1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the parser class for .ll files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "LLParser.h" 14 #include "LLToken.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/AsmParser/SlotMapping.h" 21 #include "llvm/BinaryFormat/Dwarf.h" 22 #include "llvm/IR/Argument.h" 23 #include "llvm/IR/AutoUpgrade.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallingConv.h" 26 #include "llvm/IR/Comdat.h" 27 #include "llvm/IR/ConstantRange.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DebugInfoMetadata.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/GlobalIFunc.h" 33 #include "llvm/IR/GlobalObject.h" 34 #include "llvm/IR/InlineAsm.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/IR/ValueSymbolTable.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/MathExtras.h" 44 #include "llvm/Support/SaveAndRestore.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include <algorithm> 47 #include <cassert> 48 #include <cstring> 49 #include <iterator> 50 #include <vector> 51 52 using namespace llvm; 53 54 static std::string getTypeString(Type *T) { 55 std::string Result; 56 raw_string_ostream Tmp(Result); 57 Tmp << *T; 58 return Tmp.str(); 59 } 60 61 /// Run: module ::= toplevelentity* 62 bool LLParser::Run(bool UpgradeDebugInfo, 63 DataLayoutCallbackTy DataLayoutCallback) { 64 // Prime the lexer. 65 Lex.Lex(); 66 67 if (Context.shouldDiscardValueNames()) 68 return Error( 69 Lex.getLoc(), 70 "Can't read textual IR with a Context that discards named Values"); 71 72 if (M) { 73 if (ParseTargetDefinitions()) 74 return true; 75 76 if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple())) 77 M->setDataLayout(*LayoutOverride); 78 } 79 80 return ParseTopLevelEntities() || ValidateEndOfModule(UpgradeDebugInfo) || 81 ValidateEndOfIndex(); 82 } 83 84 bool LLParser::parseStandaloneConstantValue(Constant *&C, 85 const SlotMapping *Slots) { 86 restoreParsingState(Slots); 87 Lex.Lex(); 88 89 Type *Ty = nullptr; 90 if (ParseType(Ty) || parseConstantValue(Ty, C)) 91 return true; 92 if (Lex.getKind() != lltok::Eof) 93 return Error(Lex.getLoc(), "expected end of string"); 94 return false; 95 } 96 97 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 98 const SlotMapping *Slots) { 99 restoreParsingState(Slots); 100 Lex.Lex(); 101 102 Read = 0; 103 SMLoc Start = Lex.getLoc(); 104 Ty = nullptr; 105 if (ParseType(Ty)) 106 return true; 107 SMLoc End = Lex.getLoc(); 108 Read = End.getPointer() - Start.getPointer(); 109 110 return false; 111 } 112 113 void LLParser::restoreParsingState(const SlotMapping *Slots) { 114 if (!Slots) 115 return; 116 NumberedVals = Slots->GlobalValues; 117 NumberedMetadata = Slots->MetadataNodes; 118 for (const auto &I : Slots->NamedTypes) 119 NamedTypes.insert( 120 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 121 for (const auto &I : Slots->Types) 122 NumberedTypes.insert( 123 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 124 } 125 126 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 127 /// module. 128 bool LLParser::ValidateEndOfModule(bool UpgradeDebugInfo) { 129 if (!M) 130 return false; 131 // Handle any function attribute group forward references. 132 for (const auto &RAG : ForwardRefAttrGroups) { 133 Value *V = RAG.first; 134 const std::vector<unsigned> &Attrs = RAG.second; 135 AttrBuilder B; 136 137 for (const auto &Attr : Attrs) 138 B.merge(NumberedAttrBuilders[Attr]); 139 140 if (Function *Fn = dyn_cast<Function>(V)) { 141 AttributeList AS = Fn->getAttributes(); 142 AttrBuilder FnAttrs(AS.getFnAttributes()); 143 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 144 145 FnAttrs.merge(B); 146 147 // If the alignment was parsed as an attribute, move to the alignment 148 // field. 149 if (FnAttrs.hasAlignmentAttr()) { 150 Fn->setAlignment(FnAttrs.getAlignment()); 151 FnAttrs.removeAttribute(Attribute::Alignment); 152 } 153 154 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 155 AttributeSet::get(Context, FnAttrs)); 156 Fn->setAttributes(AS); 157 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 158 AttributeList AS = CI->getAttributes(); 159 AttrBuilder FnAttrs(AS.getFnAttributes()); 160 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 161 FnAttrs.merge(B); 162 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 163 AttributeSet::get(Context, FnAttrs)); 164 CI->setAttributes(AS); 165 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 166 AttributeList AS = II->getAttributes(); 167 AttrBuilder FnAttrs(AS.getFnAttributes()); 168 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 169 FnAttrs.merge(B); 170 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 171 AttributeSet::get(Context, FnAttrs)); 172 II->setAttributes(AS); 173 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) { 174 AttributeList AS = CBI->getAttributes(); 175 AttrBuilder FnAttrs(AS.getFnAttributes()); 176 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 177 FnAttrs.merge(B); 178 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 179 AttributeSet::get(Context, FnAttrs)); 180 CBI->setAttributes(AS); 181 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 182 AttrBuilder Attrs(GV->getAttributes()); 183 Attrs.merge(B); 184 GV->setAttributes(AttributeSet::get(Context,Attrs)); 185 } else { 186 llvm_unreachable("invalid object with forward attribute group reference"); 187 } 188 } 189 190 // If there are entries in ForwardRefBlockAddresses at this point, the 191 // function was never defined. 192 if (!ForwardRefBlockAddresses.empty()) 193 return Error(ForwardRefBlockAddresses.begin()->first.Loc, 194 "expected function name in blockaddress"); 195 196 for (const auto &NT : NumberedTypes) 197 if (NT.second.second.isValid()) 198 return Error(NT.second.second, 199 "use of undefined type '%" + Twine(NT.first) + "'"); 200 201 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 202 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 203 if (I->second.second.isValid()) 204 return Error(I->second.second, 205 "use of undefined type named '" + I->getKey() + "'"); 206 207 if (!ForwardRefComdats.empty()) 208 return Error(ForwardRefComdats.begin()->second, 209 "use of undefined comdat '$" + 210 ForwardRefComdats.begin()->first + "'"); 211 212 if (!ForwardRefVals.empty()) 213 return Error(ForwardRefVals.begin()->second.second, 214 "use of undefined value '@" + ForwardRefVals.begin()->first + 215 "'"); 216 217 if (!ForwardRefValIDs.empty()) 218 return Error(ForwardRefValIDs.begin()->second.second, 219 "use of undefined value '@" + 220 Twine(ForwardRefValIDs.begin()->first) + "'"); 221 222 if (!ForwardRefMDNodes.empty()) 223 return Error(ForwardRefMDNodes.begin()->second.second, 224 "use of undefined metadata '!" + 225 Twine(ForwardRefMDNodes.begin()->first) + "'"); 226 227 // Resolve metadata cycles. 228 for (auto &N : NumberedMetadata) { 229 if (N.second && !N.second->isResolved()) 230 N.second->resolveCycles(); 231 } 232 233 for (auto *Inst : InstsWithTBAATag) { 234 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 235 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 236 auto *UpgradedMD = UpgradeTBAANode(*MD); 237 if (MD != UpgradedMD) 238 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 239 } 240 241 // Look for intrinsic functions and CallInst that need to be upgraded 242 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 243 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 244 245 // Some types could be renamed during loading if several modules are 246 // loaded in the same LLVMContext (LTO scenario). In this case we should 247 // remangle intrinsics names as well. 248 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) { 249 Function *F = &*FI++; 250 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 251 F->replaceAllUsesWith(Remangled.getValue()); 252 F->eraseFromParent(); 253 } 254 } 255 256 if (UpgradeDebugInfo) 257 llvm::UpgradeDebugInfo(*M); 258 259 UpgradeModuleFlags(*M); 260 UpgradeSectionAttributes(*M); 261 262 if (!Slots) 263 return false; 264 // Initialize the slot mapping. 265 // Because by this point we've parsed and validated everything, we can "steal" 266 // the mapping from LLParser as it doesn't need it anymore. 267 Slots->GlobalValues = std::move(NumberedVals); 268 Slots->MetadataNodes = std::move(NumberedMetadata); 269 for (const auto &I : NamedTypes) 270 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 271 for (const auto &I : NumberedTypes) 272 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 273 274 return false; 275 } 276 277 /// Do final validity and sanity checks at the end of the index. 278 bool LLParser::ValidateEndOfIndex() { 279 if (!Index) 280 return false; 281 282 if (!ForwardRefValueInfos.empty()) 283 return Error(ForwardRefValueInfos.begin()->second.front().second, 284 "use of undefined summary '^" + 285 Twine(ForwardRefValueInfos.begin()->first) + "'"); 286 287 if (!ForwardRefAliasees.empty()) 288 return Error(ForwardRefAliasees.begin()->second.front().second, 289 "use of undefined summary '^" + 290 Twine(ForwardRefAliasees.begin()->first) + "'"); 291 292 if (!ForwardRefTypeIds.empty()) 293 return Error(ForwardRefTypeIds.begin()->second.front().second, 294 "use of undefined type id summary '^" + 295 Twine(ForwardRefTypeIds.begin()->first) + "'"); 296 297 return false; 298 } 299 300 //===----------------------------------------------------------------------===// 301 // Top-Level Entities 302 //===----------------------------------------------------------------------===// 303 304 bool LLParser::ParseTargetDefinitions() { 305 while (true) { 306 switch (Lex.getKind()) { 307 case lltok::kw_target: 308 if (ParseTargetDefinition()) 309 return true; 310 break; 311 case lltok::kw_source_filename: 312 if (ParseSourceFileName()) 313 return true; 314 break; 315 default: 316 return false; 317 } 318 } 319 } 320 321 bool LLParser::ParseTopLevelEntities() { 322 // If there is no Module, then parse just the summary index entries. 323 if (!M) { 324 while (true) { 325 switch (Lex.getKind()) { 326 case lltok::Eof: 327 return false; 328 case lltok::SummaryID: 329 if (ParseSummaryEntry()) 330 return true; 331 break; 332 case lltok::kw_source_filename: 333 if (ParseSourceFileName()) 334 return true; 335 break; 336 default: 337 // Skip everything else 338 Lex.Lex(); 339 } 340 } 341 } 342 while (true) { 343 switch (Lex.getKind()) { 344 default: return TokError("expected top-level entity"); 345 case lltok::Eof: return false; 346 case lltok::kw_declare: if (ParseDeclare()) return true; break; 347 case lltok::kw_define: if (ParseDefine()) return true; break; 348 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 349 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 350 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 351 case lltok::LocalVar: if (ParseNamedType()) return true; break; 352 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 353 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 354 case lltok::ComdatVar: if (parseComdat()) return true; break; 355 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 356 case lltok::SummaryID: 357 if (ParseSummaryEntry()) 358 return true; 359 break; 360 case lltok::MetadataVar:if (ParseNamedMetadata()) return true; break; 361 case lltok::kw_attributes: if (ParseUnnamedAttrGrp()) return true; break; 362 case lltok::kw_uselistorder: if (ParseUseListOrder()) return true; break; 363 case lltok::kw_uselistorder_bb: 364 if (ParseUseListOrderBB()) 365 return true; 366 break; 367 } 368 } 369 } 370 371 /// toplevelentity 372 /// ::= 'module' 'asm' STRINGCONSTANT 373 bool LLParser::ParseModuleAsm() { 374 assert(Lex.getKind() == lltok::kw_module); 375 Lex.Lex(); 376 377 std::string AsmStr; 378 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 379 ParseStringConstant(AsmStr)) return true; 380 381 M->appendModuleInlineAsm(AsmStr); 382 return false; 383 } 384 385 /// toplevelentity 386 /// ::= 'target' 'triple' '=' STRINGCONSTANT 387 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 388 bool LLParser::ParseTargetDefinition() { 389 assert(Lex.getKind() == lltok::kw_target); 390 std::string Str; 391 switch (Lex.Lex()) { 392 default: return TokError("unknown target property"); 393 case lltok::kw_triple: 394 Lex.Lex(); 395 if (ParseToken(lltok::equal, "expected '=' after target triple") || 396 ParseStringConstant(Str)) 397 return true; 398 M->setTargetTriple(Str); 399 return false; 400 case lltok::kw_datalayout: 401 Lex.Lex(); 402 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 403 ParseStringConstant(Str)) 404 return true; 405 M->setDataLayout(Str); 406 return false; 407 } 408 } 409 410 /// toplevelentity 411 /// ::= 'source_filename' '=' STRINGCONSTANT 412 bool LLParser::ParseSourceFileName() { 413 assert(Lex.getKind() == lltok::kw_source_filename); 414 Lex.Lex(); 415 if (ParseToken(lltok::equal, "expected '=' after source_filename") || 416 ParseStringConstant(SourceFileName)) 417 return true; 418 if (M) 419 M->setSourceFileName(SourceFileName); 420 return false; 421 } 422 423 /// toplevelentity 424 /// ::= 'deplibs' '=' '[' ']' 425 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 426 /// FIXME: Remove in 4.0. Currently parse, but ignore. 427 bool LLParser::ParseDepLibs() { 428 assert(Lex.getKind() == lltok::kw_deplibs); 429 Lex.Lex(); 430 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 431 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 432 return true; 433 434 if (EatIfPresent(lltok::rsquare)) 435 return false; 436 437 do { 438 std::string Str; 439 if (ParseStringConstant(Str)) return true; 440 } while (EatIfPresent(lltok::comma)); 441 442 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 443 } 444 445 /// ParseUnnamedType: 446 /// ::= LocalVarID '=' 'type' type 447 bool LLParser::ParseUnnamedType() { 448 LocTy TypeLoc = Lex.getLoc(); 449 unsigned TypeID = Lex.getUIntVal(); 450 Lex.Lex(); // eat LocalVarID; 451 452 if (ParseToken(lltok::equal, "expected '=' after name") || 453 ParseToken(lltok::kw_type, "expected 'type' after '='")) 454 return true; 455 456 Type *Result = nullptr; 457 if (ParseStructDefinition(TypeLoc, "", 458 NumberedTypes[TypeID], Result)) return true; 459 460 if (!isa<StructType>(Result)) { 461 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 462 if (Entry.first) 463 return Error(TypeLoc, "non-struct types may not be recursive"); 464 Entry.first = Result; 465 Entry.second = SMLoc(); 466 } 467 468 return false; 469 } 470 471 /// toplevelentity 472 /// ::= LocalVar '=' 'type' type 473 bool LLParser::ParseNamedType() { 474 std::string Name = Lex.getStrVal(); 475 LocTy NameLoc = Lex.getLoc(); 476 Lex.Lex(); // eat LocalVar. 477 478 if (ParseToken(lltok::equal, "expected '=' after name") || 479 ParseToken(lltok::kw_type, "expected 'type' after name")) 480 return true; 481 482 Type *Result = nullptr; 483 if (ParseStructDefinition(NameLoc, Name, 484 NamedTypes[Name], Result)) return true; 485 486 if (!isa<StructType>(Result)) { 487 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 488 if (Entry.first) 489 return Error(NameLoc, "non-struct types may not be recursive"); 490 Entry.first = Result; 491 Entry.second = SMLoc(); 492 } 493 494 return false; 495 } 496 497 /// toplevelentity 498 /// ::= 'declare' FunctionHeader 499 bool LLParser::ParseDeclare() { 500 assert(Lex.getKind() == lltok::kw_declare); 501 Lex.Lex(); 502 503 std::vector<std::pair<unsigned, MDNode *>> MDs; 504 while (Lex.getKind() == lltok::MetadataVar) { 505 unsigned MDK; 506 MDNode *N; 507 if (ParseMetadataAttachment(MDK, N)) 508 return true; 509 MDs.push_back({MDK, N}); 510 } 511 512 Function *F; 513 if (ParseFunctionHeader(F, false)) 514 return true; 515 for (auto &MD : MDs) 516 F->addMetadata(MD.first, *MD.second); 517 return false; 518 } 519 520 /// toplevelentity 521 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 522 bool LLParser::ParseDefine() { 523 assert(Lex.getKind() == lltok::kw_define); 524 Lex.Lex(); 525 526 Function *F; 527 return ParseFunctionHeader(F, true) || 528 ParseOptionalFunctionMetadata(*F) || 529 ParseFunctionBody(*F); 530 } 531 532 /// ParseGlobalType 533 /// ::= 'constant' 534 /// ::= 'global' 535 bool LLParser::ParseGlobalType(bool &IsConstant) { 536 if (Lex.getKind() == lltok::kw_constant) 537 IsConstant = true; 538 else if (Lex.getKind() == lltok::kw_global) 539 IsConstant = false; 540 else { 541 IsConstant = false; 542 return TokError("expected 'global' or 'constant'"); 543 } 544 Lex.Lex(); 545 return false; 546 } 547 548 bool LLParser::ParseOptionalUnnamedAddr( 549 GlobalVariable::UnnamedAddr &UnnamedAddr) { 550 if (EatIfPresent(lltok::kw_unnamed_addr)) 551 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 552 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 553 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 554 else 555 UnnamedAddr = GlobalValue::UnnamedAddr::None; 556 return false; 557 } 558 559 /// ParseUnnamedGlobal: 560 /// OptionalVisibility (ALIAS | IFUNC) ... 561 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 562 /// OptionalDLLStorageClass 563 /// ... -> global variable 564 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 565 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 566 /// OptionalDLLStorageClass 567 /// ... -> global variable 568 bool LLParser::ParseUnnamedGlobal() { 569 unsigned VarID = NumberedVals.size(); 570 std::string Name; 571 LocTy NameLoc = Lex.getLoc(); 572 573 // Handle the GlobalID form. 574 if (Lex.getKind() == lltok::GlobalID) { 575 if (Lex.getUIntVal() != VarID) 576 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 577 Twine(VarID) + "'"); 578 Lex.Lex(); // eat GlobalID; 579 580 if (ParseToken(lltok::equal, "expected '=' after name")) 581 return true; 582 } 583 584 bool HasLinkage; 585 unsigned Linkage, Visibility, DLLStorageClass; 586 bool DSOLocal; 587 GlobalVariable::ThreadLocalMode TLM; 588 GlobalVariable::UnnamedAddr UnnamedAddr; 589 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 590 DSOLocal) || 591 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 592 return true; 593 594 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 595 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 596 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 597 598 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 599 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 600 } 601 602 /// ParseNamedGlobal: 603 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 604 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 605 /// OptionalVisibility OptionalDLLStorageClass 606 /// ... -> global variable 607 bool LLParser::ParseNamedGlobal() { 608 assert(Lex.getKind() == lltok::GlobalVar); 609 LocTy NameLoc = Lex.getLoc(); 610 std::string Name = Lex.getStrVal(); 611 Lex.Lex(); 612 613 bool HasLinkage; 614 unsigned Linkage, Visibility, DLLStorageClass; 615 bool DSOLocal; 616 GlobalVariable::ThreadLocalMode TLM; 617 GlobalVariable::UnnamedAddr UnnamedAddr; 618 if (ParseToken(lltok::equal, "expected '=' in global variable") || 619 ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 620 DSOLocal) || 621 ParseOptionalThreadLocal(TLM) || ParseOptionalUnnamedAddr(UnnamedAddr)) 622 return true; 623 624 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 625 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 626 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 627 628 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 629 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 630 } 631 632 bool LLParser::parseComdat() { 633 assert(Lex.getKind() == lltok::ComdatVar); 634 std::string Name = Lex.getStrVal(); 635 LocTy NameLoc = Lex.getLoc(); 636 Lex.Lex(); 637 638 if (ParseToken(lltok::equal, "expected '=' here")) 639 return true; 640 641 if (ParseToken(lltok::kw_comdat, "expected comdat keyword")) 642 return TokError("expected comdat type"); 643 644 Comdat::SelectionKind SK; 645 switch (Lex.getKind()) { 646 default: 647 return TokError("unknown selection kind"); 648 case lltok::kw_any: 649 SK = Comdat::Any; 650 break; 651 case lltok::kw_exactmatch: 652 SK = Comdat::ExactMatch; 653 break; 654 case lltok::kw_largest: 655 SK = Comdat::Largest; 656 break; 657 case lltok::kw_noduplicates: 658 SK = Comdat::NoDuplicates; 659 break; 660 case lltok::kw_samesize: 661 SK = Comdat::SameSize; 662 break; 663 } 664 Lex.Lex(); 665 666 // See if the comdat was forward referenced, if so, use the comdat. 667 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 668 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 669 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 670 return Error(NameLoc, "redefinition of comdat '$" + Name + "'"); 671 672 Comdat *C; 673 if (I != ComdatSymTab.end()) 674 C = &I->second; 675 else 676 C = M->getOrInsertComdat(Name); 677 C->setSelectionKind(SK); 678 679 return false; 680 } 681 682 // MDString: 683 // ::= '!' STRINGCONSTANT 684 bool LLParser::ParseMDString(MDString *&Result) { 685 std::string Str; 686 if (ParseStringConstant(Str)) return true; 687 Result = MDString::get(Context, Str); 688 return false; 689 } 690 691 // MDNode: 692 // ::= '!' MDNodeNumber 693 bool LLParser::ParseMDNodeID(MDNode *&Result) { 694 // !{ ..., !42, ... } 695 LocTy IDLoc = Lex.getLoc(); 696 unsigned MID = 0; 697 if (ParseUInt32(MID)) 698 return true; 699 700 // If not a forward reference, just return it now. 701 if (NumberedMetadata.count(MID)) { 702 Result = NumberedMetadata[MID]; 703 return false; 704 } 705 706 // Otherwise, create MDNode forward reference. 707 auto &FwdRef = ForwardRefMDNodes[MID]; 708 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 709 710 Result = FwdRef.first.get(); 711 NumberedMetadata[MID].reset(Result); 712 return false; 713 } 714 715 /// ParseNamedMetadata: 716 /// !foo = !{ !1, !2 } 717 bool LLParser::ParseNamedMetadata() { 718 assert(Lex.getKind() == lltok::MetadataVar); 719 std::string Name = Lex.getStrVal(); 720 Lex.Lex(); 721 722 if (ParseToken(lltok::equal, "expected '=' here") || 723 ParseToken(lltok::exclaim, "Expected '!' here") || 724 ParseToken(lltok::lbrace, "Expected '{' here")) 725 return true; 726 727 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 728 if (Lex.getKind() != lltok::rbrace) 729 do { 730 MDNode *N = nullptr; 731 // Parse DIExpressions inline as a special case. They are still MDNodes, 732 // so they can still appear in named metadata. Remove this logic if they 733 // become plain Metadata. 734 if (Lex.getKind() == lltok::MetadataVar && 735 Lex.getStrVal() == "DIExpression") { 736 if (ParseDIExpression(N, /*IsDistinct=*/false)) 737 return true; 738 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 739 ParseMDNodeID(N)) { 740 return true; 741 } 742 NMD->addOperand(N); 743 } while (EatIfPresent(lltok::comma)); 744 745 return ParseToken(lltok::rbrace, "expected end of metadata node"); 746 } 747 748 /// ParseStandaloneMetadata: 749 /// !42 = !{...} 750 bool LLParser::ParseStandaloneMetadata() { 751 assert(Lex.getKind() == lltok::exclaim); 752 Lex.Lex(); 753 unsigned MetadataID = 0; 754 755 MDNode *Init; 756 if (ParseUInt32(MetadataID) || 757 ParseToken(lltok::equal, "expected '=' here")) 758 return true; 759 760 // Detect common error, from old metadata syntax. 761 if (Lex.getKind() == lltok::Type) 762 return TokError("unexpected type in metadata definition"); 763 764 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 765 if (Lex.getKind() == lltok::MetadataVar) { 766 if (ParseSpecializedMDNode(Init, IsDistinct)) 767 return true; 768 } else if (ParseToken(lltok::exclaim, "Expected '!' here") || 769 ParseMDTuple(Init, IsDistinct)) 770 return true; 771 772 // See if this was forward referenced, if so, handle it. 773 auto FI = ForwardRefMDNodes.find(MetadataID); 774 if (FI != ForwardRefMDNodes.end()) { 775 FI->second.first->replaceAllUsesWith(Init); 776 ForwardRefMDNodes.erase(FI); 777 778 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 779 } else { 780 if (NumberedMetadata.count(MetadataID)) 781 return TokError("Metadata id is already used"); 782 NumberedMetadata[MetadataID].reset(Init); 783 } 784 785 return false; 786 } 787 788 // Skips a single module summary entry. 789 bool LLParser::SkipModuleSummaryEntry() { 790 // Each module summary entry consists of a tag for the entry 791 // type, followed by a colon, then the fields surrounded by nested sets of 792 // parentheses. The "tag:" looks like a Label. Once parsing support is 793 // in place we will look for the tokens corresponding to the expected tags. 794 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module && 795 Lex.getKind() != lltok::kw_typeid) 796 return TokError( 797 "Expected 'gv', 'module', or 'typeid' at the start of summary entry"); 798 Lex.Lex(); 799 if (ParseToken(lltok::colon, "expected ':' at start of summary entry") || 800 ParseToken(lltok::lparen, "expected '(' at start of summary entry")) 801 return true; 802 // Now walk through the parenthesized entry, until the number of open 803 // parentheses goes back down to 0 (the first '(' was parsed above). 804 unsigned NumOpenParen = 1; 805 do { 806 switch (Lex.getKind()) { 807 case lltok::lparen: 808 NumOpenParen++; 809 break; 810 case lltok::rparen: 811 NumOpenParen--; 812 break; 813 case lltok::Eof: 814 return TokError("found end of file while parsing summary entry"); 815 default: 816 // Skip everything in between parentheses. 817 break; 818 } 819 Lex.Lex(); 820 } while (NumOpenParen > 0); 821 return false; 822 } 823 824 /// SummaryEntry 825 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry 826 bool LLParser::ParseSummaryEntry() { 827 assert(Lex.getKind() == lltok::SummaryID); 828 unsigned SummaryID = Lex.getUIntVal(); 829 830 // For summary entries, colons should be treated as distinct tokens, 831 // not an indication of the end of a label token. 832 Lex.setIgnoreColonInIdentifiers(true); 833 834 Lex.Lex(); 835 if (ParseToken(lltok::equal, "expected '=' here")) 836 return true; 837 838 // If we don't have an index object, skip the summary entry. 839 if (!Index) 840 return SkipModuleSummaryEntry(); 841 842 bool result = false; 843 switch (Lex.getKind()) { 844 case lltok::kw_gv: 845 result = ParseGVEntry(SummaryID); 846 break; 847 case lltok::kw_module: 848 result = ParseModuleEntry(SummaryID); 849 break; 850 case lltok::kw_typeid: 851 result = ParseTypeIdEntry(SummaryID); 852 break; 853 case lltok::kw_typeidCompatibleVTable: 854 result = ParseTypeIdCompatibleVtableEntry(SummaryID); 855 break; 856 case lltok::kw_flags: 857 result = ParseSummaryIndexFlags(); 858 break; 859 case lltok::kw_blockcount: 860 result = ParseBlockCount(); 861 break; 862 default: 863 result = Error(Lex.getLoc(), "unexpected summary kind"); 864 break; 865 } 866 Lex.setIgnoreColonInIdentifiers(false); 867 return result; 868 } 869 870 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 871 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 872 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 873 } 874 875 // If there was an explicit dso_local, update GV. In the absence of an explicit 876 // dso_local we keep the default value. 877 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { 878 if (DSOLocal) 879 GV.setDSOLocal(true); 880 } 881 882 /// parseIndirectSymbol: 883 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 884 /// OptionalVisibility OptionalDLLStorageClass 885 /// OptionalThreadLocal OptionalUnnamedAddr 886 /// 'alias|ifunc' IndirectSymbol IndirectSymbolAttr* 887 /// 888 /// IndirectSymbol 889 /// ::= TypeAndValue 890 /// 891 /// IndirectSymbolAttr 892 /// ::= ',' 'partition' StringConstant 893 /// 894 /// Everything through OptionalUnnamedAddr has already been parsed. 895 /// 896 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc, 897 unsigned L, unsigned Visibility, 898 unsigned DLLStorageClass, bool DSOLocal, 899 GlobalVariable::ThreadLocalMode TLM, 900 GlobalVariable::UnnamedAddr UnnamedAddr) { 901 bool IsAlias; 902 if (Lex.getKind() == lltok::kw_alias) 903 IsAlias = true; 904 else if (Lex.getKind() == lltok::kw_ifunc) 905 IsAlias = false; 906 else 907 llvm_unreachable("Not an alias or ifunc!"); 908 Lex.Lex(); 909 910 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 911 912 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 913 return Error(NameLoc, "invalid linkage type for alias"); 914 915 if (!isValidVisibilityForLinkage(Visibility, L)) 916 return Error(NameLoc, 917 "symbol with local linkage must have default visibility"); 918 919 Type *Ty; 920 LocTy ExplicitTypeLoc = Lex.getLoc(); 921 if (ParseType(Ty) || 922 ParseToken(lltok::comma, "expected comma after alias or ifunc's type")) 923 return true; 924 925 Constant *Aliasee; 926 LocTy AliaseeLoc = Lex.getLoc(); 927 if (Lex.getKind() != lltok::kw_bitcast && 928 Lex.getKind() != lltok::kw_getelementptr && 929 Lex.getKind() != lltok::kw_addrspacecast && 930 Lex.getKind() != lltok::kw_inttoptr) { 931 if (ParseGlobalTypeAndValue(Aliasee)) 932 return true; 933 } else { 934 // The bitcast dest type is not present, it is implied by the dest type. 935 ValID ID; 936 if (ParseValID(ID)) 937 return true; 938 if (ID.Kind != ValID::t_Constant) 939 return Error(AliaseeLoc, "invalid aliasee"); 940 Aliasee = ID.ConstantVal; 941 } 942 943 Type *AliaseeType = Aliasee->getType(); 944 auto *PTy = dyn_cast<PointerType>(AliaseeType); 945 if (!PTy) 946 return Error(AliaseeLoc, "An alias or ifunc must have pointer type"); 947 unsigned AddrSpace = PTy->getAddressSpace(); 948 949 if (IsAlias && Ty != PTy->getElementType()) 950 return Error( 951 ExplicitTypeLoc, 952 "explicit pointee type doesn't match operand's pointee type"); 953 954 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) 955 return Error( 956 ExplicitTypeLoc, 957 "explicit pointee type should be a function type"); 958 959 GlobalValue *GVal = nullptr; 960 961 // See if the alias was forward referenced, if so, prepare to replace the 962 // forward reference. 963 if (!Name.empty()) { 964 GVal = M->getNamedValue(Name); 965 if (GVal) { 966 if (!ForwardRefVals.erase(Name)) 967 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 968 } 969 } else { 970 auto I = ForwardRefValIDs.find(NumberedVals.size()); 971 if (I != ForwardRefValIDs.end()) { 972 GVal = I->second.first; 973 ForwardRefValIDs.erase(I); 974 } 975 } 976 977 // Okay, create the alias but do not insert it into the module yet. 978 std::unique_ptr<GlobalIndirectSymbol> GA; 979 if (IsAlias) 980 GA.reset(GlobalAlias::create(Ty, AddrSpace, 981 (GlobalValue::LinkageTypes)Linkage, Name, 982 Aliasee, /*Parent*/ nullptr)); 983 else 984 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 985 (GlobalValue::LinkageTypes)Linkage, Name, 986 Aliasee, /*Parent*/ nullptr)); 987 GA->setThreadLocalMode(TLM); 988 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 989 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 990 GA->setUnnamedAddr(UnnamedAddr); 991 maybeSetDSOLocal(DSOLocal, *GA); 992 993 // At this point we've parsed everything except for the IndirectSymbolAttrs. 994 // Now parse them if there are any. 995 while (Lex.getKind() == lltok::comma) { 996 Lex.Lex(); 997 998 if (Lex.getKind() == lltok::kw_partition) { 999 Lex.Lex(); 1000 GA->setPartition(Lex.getStrVal()); 1001 if (ParseToken(lltok::StringConstant, "expected partition string")) 1002 return true; 1003 } else { 1004 return TokError("unknown alias or ifunc property!"); 1005 } 1006 } 1007 1008 if (Name.empty()) 1009 NumberedVals.push_back(GA.get()); 1010 1011 if (GVal) { 1012 // Verify that types agree. 1013 if (GVal->getType() != GA->getType()) 1014 return Error( 1015 ExplicitTypeLoc, 1016 "forward reference and definition of alias have different types"); 1017 1018 // If they agree, just RAUW the old value with the alias and remove the 1019 // forward ref info. 1020 GVal->replaceAllUsesWith(GA.get()); 1021 GVal->eraseFromParent(); 1022 } 1023 1024 // Insert into the module, we know its name won't collide now. 1025 if (IsAlias) 1026 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 1027 else 1028 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 1029 assert(GA->getName() == Name && "Should not be a name conflict!"); 1030 1031 // The module owns this now 1032 GA.release(); 1033 1034 return false; 1035 } 1036 1037 /// ParseGlobal 1038 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 1039 /// OptionalVisibility OptionalDLLStorageClass 1040 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 1041 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 1042 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 1043 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 1044 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 1045 /// Const OptionalAttrs 1046 /// 1047 /// Everything up to and including OptionalUnnamedAddr has been parsed 1048 /// already. 1049 /// 1050 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 1051 unsigned Linkage, bool HasLinkage, 1052 unsigned Visibility, unsigned DLLStorageClass, 1053 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 1054 GlobalVariable::UnnamedAddr UnnamedAddr) { 1055 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 1056 return Error(NameLoc, 1057 "symbol with local linkage must have default visibility"); 1058 1059 unsigned AddrSpace; 1060 bool IsConstant, IsExternallyInitialized; 1061 LocTy IsExternallyInitializedLoc; 1062 LocTy TyLoc; 1063 1064 Type *Ty = nullptr; 1065 if (ParseOptionalAddrSpace(AddrSpace) || 1066 ParseOptionalToken(lltok::kw_externally_initialized, 1067 IsExternallyInitialized, 1068 &IsExternallyInitializedLoc) || 1069 ParseGlobalType(IsConstant) || 1070 ParseType(Ty, TyLoc)) 1071 return true; 1072 1073 // If the linkage is specified and is external, then no initializer is 1074 // present. 1075 Constant *Init = nullptr; 1076 if (!HasLinkage || 1077 !GlobalValue::isValidDeclarationLinkage( 1078 (GlobalValue::LinkageTypes)Linkage)) { 1079 if (ParseGlobalValue(Ty, Init)) 1080 return true; 1081 } 1082 1083 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 1084 return Error(TyLoc, "invalid type for global variable"); 1085 1086 GlobalValue *GVal = nullptr; 1087 1088 // See if the global was forward referenced, if so, use the global. 1089 if (!Name.empty()) { 1090 GVal = M->getNamedValue(Name); 1091 if (GVal) { 1092 if (!ForwardRefVals.erase(Name)) 1093 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 1094 } 1095 } else { 1096 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1097 if (I != ForwardRefValIDs.end()) { 1098 GVal = I->second.first; 1099 ForwardRefValIDs.erase(I); 1100 } 1101 } 1102 1103 GlobalVariable *GV; 1104 if (!GVal) { 1105 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 1106 Name, nullptr, GlobalVariable::NotThreadLocal, 1107 AddrSpace); 1108 } else { 1109 if (GVal->getValueType() != Ty) 1110 return Error(TyLoc, 1111 "forward reference and definition of global have different types"); 1112 1113 GV = cast<GlobalVariable>(GVal); 1114 1115 // Move the forward-reference to the correct spot in the module. 1116 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 1117 } 1118 1119 if (Name.empty()) 1120 NumberedVals.push_back(GV); 1121 1122 // Set the parsed properties on the global. 1123 if (Init) 1124 GV->setInitializer(Init); 1125 GV->setConstant(IsConstant); 1126 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 1127 maybeSetDSOLocal(DSOLocal, *GV); 1128 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1129 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1130 GV->setExternallyInitialized(IsExternallyInitialized); 1131 GV->setThreadLocalMode(TLM); 1132 GV->setUnnamedAddr(UnnamedAddr); 1133 1134 // Parse attributes on the global. 1135 while (Lex.getKind() == lltok::comma) { 1136 Lex.Lex(); 1137 1138 if (Lex.getKind() == lltok::kw_section) { 1139 Lex.Lex(); 1140 GV->setSection(Lex.getStrVal()); 1141 if (ParseToken(lltok::StringConstant, "expected global section string")) 1142 return true; 1143 } else if (Lex.getKind() == lltok::kw_partition) { 1144 Lex.Lex(); 1145 GV->setPartition(Lex.getStrVal()); 1146 if (ParseToken(lltok::StringConstant, "expected partition string")) 1147 return true; 1148 } else if (Lex.getKind() == lltok::kw_align) { 1149 MaybeAlign Alignment; 1150 if (ParseOptionalAlignment(Alignment)) return true; 1151 GV->setAlignment(Alignment); 1152 } else if (Lex.getKind() == lltok::MetadataVar) { 1153 if (ParseGlobalObjectMetadataAttachment(*GV)) 1154 return true; 1155 } else { 1156 Comdat *C; 1157 if (parseOptionalComdat(Name, C)) 1158 return true; 1159 if (C) 1160 GV->setComdat(C); 1161 else 1162 return TokError("unknown global variable property!"); 1163 } 1164 } 1165 1166 AttrBuilder Attrs; 1167 LocTy BuiltinLoc; 1168 std::vector<unsigned> FwdRefAttrGrps; 1169 if (ParseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 1170 return true; 1171 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 1172 GV->setAttributes(AttributeSet::get(Context, Attrs)); 1173 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 1174 } 1175 1176 return false; 1177 } 1178 1179 /// ParseUnnamedAttrGrp 1180 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 1181 bool LLParser::ParseUnnamedAttrGrp() { 1182 assert(Lex.getKind() == lltok::kw_attributes); 1183 LocTy AttrGrpLoc = Lex.getLoc(); 1184 Lex.Lex(); 1185 1186 if (Lex.getKind() != lltok::AttrGrpID) 1187 return TokError("expected attribute group id"); 1188 1189 unsigned VarID = Lex.getUIntVal(); 1190 std::vector<unsigned> unused; 1191 LocTy BuiltinLoc; 1192 Lex.Lex(); 1193 1194 if (ParseToken(lltok::equal, "expected '=' here") || 1195 ParseToken(lltok::lbrace, "expected '{' here") || 1196 ParseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 1197 BuiltinLoc) || 1198 ParseToken(lltok::rbrace, "expected end of attribute group")) 1199 return true; 1200 1201 if (!NumberedAttrBuilders[VarID].hasAttributes()) 1202 return Error(AttrGrpLoc, "attribute group has no attributes"); 1203 1204 return false; 1205 } 1206 1207 /// ParseFnAttributeValuePairs 1208 /// ::= <attr> | <attr> '=' <value> 1209 bool LLParser::ParseFnAttributeValuePairs(AttrBuilder &B, 1210 std::vector<unsigned> &FwdRefAttrGrps, 1211 bool inAttrGrp, LocTy &BuiltinLoc) { 1212 bool HaveError = false; 1213 1214 B.clear(); 1215 1216 while (true) { 1217 lltok::Kind Token = Lex.getKind(); 1218 if (Token == lltok::kw_builtin) 1219 BuiltinLoc = Lex.getLoc(); 1220 switch (Token) { 1221 default: 1222 if (!inAttrGrp) return HaveError; 1223 return Error(Lex.getLoc(), "unterminated attribute group"); 1224 case lltok::rbrace: 1225 // Finished. 1226 return false; 1227 1228 case lltok::AttrGrpID: { 1229 // Allow a function to reference an attribute group: 1230 // 1231 // define void @foo() #1 { ... } 1232 if (inAttrGrp) 1233 HaveError |= 1234 Error(Lex.getLoc(), 1235 "cannot have an attribute group reference in an attribute group"); 1236 1237 unsigned AttrGrpNum = Lex.getUIntVal(); 1238 if (inAttrGrp) break; 1239 1240 // Save the reference to the attribute group. We'll fill it in later. 1241 FwdRefAttrGrps.push_back(AttrGrpNum); 1242 break; 1243 } 1244 // Target-dependent attributes: 1245 case lltok::StringConstant: { 1246 if (ParseStringAttribute(B)) 1247 return true; 1248 continue; 1249 } 1250 1251 // Target-independent attributes: 1252 case lltok::kw_align: { 1253 // As a hack, we allow function alignment to be initially parsed as an 1254 // attribute on a function declaration/definition or added to an attribute 1255 // group and later moved to the alignment field. 1256 MaybeAlign Alignment; 1257 if (inAttrGrp) { 1258 Lex.Lex(); 1259 uint32_t Value = 0; 1260 if (ParseToken(lltok::equal, "expected '=' here") || ParseUInt32(Value)) 1261 return true; 1262 Alignment = Align(Value); 1263 } else { 1264 if (ParseOptionalAlignment(Alignment)) 1265 return true; 1266 } 1267 B.addAlignmentAttr(Alignment); 1268 continue; 1269 } 1270 case lltok::kw_alignstack: { 1271 unsigned Alignment; 1272 if (inAttrGrp) { 1273 Lex.Lex(); 1274 if (ParseToken(lltok::equal, "expected '=' here") || 1275 ParseUInt32(Alignment)) 1276 return true; 1277 } else { 1278 if (ParseOptionalStackAlignment(Alignment)) 1279 return true; 1280 } 1281 B.addStackAlignmentAttr(Alignment); 1282 continue; 1283 } 1284 case lltok::kw_allocsize: { 1285 unsigned ElemSizeArg; 1286 Optional<unsigned> NumElemsArg; 1287 // inAttrGrp doesn't matter; we only support allocsize(a[, b]) 1288 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1289 return true; 1290 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1291 continue; 1292 } 1293 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 1294 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 1295 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 1296 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 1297 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 1298 case lltok::kw_inaccessiblememonly: 1299 B.addAttribute(Attribute::InaccessibleMemOnly); break; 1300 case lltok::kw_inaccessiblemem_or_argmemonly: 1301 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break; 1302 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 1303 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 1304 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 1305 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 1306 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 1307 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 1308 case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break; 1309 case lltok::kw_noimplicitfloat: 1310 B.addAttribute(Attribute::NoImplicitFloat); break; 1311 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1312 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1313 case lltok::kw_nomerge: B.addAttribute(Attribute::NoMerge); break; 1314 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1315 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1316 case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break; 1317 case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break; 1318 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1319 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1320 case lltok::kw_null_pointer_is_valid: 1321 B.addAttribute(Attribute::NullPointerIsValid); break; 1322 case lltok::kw_optforfuzzing: 1323 B.addAttribute(Attribute::OptForFuzzing); break; 1324 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1325 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1326 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1327 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1328 case lltok::kw_returns_twice: 1329 B.addAttribute(Attribute::ReturnsTwice); break; 1330 case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break; 1331 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1332 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1333 case lltok::kw_sspstrong: 1334 B.addAttribute(Attribute::StackProtectStrong); break; 1335 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1336 case lltok::kw_shadowcallstack: 1337 B.addAttribute(Attribute::ShadowCallStack); break; 1338 case lltok::kw_sanitize_address: 1339 B.addAttribute(Attribute::SanitizeAddress); break; 1340 case lltok::kw_sanitize_hwaddress: 1341 B.addAttribute(Attribute::SanitizeHWAddress); break; 1342 case lltok::kw_sanitize_memtag: 1343 B.addAttribute(Attribute::SanitizeMemTag); break; 1344 case lltok::kw_sanitize_thread: 1345 B.addAttribute(Attribute::SanitizeThread); break; 1346 case lltok::kw_sanitize_memory: 1347 B.addAttribute(Attribute::SanitizeMemory); break; 1348 case lltok::kw_speculative_load_hardening: 1349 B.addAttribute(Attribute::SpeculativeLoadHardening); 1350 break; 1351 case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break; 1352 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1353 case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break; 1354 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1355 case lltok::kw_preallocated: { 1356 Type *Ty; 1357 if (ParsePreallocated(Ty)) 1358 return true; 1359 B.addPreallocatedAttr(Ty); 1360 break; 1361 } 1362 1363 // Error handling. 1364 case lltok::kw_inreg: 1365 case lltok::kw_signext: 1366 case lltok::kw_zeroext: 1367 HaveError |= 1368 Error(Lex.getLoc(), 1369 "invalid use of attribute on a function"); 1370 break; 1371 case lltok::kw_byval: 1372 case lltok::kw_dereferenceable: 1373 case lltok::kw_dereferenceable_or_null: 1374 case lltok::kw_inalloca: 1375 case lltok::kw_nest: 1376 case lltok::kw_noalias: 1377 case lltok::kw_nocapture: 1378 case lltok::kw_nonnull: 1379 case lltok::kw_returned: 1380 case lltok::kw_sret: 1381 case lltok::kw_swifterror: 1382 case lltok::kw_swiftself: 1383 case lltok::kw_immarg: 1384 HaveError |= 1385 Error(Lex.getLoc(), 1386 "invalid use of parameter-only attribute on a function"); 1387 break; 1388 } 1389 1390 // ParsePreallocated() consumes token 1391 if (Token != lltok::kw_preallocated) 1392 Lex.Lex(); 1393 } 1394 } 1395 1396 //===----------------------------------------------------------------------===// 1397 // GlobalValue Reference/Resolution Routines. 1398 //===----------------------------------------------------------------------===// 1399 1400 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1401 const std::string &Name) { 1402 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1403 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, 1404 PTy->getAddressSpace(), Name, M); 1405 else 1406 return new GlobalVariable(*M, PTy->getElementType(), false, 1407 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1408 nullptr, GlobalVariable::NotThreadLocal, 1409 PTy->getAddressSpace()); 1410 } 1411 1412 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty, 1413 Value *Val, bool IsCall) { 1414 if (Val->getType() == Ty) 1415 return Val; 1416 // For calls we also accept variables in the program address space. 1417 Type *SuggestedTy = Ty; 1418 if (IsCall && isa<PointerType>(Ty)) { 1419 Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo( 1420 M->getDataLayout().getProgramAddressSpace()); 1421 SuggestedTy = TyInProgAS; 1422 if (Val->getType() == TyInProgAS) 1423 return Val; 1424 } 1425 if (Ty->isLabelTy()) 1426 Error(Loc, "'" + Name + "' is not a basic block"); 1427 else 1428 Error(Loc, "'" + Name + "' defined with type '" + 1429 getTypeString(Val->getType()) + "' but expected '" + 1430 getTypeString(SuggestedTy) + "'"); 1431 return nullptr; 1432 } 1433 1434 /// GetGlobalVal - Get a value with the specified name or ID, creating a 1435 /// forward reference record if needed. This can return null if the value 1436 /// exists but does not have the right type. 1437 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 1438 LocTy Loc, bool IsCall) { 1439 PointerType *PTy = dyn_cast<PointerType>(Ty); 1440 if (!PTy) { 1441 Error(Loc, "global variable reference must have pointer type"); 1442 return nullptr; 1443 } 1444 1445 // Look this name up in the normal function symbol table. 1446 GlobalValue *Val = 1447 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1448 1449 // If this is a forward reference for the value, see if we already created a 1450 // forward ref record. 1451 if (!Val) { 1452 auto I = ForwardRefVals.find(Name); 1453 if (I != ForwardRefVals.end()) 1454 Val = I->second.first; 1455 } 1456 1457 // If we have the value in the symbol table or fwd-ref table, return it. 1458 if (Val) 1459 return cast_or_null<GlobalValue>( 1460 checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall)); 1461 1462 // Otherwise, create a new forward reference for this value and remember it. 1463 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1464 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1465 return FwdVal; 1466 } 1467 1468 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc, 1469 bool IsCall) { 1470 PointerType *PTy = dyn_cast<PointerType>(Ty); 1471 if (!PTy) { 1472 Error(Loc, "global variable reference must have pointer type"); 1473 return nullptr; 1474 } 1475 1476 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1477 1478 // If this is a forward reference for the value, see if we already created a 1479 // forward ref record. 1480 if (!Val) { 1481 auto I = ForwardRefValIDs.find(ID); 1482 if (I != ForwardRefValIDs.end()) 1483 Val = I->second.first; 1484 } 1485 1486 // If we have the value in the symbol table or fwd-ref table, return it. 1487 if (Val) 1488 return cast_or_null<GlobalValue>( 1489 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall)); 1490 1491 // Otherwise, create a new forward reference for this value and remember it. 1492 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1493 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1494 return FwdVal; 1495 } 1496 1497 //===----------------------------------------------------------------------===// 1498 // Comdat Reference/Resolution Routines. 1499 //===----------------------------------------------------------------------===// 1500 1501 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1502 // Look this name up in the comdat symbol table. 1503 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1504 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1505 if (I != ComdatSymTab.end()) 1506 return &I->second; 1507 1508 // Otherwise, create a new forward reference for this value and remember it. 1509 Comdat *C = M->getOrInsertComdat(Name); 1510 ForwardRefComdats[Name] = Loc; 1511 return C; 1512 } 1513 1514 //===----------------------------------------------------------------------===// 1515 // Helper Routines. 1516 //===----------------------------------------------------------------------===// 1517 1518 /// ParseToken - If the current token has the specified kind, eat it and return 1519 /// success. Otherwise, emit the specified error and return failure. 1520 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 1521 if (Lex.getKind() != T) 1522 return TokError(ErrMsg); 1523 Lex.Lex(); 1524 return false; 1525 } 1526 1527 /// ParseStringConstant 1528 /// ::= StringConstant 1529 bool LLParser::ParseStringConstant(std::string &Result) { 1530 if (Lex.getKind() != lltok::StringConstant) 1531 return TokError("expected string constant"); 1532 Result = Lex.getStrVal(); 1533 Lex.Lex(); 1534 return false; 1535 } 1536 1537 /// ParseUInt32 1538 /// ::= uint32 1539 bool LLParser::ParseUInt32(uint32_t &Val) { 1540 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1541 return TokError("expected integer"); 1542 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1543 if (Val64 != unsigned(Val64)) 1544 return TokError("expected 32-bit integer (too large)"); 1545 Val = Val64; 1546 Lex.Lex(); 1547 return false; 1548 } 1549 1550 /// ParseUInt64 1551 /// ::= uint64 1552 bool LLParser::ParseUInt64(uint64_t &Val) { 1553 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1554 return TokError("expected integer"); 1555 Val = Lex.getAPSIntVal().getLimitedValue(); 1556 Lex.Lex(); 1557 return false; 1558 } 1559 1560 /// ParseTLSModel 1561 /// := 'localdynamic' 1562 /// := 'initialexec' 1563 /// := 'localexec' 1564 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1565 switch (Lex.getKind()) { 1566 default: 1567 return TokError("expected localdynamic, initialexec or localexec"); 1568 case lltok::kw_localdynamic: 1569 TLM = GlobalVariable::LocalDynamicTLSModel; 1570 break; 1571 case lltok::kw_initialexec: 1572 TLM = GlobalVariable::InitialExecTLSModel; 1573 break; 1574 case lltok::kw_localexec: 1575 TLM = GlobalVariable::LocalExecTLSModel; 1576 break; 1577 } 1578 1579 Lex.Lex(); 1580 return false; 1581 } 1582 1583 /// ParseOptionalThreadLocal 1584 /// := /*empty*/ 1585 /// := 'thread_local' 1586 /// := 'thread_local' '(' tlsmodel ')' 1587 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1588 TLM = GlobalVariable::NotThreadLocal; 1589 if (!EatIfPresent(lltok::kw_thread_local)) 1590 return false; 1591 1592 TLM = GlobalVariable::GeneralDynamicTLSModel; 1593 if (Lex.getKind() == lltok::lparen) { 1594 Lex.Lex(); 1595 return ParseTLSModel(TLM) || 1596 ParseToken(lltok::rparen, "expected ')' after thread local model"); 1597 } 1598 return false; 1599 } 1600 1601 /// ParseOptionalAddrSpace 1602 /// := /*empty*/ 1603 /// := 'addrspace' '(' uint32 ')' 1604 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) { 1605 AddrSpace = DefaultAS; 1606 if (!EatIfPresent(lltok::kw_addrspace)) 1607 return false; 1608 return ParseToken(lltok::lparen, "expected '(' in address space") || 1609 ParseUInt32(AddrSpace) || 1610 ParseToken(lltok::rparen, "expected ')' in address space"); 1611 } 1612 1613 /// ParseStringAttribute 1614 /// := StringConstant 1615 /// := StringConstant '=' StringConstant 1616 bool LLParser::ParseStringAttribute(AttrBuilder &B) { 1617 std::string Attr = Lex.getStrVal(); 1618 Lex.Lex(); 1619 std::string Val; 1620 if (EatIfPresent(lltok::equal) && ParseStringConstant(Val)) 1621 return true; 1622 B.addAttribute(Attr, Val); 1623 return false; 1624 } 1625 1626 /// ParseOptionalParamAttrs - Parse a potentially empty list of parameter attributes. 1627 bool LLParser::ParseOptionalParamAttrs(AttrBuilder &B) { 1628 bool HaveError = false; 1629 1630 B.clear(); 1631 1632 while (true) { 1633 lltok::Kind Token = Lex.getKind(); 1634 switch (Token) { 1635 default: // End of attributes. 1636 return HaveError; 1637 case lltok::StringConstant: { 1638 if (ParseStringAttribute(B)) 1639 return true; 1640 continue; 1641 } 1642 case lltok::kw_align: { 1643 MaybeAlign Alignment; 1644 if (ParseOptionalAlignment(Alignment, true)) 1645 return true; 1646 B.addAlignmentAttr(Alignment); 1647 continue; 1648 } 1649 case lltok::kw_byval: { 1650 Type *Ty; 1651 if (ParseByValWithOptionalType(Ty)) 1652 return true; 1653 B.addByValAttr(Ty); 1654 continue; 1655 } 1656 case lltok::kw_preallocated: { 1657 Type *Ty; 1658 if (ParsePreallocated(Ty)) 1659 return true; 1660 B.addPreallocatedAttr(Ty); 1661 continue; 1662 } 1663 case lltok::kw_dereferenceable: { 1664 uint64_t Bytes; 1665 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1666 return true; 1667 B.addDereferenceableAttr(Bytes); 1668 continue; 1669 } 1670 case lltok::kw_dereferenceable_or_null: { 1671 uint64_t Bytes; 1672 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1673 return true; 1674 B.addDereferenceableOrNullAttr(Bytes); 1675 continue; 1676 } 1677 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break; 1678 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1679 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1680 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1681 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1682 case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break; 1683 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1684 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1685 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1686 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1687 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1688 case lltok::kw_sret: B.addAttribute(Attribute::StructRet); break; 1689 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break; 1690 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break; 1691 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1692 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1693 case lltok::kw_immarg: B.addAttribute(Attribute::ImmArg); break; 1694 1695 case lltok::kw_alignstack: 1696 case lltok::kw_alwaysinline: 1697 case lltok::kw_argmemonly: 1698 case lltok::kw_builtin: 1699 case lltok::kw_inlinehint: 1700 case lltok::kw_jumptable: 1701 case lltok::kw_minsize: 1702 case lltok::kw_naked: 1703 case lltok::kw_nobuiltin: 1704 case lltok::kw_noduplicate: 1705 case lltok::kw_noimplicitfloat: 1706 case lltok::kw_noinline: 1707 case lltok::kw_nonlazybind: 1708 case lltok::kw_nomerge: 1709 case lltok::kw_noredzone: 1710 case lltok::kw_noreturn: 1711 case lltok::kw_nocf_check: 1712 case lltok::kw_nounwind: 1713 case lltok::kw_optforfuzzing: 1714 case lltok::kw_optnone: 1715 case lltok::kw_optsize: 1716 case lltok::kw_returns_twice: 1717 case lltok::kw_sanitize_address: 1718 case lltok::kw_sanitize_hwaddress: 1719 case lltok::kw_sanitize_memtag: 1720 case lltok::kw_sanitize_memory: 1721 case lltok::kw_sanitize_thread: 1722 case lltok::kw_speculative_load_hardening: 1723 case lltok::kw_ssp: 1724 case lltok::kw_sspreq: 1725 case lltok::kw_sspstrong: 1726 case lltok::kw_safestack: 1727 case lltok::kw_shadowcallstack: 1728 case lltok::kw_strictfp: 1729 case lltok::kw_uwtable: 1730 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1731 break; 1732 } 1733 1734 Lex.Lex(); 1735 } 1736 } 1737 1738 /// ParseOptionalReturnAttrs - Parse a potentially empty list of return attributes. 1739 bool LLParser::ParseOptionalReturnAttrs(AttrBuilder &B) { 1740 bool HaveError = false; 1741 1742 B.clear(); 1743 1744 while (true) { 1745 lltok::Kind Token = Lex.getKind(); 1746 switch (Token) { 1747 default: // End of attributes. 1748 return HaveError; 1749 case lltok::StringConstant: { 1750 if (ParseStringAttribute(B)) 1751 return true; 1752 continue; 1753 } 1754 case lltok::kw_dereferenceable: { 1755 uint64_t Bytes; 1756 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1757 return true; 1758 B.addDereferenceableAttr(Bytes); 1759 continue; 1760 } 1761 case lltok::kw_dereferenceable_or_null: { 1762 uint64_t Bytes; 1763 if (ParseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1764 return true; 1765 B.addDereferenceableOrNullAttr(Bytes); 1766 continue; 1767 } 1768 case lltok::kw_align: { 1769 MaybeAlign Alignment; 1770 if (ParseOptionalAlignment(Alignment)) 1771 return true; 1772 B.addAlignmentAttr(Alignment); 1773 continue; 1774 } 1775 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1776 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1777 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1778 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1779 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1780 1781 // Error handling. 1782 case lltok::kw_byval: 1783 case lltok::kw_inalloca: 1784 case lltok::kw_nest: 1785 case lltok::kw_nocapture: 1786 case lltok::kw_returned: 1787 case lltok::kw_sret: 1788 case lltok::kw_swifterror: 1789 case lltok::kw_swiftself: 1790 case lltok::kw_immarg: 1791 HaveError |= Error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1792 break; 1793 1794 case lltok::kw_alignstack: 1795 case lltok::kw_alwaysinline: 1796 case lltok::kw_argmemonly: 1797 case lltok::kw_builtin: 1798 case lltok::kw_cold: 1799 case lltok::kw_inlinehint: 1800 case lltok::kw_jumptable: 1801 case lltok::kw_minsize: 1802 case lltok::kw_naked: 1803 case lltok::kw_nobuiltin: 1804 case lltok::kw_noduplicate: 1805 case lltok::kw_noimplicitfloat: 1806 case lltok::kw_noinline: 1807 case lltok::kw_nonlazybind: 1808 case lltok::kw_nomerge: 1809 case lltok::kw_noredzone: 1810 case lltok::kw_noreturn: 1811 case lltok::kw_nocf_check: 1812 case lltok::kw_nounwind: 1813 case lltok::kw_optforfuzzing: 1814 case lltok::kw_optnone: 1815 case lltok::kw_optsize: 1816 case lltok::kw_returns_twice: 1817 case lltok::kw_sanitize_address: 1818 case lltok::kw_sanitize_hwaddress: 1819 case lltok::kw_sanitize_memtag: 1820 case lltok::kw_sanitize_memory: 1821 case lltok::kw_sanitize_thread: 1822 case lltok::kw_speculative_load_hardening: 1823 case lltok::kw_ssp: 1824 case lltok::kw_sspreq: 1825 case lltok::kw_sspstrong: 1826 case lltok::kw_safestack: 1827 case lltok::kw_shadowcallstack: 1828 case lltok::kw_strictfp: 1829 case lltok::kw_uwtable: 1830 HaveError |= Error(Lex.getLoc(), "invalid use of function-only attribute"); 1831 break; 1832 case lltok::kw_readnone: 1833 case lltok::kw_readonly: 1834 HaveError |= Error(Lex.getLoc(), "invalid use of attribute on return type"); 1835 break; 1836 case lltok::kw_preallocated: 1837 HaveError |= 1838 Error(Lex.getLoc(), 1839 "invalid use of parameter-only/call site-only attribute"); 1840 break; 1841 } 1842 1843 Lex.Lex(); 1844 } 1845 } 1846 1847 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1848 HasLinkage = true; 1849 switch (Kind) { 1850 default: 1851 HasLinkage = false; 1852 return GlobalValue::ExternalLinkage; 1853 case lltok::kw_private: 1854 return GlobalValue::PrivateLinkage; 1855 case lltok::kw_internal: 1856 return GlobalValue::InternalLinkage; 1857 case lltok::kw_weak: 1858 return GlobalValue::WeakAnyLinkage; 1859 case lltok::kw_weak_odr: 1860 return GlobalValue::WeakODRLinkage; 1861 case lltok::kw_linkonce: 1862 return GlobalValue::LinkOnceAnyLinkage; 1863 case lltok::kw_linkonce_odr: 1864 return GlobalValue::LinkOnceODRLinkage; 1865 case lltok::kw_available_externally: 1866 return GlobalValue::AvailableExternallyLinkage; 1867 case lltok::kw_appending: 1868 return GlobalValue::AppendingLinkage; 1869 case lltok::kw_common: 1870 return GlobalValue::CommonLinkage; 1871 case lltok::kw_extern_weak: 1872 return GlobalValue::ExternalWeakLinkage; 1873 case lltok::kw_external: 1874 return GlobalValue::ExternalLinkage; 1875 } 1876 } 1877 1878 /// ParseOptionalLinkage 1879 /// ::= /*empty*/ 1880 /// ::= 'private' 1881 /// ::= 'internal' 1882 /// ::= 'weak' 1883 /// ::= 'weak_odr' 1884 /// ::= 'linkonce' 1885 /// ::= 'linkonce_odr' 1886 /// ::= 'available_externally' 1887 /// ::= 'appending' 1888 /// ::= 'common' 1889 /// ::= 'extern_weak' 1890 /// ::= 'external' 1891 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1892 unsigned &Visibility, 1893 unsigned &DLLStorageClass, 1894 bool &DSOLocal) { 1895 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1896 if (HasLinkage) 1897 Lex.Lex(); 1898 ParseOptionalDSOLocal(DSOLocal); 1899 ParseOptionalVisibility(Visibility); 1900 ParseOptionalDLLStorageClass(DLLStorageClass); 1901 1902 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 1903 return Error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 1904 } 1905 1906 return false; 1907 } 1908 1909 void LLParser::ParseOptionalDSOLocal(bool &DSOLocal) { 1910 switch (Lex.getKind()) { 1911 default: 1912 DSOLocal = false; 1913 break; 1914 case lltok::kw_dso_local: 1915 DSOLocal = true; 1916 Lex.Lex(); 1917 break; 1918 case lltok::kw_dso_preemptable: 1919 DSOLocal = false; 1920 Lex.Lex(); 1921 break; 1922 } 1923 } 1924 1925 /// ParseOptionalVisibility 1926 /// ::= /*empty*/ 1927 /// ::= 'default' 1928 /// ::= 'hidden' 1929 /// ::= 'protected' 1930 /// 1931 void LLParser::ParseOptionalVisibility(unsigned &Res) { 1932 switch (Lex.getKind()) { 1933 default: 1934 Res = GlobalValue::DefaultVisibility; 1935 return; 1936 case lltok::kw_default: 1937 Res = GlobalValue::DefaultVisibility; 1938 break; 1939 case lltok::kw_hidden: 1940 Res = GlobalValue::HiddenVisibility; 1941 break; 1942 case lltok::kw_protected: 1943 Res = GlobalValue::ProtectedVisibility; 1944 break; 1945 } 1946 Lex.Lex(); 1947 } 1948 1949 /// ParseOptionalDLLStorageClass 1950 /// ::= /*empty*/ 1951 /// ::= 'dllimport' 1952 /// ::= 'dllexport' 1953 /// 1954 void LLParser::ParseOptionalDLLStorageClass(unsigned &Res) { 1955 switch (Lex.getKind()) { 1956 default: 1957 Res = GlobalValue::DefaultStorageClass; 1958 return; 1959 case lltok::kw_dllimport: 1960 Res = GlobalValue::DLLImportStorageClass; 1961 break; 1962 case lltok::kw_dllexport: 1963 Res = GlobalValue::DLLExportStorageClass; 1964 break; 1965 } 1966 Lex.Lex(); 1967 } 1968 1969 /// ParseOptionalCallingConv 1970 /// ::= /*empty*/ 1971 /// ::= 'ccc' 1972 /// ::= 'fastcc' 1973 /// ::= 'intel_ocl_bicc' 1974 /// ::= 'coldcc' 1975 /// ::= 'cfguard_checkcc' 1976 /// ::= 'x86_stdcallcc' 1977 /// ::= 'x86_fastcallcc' 1978 /// ::= 'x86_thiscallcc' 1979 /// ::= 'x86_vectorcallcc' 1980 /// ::= 'arm_apcscc' 1981 /// ::= 'arm_aapcscc' 1982 /// ::= 'arm_aapcs_vfpcc' 1983 /// ::= 'aarch64_vector_pcs' 1984 /// ::= 'aarch64_sve_vector_pcs' 1985 /// ::= 'msp430_intrcc' 1986 /// ::= 'avr_intrcc' 1987 /// ::= 'avr_signalcc' 1988 /// ::= 'ptx_kernel' 1989 /// ::= 'ptx_device' 1990 /// ::= 'spir_func' 1991 /// ::= 'spir_kernel' 1992 /// ::= 'x86_64_sysvcc' 1993 /// ::= 'win64cc' 1994 /// ::= 'webkit_jscc' 1995 /// ::= 'anyregcc' 1996 /// ::= 'preserve_mostcc' 1997 /// ::= 'preserve_allcc' 1998 /// ::= 'ghccc' 1999 /// ::= 'swiftcc' 2000 /// ::= 'x86_intrcc' 2001 /// ::= 'hhvmcc' 2002 /// ::= 'hhvm_ccc' 2003 /// ::= 'cxx_fast_tlscc' 2004 /// ::= 'amdgpu_vs' 2005 /// ::= 'amdgpu_ls' 2006 /// ::= 'amdgpu_hs' 2007 /// ::= 'amdgpu_es' 2008 /// ::= 'amdgpu_gs' 2009 /// ::= 'amdgpu_ps' 2010 /// ::= 'amdgpu_cs' 2011 /// ::= 'amdgpu_kernel' 2012 /// ::= 'tailcc' 2013 /// ::= 'cc' UINT 2014 /// 2015 bool LLParser::ParseOptionalCallingConv(unsigned &CC) { 2016 switch (Lex.getKind()) { 2017 default: CC = CallingConv::C; return false; 2018 case lltok::kw_ccc: CC = CallingConv::C; break; 2019 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 2020 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 2021 case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break; 2022 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 2023 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 2024 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 2025 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 2026 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 2027 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 2028 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 2029 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 2030 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break; 2031 case lltok::kw_aarch64_sve_vector_pcs: 2032 CC = CallingConv::AArch64_SVE_VectorCall; 2033 break; 2034 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 2035 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 2036 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 2037 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 2038 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 2039 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 2040 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 2041 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 2042 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 2043 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 2044 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 2045 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 2046 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 2047 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 2048 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 2049 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 2050 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 2051 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 2052 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 2053 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 2054 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 2055 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 2056 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 2057 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 2058 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 2059 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 2060 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 2061 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 2062 case lltok::kw_tailcc: CC = CallingConv::Tail; break; 2063 case lltok::kw_cc: { 2064 Lex.Lex(); 2065 return ParseUInt32(CC); 2066 } 2067 } 2068 2069 Lex.Lex(); 2070 return false; 2071 } 2072 2073 /// ParseMetadataAttachment 2074 /// ::= !dbg !42 2075 bool LLParser::ParseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 2076 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 2077 2078 std::string Name = Lex.getStrVal(); 2079 Kind = M->getMDKindID(Name); 2080 Lex.Lex(); 2081 2082 return ParseMDNode(MD); 2083 } 2084 2085 /// ParseInstructionMetadata 2086 /// ::= !dbg !42 (',' !dbg !57)* 2087 bool LLParser::ParseInstructionMetadata(Instruction &Inst) { 2088 do { 2089 if (Lex.getKind() != lltok::MetadataVar) 2090 return TokError("expected metadata after comma"); 2091 2092 unsigned MDK; 2093 MDNode *N; 2094 if (ParseMetadataAttachment(MDK, N)) 2095 return true; 2096 2097 Inst.setMetadata(MDK, N); 2098 if (MDK == LLVMContext::MD_tbaa) 2099 InstsWithTBAATag.push_back(&Inst); 2100 2101 // If this is the end of the list, we're done. 2102 } while (EatIfPresent(lltok::comma)); 2103 return false; 2104 } 2105 2106 /// ParseGlobalObjectMetadataAttachment 2107 /// ::= !dbg !57 2108 bool LLParser::ParseGlobalObjectMetadataAttachment(GlobalObject &GO) { 2109 unsigned MDK; 2110 MDNode *N; 2111 if (ParseMetadataAttachment(MDK, N)) 2112 return true; 2113 2114 GO.addMetadata(MDK, *N); 2115 return false; 2116 } 2117 2118 /// ParseOptionalFunctionMetadata 2119 /// ::= (!dbg !57)* 2120 bool LLParser::ParseOptionalFunctionMetadata(Function &F) { 2121 while (Lex.getKind() == lltok::MetadataVar) 2122 if (ParseGlobalObjectMetadataAttachment(F)) 2123 return true; 2124 return false; 2125 } 2126 2127 /// ParseOptionalAlignment 2128 /// ::= /* empty */ 2129 /// ::= 'align' 4 2130 bool LLParser::ParseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) { 2131 Alignment = None; 2132 if (!EatIfPresent(lltok::kw_align)) 2133 return false; 2134 LocTy AlignLoc = Lex.getLoc(); 2135 uint32_t Value = 0; 2136 2137 LocTy ParenLoc = Lex.getLoc(); 2138 bool HaveParens = false; 2139 if (AllowParens) { 2140 if (EatIfPresent(lltok::lparen)) 2141 HaveParens = true; 2142 } 2143 2144 if (ParseUInt32(Value)) 2145 return true; 2146 2147 if (HaveParens && !EatIfPresent(lltok::rparen)) 2148 return Error(ParenLoc, "expected ')'"); 2149 2150 if (!isPowerOf2_32(Value)) 2151 return Error(AlignLoc, "alignment is not a power of two"); 2152 if (Value > Value::MaximumAlignment) 2153 return Error(AlignLoc, "huge alignments are not supported yet"); 2154 Alignment = Align(Value); 2155 return false; 2156 } 2157 2158 /// ParseOptionalDerefAttrBytes 2159 /// ::= /* empty */ 2160 /// ::= AttrKind '(' 4 ')' 2161 /// 2162 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 2163 bool LLParser::ParseOptionalDerefAttrBytes(lltok::Kind AttrKind, 2164 uint64_t &Bytes) { 2165 assert((AttrKind == lltok::kw_dereferenceable || 2166 AttrKind == lltok::kw_dereferenceable_or_null) && 2167 "contract!"); 2168 2169 Bytes = 0; 2170 if (!EatIfPresent(AttrKind)) 2171 return false; 2172 LocTy ParenLoc = Lex.getLoc(); 2173 if (!EatIfPresent(lltok::lparen)) 2174 return Error(ParenLoc, "expected '('"); 2175 LocTy DerefLoc = Lex.getLoc(); 2176 if (ParseUInt64(Bytes)) return true; 2177 ParenLoc = Lex.getLoc(); 2178 if (!EatIfPresent(lltok::rparen)) 2179 return Error(ParenLoc, "expected ')'"); 2180 if (!Bytes) 2181 return Error(DerefLoc, "dereferenceable bytes must be non-zero"); 2182 return false; 2183 } 2184 2185 /// ParseOptionalCommaAlign 2186 /// ::= 2187 /// ::= ',' align 4 2188 /// 2189 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2190 /// end. 2191 bool LLParser::ParseOptionalCommaAlign(MaybeAlign &Alignment, 2192 bool &AteExtraComma) { 2193 AteExtraComma = false; 2194 while (EatIfPresent(lltok::comma)) { 2195 // Metadata at the end is an early exit. 2196 if (Lex.getKind() == lltok::MetadataVar) { 2197 AteExtraComma = true; 2198 return false; 2199 } 2200 2201 if (Lex.getKind() != lltok::kw_align) 2202 return Error(Lex.getLoc(), "expected metadata or 'align'"); 2203 2204 if (ParseOptionalAlignment(Alignment)) return true; 2205 } 2206 2207 return false; 2208 } 2209 2210 /// ParseOptionalCommaAddrSpace 2211 /// ::= 2212 /// ::= ',' addrspace(1) 2213 /// 2214 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2215 /// end. 2216 bool LLParser::ParseOptionalCommaAddrSpace(unsigned &AddrSpace, 2217 LocTy &Loc, 2218 bool &AteExtraComma) { 2219 AteExtraComma = false; 2220 while (EatIfPresent(lltok::comma)) { 2221 // Metadata at the end is an early exit. 2222 if (Lex.getKind() == lltok::MetadataVar) { 2223 AteExtraComma = true; 2224 return false; 2225 } 2226 2227 Loc = Lex.getLoc(); 2228 if (Lex.getKind() != lltok::kw_addrspace) 2229 return Error(Lex.getLoc(), "expected metadata or 'addrspace'"); 2230 2231 if (ParseOptionalAddrSpace(AddrSpace)) 2232 return true; 2233 } 2234 2235 return false; 2236 } 2237 2238 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 2239 Optional<unsigned> &HowManyArg) { 2240 Lex.Lex(); 2241 2242 auto StartParen = Lex.getLoc(); 2243 if (!EatIfPresent(lltok::lparen)) 2244 return Error(StartParen, "expected '('"); 2245 2246 if (ParseUInt32(BaseSizeArg)) 2247 return true; 2248 2249 if (EatIfPresent(lltok::comma)) { 2250 auto HowManyAt = Lex.getLoc(); 2251 unsigned HowMany; 2252 if (ParseUInt32(HowMany)) 2253 return true; 2254 if (HowMany == BaseSizeArg) 2255 return Error(HowManyAt, 2256 "'allocsize' indices can't refer to the same parameter"); 2257 HowManyArg = HowMany; 2258 } else 2259 HowManyArg = None; 2260 2261 auto EndParen = Lex.getLoc(); 2262 if (!EatIfPresent(lltok::rparen)) 2263 return Error(EndParen, "expected ')'"); 2264 return false; 2265 } 2266 2267 /// ParseScopeAndOrdering 2268 /// if isAtomic: ::= SyncScope? AtomicOrdering 2269 /// else: ::= 2270 /// 2271 /// This sets Scope and Ordering to the parsed values. 2272 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SyncScope::ID &SSID, 2273 AtomicOrdering &Ordering) { 2274 if (!isAtomic) 2275 return false; 2276 2277 return ParseScope(SSID) || ParseOrdering(Ordering); 2278 } 2279 2280 /// ParseScope 2281 /// ::= syncscope("singlethread" | "<target scope>")? 2282 /// 2283 /// This sets synchronization scope ID to the ID of the parsed value. 2284 bool LLParser::ParseScope(SyncScope::ID &SSID) { 2285 SSID = SyncScope::System; 2286 if (EatIfPresent(lltok::kw_syncscope)) { 2287 auto StartParenAt = Lex.getLoc(); 2288 if (!EatIfPresent(lltok::lparen)) 2289 return Error(StartParenAt, "Expected '(' in syncscope"); 2290 2291 std::string SSN; 2292 auto SSNAt = Lex.getLoc(); 2293 if (ParseStringConstant(SSN)) 2294 return Error(SSNAt, "Expected synchronization scope name"); 2295 2296 auto EndParenAt = Lex.getLoc(); 2297 if (!EatIfPresent(lltok::rparen)) 2298 return Error(EndParenAt, "Expected ')' in syncscope"); 2299 2300 SSID = Context.getOrInsertSyncScopeID(SSN); 2301 } 2302 2303 return false; 2304 } 2305 2306 /// ParseOrdering 2307 /// ::= AtomicOrdering 2308 /// 2309 /// This sets Ordering to the parsed value. 2310 bool LLParser::ParseOrdering(AtomicOrdering &Ordering) { 2311 switch (Lex.getKind()) { 2312 default: return TokError("Expected ordering on atomic instruction"); 2313 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2314 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2315 // Not specified yet: 2316 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2317 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2318 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2319 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2320 case lltok::kw_seq_cst: 2321 Ordering = AtomicOrdering::SequentiallyConsistent; 2322 break; 2323 } 2324 Lex.Lex(); 2325 return false; 2326 } 2327 2328 /// ParseOptionalStackAlignment 2329 /// ::= /* empty */ 2330 /// ::= 'alignstack' '(' 4 ')' 2331 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 2332 Alignment = 0; 2333 if (!EatIfPresent(lltok::kw_alignstack)) 2334 return false; 2335 LocTy ParenLoc = Lex.getLoc(); 2336 if (!EatIfPresent(lltok::lparen)) 2337 return Error(ParenLoc, "expected '('"); 2338 LocTy AlignLoc = Lex.getLoc(); 2339 if (ParseUInt32(Alignment)) return true; 2340 ParenLoc = Lex.getLoc(); 2341 if (!EatIfPresent(lltok::rparen)) 2342 return Error(ParenLoc, "expected ')'"); 2343 if (!isPowerOf2_32(Alignment)) 2344 return Error(AlignLoc, "stack alignment is not a power of two"); 2345 return false; 2346 } 2347 2348 /// ParseIndexList - This parses the index list for an insert/extractvalue 2349 /// instruction. This sets AteExtraComma in the case where we eat an extra 2350 /// comma at the end of the line and find that it is followed by metadata. 2351 /// Clients that don't allow metadata can call the version of this function that 2352 /// only takes one argument. 2353 /// 2354 /// ParseIndexList 2355 /// ::= (',' uint32)+ 2356 /// 2357 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 2358 bool &AteExtraComma) { 2359 AteExtraComma = false; 2360 2361 if (Lex.getKind() != lltok::comma) 2362 return TokError("expected ',' as start of index list"); 2363 2364 while (EatIfPresent(lltok::comma)) { 2365 if (Lex.getKind() == lltok::MetadataVar) { 2366 if (Indices.empty()) return TokError("expected index"); 2367 AteExtraComma = true; 2368 return false; 2369 } 2370 unsigned Idx = 0; 2371 if (ParseUInt32(Idx)) return true; 2372 Indices.push_back(Idx); 2373 } 2374 2375 return false; 2376 } 2377 2378 //===----------------------------------------------------------------------===// 2379 // Type Parsing. 2380 //===----------------------------------------------------------------------===// 2381 2382 /// ParseType - Parse a type. 2383 bool LLParser::ParseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2384 SMLoc TypeLoc = Lex.getLoc(); 2385 switch (Lex.getKind()) { 2386 default: 2387 return TokError(Msg); 2388 case lltok::Type: 2389 // Type ::= 'float' | 'void' (etc) 2390 Result = Lex.getTyVal(); 2391 Lex.Lex(); 2392 break; 2393 case lltok::lbrace: 2394 // Type ::= StructType 2395 if (ParseAnonStructType(Result, false)) 2396 return true; 2397 break; 2398 case lltok::lsquare: 2399 // Type ::= '[' ... ']' 2400 Lex.Lex(); // eat the lsquare. 2401 if (ParseArrayVectorType(Result, false)) 2402 return true; 2403 break; 2404 case lltok::less: // Either vector or packed struct. 2405 // Type ::= '<' ... '>' 2406 Lex.Lex(); 2407 if (Lex.getKind() == lltok::lbrace) { 2408 if (ParseAnonStructType(Result, true) || 2409 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 2410 return true; 2411 } else if (ParseArrayVectorType(Result, true)) 2412 return true; 2413 break; 2414 case lltok::LocalVar: { 2415 // Type ::= %foo 2416 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2417 2418 // If the type hasn't been defined yet, create a forward definition and 2419 // remember where that forward def'n was seen (in case it never is defined). 2420 if (!Entry.first) { 2421 Entry.first = StructType::create(Context, Lex.getStrVal()); 2422 Entry.second = Lex.getLoc(); 2423 } 2424 Result = Entry.first; 2425 Lex.Lex(); 2426 break; 2427 } 2428 2429 case lltok::LocalVarID: { 2430 // Type ::= %4 2431 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2432 2433 // If the type hasn't been defined yet, create a forward definition and 2434 // remember where that forward def'n was seen (in case it never is defined). 2435 if (!Entry.first) { 2436 Entry.first = StructType::create(Context); 2437 Entry.second = Lex.getLoc(); 2438 } 2439 Result = Entry.first; 2440 Lex.Lex(); 2441 break; 2442 } 2443 } 2444 2445 // Parse the type suffixes. 2446 while (true) { 2447 switch (Lex.getKind()) { 2448 // End of type. 2449 default: 2450 if (!AllowVoid && Result->isVoidTy()) 2451 return Error(TypeLoc, "void type only allowed for function results"); 2452 return false; 2453 2454 // Type ::= Type '*' 2455 case lltok::star: 2456 if (Result->isLabelTy()) 2457 return TokError("basic block pointers are invalid"); 2458 if (Result->isVoidTy()) 2459 return TokError("pointers to void are invalid - use i8* instead"); 2460 if (!PointerType::isValidElementType(Result)) 2461 return TokError("pointer to this type is invalid"); 2462 Result = PointerType::getUnqual(Result); 2463 Lex.Lex(); 2464 break; 2465 2466 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2467 case lltok::kw_addrspace: { 2468 if (Result->isLabelTy()) 2469 return TokError("basic block pointers are invalid"); 2470 if (Result->isVoidTy()) 2471 return TokError("pointers to void are invalid; use i8* instead"); 2472 if (!PointerType::isValidElementType(Result)) 2473 return TokError("pointer to this type is invalid"); 2474 unsigned AddrSpace; 2475 if (ParseOptionalAddrSpace(AddrSpace) || 2476 ParseToken(lltok::star, "expected '*' in address space")) 2477 return true; 2478 2479 Result = PointerType::get(Result, AddrSpace); 2480 break; 2481 } 2482 2483 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2484 case lltok::lparen: 2485 if (ParseFunctionType(Result)) 2486 return true; 2487 break; 2488 } 2489 } 2490 } 2491 2492 /// ParseParameterList 2493 /// ::= '(' ')' 2494 /// ::= '(' Arg (',' Arg)* ')' 2495 /// Arg 2496 /// ::= Type OptionalAttributes Value OptionalAttributes 2497 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2498 PerFunctionState &PFS, bool IsMustTailCall, 2499 bool InVarArgsFunc) { 2500 if (ParseToken(lltok::lparen, "expected '(' in call")) 2501 return true; 2502 2503 while (Lex.getKind() != lltok::rparen) { 2504 // If this isn't the first argument, we need a comma. 2505 if (!ArgList.empty() && 2506 ParseToken(lltok::comma, "expected ',' in argument list")) 2507 return true; 2508 2509 // Parse an ellipsis if this is a musttail call in a variadic function. 2510 if (Lex.getKind() == lltok::dotdotdot) { 2511 const char *Msg = "unexpected ellipsis in argument list for "; 2512 if (!IsMustTailCall) 2513 return TokError(Twine(Msg) + "non-musttail call"); 2514 if (!InVarArgsFunc) 2515 return TokError(Twine(Msg) + "musttail call in non-varargs function"); 2516 Lex.Lex(); // Lex the '...', it is purely for readability. 2517 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2518 } 2519 2520 // Parse the argument. 2521 LocTy ArgLoc; 2522 Type *ArgTy = nullptr; 2523 AttrBuilder ArgAttrs; 2524 Value *V; 2525 if (ParseType(ArgTy, ArgLoc)) 2526 return true; 2527 2528 if (ArgTy->isMetadataTy()) { 2529 if (ParseMetadataAsValue(V, PFS)) 2530 return true; 2531 } else { 2532 // Otherwise, handle normal operands. 2533 if (ParseOptionalParamAttrs(ArgAttrs) || ParseValue(ArgTy, V, PFS)) 2534 return true; 2535 } 2536 ArgList.push_back(ParamInfo( 2537 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2538 } 2539 2540 if (IsMustTailCall && InVarArgsFunc) 2541 return TokError("expected '...' at end of argument list for musttail call " 2542 "in varargs function"); 2543 2544 Lex.Lex(); // Lex the ')'. 2545 return false; 2546 } 2547 2548 /// ParseByValWithOptionalType 2549 /// ::= byval 2550 /// ::= byval(<ty>) 2551 bool LLParser::ParseByValWithOptionalType(Type *&Result) { 2552 Result = nullptr; 2553 if (!EatIfPresent(lltok::kw_byval)) 2554 return true; 2555 if (!EatIfPresent(lltok::lparen)) 2556 return false; 2557 if (ParseType(Result)) 2558 return true; 2559 if (!EatIfPresent(lltok::rparen)) 2560 return Error(Lex.getLoc(), "expected ')'"); 2561 return false; 2562 } 2563 2564 /// ParsePreallocated 2565 /// ::= preallocated(<ty>) 2566 bool LLParser::ParsePreallocated(Type *&Result) { 2567 Result = nullptr; 2568 if (!EatIfPresent(lltok::kw_preallocated)) 2569 return true; 2570 if (!EatIfPresent(lltok::lparen)) 2571 return Error(Lex.getLoc(), "expected '('"); 2572 if (ParseType(Result)) 2573 return true; 2574 if (!EatIfPresent(lltok::rparen)) 2575 return Error(Lex.getLoc(), "expected ')'"); 2576 return false; 2577 } 2578 2579 /// ParseOptionalOperandBundles 2580 /// ::= /*empty*/ 2581 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2582 /// 2583 /// OperandBundle 2584 /// ::= bundle-tag '(' ')' 2585 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2586 /// 2587 /// bundle-tag ::= String Constant 2588 bool LLParser::ParseOptionalOperandBundles( 2589 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2590 LocTy BeginLoc = Lex.getLoc(); 2591 if (!EatIfPresent(lltok::lsquare)) 2592 return false; 2593 2594 while (Lex.getKind() != lltok::rsquare) { 2595 // If this isn't the first operand bundle, we need a comma. 2596 if (!BundleList.empty() && 2597 ParseToken(lltok::comma, "expected ',' in input list")) 2598 return true; 2599 2600 std::string Tag; 2601 if (ParseStringConstant(Tag)) 2602 return true; 2603 2604 if (ParseToken(lltok::lparen, "expected '(' in operand bundle")) 2605 return true; 2606 2607 std::vector<Value *> Inputs; 2608 while (Lex.getKind() != lltok::rparen) { 2609 // If this isn't the first input, we need a comma. 2610 if (!Inputs.empty() && 2611 ParseToken(lltok::comma, "expected ',' in input list")) 2612 return true; 2613 2614 Type *Ty = nullptr; 2615 Value *Input = nullptr; 2616 if (ParseType(Ty) || ParseValue(Ty, Input, PFS)) 2617 return true; 2618 Inputs.push_back(Input); 2619 } 2620 2621 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2622 2623 Lex.Lex(); // Lex the ')'. 2624 } 2625 2626 if (BundleList.empty()) 2627 return Error(BeginLoc, "operand bundle set must not be empty"); 2628 2629 Lex.Lex(); // Lex the ']'. 2630 return false; 2631 } 2632 2633 /// ParseArgumentList - Parse the argument list for a function type or function 2634 /// prototype. 2635 /// ::= '(' ArgTypeListI ')' 2636 /// ArgTypeListI 2637 /// ::= /*empty*/ 2638 /// ::= '...' 2639 /// ::= ArgTypeList ',' '...' 2640 /// ::= ArgType (',' ArgType)* 2641 /// 2642 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2643 bool &isVarArg){ 2644 unsigned CurValID = 0; 2645 isVarArg = false; 2646 assert(Lex.getKind() == lltok::lparen); 2647 Lex.Lex(); // eat the (. 2648 2649 if (Lex.getKind() == lltok::rparen) { 2650 // empty 2651 } else if (Lex.getKind() == lltok::dotdotdot) { 2652 isVarArg = true; 2653 Lex.Lex(); 2654 } else { 2655 LocTy TypeLoc = Lex.getLoc(); 2656 Type *ArgTy = nullptr; 2657 AttrBuilder Attrs; 2658 std::string Name; 2659 2660 if (ParseType(ArgTy) || 2661 ParseOptionalParamAttrs(Attrs)) return true; 2662 2663 if (ArgTy->isVoidTy()) 2664 return Error(TypeLoc, "argument can not have void type"); 2665 2666 if (Lex.getKind() == lltok::LocalVar) { 2667 Name = Lex.getStrVal(); 2668 Lex.Lex(); 2669 } else if (Lex.getKind() == lltok::LocalVarID) { 2670 if (Lex.getUIntVal() != CurValID) 2671 return Error(TypeLoc, "argument expected to be numbered '%" + 2672 Twine(CurValID) + "'"); 2673 ++CurValID; 2674 Lex.Lex(); 2675 } 2676 2677 if (!FunctionType::isValidArgumentType(ArgTy)) 2678 return Error(TypeLoc, "invalid type for function argument"); 2679 2680 ArgList.emplace_back(TypeLoc, ArgTy, 2681 AttributeSet::get(ArgTy->getContext(), Attrs), 2682 std::move(Name)); 2683 2684 while (EatIfPresent(lltok::comma)) { 2685 // Handle ... at end of arg list. 2686 if (EatIfPresent(lltok::dotdotdot)) { 2687 isVarArg = true; 2688 break; 2689 } 2690 2691 // Otherwise must be an argument type. 2692 TypeLoc = Lex.getLoc(); 2693 if (ParseType(ArgTy) || ParseOptionalParamAttrs(Attrs)) return true; 2694 2695 if (ArgTy->isVoidTy()) 2696 return Error(TypeLoc, "argument can not have void type"); 2697 2698 if (Lex.getKind() == lltok::LocalVar) { 2699 Name = Lex.getStrVal(); 2700 Lex.Lex(); 2701 } else { 2702 if (Lex.getKind() == lltok::LocalVarID) { 2703 if (Lex.getUIntVal() != CurValID) 2704 return Error(TypeLoc, "argument expected to be numbered '%" + 2705 Twine(CurValID) + "'"); 2706 Lex.Lex(); 2707 } 2708 ++CurValID; 2709 Name = ""; 2710 } 2711 2712 if (!ArgTy->isFirstClassType()) 2713 return Error(TypeLoc, "invalid type for function argument"); 2714 2715 ArgList.emplace_back(TypeLoc, ArgTy, 2716 AttributeSet::get(ArgTy->getContext(), Attrs), 2717 std::move(Name)); 2718 } 2719 } 2720 2721 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 2722 } 2723 2724 /// ParseFunctionType 2725 /// ::= Type ArgumentList OptionalAttrs 2726 bool LLParser::ParseFunctionType(Type *&Result) { 2727 assert(Lex.getKind() == lltok::lparen); 2728 2729 if (!FunctionType::isValidReturnType(Result)) 2730 return TokError("invalid function return type"); 2731 2732 SmallVector<ArgInfo, 8> ArgList; 2733 bool isVarArg; 2734 if (ParseArgumentList(ArgList, isVarArg)) 2735 return true; 2736 2737 // Reject names on the arguments lists. 2738 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2739 if (!ArgList[i].Name.empty()) 2740 return Error(ArgList[i].Loc, "argument name invalid in function type"); 2741 if (ArgList[i].Attrs.hasAttributes()) 2742 return Error(ArgList[i].Loc, 2743 "argument attributes invalid in function type"); 2744 } 2745 2746 SmallVector<Type*, 16> ArgListTy; 2747 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2748 ArgListTy.push_back(ArgList[i].Ty); 2749 2750 Result = FunctionType::get(Result, ArgListTy, isVarArg); 2751 return false; 2752 } 2753 2754 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 2755 /// other structs. 2756 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 2757 SmallVector<Type*, 8> Elts; 2758 if (ParseStructBody(Elts)) return true; 2759 2760 Result = StructType::get(Context, Elts, Packed); 2761 return false; 2762 } 2763 2764 /// ParseStructDefinition - Parse a struct in a 'type' definition. 2765 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 2766 std::pair<Type*, LocTy> &Entry, 2767 Type *&ResultTy) { 2768 // If the type was already defined, diagnose the redefinition. 2769 if (Entry.first && !Entry.second.isValid()) 2770 return Error(TypeLoc, "redefinition of type"); 2771 2772 // If we have opaque, just return without filling in the definition for the 2773 // struct. This counts as a definition as far as the .ll file goes. 2774 if (EatIfPresent(lltok::kw_opaque)) { 2775 // This type is being defined, so clear the location to indicate this. 2776 Entry.second = SMLoc(); 2777 2778 // If this type number has never been uttered, create it. 2779 if (!Entry.first) 2780 Entry.first = StructType::create(Context, Name); 2781 ResultTy = Entry.first; 2782 return false; 2783 } 2784 2785 // If the type starts with '<', then it is either a packed struct or a vector. 2786 bool isPacked = EatIfPresent(lltok::less); 2787 2788 // If we don't have a struct, then we have a random type alias, which we 2789 // accept for compatibility with old files. These types are not allowed to be 2790 // forward referenced and not allowed to be recursive. 2791 if (Lex.getKind() != lltok::lbrace) { 2792 if (Entry.first) 2793 return Error(TypeLoc, "forward references to non-struct type"); 2794 2795 ResultTy = nullptr; 2796 if (isPacked) 2797 return ParseArrayVectorType(ResultTy, true); 2798 return ParseType(ResultTy); 2799 } 2800 2801 // This type is being defined, so clear the location to indicate this. 2802 Entry.second = SMLoc(); 2803 2804 // If this type number has never been uttered, create it. 2805 if (!Entry.first) 2806 Entry.first = StructType::create(Context, Name); 2807 2808 StructType *STy = cast<StructType>(Entry.first); 2809 2810 SmallVector<Type*, 8> Body; 2811 if (ParseStructBody(Body) || 2812 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 2813 return true; 2814 2815 STy->setBody(Body, isPacked); 2816 ResultTy = STy; 2817 return false; 2818 } 2819 2820 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2821 /// StructType 2822 /// ::= '{' '}' 2823 /// ::= '{' Type (',' Type)* '}' 2824 /// ::= '<' '{' '}' '>' 2825 /// ::= '<' '{' Type (',' Type)* '}' '>' 2826 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 2827 assert(Lex.getKind() == lltok::lbrace); 2828 Lex.Lex(); // Consume the '{' 2829 2830 // Handle the empty struct. 2831 if (EatIfPresent(lltok::rbrace)) 2832 return false; 2833 2834 LocTy EltTyLoc = Lex.getLoc(); 2835 Type *Ty = nullptr; 2836 if (ParseType(Ty)) return true; 2837 Body.push_back(Ty); 2838 2839 if (!StructType::isValidElementType(Ty)) 2840 return Error(EltTyLoc, "invalid element type for struct"); 2841 2842 while (EatIfPresent(lltok::comma)) { 2843 EltTyLoc = Lex.getLoc(); 2844 if (ParseType(Ty)) return true; 2845 2846 if (!StructType::isValidElementType(Ty)) 2847 return Error(EltTyLoc, "invalid element type for struct"); 2848 2849 Body.push_back(Ty); 2850 } 2851 2852 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 2853 } 2854 2855 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 2856 /// token has already been consumed. 2857 /// Type 2858 /// ::= '[' APSINTVAL 'x' Types ']' 2859 /// ::= '<' APSINTVAL 'x' Types '>' 2860 /// ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>' 2861 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 2862 bool Scalable = false; 2863 2864 if (isVector && Lex.getKind() == lltok::kw_vscale) { 2865 Lex.Lex(); // consume the 'vscale' 2866 if (ParseToken(lltok::kw_x, "expected 'x' after vscale")) 2867 return true; 2868 2869 Scalable = true; 2870 } 2871 2872 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2873 Lex.getAPSIntVal().getBitWidth() > 64) 2874 return TokError("expected number in address space"); 2875 2876 LocTy SizeLoc = Lex.getLoc(); 2877 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2878 Lex.Lex(); 2879 2880 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 2881 return true; 2882 2883 LocTy TypeLoc = Lex.getLoc(); 2884 Type *EltTy = nullptr; 2885 if (ParseType(EltTy)) return true; 2886 2887 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 2888 "expected end of sequential type")) 2889 return true; 2890 2891 if (isVector) { 2892 if (Size == 0) 2893 return Error(SizeLoc, "zero element vector is illegal"); 2894 if ((unsigned)Size != Size) 2895 return Error(SizeLoc, "size too large for vector"); 2896 if (!VectorType::isValidElementType(EltTy)) 2897 return Error(TypeLoc, "invalid vector element type"); 2898 Result = VectorType::get(EltTy, unsigned(Size), Scalable); 2899 } else { 2900 if (!ArrayType::isValidElementType(EltTy)) 2901 return Error(TypeLoc, "invalid array element type"); 2902 Result = ArrayType::get(EltTy, Size); 2903 } 2904 return false; 2905 } 2906 2907 //===----------------------------------------------------------------------===// 2908 // Function Semantic Analysis. 2909 //===----------------------------------------------------------------------===// 2910 2911 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2912 int functionNumber) 2913 : P(p), F(f), FunctionNumber(functionNumber) { 2914 2915 // Insert unnamed arguments into the NumberedVals list. 2916 for (Argument &A : F.args()) 2917 if (!A.hasName()) 2918 NumberedVals.push_back(&A); 2919 } 2920 2921 LLParser::PerFunctionState::~PerFunctionState() { 2922 // If there were any forward referenced non-basicblock values, delete them. 2923 2924 for (const auto &P : ForwardRefVals) { 2925 if (isa<BasicBlock>(P.second.first)) 2926 continue; 2927 P.second.first->replaceAllUsesWith( 2928 UndefValue::get(P.second.first->getType())); 2929 P.second.first->deleteValue(); 2930 } 2931 2932 for (const auto &P : ForwardRefValIDs) { 2933 if (isa<BasicBlock>(P.second.first)) 2934 continue; 2935 P.second.first->replaceAllUsesWith( 2936 UndefValue::get(P.second.first->getType())); 2937 P.second.first->deleteValue(); 2938 } 2939 } 2940 2941 bool LLParser::PerFunctionState::FinishFunction() { 2942 if (!ForwardRefVals.empty()) 2943 return P.Error(ForwardRefVals.begin()->second.second, 2944 "use of undefined value '%" + ForwardRefVals.begin()->first + 2945 "'"); 2946 if (!ForwardRefValIDs.empty()) 2947 return P.Error(ForwardRefValIDs.begin()->second.second, 2948 "use of undefined value '%" + 2949 Twine(ForwardRefValIDs.begin()->first) + "'"); 2950 return false; 2951 } 2952 2953 /// GetVal - Get a value with the specified name or ID, creating a 2954 /// forward reference record if needed. This can return null if the value 2955 /// exists but does not have the right type. 2956 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, Type *Ty, 2957 LocTy Loc, bool IsCall) { 2958 // Look this name up in the normal function symbol table. 2959 Value *Val = F.getValueSymbolTable()->lookup(Name); 2960 2961 // If this is a forward reference for the value, see if we already created a 2962 // forward ref record. 2963 if (!Val) { 2964 auto I = ForwardRefVals.find(Name); 2965 if (I != ForwardRefVals.end()) 2966 Val = I->second.first; 2967 } 2968 2969 // If we have the value in the symbol table or fwd-ref table, return it. 2970 if (Val) 2971 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall); 2972 2973 // Don't make placeholders with invalid type. 2974 if (!Ty->isFirstClassType()) { 2975 P.Error(Loc, "invalid use of a non-first-class type"); 2976 return nullptr; 2977 } 2978 2979 // Otherwise, create a new forward reference for this value and remember it. 2980 Value *FwdVal; 2981 if (Ty->isLabelTy()) { 2982 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 2983 } else { 2984 FwdVal = new Argument(Ty, Name); 2985 } 2986 2987 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 2988 return FwdVal; 2989 } 2990 2991 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, LocTy Loc, 2992 bool IsCall) { 2993 // Look this name up in the normal function symbol table. 2994 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 2995 2996 // If this is a forward reference for the value, see if we already created a 2997 // forward ref record. 2998 if (!Val) { 2999 auto I = ForwardRefValIDs.find(ID); 3000 if (I != ForwardRefValIDs.end()) 3001 Val = I->second.first; 3002 } 3003 3004 // If we have the value in the symbol table or fwd-ref table, return it. 3005 if (Val) 3006 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall); 3007 3008 if (!Ty->isFirstClassType()) { 3009 P.Error(Loc, "invalid use of a non-first-class type"); 3010 return nullptr; 3011 } 3012 3013 // Otherwise, create a new forward reference for this value and remember it. 3014 Value *FwdVal; 3015 if (Ty->isLabelTy()) { 3016 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 3017 } else { 3018 FwdVal = new Argument(Ty); 3019 } 3020 3021 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 3022 return FwdVal; 3023 } 3024 3025 /// SetInstName - After an instruction is parsed and inserted into its 3026 /// basic block, this installs its name. 3027 bool LLParser::PerFunctionState::SetInstName(int NameID, 3028 const std::string &NameStr, 3029 LocTy NameLoc, Instruction *Inst) { 3030 // If this instruction has void type, it cannot have a name or ID specified. 3031 if (Inst->getType()->isVoidTy()) { 3032 if (NameID != -1 || !NameStr.empty()) 3033 return P.Error(NameLoc, "instructions returning void cannot have a name"); 3034 return false; 3035 } 3036 3037 // If this was a numbered instruction, verify that the instruction is the 3038 // expected value and resolve any forward references. 3039 if (NameStr.empty()) { 3040 // If neither a name nor an ID was specified, just use the next ID. 3041 if (NameID == -1) 3042 NameID = NumberedVals.size(); 3043 3044 if (unsigned(NameID) != NumberedVals.size()) 3045 return P.Error(NameLoc, "instruction expected to be numbered '%" + 3046 Twine(NumberedVals.size()) + "'"); 3047 3048 auto FI = ForwardRefValIDs.find(NameID); 3049 if (FI != ForwardRefValIDs.end()) { 3050 Value *Sentinel = FI->second.first; 3051 if (Sentinel->getType() != Inst->getType()) 3052 return P.Error(NameLoc, "instruction forward referenced with type '" + 3053 getTypeString(FI->second.first->getType()) + "'"); 3054 3055 Sentinel->replaceAllUsesWith(Inst); 3056 Sentinel->deleteValue(); 3057 ForwardRefValIDs.erase(FI); 3058 } 3059 3060 NumberedVals.push_back(Inst); 3061 return false; 3062 } 3063 3064 // Otherwise, the instruction had a name. Resolve forward refs and set it. 3065 auto FI = ForwardRefVals.find(NameStr); 3066 if (FI != ForwardRefVals.end()) { 3067 Value *Sentinel = FI->second.first; 3068 if (Sentinel->getType() != Inst->getType()) 3069 return P.Error(NameLoc, "instruction forward referenced with type '" + 3070 getTypeString(FI->second.first->getType()) + "'"); 3071 3072 Sentinel->replaceAllUsesWith(Inst); 3073 Sentinel->deleteValue(); 3074 ForwardRefVals.erase(FI); 3075 } 3076 3077 // Set the name on the instruction. 3078 Inst->setName(NameStr); 3079 3080 if (Inst->getName() != NameStr) 3081 return P.Error(NameLoc, "multiple definition of local value named '" + 3082 NameStr + "'"); 3083 return false; 3084 } 3085 3086 /// GetBB - Get a basic block with the specified name or ID, creating a 3087 /// forward reference record if needed. 3088 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 3089 LocTy Loc) { 3090 return dyn_cast_or_null<BasicBlock>( 3091 GetVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 3092 } 3093 3094 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 3095 return dyn_cast_or_null<BasicBlock>( 3096 GetVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 3097 } 3098 3099 /// DefineBB - Define the specified basic block, which is either named or 3100 /// unnamed. If there is an error, this returns null otherwise it returns 3101 /// the block being defined. 3102 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 3103 int NameID, LocTy Loc) { 3104 BasicBlock *BB; 3105 if (Name.empty()) { 3106 if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) { 3107 P.Error(Loc, "label expected to be numbered '" + 3108 Twine(NumberedVals.size()) + "'"); 3109 return nullptr; 3110 } 3111 BB = GetBB(NumberedVals.size(), Loc); 3112 if (!BB) { 3113 P.Error(Loc, "unable to create block numbered '" + 3114 Twine(NumberedVals.size()) + "'"); 3115 return nullptr; 3116 } 3117 } else { 3118 BB = GetBB(Name, Loc); 3119 if (!BB) { 3120 P.Error(Loc, "unable to create block named '" + Name + "'"); 3121 return nullptr; 3122 } 3123 } 3124 3125 // Move the block to the end of the function. Forward ref'd blocks are 3126 // inserted wherever they happen to be referenced. 3127 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 3128 3129 // Remove the block from forward ref sets. 3130 if (Name.empty()) { 3131 ForwardRefValIDs.erase(NumberedVals.size()); 3132 NumberedVals.push_back(BB); 3133 } else { 3134 // BB forward references are already in the function symbol table. 3135 ForwardRefVals.erase(Name); 3136 } 3137 3138 return BB; 3139 } 3140 3141 //===----------------------------------------------------------------------===// 3142 // Constants. 3143 //===----------------------------------------------------------------------===// 3144 3145 /// ParseValID - Parse an abstract value that doesn't necessarily have a 3146 /// type implied. For example, if we parse "4" we don't know what integer type 3147 /// it has. The value will later be combined with its type and checked for 3148 /// sanity. PFS is used to convert function-local operands of metadata (since 3149 /// metadata operands are not just parsed here but also converted to values). 3150 /// PFS can be null when we are not parsing metadata values inside a function. 3151 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 3152 ID.Loc = Lex.getLoc(); 3153 switch (Lex.getKind()) { 3154 default: return TokError("expected value token"); 3155 case lltok::GlobalID: // @42 3156 ID.UIntVal = Lex.getUIntVal(); 3157 ID.Kind = ValID::t_GlobalID; 3158 break; 3159 case lltok::GlobalVar: // @foo 3160 ID.StrVal = Lex.getStrVal(); 3161 ID.Kind = ValID::t_GlobalName; 3162 break; 3163 case lltok::LocalVarID: // %42 3164 ID.UIntVal = Lex.getUIntVal(); 3165 ID.Kind = ValID::t_LocalID; 3166 break; 3167 case lltok::LocalVar: // %foo 3168 ID.StrVal = Lex.getStrVal(); 3169 ID.Kind = ValID::t_LocalName; 3170 break; 3171 case lltok::APSInt: 3172 ID.APSIntVal = Lex.getAPSIntVal(); 3173 ID.Kind = ValID::t_APSInt; 3174 break; 3175 case lltok::APFloat: 3176 ID.APFloatVal = Lex.getAPFloatVal(); 3177 ID.Kind = ValID::t_APFloat; 3178 break; 3179 case lltok::kw_true: 3180 ID.ConstantVal = ConstantInt::getTrue(Context); 3181 ID.Kind = ValID::t_Constant; 3182 break; 3183 case lltok::kw_false: 3184 ID.ConstantVal = ConstantInt::getFalse(Context); 3185 ID.Kind = ValID::t_Constant; 3186 break; 3187 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 3188 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 3189 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 3190 case lltok::kw_none: ID.Kind = ValID::t_None; break; 3191 3192 case lltok::lbrace: { 3193 // ValID ::= '{' ConstVector '}' 3194 Lex.Lex(); 3195 SmallVector<Constant*, 16> Elts; 3196 if (ParseGlobalValueVector(Elts) || 3197 ParseToken(lltok::rbrace, "expected end of struct constant")) 3198 return true; 3199 3200 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3201 ID.UIntVal = Elts.size(); 3202 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3203 Elts.size() * sizeof(Elts[0])); 3204 ID.Kind = ValID::t_ConstantStruct; 3205 return false; 3206 } 3207 case lltok::less: { 3208 // ValID ::= '<' ConstVector '>' --> Vector. 3209 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 3210 Lex.Lex(); 3211 bool isPackedStruct = EatIfPresent(lltok::lbrace); 3212 3213 SmallVector<Constant*, 16> Elts; 3214 LocTy FirstEltLoc = Lex.getLoc(); 3215 if (ParseGlobalValueVector(Elts) || 3216 (isPackedStruct && 3217 ParseToken(lltok::rbrace, "expected end of packed struct")) || 3218 ParseToken(lltok::greater, "expected end of constant")) 3219 return true; 3220 3221 if (isPackedStruct) { 3222 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3223 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3224 Elts.size() * sizeof(Elts[0])); 3225 ID.UIntVal = Elts.size(); 3226 ID.Kind = ValID::t_PackedConstantStruct; 3227 return false; 3228 } 3229 3230 if (Elts.empty()) 3231 return Error(ID.Loc, "constant vector must not be empty"); 3232 3233 if (!Elts[0]->getType()->isIntegerTy() && 3234 !Elts[0]->getType()->isFloatingPointTy() && 3235 !Elts[0]->getType()->isPointerTy()) 3236 return Error(FirstEltLoc, 3237 "vector elements must have integer, pointer or floating point type"); 3238 3239 // Verify that all the vector elements have the same type. 3240 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 3241 if (Elts[i]->getType() != Elts[0]->getType()) 3242 return Error(FirstEltLoc, 3243 "vector element #" + Twine(i) + 3244 " is not of type '" + getTypeString(Elts[0]->getType())); 3245 3246 ID.ConstantVal = ConstantVector::get(Elts); 3247 ID.Kind = ValID::t_Constant; 3248 return false; 3249 } 3250 case lltok::lsquare: { // Array Constant 3251 Lex.Lex(); 3252 SmallVector<Constant*, 16> Elts; 3253 LocTy FirstEltLoc = Lex.getLoc(); 3254 if (ParseGlobalValueVector(Elts) || 3255 ParseToken(lltok::rsquare, "expected end of array constant")) 3256 return true; 3257 3258 // Handle empty element. 3259 if (Elts.empty()) { 3260 // Use undef instead of an array because it's inconvenient to determine 3261 // the element type at this point, there being no elements to examine. 3262 ID.Kind = ValID::t_EmptyArray; 3263 return false; 3264 } 3265 3266 if (!Elts[0]->getType()->isFirstClassType()) 3267 return Error(FirstEltLoc, "invalid array element type: " + 3268 getTypeString(Elts[0]->getType())); 3269 3270 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 3271 3272 // Verify all elements are correct type! 3273 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 3274 if (Elts[i]->getType() != Elts[0]->getType()) 3275 return Error(FirstEltLoc, 3276 "array element #" + Twine(i) + 3277 " is not of type '" + getTypeString(Elts[0]->getType())); 3278 } 3279 3280 ID.ConstantVal = ConstantArray::get(ATy, Elts); 3281 ID.Kind = ValID::t_Constant; 3282 return false; 3283 } 3284 case lltok::kw_c: // c "foo" 3285 Lex.Lex(); 3286 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 3287 false); 3288 if (ParseToken(lltok::StringConstant, "expected string")) return true; 3289 ID.Kind = ValID::t_Constant; 3290 return false; 3291 3292 case lltok::kw_asm: { 3293 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 3294 // STRINGCONSTANT 3295 bool HasSideEffect, AlignStack, AsmDialect; 3296 Lex.Lex(); 3297 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 3298 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 3299 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 3300 ParseStringConstant(ID.StrVal) || 3301 ParseToken(lltok::comma, "expected comma in inline asm expression") || 3302 ParseToken(lltok::StringConstant, "expected constraint string")) 3303 return true; 3304 ID.StrVal2 = Lex.getStrVal(); 3305 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 3306 (unsigned(AsmDialect)<<2); 3307 ID.Kind = ValID::t_InlineAsm; 3308 return false; 3309 } 3310 3311 case lltok::kw_blockaddress: { 3312 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 3313 Lex.Lex(); 3314 3315 ValID Fn, Label; 3316 3317 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 3318 ParseValID(Fn) || 3319 ParseToken(lltok::comma, "expected comma in block address expression")|| 3320 ParseValID(Label) || 3321 ParseToken(lltok::rparen, "expected ')' in block address expression")) 3322 return true; 3323 3324 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3325 return Error(Fn.Loc, "expected function name in blockaddress"); 3326 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 3327 return Error(Label.Loc, "expected basic block name in blockaddress"); 3328 3329 // Try to find the function (but skip it if it's forward-referenced). 3330 GlobalValue *GV = nullptr; 3331 if (Fn.Kind == ValID::t_GlobalID) { 3332 if (Fn.UIntVal < NumberedVals.size()) 3333 GV = NumberedVals[Fn.UIntVal]; 3334 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3335 GV = M->getNamedValue(Fn.StrVal); 3336 } 3337 Function *F = nullptr; 3338 if (GV) { 3339 // Confirm that it's actually a function with a definition. 3340 if (!isa<Function>(GV)) 3341 return Error(Fn.Loc, "expected function name in blockaddress"); 3342 F = cast<Function>(GV); 3343 if (F->isDeclaration()) 3344 return Error(Fn.Loc, "cannot take blockaddress inside a declaration"); 3345 } 3346 3347 if (!F) { 3348 // Make a global variable as a placeholder for this reference. 3349 GlobalValue *&FwdRef = 3350 ForwardRefBlockAddresses.insert(std::make_pair( 3351 std::move(Fn), 3352 std::map<ValID, GlobalValue *>())) 3353 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 3354 .first->second; 3355 if (!FwdRef) 3356 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 3357 GlobalValue::InternalLinkage, nullptr, ""); 3358 ID.ConstantVal = FwdRef; 3359 ID.Kind = ValID::t_Constant; 3360 return false; 3361 } 3362 3363 // We found the function; now find the basic block. Don't use PFS, since we 3364 // might be inside a constant expression. 3365 BasicBlock *BB; 3366 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 3367 if (Label.Kind == ValID::t_LocalID) 3368 BB = BlockAddressPFS->GetBB(Label.UIntVal, Label.Loc); 3369 else 3370 BB = BlockAddressPFS->GetBB(Label.StrVal, Label.Loc); 3371 if (!BB) 3372 return Error(Label.Loc, "referenced value is not a basic block"); 3373 } else { 3374 if (Label.Kind == ValID::t_LocalID) 3375 return Error(Label.Loc, "cannot take address of numeric label after " 3376 "the function is defined"); 3377 BB = dyn_cast_or_null<BasicBlock>( 3378 F->getValueSymbolTable()->lookup(Label.StrVal)); 3379 if (!BB) 3380 return Error(Label.Loc, "referenced value is not a basic block"); 3381 } 3382 3383 ID.ConstantVal = BlockAddress::get(F, BB); 3384 ID.Kind = ValID::t_Constant; 3385 return false; 3386 } 3387 3388 case lltok::kw_trunc: 3389 case lltok::kw_zext: 3390 case lltok::kw_sext: 3391 case lltok::kw_fptrunc: 3392 case lltok::kw_fpext: 3393 case lltok::kw_bitcast: 3394 case lltok::kw_addrspacecast: 3395 case lltok::kw_uitofp: 3396 case lltok::kw_sitofp: 3397 case lltok::kw_fptoui: 3398 case lltok::kw_fptosi: 3399 case lltok::kw_inttoptr: 3400 case lltok::kw_ptrtoint: { 3401 unsigned Opc = Lex.getUIntVal(); 3402 Type *DestTy = nullptr; 3403 Constant *SrcVal; 3404 Lex.Lex(); 3405 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3406 ParseGlobalTypeAndValue(SrcVal) || 3407 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3408 ParseType(DestTy) || 3409 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3410 return true; 3411 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3412 return Error(ID.Loc, "invalid cast opcode for cast from '" + 3413 getTypeString(SrcVal->getType()) + "' to '" + 3414 getTypeString(DestTy) + "'"); 3415 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3416 SrcVal, DestTy); 3417 ID.Kind = ValID::t_Constant; 3418 return false; 3419 } 3420 case lltok::kw_extractvalue: { 3421 Lex.Lex(); 3422 Constant *Val; 3423 SmallVector<unsigned, 4> Indices; 3424 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 3425 ParseGlobalTypeAndValue(Val) || 3426 ParseIndexList(Indices) || 3427 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 3428 return true; 3429 3430 if (!Val->getType()->isAggregateType()) 3431 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 3432 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 3433 return Error(ID.Loc, "invalid indices for extractvalue"); 3434 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 3435 ID.Kind = ValID::t_Constant; 3436 return false; 3437 } 3438 case lltok::kw_insertvalue: { 3439 Lex.Lex(); 3440 Constant *Val0, *Val1; 3441 SmallVector<unsigned, 4> Indices; 3442 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 3443 ParseGlobalTypeAndValue(Val0) || 3444 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 3445 ParseGlobalTypeAndValue(Val1) || 3446 ParseIndexList(Indices) || 3447 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 3448 return true; 3449 if (!Val0->getType()->isAggregateType()) 3450 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 3451 Type *IndexedType = 3452 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3453 if (!IndexedType) 3454 return Error(ID.Loc, "invalid indices for insertvalue"); 3455 if (IndexedType != Val1->getType()) 3456 return Error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3457 getTypeString(Val1->getType()) + 3458 "' instead of '" + getTypeString(IndexedType) + 3459 "'"); 3460 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3461 ID.Kind = ValID::t_Constant; 3462 return false; 3463 } 3464 case lltok::kw_icmp: 3465 case lltok::kw_fcmp: { 3466 unsigned PredVal, Opc = Lex.getUIntVal(); 3467 Constant *Val0, *Val1; 3468 Lex.Lex(); 3469 if (ParseCmpPredicate(PredVal, Opc) || 3470 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3471 ParseGlobalTypeAndValue(Val0) || 3472 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 3473 ParseGlobalTypeAndValue(Val1) || 3474 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3475 return true; 3476 3477 if (Val0->getType() != Val1->getType()) 3478 return Error(ID.Loc, "compare operands must have the same type"); 3479 3480 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3481 3482 if (Opc == Instruction::FCmp) { 3483 if (!Val0->getType()->isFPOrFPVectorTy()) 3484 return Error(ID.Loc, "fcmp requires floating point operands"); 3485 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3486 } else { 3487 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3488 if (!Val0->getType()->isIntOrIntVectorTy() && 3489 !Val0->getType()->isPtrOrPtrVectorTy()) 3490 return Error(ID.Loc, "icmp requires pointer or integer operands"); 3491 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3492 } 3493 ID.Kind = ValID::t_Constant; 3494 return false; 3495 } 3496 3497 // Unary Operators. 3498 case lltok::kw_fneg: { 3499 unsigned Opc = Lex.getUIntVal(); 3500 Constant *Val; 3501 Lex.Lex(); 3502 if (ParseToken(lltok::lparen, "expected '(' in unary constantexpr") || 3503 ParseGlobalTypeAndValue(Val) || 3504 ParseToken(lltok::rparen, "expected ')' in unary constantexpr")) 3505 return true; 3506 3507 // Check that the type is valid for the operator. 3508 switch (Opc) { 3509 case Instruction::FNeg: 3510 if (!Val->getType()->isFPOrFPVectorTy()) 3511 return Error(ID.Loc, "constexpr requires fp operands"); 3512 break; 3513 default: llvm_unreachable("Unknown unary operator!"); 3514 } 3515 unsigned Flags = 0; 3516 Constant *C = ConstantExpr::get(Opc, Val, Flags); 3517 ID.ConstantVal = C; 3518 ID.Kind = ValID::t_Constant; 3519 return false; 3520 } 3521 // Binary Operators. 3522 case lltok::kw_add: 3523 case lltok::kw_fadd: 3524 case lltok::kw_sub: 3525 case lltok::kw_fsub: 3526 case lltok::kw_mul: 3527 case lltok::kw_fmul: 3528 case lltok::kw_udiv: 3529 case lltok::kw_sdiv: 3530 case lltok::kw_fdiv: 3531 case lltok::kw_urem: 3532 case lltok::kw_srem: 3533 case lltok::kw_frem: 3534 case lltok::kw_shl: 3535 case lltok::kw_lshr: 3536 case lltok::kw_ashr: { 3537 bool NUW = false; 3538 bool NSW = false; 3539 bool Exact = false; 3540 unsigned Opc = Lex.getUIntVal(); 3541 Constant *Val0, *Val1; 3542 Lex.Lex(); 3543 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3544 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3545 if (EatIfPresent(lltok::kw_nuw)) 3546 NUW = true; 3547 if (EatIfPresent(lltok::kw_nsw)) { 3548 NSW = true; 3549 if (EatIfPresent(lltok::kw_nuw)) 3550 NUW = true; 3551 } 3552 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3553 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3554 if (EatIfPresent(lltok::kw_exact)) 3555 Exact = true; 3556 } 3557 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3558 ParseGlobalTypeAndValue(Val0) || 3559 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 3560 ParseGlobalTypeAndValue(Val1) || 3561 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3562 return true; 3563 if (Val0->getType() != Val1->getType()) 3564 return Error(ID.Loc, "operands of constexpr must have same type"); 3565 // Check that the type is valid for the operator. 3566 switch (Opc) { 3567 case Instruction::Add: 3568 case Instruction::Sub: 3569 case Instruction::Mul: 3570 case Instruction::UDiv: 3571 case Instruction::SDiv: 3572 case Instruction::URem: 3573 case Instruction::SRem: 3574 case Instruction::Shl: 3575 case Instruction::AShr: 3576 case Instruction::LShr: 3577 if (!Val0->getType()->isIntOrIntVectorTy()) 3578 return Error(ID.Loc, "constexpr requires integer operands"); 3579 break; 3580 case Instruction::FAdd: 3581 case Instruction::FSub: 3582 case Instruction::FMul: 3583 case Instruction::FDiv: 3584 case Instruction::FRem: 3585 if (!Val0->getType()->isFPOrFPVectorTy()) 3586 return Error(ID.Loc, "constexpr requires fp operands"); 3587 break; 3588 default: llvm_unreachable("Unknown binary operator!"); 3589 } 3590 unsigned Flags = 0; 3591 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3592 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3593 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3594 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3595 ID.ConstantVal = C; 3596 ID.Kind = ValID::t_Constant; 3597 return false; 3598 } 3599 3600 // Logical Operations 3601 case lltok::kw_and: 3602 case lltok::kw_or: 3603 case lltok::kw_xor: { 3604 unsigned Opc = Lex.getUIntVal(); 3605 Constant *Val0, *Val1; 3606 Lex.Lex(); 3607 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3608 ParseGlobalTypeAndValue(Val0) || 3609 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 3610 ParseGlobalTypeAndValue(Val1) || 3611 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3612 return true; 3613 if (Val0->getType() != Val1->getType()) 3614 return Error(ID.Loc, "operands of constexpr must have same type"); 3615 if (!Val0->getType()->isIntOrIntVectorTy()) 3616 return Error(ID.Loc, 3617 "constexpr requires integer or integer vector operands"); 3618 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3619 ID.Kind = ValID::t_Constant; 3620 return false; 3621 } 3622 3623 case lltok::kw_getelementptr: 3624 case lltok::kw_shufflevector: 3625 case lltok::kw_insertelement: 3626 case lltok::kw_extractelement: 3627 case lltok::kw_select: { 3628 unsigned Opc = Lex.getUIntVal(); 3629 SmallVector<Constant*, 16> Elts; 3630 bool InBounds = false; 3631 Type *Ty; 3632 Lex.Lex(); 3633 3634 if (Opc == Instruction::GetElementPtr) 3635 InBounds = EatIfPresent(lltok::kw_inbounds); 3636 3637 if (ParseToken(lltok::lparen, "expected '(' in constantexpr")) 3638 return true; 3639 3640 LocTy ExplicitTypeLoc = Lex.getLoc(); 3641 if (Opc == Instruction::GetElementPtr) { 3642 if (ParseType(Ty) || 3643 ParseToken(lltok::comma, "expected comma after getelementptr's type")) 3644 return true; 3645 } 3646 3647 Optional<unsigned> InRangeOp; 3648 if (ParseGlobalValueVector( 3649 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3650 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 3651 return true; 3652 3653 if (Opc == Instruction::GetElementPtr) { 3654 if (Elts.size() == 0 || 3655 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 3656 return Error(ID.Loc, "base of getelementptr must be a pointer"); 3657 3658 Type *BaseType = Elts[0]->getType(); 3659 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3660 if (Ty != BasePointerType->getElementType()) 3661 return Error( 3662 ExplicitTypeLoc, 3663 "explicit pointee type doesn't match operand's pointee type"); 3664 3665 unsigned GEPWidth = 3666 BaseType->isVectorTy() 3667 ? cast<FixedVectorType>(BaseType)->getNumElements() 3668 : 0; 3669 3670 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3671 for (Constant *Val : Indices) { 3672 Type *ValTy = Val->getType(); 3673 if (!ValTy->isIntOrIntVectorTy()) 3674 return Error(ID.Loc, "getelementptr index must be an integer"); 3675 if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) { 3676 unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements(); 3677 if (GEPWidth && (ValNumEl != GEPWidth)) 3678 return Error( 3679 ID.Loc, 3680 "getelementptr vector index has a wrong number of elements"); 3681 // GEPWidth may have been unknown because the base is a scalar, 3682 // but it is known now. 3683 GEPWidth = ValNumEl; 3684 } 3685 } 3686 3687 SmallPtrSet<Type*, 4> Visited; 3688 if (!Indices.empty() && !Ty->isSized(&Visited)) 3689 return Error(ID.Loc, "base element of getelementptr must be sized"); 3690 3691 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3692 return Error(ID.Loc, "invalid getelementptr indices"); 3693 3694 if (InRangeOp) { 3695 if (*InRangeOp == 0) 3696 return Error(ID.Loc, 3697 "inrange keyword may not appear on pointer operand"); 3698 --*InRangeOp; 3699 } 3700 3701 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3702 InBounds, InRangeOp); 3703 } else if (Opc == Instruction::Select) { 3704 if (Elts.size() != 3) 3705 return Error(ID.Loc, "expected three operands to select"); 3706 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3707 Elts[2])) 3708 return Error(ID.Loc, Reason); 3709 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3710 } else if (Opc == Instruction::ShuffleVector) { 3711 if (Elts.size() != 3) 3712 return Error(ID.Loc, "expected three operands to shufflevector"); 3713 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3714 return Error(ID.Loc, "invalid operands to shufflevector"); 3715 SmallVector<int, 16> Mask; 3716 ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask); 3717 ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask); 3718 } else if (Opc == Instruction::ExtractElement) { 3719 if (Elts.size() != 2) 3720 return Error(ID.Loc, "expected two operands to extractelement"); 3721 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3722 return Error(ID.Loc, "invalid extractelement operands"); 3723 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3724 } else { 3725 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3726 if (Elts.size() != 3) 3727 return Error(ID.Loc, "expected three operands to insertelement"); 3728 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3729 return Error(ID.Loc, "invalid insertelement operands"); 3730 ID.ConstantVal = 3731 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3732 } 3733 3734 ID.Kind = ValID::t_Constant; 3735 return false; 3736 } 3737 } 3738 3739 Lex.Lex(); 3740 return false; 3741 } 3742 3743 /// ParseGlobalValue - Parse a global value with the specified type. 3744 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 3745 C = nullptr; 3746 ValID ID; 3747 Value *V = nullptr; 3748 bool Parsed = ParseValID(ID) || 3749 ConvertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false); 3750 if (V && !(C = dyn_cast<Constant>(V))) 3751 return Error(ID.Loc, "global values must be constants"); 3752 return Parsed; 3753 } 3754 3755 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 3756 Type *Ty = nullptr; 3757 return ParseType(Ty) || 3758 ParseGlobalValue(Ty, V); 3759 } 3760 3761 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3762 C = nullptr; 3763 3764 LocTy KwLoc = Lex.getLoc(); 3765 if (!EatIfPresent(lltok::kw_comdat)) 3766 return false; 3767 3768 if (EatIfPresent(lltok::lparen)) { 3769 if (Lex.getKind() != lltok::ComdatVar) 3770 return TokError("expected comdat variable"); 3771 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3772 Lex.Lex(); 3773 if (ParseToken(lltok::rparen, "expected ')' after comdat var")) 3774 return true; 3775 } else { 3776 if (GlobalName.empty()) 3777 return TokError("comdat cannot be unnamed"); 3778 C = getComdat(std::string(GlobalName), KwLoc); 3779 } 3780 3781 return false; 3782 } 3783 3784 /// ParseGlobalValueVector 3785 /// ::= /*empty*/ 3786 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 3787 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 3788 Optional<unsigned> *InRangeOp) { 3789 // Empty list. 3790 if (Lex.getKind() == lltok::rbrace || 3791 Lex.getKind() == lltok::rsquare || 3792 Lex.getKind() == lltok::greater || 3793 Lex.getKind() == lltok::rparen) 3794 return false; 3795 3796 do { 3797 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 3798 *InRangeOp = Elts.size(); 3799 3800 Constant *C; 3801 if (ParseGlobalTypeAndValue(C)) return true; 3802 Elts.push_back(C); 3803 } while (EatIfPresent(lltok::comma)); 3804 3805 return false; 3806 } 3807 3808 bool LLParser::ParseMDTuple(MDNode *&MD, bool IsDistinct) { 3809 SmallVector<Metadata *, 16> Elts; 3810 if (ParseMDNodeVector(Elts)) 3811 return true; 3812 3813 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3814 return false; 3815 } 3816 3817 /// MDNode: 3818 /// ::= !{ ... } 3819 /// ::= !7 3820 /// ::= !DILocation(...) 3821 bool LLParser::ParseMDNode(MDNode *&N) { 3822 if (Lex.getKind() == lltok::MetadataVar) 3823 return ParseSpecializedMDNode(N); 3824 3825 return ParseToken(lltok::exclaim, "expected '!' here") || 3826 ParseMDNodeTail(N); 3827 } 3828 3829 bool LLParser::ParseMDNodeTail(MDNode *&N) { 3830 // !{ ... } 3831 if (Lex.getKind() == lltok::lbrace) 3832 return ParseMDTuple(N); 3833 3834 // !42 3835 return ParseMDNodeID(N); 3836 } 3837 3838 namespace { 3839 3840 /// Structure to represent an optional metadata field. 3841 template <class FieldTy> struct MDFieldImpl { 3842 typedef MDFieldImpl ImplTy; 3843 FieldTy Val; 3844 bool Seen; 3845 3846 void assign(FieldTy Val) { 3847 Seen = true; 3848 this->Val = std::move(Val); 3849 } 3850 3851 explicit MDFieldImpl(FieldTy Default) 3852 : Val(std::move(Default)), Seen(false) {} 3853 }; 3854 3855 /// Structure to represent an optional metadata field that 3856 /// can be of either type (A or B) and encapsulates the 3857 /// MD<typeofA>Field and MD<typeofB>Field structs, so not 3858 /// to reimplement the specifics for representing each Field. 3859 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl { 3860 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy; 3861 FieldTypeA A; 3862 FieldTypeB B; 3863 bool Seen; 3864 3865 enum { 3866 IsInvalid = 0, 3867 IsTypeA = 1, 3868 IsTypeB = 2 3869 } WhatIs; 3870 3871 void assign(FieldTypeA A) { 3872 Seen = true; 3873 this->A = std::move(A); 3874 WhatIs = IsTypeA; 3875 } 3876 3877 void assign(FieldTypeB B) { 3878 Seen = true; 3879 this->B = std::move(B); 3880 WhatIs = IsTypeB; 3881 } 3882 3883 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) 3884 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), 3885 WhatIs(IsInvalid) {} 3886 }; 3887 3888 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 3889 uint64_t Max; 3890 3891 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 3892 : ImplTy(Default), Max(Max) {} 3893 }; 3894 3895 struct LineField : public MDUnsignedField { 3896 LineField() : MDUnsignedField(0, UINT32_MAX) {} 3897 }; 3898 3899 struct ColumnField : public MDUnsignedField { 3900 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 3901 }; 3902 3903 struct DwarfTagField : public MDUnsignedField { 3904 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 3905 DwarfTagField(dwarf::Tag DefaultTag) 3906 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 3907 }; 3908 3909 struct DwarfMacinfoTypeField : public MDUnsignedField { 3910 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 3911 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 3912 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 3913 }; 3914 3915 struct DwarfAttEncodingField : public MDUnsignedField { 3916 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 3917 }; 3918 3919 struct DwarfVirtualityField : public MDUnsignedField { 3920 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 3921 }; 3922 3923 struct DwarfLangField : public MDUnsignedField { 3924 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 3925 }; 3926 3927 struct DwarfCCField : public MDUnsignedField { 3928 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 3929 }; 3930 3931 struct EmissionKindField : public MDUnsignedField { 3932 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 3933 }; 3934 3935 struct NameTableKindField : public MDUnsignedField { 3936 NameTableKindField() 3937 : MDUnsignedField( 3938 0, (unsigned) 3939 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {} 3940 }; 3941 3942 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 3943 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 3944 }; 3945 3946 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> { 3947 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {} 3948 }; 3949 3950 struct MDAPSIntField : public MDFieldImpl<APSInt> { 3951 MDAPSIntField() : ImplTy(APSInt()) {} 3952 }; 3953 3954 struct MDSignedField : public MDFieldImpl<int64_t> { 3955 int64_t Min; 3956 int64_t Max; 3957 3958 MDSignedField(int64_t Default = 0) 3959 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 3960 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 3961 : ImplTy(Default), Min(Min), Max(Max) {} 3962 }; 3963 3964 struct MDBoolField : public MDFieldImpl<bool> { 3965 MDBoolField(bool Default = false) : ImplTy(Default) {} 3966 }; 3967 3968 struct MDField : public MDFieldImpl<Metadata *> { 3969 bool AllowNull; 3970 3971 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 3972 }; 3973 3974 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 3975 MDConstant() : ImplTy(nullptr) {} 3976 }; 3977 3978 struct MDStringField : public MDFieldImpl<MDString *> { 3979 bool AllowEmpty; 3980 MDStringField(bool AllowEmpty = true) 3981 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 3982 }; 3983 3984 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 3985 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 3986 }; 3987 3988 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 3989 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 3990 }; 3991 3992 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> { 3993 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) 3994 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} 3995 3996 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, 3997 bool AllowNull = true) 3998 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} 3999 4000 bool isMDSignedField() const { return WhatIs == IsTypeA; } 4001 bool isMDField() const { return WhatIs == IsTypeB; } 4002 int64_t getMDSignedValue() const { 4003 assert(isMDSignedField() && "Wrong field type"); 4004 return A.Val; 4005 } 4006 Metadata *getMDFieldValue() const { 4007 assert(isMDField() && "Wrong field type"); 4008 return B.Val; 4009 } 4010 }; 4011 4012 struct MDSignedOrUnsignedField 4013 : MDEitherFieldImpl<MDSignedField, MDUnsignedField> { 4014 MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {} 4015 4016 bool isMDSignedField() const { return WhatIs == IsTypeA; } 4017 bool isMDUnsignedField() const { return WhatIs == IsTypeB; } 4018 int64_t getMDSignedValue() const { 4019 assert(isMDSignedField() && "Wrong field type"); 4020 return A.Val; 4021 } 4022 uint64_t getMDUnsignedValue() const { 4023 assert(isMDUnsignedField() && "Wrong field type"); 4024 return B.Val; 4025 } 4026 }; 4027 4028 } // end anonymous namespace 4029 4030 namespace llvm { 4031 4032 template <> 4033 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) { 4034 if (Lex.getKind() != lltok::APSInt) 4035 return TokError("expected integer"); 4036 4037 Result.assign(Lex.getAPSIntVal()); 4038 Lex.Lex(); 4039 return false; 4040 } 4041 4042 template <> 4043 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4044 MDUnsignedField &Result) { 4045 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4046 return TokError("expected unsigned integer"); 4047 4048 auto &U = Lex.getAPSIntVal(); 4049 if (U.ugt(Result.Max)) 4050 return TokError("value for '" + Name + "' too large, limit is " + 4051 Twine(Result.Max)); 4052 Result.assign(U.getZExtValue()); 4053 assert(Result.Val <= Result.Max && "Expected value in range"); 4054 Lex.Lex(); 4055 return false; 4056 } 4057 4058 template <> 4059 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, LineField &Result) { 4060 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4061 } 4062 template <> 4063 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 4064 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4065 } 4066 4067 template <> 4068 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 4069 if (Lex.getKind() == lltok::APSInt) 4070 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4071 4072 if (Lex.getKind() != lltok::DwarfTag) 4073 return TokError("expected DWARF tag"); 4074 4075 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 4076 if (Tag == dwarf::DW_TAG_invalid) 4077 return TokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 4078 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 4079 4080 Result.assign(Tag); 4081 Lex.Lex(); 4082 return false; 4083 } 4084 4085 template <> 4086 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4087 DwarfMacinfoTypeField &Result) { 4088 if (Lex.getKind() == lltok::APSInt) 4089 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4090 4091 if (Lex.getKind() != lltok::DwarfMacinfo) 4092 return TokError("expected DWARF macinfo type"); 4093 4094 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 4095 if (Macinfo == dwarf::DW_MACINFO_invalid) 4096 return TokError( 4097 "invalid DWARF macinfo type" + Twine(" '") + Lex.getStrVal() + "'"); 4098 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 4099 4100 Result.assign(Macinfo); 4101 Lex.Lex(); 4102 return false; 4103 } 4104 4105 template <> 4106 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4107 DwarfVirtualityField &Result) { 4108 if (Lex.getKind() == lltok::APSInt) 4109 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4110 4111 if (Lex.getKind() != lltok::DwarfVirtuality) 4112 return TokError("expected DWARF virtuality code"); 4113 4114 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 4115 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 4116 return TokError("invalid DWARF virtuality code" + Twine(" '") + 4117 Lex.getStrVal() + "'"); 4118 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 4119 Result.assign(Virtuality); 4120 Lex.Lex(); 4121 return false; 4122 } 4123 4124 template <> 4125 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 4126 if (Lex.getKind() == lltok::APSInt) 4127 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4128 4129 if (Lex.getKind() != lltok::DwarfLang) 4130 return TokError("expected DWARF language"); 4131 4132 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 4133 if (!Lang) 4134 return TokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 4135 "'"); 4136 assert(Lang <= Result.Max && "Expected valid DWARF language"); 4137 Result.assign(Lang); 4138 Lex.Lex(); 4139 return false; 4140 } 4141 4142 template <> 4143 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 4144 if (Lex.getKind() == lltok::APSInt) 4145 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4146 4147 if (Lex.getKind() != lltok::DwarfCC) 4148 return TokError("expected DWARF calling convention"); 4149 4150 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 4151 if (!CC) 4152 return TokError("invalid DWARF calling convention" + Twine(" '") + Lex.getStrVal() + 4153 "'"); 4154 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 4155 Result.assign(CC); 4156 Lex.Lex(); 4157 return false; 4158 } 4159 4160 template <> 4161 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, EmissionKindField &Result) { 4162 if (Lex.getKind() == lltok::APSInt) 4163 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4164 4165 if (Lex.getKind() != lltok::EmissionKind) 4166 return TokError("expected emission kind"); 4167 4168 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 4169 if (!Kind) 4170 return TokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 4171 "'"); 4172 assert(*Kind <= Result.Max && "Expected valid emission kind"); 4173 Result.assign(*Kind); 4174 Lex.Lex(); 4175 return false; 4176 } 4177 4178 template <> 4179 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4180 NameTableKindField &Result) { 4181 if (Lex.getKind() == lltok::APSInt) 4182 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4183 4184 if (Lex.getKind() != lltok::NameTableKind) 4185 return TokError("expected nameTable kind"); 4186 4187 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal()); 4188 if (!Kind) 4189 return TokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() + 4190 "'"); 4191 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind"); 4192 Result.assign((unsigned)*Kind); 4193 Lex.Lex(); 4194 return false; 4195 } 4196 4197 template <> 4198 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4199 DwarfAttEncodingField &Result) { 4200 if (Lex.getKind() == lltok::APSInt) 4201 return ParseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4202 4203 if (Lex.getKind() != lltok::DwarfAttEncoding) 4204 return TokError("expected DWARF type attribute encoding"); 4205 4206 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 4207 if (!Encoding) 4208 return TokError("invalid DWARF type attribute encoding" + Twine(" '") + 4209 Lex.getStrVal() + "'"); 4210 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 4211 Result.assign(Encoding); 4212 Lex.Lex(); 4213 return false; 4214 } 4215 4216 /// DIFlagField 4217 /// ::= uint32 4218 /// ::= DIFlagVector 4219 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 4220 template <> 4221 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 4222 4223 // Parser for a single flag. 4224 auto parseFlag = [&](DINode::DIFlags &Val) { 4225 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4226 uint32_t TempVal = static_cast<uint32_t>(Val); 4227 bool Res = ParseUInt32(TempVal); 4228 Val = static_cast<DINode::DIFlags>(TempVal); 4229 return Res; 4230 } 4231 4232 if (Lex.getKind() != lltok::DIFlag) 4233 return TokError("expected debug info flag"); 4234 4235 Val = DINode::getFlag(Lex.getStrVal()); 4236 if (!Val) 4237 return TokError(Twine("invalid debug info flag flag '") + 4238 Lex.getStrVal() + "'"); 4239 Lex.Lex(); 4240 return false; 4241 }; 4242 4243 // Parse the flags and combine them together. 4244 DINode::DIFlags Combined = DINode::FlagZero; 4245 do { 4246 DINode::DIFlags Val; 4247 if (parseFlag(Val)) 4248 return true; 4249 Combined |= Val; 4250 } while (EatIfPresent(lltok::bar)); 4251 4252 Result.assign(Combined); 4253 return false; 4254 } 4255 4256 /// DISPFlagField 4257 /// ::= uint32 4258 /// ::= DISPFlagVector 4259 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32 4260 template <> 4261 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) { 4262 4263 // Parser for a single flag. 4264 auto parseFlag = [&](DISubprogram::DISPFlags &Val) { 4265 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4266 uint32_t TempVal = static_cast<uint32_t>(Val); 4267 bool Res = ParseUInt32(TempVal); 4268 Val = static_cast<DISubprogram::DISPFlags>(TempVal); 4269 return Res; 4270 } 4271 4272 if (Lex.getKind() != lltok::DISPFlag) 4273 return TokError("expected debug info flag"); 4274 4275 Val = DISubprogram::getFlag(Lex.getStrVal()); 4276 if (!Val) 4277 return TokError(Twine("invalid subprogram debug info flag '") + 4278 Lex.getStrVal() + "'"); 4279 Lex.Lex(); 4280 return false; 4281 }; 4282 4283 // Parse the flags and combine them together. 4284 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero; 4285 do { 4286 DISubprogram::DISPFlags Val; 4287 if (parseFlag(Val)) 4288 return true; 4289 Combined |= Val; 4290 } while (EatIfPresent(lltok::bar)); 4291 4292 Result.assign(Combined); 4293 return false; 4294 } 4295 4296 template <> 4297 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4298 MDSignedField &Result) { 4299 if (Lex.getKind() != lltok::APSInt) 4300 return TokError("expected signed integer"); 4301 4302 auto &S = Lex.getAPSIntVal(); 4303 if (S < Result.Min) 4304 return TokError("value for '" + Name + "' too small, limit is " + 4305 Twine(Result.Min)); 4306 if (S > Result.Max) 4307 return TokError("value for '" + Name + "' too large, limit is " + 4308 Twine(Result.Max)); 4309 Result.assign(S.getExtValue()); 4310 assert(Result.Val >= Result.Min && "Expected value in range"); 4311 assert(Result.Val <= Result.Max && "Expected value in range"); 4312 Lex.Lex(); 4313 return false; 4314 } 4315 4316 template <> 4317 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 4318 switch (Lex.getKind()) { 4319 default: 4320 return TokError("expected 'true' or 'false'"); 4321 case lltok::kw_true: 4322 Result.assign(true); 4323 break; 4324 case lltok::kw_false: 4325 Result.assign(false); 4326 break; 4327 } 4328 Lex.Lex(); 4329 return false; 4330 } 4331 4332 template <> 4333 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDField &Result) { 4334 if (Lex.getKind() == lltok::kw_null) { 4335 if (!Result.AllowNull) 4336 return TokError("'" + Name + "' cannot be null"); 4337 Lex.Lex(); 4338 Result.assign(nullptr); 4339 return false; 4340 } 4341 4342 Metadata *MD; 4343 if (ParseMetadata(MD, nullptr)) 4344 return true; 4345 4346 Result.assign(MD); 4347 return false; 4348 } 4349 4350 template <> 4351 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4352 MDSignedOrMDField &Result) { 4353 // Try to parse a signed int. 4354 if (Lex.getKind() == lltok::APSInt) { 4355 MDSignedField Res = Result.A; 4356 if (!ParseMDField(Loc, Name, Res)) { 4357 Result.assign(Res); 4358 return false; 4359 } 4360 return true; 4361 } 4362 4363 // Otherwise, try to parse as an MDField. 4364 MDField Res = Result.B; 4365 if (!ParseMDField(Loc, Name, Res)) { 4366 Result.assign(Res); 4367 return false; 4368 } 4369 4370 return true; 4371 } 4372 4373 template <> 4374 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 4375 LocTy ValueLoc = Lex.getLoc(); 4376 std::string S; 4377 if (ParseStringConstant(S)) 4378 return true; 4379 4380 if (!Result.AllowEmpty && S.empty()) 4381 return Error(ValueLoc, "'" + Name + "' cannot be empty"); 4382 4383 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 4384 return false; 4385 } 4386 4387 template <> 4388 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 4389 SmallVector<Metadata *, 4> MDs; 4390 if (ParseMDNodeVector(MDs)) 4391 return true; 4392 4393 Result.assign(std::move(MDs)); 4394 return false; 4395 } 4396 4397 template <> 4398 bool LLParser::ParseMDField(LocTy Loc, StringRef Name, 4399 ChecksumKindField &Result) { 4400 Optional<DIFile::ChecksumKind> CSKind = 4401 DIFile::getChecksumKind(Lex.getStrVal()); 4402 4403 if (Lex.getKind() != lltok::ChecksumKind || !CSKind) 4404 return TokError( 4405 "invalid checksum kind" + Twine(" '") + Lex.getStrVal() + "'"); 4406 4407 Result.assign(*CSKind); 4408 Lex.Lex(); 4409 return false; 4410 } 4411 4412 } // end namespace llvm 4413 4414 template <class ParserTy> 4415 bool LLParser::ParseMDFieldsImplBody(ParserTy parseField) { 4416 do { 4417 if (Lex.getKind() != lltok::LabelStr) 4418 return TokError("expected field label here"); 4419 4420 if (parseField()) 4421 return true; 4422 } while (EatIfPresent(lltok::comma)); 4423 4424 return false; 4425 } 4426 4427 template <class ParserTy> 4428 bool LLParser::ParseMDFieldsImpl(ParserTy parseField, LocTy &ClosingLoc) { 4429 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4430 Lex.Lex(); 4431 4432 if (ParseToken(lltok::lparen, "expected '(' here")) 4433 return true; 4434 if (Lex.getKind() != lltok::rparen) 4435 if (ParseMDFieldsImplBody(parseField)) 4436 return true; 4437 4438 ClosingLoc = Lex.getLoc(); 4439 return ParseToken(lltok::rparen, "expected ')' here"); 4440 } 4441 4442 template <class FieldTy> 4443 bool LLParser::ParseMDField(StringRef Name, FieldTy &Result) { 4444 if (Result.Seen) 4445 return TokError("field '" + Name + "' cannot be specified more than once"); 4446 4447 LocTy Loc = Lex.getLoc(); 4448 Lex.Lex(); 4449 return ParseMDField(Loc, Name, Result); 4450 } 4451 4452 bool LLParser::ParseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 4453 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4454 4455 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 4456 if (Lex.getStrVal() == #CLASS) \ 4457 return Parse##CLASS(N, IsDistinct); 4458 #include "llvm/IR/Metadata.def" 4459 4460 return TokError("expected metadata type"); 4461 } 4462 4463 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 4464 #define NOP_FIELD(NAME, TYPE, INIT) 4465 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 4466 if (!NAME.Seen) \ 4467 return Error(ClosingLoc, "missing required field '" #NAME "'"); 4468 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 4469 if (Lex.getStrVal() == #NAME) \ 4470 return ParseMDField(#NAME, NAME); 4471 #define PARSE_MD_FIELDS() \ 4472 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 4473 do { \ 4474 LocTy ClosingLoc; \ 4475 if (ParseMDFieldsImpl([&]() -> bool { \ 4476 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 4477 return TokError(Twine("invalid field '") + Lex.getStrVal() + "'"); \ 4478 }, ClosingLoc)) \ 4479 return true; \ 4480 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 4481 } while (false) 4482 #define GET_OR_DISTINCT(CLASS, ARGS) \ 4483 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 4484 4485 /// ParseDILocationFields: 4486 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6, 4487 /// isImplicitCode: true) 4488 bool LLParser::ParseDILocation(MDNode *&Result, bool IsDistinct) { 4489 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4490 OPTIONAL(line, LineField, ); \ 4491 OPTIONAL(column, ColumnField, ); \ 4492 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4493 OPTIONAL(inlinedAt, MDField, ); \ 4494 OPTIONAL(isImplicitCode, MDBoolField, (false)); 4495 PARSE_MD_FIELDS(); 4496 #undef VISIT_MD_FIELDS 4497 4498 Result = 4499 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val, 4500 inlinedAt.Val, isImplicitCode.Val)); 4501 return false; 4502 } 4503 4504 /// ParseGenericDINode: 4505 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 4506 bool LLParser::ParseGenericDINode(MDNode *&Result, bool IsDistinct) { 4507 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4508 REQUIRED(tag, DwarfTagField, ); \ 4509 OPTIONAL(header, MDStringField, ); \ 4510 OPTIONAL(operands, MDFieldList, ); 4511 PARSE_MD_FIELDS(); 4512 #undef VISIT_MD_FIELDS 4513 4514 Result = GET_OR_DISTINCT(GenericDINode, 4515 (Context, tag.Val, header.Val, operands.Val)); 4516 return false; 4517 } 4518 4519 /// ParseDISubrange: 4520 /// ::= !DISubrange(count: 30, lowerBound: 2) 4521 /// ::= !DISubrange(count: !node, lowerBound: 2) 4522 /// ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3) 4523 bool LLParser::ParseDISubrange(MDNode *&Result, bool IsDistinct) { 4524 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4525 OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ 4526 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 4527 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 4528 OPTIONAL(stride, MDSignedOrMDField, ); 4529 PARSE_MD_FIELDS(); 4530 #undef VISIT_MD_FIELDS 4531 4532 Metadata *Count = nullptr; 4533 Metadata *LowerBound = nullptr; 4534 Metadata *UpperBound = nullptr; 4535 Metadata *Stride = nullptr; 4536 if (count.isMDSignedField()) 4537 Count = ConstantAsMetadata::get(ConstantInt::getSigned( 4538 Type::getInt64Ty(Context), count.getMDSignedValue())); 4539 else if (count.isMDField()) 4540 Count = count.getMDFieldValue(); 4541 4542 auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 4543 if (Bound.isMDSignedField()) 4544 return ConstantAsMetadata::get(ConstantInt::getSigned( 4545 Type::getInt64Ty(Context), Bound.getMDSignedValue())); 4546 if (Bound.isMDField()) 4547 return Bound.getMDFieldValue(); 4548 return nullptr; 4549 }; 4550 4551 LowerBound = convToMetadata(lowerBound); 4552 UpperBound = convToMetadata(upperBound); 4553 Stride = convToMetadata(stride); 4554 4555 Result = GET_OR_DISTINCT(DISubrange, 4556 (Context, Count, LowerBound, UpperBound, Stride)); 4557 4558 return false; 4559 } 4560 4561 /// ParseDIEnumerator: 4562 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind") 4563 bool LLParser::ParseDIEnumerator(MDNode *&Result, bool IsDistinct) { 4564 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4565 REQUIRED(name, MDStringField, ); \ 4566 REQUIRED(value, MDAPSIntField, ); \ 4567 OPTIONAL(isUnsigned, MDBoolField, (false)); 4568 PARSE_MD_FIELDS(); 4569 #undef VISIT_MD_FIELDS 4570 4571 if (isUnsigned.Val && value.Val.isNegative()) 4572 return TokError("unsigned enumerator with negative value"); 4573 4574 APSInt Value(value.Val); 4575 // Add a leading zero so that unsigned values with the msb set are not 4576 // mistaken for negative values when used for signed enumerators. 4577 if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet()) 4578 Value = Value.zext(Value.getBitWidth() + 1); 4579 4580 Result = 4581 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val)); 4582 4583 return false; 4584 } 4585 4586 /// ParseDIBasicType: 4587 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32, 4588 /// encoding: DW_ATE_encoding, flags: 0) 4589 bool LLParser::ParseDIBasicType(MDNode *&Result, bool IsDistinct) { 4590 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4591 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 4592 OPTIONAL(name, MDStringField, ); \ 4593 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4594 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4595 OPTIONAL(encoding, DwarfAttEncodingField, ); \ 4596 OPTIONAL(flags, DIFlagField, ); 4597 PARSE_MD_FIELDS(); 4598 #undef VISIT_MD_FIELDS 4599 4600 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 4601 align.Val, encoding.Val, flags.Val)); 4602 return false; 4603 } 4604 4605 /// ParseDIDerivedType: 4606 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 4607 /// line: 7, scope: !1, baseType: !2, size: 32, 4608 /// align: 32, offset: 0, flags: 0, extraData: !3, 4609 /// dwarfAddressSpace: 3) 4610 bool LLParser::ParseDIDerivedType(MDNode *&Result, bool IsDistinct) { 4611 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4612 REQUIRED(tag, DwarfTagField, ); \ 4613 OPTIONAL(name, MDStringField, ); \ 4614 OPTIONAL(file, MDField, ); \ 4615 OPTIONAL(line, LineField, ); \ 4616 OPTIONAL(scope, MDField, ); \ 4617 REQUIRED(baseType, MDField, ); \ 4618 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4619 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4620 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4621 OPTIONAL(flags, DIFlagField, ); \ 4622 OPTIONAL(extraData, MDField, ); \ 4623 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); 4624 PARSE_MD_FIELDS(); 4625 #undef VISIT_MD_FIELDS 4626 4627 Optional<unsigned> DWARFAddressSpace; 4628 if (dwarfAddressSpace.Val != UINT32_MAX) 4629 DWARFAddressSpace = dwarfAddressSpace.Val; 4630 4631 Result = GET_OR_DISTINCT(DIDerivedType, 4632 (Context, tag.Val, name.Val, file.Val, line.Val, 4633 scope.Val, baseType.Val, size.Val, align.Val, 4634 offset.Val, DWARFAddressSpace, flags.Val, 4635 extraData.Val)); 4636 return false; 4637 } 4638 4639 bool LLParser::ParseDICompositeType(MDNode *&Result, bool IsDistinct) { 4640 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4641 REQUIRED(tag, DwarfTagField, ); \ 4642 OPTIONAL(name, MDStringField, ); \ 4643 OPTIONAL(file, MDField, ); \ 4644 OPTIONAL(line, LineField, ); \ 4645 OPTIONAL(scope, MDField, ); \ 4646 OPTIONAL(baseType, MDField, ); \ 4647 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4648 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4649 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4650 OPTIONAL(flags, DIFlagField, ); \ 4651 OPTIONAL(elements, MDField, ); \ 4652 OPTIONAL(runtimeLang, DwarfLangField, ); \ 4653 OPTIONAL(vtableHolder, MDField, ); \ 4654 OPTIONAL(templateParams, MDField, ); \ 4655 OPTIONAL(identifier, MDStringField, ); \ 4656 OPTIONAL(discriminator, MDField, ); \ 4657 OPTIONAL(dataLocation, MDField, ); 4658 PARSE_MD_FIELDS(); 4659 #undef VISIT_MD_FIELDS 4660 4661 // If this has an identifier try to build an ODR type. 4662 if (identifier.Val) 4663 if (auto *CT = DICompositeType::buildODRType( 4664 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 4665 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 4666 elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val, 4667 discriminator.Val, dataLocation.Val)) { 4668 Result = CT; 4669 return false; 4670 } 4671 4672 // Create a new node, and save it in the context if it belongs in the type 4673 // map. 4674 Result = GET_OR_DISTINCT( 4675 DICompositeType, 4676 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 4677 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 4678 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val, 4679 discriminator.Val, dataLocation.Val)); 4680 return false; 4681 } 4682 4683 bool LLParser::ParseDISubroutineType(MDNode *&Result, bool IsDistinct) { 4684 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4685 OPTIONAL(flags, DIFlagField, ); \ 4686 OPTIONAL(cc, DwarfCCField, ); \ 4687 REQUIRED(types, MDField, ); 4688 PARSE_MD_FIELDS(); 4689 #undef VISIT_MD_FIELDS 4690 4691 Result = GET_OR_DISTINCT(DISubroutineType, 4692 (Context, flags.Val, cc.Val, types.Val)); 4693 return false; 4694 } 4695 4696 /// ParseDIFileType: 4697 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir", 4698 /// checksumkind: CSK_MD5, 4699 /// checksum: "000102030405060708090a0b0c0d0e0f", 4700 /// source: "source file contents") 4701 bool LLParser::ParseDIFile(MDNode *&Result, bool IsDistinct) { 4702 // The default constructed value for checksumkind is required, but will never 4703 // be used, as the parser checks if the field was actually Seen before using 4704 // the Val. 4705 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4706 REQUIRED(filename, MDStringField, ); \ 4707 REQUIRED(directory, MDStringField, ); \ 4708 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \ 4709 OPTIONAL(checksum, MDStringField, ); \ 4710 OPTIONAL(source, MDStringField, ); 4711 PARSE_MD_FIELDS(); 4712 #undef VISIT_MD_FIELDS 4713 4714 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum; 4715 if (checksumkind.Seen && checksum.Seen) 4716 OptChecksum.emplace(checksumkind.Val, checksum.Val); 4717 else if (checksumkind.Seen || checksum.Seen) 4718 return Lex.Error("'checksumkind' and 'checksum' must be provided together"); 4719 4720 Optional<MDString *> OptSource; 4721 if (source.Seen) 4722 OptSource = source.Val; 4723 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val, 4724 OptChecksum, OptSource)); 4725 return false; 4726 } 4727 4728 /// ParseDICompileUnit: 4729 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 4730 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 4731 /// splitDebugFilename: "abc.debug", 4732 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 4733 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd, 4734 /// sysroot: "/", sdk: "MacOSX.sdk") 4735 bool LLParser::ParseDICompileUnit(MDNode *&Result, bool IsDistinct) { 4736 if (!IsDistinct) 4737 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 4738 4739 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4740 REQUIRED(language, DwarfLangField, ); \ 4741 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 4742 OPTIONAL(producer, MDStringField, ); \ 4743 OPTIONAL(isOptimized, MDBoolField, ); \ 4744 OPTIONAL(flags, MDStringField, ); \ 4745 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 4746 OPTIONAL(splitDebugFilename, MDStringField, ); \ 4747 OPTIONAL(emissionKind, EmissionKindField, ); \ 4748 OPTIONAL(enums, MDField, ); \ 4749 OPTIONAL(retainedTypes, MDField, ); \ 4750 OPTIONAL(globals, MDField, ); \ 4751 OPTIONAL(imports, MDField, ); \ 4752 OPTIONAL(macros, MDField, ); \ 4753 OPTIONAL(dwoId, MDUnsignedField, ); \ 4754 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 4755 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 4756 OPTIONAL(nameTableKind, NameTableKindField, ); \ 4757 OPTIONAL(rangesBaseAddress, MDBoolField, = false); \ 4758 OPTIONAL(sysroot, MDStringField, ); \ 4759 OPTIONAL(sdk, MDStringField, ); 4760 PARSE_MD_FIELDS(); 4761 #undef VISIT_MD_FIELDS 4762 4763 Result = DICompileUnit::getDistinct( 4764 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 4765 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 4766 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 4767 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val, 4768 rangesBaseAddress.Val, sysroot.Val, sdk.Val); 4769 return false; 4770 } 4771 4772 /// ParseDISubprogram: 4773 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 4774 /// file: !1, line: 7, type: !2, isLocal: false, 4775 /// isDefinition: true, scopeLine: 8, containingType: !3, 4776 /// virtuality: DW_VIRTUALTIY_pure_virtual, 4777 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 4778 /// spFlags: 10, isOptimized: false, templateParams: !4, 4779 /// declaration: !5, retainedNodes: !6, thrownTypes: !7) 4780 bool LLParser::ParseDISubprogram(MDNode *&Result, bool IsDistinct) { 4781 auto Loc = Lex.getLoc(); 4782 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4783 OPTIONAL(scope, MDField, ); \ 4784 OPTIONAL(name, MDStringField, ); \ 4785 OPTIONAL(linkageName, MDStringField, ); \ 4786 OPTIONAL(file, MDField, ); \ 4787 OPTIONAL(line, LineField, ); \ 4788 OPTIONAL(type, MDField, ); \ 4789 OPTIONAL(isLocal, MDBoolField, ); \ 4790 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4791 OPTIONAL(scopeLine, LineField, ); \ 4792 OPTIONAL(containingType, MDField, ); \ 4793 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 4794 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 4795 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 4796 OPTIONAL(flags, DIFlagField, ); \ 4797 OPTIONAL(spFlags, DISPFlagField, ); \ 4798 OPTIONAL(isOptimized, MDBoolField, ); \ 4799 OPTIONAL(unit, MDField, ); \ 4800 OPTIONAL(templateParams, MDField, ); \ 4801 OPTIONAL(declaration, MDField, ); \ 4802 OPTIONAL(retainedNodes, MDField, ); \ 4803 OPTIONAL(thrownTypes, MDField, ); 4804 PARSE_MD_FIELDS(); 4805 #undef VISIT_MD_FIELDS 4806 4807 // An explicit spFlags field takes precedence over individual fields in 4808 // older IR versions. 4809 DISubprogram::DISPFlags SPFlags = 4810 spFlags.Seen ? spFlags.Val 4811 : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val, 4812 isOptimized.Val, virtuality.Val); 4813 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct) 4814 return Lex.Error( 4815 Loc, 4816 "missing 'distinct', required for !DISubprogram that is a Definition"); 4817 Result = GET_OR_DISTINCT( 4818 DISubprogram, 4819 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 4820 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val, 4821 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val, 4822 declaration.Val, retainedNodes.Val, thrownTypes.Val)); 4823 return false; 4824 } 4825 4826 /// ParseDILexicalBlock: 4827 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 4828 bool LLParser::ParseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 4829 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4830 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4831 OPTIONAL(file, MDField, ); \ 4832 OPTIONAL(line, LineField, ); \ 4833 OPTIONAL(column, ColumnField, ); 4834 PARSE_MD_FIELDS(); 4835 #undef VISIT_MD_FIELDS 4836 4837 Result = GET_OR_DISTINCT( 4838 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 4839 return false; 4840 } 4841 4842 /// ParseDILexicalBlockFile: 4843 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 4844 bool LLParser::ParseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 4845 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4846 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4847 OPTIONAL(file, MDField, ); \ 4848 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 4849 PARSE_MD_FIELDS(); 4850 #undef VISIT_MD_FIELDS 4851 4852 Result = GET_OR_DISTINCT(DILexicalBlockFile, 4853 (Context, scope.Val, file.Val, discriminator.Val)); 4854 return false; 4855 } 4856 4857 /// ParseDICommonBlock: 4858 /// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9) 4859 bool LLParser::ParseDICommonBlock(MDNode *&Result, bool IsDistinct) { 4860 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4861 REQUIRED(scope, MDField, ); \ 4862 OPTIONAL(declaration, MDField, ); \ 4863 OPTIONAL(name, MDStringField, ); \ 4864 OPTIONAL(file, MDField, ); \ 4865 OPTIONAL(line, LineField, ); 4866 PARSE_MD_FIELDS(); 4867 #undef VISIT_MD_FIELDS 4868 4869 Result = GET_OR_DISTINCT(DICommonBlock, 4870 (Context, scope.Val, declaration.Val, name.Val, 4871 file.Val, line.Val)); 4872 return false; 4873 } 4874 4875 /// ParseDINamespace: 4876 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 4877 bool LLParser::ParseDINamespace(MDNode *&Result, bool IsDistinct) { 4878 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4879 REQUIRED(scope, MDField, ); \ 4880 OPTIONAL(name, MDStringField, ); \ 4881 OPTIONAL(exportSymbols, MDBoolField, ); 4882 PARSE_MD_FIELDS(); 4883 #undef VISIT_MD_FIELDS 4884 4885 Result = GET_OR_DISTINCT(DINamespace, 4886 (Context, scope.Val, name.Val, exportSymbols.Val)); 4887 return false; 4888 } 4889 4890 /// ParseDIMacro: 4891 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: "SomeValue") 4892 bool LLParser::ParseDIMacro(MDNode *&Result, bool IsDistinct) { 4893 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4894 REQUIRED(type, DwarfMacinfoTypeField, ); \ 4895 OPTIONAL(line, LineField, ); \ 4896 REQUIRED(name, MDStringField, ); \ 4897 OPTIONAL(value, MDStringField, ); 4898 PARSE_MD_FIELDS(); 4899 #undef VISIT_MD_FIELDS 4900 4901 Result = GET_OR_DISTINCT(DIMacro, 4902 (Context, type.Val, line.Val, name.Val, value.Val)); 4903 return false; 4904 } 4905 4906 /// ParseDIMacroFile: 4907 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 4908 bool LLParser::ParseDIMacroFile(MDNode *&Result, bool IsDistinct) { 4909 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4910 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 4911 OPTIONAL(line, LineField, ); \ 4912 REQUIRED(file, MDField, ); \ 4913 OPTIONAL(nodes, MDField, ); 4914 PARSE_MD_FIELDS(); 4915 #undef VISIT_MD_FIELDS 4916 4917 Result = GET_OR_DISTINCT(DIMacroFile, 4918 (Context, type.Val, line.Val, file.Val, nodes.Val)); 4919 return false; 4920 } 4921 4922 /// ParseDIModule: 4923 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: 4924 /// "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes", 4925 /// file: !1, line: 4) 4926 bool LLParser::ParseDIModule(MDNode *&Result, bool IsDistinct) { 4927 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4928 REQUIRED(scope, MDField, ); \ 4929 REQUIRED(name, MDStringField, ); \ 4930 OPTIONAL(configMacros, MDStringField, ); \ 4931 OPTIONAL(includePath, MDStringField, ); \ 4932 OPTIONAL(apinotes, MDStringField, ); \ 4933 OPTIONAL(file, MDField, ); \ 4934 OPTIONAL(line, LineField, ); 4935 PARSE_MD_FIELDS(); 4936 #undef VISIT_MD_FIELDS 4937 4938 Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val, 4939 configMacros.Val, includePath.Val, 4940 apinotes.Val, line.Val)); 4941 return false; 4942 } 4943 4944 /// ParseDITemplateTypeParameter: 4945 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false) 4946 bool LLParser::ParseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 4947 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4948 OPTIONAL(name, MDStringField, ); \ 4949 REQUIRED(type, MDField, ); \ 4950 OPTIONAL(defaulted, MDBoolField, ); 4951 PARSE_MD_FIELDS(); 4952 #undef VISIT_MD_FIELDS 4953 4954 Result = GET_OR_DISTINCT(DITemplateTypeParameter, 4955 (Context, name.Val, type.Val, defaulted.Val)); 4956 return false; 4957 } 4958 4959 /// ParseDITemplateValueParameter: 4960 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 4961 /// name: "V", type: !1, defaulted: false, 4962 /// value: i32 7) 4963 bool LLParser::ParseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 4964 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4965 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 4966 OPTIONAL(name, MDStringField, ); \ 4967 OPTIONAL(type, MDField, ); \ 4968 OPTIONAL(defaulted, MDBoolField, ); \ 4969 REQUIRED(value, MDField, ); 4970 4971 PARSE_MD_FIELDS(); 4972 #undef VISIT_MD_FIELDS 4973 4974 Result = GET_OR_DISTINCT( 4975 DITemplateValueParameter, 4976 (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val)); 4977 return false; 4978 } 4979 4980 /// ParseDIGlobalVariable: 4981 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 4982 /// file: !1, line: 7, type: !2, isLocal: false, 4983 /// isDefinition: true, templateParams: !3, 4984 /// declaration: !4, align: 8) 4985 bool LLParser::ParseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 4986 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4987 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 4988 OPTIONAL(scope, MDField, ); \ 4989 OPTIONAL(linkageName, MDStringField, ); \ 4990 OPTIONAL(file, MDField, ); \ 4991 OPTIONAL(line, LineField, ); \ 4992 OPTIONAL(type, MDField, ); \ 4993 OPTIONAL(isLocal, MDBoolField, ); \ 4994 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4995 OPTIONAL(templateParams, MDField, ); \ 4996 OPTIONAL(declaration, MDField, ); \ 4997 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 4998 PARSE_MD_FIELDS(); 4999 #undef VISIT_MD_FIELDS 5000 5001 Result = 5002 GET_OR_DISTINCT(DIGlobalVariable, 5003 (Context, scope.Val, name.Val, linkageName.Val, file.Val, 5004 line.Val, type.Val, isLocal.Val, isDefinition.Val, 5005 declaration.Val, templateParams.Val, align.Val)); 5006 return false; 5007 } 5008 5009 /// ParseDILocalVariable: 5010 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 5011 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 5012 /// align: 8) 5013 /// ::= !DILocalVariable(scope: !0, name: "foo", 5014 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 5015 /// align: 8) 5016 bool LLParser::ParseDILocalVariable(MDNode *&Result, bool IsDistinct) { 5017 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5018 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5019 OPTIONAL(name, MDStringField, ); \ 5020 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 5021 OPTIONAL(file, MDField, ); \ 5022 OPTIONAL(line, LineField, ); \ 5023 OPTIONAL(type, MDField, ); \ 5024 OPTIONAL(flags, DIFlagField, ); \ 5025 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 5026 PARSE_MD_FIELDS(); 5027 #undef VISIT_MD_FIELDS 5028 5029 Result = GET_OR_DISTINCT(DILocalVariable, 5030 (Context, scope.Val, name.Val, file.Val, line.Val, 5031 type.Val, arg.Val, flags.Val, align.Val)); 5032 return false; 5033 } 5034 5035 /// ParseDILabel: 5036 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7) 5037 bool LLParser::ParseDILabel(MDNode *&Result, bool IsDistinct) { 5038 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5039 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5040 REQUIRED(name, MDStringField, ); \ 5041 REQUIRED(file, MDField, ); \ 5042 REQUIRED(line, LineField, ); 5043 PARSE_MD_FIELDS(); 5044 #undef VISIT_MD_FIELDS 5045 5046 Result = GET_OR_DISTINCT(DILabel, 5047 (Context, scope.Val, name.Val, file.Val, line.Val)); 5048 return false; 5049 } 5050 5051 /// ParseDIExpression: 5052 /// ::= !DIExpression(0, 7, -1) 5053 bool LLParser::ParseDIExpression(MDNode *&Result, bool IsDistinct) { 5054 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5055 Lex.Lex(); 5056 5057 if (ParseToken(lltok::lparen, "expected '(' here")) 5058 return true; 5059 5060 SmallVector<uint64_t, 8> Elements; 5061 if (Lex.getKind() != lltok::rparen) 5062 do { 5063 if (Lex.getKind() == lltok::DwarfOp) { 5064 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 5065 Lex.Lex(); 5066 Elements.push_back(Op); 5067 continue; 5068 } 5069 return TokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 5070 } 5071 5072 if (Lex.getKind() == lltok::DwarfAttEncoding) { 5073 if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) { 5074 Lex.Lex(); 5075 Elements.push_back(Op); 5076 continue; 5077 } 5078 return TokError(Twine("invalid DWARF attribute encoding '") + Lex.getStrVal() + "'"); 5079 } 5080 5081 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 5082 return TokError("expected unsigned integer"); 5083 5084 auto &U = Lex.getAPSIntVal(); 5085 if (U.ugt(UINT64_MAX)) 5086 return TokError("element too large, limit is " + Twine(UINT64_MAX)); 5087 Elements.push_back(U.getZExtValue()); 5088 Lex.Lex(); 5089 } while (EatIfPresent(lltok::comma)); 5090 5091 if (ParseToken(lltok::rparen, "expected ')' here")) 5092 return true; 5093 5094 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 5095 return false; 5096 } 5097 5098 /// ParseDIGlobalVariableExpression: 5099 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 5100 bool LLParser::ParseDIGlobalVariableExpression(MDNode *&Result, 5101 bool IsDistinct) { 5102 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5103 REQUIRED(var, MDField, ); \ 5104 REQUIRED(expr, MDField, ); 5105 PARSE_MD_FIELDS(); 5106 #undef VISIT_MD_FIELDS 5107 5108 Result = 5109 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 5110 return false; 5111 } 5112 5113 /// ParseDIObjCProperty: 5114 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 5115 /// getter: "getFoo", attributes: 7, type: !2) 5116 bool LLParser::ParseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 5117 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5118 OPTIONAL(name, MDStringField, ); \ 5119 OPTIONAL(file, MDField, ); \ 5120 OPTIONAL(line, LineField, ); \ 5121 OPTIONAL(setter, MDStringField, ); \ 5122 OPTIONAL(getter, MDStringField, ); \ 5123 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 5124 OPTIONAL(type, MDField, ); 5125 PARSE_MD_FIELDS(); 5126 #undef VISIT_MD_FIELDS 5127 5128 Result = GET_OR_DISTINCT(DIObjCProperty, 5129 (Context, name.Val, file.Val, line.Val, setter.Val, 5130 getter.Val, attributes.Val, type.Val)); 5131 return false; 5132 } 5133 5134 /// ParseDIImportedEntity: 5135 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 5136 /// line: 7, name: "foo") 5137 bool LLParser::ParseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 5138 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5139 REQUIRED(tag, DwarfTagField, ); \ 5140 REQUIRED(scope, MDField, ); \ 5141 OPTIONAL(entity, MDField, ); \ 5142 OPTIONAL(file, MDField, ); \ 5143 OPTIONAL(line, LineField, ); \ 5144 OPTIONAL(name, MDStringField, ); 5145 PARSE_MD_FIELDS(); 5146 #undef VISIT_MD_FIELDS 5147 5148 Result = GET_OR_DISTINCT( 5149 DIImportedEntity, 5150 (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val)); 5151 return false; 5152 } 5153 5154 #undef PARSE_MD_FIELD 5155 #undef NOP_FIELD 5156 #undef REQUIRE_FIELD 5157 #undef DECLARE_FIELD 5158 5159 /// ParseMetadataAsValue 5160 /// ::= metadata i32 %local 5161 /// ::= metadata i32 @global 5162 /// ::= metadata i32 7 5163 /// ::= metadata !0 5164 /// ::= metadata !{...} 5165 /// ::= metadata !"string" 5166 bool LLParser::ParseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 5167 // Note: the type 'metadata' has already been parsed. 5168 Metadata *MD; 5169 if (ParseMetadata(MD, &PFS)) 5170 return true; 5171 5172 V = MetadataAsValue::get(Context, MD); 5173 return false; 5174 } 5175 5176 /// ParseValueAsMetadata 5177 /// ::= i32 %local 5178 /// ::= i32 @global 5179 /// ::= i32 7 5180 bool LLParser::ParseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 5181 PerFunctionState *PFS) { 5182 Type *Ty; 5183 LocTy Loc; 5184 if (ParseType(Ty, TypeMsg, Loc)) 5185 return true; 5186 if (Ty->isMetadataTy()) 5187 return Error(Loc, "invalid metadata-value-metadata roundtrip"); 5188 5189 Value *V; 5190 if (ParseValue(Ty, V, PFS)) 5191 return true; 5192 5193 MD = ValueAsMetadata::get(V); 5194 return false; 5195 } 5196 5197 /// ParseMetadata 5198 /// ::= i32 %local 5199 /// ::= i32 @global 5200 /// ::= i32 7 5201 /// ::= !42 5202 /// ::= !{...} 5203 /// ::= !"string" 5204 /// ::= !DILocation(...) 5205 bool LLParser::ParseMetadata(Metadata *&MD, PerFunctionState *PFS) { 5206 if (Lex.getKind() == lltok::MetadataVar) { 5207 MDNode *N; 5208 if (ParseSpecializedMDNode(N)) 5209 return true; 5210 MD = N; 5211 return false; 5212 } 5213 5214 // ValueAsMetadata: 5215 // <type> <value> 5216 if (Lex.getKind() != lltok::exclaim) 5217 return ParseValueAsMetadata(MD, "expected metadata operand", PFS); 5218 5219 // '!'. 5220 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 5221 Lex.Lex(); 5222 5223 // MDString: 5224 // ::= '!' STRINGCONSTANT 5225 if (Lex.getKind() == lltok::StringConstant) { 5226 MDString *S; 5227 if (ParseMDString(S)) 5228 return true; 5229 MD = S; 5230 return false; 5231 } 5232 5233 // MDNode: 5234 // !{ ... } 5235 // !7 5236 MDNode *N; 5237 if (ParseMDNodeTail(N)) 5238 return true; 5239 MD = N; 5240 return false; 5241 } 5242 5243 //===----------------------------------------------------------------------===// 5244 // Function Parsing. 5245 //===----------------------------------------------------------------------===// 5246 5247 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 5248 PerFunctionState *PFS, bool IsCall) { 5249 if (Ty->isFunctionTy()) 5250 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 5251 5252 switch (ID.Kind) { 5253 case ValID::t_LocalID: 5254 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 5255 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5256 return V == nullptr; 5257 case ValID::t_LocalName: 5258 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 5259 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc, IsCall); 5260 return V == nullptr; 5261 case ValID::t_InlineAsm: { 5262 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 5263 return Error(ID.Loc, "invalid type for inline asm constraint string"); 5264 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, 5265 (ID.UIntVal >> 1) & 1, 5266 (InlineAsm::AsmDialect(ID.UIntVal >> 2))); 5267 return false; 5268 } 5269 case ValID::t_GlobalName: 5270 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall); 5271 return V == nullptr; 5272 case ValID::t_GlobalID: 5273 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5274 return V == nullptr; 5275 case ValID::t_APSInt: 5276 if (!Ty->isIntegerTy()) 5277 return Error(ID.Loc, "integer constant must have integer type"); 5278 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 5279 V = ConstantInt::get(Context, ID.APSIntVal); 5280 return false; 5281 case ValID::t_APFloat: 5282 if (!Ty->isFloatingPointTy() || 5283 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 5284 return Error(ID.Loc, "floating point constant invalid for type"); 5285 5286 // The lexer has no type info, so builds all half, bfloat, float, and double 5287 // FP constants as double. Fix this here. Long double does not need this. 5288 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 5289 bool Ignored; 5290 if (Ty->isHalfTy()) 5291 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 5292 &Ignored); 5293 else if (Ty->isBFloatTy()) 5294 ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven, 5295 &Ignored); 5296 else if (Ty->isFloatTy()) 5297 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 5298 &Ignored); 5299 } 5300 V = ConstantFP::get(Context, ID.APFloatVal); 5301 5302 if (V->getType() != Ty) 5303 return Error(ID.Loc, "floating point constant does not have type '" + 5304 getTypeString(Ty) + "'"); 5305 5306 return false; 5307 case ValID::t_Null: 5308 if (!Ty->isPointerTy()) 5309 return Error(ID.Loc, "null must be a pointer type"); 5310 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 5311 return false; 5312 case ValID::t_Undef: 5313 // FIXME: LabelTy should not be a first-class type. 5314 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5315 return Error(ID.Loc, "invalid type for undef constant"); 5316 V = UndefValue::get(Ty); 5317 return false; 5318 case ValID::t_EmptyArray: 5319 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 5320 return Error(ID.Loc, "invalid empty array initializer"); 5321 V = UndefValue::get(Ty); 5322 return false; 5323 case ValID::t_Zero: 5324 // FIXME: LabelTy should not be a first-class type. 5325 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5326 return Error(ID.Loc, "invalid type for null constant"); 5327 V = Constant::getNullValue(Ty); 5328 return false; 5329 case ValID::t_None: 5330 if (!Ty->isTokenTy()) 5331 return Error(ID.Loc, "invalid type for none constant"); 5332 V = Constant::getNullValue(Ty); 5333 return false; 5334 case ValID::t_Constant: 5335 if (ID.ConstantVal->getType() != Ty) 5336 return Error(ID.Loc, "constant expression type mismatch"); 5337 5338 V = ID.ConstantVal; 5339 return false; 5340 case ValID::t_ConstantStruct: 5341 case ValID::t_PackedConstantStruct: 5342 if (StructType *ST = dyn_cast<StructType>(Ty)) { 5343 if (ST->getNumElements() != ID.UIntVal) 5344 return Error(ID.Loc, 5345 "initializer with struct type has wrong # elements"); 5346 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 5347 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 5348 5349 // Verify that the elements are compatible with the structtype. 5350 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 5351 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 5352 return Error(ID.Loc, "element " + Twine(i) + 5353 " of struct initializer doesn't match struct element type"); 5354 5355 V = ConstantStruct::get( 5356 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 5357 } else 5358 return Error(ID.Loc, "constant expression type mismatch"); 5359 return false; 5360 } 5361 llvm_unreachable("Invalid ValID"); 5362 } 5363 5364 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 5365 C = nullptr; 5366 ValID ID; 5367 auto Loc = Lex.getLoc(); 5368 if (ParseValID(ID, /*PFS=*/nullptr)) 5369 return true; 5370 switch (ID.Kind) { 5371 case ValID::t_APSInt: 5372 case ValID::t_APFloat: 5373 case ValID::t_Undef: 5374 case ValID::t_Constant: 5375 case ValID::t_ConstantStruct: 5376 case ValID::t_PackedConstantStruct: { 5377 Value *V; 5378 if (ConvertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false)) 5379 return true; 5380 assert(isa<Constant>(V) && "Expected a constant value"); 5381 C = cast<Constant>(V); 5382 return false; 5383 } 5384 case ValID::t_Null: 5385 C = Constant::getNullValue(Ty); 5386 return false; 5387 default: 5388 return Error(Loc, "expected a constant value"); 5389 } 5390 } 5391 5392 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 5393 V = nullptr; 5394 ValID ID; 5395 return ParseValID(ID, PFS) || 5396 ConvertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false); 5397 } 5398 5399 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 5400 Type *Ty = nullptr; 5401 return ParseType(Ty) || 5402 ParseValue(Ty, V, PFS); 5403 } 5404 5405 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 5406 PerFunctionState &PFS) { 5407 Value *V; 5408 Loc = Lex.getLoc(); 5409 if (ParseTypeAndValue(V, PFS)) return true; 5410 if (!isa<BasicBlock>(V)) 5411 return Error(Loc, "expected a basic block"); 5412 BB = cast<BasicBlock>(V); 5413 return false; 5414 } 5415 5416 /// FunctionHeader 5417 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 5418 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 5419 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign 5420 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 5421 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 5422 // Parse the linkage. 5423 LocTy LinkageLoc = Lex.getLoc(); 5424 unsigned Linkage; 5425 unsigned Visibility; 5426 unsigned DLLStorageClass; 5427 bool DSOLocal; 5428 AttrBuilder RetAttrs; 5429 unsigned CC; 5430 bool HasLinkage; 5431 Type *RetType = nullptr; 5432 LocTy RetTypeLoc = Lex.getLoc(); 5433 if (ParseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 5434 DSOLocal) || 5435 ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 5436 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 5437 return true; 5438 5439 // Verify that the linkage is ok. 5440 switch ((GlobalValue::LinkageTypes)Linkage) { 5441 case GlobalValue::ExternalLinkage: 5442 break; // always ok. 5443 case GlobalValue::ExternalWeakLinkage: 5444 if (isDefine) 5445 return Error(LinkageLoc, "invalid linkage for function definition"); 5446 break; 5447 case GlobalValue::PrivateLinkage: 5448 case GlobalValue::InternalLinkage: 5449 case GlobalValue::AvailableExternallyLinkage: 5450 case GlobalValue::LinkOnceAnyLinkage: 5451 case GlobalValue::LinkOnceODRLinkage: 5452 case GlobalValue::WeakAnyLinkage: 5453 case GlobalValue::WeakODRLinkage: 5454 if (!isDefine) 5455 return Error(LinkageLoc, "invalid linkage for function declaration"); 5456 break; 5457 case GlobalValue::AppendingLinkage: 5458 case GlobalValue::CommonLinkage: 5459 return Error(LinkageLoc, "invalid function linkage type"); 5460 } 5461 5462 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 5463 return Error(LinkageLoc, 5464 "symbol with local linkage must have default visibility"); 5465 5466 if (!FunctionType::isValidReturnType(RetType)) 5467 return Error(RetTypeLoc, "invalid function return type"); 5468 5469 LocTy NameLoc = Lex.getLoc(); 5470 5471 std::string FunctionName; 5472 if (Lex.getKind() == lltok::GlobalVar) { 5473 FunctionName = Lex.getStrVal(); 5474 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 5475 unsigned NameID = Lex.getUIntVal(); 5476 5477 if (NameID != NumberedVals.size()) 5478 return TokError("function expected to be numbered '%" + 5479 Twine(NumberedVals.size()) + "'"); 5480 } else { 5481 return TokError("expected function name"); 5482 } 5483 5484 Lex.Lex(); 5485 5486 if (Lex.getKind() != lltok::lparen) 5487 return TokError("expected '(' in function argument list"); 5488 5489 SmallVector<ArgInfo, 8> ArgList; 5490 bool isVarArg; 5491 AttrBuilder FuncAttrs; 5492 std::vector<unsigned> FwdRefAttrGrps; 5493 LocTy BuiltinLoc; 5494 std::string Section; 5495 std::string Partition; 5496 MaybeAlign Alignment; 5497 std::string GC; 5498 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 5499 unsigned AddrSpace = 0; 5500 Constant *Prefix = nullptr; 5501 Constant *Prologue = nullptr; 5502 Constant *PersonalityFn = nullptr; 5503 Comdat *C; 5504 5505 if (ParseArgumentList(ArgList, isVarArg) || 5506 ParseOptionalUnnamedAddr(UnnamedAddr) || 5507 ParseOptionalProgramAddrSpace(AddrSpace) || 5508 ParseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 5509 BuiltinLoc) || 5510 (EatIfPresent(lltok::kw_section) && 5511 ParseStringConstant(Section)) || 5512 (EatIfPresent(lltok::kw_partition) && 5513 ParseStringConstant(Partition)) || 5514 parseOptionalComdat(FunctionName, C) || 5515 ParseOptionalAlignment(Alignment) || 5516 (EatIfPresent(lltok::kw_gc) && 5517 ParseStringConstant(GC)) || 5518 (EatIfPresent(lltok::kw_prefix) && 5519 ParseGlobalTypeAndValue(Prefix)) || 5520 (EatIfPresent(lltok::kw_prologue) && 5521 ParseGlobalTypeAndValue(Prologue)) || 5522 (EatIfPresent(lltok::kw_personality) && 5523 ParseGlobalTypeAndValue(PersonalityFn))) 5524 return true; 5525 5526 if (FuncAttrs.contains(Attribute::Builtin)) 5527 return Error(BuiltinLoc, "'builtin' attribute not valid on function"); 5528 5529 // If the alignment was parsed as an attribute, move to the alignment field. 5530 if (FuncAttrs.hasAlignmentAttr()) { 5531 Alignment = FuncAttrs.getAlignment(); 5532 FuncAttrs.removeAttribute(Attribute::Alignment); 5533 } 5534 5535 // Okay, if we got here, the function is syntactically valid. Convert types 5536 // and do semantic checks. 5537 std::vector<Type*> ParamTypeList; 5538 SmallVector<AttributeSet, 8> Attrs; 5539 5540 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5541 ParamTypeList.push_back(ArgList[i].Ty); 5542 Attrs.push_back(ArgList[i].Attrs); 5543 } 5544 5545 AttributeList PAL = 5546 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 5547 AttributeSet::get(Context, RetAttrs), Attrs); 5548 5549 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 5550 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 5551 5552 FunctionType *FT = 5553 FunctionType::get(RetType, ParamTypeList, isVarArg); 5554 PointerType *PFT = PointerType::get(FT, AddrSpace); 5555 5556 Fn = nullptr; 5557 if (!FunctionName.empty()) { 5558 // If this was a definition of a forward reference, remove the definition 5559 // from the forward reference table and fill in the forward ref. 5560 auto FRVI = ForwardRefVals.find(FunctionName); 5561 if (FRVI != ForwardRefVals.end()) { 5562 Fn = M->getFunction(FunctionName); 5563 if (!Fn) 5564 return Error(FRVI->second.second, "invalid forward reference to " 5565 "function as global value!"); 5566 if (Fn->getType() != PFT) 5567 return Error(FRVI->second.second, "invalid forward reference to " 5568 "function '" + FunctionName + "' with wrong type: " 5569 "expected '" + getTypeString(PFT) + "' but was '" + 5570 getTypeString(Fn->getType()) + "'"); 5571 ForwardRefVals.erase(FRVI); 5572 } else if ((Fn = M->getFunction(FunctionName))) { 5573 // Reject redefinitions. 5574 return Error(NameLoc, "invalid redefinition of function '" + 5575 FunctionName + "'"); 5576 } else if (M->getNamedValue(FunctionName)) { 5577 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 5578 } 5579 5580 } else { 5581 // If this is a definition of a forward referenced function, make sure the 5582 // types agree. 5583 auto I = ForwardRefValIDs.find(NumberedVals.size()); 5584 if (I != ForwardRefValIDs.end()) { 5585 Fn = cast<Function>(I->second.first); 5586 if (Fn->getType() != PFT) 5587 return Error(NameLoc, "type of definition and forward reference of '@" + 5588 Twine(NumberedVals.size()) + "' disagree: " 5589 "expected '" + getTypeString(PFT) + "' but was '" + 5590 getTypeString(Fn->getType()) + "'"); 5591 ForwardRefValIDs.erase(I); 5592 } 5593 } 5594 5595 if (!Fn) 5596 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace, 5597 FunctionName, M); 5598 else // Move the forward-reference to the correct spot in the module. 5599 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 5600 5601 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS"); 5602 5603 if (FunctionName.empty()) 5604 NumberedVals.push_back(Fn); 5605 5606 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 5607 maybeSetDSOLocal(DSOLocal, *Fn); 5608 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 5609 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 5610 Fn->setCallingConv(CC); 5611 Fn->setAttributes(PAL); 5612 Fn->setUnnamedAddr(UnnamedAddr); 5613 Fn->setAlignment(MaybeAlign(Alignment)); 5614 Fn->setSection(Section); 5615 Fn->setPartition(Partition); 5616 Fn->setComdat(C); 5617 Fn->setPersonalityFn(PersonalityFn); 5618 if (!GC.empty()) Fn->setGC(GC); 5619 Fn->setPrefixData(Prefix); 5620 Fn->setPrologueData(Prologue); 5621 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 5622 5623 // Add all of the arguments we parsed to the function. 5624 Function::arg_iterator ArgIt = Fn->arg_begin(); 5625 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 5626 // If the argument has a name, insert it into the argument symbol table. 5627 if (ArgList[i].Name.empty()) continue; 5628 5629 // Set the name, if it conflicted, it will be auto-renamed. 5630 ArgIt->setName(ArgList[i].Name); 5631 5632 if (ArgIt->getName() != ArgList[i].Name) 5633 return Error(ArgList[i].Loc, "redefinition of argument '%" + 5634 ArgList[i].Name + "'"); 5635 } 5636 5637 if (isDefine) 5638 return false; 5639 5640 // Check the declaration has no block address forward references. 5641 ValID ID; 5642 if (FunctionName.empty()) { 5643 ID.Kind = ValID::t_GlobalID; 5644 ID.UIntVal = NumberedVals.size() - 1; 5645 } else { 5646 ID.Kind = ValID::t_GlobalName; 5647 ID.StrVal = FunctionName; 5648 } 5649 auto Blocks = ForwardRefBlockAddresses.find(ID); 5650 if (Blocks != ForwardRefBlockAddresses.end()) 5651 return Error(Blocks->first.Loc, 5652 "cannot take blockaddress inside a declaration"); 5653 return false; 5654 } 5655 5656 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 5657 ValID ID; 5658 if (FunctionNumber == -1) { 5659 ID.Kind = ValID::t_GlobalName; 5660 ID.StrVal = std::string(F.getName()); 5661 } else { 5662 ID.Kind = ValID::t_GlobalID; 5663 ID.UIntVal = FunctionNumber; 5664 } 5665 5666 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 5667 if (Blocks == P.ForwardRefBlockAddresses.end()) 5668 return false; 5669 5670 for (const auto &I : Blocks->second) { 5671 const ValID &BBID = I.first; 5672 GlobalValue *GV = I.second; 5673 5674 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 5675 "Expected local id or name"); 5676 BasicBlock *BB; 5677 if (BBID.Kind == ValID::t_LocalName) 5678 BB = GetBB(BBID.StrVal, BBID.Loc); 5679 else 5680 BB = GetBB(BBID.UIntVal, BBID.Loc); 5681 if (!BB) 5682 return P.Error(BBID.Loc, "referenced value is not a basic block"); 5683 5684 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 5685 GV->eraseFromParent(); 5686 } 5687 5688 P.ForwardRefBlockAddresses.erase(Blocks); 5689 return false; 5690 } 5691 5692 /// ParseFunctionBody 5693 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 5694 bool LLParser::ParseFunctionBody(Function &Fn) { 5695 if (Lex.getKind() != lltok::lbrace) 5696 return TokError("expected '{' in function body"); 5697 Lex.Lex(); // eat the {. 5698 5699 int FunctionNumber = -1; 5700 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 5701 5702 PerFunctionState PFS(*this, Fn, FunctionNumber); 5703 5704 // Resolve block addresses and allow basic blocks to be forward-declared 5705 // within this function. 5706 if (PFS.resolveForwardRefBlockAddresses()) 5707 return true; 5708 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 5709 5710 // We need at least one basic block. 5711 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 5712 return TokError("function body requires at least one basic block"); 5713 5714 while (Lex.getKind() != lltok::rbrace && 5715 Lex.getKind() != lltok::kw_uselistorder) 5716 if (ParseBasicBlock(PFS)) return true; 5717 5718 while (Lex.getKind() != lltok::rbrace) 5719 if (ParseUseListOrder(&PFS)) 5720 return true; 5721 5722 // Eat the }. 5723 Lex.Lex(); 5724 5725 // Verify function is ok. 5726 return PFS.FinishFunction(); 5727 } 5728 5729 /// ParseBasicBlock 5730 /// ::= (LabelStr|LabelID)? Instruction* 5731 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 5732 // If this basic block starts out with a name, remember it. 5733 std::string Name; 5734 int NameID = -1; 5735 LocTy NameLoc = Lex.getLoc(); 5736 if (Lex.getKind() == lltok::LabelStr) { 5737 Name = Lex.getStrVal(); 5738 Lex.Lex(); 5739 } else if (Lex.getKind() == lltok::LabelID) { 5740 NameID = Lex.getUIntVal(); 5741 Lex.Lex(); 5742 } 5743 5744 BasicBlock *BB = PFS.DefineBB(Name, NameID, NameLoc); 5745 if (!BB) 5746 return true; 5747 5748 std::string NameStr; 5749 5750 // Parse the instructions in this block until we get a terminator. 5751 Instruction *Inst; 5752 do { 5753 // This instruction may have three possibilities for a name: a) none 5754 // specified, b) name specified "%foo =", c) number specified: "%4 =". 5755 LocTy NameLoc = Lex.getLoc(); 5756 int NameID = -1; 5757 NameStr = ""; 5758 5759 if (Lex.getKind() == lltok::LocalVarID) { 5760 NameID = Lex.getUIntVal(); 5761 Lex.Lex(); 5762 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 5763 return true; 5764 } else if (Lex.getKind() == lltok::LocalVar) { 5765 NameStr = Lex.getStrVal(); 5766 Lex.Lex(); 5767 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 5768 return true; 5769 } 5770 5771 switch (ParseInstruction(Inst, BB, PFS)) { 5772 default: llvm_unreachable("Unknown ParseInstruction result!"); 5773 case InstError: return true; 5774 case InstNormal: 5775 BB->getInstList().push_back(Inst); 5776 5777 // With a normal result, we check to see if the instruction is followed by 5778 // a comma and metadata. 5779 if (EatIfPresent(lltok::comma)) 5780 if (ParseInstructionMetadata(*Inst)) 5781 return true; 5782 break; 5783 case InstExtraComma: 5784 BB->getInstList().push_back(Inst); 5785 5786 // If the instruction parser ate an extra comma at the end of it, it 5787 // *must* be followed by metadata. 5788 if (ParseInstructionMetadata(*Inst)) 5789 return true; 5790 break; 5791 } 5792 5793 // Set the name on the instruction. 5794 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 5795 } while (!Inst->isTerminator()); 5796 5797 return false; 5798 } 5799 5800 //===----------------------------------------------------------------------===// 5801 // Instruction Parsing. 5802 //===----------------------------------------------------------------------===// 5803 5804 /// ParseInstruction - Parse one of the many different instructions. 5805 /// 5806 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 5807 PerFunctionState &PFS) { 5808 lltok::Kind Token = Lex.getKind(); 5809 if (Token == lltok::Eof) 5810 return TokError("found end of file when expecting more instructions"); 5811 LocTy Loc = Lex.getLoc(); 5812 unsigned KeywordVal = Lex.getUIntVal(); 5813 Lex.Lex(); // Eat the keyword. 5814 5815 switch (Token) { 5816 default: return Error(Loc, "expected instruction opcode"); 5817 // Terminator Instructions. 5818 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 5819 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 5820 case lltok::kw_br: return ParseBr(Inst, PFS); 5821 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 5822 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 5823 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 5824 case lltok::kw_resume: return ParseResume(Inst, PFS); 5825 case lltok::kw_cleanupret: return ParseCleanupRet(Inst, PFS); 5826 case lltok::kw_catchret: return ParseCatchRet(Inst, PFS); 5827 case lltok::kw_catchswitch: return ParseCatchSwitch(Inst, PFS); 5828 case lltok::kw_catchpad: return ParseCatchPad(Inst, PFS); 5829 case lltok::kw_cleanuppad: return ParseCleanupPad(Inst, PFS); 5830 case lltok::kw_callbr: return ParseCallBr(Inst, PFS); 5831 // Unary Operators. 5832 case lltok::kw_fneg: { 5833 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5834 int Res = ParseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/true); 5835 if (Res != 0) 5836 return Res; 5837 if (FMF.any()) 5838 Inst->setFastMathFlags(FMF); 5839 return false; 5840 } 5841 // Binary Operators. 5842 case lltok::kw_add: 5843 case lltok::kw_sub: 5844 case lltok::kw_mul: 5845 case lltok::kw_shl: { 5846 bool NUW = EatIfPresent(lltok::kw_nuw); 5847 bool NSW = EatIfPresent(lltok::kw_nsw); 5848 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 5849 5850 if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true; 5851 5852 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 5853 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 5854 return false; 5855 } 5856 case lltok::kw_fadd: 5857 case lltok::kw_fsub: 5858 case lltok::kw_fmul: 5859 case lltok::kw_fdiv: 5860 case lltok::kw_frem: { 5861 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5862 int Res = ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/true); 5863 if (Res != 0) 5864 return Res; 5865 if (FMF.any()) 5866 Inst->setFastMathFlags(FMF); 5867 return 0; 5868 } 5869 5870 case lltok::kw_sdiv: 5871 case lltok::kw_udiv: 5872 case lltok::kw_lshr: 5873 case lltok::kw_ashr: { 5874 bool Exact = EatIfPresent(lltok::kw_exact); 5875 5876 if (ParseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/false)) return true; 5877 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 5878 return false; 5879 } 5880 5881 case lltok::kw_urem: 5882 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 5883 /*IsFP*/false); 5884 case lltok::kw_and: 5885 case lltok::kw_or: 5886 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 5887 case lltok::kw_icmp: return ParseCompare(Inst, PFS, KeywordVal); 5888 case lltok::kw_fcmp: { 5889 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5890 int Res = ParseCompare(Inst, PFS, KeywordVal); 5891 if (Res != 0) 5892 return Res; 5893 if (FMF.any()) 5894 Inst->setFastMathFlags(FMF); 5895 return 0; 5896 } 5897 5898 // Casts. 5899 case lltok::kw_trunc: 5900 case lltok::kw_zext: 5901 case lltok::kw_sext: 5902 case lltok::kw_fptrunc: 5903 case lltok::kw_fpext: 5904 case lltok::kw_bitcast: 5905 case lltok::kw_addrspacecast: 5906 case lltok::kw_uitofp: 5907 case lltok::kw_sitofp: 5908 case lltok::kw_fptoui: 5909 case lltok::kw_fptosi: 5910 case lltok::kw_inttoptr: 5911 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 5912 // Other. 5913 case lltok::kw_select: { 5914 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5915 int Res = ParseSelect(Inst, PFS); 5916 if (Res != 0) 5917 return Res; 5918 if (FMF.any()) { 5919 if (!isa<FPMathOperator>(Inst)) 5920 return Error(Loc, "fast-math-flags specified for select without " 5921 "floating-point scalar or vector return type"); 5922 Inst->setFastMathFlags(FMF); 5923 } 5924 return 0; 5925 } 5926 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 5927 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 5928 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 5929 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 5930 case lltok::kw_phi: { 5931 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 5932 int Res = ParsePHI(Inst, PFS); 5933 if (Res != 0) 5934 return Res; 5935 if (FMF.any()) { 5936 if (!isa<FPMathOperator>(Inst)) 5937 return Error(Loc, "fast-math-flags specified for phi without " 5938 "floating-point scalar or vector return type"); 5939 Inst->setFastMathFlags(FMF); 5940 } 5941 return 0; 5942 } 5943 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 5944 case lltok::kw_freeze: return ParseFreeze(Inst, PFS); 5945 // Call. 5946 case lltok::kw_call: return ParseCall(Inst, PFS, CallInst::TCK_None); 5947 case lltok::kw_tail: return ParseCall(Inst, PFS, CallInst::TCK_Tail); 5948 case lltok::kw_musttail: return ParseCall(Inst, PFS, CallInst::TCK_MustTail); 5949 case lltok::kw_notail: return ParseCall(Inst, PFS, CallInst::TCK_NoTail); 5950 // Memory. 5951 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 5952 case lltok::kw_load: return ParseLoad(Inst, PFS); 5953 case lltok::kw_store: return ParseStore(Inst, PFS); 5954 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 5955 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 5956 case lltok::kw_fence: return ParseFence(Inst, PFS); 5957 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 5958 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 5959 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 5960 } 5961 } 5962 5963 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 5964 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 5965 if (Opc == Instruction::FCmp) { 5966 switch (Lex.getKind()) { 5967 default: return TokError("expected fcmp predicate (e.g. 'oeq')"); 5968 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 5969 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 5970 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 5971 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 5972 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 5973 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 5974 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 5975 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 5976 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 5977 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 5978 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 5979 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 5980 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 5981 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 5982 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 5983 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 5984 } 5985 } else { 5986 switch (Lex.getKind()) { 5987 default: return TokError("expected icmp predicate (e.g. 'eq')"); 5988 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 5989 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 5990 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 5991 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 5992 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 5993 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 5994 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 5995 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 5996 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 5997 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 5998 } 5999 } 6000 Lex.Lex(); 6001 return false; 6002 } 6003 6004 //===----------------------------------------------------------------------===// 6005 // Terminator Instructions. 6006 //===----------------------------------------------------------------------===// 6007 6008 /// ParseRet - Parse a return instruction. 6009 /// ::= 'ret' void (',' !dbg, !1)* 6010 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 6011 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 6012 PerFunctionState &PFS) { 6013 SMLoc TypeLoc = Lex.getLoc(); 6014 Type *Ty = nullptr; 6015 if (ParseType(Ty, true /*void allowed*/)) return true; 6016 6017 Type *ResType = PFS.getFunction().getReturnType(); 6018 6019 if (Ty->isVoidTy()) { 6020 if (!ResType->isVoidTy()) 6021 return Error(TypeLoc, "value doesn't match function result type '" + 6022 getTypeString(ResType) + "'"); 6023 6024 Inst = ReturnInst::Create(Context); 6025 return false; 6026 } 6027 6028 Value *RV; 6029 if (ParseValue(Ty, RV, PFS)) return true; 6030 6031 if (ResType != RV->getType()) 6032 return Error(TypeLoc, "value doesn't match function result type '" + 6033 getTypeString(ResType) + "'"); 6034 6035 Inst = ReturnInst::Create(Context, RV); 6036 return false; 6037 } 6038 6039 /// ParseBr 6040 /// ::= 'br' TypeAndValue 6041 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6042 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 6043 LocTy Loc, Loc2; 6044 Value *Op0; 6045 BasicBlock *Op1, *Op2; 6046 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 6047 6048 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 6049 Inst = BranchInst::Create(BB); 6050 return false; 6051 } 6052 6053 if (Op0->getType() != Type::getInt1Ty(Context)) 6054 return Error(Loc, "branch condition must have 'i1' type"); 6055 6056 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 6057 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 6058 ParseToken(lltok::comma, "expected ',' after true destination") || 6059 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 6060 return true; 6061 6062 Inst = BranchInst::Create(Op1, Op2, Op0); 6063 return false; 6064 } 6065 6066 /// ParseSwitch 6067 /// Instruction 6068 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 6069 /// JumpTable 6070 /// ::= (TypeAndValue ',' TypeAndValue)* 6071 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6072 LocTy CondLoc, BBLoc; 6073 Value *Cond; 6074 BasicBlock *DefaultBB; 6075 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 6076 ParseToken(lltok::comma, "expected ',' after switch condition") || 6077 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 6078 ParseToken(lltok::lsquare, "expected '[' with switch table")) 6079 return true; 6080 6081 if (!Cond->getType()->isIntegerTy()) 6082 return Error(CondLoc, "switch condition must have integer type"); 6083 6084 // Parse the jump table pairs. 6085 SmallPtrSet<Value*, 32> SeenCases; 6086 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 6087 while (Lex.getKind() != lltok::rsquare) { 6088 Value *Constant; 6089 BasicBlock *DestBB; 6090 6091 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 6092 ParseToken(lltok::comma, "expected ',' after case value") || 6093 ParseTypeAndBasicBlock(DestBB, PFS)) 6094 return true; 6095 6096 if (!SeenCases.insert(Constant).second) 6097 return Error(CondLoc, "duplicate case value in switch"); 6098 if (!isa<ConstantInt>(Constant)) 6099 return Error(CondLoc, "case value is not a constant integer"); 6100 6101 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 6102 } 6103 6104 Lex.Lex(); // Eat the ']'. 6105 6106 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 6107 for (unsigned i = 0, e = Table.size(); i != e; ++i) 6108 SI->addCase(Table[i].first, Table[i].second); 6109 Inst = SI; 6110 return false; 6111 } 6112 6113 /// ParseIndirectBr 6114 /// Instruction 6115 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 6116 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 6117 LocTy AddrLoc; 6118 Value *Address; 6119 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 6120 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 6121 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 6122 return true; 6123 6124 if (!Address->getType()->isPointerTy()) 6125 return Error(AddrLoc, "indirectbr address must have pointer type"); 6126 6127 // Parse the destination list. 6128 SmallVector<BasicBlock*, 16> DestList; 6129 6130 if (Lex.getKind() != lltok::rsquare) { 6131 BasicBlock *DestBB; 6132 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6133 return true; 6134 DestList.push_back(DestBB); 6135 6136 while (EatIfPresent(lltok::comma)) { 6137 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6138 return true; 6139 DestList.push_back(DestBB); 6140 } 6141 } 6142 6143 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 6144 return true; 6145 6146 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 6147 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 6148 IBI->addDestination(DestList[i]); 6149 Inst = IBI; 6150 return false; 6151 } 6152 6153 /// ParseInvoke 6154 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 6155 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 6156 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 6157 LocTy CallLoc = Lex.getLoc(); 6158 AttrBuilder RetAttrs, FnAttrs; 6159 std::vector<unsigned> FwdRefAttrGrps; 6160 LocTy NoBuiltinLoc; 6161 unsigned CC; 6162 unsigned InvokeAddrSpace; 6163 Type *RetType = nullptr; 6164 LocTy RetTypeLoc; 6165 ValID CalleeID; 6166 SmallVector<ParamInfo, 16> ArgList; 6167 SmallVector<OperandBundleDef, 2> BundleList; 6168 6169 BasicBlock *NormalBB, *UnwindBB; 6170 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6171 ParseOptionalProgramAddrSpace(InvokeAddrSpace) || 6172 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6173 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 6174 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6175 NoBuiltinLoc) || 6176 ParseOptionalOperandBundles(BundleList, PFS) || 6177 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 6178 ParseTypeAndBasicBlock(NormalBB, PFS) || 6179 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 6180 ParseTypeAndBasicBlock(UnwindBB, PFS)) 6181 return true; 6182 6183 // If RetType is a non-function pointer type, then this is the short syntax 6184 // for the call, which means that RetType is just the return type. Infer the 6185 // rest of the function argument types from the arguments that are present. 6186 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6187 if (!Ty) { 6188 // Pull out the types of all of the arguments... 6189 std::vector<Type*> ParamTypes; 6190 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6191 ParamTypes.push_back(ArgList[i].V->getType()); 6192 6193 if (!FunctionType::isValidReturnType(RetType)) 6194 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6195 6196 Ty = FunctionType::get(RetType, ParamTypes, false); 6197 } 6198 6199 CalleeID.FTy = Ty; 6200 6201 // Look up the callee. 6202 Value *Callee; 6203 if (ConvertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID, 6204 Callee, &PFS, /*IsCall=*/true)) 6205 return true; 6206 6207 // Set up the Attribute for the function. 6208 SmallVector<Value *, 8> Args; 6209 SmallVector<AttributeSet, 8> ArgAttrs; 6210 6211 // Loop through FunctionType's arguments and ensure they are specified 6212 // correctly. Also, gather any parameter attributes. 6213 FunctionType::param_iterator I = Ty->param_begin(); 6214 FunctionType::param_iterator E = Ty->param_end(); 6215 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6216 Type *ExpectedTy = nullptr; 6217 if (I != E) { 6218 ExpectedTy = *I++; 6219 } else if (!Ty->isVarArg()) { 6220 return Error(ArgList[i].Loc, "too many arguments specified"); 6221 } 6222 6223 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6224 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6225 getTypeString(ExpectedTy) + "'"); 6226 Args.push_back(ArgList[i].V); 6227 ArgAttrs.push_back(ArgList[i].Attrs); 6228 } 6229 6230 if (I != E) 6231 return Error(CallLoc, "not enough parameters specified for call"); 6232 6233 if (FnAttrs.hasAlignmentAttr()) 6234 return Error(CallLoc, "invoke instructions may not have an alignment"); 6235 6236 // Finish off the Attribute and check them 6237 AttributeList PAL = 6238 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6239 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6240 6241 InvokeInst *II = 6242 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 6243 II->setCallingConv(CC); 6244 II->setAttributes(PAL); 6245 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 6246 Inst = II; 6247 return false; 6248 } 6249 6250 /// ParseResume 6251 /// ::= 'resume' TypeAndValue 6252 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 6253 Value *Exn; LocTy ExnLoc; 6254 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 6255 return true; 6256 6257 ResumeInst *RI = ResumeInst::Create(Exn); 6258 Inst = RI; 6259 return false; 6260 } 6261 6262 bool LLParser::ParseExceptionArgs(SmallVectorImpl<Value *> &Args, 6263 PerFunctionState &PFS) { 6264 if (ParseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 6265 return true; 6266 6267 while (Lex.getKind() != lltok::rsquare) { 6268 // If this isn't the first argument, we need a comma. 6269 if (!Args.empty() && 6270 ParseToken(lltok::comma, "expected ',' in argument list")) 6271 return true; 6272 6273 // Parse the argument. 6274 LocTy ArgLoc; 6275 Type *ArgTy = nullptr; 6276 if (ParseType(ArgTy, ArgLoc)) 6277 return true; 6278 6279 Value *V; 6280 if (ArgTy->isMetadataTy()) { 6281 if (ParseMetadataAsValue(V, PFS)) 6282 return true; 6283 } else { 6284 if (ParseValue(ArgTy, V, PFS)) 6285 return true; 6286 } 6287 Args.push_back(V); 6288 } 6289 6290 Lex.Lex(); // Lex the ']'. 6291 return false; 6292 } 6293 6294 /// ParseCleanupRet 6295 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 6296 bool LLParser::ParseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 6297 Value *CleanupPad = nullptr; 6298 6299 if (ParseToken(lltok::kw_from, "expected 'from' after cleanupret")) 6300 return true; 6301 6302 if (ParseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 6303 return true; 6304 6305 if (ParseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 6306 return true; 6307 6308 BasicBlock *UnwindBB = nullptr; 6309 if (Lex.getKind() == lltok::kw_to) { 6310 Lex.Lex(); 6311 if (ParseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 6312 return true; 6313 } else { 6314 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) { 6315 return true; 6316 } 6317 } 6318 6319 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 6320 return false; 6321 } 6322 6323 /// ParseCatchRet 6324 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 6325 bool LLParser::ParseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 6326 Value *CatchPad = nullptr; 6327 6328 if (ParseToken(lltok::kw_from, "expected 'from' after catchret")) 6329 return true; 6330 6331 if (ParseValue(Type::getTokenTy(Context), CatchPad, PFS)) 6332 return true; 6333 6334 BasicBlock *BB; 6335 if (ParseToken(lltok::kw_to, "expected 'to' in catchret") || 6336 ParseTypeAndBasicBlock(BB, PFS)) 6337 return true; 6338 6339 Inst = CatchReturnInst::Create(CatchPad, BB); 6340 return false; 6341 } 6342 6343 /// ParseCatchSwitch 6344 /// ::= 'catchswitch' within Parent 6345 bool LLParser::ParseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6346 Value *ParentPad; 6347 6348 if (ParseToken(lltok::kw_within, "expected 'within' after catchswitch")) 6349 return true; 6350 6351 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6352 Lex.getKind() != lltok::LocalVarID) 6353 return TokError("expected scope value for catchswitch"); 6354 6355 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6356 return true; 6357 6358 if (ParseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 6359 return true; 6360 6361 SmallVector<BasicBlock *, 32> Table; 6362 do { 6363 BasicBlock *DestBB; 6364 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6365 return true; 6366 Table.push_back(DestBB); 6367 } while (EatIfPresent(lltok::comma)); 6368 6369 if (ParseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 6370 return true; 6371 6372 if (ParseToken(lltok::kw_unwind, 6373 "expected 'unwind' after catchswitch scope")) 6374 return true; 6375 6376 BasicBlock *UnwindBB = nullptr; 6377 if (EatIfPresent(lltok::kw_to)) { 6378 if (ParseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 6379 return true; 6380 } else { 6381 if (ParseTypeAndBasicBlock(UnwindBB, PFS)) 6382 return true; 6383 } 6384 6385 auto *CatchSwitch = 6386 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 6387 for (BasicBlock *DestBB : Table) 6388 CatchSwitch->addHandler(DestBB); 6389 Inst = CatchSwitch; 6390 return false; 6391 } 6392 6393 /// ParseCatchPad 6394 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 6395 bool LLParser::ParseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 6396 Value *CatchSwitch = nullptr; 6397 6398 if (ParseToken(lltok::kw_within, "expected 'within' after catchpad")) 6399 return true; 6400 6401 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 6402 return TokError("expected scope value for catchpad"); 6403 6404 if (ParseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 6405 return true; 6406 6407 SmallVector<Value *, 8> Args; 6408 if (ParseExceptionArgs(Args, PFS)) 6409 return true; 6410 6411 Inst = CatchPadInst::Create(CatchSwitch, Args); 6412 return false; 6413 } 6414 6415 /// ParseCleanupPad 6416 /// ::= 'cleanuppad' within Parent ParamList 6417 bool LLParser::ParseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 6418 Value *ParentPad = nullptr; 6419 6420 if (ParseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 6421 return true; 6422 6423 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6424 Lex.getKind() != lltok::LocalVarID) 6425 return TokError("expected scope value for cleanuppad"); 6426 6427 if (ParseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6428 return true; 6429 6430 SmallVector<Value *, 8> Args; 6431 if (ParseExceptionArgs(Args, PFS)) 6432 return true; 6433 6434 Inst = CleanupPadInst::Create(ParentPad, Args); 6435 return false; 6436 } 6437 6438 //===----------------------------------------------------------------------===// 6439 // Unary Operators. 6440 //===----------------------------------------------------------------------===// 6441 6442 /// ParseUnaryOp 6443 /// ::= UnaryOp TypeAndValue ',' Value 6444 /// 6445 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6446 /// operand is allowed. 6447 bool LLParser::ParseUnaryOp(Instruction *&Inst, PerFunctionState &PFS, 6448 unsigned Opc, bool IsFP) { 6449 LocTy Loc; Value *LHS; 6450 if (ParseTypeAndValue(LHS, Loc, PFS)) 6451 return true; 6452 6453 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6454 : LHS->getType()->isIntOrIntVectorTy(); 6455 6456 if (!Valid) 6457 return Error(Loc, "invalid operand type for instruction"); 6458 6459 Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 6460 return false; 6461 } 6462 6463 /// ParseCallBr 6464 /// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList 6465 /// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue 6466 /// '[' LabelList ']' 6467 bool LLParser::ParseCallBr(Instruction *&Inst, PerFunctionState &PFS) { 6468 LocTy CallLoc = Lex.getLoc(); 6469 AttrBuilder RetAttrs, FnAttrs; 6470 std::vector<unsigned> FwdRefAttrGrps; 6471 LocTy NoBuiltinLoc; 6472 unsigned CC; 6473 Type *RetType = nullptr; 6474 LocTy RetTypeLoc; 6475 ValID CalleeID; 6476 SmallVector<ParamInfo, 16> ArgList; 6477 SmallVector<OperandBundleDef, 2> BundleList; 6478 6479 BasicBlock *DefaultDest; 6480 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6481 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6482 ParseValID(CalleeID) || ParseParameterList(ArgList, PFS) || 6483 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6484 NoBuiltinLoc) || 6485 ParseOptionalOperandBundles(BundleList, PFS) || 6486 ParseToken(lltok::kw_to, "expected 'to' in callbr") || 6487 ParseTypeAndBasicBlock(DefaultDest, PFS) || 6488 ParseToken(lltok::lsquare, "expected '[' in callbr")) 6489 return true; 6490 6491 // Parse the destination list. 6492 SmallVector<BasicBlock *, 16> IndirectDests; 6493 6494 if (Lex.getKind() != lltok::rsquare) { 6495 BasicBlock *DestBB; 6496 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6497 return true; 6498 IndirectDests.push_back(DestBB); 6499 6500 while (EatIfPresent(lltok::comma)) { 6501 if (ParseTypeAndBasicBlock(DestBB, PFS)) 6502 return true; 6503 IndirectDests.push_back(DestBB); 6504 } 6505 } 6506 6507 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 6508 return true; 6509 6510 // If RetType is a non-function pointer type, then this is the short syntax 6511 // for the call, which means that RetType is just the return type. Infer the 6512 // rest of the function argument types from the arguments that are present. 6513 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6514 if (!Ty) { 6515 // Pull out the types of all of the arguments... 6516 std::vector<Type *> ParamTypes; 6517 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6518 ParamTypes.push_back(ArgList[i].V->getType()); 6519 6520 if (!FunctionType::isValidReturnType(RetType)) 6521 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6522 6523 Ty = FunctionType::get(RetType, ParamTypes, false); 6524 } 6525 6526 CalleeID.FTy = Ty; 6527 6528 // Look up the callee. 6529 Value *Callee; 6530 if (ConvertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS, 6531 /*IsCall=*/true)) 6532 return true; 6533 6534 // Set up the Attribute for the function. 6535 SmallVector<Value *, 8> Args; 6536 SmallVector<AttributeSet, 8> ArgAttrs; 6537 6538 // Loop through FunctionType's arguments and ensure they are specified 6539 // correctly. Also, gather any parameter attributes. 6540 FunctionType::param_iterator I = Ty->param_begin(); 6541 FunctionType::param_iterator E = Ty->param_end(); 6542 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6543 Type *ExpectedTy = nullptr; 6544 if (I != E) { 6545 ExpectedTy = *I++; 6546 } else if (!Ty->isVarArg()) { 6547 return Error(ArgList[i].Loc, "too many arguments specified"); 6548 } 6549 6550 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6551 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6552 getTypeString(ExpectedTy) + "'"); 6553 Args.push_back(ArgList[i].V); 6554 ArgAttrs.push_back(ArgList[i].Attrs); 6555 } 6556 6557 if (I != E) 6558 return Error(CallLoc, "not enough parameters specified for call"); 6559 6560 if (FnAttrs.hasAlignmentAttr()) 6561 return Error(CallLoc, "callbr instructions may not have an alignment"); 6562 6563 // Finish off the Attribute and check them 6564 AttributeList PAL = 6565 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6566 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6567 6568 CallBrInst *CBI = 6569 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args, 6570 BundleList); 6571 CBI->setCallingConv(CC); 6572 CBI->setAttributes(PAL); 6573 ForwardRefAttrGroups[CBI] = FwdRefAttrGrps; 6574 Inst = CBI; 6575 return false; 6576 } 6577 6578 //===----------------------------------------------------------------------===// 6579 // Binary Operators. 6580 //===----------------------------------------------------------------------===// 6581 6582 /// ParseArithmetic 6583 /// ::= ArithmeticOps TypeAndValue ',' Value 6584 /// 6585 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6586 /// operand is allowed. 6587 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 6588 unsigned Opc, bool IsFP) { 6589 LocTy Loc; Value *LHS, *RHS; 6590 if (ParseTypeAndValue(LHS, Loc, PFS) || 6591 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 6592 ParseValue(LHS->getType(), RHS, PFS)) 6593 return true; 6594 6595 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6596 : LHS->getType()->isIntOrIntVectorTy(); 6597 6598 if (!Valid) 6599 return Error(Loc, "invalid operand type for instruction"); 6600 6601 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6602 return false; 6603 } 6604 6605 /// ParseLogical 6606 /// ::= ArithmeticOps TypeAndValue ',' Value { 6607 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 6608 unsigned Opc) { 6609 LocTy Loc; Value *LHS, *RHS; 6610 if (ParseTypeAndValue(LHS, Loc, PFS) || 6611 ParseToken(lltok::comma, "expected ',' in logical operation") || 6612 ParseValue(LHS->getType(), RHS, PFS)) 6613 return true; 6614 6615 if (!LHS->getType()->isIntOrIntVectorTy()) 6616 return Error(Loc,"instruction requires integer or integer vector operands"); 6617 6618 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6619 return false; 6620 } 6621 6622 /// ParseCompare 6623 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 6624 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 6625 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 6626 unsigned Opc) { 6627 // Parse the integer/fp comparison predicate. 6628 LocTy Loc; 6629 unsigned Pred; 6630 Value *LHS, *RHS; 6631 if (ParseCmpPredicate(Pred, Opc) || 6632 ParseTypeAndValue(LHS, Loc, PFS) || 6633 ParseToken(lltok::comma, "expected ',' after compare value") || 6634 ParseValue(LHS->getType(), RHS, PFS)) 6635 return true; 6636 6637 if (Opc == Instruction::FCmp) { 6638 if (!LHS->getType()->isFPOrFPVectorTy()) 6639 return Error(Loc, "fcmp requires floating point operands"); 6640 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6641 } else { 6642 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 6643 if (!LHS->getType()->isIntOrIntVectorTy() && 6644 !LHS->getType()->isPtrOrPtrVectorTy()) 6645 return Error(Loc, "icmp requires integer operands"); 6646 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6647 } 6648 return false; 6649 } 6650 6651 //===----------------------------------------------------------------------===// 6652 // Other Instructions. 6653 //===----------------------------------------------------------------------===// 6654 6655 6656 /// ParseCast 6657 /// ::= CastOpc TypeAndValue 'to' Type 6658 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 6659 unsigned Opc) { 6660 LocTy Loc; 6661 Value *Op; 6662 Type *DestTy = nullptr; 6663 if (ParseTypeAndValue(Op, Loc, PFS) || 6664 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 6665 ParseType(DestTy)) 6666 return true; 6667 6668 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 6669 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 6670 return Error(Loc, "invalid cast opcode for cast from '" + 6671 getTypeString(Op->getType()) + "' to '" + 6672 getTypeString(DestTy) + "'"); 6673 } 6674 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 6675 return false; 6676 } 6677 6678 /// ParseSelect 6679 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6680 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 6681 LocTy Loc; 6682 Value *Op0, *Op1, *Op2; 6683 if (ParseTypeAndValue(Op0, Loc, PFS) || 6684 ParseToken(lltok::comma, "expected ',' after select condition") || 6685 ParseTypeAndValue(Op1, PFS) || 6686 ParseToken(lltok::comma, "expected ',' after select value") || 6687 ParseTypeAndValue(Op2, PFS)) 6688 return true; 6689 6690 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 6691 return Error(Loc, Reason); 6692 6693 Inst = SelectInst::Create(Op0, Op1, Op2); 6694 return false; 6695 } 6696 6697 /// ParseVA_Arg 6698 /// ::= 'va_arg' TypeAndValue ',' Type 6699 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 6700 Value *Op; 6701 Type *EltTy = nullptr; 6702 LocTy TypeLoc; 6703 if (ParseTypeAndValue(Op, PFS) || 6704 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 6705 ParseType(EltTy, TypeLoc)) 6706 return true; 6707 6708 if (!EltTy->isFirstClassType()) 6709 return Error(TypeLoc, "va_arg requires operand with first class type"); 6710 6711 Inst = new VAArgInst(Op, EltTy); 6712 return false; 6713 } 6714 6715 /// ParseExtractElement 6716 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 6717 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 6718 LocTy Loc; 6719 Value *Op0, *Op1; 6720 if (ParseTypeAndValue(Op0, Loc, PFS) || 6721 ParseToken(lltok::comma, "expected ',' after extract value") || 6722 ParseTypeAndValue(Op1, PFS)) 6723 return true; 6724 6725 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 6726 return Error(Loc, "invalid extractelement operands"); 6727 6728 Inst = ExtractElementInst::Create(Op0, Op1); 6729 return false; 6730 } 6731 6732 /// ParseInsertElement 6733 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6734 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 6735 LocTy Loc; 6736 Value *Op0, *Op1, *Op2; 6737 if (ParseTypeAndValue(Op0, Loc, PFS) || 6738 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6739 ParseTypeAndValue(Op1, PFS) || 6740 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6741 ParseTypeAndValue(Op2, PFS)) 6742 return true; 6743 6744 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 6745 return Error(Loc, "invalid insertelement operands"); 6746 6747 Inst = InsertElementInst::Create(Op0, Op1, Op2); 6748 return false; 6749 } 6750 6751 /// ParseShuffleVector 6752 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6753 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 6754 LocTy Loc; 6755 Value *Op0, *Op1, *Op2; 6756 if (ParseTypeAndValue(Op0, Loc, PFS) || 6757 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 6758 ParseTypeAndValue(Op1, PFS) || 6759 ParseToken(lltok::comma, "expected ',' after shuffle value") || 6760 ParseTypeAndValue(Op2, PFS)) 6761 return true; 6762 6763 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 6764 return Error(Loc, "invalid shufflevector operands"); 6765 6766 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 6767 return false; 6768 } 6769 6770 /// ParsePHI 6771 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 6772 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 6773 Type *Ty = nullptr; LocTy TypeLoc; 6774 Value *Op0, *Op1; 6775 6776 if (ParseType(Ty, TypeLoc) || 6777 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 6778 ParseValue(Ty, Op0, PFS) || 6779 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6780 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 6781 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 6782 return true; 6783 6784 bool AteExtraComma = false; 6785 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 6786 6787 while (true) { 6788 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 6789 6790 if (!EatIfPresent(lltok::comma)) 6791 break; 6792 6793 if (Lex.getKind() == lltok::MetadataVar) { 6794 AteExtraComma = true; 6795 break; 6796 } 6797 6798 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 6799 ParseValue(Ty, Op0, PFS) || 6800 ParseToken(lltok::comma, "expected ',' after insertelement value") || 6801 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 6802 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 6803 return true; 6804 } 6805 6806 if (!Ty->isFirstClassType()) 6807 return Error(TypeLoc, "phi node must have first class type"); 6808 6809 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 6810 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 6811 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 6812 Inst = PN; 6813 return AteExtraComma ? InstExtraComma : InstNormal; 6814 } 6815 6816 /// ParseLandingPad 6817 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 6818 /// Clause 6819 /// ::= 'catch' TypeAndValue 6820 /// ::= 'filter' 6821 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 6822 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 6823 Type *Ty = nullptr; LocTy TyLoc; 6824 6825 if (ParseType(Ty, TyLoc)) 6826 return true; 6827 6828 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 6829 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 6830 6831 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 6832 LandingPadInst::ClauseType CT; 6833 if (EatIfPresent(lltok::kw_catch)) 6834 CT = LandingPadInst::Catch; 6835 else if (EatIfPresent(lltok::kw_filter)) 6836 CT = LandingPadInst::Filter; 6837 else 6838 return TokError("expected 'catch' or 'filter' clause type"); 6839 6840 Value *V; 6841 LocTy VLoc; 6842 if (ParseTypeAndValue(V, VLoc, PFS)) 6843 return true; 6844 6845 // A 'catch' type expects a non-array constant. A filter clause expects an 6846 // array constant. 6847 if (CT == LandingPadInst::Catch) { 6848 if (isa<ArrayType>(V->getType())) 6849 Error(VLoc, "'catch' clause has an invalid type"); 6850 } else { 6851 if (!isa<ArrayType>(V->getType())) 6852 Error(VLoc, "'filter' clause has an invalid type"); 6853 } 6854 6855 Constant *CV = dyn_cast<Constant>(V); 6856 if (!CV) 6857 return Error(VLoc, "clause argument must be a constant"); 6858 LP->addClause(CV); 6859 } 6860 6861 Inst = LP.release(); 6862 return false; 6863 } 6864 6865 /// ParseFreeze 6866 /// ::= 'freeze' Type Value 6867 bool LLParser::ParseFreeze(Instruction *&Inst, PerFunctionState &PFS) { 6868 LocTy Loc; 6869 Value *Op; 6870 if (ParseTypeAndValue(Op, Loc, PFS)) 6871 return true; 6872 6873 Inst = new FreezeInst(Op); 6874 return false; 6875 } 6876 6877 /// ParseCall 6878 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 6879 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6880 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 6881 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6882 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 6883 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6884 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 6885 /// OptionalAttrs Type Value ParameterList OptionalAttrs 6886 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 6887 CallInst::TailCallKind TCK) { 6888 AttrBuilder RetAttrs, FnAttrs; 6889 std::vector<unsigned> FwdRefAttrGrps; 6890 LocTy BuiltinLoc; 6891 unsigned CallAddrSpace; 6892 unsigned CC; 6893 Type *RetType = nullptr; 6894 LocTy RetTypeLoc; 6895 ValID CalleeID; 6896 SmallVector<ParamInfo, 16> ArgList; 6897 SmallVector<OperandBundleDef, 2> BundleList; 6898 LocTy CallLoc = Lex.getLoc(); 6899 6900 if (TCK != CallInst::TCK_None && 6901 ParseToken(lltok::kw_call, 6902 "expected 'tail call', 'musttail call', or 'notail call'")) 6903 return true; 6904 6905 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6906 6907 if (ParseOptionalCallingConv(CC) || ParseOptionalReturnAttrs(RetAttrs) || 6908 ParseOptionalProgramAddrSpace(CallAddrSpace) || 6909 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 6910 ParseValID(CalleeID) || 6911 ParseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 6912 PFS.getFunction().isVarArg()) || 6913 ParseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 6914 ParseOptionalOperandBundles(BundleList, PFS)) 6915 return true; 6916 6917 // If RetType is a non-function pointer type, then this is the short syntax 6918 // for the call, which means that RetType is just the return type. Infer the 6919 // rest of the function argument types from the arguments that are present. 6920 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6921 if (!Ty) { 6922 // Pull out the types of all of the arguments... 6923 std::vector<Type*> ParamTypes; 6924 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6925 ParamTypes.push_back(ArgList[i].V->getType()); 6926 6927 if (!FunctionType::isValidReturnType(RetType)) 6928 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 6929 6930 Ty = FunctionType::get(RetType, ParamTypes, false); 6931 } 6932 6933 CalleeID.FTy = Ty; 6934 6935 // Look up the callee. 6936 Value *Callee; 6937 if (ConvertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee, 6938 &PFS, /*IsCall=*/true)) 6939 return true; 6940 6941 // Set up the Attribute for the function. 6942 SmallVector<AttributeSet, 8> Attrs; 6943 6944 SmallVector<Value*, 8> Args; 6945 6946 // Loop through FunctionType's arguments and ensure they are specified 6947 // correctly. Also, gather any parameter attributes. 6948 FunctionType::param_iterator I = Ty->param_begin(); 6949 FunctionType::param_iterator E = Ty->param_end(); 6950 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6951 Type *ExpectedTy = nullptr; 6952 if (I != E) { 6953 ExpectedTy = *I++; 6954 } else if (!Ty->isVarArg()) { 6955 return Error(ArgList[i].Loc, "too many arguments specified"); 6956 } 6957 6958 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6959 return Error(ArgList[i].Loc, "argument is not of expected type '" + 6960 getTypeString(ExpectedTy) + "'"); 6961 Args.push_back(ArgList[i].V); 6962 Attrs.push_back(ArgList[i].Attrs); 6963 } 6964 6965 if (I != E) 6966 return Error(CallLoc, "not enough parameters specified for call"); 6967 6968 if (FnAttrs.hasAlignmentAttr()) 6969 return Error(CallLoc, "call instructions may not have an alignment"); 6970 6971 // Finish off the Attribute and check them 6972 AttributeList PAL = 6973 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6974 AttributeSet::get(Context, RetAttrs), Attrs); 6975 6976 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 6977 CI->setTailCallKind(TCK); 6978 CI->setCallingConv(CC); 6979 if (FMF.any()) { 6980 if (!isa<FPMathOperator>(CI)) { 6981 CI->deleteValue(); 6982 return Error(CallLoc, "fast-math-flags specified for call without " 6983 "floating-point scalar or vector return type"); 6984 } 6985 CI->setFastMathFlags(FMF); 6986 } 6987 CI->setAttributes(PAL); 6988 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 6989 Inst = CI; 6990 return false; 6991 } 6992 6993 //===----------------------------------------------------------------------===// 6994 // Memory Instructions. 6995 //===----------------------------------------------------------------------===// 6996 6997 /// ParseAlloc 6998 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 6999 /// (',' 'align' i32)? (',', 'addrspace(n))? 7000 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 7001 Value *Size = nullptr; 7002 LocTy SizeLoc, TyLoc, ASLoc; 7003 MaybeAlign Alignment; 7004 unsigned AddrSpace = 0; 7005 Type *Ty = nullptr; 7006 7007 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 7008 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 7009 7010 if (ParseType(Ty, TyLoc)) return true; 7011 7012 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 7013 return Error(TyLoc, "invalid type for alloca"); 7014 7015 bool AteExtraComma = false; 7016 if (EatIfPresent(lltok::comma)) { 7017 if (Lex.getKind() == lltok::kw_align) { 7018 if (ParseOptionalAlignment(Alignment)) 7019 return true; 7020 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7021 return true; 7022 } else if (Lex.getKind() == lltok::kw_addrspace) { 7023 ASLoc = Lex.getLoc(); 7024 if (ParseOptionalAddrSpace(AddrSpace)) 7025 return true; 7026 } else if (Lex.getKind() == lltok::MetadataVar) { 7027 AteExtraComma = true; 7028 } else { 7029 if (ParseTypeAndValue(Size, SizeLoc, PFS)) 7030 return true; 7031 if (EatIfPresent(lltok::comma)) { 7032 if (Lex.getKind() == lltok::kw_align) { 7033 if (ParseOptionalAlignment(Alignment)) 7034 return true; 7035 if (ParseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7036 return true; 7037 } else if (Lex.getKind() == lltok::kw_addrspace) { 7038 ASLoc = Lex.getLoc(); 7039 if (ParseOptionalAddrSpace(AddrSpace)) 7040 return true; 7041 } else if (Lex.getKind() == lltok::MetadataVar) { 7042 AteExtraComma = true; 7043 } 7044 } 7045 } 7046 } 7047 7048 if (Size && !Size->getType()->isIntegerTy()) 7049 return Error(SizeLoc, "element count must have integer type"); 7050 7051 SmallPtrSet<Type *, 4> Visited; 7052 if (!Alignment && !Ty->isSized(&Visited)) 7053 return Error(TyLoc, "Cannot allocate unsized type"); 7054 if (!Alignment) 7055 Alignment = M->getDataLayout().getPrefTypeAlign(Ty); 7056 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment); 7057 AI->setUsedWithInAlloca(IsInAlloca); 7058 AI->setSwiftError(IsSwiftError); 7059 Inst = AI; 7060 return AteExtraComma ? InstExtraComma : InstNormal; 7061 } 7062 7063 /// ParseLoad 7064 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 7065 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 7066 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7067 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 7068 Value *Val; LocTy Loc; 7069 MaybeAlign Alignment; 7070 bool AteExtraComma = false; 7071 bool isAtomic = false; 7072 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7073 SyncScope::ID SSID = SyncScope::System; 7074 7075 if (Lex.getKind() == lltok::kw_atomic) { 7076 isAtomic = true; 7077 Lex.Lex(); 7078 } 7079 7080 bool isVolatile = false; 7081 if (Lex.getKind() == lltok::kw_volatile) { 7082 isVolatile = true; 7083 Lex.Lex(); 7084 } 7085 7086 Type *Ty; 7087 LocTy ExplicitTypeLoc = Lex.getLoc(); 7088 if (ParseType(Ty) || 7089 ParseToken(lltok::comma, "expected comma after load's type") || 7090 ParseTypeAndValue(Val, Loc, PFS) || 7091 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 7092 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 7093 return true; 7094 7095 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 7096 return Error(Loc, "load operand must be a pointer to a first class type"); 7097 if (isAtomic && !Alignment) 7098 return Error(Loc, "atomic load must have explicit non-zero alignment"); 7099 if (Ordering == AtomicOrdering::Release || 7100 Ordering == AtomicOrdering::AcquireRelease) 7101 return Error(Loc, "atomic load cannot use Release ordering"); 7102 7103 if (Ty != cast<PointerType>(Val->getType())->getElementType()) 7104 return Error(ExplicitTypeLoc, 7105 "explicit pointee type doesn't match operand's pointee type"); 7106 SmallPtrSet<Type *, 4> Visited; 7107 if (!Alignment && !Ty->isSized(&Visited)) 7108 return Error(ExplicitTypeLoc, "loading unsized types is not allowed"); 7109 if (!Alignment) 7110 Alignment = M->getDataLayout().getABITypeAlign(Ty); 7111 Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID); 7112 return AteExtraComma ? InstExtraComma : InstNormal; 7113 } 7114 7115 /// ParseStore 7116 7117 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 7118 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 7119 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7120 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 7121 Value *Val, *Ptr; LocTy Loc, PtrLoc; 7122 MaybeAlign Alignment; 7123 bool AteExtraComma = false; 7124 bool isAtomic = false; 7125 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7126 SyncScope::ID SSID = SyncScope::System; 7127 7128 if (Lex.getKind() == lltok::kw_atomic) { 7129 isAtomic = true; 7130 Lex.Lex(); 7131 } 7132 7133 bool isVolatile = false; 7134 if (Lex.getKind() == lltok::kw_volatile) { 7135 isVolatile = true; 7136 Lex.Lex(); 7137 } 7138 7139 if (ParseTypeAndValue(Val, Loc, PFS) || 7140 ParseToken(lltok::comma, "expected ',' after store operand") || 7141 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 7142 ParseScopeAndOrdering(isAtomic, SSID, Ordering) || 7143 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 7144 return true; 7145 7146 if (!Ptr->getType()->isPointerTy()) 7147 return Error(PtrLoc, "store operand must be a pointer"); 7148 if (!Val->getType()->isFirstClassType()) 7149 return Error(Loc, "store operand must be a first class value"); 7150 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 7151 return Error(Loc, "stored value and pointer type do not match"); 7152 if (isAtomic && !Alignment) 7153 return Error(Loc, "atomic store must have explicit non-zero alignment"); 7154 if (Ordering == AtomicOrdering::Acquire || 7155 Ordering == AtomicOrdering::AcquireRelease) 7156 return Error(Loc, "atomic store cannot use Acquire ordering"); 7157 SmallPtrSet<Type *, 4> Visited; 7158 if (!Alignment && !Val->getType()->isSized(&Visited)) 7159 return Error(Loc, "storing unsized types is not allowed"); 7160 if (!Alignment) 7161 Alignment = M->getDataLayout().getABITypeAlign(Val->getType()); 7162 7163 Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID); 7164 return AteExtraComma ? InstExtraComma : InstNormal; 7165 } 7166 7167 /// ParseCmpXchg 7168 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 7169 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering 7170 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 7171 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 7172 bool AteExtraComma = false; 7173 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 7174 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 7175 SyncScope::ID SSID = SyncScope::System; 7176 bool isVolatile = false; 7177 bool isWeak = false; 7178 7179 if (EatIfPresent(lltok::kw_weak)) 7180 isWeak = true; 7181 7182 if (EatIfPresent(lltok::kw_volatile)) 7183 isVolatile = true; 7184 7185 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 7186 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 7187 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 7188 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 7189 ParseTypeAndValue(New, NewLoc, PFS) || 7190 ParseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 7191 ParseOrdering(FailureOrdering)) 7192 return true; 7193 7194 if (SuccessOrdering == AtomicOrdering::Unordered || 7195 FailureOrdering == AtomicOrdering::Unordered) 7196 return TokError("cmpxchg cannot be unordered"); 7197 if (isStrongerThan(FailureOrdering, SuccessOrdering)) 7198 return TokError("cmpxchg failure argument shall be no stronger than the " 7199 "success argument"); 7200 if (FailureOrdering == AtomicOrdering::Release || 7201 FailureOrdering == AtomicOrdering::AcquireRelease) 7202 return TokError( 7203 "cmpxchg failure ordering cannot include release semantics"); 7204 if (!Ptr->getType()->isPointerTy()) 7205 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 7206 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 7207 return Error(CmpLoc, "compare value and pointer type do not match"); 7208 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 7209 return Error(NewLoc, "new value and pointer type do not match"); 7210 if (!New->getType()->isFirstClassType()) 7211 return Error(NewLoc, "cmpxchg operand must be a first class value"); 7212 7213 Align Alignment( 7214 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7215 Cmp->getType())); 7216 7217 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 7218 Ptr, Cmp, New, Alignment, SuccessOrdering, FailureOrdering, SSID); 7219 CXI->setVolatile(isVolatile); 7220 CXI->setWeak(isWeak); 7221 Inst = CXI; 7222 return AteExtraComma ? InstExtraComma : InstNormal; 7223 } 7224 7225 /// ParseAtomicRMW 7226 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 7227 /// 'singlethread'? AtomicOrdering 7228 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 7229 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 7230 bool AteExtraComma = false; 7231 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7232 SyncScope::ID SSID = SyncScope::System; 7233 bool isVolatile = false; 7234 bool IsFP = false; 7235 AtomicRMWInst::BinOp Operation; 7236 7237 if (EatIfPresent(lltok::kw_volatile)) 7238 isVolatile = true; 7239 7240 switch (Lex.getKind()) { 7241 default: return TokError("expected binary operation in atomicrmw"); 7242 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 7243 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 7244 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 7245 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 7246 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 7247 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 7248 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 7249 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 7250 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 7251 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 7252 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 7253 case lltok::kw_fadd: 7254 Operation = AtomicRMWInst::FAdd; 7255 IsFP = true; 7256 break; 7257 case lltok::kw_fsub: 7258 Operation = AtomicRMWInst::FSub; 7259 IsFP = true; 7260 break; 7261 } 7262 Lex.Lex(); // Eat the operation. 7263 7264 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 7265 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 7266 ParseTypeAndValue(Val, ValLoc, PFS) || 7267 ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7268 return true; 7269 7270 if (Ordering == AtomicOrdering::Unordered) 7271 return TokError("atomicrmw cannot be unordered"); 7272 if (!Ptr->getType()->isPointerTy()) 7273 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 7274 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 7275 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 7276 7277 if (Operation == AtomicRMWInst::Xchg) { 7278 if (!Val->getType()->isIntegerTy() && 7279 !Val->getType()->isFloatingPointTy()) { 7280 return Error(ValLoc, "atomicrmw " + 7281 AtomicRMWInst::getOperationName(Operation) + 7282 " operand must be an integer or floating point type"); 7283 } 7284 } else if (IsFP) { 7285 if (!Val->getType()->isFloatingPointTy()) { 7286 return Error(ValLoc, "atomicrmw " + 7287 AtomicRMWInst::getOperationName(Operation) + 7288 " operand must be a floating point type"); 7289 } 7290 } else { 7291 if (!Val->getType()->isIntegerTy()) { 7292 return Error(ValLoc, "atomicrmw " + 7293 AtomicRMWInst::getOperationName(Operation) + 7294 " operand must be an integer"); 7295 } 7296 } 7297 7298 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 7299 if (Size < 8 || (Size & (Size - 1))) 7300 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 7301 " integer"); 7302 Align Alignment( 7303 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7304 Val->getType())); 7305 AtomicRMWInst *RMWI = 7306 new AtomicRMWInst(Operation, Ptr, Val, Alignment, Ordering, SSID); 7307 RMWI->setVolatile(isVolatile); 7308 Inst = RMWI; 7309 return AteExtraComma ? InstExtraComma : InstNormal; 7310 } 7311 7312 /// ParseFence 7313 /// ::= 'fence' 'singlethread'? AtomicOrdering 7314 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 7315 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7316 SyncScope::ID SSID = SyncScope::System; 7317 if (ParseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7318 return true; 7319 7320 if (Ordering == AtomicOrdering::Unordered) 7321 return TokError("fence cannot be unordered"); 7322 if (Ordering == AtomicOrdering::Monotonic) 7323 return TokError("fence cannot be monotonic"); 7324 7325 Inst = new FenceInst(Context, Ordering, SSID); 7326 return InstNormal; 7327 } 7328 7329 /// ParseGetElementPtr 7330 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 7331 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 7332 Value *Ptr = nullptr; 7333 Value *Val = nullptr; 7334 LocTy Loc, EltLoc; 7335 7336 bool InBounds = EatIfPresent(lltok::kw_inbounds); 7337 7338 Type *Ty = nullptr; 7339 LocTy ExplicitTypeLoc = Lex.getLoc(); 7340 if (ParseType(Ty) || 7341 ParseToken(lltok::comma, "expected comma after getelementptr's type") || 7342 ParseTypeAndValue(Ptr, Loc, PFS)) 7343 return true; 7344 7345 Type *BaseType = Ptr->getType(); 7346 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 7347 if (!BasePointerType) 7348 return Error(Loc, "base of getelementptr must be a pointer"); 7349 7350 if (Ty != BasePointerType->getElementType()) 7351 return Error(ExplicitTypeLoc, 7352 "explicit pointee type doesn't match operand's pointee type"); 7353 7354 SmallVector<Value*, 16> Indices; 7355 bool AteExtraComma = false; 7356 // GEP returns a vector of pointers if at least one of parameters is a vector. 7357 // All vector parameters should have the same vector width. 7358 ElementCount GEPWidth = BaseType->isVectorTy() 7359 ? cast<VectorType>(BaseType)->getElementCount() 7360 : ElementCount(0, false); 7361 7362 while (EatIfPresent(lltok::comma)) { 7363 if (Lex.getKind() == lltok::MetadataVar) { 7364 AteExtraComma = true; 7365 break; 7366 } 7367 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 7368 if (!Val->getType()->isIntOrIntVectorTy()) 7369 return Error(EltLoc, "getelementptr index must be an integer"); 7370 7371 if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) { 7372 ElementCount ValNumEl = ValVTy->getElementCount(); 7373 if (GEPWidth != ElementCount(0, false) && GEPWidth != ValNumEl) 7374 return Error(EltLoc, 7375 "getelementptr vector index has a wrong number of elements"); 7376 GEPWidth = ValNumEl; 7377 } 7378 Indices.push_back(Val); 7379 } 7380 7381 SmallPtrSet<Type*, 4> Visited; 7382 if (!Indices.empty() && !Ty->isSized(&Visited)) 7383 return Error(Loc, "base element of getelementptr must be sized"); 7384 7385 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 7386 return Error(Loc, "invalid getelementptr indices"); 7387 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 7388 if (InBounds) 7389 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 7390 return AteExtraComma ? InstExtraComma : InstNormal; 7391 } 7392 7393 /// ParseExtractValue 7394 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 7395 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 7396 Value *Val; LocTy Loc; 7397 SmallVector<unsigned, 4> Indices; 7398 bool AteExtraComma; 7399 if (ParseTypeAndValue(Val, Loc, PFS) || 7400 ParseIndexList(Indices, AteExtraComma)) 7401 return true; 7402 7403 if (!Val->getType()->isAggregateType()) 7404 return Error(Loc, "extractvalue operand must be aggregate type"); 7405 7406 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 7407 return Error(Loc, "invalid indices for extractvalue"); 7408 Inst = ExtractValueInst::Create(Val, Indices); 7409 return AteExtraComma ? InstExtraComma : InstNormal; 7410 } 7411 7412 /// ParseInsertValue 7413 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 7414 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 7415 Value *Val0, *Val1; LocTy Loc0, Loc1; 7416 SmallVector<unsigned, 4> Indices; 7417 bool AteExtraComma; 7418 if (ParseTypeAndValue(Val0, Loc0, PFS) || 7419 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 7420 ParseTypeAndValue(Val1, Loc1, PFS) || 7421 ParseIndexList(Indices, AteExtraComma)) 7422 return true; 7423 7424 if (!Val0->getType()->isAggregateType()) 7425 return Error(Loc0, "insertvalue operand must be aggregate type"); 7426 7427 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 7428 if (!IndexedType) 7429 return Error(Loc0, "invalid indices for insertvalue"); 7430 if (IndexedType != Val1->getType()) 7431 return Error(Loc1, "insertvalue operand and field disagree in type: '" + 7432 getTypeString(Val1->getType()) + "' instead of '" + 7433 getTypeString(IndexedType) + "'"); 7434 Inst = InsertValueInst::Create(Val0, Val1, Indices); 7435 return AteExtraComma ? InstExtraComma : InstNormal; 7436 } 7437 7438 //===----------------------------------------------------------------------===// 7439 // Embedded metadata. 7440 //===----------------------------------------------------------------------===// 7441 7442 /// ParseMDNodeVector 7443 /// ::= { Element (',' Element)* } 7444 /// Element 7445 /// ::= 'null' | TypeAndValue 7446 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 7447 if (ParseToken(lltok::lbrace, "expected '{' here")) 7448 return true; 7449 7450 // Check for an empty list. 7451 if (EatIfPresent(lltok::rbrace)) 7452 return false; 7453 7454 do { 7455 // Null is a special case since it is typeless. 7456 if (EatIfPresent(lltok::kw_null)) { 7457 Elts.push_back(nullptr); 7458 continue; 7459 } 7460 7461 Metadata *MD; 7462 if (ParseMetadata(MD, nullptr)) 7463 return true; 7464 Elts.push_back(MD); 7465 } while (EatIfPresent(lltok::comma)); 7466 7467 return ParseToken(lltok::rbrace, "expected end of metadata node"); 7468 } 7469 7470 //===----------------------------------------------------------------------===// 7471 // Use-list order directives. 7472 //===----------------------------------------------------------------------===// 7473 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 7474 SMLoc Loc) { 7475 if (V->use_empty()) 7476 return Error(Loc, "value has no uses"); 7477 7478 unsigned NumUses = 0; 7479 SmallDenseMap<const Use *, unsigned, 16> Order; 7480 for (const Use &U : V->uses()) { 7481 if (++NumUses > Indexes.size()) 7482 break; 7483 Order[&U] = Indexes[NumUses - 1]; 7484 } 7485 if (NumUses < 2) 7486 return Error(Loc, "value only has one use"); 7487 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 7488 return Error(Loc, 7489 "wrong number of indexes, expected " + Twine(V->getNumUses())); 7490 7491 V->sortUseList([&](const Use &L, const Use &R) { 7492 return Order.lookup(&L) < Order.lookup(&R); 7493 }); 7494 return false; 7495 } 7496 7497 /// ParseUseListOrderIndexes 7498 /// ::= '{' uint32 (',' uint32)+ '}' 7499 bool LLParser::ParseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 7500 SMLoc Loc = Lex.getLoc(); 7501 if (ParseToken(lltok::lbrace, "expected '{' here")) 7502 return true; 7503 if (Lex.getKind() == lltok::rbrace) 7504 return Lex.Error("expected non-empty list of uselistorder indexes"); 7505 7506 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 7507 // indexes should be distinct numbers in the range [0, size-1], and should 7508 // not be in order. 7509 unsigned Offset = 0; 7510 unsigned Max = 0; 7511 bool IsOrdered = true; 7512 assert(Indexes.empty() && "Expected empty order vector"); 7513 do { 7514 unsigned Index; 7515 if (ParseUInt32(Index)) 7516 return true; 7517 7518 // Update consistency checks. 7519 Offset += Index - Indexes.size(); 7520 Max = std::max(Max, Index); 7521 IsOrdered &= Index == Indexes.size(); 7522 7523 Indexes.push_back(Index); 7524 } while (EatIfPresent(lltok::comma)); 7525 7526 if (ParseToken(lltok::rbrace, "expected '}' here")) 7527 return true; 7528 7529 if (Indexes.size() < 2) 7530 return Error(Loc, "expected >= 2 uselistorder indexes"); 7531 if (Offset != 0 || Max >= Indexes.size()) 7532 return Error(Loc, "expected distinct uselistorder indexes in range [0, size)"); 7533 if (IsOrdered) 7534 return Error(Loc, "expected uselistorder indexes to change the order"); 7535 7536 return false; 7537 } 7538 7539 /// ParseUseListOrder 7540 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 7541 bool LLParser::ParseUseListOrder(PerFunctionState *PFS) { 7542 SMLoc Loc = Lex.getLoc(); 7543 if (ParseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 7544 return true; 7545 7546 Value *V; 7547 SmallVector<unsigned, 16> Indexes; 7548 if (ParseTypeAndValue(V, PFS) || 7549 ParseToken(lltok::comma, "expected comma in uselistorder directive") || 7550 ParseUseListOrderIndexes(Indexes)) 7551 return true; 7552 7553 return sortUseListOrder(V, Indexes, Loc); 7554 } 7555 7556 /// ParseUseListOrderBB 7557 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 7558 bool LLParser::ParseUseListOrderBB() { 7559 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 7560 SMLoc Loc = Lex.getLoc(); 7561 Lex.Lex(); 7562 7563 ValID Fn, Label; 7564 SmallVector<unsigned, 16> Indexes; 7565 if (ParseValID(Fn) || 7566 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7567 ParseValID(Label) || 7568 ParseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7569 ParseUseListOrderIndexes(Indexes)) 7570 return true; 7571 7572 // Check the function. 7573 GlobalValue *GV; 7574 if (Fn.Kind == ValID::t_GlobalName) 7575 GV = M->getNamedValue(Fn.StrVal); 7576 else if (Fn.Kind == ValID::t_GlobalID) 7577 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 7578 else 7579 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 7580 if (!GV) 7581 return Error(Fn.Loc, "invalid function forward reference in uselistorder_bb"); 7582 auto *F = dyn_cast<Function>(GV); 7583 if (!F) 7584 return Error(Fn.Loc, "expected function name in uselistorder_bb"); 7585 if (F->isDeclaration()) 7586 return Error(Fn.Loc, "invalid declaration in uselistorder_bb"); 7587 7588 // Check the basic block. 7589 if (Label.Kind == ValID::t_LocalID) 7590 return Error(Label.Loc, "invalid numeric label in uselistorder_bb"); 7591 if (Label.Kind != ValID::t_LocalName) 7592 return Error(Label.Loc, "expected basic block name in uselistorder_bb"); 7593 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 7594 if (!V) 7595 return Error(Label.Loc, "invalid basic block in uselistorder_bb"); 7596 if (!isa<BasicBlock>(V)) 7597 return Error(Label.Loc, "expected basic block in uselistorder_bb"); 7598 7599 return sortUseListOrder(V, Indexes, Loc); 7600 } 7601 7602 /// ModuleEntry 7603 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')' 7604 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')' 7605 bool LLParser::ParseModuleEntry(unsigned ID) { 7606 assert(Lex.getKind() == lltok::kw_module); 7607 Lex.Lex(); 7608 7609 std::string Path; 7610 if (ParseToken(lltok::colon, "expected ':' here") || 7611 ParseToken(lltok::lparen, "expected '(' here") || 7612 ParseToken(lltok::kw_path, "expected 'path' here") || 7613 ParseToken(lltok::colon, "expected ':' here") || 7614 ParseStringConstant(Path) || 7615 ParseToken(lltok::comma, "expected ',' here") || 7616 ParseToken(lltok::kw_hash, "expected 'hash' here") || 7617 ParseToken(lltok::colon, "expected ':' here") || 7618 ParseToken(lltok::lparen, "expected '(' here")) 7619 return true; 7620 7621 ModuleHash Hash; 7622 if (ParseUInt32(Hash[0]) || ParseToken(lltok::comma, "expected ',' here") || 7623 ParseUInt32(Hash[1]) || ParseToken(lltok::comma, "expected ',' here") || 7624 ParseUInt32(Hash[2]) || ParseToken(lltok::comma, "expected ',' here") || 7625 ParseUInt32(Hash[3]) || ParseToken(lltok::comma, "expected ',' here") || 7626 ParseUInt32(Hash[4])) 7627 return true; 7628 7629 if (ParseToken(lltok::rparen, "expected ')' here") || 7630 ParseToken(lltok::rparen, "expected ')' here")) 7631 return true; 7632 7633 auto ModuleEntry = Index->addModule(Path, ID, Hash); 7634 ModuleIdMap[ID] = ModuleEntry->first(); 7635 7636 return false; 7637 } 7638 7639 /// TypeIdEntry 7640 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')' 7641 bool LLParser::ParseTypeIdEntry(unsigned ID) { 7642 assert(Lex.getKind() == lltok::kw_typeid); 7643 Lex.Lex(); 7644 7645 std::string Name; 7646 if (ParseToken(lltok::colon, "expected ':' here") || 7647 ParseToken(lltok::lparen, "expected '(' here") || 7648 ParseToken(lltok::kw_name, "expected 'name' here") || 7649 ParseToken(lltok::colon, "expected ':' here") || 7650 ParseStringConstant(Name)) 7651 return true; 7652 7653 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name); 7654 if (ParseToken(lltok::comma, "expected ',' here") || 7655 ParseTypeIdSummary(TIS) || ParseToken(lltok::rparen, "expected ')' here")) 7656 return true; 7657 7658 // Check if this ID was forward referenced, and if so, update the 7659 // corresponding GUIDs. 7660 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7661 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7662 for (auto TIDRef : FwdRefTIDs->second) { 7663 assert(!*TIDRef.first && 7664 "Forward referenced type id GUID expected to be 0"); 7665 *TIDRef.first = GlobalValue::getGUID(Name); 7666 } 7667 ForwardRefTypeIds.erase(FwdRefTIDs); 7668 } 7669 7670 return false; 7671 } 7672 7673 /// TypeIdSummary 7674 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')' 7675 bool LLParser::ParseTypeIdSummary(TypeIdSummary &TIS) { 7676 if (ParseToken(lltok::kw_summary, "expected 'summary' here") || 7677 ParseToken(lltok::colon, "expected ':' here") || 7678 ParseToken(lltok::lparen, "expected '(' here") || 7679 ParseTypeTestResolution(TIS.TTRes)) 7680 return true; 7681 7682 if (EatIfPresent(lltok::comma)) { 7683 // Expect optional wpdResolutions field 7684 if (ParseOptionalWpdResolutions(TIS.WPDRes)) 7685 return true; 7686 } 7687 7688 if (ParseToken(lltok::rparen, "expected ')' here")) 7689 return true; 7690 7691 return false; 7692 } 7693 7694 static ValueInfo EmptyVI = 7695 ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8); 7696 7697 /// TypeIdCompatibleVtableEntry 7698 /// ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ',' 7699 /// TypeIdCompatibleVtableInfo 7700 /// ')' 7701 bool LLParser::ParseTypeIdCompatibleVtableEntry(unsigned ID) { 7702 assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable); 7703 Lex.Lex(); 7704 7705 std::string Name; 7706 if (ParseToken(lltok::colon, "expected ':' here") || 7707 ParseToken(lltok::lparen, "expected '(' here") || 7708 ParseToken(lltok::kw_name, "expected 'name' here") || 7709 ParseToken(lltok::colon, "expected ':' here") || 7710 ParseStringConstant(Name)) 7711 return true; 7712 7713 TypeIdCompatibleVtableInfo &TI = 7714 Index->getOrInsertTypeIdCompatibleVtableSummary(Name); 7715 if (ParseToken(lltok::comma, "expected ',' here") || 7716 ParseToken(lltok::kw_summary, "expected 'summary' here") || 7717 ParseToken(lltok::colon, "expected ':' here") || 7718 ParseToken(lltok::lparen, "expected '(' here")) 7719 return true; 7720 7721 IdToIndexMapType IdToIndexMap; 7722 // Parse each call edge 7723 do { 7724 uint64_t Offset; 7725 if (ParseToken(lltok::lparen, "expected '(' here") || 7726 ParseToken(lltok::kw_offset, "expected 'offset' here") || 7727 ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) || 7728 ParseToken(lltok::comma, "expected ',' here")) 7729 return true; 7730 7731 LocTy Loc = Lex.getLoc(); 7732 unsigned GVId; 7733 ValueInfo VI; 7734 if (ParseGVReference(VI, GVId)) 7735 return true; 7736 7737 // Keep track of the TypeIdCompatibleVtableInfo array index needing a 7738 // forward reference. We will save the location of the ValueInfo needing an 7739 // update, but can only do so once the std::vector is finalized. 7740 if (VI == EmptyVI) 7741 IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc)); 7742 TI.push_back({Offset, VI}); 7743 7744 if (ParseToken(lltok::rparen, "expected ')' in call")) 7745 return true; 7746 } while (EatIfPresent(lltok::comma)); 7747 7748 // Now that the TI vector is finalized, it is safe to save the locations 7749 // of any forward GV references that need updating later. 7750 for (auto I : IdToIndexMap) { 7751 for (auto P : I.second) { 7752 assert(TI[P.first].VTableVI == EmptyVI && 7753 "Forward referenced ValueInfo expected to be empty"); 7754 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 7755 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 7756 FwdRef.first->second.push_back( 7757 std::make_pair(&TI[P.first].VTableVI, P.second)); 7758 } 7759 } 7760 7761 if (ParseToken(lltok::rparen, "expected ')' here") || 7762 ParseToken(lltok::rparen, "expected ')' here")) 7763 return true; 7764 7765 // Check if this ID was forward referenced, and if so, update the 7766 // corresponding GUIDs. 7767 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7768 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7769 for (auto TIDRef : FwdRefTIDs->second) { 7770 assert(!*TIDRef.first && 7771 "Forward referenced type id GUID expected to be 0"); 7772 *TIDRef.first = GlobalValue::getGUID(Name); 7773 } 7774 ForwardRefTypeIds.erase(FwdRefTIDs); 7775 } 7776 7777 return false; 7778 } 7779 7780 /// TypeTestResolution 7781 /// ::= 'typeTestRes' ':' '(' 'kind' ':' 7782 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ',' 7783 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]? 7784 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]? 7785 /// [',' 'inlinesBits' ':' UInt64]? ')' 7786 bool LLParser::ParseTypeTestResolution(TypeTestResolution &TTRes) { 7787 if (ParseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") || 7788 ParseToken(lltok::colon, "expected ':' here") || 7789 ParseToken(lltok::lparen, "expected '(' here") || 7790 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7791 ParseToken(lltok::colon, "expected ':' here")) 7792 return true; 7793 7794 switch (Lex.getKind()) { 7795 case lltok::kw_unsat: 7796 TTRes.TheKind = TypeTestResolution::Unsat; 7797 break; 7798 case lltok::kw_byteArray: 7799 TTRes.TheKind = TypeTestResolution::ByteArray; 7800 break; 7801 case lltok::kw_inline: 7802 TTRes.TheKind = TypeTestResolution::Inline; 7803 break; 7804 case lltok::kw_single: 7805 TTRes.TheKind = TypeTestResolution::Single; 7806 break; 7807 case lltok::kw_allOnes: 7808 TTRes.TheKind = TypeTestResolution::AllOnes; 7809 break; 7810 default: 7811 return Error(Lex.getLoc(), "unexpected TypeTestResolution kind"); 7812 } 7813 Lex.Lex(); 7814 7815 if (ParseToken(lltok::comma, "expected ',' here") || 7816 ParseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") || 7817 ParseToken(lltok::colon, "expected ':' here") || 7818 ParseUInt32(TTRes.SizeM1BitWidth)) 7819 return true; 7820 7821 // Parse optional fields 7822 while (EatIfPresent(lltok::comma)) { 7823 switch (Lex.getKind()) { 7824 case lltok::kw_alignLog2: 7825 Lex.Lex(); 7826 if (ParseToken(lltok::colon, "expected ':'") || 7827 ParseUInt64(TTRes.AlignLog2)) 7828 return true; 7829 break; 7830 case lltok::kw_sizeM1: 7831 Lex.Lex(); 7832 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt64(TTRes.SizeM1)) 7833 return true; 7834 break; 7835 case lltok::kw_bitMask: { 7836 unsigned Val; 7837 Lex.Lex(); 7838 if (ParseToken(lltok::colon, "expected ':'") || ParseUInt32(Val)) 7839 return true; 7840 assert(Val <= 0xff); 7841 TTRes.BitMask = (uint8_t)Val; 7842 break; 7843 } 7844 case lltok::kw_inlineBits: 7845 Lex.Lex(); 7846 if (ParseToken(lltok::colon, "expected ':'") || 7847 ParseUInt64(TTRes.InlineBits)) 7848 return true; 7849 break; 7850 default: 7851 return Error(Lex.getLoc(), "expected optional TypeTestResolution field"); 7852 } 7853 } 7854 7855 if (ParseToken(lltok::rparen, "expected ')' here")) 7856 return true; 7857 7858 return false; 7859 } 7860 7861 /// OptionalWpdResolutions 7862 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')' 7863 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')' 7864 bool LLParser::ParseOptionalWpdResolutions( 7865 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) { 7866 if (ParseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") || 7867 ParseToken(lltok::colon, "expected ':' here") || 7868 ParseToken(lltok::lparen, "expected '(' here")) 7869 return true; 7870 7871 do { 7872 uint64_t Offset; 7873 WholeProgramDevirtResolution WPDRes; 7874 if (ParseToken(lltok::lparen, "expected '(' here") || 7875 ParseToken(lltok::kw_offset, "expected 'offset' here") || 7876 ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(Offset) || 7877 ParseToken(lltok::comma, "expected ',' here") || ParseWpdRes(WPDRes) || 7878 ParseToken(lltok::rparen, "expected ')' here")) 7879 return true; 7880 WPDResMap[Offset] = WPDRes; 7881 } while (EatIfPresent(lltok::comma)); 7882 7883 if (ParseToken(lltok::rparen, "expected ')' here")) 7884 return true; 7885 7886 return false; 7887 } 7888 7889 /// WpdRes 7890 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir' 7891 /// [',' OptionalResByArg]? ')' 7892 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl' 7893 /// ',' 'singleImplName' ':' STRINGCONSTANT ',' 7894 /// [',' OptionalResByArg]? ')' 7895 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel' 7896 /// [',' OptionalResByArg]? ')' 7897 bool LLParser::ParseWpdRes(WholeProgramDevirtResolution &WPDRes) { 7898 if (ParseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") || 7899 ParseToken(lltok::colon, "expected ':' here") || 7900 ParseToken(lltok::lparen, "expected '(' here") || 7901 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7902 ParseToken(lltok::colon, "expected ':' here")) 7903 return true; 7904 7905 switch (Lex.getKind()) { 7906 case lltok::kw_indir: 7907 WPDRes.TheKind = WholeProgramDevirtResolution::Indir; 7908 break; 7909 case lltok::kw_singleImpl: 7910 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl; 7911 break; 7912 case lltok::kw_branchFunnel: 7913 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel; 7914 break; 7915 default: 7916 return Error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind"); 7917 } 7918 Lex.Lex(); 7919 7920 // Parse optional fields 7921 while (EatIfPresent(lltok::comma)) { 7922 switch (Lex.getKind()) { 7923 case lltok::kw_singleImplName: 7924 Lex.Lex(); 7925 if (ParseToken(lltok::colon, "expected ':' here") || 7926 ParseStringConstant(WPDRes.SingleImplName)) 7927 return true; 7928 break; 7929 case lltok::kw_resByArg: 7930 if (ParseOptionalResByArg(WPDRes.ResByArg)) 7931 return true; 7932 break; 7933 default: 7934 return Error(Lex.getLoc(), 7935 "expected optional WholeProgramDevirtResolution field"); 7936 } 7937 } 7938 7939 if (ParseToken(lltok::rparen, "expected ')' here")) 7940 return true; 7941 7942 return false; 7943 } 7944 7945 /// OptionalResByArg 7946 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')' 7947 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':' 7948 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' | 7949 /// 'virtualConstProp' ) 7950 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]? 7951 /// [',' 'bit' ':' UInt32]? ')' 7952 bool LLParser::ParseOptionalResByArg( 7953 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg> 7954 &ResByArg) { 7955 if (ParseToken(lltok::kw_resByArg, "expected 'resByArg' here") || 7956 ParseToken(lltok::colon, "expected ':' here") || 7957 ParseToken(lltok::lparen, "expected '(' here")) 7958 return true; 7959 7960 do { 7961 std::vector<uint64_t> Args; 7962 if (ParseArgs(Args) || ParseToken(lltok::comma, "expected ',' here") || 7963 ParseToken(lltok::kw_byArg, "expected 'byArg here") || 7964 ParseToken(lltok::colon, "expected ':' here") || 7965 ParseToken(lltok::lparen, "expected '(' here") || 7966 ParseToken(lltok::kw_kind, "expected 'kind' here") || 7967 ParseToken(lltok::colon, "expected ':' here")) 7968 return true; 7969 7970 WholeProgramDevirtResolution::ByArg ByArg; 7971 switch (Lex.getKind()) { 7972 case lltok::kw_indir: 7973 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir; 7974 break; 7975 case lltok::kw_uniformRetVal: 7976 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 7977 break; 7978 case lltok::kw_uniqueRetVal: 7979 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 7980 break; 7981 case lltok::kw_virtualConstProp: 7982 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 7983 break; 7984 default: 7985 return Error(Lex.getLoc(), 7986 "unexpected WholeProgramDevirtResolution::ByArg kind"); 7987 } 7988 Lex.Lex(); 7989 7990 // Parse optional fields 7991 while (EatIfPresent(lltok::comma)) { 7992 switch (Lex.getKind()) { 7993 case lltok::kw_info: 7994 Lex.Lex(); 7995 if (ParseToken(lltok::colon, "expected ':' here") || 7996 ParseUInt64(ByArg.Info)) 7997 return true; 7998 break; 7999 case lltok::kw_byte: 8000 Lex.Lex(); 8001 if (ParseToken(lltok::colon, "expected ':' here") || 8002 ParseUInt32(ByArg.Byte)) 8003 return true; 8004 break; 8005 case lltok::kw_bit: 8006 Lex.Lex(); 8007 if (ParseToken(lltok::colon, "expected ':' here") || 8008 ParseUInt32(ByArg.Bit)) 8009 return true; 8010 break; 8011 default: 8012 return Error(Lex.getLoc(), 8013 "expected optional whole program devirt field"); 8014 } 8015 } 8016 8017 if (ParseToken(lltok::rparen, "expected ')' here")) 8018 return true; 8019 8020 ResByArg[Args] = ByArg; 8021 } while (EatIfPresent(lltok::comma)); 8022 8023 if (ParseToken(lltok::rparen, "expected ')' here")) 8024 return true; 8025 8026 return false; 8027 } 8028 8029 /// OptionalResByArg 8030 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')' 8031 bool LLParser::ParseArgs(std::vector<uint64_t> &Args) { 8032 if (ParseToken(lltok::kw_args, "expected 'args' here") || 8033 ParseToken(lltok::colon, "expected ':' here") || 8034 ParseToken(lltok::lparen, "expected '(' here")) 8035 return true; 8036 8037 do { 8038 uint64_t Val; 8039 if (ParseUInt64(Val)) 8040 return true; 8041 Args.push_back(Val); 8042 } while (EatIfPresent(lltok::comma)); 8043 8044 if (ParseToken(lltok::rparen, "expected ')' here")) 8045 return true; 8046 8047 return false; 8048 } 8049 8050 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8; 8051 8052 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) { 8053 bool ReadOnly = Fwd->isReadOnly(); 8054 bool WriteOnly = Fwd->isWriteOnly(); 8055 assert(!(ReadOnly && WriteOnly)); 8056 *Fwd = Resolved; 8057 if (ReadOnly) 8058 Fwd->setReadOnly(); 8059 if (WriteOnly) 8060 Fwd->setWriteOnly(); 8061 } 8062 8063 /// Stores the given Name/GUID and associated summary into the Index. 8064 /// Also updates any forward references to the associated entry ID. 8065 void LLParser::AddGlobalValueToIndex( 8066 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage, 8067 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) { 8068 // First create the ValueInfo utilizing the Name or GUID. 8069 ValueInfo VI; 8070 if (GUID != 0) { 8071 assert(Name.empty()); 8072 VI = Index->getOrInsertValueInfo(GUID); 8073 } else { 8074 assert(!Name.empty()); 8075 if (M) { 8076 auto *GV = M->getNamedValue(Name); 8077 assert(GV); 8078 VI = Index->getOrInsertValueInfo(GV); 8079 } else { 8080 assert( 8081 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) && 8082 "Need a source_filename to compute GUID for local"); 8083 GUID = GlobalValue::getGUID( 8084 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName)); 8085 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name)); 8086 } 8087 } 8088 8089 // Resolve forward references from calls/refs 8090 auto FwdRefVIs = ForwardRefValueInfos.find(ID); 8091 if (FwdRefVIs != ForwardRefValueInfos.end()) { 8092 for (auto VIRef : FwdRefVIs->second) { 8093 assert(VIRef.first->getRef() == FwdVIRef && 8094 "Forward referenced ValueInfo expected to be empty"); 8095 resolveFwdRef(VIRef.first, VI); 8096 } 8097 ForwardRefValueInfos.erase(FwdRefVIs); 8098 } 8099 8100 // Resolve forward references from aliases 8101 auto FwdRefAliasees = ForwardRefAliasees.find(ID); 8102 if (FwdRefAliasees != ForwardRefAliasees.end()) { 8103 for (auto AliaseeRef : FwdRefAliasees->second) { 8104 assert(!AliaseeRef.first->hasAliasee() && 8105 "Forward referencing alias already has aliasee"); 8106 assert(Summary && "Aliasee must be a definition"); 8107 AliaseeRef.first->setAliasee(VI, Summary.get()); 8108 } 8109 ForwardRefAliasees.erase(FwdRefAliasees); 8110 } 8111 8112 // Add the summary if one was provided. 8113 if (Summary) 8114 Index->addGlobalValueSummary(VI, std::move(Summary)); 8115 8116 // Save the associated ValueInfo for use in later references by ID. 8117 if (ID == NumberedValueInfos.size()) 8118 NumberedValueInfos.push_back(VI); 8119 else { 8120 // Handle non-continuous numbers (to make test simplification easier). 8121 if (ID > NumberedValueInfos.size()) 8122 NumberedValueInfos.resize(ID + 1); 8123 NumberedValueInfos[ID] = VI; 8124 } 8125 } 8126 8127 /// ParseSummaryIndexFlags 8128 /// ::= 'flags' ':' UInt64 8129 bool LLParser::ParseSummaryIndexFlags() { 8130 assert(Lex.getKind() == lltok::kw_flags); 8131 Lex.Lex(); 8132 8133 if (ParseToken(lltok::colon, "expected ':' here")) 8134 return true; 8135 uint64_t Flags; 8136 if (ParseUInt64(Flags)) 8137 return true; 8138 Index->setFlags(Flags); 8139 return false; 8140 } 8141 8142 /// ParseBlockCount 8143 /// ::= 'blockcount' ':' UInt64 8144 bool LLParser::ParseBlockCount() { 8145 assert(Lex.getKind() == lltok::kw_blockcount); 8146 Lex.Lex(); 8147 8148 if (ParseToken(lltok::colon, "expected ':' here")) 8149 return true; 8150 uint64_t BlockCount; 8151 if (ParseUInt64(BlockCount)) 8152 return true; 8153 Index->setBlockCount(BlockCount); 8154 return false; 8155 } 8156 8157 /// ParseGVEntry 8158 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64) 8159 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')' 8160 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')' 8161 bool LLParser::ParseGVEntry(unsigned ID) { 8162 assert(Lex.getKind() == lltok::kw_gv); 8163 Lex.Lex(); 8164 8165 if (ParseToken(lltok::colon, "expected ':' here") || 8166 ParseToken(lltok::lparen, "expected '(' here")) 8167 return true; 8168 8169 std::string Name; 8170 GlobalValue::GUID GUID = 0; 8171 switch (Lex.getKind()) { 8172 case lltok::kw_name: 8173 Lex.Lex(); 8174 if (ParseToken(lltok::colon, "expected ':' here") || 8175 ParseStringConstant(Name)) 8176 return true; 8177 // Can't create GUID/ValueInfo until we have the linkage. 8178 break; 8179 case lltok::kw_guid: 8180 Lex.Lex(); 8181 if (ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(GUID)) 8182 return true; 8183 break; 8184 default: 8185 return Error(Lex.getLoc(), "expected name or guid tag"); 8186 } 8187 8188 if (!EatIfPresent(lltok::comma)) { 8189 // No summaries. Wrap up. 8190 if (ParseToken(lltok::rparen, "expected ')' here")) 8191 return true; 8192 // This was created for a call to an external or indirect target. 8193 // A GUID with no summary came from a VALUE_GUID record, dummy GUID 8194 // created for indirect calls with VP. A Name with no GUID came from 8195 // an external definition. We pass ExternalLinkage since that is only 8196 // used when the GUID must be computed from Name, and in that case 8197 // the symbol must have external linkage. 8198 AddGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID, 8199 nullptr); 8200 return false; 8201 } 8202 8203 // Have a list of summaries 8204 if (ParseToken(lltok::kw_summaries, "expected 'summaries' here") || 8205 ParseToken(lltok::colon, "expected ':' here") || 8206 ParseToken(lltok::lparen, "expected '(' here")) 8207 return true; 8208 do { 8209 switch (Lex.getKind()) { 8210 case lltok::kw_function: 8211 if (ParseFunctionSummary(Name, GUID, ID)) 8212 return true; 8213 break; 8214 case lltok::kw_variable: 8215 if (ParseVariableSummary(Name, GUID, ID)) 8216 return true; 8217 break; 8218 case lltok::kw_alias: 8219 if (ParseAliasSummary(Name, GUID, ID)) 8220 return true; 8221 break; 8222 default: 8223 return Error(Lex.getLoc(), "expected summary type"); 8224 } 8225 } while (EatIfPresent(lltok::comma)); 8226 8227 if (ParseToken(lltok::rparen, "expected ')' here") || 8228 ParseToken(lltok::rparen, "expected ')' here")) 8229 return true; 8230 8231 return false; 8232 } 8233 8234 /// FunctionSummary 8235 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8236 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]? 8237 /// [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]? 8238 /// [',' OptionalRefs]? ')' 8239 bool LLParser::ParseFunctionSummary(std::string Name, GlobalValue::GUID GUID, 8240 unsigned ID) { 8241 assert(Lex.getKind() == lltok::kw_function); 8242 Lex.Lex(); 8243 8244 StringRef ModulePath; 8245 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8246 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 8247 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8248 unsigned InstCount; 8249 std::vector<FunctionSummary::EdgeTy> Calls; 8250 FunctionSummary::TypeIdInfo TypeIdInfo; 8251 std::vector<FunctionSummary::ParamAccess> ParamAccesses; 8252 std::vector<ValueInfo> Refs; 8253 // Default is all-zeros (conservative values). 8254 FunctionSummary::FFlags FFlags = {}; 8255 if (ParseToken(lltok::colon, "expected ':' here") || 8256 ParseToken(lltok::lparen, "expected '(' here") || 8257 ParseModuleReference(ModulePath) || 8258 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 8259 ParseToken(lltok::comma, "expected ',' here") || 8260 ParseToken(lltok::kw_insts, "expected 'insts' here") || 8261 ParseToken(lltok::colon, "expected ':' here") || ParseUInt32(InstCount)) 8262 return true; 8263 8264 // Parse optional fields 8265 while (EatIfPresent(lltok::comma)) { 8266 switch (Lex.getKind()) { 8267 case lltok::kw_funcFlags: 8268 if (ParseOptionalFFlags(FFlags)) 8269 return true; 8270 break; 8271 case lltok::kw_calls: 8272 if (ParseOptionalCalls(Calls)) 8273 return true; 8274 break; 8275 case lltok::kw_typeIdInfo: 8276 if (ParseOptionalTypeIdInfo(TypeIdInfo)) 8277 return true; 8278 break; 8279 case lltok::kw_refs: 8280 if (ParseOptionalRefs(Refs)) 8281 return true; 8282 break; 8283 case lltok::kw_params: 8284 if (ParseOptionalParamAccesses(ParamAccesses)) 8285 return true; 8286 break; 8287 default: 8288 return Error(Lex.getLoc(), "expected optional function summary field"); 8289 } 8290 } 8291 8292 if (ParseToken(lltok::rparen, "expected ')' here")) 8293 return true; 8294 8295 auto FS = std::make_unique<FunctionSummary>( 8296 GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs), 8297 std::move(Calls), std::move(TypeIdInfo.TypeTests), 8298 std::move(TypeIdInfo.TypeTestAssumeVCalls), 8299 std::move(TypeIdInfo.TypeCheckedLoadVCalls), 8300 std::move(TypeIdInfo.TypeTestAssumeConstVCalls), 8301 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls), 8302 std::move(ParamAccesses)); 8303 8304 FS->setModulePath(ModulePath); 8305 8306 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8307 ID, std::move(FS)); 8308 8309 return false; 8310 } 8311 8312 /// VariableSummary 8313 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8314 /// [',' OptionalRefs]? ')' 8315 bool LLParser::ParseVariableSummary(std::string Name, GlobalValue::GUID GUID, 8316 unsigned ID) { 8317 assert(Lex.getKind() == lltok::kw_variable); 8318 Lex.Lex(); 8319 8320 StringRef ModulePath; 8321 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8322 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 8323 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8324 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false, 8325 /* WriteOnly */ false, 8326 /* Constant */ false, 8327 GlobalObject::VCallVisibilityPublic); 8328 std::vector<ValueInfo> Refs; 8329 VTableFuncList VTableFuncs; 8330 if (ParseToken(lltok::colon, "expected ':' here") || 8331 ParseToken(lltok::lparen, "expected '(' here") || 8332 ParseModuleReference(ModulePath) || 8333 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 8334 ParseToken(lltok::comma, "expected ',' here") || 8335 ParseGVarFlags(GVarFlags)) 8336 return true; 8337 8338 // Parse optional fields 8339 while (EatIfPresent(lltok::comma)) { 8340 switch (Lex.getKind()) { 8341 case lltok::kw_vTableFuncs: 8342 if (ParseOptionalVTableFuncs(VTableFuncs)) 8343 return true; 8344 break; 8345 case lltok::kw_refs: 8346 if (ParseOptionalRefs(Refs)) 8347 return true; 8348 break; 8349 default: 8350 return Error(Lex.getLoc(), "expected optional variable summary field"); 8351 } 8352 } 8353 8354 if (ParseToken(lltok::rparen, "expected ')' here")) 8355 return true; 8356 8357 auto GS = 8358 std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs)); 8359 8360 GS->setModulePath(ModulePath); 8361 GS->setVTableFuncs(std::move(VTableFuncs)); 8362 8363 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8364 ID, std::move(GS)); 8365 8366 return false; 8367 } 8368 8369 /// AliasSummary 8370 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ',' 8371 /// 'aliasee' ':' GVReference ')' 8372 bool LLParser::ParseAliasSummary(std::string Name, GlobalValue::GUID GUID, 8373 unsigned ID) { 8374 assert(Lex.getKind() == lltok::kw_alias); 8375 LocTy Loc = Lex.getLoc(); 8376 Lex.Lex(); 8377 8378 StringRef ModulePath; 8379 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8380 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 8381 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8382 if (ParseToken(lltok::colon, "expected ':' here") || 8383 ParseToken(lltok::lparen, "expected '(' here") || 8384 ParseModuleReference(ModulePath) || 8385 ParseToken(lltok::comma, "expected ',' here") || ParseGVFlags(GVFlags) || 8386 ParseToken(lltok::comma, "expected ',' here") || 8387 ParseToken(lltok::kw_aliasee, "expected 'aliasee' here") || 8388 ParseToken(lltok::colon, "expected ':' here")) 8389 return true; 8390 8391 ValueInfo AliaseeVI; 8392 unsigned GVId; 8393 if (ParseGVReference(AliaseeVI, GVId)) 8394 return true; 8395 8396 if (ParseToken(lltok::rparen, "expected ')' here")) 8397 return true; 8398 8399 auto AS = std::make_unique<AliasSummary>(GVFlags); 8400 8401 AS->setModulePath(ModulePath); 8402 8403 // Record forward reference if the aliasee is not parsed yet. 8404 if (AliaseeVI.getRef() == FwdVIRef) { 8405 auto FwdRef = ForwardRefAliasees.insert( 8406 std::make_pair(GVId, std::vector<std::pair<AliasSummary *, LocTy>>())); 8407 FwdRef.first->second.push_back(std::make_pair(AS.get(), Loc)); 8408 } else { 8409 auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath); 8410 assert(Summary && "Aliasee must be a definition"); 8411 AS->setAliasee(AliaseeVI, Summary); 8412 } 8413 8414 AddGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8415 ID, std::move(AS)); 8416 8417 return false; 8418 } 8419 8420 /// Flag 8421 /// ::= [0|1] 8422 bool LLParser::ParseFlag(unsigned &Val) { 8423 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 8424 return TokError("expected integer"); 8425 Val = (unsigned)Lex.getAPSIntVal().getBoolValue(); 8426 Lex.Lex(); 8427 return false; 8428 } 8429 8430 /// OptionalFFlags 8431 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]? 8432 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]? 8433 /// [',' 'returnDoesNotAlias' ':' Flag]? ')' 8434 /// [',' 'noInline' ':' Flag]? ')' 8435 /// [',' 'alwaysInline' ':' Flag]? ')' 8436 8437 bool LLParser::ParseOptionalFFlags(FunctionSummary::FFlags &FFlags) { 8438 assert(Lex.getKind() == lltok::kw_funcFlags); 8439 Lex.Lex(); 8440 8441 if (ParseToken(lltok::colon, "expected ':' in funcFlags") | 8442 ParseToken(lltok::lparen, "expected '(' in funcFlags")) 8443 return true; 8444 8445 do { 8446 unsigned Val = 0; 8447 switch (Lex.getKind()) { 8448 case lltok::kw_readNone: 8449 Lex.Lex(); 8450 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8451 return true; 8452 FFlags.ReadNone = Val; 8453 break; 8454 case lltok::kw_readOnly: 8455 Lex.Lex(); 8456 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8457 return true; 8458 FFlags.ReadOnly = Val; 8459 break; 8460 case lltok::kw_noRecurse: 8461 Lex.Lex(); 8462 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8463 return true; 8464 FFlags.NoRecurse = Val; 8465 break; 8466 case lltok::kw_returnDoesNotAlias: 8467 Lex.Lex(); 8468 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8469 return true; 8470 FFlags.ReturnDoesNotAlias = Val; 8471 break; 8472 case lltok::kw_noInline: 8473 Lex.Lex(); 8474 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8475 return true; 8476 FFlags.NoInline = Val; 8477 break; 8478 case lltok::kw_alwaysInline: 8479 Lex.Lex(); 8480 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Val)) 8481 return true; 8482 FFlags.AlwaysInline = Val; 8483 break; 8484 default: 8485 return Error(Lex.getLoc(), "expected function flag type"); 8486 } 8487 } while (EatIfPresent(lltok::comma)); 8488 8489 if (ParseToken(lltok::rparen, "expected ')' in funcFlags")) 8490 return true; 8491 8492 return false; 8493 } 8494 8495 /// OptionalCalls 8496 /// := 'calls' ':' '(' Call [',' Call]* ')' 8497 /// Call ::= '(' 'callee' ':' GVReference 8498 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')' 8499 bool LLParser::ParseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) { 8500 assert(Lex.getKind() == lltok::kw_calls); 8501 Lex.Lex(); 8502 8503 if (ParseToken(lltok::colon, "expected ':' in calls") | 8504 ParseToken(lltok::lparen, "expected '(' in calls")) 8505 return true; 8506 8507 IdToIndexMapType IdToIndexMap; 8508 // Parse each call edge 8509 do { 8510 ValueInfo VI; 8511 if (ParseToken(lltok::lparen, "expected '(' in call") || 8512 ParseToken(lltok::kw_callee, "expected 'callee' in call") || 8513 ParseToken(lltok::colon, "expected ':'")) 8514 return true; 8515 8516 LocTy Loc = Lex.getLoc(); 8517 unsigned GVId; 8518 if (ParseGVReference(VI, GVId)) 8519 return true; 8520 8521 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 8522 unsigned RelBF = 0; 8523 if (EatIfPresent(lltok::comma)) { 8524 // Expect either hotness or relbf 8525 if (EatIfPresent(lltok::kw_hotness)) { 8526 if (ParseToken(lltok::colon, "expected ':'") || ParseHotness(Hotness)) 8527 return true; 8528 } else { 8529 if (ParseToken(lltok::kw_relbf, "expected relbf") || 8530 ParseToken(lltok::colon, "expected ':'") || ParseUInt32(RelBF)) 8531 return true; 8532 } 8533 } 8534 // Keep track of the Call array index needing a forward reference. 8535 // We will save the location of the ValueInfo needing an update, but 8536 // can only do so once the std::vector is finalized. 8537 if (VI.getRef() == FwdVIRef) 8538 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc)); 8539 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)}); 8540 8541 if (ParseToken(lltok::rparen, "expected ')' in call")) 8542 return true; 8543 } while (EatIfPresent(lltok::comma)); 8544 8545 // Now that the Calls vector is finalized, it is safe to save the locations 8546 // of any forward GV references that need updating later. 8547 for (auto I : IdToIndexMap) { 8548 for (auto P : I.second) { 8549 assert(Calls[P.first].first.getRef() == FwdVIRef && 8550 "Forward referenced ValueInfo expected to be empty"); 8551 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 8552 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 8553 FwdRef.first->second.push_back( 8554 std::make_pair(&Calls[P.first].first, P.second)); 8555 } 8556 } 8557 8558 if (ParseToken(lltok::rparen, "expected ')' in calls")) 8559 return true; 8560 8561 return false; 8562 } 8563 8564 /// Hotness 8565 /// := ('unknown'|'cold'|'none'|'hot'|'critical') 8566 bool LLParser::ParseHotness(CalleeInfo::HotnessType &Hotness) { 8567 switch (Lex.getKind()) { 8568 case lltok::kw_unknown: 8569 Hotness = CalleeInfo::HotnessType::Unknown; 8570 break; 8571 case lltok::kw_cold: 8572 Hotness = CalleeInfo::HotnessType::Cold; 8573 break; 8574 case lltok::kw_none: 8575 Hotness = CalleeInfo::HotnessType::None; 8576 break; 8577 case lltok::kw_hot: 8578 Hotness = CalleeInfo::HotnessType::Hot; 8579 break; 8580 case lltok::kw_critical: 8581 Hotness = CalleeInfo::HotnessType::Critical; 8582 break; 8583 default: 8584 return Error(Lex.getLoc(), "invalid call edge hotness"); 8585 } 8586 Lex.Lex(); 8587 return false; 8588 } 8589 8590 /// OptionalVTableFuncs 8591 /// := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')' 8592 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')' 8593 bool LLParser::ParseOptionalVTableFuncs(VTableFuncList &VTableFuncs) { 8594 assert(Lex.getKind() == lltok::kw_vTableFuncs); 8595 Lex.Lex(); 8596 8597 if (ParseToken(lltok::colon, "expected ':' in vTableFuncs") | 8598 ParseToken(lltok::lparen, "expected '(' in vTableFuncs")) 8599 return true; 8600 8601 IdToIndexMapType IdToIndexMap; 8602 // Parse each virtual function pair 8603 do { 8604 ValueInfo VI; 8605 if (ParseToken(lltok::lparen, "expected '(' in vTableFunc") || 8606 ParseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") || 8607 ParseToken(lltok::colon, "expected ':'")) 8608 return true; 8609 8610 LocTy Loc = Lex.getLoc(); 8611 unsigned GVId; 8612 if (ParseGVReference(VI, GVId)) 8613 return true; 8614 8615 uint64_t Offset; 8616 if (ParseToken(lltok::comma, "expected comma") || 8617 ParseToken(lltok::kw_offset, "expected offset") || 8618 ParseToken(lltok::colon, "expected ':'") || ParseUInt64(Offset)) 8619 return true; 8620 8621 // Keep track of the VTableFuncs array index needing a forward reference. 8622 // We will save the location of the ValueInfo needing an update, but 8623 // can only do so once the std::vector is finalized. 8624 if (VI == EmptyVI) 8625 IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc)); 8626 VTableFuncs.push_back({VI, Offset}); 8627 8628 if (ParseToken(lltok::rparen, "expected ')' in vTableFunc")) 8629 return true; 8630 } while (EatIfPresent(lltok::comma)); 8631 8632 // Now that the VTableFuncs vector is finalized, it is safe to save the 8633 // locations of any forward GV references that need updating later. 8634 for (auto I : IdToIndexMap) { 8635 for (auto P : I.second) { 8636 assert(VTableFuncs[P.first].FuncVI == EmptyVI && 8637 "Forward referenced ValueInfo expected to be empty"); 8638 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 8639 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 8640 FwdRef.first->second.push_back( 8641 std::make_pair(&VTableFuncs[P.first].FuncVI, P.second)); 8642 } 8643 } 8644 8645 if (ParseToken(lltok::rparen, "expected ')' in vTableFuncs")) 8646 return true; 8647 8648 return false; 8649 } 8650 8651 /// ParamNo := 'param' ':' UInt64 8652 bool LLParser::ParseParamNo(uint64_t &ParamNo) { 8653 if (ParseToken(lltok::kw_param, "expected 'param' here") || 8654 ParseToken(lltok::colon, "expected ':' here") || ParseUInt64(ParamNo)) 8655 return true; 8656 return false; 8657 } 8658 8659 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']' 8660 bool LLParser::ParseParamAccessOffset(ConstantRange &Range) { 8661 APSInt Lower; 8662 APSInt Upper; 8663 auto ParseAPSInt = [&](APSInt &Val) { 8664 if (Lex.getKind() != lltok::APSInt) 8665 return TokError("expected integer"); 8666 Val = Lex.getAPSIntVal(); 8667 Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 8668 Val.setIsSigned(true); 8669 Lex.Lex(); 8670 return false; 8671 }; 8672 if (ParseToken(lltok::kw_offset, "expected 'offset' here") || 8673 ParseToken(lltok::colon, "expected ':' here") || 8674 ParseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) || 8675 ParseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) || 8676 ParseToken(lltok::rsquare, "expected ']' here")) 8677 return true; 8678 8679 ++Upper; 8680 Range = 8681 (Lower == Upper && !Lower.isMaxValue()) 8682 ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth) 8683 : ConstantRange(Lower, Upper); 8684 8685 return false; 8686 } 8687 8688 /// ParamAccessCall 8689 /// := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')' 8690 bool LLParser::ParseParamAccessCall(FunctionSummary::ParamAccess::Call &Call) { 8691 if (ParseToken(lltok::lparen, "expected '(' here") || 8692 ParseToken(lltok::kw_callee, "expected 'callee' here") || 8693 ParseToken(lltok::colon, "expected ':' here")) 8694 return true; 8695 8696 unsigned GVId; 8697 ValueInfo VI; 8698 if (ParseGVReference(VI, GVId)) 8699 return true; 8700 8701 Call.Callee = VI.getGUID(); 8702 8703 if (ParseToken(lltok::comma, "expected ',' here") || 8704 ParseParamNo(Call.ParamNo) || 8705 ParseToken(lltok::comma, "expected ',' here") || 8706 ParseParamAccessOffset(Call.Offsets)) 8707 return true; 8708 8709 if (ParseToken(lltok::rparen, "expected ')' here")) 8710 return true; 8711 8712 return false; 8713 } 8714 8715 /// ParamAccess 8716 /// := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')' 8717 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')' 8718 bool LLParser::ParseParamAccess(FunctionSummary::ParamAccess &Param) { 8719 if (ParseToken(lltok::lparen, "expected '(' here") || 8720 ParseParamNo(Param.ParamNo) || 8721 ParseToken(lltok::comma, "expected ',' here") || 8722 ParseParamAccessOffset(Param.Use)) 8723 return true; 8724 8725 if (EatIfPresent(lltok::comma)) { 8726 if (ParseToken(lltok::kw_calls, "expected 'calls' here") || 8727 ParseToken(lltok::colon, "expected ':' here") || 8728 ParseToken(lltok::lparen, "expected '(' here")) 8729 return true; 8730 do { 8731 FunctionSummary::ParamAccess::Call Call; 8732 if (ParseParamAccessCall(Call)) 8733 return true; 8734 Param.Calls.push_back(Call); 8735 } while (EatIfPresent(lltok::comma)); 8736 8737 if (ParseToken(lltok::rparen, "expected ')' here")) 8738 return true; 8739 } 8740 8741 if (ParseToken(lltok::rparen, "expected ')' here")) 8742 return true; 8743 8744 return false; 8745 } 8746 8747 /// OptionalParamAccesses 8748 /// := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')' 8749 bool LLParser::ParseOptionalParamAccesses( 8750 std::vector<FunctionSummary::ParamAccess> &Params) { 8751 assert(Lex.getKind() == lltok::kw_params); 8752 Lex.Lex(); 8753 8754 if (ParseToken(lltok::colon, "expected ':' here") || 8755 ParseToken(lltok::lparen, "expected '(' here")) 8756 return true; 8757 8758 do { 8759 FunctionSummary::ParamAccess ParamAccess; 8760 if (ParseParamAccess(ParamAccess)) 8761 return true; 8762 Params.push_back(ParamAccess); 8763 } while (EatIfPresent(lltok::comma)); 8764 8765 if (ParseToken(lltok::rparen, "expected ')' here")) 8766 return true; 8767 8768 return false; 8769 } 8770 8771 /// OptionalRefs 8772 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')' 8773 bool LLParser::ParseOptionalRefs(std::vector<ValueInfo> &Refs) { 8774 assert(Lex.getKind() == lltok::kw_refs); 8775 Lex.Lex(); 8776 8777 if (ParseToken(lltok::colon, "expected ':' in refs") || 8778 ParseToken(lltok::lparen, "expected '(' in refs")) 8779 return true; 8780 8781 struct ValueContext { 8782 ValueInfo VI; 8783 unsigned GVId; 8784 LocTy Loc; 8785 }; 8786 std::vector<ValueContext> VContexts; 8787 // Parse each ref edge 8788 do { 8789 ValueContext VC; 8790 VC.Loc = Lex.getLoc(); 8791 if (ParseGVReference(VC.VI, VC.GVId)) 8792 return true; 8793 VContexts.push_back(VC); 8794 } while (EatIfPresent(lltok::comma)); 8795 8796 // Sort value contexts so that ones with writeonly 8797 // and readonly ValueInfo are at the end of VContexts vector. 8798 // See FunctionSummary::specialRefCounts() 8799 llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) { 8800 return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier(); 8801 }); 8802 8803 IdToIndexMapType IdToIndexMap; 8804 for (auto &VC : VContexts) { 8805 // Keep track of the Refs array index needing a forward reference. 8806 // We will save the location of the ValueInfo needing an update, but 8807 // can only do so once the std::vector is finalized. 8808 if (VC.VI.getRef() == FwdVIRef) 8809 IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc)); 8810 Refs.push_back(VC.VI); 8811 } 8812 8813 // Now that the Refs vector is finalized, it is safe to save the locations 8814 // of any forward GV references that need updating later. 8815 for (auto I : IdToIndexMap) { 8816 for (auto P : I.second) { 8817 assert(Refs[P.first].getRef() == FwdVIRef && 8818 "Forward referenced ValueInfo expected to be empty"); 8819 auto FwdRef = ForwardRefValueInfos.insert(std::make_pair( 8820 I.first, std::vector<std::pair<ValueInfo *, LocTy>>())); 8821 FwdRef.first->second.push_back(std::make_pair(&Refs[P.first], P.second)); 8822 } 8823 } 8824 8825 if (ParseToken(lltok::rparen, "expected ')' in refs")) 8826 return true; 8827 8828 return false; 8829 } 8830 8831 /// OptionalTypeIdInfo 8832 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]? 8833 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]? 8834 /// [',' TypeCheckedLoadConstVCalls]? ')' 8835 bool LLParser::ParseOptionalTypeIdInfo( 8836 FunctionSummary::TypeIdInfo &TypeIdInfo) { 8837 assert(Lex.getKind() == lltok::kw_typeIdInfo); 8838 Lex.Lex(); 8839 8840 if (ParseToken(lltok::colon, "expected ':' here") || 8841 ParseToken(lltok::lparen, "expected '(' in typeIdInfo")) 8842 return true; 8843 8844 do { 8845 switch (Lex.getKind()) { 8846 case lltok::kw_typeTests: 8847 if (ParseTypeTests(TypeIdInfo.TypeTests)) 8848 return true; 8849 break; 8850 case lltok::kw_typeTestAssumeVCalls: 8851 if (ParseVFuncIdList(lltok::kw_typeTestAssumeVCalls, 8852 TypeIdInfo.TypeTestAssumeVCalls)) 8853 return true; 8854 break; 8855 case lltok::kw_typeCheckedLoadVCalls: 8856 if (ParseVFuncIdList(lltok::kw_typeCheckedLoadVCalls, 8857 TypeIdInfo.TypeCheckedLoadVCalls)) 8858 return true; 8859 break; 8860 case lltok::kw_typeTestAssumeConstVCalls: 8861 if (ParseConstVCallList(lltok::kw_typeTestAssumeConstVCalls, 8862 TypeIdInfo.TypeTestAssumeConstVCalls)) 8863 return true; 8864 break; 8865 case lltok::kw_typeCheckedLoadConstVCalls: 8866 if (ParseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls, 8867 TypeIdInfo.TypeCheckedLoadConstVCalls)) 8868 return true; 8869 break; 8870 default: 8871 return Error(Lex.getLoc(), "invalid typeIdInfo list type"); 8872 } 8873 } while (EatIfPresent(lltok::comma)); 8874 8875 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo")) 8876 return true; 8877 8878 return false; 8879 } 8880 8881 /// TypeTests 8882 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64) 8883 /// [',' (SummaryID | UInt64)]* ')' 8884 bool LLParser::ParseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) { 8885 assert(Lex.getKind() == lltok::kw_typeTests); 8886 Lex.Lex(); 8887 8888 if (ParseToken(lltok::colon, "expected ':' here") || 8889 ParseToken(lltok::lparen, "expected '(' in typeIdInfo")) 8890 return true; 8891 8892 IdToIndexMapType IdToIndexMap; 8893 do { 8894 GlobalValue::GUID GUID = 0; 8895 if (Lex.getKind() == lltok::SummaryID) { 8896 unsigned ID = Lex.getUIntVal(); 8897 LocTy Loc = Lex.getLoc(); 8898 // Keep track of the TypeTests array index needing a forward reference. 8899 // We will save the location of the GUID needing an update, but 8900 // can only do so once the std::vector is finalized. 8901 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc)); 8902 Lex.Lex(); 8903 } else if (ParseUInt64(GUID)) 8904 return true; 8905 TypeTests.push_back(GUID); 8906 } while (EatIfPresent(lltok::comma)); 8907 8908 // Now that the TypeTests vector is finalized, it is safe to save the 8909 // locations of any forward GV references that need updating later. 8910 for (auto I : IdToIndexMap) { 8911 for (auto P : I.second) { 8912 assert(TypeTests[P.first] == 0 && 8913 "Forward referenced type id GUID expected to be 0"); 8914 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8915 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8916 FwdRef.first->second.push_back( 8917 std::make_pair(&TypeTests[P.first], P.second)); 8918 } 8919 } 8920 8921 if (ParseToken(lltok::rparen, "expected ')' in typeIdInfo")) 8922 return true; 8923 8924 return false; 8925 } 8926 8927 /// VFuncIdList 8928 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')' 8929 bool LLParser::ParseVFuncIdList( 8930 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) { 8931 assert(Lex.getKind() == Kind); 8932 Lex.Lex(); 8933 8934 if (ParseToken(lltok::colon, "expected ':' here") || 8935 ParseToken(lltok::lparen, "expected '(' here")) 8936 return true; 8937 8938 IdToIndexMapType IdToIndexMap; 8939 do { 8940 FunctionSummary::VFuncId VFuncId; 8941 if (ParseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size())) 8942 return true; 8943 VFuncIdList.push_back(VFuncId); 8944 } while (EatIfPresent(lltok::comma)); 8945 8946 if (ParseToken(lltok::rparen, "expected ')' here")) 8947 return true; 8948 8949 // Now that the VFuncIdList vector is finalized, it is safe to save the 8950 // locations of any forward GV references that need updating later. 8951 for (auto I : IdToIndexMap) { 8952 for (auto P : I.second) { 8953 assert(VFuncIdList[P.first].GUID == 0 && 8954 "Forward referenced type id GUID expected to be 0"); 8955 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8956 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8957 FwdRef.first->second.push_back( 8958 std::make_pair(&VFuncIdList[P.first].GUID, P.second)); 8959 } 8960 } 8961 8962 return false; 8963 } 8964 8965 /// ConstVCallList 8966 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')' 8967 bool LLParser::ParseConstVCallList( 8968 lltok::Kind Kind, 8969 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) { 8970 assert(Lex.getKind() == Kind); 8971 Lex.Lex(); 8972 8973 if (ParseToken(lltok::colon, "expected ':' here") || 8974 ParseToken(lltok::lparen, "expected '(' here")) 8975 return true; 8976 8977 IdToIndexMapType IdToIndexMap; 8978 do { 8979 FunctionSummary::ConstVCall ConstVCall; 8980 if (ParseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size())) 8981 return true; 8982 ConstVCallList.push_back(ConstVCall); 8983 } while (EatIfPresent(lltok::comma)); 8984 8985 if (ParseToken(lltok::rparen, "expected ')' here")) 8986 return true; 8987 8988 // Now that the ConstVCallList vector is finalized, it is safe to save the 8989 // locations of any forward GV references that need updating later. 8990 for (auto I : IdToIndexMap) { 8991 for (auto P : I.second) { 8992 assert(ConstVCallList[P.first].VFunc.GUID == 0 && 8993 "Forward referenced type id GUID expected to be 0"); 8994 auto FwdRef = ForwardRefTypeIds.insert(std::make_pair( 8995 I.first, std::vector<std::pair<GlobalValue::GUID *, LocTy>>())); 8996 FwdRef.first->second.push_back( 8997 std::make_pair(&ConstVCallList[P.first].VFunc.GUID, P.second)); 8998 } 8999 } 9000 9001 return false; 9002 } 9003 9004 /// ConstVCall 9005 /// ::= '(' VFuncId ',' Args ')' 9006 bool LLParser::ParseConstVCall(FunctionSummary::ConstVCall &ConstVCall, 9007 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9008 if (ParseToken(lltok::lparen, "expected '(' here") || 9009 ParseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index)) 9010 return true; 9011 9012 if (EatIfPresent(lltok::comma)) 9013 if (ParseArgs(ConstVCall.Args)) 9014 return true; 9015 9016 if (ParseToken(lltok::rparen, "expected ')' here")) 9017 return true; 9018 9019 return false; 9020 } 9021 9022 /// VFuncId 9023 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ',' 9024 /// 'offset' ':' UInt64 ')' 9025 bool LLParser::ParseVFuncId(FunctionSummary::VFuncId &VFuncId, 9026 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9027 assert(Lex.getKind() == lltok::kw_vFuncId); 9028 Lex.Lex(); 9029 9030 if (ParseToken(lltok::colon, "expected ':' here") || 9031 ParseToken(lltok::lparen, "expected '(' here")) 9032 return true; 9033 9034 if (Lex.getKind() == lltok::SummaryID) { 9035 VFuncId.GUID = 0; 9036 unsigned ID = Lex.getUIntVal(); 9037 LocTy Loc = Lex.getLoc(); 9038 // Keep track of the array index needing a forward reference. 9039 // We will save the location of the GUID needing an update, but 9040 // can only do so once the caller's std::vector is finalized. 9041 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc)); 9042 Lex.Lex(); 9043 } else if (ParseToken(lltok::kw_guid, "expected 'guid' here") || 9044 ParseToken(lltok::colon, "expected ':' here") || 9045 ParseUInt64(VFuncId.GUID)) 9046 return true; 9047 9048 if (ParseToken(lltok::comma, "expected ',' here") || 9049 ParseToken(lltok::kw_offset, "expected 'offset' here") || 9050 ParseToken(lltok::colon, "expected ':' here") || 9051 ParseUInt64(VFuncId.Offset) || 9052 ParseToken(lltok::rparen, "expected ')' here")) 9053 return true; 9054 9055 return false; 9056 } 9057 9058 /// GVFlags 9059 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ',' 9060 /// 'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ',' 9061 /// 'dsoLocal' ':' Flag ',' 'canAutoHide' ':' Flag ')' 9062 bool LLParser::ParseGVFlags(GlobalValueSummary::GVFlags &GVFlags) { 9063 assert(Lex.getKind() == lltok::kw_flags); 9064 Lex.Lex(); 9065 9066 if (ParseToken(lltok::colon, "expected ':' here") || 9067 ParseToken(lltok::lparen, "expected '(' here")) 9068 return true; 9069 9070 do { 9071 unsigned Flag = 0; 9072 switch (Lex.getKind()) { 9073 case lltok::kw_linkage: 9074 Lex.Lex(); 9075 if (ParseToken(lltok::colon, "expected ':'")) 9076 return true; 9077 bool HasLinkage; 9078 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 9079 assert(HasLinkage && "Linkage not optional in summary entry"); 9080 Lex.Lex(); 9081 break; 9082 case lltok::kw_notEligibleToImport: 9083 Lex.Lex(); 9084 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag)) 9085 return true; 9086 GVFlags.NotEligibleToImport = Flag; 9087 break; 9088 case lltok::kw_live: 9089 Lex.Lex(); 9090 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag)) 9091 return true; 9092 GVFlags.Live = Flag; 9093 break; 9094 case lltok::kw_dsoLocal: 9095 Lex.Lex(); 9096 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag)) 9097 return true; 9098 GVFlags.DSOLocal = Flag; 9099 break; 9100 case lltok::kw_canAutoHide: 9101 Lex.Lex(); 9102 if (ParseToken(lltok::colon, "expected ':'") || ParseFlag(Flag)) 9103 return true; 9104 GVFlags.CanAutoHide = Flag; 9105 break; 9106 default: 9107 return Error(Lex.getLoc(), "expected gv flag type"); 9108 } 9109 } while (EatIfPresent(lltok::comma)); 9110 9111 if (ParseToken(lltok::rparen, "expected ')' here")) 9112 return true; 9113 9114 return false; 9115 } 9116 9117 /// GVarFlags 9118 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag 9119 /// ',' 'writeonly' ':' Flag 9120 /// ',' 'constant' ':' Flag ')' 9121 bool LLParser::ParseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) { 9122 assert(Lex.getKind() == lltok::kw_varFlags); 9123 Lex.Lex(); 9124 9125 if (ParseToken(lltok::colon, "expected ':' here") || 9126 ParseToken(lltok::lparen, "expected '(' here")) 9127 return true; 9128 9129 auto ParseRest = [this](unsigned int &Val) { 9130 Lex.Lex(); 9131 if (ParseToken(lltok::colon, "expected ':'")) 9132 return true; 9133 return ParseFlag(Val); 9134 }; 9135 9136 do { 9137 unsigned Flag = 0; 9138 switch (Lex.getKind()) { 9139 case lltok::kw_readonly: 9140 if (ParseRest(Flag)) 9141 return true; 9142 GVarFlags.MaybeReadOnly = Flag; 9143 break; 9144 case lltok::kw_writeonly: 9145 if (ParseRest(Flag)) 9146 return true; 9147 GVarFlags.MaybeWriteOnly = Flag; 9148 break; 9149 case lltok::kw_constant: 9150 if (ParseRest(Flag)) 9151 return true; 9152 GVarFlags.Constant = Flag; 9153 break; 9154 case lltok::kw_vcall_visibility: 9155 if (ParseRest(Flag)) 9156 return true; 9157 GVarFlags.VCallVisibility = Flag; 9158 break; 9159 default: 9160 return Error(Lex.getLoc(), "expected gvar flag type"); 9161 } 9162 } while (EatIfPresent(lltok::comma)); 9163 return ParseToken(lltok::rparen, "expected ')' here"); 9164 } 9165 9166 /// ModuleReference 9167 /// ::= 'module' ':' UInt 9168 bool LLParser::ParseModuleReference(StringRef &ModulePath) { 9169 // Parse module id. 9170 if (ParseToken(lltok::kw_module, "expected 'module' here") || 9171 ParseToken(lltok::colon, "expected ':' here") || 9172 ParseToken(lltok::SummaryID, "expected module ID")) 9173 return true; 9174 9175 unsigned ModuleID = Lex.getUIntVal(); 9176 auto I = ModuleIdMap.find(ModuleID); 9177 // We should have already parsed all module IDs 9178 assert(I != ModuleIdMap.end()); 9179 ModulePath = I->second; 9180 return false; 9181 } 9182 9183 /// GVReference 9184 /// ::= SummaryID 9185 bool LLParser::ParseGVReference(ValueInfo &VI, unsigned &GVId) { 9186 bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly); 9187 if (!ReadOnly) 9188 WriteOnly = EatIfPresent(lltok::kw_writeonly); 9189 if (ParseToken(lltok::SummaryID, "expected GV ID")) 9190 return true; 9191 9192 GVId = Lex.getUIntVal(); 9193 // Check if we already have a VI for this GV 9194 if (GVId < NumberedValueInfos.size()) { 9195 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef); 9196 VI = NumberedValueInfos[GVId]; 9197 } else 9198 // We will create a forward reference to the stored location. 9199 VI = ValueInfo(false, FwdVIRef); 9200 9201 if (ReadOnly) 9202 VI.setReadOnly(); 9203 if (WriteOnly) 9204 VI.setWriteOnly(); 9205 return false; 9206 } 9207