1 //===-- LLParser.cpp - Parser Class ---------------------------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the parser class for .ll files. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "LLParser.h" 15 #include "llvm/AutoUpgrade.h" 16 #include "llvm/CallingConv.h" 17 #include "llvm/Constants.h" 18 #include "llvm/DerivedTypes.h" 19 #include "llvm/InlineAsm.h" 20 #include "llvm/Instructions.h" 21 #include "llvm/Module.h" 22 #include "llvm/Operator.h" 23 #include "llvm/ValueSymbolTable.h" 24 #include "llvm/ADT/SmallPtrSet.h" 25 #include "llvm/Support/ErrorHandling.h" 26 #include "llvm/Support/raw_ostream.h" 27 using namespace llvm; 28 29 static std::string getTypeString(Type *T) { 30 std::string Result; 31 raw_string_ostream Tmp(Result); 32 Tmp << *T; 33 return Tmp.str(); 34 } 35 36 /// Run: module ::= toplevelentity* 37 bool LLParser::Run() { 38 // Prime the lexer. 39 Lex.Lex(); 40 41 return ParseTopLevelEntities() || 42 ValidateEndOfModule(); 43 } 44 45 /// ValidateEndOfModule - Do final validity and sanity checks at the end of the 46 /// module. 47 bool LLParser::ValidateEndOfModule() { 48 // Handle any instruction metadata forward references. 49 if (!ForwardRefInstMetadata.empty()) { 50 for (DenseMap<Instruction*, std::vector<MDRef> >::iterator 51 I = ForwardRefInstMetadata.begin(), E = ForwardRefInstMetadata.end(); 52 I != E; ++I) { 53 Instruction *Inst = I->first; 54 const std::vector<MDRef> &MDList = I->second; 55 56 for (unsigned i = 0, e = MDList.size(); i != e; ++i) { 57 unsigned SlotNo = MDList[i].MDSlot; 58 59 if (SlotNo >= NumberedMetadata.size() || NumberedMetadata[SlotNo] == 0) 60 return Error(MDList[i].Loc, "use of undefined metadata '!" + 61 Twine(SlotNo) + "'"); 62 Inst->setMetadata(MDList[i].MDKind, NumberedMetadata[SlotNo]); 63 } 64 } 65 ForwardRefInstMetadata.clear(); 66 } 67 68 69 // If there are entries in ForwardRefBlockAddresses at this point, they are 70 // references after the function was defined. Resolve those now. 71 while (!ForwardRefBlockAddresses.empty()) { 72 // Okay, we are referencing an already-parsed function, resolve them now. 73 Function *TheFn = 0; 74 const ValID &Fn = ForwardRefBlockAddresses.begin()->first; 75 if (Fn.Kind == ValID::t_GlobalName) 76 TheFn = M->getFunction(Fn.StrVal); 77 else if (Fn.UIntVal < NumberedVals.size()) 78 TheFn = dyn_cast<Function>(NumberedVals[Fn.UIntVal]); 79 80 if (TheFn == 0) 81 return Error(Fn.Loc, "unknown function referenced by blockaddress"); 82 83 // Resolve all these references. 84 if (ResolveForwardRefBlockAddresses(TheFn, 85 ForwardRefBlockAddresses.begin()->second, 86 0)) 87 return true; 88 89 ForwardRefBlockAddresses.erase(ForwardRefBlockAddresses.begin()); 90 } 91 92 for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) 93 if (NumberedTypes[i].second.isValid()) 94 return Error(NumberedTypes[i].second, 95 "use of undefined type '%" + Twine(i) + "'"); 96 97 for (StringMap<std::pair<Type*, LocTy> >::iterator I = 98 NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) 99 if (I->second.second.isValid()) 100 return Error(I->second.second, 101 "use of undefined type named '" + I->getKey() + "'"); 102 103 if (!ForwardRefVals.empty()) 104 return Error(ForwardRefVals.begin()->second.second, 105 "use of undefined value '@" + ForwardRefVals.begin()->first + 106 "'"); 107 108 if (!ForwardRefValIDs.empty()) 109 return Error(ForwardRefValIDs.begin()->second.second, 110 "use of undefined value '@" + 111 Twine(ForwardRefValIDs.begin()->first) + "'"); 112 113 if (!ForwardRefMDNodes.empty()) 114 return Error(ForwardRefMDNodes.begin()->second.second, 115 "use of undefined metadata '!" + 116 Twine(ForwardRefMDNodes.begin()->first) + "'"); 117 118 119 // Look for intrinsic functions and CallInst that need to be upgraded 120 for (Module::iterator FI = M->begin(), FE = M->end(); FI != FE; ) 121 UpgradeCallsToIntrinsic(FI++); // must be post-increment, as we remove 122 123 return false; 124 } 125 126 bool LLParser::ResolveForwardRefBlockAddresses(Function *TheFn, 127 std::vector<std::pair<ValID, GlobalValue*> > &Refs, 128 PerFunctionState *PFS) { 129 // Loop over all the references, resolving them. 130 for (unsigned i = 0, e = Refs.size(); i != e; ++i) { 131 BasicBlock *Res; 132 if (PFS) { 133 if (Refs[i].first.Kind == ValID::t_LocalName) 134 Res = PFS->GetBB(Refs[i].first.StrVal, Refs[i].first.Loc); 135 else 136 Res = PFS->GetBB(Refs[i].first.UIntVal, Refs[i].first.Loc); 137 } else if (Refs[i].first.Kind == ValID::t_LocalID) { 138 return Error(Refs[i].first.Loc, 139 "cannot take address of numeric label after the function is defined"); 140 } else { 141 Res = dyn_cast_or_null<BasicBlock>( 142 TheFn->getValueSymbolTable().lookup(Refs[i].first.StrVal)); 143 } 144 145 if (Res == 0) 146 return Error(Refs[i].first.Loc, 147 "referenced value is not a basic block"); 148 149 // Get the BlockAddress for this and update references to use it. 150 BlockAddress *BA = BlockAddress::get(TheFn, Res); 151 Refs[i].second->replaceAllUsesWith(BA); 152 Refs[i].second->eraseFromParent(); 153 } 154 return false; 155 } 156 157 158 //===----------------------------------------------------------------------===// 159 // Top-Level Entities 160 //===----------------------------------------------------------------------===// 161 162 bool LLParser::ParseTopLevelEntities() { 163 while (1) { 164 switch (Lex.getKind()) { 165 default: return TokError("expected top-level entity"); 166 case lltok::Eof: return false; 167 case lltok::kw_declare: if (ParseDeclare()) return true; break; 168 case lltok::kw_define: if (ParseDefine()) return true; break; 169 case lltok::kw_module: if (ParseModuleAsm()) return true; break; 170 case lltok::kw_target: if (ParseTargetDefinition()) return true; break; 171 case lltok::kw_deplibs: if (ParseDepLibs()) return true; break; 172 case lltok::LocalVarID: if (ParseUnnamedType()) return true; break; 173 case lltok::LocalVar: if (ParseNamedType()) return true; break; 174 case lltok::GlobalID: if (ParseUnnamedGlobal()) return true; break; 175 case lltok::GlobalVar: if (ParseNamedGlobal()) return true; break; 176 case lltok::exclaim: if (ParseStandaloneMetadata()) return true; break; 177 case lltok::MetadataVar: if (ParseNamedMetadata()) return true; break; 178 179 // The Global variable production with no name can have many different 180 // optional leading prefixes, the production is: 181 // GlobalVar ::= OptionalLinkage OptionalVisibility OptionalThreadLocal 182 // OptionalAddrSpace OptionalUnNammedAddr 183 // ('constant'|'global') ... 184 case lltok::kw_private: // OptionalLinkage 185 case lltok::kw_linker_private: // OptionalLinkage 186 case lltok::kw_linker_private_weak: // OptionalLinkage 187 case lltok::kw_linker_private_weak_def_auto: // FIXME: backwards compat. 188 case lltok::kw_internal: // OptionalLinkage 189 case lltok::kw_weak: // OptionalLinkage 190 case lltok::kw_weak_odr: // OptionalLinkage 191 case lltok::kw_linkonce: // OptionalLinkage 192 case lltok::kw_linkonce_odr: // OptionalLinkage 193 case lltok::kw_linkonce_odr_auto_hide: // OptionalLinkage 194 case lltok::kw_appending: // OptionalLinkage 195 case lltok::kw_dllexport: // OptionalLinkage 196 case lltok::kw_common: // OptionalLinkage 197 case lltok::kw_dllimport: // OptionalLinkage 198 case lltok::kw_extern_weak: // OptionalLinkage 199 case lltok::kw_external: { // OptionalLinkage 200 unsigned Linkage, Visibility; 201 if (ParseOptionalLinkage(Linkage) || 202 ParseOptionalVisibility(Visibility) || 203 ParseGlobal("", SMLoc(), Linkage, true, Visibility)) 204 return true; 205 break; 206 } 207 case lltok::kw_default: // OptionalVisibility 208 case lltok::kw_hidden: // OptionalVisibility 209 case lltok::kw_protected: { // OptionalVisibility 210 unsigned Visibility; 211 if (ParseOptionalVisibility(Visibility) || 212 ParseGlobal("", SMLoc(), 0, false, Visibility)) 213 return true; 214 break; 215 } 216 217 case lltok::kw_thread_local: // OptionalThreadLocal 218 case lltok::kw_addrspace: // OptionalAddrSpace 219 case lltok::kw_constant: // GlobalType 220 case lltok::kw_global: // GlobalType 221 if (ParseGlobal("", SMLoc(), 0, false, 0)) return true; 222 break; 223 } 224 } 225 } 226 227 228 /// toplevelentity 229 /// ::= 'module' 'asm' STRINGCONSTANT 230 bool LLParser::ParseModuleAsm() { 231 assert(Lex.getKind() == lltok::kw_module); 232 Lex.Lex(); 233 234 std::string AsmStr; 235 if (ParseToken(lltok::kw_asm, "expected 'module asm'") || 236 ParseStringConstant(AsmStr)) return true; 237 238 M->appendModuleInlineAsm(AsmStr); 239 return false; 240 } 241 242 /// toplevelentity 243 /// ::= 'target' 'triple' '=' STRINGCONSTANT 244 /// ::= 'target' 'datalayout' '=' STRINGCONSTANT 245 bool LLParser::ParseTargetDefinition() { 246 assert(Lex.getKind() == lltok::kw_target); 247 std::string Str; 248 switch (Lex.Lex()) { 249 default: return TokError("unknown target property"); 250 case lltok::kw_triple: 251 Lex.Lex(); 252 if (ParseToken(lltok::equal, "expected '=' after target triple") || 253 ParseStringConstant(Str)) 254 return true; 255 M->setTargetTriple(Str); 256 return false; 257 case lltok::kw_datalayout: 258 Lex.Lex(); 259 if (ParseToken(lltok::equal, "expected '=' after target datalayout") || 260 ParseStringConstant(Str)) 261 return true; 262 M->setDataLayout(Str); 263 return false; 264 } 265 } 266 267 /// toplevelentity 268 /// ::= 'deplibs' '=' '[' ']' 269 /// ::= 'deplibs' '=' '[' STRINGCONSTANT (',' STRINGCONSTANT)* ']' 270 bool LLParser::ParseDepLibs() { 271 assert(Lex.getKind() == lltok::kw_deplibs); 272 Lex.Lex(); 273 if (ParseToken(lltok::equal, "expected '=' after deplibs") || 274 ParseToken(lltok::lsquare, "expected '=' after deplibs")) 275 return true; 276 277 if (EatIfPresent(lltok::rsquare)) 278 return false; 279 280 std::string Str; 281 if (ParseStringConstant(Str)) return true; 282 M->addLibrary(Str); 283 284 while (EatIfPresent(lltok::comma)) { 285 if (ParseStringConstant(Str)) return true; 286 M->addLibrary(Str); 287 } 288 289 return ParseToken(lltok::rsquare, "expected ']' at end of list"); 290 } 291 292 /// ParseUnnamedType: 293 /// ::= LocalVarID '=' 'type' type 294 bool LLParser::ParseUnnamedType() { 295 LocTy TypeLoc = Lex.getLoc(); 296 unsigned TypeID = Lex.getUIntVal(); 297 Lex.Lex(); // eat LocalVarID; 298 299 if (ParseToken(lltok::equal, "expected '=' after name") || 300 ParseToken(lltok::kw_type, "expected 'type' after '='")) 301 return true; 302 303 if (TypeID >= NumberedTypes.size()) 304 NumberedTypes.resize(TypeID+1); 305 306 Type *Result = 0; 307 if (ParseStructDefinition(TypeLoc, "", 308 NumberedTypes[TypeID], Result)) return true; 309 310 if (!isa<StructType>(Result)) { 311 std::pair<Type*, LocTy> &Entry = NumberedTypes[TypeID]; 312 if (Entry.first) 313 return Error(TypeLoc, "non-struct types may not be recursive"); 314 Entry.first = Result; 315 Entry.second = SMLoc(); 316 } 317 318 return false; 319 } 320 321 322 /// toplevelentity 323 /// ::= LocalVar '=' 'type' type 324 bool LLParser::ParseNamedType() { 325 std::string Name = Lex.getStrVal(); 326 LocTy NameLoc = Lex.getLoc(); 327 Lex.Lex(); // eat LocalVar. 328 329 if (ParseToken(lltok::equal, "expected '=' after name") || 330 ParseToken(lltok::kw_type, "expected 'type' after name")) 331 return true; 332 333 Type *Result = 0; 334 if (ParseStructDefinition(NameLoc, Name, 335 NamedTypes[Name], Result)) return true; 336 337 if (!isa<StructType>(Result)) { 338 std::pair<Type*, LocTy> &Entry = NamedTypes[Name]; 339 if (Entry.first) 340 return Error(NameLoc, "non-struct types may not be recursive"); 341 Entry.first = Result; 342 Entry.second = SMLoc(); 343 } 344 345 return false; 346 } 347 348 349 /// toplevelentity 350 /// ::= 'declare' FunctionHeader 351 bool LLParser::ParseDeclare() { 352 assert(Lex.getKind() == lltok::kw_declare); 353 Lex.Lex(); 354 355 Function *F; 356 return ParseFunctionHeader(F, false); 357 } 358 359 /// toplevelentity 360 /// ::= 'define' FunctionHeader '{' ... 361 bool LLParser::ParseDefine() { 362 assert(Lex.getKind() == lltok::kw_define); 363 Lex.Lex(); 364 365 Function *F; 366 return ParseFunctionHeader(F, true) || 367 ParseFunctionBody(*F); 368 } 369 370 /// ParseGlobalType 371 /// ::= 'constant' 372 /// ::= 'global' 373 bool LLParser::ParseGlobalType(bool &IsConstant) { 374 if (Lex.getKind() == lltok::kw_constant) 375 IsConstant = true; 376 else if (Lex.getKind() == lltok::kw_global) 377 IsConstant = false; 378 else { 379 IsConstant = false; 380 return TokError("expected 'global' or 'constant'"); 381 } 382 Lex.Lex(); 383 return false; 384 } 385 386 /// ParseUnnamedGlobal: 387 /// OptionalVisibility ALIAS ... 388 /// OptionalLinkage OptionalVisibility ... -> global variable 389 /// GlobalID '=' OptionalVisibility ALIAS ... 390 /// GlobalID '=' OptionalLinkage OptionalVisibility ... -> global variable 391 bool LLParser::ParseUnnamedGlobal() { 392 unsigned VarID = NumberedVals.size(); 393 std::string Name; 394 LocTy NameLoc = Lex.getLoc(); 395 396 // Handle the GlobalID form. 397 if (Lex.getKind() == lltok::GlobalID) { 398 if (Lex.getUIntVal() != VarID) 399 return Error(Lex.getLoc(), "variable expected to be numbered '%" + 400 Twine(VarID) + "'"); 401 Lex.Lex(); // eat GlobalID; 402 403 if (ParseToken(lltok::equal, "expected '=' after name")) 404 return true; 405 } 406 407 bool HasLinkage; 408 unsigned Linkage, Visibility; 409 if (ParseOptionalLinkage(Linkage, HasLinkage) || 410 ParseOptionalVisibility(Visibility)) 411 return true; 412 413 if (HasLinkage || Lex.getKind() != lltok::kw_alias) 414 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility); 415 return ParseAlias(Name, NameLoc, Visibility); 416 } 417 418 /// ParseNamedGlobal: 419 /// GlobalVar '=' OptionalVisibility ALIAS ... 420 /// GlobalVar '=' OptionalLinkage OptionalVisibility ... -> global variable 421 bool LLParser::ParseNamedGlobal() { 422 assert(Lex.getKind() == lltok::GlobalVar); 423 LocTy NameLoc = Lex.getLoc(); 424 std::string Name = Lex.getStrVal(); 425 Lex.Lex(); 426 427 bool HasLinkage; 428 unsigned Linkage, Visibility; 429 if (ParseToken(lltok::equal, "expected '=' in global variable") || 430 ParseOptionalLinkage(Linkage, HasLinkage) || 431 ParseOptionalVisibility(Visibility)) 432 return true; 433 434 if (HasLinkage || Lex.getKind() != lltok::kw_alias) 435 return ParseGlobal(Name, NameLoc, Linkage, HasLinkage, Visibility); 436 return ParseAlias(Name, NameLoc, Visibility); 437 } 438 439 // MDString: 440 // ::= '!' STRINGCONSTANT 441 bool LLParser::ParseMDString(MDString *&Result) { 442 std::string Str; 443 if (ParseStringConstant(Str)) return true; 444 Result = MDString::get(Context, Str); 445 return false; 446 } 447 448 // MDNode: 449 // ::= '!' MDNodeNumber 450 // 451 /// This version of ParseMDNodeID returns the slot number and null in the case 452 /// of a forward reference. 453 bool LLParser::ParseMDNodeID(MDNode *&Result, unsigned &SlotNo) { 454 // !{ ..., !42, ... } 455 if (ParseUInt32(SlotNo)) return true; 456 457 // Check existing MDNode. 458 if (SlotNo < NumberedMetadata.size() && NumberedMetadata[SlotNo] != 0) 459 Result = NumberedMetadata[SlotNo]; 460 else 461 Result = 0; 462 return false; 463 } 464 465 bool LLParser::ParseMDNodeID(MDNode *&Result) { 466 // !{ ..., !42, ... } 467 unsigned MID = 0; 468 if (ParseMDNodeID(Result, MID)) return true; 469 470 // If not a forward reference, just return it now. 471 if (Result) return false; 472 473 // Otherwise, create MDNode forward reference. 474 MDNode *FwdNode = MDNode::getTemporary(Context, ArrayRef<Value*>()); 475 ForwardRefMDNodes[MID] = std::make_pair(FwdNode, Lex.getLoc()); 476 477 if (NumberedMetadata.size() <= MID) 478 NumberedMetadata.resize(MID+1); 479 NumberedMetadata[MID] = FwdNode; 480 Result = FwdNode; 481 return false; 482 } 483 484 /// ParseNamedMetadata: 485 /// !foo = !{ !1, !2 } 486 bool LLParser::ParseNamedMetadata() { 487 assert(Lex.getKind() == lltok::MetadataVar); 488 std::string Name = Lex.getStrVal(); 489 Lex.Lex(); 490 491 if (ParseToken(lltok::equal, "expected '=' here") || 492 ParseToken(lltok::exclaim, "Expected '!' here") || 493 ParseToken(lltok::lbrace, "Expected '{' here")) 494 return true; 495 496 NamedMDNode *NMD = M->getOrInsertNamedMetadata(Name); 497 if (Lex.getKind() != lltok::rbrace) 498 do { 499 if (ParseToken(lltok::exclaim, "Expected '!' here")) 500 return true; 501 502 MDNode *N = 0; 503 if (ParseMDNodeID(N)) return true; 504 NMD->addOperand(N); 505 } while (EatIfPresent(lltok::comma)); 506 507 if (ParseToken(lltok::rbrace, "expected end of metadata node")) 508 return true; 509 510 return false; 511 } 512 513 /// ParseStandaloneMetadata: 514 /// !42 = !{...} 515 bool LLParser::ParseStandaloneMetadata() { 516 assert(Lex.getKind() == lltok::exclaim); 517 Lex.Lex(); 518 unsigned MetadataID = 0; 519 520 LocTy TyLoc; 521 Type *Ty = 0; 522 SmallVector<Value *, 16> Elts; 523 if (ParseUInt32(MetadataID) || 524 ParseToken(lltok::equal, "expected '=' here") || 525 ParseType(Ty, TyLoc) || 526 ParseToken(lltok::exclaim, "Expected '!' here") || 527 ParseToken(lltok::lbrace, "Expected '{' here") || 528 ParseMDNodeVector(Elts, NULL) || 529 ParseToken(lltok::rbrace, "expected end of metadata node")) 530 return true; 531 532 MDNode *Init = MDNode::get(Context, Elts); 533 534 // See if this was forward referenced, if so, handle it. 535 std::map<unsigned, std::pair<TrackingVH<MDNode>, LocTy> >::iterator 536 FI = ForwardRefMDNodes.find(MetadataID); 537 if (FI != ForwardRefMDNodes.end()) { 538 MDNode *Temp = FI->second.first; 539 Temp->replaceAllUsesWith(Init); 540 MDNode::deleteTemporary(Temp); 541 ForwardRefMDNodes.erase(FI); 542 543 assert(NumberedMetadata[MetadataID] == Init && "Tracking VH didn't work"); 544 } else { 545 if (MetadataID >= NumberedMetadata.size()) 546 NumberedMetadata.resize(MetadataID+1); 547 548 if (NumberedMetadata[MetadataID] != 0) 549 return TokError("Metadata id is already used"); 550 NumberedMetadata[MetadataID] = Init; 551 } 552 553 return false; 554 } 555 556 /// ParseAlias: 557 /// ::= GlobalVar '=' OptionalVisibility 'alias' OptionalLinkage Aliasee 558 /// Aliasee 559 /// ::= TypeAndValue 560 /// ::= 'bitcast' '(' TypeAndValue 'to' Type ')' 561 /// ::= 'getelementptr' 'inbounds'? '(' ... ')' 562 /// 563 /// Everything through visibility has already been parsed. 564 /// 565 bool LLParser::ParseAlias(const std::string &Name, LocTy NameLoc, 566 unsigned Visibility) { 567 assert(Lex.getKind() == lltok::kw_alias); 568 Lex.Lex(); 569 unsigned Linkage; 570 LocTy LinkageLoc = Lex.getLoc(); 571 if (ParseOptionalLinkage(Linkage)) 572 return true; 573 574 if (Linkage != GlobalValue::ExternalLinkage && 575 Linkage != GlobalValue::WeakAnyLinkage && 576 Linkage != GlobalValue::WeakODRLinkage && 577 Linkage != GlobalValue::InternalLinkage && 578 Linkage != GlobalValue::PrivateLinkage && 579 Linkage != GlobalValue::LinkerPrivateLinkage && 580 Linkage != GlobalValue::LinkerPrivateWeakLinkage) 581 return Error(LinkageLoc, "invalid linkage type for alias"); 582 583 Constant *Aliasee; 584 LocTy AliaseeLoc = Lex.getLoc(); 585 if (Lex.getKind() != lltok::kw_bitcast && 586 Lex.getKind() != lltok::kw_getelementptr) { 587 if (ParseGlobalTypeAndValue(Aliasee)) return true; 588 } else { 589 // The bitcast dest type is not present, it is implied by the dest type. 590 ValID ID; 591 if (ParseValID(ID)) return true; 592 if (ID.Kind != ValID::t_Constant) 593 return Error(AliaseeLoc, "invalid aliasee"); 594 Aliasee = ID.ConstantVal; 595 } 596 597 if (!Aliasee->getType()->isPointerTy()) 598 return Error(AliaseeLoc, "alias must have pointer type"); 599 600 // Okay, create the alias but do not insert it into the module yet. 601 GlobalAlias* GA = new GlobalAlias(Aliasee->getType(), 602 (GlobalValue::LinkageTypes)Linkage, Name, 603 Aliasee); 604 GA->setVisibility((GlobalValue::VisibilityTypes)Visibility); 605 606 // See if this value already exists in the symbol table. If so, it is either 607 // a redefinition or a definition of a forward reference. 608 if (GlobalValue *Val = M->getNamedValue(Name)) { 609 // See if this was a redefinition. If so, there is no entry in 610 // ForwardRefVals. 611 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator 612 I = ForwardRefVals.find(Name); 613 if (I == ForwardRefVals.end()) 614 return Error(NameLoc, "redefinition of global named '@" + Name + "'"); 615 616 // Otherwise, this was a definition of forward ref. Verify that types 617 // agree. 618 if (Val->getType() != GA->getType()) 619 return Error(NameLoc, 620 "forward reference and definition of alias have different types"); 621 622 // If they agree, just RAUW the old value with the alias and remove the 623 // forward ref info. 624 Val->replaceAllUsesWith(GA); 625 Val->eraseFromParent(); 626 ForwardRefVals.erase(I); 627 } 628 629 // Insert into the module, we know its name won't collide now. 630 M->getAliasList().push_back(GA); 631 assert(GA->getName() == Name && "Should not be a name conflict!"); 632 633 return false; 634 } 635 636 /// ParseGlobal 637 /// ::= GlobalVar '=' OptionalLinkage OptionalVisibility OptionalThreadLocal 638 /// OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const 639 /// ::= OptionalLinkage OptionalVisibility OptionalThreadLocal 640 /// OptionalAddrSpace OptionalUnNammedAddr GlobalType Type Const 641 /// 642 /// Everything through visibility has been parsed already. 643 /// 644 bool LLParser::ParseGlobal(const std::string &Name, LocTy NameLoc, 645 unsigned Linkage, bool HasLinkage, 646 unsigned Visibility) { 647 unsigned AddrSpace; 648 bool IsConstant, UnnamedAddr; 649 GlobalVariable::ThreadLocalMode TLM; 650 LocTy UnnamedAddrLoc; 651 LocTy TyLoc; 652 653 Type *Ty = 0; 654 if (ParseOptionalThreadLocal(TLM) || 655 ParseOptionalAddrSpace(AddrSpace) || 656 ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr, 657 &UnnamedAddrLoc) || 658 ParseGlobalType(IsConstant) || 659 ParseType(Ty, TyLoc)) 660 return true; 661 662 // If the linkage is specified and is external, then no initializer is 663 // present. 664 Constant *Init = 0; 665 if (!HasLinkage || (Linkage != GlobalValue::DLLImportLinkage && 666 Linkage != GlobalValue::ExternalWeakLinkage && 667 Linkage != GlobalValue::ExternalLinkage)) { 668 if (ParseGlobalValue(Ty, Init)) 669 return true; 670 } 671 672 if (Ty->isFunctionTy() || Ty->isLabelTy()) 673 return Error(TyLoc, "invalid type for global variable"); 674 675 GlobalVariable *GV = 0; 676 677 // See if the global was forward referenced, if so, use the global. 678 if (!Name.empty()) { 679 if (GlobalValue *GVal = M->getNamedValue(Name)) { 680 if (!ForwardRefVals.erase(Name) || !isa<GlobalValue>(GVal)) 681 return Error(NameLoc, "redefinition of global '@" + Name + "'"); 682 GV = cast<GlobalVariable>(GVal); 683 } 684 } else { 685 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator 686 I = ForwardRefValIDs.find(NumberedVals.size()); 687 if (I != ForwardRefValIDs.end()) { 688 GV = cast<GlobalVariable>(I->second.first); 689 ForwardRefValIDs.erase(I); 690 } 691 } 692 693 if (GV == 0) { 694 GV = new GlobalVariable(*M, Ty, false, GlobalValue::ExternalLinkage, 0, 695 Name, 0, GlobalVariable::NotThreadLocal, 696 AddrSpace); 697 } else { 698 if (GV->getType()->getElementType() != Ty) 699 return Error(TyLoc, 700 "forward reference and definition of global have different types"); 701 702 // Move the forward-reference to the correct spot in the module. 703 M->getGlobalList().splice(M->global_end(), M->getGlobalList(), GV); 704 } 705 706 if (Name.empty()) 707 NumberedVals.push_back(GV); 708 709 // Set the parsed properties on the global. 710 if (Init) 711 GV->setInitializer(Init); 712 GV->setConstant(IsConstant); 713 GV->setLinkage((GlobalValue::LinkageTypes)Linkage); 714 GV->setVisibility((GlobalValue::VisibilityTypes)Visibility); 715 GV->setThreadLocalMode(TLM); 716 GV->setUnnamedAddr(UnnamedAddr); 717 718 // Parse attributes on the global. 719 while (Lex.getKind() == lltok::comma) { 720 Lex.Lex(); 721 722 if (Lex.getKind() == lltok::kw_section) { 723 Lex.Lex(); 724 GV->setSection(Lex.getStrVal()); 725 if (ParseToken(lltok::StringConstant, "expected global section string")) 726 return true; 727 } else if (Lex.getKind() == lltok::kw_align) { 728 unsigned Alignment; 729 if (ParseOptionalAlignment(Alignment)) return true; 730 GV->setAlignment(Alignment); 731 } else { 732 TokError("unknown global variable property!"); 733 } 734 } 735 736 return false; 737 } 738 739 740 //===----------------------------------------------------------------------===// 741 // GlobalValue Reference/Resolution Routines. 742 //===----------------------------------------------------------------------===// 743 744 /// GetGlobalVal - Get a value with the specified name or ID, creating a 745 /// forward reference record if needed. This can return null if the value 746 /// exists but does not have the right type. 747 GlobalValue *LLParser::GetGlobalVal(const std::string &Name, Type *Ty, 748 LocTy Loc) { 749 PointerType *PTy = dyn_cast<PointerType>(Ty); 750 if (PTy == 0) { 751 Error(Loc, "global variable reference must have pointer type"); 752 return 0; 753 } 754 755 // Look this name up in the normal function symbol table. 756 GlobalValue *Val = 757 cast_or_null<GlobalValue>(M->getValueSymbolTable().lookup(Name)); 758 759 // If this is a forward reference for the value, see if we already created a 760 // forward ref record. 761 if (Val == 0) { 762 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator 763 I = ForwardRefVals.find(Name); 764 if (I != ForwardRefVals.end()) 765 Val = I->second.first; 766 } 767 768 // If we have the value in the symbol table or fwd-ref table, return it. 769 if (Val) { 770 if (Val->getType() == Ty) return Val; 771 Error(Loc, "'@" + Name + "' defined with type '" + 772 getTypeString(Val->getType()) + "'"); 773 return 0; 774 } 775 776 // Otherwise, create a new forward reference for this value and remember it. 777 GlobalValue *FwdVal; 778 if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) 779 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, Name, M); 780 else 781 FwdVal = new GlobalVariable(*M, PTy->getElementType(), false, 782 GlobalValue::ExternalWeakLinkage, 0, Name); 783 784 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 785 return FwdVal; 786 } 787 788 GlobalValue *LLParser::GetGlobalVal(unsigned ID, Type *Ty, LocTy Loc) { 789 PointerType *PTy = dyn_cast<PointerType>(Ty); 790 if (PTy == 0) { 791 Error(Loc, "global variable reference must have pointer type"); 792 return 0; 793 } 794 795 GlobalValue *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0; 796 797 // If this is a forward reference for the value, see if we already created a 798 // forward ref record. 799 if (Val == 0) { 800 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator 801 I = ForwardRefValIDs.find(ID); 802 if (I != ForwardRefValIDs.end()) 803 Val = I->second.first; 804 } 805 806 // If we have the value in the symbol table or fwd-ref table, return it. 807 if (Val) { 808 if (Val->getType() == Ty) return Val; 809 Error(Loc, "'@" + Twine(ID) + "' defined with type '" + 810 getTypeString(Val->getType()) + "'"); 811 return 0; 812 } 813 814 // Otherwise, create a new forward reference for this value and remember it. 815 GlobalValue *FwdVal; 816 if (FunctionType *FT = dyn_cast<FunctionType>(PTy->getElementType())) 817 FwdVal = Function::Create(FT, GlobalValue::ExternalWeakLinkage, "", M); 818 else 819 FwdVal = new GlobalVariable(*M, PTy->getElementType(), false, 820 GlobalValue::ExternalWeakLinkage, 0, ""); 821 822 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 823 return FwdVal; 824 } 825 826 827 //===----------------------------------------------------------------------===// 828 // Helper Routines. 829 //===----------------------------------------------------------------------===// 830 831 /// ParseToken - If the current token has the specified kind, eat it and return 832 /// success. Otherwise, emit the specified error and return failure. 833 bool LLParser::ParseToken(lltok::Kind T, const char *ErrMsg) { 834 if (Lex.getKind() != T) 835 return TokError(ErrMsg); 836 Lex.Lex(); 837 return false; 838 } 839 840 /// ParseStringConstant 841 /// ::= StringConstant 842 bool LLParser::ParseStringConstant(std::string &Result) { 843 if (Lex.getKind() != lltok::StringConstant) 844 return TokError("expected string constant"); 845 Result = Lex.getStrVal(); 846 Lex.Lex(); 847 return false; 848 } 849 850 /// ParseUInt32 851 /// ::= uint32 852 bool LLParser::ParseUInt32(unsigned &Val) { 853 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned()) 854 return TokError("expected integer"); 855 uint64_t Val64 = Lex.getAPSIntVal().getLimitedValue(0xFFFFFFFFULL+1); 856 if (Val64 != unsigned(Val64)) 857 return TokError("expected 32-bit integer (too large)"); 858 Val = Val64; 859 Lex.Lex(); 860 return false; 861 } 862 863 /// ParseTLSModel 864 /// := 'localdynamic' 865 /// := 'initialexec' 866 /// := 'localexec' 867 bool LLParser::ParseTLSModel(GlobalVariable::ThreadLocalMode &TLM) { 868 switch (Lex.getKind()) { 869 default: 870 return TokError("expected localdynamic, initialexec or localexec"); 871 case lltok::kw_localdynamic: 872 TLM = GlobalVariable::LocalDynamicTLSModel; 873 break; 874 case lltok::kw_initialexec: 875 TLM = GlobalVariable::InitialExecTLSModel; 876 break; 877 case lltok::kw_localexec: 878 TLM = GlobalVariable::LocalExecTLSModel; 879 break; 880 } 881 882 Lex.Lex(); 883 return false; 884 } 885 886 /// ParseOptionalThreadLocal 887 /// := /*empty*/ 888 /// := 'thread_local' 889 /// := 'thread_local' '(' tlsmodel ')' 890 bool LLParser::ParseOptionalThreadLocal(GlobalVariable::ThreadLocalMode &TLM) { 891 TLM = GlobalVariable::NotThreadLocal; 892 if (!EatIfPresent(lltok::kw_thread_local)) 893 return false; 894 895 TLM = GlobalVariable::GeneralDynamicTLSModel; 896 if (Lex.getKind() == lltok::lparen) { 897 Lex.Lex(); 898 return ParseTLSModel(TLM) || 899 ParseToken(lltok::rparen, "expected ')' after thread local model"); 900 } 901 return false; 902 } 903 904 /// ParseOptionalAddrSpace 905 /// := /*empty*/ 906 /// := 'addrspace' '(' uint32 ')' 907 bool LLParser::ParseOptionalAddrSpace(unsigned &AddrSpace) { 908 AddrSpace = 0; 909 if (!EatIfPresent(lltok::kw_addrspace)) 910 return false; 911 return ParseToken(lltok::lparen, "expected '(' in address space") || 912 ParseUInt32(AddrSpace) || 913 ParseToken(lltok::rparen, "expected ')' in address space"); 914 } 915 916 /// ParseOptionalAttrs - Parse a potentially empty attribute list. AttrKind 917 /// indicates what kind of attribute list this is: 0: function arg, 1: result, 918 /// 2: function attr. 919 bool LLParser::ParseOptionalAttrs(Attributes &Attrs, unsigned AttrKind) { 920 Attrs = Attribute::None; 921 LocTy AttrLoc = Lex.getLoc(); 922 bool HaveError = false; 923 924 while (1) { 925 lltok::Kind Token = Lex.getKind(); 926 switch (Token) { 927 default: // End of attributes. 928 return HaveError; 929 case lltok::kw_zeroext: Attrs |= Attribute::ZExt; break; 930 case lltok::kw_signext: Attrs |= Attribute::SExt; break; 931 case lltok::kw_inreg: Attrs |= Attribute::InReg; break; 932 case lltok::kw_sret: Attrs |= Attribute::StructRet; break; 933 case lltok::kw_noalias: Attrs |= Attribute::NoAlias; break; 934 case lltok::kw_nocapture: Attrs |= Attribute::NoCapture; break; 935 case lltok::kw_byval: Attrs |= Attribute::ByVal; break; 936 case lltok::kw_nest: Attrs |= Attribute::Nest; break; 937 938 case lltok::kw_noreturn: Attrs |= Attribute::NoReturn; break; 939 case lltok::kw_nounwind: Attrs |= Attribute::NoUnwind; break; 940 case lltok::kw_uwtable: Attrs |= Attribute::UWTable; break; 941 case lltok::kw_returns_twice: Attrs |= Attribute::ReturnsTwice; break; 942 case lltok::kw_noinline: Attrs |= Attribute::NoInline; break; 943 case lltok::kw_readnone: Attrs |= Attribute::ReadNone; break; 944 case lltok::kw_readonly: Attrs |= Attribute::ReadOnly; break; 945 case lltok::kw_inlinehint: Attrs |= Attribute::InlineHint; break; 946 case lltok::kw_alwaysinline: Attrs |= Attribute::AlwaysInline; break; 947 case lltok::kw_optsize: Attrs |= Attribute::OptimizeForSize; break; 948 case lltok::kw_ssp: Attrs |= Attribute::StackProtect; break; 949 case lltok::kw_sspreq: Attrs |= Attribute::StackProtectReq; break; 950 case lltok::kw_noredzone: Attrs |= Attribute::NoRedZone; break; 951 case lltok::kw_noimplicitfloat: Attrs |= Attribute::NoImplicitFloat; break; 952 case lltok::kw_naked: Attrs |= Attribute::Naked; break; 953 case lltok::kw_nonlazybind: Attrs |= Attribute::NonLazyBind; break; 954 case lltok::kw_address_safety: Attrs |= Attribute::AddressSafety; break; 955 956 case lltok::kw_alignstack: { 957 unsigned Alignment; 958 if (ParseOptionalStackAlignment(Alignment)) 959 return true; 960 Attrs |= Attributes::constructStackAlignmentFromInt(Alignment); 961 continue; 962 } 963 964 case lltok::kw_align: { 965 unsigned Alignment; 966 if (ParseOptionalAlignment(Alignment)) 967 return true; 968 Attrs |= Attributes::constructAlignmentFromInt(Alignment); 969 continue; 970 } 971 972 } 973 974 // Perform some error checking. 975 switch (Token) { 976 default: 977 if (AttrKind == 2) 978 HaveError |= Error(AttrLoc, "invalid use of attribute on a function"); 979 break; 980 case lltok::kw_align: 981 // As a hack, we allow "align 2" on functions as a synonym for 982 // "alignstack 2". 983 break; 984 985 // Parameter Only: 986 case lltok::kw_sret: 987 case lltok::kw_nocapture: 988 case lltok::kw_byval: 989 case lltok::kw_nest: 990 if (AttrKind != 0) 991 HaveError |= Error(AttrLoc, "invalid use of parameter-only attribute"); 992 break; 993 994 // Function Only: 995 case lltok::kw_noreturn: 996 case lltok::kw_nounwind: 997 case lltok::kw_readnone: 998 case lltok::kw_readonly: 999 case lltok::kw_noinline: 1000 case lltok::kw_alwaysinline: 1001 case lltok::kw_optsize: 1002 case lltok::kw_ssp: 1003 case lltok::kw_sspreq: 1004 case lltok::kw_noredzone: 1005 case lltok::kw_noimplicitfloat: 1006 case lltok::kw_naked: 1007 case lltok::kw_inlinehint: 1008 case lltok::kw_alignstack: 1009 case lltok::kw_uwtable: 1010 case lltok::kw_nonlazybind: 1011 case lltok::kw_returns_twice: 1012 case lltok::kw_address_safety: 1013 if (AttrKind != 2) 1014 HaveError |= Error(AttrLoc, "invalid use of function-only attribute"); 1015 break; 1016 } 1017 1018 Lex.Lex(); 1019 } 1020 } 1021 1022 /// ParseOptionalLinkage 1023 /// ::= /*empty*/ 1024 /// ::= 'private' 1025 /// ::= 'linker_private' 1026 /// ::= 'linker_private_weak' 1027 /// ::= 'internal' 1028 /// ::= 'weak' 1029 /// ::= 'weak_odr' 1030 /// ::= 'linkonce' 1031 /// ::= 'linkonce_odr' 1032 /// ::= 'linkonce_odr_auto_hide' 1033 /// ::= 'available_externally' 1034 /// ::= 'appending' 1035 /// ::= 'dllexport' 1036 /// ::= 'common' 1037 /// ::= 'dllimport' 1038 /// ::= 'extern_weak' 1039 /// ::= 'external' 1040 bool LLParser::ParseOptionalLinkage(unsigned &Res, bool &HasLinkage) { 1041 HasLinkage = false; 1042 switch (Lex.getKind()) { 1043 default: Res=GlobalValue::ExternalLinkage; return false; 1044 case lltok::kw_private: Res = GlobalValue::PrivateLinkage; break; 1045 case lltok::kw_linker_private: Res = GlobalValue::LinkerPrivateLinkage; break; 1046 case lltok::kw_linker_private_weak: 1047 Res = GlobalValue::LinkerPrivateWeakLinkage; 1048 break; 1049 case lltok::kw_internal: Res = GlobalValue::InternalLinkage; break; 1050 case lltok::kw_weak: Res = GlobalValue::WeakAnyLinkage; break; 1051 case lltok::kw_weak_odr: Res = GlobalValue::WeakODRLinkage; break; 1052 case lltok::kw_linkonce: Res = GlobalValue::LinkOnceAnyLinkage; break; 1053 case lltok::kw_linkonce_odr: Res = GlobalValue::LinkOnceODRLinkage; break; 1054 case lltok::kw_linkonce_odr_auto_hide: 1055 case lltok::kw_linker_private_weak_def_auto: // FIXME: For backwards compat. 1056 Res = GlobalValue::LinkOnceODRAutoHideLinkage; 1057 break; 1058 case lltok::kw_available_externally: 1059 Res = GlobalValue::AvailableExternallyLinkage; 1060 break; 1061 case lltok::kw_appending: Res = GlobalValue::AppendingLinkage; break; 1062 case lltok::kw_dllexport: Res = GlobalValue::DLLExportLinkage; break; 1063 case lltok::kw_common: Res = GlobalValue::CommonLinkage; break; 1064 case lltok::kw_dllimport: Res = GlobalValue::DLLImportLinkage; break; 1065 case lltok::kw_extern_weak: Res = GlobalValue::ExternalWeakLinkage; break; 1066 case lltok::kw_external: Res = GlobalValue::ExternalLinkage; break; 1067 } 1068 Lex.Lex(); 1069 HasLinkage = true; 1070 return false; 1071 } 1072 1073 /// ParseOptionalVisibility 1074 /// ::= /*empty*/ 1075 /// ::= 'default' 1076 /// ::= 'hidden' 1077 /// ::= 'protected' 1078 /// 1079 bool LLParser::ParseOptionalVisibility(unsigned &Res) { 1080 switch (Lex.getKind()) { 1081 default: Res = GlobalValue::DefaultVisibility; return false; 1082 case lltok::kw_default: Res = GlobalValue::DefaultVisibility; break; 1083 case lltok::kw_hidden: Res = GlobalValue::HiddenVisibility; break; 1084 case lltok::kw_protected: Res = GlobalValue::ProtectedVisibility; break; 1085 } 1086 Lex.Lex(); 1087 return false; 1088 } 1089 1090 /// ParseOptionalCallingConv 1091 /// ::= /*empty*/ 1092 /// ::= 'ccc' 1093 /// ::= 'fastcc' 1094 /// ::= 'coldcc' 1095 /// ::= 'x86_stdcallcc' 1096 /// ::= 'x86_fastcallcc' 1097 /// ::= 'x86_thiscallcc' 1098 /// ::= 'arm_apcscc' 1099 /// ::= 'arm_aapcscc' 1100 /// ::= 'arm_aapcs_vfpcc' 1101 /// ::= 'msp430_intrcc' 1102 /// ::= 'ptx_kernel' 1103 /// ::= 'ptx_device' 1104 /// ::= 'cc' UINT 1105 /// 1106 bool LLParser::ParseOptionalCallingConv(CallingConv::ID &CC) { 1107 switch (Lex.getKind()) { 1108 default: CC = CallingConv::C; return false; 1109 case lltok::kw_ccc: CC = CallingConv::C; break; 1110 case lltok::kw_fastcc: CC = CallingConv::Fast; break; 1111 case lltok::kw_coldcc: CC = CallingConv::Cold; break; 1112 case lltok::kw_x86_stdcallcc: CC = CallingConv::X86_StdCall; break; 1113 case lltok::kw_x86_fastcallcc: CC = CallingConv::X86_FastCall; break; 1114 case lltok::kw_x86_thiscallcc: CC = CallingConv::X86_ThisCall; break; 1115 case lltok::kw_arm_apcscc: CC = CallingConv::ARM_APCS; break; 1116 case lltok::kw_arm_aapcscc: CC = CallingConv::ARM_AAPCS; break; 1117 case lltok::kw_arm_aapcs_vfpcc:CC = CallingConv::ARM_AAPCS_VFP; break; 1118 case lltok::kw_msp430_intrcc: CC = CallingConv::MSP430_INTR; break; 1119 case lltok::kw_ptx_kernel: CC = CallingConv::PTX_Kernel; break; 1120 case lltok::kw_ptx_device: CC = CallingConv::PTX_Device; break; 1121 case lltok::kw_cc: { 1122 unsigned ArbitraryCC; 1123 Lex.Lex(); 1124 if (ParseUInt32(ArbitraryCC)) 1125 return true; 1126 CC = static_cast<CallingConv::ID>(ArbitraryCC); 1127 return false; 1128 } 1129 } 1130 1131 Lex.Lex(); 1132 return false; 1133 } 1134 1135 /// ParseInstructionMetadata 1136 /// ::= !dbg !42 (',' !dbg !57)* 1137 bool LLParser::ParseInstructionMetadata(Instruction *Inst, 1138 PerFunctionState *PFS) { 1139 do { 1140 if (Lex.getKind() != lltok::MetadataVar) 1141 return TokError("expected metadata after comma"); 1142 1143 std::string Name = Lex.getStrVal(); 1144 unsigned MDK = M->getMDKindID(Name); 1145 Lex.Lex(); 1146 1147 MDNode *Node; 1148 SMLoc Loc = Lex.getLoc(); 1149 1150 if (ParseToken(lltok::exclaim, "expected '!' here")) 1151 return true; 1152 1153 // This code is similar to that of ParseMetadataValue, however it needs to 1154 // have special-case code for a forward reference; see the comments on 1155 // ForwardRefInstMetadata for details. Also, MDStrings are not supported 1156 // at the top level here. 1157 if (Lex.getKind() == lltok::lbrace) { 1158 ValID ID; 1159 if (ParseMetadataListValue(ID, PFS)) 1160 return true; 1161 assert(ID.Kind == ValID::t_MDNode); 1162 Inst->setMetadata(MDK, ID.MDNodeVal); 1163 } else { 1164 unsigned NodeID = 0; 1165 if (ParseMDNodeID(Node, NodeID)) 1166 return true; 1167 if (Node) { 1168 // If we got the node, add it to the instruction. 1169 Inst->setMetadata(MDK, Node); 1170 } else { 1171 MDRef R = { Loc, MDK, NodeID }; 1172 // Otherwise, remember that this should be resolved later. 1173 ForwardRefInstMetadata[Inst].push_back(R); 1174 } 1175 } 1176 1177 // If this is the end of the list, we're done. 1178 } while (EatIfPresent(lltok::comma)); 1179 return false; 1180 } 1181 1182 /// ParseOptionalAlignment 1183 /// ::= /* empty */ 1184 /// ::= 'align' 4 1185 bool LLParser::ParseOptionalAlignment(unsigned &Alignment) { 1186 Alignment = 0; 1187 if (!EatIfPresent(lltok::kw_align)) 1188 return false; 1189 LocTy AlignLoc = Lex.getLoc(); 1190 if (ParseUInt32(Alignment)) return true; 1191 if (!isPowerOf2_32(Alignment)) 1192 return Error(AlignLoc, "alignment is not a power of two"); 1193 if (Alignment > Value::MaximumAlignment) 1194 return Error(AlignLoc, "huge alignments are not supported yet"); 1195 return false; 1196 } 1197 1198 /// ParseOptionalCommaAlign 1199 /// ::= 1200 /// ::= ',' align 4 1201 /// 1202 /// This returns with AteExtraComma set to true if it ate an excess comma at the 1203 /// end. 1204 bool LLParser::ParseOptionalCommaAlign(unsigned &Alignment, 1205 bool &AteExtraComma) { 1206 AteExtraComma = false; 1207 while (EatIfPresent(lltok::comma)) { 1208 // Metadata at the end is an early exit. 1209 if (Lex.getKind() == lltok::MetadataVar) { 1210 AteExtraComma = true; 1211 return false; 1212 } 1213 1214 if (Lex.getKind() != lltok::kw_align) 1215 return Error(Lex.getLoc(), "expected metadata or 'align'"); 1216 1217 if (ParseOptionalAlignment(Alignment)) return true; 1218 } 1219 1220 return false; 1221 } 1222 1223 /// ParseScopeAndOrdering 1224 /// if isAtomic: ::= 'singlethread'? AtomicOrdering 1225 /// else: ::= 1226 /// 1227 /// This sets Scope and Ordering to the parsed values. 1228 bool LLParser::ParseScopeAndOrdering(bool isAtomic, SynchronizationScope &Scope, 1229 AtomicOrdering &Ordering) { 1230 if (!isAtomic) 1231 return false; 1232 1233 Scope = CrossThread; 1234 if (EatIfPresent(lltok::kw_singlethread)) 1235 Scope = SingleThread; 1236 switch (Lex.getKind()) { 1237 default: return TokError("Expected ordering on atomic instruction"); 1238 case lltok::kw_unordered: Ordering = Unordered; break; 1239 case lltok::kw_monotonic: Ordering = Monotonic; break; 1240 case lltok::kw_acquire: Ordering = Acquire; break; 1241 case lltok::kw_release: Ordering = Release; break; 1242 case lltok::kw_acq_rel: Ordering = AcquireRelease; break; 1243 case lltok::kw_seq_cst: Ordering = SequentiallyConsistent; break; 1244 } 1245 Lex.Lex(); 1246 return false; 1247 } 1248 1249 /// ParseOptionalStackAlignment 1250 /// ::= /* empty */ 1251 /// ::= 'alignstack' '(' 4 ')' 1252 bool LLParser::ParseOptionalStackAlignment(unsigned &Alignment) { 1253 Alignment = 0; 1254 if (!EatIfPresent(lltok::kw_alignstack)) 1255 return false; 1256 LocTy ParenLoc = Lex.getLoc(); 1257 if (!EatIfPresent(lltok::lparen)) 1258 return Error(ParenLoc, "expected '('"); 1259 LocTy AlignLoc = Lex.getLoc(); 1260 if (ParseUInt32(Alignment)) return true; 1261 ParenLoc = Lex.getLoc(); 1262 if (!EatIfPresent(lltok::rparen)) 1263 return Error(ParenLoc, "expected ')'"); 1264 if (!isPowerOf2_32(Alignment)) 1265 return Error(AlignLoc, "stack alignment is not a power of two"); 1266 return false; 1267 } 1268 1269 /// ParseIndexList - This parses the index list for an insert/extractvalue 1270 /// instruction. This sets AteExtraComma in the case where we eat an extra 1271 /// comma at the end of the line and find that it is followed by metadata. 1272 /// Clients that don't allow metadata can call the version of this function that 1273 /// only takes one argument. 1274 /// 1275 /// ParseIndexList 1276 /// ::= (',' uint32)+ 1277 /// 1278 bool LLParser::ParseIndexList(SmallVectorImpl<unsigned> &Indices, 1279 bool &AteExtraComma) { 1280 AteExtraComma = false; 1281 1282 if (Lex.getKind() != lltok::comma) 1283 return TokError("expected ',' as start of index list"); 1284 1285 while (EatIfPresent(lltok::comma)) { 1286 if (Lex.getKind() == lltok::MetadataVar) { 1287 AteExtraComma = true; 1288 return false; 1289 } 1290 unsigned Idx = 0; 1291 if (ParseUInt32(Idx)) return true; 1292 Indices.push_back(Idx); 1293 } 1294 1295 return false; 1296 } 1297 1298 //===----------------------------------------------------------------------===// 1299 // Type Parsing. 1300 //===----------------------------------------------------------------------===// 1301 1302 /// ParseType - Parse a type. 1303 bool LLParser::ParseType(Type *&Result, bool AllowVoid) { 1304 SMLoc TypeLoc = Lex.getLoc(); 1305 switch (Lex.getKind()) { 1306 default: 1307 return TokError("expected type"); 1308 case lltok::Type: 1309 // Type ::= 'float' | 'void' (etc) 1310 Result = Lex.getTyVal(); 1311 Lex.Lex(); 1312 break; 1313 case lltok::lbrace: 1314 // Type ::= StructType 1315 if (ParseAnonStructType(Result, false)) 1316 return true; 1317 break; 1318 case lltok::lsquare: 1319 // Type ::= '[' ... ']' 1320 Lex.Lex(); // eat the lsquare. 1321 if (ParseArrayVectorType(Result, false)) 1322 return true; 1323 break; 1324 case lltok::less: // Either vector or packed struct. 1325 // Type ::= '<' ... '>' 1326 Lex.Lex(); 1327 if (Lex.getKind() == lltok::lbrace) { 1328 if (ParseAnonStructType(Result, true) || 1329 ParseToken(lltok::greater, "expected '>' at end of packed struct")) 1330 return true; 1331 } else if (ParseArrayVectorType(Result, true)) 1332 return true; 1333 break; 1334 case lltok::LocalVar: { 1335 // Type ::= %foo 1336 std::pair<Type*, LocTy> &Entry = NamedTypes[Lex.getStrVal()]; 1337 1338 // If the type hasn't been defined yet, create a forward definition and 1339 // remember where that forward def'n was seen (in case it never is defined). 1340 if (Entry.first == 0) { 1341 Entry.first = StructType::create(Context, Lex.getStrVal()); 1342 Entry.second = Lex.getLoc(); 1343 } 1344 Result = Entry.first; 1345 Lex.Lex(); 1346 break; 1347 } 1348 1349 case lltok::LocalVarID: { 1350 // Type ::= %4 1351 if (Lex.getUIntVal() >= NumberedTypes.size()) 1352 NumberedTypes.resize(Lex.getUIntVal()+1); 1353 std::pair<Type*, LocTy> &Entry = NumberedTypes[Lex.getUIntVal()]; 1354 1355 // If the type hasn't been defined yet, create a forward definition and 1356 // remember where that forward def'n was seen (in case it never is defined). 1357 if (Entry.first == 0) { 1358 Entry.first = StructType::create(Context); 1359 Entry.second = Lex.getLoc(); 1360 } 1361 Result = Entry.first; 1362 Lex.Lex(); 1363 break; 1364 } 1365 } 1366 1367 // Parse the type suffixes. 1368 while (1) { 1369 switch (Lex.getKind()) { 1370 // End of type. 1371 default: 1372 if (!AllowVoid && Result->isVoidTy()) 1373 return Error(TypeLoc, "void type only allowed for function results"); 1374 return false; 1375 1376 // Type ::= Type '*' 1377 case lltok::star: 1378 if (Result->isLabelTy()) 1379 return TokError("basic block pointers are invalid"); 1380 if (Result->isVoidTy()) 1381 return TokError("pointers to void are invalid - use i8* instead"); 1382 if (!PointerType::isValidElementType(Result)) 1383 return TokError("pointer to this type is invalid"); 1384 Result = PointerType::getUnqual(Result); 1385 Lex.Lex(); 1386 break; 1387 1388 // Type ::= Type 'addrspace' '(' uint32 ')' '*' 1389 case lltok::kw_addrspace: { 1390 if (Result->isLabelTy()) 1391 return TokError("basic block pointers are invalid"); 1392 if (Result->isVoidTy()) 1393 return TokError("pointers to void are invalid; use i8* instead"); 1394 if (!PointerType::isValidElementType(Result)) 1395 return TokError("pointer to this type is invalid"); 1396 unsigned AddrSpace; 1397 if (ParseOptionalAddrSpace(AddrSpace) || 1398 ParseToken(lltok::star, "expected '*' in address space")) 1399 return true; 1400 1401 Result = PointerType::get(Result, AddrSpace); 1402 break; 1403 } 1404 1405 /// Types '(' ArgTypeListI ')' OptFuncAttrs 1406 case lltok::lparen: 1407 if (ParseFunctionType(Result)) 1408 return true; 1409 break; 1410 } 1411 } 1412 } 1413 1414 /// ParseParameterList 1415 /// ::= '(' ')' 1416 /// ::= '(' Arg (',' Arg)* ')' 1417 /// Arg 1418 /// ::= Type OptionalAttributes Value OptionalAttributes 1419 bool LLParser::ParseParameterList(SmallVectorImpl<ParamInfo> &ArgList, 1420 PerFunctionState &PFS) { 1421 if (ParseToken(lltok::lparen, "expected '(' in call")) 1422 return true; 1423 1424 while (Lex.getKind() != lltok::rparen) { 1425 // If this isn't the first argument, we need a comma. 1426 if (!ArgList.empty() && 1427 ParseToken(lltok::comma, "expected ',' in argument list")) 1428 return true; 1429 1430 // Parse the argument. 1431 LocTy ArgLoc; 1432 Type *ArgTy = 0; 1433 Attributes ArgAttrs1; 1434 Attributes ArgAttrs2; 1435 Value *V; 1436 if (ParseType(ArgTy, ArgLoc)) 1437 return true; 1438 1439 // Otherwise, handle normal operands. 1440 if (ParseOptionalAttrs(ArgAttrs1, 0) || ParseValue(ArgTy, V, PFS)) 1441 return true; 1442 ArgList.push_back(ParamInfo(ArgLoc, V, ArgAttrs1|ArgAttrs2)); 1443 } 1444 1445 Lex.Lex(); // Lex the ')'. 1446 return false; 1447 } 1448 1449 1450 1451 /// ParseArgumentList - Parse the argument list for a function type or function 1452 /// prototype. 1453 /// ::= '(' ArgTypeListI ')' 1454 /// ArgTypeListI 1455 /// ::= /*empty*/ 1456 /// ::= '...' 1457 /// ::= ArgTypeList ',' '...' 1458 /// ::= ArgType (',' ArgType)* 1459 /// 1460 bool LLParser::ParseArgumentList(SmallVectorImpl<ArgInfo> &ArgList, 1461 bool &isVarArg){ 1462 isVarArg = false; 1463 assert(Lex.getKind() == lltok::lparen); 1464 Lex.Lex(); // eat the (. 1465 1466 if (Lex.getKind() == lltok::rparen) { 1467 // empty 1468 } else if (Lex.getKind() == lltok::dotdotdot) { 1469 isVarArg = true; 1470 Lex.Lex(); 1471 } else { 1472 LocTy TypeLoc = Lex.getLoc(); 1473 Type *ArgTy = 0; 1474 Attributes Attrs; 1475 std::string Name; 1476 1477 if (ParseType(ArgTy) || 1478 ParseOptionalAttrs(Attrs, 0)) return true; 1479 1480 if (ArgTy->isVoidTy()) 1481 return Error(TypeLoc, "argument can not have void type"); 1482 1483 if (Lex.getKind() == lltok::LocalVar) { 1484 Name = Lex.getStrVal(); 1485 Lex.Lex(); 1486 } 1487 1488 if (!FunctionType::isValidArgumentType(ArgTy)) 1489 return Error(TypeLoc, "invalid type for function argument"); 1490 1491 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name)); 1492 1493 while (EatIfPresent(lltok::comma)) { 1494 // Handle ... at end of arg list. 1495 if (EatIfPresent(lltok::dotdotdot)) { 1496 isVarArg = true; 1497 break; 1498 } 1499 1500 // Otherwise must be an argument type. 1501 TypeLoc = Lex.getLoc(); 1502 if (ParseType(ArgTy) || ParseOptionalAttrs(Attrs, 0)) return true; 1503 1504 if (ArgTy->isVoidTy()) 1505 return Error(TypeLoc, "argument can not have void type"); 1506 1507 if (Lex.getKind() == lltok::LocalVar) { 1508 Name = Lex.getStrVal(); 1509 Lex.Lex(); 1510 } else { 1511 Name = ""; 1512 } 1513 1514 if (!ArgTy->isFirstClassType()) 1515 return Error(TypeLoc, "invalid type for function argument"); 1516 1517 ArgList.push_back(ArgInfo(TypeLoc, ArgTy, Attrs, Name)); 1518 } 1519 } 1520 1521 return ParseToken(lltok::rparen, "expected ')' at end of argument list"); 1522 } 1523 1524 /// ParseFunctionType 1525 /// ::= Type ArgumentList OptionalAttrs 1526 bool LLParser::ParseFunctionType(Type *&Result) { 1527 assert(Lex.getKind() == lltok::lparen); 1528 1529 if (!FunctionType::isValidReturnType(Result)) 1530 return TokError("invalid function return type"); 1531 1532 SmallVector<ArgInfo, 8> ArgList; 1533 bool isVarArg; 1534 if (ParseArgumentList(ArgList, isVarArg)) 1535 return true; 1536 1537 // Reject names on the arguments lists. 1538 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 1539 if (!ArgList[i].Name.empty()) 1540 return Error(ArgList[i].Loc, "argument name invalid in function type"); 1541 if (ArgList[i].Attrs) 1542 return Error(ArgList[i].Loc, 1543 "argument attributes invalid in function type"); 1544 } 1545 1546 SmallVector<Type*, 16> ArgListTy; 1547 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 1548 ArgListTy.push_back(ArgList[i].Ty); 1549 1550 Result = FunctionType::get(Result, ArgListTy, isVarArg); 1551 return false; 1552 } 1553 1554 /// ParseAnonStructType - Parse an anonymous struct type, which is inlined into 1555 /// other structs. 1556 bool LLParser::ParseAnonStructType(Type *&Result, bool Packed) { 1557 SmallVector<Type*, 8> Elts; 1558 if (ParseStructBody(Elts)) return true; 1559 1560 Result = StructType::get(Context, Elts, Packed); 1561 return false; 1562 } 1563 1564 /// ParseStructDefinition - Parse a struct in a 'type' definition. 1565 bool LLParser::ParseStructDefinition(SMLoc TypeLoc, StringRef Name, 1566 std::pair<Type*, LocTy> &Entry, 1567 Type *&ResultTy) { 1568 // If the type was already defined, diagnose the redefinition. 1569 if (Entry.first && !Entry.second.isValid()) 1570 return Error(TypeLoc, "redefinition of type"); 1571 1572 // If we have opaque, just return without filling in the definition for the 1573 // struct. This counts as a definition as far as the .ll file goes. 1574 if (EatIfPresent(lltok::kw_opaque)) { 1575 // This type is being defined, so clear the location to indicate this. 1576 Entry.second = SMLoc(); 1577 1578 // If this type number has never been uttered, create it. 1579 if (Entry.first == 0) 1580 Entry.first = StructType::create(Context, Name); 1581 ResultTy = Entry.first; 1582 return false; 1583 } 1584 1585 // If the type starts with '<', then it is either a packed struct or a vector. 1586 bool isPacked = EatIfPresent(lltok::less); 1587 1588 // If we don't have a struct, then we have a random type alias, which we 1589 // accept for compatibility with old files. These types are not allowed to be 1590 // forward referenced and not allowed to be recursive. 1591 if (Lex.getKind() != lltok::lbrace) { 1592 if (Entry.first) 1593 return Error(TypeLoc, "forward references to non-struct type"); 1594 1595 ResultTy = 0; 1596 if (isPacked) 1597 return ParseArrayVectorType(ResultTy, true); 1598 return ParseType(ResultTy); 1599 } 1600 1601 // This type is being defined, so clear the location to indicate this. 1602 Entry.second = SMLoc(); 1603 1604 // If this type number has never been uttered, create it. 1605 if (Entry.first == 0) 1606 Entry.first = StructType::create(Context, Name); 1607 1608 StructType *STy = cast<StructType>(Entry.first); 1609 1610 SmallVector<Type*, 8> Body; 1611 if (ParseStructBody(Body) || 1612 (isPacked && ParseToken(lltok::greater, "expected '>' in packed struct"))) 1613 return true; 1614 1615 STy->setBody(Body, isPacked); 1616 ResultTy = STy; 1617 return false; 1618 } 1619 1620 1621 /// ParseStructType: Handles packed and unpacked types. </> parsed elsewhere. 1622 /// StructType 1623 /// ::= '{' '}' 1624 /// ::= '{' Type (',' Type)* '}' 1625 /// ::= '<' '{' '}' '>' 1626 /// ::= '<' '{' Type (',' Type)* '}' '>' 1627 bool LLParser::ParseStructBody(SmallVectorImpl<Type*> &Body) { 1628 assert(Lex.getKind() == lltok::lbrace); 1629 Lex.Lex(); // Consume the '{' 1630 1631 // Handle the empty struct. 1632 if (EatIfPresent(lltok::rbrace)) 1633 return false; 1634 1635 LocTy EltTyLoc = Lex.getLoc(); 1636 Type *Ty = 0; 1637 if (ParseType(Ty)) return true; 1638 Body.push_back(Ty); 1639 1640 if (!StructType::isValidElementType(Ty)) 1641 return Error(EltTyLoc, "invalid element type for struct"); 1642 1643 while (EatIfPresent(lltok::comma)) { 1644 EltTyLoc = Lex.getLoc(); 1645 if (ParseType(Ty)) return true; 1646 1647 if (!StructType::isValidElementType(Ty)) 1648 return Error(EltTyLoc, "invalid element type for struct"); 1649 1650 Body.push_back(Ty); 1651 } 1652 1653 return ParseToken(lltok::rbrace, "expected '}' at end of struct"); 1654 } 1655 1656 /// ParseArrayVectorType - Parse an array or vector type, assuming the first 1657 /// token has already been consumed. 1658 /// Type 1659 /// ::= '[' APSINTVAL 'x' Types ']' 1660 /// ::= '<' APSINTVAL 'x' Types '>' 1661 bool LLParser::ParseArrayVectorType(Type *&Result, bool isVector) { 1662 if (Lex.getKind() != lltok::APSInt || Lex.getAPSIntVal().isSigned() || 1663 Lex.getAPSIntVal().getBitWidth() > 64) 1664 return TokError("expected number in address space"); 1665 1666 LocTy SizeLoc = Lex.getLoc(); 1667 uint64_t Size = Lex.getAPSIntVal().getZExtValue(); 1668 Lex.Lex(); 1669 1670 if (ParseToken(lltok::kw_x, "expected 'x' after element count")) 1671 return true; 1672 1673 LocTy TypeLoc = Lex.getLoc(); 1674 Type *EltTy = 0; 1675 if (ParseType(EltTy)) return true; 1676 1677 if (ParseToken(isVector ? lltok::greater : lltok::rsquare, 1678 "expected end of sequential type")) 1679 return true; 1680 1681 if (isVector) { 1682 if (Size == 0) 1683 return Error(SizeLoc, "zero element vector is illegal"); 1684 if ((unsigned)Size != Size) 1685 return Error(SizeLoc, "size too large for vector"); 1686 if (!VectorType::isValidElementType(EltTy)) 1687 return Error(TypeLoc, 1688 "vector element type must be fp, integer or a pointer to these types"); 1689 Result = VectorType::get(EltTy, unsigned(Size)); 1690 } else { 1691 if (!ArrayType::isValidElementType(EltTy)) 1692 return Error(TypeLoc, "invalid array element type"); 1693 Result = ArrayType::get(EltTy, Size); 1694 } 1695 return false; 1696 } 1697 1698 //===----------------------------------------------------------------------===// 1699 // Function Semantic Analysis. 1700 //===----------------------------------------------------------------------===// 1701 1702 LLParser::PerFunctionState::PerFunctionState(LLParser &p, Function &f, 1703 int functionNumber) 1704 : P(p), F(f), FunctionNumber(functionNumber) { 1705 1706 // Insert unnamed arguments into the NumberedVals list. 1707 for (Function::arg_iterator AI = F.arg_begin(), E = F.arg_end(); 1708 AI != E; ++AI) 1709 if (!AI->hasName()) 1710 NumberedVals.push_back(AI); 1711 } 1712 1713 LLParser::PerFunctionState::~PerFunctionState() { 1714 // If there were any forward referenced non-basicblock values, delete them. 1715 for (std::map<std::string, std::pair<Value*, LocTy> >::iterator 1716 I = ForwardRefVals.begin(), E = ForwardRefVals.end(); I != E; ++I) 1717 if (!isa<BasicBlock>(I->second.first)) { 1718 I->second.first->replaceAllUsesWith( 1719 UndefValue::get(I->second.first->getType())); 1720 delete I->second.first; 1721 I->second.first = 0; 1722 } 1723 1724 for (std::map<unsigned, std::pair<Value*, LocTy> >::iterator 1725 I = ForwardRefValIDs.begin(), E = ForwardRefValIDs.end(); I != E; ++I) 1726 if (!isa<BasicBlock>(I->second.first)) { 1727 I->second.first->replaceAllUsesWith( 1728 UndefValue::get(I->second.first->getType())); 1729 delete I->second.first; 1730 I->second.first = 0; 1731 } 1732 } 1733 1734 bool LLParser::PerFunctionState::FinishFunction() { 1735 // Check to see if someone took the address of labels in this block. 1736 if (!P.ForwardRefBlockAddresses.empty()) { 1737 ValID FunctionID; 1738 if (!F.getName().empty()) { 1739 FunctionID.Kind = ValID::t_GlobalName; 1740 FunctionID.StrVal = F.getName(); 1741 } else { 1742 FunctionID.Kind = ValID::t_GlobalID; 1743 FunctionID.UIntVal = FunctionNumber; 1744 } 1745 1746 std::map<ValID, std::vector<std::pair<ValID, GlobalValue*> > >::iterator 1747 FRBAI = P.ForwardRefBlockAddresses.find(FunctionID); 1748 if (FRBAI != P.ForwardRefBlockAddresses.end()) { 1749 // Resolve all these references. 1750 if (P.ResolveForwardRefBlockAddresses(&F, FRBAI->second, this)) 1751 return true; 1752 1753 P.ForwardRefBlockAddresses.erase(FRBAI); 1754 } 1755 } 1756 1757 if (!ForwardRefVals.empty()) 1758 return P.Error(ForwardRefVals.begin()->second.second, 1759 "use of undefined value '%" + ForwardRefVals.begin()->first + 1760 "'"); 1761 if (!ForwardRefValIDs.empty()) 1762 return P.Error(ForwardRefValIDs.begin()->second.second, 1763 "use of undefined value '%" + 1764 Twine(ForwardRefValIDs.begin()->first) + "'"); 1765 return false; 1766 } 1767 1768 1769 /// GetVal - Get a value with the specified name or ID, creating a 1770 /// forward reference record if needed. This can return null if the value 1771 /// exists but does not have the right type. 1772 Value *LLParser::PerFunctionState::GetVal(const std::string &Name, 1773 Type *Ty, LocTy Loc) { 1774 // Look this name up in the normal function symbol table. 1775 Value *Val = F.getValueSymbolTable().lookup(Name); 1776 1777 // If this is a forward reference for the value, see if we already created a 1778 // forward ref record. 1779 if (Val == 0) { 1780 std::map<std::string, std::pair<Value*, LocTy> >::iterator 1781 I = ForwardRefVals.find(Name); 1782 if (I != ForwardRefVals.end()) 1783 Val = I->second.first; 1784 } 1785 1786 // If we have the value in the symbol table or fwd-ref table, return it. 1787 if (Val) { 1788 if (Val->getType() == Ty) return Val; 1789 if (Ty->isLabelTy()) 1790 P.Error(Loc, "'%" + Name + "' is not a basic block"); 1791 else 1792 P.Error(Loc, "'%" + Name + "' defined with type '" + 1793 getTypeString(Val->getType()) + "'"); 1794 return 0; 1795 } 1796 1797 // Don't make placeholders with invalid type. 1798 if (!Ty->isFirstClassType() && !Ty->isLabelTy()) { 1799 P.Error(Loc, "invalid use of a non-first-class type"); 1800 return 0; 1801 } 1802 1803 // Otherwise, create a new forward reference for this value and remember it. 1804 Value *FwdVal; 1805 if (Ty->isLabelTy()) 1806 FwdVal = BasicBlock::Create(F.getContext(), Name, &F); 1807 else 1808 FwdVal = new Argument(Ty, Name); 1809 1810 ForwardRefVals[Name] = std::make_pair(FwdVal, Loc); 1811 return FwdVal; 1812 } 1813 1814 Value *LLParser::PerFunctionState::GetVal(unsigned ID, Type *Ty, 1815 LocTy Loc) { 1816 // Look this name up in the normal function symbol table. 1817 Value *Val = ID < NumberedVals.size() ? NumberedVals[ID] : 0; 1818 1819 // If this is a forward reference for the value, see if we already created a 1820 // forward ref record. 1821 if (Val == 0) { 1822 std::map<unsigned, std::pair<Value*, LocTy> >::iterator 1823 I = ForwardRefValIDs.find(ID); 1824 if (I != ForwardRefValIDs.end()) 1825 Val = I->second.first; 1826 } 1827 1828 // If we have the value in the symbol table or fwd-ref table, return it. 1829 if (Val) { 1830 if (Val->getType() == Ty) return Val; 1831 if (Ty->isLabelTy()) 1832 P.Error(Loc, "'%" + Twine(ID) + "' is not a basic block"); 1833 else 1834 P.Error(Loc, "'%" + Twine(ID) + "' defined with type '" + 1835 getTypeString(Val->getType()) + "'"); 1836 return 0; 1837 } 1838 1839 if (!Ty->isFirstClassType() && !Ty->isLabelTy()) { 1840 P.Error(Loc, "invalid use of a non-first-class type"); 1841 return 0; 1842 } 1843 1844 // Otherwise, create a new forward reference for this value and remember it. 1845 Value *FwdVal; 1846 if (Ty->isLabelTy()) 1847 FwdVal = BasicBlock::Create(F.getContext(), "", &F); 1848 else 1849 FwdVal = new Argument(Ty); 1850 1851 ForwardRefValIDs[ID] = std::make_pair(FwdVal, Loc); 1852 return FwdVal; 1853 } 1854 1855 /// SetInstName - After an instruction is parsed and inserted into its 1856 /// basic block, this installs its name. 1857 bool LLParser::PerFunctionState::SetInstName(int NameID, 1858 const std::string &NameStr, 1859 LocTy NameLoc, Instruction *Inst) { 1860 // If this instruction has void type, it cannot have a name or ID specified. 1861 if (Inst->getType()->isVoidTy()) { 1862 if (NameID != -1 || !NameStr.empty()) 1863 return P.Error(NameLoc, "instructions returning void cannot have a name"); 1864 return false; 1865 } 1866 1867 // If this was a numbered instruction, verify that the instruction is the 1868 // expected value and resolve any forward references. 1869 if (NameStr.empty()) { 1870 // If neither a name nor an ID was specified, just use the next ID. 1871 if (NameID == -1) 1872 NameID = NumberedVals.size(); 1873 1874 if (unsigned(NameID) != NumberedVals.size()) 1875 return P.Error(NameLoc, "instruction expected to be numbered '%" + 1876 Twine(NumberedVals.size()) + "'"); 1877 1878 std::map<unsigned, std::pair<Value*, LocTy> >::iterator FI = 1879 ForwardRefValIDs.find(NameID); 1880 if (FI != ForwardRefValIDs.end()) { 1881 if (FI->second.first->getType() != Inst->getType()) 1882 return P.Error(NameLoc, "instruction forward referenced with type '" + 1883 getTypeString(FI->second.first->getType()) + "'"); 1884 FI->second.first->replaceAllUsesWith(Inst); 1885 delete FI->second.first; 1886 ForwardRefValIDs.erase(FI); 1887 } 1888 1889 NumberedVals.push_back(Inst); 1890 return false; 1891 } 1892 1893 // Otherwise, the instruction had a name. Resolve forward refs and set it. 1894 std::map<std::string, std::pair<Value*, LocTy> >::iterator 1895 FI = ForwardRefVals.find(NameStr); 1896 if (FI != ForwardRefVals.end()) { 1897 if (FI->second.first->getType() != Inst->getType()) 1898 return P.Error(NameLoc, "instruction forward referenced with type '" + 1899 getTypeString(FI->second.first->getType()) + "'"); 1900 FI->second.first->replaceAllUsesWith(Inst); 1901 delete FI->second.first; 1902 ForwardRefVals.erase(FI); 1903 } 1904 1905 // Set the name on the instruction. 1906 Inst->setName(NameStr); 1907 1908 if (Inst->getName() != NameStr) 1909 return P.Error(NameLoc, "multiple definition of local value named '" + 1910 NameStr + "'"); 1911 return false; 1912 } 1913 1914 /// GetBB - Get a basic block with the specified name or ID, creating a 1915 /// forward reference record if needed. 1916 BasicBlock *LLParser::PerFunctionState::GetBB(const std::string &Name, 1917 LocTy Loc) { 1918 return cast_or_null<BasicBlock>(GetVal(Name, 1919 Type::getLabelTy(F.getContext()), Loc)); 1920 } 1921 1922 BasicBlock *LLParser::PerFunctionState::GetBB(unsigned ID, LocTy Loc) { 1923 return cast_or_null<BasicBlock>(GetVal(ID, 1924 Type::getLabelTy(F.getContext()), Loc)); 1925 } 1926 1927 /// DefineBB - Define the specified basic block, which is either named or 1928 /// unnamed. If there is an error, this returns null otherwise it returns 1929 /// the block being defined. 1930 BasicBlock *LLParser::PerFunctionState::DefineBB(const std::string &Name, 1931 LocTy Loc) { 1932 BasicBlock *BB; 1933 if (Name.empty()) 1934 BB = GetBB(NumberedVals.size(), Loc); 1935 else 1936 BB = GetBB(Name, Loc); 1937 if (BB == 0) return 0; // Already diagnosed error. 1938 1939 // Move the block to the end of the function. Forward ref'd blocks are 1940 // inserted wherever they happen to be referenced. 1941 F.getBasicBlockList().splice(F.end(), F.getBasicBlockList(), BB); 1942 1943 // Remove the block from forward ref sets. 1944 if (Name.empty()) { 1945 ForwardRefValIDs.erase(NumberedVals.size()); 1946 NumberedVals.push_back(BB); 1947 } else { 1948 // BB forward references are already in the function symbol table. 1949 ForwardRefVals.erase(Name); 1950 } 1951 1952 return BB; 1953 } 1954 1955 //===----------------------------------------------------------------------===// 1956 // Constants. 1957 //===----------------------------------------------------------------------===// 1958 1959 /// ParseValID - Parse an abstract value that doesn't necessarily have a 1960 /// type implied. For example, if we parse "4" we don't know what integer type 1961 /// it has. The value will later be combined with its type and checked for 1962 /// sanity. PFS is used to convert function-local operands of metadata (since 1963 /// metadata operands are not just parsed here but also converted to values). 1964 /// PFS can be null when we are not parsing metadata values inside a function. 1965 bool LLParser::ParseValID(ValID &ID, PerFunctionState *PFS) { 1966 ID.Loc = Lex.getLoc(); 1967 switch (Lex.getKind()) { 1968 default: return TokError("expected value token"); 1969 case lltok::GlobalID: // @42 1970 ID.UIntVal = Lex.getUIntVal(); 1971 ID.Kind = ValID::t_GlobalID; 1972 break; 1973 case lltok::GlobalVar: // @foo 1974 ID.StrVal = Lex.getStrVal(); 1975 ID.Kind = ValID::t_GlobalName; 1976 break; 1977 case lltok::LocalVarID: // %42 1978 ID.UIntVal = Lex.getUIntVal(); 1979 ID.Kind = ValID::t_LocalID; 1980 break; 1981 case lltok::LocalVar: // %foo 1982 ID.StrVal = Lex.getStrVal(); 1983 ID.Kind = ValID::t_LocalName; 1984 break; 1985 case lltok::exclaim: // !42, !{...}, or !"foo" 1986 return ParseMetadataValue(ID, PFS); 1987 case lltok::APSInt: 1988 ID.APSIntVal = Lex.getAPSIntVal(); 1989 ID.Kind = ValID::t_APSInt; 1990 break; 1991 case lltok::APFloat: 1992 ID.APFloatVal = Lex.getAPFloatVal(); 1993 ID.Kind = ValID::t_APFloat; 1994 break; 1995 case lltok::kw_true: 1996 ID.ConstantVal = ConstantInt::getTrue(Context); 1997 ID.Kind = ValID::t_Constant; 1998 break; 1999 case lltok::kw_false: 2000 ID.ConstantVal = ConstantInt::getFalse(Context); 2001 ID.Kind = ValID::t_Constant; 2002 break; 2003 case lltok::kw_null: ID.Kind = ValID::t_Null; break; 2004 case lltok::kw_undef: ID.Kind = ValID::t_Undef; break; 2005 case lltok::kw_zeroinitializer: ID.Kind = ValID::t_Zero; break; 2006 2007 case lltok::lbrace: { 2008 // ValID ::= '{' ConstVector '}' 2009 Lex.Lex(); 2010 SmallVector<Constant*, 16> Elts; 2011 if (ParseGlobalValueVector(Elts) || 2012 ParseToken(lltok::rbrace, "expected end of struct constant")) 2013 return true; 2014 2015 ID.ConstantStructElts = new Constant*[Elts.size()]; 2016 ID.UIntVal = Elts.size(); 2017 memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0])); 2018 ID.Kind = ValID::t_ConstantStruct; 2019 return false; 2020 } 2021 case lltok::less: { 2022 // ValID ::= '<' ConstVector '>' --> Vector. 2023 // ValID ::= '<' '{' ConstVector '}' '>' --> Packed Struct. 2024 Lex.Lex(); 2025 bool isPackedStruct = EatIfPresent(lltok::lbrace); 2026 2027 SmallVector<Constant*, 16> Elts; 2028 LocTy FirstEltLoc = Lex.getLoc(); 2029 if (ParseGlobalValueVector(Elts) || 2030 (isPackedStruct && 2031 ParseToken(lltok::rbrace, "expected end of packed struct")) || 2032 ParseToken(lltok::greater, "expected end of constant")) 2033 return true; 2034 2035 if (isPackedStruct) { 2036 ID.ConstantStructElts = new Constant*[Elts.size()]; 2037 memcpy(ID.ConstantStructElts, Elts.data(), Elts.size()*sizeof(Elts[0])); 2038 ID.UIntVal = Elts.size(); 2039 ID.Kind = ValID::t_PackedConstantStruct; 2040 return false; 2041 } 2042 2043 if (Elts.empty()) 2044 return Error(ID.Loc, "constant vector must not be empty"); 2045 2046 if (!Elts[0]->getType()->isIntegerTy() && 2047 !Elts[0]->getType()->isFloatingPointTy() && 2048 !Elts[0]->getType()->isPointerTy()) 2049 return Error(FirstEltLoc, 2050 "vector elements must have integer, pointer or floating point type"); 2051 2052 // Verify that all the vector elements have the same type. 2053 for (unsigned i = 1, e = Elts.size(); i != e; ++i) 2054 if (Elts[i]->getType() != Elts[0]->getType()) 2055 return Error(FirstEltLoc, 2056 "vector element #" + Twine(i) + 2057 " is not of type '" + getTypeString(Elts[0]->getType())); 2058 2059 ID.ConstantVal = ConstantVector::get(Elts); 2060 ID.Kind = ValID::t_Constant; 2061 return false; 2062 } 2063 case lltok::lsquare: { // Array Constant 2064 Lex.Lex(); 2065 SmallVector<Constant*, 16> Elts; 2066 LocTy FirstEltLoc = Lex.getLoc(); 2067 if (ParseGlobalValueVector(Elts) || 2068 ParseToken(lltok::rsquare, "expected end of array constant")) 2069 return true; 2070 2071 // Handle empty element. 2072 if (Elts.empty()) { 2073 // Use undef instead of an array because it's inconvenient to determine 2074 // the element type at this point, there being no elements to examine. 2075 ID.Kind = ValID::t_EmptyArray; 2076 return false; 2077 } 2078 2079 if (!Elts[0]->getType()->isFirstClassType()) 2080 return Error(FirstEltLoc, "invalid array element type: " + 2081 getTypeString(Elts[0]->getType())); 2082 2083 ArrayType *ATy = ArrayType::get(Elts[0]->getType(), Elts.size()); 2084 2085 // Verify all elements are correct type! 2086 for (unsigned i = 0, e = Elts.size(); i != e; ++i) { 2087 if (Elts[i]->getType() != Elts[0]->getType()) 2088 return Error(FirstEltLoc, 2089 "array element #" + Twine(i) + 2090 " is not of type '" + getTypeString(Elts[0]->getType())); 2091 } 2092 2093 ID.ConstantVal = ConstantArray::get(ATy, Elts); 2094 ID.Kind = ValID::t_Constant; 2095 return false; 2096 } 2097 case lltok::kw_c: // c "foo" 2098 Lex.Lex(); 2099 ID.ConstantVal = ConstantDataArray::getString(Context, Lex.getStrVal(), 2100 false); 2101 if (ParseToken(lltok::StringConstant, "expected string")) return true; 2102 ID.Kind = ValID::t_Constant; 2103 return false; 2104 2105 case lltok::kw_asm: { 2106 // ValID ::= 'asm' SideEffect? AlignStack? STRINGCONSTANT ',' STRINGCONSTANT 2107 bool HasSideEffect, AlignStack, AsmDialect; 2108 Lex.Lex(); 2109 if (ParseOptionalToken(lltok::kw_sideeffect, HasSideEffect) || 2110 ParseOptionalToken(lltok::kw_alignstack, AlignStack) || 2111 ParseOptionalToken(lltok::kw_inteldialect, AsmDialect) || 2112 ParseStringConstant(ID.StrVal) || 2113 ParseToken(lltok::comma, "expected comma in inline asm expression") || 2114 ParseToken(lltok::StringConstant, "expected constraint string")) 2115 return true; 2116 ID.StrVal2 = Lex.getStrVal(); 2117 ID.UIntVal = unsigned(HasSideEffect) | (unsigned(AlignStack)<<1) | 2118 (unsigned(AsmDialect)<<2); 2119 ID.Kind = ValID::t_InlineAsm; 2120 return false; 2121 } 2122 2123 case lltok::kw_blockaddress: { 2124 // ValID ::= 'blockaddress' '(' @foo ',' %bar ')' 2125 Lex.Lex(); 2126 2127 ValID Fn, Label; 2128 LocTy FnLoc, LabelLoc; 2129 2130 if (ParseToken(lltok::lparen, "expected '(' in block address expression") || 2131 ParseValID(Fn) || 2132 ParseToken(lltok::comma, "expected comma in block address expression")|| 2133 ParseValID(Label) || 2134 ParseToken(lltok::rparen, "expected ')' in block address expression")) 2135 return true; 2136 2137 if (Fn.Kind != ValID::t_GlobalID && Fn.Kind != ValID::t_GlobalName) 2138 return Error(Fn.Loc, "expected function name in blockaddress"); 2139 if (Label.Kind != ValID::t_LocalID && Label.Kind != ValID::t_LocalName) 2140 return Error(Label.Loc, "expected basic block name in blockaddress"); 2141 2142 // Make a global variable as a placeholder for this reference. 2143 GlobalVariable *FwdRef = new GlobalVariable(*M, Type::getInt8Ty(Context), 2144 false, GlobalValue::InternalLinkage, 2145 0, ""); 2146 ForwardRefBlockAddresses[Fn].push_back(std::make_pair(Label, FwdRef)); 2147 ID.ConstantVal = FwdRef; 2148 ID.Kind = ValID::t_Constant; 2149 return false; 2150 } 2151 2152 case lltok::kw_trunc: 2153 case lltok::kw_zext: 2154 case lltok::kw_sext: 2155 case lltok::kw_fptrunc: 2156 case lltok::kw_fpext: 2157 case lltok::kw_bitcast: 2158 case lltok::kw_uitofp: 2159 case lltok::kw_sitofp: 2160 case lltok::kw_fptoui: 2161 case lltok::kw_fptosi: 2162 case lltok::kw_inttoptr: 2163 case lltok::kw_ptrtoint: { 2164 unsigned Opc = Lex.getUIntVal(); 2165 Type *DestTy = 0; 2166 Constant *SrcVal; 2167 Lex.Lex(); 2168 if (ParseToken(lltok::lparen, "expected '(' after constantexpr cast") || 2169 ParseGlobalTypeAndValue(SrcVal) || 2170 ParseToken(lltok::kw_to, "expected 'to' in constantexpr cast") || 2171 ParseType(DestTy) || 2172 ParseToken(lltok::rparen, "expected ')' at end of constantexpr cast")) 2173 return true; 2174 if (!CastInst::castIsValid((Instruction::CastOps)Opc, SrcVal, DestTy)) 2175 return Error(ID.Loc, "invalid cast opcode for cast from '" + 2176 getTypeString(SrcVal->getType()) + "' to '" + 2177 getTypeString(DestTy) + "'"); 2178 ID.ConstantVal = ConstantExpr::getCast((Instruction::CastOps)Opc, 2179 SrcVal, DestTy); 2180 ID.Kind = ValID::t_Constant; 2181 return false; 2182 } 2183 case lltok::kw_extractvalue: { 2184 Lex.Lex(); 2185 Constant *Val; 2186 SmallVector<unsigned, 4> Indices; 2187 if (ParseToken(lltok::lparen, "expected '(' in extractvalue constantexpr")|| 2188 ParseGlobalTypeAndValue(Val) || 2189 ParseIndexList(Indices) || 2190 ParseToken(lltok::rparen, "expected ')' in extractvalue constantexpr")) 2191 return true; 2192 2193 if (!Val->getType()->isAggregateType()) 2194 return Error(ID.Loc, "extractvalue operand must be aggregate type"); 2195 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 2196 return Error(ID.Loc, "invalid indices for extractvalue"); 2197 ID.ConstantVal = ConstantExpr::getExtractValue(Val, Indices); 2198 ID.Kind = ValID::t_Constant; 2199 return false; 2200 } 2201 case lltok::kw_insertvalue: { 2202 Lex.Lex(); 2203 Constant *Val0, *Val1; 2204 SmallVector<unsigned, 4> Indices; 2205 if (ParseToken(lltok::lparen, "expected '(' in insertvalue constantexpr")|| 2206 ParseGlobalTypeAndValue(Val0) || 2207 ParseToken(lltok::comma, "expected comma in insertvalue constantexpr")|| 2208 ParseGlobalTypeAndValue(Val1) || 2209 ParseIndexList(Indices) || 2210 ParseToken(lltok::rparen, "expected ')' in insertvalue constantexpr")) 2211 return true; 2212 if (!Val0->getType()->isAggregateType()) 2213 return Error(ID.Loc, "insertvalue operand must be aggregate type"); 2214 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices)) 2215 return Error(ID.Loc, "invalid indices for insertvalue"); 2216 ID.ConstantVal = ConstantExpr::getInsertValue(Val0, Val1, Indices); 2217 ID.Kind = ValID::t_Constant; 2218 return false; 2219 } 2220 case lltok::kw_icmp: 2221 case lltok::kw_fcmp: { 2222 unsigned PredVal, Opc = Lex.getUIntVal(); 2223 Constant *Val0, *Val1; 2224 Lex.Lex(); 2225 if (ParseCmpPredicate(PredVal, Opc) || 2226 ParseToken(lltok::lparen, "expected '(' in compare constantexpr") || 2227 ParseGlobalTypeAndValue(Val0) || 2228 ParseToken(lltok::comma, "expected comma in compare constantexpr") || 2229 ParseGlobalTypeAndValue(Val1) || 2230 ParseToken(lltok::rparen, "expected ')' in compare constantexpr")) 2231 return true; 2232 2233 if (Val0->getType() != Val1->getType()) 2234 return Error(ID.Loc, "compare operands must have the same type"); 2235 2236 CmpInst::Predicate Pred = (CmpInst::Predicate)PredVal; 2237 2238 if (Opc == Instruction::FCmp) { 2239 if (!Val0->getType()->isFPOrFPVectorTy()) 2240 return Error(ID.Loc, "fcmp requires floating point operands"); 2241 ID.ConstantVal = ConstantExpr::getFCmp(Pred, Val0, Val1); 2242 } else { 2243 assert(Opc == Instruction::ICmp && "Unexpected opcode for CmpInst!"); 2244 if (!Val0->getType()->isIntOrIntVectorTy() && 2245 !Val0->getType()->getScalarType()->isPointerTy()) 2246 return Error(ID.Loc, "icmp requires pointer or integer operands"); 2247 ID.ConstantVal = ConstantExpr::getICmp(Pred, Val0, Val1); 2248 } 2249 ID.Kind = ValID::t_Constant; 2250 return false; 2251 } 2252 2253 // Binary Operators. 2254 case lltok::kw_add: 2255 case lltok::kw_fadd: 2256 case lltok::kw_sub: 2257 case lltok::kw_fsub: 2258 case lltok::kw_mul: 2259 case lltok::kw_fmul: 2260 case lltok::kw_udiv: 2261 case lltok::kw_sdiv: 2262 case lltok::kw_fdiv: 2263 case lltok::kw_urem: 2264 case lltok::kw_srem: 2265 case lltok::kw_frem: 2266 case lltok::kw_shl: 2267 case lltok::kw_lshr: 2268 case lltok::kw_ashr: { 2269 bool NUW = false; 2270 bool NSW = false; 2271 bool Exact = false; 2272 unsigned Opc = Lex.getUIntVal(); 2273 Constant *Val0, *Val1; 2274 Lex.Lex(); 2275 LocTy ModifierLoc = Lex.getLoc(); 2276 if (Opc == Instruction::Add || Opc == Instruction::Sub || 2277 Opc == Instruction::Mul || Opc == Instruction::Shl) { 2278 if (EatIfPresent(lltok::kw_nuw)) 2279 NUW = true; 2280 if (EatIfPresent(lltok::kw_nsw)) { 2281 NSW = true; 2282 if (EatIfPresent(lltok::kw_nuw)) 2283 NUW = true; 2284 } 2285 } else if (Opc == Instruction::SDiv || Opc == Instruction::UDiv || 2286 Opc == Instruction::LShr || Opc == Instruction::AShr) { 2287 if (EatIfPresent(lltok::kw_exact)) 2288 Exact = true; 2289 } 2290 if (ParseToken(lltok::lparen, "expected '(' in binary constantexpr") || 2291 ParseGlobalTypeAndValue(Val0) || 2292 ParseToken(lltok::comma, "expected comma in binary constantexpr") || 2293 ParseGlobalTypeAndValue(Val1) || 2294 ParseToken(lltok::rparen, "expected ')' in binary constantexpr")) 2295 return true; 2296 if (Val0->getType() != Val1->getType()) 2297 return Error(ID.Loc, "operands of constexpr must have same type"); 2298 if (!Val0->getType()->isIntOrIntVectorTy()) { 2299 if (NUW) 2300 return Error(ModifierLoc, "nuw only applies to integer operations"); 2301 if (NSW) 2302 return Error(ModifierLoc, "nsw only applies to integer operations"); 2303 } 2304 // Check that the type is valid for the operator. 2305 switch (Opc) { 2306 case Instruction::Add: 2307 case Instruction::Sub: 2308 case Instruction::Mul: 2309 case Instruction::UDiv: 2310 case Instruction::SDiv: 2311 case Instruction::URem: 2312 case Instruction::SRem: 2313 case Instruction::Shl: 2314 case Instruction::AShr: 2315 case Instruction::LShr: 2316 if (!Val0->getType()->isIntOrIntVectorTy()) 2317 return Error(ID.Loc, "constexpr requires integer operands"); 2318 break; 2319 case Instruction::FAdd: 2320 case Instruction::FSub: 2321 case Instruction::FMul: 2322 case Instruction::FDiv: 2323 case Instruction::FRem: 2324 if (!Val0->getType()->isFPOrFPVectorTy()) 2325 return Error(ID.Loc, "constexpr requires fp operands"); 2326 break; 2327 default: llvm_unreachable("Unknown binary operator!"); 2328 } 2329 unsigned Flags = 0; 2330 if (NUW) Flags |= OverflowingBinaryOperator::NoUnsignedWrap; 2331 if (NSW) Flags |= OverflowingBinaryOperator::NoSignedWrap; 2332 if (Exact) Flags |= PossiblyExactOperator::IsExact; 2333 Constant *C = ConstantExpr::get(Opc, Val0, Val1, Flags); 2334 ID.ConstantVal = C; 2335 ID.Kind = ValID::t_Constant; 2336 return false; 2337 } 2338 2339 // Logical Operations 2340 case lltok::kw_and: 2341 case lltok::kw_or: 2342 case lltok::kw_xor: { 2343 unsigned Opc = Lex.getUIntVal(); 2344 Constant *Val0, *Val1; 2345 Lex.Lex(); 2346 if (ParseToken(lltok::lparen, "expected '(' in logical constantexpr") || 2347 ParseGlobalTypeAndValue(Val0) || 2348 ParseToken(lltok::comma, "expected comma in logical constantexpr") || 2349 ParseGlobalTypeAndValue(Val1) || 2350 ParseToken(lltok::rparen, "expected ')' in logical constantexpr")) 2351 return true; 2352 if (Val0->getType() != Val1->getType()) 2353 return Error(ID.Loc, "operands of constexpr must have same type"); 2354 if (!Val0->getType()->isIntOrIntVectorTy()) 2355 return Error(ID.Loc, 2356 "constexpr requires integer or integer vector operands"); 2357 ID.ConstantVal = ConstantExpr::get(Opc, Val0, Val1); 2358 ID.Kind = ValID::t_Constant; 2359 return false; 2360 } 2361 2362 case lltok::kw_getelementptr: 2363 case lltok::kw_shufflevector: 2364 case lltok::kw_insertelement: 2365 case lltok::kw_extractelement: 2366 case lltok::kw_select: { 2367 unsigned Opc = Lex.getUIntVal(); 2368 SmallVector<Constant*, 16> Elts; 2369 bool InBounds = false; 2370 Lex.Lex(); 2371 if (Opc == Instruction::GetElementPtr) 2372 InBounds = EatIfPresent(lltok::kw_inbounds); 2373 if (ParseToken(lltok::lparen, "expected '(' in constantexpr") || 2374 ParseGlobalValueVector(Elts) || 2375 ParseToken(lltok::rparen, "expected ')' in constantexpr")) 2376 return true; 2377 2378 if (Opc == Instruction::GetElementPtr) { 2379 if (Elts.size() == 0 || 2380 !Elts[0]->getType()->getScalarType()->isPointerTy()) 2381 return Error(ID.Loc, "getelementptr requires pointer operand"); 2382 2383 ArrayRef<Constant *> Indices(Elts.begin() + 1, Elts.end()); 2384 if (!GetElementPtrInst::getIndexedType(Elts[0]->getType(), Indices)) 2385 return Error(ID.Loc, "invalid indices for getelementptr"); 2386 ID.ConstantVal = ConstantExpr::getGetElementPtr(Elts[0], Indices, 2387 InBounds); 2388 } else if (Opc == Instruction::Select) { 2389 if (Elts.size() != 3) 2390 return Error(ID.Loc, "expected three operands to select"); 2391 if (const char *Reason = SelectInst::areInvalidOperands(Elts[0], Elts[1], 2392 Elts[2])) 2393 return Error(ID.Loc, Reason); 2394 ID.ConstantVal = ConstantExpr::getSelect(Elts[0], Elts[1], Elts[2]); 2395 } else if (Opc == Instruction::ShuffleVector) { 2396 if (Elts.size() != 3) 2397 return Error(ID.Loc, "expected three operands to shufflevector"); 2398 if (!ShuffleVectorInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 2399 return Error(ID.Loc, "invalid operands to shufflevector"); 2400 ID.ConstantVal = 2401 ConstantExpr::getShuffleVector(Elts[0], Elts[1],Elts[2]); 2402 } else if (Opc == Instruction::ExtractElement) { 2403 if (Elts.size() != 2) 2404 return Error(ID.Loc, "expected two operands to extractelement"); 2405 if (!ExtractElementInst::isValidOperands(Elts[0], Elts[1])) 2406 return Error(ID.Loc, "invalid extractelement operands"); 2407 ID.ConstantVal = ConstantExpr::getExtractElement(Elts[0], Elts[1]); 2408 } else { 2409 assert(Opc == Instruction::InsertElement && "Unknown opcode"); 2410 if (Elts.size() != 3) 2411 return Error(ID.Loc, "expected three operands to insertelement"); 2412 if (!InsertElementInst::isValidOperands(Elts[0], Elts[1], Elts[2])) 2413 return Error(ID.Loc, "invalid insertelement operands"); 2414 ID.ConstantVal = 2415 ConstantExpr::getInsertElement(Elts[0], Elts[1],Elts[2]); 2416 } 2417 2418 ID.Kind = ValID::t_Constant; 2419 return false; 2420 } 2421 } 2422 2423 Lex.Lex(); 2424 return false; 2425 } 2426 2427 /// ParseGlobalValue - Parse a global value with the specified type. 2428 bool LLParser::ParseGlobalValue(Type *Ty, Constant *&C) { 2429 C = 0; 2430 ValID ID; 2431 Value *V = NULL; 2432 bool Parsed = ParseValID(ID) || 2433 ConvertValIDToValue(Ty, ID, V, NULL); 2434 if (V && !(C = dyn_cast<Constant>(V))) 2435 return Error(ID.Loc, "global values must be constants"); 2436 return Parsed; 2437 } 2438 2439 bool LLParser::ParseGlobalTypeAndValue(Constant *&V) { 2440 Type *Ty = 0; 2441 return ParseType(Ty) || 2442 ParseGlobalValue(Ty, V); 2443 } 2444 2445 /// ParseGlobalValueVector 2446 /// ::= /*empty*/ 2447 /// ::= TypeAndValue (',' TypeAndValue)* 2448 bool LLParser::ParseGlobalValueVector(SmallVectorImpl<Constant*> &Elts) { 2449 // Empty list. 2450 if (Lex.getKind() == lltok::rbrace || 2451 Lex.getKind() == lltok::rsquare || 2452 Lex.getKind() == lltok::greater || 2453 Lex.getKind() == lltok::rparen) 2454 return false; 2455 2456 Constant *C; 2457 if (ParseGlobalTypeAndValue(C)) return true; 2458 Elts.push_back(C); 2459 2460 while (EatIfPresent(lltok::comma)) { 2461 if (ParseGlobalTypeAndValue(C)) return true; 2462 Elts.push_back(C); 2463 } 2464 2465 return false; 2466 } 2467 2468 bool LLParser::ParseMetadataListValue(ValID &ID, PerFunctionState *PFS) { 2469 assert(Lex.getKind() == lltok::lbrace); 2470 Lex.Lex(); 2471 2472 SmallVector<Value*, 16> Elts; 2473 if (ParseMDNodeVector(Elts, PFS) || 2474 ParseToken(lltok::rbrace, "expected end of metadata node")) 2475 return true; 2476 2477 ID.MDNodeVal = MDNode::get(Context, Elts); 2478 ID.Kind = ValID::t_MDNode; 2479 return false; 2480 } 2481 2482 /// ParseMetadataValue 2483 /// ::= !42 2484 /// ::= !{...} 2485 /// ::= !"string" 2486 bool LLParser::ParseMetadataValue(ValID &ID, PerFunctionState *PFS) { 2487 assert(Lex.getKind() == lltok::exclaim); 2488 Lex.Lex(); 2489 2490 // MDNode: 2491 // !{ ... } 2492 if (Lex.getKind() == lltok::lbrace) 2493 return ParseMetadataListValue(ID, PFS); 2494 2495 // Standalone metadata reference 2496 // !42 2497 if (Lex.getKind() == lltok::APSInt) { 2498 if (ParseMDNodeID(ID.MDNodeVal)) return true; 2499 ID.Kind = ValID::t_MDNode; 2500 return false; 2501 } 2502 2503 // MDString: 2504 // ::= '!' STRINGCONSTANT 2505 if (ParseMDString(ID.MDStringVal)) return true; 2506 ID.Kind = ValID::t_MDString; 2507 return false; 2508 } 2509 2510 2511 //===----------------------------------------------------------------------===// 2512 // Function Parsing. 2513 //===----------------------------------------------------------------------===// 2514 2515 bool LLParser::ConvertValIDToValue(Type *Ty, ValID &ID, Value *&V, 2516 PerFunctionState *PFS) { 2517 if (Ty->isFunctionTy()) 2518 return Error(ID.Loc, "functions are not values, refer to them as pointers"); 2519 2520 switch (ID.Kind) { 2521 case ValID::t_LocalID: 2522 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 2523 V = PFS->GetVal(ID.UIntVal, Ty, ID.Loc); 2524 return (V == 0); 2525 case ValID::t_LocalName: 2526 if (!PFS) return Error(ID.Loc, "invalid use of function-local name"); 2527 V = PFS->GetVal(ID.StrVal, Ty, ID.Loc); 2528 return (V == 0); 2529 case ValID::t_InlineAsm: { 2530 PointerType *PTy = dyn_cast<PointerType>(Ty); 2531 FunctionType *FTy = 2532 PTy ? dyn_cast<FunctionType>(PTy->getElementType()) : 0; 2533 if (!FTy || !InlineAsm::Verify(FTy, ID.StrVal2)) 2534 return Error(ID.Loc, "invalid type for inline asm constraint string"); 2535 V = InlineAsm::get(FTy, ID.StrVal, ID.StrVal2, ID.UIntVal&1, 2536 (ID.UIntVal>>1)&1, (InlineAsm::AsmDialect(ID.UIntVal>>2))); 2537 return false; 2538 } 2539 case ValID::t_MDNode: 2540 if (!Ty->isMetadataTy()) 2541 return Error(ID.Loc, "metadata value must have metadata type"); 2542 V = ID.MDNodeVal; 2543 return false; 2544 case ValID::t_MDString: 2545 if (!Ty->isMetadataTy()) 2546 return Error(ID.Loc, "metadata value must have metadata type"); 2547 V = ID.MDStringVal; 2548 return false; 2549 case ValID::t_GlobalName: 2550 V = GetGlobalVal(ID.StrVal, Ty, ID.Loc); 2551 return V == 0; 2552 case ValID::t_GlobalID: 2553 V = GetGlobalVal(ID.UIntVal, Ty, ID.Loc); 2554 return V == 0; 2555 case ValID::t_APSInt: 2556 if (!Ty->isIntegerTy()) 2557 return Error(ID.Loc, "integer constant must have integer type"); 2558 ID.APSIntVal = ID.APSIntVal.extOrTrunc(Ty->getPrimitiveSizeInBits()); 2559 V = ConstantInt::get(Context, ID.APSIntVal); 2560 return false; 2561 case ValID::t_APFloat: 2562 if (!Ty->isFloatingPointTy() || 2563 !ConstantFP::isValueValidForType(Ty, ID.APFloatVal)) 2564 return Error(ID.Loc, "floating point constant invalid for type"); 2565 2566 // The lexer has no type info, so builds all half, float, and double FP 2567 // constants as double. Fix this here. Long double does not need this. 2568 if (&ID.APFloatVal.getSemantics() == &APFloat::IEEEdouble) { 2569 bool Ignored; 2570 if (Ty->isHalfTy()) 2571 ID.APFloatVal.convert(APFloat::IEEEhalf, APFloat::rmNearestTiesToEven, 2572 &Ignored); 2573 else if (Ty->isFloatTy()) 2574 ID.APFloatVal.convert(APFloat::IEEEsingle, APFloat::rmNearestTiesToEven, 2575 &Ignored); 2576 } 2577 V = ConstantFP::get(Context, ID.APFloatVal); 2578 2579 if (V->getType() != Ty) 2580 return Error(ID.Loc, "floating point constant does not have type '" + 2581 getTypeString(Ty) + "'"); 2582 2583 return false; 2584 case ValID::t_Null: 2585 if (!Ty->isPointerTy()) 2586 return Error(ID.Loc, "null must be a pointer type"); 2587 V = ConstantPointerNull::get(cast<PointerType>(Ty)); 2588 return false; 2589 case ValID::t_Undef: 2590 // FIXME: LabelTy should not be a first-class type. 2591 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 2592 return Error(ID.Loc, "invalid type for undef constant"); 2593 V = UndefValue::get(Ty); 2594 return false; 2595 case ValID::t_EmptyArray: 2596 if (!Ty->isArrayTy() || cast<ArrayType>(Ty)->getNumElements() != 0) 2597 return Error(ID.Loc, "invalid empty array initializer"); 2598 V = UndefValue::get(Ty); 2599 return false; 2600 case ValID::t_Zero: 2601 // FIXME: LabelTy should not be a first-class type. 2602 if (!Ty->isFirstClassType() || Ty->isLabelTy()) 2603 return Error(ID.Loc, "invalid type for null constant"); 2604 V = Constant::getNullValue(Ty); 2605 return false; 2606 case ValID::t_Constant: 2607 if (ID.ConstantVal->getType() != Ty) 2608 return Error(ID.Loc, "constant expression type mismatch"); 2609 2610 V = ID.ConstantVal; 2611 return false; 2612 case ValID::t_ConstantStruct: 2613 case ValID::t_PackedConstantStruct: 2614 if (StructType *ST = dyn_cast<StructType>(Ty)) { 2615 if (ST->getNumElements() != ID.UIntVal) 2616 return Error(ID.Loc, 2617 "initializer with struct type has wrong # elements"); 2618 if (ST->isPacked() != (ID.Kind == ValID::t_PackedConstantStruct)) 2619 return Error(ID.Loc, "packed'ness of initializer and type don't match"); 2620 2621 // Verify that the elements are compatible with the structtype. 2622 for (unsigned i = 0, e = ID.UIntVal; i != e; ++i) 2623 if (ID.ConstantStructElts[i]->getType() != ST->getElementType(i)) 2624 return Error(ID.Loc, "element " + Twine(i) + 2625 " of struct initializer doesn't match struct element type"); 2626 2627 V = ConstantStruct::get(ST, makeArrayRef(ID.ConstantStructElts, 2628 ID.UIntVal)); 2629 } else 2630 return Error(ID.Loc, "constant expression type mismatch"); 2631 return false; 2632 } 2633 llvm_unreachable("Invalid ValID"); 2634 } 2635 2636 bool LLParser::ParseValue(Type *Ty, Value *&V, PerFunctionState *PFS) { 2637 V = 0; 2638 ValID ID; 2639 return ParseValID(ID, PFS) || 2640 ConvertValIDToValue(Ty, ID, V, PFS); 2641 } 2642 2643 bool LLParser::ParseTypeAndValue(Value *&V, PerFunctionState *PFS) { 2644 Type *Ty = 0; 2645 return ParseType(Ty) || 2646 ParseValue(Ty, V, PFS); 2647 } 2648 2649 bool LLParser::ParseTypeAndBasicBlock(BasicBlock *&BB, LocTy &Loc, 2650 PerFunctionState &PFS) { 2651 Value *V; 2652 Loc = Lex.getLoc(); 2653 if (ParseTypeAndValue(V, PFS)) return true; 2654 if (!isa<BasicBlock>(V)) 2655 return Error(Loc, "expected a basic block"); 2656 BB = cast<BasicBlock>(V); 2657 return false; 2658 } 2659 2660 2661 /// FunctionHeader 2662 /// ::= OptionalLinkage OptionalVisibility OptionalCallingConv OptRetAttrs 2663 /// OptUnnamedAddr Type GlobalName '(' ArgList ')' OptFuncAttrs OptSection 2664 /// OptionalAlign OptGC 2665 bool LLParser::ParseFunctionHeader(Function *&Fn, bool isDefine) { 2666 // Parse the linkage. 2667 LocTy LinkageLoc = Lex.getLoc(); 2668 unsigned Linkage; 2669 2670 unsigned Visibility; 2671 Attributes RetAttrs; 2672 CallingConv::ID CC; 2673 Type *RetType = 0; 2674 LocTy RetTypeLoc = Lex.getLoc(); 2675 if (ParseOptionalLinkage(Linkage) || 2676 ParseOptionalVisibility(Visibility) || 2677 ParseOptionalCallingConv(CC) || 2678 ParseOptionalAttrs(RetAttrs, 1) || 2679 ParseType(RetType, RetTypeLoc, true /*void allowed*/)) 2680 return true; 2681 2682 // Verify that the linkage is ok. 2683 switch ((GlobalValue::LinkageTypes)Linkage) { 2684 case GlobalValue::ExternalLinkage: 2685 break; // always ok. 2686 case GlobalValue::DLLImportLinkage: 2687 case GlobalValue::ExternalWeakLinkage: 2688 if (isDefine) 2689 return Error(LinkageLoc, "invalid linkage for function definition"); 2690 break; 2691 case GlobalValue::PrivateLinkage: 2692 case GlobalValue::LinkerPrivateLinkage: 2693 case GlobalValue::LinkerPrivateWeakLinkage: 2694 case GlobalValue::InternalLinkage: 2695 case GlobalValue::AvailableExternallyLinkage: 2696 case GlobalValue::LinkOnceAnyLinkage: 2697 case GlobalValue::LinkOnceODRLinkage: 2698 case GlobalValue::LinkOnceODRAutoHideLinkage: 2699 case GlobalValue::WeakAnyLinkage: 2700 case GlobalValue::WeakODRLinkage: 2701 case GlobalValue::DLLExportLinkage: 2702 if (!isDefine) 2703 return Error(LinkageLoc, "invalid linkage for function declaration"); 2704 break; 2705 case GlobalValue::AppendingLinkage: 2706 case GlobalValue::CommonLinkage: 2707 return Error(LinkageLoc, "invalid function linkage type"); 2708 } 2709 2710 if (!FunctionType::isValidReturnType(RetType)) 2711 return Error(RetTypeLoc, "invalid function return type"); 2712 2713 LocTy NameLoc = Lex.getLoc(); 2714 2715 std::string FunctionName; 2716 if (Lex.getKind() == lltok::GlobalVar) { 2717 FunctionName = Lex.getStrVal(); 2718 } else if (Lex.getKind() == lltok::GlobalID) { // @42 is ok. 2719 unsigned NameID = Lex.getUIntVal(); 2720 2721 if (NameID != NumberedVals.size()) 2722 return TokError("function expected to be numbered '%" + 2723 Twine(NumberedVals.size()) + "'"); 2724 } else { 2725 return TokError("expected function name"); 2726 } 2727 2728 Lex.Lex(); 2729 2730 if (Lex.getKind() != lltok::lparen) 2731 return TokError("expected '(' in function argument list"); 2732 2733 SmallVector<ArgInfo, 8> ArgList; 2734 bool isVarArg; 2735 Attributes FuncAttrs; 2736 std::string Section; 2737 unsigned Alignment; 2738 std::string GC; 2739 bool UnnamedAddr; 2740 LocTy UnnamedAddrLoc; 2741 2742 if (ParseArgumentList(ArgList, isVarArg) || 2743 ParseOptionalToken(lltok::kw_unnamed_addr, UnnamedAddr, 2744 &UnnamedAddrLoc) || 2745 ParseOptionalAttrs(FuncAttrs, 2) || 2746 (EatIfPresent(lltok::kw_section) && 2747 ParseStringConstant(Section)) || 2748 ParseOptionalAlignment(Alignment) || 2749 (EatIfPresent(lltok::kw_gc) && 2750 ParseStringConstant(GC))) 2751 return true; 2752 2753 // If the alignment was parsed as an attribute, move to the alignment field. 2754 if (FuncAttrs & Attribute::Alignment) { 2755 Alignment = FuncAttrs.getAlignment(); 2756 FuncAttrs &= ~Attribute::Alignment; 2757 } 2758 2759 // Okay, if we got here, the function is syntactically valid. Convert types 2760 // and do semantic checks. 2761 std::vector<Type*> ParamTypeList; 2762 SmallVector<AttributeWithIndex, 8> Attrs; 2763 2764 if (RetAttrs.hasAttributes()) 2765 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs)); 2766 2767 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 2768 ParamTypeList.push_back(ArgList[i].Ty); 2769 if (ArgList[i].Attrs.hasAttributes()) 2770 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs)); 2771 } 2772 2773 if (FuncAttrs.hasAttributes()) 2774 Attrs.push_back(AttributeWithIndex::get(~0, FuncAttrs)); 2775 2776 AttrListPtr PAL = AttrListPtr::get(Attrs); 2777 2778 if (PAL.paramHasAttr(1, Attribute::StructRet) && !RetType->isVoidTy()) 2779 return Error(RetTypeLoc, "functions with 'sret' argument must return void"); 2780 2781 FunctionType *FT = 2782 FunctionType::get(RetType, ParamTypeList, isVarArg); 2783 PointerType *PFT = PointerType::getUnqual(FT); 2784 2785 Fn = 0; 2786 if (!FunctionName.empty()) { 2787 // If this was a definition of a forward reference, remove the definition 2788 // from the forward reference table and fill in the forward ref. 2789 std::map<std::string, std::pair<GlobalValue*, LocTy> >::iterator FRVI = 2790 ForwardRefVals.find(FunctionName); 2791 if (FRVI != ForwardRefVals.end()) { 2792 Fn = M->getFunction(FunctionName); 2793 if (Fn->getType() != PFT) 2794 return Error(FRVI->second.second, "invalid forward reference to " 2795 "function '" + FunctionName + "' with wrong type!"); 2796 2797 ForwardRefVals.erase(FRVI); 2798 } else if ((Fn = M->getFunction(FunctionName))) { 2799 // Reject redefinitions. 2800 return Error(NameLoc, "invalid redefinition of function '" + 2801 FunctionName + "'"); 2802 } else if (M->getNamedValue(FunctionName)) { 2803 return Error(NameLoc, "redefinition of function '@" + FunctionName + "'"); 2804 } 2805 2806 } else { 2807 // If this is a definition of a forward referenced function, make sure the 2808 // types agree. 2809 std::map<unsigned, std::pair<GlobalValue*, LocTy> >::iterator I 2810 = ForwardRefValIDs.find(NumberedVals.size()); 2811 if (I != ForwardRefValIDs.end()) { 2812 Fn = cast<Function>(I->second.first); 2813 if (Fn->getType() != PFT) 2814 return Error(NameLoc, "type of definition and forward reference of '@" + 2815 Twine(NumberedVals.size()) + "' disagree"); 2816 ForwardRefValIDs.erase(I); 2817 } 2818 } 2819 2820 if (Fn == 0) 2821 Fn = Function::Create(FT, GlobalValue::ExternalLinkage, FunctionName, M); 2822 else // Move the forward-reference to the correct spot in the module. 2823 M->getFunctionList().splice(M->end(), M->getFunctionList(), Fn); 2824 2825 if (FunctionName.empty()) 2826 NumberedVals.push_back(Fn); 2827 2828 Fn->setLinkage((GlobalValue::LinkageTypes)Linkage); 2829 Fn->setVisibility((GlobalValue::VisibilityTypes)Visibility); 2830 Fn->setCallingConv(CC); 2831 Fn->setAttributes(PAL); 2832 Fn->setUnnamedAddr(UnnamedAddr); 2833 Fn->setAlignment(Alignment); 2834 Fn->setSection(Section); 2835 if (!GC.empty()) Fn->setGC(GC.c_str()); 2836 2837 // Add all of the arguments we parsed to the function. 2838 Function::arg_iterator ArgIt = Fn->arg_begin(); 2839 for (unsigned i = 0, e = ArgList.size(); i != e; ++i, ++ArgIt) { 2840 // If the argument has a name, insert it into the argument symbol table. 2841 if (ArgList[i].Name.empty()) continue; 2842 2843 // Set the name, if it conflicted, it will be auto-renamed. 2844 ArgIt->setName(ArgList[i].Name); 2845 2846 if (ArgIt->getName() != ArgList[i].Name) 2847 return Error(ArgList[i].Loc, "redefinition of argument '%" + 2848 ArgList[i].Name + "'"); 2849 } 2850 2851 return false; 2852 } 2853 2854 2855 /// ParseFunctionBody 2856 /// ::= '{' BasicBlock+ '}' 2857 /// 2858 bool LLParser::ParseFunctionBody(Function &Fn) { 2859 if (Lex.getKind() != lltok::lbrace) 2860 return TokError("expected '{' in function body"); 2861 Lex.Lex(); // eat the {. 2862 2863 int FunctionNumber = -1; 2864 if (!Fn.hasName()) FunctionNumber = NumberedVals.size()-1; 2865 2866 PerFunctionState PFS(*this, Fn, FunctionNumber); 2867 2868 // We need at least one basic block. 2869 if (Lex.getKind() == lltok::rbrace) 2870 return TokError("function body requires at least one basic block"); 2871 2872 while (Lex.getKind() != lltok::rbrace) 2873 if (ParseBasicBlock(PFS)) return true; 2874 2875 // Eat the }. 2876 Lex.Lex(); 2877 2878 // Verify function is ok. 2879 return PFS.FinishFunction(); 2880 } 2881 2882 /// ParseBasicBlock 2883 /// ::= LabelStr? Instruction* 2884 bool LLParser::ParseBasicBlock(PerFunctionState &PFS) { 2885 // If this basic block starts out with a name, remember it. 2886 std::string Name; 2887 LocTy NameLoc = Lex.getLoc(); 2888 if (Lex.getKind() == lltok::LabelStr) { 2889 Name = Lex.getStrVal(); 2890 Lex.Lex(); 2891 } 2892 2893 BasicBlock *BB = PFS.DefineBB(Name, NameLoc); 2894 if (BB == 0) return true; 2895 2896 std::string NameStr; 2897 2898 // Parse the instructions in this block until we get a terminator. 2899 Instruction *Inst; 2900 SmallVector<std::pair<unsigned, MDNode *>, 4> MetadataOnInst; 2901 do { 2902 // This instruction may have three possibilities for a name: a) none 2903 // specified, b) name specified "%foo =", c) number specified: "%4 =". 2904 LocTy NameLoc = Lex.getLoc(); 2905 int NameID = -1; 2906 NameStr = ""; 2907 2908 if (Lex.getKind() == lltok::LocalVarID) { 2909 NameID = Lex.getUIntVal(); 2910 Lex.Lex(); 2911 if (ParseToken(lltok::equal, "expected '=' after instruction id")) 2912 return true; 2913 } else if (Lex.getKind() == lltok::LocalVar) { 2914 NameStr = Lex.getStrVal(); 2915 Lex.Lex(); 2916 if (ParseToken(lltok::equal, "expected '=' after instruction name")) 2917 return true; 2918 } 2919 2920 switch (ParseInstruction(Inst, BB, PFS)) { 2921 default: llvm_unreachable("Unknown ParseInstruction result!"); 2922 case InstError: return true; 2923 case InstNormal: 2924 BB->getInstList().push_back(Inst); 2925 2926 // With a normal result, we check to see if the instruction is followed by 2927 // a comma and metadata. 2928 if (EatIfPresent(lltok::comma)) 2929 if (ParseInstructionMetadata(Inst, &PFS)) 2930 return true; 2931 break; 2932 case InstExtraComma: 2933 BB->getInstList().push_back(Inst); 2934 2935 // If the instruction parser ate an extra comma at the end of it, it 2936 // *must* be followed by metadata. 2937 if (ParseInstructionMetadata(Inst, &PFS)) 2938 return true; 2939 break; 2940 } 2941 2942 // Set the name on the instruction. 2943 if (PFS.SetInstName(NameID, NameStr, NameLoc, Inst)) return true; 2944 } while (!isa<TerminatorInst>(Inst)); 2945 2946 return false; 2947 } 2948 2949 //===----------------------------------------------------------------------===// 2950 // Instruction Parsing. 2951 //===----------------------------------------------------------------------===// 2952 2953 /// ParseInstruction - Parse one of the many different instructions. 2954 /// 2955 int LLParser::ParseInstruction(Instruction *&Inst, BasicBlock *BB, 2956 PerFunctionState &PFS) { 2957 lltok::Kind Token = Lex.getKind(); 2958 if (Token == lltok::Eof) 2959 return TokError("found end of file when expecting more instructions"); 2960 LocTy Loc = Lex.getLoc(); 2961 unsigned KeywordVal = Lex.getUIntVal(); 2962 Lex.Lex(); // Eat the keyword. 2963 2964 switch (Token) { 2965 default: return Error(Loc, "expected instruction opcode"); 2966 // Terminator Instructions. 2967 case lltok::kw_unreachable: Inst = new UnreachableInst(Context); return false; 2968 case lltok::kw_ret: return ParseRet(Inst, BB, PFS); 2969 case lltok::kw_br: return ParseBr(Inst, PFS); 2970 case lltok::kw_switch: return ParseSwitch(Inst, PFS); 2971 case lltok::kw_indirectbr: return ParseIndirectBr(Inst, PFS); 2972 case lltok::kw_invoke: return ParseInvoke(Inst, PFS); 2973 case lltok::kw_resume: return ParseResume(Inst, PFS); 2974 // Binary Operators. 2975 case lltok::kw_add: 2976 case lltok::kw_sub: 2977 case lltok::kw_mul: 2978 case lltok::kw_shl: { 2979 bool NUW = EatIfPresent(lltok::kw_nuw); 2980 bool NSW = EatIfPresent(lltok::kw_nsw); 2981 if (!NUW) NUW = EatIfPresent(lltok::kw_nuw); 2982 2983 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 2984 2985 if (NUW) cast<BinaryOperator>(Inst)->setHasNoUnsignedWrap(true); 2986 if (NSW) cast<BinaryOperator>(Inst)->setHasNoSignedWrap(true); 2987 return false; 2988 } 2989 case lltok::kw_fadd: 2990 case lltok::kw_fsub: 2991 case lltok::kw_fmul: return ParseArithmetic(Inst, PFS, KeywordVal, 2); 2992 2993 case lltok::kw_sdiv: 2994 case lltok::kw_udiv: 2995 case lltok::kw_lshr: 2996 case lltok::kw_ashr: { 2997 bool Exact = EatIfPresent(lltok::kw_exact); 2998 2999 if (ParseArithmetic(Inst, PFS, KeywordVal, 1)) return true; 3000 if (Exact) cast<BinaryOperator>(Inst)->setIsExact(true); 3001 return false; 3002 } 3003 3004 case lltok::kw_urem: 3005 case lltok::kw_srem: return ParseArithmetic(Inst, PFS, KeywordVal, 1); 3006 case lltok::kw_fdiv: 3007 case lltok::kw_frem: return ParseArithmetic(Inst, PFS, KeywordVal, 2); 3008 case lltok::kw_and: 3009 case lltok::kw_or: 3010 case lltok::kw_xor: return ParseLogical(Inst, PFS, KeywordVal); 3011 case lltok::kw_icmp: 3012 case lltok::kw_fcmp: return ParseCompare(Inst, PFS, KeywordVal); 3013 // Casts. 3014 case lltok::kw_trunc: 3015 case lltok::kw_zext: 3016 case lltok::kw_sext: 3017 case lltok::kw_fptrunc: 3018 case lltok::kw_fpext: 3019 case lltok::kw_bitcast: 3020 case lltok::kw_uitofp: 3021 case lltok::kw_sitofp: 3022 case lltok::kw_fptoui: 3023 case lltok::kw_fptosi: 3024 case lltok::kw_inttoptr: 3025 case lltok::kw_ptrtoint: return ParseCast(Inst, PFS, KeywordVal); 3026 // Other. 3027 case lltok::kw_select: return ParseSelect(Inst, PFS); 3028 case lltok::kw_va_arg: return ParseVA_Arg(Inst, PFS); 3029 case lltok::kw_extractelement: return ParseExtractElement(Inst, PFS); 3030 case lltok::kw_insertelement: return ParseInsertElement(Inst, PFS); 3031 case lltok::kw_shufflevector: return ParseShuffleVector(Inst, PFS); 3032 case lltok::kw_phi: return ParsePHI(Inst, PFS); 3033 case lltok::kw_landingpad: return ParseLandingPad(Inst, PFS); 3034 case lltok::kw_call: return ParseCall(Inst, PFS, false); 3035 case lltok::kw_tail: return ParseCall(Inst, PFS, true); 3036 // Memory. 3037 case lltok::kw_alloca: return ParseAlloc(Inst, PFS); 3038 case lltok::kw_load: return ParseLoad(Inst, PFS); 3039 case lltok::kw_store: return ParseStore(Inst, PFS); 3040 case lltok::kw_cmpxchg: return ParseCmpXchg(Inst, PFS); 3041 case lltok::kw_atomicrmw: return ParseAtomicRMW(Inst, PFS); 3042 case lltok::kw_fence: return ParseFence(Inst, PFS); 3043 case lltok::kw_getelementptr: return ParseGetElementPtr(Inst, PFS); 3044 case lltok::kw_extractvalue: return ParseExtractValue(Inst, PFS); 3045 case lltok::kw_insertvalue: return ParseInsertValue(Inst, PFS); 3046 } 3047 } 3048 3049 /// ParseCmpPredicate - Parse an integer or fp predicate, based on Kind. 3050 bool LLParser::ParseCmpPredicate(unsigned &P, unsigned Opc) { 3051 if (Opc == Instruction::FCmp) { 3052 switch (Lex.getKind()) { 3053 default: TokError("expected fcmp predicate (e.g. 'oeq')"); 3054 case lltok::kw_oeq: P = CmpInst::FCMP_OEQ; break; 3055 case lltok::kw_one: P = CmpInst::FCMP_ONE; break; 3056 case lltok::kw_olt: P = CmpInst::FCMP_OLT; break; 3057 case lltok::kw_ogt: P = CmpInst::FCMP_OGT; break; 3058 case lltok::kw_ole: P = CmpInst::FCMP_OLE; break; 3059 case lltok::kw_oge: P = CmpInst::FCMP_OGE; break; 3060 case lltok::kw_ord: P = CmpInst::FCMP_ORD; break; 3061 case lltok::kw_uno: P = CmpInst::FCMP_UNO; break; 3062 case lltok::kw_ueq: P = CmpInst::FCMP_UEQ; break; 3063 case lltok::kw_une: P = CmpInst::FCMP_UNE; break; 3064 case lltok::kw_ult: P = CmpInst::FCMP_ULT; break; 3065 case lltok::kw_ugt: P = CmpInst::FCMP_UGT; break; 3066 case lltok::kw_ule: P = CmpInst::FCMP_ULE; break; 3067 case lltok::kw_uge: P = CmpInst::FCMP_UGE; break; 3068 case lltok::kw_true: P = CmpInst::FCMP_TRUE; break; 3069 case lltok::kw_false: P = CmpInst::FCMP_FALSE; break; 3070 } 3071 } else { 3072 switch (Lex.getKind()) { 3073 default: TokError("expected icmp predicate (e.g. 'eq')"); 3074 case lltok::kw_eq: P = CmpInst::ICMP_EQ; break; 3075 case lltok::kw_ne: P = CmpInst::ICMP_NE; break; 3076 case lltok::kw_slt: P = CmpInst::ICMP_SLT; break; 3077 case lltok::kw_sgt: P = CmpInst::ICMP_SGT; break; 3078 case lltok::kw_sle: P = CmpInst::ICMP_SLE; break; 3079 case lltok::kw_sge: P = CmpInst::ICMP_SGE; break; 3080 case lltok::kw_ult: P = CmpInst::ICMP_ULT; break; 3081 case lltok::kw_ugt: P = CmpInst::ICMP_UGT; break; 3082 case lltok::kw_ule: P = CmpInst::ICMP_ULE; break; 3083 case lltok::kw_uge: P = CmpInst::ICMP_UGE; break; 3084 } 3085 } 3086 Lex.Lex(); 3087 return false; 3088 } 3089 3090 //===----------------------------------------------------------------------===// 3091 // Terminator Instructions. 3092 //===----------------------------------------------------------------------===// 3093 3094 /// ParseRet - Parse a return instruction. 3095 /// ::= 'ret' void (',' !dbg, !1)* 3096 /// ::= 'ret' TypeAndValue (',' !dbg, !1)* 3097 bool LLParser::ParseRet(Instruction *&Inst, BasicBlock *BB, 3098 PerFunctionState &PFS) { 3099 SMLoc TypeLoc = Lex.getLoc(); 3100 Type *Ty = 0; 3101 if (ParseType(Ty, true /*void allowed*/)) return true; 3102 3103 Type *ResType = PFS.getFunction().getReturnType(); 3104 3105 if (Ty->isVoidTy()) { 3106 if (!ResType->isVoidTy()) 3107 return Error(TypeLoc, "value doesn't match function result type '" + 3108 getTypeString(ResType) + "'"); 3109 3110 Inst = ReturnInst::Create(Context); 3111 return false; 3112 } 3113 3114 Value *RV; 3115 if (ParseValue(Ty, RV, PFS)) return true; 3116 3117 if (ResType != RV->getType()) 3118 return Error(TypeLoc, "value doesn't match function result type '" + 3119 getTypeString(ResType) + "'"); 3120 3121 Inst = ReturnInst::Create(Context, RV); 3122 return false; 3123 } 3124 3125 3126 /// ParseBr 3127 /// ::= 'br' TypeAndValue 3128 /// ::= 'br' TypeAndValue ',' TypeAndValue ',' TypeAndValue 3129 bool LLParser::ParseBr(Instruction *&Inst, PerFunctionState &PFS) { 3130 LocTy Loc, Loc2; 3131 Value *Op0; 3132 BasicBlock *Op1, *Op2; 3133 if (ParseTypeAndValue(Op0, Loc, PFS)) return true; 3134 3135 if (BasicBlock *BB = dyn_cast<BasicBlock>(Op0)) { 3136 Inst = BranchInst::Create(BB); 3137 return false; 3138 } 3139 3140 if (Op0->getType() != Type::getInt1Ty(Context)) 3141 return Error(Loc, "branch condition must have 'i1' type"); 3142 3143 if (ParseToken(lltok::comma, "expected ',' after branch condition") || 3144 ParseTypeAndBasicBlock(Op1, Loc, PFS) || 3145 ParseToken(lltok::comma, "expected ',' after true destination") || 3146 ParseTypeAndBasicBlock(Op2, Loc2, PFS)) 3147 return true; 3148 3149 Inst = BranchInst::Create(Op1, Op2, Op0); 3150 return false; 3151 } 3152 3153 /// ParseSwitch 3154 /// Instruction 3155 /// ::= 'switch' TypeAndValue ',' TypeAndValue '[' JumpTable ']' 3156 /// JumpTable 3157 /// ::= (TypeAndValue ',' TypeAndValue)* 3158 bool LLParser::ParseSwitch(Instruction *&Inst, PerFunctionState &PFS) { 3159 LocTy CondLoc, BBLoc; 3160 Value *Cond; 3161 BasicBlock *DefaultBB; 3162 if (ParseTypeAndValue(Cond, CondLoc, PFS) || 3163 ParseToken(lltok::comma, "expected ',' after switch condition") || 3164 ParseTypeAndBasicBlock(DefaultBB, BBLoc, PFS) || 3165 ParseToken(lltok::lsquare, "expected '[' with switch table")) 3166 return true; 3167 3168 if (!Cond->getType()->isIntegerTy()) 3169 return Error(CondLoc, "switch condition must have integer type"); 3170 3171 // Parse the jump table pairs. 3172 SmallPtrSet<Value*, 32> SeenCases; 3173 SmallVector<std::pair<ConstantInt*, BasicBlock*>, 32> Table; 3174 while (Lex.getKind() != lltok::rsquare) { 3175 Value *Constant; 3176 BasicBlock *DestBB; 3177 3178 if (ParseTypeAndValue(Constant, CondLoc, PFS) || 3179 ParseToken(lltok::comma, "expected ',' after case value") || 3180 ParseTypeAndBasicBlock(DestBB, PFS)) 3181 return true; 3182 3183 if (!SeenCases.insert(Constant)) 3184 return Error(CondLoc, "duplicate case value in switch"); 3185 if (!isa<ConstantInt>(Constant)) 3186 return Error(CondLoc, "case value is not a constant integer"); 3187 3188 Table.push_back(std::make_pair(cast<ConstantInt>(Constant), DestBB)); 3189 } 3190 3191 Lex.Lex(); // Eat the ']'. 3192 3193 SwitchInst *SI = SwitchInst::Create(Cond, DefaultBB, Table.size()); 3194 for (unsigned i = 0, e = Table.size(); i != e; ++i) 3195 SI->addCase(Table[i].first, Table[i].second); 3196 Inst = SI; 3197 return false; 3198 } 3199 3200 /// ParseIndirectBr 3201 /// Instruction 3202 /// ::= 'indirectbr' TypeAndValue ',' '[' LabelList ']' 3203 bool LLParser::ParseIndirectBr(Instruction *&Inst, PerFunctionState &PFS) { 3204 LocTy AddrLoc; 3205 Value *Address; 3206 if (ParseTypeAndValue(Address, AddrLoc, PFS) || 3207 ParseToken(lltok::comma, "expected ',' after indirectbr address") || 3208 ParseToken(lltok::lsquare, "expected '[' with indirectbr")) 3209 return true; 3210 3211 if (!Address->getType()->isPointerTy()) 3212 return Error(AddrLoc, "indirectbr address must have pointer type"); 3213 3214 // Parse the destination list. 3215 SmallVector<BasicBlock*, 16> DestList; 3216 3217 if (Lex.getKind() != lltok::rsquare) { 3218 BasicBlock *DestBB; 3219 if (ParseTypeAndBasicBlock(DestBB, PFS)) 3220 return true; 3221 DestList.push_back(DestBB); 3222 3223 while (EatIfPresent(lltok::comma)) { 3224 if (ParseTypeAndBasicBlock(DestBB, PFS)) 3225 return true; 3226 DestList.push_back(DestBB); 3227 } 3228 } 3229 3230 if (ParseToken(lltok::rsquare, "expected ']' at end of block list")) 3231 return true; 3232 3233 IndirectBrInst *IBI = IndirectBrInst::Create(Address, DestList.size()); 3234 for (unsigned i = 0, e = DestList.size(); i != e; ++i) 3235 IBI->addDestination(DestList[i]); 3236 Inst = IBI; 3237 return false; 3238 } 3239 3240 3241 /// ParseInvoke 3242 /// ::= 'invoke' OptionalCallingConv OptionalAttrs Type Value ParamList 3243 /// OptionalAttrs 'to' TypeAndValue 'unwind' TypeAndValue 3244 bool LLParser::ParseInvoke(Instruction *&Inst, PerFunctionState &PFS) { 3245 LocTy CallLoc = Lex.getLoc(); 3246 Attributes RetAttrs, FnAttrs; 3247 CallingConv::ID CC; 3248 Type *RetType = 0; 3249 LocTy RetTypeLoc; 3250 ValID CalleeID; 3251 SmallVector<ParamInfo, 16> ArgList; 3252 3253 BasicBlock *NormalBB, *UnwindBB; 3254 if (ParseOptionalCallingConv(CC) || 3255 ParseOptionalAttrs(RetAttrs, 1) || 3256 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 3257 ParseValID(CalleeID) || 3258 ParseParameterList(ArgList, PFS) || 3259 ParseOptionalAttrs(FnAttrs, 2) || 3260 ParseToken(lltok::kw_to, "expected 'to' in invoke") || 3261 ParseTypeAndBasicBlock(NormalBB, PFS) || 3262 ParseToken(lltok::kw_unwind, "expected 'unwind' in invoke") || 3263 ParseTypeAndBasicBlock(UnwindBB, PFS)) 3264 return true; 3265 3266 // If RetType is a non-function pointer type, then this is the short syntax 3267 // for the call, which means that RetType is just the return type. Infer the 3268 // rest of the function argument types from the arguments that are present. 3269 PointerType *PFTy = 0; 3270 FunctionType *Ty = 0; 3271 if (!(PFTy = dyn_cast<PointerType>(RetType)) || 3272 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) { 3273 // Pull out the types of all of the arguments... 3274 std::vector<Type*> ParamTypes; 3275 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 3276 ParamTypes.push_back(ArgList[i].V->getType()); 3277 3278 if (!FunctionType::isValidReturnType(RetType)) 3279 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 3280 3281 Ty = FunctionType::get(RetType, ParamTypes, false); 3282 PFTy = PointerType::getUnqual(Ty); 3283 } 3284 3285 // Look up the callee. 3286 Value *Callee; 3287 if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true; 3288 3289 // Set up the Attributes for the function. 3290 SmallVector<AttributeWithIndex, 8> Attrs; 3291 if (RetAttrs.hasAttributes()) 3292 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs)); 3293 3294 SmallVector<Value*, 8> Args; 3295 3296 // Loop through FunctionType's arguments and ensure they are specified 3297 // correctly. Also, gather any parameter attributes. 3298 FunctionType::param_iterator I = Ty->param_begin(); 3299 FunctionType::param_iterator E = Ty->param_end(); 3300 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 3301 Type *ExpectedTy = 0; 3302 if (I != E) { 3303 ExpectedTy = *I++; 3304 } else if (!Ty->isVarArg()) { 3305 return Error(ArgList[i].Loc, "too many arguments specified"); 3306 } 3307 3308 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 3309 return Error(ArgList[i].Loc, "argument is not of expected type '" + 3310 getTypeString(ExpectedTy) + "'"); 3311 Args.push_back(ArgList[i].V); 3312 if (ArgList[i].Attrs.hasAttributes()) 3313 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs)); 3314 } 3315 3316 if (I != E) 3317 return Error(CallLoc, "not enough parameters specified for call"); 3318 3319 if (FnAttrs.hasAttributes()) 3320 Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs)); 3321 3322 // Finish off the Attributes and check them 3323 AttrListPtr PAL = AttrListPtr::get(Attrs); 3324 3325 InvokeInst *II = InvokeInst::Create(Callee, NormalBB, UnwindBB, Args); 3326 II->setCallingConv(CC); 3327 II->setAttributes(PAL); 3328 Inst = II; 3329 return false; 3330 } 3331 3332 /// ParseResume 3333 /// ::= 'resume' TypeAndValue 3334 bool LLParser::ParseResume(Instruction *&Inst, PerFunctionState &PFS) { 3335 Value *Exn; LocTy ExnLoc; 3336 if (ParseTypeAndValue(Exn, ExnLoc, PFS)) 3337 return true; 3338 3339 ResumeInst *RI = ResumeInst::Create(Exn); 3340 Inst = RI; 3341 return false; 3342 } 3343 3344 //===----------------------------------------------------------------------===// 3345 // Binary Operators. 3346 //===----------------------------------------------------------------------===// 3347 3348 /// ParseArithmetic 3349 /// ::= ArithmeticOps TypeAndValue ',' Value 3350 /// 3351 /// If OperandType is 0, then any FP or integer operand is allowed. If it is 1, 3352 /// then any integer operand is allowed, if it is 2, any fp operand is allowed. 3353 bool LLParser::ParseArithmetic(Instruction *&Inst, PerFunctionState &PFS, 3354 unsigned Opc, unsigned OperandType) { 3355 LocTy Loc; Value *LHS, *RHS; 3356 if (ParseTypeAndValue(LHS, Loc, PFS) || 3357 ParseToken(lltok::comma, "expected ',' in arithmetic operation") || 3358 ParseValue(LHS->getType(), RHS, PFS)) 3359 return true; 3360 3361 bool Valid; 3362 switch (OperandType) { 3363 default: llvm_unreachable("Unknown operand type!"); 3364 case 0: // int or FP. 3365 Valid = LHS->getType()->isIntOrIntVectorTy() || 3366 LHS->getType()->isFPOrFPVectorTy(); 3367 break; 3368 case 1: Valid = LHS->getType()->isIntOrIntVectorTy(); break; 3369 case 2: Valid = LHS->getType()->isFPOrFPVectorTy(); break; 3370 } 3371 3372 if (!Valid) 3373 return Error(Loc, "invalid operand type for instruction"); 3374 3375 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3376 return false; 3377 } 3378 3379 /// ParseLogical 3380 /// ::= ArithmeticOps TypeAndValue ',' Value { 3381 bool LLParser::ParseLogical(Instruction *&Inst, PerFunctionState &PFS, 3382 unsigned Opc) { 3383 LocTy Loc; Value *LHS, *RHS; 3384 if (ParseTypeAndValue(LHS, Loc, PFS) || 3385 ParseToken(lltok::comma, "expected ',' in logical operation") || 3386 ParseValue(LHS->getType(), RHS, PFS)) 3387 return true; 3388 3389 if (!LHS->getType()->isIntOrIntVectorTy()) 3390 return Error(Loc,"instruction requires integer or integer vector operands"); 3391 3392 Inst = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS); 3393 return false; 3394 } 3395 3396 3397 /// ParseCompare 3398 /// ::= 'icmp' IPredicates TypeAndValue ',' Value 3399 /// ::= 'fcmp' FPredicates TypeAndValue ',' Value 3400 bool LLParser::ParseCompare(Instruction *&Inst, PerFunctionState &PFS, 3401 unsigned Opc) { 3402 // Parse the integer/fp comparison predicate. 3403 LocTy Loc; 3404 unsigned Pred; 3405 Value *LHS, *RHS; 3406 if (ParseCmpPredicate(Pred, Opc) || 3407 ParseTypeAndValue(LHS, Loc, PFS) || 3408 ParseToken(lltok::comma, "expected ',' after compare value") || 3409 ParseValue(LHS->getType(), RHS, PFS)) 3410 return true; 3411 3412 if (Opc == Instruction::FCmp) { 3413 if (!LHS->getType()->isFPOrFPVectorTy()) 3414 return Error(Loc, "fcmp requires floating point operands"); 3415 Inst = new FCmpInst(CmpInst::Predicate(Pred), LHS, RHS); 3416 } else { 3417 assert(Opc == Instruction::ICmp && "Unknown opcode for CmpInst!"); 3418 if (!LHS->getType()->isIntOrIntVectorTy() && 3419 !LHS->getType()->getScalarType()->isPointerTy()) 3420 return Error(Loc, "icmp requires integer operands"); 3421 Inst = new ICmpInst(CmpInst::Predicate(Pred), LHS, RHS); 3422 } 3423 return false; 3424 } 3425 3426 //===----------------------------------------------------------------------===// 3427 // Other Instructions. 3428 //===----------------------------------------------------------------------===// 3429 3430 3431 /// ParseCast 3432 /// ::= CastOpc TypeAndValue 'to' Type 3433 bool LLParser::ParseCast(Instruction *&Inst, PerFunctionState &PFS, 3434 unsigned Opc) { 3435 LocTy Loc; 3436 Value *Op; 3437 Type *DestTy = 0; 3438 if (ParseTypeAndValue(Op, Loc, PFS) || 3439 ParseToken(lltok::kw_to, "expected 'to' after cast value") || 3440 ParseType(DestTy)) 3441 return true; 3442 3443 if (!CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy)) { 3444 CastInst::castIsValid((Instruction::CastOps)Opc, Op, DestTy); 3445 return Error(Loc, "invalid cast opcode for cast from '" + 3446 getTypeString(Op->getType()) + "' to '" + 3447 getTypeString(DestTy) + "'"); 3448 } 3449 Inst = CastInst::Create((Instruction::CastOps)Opc, Op, DestTy); 3450 return false; 3451 } 3452 3453 /// ParseSelect 3454 /// ::= 'select' TypeAndValue ',' TypeAndValue ',' TypeAndValue 3455 bool LLParser::ParseSelect(Instruction *&Inst, PerFunctionState &PFS) { 3456 LocTy Loc; 3457 Value *Op0, *Op1, *Op2; 3458 if (ParseTypeAndValue(Op0, Loc, PFS) || 3459 ParseToken(lltok::comma, "expected ',' after select condition") || 3460 ParseTypeAndValue(Op1, PFS) || 3461 ParseToken(lltok::comma, "expected ',' after select value") || 3462 ParseTypeAndValue(Op2, PFS)) 3463 return true; 3464 3465 if (const char *Reason = SelectInst::areInvalidOperands(Op0, Op1, Op2)) 3466 return Error(Loc, Reason); 3467 3468 Inst = SelectInst::Create(Op0, Op1, Op2); 3469 return false; 3470 } 3471 3472 /// ParseVA_Arg 3473 /// ::= 'va_arg' TypeAndValue ',' Type 3474 bool LLParser::ParseVA_Arg(Instruction *&Inst, PerFunctionState &PFS) { 3475 Value *Op; 3476 Type *EltTy = 0; 3477 LocTy TypeLoc; 3478 if (ParseTypeAndValue(Op, PFS) || 3479 ParseToken(lltok::comma, "expected ',' after vaarg operand") || 3480 ParseType(EltTy, TypeLoc)) 3481 return true; 3482 3483 if (!EltTy->isFirstClassType()) 3484 return Error(TypeLoc, "va_arg requires operand with first class type"); 3485 3486 Inst = new VAArgInst(Op, EltTy); 3487 return false; 3488 } 3489 3490 /// ParseExtractElement 3491 /// ::= 'extractelement' TypeAndValue ',' TypeAndValue 3492 bool LLParser::ParseExtractElement(Instruction *&Inst, PerFunctionState &PFS) { 3493 LocTy Loc; 3494 Value *Op0, *Op1; 3495 if (ParseTypeAndValue(Op0, Loc, PFS) || 3496 ParseToken(lltok::comma, "expected ',' after extract value") || 3497 ParseTypeAndValue(Op1, PFS)) 3498 return true; 3499 3500 if (!ExtractElementInst::isValidOperands(Op0, Op1)) 3501 return Error(Loc, "invalid extractelement operands"); 3502 3503 Inst = ExtractElementInst::Create(Op0, Op1); 3504 return false; 3505 } 3506 3507 /// ParseInsertElement 3508 /// ::= 'insertelement' TypeAndValue ',' TypeAndValue ',' TypeAndValue 3509 bool LLParser::ParseInsertElement(Instruction *&Inst, PerFunctionState &PFS) { 3510 LocTy Loc; 3511 Value *Op0, *Op1, *Op2; 3512 if (ParseTypeAndValue(Op0, Loc, PFS) || 3513 ParseToken(lltok::comma, "expected ',' after insertelement value") || 3514 ParseTypeAndValue(Op1, PFS) || 3515 ParseToken(lltok::comma, "expected ',' after insertelement value") || 3516 ParseTypeAndValue(Op2, PFS)) 3517 return true; 3518 3519 if (!InsertElementInst::isValidOperands(Op0, Op1, Op2)) 3520 return Error(Loc, "invalid insertelement operands"); 3521 3522 Inst = InsertElementInst::Create(Op0, Op1, Op2); 3523 return false; 3524 } 3525 3526 /// ParseShuffleVector 3527 /// ::= 'shufflevector' TypeAndValue ',' TypeAndValue ',' TypeAndValue 3528 bool LLParser::ParseShuffleVector(Instruction *&Inst, PerFunctionState &PFS) { 3529 LocTy Loc; 3530 Value *Op0, *Op1, *Op2; 3531 if (ParseTypeAndValue(Op0, Loc, PFS) || 3532 ParseToken(lltok::comma, "expected ',' after shuffle mask") || 3533 ParseTypeAndValue(Op1, PFS) || 3534 ParseToken(lltok::comma, "expected ',' after shuffle value") || 3535 ParseTypeAndValue(Op2, PFS)) 3536 return true; 3537 3538 if (!ShuffleVectorInst::isValidOperands(Op0, Op1, Op2)) 3539 return Error(Loc, "invalid shufflevector operands"); 3540 3541 Inst = new ShuffleVectorInst(Op0, Op1, Op2); 3542 return false; 3543 } 3544 3545 /// ParsePHI 3546 /// ::= 'phi' Type '[' Value ',' Value ']' (',' '[' Value ',' Value ']')* 3547 int LLParser::ParsePHI(Instruction *&Inst, PerFunctionState &PFS) { 3548 Type *Ty = 0; LocTy TypeLoc; 3549 Value *Op0, *Op1; 3550 3551 if (ParseType(Ty, TypeLoc) || 3552 ParseToken(lltok::lsquare, "expected '[' in phi value list") || 3553 ParseValue(Ty, Op0, PFS) || 3554 ParseToken(lltok::comma, "expected ',' after insertelement value") || 3555 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 3556 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 3557 return true; 3558 3559 bool AteExtraComma = false; 3560 SmallVector<std::pair<Value*, BasicBlock*>, 16> PHIVals; 3561 while (1) { 3562 PHIVals.push_back(std::make_pair(Op0, cast<BasicBlock>(Op1))); 3563 3564 if (!EatIfPresent(lltok::comma)) 3565 break; 3566 3567 if (Lex.getKind() == lltok::MetadataVar) { 3568 AteExtraComma = true; 3569 break; 3570 } 3571 3572 if (ParseToken(lltok::lsquare, "expected '[' in phi value list") || 3573 ParseValue(Ty, Op0, PFS) || 3574 ParseToken(lltok::comma, "expected ',' after insertelement value") || 3575 ParseValue(Type::getLabelTy(Context), Op1, PFS) || 3576 ParseToken(lltok::rsquare, "expected ']' in phi value list")) 3577 return true; 3578 } 3579 3580 if (!Ty->isFirstClassType()) 3581 return Error(TypeLoc, "phi node must have first class type"); 3582 3583 PHINode *PN = PHINode::Create(Ty, PHIVals.size()); 3584 for (unsigned i = 0, e = PHIVals.size(); i != e; ++i) 3585 PN->addIncoming(PHIVals[i].first, PHIVals[i].second); 3586 Inst = PN; 3587 return AteExtraComma ? InstExtraComma : InstNormal; 3588 } 3589 3590 /// ParseLandingPad 3591 /// ::= 'landingpad' Type 'personality' TypeAndValue 'cleanup'? Clause+ 3592 /// Clause 3593 /// ::= 'catch' TypeAndValue 3594 /// ::= 'filter' 3595 /// ::= 'filter' TypeAndValue ( ',' TypeAndValue )* 3596 bool LLParser::ParseLandingPad(Instruction *&Inst, PerFunctionState &PFS) { 3597 Type *Ty = 0; LocTy TyLoc; 3598 Value *PersFn; LocTy PersFnLoc; 3599 3600 if (ParseType(Ty, TyLoc) || 3601 ParseToken(lltok::kw_personality, "expected 'personality'") || 3602 ParseTypeAndValue(PersFn, PersFnLoc, PFS)) 3603 return true; 3604 3605 LandingPadInst *LP = LandingPadInst::Create(Ty, PersFn, 0); 3606 LP->setCleanup(EatIfPresent(lltok::kw_cleanup)); 3607 3608 while (Lex.getKind() == lltok::kw_catch || Lex.getKind() == lltok::kw_filter){ 3609 LandingPadInst::ClauseType CT; 3610 if (EatIfPresent(lltok::kw_catch)) 3611 CT = LandingPadInst::Catch; 3612 else if (EatIfPresent(lltok::kw_filter)) 3613 CT = LandingPadInst::Filter; 3614 else 3615 return TokError("expected 'catch' or 'filter' clause type"); 3616 3617 Value *V; LocTy VLoc; 3618 if (ParseTypeAndValue(V, VLoc, PFS)) { 3619 delete LP; 3620 return true; 3621 } 3622 3623 // A 'catch' type expects a non-array constant. A filter clause expects an 3624 // array constant. 3625 if (CT == LandingPadInst::Catch) { 3626 if (isa<ArrayType>(V->getType())) 3627 Error(VLoc, "'catch' clause has an invalid type"); 3628 } else { 3629 if (!isa<ArrayType>(V->getType())) 3630 Error(VLoc, "'filter' clause has an invalid type"); 3631 } 3632 3633 LP->addClause(V); 3634 } 3635 3636 Inst = LP; 3637 return false; 3638 } 3639 3640 /// ParseCall 3641 /// ::= 'tail'? 'call' OptionalCallingConv OptionalAttrs Type Value 3642 /// ParameterList OptionalAttrs 3643 bool LLParser::ParseCall(Instruction *&Inst, PerFunctionState &PFS, 3644 bool isTail) { 3645 Attributes RetAttrs, FnAttrs; 3646 CallingConv::ID CC; 3647 Type *RetType = 0; 3648 LocTy RetTypeLoc; 3649 ValID CalleeID; 3650 SmallVector<ParamInfo, 16> ArgList; 3651 LocTy CallLoc = Lex.getLoc(); 3652 3653 if ((isTail && ParseToken(lltok::kw_call, "expected 'tail call'")) || 3654 ParseOptionalCallingConv(CC) || 3655 ParseOptionalAttrs(RetAttrs, 1) || 3656 ParseType(RetType, RetTypeLoc, true /*void allowed*/) || 3657 ParseValID(CalleeID) || 3658 ParseParameterList(ArgList, PFS) || 3659 ParseOptionalAttrs(FnAttrs, 2)) 3660 return true; 3661 3662 // If RetType is a non-function pointer type, then this is the short syntax 3663 // for the call, which means that RetType is just the return type. Infer the 3664 // rest of the function argument types from the arguments that are present. 3665 PointerType *PFTy = 0; 3666 FunctionType *Ty = 0; 3667 if (!(PFTy = dyn_cast<PointerType>(RetType)) || 3668 !(Ty = dyn_cast<FunctionType>(PFTy->getElementType()))) { 3669 // Pull out the types of all of the arguments... 3670 std::vector<Type*> ParamTypes; 3671 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) 3672 ParamTypes.push_back(ArgList[i].V->getType()); 3673 3674 if (!FunctionType::isValidReturnType(RetType)) 3675 return Error(RetTypeLoc, "Invalid result type for LLVM function"); 3676 3677 Ty = FunctionType::get(RetType, ParamTypes, false); 3678 PFTy = PointerType::getUnqual(Ty); 3679 } 3680 3681 // Look up the callee. 3682 Value *Callee; 3683 if (ConvertValIDToValue(PFTy, CalleeID, Callee, &PFS)) return true; 3684 3685 // Set up the Attributes for the function. 3686 SmallVector<AttributeWithIndex, 8> Attrs; 3687 if (RetAttrs.hasAttributes()) 3688 Attrs.push_back(AttributeWithIndex::get(0, RetAttrs)); 3689 3690 SmallVector<Value*, 8> Args; 3691 3692 // Loop through FunctionType's arguments and ensure they are specified 3693 // correctly. Also, gather any parameter attributes. 3694 FunctionType::param_iterator I = Ty->param_begin(); 3695 FunctionType::param_iterator E = Ty->param_end(); 3696 for (unsigned i = 0, e = ArgList.size(); i != e; ++i) { 3697 Type *ExpectedTy = 0; 3698 if (I != E) { 3699 ExpectedTy = *I++; 3700 } else if (!Ty->isVarArg()) { 3701 return Error(ArgList[i].Loc, "too many arguments specified"); 3702 } 3703 3704 if (ExpectedTy && ExpectedTy != ArgList[i].V->getType()) 3705 return Error(ArgList[i].Loc, "argument is not of expected type '" + 3706 getTypeString(ExpectedTy) + "'"); 3707 Args.push_back(ArgList[i].V); 3708 if (ArgList[i].Attrs.hasAttributes()) 3709 Attrs.push_back(AttributeWithIndex::get(i+1, ArgList[i].Attrs)); 3710 } 3711 3712 if (I != E) 3713 return Error(CallLoc, "not enough parameters specified for call"); 3714 3715 if (FnAttrs.hasAttributes()) 3716 Attrs.push_back(AttributeWithIndex::get(~0, FnAttrs)); 3717 3718 // Finish off the Attributes and check them 3719 AttrListPtr PAL = AttrListPtr::get(Attrs); 3720 3721 CallInst *CI = CallInst::Create(Callee, Args); 3722 CI->setTailCall(isTail); 3723 CI->setCallingConv(CC); 3724 CI->setAttributes(PAL); 3725 Inst = CI; 3726 return false; 3727 } 3728 3729 //===----------------------------------------------------------------------===// 3730 // Memory Instructions. 3731 //===----------------------------------------------------------------------===// 3732 3733 /// ParseAlloc 3734 /// ::= 'alloca' Type (',' TypeAndValue)? (',' OptionalInfo)? 3735 int LLParser::ParseAlloc(Instruction *&Inst, PerFunctionState &PFS) { 3736 Value *Size = 0; 3737 LocTy SizeLoc; 3738 unsigned Alignment = 0; 3739 Type *Ty = 0; 3740 if (ParseType(Ty)) return true; 3741 3742 bool AteExtraComma = false; 3743 if (EatIfPresent(lltok::comma)) { 3744 if (Lex.getKind() == lltok::kw_align) { 3745 if (ParseOptionalAlignment(Alignment)) return true; 3746 } else if (Lex.getKind() == lltok::MetadataVar) { 3747 AteExtraComma = true; 3748 } else { 3749 if (ParseTypeAndValue(Size, SizeLoc, PFS) || 3750 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 3751 return true; 3752 } 3753 } 3754 3755 if (Size && !Size->getType()->isIntegerTy()) 3756 return Error(SizeLoc, "element count must have integer type"); 3757 3758 Inst = new AllocaInst(Ty, Size, Alignment); 3759 return AteExtraComma ? InstExtraComma : InstNormal; 3760 } 3761 3762 /// ParseLoad 3763 /// ::= 'load' 'volatile'? TypeAndValue (',' 'align' i32)? 3764 /// ::= 'load' 'atomic' 'volatile'? TypeAndValue 3765 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 3766 int LLParser::ParseLoad(Instruction *&Inst, PerFunctionState &PFS) { 3767 Value *Val; LocTy Loc; 3768 unsigned Alignment = 0; 3769 bool AteExtraComma = false; 3770 bool isAtomic = false; 3771 AtomicOrdering Ordering = NotAtomic; 3772 SynchronizationScope Scope = CrossThread; 3773 3774 if (Lex.getKind() == lltok::kw_atomic) { 3775 isAtomic = true; 3776 Lex.Lex(); 3777 } 3778 3779 bool isVolatile = false; 3780 if (Lex.getKind() == lltok::kw_volatile) { 3781 isVolatile = true; 3782 Lex.Lex(); 3783 } 3784 3785 if (ParseTypeAndValue(Val, Loc, PFS) || 3786 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 3787 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 3788 return true; 3789 3790 if (!Val->getType()->isPointerTy() || 3791 !cast<PointerType>(Val->getType())->getElementType()->isFirstClassType()) 3792 return Error(Loc, "load operand must be a pointer to a first class type"); 3793 if (isAtomic && !Alignment) 3794 return Error(Loc, "atomic load must have explicit non-zero alignment"); 3795 if (Ordering == Release || Ordering == AcquireRelease) 3796 return Error(Loc, "atomic load cannot use Release ordering"); 3797 3798 Inst = new LoadInst(Val, "", isVolatile, Alignment, Ordering, Scope); 3799 return AteExtraComma ? InstExtraComma : InstNormal; 3800 } 3801 3802 /// ParseStore 3803 3804 /// ::= 'store' 'volatile'? TypeAndValue ',' TypeAndValue (',' 'align' i32)? 3805 /// ::= 'store' 'atomic' 'volatile'? TypeAndValue ',' TypeAndValue 3806 /// 'singlethread'? AtomicOrdering (',' 'align' i32)? 3807 int LLParser::ParseStore(Instruction *&Inst, PerFunctionState &PFS) { 3808 Value *Val, *Ptr; LocTy Loc, PtrLoc; 3809 unsigned Alignment = 0; 3810 bool AteExtraComma = false; 3811 bool isAtomic = false; 3812 AtomicOrdering Ordering = NotAtomic; 3813 SynchronizationScope Scope = CrossThread; 3814 3815 if (Lex.getKind() == lltok::kw_atomic) { 3816 isAtomic = true; 3817 Lex.Lex(); 3818 } 3819 3820 bool isVolatile = false; 3821 if (Lex.getKind() == lltok::kw_volatile) { 3822 isVolatile = true; 3823 Lex.Lex(); 3824 } 3825 3826 if (ParseTypeAndValue(Val, Loc, PFS) || 3827 ParseToken(lltok::comma, "expected ',' after store operand") || 3828 ParseTypeAndValue(Ptr, PtrLoc, PFS) || 3829 ParseScopeAndOrdering(isAtomic, Scope, Ordering) || 3830 ParseOptionalCommaAlign(Alignment, AteExtraComma)) 3831 return true; 3832 3833 if (!Ptr->getType()->isPointerTy()) 3834 return Error(PtrLoc, "store operand must be a pointer"); 3835 if (!Val->getType()->isFirstClassType()) 3836 return Error(Loc, "store operand must be a first class value"); 3837 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 3838 return Error(Loc, "stored value and pointer type do not match"); 3839 if (isAtomic && !Alignment) 3840 return Error(Loc, "atomic store must have explicit non-zero alignment"); 3841 if (Ordering == Acquire || Ordering == AcquireRelease) 3842 return Error(Loc, "atomic store cannot use Acquire ordering"); 3843 3844 Inst = new StoreInst(Val, Ptr, isVolatile, Alignment, Ordering, Scope); 3845 return AteExtraComma ? InstExtraComma : InstNormal; 3846 } 3847 3848 /// ParseCmpXchg 3849 /// ::= 'cmpxchg' 'volatile'? TypeAndValue ',' TypeAndValue ',' TypeAndValue 3850 /// 'singlethread'? AtomicOrdering 3851 int LLParser::ParseCmpXchg(Instruction *&Inst, PerFunctionState &PFS) { 3852 Value *Ptr, *Cmp, *New; LocTy PtrLoc, CmpLoc, NewLoc; 3853 bool AteExtraComma = false; 3854 AtomicOrdering Ordering = NotAtomic; 3855 SynchronizationScope Scope = CrossThread; 3856 bool isVolatile = false; 3857 3858 if (EatIfPresent(lltok::kw_volatile)) 3859 isVolatile = true; 3860 3861 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 3862 ParseToken(lltok::comma, "expected ',' after cmpxchg address") || 3863 ParseTypeAndValue(Cmp, CmpLoc, PFS) || 3864 ParseToken(lltok::comma, "expected ',' after cmpxchg cmp operand") || 3865 ParseTypeAndValue(New, NewLoc, PFS) || 3866 ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 3867 return true; 3868 3869 if (Ordering == Unordered) 3870 return TokError("cmpxchg cannot be unordered"); 3871 if (!Ptr->getType()->isPointerTy()) 3872 return Error(PtrLoc, "cmpxchg operand must be a pointer"); 3873 if (cast<PointerType>(Ptr->getType())->getElementType() != Cmp->getType()) 3874 return Error(CmpLoc, "compare value and pointer type do not match"); 3875 if (cast<PointerType>(Ptr->getType())->getElementType() != New->getType()) 3876 return Error(NewLoc, "new value and pointer type do not match"); 3877 if (!New->getType()->isIntegerTy()) 3878 return Error(NewLoc, "cmpxchg operand must be an integer"); 3879 unsigned Size = New->getType()->getPrimitiveSizeInBits(); 3880 if (Size < 8 || (Size & (Size - 1))) 3881 return Error(NewLoc, "cmpxchg operand must be power-of-two byte-sized" 3882 " integer"); 3883 3884 AtomicCmpXchgInst *CXI = 3885 new AtomicCmpXchgInst(Ptr, Cmp, New, Ordering, Scope); 3886 CXI->setVolatile(isVolatile); 3887 Inst = CXI; 3888 return AteExtraComma ? InstExtraComma : InstNormal; 3889 } 3890 3891 /// ParseAtomicRMW 3892 /// ::= 'atomicrmw' 'volatile'? BinOp TypeAndValue ',' TypeAndValue 3893 /// 'singlethread'? AtomicOrdering 3894 int LLParser::ParseAtomicRMW(Instruction *&Inst, PerFunctionState &PFS) { 3895 Value *Ptr, *Val; LocTy PtrLoc, ValLoc; 3896 bool AteExtraComma = false; 3897 AtomicOrdering Ordering = NotAtomic; 3898 SynchronizationScope Scope = CrossThread; 3899 bool isVolatile = false; 3900 AtomicRMWInst::BinOp Operation; 3901 3902 if (EatIfPresent(lltok::kw_volatile)) 3903 isVolatile = true; 3904 3905 switch (Lex.getKind()) { 3906 default: return TokError("expected binary operation in atomicrmw"); 3907 case lltok::kw_xchg: Operation = AtomicRMWInst::Xchg; break; 3908 case lltok::kw_add: Operation = AtomicRMWInst::Add; break; 3909 case lltok::kw_sub: Operation = AtomicRMWInst::Sub; break; 3910 case lltok::kw_and: Operation = AtomicRMWInst::And; break; 3911 case lltok::kw_nand: Operation = AtomicRMWInst::Nand; break; 3912 case lltok::kw_or: Operation = AtomicRMWInst::Or; break; 3913 case lltok::kw_xor: Operation = AtomicRMWInst::Xor; break; 3914 case lltok::kw_max: Operation = AtomicRMWInst::Max; break; 3915 case lltok::kw_min: Operation = AtomicRMWInst::Min; break; 3916 case lltok::kw_umax: Operation = AtomicRMWInst::UMax; break; 3917 case lltok::kw_umin: Operation = AtomicRMWInst::UMin; break; 3918 } 3919 Lex.Lex(); // Eat the operation. 3920 3921 if (ParseTypeAndValue(Ptr, PtrLoc, PFS) || 3922 ParseToken(lltok::comma, "expected ',' after atomicrmw address") || 3923 ParseTypeAndValue(Val, ValLoc, PFS) || 3924 ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 3925 return true; 3926 3927 if (Ordering == Unordered) 3928 return TokError("atomicrmw cannot be unordered"); 3929 if (!Ptr->getType()->isPointerTy()) 3930 return Error(PtrLoc, "atomicrmw operand must be a pointer"); 3931 if (cast<PointerType>(Ptr->getType())->getElementType() != Val->getType()) 3932 return Error(ValLoc, "atomicrmw value and pointer type do not match"); 3933 if (!Val->getType()->isIntegerTy()) 3934 return Error(ValLoc, "atomicrmw operand must be an integer"); 3935 unsigned Size = Val->getType()->getPrimitiveSizeInBits(); 3936 if (Size < 8 || (Size & (Size - 1))) 3937 return Error(ValLoc, "atomicrmw operand must be power-of-two byte-sized" 3938 " integer"); 3939 3940 AtomicRMWInst *RMWI = 3941 new AtomicRMWInst(Operation, Ptr, Val, Ordering, Scope); 3942 RMWI->setVolatile(isVolatile); 3943 Inst = RMWI; 3944 return AteExtraComma ? InstExtraComma : InstNormal; 3945 } 3946 3947 /// ParseFence 3948 /// ::= 'fence' 'singlethread'? AtomicOrdering 3949 int LLParser::ParseFence(Instruction *&Inst, PerFunctionState &PFS) { 3950 AtomicOrdering Ordering = NotAtomic; 3951 SynchronizationScope Scope = CrossThread; 3952 if (ParseScopeAndOrdering(true /*Always atomic*/, Scope, Ordering)) 3953 return true; 3954 3955 if (Ordering == Unordered) 3956 return TokError("fence cannot be unordered"); 3957 if (Ordering == Monotonic) 3958 return TokError("fence cannot be monotonic"); 3959 3960 Inst = new FenceInst(Context, Ordering, Scope); 3961 return InstNormal; 3962 } 3963 3964 /// ParseGetElementPtr 3965 /// ::= 'getelementptr' 'inbounds'? TypeAndValue (',' TypeAndValue)* 3966 int LLParser::ParseGetElementPtr(Instruction *&Inst, PerFunctionState &PFS) { 3967 Value *Ptr = 0; 3968 Value *Val = 0; 3969 LocTy Loc, EltLoc; 3970 3971 bool InBounds = EatIfPresent(lltok::kw_inbounds); 3972 3973 if (ParseTypeAndValue(Ptr, Loc, PFS)) return true; 3974 3975 if (!Ptr->getType()->getScalarType()->isPointerTy()) 3976 return Error(Loc, "base of getelementptr must be a pointer"); 3977 3978 SmallVector<Value*, 16> Indices; 3979 bool AteExtraComma = false; 3980 while (EatIfPresent(lltok::comma)) { 3981 if (Lex.getKind() == lltok::MetadataVar) { 3982 AteExtraComma = true; 3983 break; 3984 } 3985 if (ParseTypeAndValue(Val, EltLoc, PFS)) return true; 3986 if (!Val->getType()->getScalarType()->isIntegerTy()) 3987 return Error(EltLoc, "getelementptr index must be an integer"); 3988 if (Val->getType()->isVectorTy() != Ptr->getType()->isVectorTy()) 3989 return Error(EltLoc, "getelementptr index type missmatch"); 3990 if (Val->getType()->isVectorTy()) { 3991 unsigned ValNumEl = cast<VectorType>(Val->getType())->getNumElements(); 3992 unsigned PtrNumEl = cast<VectorType>(Ptr->getType())->getNumElements(); 3993 if (ValNumEl != PtrNumEl) 3994 return Error(EltLoc, 3995 "getelementptr vector index has a wrong number of elements"); 3996 } 3997 Indices.push_back(Val); 3998 } 3999 4000 if (Val && Val->getType()->isVectorTy() && Indices.size() != 1) 4001 return Error(EltLoc, "vector getelementptrs must have a single index"); 4002 4003 if (!GetElementPtrInst::getIndexedType(Ptr->getType(), Indices)) 4004 return Error(Loc, "invalid getelementptr indices"); 4005 Inst = GetElementPtrInst::Create(Ptr, Indices); 4006 if (InBounds) 4007 cast<GetElementPtrInst>(Inst)->setIsInBounds(true); 4008 return AteExtraComma ? InstExtraComma : InstNormal; 4009 } 4010 4011 /// ParseExtractValue 4012 /// ::= 'extractvalue' TypeAndValue (',' uint32)+ 4013 int LLParser::ParseExtractValue(Instruction *&Inst, PerFunctionState &PFS) { 4014 Value *Val; LocTy Loc; 4015 SmallVector<unsigned, 4> Indices; 4016 bool AteExtraComma; 4017 if (ParseTypeAndValue(Val, Loc, PFS) || 4018 ParseIndexList(Indices, AteExtraComma)) 4019 return true; 4020 4021 if (!Val->getType()->isAggregateType()) 4022 return Error(Loc, "extractvalue operand must be aggregate type"); 4023 4024 if (!ExtractValueInst::getIndexedType(Val->getType(), Indices)) 4025 return Error(Loc, "invalid indices for extractvalue"); 4026 Inst = ExtractValueInst::Create(Val, Indices); 4027 return AteExtraComma ? InstExtraComma : InstNormal; 4028 } 4029 4030 /// ParseInsertValue 4031 /// ::= 'insertvalue' TypeAndValue ',' TypeAndValue (',' uint32)+ 4032 int LLParser::ParseInsertValue(Instruction *&Inst, PerFunctionState &PFS) { 4033 Value *Val0, *Val1; LocTy Loc0, Loc1; 4034 SmallVector<unsigned, 4> Indices; 4035 bool AteExtraComma; 4036 if (ParseTypeAndValue(Val0, Loc0, PFS) || 4037 ParseToken(lltok::comma, "expected comma after insertvalue operand") || 4038 ParseTypeAndValue(Val1, Loc1, PFS) || 4039 ParseIndexList(Indices, AteExtraComma)) 4040 return true; 4041 4042 if (!Val0->getType()->isAggregateType()) 4043 return Error(Loc0, "insertvalue operand must be aggregate type"); 4044 4045 if (!ExtractValueInst::getIndexedType(Val0->getType(), Indices)) 4046 return Error(Loc0, "invalid indices for insertvalue"); 4047 Inst = InsertValueInst::Create(Val0, Val1, Indices); 4048 return AteExtraComma ? InstExtraComma : InstNormal; 4049 } 4050 4051 //===----------------------------------------------------------------------===// 4052 // Embedded metadata. 4053 //===----------------------------------------------------------------------===// 4054 4055 /// ParseMDNodeVector 4056 /// ::= Element (',' Element)* 4057 /// Element 4058 /// ::= 'null' | TypeAndValue 4059 bool LLParser::ParseMDNodeVector(SmallVectorImpl<Value*> &Elts, 4060 PerFunctionState *PFS) { 4061 // Check for an empty list. 4062 if (Lex.getKind() == lltok::rbrace) 4063 return false; 4064 4065 do { 4066 // Null is a special case since it is typeless. 4067 if (EatIfPresent(lltok::kw_null)) { 4068 Elts.push_back(0); 4069 continue; 4070 } 4071 4072 Value *V = 0; 4073 if (ParseTypeAndValue(V, PFS)) return true; 4074 Elts.push_back(V); 4075 } while (EatIfPresent(lltok::comma)); 4076 4077 return false; 4078 } 4079