1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the parser class for .ll files. 10 // 11 //===----------------------------------------------------------------------===// 12 13 #include "LLParser.h" 14 #include "LLToken.h" 15 #include "llvm/ADT/APSInt.h" 16 #include "llvm/ADT/DenseMap.h" 17 #include "llvm/ADT/None.h" 18 #include "llvm/ADT/STLExtras.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/AsmParser/SlotMapping.h" 21 #include "llvm/BinaryFormat/Dwarf.h" 22 #include "llvm/IR/Argument.h" 23 #include "llvm/IR/AutoUpgrade.h" 24 #include "llvm/IR/BasicBlock.h" 25 #include "llvm/IR/CallingConv.h" 26 #include "llvm/IR/Comdat.h" 27 #include "llvm/IR/ConstantRange.h" 28 #include "llvm/IR/Constants.h" 29 #include "llvm/IR/DebugInfoMetadata.h" 30 #include "llvm/IR/DerivedTypes.h" 31 #include "llvm/IR/Function.h" 32 #include "llvm/IR/GlobalIFunc.h" 33 #include "llvm/IR/GlobalObject.h" 34 #include "llvm/IR/InlineAsm.h" 35 #include "llvm/IR/Intrinsics.h" 36 #include "llvm/IR/LLVMContext.h" 37 #include "llvm/IR/Metadata.h" 38 #include "llvm/IR/Module.h" 39 #include "llvm/IR/Value.h" 40 #include "llvm/IR/ValueSymbolTable.h" 41 #include "llvm/Support/Casting.h" 42 #include "llvm/Support/ErrorHandling.h" 43 #include "llvm/Support/MathExtras.h" 44 #include "llvm/Support/SaveAndRestore.h" 45 #include "llvm/Support/raw_ostream.h" 46 #include <algorithm> 47 #include <cassert> 48 #include <cstring> 49 #include <iterator> 50 #include <vector> 51 52 using namespace llvm; 53 54 static std::string getTypeString(Type *T) { 55 std::string Result; 56 raw_string_ostream Tmp(Result); 57 Tmp << *T; 58 return Tmp.str(); 59 } 60 61 /// Run: module ::= toplevelentity* 62 bool LLParser::Run(bool UpgradeDebugInfo, 63 DataLayoutCallbackTy DataLayoutCallback) { 64 // Prime the lexer. 65 Lex.Lex(); 66 67 if (Context.shouldDiscardValueNames()) 68 return error( 69 Lex.getLoc(), 70 "Can't read textual IR with a Context that discards named Values"); 71 72 if (M) { 73 if (parseTargetDefinitions()) 74 return true; 75 76 if (auto LayoutOverride = DataLayoutCallback(M->getTargetTriple())) 77 M->setDataLayout(*LayoutOverride); 78 } 79 80 return parseTopLevelEntities() || validateEndOfModule(UpgradeDebugInfo) || 81 validateEndOfIndex(); 82 } 83 84 bool LLParser::parseStandaloneConstantValue(Constant *&C, 85 const SlotMapping *Slots) { 86 restoreParsingState(Slots); 87 Lex.Lex(); 88 89 Type *Ty = nullptr; 90 if (parseType(Ty) || parseConstantValue(Ty, C)) 91 return true; 92 if (Lex.getKind() != lltok::Eof) 93 return error(Lex.getLoc(), "expected end of string"); 94 return false; 95 } 96 97 bool LLParser::parseTypeAtBeginning(Type *&Ty, unsigned &Read, 98 const SlotMapping *Slots) { 99 restoreParsingState(Slots); 100 Lex.Lex(); 101 102 Read = 0; 103 SMLoc Start = Lex.getLoc(); 104 Ty = nullptr; 105 if (parseType(Ty)) 106 return true; 107 SMLoc End = Lex.getLoc(); 108 Read = End.getPointer() - Start.getPointer(); 109 110 return false; 111 } 112 113 void LLParser::restoreParsingState(const SlotMapping *Slots) { 114 if (!Slots) 115 return; 116 NumberedVals = Slots->GlobalValues; 117 NumberedMetadata = Slots->MetadataNodes; 118 for (const auto &I : Slots->NamedTypes) 119 NamedTypes.insert( 120 std::make_pair(I.getKey(), std::make_pair(I.second, LocTy()))); 121 for (const auto &I : Slots->Types) 122 NumberedTypes.insert( 123 std::make_pair(I.first, std::make_pair(I.second, LocTy()))); 124 } 125 126 /// validateEndOfModule - Do final validity and sanity checks at the end of the 127 /// module. 128 bool LLParser::validateEndOfModule(bool UpgradeDebugInfo) { 129 if (!M) 130 return false; 131 // Handle any function attribute group forward references. 132 for (const auto &RAG : ForwardRefAttrGroups) { 133 Value *V = RAG.first; 134 const std::vector<unsigned> &Attrs = RAG.second; 135 AttrBuilder B; 136 137 for (const auto &Attr : Attrs) 138 B.merge(NumberedAttrBuilders[Attr]); 139 140 if (Function *Fn = dyn_cast<Function>(V)) { 141 AttributeList AS = Fn->getAttributes(); 142 AttrBuilder FnAttrs(AS.getFnAttributes()); 143 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 144 145 FnAttrs.merge(B); 146 147 // If the alignment was parsed as an attribute, move to the alignment 148 // field. 149 if (FnAttrs.hasAlignmentAttr()) { 150 Fn->setAlignment(FnAttrs.getAlignment()); 151 FnAttrs.removeAttribute(Attribute::Alignment); 152 } 153 154 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 155 AttributeSet::get(Context, FnAttrs)); 156 Fn->setAttributes(AS); 157 } else if (CallInst *CI = dyn_cast<CallInst>(V)) { 158 AttributeList AS = CI->getAttributes(); 159 AttrBuilder FnAttrs(AS.getFnAttributes()); 160 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 161 FnAttrs.merge(B); 162 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 163 AttributeSet::get(Context, FnAttrs)); 164 CI->setAttributes(AS); 165 } else if (InvokeInst *II = dyn_cast<InvokeInst>(V)) { 166 AttributeList AS = II->getAttributes(); 167 AttrBuilder FnAttrs(AS.getFnAttributes()); 168 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 169 FnAttrs.merge(B); 170 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 171 AttributeSet::get(Context, FnAttrs)); 172 II->setAttributes(AS); 173 } else if (CallBrInst *CBI = dyn_cast<CallBrInst>(V)) { 174 AttributeList AS = CBI->getAttributes(); 175 AttrBuilder FnAttrs(AS.getFnAttributes()); 176 AS = AS.removeAttributes(Context, AttributeList::FunctionIndex); 177 FnAttrs.merge(B); 178 AS = AS.addAttributes(Context, AttributeList::FunctionIndex, 179 AttributeSet::get(Context, FnAttrs)); 180 CBI->setAttributes(AS); 181 } else if (auto *GV = dyn_cast<GlobalVariable>(V)) { 182 AttrBuilder Attrs(GV->getAttributes()); 183 Attrs.merge(B); 184 GV->setAttributes(AttributeSet::get(Context,Attrs)); 185 } else { 186 llvm_unreachable("invalid object with forward attribute group reference"); 187 } 188 } 189 190 // If there are entries in ForwardRefBlockAddresses at this point, the 191 // function was never defined. 192 if (!ForwardRefBlockAddresses.empty()) 193 return error(ForwardRefBlockAddresses.begin()->first.Loc, 194 "expected function name in blockaddress"); 195 196 for (const auto &NT : NumberedTypes) 197 if (NT.second.second.isValid()) 198 return error(NT.second.second, 199 "use of undefined type '%" + Twine(NT.first) + "'"); 200 201 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 202 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 203 if (I->second.second.isValid()) 204 return error(I->second.second, 205 "use of undefined type named '" + I->getKey() + "'"); 206 207 if (!ForwardRefComdats.empty()) 208 return error(ForwardRefComdats.begin()->second, 209 "use of undefined comdat '$" + 210 ForwardRefComdats.begin()->first + "'"); 211 212 if (!ForwardRefVals.empty()) 213 return error(ForwardRefVals.begin()->second.second, 214 "use of undefined value '@" + ForwardRefVals.begin()->first + 215 "'"); 216 217 if (!ForwardRefValIDs.empty()) 218 return error(ForwardRefValIDs.begin()->second.second, 219 "use of undefined value '@" + 220 Twine(ForwardRefValIDs.begin()->first) + "'"); 221 222 if (!ForwardRefMDNodes.empty()) 223 return error(ForwardRefMDNodes.begin()->second.second, 224 "use of undefined metadata '!" + 225 Twine(ForwardRefMDNodes.begin()->first) + "'"); 226 227 // Resolve metadata cycles. 228 for (auto &N : NumberedMetadata) { 229 if (N.second && !N.second->isResolved()) 230 N.second->resolveCycles(); 231 } 232 233 for (auto *Inst : InstsWithTBAATag) { 234 MDNode *MD = Inst->getMetadata(LLVMContext::MD_tbaa); 235 assert(MD && "UpgradeInstWithTBAATag should have a TBAA tag"); 236 auto *UpgradedMD = UpgradeTBAANode(*MD); 237 if (MD != UpgradedMD) 238 Inst->setMetadata(LLVMContext::MD_tbaa, UpgradedMD); 239 } 240 241 // Look for intrinsic functions and CallInst that need to be upgraded 242 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 243 UpgradeCallsToIntrinsic(&*FI++); // must be post-increment, as we remove 244 245 // Some types could be renamed during loading if several modules are 246 // loaded in the same LLVMContext (LTO scenario). In this case we should 247 // remangle intrinsics names as well. 248 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) { 249 Function *F = &*FI++; 250 if (auto Remangled = Intrinsic::remangleIntrinsicFunction(F)) { 251 F->replaceAllUsesWith(Remangled.getValue()); 252 F->eraseFromParent(); 253 } 254 } 255 256 if (UpgradeDebugInfo) 257 llvm::UpgradeDebugInfo(*M); 258 259 UpgradeModuleFlags(*M); 260 UpgradeSectionAttributes(*M); 261 262 if (!Slots) 263 return false; 264 // Initialize the slot mapping. 265 // Because by this point we've parsed and validated everything, we can "steal" 266 // the mapping from LLParser as it doesn't need it anymore. 267 Slots->GlobalValues = std::move(NumberedVals); 268 Slots->MetadataNodes = std::move(NumberedMetadata); 269 for (const auto &I : NamedTypes) 270 Slots->NamedTypes.insert(std::make_pair(I.getKey(), I.second.first)); 271 for (const auto &I : NumberedTypes) 272 Slots->Types.insert(std::make_pair(I.first, I.second.first)); 273 274 return false; 275 } 276 277 /// Do final validity and sanity checks at the end of the index. 278 bool LLParser::validateEndOfIndex() { 279 if (!Index) 280 return false; 281 282 if (!ForwardRefValueInfos.empty()) 283 return error(ForwardRefValueInfos.begin()->second.front().second, 284 "use of undefined summary '^" + 285 Twine(ForwardRefValueInfos.begin()->first) + "'"); 286 287 if (!ForwardRefAliasees.empty()) 288 return error(ForwardRefAliasees.begin()->second.front().second, 289 "use of undefined summary '^" + 290 Twine(ForwardRefAliasees.begin()->first) + "'"); 291 292 if (!ForwardRefTypeIds.empty()) 293 return error(ForwardRefTypeIds.begin()->second.front().second, 294 "use of undefined type id summary '^" + 295 Twine(ForwardRefTypeIds.begin()->first) + "'"); 296 297 return false; 298 } 299 300 //===----------------------------------------------------------------------===// 301 // Top-Level Entities 302 //===----------------------------------------------------------------------===// 303 304 bool LLParser::parseTargetDefinitions() { 305 while (true) { 306 switch (Lex.getKind()) { 307 case lltok::kw_target: 308 if (parseTargetDefinition()) 309 return true; 310 break; 311 case lltok::kw_source_filename: 312 if (parseSourceFileName()) 313 return true; 314 break; 315 default: 316 return false; 317 } 318 } 319 } 320 321 bool LLParser::parseTopLevelEntities() { 322 // If there is no Module, then parse just the summary index entries. 323 if (!M) { 324 while (true) { 325 switch (Lex.getKind()) { 326 case lltok::Eof: 327 return false; 328 case lltok::SummaryID: 329 if (parseSummaryEntry()) 330 return true; 331 break; 332 case lltok::kw_source_filename: 333 if (parseSourceFileName()) 334 return true; 335 break; 336 default: 337 // Skip everything else 338 Lex.Lex(); 339 } 340 } 341 } 342 while (true) { 343 switch (Lex.getKind()) { 344 default: 345 return tokError("expected top-level entity"); 346 case lltok::Eof: return false; 347 case lltok::kw_declare: 348 if (parseDeclare()) 349 return true; 350 break; 351 case lltok::kw_define: 352 if (parseDefine()) 353 return true; 354 break; 355 case lltok::kw_module: 356 if (parseModuleAsm()) 357 return true; 358 break; 359 case lltok::kw_deplibs: 360 if (parseDepLibs()) 361 return true; 362 break; 363 case lltok::LocalVarID: 364 if (parseUnnamedType()) 365 return true; 366 break; 367 case lltok::LocalVar: 368 if (parseNamedType()) 369 return true; 370 break; 371 case lltok::GlobalID: 372 if (parseUnnamedGlobal()) 373 return true; 374 break; 375 case lltok::GlobalVar: 376 if (parseNamedGlobal()) 377 return true; 378 break; 379 case lltok::ComdatVar: if (parseComdat()) return true; break; 380 case lltok::exclaim: 381 if (parseStandaloneMetadata()) 382 return true; 383 break; 384 case lltok::SummaryID: 385 if (parseSummaryEntry()) 386 return true; 387 break; 388 case lltok::MetadataVar: 389 if (parseNamedMetadata()) 390 return true; 391 break; 392 case lltok::kw_attributes: 393 if (parseUnnamedAttrGrp()) 394 return true; 395 break; 396 case lltok::kw_uselistorder: 397 if (parseUseListOrder()) 398 return true; 399 break; 400 case lltok::kw_uselistorder_bb: 401 if (parseUseListOrderBB()) 402 return true; 403 break; 404 } 405 } 406 } 407 408 /// toplevelentity 409 /// ::= 'module' 'asm' STRINGCONSTANT 410 bool LLParser::parseModuleAsm() { 411 assert(Lex.getKind() == lltok::kw_module); 412 Lex.Lex(); 413 414 std::string AsmStr; 415 if (parseToken(lltok::kw_asm, "expected 'module asm'") || 416 parseStringConstant(AsmStr)) 417 return true; 418 419 M->appendModuleInlineAsm(AsmStr); 420 return false; 421 } 422 423 /// toplevelentity 424 /// ::= 'target' 'triple' '=' STRINGCONSTANT 425 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 426 bool LLParser::parseTargetDefinition() { 427 assert(Lex.getKind() == lltok::kw_target); 428 std::string Str; 429 switch (Lex.Lex()) { 430 default: 431 return tokError("unknown target property"); 432 case lltok::kw_triple: 433 Lex.Lex(); 434 if (parseToken(lltok::equal, "expected '=' after target triple") || 435 parseStringConstant(Str)) 436 return true; 437 M->setTargetTriple(Str); 438 return false; 439 case lltok::kw_datalayout: 440 Lex.Lex(); 441 if (parseToken(lltok::equal, "expected '=' after target datalayout") || 442 parseStringConstant(Str)) 443 return true; 444 M->setDataLayout(Str); 445 return false; 446 } 447 } 448 449 /// toplevelentity 450 /// ::= 'source_filename' '=' STRINGCONSTANT 451 bool LLParser::parseSourceFileName() { 452 assert(Lex.getKind() == lltok::kw_source_filename); 453 Lex.Lex(); 454 if (parseToken(lltok::equal, "expected '=' after source_filename") || 455 parseStringConstant(SourceFileName)) 456 return true; 457 if (M) 458 M->setSourceFileName(SourceFileName); 459 return false; 460 } 461 462 /// toplevelentity 463 /// ::= 'deplibs' '=' '[' ']' 464 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 465 /// FIXME: Remove in 4.0. Currently parse, but ignore. 466 bool LLParser::parseDepLibs() { 467 assert(Lex.getKind() == lltok::kw_deplibs); 468 Lex.Lex(); 469 if (parseToken(lltok::equal, "expected '=' after deplibs") || 470 parseToken(lltok::lsquare, "expected '=' after deplibs")) 471 return true; 472 473 if (EatIfPresent(lltok::rsquare)) 474 return false; 475 476 do { 477 std::string Str; 478 if (parseStringConstant(Str)) 479 return true; 480 } while (EatIfPresent(lltok::comma)); 481 482 return parseToken(lltok::rsquare, "expected ']' at end of list"); 483 } 484 485 /// parseUnnamedType: 486 /// ::= LocalVarID '=' 'type' type 487 bool LLParser::parseUnnamedType() { 488 LocTy TypeLoc = Lex.getLoc(); 489 unsigned TypeID = Lex.getUIntVal(); 490 Lex.Lex(); // eat LocalVarID; 491 492 if (parseToken(lltok::equal, "expected '=' after name") || 493 parseToken(lltok::kw_type, "expected 'type' after '='")) 494 return true; 495 496 Type *Result = nullptr; 497 if (parseStructDefinition(TypeLoc, "", NumberedTypes[TypeID], Result)) 498 return true; 499 500 if (!isa<StructType>(Result)) { 501 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 502 if (Entry.first) 503 return error(TypeLoc, "non-struct types may not be recursive"); 504 Entry.first = Result; 505 Entry.second = SMLoc(); 506 } 507 508 return false; 509 } 510 511 /// toplevelentity 512 /// ::= LocalVar '=' 'type' type 513 bool LLParser::parseNamedType() { 514 std::string Name = Lex.getStrVal(); 515 LocTy NameLoc = Lex.getLoc(); 516 Lex.Lex(); // eat LocalVar. 517 518 if (parseToken(lltok::equal, "expected '=' after name") || 519 parseToken(lltok::kw_type, "expected 'type' after name")) 520 return true; 521 522 Type *Result = nullptr; 523 if (parseStructDefinition(NameLoc, Name, NamedTypes[Name], Result)) 524 return true; 525 526 if (!isa<StructType>(Result)) { 527 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 528 if (Entry.first) 529 return error(NameLoc, "non-struct types may not be recursive"); 530 Entry.first = Result; 531 Entry.second = SMLoc(); 532 } 533 534 return false; 535 } 536 537 /// toplevelentity 538 /// ::= 'declare' FunctionHeader 539 bool LLParser::parseDeclare() { 540 assert(Lex.getKind() == lltok::kw_declare); 541 Lex.Lex(); 542 543 std::vector<std::pair<unsigned, MDNode *>> MDs; 544 while (Lex.getKind() == lltok::MetadataVar) { 545 unsigned MDK; 546 MDNode *N; 547 if (parseMetadataAttachment(MDK, N)) 548 return true; 549 MDs.push_back({MDK, N}); 550 } 551 552 Function *F; 553 if (parseFunctionHeader(F, false)) 554 return true; 555 for (auto &MD : MDs) 556 F->addMetadata(MD.first, *MD.second); 557 return false; 558 } 559 560 /// toplevelentity 561 /// ::= 'define' FunctionHeader (!dbg !56)* '{' ... 562 bool LLParser::parseDefine() { 563 assert(Lex.getKind() == lltok::kw_define); 564 Lex.Lex(); 565 566 Function *F; 567 return parseFunctionHeader(F, true) || parseOptionalFunctionMetadata(*F) || 568 parseFunctionBody(*F); 569 } 570 571 /// parseGlobalType 572 /// ::= 'constant' 573 /// ::= 'global' 574 bool LLParser::parseGlobalType(bool &IsConstant) { 575 if (Lex.getKind() == lltok::kw_constant) 576 IsConstant = true; 577 else if (Lex.getKind() == lltok::kw_global) 578 IsConstant = false; 579 else { 580 IsConstant = false; 581 return tokError("expected 'global' or 'constant'"); 582 } 583 Lex.Lex(); 584 return false; 585 } 586 587 bool LLParser::parseOptionalUnnamedAddr( 588 GlobalVariable::UnnamedAddr &UnnamedAddr) { 589 if (EatIfPresent(lltok::kw_unnamed_addr)) 590 UnnamedAddr = GlobalValue::UnnamedAddr::Global; 591 else if (EatIfPresent(lltok::kw_local_unnamed_addr)) 592 UnnamedAddr = GlobalValue::UnnamedAddr::Local; 593 else 594 UnnamedAddr = GlobalValue::UnnamedAddr::None; 595 return false; 596 } 597 598 /// parseUnnamedGlobal: 599 /// OptionalVisibility (ALIAS | IFUNC) ... 600 /// OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 601 /// OptionalDLLStorageClass 602 /// ... -> global variable 603 /// GlobalID '=' OptionalVisibility (ALIAS | IFUNC) ... 604 /// GlobalID '=' OptionalLinkage OptionalPreemptionSpecifier 605 /// OptionalVisibility 606 /// OptionalDLLStorageClass 607 /// ... -> global variable 608 bool LLParser::parseUnnamedGlobal() { 609 unsigned VarID = NumberedVals.size(); 610 std::string Name; 611 LocTy NameLoc = Lex.getLoc(); 612 613 // Handle the GlobalID form. 614 if (Lex.getKind() == lltok::GlobalID) { 615 if (Lex.getUIntVal() != VarID) 616 return error(Lex.getLoc(), 617 "variable expected to be numbered '%" + Twine(VarID) + "'"); 618 Lex.Lex(); // eat GlobalID; 619 620 if (parseToken(lltok::equal, "expected '=' after name")) 621 return true; 622 } 623 624 bool HasLinkage; 625 unsigned Linkage, Visibility, DLLStorageClass; 626 bool DSOLocal; 627 GlobalVariable::ThreadLocalMode TLM; 628 GlobalVariable::UnnamedAddr UnnamedAddr; 629 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 630 DSOLocal) || 631 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 632 return true; 633 634 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 635 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 636 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 637 638 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 639 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 640 } 641 642 /// parseNamedGlobal: 643 /// GlobalVar '=' OptionalVisibility (ALIAS | IFUNC) ... 644 /// GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 645 /// OptionalVisibility OptionalDLLStorageClass 646 /// ... -> global variable 647 bool LLParser::parseNamedGlobal() { 648 assert(Lex.getKind() == lltok::GlobalVar); 649 LocTy NameLoc = Lex.getLoc(); 650 std::string Name = Lex.getStrVal(); 651 Lex.Lex(); 652 653 bool HasLinkage; 654 unsigned Linkage, Visibility, DLLStorageClass; 655 bool DSOLocal; 656 GlobalVariable::ThreadLocalMode TLM; 657 GlobalVariable::UnnamedAddr UnnamedAddr; 658 if (parseToken(lltok::equal, "expected '=' in global variable") || 659 parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 660 DSOLocal) || 661 parseOptionalThreadLocal(TLM) || parseOptionalUnnamedAddr(UnnamedAddr)) 662 return true; 663 664 if (Lex.getKind() != lltok::kw_alias && Lex.getKind() != lltok::kw_ifunc) 665 return parseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility, 666 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 667 668 return parseIndirectSymbol(Name, NameLoc, Linkage, Visibility, 669 DLLStorageClass, DSOLocal, TLM, UnnamedAddr); 670 } 671 672 bool LLParser::parseComdat() { 673 assert(Lex.getKind() == lltok::ComdatVar); 674 std::string Name = Lex.getStrVal(); 675 LocTy NameLoc = Lex.getLoc(); 676 Lex.Lex(); 677 678 if (parseToken(lltok::equal, "expected '=' here")) 679 return true; 680 681 if (parseToken(lltok::kw_comdat, "expected comdat keyword")) 682 return tokError("expected comdat type"); 683 684 Comdat::SelectionKind SK; 685 switch (Lex.getKind()) { 686 default: 687 return tokError("unknown selection kind"); 688 case lltok::kw_any: 689 SK = Comdat::Any; 690 break; 691 case lltok::kw_exactmatch: 692 SK = Comdat::ExactMatch; 693 break; 694 case lltok::kw_largest: 695 SK = Comdat::Largest; 696 break; 697 case lltok::kw_noduplicates: 698 SK = Comdat::NoDuplicates; 699 break; 700 case lltok::kw_samesize: 701 SK = Comdat::SameSize; 702 break; 703 } 704 Lex.Lex(); 705 706 // See if the comdat was forward referenced, if so, use the comdat. 707 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 708 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 709 if (I != ComdatSymTab.end() && !ForwardRefComdats.erase(Name)) 710 return error(NameLoc, "redefinition of comdat '$" + Name + "'"); 711 712 Comdat *C; 713 if (I != ComdatSymTab.end()) 714 C = &I->second; 715 else 716 C = M->getOrInsertComdat(Name); 717 C->setSelectionKind(SK); 718 719 return false; 720 } 721 722 // MDString: 723 // ::= '!' STRINGCONSTANT 724 bool LLParser::parseMDString(MDString *&Result) { 725 std::string Str; 726 if (parseStringConstant(Str)) 727 return true; 728 Result = MDString::get(Context, Str); 729 return false; 730 } 731 732 // MDNode: 733 // ::= '!' MDNodeNumber 734 bool LLParser::parseMDNodeID(MDNode *&Result) { 735 // !{ ..., !42, ... } 736 LocTy IDLoc = Lex.getLoc(); 737 unsigned MID = 0; 738 if (parseUInt32(MID)) 739 return true; 740 741 // If not a forward reference, just return it now. 742 if (NumberedMetadata.count(MID)) { 743 Result = NumberedMetadata[MID]; 744 return false; 745 } 746 747 // Otherwise, create MDNode forward reference. 748 auto &FwdRef = ForwardRefMDNodes[MID]; 749 FwdRef = std::make_pair(MDTuple::getTemporary(Context, None), IDLoc); 750 751 Result = FwdRef.first.get(); 752 NumberedMetadata[MID].reset(Result); 753 return false; 754 } 755 756 /// parseNamedMetadata: 757 /// !foo = !{ !1, !2 } 758 bool LLParser::parseNamedMetadata() { 759 assert(Lex.getKind() == lltok::MetadataVar); 760 std::string Name = Lex.getStrVal(); 761 Lex.Lex(); 762 763 if (parseToken(lltok::equal, "expected '=' here") || 764 parseToken(lltok::exclaim, "Expected '!' here") || 765 parseToken(lltok::lbrace, "Expected '{' here")) 766 return true; 767 768 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 769 if (Lex.getKind() != lltok::rbrace) 770 do { 771 MDNode *N = nullptr; 772 // parse DIExpressions inline as a special case. They are still MDNodes, 773 // so they can still appear in named metadata. Remove this logic if they 774 // become plain Metadata. 775 if (Lex.getKind() == lltok::MetadataVar && 776 Lex.getStrVal() == "DIExpression") { 777 if (parseDIExpression(N, /*IsDistinct=*/false)) 778 return true; 779 } else if (parseToken(lltok::exclaim, "Expected '!' here") || 780 parseMDNodeID(N)) { 781 return true; 782 } 783 NMD->addOperand(N); 784 } while (EatIfPresent(lltok::comma)); 785 786 return parseToken(lltok::rbrace, "expected end of metadata node"); 787 } 788 789 /// parseStandaloneMetadata: 790 /// !42 = !{...} 791 bool LLParser::parseStandaloneMetadata() { 792 assert(Lex.getKind() == lltok::exclaim); 793 Lex.Lex(); 794 unsigned MetadataID = 0; 795 796 MDNode *Init; 797 if (parseUInt32(MetadataID) || parseToken(lltok::equal, "expected '=' here")) 798 return true; 799 800 // Detect common error, from old metadata syntax. 801 if (Lex.getKind() == lltok::Type) 802 return tokError("unexpected type in metadata definition"); 803 804 bool IsDistinct = EatIfPresent(lltok::kw_distinct); 805 if (Lex.getKind() == lltok::MetadataVar) { 806 if (parseSpecializedMDNode(Init, IsDistinct)) 807 return true; 808 } else if (parseToken(lltok::exclaim, "Expected '!' here") || 809 parseMDTuple(Init, IsDistinct)) 810 return true; 811 812 // See if this was forward referenced, if so, handle it. 813 auto FI = ForwardRefMDNodes.find(MetadataID); 814 if (FI != ForwardRefMDNodes.end()) { 815 FI->second.first->replaceAllUsesWith(Init); 816 ForwardRefMDNodes.erase(FI); 817 818 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 819 } else { 820 if (NumberedMetadata.count(MetadataID)) 821 return tokError("Metadata id is already used"); 822 NumberedMetadata[MetadataID].reset(Init); 823 } 824 825 return false; 826 } 827 828 // Skips a single module summary entry. 829 bool LLParser::skipModuleSummaryEntry() { 830 // Each module summary entry consists of a tag for the entry 831 // type, followed by a colon, then the fields which may be surrounded by 832 // nested sets of parentheses. The "tag:" looks like a Label. Once parsing 833 // support is in place we will look for the tokens corresponding to the 834 // expected tags. 835 if (Lex.getKind() != lltok::kw_gv && Lex.getKind() != lltok::kw_module && 836 Lex.getKind() != lltok::kw_typeid && Lex.getKind() != lltok::kw_flags && 837 Lex.getKind() != lltok::kw_blockcount) 838 return tokError( 839 "Expected 'gv', 'module', 'typeid', 'flags' or 'blockcount' at the " 840 "start of summary entry"); 841 if (Lex.getKind() == lltok::kw_flags) 842 return parseSummaryIndexFlags(); 843 if (Lex.getKind() == lltok::kw_blockcount) 844 return parseBlockCount(); 845 Lex.Lex(); 846 if (parseToken(lltok::colon, "expected ':' at start of summary entry") || 847 parseToken(lltok::lparen, "expected '(' at start of summary entry")) 848 return true; 849 // Now walk through the parenthesized entry, until the number of open 850 // parentheses goes back down to 0 (the first '(' was parsed above). 851 unsigned NumOpenParen = 1; 852 do { 853 switch (Lex.getKind()) { 854 case lltok::lparen: 855 NumOpenParen++; 856 break; 857 case lltok::rparen: 858 NumOpenParen--; 859 break; 860 case lltok::Eof: 861 return tokError("found end of file while parsing summary entry"); 862 default: 863 // Skip everything in between parentheses. 864 break; 865 } 866 Lex.Lex(); 867 } while (NumOpenParen > 0); 868 return false; 869 } 870 871 /// SummaryEntry 872 /// ::= SummaryID '=' GVEntry | ModuleEntry | TypeIdEntry 873 bool LLParser::parseSummaryEntry() { 874 assert(Lex.getKind() == lltok::SummaryID); 875 unsigned SummaryID = Lex.getUIntVal(); 876 877 // For summary entries, colons should be treated as distinct tokens, 878 // not an indication of the end of a label token. 879 Lex.setIgnoreColonInIdentifiers(true); 880 881 Lex.Lex(); 882 if (parseToken(lltok::equal, "expected '=' here")) 883 return true; 884 885 // If we don't have an index object, skip the summary entry. 886 if (!Index) 887 return skipModuleSummaryEntry(); 888 889 bool result = false; 890 switch (Lex.getKind()) { 891 case lltok::kw_gv: 892 result = parseGVEntry(SummaryID); 893 break; 894 case lltok::kw_module: 895 result = parseModuleEntry(SummaryID); 896 break; 897 case lltok::kw_typeid: 898 result = parseTypeIdEntry(SummaryID); 899 break; 900 case lltok::kw_typeidCompatibleVTable: 901 result = parseTypeIdCompatibleVtableEntry(SummaryID); 902 break; 903 case lltok::kw_flags: 904 result = parseSummaryIndexFlags(); 905 break; 906 case lltok::kw_blockcount: 907 result = parseBlockCount(); 908 break; 909 default: 910 result = error(Lex.getLoc(), "unexpected summary kind"); 911 break; 912 } 913 Lex.setIgnoreColonInIdentifiers(false); 914 return result; 915 } 916 917 static bool isValidVisibilityForLinkage(unsigned V, unsigned L) { 918 return !GlobalValue::isLocalLinkage((GlobalValue::LinkageTypes)L) || 919 (GlobalValue::VisibilityTypes)V == GlobalValue::DefaultVisibility; 920 } 921 922 // If there was an explicit dso_local, update GV. In the absence of an explicit 923 // dso_local we keep the default value. 924 static void maybeSetDSOLocal(bool DSOLocal, GlobalValue &GV) { 925 if (DSOLocal) 926 GV.setDSOLocal(true); 927 } 928 929 /// parseIndirectSymbol: 930 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 931 /// OptionalVisibility OptionalDLLStorageClass 932 /// OptionalThreadLocal OptionalUnnamedAddr 933 /// 'alias|ifunc' IndirectSymbol IndirectSymbolAttr* 934 /// 935 /// IndirectSymbol 936 /// ::= TypeAndValue 937 /// 938 /// IndirectSymbolAttr 939 /// ::= ',' 'partition' StringConstant 940 /// 941 /// Everything through OptionalUnnamedAddr has already been parsed. 942 /// 943 bool LLParser::parseIndirectSymbol(const std::string &Name, LocTy NameLoc, 944 unsigned L, unsigned Visibility, 945 unsigned DLLStorageClass, bool DSOLocal, 946 GlobalVariable::ThreadLocalMode TLM, 947 GlobalVariable::UnnamedAddr UnnamedAddr) { 948 bool IsAlias; 949 if (Lex.getKind() == lltok::kw_alias) 950 IsAlias = true; 951 else if (Lex.getKind() == lltok::kw_ifunc) 952 IsAlias = false; 953 else 954 llvm_unreachable("Not an alias or ifunc!"); 955 Lex.Lex(); 956 957 GlobalValue::LinkageTypes Linkage = (GlobalValue::LinkageTypes) L; 958 959 if(IsAlias && !GlobalAlias::isValidLinkage(Linkage)) 960 return error(NameLoc, "invalid linkage type for alias"); 961 962 if (!isValidVisibilityForLinkage(Visibility, L)) 963 return error(NameLoc, 964 "symbol with local linkage must have default visibility"); 965 966 Type *Ty; 967 LocTy ExplicitTypeLoc = Lex.getLoc(); 968 if (parseType(Ty) || 969 parseToken(lltok::comma, "expected comma after alias or ifunc's type")) 970 return true; 971 972 Constant *Aliasee; 973 LocTy AliaseeLoc = Lex.getLoc(); 974 if (Lex.getKind() != lltok::kw_bitcast && 975 Lex.getKind() != lltok::kw_getelementptr && 976 Lex.getKind() != lltok::kw_addrspacecast && 977 Lex.getKind() != lltok::kw_inttoptr) { 978 if (parseGlobalTypeAndValue(Aliasee)) 979 return true; 980 } else { 981 // The bitcast dest type is not present, it is implied by the dest type. 982 ValID ID; 983 if (parseValID(ID)) 984 return true; 985 if (ID.Kind != ValID::t_Constant) 986 return error(AliaseeLoc, "invalid aliasee"); 987 Aliasee = ID.ConstantVal; 988 } 989 990 Type *AliaseeType = Aliasee->getType(); 991 auto *PTy = dyn_cast<PointerType>(AliaseeType); 992 if (!PTy) 993 return error(AliaseeLoc, "An alias or ifunc must have pointer type"); 994 unsigned AddrSpace = PTy->getAddressSpace(); 995 996 if (IsAlias && Ty != PTy->getElementType()) 997 return error(ExplicitTypeLoc, 998 "explicit pointee type doesn't match operand's pointee type"); 999 1000 if (!IsAlias && !PTy->getElementType()->isFunctionTy()) 1001 return error(ExplicitTypeLoc, 1002 "explicit pointee type should be a function type"); 1003 1004 GlobalValue *GVal = nullptr; 1005 1006 // See if the alias was forward referenced, if so, prepare to replace the 1007 // forward reference. 1008 if (!Name.empty()) { 1009 GVal = M->getNamedValue(Name); 1010 if (GVal) { 1011 if (!ForwardRefVals.erase(Name)) 1012 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1013 } 1014 } else { 1015 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1016 if (I != ForwardRefValIDs.end()) { 1017 GVal = I->second.first; 1018 ForwardRefValIDs.erase(I); 1019 } 1020 } 1021 1022 // Okay, create the alias but do not insert it into the module yet. 1023 std::unique_ptr<GlobalIndirectSymbol> GA; 1024 if (IsAlias) 1025 GA.reset(GlobalAlias::create(Ty, AddrSpace, 1026 (GlobalValue::LinkageTypes)Linkage, Name, 1027 Aliasee, /*Parent*/ nullptr)); 1028 else 1029 GA.reset(GlobalIFunc::create(Ty, AddrSpace, 1030 (GlobalValue::LinkageTypes)Linkage, Name, 1031 Aliasee, /*Parent*/ nullptr)); 1032 GA->setThreadLocalMode(TLM); 1033 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1034 GA->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1035 GA->setUnnamedAddr(UnnamedAddr); 1036 maybeSetDSOLocal(DSOLocal, *GA); 1037 1038 // At this point we've parsed everything except for the IndirectSymbolAttrs. 1039 // Now parse them if there are any. 1040 while (Lex.getKind() == lltok::comma) { 1041 Lex.Lex(); 1042 1043 if (Lex.getKind() == lltok::kw_partition) { 1044 Lex.Lex(); 1045 GA->setPartition(Lex.getStrVal()); 1046 if (parseToken(lltok::StringConstant, "expected partition string")) 1047 return true; 1048 } else { 1049 return tokError("unknown alias or ifunc property!"); 1050 } 1051 } 1052 1053 if (Name.empty()) 1054 NumberedVals.push_back(GA.get()); 1055 1056 if (GVal) { 1057 // Verify that types agree. 1058 if (GVal->getType() != GA->getType()) 1059 return error( 1060 ExplicitTypeLoc, 1061 "forward reference and definition of alias have different types"); 1062 1063 // If they agree, just RAUW the old value with the alias and remove the 1064 // forward ref info. 1065 GVal->replaceAllUsesWith(GA.get()); 1066 GVal->eraseFromParent(); 1067 } 1068 1069 // Insert into the module, we know its name won't collide now. 1070 if (IsAlias) 1071 M->getAliasList().push_back(cast<GlobalAlias>(GA.get())); 1072 else 1073 M->getIFuncList().push_back(cast<GlobalIFunc>(GA.get())); 1074 assert(GA->getName() == Name && "Should not be a name conflict!"); 1075 1076 // The module owns this now 1077 GA.release(); 1078 1079 return false; 1080 } 1081 1082 /// parseGlobal 1083 /// ::= GlobalVar '=' OptionalLinkage OptionalPreemptionSpecifier 1084 /// OptionalVisibility OptionalDLLStorageClass 1085 /// OptionalThreadLocal OptionalUnnamedAddr OptionalAddrSpace 1086 /// OptionalExternallyInitialized GlobalType Type Const OptionalAttrs 1087 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 1088 /// OptionalDLLStorageClass OptionalThreadLocal OptionalUnnamedAddr 1089 /// OptionalAddrSpace OptionalExternallyInitialized GlobalType Type 1090 /// Const OptionalAttrs 1091 /// 1092 /// Everything up to and including OptionalUnnamedAddr has been parsed 1093 /// already. 1094 /// 1095 bool LLParser::parseGlobal(const std::string &Name, LocTy NameLoc, 1096 unsigned Linkage, bool HasLinkage, 1097 unsigned Visibility, unsigned DLLStorageClass, 1098 bool DSOLocal, GlobalVariable::ThreadLocalMode TLM, 1099 GlobalVariable::UnnamedAddr UnnamedAddr) { 1100 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 1101 return error(NameLoc, 1102 "symbol with local linkage must have default visibility"); 1103 1104 unsigned AddrSpace; 1105 bool IsConstant, IsExternallyInitialized; 1106 LocTy IsExternallyInitializedLoc; 1107 LocTy TyLoc; 1108 1109 Type *Ty = nullptr; 1110 if (parseOptionalAddrSpace(AddrSpace) || 1111 parseOptionalToken(lltok::kw_externally_initialized, 1112 IsExternallyInitialized, 1113 &IsExternallyInitializedLoc) || 1114 parseGlobalType(IsConstant) || parseType(Ty, TyLoc)) 1115 return true; 1116 1117 // If the linkage is specified and is external, then no initializer is 1118 // present. 1119 Constant *Init = nullptr; 1120 if (!HasLinkage || 1121 !GlobalValue::isValidDeclarationLinkage( 1122 (GlobalValue::LinkageTypes)Linkage)) { 1123 if (parseGlobalValue(Ty, Init)) 1124 return true; 1125 } 1126 1127 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 1128 return error(TyLoc, "invalid type for global variable"); 1129 1130 GlobalValue *GVal = nullptr; 1131 1132 // See if the global was forward referenced, if so, use the global. 1133 if (!Name.empty()) { 1134 GVal = M->getNamedValue(Name); 1135 if (GVal) { 1136 if (!ForwardRefVals.erase(Name)) 1137 return error(NameLoc, "redefinition of global '@" + Name + "'"); 1138 } 1139 } else { 1140 auto I = ForwardRefValIDs.find(NumberedVals.size()); 1141 if (I != ForwardRefValIDs.end()) { 1142 GVal = I->second.first; 1143 ForwardRefValIDs.erase(I); 1144 } 1145 } 1146 1147 GlobalVariable *GV; 1148 if (!GVal) { 1149 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, nullptr, 1150 Name, nullptr, GlobalVariable::NotThreadLocal, 1151 AddrSpace); 1152 } else { 1153 if (GVal->getValueType() != Ty) 1154 return error( 1155 TyLoc, 1156 "forward reference and definition of global have different types"); 1157 1158 GV = cast<GlobalVariable>(GVal); 1159 1160 // Move the forward-reference to the correct spot in the module. 1161 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 1162 } 1163 1164 if (Name.empty()) 1165 NumberedVals.push_back(GV); 1166 1167 // Set the parsed properties on the global. 1168 if (Init) 1169 GV->setInitializer(Init); 1170 GV->setConstant(IsConstant); 1171 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 1172 maybeSetDSOLocal(DSOLocal, *GV); 1173 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 1174 GV->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 1175 GV->setExternallyInitialized(IsExternallyInitialized); 1176 GV->setThreadLocalMode(TLM); 1177 GV->setUnnamedAddr(UnnamedAddr); 1178 1179 // parse attributes on the global. 1180 while (Lex.getKind() == lltok::comma) { 1181 Lex.Lex(); 1182 1183 if (Lex.getKind() == lltok::kw_section) { 1184 Lex.Lex(); 1185 GV->setSection(Lex.getStrVal()); 1186 if (parseToken(lltok::StringConstant, "expected global section string")) 1187 return true; 1188 } else if (Lex.getKind() == lltok::kw_partition) { 1189 Lex.Lex(); 1190 GV->setPartition(Lex.getStrVal()); 1191 if (parseToken(lltok::StringConstant, "expected partition string")) 1192 return true; 1193 } else if (Lex.getKind() == lltok::kw_align) { 1194 MaybeAlign Alignment; 1195 if (parseOptionalAlignment(Alignment)) 1196 return true; 1197 GV->setAlignment(Alignment); 1198 } else if (Lex.getKind() == lltok::MetadataVar) { 1199 if (parseGlobalObjectMetadataAttachment(*GV)) 1200 return true; 1201 } else { 1202 Comdat *C; 1203 if (parseOptionalComdat(Name, C)) 1204 return true; 1205 if (C) 1206 GV->setComdat(C); 1207 else 1208 return tokError("unknown global variable property!"); 1209 } 1210 } 1211 1212 AttrBuilder Attrs; 1213 LocTy BuiltinLoc; 1214 std::vector<unsigned> FwdRefAttrGrps; 1215 if (parseFnAttributeValuePairs(Attrs, FwdRefAttrGrps, false, BuiltinLoc)) 1216 return true; 1217 if (Attrs.hasAttributes() || !FwdRefAttrGrps.empty()) { 1218 GV->setAttributes(AttributeSet::get(Context, Attrs)); 1219 ForwardRefAttrGroups[GV] = FwdRefAttrGrps; 1220 } 1221 1222 return false; 1223 } 1224 1225 /// parseUnnamedAttrGrp 1226 /// ::= 'attributes' AttrGrpID '=' '{' AttrValPair+ '}' 1227 bool LLParser::parseUnnamedAttrGrp() { 1228 assert(Lex.getKind() == lltok::kw_attributes); 1229 LocTy AttrGrpLoc = Lex.getLoc(); 1230 Lex.Lex(); 1231 1232 if (Lex.getKind() != lltok::AttrGrpID) 1233 return tokError("expected attribute group id"); 1234 1235 unsigned VarID = Lex.getUIntVal(); 1236 std::vector<unsigned> unused; 1237 LocTy BuiltinLoc; 1238 Lex.Lex(); 1239 1240 if (parseToken(lltok::equal, "expected '=' here") || 1241 parseToken(lltok::lbrace, "expected '{' here") || 1242 parseFnAttributeValuePairs(NumberedAttrBuilders[VarID], unused, true, 1243 BuiltinLoc) || 1244 parseToken(lltok::rbrace, "expected end of attribute group")) 1245 return true; 1246 1247 if (!NumberedAttrBuilders[VarID].hasAttributes()) 1248 return error(AttrGrpLoc, "attribute group has no attributes"); 1249 1250 return false; 1251 } 1252 1253 /// parseFnAttributeValuePairs 1254 /// ::= <attr> | <attr> '=' <value> 1255 bool LLParser::parseFnAttributeValuePairs(AttrBuilder &B, 1256 std::vector<unsigned> &FwdRefAttrGrps, 1257 bool inAttrGrp, LocTy &BuiltinLoc) { 1258 bool HaveError = false; 1259 1260 B.clear(); 1261 1262 while (true) { 1263 lltok::Kind Token = Lex.getKind(); 1264 if (Token == lltok::kw_builtin) 1265 BuiltinLoc = Lex.getLoc(); 1266 switch (Token) { 1267 default: 1268 if (!inAttrGrp) return HaveError; 1269 return error(Lex.getLoc(), "unterminated attribute group"); 1270 case lltok::rbrace: 1271 // Finished. 1272 return false; 1273 1274 case lltok::AttrGrpID: { 1275 // Allow a function to reference an attribute group: 1276 // 1277 // define void @foo() #1 { ... } 1278 if (inAttrGrp) 1279 HaveError |= error( 1280 Lex.getLoc(), 1281 "cannot have an attribute group reference in an attribute group"); 1282 1283 unsigned AttrGrpNum = Lex.getUIntVal(); 1284 if (inAttrGrp) break; 1285 1286 // Save the reference to the attribute group. We'll fill it in later. 1287 FwdRefAttrGrps.push_back(AttrGrpNum); 1288 break; 1289 } 1290 // Target-dependent attributes: 1291 case lltok::StringConstant: { 1292 if (parseStringAttribute(B)) 1293 return true; 1294 continue; 1295 } 1296 1297 // Target-independent attributes: 1298 case lltok::kw_align: { 1299 // As a hack, we allow function alignment to be initially parsed as an 1300 // attribute on a function declaration/definition or added to an attribute 1301 // group and later moved to the alignment field. 1302 MaybeAlign Alignment; 1303 if (inAttrGrp) { 1304 Lex.Lex(); 1305 uint32_t Value = 0; 1306 if (parseToken(lltok::equal, "expected '=' here") || parseUInt32(Value)) 1307 return true; 1308 Alignment = Align(Value); 1309 } else { 1310 if (parseOptionalAlignment(Alignment)) 1311 return true; 1312 } 1313 B.addAlignmentAttr(Alignment); 1314 continue; 1315 } 1316 case lltok::kw_alignstack: { 1317 unsigned Alignment; 1318 if (inAttrGrp) { 1319 Lex.Lex(); 1320 if (parseToken(lltok::equal, "expected '=' here") || 1321 parseUInt32(Alignment)) 1322 return true; 1323 } else { 1324 if (parseOptionalStackAlignment(Alignment)) 1325 return true; 1326 } 1327 B.addStackAlignmentAttr(Alignment); 1328 continue; 1329 } 1330 case lltok::kw_allocsize: { 1331 unsigned ElemSizeArg; 1332 Optional<unsigned> NumElemsArg; 1333 // inAttrGrp doesn't matter; we only support allocsize(a[, b]) 1334 if (parseAllocSizeArguments(ElemSizeArg, NumElemsArg)) 1335 return true; 1336 B.addAllocSizeAttr(ElemSizeArg, NumElemsArg); 1337 continue; 1338 } 1339 case lltok::kw_alwaysinline: B.addAttribute(Attribute::AlwaysInline); break; 1340 case lltok::kw_argmemonly: B.addAttribute(Attribute::ArgMemOnly); break; 1341 case lltok::kw_builtin: B.addAttribute(Attribute::Builtin); break; 1342 case lltok::kw_cold: B.addAttribute(Attribute::Cold); break; 1343 case lltok::kw_convergent: B.addAttribute(Attribute::Convergent); break; 1344 case lltok::kw_inaccessiblememonly: 1345 B.addAttribute(Attribute::InaccessibleMemOnly); break; 1346 case lltok::kw_inaccessiblemem_or_argmemonly: 1347 B.addAttribute(Attribute::InaccessibleMemOrArgMemOnly); break; 1348 case lltok::kw_inlinehint: B.addAttribute(Attribute::InlineHint); break; 1349 case lltok::kw_jumptable: B.addAttribute(Attribute::JumpTable); break; 1350 case lltok::kw_minsize: B.addAttribute(Attribute::MinSize); break; 1351 case lltok::kw_mustprogress: 1352 B.addAttribute(Attribute::MustProgress); 1353 break; 1354 case lltok::kw_naked: B.addAttribute(Attribute::Naked); break; 1355 case lltok::kw_nobuiltin: B.addAttribute(Attribute::NoBuiltin); break; 1356 case lltok::kw_noduplicate: B.addAttribute(Attribute::NoDuplicate); break; 1357 case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break; 1358 case lltok::kw_noimplicitfloat: 1359 B.addAttribute(Attribute::NoImplicitFloat); break; 1360 case lltok::kw_noinline: B.addAttribute(Attribute::NoInline); break; 1361 case lltok::kw_nonlazybind: B.addAttribute(Attribute::NonLazyBind); break; 1362 case lltok::kw_nomerge: B.addAttribute(Attribute::NoMerge); break; 1363 case lltok::kw_noredzone: B.addAttribute(Attribute::NoRedZone); break; 1364 case lltok::kw_noreturn: B.addAttribute(Attribute::NoReturn); break; 1365 case lltok::kw_nosync: B.addAttribute(Attribute::NoSync); break; 1366 case lltok::kw_nocf_check: B.addAttribute(Attribute::NoCfCheck); break; 1367 case lltok::kw_norecurse: B.addAttribute(Attribute::NoRecurse); break; 1368 case lltok::kw_nounwind: B.addAttribute(Attribute::NoUnwind); break; 1369 case lltok::kw_null_pointer_is_valid: 1370 B.addAttribute(Attribute::NullPointerIsValid); break; 1371 case lltok::kw_optforfuzzing: 1372 B.addAttribute(Attribute::OptForFuzzing); break; 1373 case lltok::kw_optnone: B.addAttribute(Attribute::OptimizeNone); break; 1374 case lltok::kw_optsize: B.addAttribute(Attribute::OptimizeForSize); break; 1375 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1376 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1377 case lltok::kw_returns_twice: 1378 B.addAttribute(Attribute::ReturnsTwice); break; 1379 case lltok::kw_speculatable: B.addAttribute(Attribute::Speculatable); break; 1380 case lltok::kw_ssp: B.addAttribute(Attribute::StackProtect); break; 1381 case lltok::kw_sspreq: B.addAttribute(Attribute::StackProtectReq); break; 1382 case lltok::kw_sspstrong: 1383 B.addAttribute(Attribute::StackProtectStrong); break; 1384 case lltok::kw_safestack: B.addAttribute(Attribute::SafeStack); break; 1385 case lltok::kw_shadowcallstack: 1386 B.addAttribute(Attribute::ShadowCallStack); break; 1387 case lltok::kw_sanitize_address: 1388 B.addAttribute(Attribute::SanitizeAddress); break; 1389 case lltok::kw_sanitize_hwaddress: 1390 B.addAttribute(Attribute::SanitizeHWAddress); break; 1391 case lltok::kw_sanitize_memtag: 1392 B.addAttribute(Attribute::SanitizeMemTag); break; 1393 case lltok::kw_sanitize_thread: 1394 B.addAttribute(Attribute::SanitizeThread); break; 1395 case lltok::kw_sanitize_memory: 1396 B.addAttribute(Attribute::SanitizeMemory); break; 1397 case lltok::kw_speculative_load_hardening: 1398 B.addAttribute(Attribute::SpeculativeLoadHardening); 1399 break; 1400 case lltok::kw_strictfp: B.addAttribute(Attribute::StrictFP); break; 1401 case lltok::kw_uwtable: B.addAttribute(Attribute::UWTable); break; 1402 case lltok::kw_willreturn: B.addAttribute(Attribute::WillReturn); break; 1403 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1404 case lltok::kw_preallocated: { 1405 Type *Ty; 1406 if (parsePreallocated(Ty)) 1407 return true; 1408 B.addPreallocatedAttr(Ty); 1409 break; 1410 } 1411 1412 // error handling. 1413 case lltok::kw_inreg: 1414 case lltok::kw_signext: 1415 case lltok::kw_zeroext: 1416 HaveError |= 1417 error(Lex.getLoc(), "invalid use of attribute on a function"); 1418 break; 1419 case lltok::kw_byval: 1420 case lltok::kw_dereferenceable: 1421 case lltok::kw_dereferenceable_or_null: 1422 case lltok::kw_inalloca: 1423 case lltok::kw_nest: 1424 case lltok::kw_noalias: 1425 case lltok::kw_noundef: 1426 case lltok::kw_nocapture: 1427 case lltok::kw_nonnull: 1428 case lltok::kw_returned: 1429 case lltok::kw_sret: 1430 case lltok::kw_swifterror: 1431 case lltok::kw_swiftself: 1432 case lltok::kw_immarg: 1433 case lltok::kw_byref: 1434 HaveError |= 1435 error(Lex.getLoc(), 1436 "invalid use of parameter-only attribute on a function"); 1437 break; 1438 } 1439 1440 // parsePreallocated() consumes token 1441 if (Token != lltok::kw_preallocated) 1442 Lex.Lex(); 1443 } 1444 } 1445 1446 //===----------------------------------------------------------------------===// 1447 // GlobalValue Reference/Resolution Routines. 1448 //===----------------------------------------------------------------------===// 1449 1450 static inline GlobalValue *createGlobalFwdRef(Module *M, PointerType *PTy, 1451 const std::string &Name) { 1452 if (auto *FT = dyn_cast<FunctionType>(PTy->getElementType())) 1453 return Function::Create(FT, GlobalValue::ExternalWeakLinkage, 1454 PTy->getAddressSpace(), Name, M); 1455 else 1456 return new GlobalVariable(*M, PTy->getElementType(), false, 1457 GlobalValue::ExternalWeakLinkage, nullptr, Name, 1458 nullptr, GlobalVariable::NotThreadLocal, 1459 PTy->getAddressSpace()); 1460 } 1461 1462 Value *LLParser::checkValidVariableType(LocTy Loc, const Twine &Name, Type *Ty, 1463 Value *Val, bool IsCall) { 1464 if (Val->getType() == Ty) 1465 return Val; 1466 // For calls we also accept variables in the program address space. 1467 Type *SuggestedTy = Ty; 1468 if (IsCall && isa<PointerType>(Ty)) { 1469 Type *TyInProgAS = cast<PointerType>(Ty)->getElementType()->getPointerTo( 1470 M->getDataLayout().getProgramAddressSpace()); 1471 SuggestedTy = TyInProgAS; 1472 if (Val->getType() == TyInProgAS) 1473 return Val; 1474 } 1475 if (Ty->isLabelTy()) 1476 error(Loc, "'" + Name + "' is not a basic block"); 1477 else 1478 error(Loc, "'" + Name + "' defined with type '" + 1479 getTypeString(Val->getType()) + "' but expected '" + 1480 getTypeString(SuggestedTy) + "'"); 1481 return nullptr; 1482 } 1483 1484 /// getGlobalVal - Get a value with the specified name or ID, creating a 1485 /// forward reference record if needed. This can return null if the value 1486 /// exists but does not have the right type. 1487 GlobalValue *LLParser::getGlobalVal(const std::string &Name, Type *Ty, 1488 LocTy Loc, bool IsCall) { 1489 PointerType *PTy = dyn_cast<PointerType>(Ty); 1490 if (!PTy) { 1491 error(Loc, "global variable reference must have pointer type"); 1492 return nullptr; 1493 } 1494 1495 // Look this name up in the normal function symbol table. 1496 GlobalValue *Val = 1497 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 1498 1499 // If this is a forward reference for the value, see if we already created a 1500 // forward ref record. 1501 if (!Val) { 1502 auto I = ForwardRefVals.find(Name); 1503 if (I != ForwardRefVals.end()) 1504 Val = I->second.first; 1505 } 1506 1507 // If we have the value in the symbol table or fwd-ref table, return it. 1508 if (Val) 1509 return cast_or_null<GlobalValue>( 1510 checkValidVariableType(Loc, "@" + Name, Ty, Val, IsCall)); 1511 1512 // Otherwise, create a new forward reference for this value and remember it. 1513 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, Name); 1514 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1515 return FwdVal; 1516 } 1517 1518 GlobalValue *LLParser::getGlobalVal(unsigned ID, Type *Ty, LocTy Loc, 1519 bool IsCall) { 1520 PointerType *PTy = dyn_cast<PointerType>(Ty); 1521 if (!PTy) { 1522 error(Loc, "global variable reference must have pointer type"); 1523 return nullptr; 1524 } 1525 1526 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 1527 1528 // If this is a forward reference for the value, see if we already created a 1529 // forward ref record. 1530 if (!Val) { 1531 auto I = ForwardRefValIDs.find(ID); 1532 if (I != ForwardRefValIDs.end()) 1533 Val = I->second.first; 1534 } 1535 1536 // If we have the value in the symbol table or fwd-ref table, return it. 1537 if (Val) 1538 return cast_or_null<GlobalValue>( 1539 checkValidVariableType(Loc, "@" + Twine(ID), Ty, Val, IsCall)); 1540 1541 // Otherwise, create a new forward reference for this value and remember it. 1542 GlobalValue *FwdVal = createGlobalFwdRef(M, PTy, ""); 1543 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1544 return FwdVal; 1545 } 1546 1547 //===----------------------------------------------------------------------===// 1548 // Comdat Reference/Resolution Routines. 1549 //===----------------------------------------------------------------------===// 1550 1551 Comdat *LLParser::getComdat(const std::string &Name, LocTy Loc) { 1552 // Look this name up in the comdat symbol table. 1553 Module::ComdatSymTabType &ComdatSymTab = M->getComdatSymbolTable(); 1554 Module::ComdatSymTabType::iterator I = ComdatSymTab.find(Name); 1555 if (I != ComdatSymTab.end()) 1556 return &I->second; 1557 1558 // Otherwise, create a new forward reference for this value and remember it. 1559 Comdat *C = M->getOrInsertComdat(Name); 1560 ForwardRefComdats[Name] = Loc; 1561 return C; 1562 } 1563 1564 //===----------------------------------------------------------------------===// 1565 // Helper Routines. 1566 //===----------------------------------------------------------------------===// 1567 1568 /// parseToken - If the current token has the specified kind, eat it and return 1569 /// success. Otherwise, emit the specified error and return failure. 1570 bool LLParser::parseToken(lltok::Kind T, const char *ErrMsg) { 1571 if (Lex.getKind() != T) 1572 return tokError(ErrMsg); 1573 Lex.Lex(); 1574 return false; 1575 } 1576 1577 /// parseStringConstant 1578 /// ::= StringConstant 1579 bool LLParser::parseStringConstant(std::string &Result) { 1580 if (Lex.getKind() != lltok::StringConstant) 1581 return tokError("expected string constant"); 1582 Result = Lex.getStrVal(); 1583 Lex.Lex(); 1584 return false; 1585 } 1586 1587 /// parseUInt32 1588 /// ::= uint32 1589 bool LLParser::parseUInt32(uint32_t &Val) { 1590 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1591 return tokError("expected integer"); 1592 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 1593 if (Val64 != unsigned(Val64)) 1594 return tokError("expected 32-bit integer (too large)"); 1595 Val = Val64; 1596 Lex.Lex(); 1597 return false; 1598 } 1599 1600 /// parseUInt64 1601 /// ::= uint64 1602 bool LLParser::parseUInt64(uint64_t &Val) { 1603 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 1604 return tokError("expected integer"); 1605 Val = Lex.getAPSIntVal().getLimitedValue(); 1606 Lex.Lex(); 1607 return false; 1608 } 1609 1610 /// parseTLSModel 1611 /// := 'localdynamic' 1612 /// := 'initialexec' 1613 /// := 'localexec' 1614 bool LLParser::parseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 1615 switch (Lex.getKind()) { 1616 default: 1617 return tokError("expected localdynamic, initialexec or localexec"); 1618 case lltok::kw_localdynamic: 1619 TLM = GlobalVariable::LocalDynamicTLSModel; 1620 break; 1621 case lltok::kw_initialexec: 1622 TLM = GlobalVariable::InitialExecTLSModel; 1623 break; 1624 case lltok::kw_localexec: 1625 TLM = GlobalVariable::LocalExecTLSModel; 1626 break; 1627 } 1628 1629 Lex.Lex(); 1630 return false; 1631 } 1632 1633 /// parseOptionalThreadLocal 1634 /// := /*empty*/ 1635 /// := 'thread_local' 1636 /// := 'thread_local' '(' tlsmodel ')' 1637 bool LLParser::parseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 1638 TLM = GlobalVariable::NotThreadLocal; 1639 if (!EatIfPresent(lltok::kw_thread_local)) 1640 return false; 1641 1642 TLM = GlobalVariable::GeneralDynamicTLSModel; 1643 if (Lex.getKind() == lltok::lparen) { 1644 Lex.Lex(); 1645 return parseTLSModel(TLM) || 1646 parseToken(lltok::rparen, "expected ')' after thread local model"); 1647 } 1648 return false; 1649 } 1650 1651 /// parseOptionalAddrSpace 1652 /// := /*empty*/ 1653 /// := 'addrspace' '(' uint32 ')' 1654 bool LLParser::parseOptionalAddrSpace(unsigned &AddrSpace, unsigned DefaultAS) { 1655 AddrSpace = DefaultAS; 1656 if (!EatIfPresent(lltok::kw_addrspace)) 1657 return false; 1658 return parseToken(lltok::lparen, "expected '(' in address space") || 1659 parseUInt32(AddrSpace) || 1660 parseToken(lltok::rparen, "expected ')' in address space"); 1661 } 1662 1663 /// parseStringAttribute 1664 /// := StringConstant 1665 /// := StringConstant '=' StringConstant 1666 bool LLParser::parseStringAttribute(AttrBuilder &B) { 1667 std::string Attr = Lex.getStrVal(); 1668 Lex.Lex(); 1669 std::string Val; 1670 if (EatIfPresent(lltok::equal) && parseStringConstant(Val)) 1671 return true; 1672 B.addAttribute(Attr, Val); 1673 return false; 1674 } 1675 1676 /// parseOptionalParamAttrs - parse a potentially empty list of parameter 1677 /// attributes. 1678 bool LLParser::parseOptionalParamAttrs(AttrBuilder &B) { 1679 bool HaveError = false; 1680 1681 B.clear(); 1682 1683 while (true) { 1684 lltok::Kind Token = Lex.getKind(); 1685 switch (Token) { 1686 default: // End of attributes. 1687 return HaveError; 1688 case lltok::StringConstant: { 1689 if (parseStringAttribute(B)) 1690 return true; 1691 continue; 1692 } 1693 case lltok::kw_align: { 1694 MaybeAlign Alignment; 1695 if (parseOptionalAlignment(Alignment, true)) 1696 return true; 1697 B.addAlignmentAttr(Alignment); 1698 continue; 1699 } 1700 case lltok::kw_byval: { 1701 Type *Ty; 1702 if (parseRequiredTypeAttr(Ty, lltok::kw_byval)) 1703 return true; 1704 B.addByValAttr(Ty); 1705 continue; 1706 } 1707 case lltok::kw_sret: { 1708 Type *Ty; 1709 if (parseRequiredTypeAttr(Ty, lltok::kw_sret)) 1710 return true; 1711 B.addStructRetAttr(Ty); 1712 continue; 1713 } 1714 case lltok::kw_preallocated: { 1715 Type *Ty; 1716 if (parsePreallocated(Ty)) 1717 return true; 1718 B.addPreallocatedAttr(Ty); 1719 continue; 1720 } 1721 case lltok::kw_dereferenceable: { 1722 uint64_t Bytes; 1723 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1724 return true; 1725 B.addDereferenceableAttr(Bytes); 1726 continue; 1727 } 1728 case lltok::kw_dereferenceable_or_null: { 1729 uint64_t Bytes; 1730 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1731 return true; 1732 B.addDereferenceableOrNullAttr(Bytes); 1733 continue; 1734 } 1735 case lltok::kw_byref: { 1736 Type *Ty; 1737 if (parseByRef(Ty)) 1738 return true; 1739 B.addByRefAttr(Ty); 1740 continue; 1741 } 1742 case lltok::kw_inalloca: B.addAttribute(Attribute::InAlloca); break; 1743 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1744 case lltok::kw_nest: B.addAttribute(Attribute::Nest); break; 1745 case lltok::kw_noundef: 1746 B.addAttribute(Attribute::NoUndef); 1747 break; 1748 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1749 case lltok::kw_nocapture: B.addAttribute(Attribute::NoCapture); break; 1750 case lltok::kw_nofree: B.addAttribute(Attribute::NoFree); break; 1751 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1752 case lltok::kw_readnone: B.addAttribute(Attribute::ReadNone); break; 1753 case lltok::kw_readonly: B.addAttribute(Attribute::ReadOnly); break; 1754 case lltok::kw_returned: B.addAttribute(Attribute::Returned); break; 1755 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1756 case lltok::kw_swifterror: B.addAttribute(Attribute::SwiftError); break; 1757 case lltok::kw_swiftself: B.addAttribute(Attribute::SwiftSelf); break; 1758 case lltok::kw_writeonly: B.addAttribute(Attribute::WriteOnly); break; 1759 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1760 case lltok::kw_immarg: B.addAttribute(Attribute::ImmArg); break; 1761 1762 case lltok::kw_alignstack: 1763 case lltok::kw_alwaysinline: 1764 case lltok::kw_argmemonly: 1765 case lltok::kw_builtin: 1766 case lltok::kw_inlinehint: 1767 case lltok::kw_jumptable: 1768 case lltok::kw_minsize: 1769 case lltok::kw_mustprogress: 1770 case lltok::kw_naked: 1771 case lltok::kw_nobuiltin: 1772 case lltok::kw_noduplicate: 1773 case lltok::kw_noimplicitfloat: 1774 case lltok::kw_noinline: 1775 case lltok::kw_nonlazybind: 1776 case lltok::kw_nomerge: 1777 case lltok::kw_noredzone: 1778 case lltok::kw_noreturn: 1779 case lltok::kw_nocf_check: 1780 case lltok::kw_nounwind: 1781 case lltok::kw_optforfuzzing: 1782 case lltok::kw_optnone: 1783 case lltok::kw_optsize: 1784 case lltok::kw_returns_twice: 1785 case lltok::kw_sanitize_address: 1786 case lltok::kw_sanitize_hwaddress: 1787 case lltok::kw_sanitize_memtag: 1788 case lltok::kw_sanitize_memory: 1789 case lltok::kw_sanitize_thread: 1790 case lltok::kw_speculative_load_hardening: 1791 case lltok::kw_ssp: 1792 case lltok::kw_sspreq: 1793 case lltok::kw_sspstrong: 1794 case lltok::kw_safestack: 1795 case lltok::kw_shadowcallstack: 1796 case lltok::kw_strictfp: 1797 case lltok::kw_uwtable: 1798 HaveError |= 1799 error(Lex.getLoc(), "invalid use of function-only attribute"); 1800 break; 1801 } 1802 1803 Lex.Lex(); 1804 } 1805 } 1806 1807 /// parseOptionalReturnAttrs - parse a potentially empty list of return 1808 /// attributes. 1809 bool LLParser::parseOptionalReturnAttrs(AttrBuilder &B) { 1810 bool HaveError = false; 1811 1812 B.clear(); 1813 1814 while (true) { 1815 lltok::Kind Token = Lex.getKind(); 1816 switch (Token) { 1817 default: // End of attributes. 1818 return HaveError; 1819 case lltok::StringConstant: { 1820 if (parseStringAttribute(B)) 1821 return true; 1822 continue; 1823 } 1824 case lltok::kw_dereferenceable: { 1825 uint64_t Bytes; 1826 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable, Bytes)) 1827 return true; 1828 B.addDereferenceableAttr(Bytes); 1829 continue; 1830 } 1831 case lltok::kw_dereferenceable_or_null: { 1832 uint64_t Bytes; 1833 if (parseOptionalDerefAttrBytes(lltok::kw_dereferenceable_or_null, Bytes)) 1834 return true; 1835 B.addDereferenceableOrNullAttr(Bytes); 1836 continue; 1837 } 1838 case lltok::kw_align: { 1839 MaybeAlign Alignment; 1840 if (parseOptionalAlignment(Alignment)) 1841 return true; 1842 B.addAlignmentAttr(Alignment); 1843 continue; 1844 } 1845 case lltok::kw_inreg: B.addAttribute(Attribute::InReg); break; 1846 case lltok::kw_noalias: B.addAttribute(Attribute::NoAlias); break; 1847 case lltok::kw_noundef: 1848 B.addAttribute(Attribute::NoUndef); 1849 break; 1850 case lltok::kw_nonnull: B.addAttribute(Attribute::NonNull); break; 1851 case lltok::kw_signext: B.addAttribute(Attribute::SExt); break; 1852 case lltok::kw_zeroext: B.addAttribute(Attribute::ZExt); break; 1853 1854 // error handling. 1855 case lltok::kw_byval: 1856 case lltok::kw_inalloca: 1857 case lltok::kw_nest: 1858 case lltok::kw_nocapture: 1859 case lltok::kw_returned: 1860 case lltok::kw_sret: 1861 case lltok::kw_swifterror: 1862 case lltok::kw_swiftself: 1863 case lltok::kw_immarg: 1864 case lltok::kw_byref: 1865 HaveError |= 1866 error(Lex.getLoc(), "invalid use of parameter-only attribute"); 1867 break; 1868 1869 case lltok::kw_alignstack: 1870 case lltok::kw_alwaysinline: 1871 case lltok::kw_argmemonly: 1872 case lltok::kw_builtin: 1873 case lltok::kw_cold: 1874 case lltok::kw_inlinehint: 1875 case lltok::kw_jumptable: 1876 case lltok::kw_minsize: 1877 case lltok::kw_mustprogress: 1878 case lltok::kw_naked: 1879 case lltok::kw_nobuiltin: 1880 case lltok::kw_noduplicate: 1881 case lltok::kw_noimplicitfloat: 1882 case lltok::kw_noinline: 1883 case lltok::kw_nonlazybind: 1884 case lltok::kw_nomerge: 1885 case lltok::kw_noredzone: 1886 case lltok::kw_noreturn: 1887 case lltok::kw_nocf_check: 1888 case lltok::kw_nounwind: 1889 case lltok::kw_optforfuzzing: 1890 case lltok::kw_optnone: 1891 case lltok::kw_optsize: 1892 case lltok::kw_returns_twice: 1893 case lltok::kw_sanitize_address: 1894 case lltok::kw_sanitize_hwaddress: 1895 case lltok::kw_sanitize_memtag: 1896 case lltok::kw_sanitize_memory: 1897 case lltok::kw_sanitize_thread: 1898 case lltok::kw_speculative_load_hardening: 1899 case lltok::kw_ssp: 1900 case lltok::kw_sspreq: 1901 case lltok::kw_sspstrong: 1902 case lltok::kw_safestack: 1903 case lltok::kw_shadowcallstack: 1904 case lltok::kw_strictfp: 1905 case lltok::kw_uwtable: 1906 HaveError |= 1907 error(Lex.getLoc(), "invalid use of function-only attribute"); 1908 break; 1909 case lltok::kw_readnone: 1910 case lltok::kw_readonly: 1911 HaveError |= 1912 error(Lex.getLoc(), "invalid use of attribute on return type"); 1913 break; 1914 case lltok::kw_preallocated: 1915 HaveError |= 1916 error(Lex.getLoc(), 1917 "invalid use of parameter-only/call site-only attribute"); 1918 break; 1919 } 1920 1921 Lex.Lex(); 1922 } 1923 } 1924 1925 static unsigned parseOptionalLinkageAux(lltok::Kind Kind, bool &HasLinkage) { 1926 HasLinkage = true; 1927 switch (Kind) { 1928 default: 1929 HasLinkage = false; 1930 return GlobalValue::ExternalLinkage; 1931 case lltok::kw_private: 1932 return GlobalValue::PrivateLinkage; 1933 case lltok::kw_internal: 1934 return GlobalValue::InternalLinkage; 1935 case lltok::kw_weak: 1936 return GlobalValue::WeakAnyLinkage; 1937 case lltok::kw_weak_odr: 1938 return GlobalValue::WeakODRLinkage; 1939 case lltok::kw_linkonce: 1940 return GlobalValue::LinkOnceAnyLinkage; 1941 case lltok::kw_linkonce_odr: 1942 return GlobalValue::LinkOnceODRLinkage; 1943 case lltok::kw_available_externally: 1944 return GlobalValue::AvailableExternallyLinkage; 1945 case lltok::kw_appending: 1946 return GlobalValue::AppendingLinkage; 1947 case lltok::kw_common: 1948 return GlobalValue::CommonLinkage; 1949 case lltok::kw_extern_weak: 1950 return GlobalValue::ExternalWeakLinkage; 1951 case lltok::kw_external: 1952 return GlobalValue::ExternalLinkage; 1953 } 1954 } 1955 1956 /// parseOptionalLinkage 1957 /// ::= /*empty*/ 1958 /// ::= 'private' 1959 /// ::= 'internal' 1960 /// ::= 'weak' 1961 /// ::= 'weak_odr' 1962 /// ::= 'linkonce' 1963 /// ::= 'linkonce_odr' 1964 /// ::= 'available_externally' 1965 /// ::= 'appending' 1966 /// ::= 'common' 1967 /// ::= 'extern_weak' 1968 /// ::= 'external' 1969 bool LLParser::parseOptionalLinkage(unsigned &Res, bool &HasLinkage, 1970 unsigned &Visibility, 1971 unsigned &DLLStorageClass, bool &DSOLocal) { 1972 Res = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 1973 if (HasLinkage) 1974 Lex.Lex(); 1975 parseOptionalDSOLocal(DSOLocal); 1976 parseOptionalVisibility(Visibility); 1977 parseOptionalDLLStorageClass(DLLStorageClass); 1978 1979 if (DSOLocal && DLLStorageClass == GlobalValue::DLLImportStorageClass) { 1980 return error(Lex.getLoc(), "dso_location and DLL-StorageClass mismatch"); 1981 } 1982 1983 return false; 1984 } 1985 1986 void LLParser::parseOptionalDSOLocal(bool &DSOLocal) { 1987 switch (Lex.getKind()) { 1988 default: 1989 DSOLocal = false; 1990 break; 1991 case lltok::kw_dso_local: 1992 DSOLocal = true; 1993 Lex.Lex(); 1994 break; 1995 case lltok::kw_dso_preemptable: 1996 DSOLocal = false; 1997 Lex.Lex(); 1998 break; 1999 } 2000 } 2001 2002 /// parseOptionalVisibility 2003 /// ::= /*empty*/ 2004 /// ::= 'default' 2005 /// ::= 'hidden' 2006 /// ::= 'protected' 2007 /// 2008 void LLParser::parseOptionalVisibility(unsigned &Res) { 2009 switch (Lex.getKind()) { 2010 default: 2011 Res = GlobalValue::DefaultVisibility; 2012 return; 2013 case lltok::kw_default: 2014 Res = GlobalValue::DefaultVisibility; 2015 break; 2016 case lltok::kw_hidden: 2017 Res = GlobalValue::HiddenVisibility; 2018 break; 2019 case lltok::kw_protected: 2020 Res = GlobalValue::ProtectedVisibility; 2021 break; 2022 } 2023 Lex.Lex(); 2024 } 2025 2026 /// parseOptionalDLLStorageClass 2027 /// ::= /*empty*/ 2028 /// ::= 'dllimport' 2029 /// ::= 'dllexport' 2030 /// 2031 void LLParser::parseOptionalDLLStorageClass(unsigned &Res) { 2032 switch (Lex.getKind()) { 2033 default: 2034 Res = GlobalValue::DefaultStorageClass; 2035 return; 2036 case lltok::kw_dllimport: 2037 Res = GlobalValue::DLLImportStorageClass; 2038 break; 2039 case lltok::kw_dllexport: 2040 Res = GlobalValue::DLLExportStorageClass; 2041 break; 2042 } 2043 Lex.Lex(); 2044 } 2045 2046 /// parseOptionalCallingConv 2047 /// ::= /*empty*/ 2048 /// ::= 'ccc' 2049 /// ::= 'fastcc' 2050 /// ::= 'intel_ocl_bicc' 2051 /// ::= 'coldcc' 2052 /// ::= 'cfguard_checkcc' 2053 /// ::= 'x86_stdcallcc' 2054 /// ::= 'x86_fastcallcc' 2055 /// ::= 'x86_thiscallcc' 2056 /// ::= 'x86_vectorcallcc' 2057 /// ::= 'arm_apcscc' 2058 /// ::= 'arm_aapcscc' 2059 /// ::= 'arm_aapcs_vfpcc' 2060 /// ::= 'aarch64_vector_pcs' 2061 /// ::= 'aarch64_sve_vector_pcs' 2062 /// ::= 'msp430_intrcc' 2063 /// ::= 'avr_intrcc' 2064 /// ::= 'avr_signalcc' 2065 /// ::= 'ptx_kernel' 2066 /// ::= 'ptx_device' 2067 /// ::= 'spir_func' 2068 /// ::= 'spir_kernel' 2069 /// ::= 'x86_64_sysvcc' 2070 /// ::= 'win64cc' 2071 /// ::= 'webkit_jscc' 2072 /// ::= 'anyregcc' 2073 /// ::= 'preserve_mostcc' 2074 /// ::= 'preserve_allcc' 2075 /// ::= 'ghccc' 2076 /// ::= 'swiftcc' 2077 /// ::= 'x86_intrcc' 2078 /// ::= 'hhvmcc' 2079 /// ::= 'hhvm_ccc' 2080 /// ::= 'cxx_fast_tlscc' 2081 /// ::= 'amdgpu_vs' 2082 /// ::= 'amdgpu_ls' 2083 /// ::= 'amdgpu_hs' 2084 /// ::= 'amdgpu_es' 2085 /// ::= 'amdgpu_gs' 2086 /// ::= 'amdgpu_ps' 2087 /// ::= 'amdgpu_cs' 2088 /// ::= 'amdgpu_kernel' 2089 /// ::= 'tailcc' 2090 /// ::= 'cc' UINT 2091 /// 2092 bool LLParser::parseOptionalCallingConv(unsigned &CC) { 2093 switch (Lex.getKind()) { 2094 default: CC = CallingConv::C; return false; 2095 case lltok::kw_ccc: CC = CallingConv::C; break; 2096 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 2097 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 2098 case lltok::kw_cfguard_checkcc: CC = CallingConv::CFGuard_Check; break; 2099 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 2100 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 2101 case lltok::kw_x86_regcallcc: CC = CallingConv::X86_RegCall; break; 2102 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 2103 case lltok::kw_x86_vectorcallcc:CC = CallingConv::X86_VectorCall; break; 2104 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 2105 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 2106 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 2107 case lltok::kw_aarch64_vector_pcs:CC = CallingConv::AArch64_VectorCall; break; 2108 case lltok::kw_aarch64_sve_vector_pcs: 2109 CC = CallingConv::AArch64_SVE_VectorCall; 2110 break; 2111 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 2112 case lltok::kw_avr_intrcc: CC = CallingConv::AVR_INTR; break; 2113 case lltok::kw_avr_signalcc: CC = CallingConv::AVR_SIGNAL; break; 2114 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 2115 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 2116 case lltok::kw_spir_kernel: CC = CallingConv::SPIR_KERNEL; break; 2117 case lltok::kw_spir_func: CC = CallingConv::SPIR_FUNC; break; 2118 case lltok::kw_intel_ocl_bicc: CC = CallingConv::Intel_OCL_BI; break; 2119 case lltok::kw_x86_64_sysvcc: CC = CallingConv::X86_64_SysV; break; 2120 case lltok::kw_win64cc: CC = CallingConv::Win64; break; 2121 case lltok::kw_webkit_jscc: CC = CallingConv::WebKit_JS; break; 2122 case lltok::kw_anyregcc: CC = CallingConv::AnyReg; break; 2123 case lltok::kw_preserve_mostcc:CC = CallingConv::PreserveMost; break; 2124 case lltok::kw_preserve_allcc: CC = CallingConv::PreserveAll; break; 2125 case lltok::kw_ghccc: CC = CallingConv::GHC; break; 2126 case lltok::kw_swiftcc: CC = CallingConv::Swift; break; 2127 case lltok::kw_x86_intrcc: CC = CallingConv::X86_INTR; break; 2128 case lltok::kw_hhvmcc: CC = CallingConv::HHVM; break; 2129 case lltok::kw_hhvm_ccc: CC = CallingConv::HHVM_C; break; 2130 case lltok::kw_cxx_fast_tlscc: CC = CallingConv::CXX_FAST_TLS; break; 2131 case lltok::kw_amdgpu_vs: CC = CallingConv::AMDGPU_VS; break; 2132 case lltok::kw_amdgpu_gfx: CC = CallingConv::AMDGPU_Gfx; break; 2133 case lltok::kw_amdgpu_ls: CC = CallingConv::AMDGPU_LS; break; 2134 case lltok::kw_amdgpu_hs: CC = CallingConv::AMDGPU_HS; break; 2135 case lltok::kw_amdgpu_es: CC = CallingConv::AMDGPU_ES; break; 2136 case lltok::kw_amdgpu_gs: CC = CallingConv::AMDGPU_GS; break; 2137 case lltok::kw_amdgpu_ps: CC = CallingConv::AMDGPU_PS; break; 2138 case lltok::kw_amdgpu_cs: CC = CallingConv::AMDGPU_CS; break; 2139 case lltok::kw_amdgpu_kernel: CC = CallingConv::AMDGPU_KERNEL; break; 2140 case lltok::kw_tailcc: CC = CallingConv::Tail; break; 2141 case lltok::kw_cc: { 2142 Lex.Lex(); 2143 return parseUInt32(CC); 2144 } 2145 } 2146 2147 Lex.Lex(); 2148 return false; 2149 } 2150 2151 /// parseMetadataAttachment 2152 /// ::= !dbg !42 2153 bool LLParser::parseMetadataAttachment(unsigned &Kind, MDNode *&MD) { 2154 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata attachment"); 2155 2156 std::string Name = Lex.getStrVal(); 2157 Kind = M->getMDKindID(Name); 2158 Lex.Lex(); 2159 2160 return parseMDNode(MD); 2161 } 2162 2163 /// parseInstructionMetadata 2164 /// ::= !dbg !42 (',' !dbg !57)* 2165 bool LLParser::parseInstructionMetadata(Instruction &Inst) { 2166 do { 2167 if (Lex.getKind() != lltok::MetadataVar) 2168 return tokError("expected metadata after comma"); 2169 2170 unsigned MDK; 2171 MDNode *N; 2172 if (parseMetadataAttachment(MDK, N)) 2173 return true; 2174 2175 Inst.setMetadata(MDK, N); 2176 if (MDK == LLVMContext::MD_tbaa) 2177 InstsWithTBAATag.push_back(&Inst); 2178 2179 // If this is the end of the list, we're done. 2180 } while (EatIfPresent(lltok::comma)); 2181 return false; 2182 } 2183 2184 /// parseGlobalObjectMetadataAttachment 2185 /// ::= !dbg !57 2186 bool LLParser::parseGlobalObjectMetadataAttachment(GlobalObject &GO) { 2187 unsigned MDK; 2188 MDNode *N; 2189 if (parseMetadataAttachment(MDK, N)) 2190 return true; 2191 2192 GO.addMetadata(MDK, *N); 2193 return false; 2194 } 2195 2196 /// parseOptionalFunctionMetadata 2197 /// ::= (!dbg !57)* 2198 bool LLParser::parseOptionalFunctionMetadata(Function &F) { 2199 while (Lex.getKind() == lltok::MetadataVar) 2200 if (parseGlobalObjectMetadataAttachment(F)) 2201 return true; 2202 return false; 2203 } 2204 2205 /// parseOptionalAlignment 2206 /// ::= /* empty */ 2207 /// ::= 'align' 4 2208 bool LLParser::parseOptionalAlignment(MaybeAlign &Alignment, bool AllowParens) { 2209 Alignment = None; 2210 if (!EatIfPresent(lltok::kw_align)) 2211 return false; 2212 LocTy AlignLoc = Lex.getLoc(); 2213 uint32_t Value = 0; 2214 2215 LocTy ParenLoc = Lex.getLoc(); 2216 bool HaveParens = false; 2217 if (AllowParens) { 2218 if (EatIfPresent(lltok::lparen)) 2219 HaveParens = true; 2220 } 2221 2222 if (parseUInt32(Value)) 2223 return true; 2224 2225 if (HaveParens && !EatIfPresent(lltok::rparen)) 2226 return error(ParenLoc, "expected ')'"); 2227 2228 if (!isPowerOf2_32(Value)) 2229 return error(AlignLoc, "alignment is not a power of two"); 2230 if (Value > Value::MaximumAlignment) 2231 return error(AlignLoc, "huge alignments are not supported yet"); 2232 Alignment = Align(Value); 2233 return false; 2234 } 2235 2236 /// parseOptionalDerefAttrBytes 2237 /// ::= /* empty */ 2238 /// ::= AttrKind '(' 4 ')' 2239 /// 2240 /// where AttrKind is either 'dereferenceable' or 'dereferenceable_or_null'. 2241 bool LLParser::parseOptionalDerefAttrBytes(lltok::Kind AttrKind, 2242 uint64_t &Bytes) { 2243 assert((AttrKind == lltok::kw_dereferenceable || 2244 AttrKind == lltok::kw_dereferenceable_or_null) && 2245 "contract!"); 2246 2247 Bytes = 0; 2248 if (!EatIfPresent(AttrKind)) 2249 return false; 2250 LocTy ParenLoc = Lex.getLoc(); 2251 if (!EatIfPresent(lltok::lparen)) 2252 return error(ParenLoc, "expected '('"); 2253 LocTy DerefLoc = Lex.getLoc(); 2254 if (parseUInt64(Bytes)) 2255 return true; 2256 ParenLoc = Lex.getLoc(); 2257 if (!EatIfPresent(lltok::rparen)) 2258 return error(ParenLoc, "expected ')'"); 2259 if (!Bytes) 2260 return error(DerefLoc, "dereferenceable bytes must be non-zero"); 2261 return false; 2262 } 2263 2264 /// parseOptionalCommaAlign 2265 /// ::= 2266 /// ::= ',' align 4 2267 /// 2268 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2269 /// end. 2270 bool LLParser::parseOptionalCommaAlign(MaybeAlign &Alignment, 2271 bool &AteExtraComma) { 2272 AteExtraComma = false; 2273 while (EatIfPresent(lltok::comma)) { 2274 // Metadata at the end is an early exit. 2275 if (Lex.getKind() == lltok::MetadataVar) { 2276 AteExtraComma = true; 2277 return false; 2278 } 2279 2280 if (Lex.getKind() != lltok::kw_align) 2281 return error(Lex.getLoc(), "expected metadata or 'align'"); 2282 2283 if (parseOptionalAlignment(Alignment)) 2284 return true; 2285 } 2286 2287 return false; 2288 } 2289 2290 /// parseOptionalCommaAddrSpace 2291 /// ::= 2292 /// ::= ',' addrspace(1) 2293 /// 2294 /// This returns with AteExtraComma set to true if it ate an excess comma at the 2295 /// end. 2296 bool LLParser::parseOptionalCommaAddrSpace(unsigned &AddrSpace, LocTy &Loc, 2297 bool &AteExtraComma) { 2298 AteExtraComma = false; 2299 while (EatIfPresent(lltok::comma)) { 2300 // Metadata at the end is an early exit. 2301 if (Lex.getKind() == lltok::MetadataVar) { 2302 AteExtraComma = true; 2303 return false; 2304 } 2305 2306 Loc = Lex.getLoc(); 2307 if (Lex.getKind() != lltok::kw_addrspace) 2308 return error(Lex.getLoc(), "expected metadata or 'addrspace'"); 2309 2310 if (parseOptionalAddrSpace(AddrSpace)) 2311 return true; 2312 } 2313 2314 return false; 2315 } 2316 2317 bool LLParser::parseAllocSizeArguments(unsigned &BaseSizeArg, 2318 Optional<unsigned> &HowManyArg) { 2319 Lex.Lex(); 2320 2321 auto StartParen = Lex.getLoc(); 2322 if (!EatIfPresent(lltok::lparen)) 2323 return error(StartParen, "expected '('"); 2324 2325 if (parseUInt32(BaseSizeArg)) 2326 return true; 2327 2328 if (EatIfPresent(lltok::comma)) { 2329 auto HowManyAt = Lex.getLoc(); 2330 unsigned HowMany; 2331 if (parseUInt32(HowMany)) 2332 return true; 2333 if (HowMany == BaseSizeArg) 2334 return error(HowManyAt, 2335 "'allocsize' indices can't refer to the same parameter"); 2336 HowManyArg = HowMany; 2337 } else 2338 HowManyArg = None; 2339 2340 auto EndParen = Lex.getLoc(); 2341 if (!EatIfPresent(lltok::rparen)) 2342 return error(EndParen, "expected ')'"); 2343 return false; 2344 } 2345 2346 /// parseScopeAndOrdering 2347 /// if isAtomic: ::= SyncScope? AtomicOrdering 2348 /// else: ::= 2349 /// 2350 /// This sets Scope and Ordering to the parsed values. 2351 bool LLParser::parseScopeAndOrdering(bool IsAtomic, SyncScope::ID &SSID, 2352 AtomicOrdering &Ordering) { 2353 if (!IsAtomic) 2354 return false; 2355 2356 return parseScope(SSID) || parseOrdering(Ordering); 2357 } 2358 2359 /// parseScope 2360 /// ::= syncscope("singlethread" | "<target scope>")? 2361 /// 2362 /// This sets synchronization scope ID to the ID of the parsed value. 2363 bool LLParser::parseScope(SyncScope::ID &SSID) { 2364 SSID = SyncScope::System; 2365 if (EatIfPresent(lltok::kw_syncscope)) { 2366 auto StartParenAt = Lex.getLoc(); 2367 if (!EatIfPresent(lltok::lparen)) 2368 return error(StartParenAt, "Expected '(' in syncscope"); 2369 2370 std::string SSN; 2371 auto SSNAt = Lex.getLoc(); 2372 if (parseStringConstant(SSN)) 2373 return error(SSNAt, "Expected synchronization scope name"); 2374 2375 auto EndParenAt = Lex.getLoc(); 2376 if (!EatIfPresent(lltok::rparen)) 2377 return error(EndParenAt, "Expected ')' in syncscope"); 2378 2379 SSID = Context.getOrInsertSyncScopeID(SSN); 2380 } 2381 2382 return false; 2383 } 2384 2385 /// parseOrdering 2386 /// ::= AtomicOrdering 2387 /// 2388 /// This sets Ordering to the parsed value. 2389 bool LLParser::parseOrdering(AtomicOrdering &Ordering) { 2390 switch (Lex.getKind()) { 2391 default: 2392 return tokError("Expected ordering on atomic instruction"); 2393 case lltok::kw_unordered: Ordering = AtomicOrdering::Unordered; break; 2394 case lltok::kw_monotonic: Ordering = AtomicOrdering::Monotonic; break; 2395 // Not specified yet: 2396 // case lltok::kw_consume: Ordering = AtomicOrdering::Consume; break; 2397 case lltok::kw_acquire: Ordering = AtomicOrdering::Acquire; break; 2398 case lltok::kw_release: Ordering = AtomicOrdering::Release; break; 2399 case lltok::kw_acq_rel: Ordering = AtomicOrdering::AcquireRelease; break; 2400 case lltok::kw_seq_cst: 2401 Ordering = AtomicOrdering::SequentiallyConsistent; 2402 break; 2403 } 2404 Lex.Lex(); 2405 return false; 2406 } 2407 2408 /// parseOptionalStackAlignment 2409 /// ::= /* empty */ 2410 /// ::= 'alignstack' '(' 4 ')' 2411 bool LLParser::parseOptionalStackAlignment(unsigned &Alignment) { 2412 Alignment = 0; 2413 if (!EatIfPresent(lltok::kw_alignstack)) 2414 return false; 2415 LocTy ParenLoc = Lex.getLoc(); 2416 if (!EatIfPresent(lltok::lparen)) 2417 return error(ParenLoc, "expected '('"); 2418 LocTy AlignLoc = Lex.getLoc(); 2419 if (parseUInt32(Alignment)) 2420 return true; 2421 ParenLoc = Lex.getLoc(); 2422 if (!EatIfPresent(lltok::rparen)) 2423 return error(ParenLoc, "expected ')'"); 2424 if (!isPowerOf2_32(Alignment)) 2425 return error(AlignLoc, "stack alignment is not a power of two"); 2426 return false; 2427 } 2428 2429 /// parseIndexList - This parses the index list for an insert/extractvalue 2430 /// instruction. This sets AteExtraComma in the case where we eat an extra 2431 /// comma at the end of the line and find that it is followed by metadata. 2432 /// Clients that don't allow metadata can call the version of this function that 2433 /// only takes one argument. 2434 /// 2435 /// parseIndexList 2436 /// ::= (',' uint32)+ 2437 /// 2438 bool LLParser::parseIndexList(SmallVectorImpl<unsigned> &Indices, 2439 bool &AteExtraComma) { 2440 AteExtraComma = false; 2441 2442 if (Lex.getKind() != lltok::comma) 2443 return tokError("expected ',' as start of index list"); 2444 2445 while (EatIfPresent(lltok::comma)) { 2446 if (Lex.getKind() == lltok::MetadataVar) { 2447 if (Indices.empty()) 2448 return tokError("expected index"); 2449 AteExtraComma = true; 2450 return false; 2451 } 2452 unsigned Idx = 0; 2453 if (parseUInt32(Idx)) 2454 return true; 2455 Indices.push_back(Idx); 2456 } 2457 2458 return false; 2459 } 2460 2461 //===----------------------------------------------------------------------===// 2462 // Type Parsing. 2463 //===----------------------------------------------------------------------===// 2464 2465 /// parseType - parse a type. 2466 bool LLParser::parseType(Type *&Result, const Twine &Msg, bool AllowVoid) { 2467 SMLoc TypeLoc = Lex.getLoc(); 2468 switch (Lex.getKind()) { 2469 default: 2470 return tokError(Msg); 2471 case lltok::Type: 2472 // Type ::= 'float' | 'void' (etc) 2473 Result = Lex.getTyVal(); 2474 Lex.Lex(); 2475 break; 2476 case lltok::lbrace: 2477 // Type ::= StructType 2478 if (parseAnonStructType(Result, false)) 2479 return true; 2480 break; 2481 case lltok::lsquare: 2482 // Type ::= '[' ... ']' 2483 Lex.Lex(); // eat the lsquare. 2484 if (parseArrayVectorType(Result, false)) 2485 return true; 2486 break; 2487 case lltok::less: // Either vector or packed struct. 2488 // Type ::= '<' ... '>' 2489 Lex.Lex(); 2490 if (Lex.getKind() == lltok::lbrace) { 2491 if (parseAnonStructType(Result, true) || 2492 parseToken(lltok::greater, "expected '>' at end of packed struct")) 2493 return true; 2494 } else if (parseArrayVectorType(Result, true)) 2495 return true; 2496 break; 2497 case lltok::LocalVar: { 2498 // Type ::= %foo 2499 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 2500 2501 // If the type hasn't been defined yet, create a forward definition and 2502 // remember where that forward def'n was seen (in case it never is defined). 2503 if (!Entry.first) { 2504 Entry.first = StructType::create(Context, Lex.getStrVal()); 2505 Entry.second = Lex.getLoc(); 2506 } 2507 Result = Entry.first; 2508 Lex.Lex(); 2509 break; 2510 } 2511 2512 case lltok::LocalVarID: { 2513 // Type ::= %4 2514 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 2515 2516 // If the type hasn't been defined yet, create a forward definition and 2517 // remember where that forward def'n was seen (in case it never is defined). 2518 if (!Entry.first) { 2519 Entry.first = StructType::create(Context); 2520 Entry.second = Lex.getLoc(); 2521 } 2522 Result = Entry.first; 2523 Lex.Lex(); 2524 break; 2525 } 2526 } 2527 2528 // parse the type suffixes. 2529 while (true) { 2530 switch (Lex.getKind()) { 2531 // End of type. 2532 default: 2533 if (!AllowVoid && Result->isVoidTy()) 2534 return error(TypeLoc, "void type only allowed for function results"); 2535 return false; 2536 2537 // Type ::= Type '*' 2538 case lltok::star: 2539 if (Result->isLabelTy()) 2540 return tokError("basic block pointers are invalid"); 2541 if (Result->isVoidTy()) 2542 return tokError("pointers to void are invalid - use i8* instead"); 2543 if (!PointerType::isValidElementType(Result)) 2544 return tokError("pointer to this type is invalid"); 2545 Result = PointerType::getUnqual(Result); 2546 Lex.Lex(); 2547 break; 2548 2549 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 2550 case lltok::kw_addrspace: { 2551 if (Result->isLabelTy()) 2552 return tokError("basic block pointers are invalid"); 2553 if (Result->isVoidTy()) 2554 return tokError("pointers to void are invalid; use i8* instead"); 2555 if (!PointerType::isValidElementType(Result)) 2556 return tokError("pointer to this type is invalid"); 2557 unsigned AddrSpace; 2558 if (parseOptionalAddrSpace(AddrSpace) || 2559 parseToken(lltok::star, "expected '*' in address space")) 2560 return true; 2561 2562 Result = PointerType::get(Result, AddrSpace); 2563 break; 2564 } 2565 2566 /// Types '(' ArgTypeListI ')' OptFuncAttrs 2567 case lltok::lparen: 2568 if (parseFunctionType(Result)) 2569 return true; 2570 break; 2571 } 2572 } 2573 } 2574 2575 /// parseParameterList 2576 /// ::= '(' ')' 2577 /// ::= '(' Arg (',' Arg)* ')' 2578 /// Arg 2579 /// ::= Type OptionalAttributes Value OptionalAttributes 2580 bool LLParser::parseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 2581 PerFunctionState &PFS, bool IsMustTailCall, 2582 bool InVarArgsFunc) { 2583 if (parseToken(lltok::lparen, "expected '(' in call")) 2584 return true; 2585 2586 while (Lex.getKind() != lltok::rparen) { 2587 // If this isn't the first argument, we need a comma. 2588 if (!ArgList.empty() && 2589 parseToken(lltok::comma, "expected ',' in argument list")) 2590 return true; 2591 2592 // parse an ellipsis if this is a musttail call in a variadic function. 2593 if (Lex.getKind() == lltok::dotdotdot) { 2594 const char *Msg = "unexpected ellipsis in argument list for "; 2595 if (!IsMustTailCall) 2596 return tokError(Twine(Msg) + "non-musttail call"); 2597 if (!InVarArgsFunc) 2598 return tokError(Twine(Msg) + "musttail call in non-varargs function"); 2599 Lex.Lex(); // Lex the '...', it is purely for readability. 2600 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 2601 } 2602 2603 // parse the argument. 2604 LocTy ArgLoc; 2605 Type *ArgTy = nullptr; 2606 AttrBuilder ArgAttrs; 2607 Value *V; 2608 if (parseType(ArgTy, ArgLoc)) 2609 return true; 2610 2611 if (ArgTy->isMetadataTy()) { 2612 if (parseMetadataAsValue(V, PFS)) 2613 return true; 2614 } else { 2615 // Otherwise, handle normal operands. 2616 if (parseOptionalParamAttrs(ArgAttrs) || parseValue(ArgTy, V, PFS)) 2617 return true; 2618 } 2619 ArgList.push_back(ParamInfo( 2620 ArgLoc, V, AttributeSet::get(V->getContext(), ArgAttrs))); 2621 } 2622 2623 if (IsMustTailCall && InVarArgsFunc) 2624 return tokError("expected '...' at end of argument list for musttail call " 2625 "in varargs function"); 2626 2627 Lex.Lex(); // Lex the ')'. 2628 return false; 2629 } 2630 2631 /// parseRequiredTypeAttr 2632 /// ::= attrname(<ty>) 2633 bool LLParser::parseRequiredTypeAttr(Type *&Result, lltok::Kind AttrName) { 2634 Result = nullptr; 2635 if (!EatIfPresent(AttrName)) 2636 return true; 2637 if (!EatIfPresent(lltok::lparen)) 2638 return error(Lex.getLoc(), "expected '('"); 2639 if (parseType(Result)) 2640 return true; 2641 if (!EatIfPresent(lltok::rparen)) 2642 return error(Lex.getLoc(), "expected ')'"); 2643 return false; 2644 } 2645 2646 /// parsePreallocated 2647 /// ::= preallocated(<ty>) 2648 bool LLParser::parsePreallocated(Type *&Result) { 2649 return parseRequiredTypeAttr(Result, lltok::kw_preallocated); 2650 } 2651 2652 /// parseByRef 2653 /// ::= byref(<type>) 2654 bool LLParser::parseByRef(Type *&Result) { 2655 return parseRequiredTypeAttr(Result, lltok::kw_byref); 2656 } 2657 2658 /// parseOptionalOperandBundles 2659 /// ::= /*empty*/ 2660 /// ::= '[' OperandBundle [, OperandBundle ]* ']' 2661 /// 2662 /// OperandBundle 2663 /// ::= bundle-tag '(' ')' 2664 /// ::= bundle-tag '(' Type Value [, Type Value ]* ')' 2665 /// 2666 /// bundle-tag ::= String Constant 2667 bool LLParser::parseOptionalOperandBundles( 2668 SmallVectorImpl<OperandBundleDef> &BundleList, PerFunctionState &PFS) { 2669 LocTy BeginLoc = Lex.getLoc(); 2670 if (!EatIfPresent(lltok::lsquare)) 2671 return false; 2672 2673 while (Lex.getKind() != lltok::rsquare) { 2674 // If this isn't the first operand bundle, we need a comma. 2675 if (!BundleList.empty() && 2676 parseToken(lltok::comma, "expected ',' in input list")) 2677 return true; 2678 2679 std::string Tag; 2680 if (parseStringConstant(Tag)) 2681 return true; 2682 2683 if (parseToken(lltok::lparen, "expected '(' in operand bundle")) 2684 return true; 2685 2686 std::vector<Value *> Inputs; 2687 while (Lex.getKind() != lltok::rparen) { 2688 // If this isn't the first input, we need a comma. 2689 if (!Inputs.empty() && 2690 parseToken(lltok::comma, "expected ',' in input list")) 2691 return true; 2692 2693 Type *Ty = nullptr; 2694 Value *Input = nullptr; 2695 if (parseType(Ty) || parseValue(Ty, Input, PFS)) 2696 return true; 2697 Inputs.push_back(Input); 2698 } 2699 2700 BundleList.emplace_back(std::move(Tag), std::move(Inputs)); 2701 2702 Lex.Lex(); // Lex the ')'. 2703 } 2704 2705 if (BundleList.empty()) 2706 return error(BeginLoc, "operand bundle set must not be empty"); 2707 2708 Lex.Lex(); // Lex the ']'. 2709 return false; 2710 } 2711 2712 /// parseArgumentList - parse the argument list for a function type or function 2713 /// prototype. 2714 /// ::= '(' ArgTypeListI ')' 2715 /// ArgTypeListI 2716 /// ::= /*empty*/ 2717 /// ::= '...' 2718 /// ::= ArgTypeList ',' '...' 2719 /// ::= ArgType (',' ArgType)* 2720 /// 2721 bool LLParser::parseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 2722 bool &IsVarArg) { 2723 unsigned CurValID = 0; 2724 IsVarArg = false; 2725 assert(Lex.getKind() == lltok::lparen); 2726 Lex.Lex(); // eat the (. 2727 2728 if (Lex.getKind() == lltok::rparen) { 2729 // empty 2730 } else if (Lex.getKind() == lltok::dotdotdot) { 2731 IsVarArg = true; 2732 Lex.Lex(); 2733 } else { 2734 LocTy TypeLoc = Lex.getLoc(); 2735 Type *ArgTy = nullptr; 2736 AttrBuilder Attrs; 2737 std::string Name; 2738 2739 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) 2740 return true; 2741 2742 if (ArgTy->isVoidTy()) 2743 return error(TypeLoc, "argument can not have void type"); 2744 2745 if (Lex.getKind() == lltok::LocalVar) { 2746 Name = Lex.getStrVal(); 2747 Lex.Lex(); 2748 } else if (Lex.getKind() == lltok::LocalVarID) { 2749 if (Lex.getUIntVal() != CurValID) 2750 return error(TypeLoc, "argument expected to be numbered '%" + 2751 Twine(CurValID) + "'"); 2752 ++CurValID; 2753 Lex.Lex(); 2754 } 2755 2756 if (!FunctionType::isValidArgumentType(ArgTy)) 2757 return error(TypeLoc, "invalid type for function argument"); 2758 2759 ArgList.emplace_back(TypeLoc, ArgTy, 2760 AttributeSet::get(ArgTy->getContext(), Attrs), 2761 std::move(Name)); 2762 2763 while (EatIfPresent(lltok::comma)) { 2764 // Handle ... at end of arg list. 2765 if (EatIfPresent(lltok::dotdotdot)) { 2766 IsVarArg = true; 2767 break; 2768 } 2769 2770 // Otherwise must be an argument type. 2771 TypeLoc = Lex.getLoc(); 2772 if (parseType(ArgTy) || parseOptionalParamAttrs(Attrs)) 2773 return true; 2774 2775 if (ArgTy->isVoidTy()) 2776 return error(TypeLoc, "argument can not have void type"); 2777 2778 if (Lex.getKind() == lltok::LocalVar) { 2779 Name = Lex.getStrVal(); 2780 Lex.Lex(); 2781 } else { 2782 if (Lex.getKind() == lltok::LocalVarID) { 2783 if (Lex.getUIntVal() != CurValID) 2784 return error(TypeLoc, "argument expected to be numbered '%" + 2785 Twine(CurValID) + "'"); 2786 Lex.Lex(); 2787 } 2788 ++CurValID; 2789 Name = ""; 2790 } 2791 2792 if (!ArgTy->isFirstClassType()) 2793 return error(TypeLoc, "invalid type for function argument"); 2794 2795 ArgList.emplace_back(TypeLoc, ArgTy, 2796 AttributeSet::get(ArgTy->getContext(), Attrs), 2797 std::move(Name)); 2798 } 2799 } 2800 2801 return parseToken(lltok::rparen, "expected ')' at end of argument list"); 2802 } 2803 2804 /// parseFunctionType 2805 /// ::= Type ArgumentList OptionalAttrs 2806 bool LLParser::parseFunctionType(Type *&Result) { 2807 assert(Lex.getKind() == lltok::lparen); 2808 2809 if (!FunctionType::isValidReturnType(Result)) 2810 return tokError("invalid function return type"); 2811 2812 SmallVector<ArgInfo, 8> ArgList; 2813 bool IsVarArg; 2814 if (parseArgumentList(ArgList, IsVarArg)) 2815 return true; 2816 2817 // Reject names on the arguments lists. 2818 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2819 if (!ArgList[i].Name.empty()) 2820 return error(ArgList[i].Loc, "argument name invalid in function type"); 2821 if (ArgList[i].Attrs.hasAttributes()) 2822 return error(ArgList[i].Loc, 2823 "argument attributes invalid in function type"); 2824 } 2825 2826 SmallVector<Type*, 16> ArgListTy; 2827 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 2828 ArgListTy.push_back(ArgList[i].Ty); 2829 2830 Result = FunctionType::get(Result, ArgListTy, IsVarArg); 2831 return false; 2832 } 2833 2834 /// parseAnonStructType - parse an anonymous struct type, which is inlined into 2835 /// other structs. 2836 bool LLParser::parseAnonStructType(Type *&Result, bool Packed) { 2837 SmallVector<Type*, 8> Elts; 2838 if (parseStructBody(Elts)) 2839 return true; 2840 2841 Result = StructType::get(Context, Elts, Packed); 2842 return false; 2843 } 2844 2845 /// parseStructDefinition - parse a struct in a 'type' definition. 2846 bool LLParser::parseStructDefinition(SMLoc TypeLoc, StringRef Name, 2847 std::pair<Type *, LocTy> &Entry, 2848 Type *&ResultTy) { 2849 // If the type was already defined, diagnose the redefinition. 2850 if (Entry.first && !Entry.second.isValid()) 2851 return error(TypeLoc, "redefinition of type"); 2852 2853 // If we have opaque, just return without filling in the definition for the 2854 // struct. This counts as a definition as far as the .ll file goes. 2855 if (EatIfPresent(lltok::kw_opaque)) { 2856 // This type is being defined, so clear the location to indicate this. 2857 Entry.second = SMLoc(); 2858 2859 // If this type number has never been uttered, create it. 2860 if (!Entry.first) 2861 Entry.first = StructType::create(Context, Name); 2862 ResultTy = Entry.first; 2863 return false; 2864 } 2865 2866 // If the type starts with '<', then it is either a packed struct or a vector. 2867 bool isPacked = EatIfPresent(lltok::less); 2868 2869 // If we don't have a struct, then we have a random type alias, which we 2870 // accept for compatibility with old files. These types are not allowed to be 2871 // forward referenced and not allowed to be recursive. 2872 if (Lex.getKind() != lltok::lbrace) { 2873 if (Entry.first) 2874 return error(TypeLoc, "forward references to non-struct type"); 2875 2876 ResultTy = nullptr; 2877 if (isPacked) 2878 return parseArrayVectorType(ResultTy, true); 2879 return parseType(ResultTy); 2880 } 2881 2882 // This type is being defined, so clear the location to indicate this. 2883 Entry.second = SMLoc(); 2884 2885 // If this type number has never been uttered, create it. 2886 if (!Entry.first) 2887 Entry.first = StructType::create(Context, Name); 2888 2889 StructType *STy = cast<StructType>(Entry.first); 2890 2891 SmallVector<Type*, 8> Body; 2892 if (parseStructBody(Body) || 2893 (isPacked && parseToken(lltok::greater, "expected '>' in packed struct"))) 2894 return true; 2895 2896 STy->setBody(Body, isPacked); 2897 ResultTy = STy; 2898 return false; 2899 } 2900 2901 /// parseStructType: Handles packed and unpacked types. </> parsed elsewhere. 2902 /// StructType 2903 /// ::= '{' '}' 2904 /// ::= '{' Type (',' Type)* '}' 2905 /// ::= '<' '{' '}' '>' 2906 /// ::= '<' '{' Type (',' Type)* '}' '>' 2907 bool LLParser::parseStructBody(SmallVectorImpl<Type *> &Body) { 2908 assert(Lex.getKind() == lltok::lbrace); 2909 Lex.Lex(); // Consume the '{' 2910 2911 // Handle the empty struct. 2912 if (EatIfPresent(lltok::rbrace)) 2913 return false; 2914 2915 LocTy EltTyLoc = Lex.getLoc(); 2916 Type *Ty = nullptr; 2917 if (parseType(Ty)) 2918 return true; 2919 Body.push_back(Ty); 2920 2921 if (!StructType::isValidElementType(Ty)) 2922 return error(EltTyLoc, "invalid element type for struct"); 2923 2924 while (EatIfPresent(lltok::comma)) { 2925 EltTyLoc = Lex.getLoc(); 2926 if (parseType(Ty)) 2927 return true; 2928 2929 if (!StructType::isValidElementType(Ty)) 2930 return error(EltTyLoc, "invalid element type for struct"); 2931 2932 Body.push_back(Ty); 2933 } 2934 2935 return parseToken(lltok::rbrace, "expected '}' at end of struct"); 2936 } 2937 2938 /// parseArrayVectorType - parse an array or vector type, assuming the first 2939 /// token has already been consumed. 2940 /// Type 2941 /// ::= '[' APSINTVAL 'x' Types ']' 2942 /// ::= '<' APSINTVAL 'x' Types '>' 2943 /// ::= '<' 'vscale' 'x' APSINTVAL 'x' Types '>' 2944 bool LLParser::parseArrayVectorType(Type *&Result, bool IsVector) { 2945 bool Scalable = false; 2946 2947 if (IsVector && Lex.getKind() == lltok::kw_vscale) { 2948 Lex.Lex(); // consume the 'vscale' 2949 if (parseToken(lltok::kw_x, "expected 'x' after vscale")) 2950 return true; 2951 2952 Scalable = true; 2953 } 2954 2955 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 2956 Lex.getAPSIntVal().getBitWidth() > 64) 2957 return tokError("expected number in address space"); 2958 2959 LocTy SizeLoc = Lex.getLoc(); 2960 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 2961 Lex.Lex(); 2962 2963 if (parseToken(lltok::kw_x, "expected 'x' after element count")) 2964 return true; 2965 2966 LocTy TypeLoc = Lex.getLoc(); 2967 Type *EltTy = nullptr; 2968 if (parseType(EltTy)) 2969 return true; 2970 2971 if (parseToken(IsVector ? lltok::greater : lltok::rsquare, 2972 "expected end of sequential type")) 2973 return true; 2974 2975 if (IsVector) { 2976 if (Size == 0) 2977 return error(SizeLoc, "zero element vector is illegal"); 2978 if ((unsigned)Size != Size) 2979 return error(SizeLoc, "size too large for vector"); 2980 if (!VectorType::isValidElementType(EltTy)) 2981 return error(TypeLoc, "invalid vector element type"); 2982 Result = VectorType::get(EltTy, unsigned(Size), Scalable); 2983 } else { 2984 if (!ArrayType::isValidElementType(EltTy)) 2985 return error(TypeLoc, "invalid array element type"); 2986 Result = ArrayType::get(EltTy, Size); 2987 } 2988 return false; 2989 } 2990 2991 //===----------------------------------------------------------------------===// 2992 // Function Semantic Analysis. 2993 //===----------------------------------------------------------------------===// 2994 2995 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 2996 int functionNumber) 2997 : P(p), F(f), FunctionNumber(functionNumber) { 2998 2999 // Insert unnamed arguments into the NumberedVals list. 3000 for (Argument &A : F.args()) 3001 if (!A.hasName()) 3002 NumberedVals.push_back(&A); 3003 } 3004 3005 LLParser::PerFunctionState::~PerFunctionState() { 3006 // If there were any forward referenced non-basicblock values, delete them. 3007 3008 for (const auto &P : ForwardRefVals) { 3009 if (isa<BasicBlock>(P.second.first)) 3010 continue; 3011 P.second.first->replaceAllUsesWith( 3012 UndefValue::get(P.second.first->getType())); 3013 P.second.first->deleteValue(); 3014 } 3015 3016 for (const auto &P : ForwardRefValIDs) { 3017 if (isa<BasicBlock>(P.second.first)) 3018 continue; 3019 P.second.first->replaceAllUsesWith( 3020 UndefValue::get(P.second.first->getType())); 3021 P.second.first->deleteValue(); 3022 } 3023 } 3024 3025 bool LLParser::PerFunctionState::finishFunction() { 3026 if (!ForwardRefVals.empty()) 3027 return P.error(ForwardRefVals.begin()->second.second, 3028 "use of undefined value '%" + ForwardRefVals.begin()->first + 3029 "'"); 3030 if (!ForwardRefValIDs.empty()) 3031 return P.error(ForwardRefValIDs.begin()->second.second, 3032 "use of undefined value '%" + 3033 Twine(ForwardRefValIDs.begin()->first) + "'"); 3034 return false; 3035 } 3036 3037 /// getVal - Get a value with the specified name or ID, creating a 3038 /// forward reference record if needed. This can return null if the value 3039 /// exists but does not have the right type. 3040 Value *LLParser::PerFunctionState::getVal(const std::string &Name, Type *Ty, 3041 LocTy Loc, bool IsCall) { 3042 // Look this name up in the normal function symbol table. 3043 Value *Val = F.getValueSymbolTable()->lookup(Name); 3044 3045 // If this is a forward reference for the value, see if we already created a 3046 // forward ref record. 3047 if (!Val) { 3048 auto I = ForwardRefVals.find(Name); 3049 if (I != ForwardRefVals.end()) 3050 Val = I->second.first; 3051 } 3052 3053 // If we have the value in the symbol table or fwd-ref table, return it. 3054 if (Val) 3055 return P.checkValidVariableType(Loc, "%" + Name, Ty, Val, IsCall); 3056 3057 // Don't make placeholders with invalid type. 3058 if (!Ty->isFirstClassType()) { 3059 P.error(Loc, "invalid use of a non-first-class type"); 3060 return nullptr; 3061 } 3062 3063 // Otherwise, create a new forward reference for this value and remember it. 3064 Value *FwdVal; 3065 if (Ty->isLabelTy()) { 3066 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 3067 } else { 3068 FwdVal = new Argument(Ty, Name); 3069 } 3070 3071 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 3072 return FwdVal; 3073 } 3074 3075 Value *LLParser::PerFunctionState::getVal(unsigned ID, Type *Ty, LocTy Loc, 3076 bool IsCall) { 3077 // Look this name up in the normal function symbol table. 3078 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : nullptr; 3079 3080 // If this is a forward reference for the value, see if we already created a 3081 // forward ref record. 3082 if (!Val) { 3083 auto I = ForwardRefValIDs.find(ID); 3084 if (I != ForwardRefValIDs.end()) 3085 Val = I->second.first; 3086 } 3087 3088 // If we have the value in the symbol table or fwd-ref table, return it. 3089 if (Val) 3090 return P.checkValidVariableType(Loc, "%" + Twine(ID), Ty, Val, IsCall); 3091 3092 if (!Ty->isFirstClassType()) { 3093 P.error(Loc, "invalid use of a non-first-class type"); 3094 return nullptr; 3095 } 3096 3097 // Otherwise, create a new forward reference for this value and remember it. 3098 Value *FwdVal; 3099 if (Ty->isLabelTy()) { 3100 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 3101 } else { 3102 FwdVal = new Argument(Ty); 3103 } 3104 3105 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 3106 return FwdVal; 3107 } 3108 3109 /// setInstName - After an instruction is parsed and inserted into its 3110 /// basic block, this installs its name. 3111 bool LLParser::PerFunctionState::setInstName(int NameID, 3112 const std::string &NameStr, 3113 LocTy NameLoc, Instruction *Inst) { 3114 // If this instruction has void type, it cannot have a name or ID specified. 3115 if (Inst->getType()->isVoidTy()) { 3116 if (NameID != -1 || !NameStr.empty()) 3117 return P.error(NameLoc, "instructions returning void cannot have a name"); 3118 return false; 3119 } 3120 3121 // If this was a numbered instruction, verify that the instruction is the 3122 // expected value and resolve any forward references. 3123 if (NameStr.empty()) { 3124 // If neither a name nor an ID was specified, just use the next ID. 3125 if (NameID == -1) 3126 NameID = NumberedVals.size(); 3127 3128 if (unsigned(NameID) != NumberedVals.size()) 3129 return P.error(NameLoc, "instruction expected to be numbered '%" + 3130 Twine(NumberedVals.size()) + "'"); 3131 3132 auto FI = ForwardRefValIDs.find(NameID); 3133 if (FI != ForwardRefValIDs.end()) { 3134 Value *Sentinel = FI->second.first; 3135 if (Sentinel->getType() != Inst->getType()) 3136 return P.error(NameLoc, "instruction forward referenced with type '" + 3137 getTypeString(FI->second.first->getType()) + 3138 "'"); 3139 3140 Sentinel->replaceAllUsesWith(Inst); 3141 Sentinel->deleteValue(); 3142 ForwardRefValIDs.erase(FI); 3143 } 3144 3145 NumberedVals.push_back(Inst); 3146 return false; 3147 } 3148 3149 // Otherwise, the instruction had a name. Resolve forward refs and set it. 3150 auto FI = ForwardRefVals.find(NameStr); 3151 if (FI != ForwardRefVals.end()) { 3152 Value *Sentinel = FI->second.first; 3153 if (Sentinel->getType() != Inst->getType()) 3154 return P.error(NameLoc, "instruction forward referenced with type '" + 3155 getTypeString(FI->second.first->getType()) + 3156 "'"); 3157 3158 Sentinel->replaceAllUsesWith(Inst); 3159 Sentinel->deleteValue(); 3160 ForwardRefVals.erase(FI); 3161 } 3162 3163 // Set the name on the instruction. 3164 Inst->setName(NameStr); 3165 3166 if (Inst->getName() != NameStr) 3167 return P.error(NameLoc, "multiple definition of local value named '" + 3168 NameStr + "'"); 3169 return false; 3170 } 3171 3172 /// getBB - Get a basic block with the specified name or ID, creating a 3173 /// forward reference record if needed. 3174 BasicBlock *LLParser::PerFunctionState::getBB(const std::string &Name, 3175 LocTy Loc) { 3176 return dyn_cast_or_null<BasicBlock>( 3177 getVal(Name, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 3178 } 3179 3180 BasicBlock *LLParser::PerFunctionState::getBB(unsigned ID, LocTy Loc) { 3181 return dyn_cast_or_null<BasicBlock>( 3182 getVal(ID, Type::getLabelTy(F.getContext()), Loc, /*IsCall=*/false)); 3183 } 3184 3185 /// defineBB - Define the specified basic block, which is either named or 3186 /// unnamed. If there is an error, this returns null otherwise it returns 3187 /// the block being defined. 3188 BasicBlock *LLParser::PerFunctionState::defineBB(const std::string &Name, 3189 int NameID, LocTy Loc) { 3190 BasicBlock *BB; 3191 if (Name.empty()) { 3192 if (NameID != -1 && unsigned(NameID) != NumberedVals.size()) { 3193 P.error(Loc, "label expected to be numbered '" + 3194 Twine(NumberedVals.size()) + "'"); 3195 return nullptr; 3196 } 3197 BB = getBB(NumberedVals.size(), Loc); 3198 if (!BB) { 3199 P.error(Loc, "unable to create block numbered '" + 3200 Twine(NumberedVals.size()) + "'"); 3201 return nullptr; 3202 } 3203 } else { 3204 BB = getBB(Name, Loc); 3205 if (!BB) { 3206 P.error(Loc, "unable to create block named '" + Name + "'"); 3207 return nullptr; 3208 } 3209 } 3210 3211 // Move the block to the end of the function. Forward ref'd blocks are 3212 // inserted wherever they happen to be referenced. 3213 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 3214 3215 // Remove the block from forward ref sets. 3216 if (Name.empty()) { 3217 ForwardRefValIDs.erase(NumberedVals.size()); 3218 NumberedVals.push_back(BB); 3219 } else { 3220 // BB forward references are already in the function symbol table. 3221 ForwardRefVals.erase(Name); 3222 } 3223 3224 return BB; 3225 } 3226 3227 //===----------------------------------------------------------------------===// 3228 // Constants. 3229 //===----------------------------------------------------------------------===// 3230 3231 /// parseValID - parse an abstract value that doesn't necessarily have a 3232 /// type implied. For example, if we parse "4" we don't know what integer type 3233 /// it has. The value will later be combined with its type and checked for 3234 /// sanity. PFS is used to convert function-local operands of metadata (since 3235 /// metadata operands are not just parsed here but also converted to values). 3236 /// PFS can be null when we are not parsing metadata values inside a function. 3237 bool LLParser::parseValID(ValID &ID, PerFunctionState *PFS) { 3238 ID.Loc = Lex.getLoc(); 3239 switch (Lex.getKind()) { 3240 default: 3241 return tokError("expected value token"); 3242 case lltok::GlobalID: // @42 3243 ID.UIntVal = Lex.getUIntVal(); 3244 ID.Kind = ValID::t_GlobalID; 3245 break; 3246 case lltok::GlobalVar: // @foo 3247 ID.StrVal = Lex.getStrVal(); 3248 ID.Kind = ValID::t_GlobalName; 3249 break; 3250 case lltok::LocalVarID: // %42 3251 ID.UIntVal = Lex.getUIntVal(); 3252 ID.Kind = ValID::t_LocalID; 3253 break; 3254 case lltok::LocalVar: // %foo 3255 ID.StrVal = Lex.getStrVal(); 3256 ID.Kind = ValID::t_LocalName; 3257 break; 3258 case lltok::APSInt: 3259 ID.APSIntVal = Lex.getAPSIntVal(); 3260 ID.Kind = ValID::t_APSInt; 3261 break; 3262 case lltok::APFloat: 3263 ID.APFloatVal = Lex.getAPFloatVal(); 3264 ID.Kind = ValID::t_APFloat; 3265 break; 3266 case lltok::kw_true: 3267 ID.ConstantVal = ConstantInt::getTrue(Context); 3268 ID.Kind = ValID::t_Constant; 3269 break; 3270 case lltok::kw_false: 3271 ID.ConstantVal = ConstantInt::getFalse(Context); 3272 ID.Kind = ValID::t_Constant; 3273 break; 3274 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 3275 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 3276 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 3277 case lltok::kw_none: ID.Kind = ValID::t_None; break; 3278 3279 case lltok::lbrace: { 3280 // ValID ::= '{' ConstVector '}' 3281 Lex.Lex(); 3282 SmallVector<Constant*, 16> Elts; 3283 if (parseGlobalValueVector(Elts) || 3284 parseToken(lltok::rbrace, "expected end of struct constant")) 3285 return true; 3286 3287 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3288 ID.UIntVal = Elts.size(); 3289 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3290 Elts.size() * sizeof(Elts[0])); 3291 ID.Kind = ValID::t_ConstantStruct; 3292 return false; 3293 } 3294 case lltok::less: { 3295 // ValID ::= '<' ConstVector '>' --> Vector. 3296 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 3297 Lex.Lex(); 3298 bool isPackedStruct = EatIfPresent(lltok::lbrace); 3299 3300 SmallVector<Constant*, 16> Elts; 3301 LocTy FirstEltLoc = Lex.getLoc(); 3302 if (parseGlobalValueVector(Elts) || 3303 (isPackedStruct && 3304 parseToken(lltok::rbrace, "expected end of packed struct")) || 3305 parseToken(lltok::greater, "expected end of constant")) 3306 return true; 3307 3308 if (isPackedStruct) { 3309 ID.ConstantStructElts = std::make_unique<Constant *[]>(Elts.size()); 3310 memcpy(ID.ConstantStructElts.get(), Elts.data(), 3311 Elts.size() * sizeof(Elts[0])); 3312 ID.UIntVal = Elts.size(); 3313 ID.Kind = ValID::t_PackedConstantStruct; 3314 return false; 3315 } 3316 3317 if (Elts.empty()) 3318 return error(ID.Loc, "constant vector must not be empty"); 3319 3320 if (!Elts[0]->getType()->isIntegerTy() && 3321 !Elts[0]->getType()->isFloatingPointTy() && 3322 !Elts[0]->getType()->isPointerTy()) 3323 return error( 3324 FirstEltLoc, 3325 "vector elements must have integer, pointer or floating point type"); 3326 3327 // Verify that all the vector elements have the same type. 3328 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 3329 if (Elts[i]->getType() != Elts[0]->getType()) 3330 return error(FirstEltLoc, "vector element #" + Twine(i) + 3331 " is not of type '" + 3332 getTypeString(Elts[0]->getType())); 3333 3334 ID.ConstantVal = ConstantVector::get(Elts); 3335 ID.Kind = ValID::t_Constant; 3336 return false; 3337 } 3338 case lltok::lsquare: { // Array Constant 3339 Lex.Lex(); 3340 SmallVector<Constant*, 16> Elts; 3341 LocTy FirstEltLoc = Lex.getLoc(); 3342 if (parseGlobalValueVector(Elts) || 3343 parseToken(lltok::rsquare, "expected end of array constant")) 3344 return true; 3345 3346 // Handle empty element. 3347 if (Elts.empty()) { 3348 // Use undef instead of an array because it's inconvenient to determine 3349 // the element type at this point, there being no elements to examine. 3350 ID.Kind = ValID::t_EmptyArray; 3351 return false; 3352 } 3353 3354 if (!Elts[0]->getType()->isFirstClassType()) 3355 return error(FirstEltLoc, "invalid array element type: " + 3356 getTypeString(Elts[0]->getType())); 3357 3358 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 3359 3360 // Verify all elements are correct type! 3361 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 3362 if (Elts[i]->getType() != Elts[0]->getType()) 3363 return error(FirstEltLoc, "array element #" + Twine(i) + 3364 " is not of type '" + 3365 getTypeString(Elts[0]->getType())); 3366 } 3367 3368 ID.ConstantVal = ConstantArray::get(ATy, Elts); 3369 ID.Kind = ValID::t_Constant; 3370 return false; 3371 } 3372 case lltok::kw_c: // c "foo" 3373 Lex.Lex(); 3374 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 3375 false); 3376 if (parseToken(lltok::StringConstant, "expected string")) 3377 return true; 3378 ID.Kind = ValID::t_Constant; 3379 return false; 3380 3381 case lltok::kw_asm: { 3382 // ValID ::= 'asm' SideEffect? AlignStack? IntelDialect? STRINGCONSTANT ',' 3383 // STRINGCONSTANT 3384 bool HasSideEffect, AlignStack, AsmDialect; 3385 Lex.Lex(); 3386 if (parseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 3387 parseOptionalToken(lltok::kw_alignstack, AlignStack) || 3388 parseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 3389 parseStringConstant(ID.StrVal) || 3390 parseToken(lltok::comma, "expected comma in inline asm expression") || 3391 parseToken(lltok::StringConstant, "expected constraint string")) 3392 return true; 3393 ID.StrVal2 = Lex.getStrVal(); 3394 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 3395 (unsigned(AsmDialect)<<2); 3396 ID.Kind = ValID::t_InlineAsm; 3397 return false; 3398 } 3399 3400 case lltok::kw_blockaddress: { 3401 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 3402 Lex.Lex(); 3403 3404 ValID Fn, Label; 3405 3406 if (parseToken(lltok::lparen, "expected '(' in block address expression") || 3407 parseValID(Fn) || 3408 parseToken(lltok::comma, 3409 "expected comma in block address expression") || 3410 parseValID(Label) || 3411 parseToken(lltok::rparen, "expected ')' in block address expression")) 3412 return true; 3413 3414 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3415 return error(Fn.Loc, "expected function name in blockaddress"); 3416 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 3417 return error(Label.Loc, "expected basic block name in blockaddress"); 3418 3419 // Try to find the function (but skip it if it's forward-referenced). 3420 GlobalValue *GV = nullptr; 3421 if (Fn.Kind == ValID::t_GlobalID) { 3422 if (Fn.UIntVal < NumberedVals.size()) 3423 GV = NumberedVals[Fn.UIntVal]; 3424 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3425 GV = M->getNamedValue(Fn.StrVal); 3426 } 3427 Function *F = nullptr; 3428 if (GV) { 3429 // Confirm that it's actually a function with a definition. 3430 if (!isa<Function>(GV)) 3431 return error(Fn.Loc, "expected function name in blockaddress"); 3432 F = cast<Function>(GV); 3433 if (F->isDeclaration()) 3434 return error(Fn.Loc, "cannot take blockaddress inside a declaration"); 3435 } 3436 3437 if (!F) { 3438 // Make a global variable as a placeholder for this reference. 3439 GlobalValue *&FwdRef = 3440 ForwardRefBlockAddresses.insert(std::make_pair( 3441 std::move(Fn), 3442 std::map<ValID, GlobalValue *>())) 3443 .first->second.insert(std::make_pair(std::move(Label), nullptr)) 3444 .first->second; 3445 if (!FwdRef) 3446 FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), false, 3447 GlobalValue::InternalLinkage, nullptr, ""); 3448 ID.ConstantVal = FwdRef; 3449 ID.Kind = ValID::t_Constant; 3450 return false; 3451 } 3452 3453 // We found the function; now find the basic block. Don't use PFS, since we 3454 // might be inside a constant expression. 3455 BasicBlock *BB; 3456 if (BlockAddressPFS && F == &BlockAddressPFS->getFunction()) { 3457 if (Label.Kind == ValID::t_LocalID) 3458 BB = BlockAddressPFS->getBB(Label.UIntVal, Label.Loc); 3459 else 3460 BB = BlockAddressPFS->getBB(Label.StrVal, Label.Loc); 3461 if (!BB) 3462 return error(Label.Loc, "referenced value is not a basic block"); 3463 } else { 3464 if (Label.Kind == ValID::t_LocalID) 3465 return error(Label.Loc, "cannot take address of numeric label after " 3466 "the function is defined"); 3467 BB = dyn_cast_or_null<BasicBlock>( 3468 F->getValueSymbolTable()->lookup(Label.StrVal)); 3469 if (!BB) 3470 return error(Label.Loc, "referenced value is not a basic block"); 3471 } 3472 3473 ID.ConstantVal = BlockAddress::get(F, BB); 3474 ID.Kind = ValID::t_Constant; 3475 return false; 3476 } 3477 3478 case lltok::kw_dso_local_equivalent: { 3479 // ValID ::= 'dso_local_equivalent' @foo 3480 Lex.Lex(); 3481 3482 ValID Fn; 3483 3484 if (parseValID(Fn)) 3485 return true; 3486 3487 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 3488 return error(Fn.Loc, 3489 "expected global value name in dso_local_equivalent"); 3490 3491 // Try to find the function (but skip it if it's forward-referenced). 3492 GlobalValue *GV = nullptr; 3493 if (Fn.Kind == ValID::t_GlobalID) { 3494 if (Fn.UIntVal < NumberedVals.size()) 3495 GV = NumberedVals[Fn.UIntVal]; 3496 } else if (!ForwardRefVals.count(Fn.StrVal)) { 3497 GV = M->getNamedValue(Fn.StrVal); 3498 } 3499 3500 assert(GV && "Could not find a corresponding global variable"); 3501 3502 if (!GV->getValueType()->isFunctionTy()) 3503 return error(Fn.Loc, "expected a function, alias to function, or ifunc " 3504 "in dso_local_equivalent"); 3505 3506 ID.ConstantVal = DSOLocalEquivalent::get(GV); 3507 ID.Kind = ValID::t_Constant; 3508 return false; 3509 } 3510 3511 case lltok::kw_trunc: 3512 case lltok::kw_zext: 3513 case lltok::kw_sext: 3514 case lltok::kw_fptrunc: 3515 case lltok::kw_fpext: 3516 case lltok::kw_bitcast: 3517 case lltok::kw_addrspacecast: 3518 case lltok::kw_uitofp: 3519 case lltok::kw_sitofp: 3520 case lltok::kw_fptoui: 3521 case lltok::kw_fptosi: 3522 case lltok::kw_inttoptr: 3523 case lltok::kw_ptrtoint: { 3524 unsigned Opc = Lex.getUIntVal(); 3525 Type *DestTy = nullptr; 3526 Constant *SrcVal; 3527 Lex.Lex(); 3528 if (parseToken(lltok::lparen, "expected '(' after constantexpr cast") || 3529 parseGlobalTypeAndValue(SrcVal) || 3530 parseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 3531 parseType(DestTy) || 3532 parseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 3533 return true; 3534 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 3535 return error(ID.Loc, "invalid cast opcode for cast from '" + 3536 getTypeString(SrcVal->getType()) + "' to '" + 3537 getTypeString(DestTy) + "'"); 3538 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 3539 SrcVal, DestTy); 3540 ID.Kind = ValID::t_Constant; 3541 return false; 3542 } 3543 case lltok::kw_extractvalue: { 3544 Lex.Lex(); 3545 Constant *Val; 3546 SmallVector<unsigned, 4> Indices; 3547 if (parseToken(lltok::lparen, 3548 "expected '(' in extractvalue constantexpr") || 3549 parseGlobalTypeAndValue(Val) || parseIndexList(Indices) || 3550 parseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 3551 return true; 3552 3553 if (!Val->getType()->isAggregateType()) 3554 return error(ID.Loc, "extractvalue operand must be aggregate type"); 3555 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 3556 return error(ID.Loc, "invalid indices for extractvalue"); 3557 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 3558 ID.Kind = ValID::t_Constant; 3559 return false; 3560 } 3561 case lltok::kw_insertvalue: { 3562 Lex.Lex(); 3563 Constant *Val0, *Val1; 3564 SmallVector<unsigned, 4> Indices; 3565 if (parseToken(lltok::lparen, "expected '(' in insertvalue constantexpr") || 3566 parseGlobalTypeAndValue(Val0) || 3567 parseToken(lltok::comma, 3568 "expected comma in insertvalue constantexpr") || 3569 parseGlobalTypeAndValue(Val1) || parseIndexList(Indices) || 3570 parseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 3571 return true; 3572 if (!Val0->getType()->isAggregateType()) 3573 return error(ID.Loc, "insertvalue operand must be aggregate type"); 3574 Type *IndexedType = 3575 ExtractValueInst::getIndexedType(Val0->getType(), Indices); 3576 if (!IndexedType) 3577 return error(ID.Loc, "invalid indices for insertvalue"); 3578 if (IndexedType != Val1->getType()) 3579 return error(ID.Loc, "insertvalue operand and field disagree in type: '" + 3580 getTypeString(Val1->getType()) + 3581 "' instead of '" + getTypeString(IndexedType) + 3582 "'"); 3583 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 3584 ID.Kind = ValID::t_Constant; 3585 return false; 3586 } 3587 case lltok::kw_icmp: 3588 case lltok::kw_fcmp: { 3589 unsigned PredVal, Opc = Lex.getUIntVal(); 3590 Constant *Val0, *Val1; 3591 Lex.Lex(); 3592 if (parseCmpPredicate(PredVal, Opc) || 3593 parseToken(lltok::lparen, "expected '(' in compare constantexpr") || 3594 parseGlobalTypeAndValue(Val0) || 3595 parseToken(lltok::comma, "expected comma in compare constantexpr") || 3596 parseGlobalTypeAndValue(Val1) || 3597 parseToken(lltok::rparen, "expected ')' in compare constantexpr")) 3598 return true; 3599 3600 if (Val0->getType() != Val1->getType()) 3601 return error(ID.Loc, "compare operands must have the same type"); 3602 3603 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 3604 3605 if (Opc == Instruction::FCmp) { 3606 if (!Val0->getType()->isFPOrFPVectorTy()) 3607 return error(ID.Loc, "fcmp requires floating point operands"); 3608 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 3609 } else { 3610 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 3611 if (!Val0->getType()->isIntOrIntVectorTy() && 3612 !Val0->getType()->isPtrOrPtrVectorTy()) 3613 return error(ID.Loc, "icmp requires pointer or integer operands"); 3614 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 3615 } 3616 ID.Kind = ValID::t_Constant; 3617 return false; 3618 } 3619 3620 // Unary Operators. 3621 case lltok::kw_fneg: { 3622 unsigned Opc = Lex.getUIntVal(); 3623 Constant *Val; 3624 Lex.Lex(); 3625 if (parseToken(lltok::lparen, "expected '(' in unary constantexpr") || 3626 parseGlobalTypeAndValue(Val) || 3627 parseToken(lltok::rparen, "expected ')' in unary constantexpr")) 3628 return true; 3629 3630 // Check that the type is valid for the operator. 3631 switch (Opc) { 3632 case Instruction::FNeg: 3633 if (!Val->getType()->isFPOrFPVectorTy()) 3634 return error(ID.Loc, "constexpr requires fp operands"); 3635 break; 3636 default: llvm_unreachable("Unknown unary operator!"); 3637 } 3638 unsigned Flags = 0; 3639 Constant *C = ConstantExpr::get(Opc, Val, Flags); 3640 ID.ConstantVal = C; 3641 ID.Kind = ValID::t_Constant; 3642 return false; 3643 } 3644 // Binary Operators. 3645 case lltok::kw_add: 3646 case lltok::kw_fadd: 3647 case lltok::kw_sub: 3648 case lltok::kw_fsub: 3649 case lltok::kw_mul: 3650 case lltok::kw_fmul: 3651 case lltok::kw_udiv: 3652 case lltok::kw_sdiv: 3653 case lltok::kw_fdiv: 3654 case lltok::kw_urem: 3655 case lltok::kw_srem: 3656 case lltok::kw_frem: 3657 case lltok::kw_shl: 3658 case lltok::kw_lshr: 3659 case lltok::kw_ashr: { 3660 bool NUW = false; 3661 bool NSW = false; 3662 bool Exact = false; 3663 unsigned Opc = Lex.getUIntVal(); 3664 Constant *Val0, *Val1; 3665 Lex.Lex(); 3666 if (Opc == Instruction::Add || Opc == Instruction::Sub || 3667 Opc == Instruction::Mul || Opc == Instruction::Shl) { 3668 if (EatIfPresent(lltok::kw_nuw)) 3669 NUW = true; 3670 if (EatIfPresent(lltok::kw_nsw)) { 3671 NSW = true; 3672 if (EatIfPresent(lltok::kw_nuw)) 3673 NUW = true; 3674 } 3675 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 3676 Opc == Instruction::LShr || Opc == Instruction::AShr) { 3677 if (EatIfPresent(lltok::kw_exact)) 3678 Exact = true; 3679 } 3680 if (parseToken(lltok::lparen, "expected '(' in binary constantexpr") || 3681 parseGlobalTypeAndValue(Val0) || 3682 parseToken(lltok::comma, "expected comma in binary constantexpr") || 3683 parseGlobalTypeAndValue(Val1) || 3684 parseToken(lltok::rparen, "expected ')' in binary constantexpr")) 3685 return true; 3686 if (Val0->getType() != Val1->getType()) 3687 return error(ID.Loc, "operands of constexpr must have same type"); 3688 // Check that the type is valid for the operator. 3689 switch (Opc) { 3690 case Instruction::Add: 3691 case Instruction::Sub: 3692 case Instruction::Mul: 3693 case Instruction::UDiv: 3694 case Instruction::SDiv: 3695 case Instruction::URem: 3696 case Instruction::SRem: 3697 case Instruction::Shl: 3698 case Instruction::AShr: 3699 case Instruction::LShr: 3700 if (!Val0->getType()->isIntOrIntVectorTy()) 3701 return error(ID.Loc, "constexpr requires integer operands"); 3702 break; 3703 case Instruction::FAdd: 3704 case Instruction::FSub: 3705 case Instruction::FMul: 3706 case Instruction::FDiv: 3707 case Instruction::FRem: 3708 if (!Val0->getType()->isFPOrFPVectorTy()) 3709 return error(ID.Loc, "constexpr requires fp operands"); 3710 break; 3711 default: llvm_unreachable("Unknown binary operator!"); 3712 } 3713 unsigned Flags = 0; 3714 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 3715 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 3716 if (Exact) Flags |= PossiblyExactOperator::IsExact; 3717 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 3718 ID.ConstantVal = C; 3719 ID.Kind = ValID::t_Constant; 3720 return false; 3721 } 3722 3723 // Logical Operations 3724 case lltok::kw_and: 3725 case lltok::kw_or: 3726 case lltok::kw_xor: { 3727 unsigned Opc = Lex.getUIntVal(); 3728 Constant *Val0, *Val1; 3729 Lex.Lex(); 3730 if (parseToken(lltok::lparen, "expected '(' in logical constantexpr") || 3731 parseGlobalTypeAndValue(Val0) || 3732 parseToken(lltok::comma, "expected comma in logical constantexpr") || 3733 parseGlobalTypeAndValue(Val1) || 3734 parseToken(lltok::rparen, "expected ')' in logical constantexpr")) 3735 return true; 3736 if (Val0->getType() != Val1->getType()) 3737 return error(ID.Loc, "operands of constexpr must have same type"); 3738 if (!Val0->getType()->isIntOrIntVectorTy()) 3739 return error(ID.Loc, 3740 "constexpr requires integer or integer vector operands"); 3741 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 3742 ID.Kind = ValID::t_Constant; 3743 return false; 3744 } 3745 3746 case lltok::kw_getelementptr: 3747 case lltok::kw_shufflevector: 3748 case lltok::kw_insertelement: 3749 case lltok::kw_extractelement: 3750 case lltok::kw_select: { 3751 unsigned Opc = Lex.getUIntVal(); 3752 SmallVector<Constant*, 16> Elts; 3753 bool InBounds = false; 3754 Type *Ty; 3755 Lex.Lex(); 3756 3757 if (Opc == Instruction::GetElementPtr) 3758 InBounds = EatIfPresent(lltok::kw_inbounds); 3759 3760 if (parseToken(lltok::lparen, "expected '(' in constantexpr")) 3761 return true; 3762 3763 LocTy ExplicitTypeLoc = Lex.getLoc(); 3764 if (Opc == Instruction::GetElementPtr) { 3765 if (parseType(Ty) || 3766 parseToken(lltok::comma, "expected comma after getelementptr's type")) 3767 return true; 3768 } 3769 3770 Optional<unsigned> InRangeOp; 3771 if (parseGlobalValueVector( 3772 Elts, Opc == Instruction::GetElementPtr ? &InRangeOp : nullptr) || 3773 parseToken(lltok::rparen, "expected ')' in constantexpr")) 3774 return true; 3775 3776 if (Opc == Instruction::GetElementPtr) { 3777 if (Elts.size() == 0 || 3778 !Elts[0]->getType()->isPtrOrPtrVectorTy()) 3779 return error(ID.Loc, "base of getelementptr must be a pointer"); 3780 3781 Type *BaseType = Elts[0]->getType(); 3782 auto *BasePointerType = cast<PointerType>(BaseType->getScalarType()); 3783 if (Ty != BasePointerType->getElementType()) 3784 return error( 3785 ExplicitTypeLoc, 3786 "explicit pointee type doesn't match operand's pointee type"); 3787 3788 unsigned GEPWidth = 3789 BaseType->isVectorTy() 3790 ? cast<FixedVectorType>(BaseType)->getNumElements() 3791 : 0; 3792 3793 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 3794 for (Constant *Val : Indices) { 3795 Type *ValTy = Val->getType(); 3796 if (!ValTy->isIntOrIntVectorTy()) 3797 return error(ID.Loc, "getelementptr index must be an integer"); 3798 if (auto *ValVTy = dyn_cast<VectorType>(ValTy)) { 3799 unsigned ValNumEl = cast<FixedVectorType>(ValVTy)->getNumElements(); 3800 if (GEPWidth && (ValNumEl != GEPWidth)) 3801 return error( 3802 ID.Loc, 3803 "getelementptr vector index has a wrong number of elements"); 3804 // GEPWidth may have been unknown because the base is a scalar, 3805 // but it is known now. 3806 GEPWidth = ValNumEl; 3807 } 3808 } 3809 3810 SmallPtrSet<Type*, 4> Visited; 3811 if (!Indices.empty() && !Ty->isSized(&Visited)) 3812 return error(ID.Loc, "base element of getelementptr must be sized"); 3813 3814 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 3815 return error(ID.Loc, "invalid getelementptr indices"); 3816 3817 if (InRangeOp) { 3818 if (*InRangeOp == 0) 3819 return error(ID.Loc, 3820 "inrange keyword may not appear on pointer operand"); 3821 --*InRangeOp; 3822 } 3823 3824 ID.ConstantVal = ConstantExpr::getGetElementPtr(Ty, Elts[0], Indices, 3825 InBounds, InRangeOp); 3826 } else if (Opc == Instruction::Select) { 3827 if (Elts.size() != 3) 3828 return error(ID.Loc, "expected three operands to select"); 3829 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 3830 Elts[2])) 3831 return error(ID.Loc, Reason); 3832 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 3833 } else if (Opc == Instruction::ShuffleVector) { 3834 if (Elts.size() != 3) 3835 return error(ID.Loc, "expected three operands to shufflevector"); 3836 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3837 return error(ID.Loc, "invalid operands to shufflevector"); 3838 SmallVector<int, 16> Mask; 3839 ShuffleVectorInst::getShuffleMask(cast<Constant>(Elts[2]), Mask); 3840 ID.ConstantVal = ConstantExpr::getShuffleVector(Elts[0], Elts[1], Mask); 3841 } else if (Opc == Instruction::ExtractElement) { 3842 if (Elts.size() != 2) 3843 return error(ID.Loc, "expected two operands to extractelement"); 3844 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 3845 return error(ID.Loc, "invalid extractelement operands"); 3846 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 3847 } else { 3848 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 3849 if (Elts.size() != 3) 3850 return error(ID.Loc, "expected three operands to insertelement"); 3851 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 3852 return error(ID.Loc, "invalid insertelement operands"); 3853 ID.ConstantVal = 3854 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 3855 } 3856 3857 ID.Kind = ValID::t_Constant; 3858 return false; 3859 } 3860 } 3861 3862 Lex.Lex(); 3863 return false; 3864 } 3865 3866 /// parseGlobalValue - parse a global value with the specified type. 3867 bool LLParser::parseGlobalValue(Type *Ty, Constant *&C) { 3868 C = nullptr; 3869 ValID ID; 3870 Value *V = nullptr; 3871 bool Parsed = parseValID(ID) || 3872 convertValIDToValue(Ty, ID, V, nullptr, /*IsCall=*/false); 3873 if (V && !(C = dyn_cast<Constant>(V))) 3874 return error(ID.Loc, "global values must be constants"); 3875 return Parsed; 3876 } 3877 3878 bool LLParser::parseGlobalTypeAndValue(Constant *&V) { 3879 Type *Ty = nullptr; 3880 return parseType(Ty) || parseGlobalValue(Ty, V); 3881 } 3882 3883 bool LLParser::parseOptionalComdat(StringRef GlobalName, Comdat *&C) { 3884 C = nullptr; 3885 3886 LocTy KwLoc = Lex.getLoc(); 3887 if (!EatIfPresent(lltok::kw_comdat)) 3888 return false; 3889 3890 if (EatIfPresent(lltok::lparen)) { 3891 if (Lex.getKind() != lltok::ComdatVar) 3892 return tokError("expected comdat variable"); 3893 C = getComdat(Lex.getStrVal(), Lex.getLoc()); 3894 Lex.Lex(); 3895 if (parseToken(lltok::rparen, "expected ')' after comdat var")) 3896 return true; 3897 } else { 3898 if (GlobalName.empty()) 3899 return tokError("comdat cannot be unnamed"); 3900 C = getComdat(std::string(GlobalName), KwLoc); 3901 } 3902 3903 return false; 3904 } 3905 3906 /// parseGlobalValueVector 3907 /// ::= /*empty*/ 3908 /// ::= [inrange] TypeAndValue (',' [inrange] TypeAndValue)* 3909 bool LLParser::parseGlobalValueVector(SmallVectorImpl<Constant *> &Elts, 3910 Optional<unsigned> *InRangeOp) { 3911 // Empty list. 3912 if (Lex.getKind() == lltok::rbrace || 3913 Lex.getKind() == lltok::rsquare || 3914 Lex.getKind() == lltok::greater || 3915 Lex.getKind() == lltok::rparen) 3916 return false; 3917 3918 do { 3919 if (InRangeOp && !*InRangeOp && EatIfPresent(lltok::kw_inrange)) 3920 *InRangeOp = Elts.size(); 3921 3922 Constant *C; 3923 if (parseGlobalTypeAndValue(C)) 3924 return true; 3925 Elts.push_back(C); 3926 } while (EatIfPresent(lltok::comma)); 3927 3928 return false; 3929 } 3930 3931 bool LLParser::parseMDTuple(MDNode *&MD, bool IsDistinct) { 3932 SmallVector<Metadata *, 16> Elts; 3933 if (parseMDNodeVector(Elts)) 3934 return true; 3935 3936 MD = (IsDistinct ? MDTuple::getDistinct : MDTuple::get)(Context, Elts); 3937 return false; 3938 } 3939 3940 /// MDNode: 3941 /// ::= !{ ... } 3942 /// ::= !7 3943 /// ::= !DILocation(...) 3944 bool LLParser::parseMDNode(MDNode *&N) { 3945 if (Lex.getKind() == lltok::MetadataVar) 3946 return parseSpecializedMDNode(N); 3947 3948 return parseToken(lltok::exclaim, "expected '!' here") || parseMDNodeTail(N); 3949 } 3950 3951 bool LLParser::parseMDNodeTail(MDNode *&N) { 3952 // !{ ... } 3953 if (Lex.getKind() == lltok::lbrace) 3954 return parseMDTuple(N); 3955 3956 // !42 3957 return parseMDNodeID(N); 3958 } 3959 3960 namespace { 3961 3962 /// Structure to represent an optional metadata field. 3963 template <class FieldTy> struct MDFieldImpl { 3964 typedef MDFieldImpl ImplTy; 3965 FieldTy Val; 3966 bool Seen; 3967 3968 void assign(FieldTy Val) { 3969 Seen = true; 3970 this->Val = std::move(Val); 3971 } 3972 3973 explicit MDFieldImpl(FieldTy Default) 3974 : Val(std::move(Default)), Seen(false) {} 3975 }; 3976 3977 /// Structure to represent an optional metadata field that 3978 /// can be of either type (A or B) and encapsulates the 3979 /// MD<typeofA>Field and MD<typeofB>Field structs, so not 3980 /// to reimplement the specifics for representing each Field. 3981 template <class FieldTypeA, class FieldTypeB> struct MDEitherFieldImpl { 3982 typedef MDEitherFieldImpl<FieldTypeA, FieldTypeB> ImplTy; 3983 FieldTypeA A; 3984 FieldTypeB B; 3985 bool Seen; 3986 3987 enum { 3988 IsInvalid = 0, 3989 IsTypeA = 1, 3990 IsTypeB = 2 3991 } WhatIs; 3992 3993 void assign(FieldTypeA A) { 3994 Seen = true; 3995 this->A = std::move(A); 3996 WhatIs = IsTypeA; 3997 } 3998 3999 void assign(FieldTypeB B) { 4000 Seen = true; 4001 this->B = std::move(B); 4002 WhatIs = IsTypeB; 4003 } 4004 4005 explicit MDEitherFieldImpl(FieldTypeA DefaultA, FieldTypeB DefaultB) 4006 : A(std::move(DefaultA)), B(std::move(DefaultB)), Seen(false), 4007 WhatIs(IsInvalid) {} 4008 }; 4009 4010 struct MDUnsignedField : public MDFieldImpl<uint64_t> { 4011 uint64_t Max; 4012 4013 MDUnsignedField(uint64_t Default = 0, uint64_t Max = UINT64_MAX) 4014 : ImplTy(Default), Max(Max) {} 4015 }; 4016 4017 struct LineField : public MDUnsignedField { 4018 LineField() : MDUnsignedField(0, UINT32_MAX) {} 4019 }; 4020 4021 struct ColumnField : public MDUnsignedField { 4022 ColumnField() : MDUnsignedField(0, UINT16_MAX) {} 4023 }; 4024 4025 struct DwarfTagField : public MDUnsignedField { 4026 DwarfTagField() : MDUnsignedField(0, dwarf::DW_TAG_hi_user) {} 4027 DwarfTagField(dwarf::Tag DefaultTag) 4028 : MDUnsignedField(DefaultTag, dwarf::DW_TAG_hi_user) {} 4029 }; 4030 4031 struct DwarfMacinfoTypeField : public MDUnsignedField { 4032 DwarfMacinfoTypeField() : MDUnsignedField(0, dwarf::DW_MACINFO_vendor_ext) {} 4033 DwarfMacinfoTypeField(dwarf::MacinfoRecordType DefaultType) 4034 : MDUnsignedField(DefaultType, dwarf::DW_MACINFO_vendor_ext) {} 4035 }; 4036 4037 struct DwarfAttEncodingField : public MDUnsignedField { 4038 DwarfAttEncodingField() : MDUnsignedField(0, dwarf::DW_ATE_hi_user) {} 4039 }; 4040 4041 struct DwarfVirtualityField : public MDUnsignedField { 4042 DwarfVirtualityField() : MDUnsignedField(0, dwarf::DW_VIRTUALITY_max) {} 4043 }; 4044 4045 struct DwarfLangField : public MDUnsignedField { 4046 DwarfLangField() : MDUnsignedField(0, dwarf::DW_LANG_hi_user) {} 4047 }; 4048 4049 struct DwarfCCField : public MDUnsignedField { 4050 DwarfCCField() : MDUnsignedField(0, dwarf::DW_CC_hi_user) {} 4051 }; 4052 4053 struct EmissionKindField : public MDUnsignedField { 4054 EmissionKindField() : MDUnsignedField(0, DICompileUnit::LastEmissionKind) {} 4055 }; 4056 4057 struct NameTableKindField : public MDUnsignedField { 4058 NameTableKindField() 4059 : MDUnsignedField( 4060 0, (unsigned) 4061 DICompileUnit::DebugNameTableKind::LastDebugNameTableKind) {} 4062 }; 4063 4064 struct DIFlagField : public MDFieldImpl<DINode::DIFlags> { 4065 DIFlagField() : MDFieldImpl(DINode::FlagZero) {} 4066 }; 4067 4068 struct DISPFlagField : public MDFieldImpl<DISubprogram::DISPFlags> { 4069 DISPFlagField() : MDFieldImpl(DISubprogram::SPFlagZero) {} 4070 }; 4071 4072 struct MDAPSIntField : public MDFieldImpl<APSInt> { 4073 MDAPSIntField() : ImplTy(APSInt()) {} 4074 }; 4075 4076 struct MDSignedField : public MDFieldImpl<int64_t> { 4077 int64_t Min; 4078 int64_t Max; 4079 4080 MDSignedField(int64_t Default = 0) 4081 : ImplTy(Default), Min(INT64_MIN), Max(INT64_MAX) {} 4082 MDSignedField(int64_t Default, int64_t Min, int64_t Max) 4083 : ImplTy(Default), Min(Min), Max(Max) {} 4084 }; 4085 4086 struct MDBoolField : public MDFieldImpl<bool> { 4087 MDBoolField(bool Default = false) : ImplTy(Default) {} 4088 }; 4089 4090 struct MDField : public MDFieldImpl<Metadata *> { 4091 bool AllowNull; 4092 4093 MDField(bool AllowNull = true) : ImplTy(nullptr), AllowNull(AllowNull) {} 4094 }; 4095 4096 struct MDConstant : public MDFieldImpl<ConstantAsMetadata *> { 4097 MDConstant() : ImplTy(nullptr) {} 4098 }; 4099 4100 struct MDStringField : public MDFieldImpl<MDString *> { 4101 bool AllowEmpty; 4102 MDStringField(bool AllowEmpty = true) 4103 : ImplTy(nullptr), AllowEmpty(AllowEmpty) {} 4104 }; 4105 4106 struct MDFieldList : public MDFieldImpl<SmallVector<Metadata *, 4>> { 4107 MDFieldList() : ImplTy(SmallVector<Metadata *, 4>()) {} 4108 }; 4109 4110 struct ChecksumKindField : public MDFieldImpl<DIFile::ChecksumKind> { 4111 ChecksumKindField(DIFile::ChecksumKind CSKind) : ImplTy(CSKind) {} 4112 }; 4113 4114 struct MDSignedOrMDField : MDEitherFieldImpl<MDSignedField, MDField> { 4115 MDSignedOrMDField(int64_t Default = 0, bool AllowNull = true) 4116 : ImplTy(MDSignedField(Default), MDField(AllowNull)) {} 4117 4118 MDSignedOrMDField(int64_t Default, int64_t Min, int64_t Max, 4119 bool AllowNull = true) 4120 : ImplTy(MDSignedField(Default, Min, Max), MDField(AllowNull)) {} 4121 4122 bool isMDSignedField() const { return WhatIs == IsTypeA; } 4123 bool isMDField() const { return WhatIs == IsTypeB; } 4124 int64_t getMDSignedValue() const { 4125 assert(isMDSignedField() && "Wrong field type"); 4126 return A.Val; 4127 } 4128 Metadata *getMDFieldValue() const { 4129 assert(isMDField() && "Wrong field type"); 4130 return B.Val; 4131 } 4132 }; 4133 4134 struct MDSignedOrUnsignedField 4135 : MDEitherFieldImpl<MDSignedField, MDUnsignedField> { 4136 MDSignedOrUnsignedField() : ImplTy(MDSignedField(0), MDUnsignedField(0)) {} 4137 4138 bool isMDSignedField() const { return WhatIs == IsTypeA; } 4139 bool isMDUnsignedField() const { return WhatIs == IsTypeB; } 4140 int64_t getMDSignedValue() const { 4141 assert(isMDSignedField() && "Wrong field type"); 4142 return A.Val; 4143 } 4144 uint64_t getMDUnsignedValue() const { 4145 assert(isMDUnsignedField() && "Wrong field type"); 4146 return B.Val; 4147 } 4148 }; 4149 4150 } // end anonymous namespace 4151 4152 namespace llvm { 4153 4154 template <> 4155 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDAPSIntField &Result) { 4156 if (Lex.getKind() != lltok::APSInt) 4157 return tokError("expected integer"); 4158 4159 Result.assign(Lex.getAPSIntVal()); 4160 Lex.Lex(); 4161 return false; 4162 } 4163 4164 template <> 4165 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4166 MDUnsignedField &Result) { 4167 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 4168 return tokError("expected unsigned integer"); 4169 4170 auto &U = Lex.getAPSIntVal(); 4171 if (U.ugt(Result.Max)) 4172 return tokError("value for '" + Name + "' too large, limit is " + 4173 Twine(Result.Max)); 4174 Result.assign(U.getZExtValue()); 4175 assert(Result.Val <= Result.Max && "Expected value in range"); 4176 Lex.Lex(); 4177 return false; 4178 } 4179 4180 template <> 4181 bool LLParser::parseMDField(LocTy Loc, StringRef Name, LineField &Result) { 4182 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4183 } 4184 template <> 4185 bool LLParser::parseMDField(LocTy Loc, StringRef Name, ColumnField &Result) { 4186 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4187 } 4188 4189 template <> 4190 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfTagField &Result) { 4191 if (Lex.getKind() == lltok::APSInt) 4192 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4193 4194 if (Lex.getKind() != lltok::DwarfTag) 4195 return tokError("expected DWARF tag"); 4196 4197 unsigned Tag = dwarf::getTag(Lex.getStrVal()); 4198 if (Tag == dwarf::DW_TAG_invalid) 4199 return tokError("invalid DWARF tag" + Twine(" '") + Lex.getStrVal() + "'"); 4200 assert(Tag <= Result.Max && "Expected valid DWARF tag"); 4201 4202 Result.assign(Tag); 4203 Lex.Lex(); 4204 return false; 4205 } 4206 4207 template <> 4208 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4209 DwarfMacinfoTypeField &Result) { 4210 if (Lex.getKind() == lltok::APSInt) 4211 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4212 4213 if (Lex.getKind() != lltok::DwarfMacinfo) 4214 return tokError("expected DWARF macinfo type"); 4215 4216 unsigned Macinfo = dwarf::getMacinfo(Lex.getStrVal()); 4217 if (Macinfo == dwarf::DW_MACINFO_invalid) 4218 return tokError("invalid DWARF macinfo type" + Twine(" '") + 4219 Lex.getStrVal() + "'"); 4220 assert(Macinfo <= Result.Max && "Expected valid DWARF macinfo type"); 4221 4222 Result.assign(Macinfo); 4223 Lex.Lex(); 4224 return false; 4225 } 4226 4227 template <> 4228 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4229 DwarfVirtualityField &Result) { 4230 if (Lex.getKind() == lltok::APSInt) 4231 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4232 4233 if (Lex.getKind() != lltok::DwarfVirtuality) 4234 return tokError("expected DWARF virtuality code"); 4235 4236 unsigned Virtuality = dwarf::getVirtuality(Lex.getStrVal()); 4237 if (Virtuality == dwarf::DW_VIRTUALITY_invalid) 4238 return tokError("invalid DWARF virtuality code" + Twine(" '") + 4239 Lex.getStrVal() + "'"); 4240 assert(Virtuality <= Result.Max && "Expected valid DWARF virtuality code"); 4241 Result.assign(Virtuality); 4242 Lex.Lex(); 4243 return false; 4244 } 4245 4246 template <> 4247 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfLangField &Result) { 4248 if (Lex.getKind() == lltok::APSInt) 4249 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4250 4251 if (Lex.getKind() != lltok::DwarfLang) 4252 return tokError("expected DWARF language"); 4253 4254 unsigned Lang = dwarf::getLanguage(Lex.getStrVal()); 4255 if (!Lang) 4256 return tokError("invalid DWARF language" + Twine(" '") + Lex.getStrVal() + 4257 "'"); 4258 assert(Lang <= Result.Max && "Expected valid DWARF language"); 4259 Result.assign(Lang); 4260 Lex.Lex(); 4261 return false; 4262 } 4263 4264 template <> 4265 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DwarfCCField &Result) { 4266 if (Lex.getKind() == lltok::APSInt) 4267 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4268 4269 if (Lex.getKind() != lltok::DwarfCC) 4270 return tokError("expected DWARF calling convention"); 4271 4272 unsigned CC = dwarf::getCallingConvention(Lex.getStrVal()); 4273 if (!CC) 4274 return tokError("invalid DWARF calling convention" + Twine(" '") + 4275 Lex.getStrVal() + "'"); 4276 assert(CC <= Result.Max && "Expected valid DWARF calling convention"); 4277 Result.assign(CC); 4278 Lex.Lex(); 4279 return false; 4280 } 4281 4282 template <> 4283 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4284 EmissionKindField &Result) { 4285 if (Lex.getKind() == lltok::APSInt) 4286 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4287 4288 if (Lex.getKind() != lltok::EmissionKind) 4289 return tokError("expected emission kind"); 4290 4291 auto Kind = DICompileUnit::getEmissionKind(Lex.getStrVal()); 4292 if (!Kind) 4293 return tokError("invalid emission kind" + Twine(" '") + Lex.getStrVal() + 4294 "'"); 4295 assert(*Kind <= Result.Max && "Expected valid emission kind"); 4296 Result.assign(*Kind); 4297 Lex.Lex(); 4298 return false; 4299 } 4300 4301 template <> 4302 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4303 NameTableKindField &Result) { 4304 if (Lex.getKind() == lltok::APSInt) 4305 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4306 4307 if (Lex.getKind() != lltok::NameTableKind) 4308 return tokError("expected nameTable kind"); 4309 4310 auto Kind = DICompileUnit::getNameTableKind(Lex.getStrVal()); 4311 if (!Kind) 4312 return tokError("invalid nameTable kind" + Twine(" '") + Lex.getStrVal() + 4313 "'"); 4314 assert(((unsigned)*Kind) <= Result.Max && "Expected valid nameTable kind"); 4315 Result.assign((unsigned)*Kind); 4316 Lex.Lex(); 4317 return false; 4318 } 4319 4320 template <> 4321 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4322 DwarfAttEncodingField &Result) { 4323 if (Lex.getKind() == lltok::APSInt) 4324 return parseMDField(Loc, Name, static_cast<MDUnsignedField &>(Result)); 4325 4326 if (Lex.getKind() != lltok::DwarfAttEncoding) 4327 return tokError("expected DWARF type attribute encoding"); 4328 4329 unsigned Encoding = dwarf::getAttributeEncoding(Lex.getStrVal()); 4330 if (!Encoding) 4331 return tokError("invalid DWARF type attribute encoding" + Twine(" '") + 4332 Lex.getStrVal() + "'"); 4333 assert(Encoding <= Result.Max && "Expected valid DWARF language"); 4334 Result.assign(Encoding); 4335 Lex.Lex(); 4336 return false; 4337 } 4338 4339 /// DIFlagField 4340 /// ::= uint32 4341 /// ::= DIFlagVector 4342 /// ::= DIFlagVector '|' DIFlagFwdDecl '|' uint32 '|' DIFlagPublic 4343 template <> 4344 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DIFlagField &Result) { 4345 4346 // parser for a single flag. 4347 auto parseFlag = [&](DINode::DIFlags &Val) { 4348 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4349 uint32_t TempVal = static_cast<uint32_t>(Val); 4350 bool Res = parseUInt32(TempVal); 4351 Val = static_cast<DINode::DIFlags>(TempVal); 4352 return Res; 4353 } 4354 4355 if (Lex.getKind() != lltok::DIFlag) 4356 return tokError("expected debug info flag"); 4357 4358 Val = DINode::getFlag(Lex.getStrVal()); 4359 if (!Val) 4360 return tokError(Twine("invalid debug info flag flag '") + 4361 Lex.getStrVal() + "'"); 4362 Lex.Lex(); 4363 return false; 4364 }; 4365 4366 // parse the flags and combine them together. 4367 DINode::DIFlags Combined = DINode::FlagZero; 4368 do { 4369 DINode::DIFlags Val; 4370 if (parseFlag(Val)) 4371 return true; 4372 Combined |= Val; 4373 } while (EatIfPresent(lltok::bar)); 4374 4375 Result.assign(Combined); 4376 return false; 4377 } 4378 4379 /// DISPFlagField 4380 /// ::= uint32 4381 /// ::= DISPFlagVector 4382 /// ::= DISPFlagVector '|' DISPFlag* '|' uint32 4383 template <> 4384 bool LLParser::parseMDField(LocTy Loc, StringRef Name, DISPFlagField &Result) { 4385 4386 // parser for a single flag. 4387 auto parseFlag = [&](DISubprogram::DISPFlags &Val) { 4388 if (Lex.getKind() == lltok::APSInt && !Lex.getAPSIntVal().isSigned()) { 4389 uint32_t TempVal = static_cast<uint32_t>(Val); 4390 bool Res = parseUInt32(TempVal); 4391 Val = static_cast<DISubprogram::DISPFlags>(TempVal); 4392 return Res; 4393 } 4394 4395 if (Lex.getKind() != lltok::DISPFlag) 4396 return tokError("expected debug info flag"); 4397 4398 Val = DISubprogram::getFlag(Lex.getStrVal()); 4399 if (!Val) 4400 return tokError(Twine("invalid subprogram debug info flag '") + 4401 Lex.getStrVal() + "'"); 4402 Lex.Lex(); 4403 return false; 4404 }; 4405 4406 // parse the flags and combine them together. 4407 DISubprogram::DISPFlags Combined = DISubprogram::SPFlagZero; 4408 do { 4409 DISubprogram::DISPFlags Val; 4410 if (parseFlag(Val)) 4411 return true; 4412 Combined |= Val; 4413 } while (EatIfPresent(lltok::bar)); 4414 4415 Result.assign(Combined); 4416 return false; 4417 } 4418 4419 template <> 4420 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDSignedField &Result) { 4421 if (Lex.getKind() != lltok::APSInt) 4422 return tokError("expected signed integer"); 4423 4424 auto &S = Lex.getAPSIntVal(); 4425 if (S < Result.Min) 4426 return tokError("value for '" + Name + "' too small, limit is " + 4427 Twine(Result.Min)); 4428 if (S > Result.Max) 4429 return tokError("value for '" + Name + "' too large, limit is " + 4430 Twine(Result.Max)); 4431 Result.assign(S.getExtValue()); 4432 assert(Result.Val >= Result.Min && "Expected value in range"); 4433 assert(Result.Val <= Result.Max && "Expected value in range"); 4434 Lex.Lex(); 4435 return false; 4436 } 4437 4438 template <> 4439 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDBoolField &Result) { 4440 switch (Lex.getKind()) { 4441 default: 4442 return tokError("expected 'true' or 'false'"); 4443 case lltok::kw_true: 4444 Result.assign(true); 4445 break; 4446 case lltok::kw_false: 4447 Result.assign(false); 4448 break; 4449 } 4450 Lex.Lex(); 4451 return false; 4452 } 4453 4454 template <> 4455 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDField &Result) { 4456 if (Lex.getKind() == lltok::kw_null) { 4457 if (!Result.AllowNull) 4458 return tokError("'" + Name + "' cannot be null"); 4459 Lex.Lex(); 4460 Result.assign(nullptr); 4461 return false; 4462 } 4463 4464 Metadata *MD; 4465 if (parseMetadata(MD, nullptr)) 4466 return true; 4467 4468 Result.assign(MD); 4469 return false; 4470 } 4471 4472 template <> 4473 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4474 MDSignedOrMDField &Result) { 4475 // Try to parse a signed int. 4476 if (Lex.getKind() == lltok::APSInt) { 4477 MDSignedField Res = Result.A; 4478 if (!parseMDField(Loc, Name, Res)) { 4479 Result.assign(Res); 4480 return false; 4481 } 4482 return true; 4483 } 4484 4485 // Otherwise, try to parse as an MDField. 4486 MDField Res = Result.B; 4487 if (!parseMDField(Loc, Name, Res)) { 4488 Result.assign(Res); 4489 return false; 4490 } 4491 4492 return true; 4493 } 4494 4495 template <> 4496 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDStringField &Result) { 4497 LocTy ValueLoc = Lex.getLoc(); 4498 std::string S; 4499 if (parseStringConstant(S)) 4500 return true; 4501 4502 if (!Result.AllowEmpty && S.empty()) 4503 return error(ValueLoc, "'" + Name + "' cannot be empty"); 4504 4505 Result.assign(S.empty() ? nullptr : MDString::get(Context, S)); 4506 return false; 4507 } 4508 4509 template <> 4510 bool LLParser::parseMDField(LocTy Loc, StringRef Name, MDFieldList &Result) { 4511 SmallVector<Metadata *, 4> MDs; 4512 if (parseMDNodeVector(MDs)) 4513 return true; 4514 4515 Result.assign(std::move(MDs)); 4516 return false; 4517 } 4518 4519 template <> 4520 bool LLParser::parseMDField(LocTy Loc, StringRef Name, 4521 ChecksumKindField &Result) { 4522 Optional<DIFile::ChecksumKind> CSKind = 4523 DIFile::getChecksumKind(Lex.getStrVal()); 4524 4525 if (Lex.getKind() != lltok::ChecksumKind || !CSKind) 4526 return tokError("invalid checksum kind" + Twine(" '") + Lex.getStrVal() + 4527 "'"); 4528 4529 Result.assign(*CSKind); 4530 Lex.Lex(); 4531 return false; 4532 } 4533 4534 } // end namespace llvm 4535 4536 template <class ParserTy> 4537 bool LLParser::parseMDFieldsImplBody(ParserTy ParseField) { 4538 do { 4539 if (Lex.getKind() != lltok::LabelStr) 4540 return tokError("expected field label here"); 4541 4542 if (ParseField()) 4543 return true; 4544 } while (EatIfPresent(lltok::comma)); 4545 4546 return false; 4547 } 4548 4549 template <class ParserTy> 4550 bool LLParser::parseMDFieldsImpl(ParserTy ParseField, LocTy &ClosingLoc) { 4551 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4552 Lex.Lex(); 4553 4554 if (parseToken(lltok::lparen, "expected '(' here")) 4555 return true; 4556 if (Lex.getKind() != lltok::rparen) 4557 if (parseMDFieldsImplBody(ParseField)) 4558 return true; 4559 4560 ClosingLoc = Lex.getLoc(); 4561 return parseToken(lltok::rparen, "expected ')' here"); 4562 } 4563 4564 template <class FieldTy> 4565 bool LLParser::parseMDField(StringRef Name, FieldTy &Result) { 4566 if (Result.Seen) 4567 return tokError("field '" + Name + "' cannot be specified more than once"); 4568 4569 LocTy Loc = Lex.getLoc(); 4570 Lex.Lex(); 4571 return parseMDField(Loc, Name, Result); 4572 } 4573 4574 bool LLParser::parseSpecializedMDNode(MDNode *&N, bool IsDistinct) { 4575 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 4576 4577 #define HANDLE_SPECIALIZED_MDNODE_LEAF(CLASS) \ 4578 if (Lex.getStrVal() == #CLASS) \ 4579 return parse##CLASS(N, IsDistinct); 4580 #include "llvm/IR/Metadata.def" 4581 4582 return tokError("expected metadata type"); 4583 } 4584 4585 #define DECLARE_FIELD(NAME, TYPE, INIT) TYPE NAME INIT 4586 #define NOP_FIELD(NAME, TYPE, INIT) 4587 #define REQUIRE_FIELD(NAME, TYPE, INIT) \ 4588 if (!NAME.Seen) \ 4589 return error(ClosingLoc, "missing required field '" #NAME "'"); 4590 #define PARSE_MD_FIELD(NAME, TYPE, DEFAULT) \ 4591 if (Lex.getStrVal() == #NAME) \ 4592 return parseMDField(#NAME, NAME); 4593 #define PARSE_MD_FIELDS() \ 4594 VISIT_MD_FIELDS(DECLARE_FIELD, DECLARE_FIELD) \ 4595 do { \ 4596 LocTy ClosingLoc; \ 4597 if (parseMDFieldsImpl( \ 4598 [&]() -> bool { \ 4599 VISIT_MD_FIELDS(PARSE_MD_FIELD, PARSE_MD_FIELD) \ 4600 return tokError(Twine("invalid field '") + Lex.getStrVal() + \ 4601 "'"); \ 4602 }, \ 4603 ClosingLoc)) \ 4604 return true; \ 4605 VISIT_MD_FIELDS(NOP_FIELD, REQUIRE_FIELD) \ 4606 } while (false) 4607 #define GET_OR_DISTINCT(CLASS, ARGS) \ 4608 (IsDistinct ? CLASS::getDistinct ARGS : CLASS::get ARGS) 4609 4610 /// parseDILocationFields: 4611 /// ::= !DILocation(line: 43, column: 8, scope: !5, inlinedAt: !6, 4612 /// isImplicitCode: true) 4613 bool LLParser::parseDILocation(MDNode *&Result, bool IsDistinct) { 4614 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4615 OPTIONAL(line, LineField, ); \ 4616 OPTIONAL(column, ColumnField, ); \ 4617 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 4618 OPTIONAL(inlinedAt, MDField, ); \ 4619 OPTIONAL(isImplicitCode, MDBoolField, (false)); 4620 PARSE_MD_FIELDS(); 4621 #undef VISIT_MD_FIELDS 4622 4623 Result = 4624 GET_OR_DISTINCT(DILocation, (Context, line.Val, column.Val, scope.Val, 4625 inlinedAt.Val, isImplicitCode.Val)); 4626 return false; 4627 } 4628 4629 /// parseGenericDINode: 4630 /// ::= !GenericDINode(tag: 15, header: "...", operands: {...}) 4631 bool LLParser::parseGenericDINode(MDNode *&Result, bool IsDistinct) { 4632 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4633 REQUIRED(tag, DwarfTagField, ); \ 4634 OPTIONAL(header, MDStringField, ); \ 4635 OPTIONAL(operands, MDFieldList, ); 4636 PARSE_MD_FIELDS(); 4637 #undef VISIT_MD_FIELDS 4638 4639 Result = GET_OR_DISTINCT(GenericDINode, 4640 (Context, tag.Val, header.Val, operands.Val)); 4641 return false; 4642 } 4643 4644 /// parseDISubrange: 4645 /// ::= !DISubrange(count: 30, lowerBound: 2) 4646 /// ::= !DISubrange(count: !node, lowerBound: 2) 4647 /// ::= !DISubrange(lowerBound: !node1, upperBound: !node2, stride: !node3) 4648 bool LLParser::parseDISubrange(MDNode *&Result, bool IsDistinct) { 4649 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4650 OPTIONAL(count, MDSignedOrMDField, (-1, -1, INT64_MAX, false)); \ 4651 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 4652 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 4653 OPTIONAL(stride, MDSignedOrMDField, ); 4654 PARSE_MD_FIELDS(); 4655 #undef VISIT_MD_FIELDS 4656 4657 Metadata *Count = nullptr; 4658 Metadata *LowerBound = nullptr; 4659 Metadata *UpperBound = nullptr; 4660 Metadata *Stride = nullptr; 4661 if (count.isMDSignedField()) 4662 Count = ConstantAsMetadata::get(ConstantInt::getSigned( 4663 Type::getInt64Ty(Context), count.getMDSignedValue())); 4664 else if (count.isMDField()) 4665 Count = count.getMDFieldValue(); 4666 4667 auto convToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 4668 if (Bound.isMDSignedField()) 4669 return ConstantAsMetadata::get(ConstantInt::getSigned( 4670 Type::getInt64Ty(Context), Bound.getMDSignedValue())); 4671 if (Bound.isMDField()) 4672 return Bound.getMDFieldValue(); 4673 return nullptr; 4674 }; 4675 4676 LowerBound = convToMetadata(lowerBound); 4677 UpperBound = convToMetadata(upperBound); 4678 Stride = convToMetadata(stride); 4679 4680 Result = GET_OR_DISTINCT(DISubrange, 4681 (Context, Count, LowerBound, UpperBound, Stride)); 4682 4683 return false; 4684 } 4685 4686 /// parseDIGenericSubrange: 4687 /// ::= !DIGenericSubrange(lowerBound: !node1, upperBound: !node2, stride: 4688 /// !node3) 4689 bool LLParser::parseDIGenericSubrange(MDNode *&Result, bool IsDistinct) { 4690 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4691 OPTIONAL(count, MDSignedOrMDField, ); \ 4692 OPTIONAL(lowerBound, MDSignedOrMDField, ); \ 4693 OPTIONAL(upperBound, MDSignedOrMDField, ); \ 4694 OPTIONAL(stride, MDSignedOrMDField, ); 4695 PARSE_MD_FIELDS(); 4696 #undef VISIT_MD_FIELDS 4697 4698 auto ConvToMetadata = [&](MDSignedOrMDField Bound) -> Metadata * { 4699 if (Bound.isMDSignedField()) 4700 return DIExpression::get( 4701 Context, {dwarf::DW_OP_consts, 4702 static_cast<uint64_t>(Bound.getMDSignedValue())}); 4703 if (Bound.isMDField()) 4704 return Bound.getMDFieldValue(); 4705 return nullptr; 4706 }; 4707 4708 Metadata *Count = ConvToMetadata(count); 4709 Metadata *LowerBound = ConvToMetadata(lowerBound); 4710 Metadata *UpperBound = ConvToMetadata(upperBound); 4711 Metadata *Stride = ConvToMetadata(stride); 4712 4713 Result = GET_OR_DISTINCT(DIGenericSubrange, 4714 (Context, Count, LowerBound, UpperBound, Stride)); 4715 4716 return false; 4717 } 4718 4719 /// parseDIEnumerator: 4720 /// ::= !DIEnumerator(value: 30, isUnsigned: true, name: "SomeKind") 4721 bool LLParser::parseDIEnumerator(MDNode *&Result, bool IsDistinct) { 4722 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4723 REQUIRED(name, MDStringField, ); \ 4724 REQUIRED(value, MDAPSIntField, ); \ 4725 OPTIONAL(isUnsigned, MDBoolField, (false)); 4726 PARSE_MD_FIELDS(); 4727 #undef VISIT_MD_FIELDS 4728 4729 if (isUnsigned.Val && value.Val.isNegative()) 4730 return tokError("unsigned enumerator with negative value"); 4731 4732 APSInt Value(value.Val); 4733 // Add a leading zero so that unsigned values with the msb set are not 4734 // mistaken for negative values when used for signed enumerators. 4735 if (!isUnsigned.Val && value.Val.isUnsigned() && value.Val.isSignBitSet()) 4736 Value = Value.zext(Value.getBitWidth() + 1); 4737 4738 Result = 4739 GET_OR_DISTINCT(DIEnumerator, (Context, Value, isUnsigned.Val, name.Val)); 4740 4741 return false; 4742 } 4743 4744 /// parseDIBasicType: 4745 /// ::= !DIBasicType(tag: DW_TAG_base_type, name: "int", size: 32, align: 32, 4746 /// encoding: DW_ATE_encoding, flags: 0) 4747 bool LLParser::parseDIBasicType(MDNode *&Result, bool IsDistinct) { 4748 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4749 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_base_type)); \ 4750 OPTIONAL(name, MDStringField, ); \ 4751 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4752 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4753 OPTIONAL(encoding, DwarfAttEncodingField, ); \ 4754 OPTIONAL(flags, DIFlagField, ); 4755 PARSE_MD_FIELDS(); 4756 #undef VISIT_MD_FIELDS 4757 4758 Result = GET_OR_DISTINCT(DIBasicType, (Context, tag.Val, name.Val, size.Val, 4759 align.Val, encoding.Val, flags.Val)); 4760 return false; 4761 } 4762 4763 /// parseDIStringType: 4764 /// ::= !DIStringType(name: "character(4)", size: 32, align: 32) 4765 bool LLParser::parseDIStringType(MDNode *&Result, bool IsDistinct) { 4766 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4767 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_string_type)); \ 4768 OPTIONAL(name, MDStringField, ); \ 4769 OPTIONAL(stringLength, MDField, ); \ 4770 OPTIONAL(stringLengthExpression, MDField, ); \ 4771 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4772 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4773 OPTIONAL(encoding, DwarfAttEncodingField, ); 4774 PARSE_MD_FIELDS(); 4775 #undef VISIT_MD_FIELDS 4776 4777 Result = GET_OR_DISTINCT(DIStringType, 4778 (Context, tag.Val, name.Val, stringLength.Val, 4779 stringLengthExpression.Val, size.Val, align.Val, 4780 encoding.Val)); 4781 return false; 4782 } 4783 4784 /// parseDIDerivedType: 4785 /// ::= !DIDerivedType(tag: DW_TAG_pointer_type, name: "int", file: !0, 4786 /// line: 7, scope: !1, baseType: !2, size: 32, 4787 /// align: 32, offset: 0, flags: 0, extraData: !3, 4788 /// dwarfAddressSpace: 3) 4789 bool LLParser::parseDIDerivedType(MDNode *&Result, bool IsDistinct) { 4790 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4791 REQUIRED(tag, DwarfTagField, ); \ 4792 OPTIONAL(name, MDStringField, ); \ 4793 OPTIONAL(file, MDField, ); \ 4794 OPTIONAL(line, LineField, ); \ 4795 OPTIONAL(scope, MDField, ); \ 4796 REQUIRED(baseType, MDField, ); \ 4797 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4798 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4799 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4800 OPTIONAL(flags, DIFlagField, ); \ 4801 OPTIONAL(extraData, MDField, ); \ 4802 OPTIONAL(dwarfAddressSpace, MDUnsignedField, (UINT32_MAX, UINT32_MAX)); 4803 PARSE_MD_FIELDS(); 4804 #undef VISIT_MD_FIELDS 4805 4806 Optional<unsigned> DWARFAddressSpace; 4807 if (dwarfAddressSpace.Val != UINT32_MAX) 4808 DWARFAddressSpace = dwarfAddressSpace.Val; 4809 4810 Result = GET_OR_DISTINCT(DIDerivedType, 4811 (Context, tag.Val, name.Val, file.Val, line.Val, 4812 scope.Val, baseType.Val, size.Val, align.Val, 4813 offset.Val, DWARFAddressSpace, flags.Val, 4814 extraData.Val)); 4815 return false; 4816 } 4817 4818 bool LLParser::parseDICompositeType(MDNode *&Result, bool IsDistinct) { 4819 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4820 REQUIRED(tag, DwarfTagField, ); \ 4821 OPTIONAL(name, MDStringField, ); \ 4822 OPTIONAL(file, MDField, ); \ 4823 OPTIONAL(line, LineField, ); \ 4824 OPTIONAL(scope, MDField, ); \ 4825 OPTIONAL(baseType, MDField, ); \ 4826 OPTIONAL(size, MDUnsignedField, (0, UINT64_MAX)); \ 4827 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); \ 4828 OPTIONAL(offset, MDUnsignedField, (0, UINT64_MAX)); \ 4829 OPTIONAL(flags, DIFlagField, ); \ 4830 OPTIONAL(elements, MDField, ); \ 4831 OPTIONAL(runtimeLang, DwarfLangField, ); \ 4832 OPTIONAL(vtableHolder, MDField, ); \ 4833 OPTIONAL(templateParams, MDField, ); \ 4834 OPTIONAL(identifier, MDStringField, ); \ 4835 OPTIONAL(discriminator, MDField, ); \ 4836 OPTIONAL(dataLocation, MDField, ); \ 4837 OPTIONAL(associated, MDField, ); \ 4838 OPTIONAL(allocated, MDField, ); \ 4839 OPTIONAL(rank, MDSignedOrMDField, ); 4840 PARSE_MD_FIELDS(); 4841 #undef VISIT_MD_FIELDS 4842 4843 Metadata *Rank = nullptr; 4844 if (rank.isMDSignedField()) 4845 Rank = ConstantAsMetadata::get(ConstantInt::getSigned( 4846 Type::getInt64Ty(Context), rank.getMDSignedValue())); 4847 else if (rank.isMDField()) 4848 Rank = rank.getMDFieldValue(); 4849 4850 // If this has an identifier try to build an ODR type. 4851 if (identifier.Val) 4852 if (auto *CT = DICompositeType::buildODRType( 4853 Context, *identifier.Val, tag.Val, name.Val, file.Val, line.Val, 4854 scope.Val, baseType.Val, size.Val, align.Val, offset.Val, flags.Val, 4855 elements.Val, runtimeLang.Val, vtableHolder.Val, templateParams.Val, 4856 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, 4857 Rank)) { 4858 Result = CT; 4859 return false; 4860 } 4861 4862 // Create a new node, and save it in the context if it belongs in the type 4863 // map. 4864 Result = GET_OR_DISTINCT( 4865 DICompositeType, 4866 (Context, tag.Val, name.Val, file.Val, line.Val, scope.Val, baseType.Val, 4867 size.Val, align.Val, offset.Val, flags.Val, elements.Val, 4868 runtimeLang.Val, vtableHolder.Val, templateParams.Val, identifier.Val, 4869 discriminator.Val, dataLocation.Val, associated.Val, allocated.Val, 4870 Rank)); 4871 return false; 4872 } 4873 4874 bool LLParser::parseDISubroutineType(MDNode *&Result, bool IsDistinct) { 4875 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4876 OPTIONAL(flags, DIFlagField, ); \ 4877 OPTIONAL(cc, DwarfCCField, ); \ 4878 REQUIRED(types, MDField, ); 4879 PARSE_MD_FIELDS(); 4880 #undef VISIT_MD_FIELDS 4881 4882 Result = GET_OR_DISTINCT(DISubroutineType, 4883 (Context, flags.Val, cc.Val, types.Val)); 4884 return false; 4885 } 4886 4887 /// parseDIFileType: 4888 /// ::= !DIFileType(filename: "path/to/file", directory: "/path/to/dir", 4889 /// checksumkind: CSK_MD5, 4890 /// checksum: "000102030405060708090a0b0c0d0e0f", 4891 /// source: "source file contents") 4892 bool LLParser::parseDIFile(MDNode *&Result, bool IsDistinct) { 4893 // The default constructed value for checksumkind is required, but will never 4894 // be used, as the parser checks if the field was actually Seen before using 4895 // the Val. 4896 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4897 REQUIRED(filename, MDStringField, ); \ 4898 REQUIRED(directory, MDStringField, ); \ 4899 OPTIONAL(checksumkind, ChecksumKindField, (DIFile::CSK_MD5)); \ 4900 OPTIONAL(checksum, MDStringField, ); \ 4901 OPTIONAL(source, MDStringField, ); 4902 PARSE_MD_FIELDS(); 4903 #undef VISIT_MD_FIELDS 4904 4905 Optional<DIFile::ChecksumInfo<MDString *>> OptChecksum; 4906 if (checksumkind.Seen && checksum.Seen) 4907 OptChecksum.emplace(checksumkind.Val, checksum.Val); 4908 else if (checksumkind.Seen || checksum.Seen) 4909 return Lex.Error("'checksumkind' and 'checksum' must be provided together"); 4910 4911 Optional<MDString *> OptSource; 4912 if (source.Seen) 4913 OptSource = source.Val; 4914 Result = GET_OR_DISTINCT(DIFile, (Context, filename.Val, directory.Val, 4915 OptChecksum, OptSource)); 4916 return false; 4917 } 4918 4919 /// parseDICompileUnit: 4920 /// ::= !DICompileUnit(language: DW_LANG_C99, file: !0, producer: "clang", 4921 /// isOptimized: true, flags: "-O2", runtimeVersion: 1, 4922 /// splitDebugFilename: "abc.debug", 4923 /// emissionKind: FullDebug, enums: !1, retainedTypes: !2, 4924 /// globals: !4, imports: !5, macros: !6, dwoId: 0x0abcd, 4925 /// sysroot: "/", sdk: "MacOSX.sdk") 4926 bool LLParser::parseDICompileUnit(MDNode *&Result, bool IsDistinct) { 4927 if (!IsDistinct) 4928 return Lex.Error("missing 'distinct', required for !DICompileUnit"); 4929 4930 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4931 REQUIRED(language, DwarfLangField, ); \ 4932 REQUIRED(file, MDField, (/* AllowNull */ false)); \ 4933 OPTIONAL(producer, MDStringField, ); \ 4934 OPTIONAL(isOptimized, MDBoolField, ); \ 4935 OPTIONAL(flags, MDStringField, ); \ 4936 OPTIONAL(runtimeVersion, MDUnsignedField, (0, UINT32_MAX)); \ 4937 OPTIONAL(splitDebugFilename, MDStringField, ); \ 4938 OPTIONAL(emissionKind, EmissionKindField, ); \ 4939 OPTIONAL(enums, MDField, ); \ 4940 OPTIONAL(retainedTypes, MDField, ); \ 4941 OPTIONAL(globals, MDField, ); \ 4942 OPTIONAL(imports, MDField, ); \ 4943 OPTIONAL(macros, MDField, ); \ 4944 OPTIONAL(dwoId, MDUnsignedField, ); \ 4945 OPTIONAL(splitDebugInlining, MDBoolField, = true); \ 4946 OPTIONAL(debugInfoForProfiling, MDBoolField, = false); \ 4947 OPTIONAL(nameTableKind, NameTableKindField, ); \ 4948 OPTIONAL(rangesBaseAddress, MDBoolField, = false); \ 4949 OPTIONAL(sysroot, MDStringField, ); \ 4950 OPTIONAL(sdk, MDStringField, ); 4951 PARSE_MD_FIELDS(); 4952 #undef VISIT_MD_FIELDS 4953 4954 Result = DICompileUnit::getDistinct( 4955 Context, language.Val, file.Val, producer.Val, isOptimized.Val, flags.Val, 4956 runtimeVersion.Val, splitDebugFilename.Val, emissionKind.Val, enums.Val, 4957 retainedTypes.Val, globals.Val, imports.Val, macros.Val, dwoId.Val, 4958 splitDebugInlining.Val, debugInfoForProfiling.Val, nameTableKind.Val, 4959 rangesBaseAddress.Val, sysroot.Val, sdk.Val); 4960 return false; 4961 } 4962 4963 /// parseDISubprogram: 4964 /// ::= !DISubprogram(scope: !0, name: "foo", linkageName: "_Zfoo", 4965 /// file: !1, line: 7, type: !2, isLocal: false, 4966 /// isDefinition: true, scopeLine: 8, containingType: !3, 4967 /// virtuality: DW_VIRTUALTIY_pure_virtual, 4968 /// virtualIndex: 10, thisAdjustment: 4, flags: 11, 4969 /// spFlags: 10, isOptimized: false, templateParams: !4, 4970 /// declaration: !5, retainedNodes: !6, thrownTypes: !7) 4971 bool LLParser::parseDISubprogram(MDNode *&Result, bool IsDistinct) { 4972 auto Loc = Lex.getLoc(); 4973 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 4974 OPTIONAL(scope, MDField, ); \ 4975 OPTIONAL(name, MDStringField, ); \ 4976 OPTIONAL(linkageName, MDStringField, ); \ 4977 OPTIONAL(file, MDField, ); \ 4978 OPTIONAL(line, LineField, ); \ 4979 OPTIONAL(type, MDField, ); \ 4980 OPTIONAL(isLocal, MDBoolField, ); \ 4981 OPTIONAL(isDefinition, MDBoolField, (true)); \ 4982 OPTIONAL(scopeLine, LineField, ); \ 4983 OPTIONAL(containingType, MDField, ); \ 4984 OPTIONAL(virtuality, DwarfVirtualityField, ); \ 4985 OPTIONAL(virtualIndex, MDUnsignedField, (0, UINT32_MAX)); \ 4986 OPTIONAL(thisAdjustment, MDSignedField, (0, INT32_MIN, INT32_MAX)); \ 4987 OPTIONAL(flags, DIFlagField, ); \ 4988 OPTIONAL(spFlags, DISPFlagField, ); \ 4989 OPTIONAL(isOptimized, MDBoolField, ); \ 4990 OPTIONAL(unit, MDField, ); \ 4991 OPTIONAL(templateParams, MDField, ); \ 4992 OPTIONAL(declaration, MDField, ); \ 4993 OPTIONAL(retainedNodes, MDField, ); \ 4994 OPTIONAL(thrownTypes, MDField, ); 4995 PARSE_MD_FIELDS(); 4996 #undef VISIT_MD_FIELDS 4997 4998 // An explicit spFlags field takes precedence over individual fields in 4999 // older IR versions. 5000 DISubprogram::DISPFlags SPFlags = 5001 spFlags.Seen ? spFlags.Val 5002 : DISubprogram::toSPFlags(isLocal.Val, isDefinition.Val, 5003 isOptimized.Val, virtuality.Val); 5004 if ((SPFlags & DISubprogram::SPFlagDefinition) && !IsDistinct) 5005 return Lex.Error( 5006 Loc, 5007 "missing 'distinct', required for !DISubprogram that is a Definition"); 5008 Result = GET_OR_DISTINCT( 5009 DISubprogram, 5010 (Context, scope.Val, name.Val, linkageName.Val, file.Val, line.Val, 5011 type.Val, scopeLine.Val, containingType.Val, virtualIndex.Val, 5012 thisAdjustment.Val, flags.Val, SPFlags, unit.Val, templateParams.Val, 5013 declaration.Val, retainedNodes.Val, thrownTypes.Val)); 5014 return false; 5015 } 5016 5017 /// parseDILexicalBlock: 5018 /// ::= !DILexicalBlock(scope: !0, file: !2, line: 7, column: 9) 5019 bool LLParser::parseDILexicalBlock(MDNode *&Result, bool IsDistinct) { 5020 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5021 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5022 OPTIONAL(file, MDField, ); \ 5023 OPTIONAL(line, LineField, ); \ 5024 OPTIONAL(column, ColumnField, ); 5025 PARSE_MD_FIELDS(); 5026 #undef VISIT_MD_FIELDS 5027 5028 Result = GET_OR_DISTINCT( 5029 DILexicalBlock, (Context, scope.Val, file.Val, line.Val, column.Val)); 5030 return false; 5031 } 5032 5033 /// parseDILexicalBlockFile: 5034 /// ::= !DILexicalBlockFile(scope: !0, file: !2, discriminator: 9) 5035 bool LLParser::parseDILexicalBlockFile(MDNode *&Result, bool IsDistinct) { 5036 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5037 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5038 OPTIONAL(file, MDField, ); \ 5039 REQUIRED(discriminator, MDUnsignedField, (0, UINT32_MAX)); 5040 PARSE_MD_FIELDS(); 5041 #undef VISIT_MD_FIELDS 5042 5043 Result = GET_OR_DISTINCT(DILexicalBlockFile, 5044 (Context, scope.Val, file.Val, discriminator.Val)); 5045 return false; 5046 } 5047 5048 /// parseDICommonBlock: 5049 /// ::= !DICommonBlock(scope: !0, file: !2, name: "COMMON name", line: 9) 5050 bool LLParser::parseDICommonBlock(MDNode *&Result, bool IsDistinct) { 5051 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5052 REQUIRED(scope, MDField, ); \ 5053 OPTIONAL(declaration, MDField, ); \ 5054 OPTIONAL(name, MDStringField, ); \ 5055 OPTIONAL(file, MDField, ); \ 5056 OPTIONAL(line, LineField, ); 5057 PARSE_MD_FIELDS(); 5058 #undef VISIT_MD_FIELDS 5059 5060 Result = GET_OR_DISTINCT(DICommonBlock, 5061 (Context, scope.Val, declaration.Val, name.Val, 5062 file.Val, line.Val)); 5063 return false; 5064 } 5065 5066 /// parseDINamespace: 5067 /// ::= !DINamespace(scope: !0, file: !2, name: "SomeNamespace", line: 9) 5068 bool LLParser::parseDINamespace(MDNode *&Result, bool IsDistinct) { 5069 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5070 REQUIRED(scope, MDField, ); \ 5071 OPTIONAL(name, MDStringField, ); \ 5072 OPTIONAL(exportSymbols, MDBoolField, ); 5073 PARSE_MD_FIELDS(); 5074 #undef VISIT_MD_FIELDS 5075 5076 Result = GET_OR_DISTINCT(DINamespace, 5077 (Context, scope.Val, name.Val, exportSymbols.Val)); 5078 return false; 5079 } 5080 5081 /// parseDIMacro: 5082 /// ::= !DIMacro(macinfo: type, line: 9, name: "SomeMacro", value: 5083 /// "SomeValue") 5084 bool LLParser::parseDIMacro(MDNode *&Result, bool IsDistinct) { 5085 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5086 REQUIRED(type, DwarfMacinfoTypeField, ); \ 5087 OPTIONAL(line, LineField, ); \ 5088 REQUIRED(name, MDStringField, ); \ 5089 OPTIONAL(value, MDStringField, ); 5090 PARSE_MD_FIELDS(); 5091 #undef VISIT_MD_FIELDS 5092 5093 Result = GET_OR_DISTINCT(DIMacro, 5094 (Context, type.Val, line.Val, name.Val, value.Val)); 5095 return false; 5096 } 5097 5098 /// parseDIMacroFile: 5099 /// ::= !DIMacroFile(line: 9, file: !2, nodes: !3) 5100 bool LLParser::parseDIMacroFile(MDNode *&Result, bool IsDistinct) { 5101 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5102 OPTIONAL(type, DwarfMacinfoTypeField, (dwarf::DW_MACINFO_start_file)); \ 5103 OPTIONAL(line, LineField, ); \ 5104 REQUIRED(file, MDField, ); \ 5105 OPTIONAL(nodes, MDField, ); 5106 PARSE_MD_FIELDS(); 5107 #undef VISIT_MD_FIELDS 5108 5109 Result = GET_OR_DISTINCT(DIMacroFile, 5110 (Context, type.Val, line.Val, file.Val, nodes.Val)); 5111 return false; 5112 } 5113 5114 /// parseDIModule: 5115 /// ::= !DIModule(scope: !0, name: "SomeModule", configMacros: 5116 /// "-DNDEBUG", includePath: "/usr/include", apinotes: "module.apinotes", 5117 /// file: !1, line: 4) 5118 bool LLParser::parseDIModule(MDNode *&Result, bool IsDistinct) { 5119 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5120 REQUIRED(scope, MDField, ); \ 5121 REQUIRED(name, MDStringField, ); \ 5122 OPTIONAL(configMacros, MDStringField, ); \ 5123 OPTIONAL(includePath, MDStringField, ); \ 5124 OPTIONAL(apinotes, MDStringField, ); \ 5125 OPTIONAL(file, MDField, ); \ 5126 OPTIONAL(line, LineField, ); 5127 PARSE_MD_FIELDS(); 5128 #undef VISIT_MD_FIELDS 5129 5130 Result = GET_OR_DISTINCT(DIModule, (Context, file.Val, scope.Val, name.Val, 5131 configMacros.Val, includePath.Val, 5132 apinotes.Val, line.Val)); 5133 return false; 5134 } 5135 5136 /// parseDITemplateTypeParameter: 5137 /// ::= !DITemplateTypeParameter(name: "Ty", type: !1, defaulted: false) 5138 bool LLParser::parseDITemplateTypeParameter(MDNode *&Result, bool IsDistinct) { 5139 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5140 OPTIONAL(name, MDStringField, ); \ 5141 REQUIRED(type, MDField, ); \ 5142 OPTIONAL(defaulted, MDBoolField, ); 5143 PARSE_MD_FIELDS(); 5144 #undef VISIT_MD_FIELDS 5145 5146 Result = GET_OR_DISTINCT(DITemplateTypeParameter, 5147 (Context, name.Val, type.Val, defaulted.Val)); 5148 return false; 5149 } 5150 5151 /// parseDITemplateValueParameter: 5152 /// ::= !DITemplateValueParameter(tag: DW_TAG_template_value_parameter, 5153 /// name: "V", type: !1, defaulted: false, 5154 /// value: i32 7) 5155 bool LLParser::parseDITemplateValueParameter(MDNode *&Result, bool IsDistinct) { 5156 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5157 OPTIONAL(tag, DwarfTagField, (dwarf::DW_TAG_template_value_parameter)); \ 5158 OPTIONAL(name, MDStringField, ); \ 5159 OPTIONAL(type, MDField, ); \ 5160 OPTIONAL(defaulted, MDBoolField, ); \ 5161 REQUIRED(value, MDField, ); 5162 5163 PARSE_MD_FIELDS(); 5164 #undef VISIT_MD_FIELDS 5165 5166 Result = GET_OR_DISTINCT( 5167 DITemplateValueParameter, 5168 (Context, tag.Val, name.Val, type.Val, defaulted.Val, value.Val)); 5169 return false; 5170 } 5171 5172 /// parseDIGlobalVariable: 5173 /// ::= !DIGlobalVariable(scope: !0, name: "foo", linkageName: "foo", 5174 /// file: !1, line: 7, type: !2, isLocal: false, 5175 /// isDefinition: true, templateParams: !3, 5176 /// declaration: !4, align: 8) 5177 bool LLParser::parseDIGlobalVariable(MDNode *&Result, bool IsDistinct) { 5178 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5179 REQUIRED(name, MDStringField, (/* AllowEmpty */ false)); \ 5180 OPTIONAL(scope, MDField, ); \ 5181 OPTIONAL(linkageName, MDStringField, ); \ 5182 OPTIONAL(file, MDField, ); \ 5183 OPTIONAL(line, LineField, ); \ 5184 OPTIONAL(type, MDField, ); \ 5185 OPTIONAL(isLocal, MDBoolField, ); \ 5186 OPTIONAL(isDefinition, MDBoolField, (true)); \ 5187 OPTIONAL(templateParams, MDField, ); \ 5188 OPTIONAL(declaration, MDField, ); \ 5189 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 5190 PARSE_MD_FIELDS(); 5191 #undef VISIT_MD_FIELDS 5192 5193 Result = 5194 GET_OR_DISTINCT(DIGlobalVariable, 5195 (Context, scope.Val, name.Val, linkageName.Val, file.Val, 5196 line.Val, type.Val, isLocal.Val, isDefinition.Val, 5197 declaration.Val, templateParams.Val, align.Val)); 5198 return false; 5199 } 5200 5201 /// parseDILocalVariable: 5202 /// ::= !DILocalVariable(arg: 7, scope: !0, name: "foo", 5203 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 5204 /// align: 8) 5205 /// ::= !DILocalVariable(scope: !0, name: "foo", 5206 /// file: !1, line: 7, type: !2, arg: 2, flags: 7, 5207 /// align: 8) 5208 bool LLParser::parseDILocalVariable(MDNode *&Result, bool IsDistinct) { 5209 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5210 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5211 OPTIONAL(name, MDStringField, ); \ 5212 OPTIONAL(arg, MDUnsignedField, (0, UINT16_MAX)); \ 5213 OPTIONAL(file, MDField, ); \ 5214 OPTIONAL(line, LineField, ); \ 5215 OPTIONAL(type, MDField, ); \ 5216 OPTIONAL(flags, DIFlagField, ); \ 5217 OPTIONAL(align, MDUnsignedField, (0, UINT32_MAX)); 5218 PARSE_MD_FIELDS(); 5219 #undef VISIT_MD_FIELDS 5220 5221 Result = GET_OR_DISTINCT(DILocalVariable, 5222 (Context, scope.Val, name.Val, file.Val, line.Val, 5223 type.Val, arg.Val, flags.Val, align.Val)); 5224 return false; 5225 } 5226 5227 /// parseDILabel: 5228 /// ::= !DILabel(scope: !0, name: "foo", file: !1, line: 7) 5229 bool LLParser::parseDILabel(MDNode *&Result, bool IsDistinct) { 5230 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5231 REQUIRED(scope, MDField, (/* AllowNull */ false)); \ 5232 REQUIRED(name, MDStringField, ); \ 5233 REQUIRED(file, MDField, ); \ 5234 REQUIRED(line, LineField, ); 5235 PARSE_MD_FIELDS(); 5236 #undef VISIT_MD_FIELDS 5237 5238 Result = GET_OR_DISTINCT(DILabel, 5239 (Context, scope.Val, name.Val, file.Val, line.Val)); 5240 return false; 5241 } 5242 5243 /// parseDIExpression: 5244 /// ::= !DIExpression(0, 7, -1) 5245 bool LLParser::parseDIExpression(MDNode *&Result, bool IsDistinct) { 5246 assert(Lex.getKind() == lltok::MetadataVar && "Expected metadata type name"); 5247 Lex.Lex(); 5248 5249 if (parseToken(lltok::lparen, "expected '(' here")) 5250 return true; 5251 5252 SmallVector<uint64_t, 8> Elements; 5253 if (Lex.getKind() != lltok::rparen) 5254 do { 5255 if (Lex.getKind() == lltok::DwarfOp) { 5256 if (unsigned Op = dwarf::getOperationEncoding(Lex.getStrVal())) { 5257 Lex.Lex(); 5258 Elements.push_back(Op); 5259 continue; 5260 } 5261 return tokError(Twine("invalid DWARF op '") + Lex.getStrVal() + "'"); 5262 } 5263 5264 if (Lex.getKind() == lltok::DwarfAttEncoding) { 5265 if (unsigned Op = dwarf::getAttributeEncoding(Lex.getStrVal())) { 5266 Lex.Lex(); 5267 Elements.push_back(Op); 5268 continue; 5269 } 5270 return tokError(Twine("invalid DWARF attribute encoding '") + 5271 Lex.getStrVal() + "'"); 5272 } 5273 5274 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 5275 return tokError("expected unsigned integer"); 5276 5277 auto &U = Lex.getAPSIntVal(); 5278 if (U.ugt(UINT64_MAX)) 5279 return tokError("element too large, limit is " + Twine(UINT64_MAX)); 5280 Elements.push_back(U.getZExtValue()); 5281 Lex.Lex(); 5282 } while (EatIfPresent(lltok::comma)); 5283 5284 if (parseToken(lltok::rparen, "expected ')' here")) 5285 return true; 5286 5287 Result = GET_OR_DISTINCT(DIExpression, (Context, Elements)); 5288 return false; 5289 } 5290 5291 /// parseDIGlobalVariableExpression: 5292 /// ::= !DIGlobalVariableExpression(var: !0, expr: !1) 5293 bool LLParser::parseDIGlobalVariableExpression(MDNode *&Result, 5294 bool IsDistinct) { 5295 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5296 REQUIRED(var, MDField, ); \ 5297 REQUIRED(expr, MDField, ); 5298 PARSE_MD_FIELDS(); 5299 #undef VISIT_MD_FIELDS 5300 5301 Result = 5302 GET_OR_DISTINCT(DIGlobalVariableExpression, (Context, var.Val, expr.Val)); 5303 return false; 5304 } 5305 5306 /// parseDIObjCProperty: 5307 /// ::= !DIObjCProperty(name: "foo", file: !1, line: 7, setter: "setFoo", 5308 /// getter: "getFoo", attributes: 7, type: !2) 5309 bool LLParser::parseDIObjCProperty(MDNode *&Result, bool IsDistinct) { 5310 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5311 OPTIONAL(name, MDStringField, ); \ 5312 OPTIONAL(file, MDField, ); \ 5313 OPTIONAL(line, LineField, ); \ 5314 OPTIONAL(setter, MDStringField, ); \ 5315 OPTIONAL(getter, MDStringField, ); \ 5316 OPTIONAL(attributes, MDUnsignedField, (0, UINT32_MAX)); \ 5317 OPTIONAL(type, MDField, ); 5318 PARSE_MD_FIELDS(); 5319 #undef VISIT_MD_FIELDS 5320 5321 Result = GET_OR_DISTINCT(DIObjCProperty, 5322 (Context, name.Val, file.Val, line.Val, setter.Val, 5323 getter.Val, attributes.Val, type.Val)); 5324 return false; 5325 } 5326 5327 /// parseDIImportedEntity: 5328 /// ::= !DIImportedEntity(tag: DW_TAG_imported_module, scope: !0, entity: !1, 5329 /// line: 7, name: "foo") 5330 bool LLParser::parseDIImportedEntity(MDNode *&Result, bool IsDistinct) { 5331 #define VISIT_MD_FIELDS(OPTIONAL, REQUIRED) \ 5332 REQUIRED(tag, DwarfTagField, ); \ 5333 REQUIRED(scope, MDField, ); \ 5334 OPTIONAL(entity, MDField, ); \ 5335 OPTIONAL(file, MDField, ); \ 5336 OPTIONAL(line, LineField, ); \ 5337 OPTIONAL(name, MDStringField, ); 5338 PARSE_MD_FIELDS(); 5339 #undef VISIT_MD_FIELDS 5340 5341 Result = GET_OR_DISTINCT( 5342 DIImportedEntity, 5343 (Context, tag.Val, scope.Val, entity.Val, file.Val, line.Val, name.Val)); 5344 return false; 5345 } 5346 5347 #undef PARSE_MD_FIELD 5348 #undef NOP_FIELD 5349 #undef REQUIRE_FIELD 5350 #undef DECLARE_FIELD 5351 5352 /// parseMetadataAsValue 5353 /// ::= metadata i32 %local 5354 /// ::= metadata i32 @global 5355 /// ::= metadata i32 7 5356 /// ::= metadata !0 5357 /// ::= metadata !{...} 5358 /// ::= metadata !"string" 5359 bool LLParser::parseMetadataAsValue(Value *&V, PerFunctionState &PFS) { 5360 // Note: the type 'metadata' has already been parsed. 5361 Metadata *MD; 5362 if (parseMetadata(MD, &PFS)) 5363 return true; 5364 5365 V = MetadataAsValue::get(Context, MD); 5366 return false; 5367 } 5368 5369 /// parseValueAsMetadata 5370 /// ::= i32 %local 5371 /// ::= i32 @global 5372 /// ::= i32 7 5373 bool LLParser::parseValueAsMetadata(Metadata *&MD, const Twine &TypeMsg, 5374 PerFunctionState *PFS) { 5375 Type *Ty; 5376 LocTy Loc; 5377 if (parseType(Ty, TypeMsg, Loc)) 5378 return true; 5379 if (Ty->isMetadataTy()) 5380 return error(Loc, "invalid metadata-value-metadata roundtrip"); 5381 5382 Value *V; 5383 if (parseValue(Ty, V, PFS)) 5384 return true; 5385 5386 MD = ValueAsMetadata::get(V); 5387 return false; 5388 } 5389 5390 /// parseMetadata 5391 /// ::= i32 %local 5392 /// ::= i32 @global 5393 /// ::= i32 7 5394 /// ::= !42 5395 /// ::= !{...} 5396 /// ::= !"string" 5397 /// ::= !DILocation(...) 5398 bool LLParser::parseMetadata(Metadata *&MD, PerFunctionState *PFS) { 5399 if (Lex.getKind() == lltok::MetadataVar) { 5400 MDNode *N; 5401 if (parseSpecializedMDNode(N)) 5402 return true; 5403 MD = N; 5404 return false; 5405 } 5406 5407 // ValueAsMetadata: 5408 // <type> <value> 5409 if (Lex.getKind() != lltok::exclaim) 5410 return parseValueAsMetadata(MD, "expected metadata operand", PFS); 5411 5412 // '!'. 5413 assert(Lex.getKind() == lltok::exclaim && "Expected '!' here"); 5414 Lex.Lex(); 5415 5416 // MDString: 5417 // ::= '!' STRINGCONSTANT 5418 if (Lex.getKind() == lltok::StringConstant) { 5419 MDString *S; 5420 if (parseMDString(S)) 5421 return true; 5422 MD = S; 5423 return false; 5424 } 5425 5426 // MDNode: 5427 // !{ ... } 5428 // !7 5429 MDNode *N; 5430 if (parseMDNodeTail(N)) 5431 return true; 5432 MD = N; 5433 return false; 5434 } 5435 5436 //===----------------------------------------------------------------------===// 5437 // Function Parsing. 5438 //===----------------------------------------------------------------------===// 5439 5440 bool LLParser::convertValIDToValue(Type *Ty, ValID &ID, Value *&V, 5441 PerFunctionState *PFS, bool IsCall) { 5442 if (Ty->isFunctionTy()) 5443 return error(ID.Loc, "functions are not values, refer to them as pointers"); 5444 5445 switch (ID.Kind) { 5446 case ValID::t_LocalID: 5447 if (!PFS) 5448 return error(ID.Loc, "invalid use of function-local name"); 5449 V = PFS->getVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5450 return V == nullptr; 5451 case ValID::t_LocalName: 5452 if (!PFS) 5453 return error(ID.Loc, "invalid use of function-local name"); 5454 V = PFS->getVal(ID.StrVal, Ty, ID.Loc, IsCall); 5455 return V == nullptr; 5456 case ValID::t_InlineAsm: { 5457 if (!ID.FTy || !InlineAsm::Verify(ID.FTy, ID.StrVal2)) 5458 return error(ID.Loc, "invalid type for inline asm constraint string"); 5459 V = InlineAsm::get(ID.FTy, ID.StrVal, ID.StrVal2, ID.UIntVal & 1, 5460 (ID.UIntVal >> 1) & 1, 5461 (InlineAsm::AsmDialect(ID.UIntVal >> 2))); 5462 return false; 5463 } 5464 case ValID::t_GlobalName: 5465 V = getGlobalVal(ID.StrVal, Ty, ID.Loc, IsCall); 5466 return V == nullptr; 5467 case ValID::t_GlobalID: 5468 V = getGlobalVal(ID.UIntVal, Ty, ID.Loc, IsCall); 5469 return V == nullptr; 5470 case ValID::t_APSInt: 5471 if (!Ty->isIntegerTy()) 5472 return error(ID.Loc, "integer constant must have integer type"); 5473 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 5474 V = ConstantInt::get(Context, ID.APSIntVal); 5475 return false; 5476 case ValID::t_APFloat: 5477 if (!Ty->isFloatingPointTy() || 5478 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 5479 return error(ID.Loc, "floating point constant invalid for type"); 5480 5481 // The lexer has no type info, so builds all half, bfloat, float, and double 5482 // FP constants as double. Fix this here. Long double does not need this. 5483 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble()) { 5484 // Check for signaling before potentially converting and losing that info. 5485 bool IsSNAN = ID.APFloatVal.isSignaling(); 5486 bool Ignored; 5487 if (Ty->isHalfTy()) 5488 ID.APFloatVal.convert(APFloat::IEEEhalf(), APFloat::rmNearestTiesToEven, 5489 &Ignored); 5490 else if (Ty->isBFloatTy()) 5491 ID.APFloatVal.convert(APFloat::BFloat(), APFloat::rmNearestTiesToEven, 5492 &Ignored); 5493 else if (Ty->isFloatTy()) 5494 ID.APFloatVal.convert(APFloat::IEEEsingle(), APFloat::rmNearestTiesToEven, 5495 &Ignored); 5496 if (IsSNAN) { 5497 // The convert call above may quiet an SNaN, so manufacture another 5498 // SNaN. The bitcast works because the payload (significand) parameter 5499 // is truncated to fit. 5500 APInt Payload = ID.APFloatVal.bitcastToAPInt(); 5501 ID.APFloatVal = APFloat::getSNaN(ID.APFloatVal.getSemantics(), 5502 ID.APFloatVal.isNegative(), &Payload); 5503 } 5504 } 5505 V = ConstantFP::get(Context, ID.APFloatVal); 5506 5507 if (V->getType() != Ty) 5508 return error(ID.Loc, "floating point constant does not have type '" + 5509 getTypeString(Ty) + "'"); 5510 5511 return false; 5512 case ValID::t_Null: 5513 if (!Ty->isPointerTy()) 5514 return error(ID.Loc, "null must be a pointer type"); 5515 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 5516 return false; 5517 case ValID::t_Undef: 5518 // FIXME: LabelTy should not be a first-class type. 5519 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5520 return error(ID.Loc, "invalid type for undef constant"); 5521 V = UndefValue::get(Ty); 5522 return false; 5523 case ValID::t_EmptyArray: 5524 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 5525 return error(ID.Loc, "invalid empty array initializer"); 5526 V = UndefValue::get(Ty); 5527 return false; 5528 case ValID::t_Zero: 5529 // FIXME: LabelTy should not be a first-class type. 5530 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 5531 return error(ID.Loc, "invalid type for null constant"); 5532 V = Constant::getNullValue(Ty); 5533 return false; 5534 case ValID::t_None: 5535 if (!Ty->isTokenTy()) 5536 return error(ID.Loc, "invalid type for none constant"); 5537 V = Constant::getNullValue(Ty); 5538 return false; 5539 case ValID::t_Constant: 5540 if (ID.ConstantVal->getType() != Ty) 5541 return error(ID.Loc, "constant expression type mismatch"); 5542 5543 V = ID.ConstantVal; 5544 return false; 5545 case ValID::t_ConstantStruct: 5546 case ValID::t_PackedConstantStruct: 5547 if (StructType *ST = dyn_cast<StructType>(Ty)) { 5548 if (ST->getNumElements() != ID.UIntVal) 5549 return error(ID.Loc, 5550 "initializer with struct type has wrong # elements"); 5551 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 5552 return error(ID.Loc, "packed'ness of initializer and type don't match"); 5553 5554 // Verify that the elements are compatible with the structtype. 5555 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 5556 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 5557 return error( 5558 ID.Loc, 5559 "element " + Twine(i) + 5560 " of struct initializer doesn't match struct element type"); 5561 5562 V = ConstantStruct::get( 5563 ST, makeArrayRef(ID.ConstantStructElts.get(), ID.UIntVal)); 5564 } else 5565 return error(ID.Loc, "constant expression type mismatch"); 5566 return false; 5567 } 5568 llvm_unreachable("Invalid ValID"); 5569 } 5570 5571 bool LLParser::parseConstantValue(Type *Ty, Constant *&C) { 5572 C = nullptr; 5573 ValID ID; 5574 auto Loc = Lex.getLoc(); 5575 if (parseValID(ID, /*PFS=*/nullptr)) 5576 return true; 5577 switch (ID.Kind) { 5578 case ValID::t_APSInt: 5579 case ValID::t_APFloat: 5580 case ValID::t_Undef: 5581 case ValID::t_Constant: 5582 case ValID::t_ConstantStruct: 5583 case ValID::t_PackedConstantStruct: { 5584 Value *V; 5585 if (convertValIDToValue(Ty, ID, V, /*PFS=*/nullptr, /*IsCall=*/false)) 5586 return true; 5587 assert(isa<Constant>(V) && "Expected a constant value"); 5588 C = cast<Constant>(V); 5589 return false; 5590 } 5591 case ValID::t_Null: 5592 C = Constant::getNullValue(Ty); 5593 return false; 5594 default: 5595 return error(Loc, "expected a constant value"); 5596 } 5597 } 5598 5599 bool LLParser::parseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 5600 V = nullptr; 5601 ValID ID; 5602 return parseValID(ID, PFS) || 5603 convertValIDToValue(Ty, ID, V, PFS, /*IsCall=*/false); 5604 } 5605 5606 bool LLParser::parseTypeAndValue(Value *&V, PerFunctionState *PFS) { 5607 Type *Ty = nullptr; 5608 return parseType(Ty) || parseValue(Ty, V, PFS); 5609 } 5610 5611 bool LLParser::parseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 5612 PerFunctionState &PFS) { 5613 Value *V; 5614 Loc = Lex.getLoc(); 5615 if (parseTypeAndValue(V, PFS)) 5616 return true; 5617 if (!isa<BasicBlock>(V)) 5618 return error(Loc, "expected a basic block"); 5619 BB = cast<BasicBlock>(V); 5620 return false; 5621 } 5622 5623 /// FunctionHeader 5624 /// ::= OptionalLinkage OptionalPreemptionSpecifier OptionalVisibility 5625 /// OptionalCallingConv OptRetAttrs OptUnnamedAddr Type GlobalName 5626 /// '(' ArgList ')' OptAddrSpace OptFuncAttrs OptSection OptionalAlign 5627 /// OptGC OptionalPrefix OptionalPrologue OptPersonalityFn 5628 bool LLParser::parseFunctionHeader(Function *&Fn, bool IsDefine) { 5629 // parse the linkage. 5630 LocTy LinkageLoc = Lex.getLoc(); 5631 unsigned Linkage; 5632 unsigned Visibility; 5633 unsigned DLLStorageClass; 5634 bool DSOLocal; 5635 AttrBuilder RetAttrs; 5636 unsigned CC; 5637 bool HasLinkage; 5638 Type *RetType = nullptr; 5639 LocTy RetTypeLoc = Lex.getLoc(); 5640 if (parseOptionalLinkage(Linkage, HasLinkage, Visibility, DLLStorageClass, 5641 DSOLocal) || 5642 parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 5643 parseType(RetType, RetTypeLoc, true /*void allowed*/)) 5644 return true; 5645 5646 // Verify that the linkage is ok. 5647 switch ((GlobalValue::LinkageTypes)Linkage) { 5648 case GlobalValue::ExternalLinkage: 5649 break; // always ok. 5650 case GlobalValue::ExternalWeakLinkage: 5651 if (IsDefine) 5652 return error(LinkageLoc, "invalid linkage for function definition"); 5653 break; 5654 case GlobalValue::PrivateLinkage: 5655 case GlobalValue::InternalLinkage: 5656 case GlobalValue::AvailableExternallyLinkage: 5657 case GlobalValue::LinkOnceAnyLinkage: 5658 case GlobalValue::LinkOnceODRLinkage: 5659 case GlobalValue::WeakAnyLinkage: 5660 case GlobalValue::WeakODRLinkage: 5661 if (!IsDefine) 5662 return error(LinkageLoc, "invalid linkage for function declaration"); 5663 break; 5664 case GlobalValue::AppendingLinkage: 5665 case GlobalValue::CommonLinkage: 5666 return error(LinkageLoc, "invalid function linkage type"); 5667 } 5668 5669 if (!isValidVisibilityForLinkage(Visibility, Linkage)) 5670 return error(LinkageLoc, 5671 "symbol with local linkage must have default visibility"); 5672 5673 if (!FunctionType::isValidReturnType(RetType)) 5674 return error(RetTypeLoc, "invalid function return type"); 5675 5676 LocTy NameLoc = Lex.getLoc(); 5677 5678 std::string FunctionName; 5679 if (Lex.getKind() == lltok::GlobalVar) { 5680 FunctionName = Lex.getStrVal(); 5681 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 5682 unsigned NameID = Lex.getUIntVal(); 5683 5684 if (NameID != NumberedVals.size()) 5685 return tokError("function expected to be numbered '%" + 5686 Twine(NumberedVals.size()) + "'"); 5687 } else { 5688 return tokError("expected function name"); 5689 } 5690 5691 Lex.Lex(); 5692 5693 if (Lex.getKind() != lltok::lparen) 5694 return tokError("expected '(' in function argument list"); 5695 5696 SmallVector<ArgInfo, 8> ArgList; 5697 bool IsVarArg; 5698 AttrBuilder FuncAttrs; 5699 std::vector<unsigned> FwdRefAttrGrps; 5700 LocTy BuiltinLoc; 5701 std::string Section; 5702 std::string Partition; 5703 MaybeAlign Alignment; 5704 std::string GC; 5705 GlobalValue::UnnamedAddr UnnamedAddr = GlobalValue::UnnamedAddr::None; 5706 unsigned AddrSpace = 0; 5707 Constant *Prefix = nullptr; 5708 Constant *Prologue = nullptr; 5709 Constant *PersonalityFn = nullptr; 5710 Comdat *C; 5711 5712 if (parseArgumentList(ArgList, IsVarArg) || 5713 parseOptionalUnnamedAddr(UnnamedAddr) || 5714 parseOptionalProgramAddrSpace(AddrSpace) || 5715 parseFnAttributeValuePairs(FuncAttrs, FwdRefAttrGrps, false, 5716 BuiltinLoc) || 5717 (EatIfPresent(lltok::kw_section) && parseStringConstant(Section)) || 5718 (EatIfPresent(lltok::kw_partition) && parseStringConstant(Partition)) || 5719 parseOptionalComdat(FunctionName, C) || 5720 parseOptionalAlignment(Alignment) || 5721 (EatIfPresent(lltok::kw_gc) && parseStringConstant(GC)) || 5722 (EatIfPresent(lltok::kw_prefix) && parseGlobalTypeAndValue(Prefix)) || 5723 (EatIfPresent(lltok::kw_prologue) && parseGlobalTypeAndValue(Prologue)) || 5724 (EatIfPresent(lltok::kw_personality) && 5725 parseGlobalTypeAndValue(PersonalityFn))) 5726 return true; 5727 5728 if (FuncAttrs.contains(Attribute::Builtin)) 5729 return error(BuiltinLoc, "'builtin' attribute not valid on function"); 5730 5731 // If the alignment was parsed as an attribute, move to the alignment field. 5732 if (FuncAttrs.hasAlignmentAttr()) { 5733 Alignment = FuncAttrs.getAlignment(); 5734 FuncAttrs.removeAttribute(Attribute::Alignment); 5735 } 5736 5737 // Okay, if we got here, the function is syntactically valid. Convert types 5738 // and do semantic checks. 5739 std::vector<Type*> ParamTypeList; 5740 SmallVector<AttributeSet, 8> Attrs; 5741 5742 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 5743 ParamTypeList.push_back(ArgList[i].Ty); 5744 Attrs.push_back(ArgList[i].Attrs); 5745 } 5746 5747 AttributeList PAL = 5748 AttributeList::get(Context, AttributeSet::get(Context, FuncAttrs), 5749 AttributeSet::get(Context, RetAttrs), Attrs); 5750 5751 if (PAL.hasAttribute(1, Attribute::StructRet) && !RetType->isVoidTy()) 5752 return error(RetTypeLoc, "functions with 'sret' argument must return void"); 5753 5754 FunctionType *FT = FunctionType::get(RetType, ParamTypeList, IsVarArg); 5755 PointerType *PFT = PointerType::get(FT, AddrSpace); 5756 5757 Fn = nullptr; 5758 if (!FunctionName.empty()) { 5759 // If this was a definition of a forward reference, remove the definition 5760 // from the forward reference table and fill in the forward ref. 5761 auto FRVI = ForwardRefVals.find(FunctionName); 5762 if (FRVI != ForwardRefVals.end()) { 5763 Fn = M->getFunction(FunctionName); 5764 if (!Fn) 5765 return error(FRVI->second.second, "invalid forward reference to " 5766 "function as global value!"); 5767 if (Fn->getType() != PFT) 5768 return error(FRVI->second.second, 5769 "invalid forward reference to " 5770 "function '" + 5771 FunctionName + 5772 "' with wrong type: " 5773 "expected '" + 5774 getTypeString(PFT) + "' but was '" + 5775 getTypeString(Fn->getType()) + "'"); 5776 ForwardRefVals.erase(FRVI); 5777 } else if ((Fn = M->getFunction(FunctionName))) { 5778 // Reject redefinitions. 5779 return error(NameLoc, 5780 "invalid redefinition of function '" + FunctionName + "'"); 5781 } else if (M->getNamedValue(FunctionName)) { 5782 return error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 5783 } 5784 5785 } else { 5786 // If this is a definition of a forward referenced function, make sure the 5787 // types agree. 5788 auto I = ForwardRefValIDs.find(NumberedVals.size()); 5789 if (I != ForwardRefValIDs.end()) { 5790 Fn = cast<Function>(I->second.first); 5791 if (Fn->getType() != PFT) 5792 return error(NameLoc, "type of definition and forward reference of '@" + 5793 Twine(NumberedVals.size()) + 5794 "' disagree: " 5795 "expected '" + 5796 getTypeString(PFT) + "' but was '" + 5797 getTypeString(Fn->getType()) + "'"); 5798 ForwardRefValIDs.erase(I); 5799 } 5800 } 5801 5802 if (!Fn) 5803 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, AddrSpace, 5804 FunctionName, M); 5805 else // Move the forward-reference to the correct spot in the module. 5806 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 5807 5808 assert(Fn->getAddressSpace() == AddrSpace && "Created function in wrong AS"); 5809 5810 if (FunctionName.empty()) 5811 NumberedVals.push_back(Fn); 5812 5813 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 5814 maybeSetDSOLocal(DSOLocal, *Fn); 5815 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 5816 Fn->setDLLStorageClass((GlobalValue::DLLStorageClassTypes)DLLStorageClass); 5817 Fn->setCallingConv(CC); 5818 Fn->setAttributes(PAL); 5819 Fn->setUnnamedAddr(UnnamedAddr); 5820 Fn->setAlignment(MaybeAlign(Alignment)); 5821 Fn->setSection(Section); 5822 Fn->setPartition(Partition); 5823 Fn->setComdat(C); 5824 Fn->setPersonalityFn(PersonalityFn); 5825 if (!GC.empty()) Fn->setGC(GC); 5826 Fn->setPrefixData(Prefix); 5827 Fn->setPrologueData(Prologue); 5828 ForwardRefAttrGroups[Fn] = FwdRefAttrGrps; 5829 5830 // Add all of the arguments we parsed to the function. 5831 Function::arg_iterator ArgIt = Fn->arg_begin(); 5832 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 5833 // If the argument has a name, insert it into the argument symbol table. 5834 if (ArgList[i].Name.empty()) continue; 5835 5836 // Set the name, if it conflicted, it will be auto-renamed. 5837 ArgIt->setName(ArgList[i].Name); 5838 5839 if (ArgIt->getName() != ArgList[i].Name) 5840 return error(ArgList[i].Loc, 5841 "redefinition of argument '%" + ArgList[i].Name + "'"); 5842 } 5843 5844 if (IsDefine) 5845 return false; 5846 5847 // Check the declaration has no block address forward references. 5848 ValID ID; 5849 if (FunctionName.empty()) { 5850 ID.Kind = ValID::t_GlobalID; 5851 ID.UIntVal = NumberedVals.size() - 1; 5852 } else { 5853 ID.Kind = ValID::t_GlobalName; 5854 ID.StrVal = FunctionName; 5855 } 5856 auto Blocks = ForwardRefBlockAddresses.find(ID); 5857 if (Blocks != ForwardRefBlockAddresses.end()) 5858 return error(Blocks->first.Loc, 5859 "cannot take blockaddress inside a declaration"); 5860 return false; 5861 } 5862 5863 bool LLParser::PerFunctionState::resolveForwardRefBlockAddresses() { 5864 ValID ID; 5865 if (FunctionNumber == -1) { 5866 ID.Kind = ValID::t_GlobalName; 5867 ID.StrVal = std::string(F.getName()); 5868 } else { 5869 ID.Kind = ValID::t_GlobalID; 5870 ID.UIntVal = FunctionNumber; 5871 } 5872 5873 auto Blocks = P.ForwardRefBlockAddresses.find(ID); 5874 if (Blocks == P.ForwardRefBlockAddresses.end()) 5875 return false; 5876 5877 for (const auto &I : Blocks->second) { 5878 const ValID &BBID = I.first; 5879 GlobalValue *GV = I.second; 5880 5881 assert((BBID.Kind == ValID::t_LocalID || BBID.Kind == ValID::t_LocalName) && 5882 "Expected local id or name"); 5883 BasicBlock *BB; 5884 if (BBID.Kind == ValID::t_LocalName) 5885 BB = getBB(BBID.StrVal, BBID.Loc); 5886 else 5887 BB = getBB(BBID.UIntVal, BBID.Loc); 5888 if (!BB) 5889 return P.error(BBID.Loc, "referenced value is not a basic block"); 5890 5891 GV->replaceAllUsesWith(BlockAddress::get(&F, BB)); 5892 GV->eraseFromParent(); 5893 } 5894 5895 P.ForwardRefBlockAddresses.erase(Blocks); 5896 return false; 5897 } 5898 5899 /// parseFunctionBody 5900 /// ::= '{' BasicBlock+ UseListOrderDirective* '}' 5901 bool LLParser::parseFunctionBody(Function &Fn) { 5902 if (Lex.getKind() != lltok::lbrace) 5903 return tokError("expected '{' in function body"); 5904 Lex.Lex(); // eat the {. 5905 5906 int FunctionNumber = -1; 5907 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 5908 5909 PerFunctionState PFS(*this, Fn, FunctionNumber); 5910 5911 // Resolve block addresses and allow basic blocks to be forward-declared 5912 // within this function. 5913 if (PFS.resolveForwardRefBlockAddresses()) 5914 return true; 5915 SaveAndRestore<PerFunctionState *> ScopeExit(BlockAddressPFS, &PFS); 5916 5917 // We need at least one basic block. 5918 if (Lex.getKind() == lltok::rbrace || Lex.getKind() == lltok::kw_uselistorder) 5919 return tokError("function body requires at least one basic block"); 5920 5921 while (Lex.getKind() != lltok::rbrace && 5922 Lex.getKind() != lltok::kw_uselistorder) 5923 if (parseBasicBlock(PFS)) 5924 return true; 5925 5926 while (Lex.getKind() != lltok::rbrace) 5927 if (parseUseListOrder(&PFS)) 5928 return true; 5929 5930 // Eat the }. 5931 Lex.Lex(); 5932 5933 // Verify function is ok. 5934 return PFS.finishFunction(); 5935 } 5936 5937 /// parseBasicBlock 5938 /// ::= (LabelStr|LabelID)? Instruction* 5939 bool LLParser::parseBasicBlock(PerFunctionState &PFS) { 5940 // If this basic block starts out with a name, remember it. 5941 std::string Name; 5942 int NameID = -1; 5943 LocTy NameLoc = Lex.getLoc(); 5944 if (Lex.getKind() == lltok::LabelStr) { 5945 Name = Lex.getStrVal(); 5946 Lex.Lex(); 5947 } else if (Lex.getKind() == lltok::LabelID) { 5948 NameID = Lex.getUIntVal(); 5949 Lex.Lex(); 5950 } 5951 5952 BasicBlock *BB = PFS.defineBB(Name, NameID, NameLoc); 5953 if (!BB) 5954 return true; 5955 5956 std::string NameStr; 5957 5958 // parse the instructions in this block until we get a terminator. 5959 Instruction *Inst; 5960 do { 5961 // This instruction may have three possibilities for a name: a) none 5962 // specified, b) name specified "%foo =", c) number specified: "%4 =". 5963 LocTy NameLoc = Lex.getLoc(); 5964 int NameID = -1; 5965 NameStr = ""; 5966 5967 if (Lex.getKind() == lltok::LocalVarID) { 5968 NameID = Lex.getUIntVal(); 5969 Lex.Lex(); 5970 if (parseToken(lltok::equal, "expected '=' after instruction id")) 5971 return true; 5972 } else if (Lex.getKind() == lltok::LocalVar) { 5973 NameStr = Lex.getStrVal(); 5974 Lex.Lex(); 5975 if (parseToken(lltok::equal, "expected '=' after instruction name")) 5976 return true; 5977 } 5978 5979 switch (parseInstruction(Inst, BB, PFS)) { 5980 default: 5981 llvm_unreachable("Unknown parseInstruction result!"); 5982 case InstError: return true; 5983 case InstNormal: 5984 BB->getInstList().push_back(Inst); 5985 5986 // With a normal result, we check to see if the instruction is followed by 5987 // a comma and metadata. 5988 if (EatIfPresent(lltok::comma)) 5989 if (parseInstructionMetadata(*Inst)) 5990 return true; 5991 break; 5992 case InstExtraComma: 5993 BB->getInstList().push_back(Inst); 5994 5995 // If the instruction parser ate an extra comma at the end of it, it 5996 // *must* be followed by metadata. 5997 if (parseInstructionMetadata(*Inst)) 5998 return true; 5999 break; 6000 } 6001 6002 // Set the name on the instruction. 6003 if (PFS.setInstName(NameID, NameStr, NameLoc, Inst)) 6004 return true; 6005 } while (!Inst->isTerminator()); 6006 6007 return false; 6008 } 6009 6010 //===----------------------------------------------------------------------===// 6011 // Instruction Parsing. 6012 //===----------------------------------------------------------------------===// 6013 6014 /// parseInstruction - parse one of the many different instructions. 6015 /// 6016 int LLParser::parseInstruction(Instruction *&Inst, BasicBlock *BB, 6017 PerFunctionState &PFS) { 6018 lltok::Kind Token = Lex.getKind(); 6019 if (Token == lltok::Eof) 6020 return tokError("found end of file when expecting more instructions"); 6021 LocTy Loc = Lex.getLoc(); 6022 unsigned KeywordVal = Lex.getUIntVal(); 6023 Lex.Lex(); // Eat the keyword. 6024 6025 switch (Token) { 6026 default: 6027 return error(Loc, "expected instruction opcode"); 6028 // Terminator Instructions. 6029 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 6030 case lltok::kw_ret: 6031 return parseRet(Inst, BB, PFS); 6032 case lltok::kw_br: 6033 return parseBr(Inst, PFS); 6034 case lltok::kw_switch: 6035 return parseSwitch(Inst, PFS); 6036 case lltok::kw_indirectbr: 6037 return parseIndirectBr(Inst, PFS); 6038 case lltok::kw_invoke: 6039 return parseInvoke(Inst, PFS); 6040 case lltok::kw_resume: 6041 return parseResume(Inst, PFS); 6042 case lltok::kw_cleanupret: 6043 return parseCleanupRet(Inst, PFS); 6044 case lltok::kw_catchret: 6045 return parseCatchRet(Inst, PFS); 6046 case lltok::kw_catchswitch: 6047 return parseCatchSwitch(Inst, PFS); 6048 case lltok::kw_catchpad: 6049 return parseCatchPad(Inst, PFS); 6050 case lltok::kw_cleanuppad: 6051 return parseCleanupPad(Inst, PFS); 6052 case lltok::kw_callbr: 6053 return parseCallBr(Inst, PFS); 6054 // Unary Operators. 6055 case lltok::kw_fneg: { 6056 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6057 int Res = parseUnaryOp(Inst, PFS, KeywordVal, /*IsFP*/ true); 6058 if (Res != 0) 6059 return Res; 6060 if (FMF.any()) 6061 Inst->setFastMathFlags(FMF); 6062 return false; 6063 } 6064 // Binary Operators. 6065 case lltok::kw_add: 6066 case lltok::kw_sub: 6067 case lltok::kw_mul: 6068 case lltok::kw_shl: { 6069 bool NUW = EatIfPresent(lltok::kw_nuw); 6070 bool NSW = EatIfPresent(lltok::kw_nsw); 6071 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 6072 6073 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 6074 return true; 6075 6076 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 6077 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 6078 return false; 6079 } 6080 case lltok::kw_fadd: 6081 case lltok::kw_fsub: 6082 case lltok::kw_fmul: 6083 case lltok::kw_fdiv: 6084 case lltok::kw_frem: { 6085 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6086 int Res = parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ true); 6087 if (Res != 0) 6088 return Res; 6089 if (FMF.any()) 6090 Inst->setFastMathFlags(FMF); 6091 return 0; 6092 } 6093 6094 case lltok::kw_sdiv: 6095 case lltok::kw_udiv: 6096 case lltok::kw_lshr: 6097 case lltok::kw_ashr: { 6098 bool Exact = EatIfPresent(lltok::kw_exact); 6099 6100 if (parseArithmetic(Inst, PFS, KeywordVal, /*IsFP*/ false)) 6101 return true; 6102 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 6103 return false; 6104 } 6105 6106 case lltok::kw_urem: 6107 case lltok::kw_srem: 6108 return parseArithmetic(Inst, PFS, KeywordVal, 6109 /*IsFP*/ false); 6110 case lltok::kw_and: 6111 case lltok::kw_or: 6112 case lltok::kw_xor: 6113 return parseLogical(Inst, PFS, KeywordVal); 6114 case lltok::kw_icmp: 6115 return parseCompare(Inst, PFS, KeywordVal); 6116 case lltok::kw_fcmp: { 6117 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6118 int Res = parseCompare(Inst, PFS, KeywordVal); 6119 if (Res != 0) 6120 return Res; 6121 if (FMF.any()) 6122 Inst->setFastMathFlags(FMF); 6123 return 0; 6124 } 6125 6126 // Casts. 6127 case lltok::kw_trunc: 6128 case lltok::kw_zext: 6129 case lltok::kw_sext: 6130 case lltok::kw_fptrunc: 6131 case lltok::kw_fpext: 6132 case lltok::kw_bitcast: 6133 case lltok::kw_addrspacecast: 6134 case lltok::kw_uitofp: 6135 case lltok::kw_sitofp: 6136 case lltok::kw_fptoui: 6137 case lltok::kw_fptosi: 6138 case lltok::kw_inttoptr: 6139 case lltok::kw_ptrtoint: 6140 return parseCast(Inst, PFS, KeywordVal); 6141 // Other. 6142 case lltok::kw_select: { 6143 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6144 int Res = parseSelect(Inst, PFS); 6145 if (Res != 0) 6146 return Res; 6147 if (FMF.any()) { 6148 if (!isa<FPMathOperator>(Inst)) 6149 return error(Loc, "fast-math-flags specified for select without " 6150 "floating-point scalar or vector return type"); 6151 Inst->setFastMathFlags(FMF); 6152 } 6153 return 0; 6154 } 6155 case lltok::kw_va_arg: 6156 return parseVAArg(Inst, PFS); 6157 case lltok::kw_extractelement: 6158 return parseExtractElement(Inst, PFS); 6159 case lltok::kw_insertelement: 6160 return parseInsertElement(Inst, PFS); 6161 case lltok::kw_shufflevector: 6162 return parseShuffleVector(Inst, PFS); 6163 case lltok::kw_phi: { 6164 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 6165 int Res = parsePHI(Inst, PFS); 6166 if (Res != 0) 6167 return Res; 6168 if (FMF.any()) { 6169 if (!isa<FPMathOperator>(Inst)) 6170 return error(Loc, "fast-math-flags specified for phi without " 6171 "floating-point scalar or vector return type"); 6172 Inst->setFastMathFlags(FMF); 6173 } 6174 return 0; 6175 } 6176 case lltok::kw_landingpad: 6177 return parseLandingPad(Inst, PFS); 6178 case lltok::kw_freeze: 6179 return parseFreeze(Inst, PFS); 6180 // Call. 6181 case lltok::kw_call: 6182 return parseCall(Inst, PFS, CallInst::TCK_None); 6183 case lltok::kw_tail: 6184 return parseCall(Inst, PFS, CallInst::TCK_Tail); 6185 case lltok::kw_musttail: 6186 return parseCall(Inst, PFS, CallInst::TCK_MustTail); 6187 case lltok::kw_notail: 6188 return parseCall(Inst, PFS, CallInst::TCK_NoTail); 6189 // Memory. 6190 case lltok::kw_alloca: 6191 return parseAlloc(Inst, PFS); 6192 case lltok::kw_load: 6193 return parseLoad(Inst, PFS); 6194 case lltok::kw_store: 6195 return parseStore(Inst, PFS); 6196 case lltok::kw_cmpxchg: 6197 return parseCmpXchg(Inst, PFS); 6198 case lltok::kw_atomicrmw: 6199 return parseAtomicRMW(Inst, PFS); 6200 case lltok::kw_fence: 6201 return parseFence(Inst, PFS); 6202 case lltok::kw_getelementptr: 6203 return parseGetElementPtr(Inst, PFS); 6204 case lltok::kw_extractvalue: 6205 return parseExtractValue(Inst, PFS); 6206 case lltok::kw_insertvalue: 6207 return parseInsertValue(Inst, PFS); 6208 } 6209 } 6210 6211 /// parseCmpPredicate - parse an integer or fp predicate, based on Kind. 6212 bool LLParser::parseCmpPredicate(unsigned &P, unsigned Opc) { 6213 if (Opc == Instruction::FCmp) { 6214 switch (Lex.getKind()) { 6215 default: 6216 return tokError("expected fcmp predicate (e.g. 'oeq')"); 6217 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 6218 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 6219 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 6220 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 6221 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 6222 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 6223 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 6224 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 6225 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 6226 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 6227 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 6228 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 6229 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 6230 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 6231 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 6232 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 6233 } 6234 } else { 6235 switch (Lex.getKind()) { 6236 default: 6237 return tokError("expected icmp predicate (e.g. 'eq')"); 6238 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 6239 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 6240 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 6241 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 6242 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 6243 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 6244 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 6245 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 6246 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 6247 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 6248 } 6249 } 6250 Lex.Lex(); 6251 return false; 6252 } 6253 6254 //===----------------------------------------------------------------------===// 6255 // Terminator Instructions. 6256 //===----------------------------------------------------------------------===// 6257 6258 /// parseRet - parse a return instruction. 6259 /// ::= 'ret' void (',' !dbg, !1)* 6260 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 6261 bool LLParser::parseRet(Instruction *&Inst, BasicBlock *BB, 6262 PerFunctionState &PFS) { 6263 SMLoc TypeLoc = Lex.getLoc(); 6264 Type *Ty = nullptr; 6265 if (parseType(Ty, true /*void allowed*/)) 6266 return true; 6267 6268 Type *ResType = PFS.getFunction().getReturnType(); 6269 6270 if (Ty->isVoidTy()) { 6271 if (!ResType->isVoidTy()) 6272 return error(TypeLoc, "value doesn't match function result type '" + 6273 getTypeString(ResType) + "'"); 6274 6275 Inst = ReturnInst::Create(Context); 6276 return false; 6277 } 6278 6279 Value *RV; 6280 if (parseValue(Ty, RV, PFS)) 6281 return true; 6282 6283 if (ResType != RV->getType()) 6284 return error(TypeLoc, "value doesn't match function result type '" + 6285 getTypeString(ResType) + "'"); 6286 6287 Inst = ReturnInst::Create(Context, RV); 6288 return false; 6289 } 6290 6291 /// parseBr 6292 /// ::= 'br' TypeAndValue 6293 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6294 bool LLParser::parseBr(Instruction *&Inst, PerFunctionState &PFS) { 6295 LocTy Loc, Loc2; 6296 Value *Op0; 6297 BasicBlock *Op1, *Op2; 6298 if (parseTypeAndValue(Op0, Loc, PFS)) 6299 return true; 6300 6301 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 6302 Inst = BranchInst::Create(BB); 6303 return false; 6304 } 6305 6306 if (Op0->getType() != Type::getInt1Ty(Context)) 6307 return error(Loc, "branch condition must have 'i1' type"); 6308 6309 if (parseToken(lltok::comma, "expected ',' after branch condition") || 6310 parseTypeAndBasicBlock(Op1, Loc, PFS) || 6311 parseToken(lltok::comma, "expected ',' after true destination") || 6312 parseTypeAndBasicBlock(Op2, Loc2, PFS)) 6313 return true; 6314 6315 Inst = BranchInst::Create(Op1, Op2, Op0); 6316 return false; 6317 } 6318 6319 /// parseSwitch 6320 /// Instruction 6321 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 6322 /// JumpTable 6323 /// ::= (TypeAndValue ',' TypeAndValue)* 6324 bool LLParser::parseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6325 LocTy CondLoc, BBLoc; 6326 Value *Cond; 6327 BasicBlock *DefaultBB; 6328 if (parseTypeAndValue(Cond, CondLoc, PFS) || 6329 parseToken(lltok::comma, "expected ',' after switch condition") || 6330 parseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 6331 parseToken(lltok::lsquare, "expected '[' with switch table")) 6332 return true; 6333 6334 if (!Cond->getType()->isIntegerTy()) 6335 return error(CondLoc, "switch condition must have integer type"); 6336 6337 // parse the jump table pairs. 6338 SmallPtrSet<Value*, 32> SeenCases; 6339 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 6340 while (Lex.getKind() != lltok::rsquare) { 6341 Value *Constant; 6342 BasicBlock *DestBB; 6343 6344 if (parseTypeAndValue(Constant, CondLoc, PFS) || 6345 parseToken(lltok::comma, "expected ',' after case value") || 6346 parseTypeAndBasicBlock(DestBB, PFS)) 6347 return true; 6348 6349 if (!SeenCases.insert(Constant).second) 6350 return error(CondLoc, "duplicate case value in switch"); 6351 if (!isa<ConstantInt>(Constant)) 6352 return error(CondLoc, "case value is not a constant integer"); 6353 6354 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 6355 } 6356 6357 Lex.Lex(); // Eat the ']'. 6358 6359 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 6360 for (unsigned i = 0, e = Table.size(); i != e; ++i) 6361 SI->addCase(Table[i].first, Table[i].second); 6362 Inst = SI; 6363 return false; 6364 } 6365 6366 /// parseIndirectBr 6367 /// Instruction 6368 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 6369 bool LLParser::parseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 6370 LocTy AddrLoc; 6371 Value *Address; 6372 if (parseTypeAndValue(Address, AddrLoc, PFS) || 6373 parseToken(lltok::comma, "expected ',' after indirectbr address") || 6374 parseToken(lltok::lsquare, "expected '[' with indirectbr")) 6375 return true; 6376 6377 if (!Address->getType()->isPointerTy()) 6378 return error(AddrLoc, "indirectbr address must have pointer type"); 6379 6380 // parse the destination list. 6381 SmallVector<BasicBlock*, 16> DestList; 6382 6383 if (Lex.getKind() != lltok::rsquare) { 6384 BasicBlock *DestBB; 6385 if (parseTypeAndBasicBlock(DestBB, PFS)) 6386 return true; 6387 DestList.push_back(DestBB); 6388 6389 while (EatIfPresent(lltok::comma)) { 6390 if (parseTypeAndBasicBlock(DestBB, PFS)) 6391 return true; 6392 DestList.push_back(DestBB); 6393 } 6394 } 6395 6396 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 6397 return true; 6398 6399 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 6400 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 6401 IBI->addDestination(DestList[i]); 6402 Inst = IBI; 6403 return false; 6404 } 6405 6406 /// parseInvoke 6407 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 6408 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 6409 bool LLParser::parseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 6410 LocTy CallLoc = Lex.getLoc(); 6411 AttrBuilder RetAttrs, FnAttrs; 6412 std::vector<unsigned> FwdRefAttrGrps; 6413 LocTy NoBuiltinLoc; 6414 unsigned CC; 6415 unsigned InvokeAddrSpace; 6416 Type *RetType = nullptr; 6417 LocTy RetTypeLoc; 6418 ValID CalleeID; 6419 SmallVector<ParamInfo, 16> ArgList; 6420 SmallVector<OperandBundleDef, 2> BundleList; 6421 6422 BasicBlock *NormalBB, *UnwindBB; 6423 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6424 parseOptionalProgramAddrSpace(InvokeAddrSpace) || 6425 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6426 parseValID(CalleeID) || parseParameterList(ArgList, PFS) || 6427 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6428 NoBuiltinLoc) || 6429 parseOptionalOperandBundles(BundleList, PFS) || 6430 parseToken(lltok::kw_to, "expected 'to' in invoke") || 6431 parseTypeAndBasicBlock(NormalBB, PFS) || 6432 parseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 6433 parseTypeAndBasicBlock(UnwindBB, PFS)) 6434 return true; 6435 6436 // If RetType is a non-function pointer type, then this is the short syntax 6437 // for the call, which means that RetType is just the return type. Infer the 6438 // rest of the function argument types from the arguments that are present. 6439 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6440 if (!Ty) { 6441 // Pull out the types of all of the arguments... 6442 std::vector<Type*> ParamTypes; 6443 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6444 ParamTypes.push_back(ArgList[i].V->getType()); 6445 6446 if (!FunctionType::isValidReturnType(RetType)) 6447 return error(RetTypeLoc, "Invalid result type for LLVM function"); 6448 6449 Ty = FunctionType::get(RetType, ParamTypes, false); 6450 } 6451 6452 CalleeID.FTy = Ty; 6453 6454 // Look up the callee. 6455 Value *Callee; 6456 if (convertValIDToValue(PointerType::get(Ty, InvokeAddrSpace), CalleeID, 6457 Callee, &PFS, /*IsCall=*/true)) 6458 return true; 6459 6460 // Set up the Attribute for the function. 6461 SmallVector<Value *, 8> Args; 6462 SmallVector<AttributeSet, 8> ArgAttrs; 6463 6464 // Loop through FunctionType's arguments and ensure they are specified 6465 // correctly. Also, gather any parameter attributes. 6466 FunctionType::param_iterator I = Ty->param_begin(); 6467 FunctionType::param_iterator E = Ty->param_end(); 6468 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6469 Type *ExpectedTy = nullptr; 6470 if (I != E) { 6471 ExpectedTy = *I++; 6472 } else if (!Ty->isVarArg()) { 6473 return error(ArgList[i].Loc, "too many arguments specified"); 6474 } 6475 6476 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6477 return error(ArgList[i].Loc, "argument is not of expected type '" + 6478 getTypeString(ExpectedTy) + "'"); 6479 Args.push_back(ArgList[i].V); 6480 ArgAttrs.push_back(ArgList[i].Attrs); 6481 } 6482 6483 if (I != E) 6484 return error(CallLoc, "not enough parameters specified for call"); 6485 6486 if (FnAttrs.hasAlignmentAttr()) 6487 return error(CallLoc, "invoke instructions may not have an alignment"); 6488 6489 // Finish off the Attribute and check them 6490 AttributeList PAL = 6491 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6492 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6493 6494 InvokeInst *II = 6495 InvokeInst::Create(Ty, Callee, NormalBB, UnwindBB, Args, BundleList); 6496 II->setCallingConv(CC); 6497 II->setAttributes(PAL); 6498 ForwardRefAttrGroups[II] = FwdRefAttrGrps; 6499 Inst = II; 6500 return false; 6501 } 6502 6503 /// parseResume 6504 /// ::= 'resume' TypeAndValue 6505 bool LLParser::parseResume(Instruction *&Inst, PerFunctionState &PFS) { 6506 Value *Exn; LocTy ExnLoc; 6507 if (parseTypeAndValue(Exn, ExnLoc, PFS)) 6508 return true; 6509 6510 ResumeInst *RI = ResumeInst::Create(Exn); 6511 Inst = RI; 6512 return false; 6513 } 6514 6515 bool LLParser::parseExceptionArgs(SmallVectorImpl<Value *> &Args, 6516 PerFunctionState &PFS) { 6517 if (parseToken(lltok::lsquare, "expected '[' in catchpad/cleanuppad")) 6518 return true; 6519 6520 while (Lex.getKind() != lltok::rsquare) { 6521 // If this isn't the first argument, we need a comma. 6522 if (!Args.empty() && 6523 parseToken(lltok::comma, "expected ',' in argument list")) 6524 return true; 6525 6526 // parse the argument. 6527 LocTy ArgLoc; 6528 Type *ArgTy = nullptr; 6529 if (parseType(ArgTy, ArgLoc)) 6530 return true; 6531 6532 Value *V; 6533 if (ArgTy->isMetadataTy()) { 6534 if (parseMetadataAsValue(V, PFS)) 6535 return true; 6536 } else { 6537 if (parseValue(ArgTy, V, PFS)) 6538 return true; 6539 } 6540 Args.push_back(V); 6541 } 6542 6543 Lex.Lex(); // Lex the ']'. 6544 return false; 6545 } 6546 6547 /// parseCleanupRet 6548 /// ::= 'cleanupret' from Value unwind ('to' 'caller' | TypeAndValue) 6549 bool LLParser::parseCleanupRet(Instruction *&Inst, PerFunctionState &PFS) { 6550 Value *CleanupPad = nullptr; 6551 6552 if (parseToken(lltok::kw_from, "expected 'from' after cleanupret")) 6553 return true; 6554 6555 if (parseValue(Type::getTokenTy(Context), CleanupPad, PFS)) 6556 return true; 6557 6558 if (parseToken(lltok::kw_unwind, "expected 'unwind' in cleanupret")) 6559 return true; 6560 6561 BasicBlock *UnwindBB = nullptr; 6562 if (Lex.getKind() == lltok::kw_to) { 6563 Lex.Lex(); 6564 if (parseToken(lltok::kw_caller, "expected 'caller' in cleanupret")) 6565 return true; 6566 } else { 6567 if (parseTypeAndBasicBlock(UnwindBB, PFS)) { 6568 return true; 6569 } 6570 } 6571 6572 Inst = CleanupReturnInst::Create(CleanupPad, UnwindBB); 6573 return false; 6574 } 6575 6576 /// parseCatchRet 6577 /// ::= 'catchret' from Parent Value 'to' TypeAndValue 6578 bool LLParser::parseCatchRet(Instruction *&Inst, PerFunctionState &PFS) { 6579 Value *CatchPad = nullptr; 6580 6581 if (parseToken(lltok::kw_from, "expected 'from' after catchret")) 6582 return true; 6583 6584 if (parseValue(Type::getTokenTy(Context), CatchPad, PFS)) 6585 return true; 6586 6587 BasicBlock *BB; 6588 if (parseToken(lltok::kw_to, "expected 'to' in catchret") || 6589 parseTypeAndBasicBlock(BB, PFS)) 6590 return true; 6591 6592 Inst = CatchReturnInst::Create(CatchPad, BB); 6593 return false; 6594 } 6595 6596 /// parseCatchSwitch 6597 /// ::= 'catchswitch' within Parent 6598 bool LLParser::parseCatchSwitch(Instruction *&Inst, PerFunctionState &PFS) { 6599 Value *ParentPad; 6600 6601 if (parseToken(lltok::kw_within, "expected 'within' after catchswitch")) 6602 return true; 6603 6604 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6605 Lex.getKind() != lltok::LocalVarID) 6606 return tokError("expected scope value for catchswitch"); 6607 6608 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6609 return true; 6610 6611 if (parseToken(lltok::lsquare, "expected '[' with catchswitch labels")) 6612 return true; 6613 6614 SmallVector<BasicBlock *, 32> Table; 6615 do { 6616 BasicBlock *DestBB; 6617 if (parseTypeAndBasicBlock(DestBB, PFS)) 6618 return true; 6619 Table.push_back(DestBB); 6620 } while (EatIfPresent(lltok::comma)); 6621 6622 if (parseToken(lltok::rsquare, "expected ']' after catchswitch labels")) 6623 return true; 6624 6625 if (parseToken(lltok::kw_unwind, "expected 'unwind' after catchswitch scope")) 6626 return true; 6627 6628 BasicBlock *UnwindBB = nullptr; 6629 if (EatIfPresent(lltok::kw_to)) { 6630 if (parseToken(lltok::kw_caller, "expected 'caller' in catchswitch")) 6631 return true; 6632 } else { 6633 if (parseTypeAndBasicBlock(UnwindBB, PFS)) 6634 return true; 6635 } 6636 6637 auto *CatchSwitch = 6638 CatchSwitchInst::Create(ParentPad, UnwindBB, Table.size()); 6639 for (BasicBlock *DestBB : Table) 6640 CatchSwitch->addHandler(DestBB); 6641 Inst = CatchSwitch; 6642 return false; 6643 } 6644 6645 /// parseCatchPad 6646 /// ::= 'catchpad' ParamList 'to' TypeAndValue 'unwind' TypeAndValue 6647 bool LLParser::parseCatchPad(Instruction *&Inst, PerFunctionState &PFS) { 6648 Value *CatchSwitch = nullptr; 6649 6650 if (parseToken(lltok::kw_within, "expected 'within' after catchpad")) 6651 return true; 6652 6653 if (Lex.getKind() != lltok::LocalVar && Lex.getKind() != lltok::LocalVarID) 6654 return tokError("expected scope value for catchpad"); 6655 6656 if (parseValue(Type::getTokenTy(Context), CatchSwitch, PFS)) 6657 return true; 6658 6659 SmallVector<Value *, 8> Args; 6660 if (parseExceptionArgs(Args, PFS)) 6661 return true; 6662 6663 Inst = CatchPadInst::Create(CatchSwitch, Args); 6664 return false; 6665 } 6666 6667 /// parseCleanupPad 6668 /// ::= 'cleanuppad' within Parent ParamList 6669 bool LLParser::parseCleanupPad(Instruction *&Inst, PerFunctionState &PFS) { 6670 Value *ParentPad = nullptr; 6671 6672 if (parseToken(lltok::kw_within, "expected 'within' after cleanuppad")) 6673 return true; 6674 6675 if (Lex.getKind() != lltok::kw_none && Lex.getKind() != lltok::LocalVar && 6676 Lex.getKind() != lltok::LocalVarID) 6677 return tokError("expected scope value for cleanuppad"); 6678 6679 if (parseValue(Type::getTokenTy(Context), ParentPad, PFS)) 6680 return true; 6681 6682 SmallVector<Value *, 8> Args; 6683 if (parseExceptionArgs(Args, PFS)) 6684 return true; 6685 6686 Inst = CleanupPadInst::Create(ParentPad, Args); 6687 return false; 6688 } 6689 6690 //===----------------------------------------------------------------------===// 6691 // Unary Operators. 6692 //===----------------------------------------------------------------------===// 6693 6694 /// parseUnaryOp 6695 /// ::= UnaryOp TypeAndValue ',' Value 6696 /// 6697 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6698 /// operand is allowed. 6699 bool LLParser::parseUnaryOp(Instruction *&Inst, PerFunctionState &PFS, 6700 unsigned Opc, bool IsFP) { 6701 LocTy Loc; Value *LHS; 6702 if (parseTypeAndValue(LHS, Loc, PFS)) 6703 return true; 6704 6705 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6706 : LHS->getType()->isIntOrIntVectorTy(); 6707 6708 if (!Valid) 6709 return error(Loc, "invalid operand type for instruction"); 6710 6711 Inst = UnaryOperator::Create((Instruction::UnaryOps)Opc, LHS); 6712 return false; 6713 } 6714 6715 /// parseCallBr 6716 /// ::= 'callbr' OptionalCallingConv OptionalAttrs Type Value ParamList 6717 /// OptionalAttrs OptionalOperandBundles 'to' TypeAndValue 6718 /// '[' LabelList ']' 6719 bool LLParser::parseCallBr(Instruction *&Inst, PerFunctionState &PFS) { 6720 LocTy CallLoc = Lex.getLoc(); 6721 AttrBuilder RetAttrs, FnAttrs; 6722 std::vector<unsigned> FwdRefAttrGrps; 6723 LocTy NoBuiltinLoc; 6724 unsigned CC; 6725 Type *RetType = nullptr; 6726 LocTy RetTypeLoc; 6727 ValID CalleeID; 6728 SmallVector<ParamInfo, 16> ArgList; 6729 SmallVector<OperandBundleDef, 2> BundleList; 6730 6731 BasicBlock *DefaultDest; 6732 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 6733 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 6734 parseValID(CalleeID) || parseParameterList(ArgList, PFS) || 6735 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, 6736 NoBuiltinLoc) || 6737 parseOptionalOperandBundles(BundleList, PFS) || 6738 parseToken(lltok::kw_to, "expected 'to' in callbr") || 6739 parseTypeAndBasicBlock(DefaultDest, PFS) || 6740 parseToken(lltok::lsquare, "expected '[' in callbr")) 6741 return true; 6742 6743 // parse the destination list. 6744 SmallVector<BasicBlock *, 16> IndirectDests; 6745 6746 if (Lex.getKind() != lltok::rsquare) { 6747 BasicBlock *DestBB; 6748 if (parseTypeAndBasicBlock(DestBB, PFS)) 6749 return true; 6750 IndirectDests.push_back(DestBB); 6751 6752 while (EatIfPresent(lltok::comma)) { 6753 if (parseTypeAndBasicBlock(DestBB, PFS)) 6754 return true; 6755 IndirectDests.push_back(DestBB); 6756 } 6757 } 6758 6759 if (parseToken(lltok::rsquare, "expected ']' at end of block list")) 6760 return true; 6761 6762 // If RetType is a non-function pointer type, then this is the short syntax 6763 // for the call, which means that RetType is just the return type. Infer the 6764 // rest of the function argument types from the arguments that are present. 6765 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 6766 if (!Ty) { 6767 // Pull out the types of all of the arguments... 6768 std::vector<Type *> ParamTypes; 6769 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 6770 ParamTypes.push_back(ArgList[i].V->getType()); 6771 6772 if (!FunctionType::isValidReturnType(RetType)) 6773 return error(RetTypeLoc, "Invalid result type for LLVM function"); 6774 6775 Ty = FunctionType::get(RetType, ParamTypes, false); 6776 } 6777 6778 CalleeID.FTy = Ty; 6779 6780 // Look up the callee. 6781 Value *Callee; 6782 if (convertValIDToValue(PointerType::getUnqual(Ty), CalleeID, Callee, &PFS, 6783 /*IsCall=*/true)) 6784 return true; 6785 6786 // Set up the Attribute for the function. 6787 SmallVector<Value *, 8> Args; 6788 SmallVector<AttributeSet, 8> ArgAttrs; 6789 6790 // Loop through FunctionType's arguments and ensure they are specified 6791 // correctly. Also, gather any parameter attributes. 6792 FunctionType::param_iterator I = Ty->param_begin(); 6793 FunctionType::param_iterator E = Ty->param_end(); 6794 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 6795 Type *ExpectedTy = nullptr; 6796 if (I != E) { 6797 ExpectedTy = *I++; 6798 } else if (!Ty->isVarArg()) { 6799 return error(ArgList[i].Loc, "too many arguments specified"); 6800 } 6801 6802 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 6803 return error(ArgList[i].Loc, "argument is not of expected type '" + 6804 getTypeString(ExpectedTy) + "'"); 6805 Args.push_back(ArgList[i].V); 6806 ArgAttrs.push_back(ArgList[i].Attrs); 6807 } 6808 6809 if (I != E) 6810 return error(CallLoc, "not enough parameters specified for call"); 6811 6812 if (FnAttrs.hasAlignmentAttr()) 6813 return error(CallLoc, "callbr instructions may not have an alignment"); 6814 6815 // Finish off the Attribute and check them 6816 AttributeList PAL = 6817 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 6818 AttributeSet::get(Context, RetAttrs), ArgAttrs); 6819 6820 CallBrInst *CBI = 6821 CallBrInst::Create(Ty, Callee, DefaultDest, IndirectDests, Args, 6822 BundleList); 6823 CBI->setCallingConv(CC); 6824 CBI->setAttributes(PAL); 6825 ForwardRefAttrGroups[CBI] = FwdRefAttrGrps; 6826 Inst = CBI; 6827 return false; 6828 } 6829 6830 //===----------------------------------------------------------------------===// 6831 // Binary Operators. 6832 //===----------------------------------------------------------------------===// 6833 6834 /// parseArithmetic 6835 /// ::= ArithmeticOps TypeAndValue ',' Value 6836 /// 6837 /// If IsFP is false, then any integer operand is allowed, if it is true, any fp 6838 /// operand is allowed. 6839 bool LLParser::parseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 6840 unsigned Opc, bool IsFP) { 6841 LocTy Loc; Value *LHS, *RHS; 6842 if (parseTypeAndValue(LHS, Loc, PFS) || 6843 parseToken(lltok::comma, "expected ',' in arithmetic operation") || 6844 parseValue(LHS->getType(), RHS, PFS)) 6845 return true; 6846 6847 bool Valid = IsFP ? LHS->getType()->isFPOrFPVectorTy() 6848 : LHS->getType()->isIntOrIntVectorTy(); 6849 6850 if (!Valid) 6851 return error(Loc, "invalid operand type for instruction"); 6852 6853 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6854 return false; 6855 } 6856 6857 /// parseLogical 6858 /// ::= ArithmeticOps TypeAndValue ',' Value { 6859 bool LLParser::parseLogical(Instruction *&Inst, PerFunctionState &PFS, 6860 unsigned Opc) { 6861 LocTy Loc; Value *LHS, *RHS; 6862 if (parseTypeAndValue(LHS, Loc, PFS) || 6863 parseToken(lltok::comma, "expected ',' in logical operation") || 6864 parseValue(LHS->getType(), RHS, PFS)) 6865 return true; 6866 6867 if (!LHS->getType()->isIntOrIntVectorTy()) 6868 return error(Loc, 6869 "instruction requires integer or integer vector operands"); 6870 6871 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 6872 return false; 6873 } 6874 6875 /// parseCompare 6876 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 6877 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 6878 bool LLParser::parseCompare(Instruction *&Inst, PerFunctionState &PFS, 6879 unsigned Opc) { 6880 // parse the integer/fp comparison predicate. 6881 LocTy Loc; 6882 unsigned Pred; 6883 Value *LHS, *RHS; 6884 if (parseCmpPredicate(Pred, Opc) || parseTypeAndValue(LHS, Loc, PFS) || 6885 parseToken(lltok::comma, "expected ',' after compare value") || 6886 parseValue(LHS->getType(), RHS, PFS)) 6887 return true; 6888 6889 if (Opc == Instruction::FCmp) { 6890 if (!LHS->getType()->isFPOrFPVectorTy()) 6891 return error(Loc, "fcmp requires floating point operands"); 6892 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6893 } else { 6894 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 6895 if (!LHS->getType()->isIntOrIntVectorTy() && 6896 !LHS->getType()->isPtrOrPtrVectorTy()) 6897 return error(Loc, "icmp requires integer operands"); 6898 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 6899 } 6900 return false; 6901 } 6902 6903 //===----------------------------------------------------------------------===// 6904 // Other Instructions. 6905 //===----------------------------------------------------------------------===// 6906 6907 /// parseCast 6908 /// ::= CastOpc TypeAndValue 'to' Type 6909 bool LLParser::parseCast(Instruction *&Inst, PerFunctionState &PFS, 6910 unsigned Opc) { 6911 LocTy Loc; 6912 Value *Op; 6913 Type *DestTy = nullptr; 6914 if (parseTypeAndValue(Op, Loc, PFS) || 6915 parseToken(lltok::kw_to, "expected 'to' after cast value") || 6916 parseType(DestTy)) 6917 return true; 6918 6919 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 6920 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 6921 return error(Loc, "invalid cast opcode for cast from '" + 6922 getTypeString(Op->getType()) + "' to '" + 6923 getTypeString(DestTy) + "'"); 6924 } 6925 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 6926 return false; 6927 } 6928 6929 /// parseSelect 6930 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6931 bool LLParser::parseSelect(Instruction *&Inst, PerFunctionState &PFS) { 6932 LocTy Loc; 6933 Value *Op0, *Op1, *Op2; 6934 if (parseTypeAndValue(Op0, Loc, PFS) || 6935 parseToken(lltok::comma, "expected ',' after select condition") || 6936 parseTypeAndValue(Op1, PFS) || 6937 parseToken(lltok::comma, "expected ',' after select value") || 6938 parseTypeAndValue(Op2, PFS)) 6939 return true; 6940 6941 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 6942 return error(Loc, Reason); 6943 6944 Inst = SelectInst::Create(Op0, Op1, Op2); 6945 return false; 6946 } 6947 6948 /// parseVAArg 6949 /// ::= 'va_arg' TypeAndValue ',' Type 6950 bool LLParser::parseVAArg(Instruction *&Inst, PerFunctionState &PFS) { 6951 Value *Op; 6952 Type *EltTy = nullptr; 6953 LocTy TypeLoc; 6954 if (parseTypeAndValue(Op, PFS) || 6955 parseToken(lltok::comma, "expected ',' after vaarg operand") || 6956 parseType(EltTy, TypeLoc)) 6957 return true; 6958 6959 if (!EltTy->isFirstClassType()) 6960 return error(TypeLoc, "va_arg requires operand with first class type"); 6961 6962 Inst = new VAArgInst(Op, EltTy); 6963 return false; 6964 } 6965 6966 /// parseExtractElement 6967 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 6968 bool LLParser::parseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 6969 LocTy Loc; 6970 Value *Op0, *Op1; 6971 if (parseTypeAndValue(Op0, Loc, PFS) || 6972 parseToken(lltok::comma, "expected ',' after extract value") || 6973 parseTypeAndValue(Op1, PFS)) 6974 return true; 6975 6976 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 6977 return error(Loc, "invalid extractelement operands"); 6978 6979 Inst = ExtractElementInst::Create(Op0, Op1); 6980 return false; 6981 } 6982 6983 /// parseInsertElement 6984 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 6985 bool LLParser::parseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 6986 LocTy Loc; 6987 Value *Op0, *Op1, *Op2; 6988 if (parseTypeAndValue(Op0, Loc, PFS) || 6989 parseToken(lltok::comma, "expected ',' after insertelement value") || 6990 parseTypeAndValue(Op1, PFS) || 6991 parseToken(lltok::comma, "expected ',' after insertelement value") || 6992 parseTypeAndValue(Op2, PFS)) 6993 return true; 6994 6995 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 6996 return error(Loc, "invalid insertelement operands"); 6997 6998 Inst = InsertElementInst::Create(Op0, Op1, Op2); 6999 return false; 7000 } 7001 7002 /// parseShuffleVector 7003 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 7004 bool LLParser::parseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 7005 LocTy Loc; 7006 Value *Op0, *Op1, *Op2; 7007 if (parseTypeAndValue(Op0, Loc, PFS) || 7008 parseToken(lltok::comma, "expected ',' after shuffle mask") || 7009 parseTypeAndValue(Op1, PFS) || 7010 parseToken(lltok::comma, "expected ',' after shuffle value") || 7011 parseTypeAndValue(Op2, PFS)) 7012 return true; 7013 7014 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 7015 return error(Loc, "invalid shufflevector operands"); 7016 7017 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 7018 return false; 7019 } 7020 7021 /// parsePHI 7022 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 7023 int LLParser::parsePHI(Instruction *&Inst, PerFunctionState &PFS) { 7024 Type *Ty = nullptr; LocTy TypeLoc; 7025 Value *Op0, *Op1; 7026 7027 if (parseType(Ty, TypeLoc) || 7028 parseToken(lltok::lsquare, "expected '[' in phi value list") || 7029 parseValue(Ty, Op0, PFS) || 7030 parseToken(lltok::comma, "expected ',' after insertelement value") || 7031 parseValue(Type::getLabelTy(Context), Op1, PFS) || 7032 parseToken(lltok::rsquare, "expected ']' in phi value list")) 7033 return true; 7034 7035 bool AteExtraComma = false; 7036 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 7037 7038 while (true) { 7039 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 7040 7041 if (!EatIfPresent(lltok::comma)) 7042 break; 7043 7044 if (Lex.getKind() == lltok::MetadataVar) { 7045 AteExtraComma = true; 7046 break; 7047 } 7048 7049 if (parseToken(lltok::lsquare, "expected '[' in phi value list") || 7050 parseValue(Ty, Op0, PFS) || 7051 parseToken(lltok::comma, "expected ',' after insertelement value") || 7052 parseValue(Type::getLabelTy(Context), Op1, PFS) || 7053 parseToken(lltok::rsquare, "expected ']' in phi value list")) 7054 return true; 7055 } 7056 7057 if (!Ty->isFirstClassType()) 7058 return error(TypeLoc, "phi node must have first class type"); 7059 7060 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 7061 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 7062 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 7063 Inst = PN; 7064 return AteExtraComma ? InstExtraComma : InstNormal; 7065 } 7066 7067 /// parseLandingPad 7068 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 7069 /// Clause 7070 /// ::= 'catch' TypeAndValue 7071 /// ::= 'filter' 7072 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 7073 bool LLParser::parseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 7074 Type *Ty = nullptr; LocTy TyLoc; 7075 7076 if (parseType(Ty, TyLoc)) 7077 return true; 7078 7079 std::unique_ptr<LandingPadInst> LP(LandingPadInst::Create(Ty, 0)); 7080 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 7081 7082 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 7083 LandingPadInst::ClauseType CT; 7084 if (EatIfPresent(lltok::kw_catch)) 7085 CT = LandingPadInst::Catch; 7086 else if (EatIfPresent(lltok::kw_filter)) 7087 CT = LandingPadInst::Filter; 7088 else 7089 return tokError("expected 'catch' or 'filter' clause type"); 7090 7091 Value *V; 7092 LocTy VLoc; 7093 if (parseTypeAndValue(V, VLoc, PFS)) 7094 return true; 7095 7096 // A 'catch' type expects a non-array constant. A filter clause expects an 7097 // array constant. 7098 if (CT == LandingPadInst::Catch) { 7099 if (isa<ArrayType>(V->getType())) 7100 error(VLoc, "'catch' clause has an invalid type"); 7101 } else { 7102 if (!isa<ArrayType>(V->getType())) 7103 error(VLoc, "'filter' clause has an invalid type"); 7104 } 7105 7106 Constant *CV = dyn_cast<Constant>(V); 7107 if (!CV) 7108 return error(VLoc, "clause argument must be a constant"); 7109 LP->addClause(CV); 7110 } 7111 7112 Inst = LP.release(); 7113 return false; 7114 } 7115 7116 /// parseFreeze 7117 /// ::= 'freeze' Type Value 7118 bool LLParser::parseFreeze(Instruction *&Inst, PerFunctionState &PFS) { 7119 LocTy Loc; 7120 Value *Op; 7121 if (parseTypeAndValue(Op, Loc, PFS)) 7122 return true; 7123 7124 Inst = new FreezeInst(Op); 7125 return false; 7126 } 7127 7128 /// parseCall 7129 /// ::= 'call' OptionalFastMathFlags OptionalCallingConv 7130 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7131 /// ::= 'tail' 'call' OptionalFastMathFlags OptionalCallingConv 7132 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7133 /// ::= 'musttail' 'call' OptionalFastMathFlags OptionalCallingConv 7134 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7135 /// ::= 'notail' 'call' OptionalFastMathFlags OptionalCallingConv 7136 /// OptionalAttrs Type Value ParameterList OptionalAttrs 7137 bool LLParser::parseCall(Instruction *&Inst, PerFunctionState &PFS, 7138 CallInst::TailCallKind TCK) { 7139 AttrBuilder RetAttrs, FnAttrs; 7140 std::vector<unsigned> FwdRefAttrGrps; 7141 LocTy BuiltinLoc; 7142 unsigned CallAddrSpace; 7143 unsigned CC; 7144 Type *RetType = nullptr; 7145 LocTy RetTypeLoc; 7146 ValID CalleeID; 7147 SmallVector<ParamInfo, 16> ArgList; 7148 SmallVector<OperandBundleDef, 2> BundleList; 7149 LocTy CallLoc = Lex.getLoc(); 7150 7151 if (TCK != CallInst::TCK_None && 7152 parseToken(lltok::kw_call, 7153 "expected 'tail call', 'musttail call', or 'notail call'")) 7154 return true; 7155 7156 FastMathFlags FMF = EatFastMathFlagsIfPresent(); 7157 7158 if (parseOptionalCallingConv(CC) || parseOptionalReturnAttrs(RetAttrs) || 7159 parseOptionalProgramAddrSpace(CallAddrSpace) || 7160 parseType(RetType, RetTypeLoc, true /*void allowed*/) || 7161 parseValID(CalleeID) || 7162 parseParameterList(ArgList, PFS, TCK == CallInst::TCK_MustTail, 7163 PFS.getFunction().isVarArg()) || 7164 parseFnAttributeValuePairs(FnAttrs, FwdRefAttrGrps, false, BuiltinLoc) || 7165 parseOptionalOperandBundles(BundleList, PFS)) 7166 return true; 7167 7168 // If RetType is a non-function pointer type, then this is the short syntax 7169 // for the call, which means that RetType is just the return type. Infer the 7170 // rest of the function argument types from the arguments that are present. 7171 FunctionType *Ty = dyn_cast<FunctionType>(RetType); 7172 if (!Ty) { 7173 // Pull out the types of all of the arguments... 7174 std::vector<Type*> ParamTypes; 7175 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 7176 ParamTypes.push_back(ArgList[i].V->getType()); 7177 7178 if (!FunctionType::isValidReturnType(RetType)) 7179 return error(RetTypeLoc, "Invalid result type for LLVM function"); 7180 7181 Ty = FunctionType::get(RetType, ParamTypes, false); 7182 } 7183 7184 CalleeID.FTy = Ty; 7185 7186 // Look up the callee. 7187 Value *Callee; 7188 if (convertValIDToValue(PointerType::get(Ty, CallAddrSpace), CalleeID, Callee, 7189 &PFS, /*IsCall=*/true)) 7190 return true; 7191 7192 // Set up the Attribute for the function. 7193 SmallVector<AttributeSet, 8> Attrs; 7194 7195 SmallVector<Value*, 8> Args; 7196 7197 // Loop through FunctionType's arguments and ensure they are specified 7198 // correctly. Also, gather any parameter attributes. 7199 FunctionType::param_iterator I = Ty->param_begin(); 7200 FunctionType::param_iterator E = Ty->param_end(); 7201 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 7202 Type *ExpectedTy = nullptr; 7203 if (I != E) { 7204 ExpectedTy = *I++; 7205 } else if (!Ty->isVarArg()) { 7206 return error(ArgList[i].Loc, "too many arguments specified"); 7207 } 7208 7209 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 7210 return error(ArgList[i].Loc, "argument is not of expected type '" + 7211 getTypeString(ExpectedTy) + "'"); 7212 Args.push_back(ArgList[i].V); 7213 Attrs.push_back(ArgList[i].Attrs); 7214 } 7215 7216 if (I != E) 7217 return error(CallLoc, "not enough parameters specified for call"); 7218 7219 if (FnAttrs.hasAlignmentAttr()) 7220 return error(CallLoc, "call instructions may not have an alignment"); 7221 7222 // Finish off the Attribute and check them 7223 AttributeList PAL = 7224 AttributeList::get(Context, AttributeSet::get(Context, FnAttrs), 7225 AttributeSet::get(Context, RetAttrs), Attrs); 7226 7227 CallInst *CI = CallInst::Create(Ty, Callee, Args, BundleList); 7228 CI->setTailCallKind(TCK); 7229 CI->setCallingConv(CC); 7230 if (FMF.any()) { 7231 if (!isa<FPMathOperator>(CI)) { 7232 CI->deleteValue(); 7233 return error(CallLoc, "fast-math-flags specified for call without " 7234 "floating-point scalar or vector return type"); 7235 } 7236 CI->setFastMathFlags(FMF); 7237 } 7238 CI->setAttributes(PAL); 7239 ForwardRefAttrGroups[CI] = FwdRefAttrGrps; 7240 Inst = CI; 7241 return false; 7242 } 7243 7244 //===----------------------------------------------------------------------===// 7245 // Memory Instructions. 7246 //===----------------------------------------------------------------------===// 7247 7248 /// parseAlloc 7249 /// ::= 'alloca' 'inalloca'? 'swifterror'? Type (',' TypeAndValue)? 7250 /// (',' 'align' i32)? (',', 'addrspace(n))? 7251 int LLParser::parseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 7252 Value *Size = nullptr; 7253 LocTy SizeLoc, TyLoc, ASLoc; 7254 MaybeAlign Alignment; 7255 unsigned AddrSpace = 0; 7256 Type *Ty = nullptr; 7257 7258 bool IsInAlloca = EatIfPresent(lltok::kw_inalloca); 7259 bool IsSwiftError = EatIfPresent(lltok::kw_swifterror); 7260 7261 if (parseType(Ty, TyLoc)) 7262 return true; 7263 7264 if (Ty->isFunctionTy() || !PointerType::isValidElementType(Ty)) 7265 return error(TyLoc, "invalid type for alloca"); 7266 7267 bool AteExtraComma = false; 7268 if (EatIfPresent(lltok::comma)) { 7269 if (Lex.getKind() == lltok::kw_align) { 7270 if (parseOptionalAlignment(Alignment)) 7271 return true; 7272 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7273 return true; 7274 } else if (Lex.getKind() == lltok::kw_addrspace) { 7275 ASLoc = Lex.getLoc(); 7276 if (parseOptionalAddrSpace(AddrSpace)) 7277 return true; 7278 } else if (Lex.getKind() == lltok::MetadataVar) { 7279 AteExtraComma = true; 7280 } else { 7281 if (parseTypeAndValue(Size, SizeLoc, PFS)) 7282 return true; 7283 if (EatIfPresent(lltok::comma)) { 7284 if (Lex.getKind() == lltok::kw_align) { 7285 if (parseOptionalAlignment(Alignment)) 7286 return true; 7287 if (parseOptionalCommaAddrSpace(AddrSpace, ASLoc, AteExtraComma)) 7288 return true; 7289 } else if (Lex.getKind() == lltok::kw_addrspace) { 7290 ASLoc = Lex.getLoc(); 7291 if (parseOptionalAddrSpace(AddrSpace)) 7292 return true; 7293 } else if (Lex.getKind() == lltok::MetadataVar) { 7294 AteExtraComma = true; 7295 } 7296 } 7297 } 7298 } 7299 7300 if (Size && !Size->getType()->isIntegerTy()) 7301 return error(SizeLoc, "element count must have integer type"); 7302 7303 SmallPtrSet<Type *, 4> Visited; 7304 if (!Alignment && !Ty->isSized(&Visited)) 7305 return error(TyLoc, "Cannot allocate unsized type"); 7306 if (!Alignment) 7307 Alignment = M->getDataLayout().getPrefTypeAlign(Ty); 7308 AllocaInst *AI = new AllocaInst(Ty, AddrSpace, Size, *Alignment); 7309 AI->setUsedWithInAlloca(IsInAlloca); 7310 AI->setSwiftError(IsSwiftError); 7311 Inst = AI; 7312 return AteExtraComma ? InstExtraComma : InstNormal; 7313 } 7314 7315 /// parseLoad 7316 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 7317 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 7318 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7319 int LLParser::parseLoad(Instruction *&Inst, PerFunctionState &PFS) { 7320 Value *Val; LocTy Loc; 7321 MaybeAlign Alignment; 7322 bool AteExtraComma = false; 7323 bool isAtomic = false; 7324 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7325 SyncScope::ID SSID = SyncScope::System; 7326 7327 if (Lex.getKind() == lltok::kw_atomic) { 7328 isAtomic = true; 7329 Lex.Lex(); 7330 } 7331 7332 bool isVolatile = false; 7333 if (Lex.getKind() == lltok::kw_volatile) { 7334 isVolatile = true; 7335 Lex.Lex(); 7336 } 7337 7338 Type *Ty; 7339 LocTy ExplicitTypeLoc = Lex.getLoc(); 7340 if (parseType(Ty) || 7341 parseToken(lltok::comma, "expected comma after load's type") || 7342 parseTypeAndValue(Val, Loc, PFS) || 7343 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 7344 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7345 return true; 7346 7347 if (!Val->getType()->isPointerTy() || !Ty->isFirstClassType()) 7348 return error(Loc, "load operand must be a pointer to a first class type"); 7349 if (isAtomic && !Alignment) 7350 return error(Loc, "atomic load must have explicit non-zero alignment"); 7351 if (Ordering == AtomicOrdering::Release || 7352 Ordering == AtomicOrdering::AcquireRelease) 7353 return error(Loc, "atomic load cannot use Release ordering"); 7354 7355 if (Ty != cast<PointerType>(Val->getType())->getElementType()) 7356 return error(ExplicitTypeLoc, 7357 "explicit pointee type doesn't match operand's pointee type"); 7358 SmallPtrSet<Type *, 4> Visited; 7359 if (!Alignment && !Ty->isSized(&Visited)) 7360 return error(ExplicitTypeLoc, "loading unsized types is not allowed"); 7361 if (!Alignment) 7362 Alignment = M->getDataLayout().getABITypeAlign(Ty); 7363 Inst = new LoadInst(Ty, Val, "", isVolatile, *Alignment, Ordering, SSID); 7364 return AteExtraComma ? InstExtraComma : InstNormal; 7365 } 7366 7367 /// parseStore 7368 7369 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 7370 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 7371 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 7372 int LLParser::parseStore(Instruction *&Inst, PerFunctionState &PFS) { 7373 Value *Val, *Ptr; LocTy Loc, PtrLoc; 7374 MaybeAlign Alignment; 7375 bool AteExtraComma = false; 7376 bool isAtomic = false; 7377 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7378 SyncScope::ID SSID = SyncScope::System; 7379 7380 if (Lex.getKind() == lltok::kw_atomic) { 7381 isAtomic = true; 7382 Lex.Lex(); 7383 } 7384 7385 bool isVolatile = false; 7386 if (Lex.getKind() == lltok::kw_volatile) { 7387 isVolatile = true; 7388 Lex.Lex(); 7389 } 7390 7391 if (parseTypeAndValue(Val, Loc, PFS) || 7392 parseToken(lltok::comma, "expected ',' after store operand") || 7393 parseTypeAndValue(Ptr, PtrLoc, PFS) || 7394 parseScopeAndOrdering(isAtomic, SSID, Ordering) || 7395 parseOptionalCommaAlign(Alignment, AteExtraComma)) 7396 return true; 7397 7398 if (!Ptr->getType()->isPointerTy()) 7399 return error(PtrLoc, "store operand must be a pointer"); 7400 if (!Val->getType()->isFirstClassType()) 7401 return error(Loc, "store operand must be a first class value"); 7402 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 7403 return error(Loc, "stored value and pointer type do not match"); 7404 if (isAtomic && !Alignment) 7405 return error(Loc, "atomic store must have explicit non-zero alignment"); 7406 if (Ordering == AtomicOrdering::Acquire || 7407 Ordering == AtomicOrdering::AcquireRelease) 7408 return error(Loc, "atomic store cannot use Acquire ordering"); 7409 SmallPtrSet<Type *, 4> Visited; 7410 if (!Alignment && !Val->getType()->isSized(&Visited)) 7411 return error(Loc, "storing unsized types is not allowed"); 7412 if (!Alignment) 7413 Alignment = M->getDataLayout().getABITypeAlign(Val->getType()); 7414 7415 Inst = new StoreInst(Val, Ptr, isVolatile, *Alignment, Ordering, SSID); 7416 return AteExtraComma ? InstExtraComma : InstNormal; 7417 } 7418 7419 /// parseCmpXchg 7420 /// ::= 'cmpxchg' 'weak'? 'volatile'? TypeAndValue ',' TypeAndValue ',' 7421 /// TypeAndValue 'singlethread'? AtomicOrdering AtomicOrdering 7422 int LLParser::parseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 7423 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 7424 bool AteExtraComma = false; 7425 AtomicOrdering SuccessOrdering = AtomicOrdering::NotAtomic; 7426 AtomicOrdering FailureOrdering = AtomicOrdering::NotAtomic; 7427 SyncScope::ID SSID = SyncScope::System; 7428 bool isVolatile = false; 7429 bool isWeak = false; 7430 7431 if (EatIfPresent(lltok::kw_weak)) 7432 isWeak = true; 7433 7434 if (EatIfPresent(lltok::kw_volatile)) 7435 isVolatile = true; 7436 7437 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 7438 parseToken(lltok::comma, "expected ',' after cmpxchg address") || 7439 parseTypeAndValue(Cmp, CmpLoc, PFS) || 7440 parseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 7441 parseTypeAndValue(New, NewLoc, PFS) || 7442 parseScopeAndOrdering(true /*Always atomic*/, SSID, SuccessOrdering) || 7443 parseOrdering(FailureOrdering)) 7444 return true; 7445 7446 if (SuccessOrdering == AtomicOrdering::Unordered || 7447 FailureOrdering == AtomicOrdering::Unordered) 7448 return tokError("cmpxchg cannot be unordered"); 7449 if (isStrongerThan(FailureOrdering, SuccessOrdering)) 7450 return tokError("cmpxchg failure argument shall be no stronger than the " 7451 "success argument"); 7452 if (FailureOrdering == AtomicOrdering::Release || 7453 FailureOrdering == AtomicOrdering::AcquireRelease) 7454 return tokError( 7455 "cmpxchg failure ordering cannot include release semantics"); 7456 if (!Ptr->getType()->isPointerTy()) 7457 return error(PtrLoc, "cmpxchg operand must be a pointer"); 7458 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 7459 return error(CmpLoc, "compare value and pointer type do not match"); 7460 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 7461 return error(NewLoc, "new value and pointer type do not match"); 7462 if (!New->getType()->isFirstClassType()) 7463 return error(NewLoc, "cmpxchg operand must be a first class value"); 7464 7465 Align Alignment( 7466 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7467 Cmp->getType())); 7468 7469 AtomicCmpXchgInst *CXI = new AtomicCmpXchgInst( 7470 Ptr, Cmp, New, Alignment, SuccessOrdering, FailureOrdering, SSID); 7471 CXI->setVolatile(isVolatile); 7472 CXI->setWeak(isWeak); 7473 Inst = CXI; 7474 return AteExtraComma ? InstExtraComma : InstNormal; 7475 } 7476 7477 /// parseAtomicRMW 7478 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 7479 /// 'singlethread'? AtomicOrdering 7480 int LLParser::parseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 7481 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 7482 bool AteExtraComma = false; 7483 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7484 SyncScope::ID SSID = SyncScope::System; 7485 bool isVolatile = false; 7486 bool IsFP = false; 7487 AtomicRMWInst::BinOp Operation; 7488 7489 if (EatIfPresent(lltok::kw_volatile)) 7490 isVolatile = true; 7491 7492 switch (Lex.getKind()) { 7493 default: 7494 return tokError("expected binary operation in atomicrmw"); 7495 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 7496 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 7497 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 7498 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 7499 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 7500 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 7501 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 7502 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 7503 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 7504 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 7505 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 7506 case lltok::kw_fadd: 7507 Operation = AtomicRMWInst::FAdd; 7508 IsFP = true; 7509 break; 7510 case lltok::kw_fsub: 7511 Operation = AtomicRMWInst::FSub; 7512 IsFP = true; 7513 break; 7514 } 7515 Lex.Lex(); // Eat the operation. 7516 7517 if (parseTypeAndValue(Ptr, PtrLoc, PFS) || 7518 parseToken(lltok::comma, "expected ',' after atomicrmw address") || 7519 parseTypeAndValue(Val, ValLoc, PFS) || 7520 parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7521 return true; 7522 7523 if (Ordering == AtomicOrdering::Unordered) 7524 return tokError("atomicrmw cannot be unordered"); 7525 if (!Ptr->getType()->isPointerTy()) 7526 return error(PtrLoc, "atomicrmw operand must be a pointer"); 7527 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 7528 return error(ValLoc, "atomicrmw value and pointer type do not match"); 7529 7530 if (Operation == AtomicRMWInst::Xchg) { 7531 if (!Val->getType()->isIntegerTy() && 7532 !Val->getType()->isFloatingPointTy()) { 7533 return error(ValLoc, 7534 "atomicrmw " + AtomicRMWInst::getOperationName(Operation) + 7535 " operand must be an integer or floating point type"); 7536 } 7537 } else if (IsFP) { 7538 if (!Val->getType()->isFloatingPointTy()) { 7539 return error(ValLoc, "atomicrmw " + 7540 AtomicRMWInst::getOperationName(Operation) + 7541 " operand must be a floating point type"); 7542 } 7543 } else { 7544 if (!Val->getType()->isIntegerTy()) { 7545 return error(ValLoc, "atomicrmw " + 7546 AtomicRMWInst::getOperationName(Operation) + 7547 " operand must be an integer"); 7548 } 7549 } 7550 7551 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 7552 if (Size < 8 || (Size & (Size - 1))) 7553 return error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 7554 " integer"); 7555 Align Alignment( 7556 PFS.getFunction().getParent()->getDataLayout().getTypeStoreSize( 7557 Val->getType())); 7558 AtomicRMWInst *RMWI = 7559 new AtomicRMWInst(Operation, Ptr, Val, Alignment, Ordering, SSID); 7560 RMWI->setVolatile(isVolatile); 7561 Inst = RMWI; 7562 return AteExtraComma ? InstExtraComma : InstNormal; 7563 } 7564 7565 /// parseFence 7566 /// ::= 'fence' 'singlethread'? AtomicOrdering 7567 int LLParser::parseFence(Instruction *&Inst, PerFunctionState &PFS) { 7568 AtomicOrdering Ordering = AtomicOrdering::NotAtomic; 7569 SyncScope::ID SSID = SyncScope::System; 7570 if (parseScopeAndOrdering(true /*Always atomic*/, SSID, Ordering)) 7571 return true; 7572 7573 if (Ordering == AtomicOrdering::Unordered) 7574 return tokError("fence cannot be unordered"); 7575 if (Ordering == AtomicOrdering::Monotonic) 7576 return tokError("fence cannot be monotonic"); 7577 7578 Inst = new FenceInst(Context, Ordering, SSID); 7579 return InstNormal; 7580 } 7581 7582 /// parseGetElementPtr 7583 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 7584 int LLParser::parseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 7585 Value *Ptr = nullptr; 7586 Value *Val = nullptr; 7587 LocTy Loc, EltLoc; 7588 7589 bool InBounds = EatIfPresent(lltok::kw_inbounds); 7590 7591 Type *Ty = nullptr; 7592 LocTy ExplicitTypeLoc = Lex.getLoc(); 7593 if (parseType(Ty) || 7594 parseToken(lltok::comma, "expected comma after getelementptr's type") || 7595 parseTypeAndValue(Ptr, Loc, PFS)) 7596 return true; 7597 7598 Type *BaseType = Ptr->getType(); 7599 PointerType *BasePointerType = dyn_cast<PointerType>(BaseType->getScalarType()); 7600 if (!BasePointerType) 7601 return error(Loc, "base of getelementptr must be a pointer"); 7602 7603 if (Ty != BasePointerType->getElementType()) 7604 return error(ExplicitTypeLoc, 7605 "explicit pointee type doesn't match operand's pointee type"); 7606 7607 SmallVector<Value*, 16> Indices; 7608 bool AteExtraComma = false; 7609 // GEP returns a vector of pointers if at least one of parameters is a vector. 7610 // All vector parameters should have the same vector width. 7611 ElementCount GEPWidth = BaseType->isVectorTy() 7612 ? cast<VectorType>(BaseType)->getElementCount() 7613 : ElementCount::getFixed(0); 7614 7615 while (EatIfPresent(lltok::comma)) { 7616 if (Lex.getKind() == lltok::MetadataVar) { 7617 AteExtraComma = true; 7618 break; 7619 } 7620 if (parseTypeAndValue(Val, EltLoc, PFS)) 7621 return true; 7622 if (!Val->getType()->isIntOrIntVectorTy()) 7623 return error(EltLoc, "getelementptr index must be an integer"); 7624 7625 if (auto *ValVTy = dyn_cast<VectorType>(Val->getType())) { 7626 ElementCount ValNumEl = ValVTy->getElementCount(); 7627 if (GEPWidth != ElementCount::getFixed(0) && GEPWidth != ValNumEl) 7628 return error( 7629 EltLoc, 7630 "getelementptr vector index has a wrong number of elements"); 7631 GEPWidth = ValNumEl; 7632 } 7633 Indices.push_back(Val); 7634 } 7635 7636 SmallPtrSet<Type*, 4> Visited; 7637 if (!Indices.empty() && !Ty->isSized(&Visited)) 7638 return error(Loc, "base element of getelementptr must be sized"); 7639 7640 if (!GetElementPtrInst::getIndexedType(Ty, Indices)) 7641 return error(Loc, "invalid getelementptr indices"); 7642 Inst = GetElementPtrInst::Create(Ty, Ptr, Indices); 7643 if (InBounds) 7644 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 7645 return AteExtraComma ? InstExtraComma : InstNormal; 7646 } 7647 7648 /// parseExtractValue 7649 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 7650 int LLParser::parseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 7651 Value *Val; LocTy Loc; 7652 SmallVector<unsigned, 4> Indices; 7653 bool AteExtraComma; 7654 if (parseTypeAndValue(Val, Loc, PFS) || 7655 parseIndexList(Indices, AteExtraComma)) 7656 return true; 7657 7658 if (!Val->getType()->isAggregateType()) 7659 return error(Loc, "extractvalue operand must be aggregate type"); 7660 7661 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 7662 return error(Loc, "invalid indices for extractvalue"); 7663 Inst = ExtractValueInst::Create(Val, Indices); 7664 return AteExtraComma ? InstExtraComma : InstNormal; 7665 } 7666 7667 /// parseInsertValue 7668 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 7669 int LLParser::parseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 7670 Value *Val0, *Val1; LocTy Loc0, Loc1; 7671 SmallVector<unsigned, 4> Indices; 7672 bool AteExtraComma; 7673 if (parseTypeAndValue(Val0, Loc0, PFS) || 7674 parseToken(lltok::comma, "expected comma after insertvalue operand") || 7675 parseTypeAndValue(Val1, Loc1, PFS) || 7676 parseIndexList(Indices, AteExtraComma)) 7677 return true; 7678 7679 if (!Val0->getType()->isAggregateType()) 7680 return error(Loc0, "insertvalue operand must be aggregate type"); 7681 7682 Type *IndexedType = ExtractValueInst::getIndexedType(Val0->getType(), Indices); 7683 if (!IndexedType) 7684 return error(Loc0, "invalid indices for insertvalue"); 7685 if (IndexedType != Val1->getType()) 7686 return error(Loc1, "insertvalue operand and field disagree in type: '" + 7687 getTypeString(Val1->getType()) + "' instead of '" + 7688 getTypeString(IndexedType) + "'"); 7689 Inst = InsertValueInst::Create(Val0, Val1, Indices); 7690 return AteExtraComma ? InstExtraComma : InstNormal; 7691 } 7692 7693 //===----------------------------------------------------------------------===// 7694 // Embedded metadata. 7695 //===----------------------------------------------------------------------===// 7696 7697 /// parseMDNodeVector 7698 /// ::= { Element (',' Element)* } 7699 /// Element 7700 /// ::= 'null' | TypeAndValue 7701 bool LLParser::parseMDNodeVector(SmallVectorImpl<Metadata *> &Elts) { 7702 if (parseToken(lltok::lbrace, "expected '{' here")) 7703 return true; 7704 7705 // Check for an empty list. 7706 if (EatIfPresent(lltok::rbrace)) 7707 return false; 7708 7709 do { 7710 // Null is a special case since it is typeless. 7711 if (EatIfPresent(lltok::kw_null)) { 7712 Elts.push_back(nullptr); 7713 continue; 7714 } 7715 7716 Metadata *MD; 7717 if (parseMetadata(MD, nullptr)) 7718 return true; 7719 Elts.push_back(MD); 7720 } while (EatIfPresent(lltok::comma)); 7721 7722 return parseToken(lltok::rbrace, "expected end of metadata node"); 7723 } 7724 7725 //===----------------------------------------------------------------------===// 7726 // Use-list order directives. 7727 //===----------------------------------------------------------------------===// 7728 bool LLParser::sortUseListOrder(Value *V, ArrayRef<unsigned> Indexes, 7729 SMLoc Loc) { 7730 if (V->use_empty()) 7731 return error(Loc, "value has no uses"); 7732 7733 unsigned NumUses = 0; 7734 SmallDenseMap<const Use *, unsigned, 16> Order; 7735 for (const Use &U : V->uses()) { 7736 if (++NumUses > Indexes.size()) 7737 break; 7738 Order[&U] = Indexes[NumUses - 1]; 7739 } 7740 if (NumUses < 2) 7741 return error(Loc, "value only has one use"); 7742 if (Order.size() != Indexes.size() || NumUses > Indexes.size()) 7743 return error(Loc, 7744 "wrong number of indexes, expected " + Twine(V->getNumUses())); 7745 7746 V->sortUseList([&](const Use &L, const Use &R) { 7747 return Order.lookup(&L) < Order.lookup(&R); 7748 }); 7749 return false; 7750 } 7751 7752 /// parseUseListOrderIndexes 7753 /// ::= '{' uint32 (',' uint32)+ '}' 7754 bool LLParser::parseUseListOrderIndexes(SmallVectorImpl<unsigned> &Indexes) { 7755 SMLoc Loc = Lex.getLoc(); 7756 if (parseToken(lltok::lbrace, "expected '{' here")) 7757 return true; 7758 if (Lex.getKind() == lltok::rbrace) 7759 return Lex.Error("expected non-empty list of uselistorder indexes"); 7760 7761 // Use Offset, Max, and IsOrdered to check consistency of indexes. The 7762 // indexes should be distinct numbers in the range [0, size-1], and should 7763 // not be in order. 7764 unsigned Offset = 0; 7765 unsigned Max = 0; 7766 bool IsOrdered = true; 7767 assert(Indexes.empty() && "Expected empty order vector"); 7768 do { 7769 unsigned Index; 7770 if (parseUInt32(Index)) 7771 return true; 7772 7773 // Update consistency checks. 7774 Offset += Index - Indexes.size(); 7775 Max = std::max(Max, Index); 7776 IsOrdered &= Index == Indexes.size(); 7777 7778 Indexes.push_back(Index); 7779 } while (EatIfPresent(lltok::comma)); 7780 7781 if (parseToken(lltok::rbrace, "expected '}' here")) 7782 return true; 7783 7784 if (Indexes.size() < 2) 7785 return error(Loc, "expected >= 2 uselistorder indexes"); 7786 if (Offset != 0 || Max >= Indexes.size()) 7787 return error(Loc, 7788 "expected distinct uselistorder indexes in range [0, size)"); 7789 if (IsOrdered) 7790 return error(Loc, "expected uselistorder indexes to change the order"); 7791 7792 return false; 7793 } 7794 7795 /// parseUseListOrder 7796 /// ::= 'uselistorder' Type Value ',' UseListOrderIndexes 7797 bool LLParser::parseUseListOrder(PerFunctionState *PFS) { 7798 SMLoc Loc = Lex.getLoc(); 7799 if (parseToken(lltok::kw_uselistorder, "expected uselistorder directive")) 7800 return true; 7801 7802 Value *V; 7803 SmallVector<unsigned, 16> Indexes; 7804 if (parseTypeAndValue(V, PFS) || 7805 parseToken(lltok::comma, "expected comma in uselistorder directive") || 7806 parseUseListOrderIndexes(Indexes)) 7807 return true; 7808 7809 return sortUseListOrder(V, Indexes, Loc); 7810 } 7811 7812 /// parseUseListOrderBB 7813 /// ::= 'uselistorder_bb' @foo ',' %bar ',' UseListOrderIndexes 7814 bool LLParser::parseUseListOrderBB() { 7815 assert(Lex.getKind() == lltok::kw_uselistorder_bb); 7816 SMLoc Loc = Lex.getLoc(); 7817 Lex.Lex(); 7818 7819 ValID Fn, Label; 7820 SmallVector<unsigned, 16> Indexes; 7821 if (parseValID(Fn) || 7822 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7823 parseValID(Label) || 7824 parseToken(lltok::comma, "expected comma in uselistorder_bb directive") || 7825 parseUseListOrderIndexes(Indexes)) 7826 return true; 7827 7828 // Check the function. 7829 GlobalValue *GV; 7830 if (Fn.Kind == ValID::t_GlobalName) 7831 GV = M->getNamedValue(Fn.StrVal); 7832 else if (Fn.Kind == ValID::t_GlobalID) 7833 GV = Fn.UIntVal < NumberedVals.size() ? NumberedVals[Fn.UIntVal] : nullptr; 7834 else 7835 return error(Fn.Loc, "expected function name in uselistorder_bb"); 7836 if (!GV) 7837 return error(Fn.Loc, 7838 "invalid function forward reference in uselistorder_bb"); 7839 auto *F = dyn_cast<Function>(GV); 7840 if (!F) 7841 return error(Fn.Loc, "expected function name in uselistorder_bb"); 7842 if (F->isDeclaration()) 7843 return error(Fn.Loc, "invalid declaration in uselistorder_bb"); 7844 7845 // Check the basic block. 7846 if (Label.Kind == ValID::t_LocalID) 7847 return error(Label.Loc, "invalid numeric label in uselistorder_bb"); 7848 if (Label.Kind != ValID::t_LocalName) 7849 return error(Label.Loc, "expected basic block name in uselistorder_bb"); 7850 Value *V = F->getValueSymbolTable()->lookup(Label.StrVal); 7851 if (!V) 7852 return error(Label.Loc, "invalid basic block in uselistorder_bb"); 7853 if (!isa<BasicBlock>(V)) 7854 return error(Label.Loc, "expected basic block in uselistorder_bb"); 7855 7856 return sortUseListOrder(V, Indexes, Loc); 7857 } 7858 7859 /// ModuleEntry 7860 /// ::= 'module' ':' '(' 'path' ':' STRINGCONSTANT ',' 'hash' ':' Hash ')' 7861 /// Hash ::= '(' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ',' UInt32 ')' 7862 bool LLParser::parseModuleEntry(unsigned ID) { 7863 assert(Lex.getKind() == lltok::kw_module); 7864 Lex.Lex(); 7865 7866 std::string Path; 7867 if (parseToken(lltok::colon, "expected ':' here") || 7868 parseToken(lltok::lparen, "expected '(' here") || 7869 parseToken(lltok::kw_path, "expected 'path' here") || 7870 parseToken(lltok::colon, "expected ':' here") || 7871 parseStringConstant(Path) || 7872 parseToken(lltok::comma, "expected ',' here") || 7873 parseToken(lltok::kw_hash, "expected 'hash' here") || 7874 parseToken(lltok::colon, "expected ':' here") || 7875 parseToken(lltok::lparen, "expected '(' here")) 7876 return true; 7877 7878 ModuleHash Hash; 7879 if (parseUInt32(Hash[0]) || parseToken(lltok::comma, "expected ',' here") || 7880 parseUInt32(Hash[1]) || parseToken(lltok::comma, "expected ',' here") || 7881 parseUInt32(Hash[2]) || parseToken(lltok::comma, "expected ',' here") || 7882 parseUInt32(Hash[3]) || parseToken(lltok::comma, "expected ',' here") || 7883 parseUInt32(Hash[4])) 7884 return true; 7885 7886 if (parseToken(lltok::rparen, "expected ')' here") || 7887 parseToken(lltok::rparen, "expected ')' here")) 7888 return true; 7889 7890 auto ModuleEntry = Index->addModule(Path, ID, Hash); 7891 ModuleIdMap[ID] = ModuleEntry->first(); 7892 7893 return false; 7894 } 7895 7896 /// TypeIdEntry 7897 /// ::= 'typeid' ':' '(' 'name' ':' STRINGCONSTANT ',' TypeIdSummary ')' 7898 bool LLParser::parseTypeIdEntry(unsigned ID) { 7899 assert(Lex.getKind() == lltok::kw_typeid); 7900 Lex.Lex(); 7901 7902 std::string Name; 7903 if (parseToken(lltok::colon, "expected ':' here") || 7904 parseToken(lltok::lparen, "expected '(' here") || 7905 parseToken(lltok::kw_name, "expected 'name' here") || 7906 parseToken(lltok::colon, "expected ':' here") || 7907 parseStringConstant(Name)) 7908 return true; 7909 7910 TypeIdSummary &TIS = Index->getOrInsertTypeIdSummary(Name); 7911 if (parseToken(lltok::comma, "expected ',' here") || 7912 parseTypeIdSummary(TIS) || parseToken(lltok::rparen, "expected ')' here")) 7913 return true; 7914 7915 // Check if this ID was forward referenced, and if so, update the 7916 // corresponding GUIDs. 7917 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 7918 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 7919 for (auto TIDRef : FwdRefTIDs->second) { 7920 assert(!*TIDRef.first && 7921 "Forward referenced type id GUID expected to be 0"); 7922 *TIDRef.first = GlobalValue::getGUID(Name); 7923 } 7924 ForwardRefTypeIds.erase(FwdRefTIDs); 7925 } 7926 7927 return false; 7928 } 7929 7930 /// TypeIdSummary 7931 /// ::= 'summary' ':' '(' TypeTestResolution [',' OptionalWpdResolutions]? ')' 7932 bool LLParser::parseTypeIdSummary(TypeIdSummary &TIS) { 7933 if (parseToken(lltok::kw_summary, "expected 'summary' here") || 7934 parseToken(lltok::colon, "expected ':' here") || 7935 parseToken(lltok::lparen, "expected '(' here") || 7936 parseTypeTestResolution(TIS.TTRes)) 7937 return true; 7938 7939 if (EatIfPresent(lltok::comma)) { 7940 // Expect optional wpdResolutions field 7941 if (parseOptionalWpdResolutions(TIS.WPDRes)) 7942 return true; 7943 } 7944 7945 if (parseToken(lltok::rparen, "expected ')' here")) 7946 return true; 7947 7948 return false; 7949 } 7950 7951 static ValueInfo EmptyVI = 7952 ValueInfo(false, (GlobalValueSummaryMapTy::value_type *)-8); 7953 7954 /// TypeIdCompatibleVtableEntry 7955 /// ::= 'typeidCompatibleVTable' ':' '(' 'name' ':' STRINGCONSTANT ',' 7956 /// TypeIdCompatibleVtableInfo 7957 /// ')' 7958 bool LLParser::parseTypeIdCompatibleVtableEntry(unsigned ID) { 7959 assert(Lex.getKind() == lltok::kw_typeidCompatibleVTable); 7960 Lex.Lex(); 7961 7962 std::string Name; 7963 if (parseToken(lltok::colon, "expected ':' here") || 7964 parseToken(lltok::lparen, "expected '(' here") || 7965 parseToken(lltok::kw_name, "expected 'name' here") || 7966 parseToken(lltok::colon, "expected ':' here") || 7967 parseStringConstant(Name)) 7968 return true; 7969 7970 TypeIdCompatibleVtableInfo &TI = 7971 Index->getOrInsertTypeIdCompatibleVtableSummary(Name); 7972 if (parseToken(lltok::comma, "expected ',' here") || 7973 parseToken(lltok::kw_summary, "expected 'summary' here") || 7974 parseToken(lltok::colon, "expected ':' here") || 7975 parseToken(lltok::lparen, "expected '(' here")) 7976 return true; 7977 7978 IdToIndexMapType IdToIndexMap; 7979 // parse each call edge 7980 do { 7981 uint64_t Offset; 7982 if (parseToken(lltok::lparen, "expected '(' here") || 7983 parseToken(lltok::kw_offset, "expected 'offset' here") || 7984 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 7985 parseToken(lltok::comma, "expected ',' here")) 7986 return true; 7987 7988 LocTy Loc = Lex.getLoc(); 7989 unsigned GVId; 7990 ValueInfo VI; 7991 if (parseGVReference(VI, GVId)) 7992 return true; 7993 7994 // Keep track of the TypeIdCompatibleVtableInfo array index needing a 7995 // forward reference. We will save the location of the ValueInfo needing an 7996 // update, but can only do so once the std::vector is finalized. 7997 if (VI == EmptyVI) 7998 IdToIndexMap[GVId].push_back(std::make_pair(TI.size(), Loc)); 7999 TI.push_back({Offset, VI}); 8000 8001 if (parseToken(lltok::rparen, "expected ')' in call")) 8002 return true; 8003 } while (EatIfPresent(lltok::comma)); 8004 8005 // Now that the TI vector is finalized, it is safe to save the locations 8006 // of any forward GV references that need updating later. 8007 for (auto I : IdToIndexMap) { 8008 auto &Infos = ForwardRefValueInfos[I.first]; 8009 for (auto P : I.second) { 8010 assert(TI[P.first].VTableVI == EmptyVI && 8011 "Forward referenced ValueInfo expected to be empty"); 8012 Infos.emplace_back(&TI[P.first].VTableVI, P.second); 8013 } 8014 } 8015 8016 if (parseToken(lltok::rparen, "expected ')' here") || 8017 parseToken(lltok::rparen, "expected ')' here")) 8018 return true; 8019 8020 // Check if this ID was forward referenced, and if so, update the 8021 // corresponding GUIDs. 8022 auto FwdRefTIDs = ForwardRefTypeIds.find(ID); 8023 if (FwdRefTIDs != ForwardRefTypeIds.end()) { 8024 for (auto TIDRef : FwdRefTIDs->second) { 8025 assert(!*TIDRef.first && 8026 "Forward referenced type id GUID expected to be 0"); 8027 *TIDRef.first = GlobalValue::getGUID(Name); 8028 } 8029 ForwardRefTypeIds.erase(FwdRefTIDs); 8030 } 8031 8032 return false; 8033 } 8034 8035 /// TypeTestResolution 8036 /// ::= 'typeTestRes' ':' '(' 'kind' ':' 8037 /// ( 'unsat' | 'byteArray' | 'inline' | 'single' | 'allOnes' ) ',' 8038 /// 'sizeM1BitWidth' ':' SizeM1BitWidth [',' 'alignLog2' ':' UInt64]? 8039 /// [',' 'sizeM1' ':' UInt64]? [',' 'bitMask' ':' UInt8]? 8040 /// [',' 'inlinesBits' ':' UInt64]? ')' 8041 bool LLParser::parseTypeTestResolution(TypeTestResolution &TTRes) { 8042 if (parseToken(lltok::kw_typeTestRes, "expected 'typeTestRes' here") || 8043 parseToken(lltok::colon, "expected ':' here") || 8044 parseToken(lltok::lparen, "expected '(' here") || 8045 parseToken(lltok::kw_kind, "expected 'kind' here") || 8046 parseToken(lltok::colon, "expected ':' here")) 8047 return true; 8048 8049 switch (Lex.getKind()) { 8050 case lltok::kw_unknown: 8051 TTRes.TheKind = TypeTestResolution::Unknown; 8052 break; 8053 case lltok::kw_unsat: 8054 TTRes.TheKind = TypeTestResolution::Unsat; 8055 break; 8056 case lltok::kw_byteArray: 8057 TTRes.TheKind = TypeTestResolution::ByteArray; 8058 break; 8059 case lltok::kw_inline: 8060 TTRes.TheKind = TypeTestResolution::Inline; 8061 break; 8062 case lltok::kw_single: 8063 TTRes.TheKind = TypeTestResolution::Single; 8064 break; 8065 case lltok::kw_allOnes: 8066 TTRes.TheKind = TypeTestResolution::AllOnes; 8067 break; 8068 default: 8069 return error(Lex.getLoc(), "unexpected TypeTestResolution kind"); 8070 } 8071 Lex.Lex(); 8072 8073 if (parseToken(lltok::comma, "expected ',' here") || 8074 parseToken(lltok::kw_sizeM1BitWidth, "expected 'sizeM1BitWidth' here") || 8075 parseToken(lltok::colon, "expected ':' here") || 8076 parseUInt32(TTRes.SizeM1BitWidth)) 8077 return true; 8078 8079 // parse optional fields 8080 while (EatIfPresent(lltok::comma)) { 8081 switch (Lex.getKind()) { 8082 case lltok::kw_alignLog2: 8083 Lex.Lex(); 8084 if (parseToken(lltok::colon, "expected ':'") || 8085 parseUInt64(TTRes.AlignLog2)) 8086 return true; 8087 break; 8088 case lltok::kw_sizeM1: 8089 Lex.Lex(); 8090 if (parseToken(lltok::colon, "expected ':'") || parseUInt64(TTRes.SizeM1)) 8091 return true; 8092 break; 8093 case lltok::kw_bitMask: { 8094 unsigned Val; 8095 Lex.Lex(); 8096 if (parseToken(lltok::colon, "expected ':'") || parseUInt32(Val)) 8097 return true; 8098 assert(Val <= 0xff); 8099 TTRes.BitMask = (uint8_t)Val; 8100 break; 8101 } 8102 case lltok::kw_inlineBits: 8103 Lex.Lex(); 8104 if (parseToken(lltok::colon, "expected ':'") || 8105 parseUInt64(TTRes.InlineBits)) 8106 return true; 8107 break; 8108 default: 8109 return error(Lex.getLoc(), "expected optional TypeTestResolution field"); 8110 } 8111 } 8112 8113 if (parseToken(lltok::rparen, "expected ')' here")) 8114 return true; 8115 8116 return false; 8117 } 8118 8119 /// OptionalWpdResolutions 8120 /// ::= 'wpsResolutions' ':' '(' WpdResolution [',' WpdResolution]* ')' 8121 /// WpdResolution ::= '(' 'offset' ':' UInt64 ',' WpdRes ')' 8122 bool LLParser::parseOptionalWpdResolutions( 8123 std::map<uint64_t, WholeProgramDevirtResolution> &WPDResMap) { 8124 if (parseToken(lltok::kw_wpdResolutions, "expected 'wpdResolutions' here") || 8125 parseToken(lltok::colon, "expected ':' here") || 8126 parseToken(lltok::lparen, "expected '(' here")) 8127 return true; 8128 8129 do { 8130 uint64_t Offset; 8131 WholeProgramDevirtResolution WPDRes; 8132 if (parseToken(lltok::lparen, "expected '(' here") || 8133 parseToken(lltok::kw_offset, "expected 'offset' here") || 8134 parseToken(lltok::colon, "expected ':' here") || parseUInt64(Offset) || 8135 parseToken(lltok::comma, "expected ',' here") || parseWpdRes(WPDRes) || 8136 parseToken(lltok::rparen, "expected ')' here")) 8137 return true; 8138 WPDResMap[Offset] = WPDRes; 8139 } while (EatIfPresent(lltok::comma)); 8140 8141 if (parseToken(lltok::rparen, "expected ')' here")) 8142 return true; 8143 8144 return false; 8145 } 8146 8147 /// WpdRes 8148 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'indir' 8149 /// [',' OptionalResByArg]? ')' 8150 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'singleImpl' 8151 /// ',' 'singleImplName' ':' STRINGCONSTANT ',' 8152 /// [',' OptionalResByArg]? ')' 8153 /// ::= 'wpdRes' ':' '(' 'kind' ':' 'branchFunnel' 8154 /// [',' OptionalResByArg]? ')' 8155 bool LLParser::parseWpdRes(WholeProgramDevirtResolution &WPDRes) { 8156 if (parseToken(lltok::kw_wpdRes, "expected 'wpdRes' here") || 8157 parseToken(lltok::colon, "expected ':' here") || 8158 parseToken(lltok::lparen, "expected '(' here") || 8159 parseToken(lltok::kw_kind, "expected 'kind' here") || 8160 parseToken(lltok::colon, "expected ':' here")) 8161 return true; 8162 8163 switch (Lex.getKind()) { 8164 case lltok::kw_indir: 8165 WPDRes.TheKind = WholeProgramDevirtResolution::Indir; 8166 break; 8167 case lltok::kw_singleImpl: 8168 WPDRes.TheKind = WholeProgramDevirtResolution::SingleImpl; 8169 break; 8170 case lltok::kw_branchFunnel: 8171 WPDRes.TheKind = WholeProgramDevirtResolution::BranchFunnel; 8172 break; 8173 default: 8174 return error(Lex.getLoc(), "unexpected WholeProgramDevirtResolution kind"); 8175 } 8176 Lex.Lex(); 8177 8178 // parse optional fields 8179 while (EatIfPresent(lltok::comma)) { 8180 switch (Lex.getKind()) { 8181 case lltok::kw_singleImplName: 8182 Lex.Lex(); 8183 if (parseToken(lltok::colon, "expected ':' here") || 8184 parseStringConstant(WPDRes.SingleImplName)) 8185 return true; 8186 break; 8187 case lltok::kw_resByArg: 8188 if (parseOptionalResByArg(WPDRes.ResByArg)) 8189 return true; 8190 break; 8191 default: 8192 return error(Lex.getLoc(), 8193 "expected optional WholeProgramDevirtResolution field"); 8194 } 8195 } 8196 8197 if (parseToken(lltok::rparen, "expected ')' here")) 8198 return true; 8199 8200 return false; 8201 } 8202 8203 /// OptionalResByArg 8204 /// ::= 'wpdRes' ':' '(' ResByArg[, ResByArg]* ')' 8205 /// ResByArg ::= Args ',' 'byArg' ':' '(' 'kind' ':' 8206 /// ( 'indir' | 'uniformRetVal' | 'UniqueRetVal' | 8207 /// 'virtualConstProp' ) 8208 /// [',' 'info' ':' UInt64]? [',' 'byte' ':' UInt32]? 8209 /// [',' 'bit' ':' UInt32]? ')' 8210 bool LLParser::parseOptionalResByArg( 8211 std::map<std::vector<uint64_t>, WholeProgramDevirtResolution::ByArg> 8212 &ResByArg) { 8213 if (parseToken(lltok::kw_resByArg, "expected 'resByArg' here") || 8214 parseToken(lltok::colon, "expected ':' here") || 8215 parseToken(lltok::lparen, "expected '(' here")) 8216 return true; 8217 8218 do { 8219 std::vector<uint64_t> Args; 8220 if (parseArgs(Args) || parseToken(lltok::comma, "expected ',' here") || 8221 parseToken(lltok::kw_byArg, "expected 'byArg here") || 8222 parseToken(lltok::colon, "expected ':' here") || 8223 parseToken(lltok::lparen, "expected '(' here") || 8224 parseToken(lltok::kw_kind, "expected 'kind' here") || 8225 parseToken(lltok::colon, "expected ':' here")) 8226 return true; 8227 8228 WholeProgramDevirtResolution::ByArg ByArg; 8229 switch (Lex.getKind()) { 8230 case lltok::kw_indir: 8231 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::Indir; 8232 break; 8233 case lltok::kw_uniformRetVal: 8234 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniformRetVal; 8235 break; 8236 case lltok::kw_uniqueRetVal: 8237 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::UniqueRetVal; 8238 break; 8239 case lltok::kw_virtualConstProp: 8240 ByArg.TheKind = WholeProgramDevirtResolution::ByArg::VirtualConstProp; 8241 break; 8242 default: 8243 return error(Lex.getLoc(), 8244 "unexpected WholeProgramDevirtResolution::ByArg kind"); 8245 } 8246 Lex.Lex(); 8247 8248 // parse optional fields 8249 while (EatIfPresent(lltok::comma)) { 8250 switch (Lex.getKind()) { 8251 case lltok::kw_info: 8252 Lex.Lex(); 8253 if (parseToken(lltok::colon, "expected ':' here") || 8254 parseUInt64(ByArg.Info)) 8255 return true; 8256 break; 8257 case lltok::kw_byte: 8258 Lex.Lex(); 8259 if (parseToken(lltok::colon, "expected ':' here") || 8260 parseUInt32(ByArg.Byte)) 8261 return true; 8262 break; 8263 case lltok::kw_bit: 8264 Lex.Lex(); 8265 if (parseToken(lltok::colon, "expected ':' here") || 8266 parseUInt32(ByArg.Bit)) 8267 return true; 8268 break; 8269 default: 8270 return error(Lex.getLoc(), 8271 "expected optional whole program devirt field"); 8272 } 8273 } 8274 8275 if (parseToken(lltok::rparen, "expected ')' here")) 8276 return true; 8277 8278 ResByArg[Args] = ByArg; 8279 } while (EatIfPresent(lltok::comma)); 8280 8281 if (parseToken(lltok::rparen, "expected ')' here")) 8282 return true; 8283 8284 return false; 8285 } 8286 8287 /// OptionalResByArg 8288 /// ::= 'args' ':' '(' UInt64[, UInt64]* ')' 8289 bool LLParser::parseArgs(std::vector<uint64_t> &Args) { 8290 if (parseToken(lltok::kw_args, "expected 'args' here") || 8291 parseToken(lltok::colon, "expected ':' here") || 8292 parseToken(lltok::lparen, "expected '(' here")) 8293 return true; 8294 8295 do { 8296 uint64_t Val; 8297 if (parseUInt64(Val)) 8298 return true; 8299 Args.push_back(Val); 8300 } while (EatIfPresent(lltok::comma)); 8301 8302 if (parseToken(lltok::rparen, "expected ')' here")) 8303 return true; 8304 8305 return false; 8306 } 8307 8308 static const auto FwdVIRef = (GlobalValueSummaryMapTy::value_type *)-8; 8309 8310 static void resolveFwdRef(ValueInfo *Fwd, ValueInfo &Resolved) { 8311 bool ReadOnly = Fwd->isReadOnly(); 8312 bool WriteOnly = Fwd->isWriteOnly(); 8313 assert(!(ReadOnly && WriteOnly)); 8314 *Fwd = Resolved; 8315 if (ReadOnly) 8316 Fwd->setReadOnly(); 8317 if (WriteOnly) 8318 Fwd->setWriteOnly(); 8319 } 8320 8321 /// Stores the given Name/GUID and associated summary into the Index. 8322 /// Also updates any forward references to the associated entry ID. 8323 void LLParser::addGlobalValueToIndex( 8324 std::string Name, GlobalValue::GUID GUID, GlobalValue::LinkageTypes Linkage, 8325 unsigned ID, std::unique_ptr<GlobalValueSummary> Summary) { 8326 // First create the ValueInfo utilizing the Name or GUID. 8327 ValueInfo VI; 8328 if (GUID != 0) { 8329 assert(Name.empty()); 8330 VI = Index->getOrInsertValueInfo(GUID); 8331 } else { 8332 assert(!Name.empty()); 8333 if (M) { 8334 auto *GV = M->getNamedValue(Name); 8335 assert(GV); 8336 VI = Index->getOrInsertValueInfo(GV); 8337 } else { 8338 assert( 8339 (!GlobalValue::isLocalLinkage(Linkage) || !SourceFileName.empty()) && 8340 "Need a source_filename to compute GUID for local"); 8341 GUID = GlobalValue::getGUID( 8342 GlobalValue::getGlobalIdentifier(Name, Linkage, SourceFileName)); 8343 VI = Index->getOrInsertValueInfo(GUID, Index->saveString(Name)); 8344 } 8345 } 8346 8347 // Resolve forward references from calls/refs 8348 auto FwdRefVIs = ForwardRefValueInfos.find(ID); 8349 if (FwdRefVIs != ForwardRefValueInfos.end()) { 8350 for (auto VIRef : FwdRefVIs->second) { 8351 assert(VIRef.first->getRef() == FwdVIRef && 8352 "Forward referenced ValueInfo expected to be empty"); 8353 resolveFwdRef(VIRef.first, VI); 8354 } 8355 ForwardRefValueInfos.erase(FwdRefVIs); 8356 } 8357 8358 // Resolve forward references from aliases 8359 auto FwdRefAliasees = ForwardRefAliasees.find(ID); 8360 if (FwdRefAliasees != ForwardRefAliasees.end()) { 8361 for (auto AliaseeRef : FwdRefAliasees->second) { 8362 assert(!AliaseeRef.first->hasAliasee() && 8363 "Forward referencing alias already has aliasee"); 8364 assert(Summary && "Aliasee must be a definition"); 8365 AliaseeRef.first->setAliasee(VI, Summary.get()); 8366 } 8367 ForwardRefAliasees.erase(FwdRefAliasees); 8368 } 8369 8370 // Add the summary if one was provided. 8371 if (Summary) 8372 Index->addGlobalValueSummary(VI, std::move(Summary)); 8373 8374 // Save the associated ValueInfo for use in later references by ID. 8375 if (ID == NumberedValueInfos.size()) 8376 NumberedValueInfos.push_back(VI); 8377 else { 8378 // Handle non-continuous numbers (to make test simplification easier). 8379 if (ID > NumberedValueInfos.size()) 8380 NumberedValueInfos.resize(ID + 1); 8381 NumberedValueInfos[ID] = VI; 8382 } 8383 } 8384 8385 /// parseSummaryIndexFlags 8386 /// ::= 'flags' ':' UInt64 8387 bool LLParser::parseSummaryIndexFlags() { 8388 assert(Lex.getKind() == lltok::kw_flags); 8389 Lex.Lex(); 8390 8391 if (parseToken(lltok::colon, "expected ':' here")) 8392 return true; 8393 uint64_t Flags; 8394 if (parseUInt64(Flags)) 8395 return true; 8396 if (Index) 8397 Index->setFlags(Flags); 8398 return false; 8399 } 8400 8401 /// parseBlockCount 8402 /// ::= 'blockcount' ':' UInt64 8403 bool LLParser::parseBlockCount() { 8404 assert(Lex.getKind() == lltok::kw_blockcount); 8405 Lex.Lex(); 8406 8407 if (parseToken(lltok::colon, "expected ':' here")) 8408 return true; 8409 uint64_t BlockCount; 8410 if (parseUInt64(BlockCount)) 8411 return true; 8412 if (Index) 8413 Index->setBlockCount(BlockCount); 8414 return false; 8415 } 8416 8417 /// parseGVEntry 8418 /// ::= 'gv' ':' '(' ('name' ':' STRINGCONSTANT | 'guid' ':' UInt64) 8419 /// [',' 'summaries' ':' Summary[',' Summary]* ]? ')' 8420 /// Summary ::= '(' (FunctionSummary | VariableSummary | AliasSummary) ')' 8421 bool LLParser::parseGVEntry(unsigned ID) { 8422 assert(Lex.getKind() == lltok::kw_gv); 8423 Lex.Lex(); 8424 8425 if (parseToken(lltok::colon, "expected ':' here") || 8426 parseToken(lltok::lparen, "expected '(' here")) 8427 return true; 8428 8429 std::string Name; 8430 GlobalValue::GUID GUID = 0; 8431 switch (Lex.getKind()) { 8432 case lltok::kw_name: 8433 Lex.Lex(); 8434 if (parseToken(lltok::colon, "expected ':' here") || 8435 parseStringConstant(Name)) 8436 return true; 8437 // Can't create GUID/ValueInfo until we have the linkage. 8438 break; 8439 case lltok::kw_guid: 8440 Lex.Lex(); 8441 if (parseToken(lltok::colon, "expected ':' here") || parseUInt64(GUID)) 8442 return true; 8443 break; 8444 default: 8445 return error(Lex.getLoc(), "expected name or guid tag"); 8446 } 8447 8448 if (!EatIfPresent(lltok::comma)) { 8449 // No summaries. Wrap up. 8450 if (parseToken(lltok::rparen, "expected ')' here")) 8451 return true; 8452 // This was created for a call to an external or indirect target. 8453 // A GUID with no summary came from a VALUE_GUID record, dummy GUID 8454 // created for indirect calls with VP. A Name with no GUID came from 8455 // an external definition. We pass ExternalLinkage since that is only 8456 // used when the GUID must be computed from Name, and in that case 8457 // the symbol must have external linkage. 8458 addGlobalValueToIndex(Name, GUID, GlobalValue::ExternalLinkage, ID, 8459 nullptr); 8460 return false; 8461 } 8462 8463 // Have a list of summaries 8464 if (parseToken(lltok::kw_summaries, "expected 'summaries' here") || 8465 parseToken(lltok::colon, "expected ':' here") || 8466 parseToken(lltok::lparen, "expected '(' here")) 8467 return true; 8468 do { 8469 switch (Lex.getKind()) { 8470 case lltok::kw_function: 8471 if (parseFunctionSummary(Name, GUID, ID)) 8472 return true; 8473 break; 8474 case lltok::kw_variable: 8475 if (parseVariableSummary(Name, GUID, ID)) 8476 return true; 8477 break; 8478 case lltok::kw_alias: 8479 if (parseAliasSummary(Name, GUID, ID)) 8480 return true; 8481 break; 8482 default: 8483 return error(Lex.getLoc(), "expected summary type"); 8484 } 8485 } while (EatIfPresent(lltok::comma)); 8486 8487 if (parseToken(lltok::rparen, "expected ')' here") || 8488 parseToken(lltok::rparen, "expected ')' here")) 8489 return true; 8490 8491 return false; 8492 } 8493 8494 /// FunctionSummary 8495 /// ::= 'function' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8496 /// ',' 'insts' ':' UInt32 [',' OptionalFFlags]? [',' OptionalCalls]? 8497 /// [',' OptionalTypeIdInfo]? [',' OptionalParamAccesses]? 8498 /// [',' OptionalRefs]? ')' 8499 bool LLParser::parseFunctionSummary(std::string Name, GlobalValue::GUID GUID, 8500 unsigned ID) { 8501 assert(Lex.getKind() == lltok::kw_function); 8502 Lex.Lex(); 8503 8504 StringRef ModulePath; 8505 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8506 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 8507 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8508 unsigned InstCount; 8509 std::vector<FunctionSummary::EdgeTy> Calls; 8510 FunctionSummary::TypeIdInfo TypeIdInfo; 8511 std::vector<FunctionSummary::ParamAccess> ParamAccesses; 8512 std::vector<ValueInfo> Refs; 8513 // Default is all-zeros (conservative values). 8514 FunctionSummary::FFlags FFlags = {}; 8515 if (parseToken(lltok::colon, "expected ':' here") || 8516 parseToken(lltok::lparen, "expected '(' here") || 8517 parseModuleReference(ModulePath) || 8518 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8519 parseToken(lltok::comma, "expected ',' here") || 8520 parseToken(lltok::kw_insts, "expected 'insts' here") || 8521 parseToken(lltok::colon, "expected ':' here") || parseUInt32(InstCount)) 8522 return true; 8523 8524 // parse optional fields 8525 while (EatIfPresent(lltok::comma)) { 8526 switch (Lex.getKind()) { 8527 case lltok::kw_funcFlags: 8528 if (parseOptionalFFlags(FFlags)) 8529 return true; 8530 break; 8531 case lltok::kw_calls: 8532 if (parseOptionalCalls(Calls)) 8533 return true; 8534 break; 8535 case lltok::kw_typeIdInfo: 8536 if (parseOptionalTypeIdInfo(TypeIdInfo)) 8537 return true; 8538 break; 8539 case lltok::kw_refs: 8540 if (parseOptionalRefs(Refs)) 8541 return true; 8542 break; 8543 case lltok::kw_params: 8544 if (parseOptionalParamAccesses(ParamAccesses)) 8545 return true; 8546 break; 8547 default: 8548 return error(Lex.getLoc(), "expected optional function summary field"); 8549 } 8550 } 8551 8552 if (parseToken(lltok::rparen, "expected ')' here")) 8553 return true; 8554 8555 auto FS = std::make_unique<FunctionSummary>( 8556 GVFlags, InstCount, FFlags, /*EntryCount=*/0, std::move(Refs), 8557 std::move(Calls), std::move(TypeIdInfo.TypeTests), 8558 std::move(TypeIdInfo.TypeTestAssumeVCalls), 8559 std::move(TypeIdInfo.TypeCheckedLoadVCalls), 8560 std::move(TypeIdInfo.TypeTestAssumeConstVCalls), 8561 std::move(TypeIdInfo.TypeCheckedLoadConstVCalls), 8562 std::move(ParamAccesses)); 8563 8564 FS->setModulePath(ModulePath); 8565 8566 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8567 ID, std::move(FS)); 8568 8569 return false; 8570 } 8571 8572 /// VariableSummary 8573 /// ::= 'variable' ':' '(' 'module' ':' ModuleReference ',' GVFlags 8574 /// [',' OptionalRefs]? ')' 8575 bool LLParser::parseVariableSummary(std::string Name, GlobalValue::GUID GUID, 8576 unsigned ID) { 8577 assert(Lex.getKind() == lltok::kw_variable); 8578 Lex.Lex(); 8579 8580 StringRef ModulePath; 8581 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8582 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 8583 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8584 GlobalVarSummary::GVarFlags GVarFlags(/*ReadOnly*/ false, 8585 /* WriteOnly */ false, 8586 /* Constant */ false, 8587 GlobalObject::VCallVisibilityPublic); 8588 std::vector<ValueInfo> Refs; 8589 VTableFuncList VTableFuncs; 8590 if (parseToken(lltok::colon, "expected ':' here") || 8591 parseToken(lltok::lparen, "expected '(' here") || 8592 parseModuleReference(ModulePath) || 8593 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8594 parseToken(lltok::comma, "expected ',' here") || 8595 parseGVarFlags(GVarFlags)) 8596 return true; 8597 8598 // parse optional fields 8599 while (EatIfPresent(lltok::comma)) { 8600 switch (Lex.getKind()) { 8601 case lltok::kw_vTableFuncs: 8602 if (parseOptionalVTableFuncs(VTableFuncs)) 8603 return true; 8604 break; 8605 case lltok::kw_refs: 8606 if (parseOptionalRefs(Refs)) 8607 return true; 8608 break; 8609 default: 8610 return error(Lex.getLoc(), "expected optional variable summary field"); 8611 } 8612 } 8613 8614 if (parseToken(lltok::rparen, "expected ')' here")) 8615 return true; 8616 8617 auto GS = 8618 std::make_unique<GlobalVarSummary>(GVFlags, GVarFlags, std::move(Refs)); 8619 8620 GS->setModulePath(ModulePath); 8621 GS->setVTableFuncs(std::move(VTableFuncs)); 8622 8623 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8624 ID, std::move(GS)); 8625 8626 return false; 8627 } 8628 8629 /// AliasSummary 8630 /// ::= 'alias' ':' '(' 'module' ':' ModuleReference ',' GVFlags ',' 8631 /// 'aliasee' ':' GVReference ')' 8632 bool LLParser::parseAliasSummary(std::string Name, GlobalValue::GUID GUID, 8633 unsigned ID) { 8634 assert(Lex.getKind() == lltok::kw_alias); 8635 LocTy Loc = Lex.getLoc(); 8636 Lex.Lex(); 8637 8638 StringRef ModulePath; 8639 GlobalValueSummary::GVFlags GVFlags = GlobalValueSummary::GVFlags( 8640 /*Linkage=*/GlobalValue::ExternalLinkage, /*NotEligibleToImport=*/false, 8641 /*Live=*/false, /*IsLocal=*/false, /*CanAutoHide=*/false); 8642 if (parseToken(lltok::colon, "expected ':' here") || 8643 parseToken(lltok::lparen, "expected '(' here") || 8644 parseModuleReference(ModulePath) || 8645 parseToken(lltok::comma, "expected ',' here") || parseGVFlags(GVFlags) || 8646 parseToken(lltok::comma, "expected ',' here") || 8647 parseToken(lltok::kw_aliasee, "expected 'aliasee' here") || 8648 parseToken(lltok::colon, "expected ':' here")) 8649 return true; 8650 8651 ValueInfo AliaseeVI; 8652 unsigned GVId; 8653 if (parseGVReference(AliaseeVI, GVId)) 8654 return true; 8655 8656 if (parseToken(lltok::rparen, "expected ')' here")) 8657 return true; 8658 8659 auto AS = std::make_unique<AliasSummary>(GVFlags); 8660 8661 AS->setModulePath(ModulePath); 8662 8663 // Record forward reference if the aliasee is not parsed yet. 8664 if (AliaseeVI.getRef() == FwdVIRef) { 8665 ForwardRefAliasees[GVId].emplace_back(AS.get(), Loc); 8666 } else { 8667 auto Summary = Index->findSummaryInModule(AliaseeVI, ModulePath); 8668 assert(Summary && "Aliasee must be a definition"); 8669 AS->setAliasee(AliaseeVI, Summary); 8670 } 8671 8672 addGlobalValueToIndex(Name, GUID, (GlobalValue::LinkageTypes)GVFlags.Linkage, 8673 ID, std::move(AS)); 8674 8675 return false; 8676 } 8677 8678 /// Flag 8679 /// ::= [0|1] 8680 bool LLParser::parseFlag(unsigned &Val) { 8681 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 8682 return tokError("expected integer"); 8683 Val = (unsigned)Lex.getAPSIntVal().getBoolValue(); 8684 Lex.Lex(); 8685 return false; 8686 } 8687 8688 /// OptionalFFlags 8689 /// := 'funcFlags' ':' '(' ['readNone' ':' Flag]? 8690 /// [',' 'readOnly' ':' Flag]? [',' 'noRecurse' ':' Flag]? 8691 /// [',' 'returnDoesNotAlias' ':' Flag]? ')' 8692 /// [',' 'noInline' ':' Flag]? ')' 8693 /// [',' 'alwaysInline' ':' Flag]? ')' 8694 8695 bool LLParser::parseOptionalFFlags(FunctionSummary::FFlags &FFlags) { 8696 assert(Lex.getKind() == lltok::kw_funcFlags); 8697 Lex.Lex(); 8698 8699 if (parseToken(lltok::colon, "expected ':' in funcFlags") | 8700 parseToken(lltok::lparen, "expected '(' in funcFlags")) 8701 return true; 8702 8703 do { 8704 unsigned Val = 0; 8705 switch (Lex.getKind()) { 8706 case lltok::kw_readNone: 8707 Lex.Lex(); 8708 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8709 return true; 8710 FFlags.ReadNone = Val; 8711 break; 8712 case lltok::kw_readOnly: 8713 Lex.Lex(); 8714 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8715 return true; 8716 FFlags.ReadOnly = Val; 8717 break; 8718 case lltok::kw_noRecurse: 8719 Lex.Lex(); 8720 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8721 return true; 8722 FFlags.NoRecurse = Val; 8723 break; 8724 case lltok::kw_returnDoesNotAlias: 8725 Lex.Lex(); 8726 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8727 return true; 8728 FFlags.ReturnDoesNotAlias = Val; 8729 break; 8730 case lltok::kw_noInline: 8731 Lex.Lex(); 8732 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8733 return true; 8734 FFlags.NoInline = Val; 8735 break; 8736 case lltok::kw_alwaysInline: 8737 Lex.Lex(); 8738 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Val)) 8739 return true; 8740 FFlags.AlwaysInline = Val; 8741 break; 8742 default: 8743 return error(Lex.getLoc(), "expected function flag type"); 8744 } 8745 } while (EatIfPresent(lltok::comma)); 8746 8747 if (parseToken(lltok::rparen, "expected ')' in funcFlags")) 8748 return true; 8749 8750 return false; 8751 } 8752 8753 /// OptionalCalls 8754 /// := 'calls' ':' '(' Call [',' Call]* ')' 8755 /// Call ::= '(' 'callee' ':' GVReference 8756 /// [( ',' 'hotness' ':' Hotness | ',' 'relbf' ':' UInt32 )]? ')' 8757 bool LLParser::parseOptionalCalls(std::vector<FunctionSummary::EdgeTy> &Calls) { 8758 assert(Lex.getKind() == lltok::kw_calls); 8759 Lex.Lex(); 8760 8761 if (parseToken(lltok::colon, "expected ':' in calls") | 8762 parseToken(lltok::lparen, "expected '(' in calls")) 8763 return true; 8764 8765 IdToIndexMapType IdToIndexMap; 8766 // parse each call edge 8767 do { 8768 ValueInfo VI; 8769 if (parseToken(lltok::lparen, "expected '(' in call") || 8770 parseToken(lltok::kw_callee, "expected 'callee' in call") || 8771 parseToken(lltok::colon, "expected ':'")) 8772 return true; 8773 8774 LocTy Loc = Lex.getLoc(); 8775 unsigned GVId; 8776 if (parseGVReference(VI, GVId)) 8777 return true; 8778 8779 CalleeInfo::HotnessType Hotness = CalleeInfo::HotnessType::Unknown; 8780 unsigned RelBF = 0; 8781 if (EatIfPresent(lltok::comma)) { 8782 // Expect either hotness or relbf 8783 if (EatIfPresent(lltok::kw_hotness)) { 8784 if (parseToken(lltok::colon, "expected ':'") || parseHotness(Hotness)) 8785 return true; 8786 } else { 8787 if (parseToken(lltok::kw_relbf, "expected relbf") || 8788 parseToken(lltok::colon, "expected ':'") || parseUInt32(RelBF)) 8789 return true; 8790 } 8791 } 8792 // Keep track of the Call array index needing a forward reference. 8793 // We will save the location of the ValueInfo needing an update, but 8794 // can only do so once the std::vector is finalized. 8795 if (VI.getRef() == FwdVIRef) 8796 IdToIndexMap[GVId].push_back(std::make_pair(Calls.size(), Loc)); 8797 Calls.push_back(FunctionSummary::EdgeTy{VI, CalleeInfo(Hotness, RelBF)}); 8798 8799 if (parseToken(lltok::rparen, "expected ')' in call")) 8800 return true; 8801 } while (EatIfPresent(lltok::comma)); 8802 8803 // Now that the Calls vector is finalized, it is safe to save the locations 8804 // of any forward GV references that need updating later. 8805 for (auto I : IdToIndexMap) { 8806 auto &Infos = ForwardRefValueInfos[I.first]; 8807 for (auto P : I.second) { 8808 assert(Calls[P.first].first.getRef() == FwdVIRef && 8809 "Forward referenced ValueInfo expected to be empty"); 8810 Infos.emplace_back(&Calls[P.first].first, P.second); 8811 } 8812 } 8813 8814 if (parseToken(lltok::rparen, "expected ')' in calls")) 8815 return true; 8816 8817 return false; 8818 } 8819 8820 /// Hotness 8821 /// := ('unknown'|'cold'|'none'|'hot'|'critical') 8822 bool LLParser::parseHotness(CalleeInfo::HotnessType &Hotness) { 8823 switch (Lex.getKind()) { 8824 case lltok::kw_unknown: 8825 Hotness = CalleeInfo::HotnessType::Unknown; 8826 break; 8827 case lltok::kw_cold: 8828 Hotness = CalleeInfo::HotnessType::Cold; 8829 break; 8830 case lltok::kw_none: 8831 Hotness = CalleeInfo::HotnessType::None; 8832 break; 8833 case lltok::kw_hot: 8834 Hotness = CalleeInfo::HotnessType::Hot; 8835 break; 8836 case lltok::kw_critical: 8837 Hotness = CalleeInfo::HotnessType::Critical; 8838 break; 8839 default: 8840 return error(Lex.getLoc(), "invalid call edge hotness"); 8841 } 8842 Lex.Lex(); 8843 return false; 8844 } 8845 8846 /// OptionalVTableFuncs 8847 /// := 'vTableFuncs' ':' '(' VTableFunc [',' VTableFunc]* ')' 8848 /// VTableFunc ::= '(' 'virtFunc' ':' GVReference ',' 'offset' ':' UInt64 ')' 8849 bool LLParser::parseOptionalVTableFuncs(VTableFuncList &VTableFuncs) { 8850 assert(Lex.getKind() == lltok::kw_vTableFuncs); 8851 Lex.Lex(); 8852 8853 if (parseToken(lltok::colon, "expected ':' in vTableFuncs") | 8854 parseToken(lltok::lparen, "expected '(' in vTableFuncs")) 8855 return true; 8856 8857 IdToIndexMapType IdToIndexMap; 8858 // parse each virtual function pair 8859 do { 8860 ValueInfo VI; 8861 if (parseToken(lltok::lparen, "expected '(' in vTableFunc") || 8862 parseToken(lltok::kw_virtFunc, "expected 'callee' in vTableFunc") || 8863 parseToken(lltok::colon, "expected ':'")) 8864 return true; 8865 8866 LocTy Loc = Lex.getLoc(); 8867 unsigned GVId; 8868 if (parseGVReference(VI, GVId)) 8869 return true; 8870 8871 uint64_t Offset; 8872 if (parseToken(lltok::comma, "expected comma") || 8873 parseToken(lltok::kw_offset, "expected offset") || 8874 parseToken(lltok::colon, "expected ':'") || parseUInt64(Offset)) 8875 return true; 8876 8877 // Keep track of the VTableFuncs array index needing a forward reference. 8878 // We will save the location of the ValueInfo needing an update, but 8879 // can only do so once the std::vector is finalized. 8880 if (VI == EmptyVI) 8881 IdToIndexMap[GVId].push_back(std::make_pair(VTableFuncs.size(), Loc)); 8882 VTableFuncs.push_back({VI, Offset}); 8883 8884 if (parseToken(lltok::rparen, "expected ')' in vTableFunc")) 8885 return true; 8886 } while (EatIfPresent(lltok::comma)); 8887 8888 // Now that the VTableFuncs vector is finalized, it is safe to save the 8889 // locations of any forward GV references that need updating later. 8890 for (auto I : IdToIndexMap) { 8891 auto &Infos = ForwardRefValueInfos[I.first]; 8892 for (auto P : I.second) { 8893 assert(VTableFuncs[P.first].FuncVI == EmptyVI && 8894 "Forward referenced ValueInfo expected to be empty"); 8895 Infos.emplace_back(&VTableFuncs[P.first].FuncVI, P.second); 8896 } 8897 } 8898 8899 if (parseToken(lltok::rparen, "expected ')' in vTableFuncs")) 8900 return true; 8901 8902 return false; 8903 } 8904 8905 /// ParamNo := 'param' ':' UInt64 8906 bool LLParser::parseParamNo(uint64_t &ParamNo) { 8907 if (parseToken(lltok::kw_param, "expected 'param' here") || 8908 parseToken(lltok::colon, "expected ':' here") || parseUInt64(ParamNo)) 8909 return true; 8910 return false; 8911 } 8912 8913 /// ParamAccessOffset := 'offset' ':' '[' APSINTVAL ',' APSINTVAL ']' 8914 bool LLParser::parseParamAccessOffset(ConstantRange &Range) { 8915 APSInt Lower; 8916 APSInt Upper; 8917 auto ParseAPSInt = [&](APSInt &Val) { 8918 if (Lex.getKind() != lltok::APSInt) 8919 return tokError("expected integer"); 8920 Val = Lex.getAPSIntVal(); 8921 Val = Val.extOrTrunc(FunctionSummary::ParamAccess::RangeWidth); 8922 Val.setIsSigned(true); 8923 Lex.Lex(); 8924 return false; 8925 }; 8926 if (parseToken(lltok::kw_offset, "expected 'offset' here") || 8927 parseToken(lltok::colon, "expected ':' here") || 8928 parseToken(lltok::lsquare, "expected '[' here") || ParseAPSInt(Lower) || 8929 parseToken(lltok::comma, "expected ',' here") || ParseAPSInt(Upper) || 8930 parseToken(lltok::rsquare, "expected ']' here")) 8931 return true; 8932 8933 ++Upper; 8934 Range = 8935 (Lower == Upper && !Lower.isMaxValue()) 8936 ? ConstantRange::getEmpty(FunctionSummary::ParamAccess::RangeWidth) 8937 : ConstantRange(Lower, Upper); 8938 8939 return false; 8940 } 8941 8942 /// ParamAccessCall 8943 /// := '(' 'callee' ':' GVReference ',' ParamNo ',' ParamAccessOffset ')' 8944 bool LLParser::parseParamAccessCall(FunctionSummary::ParamAccess::Call &Call, 8945 IdLocListType &IdLocList) { 8946 if (parseToken(lltok::lparen, "expected '(' here") || 8947 parseToken(lltok::kw_callee, "expected 'callee' here") || 8948 parseToken(lltok::colon, "expected ':' here")) 8949 return true; 8950 8951 unsigned GVId; 8952 ValueInfo VI; 8953 LocTy Loc = Lex.getLoc(); 8954 if (parseGVReference(VI, GVId)) 8955 return true; 8956 8957 Call.Callee = VI; 8958 IdLocList.emplace_back(GVId, Loc); 8959 8960 if (parseToken(lltok::comma, "expected ',' here") || 8961 parseParamNo(Call.ParamNo) || 8962 parseToken(lltok::comma, "expected ',' here") || 8963 parseParamAccessOffset(Call.Offsets)) 8964 return true; 8965 8966 if (parseToken(lltok::rparen, "expected ')' here")) 8967 return true; 8968 8969 return false; 8970 } 8971 8972 /// ParamAccess 8973 /// := '(' ParamNo ',' ParamAccessOffset [',' OptionalParamAccessCalls]? ')' 8974 /// OptionalParamAccessCalls := '(' Call [',' Call]* ')' 8975 bool LLParser::parseParamAccess(FunctionSummary::ParamAccess &Param, 8976 IdLocListType &IdLocList) { 8977 if (parseToken(lltok::lparen, "expected '(' here") || 8978 parseParamNo(Param.ParamNo) || 8979 parseToken(lltok::comma, "expected ',' here") || 8980 parseParamAccessOffset(Param.Use)) 8981 return true; 8982 8983 if (EatIfPresent(lltok::comma)) { 8984 if (parseToken(lltok::kw_calls, "expected 'calls' here") || 8985 parseToken(lltok::colon, "expected ':' here") || 8986 parseToken(lltok::lparen, "expected '(' here")) 8987 return true; 8988 do { 8989 FunctionSummary::ParamAccess::Call Call; 8990 if (parseParamAccessCall(Call, IdLocList)) 8991 return true; 8992 Param.Calls.push_back(Call); 8993 } while (EatIfPresent(lltok::comma)); 8994 8995 if (parseToken(lltok::rparen, "expected ')' here")) 8996 return true; 8997 } 8998 8999 if (parseToken(lltok::rparen, "expected ')' here")) 9000 return true; 9001 9002 return false; 9003 } 9004 9005 /// OptionalParamAccesses 9006 /// := 'params' ':' '(' ParamAccess [',' ParamAccess]* ')' 9007 bool LLParser::parseOptionalParamAccesses( 9008 std::vector<FunctionSummary::ParamAccess> &Params) { 9009 assert(Lex.getKind() == lltok::kw_params); 9010 Lex.Lex(); 9011 9012 if (parseToken(lltok::colon, "expected ':' here") || 9013 parseToken(lltok::lparen, "expected '(' here")) 9014 return true; 9015 9016 IdLocListType VContexts; 9017 size_t CallsNum = 0; 9018 do { 9019 FunctionSummary::ParamAccess ParamAccess; 9020 if (parseParamAccess(ParamAccess, VContexts)) 9021 return true; 9022 CallsNum += ParamAccess.Calls.size(); 9023 assert(VContexts.size() == CallsNum); 9024 Params.emplace_back(std::move(ParamAccess)); 9025 } while (EatIfPresent(lltok::comma)); 9026 9027 if (parseToken(lltok::rparen, "expected ')' here")) 9028 return true; 9029 9030 // Now that the Params is finalized, it is safe to save the locations 9031 // of any forward GV references that need updating later. 9032 IdLocListType::const_iterator ItContext = VContexts.begin(); 9033 for (auto &PA : Params) { 9034 for (auto &C : PA.Calls) { 9035 if (C.Callee.getRef() == FwdVIRef) 9036 ForwardRefValueInfos[ItContext->first].emplace_back(&C.Callee, 9037 ItContext->second); 9038 ++ItContext; 9039 } 9040 } 9041 assert(ItContext == VContexts.end()); 9042 9043 return false; 9044 } 9045 9046 /// OptionalRefs 9047 /// := 'refs' ':' '(' GVReference [',' GVReference]* ')' 9048 bool LLParser::parseOptionalRefs(std::vector<ValueInfo> &Refs) { 9049 assert(Lex.getKind() == lltok::kw_refs); 9050 Lex.Lex(); 9051 9052 if (parseToken(lltok::colon, "expected ':' in refs") || 9053 parseToken(lltok::lparen, "expected '(' in refs")) 9054 return true; 9055 9056 struct ValueContext { 9057 ValueInfo VI; 9058 unsigned GVId; 9059 LocTy Loc; 9060 }; 9061 std::vector<ValueContext> VContexts; 9062 // parse each ref edge 9063 do { 9064 ValueContext VC; 9065 VC.Loc = Lex.getLoc(); 9066 if (parseGVReference(VC.VI, VC.GVId)) 9067 return true; 9068 VContexts.push_back(VC); 9069 } while (EatIfPresent(lltok::comma)); 9070 9071 // Sort value contexts so that ones with writeonly 9072 // and readonly ValueInfo are at the end of VContexts vector. 9073 // See FunctionSummary::specialRefCounts() 9074 llvm::sort(VContexts, [](const ValueContext &VC1, const ValueContext &VC2) { 9075 return VC1.VI.getAccessSpecifier() < VC2.VI.getAccessSpecifier(); 9076 }); 9077 9078 IdToIndexMapType IdToIndexMap; 9079 for (auto &VC : VContexts) { 9080 // Keep track of the Refs array index needing a forward reference. 9081 // We will save the location of the ValueInfo needing an update, but 9082 // can only do so once the std::vector is finalized. 9083 if (VC.VI.getRef() == FwdVIRef) 9084 IdToIndexMap[VC.GVId].push_back(std::make_pair(Refs.size(), VC.Loc)); 9085 Refs.push_back(VC.VI); 9086 } 9087 9088 // Now that the Refs vector is finalized, it is safe to save the locations 9089 // of any forward GV references that need updating later. 9090 for (auto I : IdToIndexMap) { 9091 auto &Infos = ForwardRefValueInfos[I.first]; 9092 for (auto P : I.second) { 9093 assert(Refs[P.first].getRef() == FwdVIRef && 9094 "Forward referenced ValueInfo expected to be empty"); 9095 Infos.emplace_back(&Refs[P.first], P.second); 9096 } 9097 } 9098 9099 if (parseToken(lltok::rparen, "expected ')' in refs")) 9100 return true; 9101 9102 return false; 9103 } 9104 9105 /// OptionalTypeIdInfo 9106 /// := 'typeidinfo' ':' '(' [',' TypeTests]? [',' TypeTestAssumeVCalls]? 9107 /// [',' TypeCheckedLoadVCalls]? [',' TypeTestAssumeConstVCalls]? 9108 /// [',' TypeCheckedLoadConstVCalls]? ')' 9109 bool LLParser::parseOptionalTypeIdInfo( 9110 FunctionSummary::TypeIdInfo &TypeIdInfo) { 9111 assert(Lex.getKind() == lltok::kw_typeIdInfo); 9112 Lex.Lex(); 9113 9114 if (parseToken(lltok::colon, "expected ':' here") || 9115 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 9116 return true; 9117 9118 do { 9119 switch (Lex.getKind()) { 9120 case lltok::kw_typeTests: 9121 if (parseTypeTests(TypeIdInfo.TypeTests)) 9122 return true; 9123 break; 9124 case lltok::kw_typeTestAssumeVCalls: 9125 if (parseVFuncIdList(lltok::kw_typeTestAssumeVCalls, 9126 TypeIdInfo.TypeTestAssumeVCalls)) 9127 return true; 9128 break; 9129 case lltok::kw_typeCheckedLoadVCalls: 9130 if (parseVFuncIdList(lltok::kw_typeCheckedLoadVCalls, 9131 TypeIdInfo.TypeCheckedLoadVCalls)) 9132 return true; 9133 break; 9134 case lltok::kw_typeTestAssumeConstVCalls: 9135 if (parseConstVCallList(lltok::kw_typeTestAssumeConstVCalls, 9136 TypeIdInfo.TypeTestAssumeConstVCalls)) 9137 return true; 9138 break; 9139 case lltok::kw_typeCheckedLoadConstVCalls: 9140 if (parseConstVCallList(lltok::kw_typeCheckedLoadConstVCalls, 9141 TypeIdInfo.TypeCheckedLoadConstVCalls)) 9142 return true; 9143 break; 9144 default: 9145 return error(Lex.getLoc(), "invalid typeIdInfo list type"); 9146 } 9147 } while (EatIfPresent(lltok::comma)); 9148 9149 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 9150 return true; 9151 9152 return false; 9153 } 9154 9155 /// TypeTests 9156 /// ::= 'typeTests' ':' '(' (SummaryID | UInt64) 9157 /// [',' (SummaryID | UInt64)]* ')' 9158 bool LLParser::parseTypeTests(std::vector<GlobalValue::GUID> &TypeTests) { 9159 assert(Lex.getKind() == lltok::kw_typeTests); 9160 Lex.Lex(); 9161 9162 if (parseToken(lltok::colon, "expected ':' here") || 9163 parseToken(lltok::lparen, "expected '(' in typeIdInfo")) 9164 return true; 9165 9166 IdToIndexMapType IdToIndexMap; 9167 do { 9168 GlobalValue::GUID GUID = 0; 9169 if (Lex.getKind() == lltok::SummaryID) { 9170 unsigned ID = Lex.getUIntVal(); 9171 LocTy Loc = Lex.getLoc(); 9172 // Keep track of the TypeTests array index needing a forward reference. 9173 // We will save the location of the GUID needing an update, but 9174 // can only do so once the std::vector is finalized. 9175 IdToIndexMap[ID].push_back(std::make_pair(TypeTests.size(), Loc)); 9176 Lex.Lex(); 9177 } else if (parseUInt64(GUID)) 9178 return true; 9179 TypeTests.push_back(GUID); 9180 } while (EatIfPresent(lltok::comma)); 9181 9182 // Now that the TypeTests vector is finalized, it is safe to save the 9183 // locations of any forward GV references that need updating later. 9184 for (auto I : IdToIndexMap) { 9185 auto &Ids = ForwardRefTypeIds[I.first]; 9186 for (auto P : I.second) { 9187 assert(TypeTests[P.first] == 0 && 9188 "Forward referenced type id GUID expected to be 0"); 9189 Ids.emplace_back(&TypeTests[P.first], P.second); 9190 } 9191 } 9192 9193 if (parseToken(lltok::rparen, "expected ')' in typeIdInfo")) 9194 return true; 9195 9196 return false; 9197 } 9198 9199 /// VFuncIdList 9200 /// ::= Kind ':' '(' VFuncId [',' VFuncId]* ')' 9201 bool LLParser::parseVFuncIdList( 9202 lltok::Kind Kind, std::vector<FunctionSummary::VFuncId> &VFuncIdList) { 9203 assert(Lex.getKind() == Kind); 9204 Lex.Lex(); 9205 9206 if (parseToken(lltok::colon, "expected ':' here") || 9207 parseToken(lltok::lparen, "expected '(' here")) 9208 return true; 9209 9210 IdToIndexMapType IdToIndexMap; 9211 do { 9212 FunctionSummary::VFuncId VFuncId; 9213 if (parseVFuncId(VFuncId, IdToIndexMap, VFuncIdList.size())) 9214 return true; 9215 VFuncIdList.push_back(VFuncId); 9216 } while (EatIfPresent(lltok::comma)); 9217 9218 if (parseToken(lltok::rparen, "expected ')' here")) 9219 return true; 9220 9221 // Now that the VFuncIdList vector is finalized, it is safe to save the 9222 // locations of any forward GV references that need updating later. 9223 for (auto I : IdToIndexMap) { 9224 auto &Ids = ForwardRefTypeIds[I.first]; 9225 for (auto P : I.second) { 9226 assert(VFuncIdList[P.first].GUID == 0 && 9227 "Forward referenced type id GUID expected to be 0"); 9228 Ids.emplace_back(&VFuncIdList[P.first].GUID, P.second); 9229 } 9230 } 9231 9232 return false; 9233 } 9234 9235 /// ConstVCallList 9236 /// ::= Kind ':' '(' ConstVCall [',' ConstVCall]* ')' 9237 bool LLParser::parseConstVCallList( 9238 lltok::Kind Kind, 9239 std::vector<FunctionSummary::ConstVCall> &ConstVCallList) { 9240 assert(Lex.getKind() == Kind); 9241 Lex.Lex(); 9242 9243 if (parseToken(lltok::colon, "expected ':' here") || 9244 parseToken(lltok::lparen, "expected '(' here")) 9245 return true; 9246 9247 IdToIndexMapType IdToIndexMap; 9248 do { 9249 FunctionSummary::ConstVCall ConstVCall; 9250 if (parseConstVCall(ConstVCall, IdToIndexMap, ConstVCallList.size())) 9251 return true; 9252 ConstVCallList.push_back(ConstVCall); 9253 } while (EatIfPresent(lltok::comma)); 9254 9255 if (parseToken(lltok::rparen, "expected ')' here")) 9256 return true; 9257 9258 // Now that the ConstVCallList vector is finalized, it is safe to save the 9259 // locations of any forward GV references that need updating later. 9260 for (auto I : IdToIndexMap) { 9261 auto &Ids = ForwardRefTypeIds[I.first]; 9262 for (auto P : I.second) { 9263 assert(ConstVCallList[P.first].VFunc.GUID == 0 && 9264 "Forward referenced type id GUID expected to be 0"); 9265 Ids.emplace_back(&ConstVCallList[P.first].VFunc.GUID, P.second); 9266 } 9267 } 9268 9269 return false; 9270 } 9271 9272 /// ConstVCall 9273 /// ::= '(' VFuncId ',' Args ')' 9274 bool LLParser::parseConstVCall(FunctionSummary::ConstVCall &ConstVCall, 9275 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9276 if (parseToken(lltok::lparen, "expected '(' here") || 9277 parseVFuncId(ConstVCall.VFunc, IdToIndexMap, Index)) 9278 return true; 9279 9280 if (EatIfPresent(lltok::comma)) 9281 if (parseArgs(ConstVCall.Args)) 9282 return true; 9283 9284 if (parseToken(lltok::rparen, "expected ')' here")) 9285 return true; 9286 9287 return false; 9288 } 9289 9290 /// VFuncId 9291 /// ::= 'vFuncId' ':' '(' (SummaryID | 'guid' ':' UInt64) ',' 9292 /// 'offset' ':' UInt64 ')' 9293 bool LLParser::parseVFuncId(FunctionSummary::VFuncId &VFuncId, 9294 IdToIndexMapType &IdToIndexMap, unsigned Index) { 9295 assert(Lex.getKind() == lltok::kw_vFuncId); 9296 Lex.Lex(); 9297 9298 if (parseToken(lltok::colon, "expected ':' here") || 9299 parseToken(lltok::lparen, "expected '(' here")) 9300 return true; 9301 9302 if (Lex.getKind() == lltok::SummaryID) { 9303 VFuncId.GUID = 0; 9304 unsigned ID = Lex.getUIntVal(); 9305 LocTy Loc = Lex.getLoc(); 9306 // Keep track of the array index needing a forward reference. 9307 // We will save the location of the GUID needing an update, but 9308 // can only do so once the caller's std::vector is finalized. 9309 IdToIndexMap[ID].push_back(std::make_pair(Index, Loc)); 9310 Lex.Lex(); 9311 } else if (parseToken(lltok::kw_guid, "expected 'guid' here") || 9312 parseToken(lltok::colon, "expected ':' here") || 9313 parseUInt64(VFuncId.GUID)) 9314 return true; 9315 9316 if (parseToken(lltok::comma, "expected ',' here") || 9317 parseToken(lltok::kw_offset, "expected 'offset' here") || 9318 parseToken(lltok::colon, "expected ':' here") || 9319 parseUInt64(VFuncId.Offset) || 9320 parseToken(lltok::rparen, "expected ')' here")) 9321 return true; 9322 9323 return false; 9324 } 9325 9326 /// GVFlags 9327 /// ::= 'flags' ':' '(' 'linkage' ':' OptionalLinkageAux ',' 9328 /// 'notEligibleToImport' ':' Flag ',' 'live' ':' Flag ',' 9329 /// 'dsoLocal' ':' Flag ',' 'canAutoHide' ':' Flag ')' 9330 bool LLParser::parseGVFlags(GlobalValueSummary::GVFlags &GVFlags) { 9331 assert(Lex.getKind() == lltok::kw_flags); 9332 Lex.Lex(); 9333 9334 if (parseToken(lltok::colon, "expected ':' here") || 9335 parseToken(lltok::lparen, "expected '(' here")) 9336 return true; 9337 9338 do { 9339 unsigned Flag = 0; 9340 switch (Lex.getKind()) { 9341 case lltok::kw_linkage: 9342 Lex.Lex(); 9343 if (parseToken(lltok::colon, "expected ':'")) 9344 return true; 9345 bool HasLinkage; 9346 GVFlags.Linkage = parseOptionalLinkageAux(Lex.getKind(), HasLinkage); 9347 assert(HasLinkage && "Linkage not optional in summary entry"); 9348 Lex.Lex(); 9349 break; 9350 case lltok::kw_notEligibleToImport: 9351 Lex.Lex(); 9352 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9353 return true; 9354 GVFlags.NotEligibleToImport = Flag; 9355 break; 9356 case lltok::kw_live: 9357 Lex.Lex(); 9358 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9359 return true; 9360 GVFlags.Live = Flag; 9361 break; 9362 case lltok::kw_dsoLocal: 9363 Lex.Lex(); 9364 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9365 return true; 9366 GVFlags.DSOLocal = Flag; 9367 break; 9368 case lltok::kw_canAutoHide: 9369 Lex.Lex(); 9370 if (parseToken(lltok::colon, "expected ':'") || parseFlag(Flag)) 9371 return true; 9372 GVFlags.CanAutoHide = Flag; 9373 break; 9374 default: 9375 return error(Lex.getLoc(), "expected gv flag type"); 9376 } 9377 } while (EatIfPresent(lltok::comma)); 9378 9379 if (parseToken(lltok::rparen, "expected ')' here")) 9380 return true; 9381 9382 return false; 9383 } 9384 9385 /// GVarFlags 9386 /// ::= 'varFlags' ':' '(' 'readonly' ':' Flag 9387 /// ',' 'writeonly' ':' Flag 9388 /// ',' 'constant' ':' Flag ')' 9389 bool LLParser::parseGVarFlags(GlobalVarSummary::GVarFlags &GVarFlags) { 9390 assert(Lex.getKind() == lltok::kw_varFlags); 9391 Lex.Lex(); 9392 9393 if (parseToken(lltok::colon, "expected ':' here") || 9394 parseToken(lltok::lparen, "expected '(' here")) 9395 return true; 9396 9397 auto ParseRest = [this](unsigned int &Val) { 9398 Lex.Lex(); 9399 if (parseToken(lltok::colon, "expected ':'")) 9400 return true; 9401 return parseFlag(Val); 9402 }; 9403 9404 do { 9405 unsigned Flag = 0; 9406 switch (Lex.getKind()) { 9407 case lltok::kw_readonly: 9408 if (ParseRest(Flag)) 9409 return true; 9410 GVarFlags.MaybeReadOnly = Flag; 9411 break; 9412 case lltok::kw_writeonly: 9413 if (ParseRest(Flag)) 9414 return true; 9415 GVarFlags.MaybeWriteOnly = Flag; 9416 break; 9417 case lltok::kw_constant: 9418 if (ParseRest(Flag)) 9419 return true; 9420 GVarFlags.Constant = Flag; 9421 break; 9422 case lltok::kw_vcall_visibility: 9423 if (ParseRest(Flag)) 9424 return true; 9425 GVarFlags.VCallVisibility = Flag; 9426 break; 9427 default: 9428 return error(Lex.getLoc(), "expected gvar flag type"); 9429 } 9430 } while (EatIfPresent(lltok::comma)); 9431 return parseToken(lltok::rparen, "expected ')' here"); 9432 } 9433 9434 /// ModuleReference 9435 /// ::= 'module' ':' UInt 9436 bool LLParser::parseModuleReference(StringRef &ModulePath) { 9437 // parse module id. 9438 if (parseToken(lltok::kw_module, "expected 'module' here") || 9439 parseToken(lltok::colon, "expected ':' here") || 9440 parseToken(lltok::SummaryID, "expected module ID")) 9441 return true; 9442 9443 unsigned ModuleID = Lex.getUIntVal(); 9444 auto I = ModuleIdMap.find(ModuleID); 9445 // We should have already parsed all module IDs 9446 assert(I != ModuleIdMap.end()); 9447 ModulePath = I->second; 9448 return false; 9449 } 9450 9451 /// GVReference 9452 /// ::= SummaryID 9453 bool LLParser::parseGVReference(ValueInfo &VI, unsigned &GVId) { 9454 bool WriteOnly = false, ReadOnly = EatIfPresent(lltok::kw_readonly); 9455 if (!ReadOnly) 9456 WriteOnly = EatIfPresent(lltok::kw_writeonly); 9457 if (parseToken(lltok::SummaryID, "expected GV ID")) 9458 return true; 9459 9460 GVId = Lex.getUIntVal(); 9461 // Check if we already have a VI for this GV 9462 if (GVId < NumberedValueInfos.size()) { 9463 assert(NumberedValueInfos[GVId].getRef() != FwdVIRef); 9464 VI = NumberedValueInfos[GVId]; 9465 } else 9466 // We will create a forward reference to the stored location. 9467 VI = ValueInfo(false, FwdVIRef); 9468 9469 if (ReadOnly) 9470 VI.setReadOnly(); 9471 if (WriteOnly) 9472 VI.setWriteOnly(); 9473 return false; 9474 } 9475