFlag(Flag); 8349 GVarFlags.ReadOnly = Flag; 8350 8351 if (ParseToken(lltok::rparen, "expected ')' here")) 8352 return true; 8353 return false; 8354 } 8355 8356 /// ModuleReference 8357 /// ::= 'module' ':' UInt 8358 bool LLParser::ParseModuleReference(StringRef &ModulePath) { 8359 // Parse module id. 8360 if (ParseToken(lltok::kw_module, "expected 'module' here") || 8361 ParseToken(lltok::colon, "expected ':' here") || 8362 ParseToken(lltok::SummaryID, "expected module ID")) 8363 return true; 8364 8365 unsigned ModuleID = Lex.getUIntVal(); 8366 auto I = ModuleIdMap.find(ModuleID); 8367 // We should have already parsed all module IDs 8368 assert(I != ModuleIdMap.end()); 8369 ModulePath = I->second; 8370 return false; 8371 } 8372 8373 /// GVReference 8374 /// ::= SummaryID 8375 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) { 8376 bool ReadOnly = EatIfPresent(lltok::kw_readonly); 8377 if (ParseToken(lltok::SummaryID, "expected GV ID")) 8378 return true; 8379 8380 GVId = Lex.getUIntVal(); 8381 // Check if we already have a VI for this GV 8382 if (GVId < NumberedValueInfos.size()) { 8383 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef); 8384 VI = NumberedValueInfos[GVId]; 8385 } else 8386 // We will create a forward reference to the stored location. 8387 VI = ValueInfo(false, FwdVIRef); 8388 8389 if (ReadOnly) 8390 VI.setReadOnly(); 8391 return false; 8392 } 8393